Science.gov

Sample records for acid neural cell

  1. Folic Acid Supplementation Stimulates Notch Signaling and Cell Proliferation in Embryonic Neural Stem Cells

    PubMed Central

    Liu, Huan; Huang, Guo-wei; Zhang, Xu-mei; Ren, Da-lin; X. Wilson, John

    2010-01-01

    The present study investigated the effect of folic acid supplementation on the Notch signaling pathway and cell proliferation in rat embryonic neural stem cells (NSCs). The NSCs were isolated from E14–16 rat brain and grown as neurospheres in serum-free suspension culture. Individual cultures were assigned to one of 3 treatment groups that differed according to the concentration of folic acid in the medium: Control (baseline folic acid concentration of 4 mg/l), low folic acid supplementation (4 mg/l above baseline, Folate-L) and high folic acid supplementation (40 mg/l above baseline, Folate-H). NSCs were identified by their expression of immunoreactive nestin and proliferating cells by incorporation of 5'bromo-2'deoxyuridine. Cell proliferation was also assessed by methyl thiazolyl tetrazolium assay. Notch signaling was analyzed by real-time PCR and western blot analyses of the expression of Notch1 and hairy and enhancer of split 5 (Hes5). Supplementation of NSCs with folic acid increased the mRNA and protein expression levels of Notch1 and Hes5. Folic acid supplementation also stimulated NSC proliferation dose-dependently. Embryonic NSCs respond to folic acid supplementation with increased Notch signaling and cell proliferation. This mechanism may mediate the effects of folic acid supplementation on neurogenesis in the embryonic nervous system. PMID:20838574

  2. Retinoic acid-induced neural differentiation of embryonal carcinoma cells.

    PubMed Central

    Jones-Villeneuve, E M; Rudnicki, M A; Harris, J F; McBurney, M W

    1983-01-01

    We have previously shown that the P19 line of embryonal carcinoma cells develops into neurons, astroglia, and fibroblasts after aggregation and exposure to retinoic acid. The neurons were initially identified by their morphology and by the presence of neurofilaments within their cytoplasm. We have more fully documented the neuronal nature of these cells by showing that their cell surfaces display tetanus toxin receptors, a neuronal cell marker, and that choline acetyl-transferase and acetyl cholinesterase activities appear coordinately in neuron-containing cultures. Several days before the appearance of neurons, there is a marked decrease in the amount of an embryonal carcinoma surface antigen, and at the same time there is a substantial decrease in the volumes of individual cells. Various retinoids were able to induce the development of neurons in cultures of aggregated P19 cells, but it did not appear that polyamine metabolism was involved in the effect. We have isolated a mutant clone which does not differentiate in the presence of any of the drugs which are normally effective in inducing differentiation of P19 cells. This mutant and others may help to elucidate the chain of events triggered by retinoic acid and other differentiation-inducing drugs. Images PMID:6656766

  3. HALOACETIC ACIDS AND KINASE INHIBITORS PERTURB MOUSE NEURAL CREST CELLS IN VITRO

    EPA Science Inventory

    HUNTER, E.S.1, J. SMITH2, J. ANDREWS1. 1 Reproductive Toxicology Division, NHEERL, US EPA, Research Triangle Park and 2 Department of Cell and Developmental Biology, UNC-CH, Chapel Hill, North Carolina. Haloacetic acids and kinase inhibitors perturb mouse neural crest cells in vi...

  4. Regulation of mouse embryonic stem cell neural differentiation by retinoic acid

    PubMed Central

    Kim, Mijeong; Habiba, Ayman; Doherty, Jason M.; Mills, Jason C.; Mercer, Robert W.; Huettner, James E.

    2009-01-01

    Pluripotent mouse embryonic stem cells (ESCs) derived from the early blastocyst can differentiate in vitro into a variety of somatic cell types including lineages from all three embryonic germ layers. Protocols for ES cell neural differentiation typically involve induction by retinoic acid (RA), or by exposure to growth factors or medium conditioned by other cell types. A serum-free differentiation (SFD) medium completely lacking exogenous retinoids was devised that allows for efficient conversion of aggregated mouse ESCs into neural precursors and immature neurons. Neural cells produced in this medium express neuronal ion channels, establish polarity, and form functional excitatory and inhibitory synapses. Brief exposure to RA during the period of cell aggregation speeds neuronal maturation and suppresses cell proliferation. Differentiation without RA yields neurons and neural progenitors with apparent telencephalic identity, whereas cells differentiated with exposure to RA express markers of hindbrain and spinal cord. Transcriptional profiling indicates a substantial representation of transit amplifying neuroblasts in SFD cultures not exposed to RA. PMID:19217899

  5. The Survival of Engrafted Neural Stem Cells Within Hyaluronic Acid Hydrogels

    PubMed Central

    Liang, Yajie; Walczak, Piotr; Bulte, Jeff W.M.

    2013-01-01

    Successful cell-based therapy of neurological disorders is highly dependent on the survival of transplanted stem cells, with the overall graft survival of naked, unprotected cells in general remaining poor. We investigated the use of an injectable hyaluronic acid (HA) hydrogel for enhancement of survival of transplanted mouse C17.2 cells, human neural progenitor cells (ReNcells), and human glial-restricted precursors (GRPs). The gelation properties of the HA hydrogel were first characterized and optimized for intracerebral injection, resulting in a 25 min delayed-injection after mixing of the hydrogel components. Using bioluminescence imaging (BLI) as a non-invasive readout of cell survival, we found that the hydrogel can protect xenografted cells as evidenced by the prolonged survival of C17.2 cells implanted in immunocompetent rats (p<0.01 at day 12). The survival of human ReNcells and human GRPs implanted in the brain of immunocompetent or immunodeficient mice was also significantly improved after hydrogel scaffolding (ReNcells, p<0.05 at day 5; GRPs, p<0.05 at day 7). However, an inflammatory response could be noted two weeks after injection of hydrogel into immunocompetent mice brains. We conclude that hydrogel scaffolding increases the survival of engrafted neural stem cells, justifying further optimization of hydrogel compositions. PMID:23623429

  6. Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure.

    PubMed

    Colleoni, Silvia; Galli, Cesare; Gaspar, John Antony; Meganathan, Kesavan; Jagtap, Smita; Hescheler, Jurgen; Sachinidis, Agapios; Lazzari, Giovanna

    2011-12-01

    The aim of this study was the development of an alternative testing method based on human embryonic stem cells for prenatal developmental toxicity with particular emphasis on early neural development. To this purpose, we designed an in vitro protocol based on the generation of neural rosettes, representing the in vitro counterpart of the developing neural plate and neural tube, and we challenged this complex cell model with retinoic acid (RA), a well-known teratogenic agent. The cells were exposed to different concentrations of RA during the process of rosettes formation. Morphological and molecular parameters were evaluated in treated as compared with untreated cells to detect both cytotoxicity and specific neural toxicity. Transcriptomic analysis was performed with microarray Affymetrix platform and validated by quantitative real-time PCR for genes relevant to early neural development such as HoxA1, HoxA3, HoxB1, HoxB4, FoxA2, FoxC1, Otx2, and Pax7. The results obtained demonstrated that neural rosette forming cells respond to RA with clear concentration-dependent morphological, and gene expression changes remarkably similar to those induced in vivo, in the developing neural tube, by RA exposure. This strict correspondence indicates that the neural rosette protocol described is capable of detecting specific teratogenic mechanisms causing perturbations of early neural development and therefore represents a promising alternative test for human prenatal developmental toxicity. PMID:21934132

  7. Sonic hedgehog and retinoic Acid induce bone marrow-derived stem cells to differentiate into glutamatergic neural cells.

    PubMed

    Yu, Zhenhai; Wu, Shixing; Liu, Zhen; Lin, Haiyan; Chen, Lei; Yuan, Xinli; Zhang, Zhiying; Liu, Fang; Zhang, Chuansen

    2015-01-01

    Studies have showed that transplanted stem cells in the inner ear won't regenerate to replace the damaged sensory hair cells. They can spontaneously differentiate into mesenchymal cells and fibrocytes in the damaged inner ear. Only mature sensory cells of MSCs-derived possess the great potency for cell transplantation in the treatment of sensorineural hearing loss. So, we try to establish an efficient generation of the glutamatergic sensory neural phenotype for the cell transplantation of the hearing loss. We isolated MSCs from femoral and tibial bones according to their adherence to culture dishes. After purification, proliferation, and passaged, cells became homogeneous in appearance, showing more uniformity and grew in a monolayer with a typical spindle-shape morphology. The cell surface markers were assessed using FACS to characterize the isolated cells. For neural induction to harvest the glutamatergic sensory neurons, passage 3 MSCs were incubated with preinduced medium for 24 hr, and neural-induced medium for an additional 14 days. The cells exhibit a typical neural shape. RT-PCR analysis indicated that the mRNA levels of the neural cell marker nestin, Tau, MAP-2, β-tubulin III, GluR-3, and GluR-4 were higher compared with primary MSCs. Immunohistochemistry and western-blotting proofed that nestin, MAP-2, β-tubulin III, and GluR-4 proteins indeed exhibit their expression difference in the induced cells compared to the MSCs. We show an efficient protocol by the combined applications of Sonic Hedgehog (Shh) and Retinoic Acid (RA) to induce MSCs to differentiate into the glutamatergic sensory neuron which were identified from the morphological, biochemical, and molecular characteristics. PMID:24547891

  8. Impaired Neural Differentiation Potency by Retinoic Acid Receptor-α Pathway Defect in Induced Pluripotent Stem Cells

    PubMed Central

    Hou, Pei-Shan; Huang, Wen-Chin; Chiang, Wei; Lin, Wei-Che

    2014-01-01

    Abstract Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells via ectopic gene expression and, similarly to embryonic stem cells (ESCs), possess powerful abilities to self-renew and differentiate into cells of various lineages. However, the neural differentiation potency of iPSCs remains unknown. In this study, we demonstrated the neural differentiation ability of iPSCs compared with ESCs using an retinoic acid (RA) induction system. The neural differentiation efficiency of iPSCs was obviously lower than that of ESCs. Retinoic acid receptor-α (RARα) was critical in the RA-induced neural differentiation of iPSCs, and the effect of RARα was confirmed by applying a specific RARα antagonist ER50891 to ESCs. These findings indicate that iPSCs do not possess the complete properties that ESCs have. PMID:25364979

  9. Wnt signaling pathway participates in valproic acid-induced neuronal differentiation of neural stem cells

    PubMed Central

    Wang, Li; Liu, Yuan; Li, Sen; Long, Zai-Yun; Wu, Ya-Min

    2015-01-01

    Neural stem cells (NSCs) are multipotent cells that have the capacity for differentiation into the major cell types of the nervous system, i.e. neurons, astrocytes and oligodendrocytes. Valproic acid (VPA) is a widely prescribed drug for seizures and bipolar disorder in clinic. Previously, a number of researches have been shown that VPA has differential effects on growth, proliferation and differentiation in many types of cells. However, whether VPA can induce NSCs from embryonic cerebral cortex differentiate into neurons and its possible molecular mechanism is also not clear. Wnt signaling is implicated in the control of cell growth and differentiation during CNS development in animal model, but its action at the cellular level has been poorly understood. In this experiment, we examined neuronal differentiation of NSCs induced by VPA culture media using vitro immunochemistry assay. The neuronal differentiation of NSCs was examined after treated with 0.75 mM VPA for three, seven and ten days. RT-PCR assay was employed to examine the level of Wnt-3α and β-catenin. The results indicated that there were more β-tublin III positive cells in NSCs treated with VPA medium compared to the control group. The expression of Wnt-3α and β-catenin in NSCs treated with VPA medium was significantly greater compared to that of control media. In conclusion, these findings indicated that VPA could induce neuronal differentiation of NSCs by activating Wnt signal pathway. PMID:25755748

  10. Dimethylsulfoniopropionate Promotes Process Outgrowth in Neural Cells and Exerts Protective Effects against Tropodithietic Acid

    PubMed Central

    Wichmann, Heidi; Brinkhoff, Thorsten; Simon, Meinhard; Richter-Landsberg, Christiane

    2016-01-01

    The marine environment harbors a plethora of bioactive substances, including drug candidates of potential value in the field of neuroscience. The present study was undertaken to investigate the effects of dimethylsulfoniopropionate (DMSP), produced by several algae, corals and higher plants, on cells of the mammalian nervous system, i.e., neuronal N2a and OLN-93 cells as model system for nerve cells and glia, respectively. Additionally, the protective capabilities of DMSP were assessed in cells treated with tropodithietic acid (TDA), a marine metabolite produced by several Roseobacter clade bacteria. Both cell lines, N2a and OLN-93, have previously been shown to be a sensitive target for the action of TDA, and cytotoxic effects of TDA have been connected to the induction of oxidative stress. Our data shows that DMSP promotes process outgrowth and microtubule reorganization and bundling, accompanied by an increase in alpha-tubulin acetylation. Furthermore, DMSP was able to prevent the cytotoxic effects exerted by TDA, including the breakdown of the mitochondrial membrane potential, upregulation of heat shock protein Hsp32 and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2). Our study points to the conclusion that DMSP provides an antioxidant defense, not only in algae but also in mammalian neural cells. PMID:27164116

  11. Dimethylsulfoniopropionate Promotes Process Outgrowth in Neural Cells and Exerts Protective Effects against Tropodithietic Acid.

    PubMed

    Wichmann, Heidi; Brinkhoff, Thorsten; Simon, Meinhard; Richter-Landsberg, Christiane

    2016-01-01

    The marine environment harbors a plethora of bioactive substances, including drug candidates of potential value in the field of neuroscience. The present study was undertaken to investigate the effects of dimethylsulfoniopropionate (DMSP), produced by several algae, corals and higher plants, on cells of the mammalian nervous system, i.e., neuronal N2a and OLN-93 cells as model system for nerve cells and glia, respectively. Additionally, the protective capabilities of DMSP were assessed in cells treated with tropodithietic acid (TDA), a marine metabolite produced by several Roseobacter clade bacteria. Both cell lines, N2a and OLN-93, have previously been shown to be a sensitive target for the action of TDA, and cytotoxic effects of TDA have been connected to the induction of oxidative stress. Our data shows that DMSP promotes process outgrowth and microtubule reorganization and bundling, accompanied by an increase in alpha-tubulin acetylation. Furthermore, DMSP was able to prevent the cytotoxic effects exerted by TDA, including the breakdown of the mitochondrial membrane potential, upregulation of heat shock protein Hsp32 and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2). Our study points to the conclusion that DMSP provides an antioxidant defense, not only in algae but also in mammalian neural cells. PMID:27164116

  12. Folic acid in combination with adult neural stem cells for the treatment of spinal cord injury in rats

    PubMed Central

    Zhang, Chen; Shen, Lin

    2015-01-01

    Purpose: To observe the therapeutic effect of folic acid in combination with adult neural stem cells on spinal cord injury and to investigate the possible mechanism. Methods: A total of 120 Wistar rats were randomly assigned to six groups: normal, model, sham-surgery, folic acid injection, adult neural stem cell transplantation, and combination (folic acid injection + adult neural stem cells transplantation) groups. Morphology of neural stem cells was observed by inverted microscopy. Expression of CD105, CD45, CD44, and CD29 were detected by flow cytometry; expression of neuron-specific enolase and glial fibrillary acidic protein were determined by immunofluorescence. Motor coordination and integration capabilities were assessed using BBB scores; Morphology of spinal cord tissues was observed by hematoxylin-eosin staining and 5-bromodeoxyuridine immunohistochemistry. GDNF, BDNF and NT-3 expression in spinal cord tissues were determined by ELISA; while expression of the apoptosis-related proteins BCL-2, Bax and caspase-3 was detected using western blotting. Results: Flow cytometry showed that the isolated cells were positive for CD44 and CD29 and negative for CD105 and CD45. Combination treatment significantly improved the behavior of model rats with spinal cord injury, attenuated inflammatory reaction of spinal cord tissues, restored injured nerve cells, and increased expression of GDNF, BDNF and NT-3 in spinal cord tissues, up regulated BCL-2 expression, and down regulated Bax and caspase-3 expression. Conclusions: Folic acid in combination with adult neural stem cells significantly improved nerve function and plays a key role in maintaining microenvironment homeostasis in the neurons of rats with spinal cord injury. PMID:26379837

  13. INHIBITION OF NEURAL CREST CELL MIGRATION BY THE WATER DISINFECTION BYPRODUCTS DICHLORO-, DIBROMO-, AND BROMOCHLORO-ACETIC ACID.

    EPA Science Inventory

    INHIBITION OF NEURAL CREST CELL MIGRATION BY THE WATER DISINFECTION BYPRODUCTS DICHLORO-, DIBROMO- AND BROMOCHLORO-ACETIC ACID. JE Andrews, H Nichols, J Schmid 1, and ES Hunter. Reproductive Toxicology Division, 1Research Support Division, NHEERL, USEPA, RTP, NC, USA.

    ...

  14. A quantum theory for the irreplaceable role of docosahexaenoic acid in neural cell signalling throughout evolution.

    PubMed

    Crawford, Michael A; Broadhurst, C Leigh; Guest, Martin; Nagar, Atulya; Wang, Yiqun; Ghebremeskel, Kebreab; Schmidt, Walter F

    2013-01-01

    Six hundred million years ago, the fossil record displays the sudden appearance of intracellular detail and the 32 phyla. The "Cambrian Explosion" marks the onset of dominant aerobic life. Fossil intracellular structures are so similar to extant organisms that they were likely made with similar membrane lipids and proteins, which together provided for organisation and specialisation. While amino acids could be synthesised over 4 billion years ago, only oxidative metabolism allows for the synthesis of highly unsaturated fatty acids, thus producing novel lipid molecular species for specialised cell membranes. Docosahexaenoic acid (DHA) provided the core for the development of the photoreceptor, and conversion of photons into electricity stimulated the evolution of the nervous system and brain. Since then, DHA has been conserved as the principle acyl component of photoreceptor synaptic and neuronal signalling membranes in the cephalopods, fish, amphibian, reptiles, birds, mammals and humans. This extreme conservation in electrical signalling membranes despite great genomic change suggests it was DHA dictating to DNA rather than the generally accepted other way around. We offer a theoretical explanation based on the quantum mechanical properties of DHA for such extreme conservation. The unique molecular structure of DHA allows for quantum transfer and communication of π-electrons, which explains the precise depolarisation of retinal membranes and the cohesive, organised neural signalling which characterises higher intelligence. PMID:23206328

  15. Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth.

    PubMed

    Sudwilai, Thitima; Ng, Jun Jye; Boonkrai, Chatikorn; Israsena, Nipan; Chuangchote, Surawut; Supaphol, Pitt

    2014-01-01

    Neuronal activities play critical roles in both neurogenesis and neural regeneration. In that sense, electrically conductive and biocompatible biomaterial scaffolds can be applied in various applications of neural tissue engineering. In this study, we fabricated a novel biomaterial for neural tissue engineering applications by coating electrospun poly(lactic acid) (PLA) nanofibers with a conducting polymer, polypyrole (PPy), via admicellar polymerization. Optimal conditions for polymerization and preparation of PPy-coated electrospun PLA nanofibers were obtained by comparing results from scanning electron microscopy, X-ray photoelectron spectrometer, and surface conductivity tests. In vitro cell culture experiments showed that PPy-coated electrospun PLA fibrous scaffold is not toxic. The scaffold could support attachment and migration of neural progenitor cells. Neurons derived from progenitor exhibited long neurite outgrowth under electrical stimulation. Our study concluded that PPy-coated electrospun PLA fibers had a good biocompatibility with neural progenitor cells and may serve as a promising material for controlling progenitor cell behaviors and enhancing neural repair. PMID:24933469

  16. Folic Acid Protected Neural Cells Against Aluminum-Maltolate-Induced Apoptosis by Preventing miR-19 Downregulation.

    PubMed

    Zhu, Mingming; Li, Bingfei; Ma, Xiao; Huang, Cong; Wu, Rui; Zhu, Weiwei; Li, Xiaoting; Liang, Zhaofeng; Deng, Feifei; Zhu, Jianyun; Xie, Wei; Yang, Xue; Jiang, Ye; Wang, Shijia; Wu, Jieshu; Geng, Shanshan; Xie, Chunfeng; Zhong, Caiyun; Liu, Haiyan

    2016-08-01

    Aluminum (Al)-induced apoptosis is considered as the major cause of its neurotoxicity. Folic acid possesses neuroprotective function by preventing neural cell apoptosis. microRNAs (miRNAs) are important regulators of gene expression participating in cellular processes. As a key component of the miR-17-92 cluster, miR-19 is implicated in regulating apoptotic process, while its role in the neuroprotective effect of folic acid has not been investigated. The present study aimed to investigate the potential involvement and function of miR-19 in the protective action of folic acid against Al-induced neural cell apoptosis. Human SH-SY5Y cells were treated with Al-maltolate (Al-malt) in the presence or absence of folic acid. Results showed that Al-malt-induced apoptosis of SH-SY5Y cells was effectively prevented by folic acid. Al-malt suppressed the expression of miR-19a/19b, along with alterations of miR-19 related apoptotic proteins including PTEN, p-AKT, p53, Bax, Bcl-2, caspase 9 and caspase 3; and these effects were ameliorated by folic acid. miR-19 inhibitor alone induced apoptosis of SH-SY5Y cells. Combination treatment of folic acid and miR-19 inhibitor diminished the neuroprotective effect of folic acid. These findings demonstrated that folic acid protected neuronal cells against Al-malt-induced apoptosis by preventing the downregulation of miR-19 and modulation of miR-19 related downstream PTEN/AKT/p53 pathway. PMID:27113042

  17. Retinoic acid induced the differentiation of neural stem cells from embryonic spinal cord into functional neurons in vitro

    PubMed Central

    Tan, Bo-Tao; Wang, Li; Li, Sen; Long, Zai-Yun; Wu, Ya-Min; Liu, Yuan

    2015-01-01

    Retinoic acid is an important molecular taking part in the development and homeostasis of nervous system. Neural stem cells (NSCs) are pluripotent cells that can differentiate into three main neural cells including neuron, astrocyte and oligodendrocyte. However, whether retinoic acid can induce NSCs derived from embryonic spinal cord differentiating into functional neurons and its efficiency are not clear. In this experiment, NSCs were isolated from embryonic 14 d spinal cord of rats. The growth and neuronal differentiation of NSCs induced by 500 nM RA was examined in vitro. It was indicated that compared with the control group, there were more differentiated cells with longer cytodendrites in the medium treated with RA at different time. And more, there were more neuronal marker positive cells in 500 nM RA group than the control group seven days after differentiation. At the same time, the expression of β-tublin III protein in RA group was higher than those in control group, which was contrary to the expression of astrocyte marker GFAP protein at seven days after differentiation. However the differentiated neurons, whether treated with RA or not both exhibited biological electrical reactivity after stimulated by glutamine. Therefore, these findings indicated that RA could promote growth of cellular dendrites and neuronal differentiation of NSCs, which also induce functional maturation of differentiated neurons finally. PMID:26339381

  18. Csn3 Gene Is Regulated by All-Trans Retinoic Acid during Neural Differentiation in Mouse P19 Cells

    PubMed Central

    Komori, Rie; Kobayashi, Takanobu; Matsuo, Hikaru; Kino, Katsuhito; Miyazawa, Hiroshi

    2013-01-01

    κ-Casein (CSN3) is known to play an essential role in controlling the stability of the milk micelles. We found that the expression of Csn3 was induced by all-trans retinoic acid (ATRA) during neural differentiation in P19 embryonal carcinoma cells from our study using DNA microarray. In this paper, we describe the detailed time course of Csn3 expression and the induction mechanism of Csn3 transcription activation in this process. The Csn3 expression was induced rapidly and transiently within 24 h of ATRA treatment. Retinoic acid receptor (RAR)-specific agonists were used in expression analysis to identify the RAR subtype involved upregulation of Csn3; a RARα-specific agonist mimicked the effects of ATRA on induction of Csn3 expression. Therefore, RARα may be the RAR subtype mediating the effects of ATRA on the induction of Csn3 gene transcription in this differentiation-promoting process of P19 cells. We found that the promoter region of Csn3 contained a typical consensus retinoic acid response element (RARE), and this RARE was necessary for ATRA-dependent transcriptional regulation. We confirmed that RARα bound to this RARE sequence in P19 cells. These findings indicated that the Csn3 expression is upregulated via ATRA-bound RARα and binding of this receptor to the RARE in the Csn3 promoter region. This will certainly serve as a first step forward unraveling the mysteries of induction of Csn3 in the process of neural differentiation. PMID:23613978

  19. Inborn Errors of Long Chain Fatty Acid β-Oxidation Link Neural Stem Cell Self-Renewal to Autism

    PubMed Central

    Xie, Zhigang; Jones, Albert; Deeney, Jude T; Hur, Seong Kwon; Bankaitis, Vytas A

    2016-01-01

    SUMMARY Inborn errors of metabolism (IEMs) occur with high incidence in human populations. Especially prevalent among these are inborn deficiencies in fatty acid β-oxidation (FAO) clinically associated with developmental neuropsychiatric disorders, including autism. We now report that neural stem cell (NSC)-autonomous insufficiencies in activity of TMLHE (an autism-risk factor that supports long-chain FAO by catalyzing carnitine biosynthesis), of CPT1A (enzyme required for long-chain FAO transport into mitochondria), or of fatty acid mobilization from lipid droplets reduced NSC pools in mouse embryonic neocortex. Lineage tracing experiments demonstrated that reduced flux through the FAO pathway potentiated NSC symmetric differentiating divisions at the expense of self-renewing stem cell division modes. The collective data reveal a key role for FAO in controlling NSC-to-IPC transition in mammalian embryonic brain, and suggest NSC self-renewal as a cellular mechanism underlying the association between IEMs and autism. PMID:26832401

  20. Neural induction, neural fate stabilization, and neural stem cells.

    PubMed

    Moody, Sally A; Je, Hyun-Soo

    2002-04-28

    The promise of stem cell therapy is expected to greatly benefit the treatment of neurodegenerative diseases. An underlying biological reason for the progressive functional losses associated with these diseases is the extremely low natural rate of self-repair in the nervous system. Although the mature CNS harbors a limited number of self-renewing stem cells, these make a significant contribution to only a few areas of brain. Therefore, it is particularly important to understand how to manipulate embryonic stem cells and adult neural stem cells so their descendants can repopulate and functionally repair damaged brain regions. A large knowledge base has been gathered about the normal processes of neural development. The time has come for this information to be applied to the problems of obtaining sufficient, neurally committed stem cells for clinical use. In this article we review the process of neural induction, by which the embryonic ectodermal cells are directed to form the neural plate, and the process of neural-fate stabilization, by which neural plate cells expand in number and consolidate their neural fate. We will present the current knowledge of the transcription factors and signaling molecules that are known to be involved in these processes. We will discuss how these factors may be relevant to manipulating embryonic stem cells to express a neural fate and to produce large numbers of neurally committed, yet undifferentiated, stem cells for transplantation therapies. PMID:12805974

  1. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia

    NASA Astrophysics Data System (ADS)

    Ferreira, R.; Fonseca, M. C.; Santos, T.; Sargento-Freitas, J.; Tjeng, R.; Paiva, F.; Castelo-Branco, M.; Ferreira, L. S.; Bernardino, L.

    2016-04-01

    Stroke is one of the leading causes of death and disability worldwide. However, current therapies only reach a small percentage of patients and may cause serious side effects. We propose the therapeutic use of retinoic acid-loaded nanoparticles (RA-NP) to safely and efficiently repair the ischaemic brain by creating a favourable pro-angiogenic environment that enhances neurogenesis and neuronal restitution. Our data showed that RA-NP enhanced endothelial cell proliferation and tubule network formation and protected against ischaemia-induced death. To evaluate the effect of RA-NP on vascular regulation of neural stem cell (NSC) survival and differentiation, endothelial cell-conditioned media (EC-CM) were collected. EC-CM from healthy RA-NP-treated cells reduced NSC death and promoted proliferation while EC-CM from ischaemic RA-NP-treated cells decreased cell death, increased proliferation and neuronal differentiation. In parallel, human endothelial progenitor cells (hEPC), which are part of the endogenous repair response to vascular injury, were collected from ischaemic stroke patients. hEPC treated with RA-NP had significantly higher proliferation, which further highlights the therapeutic potential of this formulation. To conclude, RA-NP protected endothelial cells from ischaemic death and stimulated the release of pro-survival, proliferation-stimulating factors and differentiation cues for NSC. RA-NP were shown to be up to 83-fold more efficient than free RA and to enhance hEPC proliferation. These data serve as a stepping stone to use RA-NP as vasculotrophic and neurogenic agents for vascular disorders and neurodegenerative diseases with compromised vasculature.

  2. Oleanolic Acid Induces Differentiation of Neural Stem Cells to Neurons: An Involvement of Transcription Factor Nkx-2.5

    PubMed Central

    Ning, You; Huang, Jianhua; Kalionis, Bill; Bian, Qin; Dong, Jingcheng; Wu, Junzhen; Tai, Xiantao; Xia, Shijin; Shen, Ziyin

    2015-01-01

    Neural stem cells (NSCs) harbor the potential to differentiate into neurons, astrocytes, and oligodendrocytes under normal conditions and/or in response to tissue damage. NSCs open a new way of treatment of the injured central nervous system and neurodegenerative disorders. Thus far, few drugs have been developed for controlling NSC functions. Here, the effect as well as mechanism of oleanolic acid (OA), a pentacyclic triterpenoid, on NSC function was investigated. We found OA significantly inhibited neurosphere formation in a dose-dependent manner and achieved a maximum effect at 10 nM. OA also reduced 5-ethynyl-2′-deoxyuridine (EdU) incorporation into NSCs, which was indicative of inhibited NSC proliferation. Western blotting analysis revealed the protein levels of neuron-specific marker tubulin-βIII (TuJ1) and Mash1 were increased whilst the astrocyte-specific marker glial fibrillary acidic protein (GFAP) decreased. Immunofluorescence analysis showed OA significantly elevated the percentage of TuJ1-positive cells and reduced GFAP-positive cells. Using DNA microarray analysis, 183 genes were differentially regulated by OA. Through transcription factor binding site analyses of the upstream regulatory sequences of these genes, 87 genes were predicted to share a common motif for Nkx-2.5 binding. Finally, small interfering RNA (siRNA) methodology was used to silence Nkx-2.5 expression and found silence of Nkx-2.5 alone did not change the expression of TuJ-1 and the percentage of TuJ-1-positive cells. But in combination of OA treatment and silence of Nkx-2.5, most effects of OA on NSCs were abolished. These results indicated that OA is an effective inducer for NSCs differentiation into neurons at least partially by Nkx-2.5-dependent mechanism. PMID:26240574

  3. Oleanolic Acid Induces Differentiation of Neural Stem Cells to Neurons: An Involvement of Transcription Factor Nkx-2.5.

    PubMed

    Ning, You; Huang, Jianhua; Kalionis, Bill; Bian, Qin; Dong, Jingcheng; Wu, Junzhen; Tai, Xiantao; Xia, Shijin; Shen, Ziyin

    2015-01-01

    Neural stem cells (NSCs) harbor the potential to differentiate into neurons, astrocytes, and oligodendrocytes under normal conditions and/or in response to tissue damage. NSCs open a new way of treatment of the injured central nervous system and neurodegenerative disorders. Thus far, few drugs have been developed for controlling NSC functions. Here, the effect as well as mechanism of oleanolic acid (OA), a pentacyclic triterpenoid, on NSC function was investigated. We found OA significantly inhibited neurosphere formation in a dose-dependent manner and achieved a maximum effect at 10 nM. OA also reduced 5-ethynyl-2'-deoxyuridine (EdU) incorporation into NSCs, which was indicative of inhibited NSC proliferation. Western blotting analysis revealed the protein levels of neuron-specific marker tubulin-βIII (TuJ1) and Mash1 were increased whilst the astrocyte-specific marker glial fibrillary acidic protein (GFAP) decreased. Immunofluorescence analysis showed OA significantly elevated the percentage of TuJ1-positive cells and reduced GFAP-positive cells. Using DNA microarray analysis, 183 genes were differentially regulated by OA. Through transcription factor binding site analyses of the upstream regulatory sequences of these genes, 87 genes were predicted to share a common motif for Nkx-2.5 binding. Finally, small interfering RNA (siRNA) methodology was used to silence Nkx-2.5 expression and found silence of Nkx-2.5 alone did not change the expression of TuJ-1 and the percentage of TuJ-1-positive cells. But in combination of OA treatment and silence of Nkx-2.5, most effects of OA on NSCs were abolished. These results indicated that OA is an effective inducer for NSCs differentiation into neurons at least partially by Nkx-2.5-dependent mechanism. PMID:26240574

  4. Structure and Mutagenesis of Neural Cell Adhesion Molecule Domains Evidence for Flexibility in the Placement of Polysialic Acid Attachment Sites

    SciTech Connect

    Foley, Deirdre A.; Swartzentruber, Kristin G.; Lavie, Arnon; Colley, Karen J.

    2010-11-09

    The addition of {alpha}2,8-polysialic acid to the N-glycans of the neural cell adhesion molecule, NCAM, is critical for brain development and plays roles in synaptic plasticity, learning and memory, neuronal regeneration, and the growth and invasiveness of cancer cells. Our previous work indicates that the polysialylation of two N-glycans located on the fifth immunoglobulin domain (Ig5) of NCAM requires the presence of specific sequences in the adjacent fibronectin type III repeat (FN1). To understand the relationship of these two domains, we have solved the crystal structure of the NCAM Ig5-FN1 tandem. Unexpectedly, the structure reveals that the sites of Ig5 polysialylation are on the opposite face from the FN1 residues previously found to be critical for N-glycan polysialylation, suggesting that the Ig5-FN1 domain relationship may be flexible and/or that there is flexibility in the placement of Ig5 glycosylation sites for polysialylation. To test the latter possibility, new Ig5 glycosylation sites were engineered and their polysialylation tested. We observed some flexibility in glycosylation site location for polysialylation and demonstrate that the lack of polysialylation of a glycan attached to Asn-423 may be in part related to a lack of terminal processing. The data also suggest that, although the polysialyltransferases do not require the Ig5 domain for NCAM recognition, their ability to engage with this domain is necessary for polysialylation to occur on Ig5 N-glycans.

  5. Protective Effects and Mechanisms of Salvianolic Acid B Against H₂O₂-Induced Injury in Induced Pluripotent Stem Cell-Derived Neural Stem Cells.

    PubMed

    Shu, Tao; Pang, Mao; Rong, Limin; Liu, Chang; Wang, Juan; Zhou, Wei; Wang, Xuan; Liu, Bin

    2015-06-01

    Induced pluripotent stem cells (iPSCs) have the potential to differentiate into neural lineages. Salvianolic acid B (Sal B) is a commonly used, traditional Chinese medicine for enhancing neuroprotective effects, and has antioxidant, anti-inflammatory, and antiapoptotic properties. Here, we explore the potential mechanism of Sal B in protecting iPSC-derived neural stem cells (NSCs) against H2O2-induced injury. iPSCs were induced into NSCs, iPSC-derived NSCs were treated with 50 μM Sal B for 24.5 h and 500 μM H2O2 for 24 h. The resulting effects were examined by flow cytometry analysis, quantitative reverse-transcription polymerase chain reaction, and western blotting. Upon H2O2 exposure, Sal B significantly promoted cell viability and stabilization of the mitochondrial membrane potential. Sal B also visibly decreased the cell apoptotic ratio. In addition, Sal B markedly reduced expression of matrix metalloproteinase (MMP)-2 and -9, and phosphospecific signal transducer and activator of transcription 3 (p-STAT3), and increased the level of tissue inhibitor of metalloproteinase (TIMP)-2 in iPSC-derived NSCs induced by H2O2. These results suggest that Sal B protects iPSC-derived NSCs against H2O2-induced oxidative stress. The mechanisms of this stress tolerance may be attributed to modulation of the MMP/TIMP system and inhibition of the STAT3 signaling pathway. PMID:25855584

  6. Direct Stimulation of Adult Neural Stem/Progenitor Cells In Vitro and Neurogenesis In Vivo by Salvianolic Acid B

    PubMed Central

    Zhuang, Pengwei; Zhang, Yanjun; Cui, Guangzhi; Bian, Yuhong; Zhang, Mixia; Zhang, Jinbao; Liu, Yang; Yang, Xinpeng; Isaiah, Adejobi Oluwaniyi; Lin, Yingxue; Jiang, Yongbo

    2012-01-01

    Background Small molecules have been shown to modulate the neurogenesis processes. In search for new therapeutic drugs, the herbs used in traditional medicines for neurogenesis are promising candidates. Methodology and Principal Findings We selected a total of 45 natural compounds from Traditional Chinese herbal medicines which are extensively used in China to treat stroke clinically, and tested their proliferation-inducing activities on neural stem/progenitor cells (NSPCs). The screening results showed that salvianolic acid B (Sal B) displayed marked effects on the induction of proliferation of NSPCs. We further demonstrated that Sal B promoted NSPCs proliferation in dose- and time-dependent manners. To explore the molecular mechanism, PI3K/Akt, MEK/ERK and Notch signaling pathways were investigated. Cell proliferation assay demonstrated that Ly294002 (PI3K/Akt inhibitor), but neither U0126 (ERK inhibitor) nor DAPT (Notch inhibitor) inhibited the Sal B-induced proliferation of cells. Western Blotting results showed that stimulation of NSPCs with Sal B enhanced the phosphorylation of Akt, and Ly294002 abolished this effect, confirming the role of Akt in Sal B mediated proliferation of NSPCs. Rats exposed to transient cerebral ischemia were treated for 4 weeks with Sal B from the 7th day after stroke. BrdU incorporation assay results showed that exposure Sal B could maintain the proliferation of NSPCs after cerebral ischemia. Morris water maze test showed that delayed post-ischemic treatment with Sal B improved cognitive impairment after stroke in rats. Significance Sal B could maintain the NSPCs self-renew and promote proliferation, which was mediated by PI3K/Akt signal pathway. And delayed post-ischemic treatment with Sal B improved cognitive impairment after stroke in rats. These findings suggested that Sal B may act as a potential drug in treatment of brain injury or neurodegenerative diseases. PMID:22545124

  7. Distinctive effects of eicosapentaenoic and docosahexaenoic acids in regulating neural stem cell fate are mediated via endocannabinoid signalling pathways.

    PubMed

    Dyall, S C; Mandhair, H K; Fincham, R E A; Kerr, D M; Roche, M; Molina-Holgado, F

    2016-08-01

    Emerging evidence suggests a complex interplay between the endocannabinoid system, omega-3 fatty acids and the immune system in the promotion of brain self-repair. However, it is unknown if all omega-3 fatty acids elicit similar effects on adult neurogenesis and if such effects are mediated or regulated by interactions with the endocannabinoid system. This study investigated the effects of DHA and EPA on neural stem cell (NSC) fate and the role of the endocannabinoid signalling pathways in these effects. EPA, but not DHA, significantly increased proliferation of NSCs compared to controls, an effect associated with enhanced levels of the endocannabinoid 2-arachidonylglycerol (2-AG) and p-p38 MAPK, effects attenuated by pre-treatment with CB1 (AM251) or CB2 (AM630) receptor antagonists. Furthermore, in NSCs derived from IL-1β deficient mice, EPA significantly decreased proliferation and p-p38 MAPK levels compared to controls, suggesting a key role for IL-1β signalling in the effects observed. Although DHA similarly increased 2-AG levels in wild-type NSCs, there was no concomitant increase in proliferation or p-p38 MAPK activity. In addition, in NSCs from IL-1β deficient mice, DHA significantly increased proliferation without effects on p-P38 MAPK, suggesting effects of DHA are mediated via alternative signalling pathways. These results provide crucial new insights into the divergent effects of EPA and DHA in regulating NSC proliferation and the pathways involved, and highlight the therapeutic potential of their interplay with endocannabinoid signalling in brain repair. PMID:27044662

  8. Identification of Stage-Specific Gene Expression Signatures in Response to Retinoic Acid during the Neural Differentiation of Mouse Embryonic Stem Cells

    PubMed Central

    Akanuma, Hiromi; Qin, Xian-Yang; Nagano, Reiko; Win-Shwe, Tin-Tin; Imanishi, Satoshi; Zaha, Hiroko; Yoshinaga, Jun; Fukuda, Tomokazu; Ohsako, Seiichiroh; Sone, Hideko

    2012-01-01

    We have previously established a protocol for the neural differentiation of mouse embryonic stem cells (mESCs) as an efficient tool to evaluate the neurodevelopmental toxicity of environmental chemicals. Here, we described a multivariate bioinformatic approach to identify the stage-specific gene sets associated with neural differentiation of mESCs. We exposed mESCs (B6G-2 cells) to 10−8 or 10−7 M of retinoic acid (RA) for 4 days during embryoid body formation and then performed morphological analysis on day of differentiation (DoD) 8 and 36, or genomic microarray analysis on DoD 0, 2, 8, and 36. Three gene sets, namely a literature-based gene set (set 1), an analysis-based gene set (set 2) using self-organizing map and principal component analysis, and an enrichment gene set (set 3), were selected by the combined use of knowledge from literatures and gene information selected from the microarray data. A gene network analysis for each gene set was then performed using Bayesian statistics to identify stage-specific gene expression signatures in response to RA during mESC neural differentiation. Our results showed that RA significantly increased the size of neurosphere, neuronal cells, and glial cells on DoD 36. In addition, the gene network analysis showed that glial fibrillary acidic protein, a neural marker, remarkably up-regulates the other genes in gene set 1 and 3, and Gbx2, a neural development marker, significantly up-regulates the other genes in gene set 2 on DoD 36 in the presence of RA. These findings suggest that our protocol for identification of developmental stage-specific gene expression and interaction is a useful method for the screening of environmental chemical toxicity during neurodevelopmental periods. PMID:22891073

  9. Polysialic acid enters the cell nucleus attached to a fragment of the neural cell adhesion molecule NCAM to regulate the circadian rhythm in mouse brain.

    PubMed

    Westphal, Nina; Kleene, Ralf; Lutz, David; Theis, Thomas; Schachner, Melitta

    2016-07-01

    In the mammalian nervous system, the neural cell adhesion molecule NCAM is the major carrier of the glycan polymer polysialic acid (PSA) which confers important functions to NCAM's protein backbone. PSA attached to NCAM contributes not only to cell migration, neuritogenesis, synaptic plasticity, and behavior, but also to regulation of the circadian rhythm by yet unknown molecular mechanisms. Here, we show that a PSA-carrying transmembrane NCAM fragment enters the nucleus after stimulation of cultured neurons with surrogate NCAM ligands, a phenomenon that depends on the circadian rhythm. Enhanced nuclear import of the PSA-carrying NCAM fragment is associated with altered expression of clock-related genes, as shown by analysis of cultured neuronal cells deprived of PSA by specific enzymatic removal. In vivo, levels of nuclear PSA in different mouse brain regions depend on the circadian rhythm and clock-related gene expression in suprachiasmatic nucleus and cerebellum is affected by the presence of PSA-carrying NCAM in the cell nucleus. Our conceptually novel observations reveal that PSA attached to a transmembrane proteolytic NCAM fragment containing part of the extracellular domain enters the cell nucleus, where PSA-carrying NCAM contributes to the regulation of clock-related gene expression and of the circadian rhythm. PMID:27236020

  10. Folic Acid Helps Prevent Neural Tube Defects

    MedlinePlus

    ... Features Folic Acid Helps Prevent Neural Tube Defects Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir The feature you selected is no longer available. In 10 seconds you will be automatically redirected to the CDC. ...

  11. Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain

    PubMed Central

    Ryu, Sun; Lee, Seung-Hoon; Kim, Seung U.; Yoon, Byung-Woo

    2016-01-01

    Transplantation of human neural stem cells into the dentate gyrus or ventricle of rodents has been reportedly to enhance neurogenesis. In this study, we examined endogenous stem cell proliferation and angiogenesis in the ischemic rat brain after the transplantation of human neural stem cells. Focal cerebral ischemia in the rat brain was induced by middle cerebral artery occlusion. Human neural stem cells were transplanted into the subventricular zone. The behavioral performance of human neural stem cells-treated ischemic rats was significantly improved and cerebral infarct volumes were reduced compared to those in untreated animals. Numerous transplanted human neural stem cells were alive and preferentially localized to the ipsilateral ischemic hemisphere. Furthermore, 5-bromo-2′-deoxyuridine-labeled endogenous neural stem cells were observed in the subventricular zone and hippocampus, where they differentiated into cells immunoreactive for the neural markers doublecortin, neuronal nuclear antigen NeuN, and astrocyte marker glial fibrillary acidic protein in human neural stem cells-treated rats, but not in the untreated ischemic animals. The number of 5-bromo-2′-deoxyuridine-positive ⁄ anti-von Willebrand factor-positive proliferating endothelial cells was higher in the ischemic boundary zone of human neural stem cells-treated rats than in controls. Finally, transplantation of human neural stem cells in the brains of rats with focal cerebral ischemia promoted the proliferation of endogenous neural stem cells and their differentiation into mature neural-like cells, and enhanced angiogenesis. This study provides valuable insights into the effect of human neural stem cell transplantation on focal cerebral ischemia, which can be applied to the development of an effective therapy for stroke. PMID:27073384

  12. Use of unsupervised and supervised artificial neural networks for the identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins.

    PubMed

    Piraino, P; Ricciardi, A; Salzano, G; Zotta, T; Parente, E

    2006-08-01

    Conventional multivariate statistical techniques (hierarchical cluster analysis, linear discriminant analysis) and unsupervised (Kohonen Self Organizing Map) and supervised (Bayesian network) artificial neural networks were compared for as tools for the classification and identification of 352 SDS-PAGE patterns of whole cell proteins of lactic acid bacteria belonging to 22 species of the genera Lactobacillus, Leuconostoc, Enterococcus, Lactococcus and Streptococcus including 47 reference strains. Electrophoretic data were pre-treated using the logistic weighting function described by Piraino et al. [Piraino, P., Ricciardi, A., Lanorte, M. T., Malkhazova, I., Parente, E., 2002. A new procedure for data reduction in electrophoretic fingerprints of whole-cell proteins. Biotechnol. Lett. 24, 1477-1482]. Hierarchical cluster analysis provided a satisfactory classification of the patterns but was unable to discriminate some species (Leuconostoc, Lb. sakei/Lb. curvatus, Lb. acidophilus/Lb. helveticus, Lb. plantarum/Lb. paraplantarum, Lc. lactis/Lc. raffinolactis). A 7x7 Kohonen self-organizing map (KSOM), trained with the patterns of the reference strains, provided a satisfactory classification of the patterns and was able to discriminate more species than hierarchical cluster analysis. The map was used in predictive mode to identify unknown strains and provided results which in 85.5% of cases matched the classification obtained by hierarchical cluster analysis. Two supervised tools, linear discriminant analysis and a 23:5:2 Bayesian network were proven to be highly effective in the discrimination of SDS-PAGE patterns of Lc. lactis from those of other species. We conclude that data reduction by logistic weighting coupled to traditional multivariate statistical analysis or artificial neural networks provide an effective tool for the classification and identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins. PMID:16480784

  13. Neural tube defects, folic acid and methylation.

    PubMed

    Imbard, Apolline; Benoist, Jean-François; Blom, Henk J

    2013-09-01

    Neural tube defects (NTDs) are common complex congenital malformations resulting from failure of the neural tube closure during embryogenesis. It is established that folic acid supplementation decreases the prevalence of NTDs, which has led to national public health policies regarding folic acid. To date, animal studies have not provided sufficient information to establish the metabolic and/or genomic mechanism(s) underlying human folic acid responsiveness in NTDs. However, several lines of evidence suggest that not only folates but also choline, B12 and methylation metabolisms are involved in NTDs. Decreased B12 vitamin and increased total choline or homocysteine in maternal blood have been shown to be associated with increased NTDs risk. Several polymorphisms of genes involved in these pathways have also been implicated in risk of development of NTDs. This raises the question whether supplementation with B12 vitamin, betaine or other methylation donors in addition to folic acid periconceptional supplementation will further reduce NTD risk. The objective of this article is to review the role of methylation metabolism in the onset of neural tube defects. PMID:24048206

  14. Post-Training Intrahippocampal Injection of Synthetic Poly-Alpha-2,8-Sialic Acid-Neural Cell Adhesion Molecule Mimetic Peptide Improves Spatial Long-Term Performance in Mice

    ERIC Educational Resources Information Center

    Florian, Cedrick; Foltz, Jane; Norreel, Jean-Chretien; Rougon, Genevieve; Roullet, Pascal

    2006-01-01

    Several data have shown that the neural cell adhesion molecule (NCAM) is necessary for long-term memory formation and might play a role in the structural reorganization of synapses. The NCAM, encoded by a single gene, is represented by several isoforms that differ with regard to their content of alpha-2,8-linked sialic acid residues (PSA) on their…

  15. Comparison of gene expression regulation in mouse- and human embryonic stem cell assays during neural differentiation and in response to valproic acid exposure.

    PubMed

    Schulpen, Sjors H W; Theunissen, Peter T; Pennings, Jeroen L A; Piersma, Aldert H

    2015-08-15

    Embryonic stem cell tests (EST) are considered promising alternative assays for developmental toxicity testing. Classical mouse derived assays (mEST) are being replaced by human derived assays (hEST), in view of their relevance for human hazard assessment. We have compared mouse and human neural ESTn assays for neurodevelopmental toxicity as to regulation of gene expression during cell differentiation in both assays. Commonalities were observed in a range of neurodevelopmental genes and gene ontology (GO) terms. The mESTn showed a higher specificity in neurodevelopment than the hESTn, which may in part be caused by necessary differences in test protocols. Moreover, gene expression responses to the anticonvulsant and human teratogen valproic acid were compared. Both assays detected pharmacological and neurodevelopmental gene sets regulated by valproic acid. Common significant expression changes were observed in a subset of homologous neurodevelopmental genes. We suggest that these genes and related GO terms may provide good candidates for robust biomarkers of neurodevelopmental toxicity in hESTn. PMID:26072468

  16. Retinoic acid-binding protein, rhombomeres and the neural crest.

    PubMed

    Maden, M; Hunt, P; Eriksson, U; Kuroiwa, A; Krumlauf, R; Summerbell, D

    1991-01-01

    We have investigated by immunocytochemistry the spatial and temporal distribution of cellular retinoic acid-binding protein (CRABP) in the developing nervous system of the chick embryo in order to answer two specific questions: do neural crest cells contain CRABP and where and when do CRABP-positive neuroblasts first arise in the neural tube? With regard to the neural crest, we have compared CRABP staining with HNK-1 staining (a marker of migrating neural crest) and found that they do indeed co-localise, but cephalic and trunk crest behave slightly differently. In the cephalic region in tissues such as the frontonasal mass and branchial arches, HNK-1 immunoreactivity is intense at early stages, but it disappears as CRABP immunoreactivity appears. Thus the two staining patterns do not overlap, but are complementary. In the trunk, HNK-1 and CRABP stain the same cell populations at the same time, such as those migrating through the anterior halves of the somites. In the neural tube, CRABP-positive neuroblasts first appear in the rhombencephalon just after the neural folds close and then a particular pattern of immunoreactivity appears within the rhombomeres of the hindbrain. Labelled cells are present in the future spinal cord, the posterior rhombencephalon up to rhombomere 6 and in rhombomere 4 thus producing a single stripe pattern. This pattern is dynamic and gradually changes as anterior rhombomeres begin to label. The similarity of this initial pattern to the arrangement of certain homeobox genes in the mouse stimulated us to examine the expression of the chicken Hox-2.9 gene. We show that at stage 15 the pattern of expression of this gene is closely related to that of CRABP. The relationship between retinoic acid, CRABP and homeobox genes is discussed. PMID:1707786

  17. Screening of Hyaluronic Acid-Poly(ethylene glycol) Composite Hydrogels to Support Intervertebral Disc Cell Biosynthesis using Artificial Neural Network Analysis

    PubMed Central

    Jeong, Claire G.; Francisco, Aubrey T.; Niu, Zhenbin; Mancino, Robert L; Craig, Stephen L.; Setton, Lori A.

    2014-01-01

    Hyaluronic acid (HA) poly(ethylene glycol) (PEG) composite hydrogels have been widely studied for both cell delivery and soft tissue regeneration applications. A very broad range of physical and biological properties have been engineered into HA-PEG hydrogels that may differentially affect cellular “outcomes” of survival, synthesis and metabolism. The objective of this study was to rapidly screen multiple HA-PEG composite hydrogel formulations for an effect on matrix synthesis and behaviors of nucleus pulposus (NP) and anulus fibrosus (AF) cells of the intervertebral disc (IVD). A secondary objective was to apply artificial neural network (ANN) analysis to identify relationships between HA-PEG composite hydrogel formulation parameters and biological outcome measures for each cell type of the IVD. Eight different hydrogels were developed from preparations of thiolated HA (HA-SH) and PEG vinylsulfone (PEG-VS) macromers, and used as substrates for NP and AF cell culture in vitro. Hydrogel mechanical properties ranged from 70-489 kPa depending on HA molecular weight, and measures of matrix synthesis, metabolite consumption and production, and cell morphology were obtained to study relationships to hydrogel parameters. Results showed that NP and AF cell numbers were highest upon the HA-PEG hydrogels formed from the lower molecular weight HA, with evidence of higher sGAG production also upon lower HA molecular weight composite gels. All cells formed more multi-cell clusters upon any HA-PEG composite hydrogel as compared to gelatin substrates. Formulations were clustered into neurons based largely on their HA molecular weight, with few effects of PEG molecular weight observed on any measured parameters. PMID:24859415

  18. Docosahexaenoic acid in neural signaling systems.

    PubMed

    Crawford, Michael A

    2006-01-01

    Docosahexaenoic acid has been conserved in neural signalling systems in the cephalopods, fish, amphibian, reptiles, birds, mammals, primates and humans. This extreme conservation, despite wide genomic changes over 500 million years, testifies to a uniqueness of this molecule in the brain. The brain selectively incorporates docosahexaenoic acid and its rate of incorporation into the developing brain has been shown to be greater than ten times more efficient than its synthesis from the omega 3 fatty acids of land plant origin. Data has now been published demonstrating a significant influence of dietary omega 3 fatty acids on neural gene expression. As docosahexaenoic acid is the only omega 3 fatty acid in the brain, it is likely that it is the ligand involved. The selective uptake, requirement for function and stimulation of gene expression would have conferred an advantage to a primate which separated from the chimpanzees in the forests and woodlands and sought a different ecological niche. In view of the paucity of docosahexaenoic acid in the land food chain it is likely that the advantage would have been gained from a lacustrine or marine coastal habitat with access to food rich in docosahexaenoic acid and the accessory micronutrients, such as iodine, zinc, copper, manganese and selenium, of importance in brain development and protection against peroxidation. Land agricultural development has, in recent time, come to dominate the human food chain. The decline in use and availability of aquatic resources is not considered important by Langdon (2006) as he considers the resource was not needed for human evolution and can be replaced from the terrestrial food chain. This notion is not supported by the biochemistry nor the molecular biology. He misses the point that the shoreline hypothesis is not just dependent on docosahexaenoic acid but also on the other accessory nutrients specifically required by the brain. Moreover he neglects the basic principle of Darwinian

  19. Zhichan decoction induces differentiation of dopaminergic neurons in Parkinson's disease rats after neural stem cell transplantation

    PubMed Central

    Shi, Huifen; Song, Jie; Yang, Xuming

    2014-01-01

    The goal of this study was to increase the dopamine content and reduce dopaminergic metabolites in the brain of Parkinson's disease rats. Using high-performance liquid chromatography, we found that dopamine and dopaminergic metabolite (dihydroxyphenylacetic acid and homovanillic acid) content in the midbrain of Parkinson's disease rats was increased after neural stem cell transplantation + Zhichan decoction, compared with neural stem cell transplantation alone. Our genetic algorithm results show that dihydroxyphenylacetic acid and homovanillic acid levels achieve global optimization. Neural stem cell transplantation + Zhichan decoction increased dihydroxyphenylacetic acid levels up to 10-fold, while transplantation alone resulted in a 3-fold increment. Homovanillic acid levels showed no apparent change. Our experimental findings show that after neural stem cell transplantation in Parkinson's disease rats, Zhichan decoction can promote differentiation of neural stem cells into dopaminergic neurons. PMID:25206914

  20. Incremental evolution of the neural crest, neural crest cells and neural crest-derived skeletal tissues

    PubMed Central

    Hall, Brian K; Gillis, J Andrew

    2013-01-01

    Urochordates (ascidians) have recently supplanted cephalochordates (amphioxus) as the extant sister taxon of vertebrates. Given that urochordates possess migratory cells that have been classified as ‘neural crest-like’– and that cephalochordates lack such cells – this phylogenetic hypothesis may have significant implications with respect to the origin of the neural crest and neural crest-derived skeletal tissues in vertebrates. We present an overview of the genes and gene regulatory network associated with specification of the neural crest in vertebrates. We then use these molecular data – alongside cell behaviour, cell fate and embryonic context – to assess putative antecedents (latent homologues) of the neural crest or neural crest cells in ascidians and cephalochordates. Ascidian migratory mesenchymal cells – non-pigment-forming trunk lateral line cells and pigment-forming ‘neural crest-like cells’ (NCLC) – are unlikely latent neural crest cell homologues. Rather, Snail-expressing cells at the neural plate of border of urochordates and cephalochordates likely represent the extent of neural crest elaboration in non-vertebrate chordates. We also review evidence for the evolutionary origin of two neural crest-derived skeletal tissues – cartilage and dentine. Dentine is a bona fide vertebrate novelty, and dentine-secreting odontoblasts represent a cell type that is exclusively derived from the neural crest. Cartilage, on the other hand, likely has a much deeper origin within the Metazoa. The mesodermally derived cellular cartilages of some protostome invertebrates are much more similar to vertebrate cartilage than is the acellular ‘cartilage-like’ tissue in cephalochordate pharyngeal arches. Cartilage, therefore, is not a vertebrate novelty, and a well-developed chondrogenic program was most likely co-opted from mesoderm to the neural crest along the vertebrate stem. We conclude that the neural crest is a vertebrate novelty, but that neural

  1. Traceable Nanoparticle Delivery of Small Interfering RNA and Retinoic Acid with Temporally Release Ability to Control Neural Stem Cell Differentiation for Alzheimer's Disease Therapy.

    PubMed

    Zhang, Ran; Li, Yan; Hu, Bingbing; Lu, Zhiguo; Zhang, Jinchao; Zhang, Xin

    2016-08-01

    Nanoparticles that can efficiently control the differentiation of neural stem cells (NSCs) into neurons are developed for Alzheimer's disease (AD) therapy. The treatment with these nanoparticles results in an attenuation of neuronal loss and rescues memory deficiencies in mice. The system can also be used to monitor the transplantation site, as well as the migration of NSCs in real time. Therefore, the system is proposed to open up new avenues for AD treatment. PMID:27168033

  2. Factors controlling cardiac neural crest cell migration

    PubMed Central

    Hutson, Mary R

    2010-01-01

    Cardiac neural crest cells originate as part of the postotic caudal rhombencephalic neural crest stream. Ectomesenchymal cells in this stream migrate to the circumpharyngeal ridge and then into the caudal pharyngeal arches where they condense to form first a sheath and then the smooth muscle tunics of the persisting pharyngeal arch arteries. A subset of the cells continues migrating into the cardiac outflow tract where they will condense to form the aorticopulmonary septum. Cell signaling, extracellular matrix and cell-cell contacts are all critical for the initial migration, pauses, continued migration and condensation of these cells. This Review elucidates what is currently known about these factors. PMID:20890117

  3. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  4. Nonhuman sialic acid Neu5Gc is very low in human embryonic stem cell-derived neural precursors differentiated with B27/N2 and noggin: implications for transplantation.

    PubMed

    Nasonkin, Igor O; Koliatsos, Vassilis E

    2006-10-01

    A concern recently has been raised that human embryonic stem cell (HESC) lines cultured with currently available methods may have limited clinical usefulness due to the immunogenicity of the nonhuman sialic acid Neu5Gc incorporated into their membranes during culturing. We find this concern has little relevance to neural differentiation protocols with B27/N2/noggin because of the gradual decline of Neu5Gc to less than 1% in differentiating cells upon switching to B27/N2 medium. PMID:16806174

  5. Coxsackievirus A16 Infection Induces Neural Cell and Non-Neural Cell Apoptosis In Vitro

    PubMed Central

    Liu, Li; Wei, Zhenhong; Ehrlich, Elana S.; Liu, Guanchen; Li, Jingliang; Liu, Xin; Wang, Hong; Yu, Xiao-fang; Zhang, Wenyan

    2014-01-01

    Coxsackievirus A16 (CA16) is one of the main causative pathogens of hand, foot and mouth disease (HFMD). Viral replication typically results in host cell apoptosis. Although CA16 infection has been reported to induce apoptosis in the human rhabdomyosarcoma (RD) cell line, it remains unclear whether CA16 induces apoptosis in diverse cell types, especially neural cells which have important clinical significance. In the current study, CA16 infection was found to induce similar apoptotic responses in both neural cells and non-neural cells in vitro, including nuclear fragmentation, DNA fragmentation and phosphatidylserine translocation. CA16 generally is not known to lead to serious neurological symptoms in vivo. In order to further clarify the correlation between clinical symptoms and cell apoptosis, two CA16 strains from patients with different clinical features were investigated. The results showed that both CA16 strains with or without neurological symptoms in infected patients led to neural and muscle cell apoptosis. Furthermore, mechanistic studies showed that CA16 infection induced apoptosis through the same mechanism in both neural and non-neural cells, namely via activation of both the mitochondrial (intrinsic) pathway-related caspase 9 protein and the Fas death receptor (extrinsic) pathway-related caspase 8 protein. Understanding the mechanisms by which CA16 infection induces apoptosis in both neural and non-neural cells will facilitate a better understanding of CA16 pathogenesis. PMID:25350381

  6. Branched Chain Amino Acids Induce Apoptosis in Neural Cells without Mitochondrial Membrane Depolarization or Cytochrome c Release: Implications for Neurological Impairment Associated with Maple Syrup Urine Disease

    PubMed Central

    Jouvet, Philippe; Rustin, Pierre; Taylor, Deanna L.; Pocock, Jennifer M.; Felderhoff-Mueser, Ursula; Mazarakis, Nicholas D.; Sarraf, Catherine; Joashi, Umesh; Kozma, Mary; Greenwood, Kirsty; Edwards, A. David; Mehmet, Huseyin

    2000-01-01

    Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by a deficiency in branched chain α-keto acid dehydrogenase that can result in neurodegenerative sequelae in human infants. In the present study, increased concentrations of MSUD metabolites, in particular α-keto isocaproic acid, specifically induced apoptosis in glial and neuronal cells in culture. Apoptosis was associated with a reduction in cell respiration but without impairment of respiratory chain function, without early changes in mitochondrial membrane potential and without cytochrome c release into the cytosol. Significantly, α-keto isocaproic acid also triggered neuronal apoptosis in vivo after intracerebral injection into the developing rat brain. These findings suggest that MSUD neurodegeneration may result, at least in part, from an accumulation of branched chain amino acids and their α-keto acid derivatives that trigger apoptosis through a cytochrome c-independent pathway. PMID:10793161

  7. VLSI Cells Placement Using the Neural Networks

    SciTech Connect

    Azizi, Hacene; Zouaoui, Lamri; Mokhnache, Salah

    2008-06-12

    The artificial neural networks have been studied for several years. Their effectiveness makes it possible to expect high performances. The privileged fields of these techniques remain the recognition and classification. Various applications of optimization are also studied under the angle of the artificial neural networks. They make it possible to apply distributed heuristic algorithms. In this article, a solution to placement problem of the various cells at the time of the realization of an integrated circuit is proposed by using the KOHONEN network.

  8. A brief perspective on neural cell therapy.

    PubMed

    Pruszak, Jan

    2014-01-01

    For a range of nervous system disorders current treatment options remain limited. Focusing on Parkinson's disease as a neurodegenerative entity that affects an increasing quantity of people in our aging societies, we briefly discuss remaining challenges and opportunities that neural stem cell therapy might be able to offer. Providing a snapshot of neural transplantation paradigms, we contemplate possible imminent translational scenarios and discuss critical requirements to be considered before clinical implementation. PMID:26056571

  9. [Folic acid: Primary prevention of neural tube defects. Literature Review].

    PubMed

    Llamas Centeno, M J; Miguélez Lago, C

    2016-03-01

    Neural tube defects (NTD) are the most common congenital malformations of the nervous system, they have a multifactorial etiology, are caused by exposure to chemical, physical or biological toxic agents, factors deficiency, diabetes, obesity, hyperthermia, genetic alterations and unknown causes. Some of these factors are associated with malnutrition by interfering with the folic acid metabolic pathway, the vitamin responsible for neural tube closure. Its deficit produce anomalies that can cause abortions, stillbirths or newborn serious injuries that cause disability, impaired quality of life and require expensive treatments to try to alleviate in some way the alterations produced in the embryo. Folic acid deficiency is considered the ultimate cause of the production of neural tube defects, it is clear the reduction in the incidence of Espina Bifida after administration of folic acid before conception, this leads us to want to further study the action of folic acid and its application in the primary prevention of neural tube defects. More than 40 countries have made the fortification of flour with folate, achieving encouraging data of decrease in the prevalence of neural tube defects. This paper attempts to make a literature review, which clarify the current situation and future of the prevention of neural tube defects. PMID:26959966

  10. The Hippo pathway member YAP enhances human neural crest cell fate and migration

    PubMed Central

    Hindley, Christopher J.; Condurat, Alexandra Larisa; Menon, Vishal; Thomas, Ria; Azmitia, Luis M.; Davis, Jason A.; Pruszak, Jan

    2016-01-01

    The Hippo/YAP pathway serves as a major integrator of cell surface-mediated signals and regulates key processes during development and tumorigenesis. The neural crest is an embryonic tissue known to respond to multiple environmental cues in order to acquire appropriate cell fate and migration properties. Using multiple in vitro models of human neural development (pluripotent stem cell-derived neural stem cells; LUHMES, NTERA2 and SH-SY5Y cell lines), we investigated the role of Hippo/YAP signaling in neural differentiation and neural crest development. We report that the activity of YAP promotes an early neural crest phenotype and migration, and provide the first evidence for an interaction between Hippo/YAP and retinoic acid signaling in this system. PMID:26980066

  11. The Hippo pathway member YAP enhances human neural crest cell fate and migration.

    PubMed

    Hindley, Christopher J; Condurat, Alexandra Larisa; Menon, Vishal; Thomas, Ria; Azmitia, Luis M; Davis, Jason A; Pruszak, Jan

    2016-01-01

    The Hippo/YAP pathway serves as a major integrator of cell surface-mediated signals and regulates key processes during development and tumorigenesis. The neural crest is an embryonic tissue known to respond to multiple environmental cues in order to acquire appropriate cell fate and migration properties. Using multiple in vitro models of human neural development (pluripotent stem cell-derived neural stem cells; LUHMES, NTERA2 and SH-SY5Y cell lines), we investigated the role of Hippo/YAP signaling in neural differentiation and neural crest development. We report that the activity of YAP promotes an early neural crest phenotype and migration, and provide the first evidence for an interaction between Hippo/YAP and retinoic acid signaling in this system. PMID:26980066

  12. Neural commitment of human pluripotent stem cells under defined conditions recapitulates neural development and generates patient-specific neural cells.

    PubMed

    Fernandes, Tiago G; Duarte, Sofia T; Ghazvini, Mehrnaz; Gaspar, Cláudia; Santos, Diana C; Porteira, Ana R; Rodrigues, Gonçalo M C; Haupt, Simone; Rombo, Diogo M; Armstrong, Judith; Sebastião, Ana M; Gribnau, Joost; Garcia-Cazorla, Àngels; Brüstle, Oliver; Henrique, Domingos; Cabral, Joaquim M S; Diogo, Maria Margarida

    2015-10-01

    Standardization of culture methods for human pluripotent stem cell (PSC) neural differentiation can greatly contribute to the development of novel clinical advancements through the comprehension of neurodevelopmental diseases. Here, we report an approach that reproduces neural commitment from human induced pluripotent stem cells using dual-SMAD inhibition under defined conditions in a vitronectin-based monolayer system. By employing this method it was possible to obtain neurons derived from both control and Rett syndrome patients' pluripotent cells. During differentiation mutated cells displayed alterations in the number of neuronal projections, and production of Tuj1 and MAP2-positive neurons. Although investigation of a broader number of patients would be required, these observations are in accordance with previous studies showing impaired differentiation of these cells. Consequently, our experimental methodology was proved useful not only for the generation of neural cells, but also made possible to compare neural differentiation behavior of different cell lines under defined culture conditions. This study thus expects to contribute with an optimized approach to study the neural commitment of human PSCs, and to produce patient-specific neural cells that can be used to gain a better understanding of disease mechanisms. PMID:26123315

  13. Neural syntax: cell assemblies, synapsembles and readers

    PubMed Central

    Buzsáki, György

    2010-01-01

    Summary A widely discussed hypothesis in neuroscience is that transiently active ensembles of neurons, known as ‘cell assemblies’, underlie numerous operations of the brain, from encoding memories to reasoning. However, the mechanisms responsible for the formation and disbanding of cell assemblies and temporal evolution of cell assembly sequences are not well understood. I introduce and review three interconnected topics, which could facilitate progress in defining cell assemblies, identifying their neuronal organization and revealing causal relationships between assembly organization and behavior. First, I hypothesize that cell assemblies are best understood in light of their output product, as detected by ‘reader-actuator’ mechanisms. Second, I suggest that the hierarchical organization of cell assemblies may be regarded as a neural syntax. Third, constituents of the neural syntax are linked together by dynamically changing constellations of synaptic weights (‘synapsembles’). Existing support for this tripartite framework is reviewed and strategies for experimental testing of its predictions are discussed. PMID:21040841

  14. Enteric Neurospheres Are Not Specific to Neural Crest Cultures: Implications for Neural Stem Cell Therapies

    PubMed Central

    Cooper, Julie; Kronfli, Rania; Cananzi, Mara; Delalande, Jean-Marie; McCann, Conor; Burns, Alan J.; Thapar, Nikhil

    2015-01-01

    Objectives Enteric neural stem cells provide hope of curative treatment for enteric neuropathies. Current protocols for their harvesting from humans focus on the generation of ‘neurospheres’ from cultures of dissociated gut tissue. The study aims to better understand the derivation, generation and composition of enteric neurospheres. Design Gut tissue was obtained from Wnt1-Cre;Rosa26Yfp/Yfp transgenic mice (constitutively labeled neural crest cells) and paediatric patients. Gut cells were cultured either unsorted (mixed neural crest/non-neural crest), or following FACS selection into neural crest (murine-YFP+ve/human-p75+ve) or non-neural crest (YFP-ve/p75-ve) populations. Cultures and resultant neurospheres were characterized using immunolabelling in vitro and following transplantation in vivo. Results Cultures of (i) unsorted, (ii) neural crest, and (iii) non-neural crest cell populations generated neurospheres similar in numbers, size and morphology. Unsorted neurospheres were highly heterogeneous for neural crest content. Neural crest-derived (YFP+ve/p75+ve) neurospheres contained only neural derivatives (neurons and glia) and were devoid of non-neural cells (i.e. negative for SMA, c-Kit), with the converse true for non-neural crest-derived (YFP-ve/p75-ve) ‘neurospheres’. Under differentiation conditions only YFP+ve cells gave rise to neural derivatives. Both YFP+ve and YFP-ve cells displayed proliferation and spread upon transplantation in vivo, but YFP-ve cells did not locate or integrate within the host ENS. Conclusions Spherical accumulations of cells, so-called ‘neurospheres’ forming in cultures of dissociated gut contain variable proportions of neural crest-derived cells. If they are to be used for ENS cell replacement therapy then improved protocols for their generation, including cell selection, should be sought in order to avoid inadvertent transplantation of non-therapeutic, non-ENS cells. PMID:25799576

  15. Clinical translation of human neural stem cells

    PubMed Central

    2013-01-01

    Human neural stem cell transplants have potential as therapeutic candidates to treat a vast number of disorders of the central nervous system (CNS). StemCells, Inc. has purified human neural stem cells and developed culture conditions for expansion and banking that preserve their unique biological properties. The biological activity of these human central nervous system stem cells (HuCNS-SC®) has been analyzed extensively in vitro and in vivo. When formulated for transplantation, the expanded and cryopreserved banked cells maintain their stem cell phenotype, self-renew and generate mature oligodendrocytes, neurons and astrocytes, cells normally found in the CNS. In this overview, the rationale and supporting data for pursuing neuroprotective strategies and clinical translation in the three components of the CNS (brain, spinal cord and eye) are described. A phase I trial for a rare myelin disorder and phase I/II trial for spinal cord injury are providing intriguing data relevant to the biological properties of neural stem cells, and the early clinical outcomes compel further development. PMID:23987648

  16. Clinical translation of human neural stem cells.

    PubMed

    Tsukamoto, Ann; Uchida, Nobuko; Capela, Alexandra; Gorba, Thorsten; Huhn, Stephen

    2013-01-01

    Human neural stem cell transplants have potential as therapeutic candidates to treat a vast number of disorders of the central nervous system (CNS). StemCells, Inc. has purified human neural stem cells and developed culture conditions for expansion and banking that preserve their unique biological properties. The biological activity of these human central nervous system stem cells (HuCNS-SC®) has been analyzed extensively in vitro and in vivo. When formulated for transplantation, the expanded and cryopreserved banked cells maintain their stem cell phenotype, self-renew and generate mature oligodendrocytes, neurons and astrocytes, cells normally found in the CNS. In this overview, the rationale and supporting data for pursuing neuroprotective strategies and clinical translation in the three components of the CNS (brain, spinal cord and eye) are described. A phase I trial for a rare myelin disorder and phase I/II trial for spinal cord injury are providing intriguing data relevant to the biological properties of neural stem cells, and the early clinical outcomes compel further development. PMID:23987648

  17. Neural crest cell evolution: how and when did a neural crest cell become a neural crest cell.

    PubMed

    Muñoz, William A; Trainor, Paul A

    2015-01-01

    As vertebrates evolved from protochordates, they shifted to a more predatory lifestyle, and radiated and adapted to most niches of the planet. This process was largely facilitated by the generation of novel vertebrate head structures, which were derived from neural crest cells (NCC). The neural crest is a unique vertebrate cell population that is frequently termed the "fourth germ layer" because it forms in conjunction with the other germ layers and contributes to a diverse array of cell types and tissues including the craniofacial skeleton, the peripheral nervous system, and pigment cells among many other tissues and cell types. NCC are defined by their origin at the neural plate border, via an epithelial-to-mesenchymal transition (EMT), together with multipotency and polarized patterns of migration. These defining characteristics, which evolved independently in the germ layers of invertebrates, were subsequently co-opted through their gene regulatory networks to form NCC in vertebrates. Moreover, recent data suggest that the ability to undergo an EMT was one of the latter features co-opted by NCC. In this review, we discuss the potential origins of NCC and how they evolved to contribute to nearly all tissues and organs throughout the body, based on paleontological evidence together with an evaluation of the evolution of molecules involved in NCC development and their migratory cell paths. PMID:25662256

  18. Differentiation state determines neural effects on microvascular endothelial cells

    SciTech Connect

    Muffley, Lara A.; Pan, Shin-Chen; Smith, Andria N.; Ga, Maricar; Hocking, Anne M.; Gibran, Nicole S.

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  19. REN: a novel, developmentally regulated gene that promotes neural cell differentiation.

    PubMed

    Gallo, Rita; Zazzeroni, Francesca; Alesse, Edoardo; Mincione, Claudia; Borello, Ugo; Buanne, Pasquale; D'Eugenio, Roberta; Mackay, Andrew R; Argenti, Beatrice; Gradini, Roberto; Russo, Matteo A; Maroder, Marella; Cossu, Giulio; Frati, Luigi; Screpanti, Isabella; Gulino, Alberto

    2002-08-19

    Expansion and fate choice of pluripotent stem cells along the neuroectodermal lineage is regulated by a number of signals, including EGF, retinoic acid, and NGF, which also control the proliferation and differentiation of central nervous system (CNS) and peripheral nervous system (PNS) neural progenitor cells. We report here the identification of a novel gene, REN, upregulated by neurogenic signals (retinoic acid, EGF, and NGF) in pluripotent embryonal stem (ES) cells and neural progenitor cell lines in association with neurotypic differentiation. Consistent with a role in neural promotion, REN overexpression induced neuronal differentiation as well as growth arrest and p27Kip1 expression in CNS and PNS neural progenitor cell lines, and its inhibition impaired retinoic acid induction of neurogenin-1 and NeuroD expression. REN expression is developmentally regulated, initially detected in the neural fold epithelium of the mouse embryo during gastrulation, and subsequently throughout the ventral neural tube, the outer layer of the ventricular encephalic neuroepithelium and in neural crest derivatives including dorsal root ganglia. We propose that REN represents a novel component of the neurogenic signaling cascade induced by retinoic acid, EGF, and NGF, and is both a marker and a regulator of neuronal differentiation. PMID:12186855

  20. Mechanotransduction of Neural Cells Through Cell-Substrate Interactions.

    PubMed

    Stukel, Jessica M; Willits, Rebecca Kuntz

    2016-06-01

    Neurons and neural stem cells are sensitive to their mechanical and topographical environment, and cell-substrate binding contributes to this sensitivity to activate signaling pathways for basic cell functions. Many transmembrane proteins transmit signals into and out of the cell, including integrins, growth factor receptors, G-protein-coupled receptors, cadherins, cell adhesion molecules, and ion channels. Specifically, integrins are one of the main transmembrane proteins that transmit force across the cell membrane between a cell and its extracellular matrix, making them critical in the study of cell-material interactions. This review focuses on mechanotransduction, defined as the conversion of force a cell generates through cell-substrate bonds to a chemical signal, of neural cells. The chemical signals relay information via pathways through the cellular cytoplasm to the nucleus, where signaling events can affect gene expression. Pathways and the cellular response initiated by substrate binding are explored to better understand their effect on neural cells mechanotransduction. As the results of mechanotransduction affect cell adhesion, cell shape, and differentiation, knowledge regarding neural mechanotransduction is critical for most regenerative strategies in tissue engineering, where novel environments are developed to improve conduit design for central and peripheral nervous system repair in vivo. PMID:26669274

  1. Isolation and characterization of neural stem cells from the neonatal rat cochlear nucleus.

    PubMed

    Rak, Kristen; Wasielewski, Natalia V; Radeloff, Andreas; Völkers, Johannes; Scherzed, Agmal; Jablonka, Sibylle; Hagen, Rudolf; Mlynski, Robert

    2011-03-01

    Neural stem cells have been identified in multiple parts of the postnatal mammalian brain, as well as in the inner ear. No investigation of potential neural stem cells in the cochlear nucleus has yet been performed. The aim of this study was to investigate potential neural stem cells from the cochlear nucleus by neurosphere assay and in histological sections to prove their capacity for self-renewal and for differentiation into progenitor cells and cells of the neuronal lineage. For this purpose, cells of the cochlear nucleus of postnatal day 6 rats were isolated and cultured for generation of primary neurospheres. Spheres were dissociated and cells analyzed for capacity for mitosis and differentiation. Cell division was detected by cell-counting assay and BrdU incorporation. Differentiated neural progenitor cells showed distinct labeling for Nestin and for Atoh1. Positive staining of ß-III Tubulin, glial fibrillary acid protein (GFAP) and myelin basic protein (MBP) showed differentiation into neurons, astrocytes and oligodendrocytes. Furthermore, Nestin- and BrdU-labeled cells could also be detected in histological sections. In conclusion, the isolated cells from the cochlear nucleus presented all the features of neural stem cells: cell division, presence of progenitor cells and differentiation into different cells of the neuronal lineage. The existence of neural stem cells may add to the understanding of developmental features in the cochlear nucleus. PMID:21258945

  2. Neurogenesis of neural crest-derived periodontal ligament stem cells by EGF and bFGF.

    PubMed

    Fortino, Veronica R; Chen, Ren-Shiang; Pelaez, Daniel; Cheung, Herman S

    2014-04-01

    Neuroregenerative medicine is an ever-growing field in which regeneration of lost cells/tissues due to a neurodegenerative disease is the ultimate goal. With the scarcity of available replacement alternatives, stem cells provide an attractive source for regenerating neural tissue. While many stem cell sources exist, including: mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells, the limited cellular potency, technical difficulties, and ethical considerations associated with these make finding alternate sources a desirable goal. Periodontal ligament stem cells (PDLSCs) derived from the neural crest were induced into neural-like cells using a combination of epidermal growth factor, and basic fibroblast growth factor. Morphological changes were evident in our treated group, seen under both light microscopy and scanning electron microscopy. A statistically significant increase in the expression of neuron-specific β-tubulin III and the neural stem/progenitor cell marker nestin, along with positive immunohistochemical staining for glial fibrillary acidic protein, demonstrated the success of our treatment in inducing both neuronal and glial phenotypes. Positive staining for synaptophysin demonstrated neural connections and electrophysiological recordings indicated that when subjected to whole-cell patch clamping, our treated cells displayed inward currents conducted through voltage-gated sodium (Na(+) ) channels. Taken together, our results indicate the success of our treatment in inducing PDLSCs to neural-like cells. The ease of sourcing and expansion, their embryologic neural crest origin, and the lack of ethical implications in their use make PDLSCs an attractive source for use in neuroregenerative medicine. PMID:24105823

  3. Persistent neural activity in head direction cells

    NASA Technical Reports Server (NTRS)

    Taube, Jeffrey S.; Bassett, Joshua P.; Oman, C. M. (Principal Investigator)

    2003-01-01

    Many neurons throughout the rat limbic system discharge in relation to the animal's directional heading with respect to its environment. These so-called head direction (HD) cells exhibit characteristics of persistent neural activity. This article summarizes where HD cells are found, their major properties, and some of the important experiments that have been conducted to elucidate how this signal is generated. The number of HD and angular head velocity cells was estimated for several brain areas involved in the generation of the HD signal, including the postsubiculum, anterior dorsal thalamus, lateral mammillary nuclei and dorsal tegmental nucleus. The HD cell signal has many features in common with what is known about how neural integration is accomplished in the oculomotor system. The nature of the HD cell signal makes it an attractive candidate for using neural network models to elucidate the signal's underlying mechanisms. The conditions that any network model must satisfy in order to accurately represent how the nervous system generates this signal are highlighted and areas where key information is missing are discussed.

  4. Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells.

    PubMed

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    Direct-write printing of stem cells within biomaterials presents an opportunity to engineer tissue for in vitro modeling and regenerative medicine. Here, a first example of constructing neural tissue by printing human neural stem cells that are differentiated in situ to functional neurons and supporting neuroglia is reported. The supporting biomaterial incorporates a novel clinically relevant polysaccharide-based bioink comprising alginate, carboxymethyl-chitosan, and agarose. The printed bioink rapidly gels by stable cross-linking to form a porous 3D scaffold encapsulating stem cells for in situ expansion and differentiation. Differentiated neurons form synaptic contacts, establish networks, are spontaneously active, show a bicuculline-induced increased calcium response, and are predominantly gamma-aminobutyric acid expressing. The 3D tissues will facilitate investigation of human neural development, function, and disease, and may be adaptable for engineering other 3D tissues from different stem cell types. PMID:27028356

  5. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  6. Mesenchymal stem cells expressing neural antigens instruct a neurogenic cell fate on neural stem cells.

    PubMed

    Croft, Adam P; Przyborski, Stefan A

    2009-04-01

    The neurogenic response to injury in the postnatal brain is limited and insufficient for restoration of function. Recent evidence suggests that transplantation of mesenchymal stem cells (MSCs) into the injured brain is associated with improved functional recovery, mediated in part through amplification in the endogenous neurogenic response to injury. In the current study we investigate the interactions between bone marrow-derived MSCs and embryonic neural stem cells (NSCs) plus their differentiated progeny using an in vitro co-culture system. Two populations of MSCs were used, MSCs induced to express neural antigens (nestin+, Tuj-1+, GFAP+) and neural antigen negative MSCs. Following co-culture of induced MSCs with differentiating NSC/progenitor cells a significant increase in Tuj-1+ neurons was detected compared to co-cultures of non-induced MSCs in which an increase in astrocyte (GFAP+) differentiation was observed. The effect was mediated by soluble interactions between the two cell populations and was independent of any effect on cell death and proliferation. Induced and non-induced MSCs also promoted the survival of Tuj-1+ cell progeny in long-term cultures and both promoted axonal growth, an effect also seen in differentiating neuroblastoma cells. Therefore, MSCs provide instructive signals that are able to direct the differentiation of NSCs and promote axonal development in neuronal progeny. The data indicates that the nature of MSC derived signals is dependent not only on their microenvironment but on the developmental status of the MSCs. Pre-manipulation of MSCs prior to transplantation in vivo may be an effective means of enhancing the endogenous neurogenic response to injury. PMID:19159625

  7. Direct lineage reprogramming to neural cells

    PubMed Central

    Kim, Janghwan; Ambasudhan, Rajesh; Ding, Sheng

    2016-01-01

    Recently we have witnessed an array of studies on direct reprogramming that describe induced inter conversion of mature cell types from higher organisms including human. While these studies reveal an unexpected level of plasticity of differentiated somatic cells, they also provide unprecedented opportunities to develop regenerative therapies for many debilitating disorders and model these ‘diseases-in-a-dish’ for studying their pathophysiology. Here we review the current state of the art in direct lineage reprogramming to neural cells, and discuss the challenges that need to be addressed toward achieving the full potential of this exciting new technology. PMID:22652035

  8. Regulation of neural stem cells by choroid plexus cells population.

    PubMed

    Roballo, Kelly C S; Gonçalves, Natalia J N; Pieri, Naira C G; Souza, Aline F; Andrade, André F C; Ambrósio, Carlos E

    2016-07-28

    The choroid plexus is a tissue on the central nervous system responsible for producing cerebrospinal fluid, maintaining homeostasis and neural stem cells support; though, all of its functions still unclear. This study aimed to demonstrate the niches of choroid plexus cells for a better understanding of the cell types and functions, using the porcine as the animal model. The collected material was analyzed by histology, immunohistochemistry, and cell culture. The cell culture was characterizated by immunocytochemistry and flow cytometry. Our results showed OCT-4, TUBIII, Nestin, CD45, CD73, CD90 positive expression and GFAP, CD105 negative expression, also methylene blue histological staining confirmed the presence of telocytes cells. We realized that the choroid plexus is a unique and incomparable tissue with different niches of cells as pluripotent, hematopoietic, neuronal progenitors and telocyte cells, which provide its complexity, differentiated functionality and responsibility on brain balance and neural stem cells regulation. PMID:27181512

  9. Lessons from the embryonic neural stem cell niche for neural lineage differentiation of pluripotent stem cells.

    PubMed

    Solozobova, Valeriya; Wyvekens, Nicolas; Pruszak, Jan

    2012-09-01

    Pluripotent stem cells offer an abundant and malleable source for the generation of differentiated cells for transplantation as well as for in vitro screens. Patterning and differentiation protocols have been developed to generate neural progeny from human embryonic or induced pluripotent stem cells. However, continued refinement is required to enhance efficiency and to prevent the generation of unwanted cell types. We summarize and interpret insights gained from studies of embryonic neuroepithelium. A multitude of factors including soluble molecules, interactions with the extracellular matrix and neighboring cells cooperate to control neural stem cell self-renewal versus differentiation. Applying these findings and concepts to human stem cell systems in vitro may yield more appropriately patterned cell types for biomedical applications. PMID:22628111

  10. [Neural tube defects and folic acid: a historical overview of a highly successful preventive intervention].

    PubMed

    Vásquez, Adriana Ordoñez; Suarez-Obando, Fernando

    2015-12-01

    This article gives a broad overview of part of the historical evolution of medical knowledge about neural tube defects (NTD) and the discovery of vitamin B9 or folic acid, as well as some relevant research events that, over the course of several centuries, defined the relationships between the understanding of central nervous system embryology, the discovery of the vitamin, the correlation between folic acid and cell proliferation and lastly the development of preventive measures for this type of defects. This narrative allows us to examine historically relevant concepts underlying clinical actions with a populational impact that prevent NTDs via folic acid consumption prior to conception. PMID:25650704

  11. Metabolic circuits in neural stem cells

    PubMed Central

    Kim, Do-Yeon; Rhee, Inmoo

    2015-01-01

    Metabolic activity indicative of cellular demand is emerging as a key player in cell fate decision. Numerous studies have demonstrated that diverse metabolic pathways have a critical role in the control of the proliferation, differentiation and quiescence of stem cells. The identification of neural stem/progenitor cells (NSPCs) and the characterization of their development and fate decision process have provided insight into the regenerative potential of the adult brain. As a result, the potential of NSPCs in cell replacement therapies for neurological diseases is rapidly growing. The aim of this review is to discuss the recent findings on the crosstalk among key regulators of NSPC development and the metabolic regulation crucial for the function and cell fate decisions of NSPCs. Fundamental understanding of the metabolic circuits in NSPCs may help to provide novel approaches for reactivating neurogenesis to treat degenerative brain conditions and cognitive decline. PMID:25037158

  12. Skeletal myogenic potential of human and mouse neural stem cells.

    PubMed

    Galli, R; Borello, U; Gritti, A; Minasi, M G; Bjornson, C; Coletta, M; Mora, M; De Angelis, M G; Fiocco, R; Cossu, G; Vescovi, A L

    2000-10-01

    Distinct cell lineages established early in development are usually maintained throughout adulthood. Thus, adult stem cells have been thought to generate differentiated cells specific to the tissue in which they reside. This view has been challenged; for example, neural stem cells can generate cells that normally originate from a different germ layer. Here we show that acutely isolated and clonally derived neural stem cells from mice and humans could produce skeletal myotubes in vitro and in vivo, the latter following transplantation into adult animals. Myogenic conversion in vitro required direct exposure to myoblasts, and was blocked if neural cells were clustered. Thus, a community effect between neural cells may override such myogenic induction. We conclude that neural stem cells, which generate neurons, glia and blood cells, can also produce skeletal muscle cells, and can undergo various patterns of differentiation depending on exposure to appropriate epigenetic signals in mature tissues. PMID:11017170

  13. Neural Stem Cells (NSCs) and Proteomics*

    PubMed Central

    Shoemaker, Lorelei D.; Kornblum, Harley I.

    2016-01-01

    Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function. PMID:26494823

  14. Neural Stem Cells (NSCs) and Proteomics.

    PubMed

    Shoemaker, Lorelei D; Kornblum, Harley I

    2016-02-01

    Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function. PMID:26494823

  15. Adult neural stem cells stake their ground

    PubMed Central

    Lim, Daniel A.; Alvarez-Buylla, Arturo

    2014-01-01

    The birth of new neurons in the walls of the adult brain lateral ventricles has captured the attention of many neuroscientists for over two decades, yielding key insights into the identity and regulation of neural stem cells (NSCs). In the adult ventricular-subventricular zone (V-SVZ), NSCs are a specialized form of astrocyte that generates several types of neurons for the olfactory bulb. Here we discuss recent findings regarding the unique organization of the V-SVZ NSCs niche, the multiple regulatory controls of neuronal production, the distinct regional identities of adult NSCs, and the epigenetic mechanisms that maintain adult neurogenesis. Understanding how V-SVZ NSCs establish and maintain lifelong neurogenesis continues to provide surprising insights into the cellular and molecular regulation of neural development. PMID:25223700

  16. Generating trunk neural crest from human pluripotent stem cells

    PubMed Central

    Huang, Miller; Miller, Matthew L.; McHenry, Lauren K.; Zheng, Tina; Zhen, Qiqi; Ilkhanizadeh, Shirin; Conklin, Bruce R.; Bronner, Marianne E.; Weiss, William A.

    2016-01-01

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior “cranial” NCC form craniofacial bone, whereas solely posterior “trunk” NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typically occur before pregnancy is detectable. As a result, current knowledge of NCC biology derives primarily from non-human organisms. Important differences between human and non-human NCC, such as expression of HNK1 in human but not mouse NCC, suggest a need to study human NCC directly. Here, we demonstrate that current protocols to differentiate human pluripotent stem cells (PSC) to NCC are biased toward cranial NCC. Addition of retinoic acid drove trunk-related markers and HOX genes characteristic of a posterior identity. Subsequent treatment with bone morphogenetic proteins (BMPs) enhanced differentiation to sympathoadrenal cells. Our approach provides methodology for detailed studies of human NCC, and clarifies roles for retinoids and BMPs in the differentiation of human PSC to trunk NCC and to sympathoadrenal lineages. PMID:26812940

  17. On becoming neural: what the embryo can tell us about differentiating neural stem cells

    PubMed Central

    Moody, Sally A; Klein, Steven L; Karpinski, Beverley A; Maynard, Thomas M; LaMantia, Anthony-Samuel

    2013-01-01

    The earliest steps of embryonic neural development are orchestrated by sets of transcription factors that control at least three processes: the maintenance of proliferative, pluripotent precursors that expand the neural ectoderm; their transition to neurally committed stem cells comprising the neural plate; and the onset of differentiation of neural progenitors. The transition from one step to the next requires the sequential activation of each gene set and then its down-regulation at the correct developmental times. Herein, we review how these gene sets interact in a transcriptional network to regulate these early steps in neural development. A key gene in this regulatory network is FoxD4L1, a member of the forkhead box (Fox) family of transcription factors. Knock-down experiments in Xenopus embryos show that FoxD4L1 is required for the expression of the other neural transcription factors, whereas increased FoxD4L1 levels have three different effects on these genes: up-regulation of neural ectoderm precursor genes; transient down-regulation of neural plate stem cell genes; and down-regulation of neural progenitor differentiation genes. These different effects indicate that FoxD4L1 maintains neural ectodermal precursors in an immature, proliferative state, and counteracts premature neural stem cell and neural progenitor differentiation. Because it both up-regulates and down-regulates genes, we characterized the regions of the FoxD4L1 protein that are specifically involved in these transcriptional functions. We identified a transcriptional activation domain in the N-terminus and at least two domains in the C-terminus that are required for transcriptional repression. These functional domains are highly conserved in the mouse and human homologues. Preliminary studies of the related FoxD4 gene in cultured mouse embryonic stem cells indicate that it has a similar role in promoting immature neural ectodermal precursors and delaying neural progenitor differentiation

  18. Neural stem cells: Brain building blocks and beyond

    PubMed Central

    Bergström, Tobias

    2012-01-01

    Neural stem cells are the origins of neurons and glia and generate all the differentiated neural cells of the mammalian central nervous system via the formation of intermediate precursors. Although less frequent, neural stem cells persevere in the postnatal brain where they generate neurons and glia. Adult neurogenesis occurs throughout life in a few limited brain regions. Regulation of neural stem cell number during central nervous system development and in adult life is associated with rigorous control. Failure in this regulation may lead to e.g. brain malformation, impaired learning and memory, or tumor development. Signaling pathways that are perturbed in glioma are the same that are important for neural stem cell self-renewal, differentiation, survival, and migration. The heterogeneity of human gliomas has impeded efficient treatment, but detailed molecular characterization together with novel stem cell-like glioma cell models that reflect the original tumor gives opportunities for research into new therapies. The observation that neural stem cells can be isolated and expanded in vitro has opened new avenues for medical research, with the hope that they could be used to compensate the loss of cells that features in several severe neurological diseases. Multipotent neural stem cells can be isolated from the embryonic and adult brain and maintained in culture in a defined medium. In addition, neural stem cells can be derived from embryonic stem cells and induced pluripotent stem cells by in vitro differentiation, thus adding to available models to study stem cells in health and disease. PMID:22512245

  19. Inducing trauma into neuroblastoma cells and synthetic neural networks using optical tweezers

    NASA Astrophysics Data System (ADS)

    Schneider, Patrick William

    The laser tweezers have become a very useful tool in the fields of physics, chemistry, and biology. My intent is to use the laser tweezers to induce trauma into neuroblastoma cells, cells that resemble neural cells when treated with retinoic acid, to try to surmise what happens when neural cells and networks are disrupted or destroyed. The issues presented will deal with the obtaining, maintenance, and differentiation of the cells, as well as the inner operations of the laser tweezers themselves, and what kind of applications it has been applied to, as well as to my work in this project.

  20. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    PubMed Central

    Hurst, Jillian H; Mumaw, Jennifer; Machacek, David W; Sturkie, Carla; Callihan, Phillip; Stice, Steve L; Hooks, Shelley B

    2008-01-01

    Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP) cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA) and Sphingosine-1-phosphate (S1P) receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR)- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors. PMID:19077254

  1. Susceptibility of Human Embryonic Stem Cell-Derived Neural Cells to Japanese Encephalitis Virus Infection

    PubMed Central

    Shen, Shih-Cheng; Shen, Ching-I; Lin, Ho; Chen, Chun-Jung; Chang, Chia-Yu; Chen, Sheng-Mei; Lee, Hsiu-Chin; Lai, Ping-Shan; Su, Hong-Lin

    2014-01-01

    Pluripotent human embryonic stem cells (hESCs) can be efficiently directed to become immature neuroepithelial precursor cells (NPCs) and functional mature neural cells, including neurotransmitter-secreting neurons and glial cells. Investigating the susceptibility of these hESCs-derived neural cells to neurotrophic viruses, such as Japanese encephalitis virus (JEV), provides insight into the viral cell tropism in the infected human brain. We demonstrate that hESC-derived NPCs are highly vulnerable to JEV infection at a low multiplicity of infection (MOI). In addition, glial fibrillary acid protein (GFAP)-expressing glial cells are also susceptible to JEV infection. In contrast, only a few mature neurons were infected at MOI 10 or higher on the third day post-infection. In addition, functional neurotransmitter-secreting neurons are also resistant to JEV infection at high MOI. Moreover, we discover that vimentin intermediate filament, reported as a putative neurovirulent JEV receptor, is highly expressed in NPCs and glial cells, but not mature neurons. These results indicate that the expression of vimentin in neural cells correlates to the cell tropism of JEV. Finally, we further demonstrate that membranous vimentin is necessary for the susceptibility of hESC-derived NPCs to JEV infection. PMID:25517725

  2. Three-dimensional bioprinting of rat embryonic neural cells.

    PubMed

    Lee, Wonhye; Pinckney, Jason; Lee, Vivian; Lee, Jong-Hwan; Fischer, Krisztina; Polio, Samuel; Park, Je-Kyun; Yoo, Seung-Schik

    2009-05-27

    We present a direct cell printing technique to pattern neural cells in a three-dimensional (3D) multilayered collagen gel. A layer of collagen precursor was printed to provide a scaffold for the cells, and the rat embryonic neurons and astrocytes were subsequently printed on the layer. A solution of sodium bicarbonate was applied to the cell containing collagen layer as nebulized aerosols, which allowed the gelation of the collagen. This process was repeated layer-by-layer to construct the 3D cell-hydrogel composites. Upon characterizing the relationship between printing resolutions and the growth of printed neural cells, single/multiple layers of neural cell-hydrogel composites were constructed and cultured. The on-demand capability to print neural cells in a multilayered hydrogel scaffold offers flexibility in generating artificial 3D neural tissue composites. PMID:19369905

  3. [Neural stem cells and Notch signalling].

    PubMed

    Traiffort, Elisabeth; Ferent, Julien

    2015-12-01

    Development and repair of the nervous system are based on the existence of neural stem cells (NSCs) able to generate neurons and glial cells. Among the mechanisms that are involved in the control of embryo or adult NSCs, the Notch signalling plays a major role. In embryo, the pathway participates in the maintenance of NSCs during all steps of development of the central nervous system which starts with the production of neurons also called neurogenesis and continues with gliogenesis giving rise to astrocytes and oligodendrocytes. During the postnatal and adult period, Notch signalling is still present in the major neurogenic areas, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus. In these regions, Notch maintains NSC quiescence, contributes to the heterogeneity of these cells and displays pleiotropic effects during the regeneration process occurring after a lesion. PMID:26672665

  4. Structural requirements for neural cell adhesion molecule-heparin interaction.

    PubMed Central

    Reyes, A A; Akeson, R; Brezina, L; Cole, G J

    1990-01-01

    Two biological domains have been identified in the amino terminal region of the neural cell adhesion molecule (NCAM): a homophilic-binding domain, responsible for NCAM-NCAM interactions, and a heparin-binding domain (HBD). It is not known whether these two domains exist as distinct structural entities in the NCAM molecule. To approach this question, we have further defined the relationship between NCAM-heparin binding and cell adhesion. A putative HBD consisting of two clusters of basic amino acid residues located close to each other in the linear amino acid sequence of NCAM has previously been identified. Synthetic peptides corresponding to this domain were shown to bind both heparin and retinal cells. Here we report the construction of NCAM cDNAs with targeted mutations in the HBD. Mouse fibroblast cells transfected with the mutant cDNAs express NCAM polypeptides with altered HBD (NCAM-102 and NCAM-104) or deleted HBD (HBD-) at levels similar to those of wild-type NCAM. Mutant NCAM polypeptides purified from transfected cell lines have substantially reduced binding to heparin and fail to promote chick retinal cell attachment. Furthermore, whereas a synthetic peptide that contains both basic amino acid clusters inhibits retinal-cell adhesion to NCAM-coated dishes, synthetic peptides in which either one of the two basic regions is altered to contain only neutral amino acids do not inhibit this adhesion. These results confirm that this region of the NCAM polypeptide does indeed mediate not only the large majority of NCAM's affinity for heparin but also a significant portion of the cell-adhesion-mediating capability of NCAM. Images PMID:2078567

  5. Stat3 inhibition in neural lineage cells.

    PubMed

    Chiba, Tomohiro; Mack, Laura; Delis, Natalia; Brill, Boris; Groner, Bernd

    2012-06-01

    Abstract Deregulation of signal transducer and activator of transcription 3 (Stat3) is attracting attentions in neurological disorders of elderly populations, e.g., Stat3 is inactivated in hippocampal neurons of Alzheimer's disease (AD) brains, whereas it is often constitutively activated in glioblastoma multiforme (GBM), correlating with poor prognosis. Stat3-inhibiting drugs have been intensively developed for chemotherapy based on the fact that GBM, in many cases, are "addicted" to Stat3 activation. Stat3 inhibitors, however, potentially have unfavorable side effects on postmitotic neurons, normal permanent residents in the central nervous system. It is, therefore, of great importance to address detailed cellular responses of neural lineage cells including normal neurons, astrocytes, and neuronal/glial cancer cell lines to several classes of Stat3 inhibitors focusing on their effective concentrations. Here, we picked up five human and mouse cancer cell lines (Neuro-2a and SH-SY5Y neuroblastoma cell lines and Tu-9648, U-87MG, and U-373MG glioblastoma cell lines) and treated with various Stat3 inhibitors. Among them, Stattic, FLLL31, and resveratrol potently suppressed P-Stat3 and cell viability in all the tested cell lines. Stat3 knockdown or expression of dominant-negative Stat3 further sensitized cells to the inhibitors. Expression of familial AD-related mutant amyloid precursor protein sensitized neuronal cells, not glial cells, to Stat3 inhibitors by reducing P-Stat3 levels. Primary neurons and astrocytes also responded to Stat3 inhibitors with similar sensitivities to those observed in cancer cell lines. Thus, Stat3 inhibitors should be carefully targeted to GBM cells to avoid potential neurotoxicity leading to AD-like neuropsychiatric dysfunctions. PMID:25436682

  6. Imprinted Zac1 in neural stem cells

    PubMed Central

    Daniel, Guillaume; Schmidt-Edelkraut, Udo; Spengler, Dietmar; Hoffmann, Anke

    2015-01-01

    Neural stem cells (NSCs) and imprinted genes play an important role in brain development. On historical grounds, these two determinants have been largely studied independently of each other. Recent evidence suggests, however, that NSCs can reset select genomic imprints to prevent precocious depletion of the stem cell reservoir. Moreover, imprinted genes like the transcriptional regulator Zac1 can fine tune neuronal vs astroglial differentiation of NSCs. Zac1 binds in a sequence-specific manner to pro-neuronal and imprinted genes to confer transcriptional regulation and furthermore coregulates members of the p53-family in NSCs. At the genome scale, Zac1 is a central hub of an imprinted gene network comprising genes with an important role for NSC quiescence, proliferation and differentiation. Overall, transcriptional, epigenomic, and genomic mechanisms seem to coordinate the functional relationships of NSCs and imprinted genes from development to maturation, and possibly aging. PMID:25815116

  7. Neural stem cell therapy for cancer.

    PubMed

    Bagó, Juli Rodriguez; Sheets, Kevin T; Hingtgen, Shawn D

    2016-04-15

    Cancers of the brain remain one of the greatest medical challenges. Traditional surgery and chemo-radiation therapy are unable to eradicate diffuse cancer cells and tumor recurrence is nearly inevitable. In contrast to traditional regenerative medicine applications, engineered neural stem cells (NSCs) are emerging as a promising new therapeutic strategy for cancer therapy. The tumor-homing properties allow NSCs to access both primary and invasive tumor foci, creating a novel delivery platform. NSCs engineered with a wide array of cytotoxic agents have been found to significantly reduce tumor volumes and markedly extend survival in preclinical models. With the recent launch of new clinical trials, the potential to successfully manage cancer in human patients with cytotoxic NSC therapy is moving closer to becoming a reality. PMID:26314280

  8. Proliferation control in neural stem and progenitor cells

    PubMed Central

    Homem, Catarina CF; Repic, Marko; Knoblich, Juergen A

    2015-01-01

    Neural circuit function can be drastically affected by variations in the number of cells that are produced during development or by a reduction in adult cell number due to disease. Unlike many other organs, the brain is unable to compensate for such changes by increasing cell numbers or altering the size of the cells. For this reason, unique cell cycle and cell growth control mechanisms operate in the developing and adult brain. In Drosophila melanogaster and mammalian neural stem and progenitor cells these mechanisms are intricately coordinated with the developmental age and the nutritional, metabolic and hormonal state of the animal. Defects in neural stem cell proliferation that result in the generation of incorrect cell numbers or defects in neural stem cell differentiation can cause microcephaly or megalencephaly. PMID:26420377

  9. Human embryonic stem cell differentiation toward regional specific neural precursors.

    PubMed

    Erceg, Slaven; Ronaghi, Mohammad; Stojković, Miodrag

    2009-01-01

    Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that have the capacity to differentiate into a wide variety of cell types. This potentiality represents a promising source to overcome many human diseases by providing an unlimited supply of all cell types, including cells with neural characteristics. Therefore, this review summarizes early neural development and the potential of hESCs to differentiate under in vitro conditions, examining at the same time the potential use of differentiated hESCs for therapeutic applications for neural tissue and cell regeneration. PMID:18845761

  10. Human Embryonic Stem Cell Differentiation Toward Regional Specific Neural Precursors

    PubMed Central

    Erceg, Slaven; Ronaghi, Mohammad; Stojković, Miodrag

    2009-01-01

    Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that have the capacity to differentiate into a wide variety of cell types. This potentiality represents a promising source to overcome many human diseases by providing an unlimited supply of all cell types, including cells with neural characteristics. Therefore, this review summarizes early neural development and the potential of hESCs to differentiate under in vitro conditions, examining at the same time the potential use of differentiated hESCs for therapeutic applications for neural tissue and cell regeneration. PMID:18845761

  11. Neural stem and progenitor cells in health and disease

    PubMed Central

    Ladran, Ian; Tran, Ngoc; Topol, Aaron; Brennand, Kristen J.

    2014-01-01

    Neural stem/progenitor cells (NSPCs) have the potential to differentiate into neurons, astrocytes, and/or oligodendrocytes. Because these cells can be expanded in culture, they represent a vast source of neural cells. With the recent discovery that patient fibroblasts can be reprogrammed directly into induced NSPCs, the regulation of NSPC fate and function, in the context of cell-based disease models and patient-specific cell-replacement therapies, warrants review. PMID:24068527

  12. Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling.

    PubMed

    Hitoshi, Seiji; Seaberg, Raewyn M; Koscik, Cheryl; Alexson, Tania; Kusunoki, Susumu; Kanazawa, Ichiro; Tsuji, Shoji; van der Kooy, Derek

    2004-08-01

    Basic fibroblast growth factor (FGF2)-responsive definitive neural stem cells first appear in embryonic day 8.5 (E8.5) mouse embryos, but not in earlier embryos, although neural tissue exists at E7.5. Here, we demonstrate that leukemia inhibitory factor-dependent (but not FGF2-dependent) sphere-forming cells are present in the earlier (E5.5-E7.5) mouse embryo. The resultant clonal sphere cells possess self-renewal capacity and neural multipotentiality, cardinal features of the neural stem cell. However, they also retain some nonneural properties, suggesting that they are the in vivo cells' equivalent of the primitive neural stem cells that form in vitro from embryonic stem cells. The generation of the in vivo primitive neural stem cell was independent of Notch signaling, but the activation of the Notch pathway was important for the transition from the primitive to full definitive neural stem cell properties and for the maintenance of the definitive neural stem cell state. PMID:15289455

  13. Data defining markers of human neural stem cell lineage potential

    PubMed Central

    Oikari, Lotta E.; Okolicsanyi, Rachel K.; Griffiths, Lyn R.; Haupt, Larisa M.

    2016-01-01

    Neural stem cells (NSCs) and neural progenitor cells (NPCs) are self-renewing and multipotent cells, however, NPCs are considered to be more lineage-restricted with a reduced self-renewing capacity. We present data comparing the expression of 21 markers encompassing pluripotency, self-renewal (NSC) as well as neuronal and glial (astrocyte and oligodendrocyte) lineage specification and 28 extracellular proteoglycan (PG) genes and their regulatory enzymes between embryonic stem cell (ESC)-derived human NSCs (hNSC H9 cells, Thermo Fisher) and human cortex-derived normal human NPCs (nhNPCs, Lonza). The data demonstrates expression differences of multiple lineage and proteoglycan-associated genes between hNSC H9 cells and nhNPCs. Data interpretation of markers and proteoglycans defining NSC and neural cell lineage characterisation can be found in “Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination” (Oikari et al. 2015) [1]. PMID:26958640

  14. Data defining markers of human neural stem cell lineage potential.

    PubMed

    Oikari, Lotta E; Okolicsanyi, Rachel K; Griffiths, Lyn R; Haupt, Larisa M

    2016-06-01

    Neural stem cells (NSCs) and neural progenitor cells (NPCs) are self-renewing and multipotent cells, however, NPCs are considered to be more lineage-restricted with a reduced self-renewing capacity. We present data comparing the expression of 21 markers encompassing pluripotency, self-renewal (NSC) as well as neuronal and glial (astrocyte and oligodendrocyte) lineage specification and 28 extracellular proteoglycan (PG) genes and their regulatory enzymes between embryonic stem cell (ESC)-derived human NSCs (hNSC H9 cells, Thermo Fisher) and human cortex-derived normal human NPCs (nhNPCs, Lonza). The data demonstrates expression differences of multiple lineage and proteoglycan-associated genes between hNSC H9 cells and nhNPCs. Data interpretation of markers and proteoglycans defining NSC and neural cell lineage characterisation can be found in "Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination" (Oikari et al. 2015) [1]. PMID:26958640

  15. Reprogramming of avian neural crest axial identity and cell fate.

    PubMed

    Simoes-Costa, Marcos; Bronner, Marianne E

    2016-06-24

    Neural crest populations along the embryonic body axis of vertebrates differ in developmental potential and fate, so that only the cranial neural crest can contribute to the craniofacial skeleton in vivo. We explored the regulatory program that imbues the cranial crest with its specialized features. Using axial-level specific enhancers to isolate and perform genome-wide profiling of the cranial versus trunk neural crest in chick embryos, we identified and characterized regulatory relationships between a set of cranial-specific transcription factors. Introducing components of this circuit into neural crest cells of the trunk alters their identity and endows these cells with the ability to give rise to chondroblasts in vivo. Our results demonstrate that gene regulatory circuits that support the formation of particular neural crest derivatives may be used to reprogram specific neural crest-derived cell types. PMID:27339986

  16. Generation of diverse neural cell types through direct conversion

    PubMed Central

    Petersen, Gayle F; Strappe, Padraig M

    2016-01-01

    A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace, thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost. The process of neural direct conversion, in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency, shows great potential, with evidence of the generation of a range of functional neural cell types both in vitro and in vivo, through viral and non-viral delivery of exogenous factors, as well as chemical induction methods. Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells, with prospective roles in the investigation of neurological disorders, including neurodegenerative disease modelling, drug screening, and cellular replacement for regenerative medicine applications, however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option. In this review, we describe the generation of diverse neural cell types via direct conversion of somatic cells, with comparison against stem cell-based approaches, as well as discussion of their potential research and clinical applications. PMID:26981169

  17. Analysing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors

    PubMed Central

    Edri, Reuven; Yaffe, Yakey; Ziller, Michael J.; Mutukula, Naresh; Volkman, Rotem; David, Eyal; Jacob-Hirsch, Jasmine; Malcov, Hagar; Levy, Carmit; Rechavi, Gideon; Gat-Viks, Irit; Meissner, Alexander; Elkabetz, Yechiel

    2015-01-01

    Decoding heterogeneity of pluripotent stem cell (PSC)-derived neural progeny is fundamental for revealing the origin of diverse progenitors, for defining their lineages, and for identifying fate determinants driving transition through distinct potencies. Here we have prospectively isolated consecutively appearing PSC-derived primary progenitors based on their Notch activation state. We first isolate early neuroepithelial cells and show their broad Notch-dependent developmental and proliferative potential. Neuroepithelial cells further yield successive Notch-dependent functional primary progenitors, from early and midneurogenic radial glia and their derived basal progenitors, to gliogenic radial glia and adult-like neural progenitors, together recapitulating hallmarks of neural stem cell (NSC) ontogeny. Gene expression profiling reveals dynamic stage-specific transcriptional patterns that may link development of distinct progenitor identities through Notch activation. Our observations provide a platform for characterization and manipulation of distinct progenitor cell types amenable for developing streamlined neural lineage specification paradigms for modelling development in health and disease. PMID:25799239

  18. Neural tube defects: prevention by folic acid and other vitamins.

    PubMed

    Copp, A J; Greene, N D

    2000-12-01

    Folic acid has been demonstrated in clinical trials to reduce significantly the recurrence (and probably occurrence) of neural tube defects (NTD). In the U.K., there has been no decline in prevalence of NTD since the publication of the findings with folic acid. This article examines a series of questions relating to the action of folic acid, with emphasis on the use of mouse models as a source of experimental information which cannot easily be obtained by direct study of humans. Several mouse genetic NTD models exhibit sensitivity to prevention by folic acid, whereas other mice which develop morphologically similar NTD are resistant. Folic acid normalises neurulation in the sensitive mouse strains, providing evidence for a direct effect on the developing embryo, not on the pregnant female: Mouse studies do not support the proposed action of folic acid in encouraging the in utero demise of affected fetuses (i.e. terathanasia). Polymorphic variants of several folate-related enzymes have been shown to influence risk of NTD in humans and an inherited abnormality of folate metabolism has been demonstrated in one mouse NTD model. However, the biochemical basis of the action of folic acid in preventing NTD remains to be determined in detail. NTD in one folate-resistant mouse strain can be prevented by myo-inositol, both in utero and in vitro, raising the possibility of a therapeutic role also in humans. Gene-gene interactions seem likely to underlie the majority of NTD, suggesting that poly-therapy involving folic acid and other agents, such as myo-inositol, may prove more effective in preventing NTD than folic acid treatment alone. PMID:11262991

  19. Evaluation of neural gene expression in serum treated embryonic stem cells in Alzheimer's patients

    PubMed Central

    Dehghani, Leila; Hashemi-Beni, Batool; Poorazizi, Elahe; Khorvash, Fariborz; Shaygannejad, Vahid; Sedghi, Maryam; Vesal, Sahar; Meamar, Rokhsareh

    2013-01-01

    Background: Previous studies confirmed that neural gene expression in embryonic stem cells (ESC) could influence by chemical compounds through stimulating apoptotic pathway. We aimed to use ESCs-derived neural cells by embryoid body formation as an in vitro model for determination of neural gene expression changes in groups that treated by sera from Alzheimer's patients and compare with healthy individuals. Materials and Methods: ESC line which was derived from the C57BL/6 mouse strain was used throughout this study. ESC-derived neural cells were treated with serum from Alzheimer's patient and healthy individual. Neural gene expression was assessed in both groups by quantitative real-time polymerase chain reaction analysis. The data was analyzed by SPSS Software (version 18). Results: Morphologically, the reducing in neurite out-growth was observed in neural cells in group, which treated by serum from Alzheimer's patient, while neurite growth was natural in appearance in control group. Microtubule-associated protein 2 and glial fibrillary acidic protein expression significantly reduced in the Alzheimer's patient group compared with the control group. Nestin expression did not significantly differ among the groups. Conclusion: Neural gene expression could be reduced in serum treated ESC in Alzheimer's patients. PMID:23961278

  20. Neurogenesis of Neural Crest Derived Periodontal Ligament Stem Cells by EGF and bFGF

    PubMed Central

    Fortino, Veronica R.; Chen, Ren-Shiang; Pelaez, Daniel; Cheung, Herman S.

    2013-01-01

    Neuroregenerative medicine is an ever-growing field in which regeneration of lost cells/tissues due to a neurodegenerative disease is the ultimate goal. With the scarcity of available replacement alternatives, stem cells provide an attractive source for regenerating neural tissue. While many stem cell sources exist, including: mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs), the limited cellular potency, technical difficulties, and ethical considerations associated with these make finding alternate sources a desirable goal. Periodontal ligament stem cells (PDLSCs) derived from the neural crest were induced into neural-like cells using a combination of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). Morphological changes were evident in our treated group, seen under both light microscopy and scanning electron microscopy (SEM). A statistically significant increase in the expression of neuron-specific β-tubulin III and the neural stem/progenitor cell marker nestin, along with positive immunohistochemical staining for glial fibrillary acidic protein (GFAP), demonstrated the success of our treatment in inducing both neuronal and glial phenotypes. Positive staining for synaptophysin demonstrated neural connections and electrophysiological recordings indicated that when subjected to whole cell patch clamping, our treated cells displayed inward currents conducted through voltage-gated sodium (Na+) channels. Taken together, our results indicate the success of our treatment in inducing PDLSCs to neural-like cells. The ease of sourcing and expansion, their embryologic neural crest origin, and the lack of ethical implications in their use make PDLSCs an attractive source for use in neuroregenerative medicine. PMID:24105823

  1. Ulk4 Regulates Neural Stem Cell Pool.

    PubMed

    Liu, Min; Guan, Zhenlong; Shen, Qin; Flinter, Frances; Domínguez, Laura; Ahn, Joo Wook; Collier, David A; O'Brien, Timothy; Shen, Sanbing

    2016-09-01

    The size of neural stem cell (NSC) pool at birth determines the starting point of adult neurogenesis. Aberrant neurogenesis is associated with major mental illness, in which ULK4 is proposed as a rare risk factor. Little is known about factors regulating the NSC pool, or function of the ULK4. Here, we showed that Ulk4(tm1a/tm1a) mice displayed a dramatically reduced NSC pool at birth. Ulk4 was expressed in a cell cycle-dependent manner and peaked in G2/M phases. Targeted disruption of the Ulk4 perturbed mid-neurogenesis and significantly reduced cerebral cortex in postnatal mice. Pathway analyses of dysregulated genes in Ulk4(tm1a/tm1a) mice revealed Ulk4 as a key regulator of cell cycle and NSC proliferation, partially through regulation of the Wnt signaling. In addition, we identified hemizygous deletion of ULK4 gene in 1.2/1,000 patients with pleiotropic symptoms including severe language delay and learning difficulties. ULK4, therefore, may significantly contribute to neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Stem Cells 2016;34:2318-2331. PMID:27300315

  2. SIRT1 and Neural Cell Fate Determination.

    PubMed

    Cai, Yulong; Xu, Le; Xu, Haiwei; Fan, Xiaotang

    2016-07-01

    During the development of the central nervous system (CNS), neurons and glia are derived from multipotent neural stem cells (NSCs) undergoing self-renewal. NSC commitment and differentiation are tightly controlled by intrinsic and external regulatory mechanisms in space- and time-related fashions. SIRT1, a silent information regulator 2 (Sir2) ortholog, is expressed in several areas of the brain and has been reported to be involved in the self-renewal, multipotency, and fate determination of NSCs. Recent studies have highlighted the role of the deacetylase activity of SIRT1 in the determination of the final fate of NSCs. This review summarizes the roles of SIRT1 in the expansion and differentiation of NSCs, specification of neuronal subtypes and glial cells, and reprogramming of functional neurons from embryonic stem cells and fibroblasts. This review also discusses potential signaling pathways through which SIRT1 can exhibit versatile functions in NSCs to regulate the cell fate decisions of neurons and glia. PMID:25850787

  3. Effects of epidermal growth factor on neural crest cells in tissue culture

    SciTech Connect

    Erickson, C.A.; Turley, E.A.

    1987-04-01

    Epidermal growth factor (EGF) stimulates the release of hyaluronic acid (HA) and chondroitin sulfate proteoglycan (CSPG) from quail trunk neural crest cultures in a dose-dependent fashion. It also promotes the expression of cell-associated heparan sulfate proteoglycan (HSPG) as detected by immunofluorescence and immunoprecipitation of the /sup 3/H-labeled proteoglycan. Furthermore, EGF stimulates (/sup 3/H)thymidine incorporation into total cell DNA. These results raise the possibility that EGF or an analogous growth factor is involved in regulation of neural crest cell morphogenesis.

  4. Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Shen, Qin; Goderie, Susan K.; Jin, Li; Karanth, Nithin; Sun, Yu; Abramova, Natalia; Vincent, Peter; Pumiglia, Kevin; Temple, Sally

    2004-05-01

    Neural stem cells are reported to lie in a vascular niche, but there is no direct evidence for a functional relationship between the stem cells and blood vessel component cells. We show that endothelial cells but not vascular smooth muscle cells release soluble factors that stimulate the self-renewal of neural stem cells, inhibit their differentiation, and enhance their neuron production. Both embryonic and adult neural stem cells respond, allowing extensive production of both projection neuron and interneuron types in vitro. Endothelial coculture stimulates neuroepithelial cell contact, activating Notch and Hes1 to promote self-renewal. These findings identify endothelial cells as a critical component of the neural stem cell niche.

  5. Optimizing protocols for imaging neural cells and tissues using functionalized quantum dots

    NASA Astrophysics Data System (ADS)

    Pathak, Smita; Silva, Gabriel A.

    2008-02-01

    Chemically functionalized semiconductor quantum dot protocols were optimized for the specific labeling and imaging of neural cells, both neurons and macroglial cells. Beta-tubulin III was used to image primary cortical neurons and PC12 cells while glial fibrillary acidic protein (GFAP) was used to image primary spinal cord and cortical astrocytes and the rMC-1 retinal glial Muller cell line. Both proteins are the main components of intermediate filaments and are specific to the two classes of neural cells. We also specifically labeled and imaged at high resolutions using anti-GFAP conjugated quantum dots glial scars in situ in intact neural sensory retina in a rodent model of macular degeneration.

  6. Tenuigenin promotes proliferation and differentiation of hippocampal neural stem cells.

    PubMed

    Chen, Yujing; Huang, Xiaobo; Chen, Wenqiang; Wang, Ningqun; Li, Lin

    2012-04-01

    The present study was to investigate the influence of tenuigenin, an active ingredient of Polygala tenuifolia Willd, on the proliferation and differentiation of hippocampal neural stem cells in vitro. Tenuigenin was added to a neurosphere culture and neurosphere growth was measured using MTT assay. The influence of tenuigenin on the proliferation of neural progenitors was examined by Clone forming assay and BrdU detection. In addition, the differentiation of neural stem cells was compared using immunocytochemistry for β III-tubulin and GFAP. The results showed that addition of tenuigenin to the neural stem cell medium increased the number of newly formed neurospheres. More neurons were also obtained when tenuigenin was added in the differentiation medium. These findings suggest that tenuigenin is involved in regulating the proliferation and differentiation of hippocampal neural stem cells. This result may be one of the underlying reasons for tenuigenin's nootropic and anti-aging effects. PMID:22179853

  7. Neural tube defects and impaired neural progenitor cell proliferation in Gbeta1-deficient mice.

    PubMed

    Okae, Hiroaki; Iwakura, Yoichiro

    2010-04-01

    Heterotrimeric G proteins are well known for their roles in signal transduction downstream of G protein-coupled receptors (GPCRs), and both Galpha subunits and tightly associated Gbetagamma subunits regulate downstream effector molecules. Compared to Galpha subunits, the physiological roles of individual Gbeta and Ggamma subunits are poorly understood. In this study, we generated mice deficient in the Gbeta1 gene and found that Gbeta1 is required for neural tube closure, neural progenitor cell proliferation, and neonatal development. About 40% Gbeta1(-/-) embryos developed neural tube defects (NTDs) and abnormal actin organization was observed in the basal side of neuroepithelium. In addition, Gbeta1(-/-) embryos without NTDs showed microencephaly and died within 2 days after birth. GPCR agonist-induced ERK phosphorylation, cell proliferation, and cell spreading, which were all found to be regulated by Galphai and Gbetagamma signaling, were abnormal in Gbeta1(-/-) neural progenitor cells. These data indicate that Gbeta1 is required for normal embryonic neurogenesis. PMID:20186915

  8. Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers.

    PubMed

    Xiong, Yi; Zhu, Ji-Xiang; Fang, Zheng-Yu; Zeng, Cheng-Guang; Zhang, Chao; Qi, Guo-Long; Li, Man-Hui; Zhang, Wei; Quan, Da-Ping; Wan, Jun

    2012-01-01

    Biomaterials and neurotrophic factors represent promising guidance for neural repair. In this study, we combined poly-(lactic acid-co-glycolic acid) (PLGA) conduits and neurotrophin-3 (NT-3) to generate NT-3-loaded PLGA carriers in vitro. Bioactive NT-3 was released stably and constantly from PLGA conduits for up to 4 weeks. Neural stem cells (NSCs) and Schwann cells (SCs) were coseeded into an NT-releasing scaffold system and cultured for 14 days. Immunoreactivity against Map2 showed that most of the grafted cells (>80%) were differentiated toward neurons. Double-immunostaining for synaptogenesis and myelination revealed the formation of synaptic structures and myelin sheaths in the coculture, which was also observed under electron microscope. Furthermore, under depolarizing conditions, these synapses were excitable and capable of releasing synaptic vesicles labeled with FM1-43 or FM4-64. Taken together, coseeding NSCs and SCs into NT-3-loaded PLGA carriers increased the differentiation of NSCs into neurons, developed synaptic connections, exhibited synaptic activities, and myelination of neurites by the accompanying SCs. These results provide an experimental basis that supports transplantation of functional neural construction in spinal cord injury. PMID:22619535

  9. Stroke Increases Neural Stem Cells and Angiogenesis in the Neurogenic Niche of the Adult Mouse

    PubMed Central

    Zhang, Rui Lan; Chopp, Michael; Roberts, Cynthia; Liu, Xianshuang; Wei, Min; Nejad-Davarani, Siamak P.; Wang, Xinli; Zhang, Zheng Gang

    2014-01-01

    The unique cellular and vascular architecture of the adult ventricular-subventricular zone (V/SVZ) neurogenic niche plays an important role in regulating neural stem cell function. However, the in vivo identification of neural stem cells and their relationship to blood vessels within this niche in response to stroke remain largely unknown. Using whole-mount preparation of the lateral ventricle wall, we examined the architecture of neural stem cells and blood vessels in the V/SVZ of adult mouse over the course of 3 months after onset of focal cerebral ischemia. Stroke substantially increased the number of glial fibrillary acidic protein (GFAP) positive neural stem cells that are in contact with the cerebrospinal fluid (CSF) via their apical processes at the center of pinwheel structures formed by ependymal cells residing in the lateral ventricle. Long basal processes of these cells extended to blood vessels beneath the ependymal layer. Moreover, stroke increased V/SVZ endothelial cell proliferation from 2% in non-ischemic mice to 12 and 15% at 7 and 14 days after stroke, respectively. Vascular volume in the V/SVZ was augmented from 3% of the total volume prior to stroke to 6% at 90 days after stroke. Stroke-increased angiogenesis was closely associated with neuroblasts that expanded to nearly encompass the entire lateral ventricular wall in the V/SVZ. These data indicate that stroke induces long-term alterations of the neural stem cell and vascular architecture of the adult V/SVZ neurogenic niche. These post-stroke structural changes may provide insight into neural stem cell mediation of stroke-induced neurogenesis through the interaction of neural stem cells with proteins in the CSF and their sub-ependymal neurovascular interaction. PMID:25437857

  10. The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans.

    PubMed

    Kallapur, S G; Akeson, R A

    1992-12-01

    The neural cell adhesion molecule (NCAM) has been strongly implicated in several aspects of neural development. NCAM mediated adhesion has been proposed to involve a homophilic interaction between NCAMs on adjacent cells. The heparin binding domain (HBD) is an amino acid sequence within NCAM and has been shown to be involved in NCAM mediated adhesion but the relationship of this domain to NCAM segments mediating homophilic adhesion has not been defined. In the present study, a synthetic peptide corresponding to the HBD has been used as a substrate to determine its role in NCAM mediated adhesion. A neural cell line expressing NCAM (B35) and its derived clone which does not express NCAM (B35 clone 3) adhered similarly to plates coated with HBD peptide. A polyclonal antiserum to NCAM inhibited B35 cell-HBD peptide adhesion by only 10%, a value not statistically different from inhibition caused by preimmune serum. Both these experiments suggested no direct NCAM-HBD interactions. To test whether the HBD peptide bound to cell surface heparan sulfate proteoglycans (HSPG), HSPG synthesis was inhibited using beta-D-xyloside. After treatment, B35 cell adhesion to the HBD peptide, but not to control substrates, was significantly decreased. B35 cell adhesion to the HBD peptide could be inhibited by 10(-7) M heparin but not chondroitin sulfate. Preincubation of the substrate (HBD peptide) with heparin caused dramatic reduction of B35 cell-HBD peptide adhesion whereas preincubation of B35 cells with heparin caused only modest reductions in cell-HBD adhesion. Furthermore, inhibition of HSPG sulfation with sodium chlorate also decreased the adhesion of B35 cells to the HBD peptide. These results strongly suggest that, within the assay system, the NCAM HBD does not participate in homophilic interactions but binds to cell surface heparan sulfate proteoglycan. This interaction potentially represents an important mechanism of NCAM adhesion and further supports the view that NCAM has

  11. Changes of neural markers expression during late neurogenic differentiation of human adipose-derived stem cells

    PubMed Central

    Razavi, Shahnaz; Khosravizadeh, Zahra; Bahramian, Hamid; Kazemi, Mohammad

    2015-01-01

    Background: Different studies have been done to obtain sufficient number of neural cells for treatment of neurodegenerative diseases, spinal cord, and traumatic brain injury because neural stem cells are limited in central nerves system. Recently, several studies have shown that adipose-derived stem cells (ADSCs) are the appropriate source of multipotent stem cells. Furthermore, these cells are found in large quantities. The aim of this study was an assessment of proliferation and potential of neurogenic differentiation of ADSCs with passing time. Materials and Methods: Neurosphere formation was used for neural induction in isolated human ADSCs (hADSCs). The rate of proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and potential of neural differentiation of induced hADSCs was evaluated by immunocytochemical and real-time reverse transcription polymerase chain reaction analysis after 10 and 14 days post-induction. Results: The rate of proliferation of induced hADSCs increased after 14 days while the expression of nestin, glial fibrillary acidic protein, and microtubule-associated protein 2 was decreased with passing time during neurogenic differentiation. Conclusion: These findings showed that the proliferation of induced cells increased with passing time, but in early neurogenic differentiation of hADSCs, neural expression was higher than late of differentiation. Thus, using of induced cells in early differentiation may be suggested for in vivo application. PMID:26605238

  12. Utilizing stem cells for three-dimensional neural tissue engineering.

    PubMed

    Knowlton, Stephanie; Cho, Yongku; Li, Xue-Jun; Khademhosseini, Ali; Tasoglu, Savas

    2016-05-26

    Three-dimensional neural tissue engineering has made great strides in developing neural disease models and replacement tissues for patients. However, the need for biomimetic tissue models and effective patient therapies remains unmet. The recent push to expand 2D neural tissue engineering into the third dimension shows great potential to advance the field. Another area which has much to offer to neural tissue engineering is stem cell research. Stem cells are well known for their self-renewal and differentiation potential and have been shown to give rise to tissues with structural and functional properties mimicking natural organs. Application of these capabilities to 3D neural tissue engineering may be highly useful for basic research on neural tissue structure and function, engineering disease models, designing tissues for drug development, and generating replacement tissues with a patient's genetic makeup. Here, we discuss the vast potential, as well as the current challenges, unique to integration of 3D fabrication strategies and stem cells into neural tissue engineering. We also present some of the most significant recent achievements, including nerve guidance conduits to facilitate better healing of nerve injuries, functional 3D biomimetic neural tissue models, physiologically relevant disease models for research purposes, and rapid and effective screening of potential drugs. PMID:26890524

  13. Disentangling neural cell diversity using single-cell transcriptomics.

    PubMed

    Poulin, Jean-Francois; Tasic, Bosiljka; Hjerling-Leffler, Jens; Trimarchi, Jeffrey M; Awatramani, Rajeshwar

    2016-08-26

    Cellular specialization is particularly prominent in mammalian nervous systems, which are composed of millions to billions of neurons that appear in thousands of different 'flavors' and contribute to a variety of functions. Even in a single brain region, individual neurons differ greatly in their morphology, connectivity and electrophysiological properties. Systematic classification of all mammalian neurons is a key goal towards deconstructing the nervous system into its basic components. With the recent advances in single-cell gene expression profiling technologies, it is now possible to undertake the enormous task of disentangling neuronal heterogeneity. High-throughput single-cell RNA sequencing and multiplexed quantitative RT-PCR have become more accessible, and these technologies enable systematic categorization of individual neurons into groups with similar molecular properties. Here we provide a conceptual and practical guide to classification of neural cell types using single-cell gene expression profiling technologies. PMID:27571192

  14. Post-training intrahippocampal injection of synthetic poly-α-2,8-sialic acid-neural cell adhesion molecule mimetic peptide improves spatial long-term performance in mice

    PubMed Central

    Florian, Cédrick; Foltz, Jane; Norreel, Jean-Chrétien; Rougon, Geneviève; Roullet, Pascal

    2006-01-01

    Several data have shown that the neural cell adhesion molecule (NCAM) is necessary for long-term memory formation and might play a role in the structural reorganization of synapses. The NCAM, encoded by a single gene, is represented by several isoforms that differ with regard to their content of α-2,8-linked sialic acid residues (PSA) on their extracellular domain. The carbohydrate PSA is known to promote plasticity, and PSA-NCAM isoforms remain expressed in the CA3 region of the adult hippocampus. In the present study, we investigated the effect on spatial memory consolidation of a PSA gain of function by injecting a PSA mimetic peptide (termed pr2) into the dorsal hippocampus. Mice were subjected to massed training in the spatial version of the water maze. Five hours after the last training session, experimental mice received an injection of pr2, whereas control mice received PBS or reverse peptide injections in the hippocampal CA3 region. Memory retention was tested at different time intervals: 24 h, 1 wk, and 4 wk. The results showed that the post-training infusion of pr2 peptide significantly increases spatial performance whenever it was assessed after the training phase. By contrast, administration of the control reverse peptide did not affect retention performance. These findings provide evidence that (1) PSA-NCAM is involved in memory consolidation processes in the CA3 hippocampal region, and (2) PSA mimetic peptides can facilitate the formation of long-term spatial memory when injected during the memory consolidation phase. PMID:16705136

  15. Neural stem cells and regulation of cell number.

    PubMed

    Sommer, Lukas; Rao, Mahendra

    2002-01-01

    Normal CNS development involves the sequential differentiation of multipotent stem cells. Alteration of the numbers of stem cells, their self-renewal ability, or their proliferative capacity will have major effects on the appropriate development of the nervous system. In this review, we discuss different mechanisms that regulate neural stem cell differentiation. Proliferation signals and cell cycle regulators may regulate cell kinetics or total number of cell divisions. Loss of trophic support and cytokine receptor activation may differentially contribute to the induction of cell death at specific stages of development. Signaling from differentiated progeny or asymmetric distribution of specific molecules may alter the self-renewal characteristics of stem cells. We conclude that the final decision of a cell to self-renew, differentiate or remain quiescent is dependent on an integration of multiple signaling pathways and at each instant will depend on cell density, metabolic state, ligand availability, type and levels of receptor expression, and downstream cross-talk between distinct signaling pathways. PMID:11897403

  16. Folic Acid for the Prevention of Infant Neural Tube Defects: U.S. Preventive Services Task Force Recommendation

    MedlinePlus

    Annals of Internal Medicine Summaries for Patients Folic Acid for the Prevention of Infant Neural Tube Defects: ... modern medicine. The full reports are titled “Folic Acid for the Prevention of Neural Tube Defects: U.S. ...

  17. Nitric Oxide Signaling and Neural Stem Cell Differentiation in Peripheral Nerve Regeneration

    PubMed Central

    Tao Li, Jessica; Somasundaram, Chandra; Bian, Ka; Xiong, Weijun; Mahmooduddin, Faiz; Nath, Rahul K.; Murad, Ferid

    2010-01-01

    Objective: The objective was to examine whether nitric oxide signaling plays a role in human embryonic stem cell differentiation into neural cells. This article reviews current literature on nitric oxide signaling and neural stem cell differentiation for potential therapeutic application to peripheral nerve regeneration. Methods: Human embryonic H9-stem cells were grown, maintained on mitomycin C–treated mouse embryonic fibroblast feeder layer, cultured on Matrigel to be feeder-free, and used for all the experiments. Fluorescent dual-immunolabeling and confocal image analysis were used to detect the presence of the neural precursor cell markers nestin and nitric oxide synthase-1. Fluorescence-activated cell sorting analysis was used to determine the percentage of expression. Results: We have shown the confocal image of stage 1 human embryonic stem cells coexpressing nestin and nitric oxide synthase-1. Fluorescence-activated cell sorting analysis indicated 24.3% positive labeling of nitric oxide synthase-1. Adding retinoic acid (10−6 M) to the culture medium increased the percent of nitric oxide synthase-1 positive cells to 33.9%. Combining retinoic acid (10−6 M) with 8-brom cyclic guanosine monophosphate (10−5 M), the fluorescence-activated cell sorting analysis demonstrated a further increase of nitric oxide synthase-1 positive cells to 45.4%. Our current results demonstrate a prodifferentiation potency of nitric oxide synthase-1, stimulated by retinoic acid with and without cyclic guanosine monophosphate. Conclusion: We demonstrated for the first time how nitric oxide/cyclic guanosine monophosphate signaling contributes to the development of neural precursors derived from human embryonic stem cells and enhances the differentiation of precursors toward functional neurons for peripheral nerve regeneration. PMID:20563304

  18. Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors

    PubMed Central

    2009-01-01

    Background Although features of variable differentiation in glioblastoma cell cultures have been reported, a comparative analysis of differentiation properties of normal neural GFAP positive progenitors, and those shown by glioblastoma cells, has not been performed. Methods Following methods were used to compare glioblastoma cells and GFAP+NNP (NHA): exposure to neural differentiation medium, exposure to adipogenic and osteogenic medium, western blot analysis, immunocytochemistry, single cell assay, BrdU incorporation assay. To characterize glioblastoma cells EGFR amplification analysis, LOH/MSI analysis, and P53 nucleotide sequence analysis were performed. Results In vitro differentiation of cancer cells derived from eight glioblastomas was compared with GFAP-positive normal neural progenitors (GFAP+NNP). Prior to exposure to differentiation medium, both types of cells showed similar multilineage phenotype (CD44+/MAP2+/GFAP+/Vimentin+/Beta III-tubulin+/Fibronectin+) and were positive for SOX-2 and Nestin. In contrast to GFAP+NNP, an efficient differentiation arrest was observed in all cell lines isolated from glioblastomas. Nevertheless, a subpopulation of cells isolated from four glioblastomas differentiated after serum-starvation with varying efficiency into derivatives indistinguishable from the neural derivatives of GFAP+NNP. Moreover, the cells derived from a majority of glioblastomas (7 out of 8), as well as GFAP+NNP, showed features of mesenchymal differentiation when exposed to medium with serum. Conclusion Our results showed that stable co-expression of multilineage markers by glioblastoma cells resulted from differentiation arrest. According to our data up to 95% of glioblastoma cells can present in vitro multilineage phenotype. The mesenchymal differentiation of glioblastoma cells is advanced and similar to mesenchymal differentiation of normal neural progenitors GFAP+NNP. PMID:19216795

  19. Microfluidic systems for stem cell-based neural tissue engineering.

    PubMed

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-01

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering. PMID:27296463

  20. Dietary essential fatty acids change the fatty acid profile of rat neural mitochondria over time.

    PubMed

    Dyer, J R; Greenwood, C E

    1991-10-01

    This experiment examined the time course over which the amount of dietary essential fatty acids (EFA) affects brain mitochondrial fatty acids. Weanling rats were fed 20% (wt/wt) fat diets that contained either 4 or 15% (wt/wt of diet) EFA for 1, 2, 3 or 6 wk or a 10% EFA diet for 3 or 6 wk. The EFA ratio [18:2(n-6)/18:3(n-3)] of all diets was approximately 30. Fatty acid analysis of brain mitochondrial phosphatidylethanolamine, phosphatidylcholine and cardiolipin revealed that the largest dietary effect was on 18:2(n-6), which was 30% higher in rats fed the 15 vs. 4% EFA diets after 1 wk. This difference increased to twofold by 3 wk and was still twofold after 6 wk. These results demonstrate several facts: 1) the response of 18:2(n-6) in cardiolipin to dietary EFA is very fast and large, relative to changes in other quantitatively major fatty acids observed in weanling rats; 2) the 18:2(n-6) level in neural cardiolipin stabilizes after 3 wk of feeding at a level dependent upon the amount of dietary EFA; and 3) at least one neural fatty acid, 18:2(n-6), is very sensitive to amounts of dietary EFA that are well above the animal's EFA requirement. PMID:1765818

  1. Neural Crest Stem Cells from Dental Tissues: A New Hope for Dental and Neural Regeneration

    PubMed Central

    Ibarretxe, Gaskon; Crende, Olatz; Aurrekoetxea, Maitane; García-Murga, Victoria; Etxaniz, Javier; Unda, Fernando

    2012-01-01

    Several stem cell sources persist in the adult human body, which opens the doors to both allogeneic and autologous cell therapies. Tooth tissues have proven to be a surprisingly rich and accessible source of neural crest-derived ectomesenchymal stem cells (EMSCs), which may be employed to repair disease-affected oral tissues in advanced regenerative dentistry. Additionally, one area of medicine that demands intensive research on new sources of stem cells is nervous system regeneration, since this constitutes a therapeutic hope for patients affected by highly invalidating conditions such as spinal cord injury, stroke, or neurodegenerative diseases. However, endogenous adult sources of neural stem cells present major drawbacks, such as their scarcity and complicated obtention. In this context, EMSCs from dental tissues emerge as good alternative candidates, since they are preserved in adult human individuals, and retain both high proliferation ability and a neural-like phenotype in vitro. In this paper, we discuss some important aspects of tissue regeneration by cell therapy and point out some advantages that EMSCs provide for dental and neural regeneration. We will finally review some of the latest research featuring experimental approaches and benefits of dental stem cell therapy. PMID:23093977

  2. Nanomedicine Approaches to Modulate Neural Stem Cells in Brain Repair.

    PubMed

    Santos, Tiago; Boto, Carlos; Saraiva, Cláudia M; Bernardino, Liliana; Ferreira, Lino

    2016-06-01

    We explore the concept of modulating neural stem cells and their niches for brain repair using nanotechnology-based approaches. These approaches include stimulating cell proliferation, recruitment, and differentiation to functionally recover damaged areas. Nanoscale-engineered materials potentially overcome limited crossing of the blood-brain barrier, deficient drug delivery, and cell targeting. PMID:26917252

  3. The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro

    SciTech Connect

    Skardelly, Marco; Glien, Anja; Groba, Claudia; Schlichting, Nadine; Kamprad, Manja; Meixensberger, Juergen; Milosevic, Javorina

    2013-12-10

    In allogenic and xenogenic transplantation, adequate immunosuppression plays a major role in graft survival, especially over the long term. The effect of immunosuppressive drugs on neural stem/progenitor cell fate has not been sufficiently explored. The focus of this study is to systematically investigate the effects of the following four different immunotherapeutic strategies on human neural progenitor cell survival/death, proliferation, metabolic activity, differentiation and migration in vitro: (1) cyclosporine A (CsA), a calcineurin inhibitor; (2) everolimus (RAD001), an mTOR-inhibitor; (3) mycophenolic acid (MPA, mycophenolate), an inhibitor of inosine monophosphate dehydrogenase and (4) prednisolone, a steroid. At the minimum effective concentration (MEC), we found a prominent decrease in hNPCs' proliferative capacity (BrdU incorporation), especially for CsA and MPA, and an alteration of the NAD(P)H-dependent metabolic activity. Cell death rate, neurogenesis, gliogenesis and cell migration remained mostly unaffected under these conditions for all four immunosuppressants, except for apoptotic cell death, which was significantly increased by MPA treatment. - Highlights: • Four immunosuppresants (ISs) were tested in human neural progenitor cells in vitro. • Cyclosporine A and mycophenolic acid showed a prominent anti-proliferative activity • Mycophenolic acid exhibited a significant pro-apoptotic effect. • NAD(P)H-dependent metabolic activity was occasionally induced by ISs. • Neuronal differentiation and migration potential remained unaffected by ISs treatment.

  4. The mechanism of binding of neural cell adhesion molecules.

    PubMed

    Hoffman, S; Edelman, G M

    1984-01-01

    The experimental results reviewed in this paper strongly suggest that the molecular mechanism of N-CAM-mediated cell adhesion involves the direct interaction of N-CAM molecules on one cell with N-CAM molecules on a second cell. The rate of this aggregation has a high-order dependence on the local N-CAM concentration, and is inversely related to the sialic acid content of the N-CAM molecules involved. In accordance with their relative sialic acid concentrations, the relative rates of aggregation mediated by E and A forms of N-CAM are A-A greater than A-E greater than E-E. Further removal of sialic acid from N-CAM below the level found in the A form gives little further enhancement of aggregation. These results provide one basis upon which to interpret the modulation hypothesis (Edelman, 1983) for control of N-CAM function, i.e. the adhesive strength of N-CAM bonds in an in vitro system can be altered in a graded manner over a wide range by variations in the local surface density of N-CAM or by chemical modification of N-CAM (differential sialylation). It is important to stress that these results do not preclude the possibility of other forms of modulation of N-CAM function or the function of other molecules in cell-cell interactions. It will be much more difficult to assess the role of N-CAM and the modulation of its function on pattern formation in vivo. It is pertinent to mention, however, that recent experiments on transformed neural cells (Greenberg et al., 1984) show loss of N-CAM following transformation with accompanying loss of aggregation and increased motility of the transformed cells. Aside from the possible implications for metastasis (transformation has for the first time been shown to affect a defined CAM and alter cellular sociology), these findings are consonant with the notion that alteration of surface N-CAM affects expression of other cellular processes. Clearly additional experiments are required to define the mechanisms by which this occurs. In

  5. Distinguishing hair cell from neural potentials recorded at the round window

    PubMed Central

    Forgues, Mathieu; Koehn, Heather A.; Dunnon, Askia K.; Pulver, Stephen H.; Buchman, Craig A.; Adunka, Oliver F.

    2013-01-01

    Almost all patients who receive cochlear implants have some acoustic hearing prior to surgery. Electrocochleography (ECoG), or electrophysiological measures of cochlear response to sound, can identify remaining auditory nerve activity that is the basis for this residual hearing and can record potentials from hair cells that are no longer functionally connected to nerve fibers. The ECoG signal is therefore complex, being composed of both hair cell and neural signals. To identify signatures of different sources in the recorded potentials, we collected ECoG data across frequency and intensity from the round window of gerbils before and after treatment with kainic acid, a neurotoxin. Distortions in the recorded waveforms were produced by different sources over different ranges of frequency and intensity. In response to tones at low frequencies and low-to-moderate intensities, the major source of distortion was from neural phase-locking that was sensitive to kainic acid. At high intensities at all frequencies, the distortion was not sensitive to kainic acid and was consistent with asymmetric saturation of the hair cell transducer current. In addition to loss of phase-locking, changes in the envelope after kainic acid treatment indicate that sustained neural firing combines with receptor potentials from hair cells to produce the envelope of the response to tones. These results provide baseline data to interpret comparable recordings from human cochlear implant recipients. PMID:24133227

  6. GABA's Control of Stem and Cancer Cell Proliferation in Adult Neural and Peripheral Niches

    PubMed Central

    Young, Stephanie Z.; Bordey, Angélique

    2010-01-01

    Aside from traditional neurotransmission and regulation of secretion, γ-amino butyric acid (GABA) through GABAA receptors negatively regulates proliferation of pluripotent and neural stem cells in embryonic and adult tissue. There has also been evidence that GABAergic signaling and its control over proliferation is not only limited to the nervous system, but is widespread through peripheral organs containing adult stem cells. GABA has emerged as a tumor signaling molecule in the periphery that controls the proliferation of tumor cells and perhaps tumor stem cells. Here, we will discuss GABA's presence as a near-universal signal that may be altered in tumor cells resulting in modified mitotic activity. PMID:19509127

  7. Identification and classification of human neural stem cells by infrared spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Steiner, G.; Küchler, S.; Koch, E.; Salzer, R.; Schackert, G.; Kirsch, M.

    2009-02-01

    Human neural stem were cultivated and characterized using infrared spectroscopic imaging. A classification algorithm based on linear discriminate analysis was developed to distinguish the differentiation of the stem cells to neurons, astrocytes and stem cells without labeling. The classification is based upon spectral features which mainly arise from proteins, nucleic acids. A spectral training set was formed with spectra from cells which were identified by a subsequently staining according to a standard histological protocol. Differentiated cells could be classified with a high accuracy whereas not differentiated stem cells did exhibit some misclassifications

  8. Plasticity and neural stem cells in the enteric nervous system.

    PubMed

    Schäfer, Karl-Herbert; Van Ginneken, Chris; Copray, Sjef

    2009-12-01

    The enteric nervous system (ENS) is a highly organized part of the autonomic nervous system, which innervates the whole gastrointestinal tract by several interconnected neuronal networks. The ENS changes during development and keeps throughout its lifespan a significant capacity to adapt to microenvironmental influences, be it in inflammatory bowel diseases or changing dietary habits. The presence of neural stem cells in the pre-, postnatal, and adult gut might be one of the prerequisites to adapt to changing conditions. During the last decade, the ENS has increasingly come into the focus of clinical neural stem cell research, forming a considerable pool of neural crest derived stem cells, which could be used for cell therapy of dysganglionosis, that is, diseases based on the deficient or insufficient colonization of the gut by neural crest derived stem cells; in addition, the ENS could be an easily accessible neural stem cell source for cell replacement therapies for neurodegenerative disorders or traumatic lesions of the central nervous system. PMID:19943347

  9. Electrical Property Characterization of Neural Stem Cells in Differentiation

    PubMed Central

    Sun, He; Chen, Deyong; Li, Zhaohui; Fan, Beiyuan; George, Julian; Xue, Chengcheng; Cui, Zhanfeng; Wang, Junbo

    2016-01-01

    Electrical property characterization of stem cells could be utilized as a potential label-free biophysical approach to evaluate the differentiation process. However, there has been a lack of technology or tools that can quantify the intrinsic cellular electrical markers (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) for a large amount of stem cells or differentiated cells. In this paper, a microfluidic platform enabling the high-throughput quantification of Cspecific membrane and σcytoplasm from hundreds of single neural stem cells undergoing differentiation was developed to explore the feasibility to characterize the neural stem cell differentiation process without biochemical staining. Experimental quantification using biochemical markers (e.g., Nestin, Tubulin and GFAP) of neural stem cells confirmed the initiation of the differentiation process featured with gradual loss in cellular stemness and increased cell markers for neurons and glial cells. The recorded electrical properties of neural stem cells undergoing differentiation showed distinctive and unique patterns: 1) in the suspension culture before inducing differentiation, a large distribution and difference in σcytoplasm among individual neural stem cells was noticed, which indicated heterogeneity that may result from the nature of suspension culture of neurospheres; and 2) during the differentiation in adhering monolayer culture, significant changes and a large difference in Cspecific membrane were located indicating different expressions of membrane proteins during the differentiation process, and a small distribution difference in σcytoplasm was less significant that indicated the relatively consistent properties of cytoplasm during the culture. In summary, significant differences in Cspecific membrane and σcytoplasm were observed during the neural stem cell differentiation process, which may potentially be used as label-free biophysical markers

  10. Negative chemotaxis does not control quail neural crest cell dispersion.

    PubMed

    Erickson, C A; Olivier, K R

    1983-04-01

    Negative chemotaxis has been proposed to direct dispersion of amphibian neural crest cells away from the neural tube (V. C. Twitty, 1949, Growth 13(Suppl. 9), 133-161). We have reexamined this hypothesis using quail neural crest and do not find evidence for it. When pigmented or freshly isolated neural crest cells are covered by glass shards to prevent diffusion of a "putative" chemotactic agent away from the cells and into the medium, we find a decrease in density of cells beneath the coverslip as did Twitty and Niu (1948, J. Exp. Zool. 108, 405-437). Unlike those investigators, however, we find the covered cells move slower than uncovered cells and that the decrease in density can be attributed to cessation of cell division and increased cell death in older cultures, rather than directed migration away from each other. In cell systems where negative chemotaxis has been demonstrated, a "no man's land" forms between two confronted explants (Oldfield, 1963, Exp. Cell Res. 30, 125-138). No such cell-free space forms between confronted neural crest explants, even if the explants are closely covered to prevent diffusion of the negative chemotactic material. If crest cell aggregates are drawn into capillary tubes to allow accumulation of the putative material, the cells disperse farther, the wider the capillary tube bore. This is contrary to what would be expected if dispersion depended on accumulation of this material. Also, no difference in dispersion is noted between cells in the center of the tubes versus cells near the mouth of the tubes where the tube medium is freely exchanging with external fresh medium. Alternative hypotheses for directionality of crest migration in vivo are discussed. PMID:6832483

  11. LIF-dependent primitive neural stem cells derived from mouse ES cells represent a reversible stage of neural commitment.

    PubMed

    Tsang, Wan-Hong; Wang, Bin; Wong, Wing Ki; Shi, Shuo; Chen, Xiao; He, Xiangjun; Gu, Shen; Hu, Jiabiao; Wang, Chengdong; Liu, Pi-Chu; Lu, Gang; Chen, Xiongfong; Zhao, Hui; Poon, Wai-Sang; Chan, Wai-Yee; Feng, Bo

    2013-11-01

    Primitive neural stem cells (NSCs) define an early stage of neural induction, thus provide a model to understand the mechanism that controls initial neural commitment. In this study, we investigated primitive NSCs derived from mouse embryonic stem cells (ESCs). By genome-wide transcriptional profiling, we revealed their unique signature and depicted the molecular changes underlying critical cell fate transitions during early neural induction at a global level. Together with qRT-PCR analysis, our data illustrated that primitive NSCs retained expression of key pluripotency genes Oct4 and Nanog, while exhibiting repression of other pluripotency-related genes Zscan4, Foxp1 and Dusp9 and up-regulation of neural markers Sox1 and Hes1. The early differentiation feature in primitive NSCs was also supported by their intermediate characters on cell cycle profiles. Moreover, re-plating primitive NSCs back to ESC culture condition could reverse them back to ESC stage, as shown by reversible regulation of marker genes, cell cycle profile changes and enhanced embryoid body formation. In addition, our microarray analysis also identified genes differentially expressed in primitive NSCs, and loss-of-function analysis demonstrated that Hes1 and Ccdc141 play important function at this stage, opening up an opportunity to further understand the regulation of early neural commitment. PMID:23973799

  12. Lead-acid cell

    SciTech Connect

    Hradcovsky, R.J.; Kozak, O.R.

    1980-12-09

    A lead-acid storage battery is described that has a lead negative electrode, a lead dioxide positive electrode and a sulfuric acid electrolyte having an organic catalyst dissolved therein which prevents dissolution of the electrodes into lead sulfate whereby in the course of discharge, the lead dioxide is reduced to lead oxide and the lead is oxidized.

  13. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates.

    PubMed

    Mundell, Nathan A; Labosky, Patricia A

    2011-02-01

    Neural crest (NC) progenitors generate a wide array of cell types, yet molecules controlling NC multipotency and self-renewal and factors mediating cell-intrinsic distinctions between multipotent versus fate-restricted progenitors are poorly understood. Our earlier work demonstrated that Foxd3 is required for maintenance of NC progenitors in the embryo. Here, we show that Foxd3 mediates a fate restriction choice for multipotent NC progenitors with loss of Foxd3 biasing NC toward a mesenchymal fate. Neural derivatives of NC were lost in Foxd3 mutant mouse embryos, whereas abnormally fated NC-derived vascular smooth muscle cells were ectopically located in the aorta. Cranial NC defects were associated with precocious differentiation towards osteoblast and chondrocyte cell fates, and individual mutant NC from different anteroposterior regions underwent fate changes, losing neural and increasing myofibroblast potential. Our results demonstrate that neural potential can be separated from NC multipotency by the action of a single gene, and establish novel parallels between NC and other progenitor populations that depend on this functionally conserved stem cell protein to regulate self-renewal and multipotency. PMID:21228004

  14. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates

    PubMed Central

    Mundell, Nathan A.; Labosky, Patricia A.

    2011-01-01

    Neural crest (NC) progenitors generate a wide array of cell types, yet molecules controlling NC multipotency and self-renewal and factors mediating cell-intrinsic distinctions between multipotent versus fate-restricted progenitors are poorly understood. Our earlier work demonstrated that Foxd3 is required for maintenance of NC progenitors in the embryo. Here, we show that Foxd3 mediates a fate restriction choice for multipotent NC progenitors with loss of Foxd3 biasing NC toward a mesenchymal fate. Neural derivatives of NC were lost in Foxd3 mutant mouse embryos, whereas abnormally fated NC-derived vascular smooth muscle cells were ectopically located in the aorta. Cranial NC defects were associated with precocious differentiation towards osteoblast and chondrocyte cell fates, and individual mutant NC from different anteroposterior regions underwent fate changes, losing neural and increasing myofibroblast potential. Our results demonstrate that neural potential can be separated from NC multipotency by the action of a single gene, and establish novel parallels between NC and other progenitor populations that depend on this functionally conserved stem cell protein to regulate self-renewal and multipotency. PMID:21228004

  15. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    PubMed Central

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  16. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    PubMed

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  17. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells

    PubMed Central

    Biswas, Dhruba; Jiang, Peng

    2016-01-01

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming. PMID:26861316

  18. Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells.

    PubMed

    Zhang, Lei; Han, Xiao; Cheng, Xiang; Tan, Xue-Feng; Zhao, He-Yan; Zhang, Xin-Hua

    2016-04-01

    Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus. This indicates that the denervated hippocampus provides an environment for neuronal differentiation of neural stem cells. However, the pathways and mechanisms in this process are still unclear. Seven days after fimbria fornix transection, our reverse transcription polymerase chain reaction, western blot assay, and enzyme linked immunosorbent assay results show a significant increase in ciliary neurotrophic factor mRNA and protein expression in the denervated hippocampus. Moreover, neural stem cells derived from hippocampi of fetal (embryonic day 17) Sprague-Dawley rats were treated with ciliary neurotrophic factor for 7 days, with an increased number of microtubule associated protein-2-positive cells and decreased number of glial fibrillary acidic protein-positive cells detected. Our results show that ciliary neurotrophic factor expression is up-regulated in the denervated hippocampus, which may promote neuronal differentiation of neural stem cells in the denervated hippocampus. PMID:27212920

  19. Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells

    PubMed Central

    Zhang, Lei; Han, Xiao; Cheng, Xiang; Tan, Xue-feng; Zhao, He-yan; Zhang, Xin-hua

    2016-01-01

    Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus. This indicates that the denervated hippocampus provides an environment for neuronal differentiation of neural stem cells. However, the pathways and mechanisms in this process are still unclear. Seven days after fimbria fornix transection, our reverse transcription polymerase chain reaction, western blot assay, and enzyme linked immunosorbent assay results show a significant increase in ciliary neurotrophic factor mRNA and protein expression in the denervated hippocampus. Moreover, neural stem cells derived from hippocampi of fetal (embryonic day 17) Sprague-Dawley rats were treated with ciliary neurotrophic factor for 7 days, with an increased number of microtubule associated protein-2-positive cells and decreased number of glial fibrillary acidic protein-positive cells detected. Our results show that ciliary neurotrophic factor expression is up-regulated in the denervated hippocampus, which may promote neuronal differentiation of neural stem cells in the denervated hippocampus. PMID:27212920

  20. Role of morphogens in neural crest cell determination.

    PubMed

    Jones, Natalie C; Trainor, Paul A

    2005-09-15

    The neural crest is a transient, migratory cell population found in all vertebrate embryos that generate a diverse range of cell and tissue derivatives including, but not limited, to the neurons and glia of the peripheral nervous system, smooth muscle, connective tissue, melanocytes, craniofacial cartilage, and bone. Over the past few years, many studies have provided tremendous insights into understanding the mechanisms regulating the induction and migration of neural crest cell development. This review highlights the surprising and perhaps unexpected roles for morphogens in these distinct processes. A comparison of studies performed in several different vertebrates emphasizes the requirement for coordination between multiple signaling pathways in the induction and migration of neural crest cells in the developing embryo. PMID:16041760

  1. Neural Network Modeling of Degradation of Solar Cells

    SciTech Connect

    Gupta, Himanshu; Ghosh, Bahniman; Banerjee, Sanjay K.

    2011-05-25

    Neural network modeling has been used to predict the degradation in conversion efficiency of solar cells in this work. The model takes intensity of light, temperature and exposure time as inputs and predicts the conversion efficiency of the solar cell. Backpropagation algorithm has been used to train the network. It is found that the neural network model satisfactorily predicts the degradation in efficiency of the solar cell with exposure time. The error in the computed results, after comparison with experimental results, lies in the range of 0.005-0.01, which is quite low.

  2. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice

    SciTech Connect

    Dawson, Jennifer E.; Raymond, Angela M.; Winn, Louise M. . E-mail: winnl@biology.queensu.ca

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-{kappa}B, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-{kappa}B, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P < 0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P < 0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P < 0.05). Folic acid also reduced VPA-induced alterations in p53, NF-{kappa}B, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-{kappa}B, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  3. Short Laminin Peptide for Improved Neural Stem Cell Growth

    PubMed Central

    Li, Xiaowei; Liu, Xiaoyan; Josey, Benjamin; Chou, C. James; Tan, Yu; Zhang, Ning

    2014-01-01

    Human neural stem/progenitor cells (hNSCs) are very difficult to culture and require human or animal source extracellular matrix molecules, such as laminin or collagen type IV, to support attachment and to regulate their survival and proliferation. These extracellular matrix molecules are difficult to purify from human or animal tissues, have high batch-to-batch variability, and may cause an immune response if used in clinical applications. Although several laminin- and collagen IV-derived peptides are commercially available, they do not support long-term hNSC attachment and growth. To solve this problem, we developed a novel peptide sequence with only 12 amino acids based on the Ile-Lys-Val-Ala-Val, or IKVAV, sequence: Ac-Cys-Cys-Arg-Arg-Ile-Lys-Val-Ala-Val-Trp-Leu-Cys. This short peptide sequence, similar to tissue-derived full laminin molecules, supported hNSCs to attach and proliferate to confluence for continuous passage and subculture. This short peptide also directed hNSCs to differentiate into neurons. When conjugated to poly(ethylene glycol) hydrogels, this short peptide benefited hNSC attachment and proliferation on the surface of hydrogels and promoted cell migration inside the hydrogels with maximum enhancement at a peptide density of 10 μM. This novel short peptide shows great promise in artificial niche development for supporting hNSC culture in vitro and in vivo and for promoting hNSC transplantation in future clinical therapy. PMID:24692587

  4. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair.

    PubMed

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Dai, Niann-Tzyy; Hsu, Shan-Hui

    2016-09-01

    Cell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair. A simple, non-toxic, substrate-mediated method was applied to deliver the naked FOXD3 plasmid into human fibroblasts. The transfection of FOXD3 increased cell proliferation and up-regulated the neural crest marker genes (FOXD3, SOX2, and CD271), stemness marker genes (OCT4, NANOG, and SOX2), and neural lineage-related genes (Nestin, β-tubulin and GFAP). The expression levels of stemness marker genes and neural crest maker genes in the FOXD3-transfected fibroblasts were maintained until the fifth passage. The FOXD3 reprogrammed fibroblasts based on the new method significantly rescued the neural function of the impaired zebrafish. The chitosan substrate-mediated delivery of naked plasmid showed feasibility in reprogramming somatic cells. Particularly, the FOXD3 reprogrammed fibroblasts hold promise as an easily accessible cellular source with neural crest stem-like behavior for treating neural diseases in the future. PMID:27341268

  5. Induction of neural stem cell-like cells (NSCLCs) from mouse astrocytes by Bmi1

    SciTech Connect

    Moon, Jai-Hee; Yoon, Byung Sun; Kim, Bona; Park, Gyuman; Jung, Hye-Youn; Maeng, Isaac; Jun, Eun Kyoung; Yoo, Seung Jun; Kim, Aeree; Oh, Sejong; Whang, Kwang Youn; Kim, Hyunggee; Kim, Dong-Wook; Kim, Ki Dong; You, Seungkwon

    2008-06-27

    Recently, Bmi1 was shown to control the proliferation and self-renewal of neural stem cells (NSCs). In this study, we demonstrated the induction of NSC-like cells (NSCLCs) from mouse astrocytes by Bmi1 under NSC culture conditions. These NSCLCs exhibited the morphology and growth properties of NSCs, and expressed NSC marker genes, including nestin, CD133, and Sox2. In vitro differentiation of NSCLCs resulted in differentiated cell populations containing astrocytes, neurons, and oligodendrocytes. Following treatment with histone deacetylase inhibitors (trichostatin A and valproic acid), the potential of NSCLCs for proliferation, dedifferentiation, and self-renewal was significantly inhibited. Our data indicate that multipotent NSCLCs can be generated directly from astrocytes by the addition of Bmi1.

  6. Involvement of Crosstalk between Oct4 and Meis1a in Neural Cell Fate Decision

    PubMed Central

    Yamada, Takeyuki; Urano-Tashiro, Yumiko; Tanaka, Saori; Akiyama, Hirotada; Tashiro, Fumio

    2013-01-01

    Oct4 plays a critical role both in maintaining pluripotency and the cell fate decision of embryonic stem (ES) cells. Nonetheless, in the determination of the neuroectoderm (NE) from ES cells, the detailed regulation mechanism of the Oct4 gene expression is poorly understood. Here, we report that crosstalk between Oct4 and Meis1a, a Pbx-related homeobox protein, is required for neural differentiation of mouse P19 embryonic carcinoma (EC) cells induced by retinoic acid (RA). During neural differentiation, Oct4 expression was transiently enhanced during 6–12 h of RA addition and subsequently disappeared within 48 h. Coinciding with up-regulation of Oct4 expression, the induction of Meis1a expression was initiated and reached a plateau at 48 h, suggesting that transiently induced Oct4 activates Meis1a expression and the up-regulated Meis1a then suppresses Oct4 expression. Chromatin immunoprecipitation (ChIP) and luciferase reporter analysis showed that Oct4 enhanced Meis1a expression via direct binding to the Meis1 promoter accompanying histone H3 acetylation and appearance of 5-hydoxymethylcytosine (5hmC), while Meis1a suppressed Oct4 expression via direct association with the Oct4 promoter together with histone deacetylase 1 (HDAC1). Furthermore, ectopic Meis1a expression promoted neural differentiation via formation of large neurospheres that expressed Nestin, GLAST, BLBP and Sox1 as neural stem cell (NSC)/neural progenitor markers, whereas its down-regulation generated small neurospheres and repressed neural differentiation. Thus, these results imply that crosstalk between Oct4 and Meis1a on mutual gene expressions is essential for the determination of NE from EC cells. PMID:23451132

  7. Understanding How Zika Virus Enters and Infects Neural Target Cells.

    PubMed

    Miner, Jonathan J; Diamond, Michael S

    2016-05-01

    Zika virus is a mosquito-transmitted flavivirus that has become a public health concern because of its ability to cause microcephaly. In this issue of Cell Stem Cell, Tang et al. (2016) and Nowakowski et al. (2016) use human neural stem cell models and single-cell RNA sequencing to investigate Zika virus tropism and potential entry receptors. PMID:27152436

  8. Characterization of TLX Expression in Neural Stem Cells and Progenitor Cells in Adult Brains

    PubMed Central

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression.Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells. PMID:22952666

  9. Specification of neural cell fate and regulation of neural stem cell proliferation by microRNAs

    PubMed Central

    Pham, Jacqueline T; Gallicano, G Ian

    2012-01-01

    In the approximately 20 years since microRNAs (miRNAs) were first characterized, they have been shown to play important roles in diverse physiologic functions, particularly those requiring coordinated changes in networks of signaling pathways. The ability of miRNAs to silence expression of multiple gene targets hints at complex connections that research has only begun to elucidate. The nervous system, particularly the brain, and its progenitor cells offer opportunities to examine miRNA function due to the myriad different cell types, numerous functionally distinct regions, and fluidly dynamic connections between them. This review aims to summarize current understanding of miRNA regulation in neurodevelopment, beginning with miRNAs that establish a general neural fate in cells. Particular attention is given to miR-124, the most abundant brain-specific miRNA, along with its key regulators and targets as an example of the potentially far-reaching effects of miRNAs. These modulators and mediators enable miRNAs to subtly calibrate cellular proliferation and differentiation. To better understand their mechanisms of action, miRNA profiles in distinct populations and regions of cells have been examined as well as miRNAs that regulate proliferation of stem cells, a process marked by dramatic morphological shifts in response to temporally subtle and refined shifts in gene expression. To tease out the complex interactions of miRNAs and stem cells more accurately, future studies will require more sensitive methods of assessing miRNA expression and more rigorous models of miRNA pathways. Thorough characterization of similarities and differences in specific miRNAs’ effects in different species is vital to developing better disease models and therapeutics using miRNAs. PMID:23671807

  10. Direct reprogramming of human neural stem cells by OCT4.

    PubMed

    Kim, Jeong Beom; Greber, Boris; Araúzo-Bravo, Marcos J; Meyer, Johann; Park, Kook In; Zaehres, Holm; Schöler, Hans R

    2009-10-01

    Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by ectopic expression of four transcription factors (OCT4 (also called POU5F1), SOX2, c-Myc and KLF4). We previously reported that Oct4 alone is sufficient to reprogram directly adult mouse neural stem cells to iPS cells. Here we report the generation of one-factor human iPS cells from human fetal neural stem cells (one-factor (1F) human NiPS cells) by ectopic expression of OCT4 alone. One-factor human NiPS cells resemble human embryonic stem cells in global gene expression profiles, epigenetic status, as well as pluripotency in vitro and in vivo. These findings demonstrate that the transcription factor OCT4 is sufficient to reprogram human neural stem cells to pluripotency. One-factor iPS cell generation will advance the field further towards understanding reprogramming and generating patient-specific pluripotent stem cells. PMID:19718018

  11. Generation and Applications of Human Pluripotent Stem Cells Induced into Neural Lineages and Neural Tissues

    PubMed Central

    Martinez, Y.; Dubois-Dauphin, M.; Krause, K.-H.

    2012-01-01

    Human pluripotent stem cells (hPSCs) represent a new and exciting field in modern medicine, now the focus of many researchers and media outlets. The hype is well-earned because of the potential of stem cells to contribute to disease modeling, drug screening, and even therapeutic approaches. In this review, we focus first on neural differentiation of these cells. In a second part we compare the various cell types available and their advantages for in vitro modeling. Then we provide a “state-of-the-art” report about two major biomedical applications: (1) the drug and toxicity screening and (2) the neural tissue replacement. Finally, we made an overview about current biomedical research using differentiated hPSCs. PMID:22457650

  12. Comparative analysis of neural crest cell death, migration, and function during vertebrate embryogenesis.

    PubMed

    Kulesa, Paul; Ellies, Debra L; Trainor, Paul A

    2004-01-01

    Cranial neural crest cells are a multipotent, migratory population that generates most of the cartilage, bone, connective tissue and peripheral nervous system in the vertebrate head. Proper neural crest cell patterning is essential for normal craniofacial morphogenesis and is highly conserved among vertebrates. Neural crest cell patterning is intimately connected to the early segmentation of the neural tube, such that neural crest cells migrate in discrete segregated streams. Recent advances in live embryo imaging have begun to reveal the complex behaviour of neural crest cells which involve intricate cell-cell and cell-environment interactions. Despite the overall similarity in neural crest cell migration between distinct vertebrates species there are important mechanistic differences. Apoptosis for example, is important for neural crest cell patterning in chick embryos but not in mouse, frog or fish embryos. In this paper we highlight the potential evolutionary significance of such interspecies differences in jaw development and evolution. Developmental Dynamics 229:14-29, 2004. PMID:14699574

  13. μ- and κ-Opioids Induce the Differentiation of Embryonic Stem Cells to Neural Progenitors*

    PubMed Central

    Kim, Eunhae; Clark, Amy L.; Kiss, Alexi; Hahn, Jason W.; Wesselschmidt, Robin; Coscia, Carmine J.; Belcheva, Mariana M.

    2008-01-01

    Growth factors, hormones, and neurotransmitters have been implicated in the regulation of stem cell fate. Since various neural precursors express functional neurotransmitter receptors, which include G protein-coupled receptors, it is anticipated that they are involved in cell fate decisions. We detected μ-opioid receptor (MOR-1) and κ-opioid receptor (KOR-1) expression and immunoreactivity in embryonic stem (ES) cells and in retinoic acid-induced ES cell-derived, nestin-positive, neural progenitors. Moreover, these G protein-coupled receptors are functional, since [D-Ala2,MePhe4,Gly-ol5]enkephalin, a MOR-selective agonist, and U69,593, a KOR-selective agonist, induce a sustained activation of extracellular signal-regulated kinase (ERK) signaling throughout a 24-h treatment period in undifferentiated, self-renewing ES cells. Both opioids promote limited proliferation of undifferentiated ES cells via the ERK/MAP kinase signaling pathway. Importantly, biochemical and immunofluorescence data suggest that [D-Ala2,MePhe4,Gly-ol5]enkephalin and U69,593 divert ES cells from self-renewal and coax the cells to differentiate. In retinoic acid-differentiated ES cells, opioid-induced signaling features a biphasic ERK activation profile and an opioid-induced, ERK-independent inhibition of proliferation in these neural progenitors. Collectively, the data suggest that opioids may have opposite effects on ES cell self-renewal and ES cell differentiation and that ERK activation is only required by the latter. Finally, opioid modulation of ERK activity may play an important role in ES cell fate decisions by directing the cells to specific lineages. PMID:16954126

  14. Mu- and kappa-opioids induce the differentiation of embryonic stem cells to neural progenitors.

    PubMed

    Kim, Eunhae; Clark, Amy L; Kiss, Alexi; Hahn, Jason W; Wesselschmidt, Robin; Coscia, Carmine J; Belcheva, Mariana M

    2006-11-01

    Growth factors, hormones, and neurotransmitters have been implicated in the regulation of stem cell fate. Since various neural precursors express functional neurotransmitter receptors, which include G protein-coupled receptors, it is anticipated that they are involved in cell fate decisions. We detected mu-opioid receptor (MOR-1) and kappa-opioid receptor (KOR-1) expression and immunoreactivity in embryonic stem (ES) cells and in retinoic acid-induced ES cell-derived, nestin-positive, neural progenitors. Moreover, these G protein-coupled receptors are functional, since [D-Ala(2),MePhe(4),Gly-ol(5)]enkephalin, a MOR-selective agonist, and U69,593, a KOR-selective agonist, induce a sustained activation of extracellular signal-regulated kinase (ERK) signaling throughout a 24-h treatment period in undifferentiated, self-renewing ES cells. Both opioids promote limited proliferation of undifferentiated ES cells via the ERK/MAP kinase signaling pathway. Importantly, biochemical and immunofluorescence data suggest that [D-Ala(2),MePhe(4),Gly-ol(5)]enkephalin and U69,593 divert ES cells from self-renewal and coax the cells to differentiate. In retinoic acid-differentiated ES cells, opioid-induced signaling features a biphasic ERK activation profile and an opioid-induced, ERK-independent inhibition of proliferation in these neural progenitors. Collectively, the data suggest that opioids may have opposite effects on ES cell self-renewal and ES cell differentiation and that ERK activation is only required by the latter. Finally, opioid modulation of ERK activity may play an important role in ES cell fate decisions by directing the cells to specific lineages. PMID:16954126

  15. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis.

    PubMed

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A; Whatcott, Clifford; Soh, Katherine K; Warner, Steven; Bearss, David; Jette, Cicely A; Stewart, Rodney A

    2016-04-01

    The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, calledTg(snai1b:GFP), which labels epithelial cells undergoing EMT to producesox10-positive neural crest (NC) cells. Time-lapse and lineage analysis ofTg(snai1b:GFP)embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. TreatingTg(snai1b:GFP)embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RAin vivoand raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. PMID:26794130

  16. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis

    PubMed Central

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A.; Whatcott, Clifford; Soh, Katherine K.; Warner, Steven; Bearss, David; Jette, Cicely A.; Stewart, Rodney A.

    2016-01-01

    ABSTRACT The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, called Tg(snai1b:GFP), which labels epithelial cells undergoing EMT to produce sox10-positive neural crest (NC) cells. Time-lapse and lineage analysis of Tg(snai1b:GFP) embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. Treating Tg(snai1b:GFP) embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RA in vivo and raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. PMID:26794130

  17. Altered differentiation of CNS neural progenitor cells after transplantation into the injured adult rat spinal cord.

    PubMed

    Onifer, S M; Cannon, A B; Whittemore, S R

    1997-01-01

    Denervation of CNS neurons and peripheral organs is a consequence of traumatic SCI. Intraspinal transplantation of embryonic CNS neurons is a potential strategy for reinnervating these targets. Neural progenitor cell lines are being investigated as alternates to embryonic CNS neurons. RN33B is an immortalized neural progenitor cell line derived from embryonic rat raphe nuclei following infection with a retrovirus encoding the temperature-sensitive mutant of SV40 large T-antigen. Transplantation studies have shown that local epigenetic signals in intact or partially neuron-depleted adult rat hippocampal formation or striatum direct RN33B cell differentiation to complex multipolar morphologies resembling endogenous neurons. After transplantation into neuron-depleted regions of the hippocampal formation or striatum, RN33B cells were relatively undifferentiated or differentiated with bipolar morphologies. The present study examines RN33B cell differentiation after transplantation into normal spinal cord and under different lesion conditions. Adult rats underwent either unilateral lesion of lumbar spinal neurons by intraspinal injection of kainic acid or complete transection at the T10 spinal segment. Neonatal rats underwent either unilateral lesion of lumbar motoneurons by sciatic nerve crush or complete transection at the T10 segment. At 2 or 6-7 wk postinjury, lacZ-labeled RN33B cells were transplanted into the lumbar enlargement of injured and age-matched normal rats. At 2 wk posttransplantation, bipolar and some multipolar RN33B cells were found throughout normal rat gray matter. In contrast, only bipolar RN33B cells were seen in gray matter of kainic acid lesioned, sciatic nerve crush, or transection rats. These observations suggest that RN33B cell multipolar morphological differentiation in normal adult spinal cord is mediated by direct cell-cell interaction through surface molecules on endogenous neurons and may be suppressed by molecules released after SCI

  18. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity.

    PubMed

    Schwartz, Michael P; Hou, Zhonggang; Propson, Nicholas E; Zhang, Jue; Engstrom, Collin J; Santos Costa, Vitor; Jiang, Peng; Nguyen, Bao Kim; Bolin, Jennifer M; Daly, William; Wang, Yu; Stewart, Ron; Page, C David; Murphy, William L; Thomson, James A

    2015-10-01

    Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial. PMID:26392547

  19. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity

    PubMed Central

    Schwartz, Michael P.; Hou, Zhonggang; Propson, Nicholas E.; Zhang, Jue; Engstrom, Collin J.; Costa, Vitor Santos; Jiang, Peng; Nguyen, Bao Kim; Bolin, Jennifer M.; Daly, William; Wang, Yu; Stewart, Ron; Page, C. David; Murphy, William L.; Thomson, James A.

    2015-01-01

    Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial. PMID:26392547

  20. The neural milieu of the developing choroid plexus: neural stem cells, neurons and innervation.

    PubMed

    Prasongchean, Weerapong; Vernay, Bertrand; Asgarian, Zeinab; Jannatul, Nahin; Ferretti, Patrizia

    2015-01-01

    The choroid plexus produces cerebrospinal fluid and plays an important role in brain homeostasis both pre and postnatally. In vitro studies have suggested that cells from adult choroid plexus have stem/progenitor cell-like properties. Our initial aim was to investigate whether such a cell population is present in vivo during development of the choroid plexus, focusing mainly on the chick choroid plexus. Cells expressing neural markers were indeed present in the choroid plexus of chick and also those of rodent and human embryos, both within their epithelium and mesenchyme. ß3-tubulin-positive cells with neuronal morphology could be detected as early as at E8 in chick choroid plexus and their morphological complexity increased with development. Whole mount immunochemistry demonstrated the presence of neurons throughout choroid plexus development and they appeared to be mainly catecholaminergic, as indicated by tyrosine-hydroxylase reactivity. The presence of cells co-labeling for BrdU and the neuroblast marker, doublecortin, in organotypic choroid plexus cultures supported the hypothesis that neurogenesis can occur from neural precursors within the developing choroid plexus. Furthermore, we found that extrinsic innervation is present in the developing choroid plexus, unlike previously suggested. Altogether, our data are consistent with the presence of neural progenitors within the choroid plexus, suggest that at least some of the choroid plexus neurons are born locally, and show for the first time that choroid plexus innervation occurs prenatally. Hence, we propose the existence of a complex neural regulatory network within the developing choroid plexus that may play a crucial role in modulating its function during development as well as throughout life. PMID:25873856

  1. RA induces the neural-like cells generated from epigenetic modified NIH/3T3 cells.

    PubMed

    Zhang, Xi-Mei; Li, Qiu-Ming; Su, Dong-Ju; Wang, Ning; Shan, Zhi-Yan; Jin, Lian-Hong; Lei, Lei

    2010-03-01

    Recently, differentiated somatic cells had been reprogrammed to pluripotential state in vitro, and various tissue cells had been elicited from those cells. Epigenetic modifications allow differentiated cells to perpetuate the molecular memory needed for the cells to retain their identity. DNA methylation and histone deacetylation are important patterns involved in epigenetic modification, which take critical roles in regulating DNA expression. In this study, we dedifferentiated NIH/3T3 fibroblasts by 5-aza-2-deoxycytidine (5-aza-dC) and Trichstatin A (TSA) combination, and detected gene expression pattern, DNA methylation level, and differentiation potential of reprogrammed cells. As the results, embryonic marker Sox2, klf4, c-Myc and Oct4 were expressed in reprogrammed NIH/3T3 fibroblasts. Total DNA methylation level was significant decreased after the treatment. Moreover, exposure of the reprogrammed cells to all trans-retinoic acid (RA) medium elicited the generation of neuronal class IIIbeta-tubulin-positive, neuron-specific enolase (NSE)-positive, nestin-positive, and neurofilament light chain (NF-L)-positive neural-like cells. PMID:19263240

  2. Neural stem cells: plasticity and their transdifferentiation potential.

    PubMed

    Vescovi, Angelo; Gritti, Angela; Cossu, Giulio; Galli, Rossella

    2002-01-01

    The presence of resident stem cells in adult tissues is of fundamental importance for the maintenance of their structural and functional integrity. In fact, throughout life, somatic stem cells attend to the critical function of substituting terminally differentiated cells lost to physiological turnover, injury or disease. Thence, one of the basic dogmata in tissue biology holds that the differentiation potential of an adult stem cell is restricted to the generation of the mature cell lineages found in the tissue to which the stem cell belongs. A plethora of recent evidences from many groups, including ours, is now providing evidence that adult stem cells may possess a broader differentiation repertoire than expected and that their fate potential may not be as tissue specific as once thought. The initial example of an unforeseen, trans-germ layer plasticity - that seems now to emerge as a prototypic functional trait of various somatic stem cells of different origin - has come from the reported awakening of a latent hemopoietic developmental capacity in stem cells isolated from the adult mammalian brain following their transplantation into sub-lethally irradiated mice. More recently, it has been shown that adult neural stem cells can differentiate into a wide array of bodily cells of different origin when injected into the blastocyst and into myogenic cells when transplanted into the adult regenerating skeletal muscle. Moreover, bone marrow stem cells can now give rise to skeletal muscle, hepatic and brain cells, whereas muscle precursors can generate blood cells. In this article, we review some of the basic notions regarding the functional properties of the adult neural stem cells and discuss findings in the expanding area of trans-germ layer conversion, with emphasis on the neural stem cell. PMID:12021492

  3. Signaling mechanisms regulating adult neural stem cells and neurogenesis

    PubMed Central

    Faigle, Roland; Song, Hongjun

    2012-01-01

    Background Adult neurogenesis occurs throughout life in discrete regions of the mammalian brain and is tightly regulated via both extrinsic environmental influences and intrinsic genetic factors. In recent years, several crucial signaling pathways have been identified in regulating self-renewal, proliferation, and differentiation of neural stem cells, as well as migration and functional integration of developing neurons in the adult brain. Scope of review Here we review our current understanding of signaling mechanisms, including Wnt, notch, sonic hedgehog, growth and neurotrophic factors, bone morphogenetic proteins, neurotransmitters, transcription factors, and epigenetic modulators, and crosstalk between these signaling pathways in the regulation of adult neurogenesis. We also highlight emerging principles in the vastly growing field of adult neural stem cell biology and neural plasticity. Major conclusions Recent methodological advances have enabled the field to identify signaling mechanisms that fine-tune and coordinate neurogenesis in the adult brain, leading to a better characterization of both cell-intrinsic and environmental cues defining the neurogenic niche. Significant questions related to niche cell identity and underlying regulatory mechanisms remain to be fully addressed and will be the focus of future studies. General significance A full understanding of the role and function of individual signaling pathways in regulating neural stem cells and generation and integration of newborn neurons in the adult brain may lead to targeted new therapies for neurological diseases in humans. PMID:22982587

  4. Isolation and Culture of Neural Crest Cells from Embryonic Murine Neural Tube

    PubMed Central

    Pfaltzgraff, Elise R.; Mundell, Nathan A.; Labosky, Patricia A.

    2012-01-01

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types 1-3. NC also has the unique ability to influence the differentiation and maturation of target organs4-6. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube7-9. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo10-13. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors11,14-20, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties13,21,22. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors11,13,14,17. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter

  5. Isolation and culture of neural crest cells from embryonic murine neural tube.

    PubMed

    Pfaltzgraff, Elise R; Mundell, Nathan A; Labosky, Patricia A

    2012-01-01

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter. The method presented here is adapted from

  6. Aneuploidy causes premature differentiation of neural and intestinal stem cells

    PubMed Central

    Gogendeau, Delphine; Siudeja, Katarzyna; Gambarotto, Davide; Pennetier, Carole; Bardin, Allison J.; Basto, Renata

    2015-01-01

    Aneuploidy is associated with a variety of diseases such as cancer and microcephaly. Although many studies have addressed the consequences of a non-euploid genome in cells, little is known about their overall consequences in tissue and organism development. Here we use two different mutant conditions to address the consequences of aneuploidy during tissue development and homeostasis in Drosophila. We show that aneuploidy causes brain size reduction due to a decrease in the number of proliferative neural stem cells (NSCs), but not through apoptosis. Instead, aneuploid NSCs present an extended G1 phase, which leads to cell cycle exit and premature differentiation. Moreover, we show that this response to aneuploidy is also present in adult intestinal stem cells but not in the wing disc. Our work highlights a neural and intestine stem cell-specific response to aneuploidy, which prevents their proliferation and expansion. PMID:26573328

  7. RhoA inhibits neural differentiation in murine stem cells through multiple mechanisms.

    PubMed

    Yang, Junning; Wu, Chuanshen; Stefanescu, Ioana; Jakobsson, Lars; Chervoneva, Inna; Horowitz, Arie

    2016-01-01

    Spontaneous neural differentiation of embryonic stem cells is induced by Noggin-mediated inhibition of bone morphogenetic protein 4 (BMP4) signaling. RhoA is a guanosine triphosphatase (GTPase) that regulates cytoskeletal dynamics and gene expression, both of which control stem cell fate. We found that disruption of Syx, a gene encoding a RhoA-specific guanine nucleotide exchange factor, accelerated retinoic acid-induced neural differentiation in murine embryonic stem cells aggregated into embryoid bodies. Cells from Syx(+/+) and Syx(-/-) embryoid bodies had different abundances of proteins implicated in stem cell pluripotency. The differentiation-promoting proteins Noggin and RARγ (a retinoic acid receptor) were more abundant in cells of Syx(-/-) embryoid bodies, whereas the differentiation-suppressing proteins SIRT1 (a protein deacetylase) and the phosphorylated form of SMAD1 (the active form of this transcription factor) were more abundant in cells of Syx(+/+) embryoid bodies. These differences were blocked by the overexpression of constitutively active RhoA, indicating that the abundance of these proteins was maintained, at least in part, by RhoA activity. The peripheral stress fibers in cells from Syx(-/-) embryoid bodies were thinner than those in Syx(+/+) cells. Furthermore, less Noggin and fewer vesicles containing Rab3d, a GTPase that mediates Noggin trafficking, were detected in cells from Syx(-/-) embryoid bodies, which could result from increased Noggin exocytosis. These results suggested that, in addition to inhibiting Noggin transcription, RhoA activity in wild-type murine embryonic stem cells also prevented neural differentiation by limiting Noggin secretion. PMID:27460990

  8. ETOH inhibits embryonic neural stem/precursor cell proliferation via PLD signaling

    SciTech Connect

    Fujita, Yuko; Hiroyama, Masami; Sanbe, Atsushi Yamauchi, Junji; Murase, Shoko; Tanoue, Akito

    2008-05-23

    While a mother's excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway.

  9. Endogenous neural precursors influence grafted neural stem cells and contribute to neuroprotection in the Parkinsonian rat

    PubMed Central

    Madhavan, Lalitha; Daley, Brian F; Sortwell, Caryl E; Collier, Timothy J

    2012-01-01

    Neuroprotective and neurorescue effects after neural stem/precursor cell (NPC) transplantation have been reported, but the mechanisms underlying such phenomena are not well understood. Our recent findings in a rat Parkinson’s disease (PD) model indicate that transplantation of NPCs before a 6-hydroxydopamine (6-OHDA) insult can result in nigrostriatal protection which is associated with endogenous NPC proliferation, migration and neurogenesis. Here, we sought to determine whether the observed endogenous NPC response (1) contributes to transplanted NPC - mediated neuroprotection and/or (2) affects graft phenotype and function. Host Fischer 344 rats were administered the antimitotic agent cytosine-β-D-arabinofuranoside (Ara-C) to eliminate actively proliferating endogenous neural precursors before being transplanted with NPCs and treated with 6-OHDA to induce nigrostriatal degeneration. Behavioral and histological analyses demonstrate that the neuroprotective response observed in NPC transplanted animals which had not received Ara-C was significantly attenuated in animals which did receive pre-transplant Ara-C. Also, while grafts in Ara-C treated animals showed no decrease in cell number, they exhibited significantly reduced expression of the neural stem cell regulators nestin and sonic hedgehog. In addition, inhibition of the endogenous NPC response resulted in an exaggerated host glial reaction. Overall, the study establishes for the first time that endogenous NPCs contribute to transplanted NPC-mediated therapeutic effects by affecting both grafted and mature host cells in unique ways. Thus, both endogenous and transplanted NPCs are important in creating an environment suitable for neural protection and rescue, and harnessing their synergistic interaction may lead to the optimization of cell-based therapies for PD. PMID:22417168

  10. TRIM32 promotes neural differentiation through retinoic acid receptor-mediated transcription.

    PubMed

    Sato, Tomonobu; Okumura, Fumihiko; Kano, Satoshi; Kondo, Takeshi; Ariga, Tadashi; Hatakeyama, Shigetsugu

    2011-10-15

    Retinoic acid (RA), a metabolite of vitamin A, plays versatile roles in development, differentiation, cell cycles and regulation of apoptosis by regulating gene transcription through nuclear receptor activation. Ubiquitinylation, which is one of the post-translational modifications, appears to be involved in the transcriptional activity of intranuclear receptors including retinoic acid receptor α (RARα). Mutations in the tripartite motif-containing protein 32 gene (TRIM32; also known as E3 ubiquitin-protein ligase) have been reported to be responsible for limb-girdle muscular dystrophy type 2H in humans, and its encoded protein has been shown to interact with several other important proteins. In this study, we found that TRIM32 interacts with RARα and enhances its transcriptional activity in the presence of RA. We also found that overexpression of TRIM32 in mouse neuroblastoma cells and embryonal carcinoma cells promoted stability of RARα, resulting in enhancement of neural differentiation. These findings suggest that TRIM32 functions as one of the co-activators for RARα-mediated transcription, and thereby TRIM32 is a potential therapeutic target for developmental disorders and RA-dependent leukemias. PMID:21984809

  11. p73 regulates maintenance of neural stem cell

    SciTech Connect

    Agostini, Massimiliano; Tucci, Paola; Biochemistry Laboratory, IDI-IRCCS, C Chen, Hailan; Knight, Richard A.; Bano, Daniele; Nicotera, Pierluigi; McKeon, Frank; Melino, Gerry; Biochemistry Laboratory, IDI-IRCCS, C/O University of Rome 'Tor Vergata', 00133 Rome

    2010-12-03

    Research highlights: {yields} TAp73 is expressed in neural stem cells and its expression increases following their differentiation. {yields} Neural stem cells from p73 null mice have a reduced proliferative potential. {yields} p73-deficient neural stem cells show reduced expression of members of the Sox-2 and Notch gene families. {yields} Neurogenic areas are reduced in the brains of embryonic and adult p73-/- mice. -- Abstract: p73, a member of the p53 family, is a transcription factor that plays a key role in many biological processes. In the present study, we show that TAp73 is expressed in neural stem cells (NSC) and its expression increases following their differentiation. NSC from p73 null mice have a reduced proliferative potential, together with reduced expression of members of the Sox-2 and Notch gene families known to be important for NSC proliferation. In parallel with this in vitro data, the width of the neurogenic areas was reduced in the brains of embryonic and adult p73-/- mice. These data suggest that p73, and in particular TAp73, is important for maintenance of the NSC pool.

  12. Roles of imprinted genes in neural stem cells.

    PubMed

    Hoffmann, Anke; Daniel, Guillaume; Schmidt-Edelkraut, Udo; Spengler, Dietmar

    2014-01-01

    Imprinted genes and neural stem cells (NSC) play an important role in the developing and mature brain. A central theme of imprinted gene function in NSCs is cell survival and G1 arrest to control cell division, cell-cycle exit, migration and differentiation. Moreover, genomic imprinting can be epigenetically switched off at some genes to ensure stem cell quiescence and differentiation. At the genome scale, imprinted genes are organized in dynamic networks formed by interchromosomal interactions and transcriptional coregulation of imprinted and nonimprinted genes. Such multilayered networks may synchronize NSC activity with the demand from the niche resembling their roles in adjusting fetal size. PMID:25431944

  13. Synthesis on accumulation of putative neurotransmitters by cultured neural crest cells

    SciTech Connect

    Maxwell, G.D.; Sietz, P.D.; Rafford, C.E.

    1982-07-01

    The events mediating the differentiation of embryonic neural crest cells into several types of neurons are incompletely understood. In order to probe one aspect of this differentiation, we have examined the capacity of cultured quail trunk neural crest cells to synthesize, from radioactive precursors, and store several putative neurotransmitter compounds. These neural crest cultures develop the capacity to synthesize and accumulate acetylcholine and the catecholamines norepinephrine and dopamine. In contrast, detectable but relatively little synthesis and accumulation of 5-hydroxytryptamine gamma-aminobutyric acid, or octopamine from the appropriate radiolabeled precursors were observed. The capacity for synthesis and accumulation of radiolabeled acetylcholine and catecholamines is very low or absent at 2 days in vitro. Between 3 and 7 days in vitro, there is a marked rise in both catecholamine and acetylcholine accumulation in the cultures. These findings suggest that, under the particular conditions used in these experiments, the development of neurotransmitter biosynthesis in trunk neural crest cells ijs restricted and resembles, at least partially, the pattern observed in vivo. The development of this capacity to synthesize and store radiolabeled acetylcholine and catecholamines from the appropriate radioactive precursors coincides closely with the development of the activities of the synthetic enzymes choline acetyltransferase and dopamine beta-hydroxylase reported by others.

  14. Methods for derivation of multipotent neural crest cells derived from human pluripotent stem cells

    PubMed Central

    Avery, John; Dalton, Stephen

    2016-01-01

    Summary Multipotent, neural crest cells (NCCs) produce a wide-range of cell types during embryonic development. This includes melanocytes, peripheral neurons, smooth muscle cells, osteocytes, chondrocytes and adipocytes. The protocol described here allows for highly-efficient differentiation of human pluripotent stem cells to a neural crest fate within 15 days. This is accomplished under feeder-free conditions, using chemically defined medium supplemented with two small molecule inhibitors that block glycogen synthase kinase 3 (GSK3) and bone morphogenic protein (BMP) signaling. This technology is well-suited as a platform to understand in greater detail the pathogenesis of human disease associated with impaired neural crest development/migration. PMID:25986498

  15. Neural cell image segmentation method based on support vector machine

    NASA Astrophysics Data System (ADS)

    Niu, Shiwei; Ren, Kan

    2015-10-01

    In the analysis of neural cell images gained by optical microscope, accurate and rapid segmentation is the foundation of nerve cell detection system. In this paper, a modified image segmentation method based on Support Vector Machine (SVM) is proposed to reduce the adverse impact caused by low contrast ratio between objects and background, adherent and clustered cells' interference etc. Firstly, Morphological Filtering and OTSU Method are applied to preprocess images for extracting the neural cells roughly. Secondly, the Stellate Vector, Circularity and Histogram of Oriented Gradient (HOG) features are computed to train SVM model. Finally, the incremental learning SVM classifier is used to classify the preprocessed images, and the initial recognition areas identified by the SVM classifier are added to the library as the positive samples for training SVM model. Experiment results show that the proposed algorithm can achieve much better segmented results than the classic segmentation algorithms.

  16. Aebp2 as an epigenetic regulator for neural crest cells.

    PubMed

    Kim, Hana; Kang, Keunsoo; Ekram, Muhammad B; Roh, Tae-Young; Kim, Joomyeong

    2011-01-01

    Aebp2 is a potential targeting protein for the mammalian Polycomb Repression Complex 2 (PRC2). We generated a mutant mouse line disrupting the transcription of Aebp2 to investigate its in vivo roles. Aebp2-mutant homozygotes were embryonic lethal while heterozygotes survived to adulthood with fertility. In developing mouse embryos, Aebp2 is expressed mainly within cells of neural crest origin. In addition, many heterozygotes display a set of phenotypes, enlarged colon and hypopigmentation, similar to those observed in human patients with Hirschsprung's disease and Waardenburg syndrome. These phenotypes are usually caused by the absence of the neural crest-derived ganglia in hindguts and melanocytes. ChIP analyses demonstrated that the majority of the genes involved in the migration and development process of neural crest cells are downstream target genes of AEBP2 and PRC2. Furthermore, expression analyses confirmed that some of these genes are indeed affected in the Aebp2 heterozygotes. Taken together, these results suggest that Aebp2 may regulate the migration and development of the neural crest cells through the PRC2-mediated epigenetic mechanism. PMID:21949878

  17. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity.

    PubMed

    Entekhabi, Elahe; Haghbin Nazarpak, Masoumeh; Moztarzadeh, Fathollah; Sadeghi, Ali

    2016-12-01

    Given the large differences in nervous tissue and other tissues of the human body and its unique features, such as poor and/or lack of repair, there are many challenges in the repair process of this tissue. Tissue engineering is one of the most effective approaches to repair neural damages. Scaffolds made from electrospun fibers have special potential in cell adhesion, function and cell proliferation. This research attempted to design a high porous nanofibrous scaffold using hyaluronic acid and polycaprolactone to provide ideal conditions for nerve regeneration by applying proper physicochemical and mechanical signals. Chemical and mechanical properties of pure PCL and PCL/HA nanofibrous scaffolds were measured by FTIR and tensile test. Morphology, swelling behavior, and biodegradability of the scaffolds were evaluated too. Porosity of various layers of scaffolds was measured by image analysis method. To assess the cell-scaffold interaction, SH-SY5Y human neuroblastoma cell line were cultured on the electrospun scaffolds. Taken together, these results suggest that the blended nanofibrous scaffolds PCL/HA 95:5 exhibit the most balanced properties to meet all of the required specifications for neural cells and have potential application in neural tissue engineering. PMID:27612726

  18. High glucose suppresses embryonic stem cell differentiation into neural lineage cells.

    PubMed

    Yang, Penghua; Shen, Wei-bin; Reece, E Albert; Chen, Xi; Yang, Peixin

    2016-04-01

    Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model for understanding the abnormal neural lineage development under high glucose conditions. ES cells are commonly generated and maintained in high glucose (approximately 25 mM glucose). Here, the mouse ES cell line, E14, was gradually adapted to and maintained in low glucose (5 mM), and became a glucose responsive E14 (GR-E14) line. High glucose induced the endoplasmic reticulum stress marker, CHOP, in GR-E14 cells. Under low glucose conditions, the GR-E14 cells retained their pluripotency and capability to differentiate into neural lineage cells. GR-E14 cell differentiation into neural stem cells (Sox1 and nestin positive cells) was inhibited by high glucose. Neuron (Tuj1 positive cells) and glia (GFAP positive cells) differentiation from GR-E14 cells was also suppressed by high glucose. In addition, high glucose delayed GR-E14 differentiation into neural crest cells by decreasing neural crest markers, paired box 3 (Pax3) and paired box 7 (Pax7). Thus, high glucose impairs ES cell differentiation into neural lineage cells. The low glucose adapted and high glucose responsive GR-E14 cell line is a useful in vitro model for assessing the adverse effect of high glucose on the development of the central nervous system. PMID:26940741

  19. A phase field model for neural cell chemotropism

    NASA Astrophysics Data System (ADS)

    Najem, Sara; Grant, Martin

    2013-04-01

    Chemotropism is the action of targeting a part of the cell by means of chemical mediators and cues, and subsequently delimiting the pathway that it should undertake. In a neural cell, this initiates axonal elongation. Herein we model this growth, where chemotropic forcing leads the axon, by a phase field method utilizing two dynamical fields assigned respectively to the cell and to its leading edge. Additionally we quantify the condition for the retraction of the axon which takes place when the cell fails to form a synaptic connection.

  20. Intraspinal transplantation of mouse and human neural precursor cells

    PubMed Central

    Weinger, Jason G.; Chen, Lu; Coleman, Ronald; Leang, Ronika; Plaisted, Warren C.; Loring, Jeanne F.; Lane, Thomas E.

    2013-01-01

    This unit describes the preparation and transplantation of human neural precursor cells (hNPCs) and mouse neural precursor cells (mNPCs) into the thoracic region of the mouse spinal cord. The techniques in this unit also describe how to prepare the mouse for surgery by performing a laminectomy to expose the spinal cord for transplantation. Here we show NPCs genetically labeled with eGFP transplanted into the spinal cord of a mouse following viralmediated demyelination can efficiently be detected via eGFP expression. Transplantation of these cells into the spinal cord is an efficacious way to determine their effects in neurological disorders such as multiple sclerosis, Alzheimer's disease, and spinal cord injury. PMID:24510791

  1. Proteomic identification of differentially expressed genes in neural stem cells and neurons differentiated from embryonic stem cells of cynomolgus monkey (Macaca fascicularis) in vitro.

    PubMed

    Akama, Kuniko; Horikoshi, Tomoe; Nakayama, Takashi; Otsu, Masahiro; Imaizumi, Noriaki; Nakamura, Megumi; Toda, Tosifusa; Inuma, Michiko; Hirano, Hisashi; Kondo, Yasushi; Suzuki, Yutaka; Inoue, Nobuo

    2011-02-01

    Understanding neurogenesis is valuable for the treatment of nervous system disorders. However, there is currently limited information about the molecular events associated with the transition from primate ES cells to neural cells. We therefore sought to identify the proteins involved in neurogenesis, from Macaca fascicularis ES cells (CMK6 cell line) to neural stem (NS) cells to neurons using two-dimensional gel electrophoresis (2-DE), peptide mass fingerprinting (PMF), and liquid chromatography-tandem mass spectrometry (LC-MS-MS). During the differentiation of highly homogeneous ES cells to NS cells, we identified 17 proteins with increased expression, including fatty acid binding protein 7 (FABP7), collapsin response mediator protein 2 (CRMP2), and cellular retinoic acid binding protein 1 (CRABP1), and seven proteins with decreased expression. In the differentiation of NS cells to neurons, we identified three proteins with increased expression, including CRMP2, and 10 proteins with decreased expression. Of these proteins, FABP7 is a marker of NS cells, CRMP2 is involved in axon guidance, and CRABP1 is thought to regulate retinoic acid access to its nuclear receptors. Western blot analysis confirmed the upregulation of FABP7 and CRABP1 in NS cells, and the upregulation of CRMP2 in NS cells and neurons. RT-PCR results showed that CRMP2 and FABP7 mRNAs were also upregulated in NS cells, while CRABP1 mRNA was unchanged. These results provide insight into the molecular basis of monkey neural differentiation. PMID:21047566

  2. Comparative analysis of neural differentiation potential in human mesenchymal stem cells derived from chorion and adult bone marrow.

    PubMed

    Ziadlou, Reihane; Shahhoseini, Maryam; Safari, Fatemeh; Sayahpour, Forugh-Azam; Nemati, Shiva; Eslaminejad, Mohamadreza Baghaban

    2015-11-01

    The finding of a reliable and abundant source of stem cells for the replacement of missing neurons in nervous system diseases requires extensive characterization of neural-differentiation-associated markers in stem cells from various sources. Chorion-derived stem cells from the human placenta have recently been described as an abundant, ethically acceptable, and easily accessible source of cells that are not limited in the same way as bone marrow (BM) mesenchymal stem cells (MSCs). We have isolated and cultured chorion MSCs (C-MSCs) and compared their proliferative capacity, multipotency, and neural differentiation ability with BM-MSCs. C-MSCs showed a higher proliferative capacity compared with BM-MSCs. The expression and histone modification of Nestin, as a marker for neural stem/progenitor cells, was evaluated quantitatively between the two groups. The Nestin expression level in C-MSCs was significantly higher than that in BM-MSCs. Notably, modifications of lys9, lys4, and lys27 of histone H3 agreed with the remarkable higher expression of Nestin in C-MSCs than in BM-MSCs. Furthermore, after neural differentiation of MSCs upon retinoic acid induction, both immunocytochemical and flow cytometry analyses demonstrated that the expression of neural marker genes was significantly higher in neural-induced C-MSCs compared with BM-MSCs. Mature neuron marker genes were also expressed at a significantly higher level in C-MSCs than in BM-MSCs. Thus, C-MSCs have a greater potential than BM-MSCs for differentiation to neural cell lineages and can be regarded as a promising source of stem cells for the cell therapy of neurological disorders. PMID:26022335

  3. The Evaluation of Nerve Growth Factor Over Expression on Neural Lineage Specific Genes in Human Mesenchymal Stem Cells

    PubMed Central

    Mortazavi, Yousef; Sheikhsaran, Fatemeh; Khamisipour, Gholamreza Khamisipour; Soleimani, Masoud; Teimuri, Ali; Shokri, Somayeh

    2016-01-01

    Objective Treatment and repair of neurodegenerative diseases such as brain tumors, spinal cord injuries, and functional disorders, including Alzheimer’s disease, are challenging problems. A common treatment approach for such disorders involves the use of mesenchymal stem cells (MSCs) as an alternative cell source to replace injured cells. However, use of these cells in hosts may potentially cause adverse outcomes such as tumorigenesis and uncontrolled differentiation. In attempt to generate mesenchymal derived neural cells, we have infected MSCs with recombinant lentiviruses that expressed nerve growth factor (NGF) and assessed their neural lineage genes. Materials and Methods In this experimental study, we cloned the NGF gene sequence into a helper dependent lentiviral vector that contained the green fluorescent protein (GFP) gene. The recombinant vector was amplified in DH5 bacterial cells. Recombinant viruses were generated in the human embryonic kidney 293 (HEK-293) packaging cell line with the helper vectors and analyzed under fluorescent microscopy. Bone marrow mesenchymal cells were infected by recombinant viruses for three days followed by assessment of neural differentiation. We evaluated expression of NGF through measurement of the NGF protein in culture medium by ELISA; neural specific genes were quantified by real-time polymerase chain reaction (PCR). Results We observed neural morphological changes after three days. Quantitative PCR showed that expressions of NESTIN, glial derived neurotrophic factor (GDNF), glial fibrillary acidic protein (GFAP) and Microtubule-associated protein 2 (MAP2) genes increased following induction of NGF overexpression, whereas expressions of endogenous NGF and brain derived neural growth factor (BDNF) genes reduced. Conclusion Ectopic expression of NGF can induce neurogenesis in MSCs. Direct injection of MSCs may cause tumorigenesis and an undesirable outcome. Therefore an alternative choice to overcome this obstacle may

  4. Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration.

    PubMed

    Rodrigo Albors, Aida; Tazaki, Akira; Rost, Fabian; Nowoshilow, Sergej; Chara, Osvaldo; Tanaka, Elly M

    2015-01-01

    Axolotls are uniquely able to mobilize neural stem cells to regenerate all missing regions of the spinal cord. How a neural stem cell under homeostasis converts after injury to a highly regenerative cell remains unknown. Here, we show that during regeneration, axolotl neural stem cells repress neurogenic genes and reactivate a transcriptional program similar to embryonic neuroepithelial cells. This dedifferentiation includes the acquisition of rapid cell cycles, the switch from neurogenic to proliferative divisions, and the re-expression of planar cell polarity (PCP) pathway components. We show that PCP induction is essential to reorient mitotic spindles along the anterior-posterior axis of elongation, and orthogonal to the cell apical-basal axis. Disruption of this property results in premature neurogenesis and halts regeneration. Our findings reveal a key role for PCP in coordinating the morphogenesis of spinal cord outgrowth with the switch from a homeostatic to a regenerative stem cell that restores missing tissue. PMID:26568310

  5. The flavonoids hesperidin and rutin promote neural crest cell survival.

    PubMed

    Nones, Jader; Costa, Ana Paula; Leal, Rodrigo Bainy; Gomes, Flávia Carvalho Alcantara; Trentin, Andréa Gonçalves

    2012-11-01

    The neural crest (NC) corresponds to a collection of multipotent and oligopotent progenitors endowed with both neural and mesenchymal potentials. The derivatives of the NC at trunk level include neurons and glial cells of the peripheral nervous system in addition to melanocytes, smooth muscle cells and some endocrine cells. Environmental factors control the fate decisions of NC cells. Despite the well-known influence of flavonoids on the central nervous system, the issue of whether they also influence NC cells has not been yet addressed. Flavonoids are polyphenolic compounds that are integral components of the human diet. The biological activities of these compounds cover a very broad spectrum, from anticancer and antibacterial activities to inhibition of bone reabsorption and modulation of inflammatory response. In the present work, we have investigated the actions of the flavonoids hesperidin, rutin and quercetin on NC cells of quail, in vitro. We show for the first time, that hesperidin and rutin increase the viability of trunk NC cells in culture, without affecting cell differentiation and proliferation. The molecular mechanism of this action is dependent on ERK2 and PI3K pathways. Quercetin had no effect on NC progenitors. Taken together, these results suggest that flavonoids hesperidin and rutin increase NC cell survival, which may be useful against the toxicity of some chemicals during embryonic development. PMID:22855262

  6. Human neural progenitor cells in central nervous system lesions.

    PubMed

    Åkesson, Elisabet; Sundström, Erik

    2016-02-01

    Various immature cells can be isolated from human embryonic and fetal central nervous system (CNS) residual tissue and potentially be used in cell therapy for a number of neurological diseases and CNS insults. Transplantation of neural stem and progenitor cells is essential for replacing lost cells, particularly in the CNS with very limited endogenous regenerative capacity. However, while dopamine released from transplanted cells can substitute the lost dopamine neurons in the experimental models of Parkinson's disease, stem and progenitor cells primarily have a neuroprotective effect, probably through the release of trophic factors. Understanding the therapeutic effects of transplanted cells is crucial to determine the design of clinical trials. During the last few years, a number of clinical trials for CNS diseases and insults such as amyotrophic lateral sclerosis (ALS), stroke, and spinal cord trauma using neural progenitor cells have been initiated. Data from these early studies will provide vital information on the safety of transplanting these cells, which still is a major concern. That the beneficial results observed in experimental models also can be repeated in the clinical setting is highly hoped for. PMID:26803559

  7. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells

    PubMed Central

    Ottone, Cristina; Krusche, Benjamin; Whitby, Ariadne; Clements, Melanie; Quadrato, Giorgia; Pitulescu, Mara E.; Adams, Ralf H.; Parrinello, Simona

    2014-01-01

    The vasculature is a prominent component of the subventricular zone neural stem cell niche. Although quiescent neural stem cells physically contact blood vessels at specialised endfeet, the significance of this interaction is not understood. In contrast, it is well established that vasculature-secreted soluble factors promote lineage progression of committed progenitors. Here we specifically investigated the role of cell-cell contact-dependent signalling in the vascular niche. Unexpectedly, we find that direct cell-cell interactions with endothelial cells enforces quiescence and promotes stem cell identity. Mechanistically, endothelial ephrinB2 and Jagged1 mediate these effects by suppressing cell-cycle entry downstream of mitogens and inducing stemness genes to jointly inhibit differentiation. In vivo, endothelial-specific ablation of either of the genes which encode these proteins, Efnb2 and Jag1 respectively, aberrantly activates quiescent stem cells, resulting in depletion. Thus, we identify the vasculature as a critical niche compartment for stem cell maintenance, furthering our understanding of how anchorage to the niche maintains stem cells within a pro-differentiative microenvironment. PMID:25283993

  8. Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis.

    PubMed

    Araya, Claudio; Ward, Laura C; Girdler, Gemma C; Miranda, Miguel

    2016-03-01

    The development of a vertebrate neural epithelium with well-organized apico-basal polarity and a central lumen is essential for its proper function. However, how this polarity is established during embryonic development and the potential influence of surrounding signals and tissues on such organization has remained less understood. In recent years the combined superior transparency and genetics of the zebrafish embryo has allowed for in vivo visualization and quantification of the cellular and molecular dynamics that govern neural tube structure. Here, we discuss recent studies revealing how co-ordinated cell-cell interactions coupled with adjacent tissue dynamics are critical to regulate final neural tissue architecture. Furthermore, new findings show how the spatial regulation and timing of orientated cell division is key in defining precise lumen formation at the tissue midline. In addition, we compare zebrafish neurulation with that of amniotes and amphibians in an attempt to understand the conserved cellular mechanisms driving neurulation and resolve the apparent differences among animals. Zebrafish neurulation not only offers fundamental insights into early vertebrate brain development but also the opportunity to explore in vivo cell and tissue dynamics during complex three-dimensional animal morphogenesis. PMID:26177834

  9. Olig1 expression pattern in neural cells during rat spinal cord development

    PubMed Central

    Qi, Qi; Zhang, Yuxin; Shen, Lin; Wang, Rui; Zhou, Jiansheng; Lü, Hezuo; Hu, Jianguo

    2016-01-01

    Purpose Our purpose was to systematically investigate the expression pattern and role of Olig1 in neural cells during rat spinal cord development. Animals and methods Spinal cord tissues were dissected from Sprague–Dawley rats at embryonic day 14.5 (E14.5) and E18.5, postnatal day 0 (P0), P3, P7, postnatal 2 weeks (P2W), P4W, and adults (more than 2 months after birth), respectively. The expression of Olig1 was determined by Western blot and immunostaining. To observe expression of Olig1 in different neural cell types, a double immunohistochemical staining was performed using antibodies against Olig1 with O4, β-tubulin, glial fibrillary acidic protein (GFAP), and myelin basic protein, respectively. Results The expression of Olig1 protein shows a significant level change in rat spinal cord at different developmental time points. Starting with E14.5, the expression gradually increased and peaked at E18.5. Olig1 decreased gradually from P3 and reached its lowest level on P7. However, interestingly, the Olig1 expression increased again from P2W, until adulthood. Olig1 was coexpressed with O4-positive oligodendrocyte progenitor cells (OPCs) and β-tubulin-positive neurons at all time points during development. Olig1 was also coexpressed transiently with GFAP-positive astrocytes at only E14.5. Olig1 was localized in the cytoplasm of O4- and β-tubulin-positive cells during the period from E14.5 to adult. Conclusion The expression of Olig1 in OPCs and neurons at all time points during development and in astrocytes at E14.5 suggests that Olig1 may play an important role in the generation and maturation of specific neural cells during development of spinal cord. Our results contribute to understanding the mechanism underlying developmental regulation of neural cells by Olig1. PMID:27143892

  10. Apoptosome inactivation rescues proneural and neural cells from neurodegeneration.

    PubMed

    Cozzolino, M; Ferraro, E; Ferri, A; Rigamonti, D; Quondamatteo, F; Ding, H; Xu, Z S; Ferrari, F; Angelini, D F; Rotilio, G; Cattaneo, E; Carrì, M T; Cecconi, F

    2004-11-01

    Deficiency of the apoptosome component Apaf1 leads to accumulation of supernumerary brain cells in mouse embryos. We observed that neural precursor cells (NPCs) in Apaf1(-/-) embryos escape programmed cell death, proliferate and retain their potential to differentiate. To evaluate the circumstances of Apaf1(-/-) NPC survival and investigate their fate under neurodegenerative conditions, we established cell lines of embryonic origin (ETNA). We found that Apaf1(-/-) NPCs resist common apoptotic stimuli and neurodegenerative inducers such as amyloid-beta peptide (typical of Alzheimer's disease) and mutant G93A superoxide dismutase 1 (typical of familial amyotrophic lateral sclerosis). Similar results were obtained in Apaf1(-/-) primary cells. When death is prevented by Apaf1 deficiency, cytochrome c is released from mitochondria and rapidly degraded by the proteasome, but mitochondria remain intact. Under these conditions, neither activation by cleavage of initiator caspases nor release of alternative apoptotic inducers from mitochondria takes place. In addition, NPCs can still differentiate, as revealed by neurite outgrowth and expression of differentiation markers. Our findings imply that the mitochondrion/apoptosome pathway is the main route of proneural and neural cells to death and that its inhibition prevents them from dismantling in neurodegenerative conditions. Indeed, the ETNA cell model is ideally suited for exploring the potential of novel cell therapies for the treatment of human neurodegenerations. PMID:15257302

  11. Control of Neural Stem Cell Survival by Electroactive Polymer Substrates

    PubMed Central

    Lundin, Vanessa; Herland, Anna; Berggren, Magnus

    2011-01-01

    Stem cell function is regulated by intrinsic as well as microenvironmental factors, including chemical and mechanical signals. Conducting polymer-based cell culture substrates provide a powerful tool to control both chemical and physical stimuli sensed by stem cells. Here we show that polypyrrole (PPy), a commonly used conducting polymer, can be tailored to modulate survival and maintenance of rat fetal neural stem cells (NSCs). NSCs cultured on PPy substrates containing different counter ions, dodecylbenzenesulfonate (DBS), tosylate (TsO), perchlorate (ClO4) and chloride (Cl), showed a distinct correlation between PPy counter ion and cell viability. Specifically, NSC viability was high on PPy(DBS) but low on PPy containing TsO, ClO4 and Cl. On PPy(DBS), NSC proliferation and differentiation was comparable to standard NSC culture on tissue culture polystyrene. Electrical reduction of PPy(DBS) created a switch for neural stem cell viability, with widespread cell death upon polymer reduction. Coating the PPy(DBS) films with a gel layer composed of a basement membrane matrix efficiently prevented loss of cell viability upon polymer reduction. Here we have defined conditions for the biocompatibility of PPy substrates with NSC culture, critical for the development of devices based on conducting polymers interfacing with NSCs. PMID:21494605

  12. Radiopharmaceutical Tracers for Neural Progenitor Cells

    SciTech Connect

    Mangner, Thomas J.

    2006-09-29

    The Technical Report summarizes the results of the synthesis and microPET animal scanning of several compounds labeled with positron-emitting isotopes in normal, neonatal and kainic acid treated (seizure induced) rats as potential PET tracers to image the process of neurogenesis using positron emission tomography (PET). The tracers tested were 3'-deoxy-3'-[F-18]fluorothymidine ([F-18]FLT) and 5'-benzoyl-FTL, 1-(2'-deoxy-2'-[F-18]fluoro-B-D-arabinofuranosyl)-5-bromouracil (FBAU) and 3',5'-dibenzoyl-FBAU, N-[F-18]fluoroacetyl-D-glucosamine (FLAG) and tetraacetyl-FLAG, and L-[1-C-11]leucine.

  13. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    PubMed Central

    Shivaraj, Mattu Chetana; Marcy, Guillaume; Low, Guoliang; Ryu, Jae Ryun; Zhao, Xianfeng; Rosales, Francisco J.; Goh, Eyleen L. K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems. PMID:22916184

  14. Serum polysialylated neural cell adhesion molecule in childhood neuroblastoma.

    PubMed Central

    Glüer, S.; Schelp, C.; Madry, N.; von Schweinitz, D.; Eckhardt, M.; Gerardy-Schahn, R.

    1998-01-01

    Neuroblastoma cells express the polysialylated form of the neural cell adhesion molecule (NCAM), which normally becomes restricted to a few neural tissues after embryogenesis. In this study, we investigated serum levels of polysialylated NCAM in 14 children with different grades and stages of neuroblastoma using an immunoluminescence assay, and compared the results to 269 healthy control subjects. Simultaneously, the polysialylated NCAM content of the tumours was determined by immunohistochemistry. Serum levels were dramatically elevated (more than sixfold) in children with advanced stages and fatal courses of disease, whereas children with differentiated tumour types and limited disease had low or normal levels. Serum concentrations correlated with the polysialylated NCAM content of the tumours, and they decreased during successful therapy. We therefore suggest polysialylated NCAM to be a useful marker monitoring childhood neuroblastoma. Images Figure 2 Figure 3 PMID:9662259

  15. Neural stem cells attacked by Zika virus.

    PubMed

    Nguyen, Ha Nam; Qian, Xuyu; Song, Hongjun; Ming, Guo-Li

    2016-07-01

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. Insights from cell and animal models to understand how Zika virus causes severe birth defects may lead to treatments and prevention of these diseases. PMID:27283801

  16. Integrating Biomaterials and Stem Cells for Neural Regeneration.

    PubMed

    Maclean, Francesca L; Rodriguez, Alexandra L; Parish, Clare L; Williams, Richard J; Nisbet, David R

    2016-02-01

    The central nervous system has a limited capacity to regenerate, and thus, traumatic injuries or diseases often have devastating consequences. Therefore, there is a distinct need to develop alternative treatments that can achieve functional recovery without side effects currently observed with some pharmacological treatments. Combining biomaterials with pluripotent stem cells (PSCs), either embryonic or induced, has the potential to revolutionize the treatment of neurodegenerative diseases and traumatic injuries. Biomaterials can mimic the extracellular matrix and present a myriad of relevant biochemical cues through rational design or further functionalization. Biomaterials such as nanofibers and hydrogels, including self-assembling peptide (SAP) hydrogels can provide a superior cell culture environment. When these materials are then combined with PSCs, more accurate drug screening and disease modeling could be developed, and the generation of large number of cells with the appropriate phenotype can be achieved, for subsequent use in vitro. Biomaterials have also been shown to support endogenous cell growth after implantation, and, in particular, hydrogels and SAPs have effectively acted as cell delivery vehicles, increasing cell survival after transplantation. Few studies are yet to fully exploit the combination of PSCs and innovative biomaterials; however, initial studies with neural stem cells, for example, are promising, and, hence, such a combination for use in vitro and in vivo is an exciting new direction for the field of neural regeneration. PMID:26577681

  17. Neural network adapted to wound cell analysis in surgical patients.

    PubMed

    Viljanto, Jouko; Koski, Antti

    2011-01-01

    Assessment of the real state of wound healing of closed surgical wounds is uncertain both clinically and from conventional laboratory tests. Therefore, a novel approach based on early analysis of exactly timed wound cells, computerized further with an artificial neural network, was developed. At the end of routine surgery performed on 481 children under 18 years of age, a specific wound drain Cellstick™ was inserted subcutaneously between the wound edges to harvest wound cells. The Cellsticks™ were removed from 1 to 50 hours, mainly at hour 3 or 24 postsurgery. Immediately, the cellular contents were washed out using a pump constructed for the purpose. After cytocentrifugation, the cells were stained and counted differentially. Based on their relative proportions at selected time intervals, an artificial self-organizing neural map was developed. This was further transformed to a unidirectional linear graph where each node represents one set of relative cell quantities. As early as 3 hours, but more precisely 24 hours after surgery, the location of the nodes on this graph showed individually the patients' initial speed of wound inflammatory cell response. Similarly, timed Cellstick™ specimens from new surgical patients could be analyzed, computerized, and compared with these node values to assess their initial speed in wound inflammatory cell response. Location of the node on the graph does not express the time lapse after surgery but the speed of wound inflammatory cell response in relation to that of other patients. PMID:21362082

  18. Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases

    PubMed Central

    Suksuphew, Sarawut; Noisa, Parinya

    2015-01-01

    Progressively loss of neural and glial cells is the key event that leads to nervous system dysfunctions and diseases. Several neurodegenerative diseases, for instance Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, are associated to aging and suggested to be a consequence of deficiency of neural stem cell pool in the affected brain regions. Endogenous neural stem cells exist throughout life and are found in specific niches of human brain. These neural stem cells are responsible for the regeneration of new neurons to restore, in the normal circumstance, the functions of the brain. Endogenous neural stem cells can be isolated, propagated, and, notably, differentiated to most cell types of the brain. On the other hand, other types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells can also serve as a source for neural stem cell production, that hold a great promise for regeneration of the brain. The replacement of neural stem cells, either endogenous or stem cell-derived neural stem cells, into impaired brain is highly expected as a possible therapeutic mean for neurodegenerative diseases. In this review, clinical features and current routinely treatments of age-related neurodegenerative diseases are documented. Noteworthy, we presented the promising evidence of neural stem cells and their derivatives in curing such diseases, together with the remaining challenges to achieve the best outcome for patients. PMID:25815135

  19. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells

    PubMed Central

    Chen, Song; Zhang, Wei; Wang, Ji-Ming; Duan, Hong-Tao; Kong, Jia-Hui; Wang, Yue-Xin; Dong, Meng; Bi, Xue; Song, Jian

    2016-01-01

    AIM To investigate whether umbilical cord human mesenchymal stem cell (UC-MSC) was able to differentiate into neural stem cell and neuron in vitro. METHODS The umbilical cords were obtained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee. UC-MSC were isolated by adherent culture in the medium contains 20% fetal bovine serum (FBS), then they were maintained in the medium contain 10% FBS and induced to neural cells in neural differentiation medium. We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron in vitro by using flow cytometry, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence (IF) analyzes. RESULTS A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk. Flow cytometric study revealed that these cells expressed common markers of MSCs, such as CD105 (SH2), CD73 (SH3) and CD90. After induction of differentiation of neural stem cells, the cells began to form clusters; RT-PCR and IF showed that the neuron specific enolase (NSE) and neurogenic differentiation 1-positive cells reached 87.3%±14.7% and 72.6%±11.8%, respectively. Cells showed neuronal cell differentiation after induced, including neuron-like protrusions, plump cell body, obviously and stronger refraction. RT-PCR and IF analysis showed that microtubule-associated protein 2 (MAP2) and nuclear factor-M-positive cells reached 43.1%±10.3% and 69.4%±19.5%, respectively. CONCLUSION Human umbilical cord derived MSCs can be cultured and proliferated in vitro and differentiate into neural stem cells, which may be a valuable source for cell therapy of neurodegenerative eye diseases. PMID:26949608

  20. Retinoic Acid Activity in Undifferentiated Neural Progenitors Is Sufficient to Fulfill Its Role in Restricting Fgf8 Expression for Somitogenesis

    PubMed Central

    Cunningham, Thomas J.; Brade, Thomas; Sandell, Lisa L.; Lewandoski, Mark; Trainor, Paul A.; Colas, Alexandre; Mercola, Mark; Duester, Gregg

    2015-01-01

    Bipotent axial stem cells residing in the caudal epiblast during late gastrulation generate neuroectodermal and presomitic mesodermal progeny that coordinate somitogenesis with neural tube formation, but the mechanism that controls these two fates is not fully understood. Retinoic acid (RA) restricts the anterior extent of caudal fibroblast growth factor 8 (Fgf8) expression in both mesoderm and neural plate to control somitogenesis and neurogenesis, however it remains unclear where RA acts to control the spatial expression of caudal Fgf8. Here, we found that mouse Raldh2-/- embryos, lacking RA synthesis and displaying a consistent small somite defect, exhibited abnormal expression of key markers of axial stem cell progeny, with decreased Sox2+ and Sox1+ neuroectodermal progeny and increased Tbx6+ presomitic mesodermal progeny. The Raldh2-/- small somite defect was rescued by treatment with an FGF receptor antagonist. Rdh10 mutants, with a less severe RA synthesis defect, were found to exhibit a small somite defect and anterior expansion of caudal Fgf8 expression only for somites 1–6, with normal somite size and Fgf8 expression thereafter. Rdh10 mutants were found to lack RA activity during the early phase when somites are small, but at the 6-somite stage RA activity was detected in neural plate although not in presomitic mesoderm. Expression of a dominant-negative RA receptor in mesoderm eliminated RA activity in presomitic mesoderm but did not affect somitogenesis. Thus, RA activity in the neural plate is sufficient to prevent anterior expansion of caudal Fgf8 expression associated with a small somite defect. Our studies provide evidence that RA restriction of Fgf8 expression in undifferentiated neural progenitors stimulates neurogenesis while also restricting the anterior extent of the mesodermal Fgf8 mRNA gradient that controls somite size, providing new insight into the mechanism that coordinates somitogenesis with neurogenesis. PMID:26368825

  1. An adverse outcome pathway framework for neural tube and axial defects mediated by modulation of retinoic acid homeostasis.

    PubMed

    Tonk, Elisa C M; Pennings, Jeroen L A; Piersma, Aldert H

    2015-08-01

    Developmental toxicity can be caused through a multitude of mechanisms and can therefore not be captured through a single simple mechanistic paradigm. However, it may be possible to define a selected group of overarching mechanisms that might allow detection of the vast majority of developmental toxicants. Against this background, we have explored the usefulness of retinoic acid mediated regulation of neural tube and axial patterning as a general mechanism that, when perturbed, may result in manifestations of developmental toxicity that may cover a large part of malformations known to occur in experimental animals and in man. Through a literature survey, we have identified key genes in the regulation of retinoic acid homeostasis, as well as marker genes of neural tube and axial patterning, that may be used to detect developmental toxicants in in vitro systems. A retinoic acid-neural tube/axial patterning adverse outcome pathway (RA-NTA AOP) framework was designed. The framework was tested against existing data of flusilazole exposure in the rat whole embryo culture, the zebrafish embryotoxicity test, and the embryonic stem cell test. Flusilazole is known to interact with retinoic acid homeostasis, and induced common and unique NTA marker gene changes in the three test systems. Flusilazole-induced changes were similar in directionality to gene expression responses after retinoic acid exposure. It is suggested that the RA-NTA framework may provide a general tool to define mechanistic pathways and biomarkers of developmental toxicity that may be used in alternative in vitro assays for the detection of embryotoxic compounds. PMID:25461899

  2. Live Imaging of Adult Neural Stem Cells in Rodents

    PubMed Central

    Ortega, Felipe; Costa, Marcos R.

    2016-01-01

    The generation of cells of the neural lineage within the brain is not restricted to early development. New neurons, oligodendrocytes, and astrocytes are produced in the adult brain throughout the entire murine life. However, despite the extensive research performed in the field of adult neurogenesis during the past years, fundamental questions regarding the cell biology of adult neural stem cells (aNSCs) remain to be uncovered. For instance, it is crucial to elucidate whether a single aNSC is capable of differentiating into all three different macroglial cell types in vivo or these distinct progenies constitute entirely separate lineages. Similarly, the cell cycle length, the time and mode of division (symmetric vs. asymmetric) that these cells undergo within their lineage progression are interesting questions under current investigation. In this sense, live imaging constitutes a valuable ally in the search of reliable answers to the previous questions. In spite of the current limitations of technology new approaches are being developed and outstanding amount of knowledge is being piled up providing interesting insights in the behavior of aNSCs. Here, we will review the state of the art of live imaging as well as the alternative models that currently offer new answers to critical questions. PMID:27013941

  3. Isolation and characterization of neural stem cells from buffalo.

    PubMed

    Kumar, Kuldeep; Singh, Renu; Kumar, Manish; Agarwal, Pranjali; Mahapatra, P S; Kumar, Ajay; Malakar, Dhruba; Bag, Sadhan

    2014-06-01

    Neural stem cells (NSCs) are primordial, uncommitted cells postulated to give rise to the array of more specialized cells of the central nervous system (CNS). NSCs can self-renew and give rise to neurons, astrocytes and oligodendrocytes. NSCs are found in the CNS of mammalian organisms, and represent a promising resource for both fundamental research and CNS repair. Animal models of CNS damage have highlighted the potential benefit of NSC-based approaches. Present study described that buffalo neural stem cells (Bu-NSCs) were isolated and expanded rapidly from buffalo fetal brain in adherent culture. They were capable of multidifferentiation into neurons, astrocytes, and oligodendrocytes. Bu-NSCs were morphologically homogeneous and possessed high proliferation ability. The population doubled every 128.16 h. Normal buffalo karyotype was unchanged throughout the in vitro culture period. Together, we have isolated and cultured Bu-NSC from fetal brain that showed self-renewal, rapid proliferation and ability to differentiate into cells of nervous system. The availability of such cells may hold great interest for basic and applied neuroscience. PMID:24094244

  4. Low immunogenicity of in vitro-expanded human neural cells despite high MHC expression.

    PubMed

    Odeberg, Jenny; Piao, Jing-Hua; Samuelsson, Eva-Britt; Falci, Scott; Akesson, Elisabet

    2005-04-01

    The ability to expand human neural precursor cells in vitro offers new possibilities for future cell therapies. However, concern over immunologically based rejection of in vitro-expanded human neural cells confounds their use as donor cells. Here, we demonstrate that the expression of human leukocyte antigen (HLA) class I and II molecules, but not the co-stimulatory proteins CD40, CD80 and CD86, substantially increase during expansion of neurospheres. Furthermore, peripheral lymphocytes were unresponsive when co-cultured with in vitro-expanded neural cells. Taken together, these results suggest a low immunogenicity of these cultured human neural cells despite HLA incompatibility and high HLA expression. PMID:15748938

  5. Modulation of Mouse Embryonic Stem Cell Proliferation and Neural Differentiation by the P2X7 Receptor

    PubMed Central

    Glaser, Talita; de Oliveira, Sophia La Banca; Cheffer, Arquimedes; Beco, Renata; Martins, Patrícia; Fornazari, Maynara; Lameu, Claudiana; Junior, Helio Miranda Costa; Coutinho-Silva, Robson; Ulrich, Henning

    2014-01-01

    Background Novel developmental functions have been attributed to the P2X7 receptor (P2X7R) including proliferation stimulation and neural differentiation. Mouse embryonic stem cells (ESC), induced with retinoic acid to neural differentiation, closely assemble processes occurring during neuroectodermal development of the early embryo. Principal Findings P2X7R expression together with the pluripotency marker Oct-4 was highest in undifferentiated ESC. In undifferentiated cells, the P2X7R agonist Bz-ATP accelerated cell cycle entry, which was blocked by the specific P2X7R inhibitor KN-62. ESC induced to neural differentiation with retinoic acid, reduced Oct-4 and P2X7R expression. P2X7R receptor-promoted intracellular calcium fluxes were obtained at lower Bz-ATP ligand concentrations in undifferentiated and in neural-differentiated cells compared to other studies. The presence of KN-62 led to increased number of cells expressing SSEA-1, Dcx and β3-tubulin, as well as the number of SSEA-1 and β3-tubulin-double-positive cells confirming that onset of neuroectodermal differentiation and neuronal fate determination depends on suppression of P2X7R activity. Moreover, an increase in the number of Ki-67 positive cells in conditions of P2X7R inhibition indicates rescue of progenitors into the cell cycle, augmenting the number of neuroblasts and consequently neurogenesis. Conclusions In embryonic cells, P2X7R expression and activity is upregulated, maintaining proliferation, while upon induction to neural differentiation P2X7 receptor expression and activity needs to be suppressed. PMID:24798220

  6. Genetic instability in neural stem cells: an inconvenient truth?

    PubMed

    Harrison, Neil J

    2012-02-01

    The evolutionary struggles from which mutants arise have been documented in almost every living system. In this issue of the JCI, Varela and colleagues extend this list of systems to include neural derivatives of human embryonic stem cells, which they show exhibit a repeated gain of material from chromosome 1q. Although this raises safety issues for therapeutic use of such cells, the frequent observation of a particular change may direct screening strategies for detection and removal of these unwanted cellular variants. PMID:22269327

  7. Mesoderm is required for coordinated cell movements within zebrafish neural plate in vivo

    PubMed Central

    2014-01-01

    Background Morphogenesis of the zebrafish neural tube requires the coordinated movement of many cells in both time and space. A good example of this is the movement of the cells in the zebrafish neural plate as they converge towards the dorsal midline before internalizing to form a neural keel. How these cells are regulated to ensure that they move together as a coherent tissue is unknown. Previous work in other systems has suggested that the underlying mesoderm may play a role in this process but this has not been shown directly in vivo. Results Here we analyze the roles of subjacent mesoderm in the coordination of neural cell movements during convergence of the zebrafish neural plate and neural keel formation. Live imaging demonstrates that the normal highly coordinated movements of neural plate cells are lost in the absence of underlying mesoderm and the movements of internalization and neural tube formation are severely disrupted. Despite this, neuroepithelial polarity develops in the abnormal neural primordium but the resulting tissue architecture is very disorganized. Conclusions We show that the movements of cells in the zebrafish neural plate are highly coordinated during the convergence and internalization movements of neurulation. Our results demonstrate that the underlying mesoderm is required for these coordinated cell movements in the zebrafish neural plate in vivo. PMID:24755297

  8. [The effect of folic acid fortification on the reduction of neural tube defects].

    PubMed

    Santos, Leonor Maria Pacheco; Pereira, Michelle Zanon

    2007-01-01

    Neural tube defects are congenital malformations that occur during initial fetal development, leading to anencephaly and spina bifida; folic acid deficiency is the most important risk factor identified to date. Brazil has one of the world's highest neural tube defect rates. Food consumption surveys among pregnant Brazilian women showed a high rate of inadequate folic acid intake (< 0.6 mg/day). In 2004, the National Health Surveillance Agency (ANVISA) mandated the fortification of corn meal and wheat flour with folic acid (0.15 mg/100g). The National Family Budget Survey estimated the average amount of bread/flour products available in households as 106.1g/day (contributing with 0.16 mg folic acid/day). However, while in the South of the country the supply was 144 g/day, in the North and Central West it barely reached 70 g/day. Folic acid food fortification is mandatory in some 40 countries, but only four have assessed this strategy. The existing studies have all shown a significant impact, ranging from 19 to 78%. Folic acid fortification is an undeniably important intervention for primary prevention, and neural tube defects can now be considered a preventable epidemic. PMID:17187100

  9. Automatic discovery of cell types and microcircuitry from neural connectomics

    PubMed Central

    Jonas, Eric; Kording, Konrad

    2015-01-01

    Neural connectomics has begun producing massive amounts of data, necessitating new analysis methods to discover the biological and computational structure. It has long been assumed that discovering neuron types and their relation to microcircuitry is crucial to understanding neural function. Here we developed a non-parametric Bayesian technique that identifies neuron types and microcircuitry patterns in connectomics data. It combines the information traditionally used by biologists in a principled and probabilistically coherent manner, including connectivity, cell body location, and the spatial distribution of synapses. We show that the approach recovers known neuron types in the retina and enables predictions of connectivity, better than simpler algorithms. It also can reveal interesting structure in the nervous system of Caenorhabditis elegans and an old man-made microprocessor. Our approach extracts structural meaning from connectomics, enabling new approaches of automatically deriving anatomical insights from these emerging datasets. DOI: http://dx.doi.org/10.7554/eLife.04250.001 PMID:25928186

  10. Automatic discovery of cell types and microcircuitry from neural connectomics.

    PubMed

    Jonas, Eric; Kording, Konrad

    2015-01-01

    Neural connectomics has begun producing massive amounts of data, necessitating new analysis methods to discover the biological and computational structure. It has long been assumed that discovering neuron types and their relation to microcircuitry is crucial to understanding neural function. Here we developed a non-parametric Bayesian technique that identifies neuron types and microcircuitry patterns in connectomics data. It combines the information traditionally used by biologists in a principled and probabilistically coherent manner, including connectivity, cell body location, and the spatial distribution of synapses. We show that the approach recovers known neuron types in the retina and enables predictions of connectivity, better than simpler algorithms. It also can reveal interesting structure in the nervous system of Caenorhabditis elegans and an old man-made microprocessor. Our approach extracts structural meaning from connectomics, enabling new approaches of automatically deriving anatomical insights from these emerging datasets. PMID:25928186

  11. Isolation of Human Neural Stem Cells from the Amniotic Fluid with Diagnosed Neural Tube Defects.

    PubMed

    Chang, Yu-Jen; Su, Hong-Lin; Hsu, Lee-Feng; Huang, Po-Jui; Wang, Tzu-Hao; Cheng, Fu-Chou; Hsu, Li-Wen; Tsai, Ming-Song; Chen, Chih-Ping; Chang, Yao-Lung; Chao, An-Shine; Hwang, Shiaw-Min

    2015-08-01

    Human neural stem cells (NSCs) are particularly valuable for the study of neurogenesis process and have a therapeutic potential in treating neurodegenerative disorders. However, current progress in the use of human NSCs is limited due to the available NSC sources and the complicated isolation and culture techniques. In this study, we describe an efficient method to isolate and propagate human NSCs from the amniotic fluid with diagnosed neural tube defects (NTDs), specifically, anencephaly. These amniotic fluid-derived NSCs (AF-NSCs) formed neurospheres and underwent long-term expansion in vitro. In addition, these cells showed normal karyotypes and telomerase activity and expressed NSC-specific markers, including Nestin, Sox2, Musashi-1, and the ATP-binding cassette G2 (ABCG2). AF-NSCs displayed typical morphological patterns and expressed specific markers that were consistent with neurons, astrocytes, oligodendrocytes, and dopaminergic neurons after proper induction conditions. Furthermore, grafted AF-NSCs improved the physiological functions in a rat stroke model. The ability to isolate and bank human NSCs from this novel source provides a unique opportunity for translational studies of neurological disorders. PMID:25923707

  12. FoxOs in neural stem cell fate decision.

    PubMed

    Ro, Seung-Hyun; Liu, Debra; Yeo, Hyeonju; Paik, Ji-hye

    2013-06-01

    Neural stem cells (NSCs) persist over the lifespan of mammals to give rise to committed progenitors and their differentiated cells in order to maintain the brain homeostasis. To this end, NSCs must be able to self-renew and otherwise maintain their quiescence. Suppression of aberrant proliferation or undesired differentiation is crucial to preclude either malignant growth or precocious depletion of NSCs. The PI3K-Akt-FoxO signaling pathway plays a central role in the regulation of multiple stem cells including one in the mammalian brain. In particular, members of FoxO family transcription factors are highly expressed in these stem cells. As an important downstream effector of growth, differentiation, and stress stimuli, mammalian FoxO transcription factor family controls cellular proliferation, oxidative stress response, homeostasis, and eventual maintenance of long-term repopulating potential. The review will focus on the current understanding of FoxO function in NSCs as well as discuss their biological activities that contribute to determining neural stem cell fate. PMID:22902436

  13. Inducible regulation of GDNF expression in human neural stem cells.

    PubMed

    Wang, ShuYan; Ren, Ping; Guan, YunQian; Zou, ChunLin; Fu, LinLin; Zhang, Yu

    2013-01-01

    Glial cell derived neurotrophic factor (GDNF) holds promises for treating neurodegenerative diseases such as Parkinson's disease. Human neural stem cells (hNSCs) have proved to be a suitable cell delivery vehicle for the safe and efficient introduction of GDNF into the brain. In this study, we used hNSCs-infected with a lentivirus encoding GDNF and the hygromycin resistance gene as such vehicles. A modified tetracycline operator 7 (tetO7) was inserted into a region upstream of the EF1-α promoter to drive GDNF expression. After hygromycin selection, hNSCs were infected with a lentivirus encoding a KRAB-tetracycline repressor fusion protein (TTS). TTS bound to tetO7 and suppressed the expression of GDNF in hNSCs. Upon administration of doxycycline (Dox) the TTS-tetO7 complex separated and the expression of GDNF resumed. The hNSCs infected with GDNF expressed the neural stem cell specific markers, nestin and sox2, and exhibited no significant change in proliferation rate. However, the rate of apoptosis in hNSCs expressing GDNF was lower compared with normal NSCs in response to actinomycin treatment. Furthermore, a higher percentage of Tuj-1 positive cells were obtained from GDNF-producing NSCs under conditions that induced differentiation compared to control NSCs. The inducible expression of GDNF in hNSCs may provide a system for the controllable delivery of GDNF in patients with neurodegenerative diseases. PMID:23269553

  14. Endothelial cells regulate neural crest and second heart field morphogenesis

    PubMed Central

    Milgrom-Hoffman, Michal; Michailovici, Inbal; Ferrara, Napoleone; Zelzer, Elazar; Tzahor, Eldad

    2014-01-01

    ABSTRACT Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio–craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1) in the mesoderm results in early embryonic lethality, severe deformation of the cardio–craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1) along with changes in the extracellular matrix (ECM) composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio–craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1. PMID:24996922

  15. Axonal Control of the Adult Neural Stem Cell Niche

    PubMed Central

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D.; Tecott, Laurence H.; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-01-01

    SUMMARY The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSC) in the walls of the lateral ventricles of the adult brain. How the adult brain’s neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. PMID:24561083

  16. Axonal control of the adult neural stem cell niche.

    PubMed

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D; Tecott, Laurence H; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-04-01

    The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSCs) in the walls of the lateral ventricles of the adult brain. How the adult brain's neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. PMID:24561083

  17. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation.

    PubMed

    Plank, Jennifer L; Mundell, Nathan A; Frist, Audrey Y; LeGrone, Alison W; Kim, Thomas; Musser, Melissa A; Walter, Teagan J; Labosky, Patricia A

    2011-01-15

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of insulin-expressing cells and insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic insulin granules and the presence of abnormal granules in insulin-expressing cells from mutant embryos. Together, these data demonstrate that

  18. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation

    PubMed Central

    Plank, Jennifer L.; Mundell, Nathan A.; Frist, Audrey Y.; LeGrone, Alison W.; Kim, Thomas; Musser, Melissa A.; Walter, Teagan J.; Labosky, Patricia A.

    2010-01-01

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of Insulin-expressing cells and Insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of Insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of Insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic Insulin granules and the presence of abnormal granules in Insulin-expressing cells from mutant embryos. Together, these data demonstrate that

  19. miR-381 Regulates Neural Stem Cell Proliferation and Differentiation via Regulating Hes1 Expression

    PubMed Central

    Liu, Baoquan; Yang, Chunxiao; Nie, Xuedan; Wang, Xiaokun; Zheng, Jiaolin; Wang, Yue; Zhu, Yulan

    2015-01-01

    Neural stem cells are self-renewing, multipotent and undifferentiated precursors that retain the capacity for differentiation into both glial (astrocytes and oligodendrocytes) and neuronal lineages. Neural stem cells offer cell-based therapies for neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease and spinal cord injuries. However, their cellular behavior is poorly understood. MicroRNAs (miRNAs) are a class of small noncoding RNAs involved in cell development, proliferation and differentiation through regulating gene expression at post-transcriptional level. The role of miR–381 in the development of neural stem cells remains unknown. In this study, we showed that overexpression of miR–381 promoted neural stem cells proliferation. It induced the neural stem cells differentiation to neurons and inhibited their differentiation to astrocytes. Furthermore, we identified HES1 as a direct target of miR–381 in neural stem cells. Moreover, re-expression of HES1 impaired miR-381-induced promotion of neural stem cells proliferation and induce neural stem cells differentiation to neurons. In conclusion, miR–381 played important role in neural stem cells proliferation and differentiation. PMID:26431046

  20. NFL-lipid nanocapsules for brain neural stem cell targeting in vitro and in vivo.

    PubMed

    Carradori, Dario; Saulnier, Patrick; Préat, Véronique; des Rieux, Anne; Eyer, Joel

    2016-09-28

    The replacement of injured neurons by the selective stimulation of neural stem cells in situ represents a potential therapeutic strategy for the treatment of neurodegenerative diseases. The peptide NFL-TBS.40-63 showed specific interactions towards neural stem cells of the subventricular zone. The aim of our work was to produce a NFL-based drug delivery system able to target neural stem cells through the selective affinity between the peptide and these cells. NFL-TBS.40-63 (NFL) was adsorbed on lipid nanocapsules (LNC) whom targeting efficiency was evaluated on neural stem cells from the subventricular zone (brain) and from the central canal (spinal cord). NFL-LNC were incubated with primary neural stem cells in vitro or injected in vivo in adult rat brain (right lateral ventricle) or spinal cord (T10). NFL-LNC interactions with neural stem cells were different depending on the origin of the cells. NFL-LNC showed a preferential uptake by neural stem cells from the brain, while they did not interact with neural stem cells from the spinal cord. The results obtained in vivo correlate with the results observed in vitro, demonstrating that NFL-LNC represent a promising therapeutic strategy to selectively deliver bioactive molecules to brain neural stem cells. PMID:27503706

  1. PSA-NCAM(+) neural precursor cells from human embryonic stem cells promote neural tissue integrity and behavioral performance in a rat stroke model.

    PubMed

    Kim, Han-Soo; Choi, Seong-Mi; Yang, Wonsuk; Kim, Dae-Sung; Lee, Dongjin R; Cho, Sung-Rae; Kim, Dong-Wook

    2014-12-01

    Recently, cell-based therapy has been highlighted as an alternative to treating ischemic brain damage in stroke patients. The present study addresses the therapeutic potential of polysialic acid-neural cell adhesion molecule (PSA-NCAM)-positive neural precursor cells (NPC(PSA-NCAM+)) derived from human embryonic stem cells (hESCs) in a rat stroke model with permanent middle cerebral artery occlusion. Data showed that rats transplanted with NPC(PSA-NCAM+) are superior to those treated with phosphate buffered saline (PBS) or mesenchymal stem cells (MSCs) in behavioral performance throughout time points. In order to investigate its underlying events, immunohistochemical analysis was performed on rat ischemic brains treated with PBS, MSCs, and NPC(PSA-NCAM+). Unlike MSCs, NPC(PSA-NCAM+) demonstrated a potent immunoreactivity against human specific nuclei, doublecortin, and Tuj1 at day 26 post-transplantation, implying their survival, differentiation, and integration in the host brain. Significantly, NPC(PSA-NCAM+) evidently lowered the positivity of microglial ED-1 and astrocytic GFAP, suggesting a suppression of adverse glial activation in the host brain. In addition, NPC(PSA-NCAM+) elevated α-SMA(+) immunoreactivity and the expression of angiopoietin-1 indicating angiogenic stimulation in the host brain. Taken together, the current data demonstrate that transplanted NPC(PSA-NCAM+) preserve brain tissue with reduced infarct size and improve behavioral performance through actions encompassing anti-reactive glial activation and pro-angiogenic activity in a rat stroke model. In conclusion, the present findings support the potentiality of NPC(PSA-NCAM+) as the promising source in the development of cell-based therapy for neurological diseases including ischemic stroke. PMID:24974101

  2. Nanosized zinc oxide particles induce neural stem cell apoptosis

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoyong; Luan, Qixia; Chen, Wenting; Wang, Yanli; Wu, Minghong; Zhang, Haijiao; Jiao, Zheng

    2009-03-01

    Given the intensive application of nanoscale zinc oxide (ZnO) materials in our life, growing concerns have arisen about its unintentional health and environmental impacts. In this study, the neurotoxicity of different sized ZnO nanoparticles in mouse neural stem cells (NSCs) was investigated. A cell viability assay indicated that ZnO nanoparticles manifested dose-dependent, but no size-dependent toxic effects on NSCs. Apoptotic cells were observed and analyzed by confocal microscopy, transmission electron microscopy examination, and flow cytometry. All the results support the viewpoint that the ZnO nanoparticle toxicity comes from the dissolved Zn2+ in the culture medium or inside cells. Our results highlight the need for caution during the use and disposal of ZnO manufactured nanomaterials to prevent the unintended environmental and health impacts.

  3. Neural stem cell tracking with phase contrast video microscopy

    NASA Astrophysics Data System (ADS)

    Rigaud, Stéphane U.; Loménie, Nicolas

    2011-03-01

    Tracking and segmenting objects for video surveillance is a well known field of research and very efficient methods exist. Usually embedded in traffic surveillance camera, these processes are not necessary adapted for biological surveillance context. In stem cell study, the design of a framework to monitor cell development in real time improves the stem cell analysis and biological understanding. In this purpose, we propose to test the Σ - ▵ motion filter, normally developed for security and surveillance camera, in order to track neural stem cells and their evolution over time, based on phase contrast image sequences. The motion filter is based on the difference between the current frame and a reference image of the background and uses a recursive spatio-temporal morphological operator called hybrid reconstruction to compensate for ghost and trace usually occurring with those kinds of methods.

  4. Isolation, culture and analysis of adult subependymal neural stem cells.

    PubMed

    Belenguer, Germán; Domingo-Muelas, Ana; Ferrón, Sacri R; Morante-Redolat, José Manuel; Fariñas, Isabel

    2016-01-01

    Individual cells dissected from the subependymal neurogenic niche of the adult mouse brain proliferate in medium containing basic fibroblast growth factor (bFGF) and/or epidermal growth factor (EGF) as mitogens, to produce multipotent clonal aggregates called neurospheres. These cultures constitute a powerful tool for the study of neural stem cells (NSCs) provided that they allow the analysis of their features and potential capacity in a controlled environment that can be modulated and monitored more accurately than in vivo. Clonogenic and population analyses under mitogen addition or withdrawal allow the quantification of the self-renewing and multilineage potency of these cells and the identification of the mechanisms involved in these properties. Here, we describe a set of procedures developed and/or modified by our group including several experimental options that can be used either independently or in combination for the ex vivo assessment of cell properties of NSCs obtained from the adult subependymal niche. PMID:27016251

  5. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury.

    PubMed

    Lee-Kubli, Corinne A; Lu, Paul

    2015-01-01

    The greatest challenge to successful treatment of spinal cord injury is the limited regenerative capacity of the central nervous system and its inability to replace lost neurons and severed axons following injury. Neural stem cell grafts derived from fetal central nervous system tissue or embryonic stem cells have shown therapeutic promise by differentiation into neurons and glia that have the potential to form functional neuronal relays across injured spinal cord segments. However, implementation of fetal-derived or embryonic stem cell-derived neural stem cell therapies for patients with spinal cord injury raises ethical concerns. Induced pluripotent stem cells can be generated from adult somatic cells and differentiated into neural stem cells suitable for therapeutic use, thereby providing an ethical source of implantable cells that can be made in an autologous fashion to avoid problems of immune rejection. This review discusses the therapeutic potential of human induced pluripotent stem cell-derived neural stem cell transplantation for treatment of spinal cord injury, as well as addressing potential mechanisms, future perspectives and challenges. PMID:25788906

  6. Development of a microfluidic platform with integrated power splitting waveguides for optogenetic neural cell stimulation.

    PubMed

    Feng, Hongtao; Shu, Weiliang; Chen, Xi; Zhang, Yuanyuan; Lu, Yi; Wang, Liping; Chen, Yan

    2015-10-01

    We present a microfluidic platform with integrated power splitting waveguides for optogenetic neural cell stimulation. A liquid-core/PDMS-cladding waveguide with a power splitter design was integrated with a neural cell culture chamber to provide a simple way of precise localized optical stimulation. The parallel on-chip excitation of individual neural cells using a single optical fiber input is demonstrated for optogenetic neural cell studies, and the excitation of each individual waveguide can be independently controlled by pneumatic valves. Light delivery and loss mechanisms through the waveguides were studied and characterized. The waveguide power splitter platform is capable of providing sufficient irradiance to evoke spikes in ChR2-expressing neural cells. The system enables high-resolution stimulation of neural cells in a controllable manner. The microfluidic platform described here represents a novel methodology for studying optogenetics in a compact integrated system with high spatial resolutions. PMID:26371060

  7. Prevention of neural tube defects with folic acid: The Chinese experience.

    PubMed

    Ren, Ai-Guo

    2015-08-01

    Neural tube defects (NTDs) are a group of congenital malformations of the central nervous system that are caused by the closure failure of the embryonic neural tube by the 28(th) day of conception. Anencephaly and spina bifida are the two major subtypes. Fetuses with anencephaly are often stillborn or electively aborted due to prenatal diagnosis, or they die shortly after birth. Most infants with spina bifida are live-born and, with proper surgical treatment, can survive into adulthood. However, these children often have life-long physical disabilities. China has one of the highest prevalence of NTDs in the world. Inadequate dietary folate intake is believed to be the main cause of the cluster. Unlike many other countries that use staple fortification with folic acid as the public health strategy to prevent NTDs, the Chinese government provides all women who have a rural household registration and who plan to become pregnant with folic acid supplements, free of charge, through a nation-wide program started in 2009. Two to three years after the initiation of the program, the folic acid supplementation rate increased to 85% in the areas of the highest NTD prevalence. The mean plasma folate level of women during early and mid-pregnancy doubled the level before the program was introduced. However, most women began taking folic acid supplements when they knew that they were pregnant. This is too late for the protection of the embryonic neural tube. In a post-program survey of the women who reported folic acid supplementation, less than a quarter of the women began taking supplements prior to pregnancy, indicating that the remaining three quarters of the fetuses remained unprotected during the time of neural tube formation. Therefore, staple food fortification with folic acid should be considered as a priority in the prevention of NTDs. PMID:26261765

  8. Prevention of neural tube defects with folic acid: The Chinese experience

    PubMed Central

    Ren, Ai-Guo

    2015-01-01

    Neural tube defects (NTDs) are a group of congenital malformations of the central nervous system that are caused by the closure failure of the embryonic neural tube by the 28th day of conception. Anencephaly and spina bifida are the two major subtypes. Fetuses with anencephaly are often stillborn or electively aborted due to prenatal diagnosis, or they die shortly after birth. Most infants with spina bifida are live-born and, with proper surgical treatment, can survive into adulthood. However, these children often have life-long physical disabilities. China has one of the highest prevalence of NTDs in the world. Inadequate dietary folate intake is believed to be the main cause of the cluster. Unlike many other countries that use staple fortification with folic acid as the public health strategy to prevent NTDs, the Chinese government provides all women who have a rural household registration and who plan to become pregnant with folic acid supplements, free of charge, through a nation-wide program started in 2009. Two to three years after the initiation of the program, the folic acid supplementation rate increased to 85% in the areas of the highest NTD prevalence. The mean plasma folate level of women during early and mid-pregnancy doubled the level before the program was introduced. However, most women began taking folic acid supplements when they knew that they were pregnant. This is too late for the protection of the embryonic neural tube. In a post-program survey of the women who reported folic acid supplementation, less than a quarter of the women began taking supplements prior to pregnancy, indicating that the remaining three quarters of the fetuses remained unprotected during the time of neural tube formation. Therefore, staple food fortification with folic acid should be considered as a priority in the prevention of NTDs. PMID:26261765

  9. Control of neural crest cell dispersion in the trunk of the avian embryo.

    PubMed

    Erickson, C A

    1985-09-01

    Many hypotheses have been advanced to explain the orientation and directional migration of neural crest cells. These include positive and negative chemotaxis, haptotaxis, galvanotaxis, and contact inhibition. To test directly the factors that may control the directional dispersion of the neural crest, I have employed a variety of grafting techniques in living embryos. In addition, time-lapse video microscopy has been used to study neural crest cells in tissue culture. Trunk neural crest cells normally disperse from their origin at the dorsal neural tube along two extracellular pathways. One pathway extends laterally between the ectoderm and somites. When either pigmented neural crest cells or neural crest cells isolated from 24-hr cultures are grafted into the space lateral to the somites, they migrate: (1) medially toward the neural tube in the space between the ectoderm and somites and (2) ventrally along intersomitic blood vessels. Once the grafted cells contact the posterior cardinal vein and dorsal aorta they migrate along both blood vessels for several somite lengths in the anterior-posterior axis. Neural crest cells grafted lateral to the somites do not immediately move laterally into the somatic mesoderm of the body wall or the limb. Dispersion of neural crest cells into the mesoderm occurs only after blood vessels and nerves have first invaded, which the grafted cells then follow. The other neural crest pathway extends ventrally alongside the neural tube in the intersomitic space. When neural crest cells were grafted to a ventral position, between the notochord and dorsal aorta, in this intersomitic pathway at the axial level of the last somite, the grafted cells migrate rapidly within 2 hr in two directions: (1) dorsally, in the intersomitic space, until the grafted cells contact the ventrally moving stream of the host neural crest and (2) laterally, along the dorsal aorta and endoderm. All of the above experiments indicate that neither a preestablished

  10. Prospective identification and culture of rat enteric neural stem cells (ENSCs).

    PubMed

    Gao, Tingting; Chen, Haijiao; Liu, Mei; Ge, Wenliang; Yin, Qiyou

    2016-05-01

    Hirschprung's disease (HD), a very common congenital abnormality in children, occurs mainly due to the congenital developmental defect of the enteric nervous system. The absence of enteric ganglia from the distal gut due to deletion in gut colonization by neural crest progenitor cells may lead to HD. The capacity to identify and isolate the enteric neuronal precursor cells from developing and mature tissues would enable the development of cell replacement therapies for HD. However, a mature method to culture these cells is a challenge. The present study aimed to propose a method to culture enteric neural stem cells (ENSCs) from the DsRed transgenic fetal rat gut. The culture medium used contained 15 % chicken embryo extract, basic fibroblast growth factor, and epidermal growth factor. ENSCs were cultured from embryonic day 18 in DsRed transgenic rat. Under inverted microscope and fluorescence staining, ENSCs proliferated to form small cell clusters on the second day of culture. The neurospheres-like structure were suspended in the medium, and there were some filaments between the adherent cells from day 3 to day 6 of the culture. The neurospheres were formed by ENSCs on day 8 of the culture. Network-like connections were formed between the adherent cells and differentiated cells after adding 10 % FBS. The differentiated cells were positive for neurofilament and glial fibrillary acidic protein antibodies. The present study established a method to isolate and culture ENSCs from E18 DsRed transgenic rats in the terminal stage of embryonic development. This study would offer a way to obtain plenty of cells for the future research on the transplantation of HD. PMID:25407731

  11. Chemo-mechanical control of neural stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Geishecker, Emily R.

    Cellular processes such as adhesion, proliferation, and differentiation are controlled in part by cell interactions with the microenvironment. Cells can sense and respond to a variety of stimuli, including soluble and insoluble factors (such as proteins and small molecules) and externally applied mechanical stresses. Mechanical properties of the environment, such as substrate stiffness, have also been suggested to play an important role in cell processes. The roles of both biochemical and mechanical signaling in fate modification of stem cells have been explored independently. However, very few studies have been performed to study well-controlled chemo-mechanotransduction. The objective of this work is to design, synthesize, and characterize a chemo-mechanical substrate to encourage neuronal differentiation of C17.2 neural stem cells. In Chapter 2, Polyacrylamide (PA) gels of varying stiffnesses are functionalized with differing amounts of whole collagen to investigate the role of protein concentration in combination with substrate stiffness. As expected, neurons on the softest substrate were more in number and neuronal morphology than those on stiffer substrates. Neurons appeared locally aligned with an expansive network of neurites. Additional experiments would allow for statistical analysis to determine if and how collagen density impacts C17.2 differentiation in combination with substrate stiffness. Due to difficulties associated with whole protein approaches, a similar platform was developed using mixed adhesive peptides, derived from fibronectin and laminin, and is presented in Chapter 3. The matrix elasticity and peptide concentration can be individually modulated to systematically probe the effects of chemo-mechanical signaling on differentiation of C17.2 cells. Polyacrylamide gel stiffness was confirmed using rheological techniques and found to support values published by Yeung et al. [1]. Cellular growth and differentiation were assessed by cell counts

  12. Neural precursor cells induce cell death of high-grade astrocytomas via stimulation of TRPV1

    PubMed Central

    Stock, Kristin; Kumar, Jitender; Synowitz, Michael; Petrosino, Stefania; Imperatore, Roberta; Smith, Ewan St. J.; Wend, Peter; Purfürst, Bettina; Nuber, Ulrike A.; Gurok, Ulf; Matyash, Vitali; Wälzlein, Joo-Hee; Chirasani, Sridhar R.; Dittmar, Gunnar; Cravatt, Benjamin F.; Momma, Stefan; Lewin, Gary R.; Ligresti, Alessia; De Petrocellis, Luciano; Cristino, Luigia; Di Marzo, Vincenzo; Kettenmann, Helmut; Glass, Rainer

    2012-01-01

    Primary astrocytomas of World Health Organization grade 3 and grade 4 (HG-astrocytomas) are preponderant among adults and are almost invariably fatal despite multimodal therapy. Here, we show that the juvenile brain has an endogenous defense mechanism against HG-astrocytomas. Neural precursor cells (NPCs) migrate to HG-astrocytomas, reduce glioma expansion and prolong survival by releasing a group of fatty acid ethanolamides that have agonistic activity on the vanilloid receptor (transient receptor potential vanilloid subfamily member-1; TRPV1). TRPV1 expression is higher in HG-astrocytomas than in tumor-free brain and TRPV1 stimulation triggers tumor cell death via the activating transcription factor-3 (ATF3) controlled branch of the ER stress pathway. The anti-tumorigenic response of NPCs is lost with aging. NPC-mediated tumor suppression can be mimicked in the adult brain by systemic administration of the synthetic vanilloid Arvanil, suggesting that TRPV1 agonists hold potential as new HG-astrocytoma therapeutics. PMID:22820645

  13. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration.

    PubMed

    Richardson, Jo; Gauert, Anton; Briones Montecinos, Luis; Fanlo, Lucía; Alhashem, Zainalabdeen Mohmammed; Assar, Rodrigo; Marti, Elisa; Kabla, Alexandre; Härtel, Steffen; Linker, Claudia

    2016-05-31

    Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC) cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC) cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC) cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration. PMID:27210753

  14. [The Evolutionary Origin of Placodes and Neural Crest Cells

    NASA Technical Reports Server (NTRS)

    Bronner-Fraser, Marianne

    2003-01-01

    The long-term goal of this NASA-supported research is to understand the evolutionary origin of placodes and neural crest cells, with particular reference to evolution of the inner ear, and their evolutionary and developmental relationships. The cephalochordcate amphioxus, the closest living invertebrate relative of the vertebrates is used as a stand-in for the ancestral vertebrate. The research, which has supported one graduate student, Jr-Kai Yu, has resulted in ten publications by the Holland laboratory in peer-reviewed journals.

  15. History of Neural Stem Cell Research and Its Clinical Application.

    PubMed

    Takagi, Yasushi

    2016-01-01

    "Once development was ended…in the adult centers, the nerve paths are something fixed and immutable. Everything may die, nothing may be regenerated," wrote Santiago Ramón y Cajal, a Spanish neuroanatomist and Nobel Prize winner and the father of modern neuroscience. This statement was the central dogma in neuroscience for a long time. However, in the 1960s, neural stem cells (NSCs) were discovered. Since then, our knowledge about NSCs has continued to grow. This review focuses on our current knowledge about NSCs and their surrounding microenvironment. In addition, the clinical application of NSCs for the treatment of various central nervous system diseases is also summarized. PMID:26888043

  16. Reflectin as a Material for Neural Stem Cell Growth.

    PubMed

    Phan, Long; Kautz, Rylan; Arulmoli, Janahan; Kim, Iris H; Le, Dai Trang T; Shenk, Michael A; Pathak, Medha M; Flanagan, Lisa A; Tombola, Francesco; Gorodetsky, Alon A

    2016-01-13

    Cephalopods possess remarkable camouflage capabilities, which are enabled by their complex skin structure and sophisticated nervous system. Such unique characteristics have in turn inspired the design of novel functional materials and devices. Within this context, recent studies have focused on investigating the self-assembly, optical, and electrical properties of reflectin, a protein that plays a key role in cephalopod structural coloration. Herein, we report the discovery that reflectin constitutes an effective material for the growth of human neural stem/progenitor cells. Our findings may hold relevance both for understanding cephalopod embryogenesis and for developing improved protein-based bioelectronic devices. PMID:26703760

  17. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    PubMed Central

    Chevalier, N.R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  18. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    NASA Astrophysics Data System (ADS)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  19. Dscam-Mediated Cell Recognition Regulates Neural Circuit Formation

    PubMed Central

    Hattori, Daisuke; Millard, S. Sean; Wojtowicz, Woj M.; Zipursky, S. Lawrence

    2009-01-01

    The Dscam family of immunoglobulin cell surface proteins mediates recognition events between neurons that play an essential role in the establishment of neural circuits. The Drosophila Dscam1 locus encodes tens of thousands of cell surface proteins via alternative splicing. These isoforms exhibit exquisite isoform-specific binding in vitro that mediates homophilic repulsion in vivo. These properties provide the molecular basis for self-avoidance, an essential developmental mechanism that allows axonal and dendritic processes to uniformly cover their synaptic fields. In a mechanistically similar fashion, homophilic repulsion mediated by Drosophila Dscam2 prevents processes from the same class of cells from occupying overlapping synaptic fields through a process called tiling. Genetic studies in the mouse visual system support the view that vertebrate DSCAM also promotes both self-avoidance and tiling. By contrast, DSCAM and DSCAM-L promote layer-specific targeting in the chick visual system, presumably through promoting homophilic adhesion. The fly and mouse studies underscore the importance of homophilic repulsion in regulating neural circuit assembly, whereas the chick studies suggest that DSCA Mproteins may mediate a variety of different recognition events during wiring in a context-dependent fashion. PMID:18837673

  20. Vertebrate Neural Stem Cells: Development, Plasticity, and Regeneration.

    PubMed

    Shimazaki, Takuya

    2016-03-25

    Natural recovery from disease and damage in the adult mammalian central nervous system (CNS) is limited compared with that in lower vertebrate species, including fish and salamanders. Species-specific differences in the plasticity of the CNS reflect these differences in regenerative capacity. Despite numerous extensive studies in the field of CNS regeneration, our understanding of the molecular mechanisms determining the regenerative capacity of the CNS is still relatively poor. The discovery of adult neural stem cells (aNSCs) in mammals, including humans, in the early 1990s has opened up new possibilities for the treatment of CNS disorders via self-regeneration through the mobilization of these cells. However, we now know that aNSCs in mammals are not plastic enough to induce significant regeneration. In contrast, aNSCs in some regenerative species have been found to be as highly plastic as early embryonic neural stem cells (NSCs). We must expand our knowledge of NSCs and of regenerative processes in lower vertebrates in an effort to develop effective regenerative treatments for damaged CNS in humans. PMID:26853878

  1. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration.

    PubMed

    Chevalier, N R; Gazguez, E; Bidault, L; Guilbert, T; Vias, C; Vian, E; Watanabe, Y; Muller, L; Germain, S; Bondurand, N; Dufour, S; Fleury, V

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  2. Mesenchymal stem cells as mediators of neural differentiation.

    PubMed

    Hardy, Steven A; Maltman, Daniel J; Przyborski, Stefan A

    2008-01-01

    Mesenchymal stem cells (MSCs) represent a promising source of material for autologous cell transplantation therapies, in particular, their potential use for the treatment of damaged nervous tissue. Much of the work in this area has focused on the transplantation of MSCs into animal models of neurological disorders, including stroke and spinal cord injury. Although numerous studies have reported significant functional improvements in these systems, the exact mechanism(s) by which MSCs elicit recovery remains largely undefined. While it has been proposed that 'trans'-differentiation and/or cell fusion events underly MSC-mediated neural repair, there is considerable doubt that the low frequency of these phenomena is sufficient to account for the observed levels of recovery. Furthermore, in vitro studies call into question the ability of MSCs to produce authentic neural derivatives. In this review we focus on recent evidence indicating that transplanted MSCs promote endogenous repair of neurologically damaged areas via the release of soluble trophic factors and cytokines. Through the modern analysis of MSC-conditioned media it is becoming possible to gain new insight into the release and interplay of these soluble factors and their neurogenic effects. Ultimately this understanding may lead to the rational design of new therapies for the treatment of neurological and neurodegenerative disorders. PMID:18220922

  3. OXIDATIVE STRESS INDUCES CELL DEATH IN CD-1 MOUSE CRANIAL NEURAL CREST CELLS IN VITRO

    EPA Science Inventory

    OXIDATIVE STRESS INDUCES CELL DEATH IN CD-1 MOUSE CRANIAL NEURAL CREST CELLS IN VITRO. J.B. Smith, K.K. Sulik, E.S. Hunter III. University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
    The induction of craniofacial defects by ethanol exposure is mediated in part by...

  4. Premigratory and migratory neural crest cells are multipotent in vivo.

    PubMed

    Baggiolini, Arianna; Varum, Sandra; Mateos, José María; Bettosini, Damiano; John, Nessy; Bonalli, Mario; Ziegler, Urs; Dimou, Leda; Clevers, Hans; Furrer, Reinhard; Sommer, Lukas

    2015-03-01

    The neural crest (NC) is an embryonic stem/progenitor cell population that generates a diverse array of cell lineages, including peripheral neurons, myelinating Schwann cells, and melanocytes, among others. However, there is a long-standing controversy as to whether this broad developmental perspective reflects in vivo multipotency of individual NC cells or whether the NC is comprised of a heterogeneous mixture of lineage-restricted progenitors. Here, we resolve this controversy by performing in vivo fate mapping of single trunk NC cells both at premigratory and migratory stages using the R26R-Confetti mouse model. By combining quantitative clonal analyses with definitive markers of differentiation, we demonstrate that the vast majority of individual NC cells are multipotent, with only few clones contributing to single derivatives. Intriguingly, multipotency is maintained in migratory NC cells. Thus, our findings provide definitive evidence for the in vivo multipotency of both premigratory and migrating NC cells in the mouse. PMID:25748934

  5. Neural stem cells induce bone-marrow-derived mesenchymal stem cells to generate neural stem-like cells via juxtacrine and paracrine interactions

    SciTech Connect

    Alexanian, Arshak R. . E-mail: aalexan@mcw.edu

    2005-11-01

    Several recent reports suggest that there is far more plasticity that previously believed in the developmental potential of bone-marrow-derived cells (BMCs) that can be induced by extracellular developmental signals of other lineages whose nature is still largely unknown. In this study, we demonstrate that bone-marrow-derived mesenchymal stem cells (MSCs) co-cultured with mouse proliferating or fixed (by paraformaldehyde or methanol) neural stem cells (NSCs) generate neural stem cell-like cells with a higher expression of Sox-2 and nestin when grown in NS-A medium supplemented with N2, NSC conditioned medium (NSCcm) and bFGF. These neurally induced MSCs eventually differentiate into {beta}-III-tubulin and GFAP expressing cells with neuronal and glial morphology when grown an additional week in Neurobasal/B27 without bFGF. We conclude that juxtacrine interaction between NSCs and MSCs combined with soluble factors released from NSCs are important for generation of neural-like cells from bone-marrow-derived adherent MSCs.

  6. Antidepressants increase neural progenitor cells in the human hippocampus

    PubMed Central

    Boldrini, Maura; Underwood, Mark D.; Hen, René; Rosoklija, Gorazd B.; Dwork, Andrew J.; Mann, J. John; Arango, Victoria

    2009-01-01

    Selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs) increase neurogenesis in the dentate gyrus (DG) of rodents and nonhuman primates. We determined whether SSRIs or TCAs increase neural progenitor (NPCs) and dividing cells in the human DG in major depressive disorder (MDD). Whole frozen hippocampi from untreated subjects with MDD (N = 5), antidepressant-treated MDD (MDDT, N = 7), and controls (C, N = 7) were fixed, sectioned and immunostained for NPCs and dividing cell markers (nestin and Ki-67 respectively), NeuN and GFAP, in single and double labeling. NPC and dividing cell numbers in the DG were estimated by stereology. Clinical data were obtained by psychological autopsy and toxicological and neuropathological examination performed in all subjects. NPCs decreased with age (p = 0.034). Females had more NPCs than males (p = 0.023). Correcting for age and sex, MDDT receiving SSRIs had more NPCs than untreated MDD (p ≤ 0.001) and controls (p ≤ 0.001), NPCs were not different in SSRIs- and TCAs-treated MDDT (p = 0.169). Dividing cell number, unaffected by age or sex, was greater in MDDT receiving TCAs than in untreated MDD (p ≤ 0.001), SSRI-treated MDD (p = 0.001) and controls (p ≤ 0.001). The NPCs and dividing cells increase in MDDT was localized to the rostral DG. MDDT had a larger DG volume compared with untreated MDD or controls (p = 0.009). Antidepressants increase neural progenitor cell number in the anterior human dentate gyrus. Whether this finding is critical or necessary for the antidepressants effect remains to be determined. PMID:19606083

  7. Development of Multifunctional Magnetic Nanoparticles for Genetic Engineering and Tracking of Neural Stem Cells.

    PubMed

    Adams, Christopher; Israel, Liron Limor; Ostrovsky, Stella; Taylor, Arthur; Poptani, Harish; Lellouche, Jean-Paul; Chari, Divya

    2016-04-01

    Genetic modification of cell transplant populations and cell tracking ability are key underpinnings for effective cell therapies. Current strategies to achieve these goals utilize methods which are unsuitable for clinical translation because of related safety issues, and multiple protocol steps adding to cost and complexity. Multifunctional magnetic nanoparticles (MNPs) offering dual mode gene delivery and imaging contrast capacity offer a valuable tool in this context. Despite their key benefits, there is a critical lack of neurocompatible and multifunctional particles described for use with transplant populations for neurological applications. Here, a systematic screen of MNPs (using a core shown to cause contrast in magnetic resonance imaging (MRI)) bearing various surface chemistries (polyethylenimine (PEI) and oxidized PEI and hybrids of oxidized PEI/alginic acid, PEI/chitosan and PEI/polyamidoamine) is performed to test their ability to genetically engineer neural stem cells (NSCs; a cell population of high clinical relevance for central nervous system disorders). It is demonstrated that gene delivery to NSCs can be safely achieved using two of the developed formulations (PEI and oxPEI/alginic acid) when used in conjunction with oscillating magnetofection technology. After transfection, intracellular particles can be detected by histological procedures with labeled cells displaying contrast in MRI (for real time cell tracking). PMID:26867130

  8. Comprehensive Gene Expression Analysis of Human Embryonic Stem Cells during Differentiation into Neural Cells

    PubMed Central

    Fathi, Ali; Hatami, Maryam; Hajihosseini, Vahid; Fattahi, Faranak; Kiani, Sahar; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2011-01-01

    Global gene expression analysis of human embryonic stem cells (hESCs) that differentiate into neural cells would help to further define the molecular mechanisms involved in neurogenesis in humans. We performed a comprehensive transcripteome analysis of hESC differentiation at three different stages: early neural differentiation, neural ectoderm, and differentiated neurons. We identified and validated time-dependent gene expression patterns and showed that the gene expression patterns reflect early ESC differentiation. Sets of genes are induced in primary ectodermal lineages and then in differentiated neurons, constituting consecutive waves of known and novel genes. Pathway analysis revealed dynamic expression patterns of members of several signaling pathways, including NOTCH, mTOR and Toll like receptors (TLR), during neural differentiation. An interaction network analysis revealed that the TGFβ family of genes, including LEFTY1, ID1 and ID2, are possible key players in the proliferation and maintenance of neural ectoderm. Collectively, these results enhance our understanding of the molecular dynamics underlying neural commitment and differentiation. PMID:21829537

  9. Epithelial cell polarity genes are required for neural tube closure.

    PubMed

    Doudney, Kit; Stanier, Philip

    2005-05-15

    Human neural tube defects (NTD) are a heterogeneous group that exhibit complex inheritance, making it difficult to identify the underlying cause. Due to the uniform genetic background, inbred mouse strains are a more amenable target for genetic studies. We investigated the loop-tail (Lp) mouse as a model for the severe NTD, craniorachischisis. A homozygous point mutation was identified in the transmembrane protein Vangl2, which in Drosophila has been shown to function in the planar cell polarity (PCP) pathway. Morphological analysis of the Lp mice shows that the defect results from an abnormally broad floor plate, most likely through a failure in convergent extension. The elevated neural folds remain too far apart to contact, inhibiting neural tube closure. Recently, two other mouse mutants (crash and circletail) were described with a similar phenotype to Lp and were investigated as potentially new alleles. Mapping studies, however, showed that both mutants segregated to distinct loci. In the crash (Crsh) mouse, a mutation was identified in Celsr1, a seven pass transmembrane receptor that encodes a protein orthologous to Drosophila Flamingo. Like Vangl2, this gene also functions in the PCP pathway. While in circletail, a point mutation was identified introducing a premature stop codon into the apical-basal cell polarity gene scribble (Scrb1). We subsequently demonstrated a genetic interaction between all three genes, where double heterozygotes exhibit the same homozygous NTD phenotype. This strongly suggests both a candidate gene pathway and that interaction between independent recessive alleles may be a possible explanation for the complex inheritance in severe human NTD. PMID:15800847

  10. Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research

    PubMed Central

    Ouchi, Takehito; Shibata, Shinsuke; Fujimura, Takumi; Kawana, Hiromasa; Okano, Hideyuki; Nakagawa, Taneaki

    2016-01-01

    Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs). The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs) are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research. PMID:27006661

  11. TRIM32-dependent transcription in adult neural progenitor cells regulates neuronal differentiation.

    PubMed

    Hillje, A-L; Pavlou, M A S; Beckmann, E; Worlitzer, M M A; Bahnassawy, L; Lewejohann, L; Palm, T; Schwamborn, J C

    2013-01-01

    In the adult mammalian brain, neural stem cells in the subventricular zone continuously generate new neurons for the olfactory bulb. Cell fate commitment in these adult neural stem cells is regulated by cell fate-determining proteins. Here, we show that the cell fate-determinant TRIM32 is upregulated during differentiation of adult neural stem cells into olfactory bulb neurons. We further demonstrate that TRIM32 is necessary for the correct induction of neuronal differentiation in these cells. In the absence of TRIM32, neuroblasts differentiate slower and show gene expression profiles that are characteristic of immature cells. Interestingly, TRIM32 deficiency induces more neural progenitor cell proliferation and less cell death. Both effects accumulate in an overproduction of adult-generated olfactory bulb neurons of TRIM32 knockout mice. These results highlight the function of the cell fate-determinant TRIM32 for a balanced activity of the adult neurogenesis process. PMID:24357807

  12. Effects of Triclosan on Neural Stem Cell Viability and Survival

    PubMed Central

    Park, Bo Kyung; Gonzales, Edson Luck T.; Yang, Sung Min; Bang, Minji; Choi, Chang Soon; Shin, Chan Young

    2016-01-01

    Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from 1 μM to 50 μM and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at 50 μM induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation. PMID:26759708

  13. Effects of Triclosan on Neural Stem Cell Viability and Survival.

    PubMed

    Park, Bo Kyung; Gonzales, Edson Luck T; Yang, Sung Min; Bang, Minji; Choi, Chang Soon; Shin, Chan Young

    2016-01-01

    Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from 1 μM to 50 μM and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at 50 μM induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation. PMID:26759708

  14. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner

    SciTech Connect

    Han, Dasol; Byun, Sung-Hyun; Park, Soojeong; Kim, Juwan; Kim, Inhee; Ha, Soobong; Kwon, Mookwang; Yoon, Keejung

    2015-02-27

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)–dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. - Highlights: • Roles of YAP and Tead in vivo during mammalian brain development are clarified. • Expression of YAP promotes embryonic neural stem cell characteristics in vivo in a cell autonomous fashion. • Enhancement of neural stem cell characteristics by YAP depends on Tead. • Transcriptionally active form of Tead alone can recapitulate the effects of YAP. • Transcriptionally repressive form of Tead severely reduces stem cell characteristics.

  15. Activation of endogenous neural stem cells for multiple sclerosis therapy.

    PubMed

    Michailidou, Iliana; de Vries, Helga E; Hol, Elly M; van Strien, Miriam E

    2014-01-01

    Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system, leading to severe neurological deficits. Current MS treatment regimens, consist of immunomodulatory agents aiming to reduce the rate of relapses. However, these agents are usually insufficient to treat chronic neurological disability. A promising perspective for future therapy of MS is the regeneration of lesions with replacement of the damaged oligodendrocytes or neurons. Therapies targeting to the enhancement of endogenous remyelination, aim to promote the activation of either the parenchymal oligodendrocyte progenitor cells or the subventricular zone-derived neural stem cells (NSCs). Less studied but highly potent, is the strategy of neuronal regeneration with endogenous NSCs that although being linked to numerous limitations, is anticipated to ameliorate cognitive disability in MS. Focusing on the forebrain, this review highlights the role of NSCs in the regeneration of MS lesions. PMID:25653584

  16. Activation of endogenous neural stem cells for multiple sclerosis therapy

    PubMed Central

    Michailidou, Iliana; de Vries, Helga E.; Hol, Elly M.; van Strien, Miriam E.

    2015-01-01

    Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system, leading to severe neurological deficits. Current MS treatment regimens, consist of immunomodulatory agents aiming to reduce the rate of relapses. However, these agents are usually insufficient to treat chronic neurological disability. A promising perspective for future therapy of MS is the regeneration of lesions with replacement of the damaged oligodendrocytes or neurons. Therapies targeting to the enhancement of endogenous remyelination, aim to promote the activation of either the parenchymal oligodendrocyte progenitor cells or the subventricular zone-derived neural stem cells (NSCs). Less studied but highly potent, is the strategy of neuronal regeneration with endogenous NSCs that although being linked to numerous limitations, is anticipated to ameliorate cognitive disability in MS. Focusing on the forebrain, this review highlights the role of NSCs in the regeneration of MS lesions. PMID:25653584

  17. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation.

    PubMed

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias; Ponimaskin, Evgeni; Dityatev, Alexander

    2016-09-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  18. Stem cell-based therapy in neural repair.

    PubMed

    Hsu, Yi-Chao; Chen, Su-Liang; Wang, Dan-Yen; Chiu, Ing-Ming

    2013-01-01

    Cell-based therapy could aid in alleviating symptoms or even reversing the progression of neurodegenerative diseases and nerve injuries. Fibroblast growth factor 1 (FGF1) has been shown to maintain the survival of neurons and induce neurite outgrowth. Accumulating evidence suggests that combination of FGF1 and cell-based therapy is promising for future therapeutic application. Neural stem cells (NSCs), with the characteristics of self-renewal and multipotency, can be isolated from embryonic stem cells, embryonic ectoderm, and developing or adult brain tissues. For NSC clinical application, several critical problems remain to be resolved: (1) the source of NSCs should be personalized; (2) the isolation methods and protocols of human NSCs should be standardized; (3) the clinical efficacy of NSC transplants must be evaluated in more adequate animal models; and (4) the mechanism of intrinsic brain repair needs to be better characterized. In addition, the ideal imaging technique for tracking NSCs would be safe and yield high temporal and spatial resolution, good sensitivity and specificity. Here, we discuss recent progress and future development of cell-based therapy, such as NSCs, induced pluripotent stem cells, and induced neurons, in neurodegenerative diseases and peripheral nerve injuries. PMID:23806879

  19. Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link?

    PubMed Central

    Germano, Isabelle; Swiss, Victoria; Casaccia, Patrizia

    2010-01-01

    The discovery of brain tumor-derived cells (BTSC) with the properties of stem cells has led to the formulation of the hypothesis that neural stem cells could be the cell of origin of primary brain tumors (PBT). In this review we present the most common molecular changes in PBT, define the criteria of identification of BTSC and discuss the similarities between the characteristics of these cells and those of the endogenous population of neural stem cells (NPCs) residing in germinal areas of the adult brain. Finally, we propose possible mechanisms of cancer initiation and progression and suggest a model of tumor initiation that includes intrinsic changes of resident NSC and potential changes in the microenvironment defining the niche where the NSC reside. PMID:20045420

  20. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells.

    PubMed

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary; Zhu, Hongwen; Zhang, Jun; Liu, Jie; Liu, Hailiang; deVellis, Jean; Horvath, Steve; Sun, Yi Eve; Li, Siguang

    2015-05-21

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation. PMID:26000486

  1. Slits Affect the Timely Migration of Neural Crest Cells via Robo Receptor

    PubMed Central

    Giovannone, Dion; Reyes, Michelle; Reyes, Rachel; Correa, Lisa; Martinez, Darwin; Ra, Hannah; Gomez, Gustavo; Kaiser, Josh; Ma, Le; Stein, Mary-Pat; de Bellard, Maria Elena

    2013-01-01

    SUMMARY Background Neural crest cells emerge by delamination from the dorsal neural tube and give rise to various components of the peripheral nervous system in vertebrate embryos. These cells change from non-motile into highly motile cells migrating to distant areas before further differentiation. Mechanisms controlling delamination and subsequent migration of neural crest cells are not fully understood. Slit2, a chemorepellant for axonal guidance that repels and stimulates motility of trunk neural crest cells away from the gut has recently been suggested to be a tumor suppressor molecule. The goal of this study was to further investigate the role of Slit2 in trunk neural crest cell migration by constitutive expression in neural crest cells. Results We found that Slit gain-of-function significantly impaired neural crest cell migration while Slit loss-of-function favored migration. In addition, we observed that the distribution of key cytoskeletal markers was disrupted in both gain and loss of function instances. Conclusions These findings suggest that Slit molecules might be involved in the processes that allow neural crest cells to begin migration and transitioning to a mesenchymal type. PMID:22689303

  2. Cell-type-specific responses of RT4 neural cell lines to dibutyryl-cAMP: branch determination versus maturation

    SciTech Connect

    Droms, K.; Sueoka, N.

    1987-03-01

    This report describes the induction of cell-type-specific maturation, by dibutyryl-cAMP and testololactone, of neuronal and glial properties in a family of cell lines derived from a rat peripheral neurotumor, RT4. This maturation allows further understanding of the process of determination because of the close lineage relationship between the cell types of the RT4 family. The RT4 family is characterized by the spontaneous conversion of one of the cell types, RT4-AC (stem-cell type), to any of three derivative cell types, RT4-B, RT4-D, or RT4-E, with a frequency of about 10(-5). The RT4-AC cells express some properties characteristic of both neuronal and glial cells. Of these neural properties expressed by RT4-AC cells, only the neuronal properties are expressed by the RT4-B and RT4-E cells, and only the glial properties are expressed by the RT4-D cells. This in vitro cell-type conversion of RT4-AC to three derivative cell types is a branch point for the coordinate regulation of several properties and seems to resemble determination in vivo. In our standard culture conditions, several other neuronal and glial properties are not expressed by these cell types. However, addition of dibutyryl-cAMP induces expression of additional properties, in a cell-type-specific manner: formation of long cellular processes in the RT4-B8 and RT4-E5 cell lines and expression of high-affinity uptake of gamma-aminobutyric acid, by a glial-cell-specific mechanism, in the RT4-D6-2 cell line. These new properties are maximally expressed 2-3 days after addition of dibutyryl-cAMP.

  3. Neuroprotective Effects of Transplanted Mesenchymal Stromal Cells-derived Human Umbilical Cord Blood Neural Progenitor Cells in EAE.

    PubMed

    Rafieemehr, Hassan; Kheyrandish, Maryam; Soleimani, Masoud

    2015-12-01

    Multiple Sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the central nervous system. The aim of this study was to investigate the neuroprotective effects of transplanted human umbilical cord blood mesenchymal stromal cells (UCB-MSC) derived neural progenitor cell (MDNPC) in EAE, an experimental model of MS. To initiate neuronal differentiation of UCB-MSCs, the pre-induction medium was removed and replaced with induction media containing retinoic acid, b FGF, h EGF, NGF, IBMX and ascorbic acid for one week. The expression of neural genes was examined in comparison to control group by real-time PCR assay. Then, experimental autoimmune encephalitis (EAE) was induced using myelin oligodendrocyte glycoprotein (MOG, 35-55 peptides) in 24 C57BL/6 mice. After induction, the mice were divided in four groups (n=6) as follows: healthy, PBS, UCB-MSCs and MDNPC, respectively. At the end of the study, disease status in all the groups was analyzed using hematoxylin-eosin (H&E) staining of brain sections. We found that UCB-MSCs exhibit neuronal differentiation potential in vitro and transplanted MDNPC lowered clinical score and reduced CNS leukocyte infiltration compared to untreated mice. Our results showed that MDNPC from UCB may be a proper candidate for regenerative therapy in MS and other neurodegenerative diseases. PMID:26725557

  4. [Transplanted epidermal neural crest stem cell in a peripheral nerve gap].

    PubMed

    Zhang, Lu; Zhang, Jieyuan; Li, Bingcang; Liu, Zheng; Liu, Bin

    2014-04-01

    Neural crest stem cells originated from hair follicle (epidermal neural crest stem cell, EPI-NCSC) are easy to obtain and have potentials to differentiate into various tissues, which make them eminent seed cells for tissue engineering. EPI-NCSC is now used to repair nerve injury, especially, the spinal cord injury. To investigate their effects on repairing peripheral nerve injury, EPI-NCSC from a GFP-SD rat were primarily cultured on coated dishes and on a poly lactic acid coglycolic acid copolymer (PLGA) membrane. Methyl thiazolyl tetrazolium (MTT) assay showed that the initial adhesion rate of EPI-NCSC was 89.7% on PLGA membrane, and the relative growth rates were 89.3%, 87.6%, 85.6%, and 96.6% on the 1st, 3rd, 5th, 7th day respectively. Cell cycles and DNA ploidy analysis demonstrated that cell cycles and proliferation indexes of cultured EPI-NCSC had the same variation pattern on coated dishes and PLGA membrane. Then cultured EPI-NCSC were mixed with equal amount of extracellular matrix and injected into a PLGA conduit to connect a 10 mm surgery excision gap of rat sciatic nerve, Dulbecco's Modified Eagle's medium (DMEM) was used to substitute EPI-NCSC in the control group. After four weeks of transplantation, the defected sciatic nerve achieved a histological restoration, the sensory function of rat hind limb was partly recovered and the sciatic nerve index was also improved. The above results showed that a PLGA conduit filled with EPI-NCSC has a good repair effect on the peripheral nerve injury. PMID:25195250

  5. Stem Cell Bioprinting: Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells (Adv. Healthcare Mater. 12/2016).

    PubMed

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    On page 1429 G. G. Wallace, J. M. Crook, and co-workers report the first example of fabricating neural tissue by 3D bioprinting human neural stem cells. A novel polysaccharide based bioink preserves stem cell viability and function within the printed construct, enabling self-renewal and differentiation to neurons and supporting neuroglia. Neurons are predominantly GABAergic, establish networks, are spontaneously active, and show a bicuculline induced increased calcium response. PMID:27333401

  6. Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration

    PubMed Central

    Rost, Fabian; Nowoshilow, Sergej; Chara, Osvaldo; Tanaka, Elly M

    2015-01-01

    Axolotls are uniquely able to mobilize neural stem cells to regenerate all missing regions of the spinal cord. How a neural stem cell under homeostasis converts after injury to a highly regenerative cell remains unknown. Here, we show that during regeneration, axolotl neural stem cells repress neurogenic genes and reactivate a transcriptional program similar to embryonic neuroepithelial cells. This dedifferentiation includes the acquisition of rapid cell cycles, the switch from neurogenic to proliferative divisions, and the re-expression of planar cell polarity (PCP) pathway components. We show that PCP induction is essential to reorient mitotic spindles along the anterior-posterior axis of elongation, and orthogonal to the cell apical-basal axis. Disruption of this property results in premature neurogenesis and halts regeneration. Our findings reveal a key role for PCP in coordinating the morphogenesis of spinal cord outgrowth with the switch from a homeostatic to a regenerative stem cell that restores missing tissue. DOI: http://dx.doi.org/10.7554/eLife.10230.001 PMID:26568310

  7. VEGF signals induce trailblazer cell identity that drives neural crest migration.

    PubMed

    McLennan, Rebecca; Schumacher, Linus J; Morrison, Jason A; Teddy, Jessica M; Ridenour, Dennis A; Box, Andrew C; Semerad, Craig L; Li, Hua; McDowell, William; Kay, David; Maini, Philip K; Baker, Ruth E; Kulesa, Paul M

    2015-11-01

    Embryonic neural crest cells travel in discrete streams to precise locations throughout the head and body. We previously showed that cranial neural crest cells respond chemotactically to vascular endothelial growth factor (VEGF) and that cells within the migratory front have distinct behaviors and gene expression. We proposed a cell-induced gradient model in which lead neural crest cells read out directional information from a chemoattractant profile and instruct trailers to follow. In this study, we show that migrating chick neural crest cells do not display distinct lead and trailer gene expression profiles in culture. However, exposure to VEGF in vitro results in the upregulation of a small subset of genes associated with an in vivo lead cell signature. Timed addition and removal of VEGF in culture reveals the changes in neural crest cell gene expression are rapid. A computational model incorporating an integrate-and-switch mechanism between cellular phenotypes predicts migration efficiency is influenced by the timescale of cell behavior switching. To test the model hypothesis that neural crest cellular phenotypes respond to changes in the VEGF chemoattractant profile, we presented ectopic sources of VEGF to the trailer neural crest cell subpopulation and show diverted cell trajectories and stream alterations consistent with model predictions. Gene profiling of trailer cells that diverted and encountered VEGF revealed upregulation of a subset of 'lead' genes. Injection of neuropilin1 (Np1)-Fc into the trailer subpopulation or electroporation of VEGF morpholino to reduce VEGF signaling failed to alter trailer neural crest cell trajectories, suggesting trailers do not require VEGF to maintain coordinated migration. These results indicate that VEGF is one of the signals that establishes lead cell identity and its chemoattractant profile is critical to neural crest cell migration. PMID:26278036

  8. Neural-Induced Human Mesenchymal Stem Cells Promote Cochlear Cell Regeneration in Deaf Guinea Pigs

    PubMed Central

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Jun, Jae Yeoul; Park, Jong-Seong; Jeong, Han-Seong

    2015-01-01

    Objectives In mammals, cochlear hair cell loss is irreversible and may result in a permanent sensorineural hearing loss. Secondary to this hair cell loss, a progressive loss of spiral ganglion neurons (SGNs) is presented. In this study, we have investigated the effects of neural-induced human mesenchymal stem cells (NI-hMSCs) from human bone marrow on sensory neuronal regeneration from neomycin treated deafened guinea pig cochleae. Methods HMSCs were isolated from the bone marrow which was obtained from the mastoid process during mastoidectomy for ear surgery. Following neural induction with basic fibroblast growth factor and forskolin, we studied the several neural marker and performed electrophysiological analysis. NI-hMSCs were transplanted into the neomycin treated deafened guinea pig cochlea. Engraftment of NI-hMSCs was evaluated immunohistologically at 8 weeks after transplantation. Results Following neural differentiation, hMSCs expressed high levels of neural markers, ionic channel markers, which are important in neural function, and tetrodotoxin-sensitive voltage-dependent sodium currents. After transplantation into the scala tympani of damaged cochlea, NI-hMSCs-injected animals exhibited a significant increase in the number of SGNs compared to Hanks balanced salt solution-injected animals. Transplanted NI-hMSCs were found within the perilymphatic space, the organ of Corti, along the cochlear nerve fibers, and in the spiral ganglion. Furthermore, the grafted NI-hMSCs migrated into the spiral ganglion where they expressed the neuron-specific marker, NeuN. Conclusion The results show the potential of NI-hMSCs to give rise to replace the lost cochlear cells in hearing loss mammals. PMID:26045904

  9. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  10. A Novel Role for Lh3 Dependent ECM Modifications during Neural Crest Cell Migration in Zebrafish

    PubMed Central

    Banerjee, Santanu; Isaacman-Beck, Jesse; Schneider, Valerie A.; Granato, Michael

    2013-01-01

    During vertebrate development, trunk neural crest cells delaminate along the entire length of the dorsal neural tube and initially migrate as a non-segmented sheet. As they enter the somites, neural crest cells rearrange into spatially restricted segmental streams. Extracellular matrix components are likely to play critical roles in this transition from a sheet-like to a stream-like mode of migration, yet the extracellular matrix components and their modifying enzymes critical for this transition are largely unknown. Here, we identified the glycosyltransferase Lh3, known to modify extracellular matrix components, and its presumptive substrate Collagen18A1, to provide extrinsic signals critical for neural crest cells to transition from a sheet-like migration behavior to migrating as a segmental stream. Using live cell imaging we show that in lh3 null mutants, neural crest cells fail to transition from a sheet to a stream, and that they consequently enter the somites as multiple streams, or stall shortly after entering the somites. Moreover, we demonstrate that transgenic expression of lh3 in a small subset of somitic cells adjacent to where neural crest cells switch from sheet to stream migration restores segmental neural crest cell migration. Finally, we show that knockdown of the presumptive Lh3 substrate Collagen18A1 recapitulates the neural crest cell migration defects observed in lh3 mutants, consistent with the notion that Lh3 exerts its effect on neural crest cell migration by regulating post-translational modifications of Collagen18A1. Together these data suggest that Lh3–Collagen18A1 dependent ECM modifications regulate the transition of trunk neural crest cells from a non-segmental sheet like migration mode to a segmental stream migration mode. PMID:23349938

  11. Mimicking Neural Stem Cell Niche by Biocompatible Substrates

    PubMed Central

    Regalado-Santiago, Citlalli; Juárez-Aguilar, Enrique; Olivares-Hernández, Juan David; Tamariz, Elisa

    2016-01-01

    Neural stem cells (NSCs) participate in the maintenance, repair, and regeneration of the central nervous system. During development, the primary NSCs are distributed along the ventricular zone of the neural tube, while, in adults, NSCs are mainly restricted to the subependymal layer of the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus in the hippocampus. The circumscribed areas where the NSCs are located contain the secreted proteins and extracellular matrix components that conform their niche. The interplay among the niche elements and NSCs determines the balance between stemness and differentiation, quiescence, and proliferation. The understanding of niche characteristics and how they regulate NSCs activity is critical to building in vitro models that include the relevant components of the in vivo niche and to developing neuroregenerative approaches that consider the extracellular environment of NSCs. This review aims to examine both the current knowledge on neurogenic niche and how it is being used to develop biocompatible substrates for the in vitro and in vivo mimicking of extracellular NSCs conditions. PMID:26880934

  12. Brief Azacytidine Step Allows The Conversion of Suspension Human Fibroblasts into Neural Progenitor-Like Cells

    PubMed Central

    Mirakhori, Fahimeh; Zeynali, Bahman; Kiani, Sahar; Baharvand, Hossein

    2015-01-01

    In recent years transdifferentiation technology has enabled direct conversion of human fibroblasts to become a valuable, abundant and accessible cell source for patient-specific induced cell generation in biomedical research. The majority of transdifferentiation approaches rely upon viral gene delivery which due to random integration with the host genome can cause genome instability and tumorigenesis upon transplantation. Here, we provide a simple way to induce neural progenitor-like cells from human fibroblasts without genetic manipulation by changing physicochemical culture properties from monolayer culture into a suspension in the presence of a chemical DNA methyltransferase inhibitor agent, Azacytidine. We have demonstrated the expression of neural progenitor-like markers, morphology and the ability to spontaneously differentiate into neural-like cells. This approach is simple, inexpensive, lacks genetic manipulation and could be a foundation for future chemical neural transdifferentiation and a safe induction of neural progenitor cells from human fibroblasts for clinical applications. PMID:25870845

  13. Folic Acid supplementation and pregnancy: more than just neural tube defect prevention.

    PubMed

    Greenberg, James A; Bell, Stacey J; Guan, Yong; Yu, Yan-Hong

    2011-01-01

    Folate (vitamin B(9)) is an essential nutrient that is required for DNA replication and as a substrate for a range of enzymatic reactions involved in amino acid synthesis and vitamin metabolism. Demands for folate increase during pregnancy because it is also required for growth and development of the fetus. Folate deficiency has been associated with abnormalities in both mothers (anemia, peripheral neuropathy) and fetuses (congenital abnormalities). This article reviews the metabolism of folic acid, the appropriate use of folic acid supplementation in pregnancy, and the potential benefits of folic acid, as well as the possible supplementation of l-methylfolate for the prevention of pregnancy-related complications other than neural tube defects. PMID:22102928

  14. Promotion of Cell Migration by Neural Cell Adhesion Molecule (NCAM) Is Enhanced by PSA in a Polysialyltransferase-Specific Manner

    PubMed Central

    Guan, Feng; Wang, Xin; He, Fa

    2015-01-01

    Neural cell adhesion molecule 140 (NCAM-140) is a glycoprotein and always highly polysialylated in cancer. Functions of polysialic acid (PSA) that binds to N-glycan termini on NCAM remain unclear. ldlD-14 cells, a CHO cell mutant deficient in UDP-Gal 4-epimerase, are useful for structural and functional studies of Gal-containing glycoproteins because their abnormal glycosylation can be converted to normal status by exogenous addition of galactose (Gal). We cloned the genes for NCAM-140 and for polysialyltransferases STX and PST (responsible for PSA synthesis) from normal murine mammary gland epithelial (NMuMG) cells and transfected them into ldlD-14 and human breast cancer cells MCF-7. The effect of PSA on NCAM-mediated cell proliferation, motility, migration and adhesion was studied. We found that NCAM-140 significantly promoted cell proliferation, motility and migration, while polysialylation of NCAM-140 catalyzed by STX, but not by PST, enhanced NCAM-mediated cell migration, but not cell proliferation or motility. In addition, PSA catalyzed by different polysialyltransferases affected the adhesion of NCAM to different extracellular matrix (ECM) components. PMID:25885924

  15. Promotion of cell migration by neural cell adhesion molecule (NCAM) is enhanced by PSA in a polysialyltransferase-specific manner.

    PubMed

    Guan, Feng; Wang, Xin; He, Fa

    2015-01-01

    Neural cell adhesion molecule 140 (NCAM-140) is a glycoprotein and always highly polysialylated in cancer. Functions of polysialic acid (PSA) that binds to N-glycan termini on NCAM remain unclear. ldlD-14 cells, a CHO cell mutant deficient in UDP-Gal 4-epimerase, are useful for structural and functional studies of Gal-containing glycoproteins because their abnormal glycosylation can be converted to normal status by exogenous addition of galactose (Gal). We cloned the genes for NCAM-140 and for polysialyltransferases STX and PST (responsible for PSA synthesis) from normal murine mammary gland epithelial (NMuMG) cells and transfected them into ldlD-14 and human breast cancer cells MCF-7. The effect of PSA on NCAM-mediated cell proliferation, motility, migration and adhesion was studied. We found that NCAM-140 significantly promoted cell proliferation, motility and migration, while polysialylation of NCAM-140 catalyzed by STX, but not by PST, enhanced NCAM-mediated cell migration, but not cell proliferation or motility. In addition, PSA catalyzed by different polysialyltransferases affected the adhesion of NCAM to different extracellular matrix (ECM) components. PMID:25885924

  16. Co-existence of intact stemness and priming of neural differentiation programs in mES cells lacking Trim71

    PubMed Central

    Mitschka, Sibylle; Ulas, Thomas; Goller, Tobias; Schneider, Karin; Egert, Angela; Mertens, Jérôme; Brüstle, Oliver; Schorle, Hubert; Beyer, Marc; Klee, Kathrin; Xue, Jia; Günther, Patrick; Bassler, Kevin; Schultze, Joachim L.; Kolanus, Waldemar

    2015-01-01

    Regulatory networks for differentiation and pluripotency in embryonic stem (ES) cells have long been suggested to be mutually exclusive. However, with the identification of many new components of these networks ranging from epigenetic, transcriptional, and translational to even post-translational mechanisms, the cellular states of pluripotency and early differentiation might not be strictly bi-modal, but differentiating stem cells appear to go through phases of simultaneous expression of stemness and differentiation genes. Translational regulators such as RNA binding proteins (RBPs) and micro RNAs (miRNAs) might be prime candidates for guiding a cell from pluripotency to differentiation. Using Trim71, one of two members of the Tripartite motif (Trim) protein family with RNA binding activity expressed in murine ES cells, we demonstrate that Trim71 is not involved in regulatory networks of pluripotency but regulates neural differentiation. Loss of Trim71 in mES cells leaves stemness and self-maintenance of these cells intact, but many genes required for neural development are up-regulated at the same time. Concordantly, Trim71−/− mES show increased neural marker expression following treatment with retinoic acid. Our findings strongly suggest that Trim71 keeps priming steps of differentiation in check, which do not pre-require a loss of the pluripotency network in ES cells. PMID:26057209

  17. Dual small-molecule targeting of SMAD signaling stimulates human induced pluripotent stem cells toward neural lineages.

    PubMed

    Wattanapanitch, Methichit; Klincumhom, Nuttha; Potirat, Porntip; Amornpisutt, Rattaya; Lorthongpanich, Chanchao; U-pratya, Yaowalak; Laowtammathron, Chuti; Kheolamai, Pakpoom; Poungvarin, Niphon; Issaragrisil, Surapol

    2014-01-01

    Incurable neurological disorders such as Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD) are very common and can be life-threatening because of their progressive disease symptoms with limited treatment options. To provide an alternative renewable cell source for cell-based transplantation and as study models for neurological diseases, we generated induced pluripotent stem cells (iPSCs) from human dermal fibroblasts (HDFs) and then differentiated them into neural progenitor cells (NPCs) and mature neurons by dual SMAD signaling inhibitors. Reprogramming efficiency was improved by supplementing the histone deacethylase inhibitor, valproic acid (VPA), and inhibitor of p160-Rho associated coiled-coil kinase (ROCK), Y-27632, after retroviral transduction. We obtained a number of iPS colonies that shared similar characteristics with human embryonic stem cells in terms of their morphology, cell surface antigens, pluripotency-associated gene and protein expressions as well as their in vitro and in vivo differentiation potentials. After treatment with Noggin and SB431542, inhibitors of the SMAD signaling pathway, HDF-iPSCs demonstrated rapid and efficient differentiation into neural lineages. Six days after neural induction, neuroepithelial cells (NEPCs) were observed in the adherent monolayer culture, which had the ability to differentiate further into NPCs and neurons, as characterized by their morphology and the expression of neuron-specific transcripts and proteins. We propose that our study may be applied to generate neurological disease patient-specific iPSCs allowing better understanding of disease pathogenesis and drug sensitivity assays. PMID:25207966

  18. STAT3 modulation to enhance motor neuron differentiation in human neural stem cells.

    PubMed

    Natarajan, Rajalaxmi; Singal, Vinamrata; Benes, Richard; Gao, Junling; Chan, Hoi; Chen, Haijun; Yu, Yongjia; Zhou, Jia; Wu, Ping

    2014-01-01

    Spinal cord injury or amyotrophic lateral sclerosis damages spinal motor neurons and forms a glial scar, which prevents neural regeneration. Signal transducer and activator of transcription 3 (STAT3) plays a critical role in astrogliogenesis and scar formation, and thus a fine modulation of STAT3 signaling may help to control the excessive gliogenic environment and enhance neural repair. The objective of this study was to determine the effect of STAT3 inhibition on human neural stem cells (hNSCs). In vitro hNSCs primed with fibroblast growth factor 2 (FGF2) exhibited a lower level of phosphorylated STAT3 than cells primed by epidermal growth factor (EGF), which correlated with a higher number of motor neurons differentiated from FGF2-primed hNSCs. Treatment with STAT3 inhibitors, Stattic and Niclosamide, enhanced motor neuron differentiation only in FGF2-primed hNSCs, as shown by increased homeobox gene Hb9 mRNA levels as well as HB9+ and microtubule-associated protein 2 (MAP2)+ co-labeled cells. The increased motor neuron differentiation was accompanied by a decrease in the number of glial fibrillary acidic protein (GFAP)-positive astrocytes. Interestingly, Stattic and Niclosamide did not affect the level of STAT3 phosphorylation; rather, they perturbed the nuclear translocation of phosphorylated STAT3. In summary, we demonstrate that FGF2 is required for motor neuron differentiation from hNSCs and that inhibition of STAT3 further increases motor neuron differentiation at the expense of astrogliogenesis. Our study thus suggests a potential benefit of targeting the STAT3 pathway for neurotrauma or neurodegenerative diseases. PMID:24945434

  19. A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells

    PubMed Central

    Nitzan, Erez; Krispin, Shlomo; Pfaltzgraff, Elise R.; Klar, Avihu; Labosky, Patricia A.; Kalcheim, Chaya

    2013-01-01

    Understanding when and how multipotent progenitors segregate into diverse fates is a key question during embryonic development. The neural crest (NC) is an exemplary model system with which to investigate the dynamics of progenitor cell specification, as it generates a multitude of derivatives. Based on ‘in ovo’ lineage analysis, we previously suggested an early fate restriction of premigratory trunk NC to generate neural versus melanogenic fates, yet the timing of fate segregation and the underlying mechanisms remained unknown. Analysis of progenitors expressing a Foxd3 reporter reveals that prospective melanoblasts downregulate Foxd3 and have already segregated from neural lineages before emigration. When this downregulation is prevented, late-emigrating avian precursors fail to upregulate the melanogenic markers Mitf and MC/1 and the guidance receptor Ednrb2, generating instead glial cells that express P0 and Fabp. In this context, Foxd3 lies downstream of Snail2 and Sox9, constituting a minimal network upstream of Mitf and Ednrb2 to link melanogenic specification with migration. Consistent with the gain-of-function data in avians, loss of Foxd3 function in mouse NC results in ectopic melanogenesis in the dorsal tube and sensory ganglia. Altogether, Foxd3 is part of a dynamically expressed gene network that is necessary and sufficient to regulate fate decisions in premigratory NC. Their timely downregulation in the dorsal neural tube is thus necessary for the switch between neural and melanocytic phases of NC development. PMID:23615280

  20. A Src-Tks5 Pathway Is Required for Neural Crest Cell Migration during Embryonic Development

    PubMed Central

    Murphy, Danielle A.; Tsai, Jeff H.; Kawakami, Yasuhiko; Maurer, Jochen; Stewart, Rodney A.; Izpisúa-Belmonte, Juan Carlos; Courtneidge, Sara A.

    2011-01-01

    In the adult organism, cell migration is required for physiological processes such as angiogenesis and immune surveillance, as well as pathological events such as tumor metastasis. The adaptor protein and Src substrate Tks5 is necessary for cancer cell migration through extracellular matrix in vitro and tumorigenicity in vivo. However, a role for Tks5 during embryonic development, where cell migration is essential, has not been examined. We used morpholinos to reduce Tks5 expression in zebrafish embryos, and observed developmental defects, most prominently in neural crest-derived tissues such as craniofacial structures and pigmentation. The Tks5 morphant phenotype was rescued by expression of mammalian Tks5, but not by a variant of Tks5 in which the Src phosphorylation sites have been mutated. We further evaluated the role of Tks5 in neural crest cells and neural crest-derived tissues and found that loss of Tks5 impaired their ventral migration. Inhibition of Src family kinases also led to abnormal ventral patterning of neural crest cells and their derivatives. We confirmed that these effects were likely to be cell autonomous by shRNA-mediated knockdown of Tks5 in a murine neural crest stem cell line. Tks5 was required for neural crest cell migration in vitro, and both Src and Tks5 were required for the formation of actin-rich structures with similarity to podosomes. Additionally, we observed that neural crest cells formed Src-Tks5-dependent cell protrusions in 3-D culture conditions and in vivo. These results reveal an important and novel role for the Src-Tks5 pathway in neural crest cell migration during embryonic development. Furthermore, our data suggests that this pathway regulates neural crest cell migration through the generation of actin-rich pro-migratory structures, implying that similar mechanisms are used to control cell migration during embryogenesis and cancer metastasis. PMID:21799874

  1. Postnatal Neural Stem Cells in Treating Traumatic Brain Injury.

    PubMed

    Gazalah, Hussein; Mantash, Sarah; Ramadan, Naify; Al Lafi, Sawsan; El Sitt, Sally; Darwish, Hala; Azari, Hassan; Fawaz, Lama; Ghanem, Noël; Zibara, Kazem; Boustany, Rose-Mary; Kobeissy, Firas; Soueid, Jihane

    2016-01-01

    Traumatic brain injury (TBI) is one of the leading causes of death and disabilities worldwide. It affects approximately 1.5 million people each year and is associated with severe post-TBI symptoms such as sensory and motor deficits. Several neuro-therapeutic approaches ranging from cell therapy interventions such as the use of neural stem cells (NSCs) to drug-based therapies have been proposed for TBI management. Successful cell-based therapies are tightly dependent on reproducible preclinical animal models to ensure safety and optimal therapeutic benefits. In this chapter, we describe the isolation of NSCs from neonatal mouse brain using the neurosphere assay in culture. Subsequently, dissociated neurosphere-derived cells are used for transplantation into the ipsilateral cortex of a controlled cortical impact (CCI) TBI model in C57BL/6 mice. Following intra-cardiac perfusion and brain removal, the success of NSC transplantation is then evaluated using immunofluorescence in order to assess neurogenesis along with gliosis in the ipsilateral coronal brain sections. Behavioral tests including rotarod and pole climbing are conducted to evaluate the motor activity post-treatment intervention. PMID:27604746

  2. Chandelier Cells in Functional and Dysfunctional Neural Circuits

    PubMed Central

    Wang, Yiqing; Zhang, Peng; Wyskiel, Daniel R.

    2016-01-01

    Chandelier cells (ChCs; also called axo-axonic cells) are a specialized GABAergic interneuron subtype that selectively innervates pyramidal neurons at the axon initial segment (AIS), the site of action potential generation. ChC connectivity allows for powerful yet precise modulation of large populations of pyramidal cells, suggesting ChCs have a critical role in brain functions. Dysfunctions in ChC connectivity are associated with brain disorders such as epilepsy and schizophrenia; however, whether this is causative, contributory or compensatory is not known. A likely stumbling block toward mechanistic discoveries and uncovering potential therapeutic targets is the apparent lack of rudimentary understanding of ChCs. For example, whether cortical ChCs are inhibitory or excitatory remains unresolved, and thus whether altered ChC activity results in altered inhibition or excitation is not clear. Recent studies have shed some light onto this excitation-inhibition controversy. In addition, new findings have identified preferential cell-type connectivities established by cortical ChCs, greatly expanding our understanding of the role of ChCs in the cortical microcircuit. Here we aim to bring more attention to ChC connectivity to better understand its role in neural circuits, address whether ChCs are inhibitory or excitatory in light of recent findings and discuss ChC dysfunctions in brain disorders. PMID:27199673

  3. Chemokine-Mediated Migration of Mesencephalic Neural Crest Cells

    PubMed Central

    Rezzoug, Francine; Seelan, Ratnam S.; Bhattacherjee, Vasker; Greene, Robert M.; Pisano, M. Michele

    2011-01-01

    Clefts of the lip and/or palate are among the most prevalent birth defects affecting approximately 7000 newborns in the United States annually. Disruption of the developmentally programmed migration of neural crest cells (NCCs) into the orofacial region is thought to be one of the major causes of orofacial clefting. Signaling of the chemokine SDF-1 (Stromal Derived Factor-1) through its specific receptor, CXCR4, is required for the migration of many stem cell and progenitor cell populations from their respective sites of emergence to the regions where they differentiate into complex cell types, tissues and organs. In the present study, “transwell” assays of chick embryo mesencephalic (cranial) NCC migration and ex ovo whole embryo “bead implantation” assays were utilized to determine whether SDF-1/CXCR4 signaling mediates mesencephalic NCC migration. Results from this study demonstrate that attenuation of SDF-1 signaling, through the use of specific CXCR4 antagonists (AMD3100 and TN14003), disrupts the migration of mesencephalic NCCs into the orofacial region, suggesting a novel role for SDF-1/CXCR4 signaling in the directed migration of mesencephalic NCCs in the early stage embryo. PMID:22015108

  4. A fast neural-network algorithm for VLSI cell placement.

    PubMed

    Aykanat, Cevdet; Bultan, Tevfik; Haritaoğlu, Ismail

    1998-12-01

    Cell placement is an important phase of current VLSI circuit design styles such as standard cell, gate array, and Field Programmable Gate Array (FPGA). Although nondeterministic algorithms such as Simulated Annealing (SA) were successful in solving this problem, they are known to be slow. In this paper, a neural network algorithm is proposed that produces solutions as good as SA in substantially less time. This algorithm is based on Mean Field Annealing (MFA) technique, which was successfully applied to various combinatorial optimization problems. A MFA formulation for the cell placement problem is derived which can easily be applied to all VLSI design styles. To demonstrate that the proposed algorithm is applicable in practice, a detailed formulation for the FPGA design style is derived, and the layouts of several benchmark circuits are generated. The performance of the proposed cell placement algorithm is evaluated in comparison with commercial automated circuit design software Xilinx Automatic Place and Route (APR) which uses SA technique. Performance evaluation is conducted using ACM/SIGDA Design Automation benchmark circuits. Experimental results indicate that the proposed MFA algorithm produces comparable results with APR. However, MFA is almost 20 times faster than APR on the average. PMID:12662737

  5. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    PubMed Central

    Motohashi, Tsutomu; Watanabe, Natsuki; Nishioka, Masahiro; Nakatake, Yuhki; Yulan, Piao; Mochizuki, Hiromi; Kawamura, Yoshifumi; Ko, Minoru S. H.; Goshima, Naoki; Kunisada, Takahiro

    2016-01-01

    ABSTRACT Neural crest cells (NC cells) are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs) into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+) cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells. PMID:26873953

  6. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells.

    PubMed

    Motohashi, Tsutomu; Watanabe, Natsuki; Nishioka, Masahiro; Nakatake, Yuhki; Yulan, Piao; Mochizuki, Hiromi; Kawamura, Yoshifumi; Ko, Minoru S H; Goshima, Naoki; Kunisada, Takahiro

    2016-01-01

    Neural crest cells (NC cells) are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs) into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+) cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells. PMID:26873953

  7. The homeostatic astroglia emerges from evolutionary specialization of neural cells.

    PubMed

    Verkhratsky, Alexei; Nedergaard, Maiken

    2016-08-01

    Evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed from electrically excitable neuronal networks connected with chemical synapses and non-excitable glial cells that provide for homeostasis and defence. Astrocytes are integrated into neural networks through multipartite synapses; astroglial perisynaptic processes closely enwrap synaptic contacts and control homeostasis of the synaptic cleft, supply neurons with glutamate and GABA obligatory precursor glutamine and contribute to synaptic plasticity, learning and memory. In neuropathology, astrocytes may undergo reactive remodelling or degeneration; to a large extent, astroglial reactions define progression of the pathology and neurological outcome.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377722

  8. History of Neural Stem Cell Research and Its Clinical Application

    PubMed Central

    TAKAGI, Yasushi

    2016-01-01

    “Once development was ended…in the adult centers, the nerve paths are something fixed and immutable. Everything may die, nothing may be regenerated,” wrote Santiago Ramón y Cajal, a Spanish neuroanatomist and Nobel Prize winner and the father of modern neuroscience. This statement was the central dogma in neuroscience for a long time. However, in the 1960s, neural stem cells (NSCs) were discovered. Since then, our knowledge about NSCs has continued to grow. This review focuses on our current knowledge about NSCs and their surrounding microenvironment. In addition, the clinical application of NSCs for the treatment of various central nervous system diseases is also summarized. PMID:26888043

  9. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  10. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses.

    PubMed

    Cho, Myung Soo; Kim, Sang Jin; Ku, Seung-Yup; Park, Jung Hyun; Lee, Haksup; Yoo, Dae Hoon; Park, Un Chul; Song, Seul Ae; Choi, Young Min; Yu, Hyeong Gon

    2012-09-01

    Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy. PMID:22683799

  11. Effect of chitosan conduit under a dynamic culture on the proliferation and neural differentiation of human exfoliated deciduous teeth stem cells.

    PubMed

    Su, Wen-Ta; Shih, Yi-An; Ko, Chih-Sheng

    2016-06-01

    Ex vivo engineering of artificial nerve conduit is a suitable alternative clinical treatment for nerve injuries. Stem cells from human exfoliated deciduous teeth (SHEDs) have been considered as alternative sources of adult stem cells because of their potential to differentiate into multiple cell lineages. These cells, when cultured in six-well plates, exhibited a spindle fibroblastic morphology, whereas those under a dynamic culture aggregated into neurosphere-like clusters in the chitosan conduit. In this study, we confirmed that SHEDs efficiently express the neural stem cell marker nestin, the early neural cell marker β-III-tubulin, the late neural marker neuron-specific enolase and the glial cell markers glial fibrillary acidic protein (GFAP) and 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase). The three-dimensional chitosan conduit and dynamic culture system generated fluid shear stress and enhanced nutrient transfer, promoting the differentiation of SHEDs to neural cells. In particular, the gene expressions of GFAP and CNPase increased by 28- and 53-fold, respectively. This study provides evidence for the dynamic culture of SHEDs during ex vivo neural differentiation and demonstrates its potential for cell therapy in neurological diseases. Copyright © 2013 John Wiley & Sons, Ltd. PMID:24130037

  12. Transplantation of neural progenitor cells in chronic spinal cord injury.

    PubMed

    Jin, Y; Bouyer, J; Shumsky, J S; Haas, C; Fischer, I

    2016-04-21

    Previous studies demonstrated that neural progenitor cells (NPCs) transplanted into a subacute contusion injury improve motor, sensory, and bladder function. In this study we tested whether transplanted NPCs can also improve functional recovery after chronic spinal cord injury (SCI) alone or in combination with the reduction of glial scar and neurotrophic support. Adult rats received a T10 moderate contusion. Thirteen weeks after the injury they were divided into four groups and received either: 1. Medium (control), 2. NPC transplants, 3. NPC+lentivirus vector expressing chondroitinase, or 4. NPC+lentivirus vectors expressing chondroitinase and neurotrophic factors. During the 8weeks post-transplantation the animals were tested for functional recovery and eventually analyzed by anatomical and immunohistochemical assays. The behavioral tests for motor and sensory function were performed before and after injury, and weekly after transplantation, with some animals also tested for bladder function at the end of the experiment. Transplant survival in the chronic injury model was variable and showed NPCs at the injury site in 60% of the animals in all transplantation groups. The NPC transplants comprised less than 40% of the injury site, without significant anatomical or histological differences among the groups. All groups also showed similar patterns of functional deficits and recovery in the 12weeks after injury and in the 8weeks after transplantation using the Basso, Beattie, and Bresnahan rating score, the grid test, and the Von Frey test for mechanical allodynia. A notable exception was group 4 (NPC together with chondroitinase and neurotrophins), which showed a significant improvement in bladder function. This study underscores the therapeutic challenges facing transplantation strategies in a chronic SCI in which even the inclusion of treatments designed to reduce scarring and increase neurotrophic support produce only modest functional improvements. Further

  13. Whole Cell Patch Clamp for Investigating the Mechanisms of Infrared Neural Stimulation

    PubMed Central

    Brown, William G. A.; Needham, Karina; Nayagam, Bryony A.; Stoddart, Paul R.

    2013-01-01

    It has been demonstrated in recent years that pulsed, infrared laser light can be used to elicit electrical responses in neural tissue, independent of any further modification of the target tissue. Infrared neural stimulation has been reported in a variety of peripheral and sensory neural tissue in vivo, with particular interest shown in stimulation of neurons in the auditory nerve. However, while INS has been shown to work in these settings, the mechanism (or mechanisms) by which infrared light causes neural excitation is currently not well understood. The protocol presented here describes a whole cell patch clamp method designed to facilitate the investigation of infrared neural stimulation in cultured primary auditory neurons. By thoroughly characterizing the response of these cells to infrared laser illumination in vitro under controlled conditions, it may be possible to gain an improved understanding of the fundamental physical and biochemical processes underlying infrared neural stimulation. PMID:23929071

  14. Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke

    PubMed Central

    Moon, Sung Ung; Kim, Jihee; Bokara, Kiran Kumar; Kim, Jong Youl; Khang, Dongwoo; Webster, Thomas J; Lee, Jong Eun

    2012-01-01

    The present in vivo study was conducted to evaluate whether hydrophilic (HL) or hydrophobic (HP) carbon nanotubes (CNTs) impregnated with subventricular zone neural progenitor cells (SVZ NPCs) could repair damaged neural tissue following stroke. For this purpose, stroke damaged rats were transplanted with HL CNT-SVZ NPCs, HP CNT-SVZ NPCs, or SVZ NPCs alone for 1, 3, 5, and 8 weeks. Results showed that the HP CNT-SVZ NPC transplants improved rat behavior and reduced infarct cyst volume and infarct cyst area compared with the experimental control and the HL CNT-SVZ NPC and SVZ NPCs alone groups. The transplantation groups showed an increase in the expression of nestin (cell stemness marker) and proliferation which was evident with the increased number of doublecortin and bromodeoxyuridine double-stained immunopositive cells around the lesion site. But, these effects were more prominent in the HP CNT-SVZ NPC group compared with the other transplantation groups. The HP CNT-SVZ NPC and HL CNT-SVZ NPC transplants increased the number of microtubule-associated protein 2 (marker for neurons) and decreased the number of glial fibrillary acidic protein (marker for astroglial cells) positive cells within the injury epicenter. The majority of the transplanted HP CNT-SVZ NPCs collectively broadened around the ischemic injured region and the SVZ NPCs differentiated into mature neurons, attained the synapse morphology (TUJ1, synaptophysin), and decreased microglial activation (CD11b/c [OX-42]). For these reasons, this study provided the first evidence that CNTs can improve stem cell differentiation to heal stroke damage and, thus, deserve further attention. PMID:22701320

  15. Adult Palatum as a Novel Source of Neural Crest-Related Stem Cells

    PubMed Central

    Widera, Darius; Zander, Christin; Heidbreder, Meike; Kasperek, Yvonne; Noll, Thomas; Seitz, Oliver; Saldamli, Belma; Sudhoff, Holger; Sader, Robert; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2009-01-01

    Somatic neural and neural crest stem cells are promising sources for cellular therapy of several neurodegenerative diseases. However, because of practical considerations such as inadequate accessibility of the source material, the application of neural crest stem cells is strictly limited. The secondary palate is a highly regenerative and heavily innervated tissue, which develops embryonically under direct contribution of neural crest cells. Here, we describe for the first time the presence of nestin-positive neural crest-related stem cells within Meissner corpuscles and Merkel cell-neurite complexes located in the hard palate of adult Wistar rats. After isolation, palatal neural crest-related stem cells (pNC-SCs) were cultivated in the presence of epidermal growth factor and fibroblast growth factor under serum-free conditions, resulting in large amounts of neurospheres. We used immunocytochemical techniques and reverse transcriptase-polymerase chain reaction to assess the expression profile of pNC-SCs. In addition to the expression of neural crest stem cell markers such as Nestin, Sox2, and p75, we detected the expression of Klf4, Oct4, and c-Myc. pNC-SCs differentiated efficiently into neuronal and glial cells. Finally, we investigated the potential expression of stemness markers within the human palate. We identified expression of stem cell markers nestin and CD133 and the transcription factors needed for reprogramming of somatic cells into pluripotent cells: Sox2, Oct4, Klf4, and c-Myc. These data show that cells isolated from palatal rugae form neurospheres, are highly plastic, and express neural crest stem cell markers. In addition, pNC-SCs may have the ability to differentiate into functional neurons and glial cells, serving as a starting point for therapeutic studies. Stem Cells 2009;27:1899–1910 PMID:19544446

  16. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice

    SciTech Connect

    Fujimura, Juri; E-mail: juri-f@nms.ac.jp; Ogawa, Rei; Mizuno, Hiroshi; Fukunaga, Yoshitaka; Suzuki, Hidenori

    2005-07-22

    Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders.

  17. Successful elimination of non-neural cells and unachievable elimination of glial cells by means of commonly used cell culture manipulations during differentiation of GFAP and SOX2 positive neural progenitors (NHA) to neuronal cells

    PubMed Central

    Witusik, Monika; Piaskowski, Sylwester; Hulas-Bigoszewska, Krystyna; Zakrzewska, Magdalena; Gresner, Sylwia M; Azizi, S Ausim; Krynska, Barbara; Liberski, Pawel P; Rieske, Piotr

    2008-01-01

    Background Although extensive research has been performed to control differentiation of neural stem cells – still, the response of those cells to diverse cell culture conditions often appears to be random and difficult to predict. To this end, we strived to obtain stabilized protocol of NHA cells differentiation – allowing for an increase in percentage yield of neuronal cells. Results Uncommitted GFAP and SOX2 positive neural progenitors – so-called, Normal Human Astrocytes (NHA) were differentiated in different environmental conditions to: only neural cells consisted of neuronal [MAP2+, GFAP-] and glial [GFAP+, MAP2-] population, non-neural cells [CD44+, VIMENTIN+, FIBRONECTIN+, MAP2-, GFAP-, S100β-, SOX2-], or mixture of neural and non-neural cells. In spite of successfully increasing the percentage yield of glial and neuronal vs. non-neural cells by means of environmental changes, we were not able to increase significantly the percentage of neuronal (GABA-ergic and catecholaminergic) over glial cells under several different cell culture testing conditions. Supplementing serum-free medium with several growth factors (SHH, bFGF, GDNF) did not radically change the ratio between neuronal and glial cells – i.e., 1,1:1 in medium without growth factors and 1,4:1 in medium with GDNF, respectively. Conclusion We suggest that biotechnologists attempting to enrich in vitro neural cell cultures in one type of cells – such as that required for transplantology purposes, should consider the strong limiting influence of intrinsic factors upon extracellular factors commonly tested in cell culture conditions. PMID:18638414

  18. Enhanced Neural Cell Adhesion and Neurite Outgrowth on Graphene-Based Biomimetic Substrates

    PubMed Central

    Lee, Jong Ho; Kang, Seok Hee; Hwang, Eun Young; Hwang, Yu-Shik; Lee, Mi Hee; Park, Jong-Chul

    2014-01-01

    Neural cell adhesion and neurite outgrowth were examined on graphene-based biomimetic substrates. The biocompatibility of carbon nanomaterials such as graphene and carbon nanotubes (CNTs), that is, single-walled and multiwalled CNTs, against pheochromocytoma-derived PC-12 neural cells was also evaluated by quantifying metabolic activity (with WST-8 assay), intracellular oxidative stress (with ROS assay), and membrane integrity (with LDH assay). Graphene films were grown by using chemical vapor deposition and were then coated onto glass coverslips by using the scooping method. Graphene sheets were patterned on SiO2/Si substrates by using photolithography and were then covered with serum for a neural cell culture. Both types of CNTs induced significant dose-dependent decreases in the viability of PC-12 cells, whereas graphene exerted adverse effects on the neural cells just at over 62.5 ppm. This result implies that graphene and CNTs, even though they were the same carbon-based nanomaterials, show differential influences on neural cells. Furthermore, graphene-coated or graphene-patterned substrates were shown to substantially enhance the adhesion and neurite outgrowth of PC-12 cells. These results suggest that graphene-based substrates as biomimetic cues have good biocompatibility as well as a unique surface property that can enhance the neural cells, which would open up enormous opportunities in neural regeneration and nanomedicine. PMID:24592382

  19. Cadherin-6B undergoes macropinocytosis and clathrin-mediated endocytosis during cranial neural crest cell EMT

    PubMed Central

    Padmanabhan, Rangarajan; Taneyhill, Lisa A.

    2015-01-01

    The epithelial-to-mesenchymal transition (EMT) is important for the formation of migratory neural crest cells during development and is co-opted in human diseases such as cancer metastasis. Chick premigratory cranial neural crest cells lose intercellular contacts, mediated in part by Cadherin-6B (Cad6B), migrate extensively, and later form a variety of adult derivatives. Importantly, modulation of Cad6B is crucial for proper neural crest cell EMT. Although Cad6B possesses a long half-life, it is rapidly lost from premigratory neural crest cell membranes, suggesting the existence of post-translational mechanisms during EMT. We have identified a motif in the Cad6B cytoplasmic tail that enhances Cad6B internalization and reduces the stability of Cad6B upon its mutation. Furthermore, we demonstrate for the first time that Cad6B is removed from premigratory neural crest cells through cell surface internalization events that include clathrin-mediated endocytosis and macropinocytosis. Both of these processes are dependent upon the function of dynamin, and inhibition of Cad6B internalization abrogates neural crest cell EMT and migration. Collectively, our findings reveal the significance of post-translational events in controlling cadherins during neural crest cell EMT and migration. PMID:25795298

  20. Molecular Diversity Subdivides the Adult Forebrain Neural Stem Cell Population

    PubMed Central

    Giachino, Claudio; Basak, Onur; Lugert, Sebastian; Knuckles, Philip; Obernier, Kirsten; Fiorelli, Roberto; Frank, Stephan; Raineteau, Olivier; Alvarez–Buylla, Arturo; Taylor, Verdon

    2014-01-01

    Neural stem cells (NSCs) in the ventricular domain of the subventricular zone (V-SVZ) of rodents produce neurons throughout life while those in humans become largely inactive or may be lost during infancy. Most adult NSCs are quiescent, express glial markers, and depend on Notch signaling for their self-renewal and the generation of neurons. Using genetic markers and lineage tracing, we identified subpopulations of adult V-SVZ NSCs (type 1, 2, and 3) indicating a striking heterogeneity including activated, brain lipid binding protein (BLBP, FABP7) expressing stem cells. BLBP+ NSCs are mitotically active components of pinwheel structures in the lateral ventricle walls and persistently generate neurons in adulthood. BLBP+ NSCs express epidermal growth factor (EGF) receptor, proliferate in response to EGF, and are a major clonogenic population in the SVZ. We also find BLBP expressed by proliferative ventricular and sub-ventricular progenitors in the fetal and postnatal human brain. Loss of BLBP+ stem/progenitor cells correlates with reduced neurogenesis in aging rodents and postnatal humans. These findings of molecular heterogeneity and proliferative differences subdivide the NSC population and have implications for neurogenesis in the forebrain of mammals during aging. PMID:23964022

  1. Molecular Evolution of Drosophila Germline Stem Cell and Neural Stem Cell Regulating Genes

    PubMed Central

    Choi, Jae Young; Aquadro, Charles F.

    2015-01-01

    Here, we study the molecular evolution of a near complete set of genes that had functional evidence in the regulation of the Drosophila germline and neural stem cell. Some of these genes have previously been shown to be rapidly evolving by positive selection raising the possibility that stem cell genes as a group have elevated signatures of positive selection. Using recent Drosophila comparative genome sequences and population genomic sequences of Drosophila melanogaster, we have investigated both long- and short-term evolution occurring across these two different stem cell systems, and compared them with a carefully chosen random set of genes to represent the background rate of evolution. Our results showed an excess of genes with evidence of a recent selective sweep in both germline and neural stem cells in D. melanogaster. However compared with their control genes, both stem cell systems had no significant excess of genes with long-term recurrent positive selection in D. melanogaster, or across orthologous sequences from the melanogaster group. The evidence of long-term positive selection was limited to a subset of genes with specific functions in both the germline and neural stem cell system. PMID:26507797

  2. Principal component analysis and neural networks for detection of amino acid biosignatures

    NASA Astrophysics Data System (ADS)

    Dorn, Evan D.; McDonald, Gene D.; Storrie-Lombardi, Michael C.; Nealson, Kenneth H.

    2003-12-01

    We examine the applicability of Principal Component Analysis (PCA) and Artificial Neural Network (ANN) methods of data analysis to biosignature detection. These techniques show promise in classifying and simplifying the representation of patterns of amino acids resulting from biological and non-biological syntheses. PCA correctly identifies glycine and alanine as the amino acids contributing the most information to the task of discriminating biotic and abiotic samples. Trained ANNs correctly classify between 86.1 and 99.5% of a large set of amino acid samples as biotic or abiotic. These and similar techniques are important in the design of automated data analysis systems for robotic missions to distant planetary bodies. Both techniques are robust with respect to noisy and incomplete data. Analysis of the performance of PCA and ANNs also lends insight into the localization of useful information within a particular data set, a feature that may be exploited in the selection of experiments for efficient mission design.

  3. Characterization of neural stemness status through the neurogenesis process for bone marrow mesenchymal stem cells.

    PubMed

    Mohammad, Maeda H; Al-Shammari, Ahmed M; Al-Juboory, Ahmad Adnan; Yaseen, Nahi Y

    2016-01-01

    The in vitro isolation, identification, differentiation, and neurogenesis characterization of the sources of mesenchymal stem cells (MSCs) were investigated to produce two types of cells in culture: neural cells and neural stem cells (NSCs). These types of stem cells were used as successful sources for the further treatment of central nervous system defects and injuries. The mouse bone marrow MSCs were used as the source of the stem cells in this study. β-Mercaptoethanol (BME) was used as the main inducer of the neurogenesis pathway to induce neural cells and to identify NSCs. Three types of neural markers were used: nestin as the immaturation stage marker, neurofilament light chain as the early neural marker, and microtubule-associated protein 2 as the maturation marker through different time intervals in the neurogenesis process starting from the MSCs, (as undifferentiated cells), NSCs, production stages, and toward neuron cells (as differentiated cells). The results of different exposure times to BME of the neural markers analysis done by immunocytochemistry and real time-polymerase chain reaction helped us to identify the exact timing for the neural stemness state. The results showed that the best exposure time that may be used for the production of NSCs was 6 hours. The best maintenance media for NSCs were also identified. Furthermore, we optimized exposure to BME with different times and concentrations, which could be an interesting way to modulate specific neuronal differentiation and obtain autologous neuronal phenotypes. This study was able to characterize NSCs in culture under differentiation for neurogenesis in the pathway of the neural differentiation process by studying the expressed neural genes and the ability to maintain these NSCs in culture for further differentiation in thousands of functional neurons for the treatment of brain and spinal cord injuries and defects. PMID:27143939

  4. Characterization of neural stemness status through the neurogenesis process for bone marrow mesenchymal stem cells

    PubMed Central

    Mohammad, Maeda H; Al-shammari, Ahmed M; Al-Juboory, Ahmad Adnan; Yaseen, Nahi Y

    2016-01-01

    The in vitro isolation, identification, differentiation, and neurogenesis characterization of the sources of mesenchymal stem cells (MSCs) were investigated to produce two types of cells in culture: neural cells and neural stem cells (NSCs). These types of stem cells were used as successful sources for the further treatment of central nervous system defects and injuries. The mouse bone marrow MSCs were used as the source of the stem cells in this study. β-Mercaptoethanol (BME) was used as the main inducer of the neurogenesis pathway to induce neural cells and to identify NSCs. Three types of neural markers were used: nestin as the immaturation stage marker, neurofilament light chain as the early neural marker, and microtubule-associated protein 2 as the maturation marker through different time intervals in the neurogenesis process starting from the MSCs, (as undifferentiated cells), NSCs, production stages, and toward neuron cells (as differentiated cells). The results of different exposure times to BME of the neural markers analysis done by immunocytochemistry and real time-polymerase chain reaction helped us to identify the exact timing for the neural stemness state. The results showed that the best exposure time that may be used for the production of NSCs was 6 hours. The best maintenance media for NSCs were also identified. Furthermore, we optimized exposure to BME with different times and concentrations, which could be an interesting way to modulate specific neuronal differentiation and obtain autologous neuronal phenotypes. This study was able to characterize NSCs in culture under differentiation for neurogenesis in the pathway of the neural differentiation process by studying the expressed neural genes and the ability to maintain these NSCs in culture for further differentiation in thousands of functional neurons for the treatment of brain and spinal cord injuries and defects. PMID:27143939

  5. TLR2 Activation Inhibits Embryonic Neural Progenitor Cell Proliferation

    PubMed Central

    Okun, Eitan; Griffioen, Kathleen J.; Gen-Son, Tae; Lee, Jong-Hwan; Roberts, Nicholas J.; Mughal, Mohamed R.; Hutchison, Emmette; Cheng, Aiwu; Arumugam, Thiruma V.; Lathia, Justin D.; van Praag, Henriette; Mattson, Mark P.

    2010-01-01

    Toll-like receptors (TLRs) play essential roles in innate immunity, and increasing evidence indicates that these receptors are expressed in neurons, astrocytes and microglia in the brain, where they mediate responses to infection, stress and injury. To address the possibility that TLR2 heterodimer activation could affect progenitor cells in the developing brain, we analyzed the expression of TLR2 throughout the mouse cortical development, and assessed the role of TLR2 heterodimer activation in neural progenitor cell (NPC) proliferation. TLR2 mRNA and protein was expressed in the cortex in embryonic and early postnatal stages of development, and in cultured cortical NPC. While NPC from TLR2-deficient and wild type embryos had the same proliferative capacity, TLR2 activation by the synthetic bacterial lipopeptides Pam3CSK4 and FSL1, or low molecular weight hyaluronan, an endogenous ligand for TLR2, inhibited neurosphere formation in vitro. Intracerebral in utero administration of TLR2 ligands resulted in ventricular dysgenesis characterized by increased ventricle size, reduced proliferative area around the ventricles, increased cell density, an increase in PH3+ cells and a decrease in BrdU+ cells in the sub-ventricular zone. Our findings indicate that loss of TLR2 does not result in defects in cerebral development. However, TLR2 is expressed and functional in the developing telencephalon from early embryonic stages and infectious agent-related activation of TLR2 inhibits NPC proliferation. TLR2–mediated inhibition of NPC proliferation may therefore be a mechanism by which infection, ischemia and inflammation adversely affect brain development. PMID:20456021

  6. Effects of Near-Infrared Laser on Neural Cell Activity

    NASA Astrophysics Data System (ADS)

    Mochizuki-Oda, Noriko; Kataoka, Yosky; Yamada, Hisao; Awazu, Kunio

    2004-08-01

    Near-infrared laser has been used to relieve patients from various kinds of pain caused by postherpetic neuralgesia, myofascial dysfunction, surgical and traumatic wound, cancer, and rheumatoid arthritis. Clinically, He-Ne (λ=632.8 nm, 780 nm) and Ga-Al-As (805 ± 25 nm) lasers are used to irradiate trigger points or nerve ganglion. However the precise mechanisms of such biological actions of the laser have not yet been resolved. Since laser therapy is often effective to suppress the pain caused by hyperactive excitation of sensory neurons, interactions with laser light and neural cells are suggested. As neural excitation requires large amount of energy liberated from adenosine triphosphate (ATP), we examined the effect of 830-nm laser irradiation on the energy metabolism of the rat central nervous system and isolated mitochondria from brain. The diode laser was applied for 15 min with irradiance of 4.8 W/cm2 on a 2 mm-diameter spot at the brain surface. Tissue ATP content of the irradiated area in the cerebral cortex was 19 % higher than that of the non-treated area (opposite side of the cortex), whereas the ADP content showed no significant difference. Irradiation at another wavelength (652 nm) had no effect on either ATP or ADP contents. The temperature of the brain tissue was increased 4.5 - 5.0 °C during the irradiation of both 830-nm and 652-nm laser light. Direct irradiation of the mitochondrial suspension did not show any wavelength-dependent acceleration of respiration rate nor ATP synthesis. These results suggest that the increase in tissue ATP content did not result from the thermal effect, but from specific effect of the laser operated at 830 nm. Electrophysiological studies showed the hyperpolarization of membrane potential of isolated neurons and decrease in membrane resistance with irradiation of the laser, suggesting an activation of potassium channels. Intracellular ATP is reported to regulate some kinds of potassium channels. Possible mechanisms

  7. The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells

    SciTech Connect

    Khalifa, Shaden A.M.; Medina, Philippe de; Erlandsson, Anna; El-Seedi, Hesham R.; Silvente-Poirot, Sandrine; Poirot, Marc

    2014-04-11

    Highlights: • Dendrogenin A and B are new aminoalkyl oxysterols. • Dendrogenins stimulated neural stem cells proliferation. • Dendrogenins induce neuronal outgrowth from neurospheres. • Dendrogenins provide new therapeutic options for neurodegenerative disorders. - Abstract: Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain.

  8. Mild hypothermia combined with a scaffold of NgR-silenced neural stem cells/Schwann cells to treat spinal cord injury

    PubMed Central

    Wang, Dong; Liang, Jinhua; Zhang, Jianjun; Liu, Shuhong; Sun, Wenwen

    2014-01-01

    Because the inhibition of Nogo proteins can promote neurite growth and nerve cell differentiation, a cell-scaffold complex seeded with Nogo receptor (NgR)-silenced neural stem cells and Schwann cells may be able to improve the microenvironment for spinal cord injury repair. Previous studies have found that mild hypothermia helps to attenuate secondary damage in the spinal cord and exerts a neuroprotective effect. Here, we constructed a cell-scaffold complex consisting of a poly(D,L-lactide-co-glycolic acid) (PLGA) scaffold seeded with NgR-silenced neural stem cells and Schwann cells, and determined the effects of mild hypothermia combined with the cell-scaffold complexes on the spinal cord hemi-transection injury in the T9 segment in rats. Compared with the PLGA group and the NgR-silencing cells + PLGA group, hindlimb motor function and nerve electrophysiological function were clearly improved, pathological changes in the injured spinal cord were attenuated, and the number of surviving cells and nerve fibers were increased in the group treated with the NgR-silenced cell scaffold + mild hypothermia at 34°C for 6 hours. Furthermore, fewer pathological changes to the injured spinal cord and more surviving cells and nerve fibers were found after mild hypothermia therapy than in injuries not treated with mild hypothermia. These experimental results indicate that mild hypothermia combined with NgR gene-silenced cells in a PLGA scaffold may be an effective therapy for treating spinal cord injury. PMID:25657741

  9. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    SciTech Connect

    Wang, Guang; Li, Yan; Wang, Xiao-yu; Han, Zhe; Chuai, Manli; Wang, Li-jing; Ho Lee, Kenneth Ka; Geng, Jian-guo; Yang, Xuesong

    2013-05-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1{sup +} migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug{sup +} pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1{sup +} migrating NCCs but reduced Pax7 expression and fewer Slug{sup +} pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube

  10. Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons

    NASA Astrophysics Data System (ADS)

    Akhavan, Omid; Ghaderi, Elham

    2013-10-01

    For the application of human neural stem cells (hNSCs) in neural regeneration and brain repair, it is necessary to stimulate hNSC differentiation towards neurons rather than glia. Due to the unique properties of graphene in stem cell differentiation, here we introduce reduced graphene oxide (rGO)/TiO2 heterojunction film as a biocompatible flash photo stimulator for effective differentiation of hNSCs into neurons. Using the stimulation, the number of cell nuclei on rGO/TiO2 increased by a factor of ~1.5, while on GO/TiO2 and TiO2 it increased only ~48 and 24%, respectively. Moreover, under optimum conditions of flash photo stimulation (10 mW cm-2 flash intensity and 15.0 mM ascorbic acid in cell culture medium) not only did the number of cell nuclei and neurons differentiated on rGO/TiO2 significantly increase (by factors of ~2.5 and 3.6), but also the number of glial cells decreased (by a factor of ~0.28). This resulted in a ~23-fold increase in the neural to glial cell ratio. Such highly accelerated differentiation was assigned to electron injection from the photoexcited TiO2 into the cells on the rGO through Ti-C and Ti-O-C bonds. The role of ascorbic acid, as a scavenger of the photoexcited holes, in flash photo stimulation was studied at various concentrations and flash intensities.

  11. Twist1 Controls a Cell-Specification Switch Governing Cell Fate Decisions within the Cardiac Neural Crest

    PubMed Central

    Vincentz, Joshua W.; Firulli, Beth A.; Lin, Andrea; Spicer, Douglas B.; Howard, Marthe J.; Firulli, Anthony B.

    2013-01-01

    Neural crest cells are multipotent progenitor cells that can generate both ectodermal cell types, such as neurons, and mesodermal cell types, such as smooth muscle. The mechanisms controlling this cell fate choice are not known. The basic Helix-loop-Helix (bHLH) transcription factor Twist1 is expressed throughout the migratory and post-migratory cardiac neural crest. Twist1 ablation or mutation of the Twist-box causes differentiation of ectopic neuronal cells, which molecularly resemble sympathetic ganglia, in the cardiac outflow tract. Twist1 interacts with the pro-neural factor Sox10 via its Twist-box domain and binds to the Phox2b promoter to repress transcriptional activity. Mesodermal cardiac neural crest trans-differentiation into ectodermal sympathetic ganglia-like neurons is dependent upon Phox2b function. Ectopic Twist1 expression in neural crest precursors disrupts sympathetic neurogenesis. These data demonstrate that Twist1 functions in post-migratory neural crest cells to repress pro-neural factors and thereby regulate cell fate determination between ectodermal and mesodermal lineages. PMID:23555309

  12. Cell polarity pathways converge and extend to regulate neural tube closure.

    PubMed

    Zohn, Irene E; Chesnutt, Catherine R; Niswander, Lee

    2003-09-01

    Neural tube defects, such as spinabifida, craniorachischisis and anencephaly, are some of the most common birth defects in humans. Recent studies in mouse model systems suggest that craniorachischisis is associated with mutations in genes that regulate cell polarity. Using Xenopus as a model system, Wallingford and Harland have now shed light on the mechanism by which these pathways affect neural tube closure. PMID:12946622

  13. Development of novel microfluidic platforms for neural stem cell research

    NASA Astrophysics Data System (ADS)

    Chung, Bonggeun

    This dissertation describes the development and characterization of novel microfluidic platforms to study proliferation, differentiation, migration, and apoptosis of neural stem cells (NSCs). NSCs hold tremendous promise for fundamental biological studies and cell-based therapies in human disorders. NSCs are defined as cells that can self-renew yet maintain the ability to generate the three principal cell types of the central nervous system such as neurons, astrocytes, and oligodendrocytes. NSCs therefore have therapeutic possibilities in multiple neurodevelopmental and neurodegenerative diseases. Despite their promise, cell-based therapies are limited by the inability to precisely control their behavior in culture. Compared to traditional culture tools, microfluidic platforms can provide much greater control over cell microenvironments and optimize proliferation and differentiation conditions of cells exposed to combinatorial mixtures of growth factors. Human NSCs were cultured for more than 1 week in the microfluidic device while constantly exposed to a continuous gradient of a growth factor mixture. NSCs proliferated and differentiated in a graded and proportional fashion that varied directly with growth factor concentration. In parallel to the study of growth and differentiation of NSCs, we are interested in proliferation and apoptosis of mouse NSCs exposed to morphogen gradients. Morphogen gradients are fundamental to animal brain development. Nonetheless, much controversy remains about the mechanisms by which morphogen gradients act on the developing brain. To overcome limitations of in-vitro models of gradients, we have developed a hybrid microfluidic platform that can mimic morphogen gradient profiles. Bone morphogenetic protein (BMP) activity in the developing cortex is graded and cortical NSC responses to BMPs are highly dependent on concentration and gradient slope of BMPs. To make novel microfluidic devices integrated with multiple functions, we have

  14. Systems Biology Approach to Imaging of Neural Stem Cells

    PubMed Central

    Ma, Li Hua; Li, Yao; Djurić, Petar M.; Maletić-Savatić, Mirjana

    2013-01-01

    Over the past decade, the advances in human brain magnetic resonance imaging (MRI) have significantly improved our ability to gain insightful information about the structure and function of the brain. One of the MRI imaging modalities that still awaits more comprehensive data mining is magnetic resonance spectroscopy (MRS). MRS provides information on the functional status of the brain tissue and can detect metabolic abnormalities that precede structural changes. The chemical specificity of proton MRS (1H-MRS) allows detection of several biomarkers that are specific for neurons (N-acetyl aspartate, NAA) and astrocytes (myoinositol (mI) and choline (Cho)), the two most abundant cell types present in the brain tissue. However, apart from a dozen metabolites, current methodologies utilized for MRS analysis do not allow further biomarker discoveries. Herein, we introduce a bioinformatics approach to MRS data processing and discuss possible discoveries that such approach may provide. Specifically, we describe the methodology for neural stem/progenitor cell (NPC) detection in vitro and in vivo, utilizing metabolomic profiling and singular value decomposition analyses. PMID:21279615

  15. Effects of melatonin and its analogues on neural stem cells.

    PubMed

    Chu, Jiaqi; Tu, Yalin; Chen, Jingkao; Tan, Dunxian; Liu, Xingguo; Pi, Rongbiao

    2016-01-15

    Neural stem cells (NSCs) are multipotent cells which are capable of self-replication and differentiation into neurons, astrocytes or oligodendrocytes in the central nervous system (CNS). NSCs are found in two main regions in the adult brain: the subgranular zone (SGZ) in the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ). The recent discovery of NSCs in the adult mammalian brain has fostered a plethora of translational and preclinical studies to investigate novel approaches for the therapy of neurodegenerative diseases. Melatonin is the major secretory product synthesized and secreted by the pineal gland and shows both a wide distribution within phylogenetically distant organisms from bacteria to humans and a great functional versatility. Recently, accumulated experimental evidence showed that melatonin plays an important role in NSCs, including its proliferation, differentiation and survival, which are modulated by many factors including MAPK/ERK signaling pathway, histone acetylation, neurotrophic factors, transcription factors, and apoptotic genes. The purpose of this review is to summarize the beneficial effects of melatonin on NSCs and further to discuss the potential usage of melatonin and its derivatives or analogues in the treatment of CNS neurodegenerative diseases. PMID:26499395

  16. Neural stem/progenitor cells in Alzheimer’s disease

    PubMed Central

    Tincer, Gizem; Mashkaryan, Violeta; Bhattarai, Prabesh; Kizil, Caghan

    2016-01-01

    Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease and a worldwide health challenge. Different therapeutic approaches are being developed to reverse or slow the loss of affected neurons. Another plausible therapeutic way that may complement the studies is to increase the survival of existing neurons by mobilizing the existing neural stem/progenitor cells (NSPCs) — i.e. “induce their plasticity” — to regenerate lost neurons despite the existing pathology and unfavorable environment. However, there is controversy about how NSPCs are affected by the unfavorable toxic environment during AD. In this review, we will discuss the use of stem cells in neurodegenerative diseases and in particular how NSPCs affect the AD pathology and how neurodegeneration affects NSPCs. In the end of this review, we will discuss how zebrafish as a useful model organism with extensive regenerative ability in the brain might help to address the molecular programs needed for NSPCs to respond to neurodegeneration by enhanced neurogenesis. PMID:27505014

  17. Inactivation of Geminin in neural crest cells affects the generation and maintenance of enteric progenitor cells, leading to enteric aganglionosis.

    PubMed

    Stathopoulou, Athanasia; Natarajan, Dipa; Nikolopoulou, Pinelopi; Patmanidi, Alexandra L; Lygerou, Zoi; Pachnis, Vassilis; Taraviras, Stavros

    2016-01-15

    Neural crest cells comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types, during vertebrate development. Enteric Nervous System controls the function of the gastrointestinal tract and is mainly derived from the vagal and sacral neural crest cells. Deregulation on self-renewal and differentiation of the enteric neural crest cells is evident in enteric nervous system disorders, such as Hirschsprung disease, characterized by the absence of ganglia in a variable length of the distal bowel. Here we show that Geminin is essential for Enteric Nervous System generation as mice that lacked Geminin expression specifically in neural crest cells revealed decreased generation of vagal neural crest cells, and enteric neural crest cells (ENCCs). Geminin-deficient ENCCs showed increased apoptosis and decreased cell proliferation during the early stages of gut colonization. Furthermore, decreased number of committed ENCCs in vivo and the decreased self-renewal capacity of enteric progenitor cells in vitro, resulted in almost total aganglionosis resembling a severe case of Hirschsprung disease. Our results suggest that Geminin is an important regulator of self-renewal and survival of enteric nervous system progenitor cells. PMID:26658318

  18. Tissue Engineering Special Feature: A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo

    NASA Astrophysics Data System (ADS)

    Ford, Millicent C.; Bertram, James P.; Royce Hynes, Sara; Michaud, Michael; Li, Qi; Young, Michael; Segal, Steven S.; Madri, Joseph A.; Lavik, Erin B.

    2006-02-01

    A microvascular network is critical for the survival and function of most tissues. We have investigated the potential of neural progenitor cells to augment the formation and stabilization of microvascular networks in a previously uncharacterized three-dimensional macroporous hydrogel and the ability of this engineered system to develop a functional microcirculation in vivo. The hydrogel is synthesized by cross-linking polyethylene glycol with polylysine around a salt-leached polylactic-co-glycolic acid scaffold that is degraded in a sodium hydroxide solution. An open macroporous network is formed that supports the efficient formation of tubular structures by brain endothelial cells. After subcutaneous implantation of hydrogel cocultures in mice, blood flow in new microvessels was apparent at 2 weeks with perfused networks established on the surface of implants at 6 weeks. Compared to endothelial cells cultured alone, cocultures of endothelial cells and neural progenitor cells had a significantly greater density of tubular structures positive for platelet endothelial cell adhesion molecule-1 at the 6-week time point. In implant cross sections, the presence of red blood cells in vessel lumens confirmed a functional microcirculation. These findings indicate that neural progenitor cells promote the formation of endothelial cell tubes in coculture and the development of a functional microcirculation in vivo. We demonstrate a previously undescribed strategy for creating stable microvascular networks to support engineered tissues of desired parenchymal cell origin. microvasculature | neural stem cells | polymer | scaffold

  19. Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles

    PubMed Central

    Bible, Ellen; Qutachi, Omar; Chau, David Y.S.; Alexander, Morgan R.; Shakesheff, Kevin M.; Modo, Michel

    2012-01-01

    Replacing the tissue lost after a stroke potentially provides a new neural substrate to promote recovery. However, significant neurobiological and biotechnological challenges need to be overcome to make this possibility into a reality. Human neural stem cells (hNSCs) can differentiate into mature brain cells, but require a structural support that retains them within the cavity and affords the formation of a de novo tissue. Nevertheless, in our previous work, even after a week, this primitive tissue is void of a vasculature that could sustain its long-term viability. Therefore, tissue engineering strategies are required to develop a vasculature. Vascular endothelial growth factor (VEGF) is known to promote the proliferation and migration of endothelial cells during angio- and arteriogenesis. VEGF by itself here did not affect viability or differentiation of hNSCs, whereas growing cells on poly(D,L-lactic acid-co-glycolic acid) (PLGA) microparticles, with or without VEGF, doubled astrocytic and neuronal differentiation. Secretion of a burst and a sustained delivery of VEGF from the microparticles in vivo attracted endothelial cells from the host into this primate tissue and in parts established a neovasculature, whereas in other parts endothelial cells were merely interspersed with hNSCs. There was also evidence of a hypervascularization indicating that further work will be required to establish an adequate level of vascularization. It is therefore possible to develop a putative neovasculature within de novo tissue that is forming inside a tissue cavity caused by a stroke. PMID:22818980

  20. A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies

    PubMed Central

    Zhu, Xiaoqing; Li, Bo; Ai, Zongyong; Xiang, Zheng; Zhang, Kunshang; Qiu, Xiaoyan; Chen, Yongchang; Li, Yuemin; Rizak, Joshua D.; Niu, Yuyu; Hu, Xintian; Sun, Yi Eve; Ji, Weizhi; Li, Tianqing

    2015-01-01

    Summary Developing a model of primate neural tube (NT) development is important to promote many NT disorder studies in model organisms. Here, we report a robust and stable system to allow for clonal expansion of single monkey neuroepithelial stem cells (NESCs) to develop into miniature NT-like structures. Single NESCs can produce functional neurons in vitro, survive, and extensively regenerate neuron axons in monkey brain. NT formation and NESC maintenance depend on high metabolism activity and Wnt signaling. NESCs are regionally restricted to a telencephalic fate. Moreover, single NESCs can turn into radial glial progenitors (RGPCs). The transition is accurately regulated by Wnt signaling through regulation of Notch signaling and adhesion molecules. Finally, using the “NESC-TO-NTs” system, we model the functions of folic acid (FA) on NT closure and demonstrate that FA can regulate multiple mechanisms to prevent NT defects. Our system is ideal for studying NT development and diseases. PMID:26584544

  1. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis

    PubMed Central

    Knobloch, Marlen; Braun, Simon M. G.; Zurkirchen, Luis; von Schoultz, Carolin; Zamboni, Nicola; Arauzo-Bravo, Marcos J.; Kovacs, Werner J.; Karalay, Özlem; Suter, Ueli; Machado, Raquel A. C.; Roccio, Marta; Lutolf, Matthias P.; Semenkovich, Clay F.; Jessberger, Sebastian

    2013-01-01

    Mechanisms controlling the proliferative activity of neural stem and progenitor cells (NSPCs) have a pivotal role to ensure life-long neurogenesis in the mammalian brain1. How metabolic programs are coupled with NSPC activity remains unknown. Here we show that fatty acid synthase (Fasn), the key enzyme of de novo lipogenesis2, is highly active in adult NSPCs and that conditional deletion of Fasn in mouse NSPCs impairs adult neurogenesis. The rate of de novo lipid synthesis and subsequent proliferation of NSPCs is regulated by Spot14, a gene previously implicated in lipid metabolism3–5, that we found to be selectively expressed in low proliferating adult NSPCs. Spot14 reduces the availability of malonyl-CoA6, which is an essential substrate for Fasn to fuel lipogenesis. Thus, we identify here a functional coupling between the regulation of lipid metabolism and adult NSPC proliferation. PMID:23201681

  2. A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies.

    PubMed

    Zhu, Xiaoqing; Li, Bo; Ai, Zongyong; Xiang, Zheng; Zhang, Kunshang; Qiu, Xiaoyan; Chen, Yongchang; Li, Yuemin; Rizak, Joshua D; Niu, Yuyu; Hu, Xintian; Sun, Yi Eve; Ji, Weizhi; Li, Tianqing

    2016-02-01

    Developing a model of primate neural tube (NT) development is important to promote many NT disorder studies in model organisms. Here, we report a robust and stable system to allow for clonal expansion of single monkey neuroepithelial stem cells (NESCs) to develop into miniature NT-like structures. Single NESCs can produce functional neurons in vitro, survive, and extensively regenerate neuron axons in monkey brain. NT formation and NESC maintenance depend on high metabolism activity and Wnt signaling. NESCs are regionally restricted to a telencephalic fate. Moreover, single NESCs can turn into radial glial progenitors (RGPCs). The transition is accurately regulated by Wnt signaling through regulation of Notch signaling and adhesion molecules. Finally, using the "NESC-TO-NTs" system, we model the functions of folic acid (FA) on NT closure and demonstrate that FA can regulate multiple mechanisms to prevent NT defects. Our system is ideal for studying NT development and diseases. PMID:26584544

  3. Developmental features of rat cerebellar neural cells cultured in a chemically defined medium

    SciTech Connect

    Gallo, V.; Ciotti, M.T.; Aloisi, F.; Levi, G.

    1986-01-01

    We studied some aspects of the differentiation of rat cerebellar neural cells obtained from 8-day postnatal animals and cultured in a serum-free, chemically defined medium (CDM). The ability of the cells to take up radioactive transmitter amino acids was analyzed autoradiographically. The L-glutamate analogue /sup 3/H-D-aspartate was taken up by astroglial cells, but not by granule neurons, even in late cultures (20 days in vitro). This is in agreement with the lack of depolarization-induced release of /sup 3/H-D-aspartate previously observed in this type of culture. In contrast, /sup 3/H-(GABA) was scarcely accumulated by glial-fibrillary-acidic-protein (GFAP)-positive astrocytes, but taken up by glutamate-decarboxylase-positive inhibitory interneurons and was released in a Ca2+-dependent way upon depolarization: /sup 3/H-GABA evoked release progressively increased with time in culture. Interestingly, the expression of the vesicle-associated protein synapsin I was much reduced in granule cells cultured in CDM as compared to those maintained in the presence of serum. These data would indicate that in CDM the differentiation of granule neurons is not complete, while that of GABAergic neurons is not greatly affected. Whether the diminished differentiation of granule cells must be attributed only to serum deprivation or also to other differences in the composition of the culture medium remains to be established. /sup 3/H-GABA was avidly taken up also by a population of cells which were not recognized by antibodies raised against GFAP, glutamate decarboxylase, and microtubule-associated protein 2. These cells have been characterized as bipotential precursors of oligodendrocytes and of a subpopulation of astrocytes bearing a stellate shape and capable of high-affinity /sup 3/H-GABA uptake.

  4. Proliferation and differentiation characteristics of neural stem cells during course of cerebral cortical histogenesis.

    PubMed

    Mitsuhashi, Takayuki; Takahashi, Takao

    2016-01-01

    Recent advancements in the research field of stem cell biology have enabled the realization of regenerative medicine in various systems of the body, including the central nervous system. However, fundamental knowledge regarding how neural stem cells divide and generate young neurons in mammals, especially in vivo, is still inadequate. In this article, we shall summarize the concept of cell cycle/division of neural stem cells that generate projection neurons in the murine cerebral cortex. We shall also review the molecular mechanisms that modulate the critical parameters related to the cell cycle regulatory mechanisms, with special reference to the cell cycle regulatory protein p27(Kip1) , an inhibitor of progression of the cell cycle at the G1 phase. A better understanding of the mechanisms controlling cell cycle progression is expected to contribute to the development of novel strategies to increase the efficiency of neural cell/tissue production, both in vivo and in vitro. PMID:26058879

  5. Using Magnetic Nanoparticles for Gene Transfer to Neural Stem Cells: Stem Cell Propagation Method Influences Outcomes

    PubMed Central

    Pickard, Mark R.; Adams, Christopher F.; Barraud, Perrine; Chari, Divya M.

    2015-01-01

    Genetically engineered neural stem cell (NSC) transplants offer a key strategy to augment neural repair by releasing therapeutic biomolecules into injury sites. Genetic modification of NSCs is heavily reliant on viral vectors but cytotoxic effects have prompted development of non-viral alternatives, such as magnetic nanoparticle (MNPs). NSCs are propagated in laboratories as either 3-D suspension “neurospheres” or 2-D adherent “monolayers”. MNPs deployed with oscillating magnetic fields (“magnetofection technology”) mediate effective gene transfer to neurospheres but the efficacy of this approach for monolayers is unknown. It is important to address this issue as oscillating magnetic fields dramatically enhance MNP-based transfection in transplant cells (e.g., astrocytes and oligodendrocyte precursors) propagated as monolayers. We report for the first time that oscillating magnetic fields enhanced MNP-based transfection with reporter and functional (basic fibroblast growth factor; FGF2) genes in monolayer cultures yielding high transfection versus neurospheres. Transfected NSCs showed high viability and could re-form neurospheres, which is important as neurospheres yield higher post-transplantation viability versus monolayer cells. Our results demonstrate that the combination of oscillating magnetic fields and a monolayer format yields the highest efficacy for MNP-mediated gene transfer to NSCs, offering a viable non-viral alternative for genetic modification of this important neural cell transplant population. PMID:25918990

  6. Accelerating bioelectric functional development of neural stem cells by graphene coupling: Implications for neural interfacing with conductive materials.

    PubMed

    Guo, Rongrong; Zhang, Shasha; Xiao, Miao; Qian, Fuping; He, Zuhong; Li, Dan; Zhang, Xiaoli; Li, Huawei; Yang, Xiaowei; Wang, Ming; Chai, Renjie; Tang, Mingliang

    2016-11-01

    In order to govern cell-specific behaviors in tissue engineering for neural repair and regeneration, a better understanding of material-cell interactions, especially the bioelectric functions, is extremely important. Graphene has been reported to be a potential candidate for use as a scaffold and neural interfacing material. However, the bioelectric evolvement of cell membranes on these conductive graphene substrates remains largely uninvestigated. In this study, we used a neural stem cell (NSC) model to explore the possible changes in membrane bioelectric properties - including resting membrane potentials and action potentials - and cell behaviors on graphene films under both proliferation and differentiation conditions. We used a combination of single-cell electrophysiological recordings and traditional cell biology techniques. Graphene did not affect the basic membrane electrical parameters (capacitance and input resistance), but resting membrane potentials of cells on graphene substrates were more strongly negative under both proliferation and differentiation conditions. Also, NSCs and their progeny on graphene substrates exhibited increased firing of action potentials during development compared to controls. However, graphene only slightly affected the electric characterizations of mature NSC progeny. The modulation of passive and active bioelectric properties on the graphene substrate was accompanied by enhanced NSC differentiation. Furthermore, spine density, synapse proteins expressions and synaptic activity were all increased in graphene group. Modeling of the electric field on conductive graphene substrates suggests that the electric field produced by the electronegative cell membrane is much higher on graphene substrates than that on control, and this might explain the observed changes of bioelectric development by graphene coupling. Our results indicate that graphene is able to accelerate NSC maturation during development, especially with regard to

  7. Rescue of Brain Function Using Tunneling Nanotubes Between Neural Stem Cells and Brain Microvascular Endothelial Cells.

    PubMed

    Wang, Xiaoqing; Yu, Xiaowen; Xie, Chong; Tan, Zijian; Tian, Qi; Zhu, Desheng; Liu, Mingyuan; Guan, Yangtai

    2016-05-01

    Evidence indicates that neural stem cells (NSCs) can ameliorate cerebral ischemia in animal models. In this study, we investigated the mechanism underlying one of the neuroprotective effects of NSCs: tunneling nanotube (TNT) formation. We addressed whether the control of cell-to-cell communication processes between NSCs and brain microvascular endothelial cells (BMECs) and, particularly, the control of TNT formation could influence the rescue function of stem cells. In an attempt to mimic the cellular microenvironment in vitro, a co-culture system consisting of terminally differentiated BMECs from mice in a distressed state and NSCs was constructed. Additionally, engraftment experiments with infarcted mouse brains revealed that control of TNT formation influenced the effects of stem cell transplantation in vivo. In conclusion, our findings provide the first evidence that TNTs exist between NSCs and BMECs and that regulation of TNT formation alters cell function. PMID:26041660

  8. Nox4-generated superoxide drives angiotensin II-induced neural stem cell proliferation

    PubMed Central

    Topchiy, Elena; Panzhinskiy, Evgeniy; Griffin, W. Sue T.; Barger, Steven W.; Das, Mita; Zawada, W. Michael

    2013-01-01

    Reactive oxygen species (ROS) have been reported to affect neural stem cell self-renewal and therefore may be important for normal development and may influence neurodegenerative processes when ROS activity is elevated. To determine if increasing production of superoxide, via activation of NADPH oxidase (Nox), increases neural stem cell proliferation, 100nM angiotensin II (Ang II) – a strong stimulator of Nox – was applied to cultures of a murine neural stem cell line C17.2. Twelve hours following a single treatment with Ang II there was a doubling of the number of neural stem cells. This increase in neural stem cell numbers was preceded by a gradual elevation of superoxide levels (detected by dihydroethidium, DHE, fluorescence) from the steady state at 0, 5, and 30 minutes and gradually increasing from one hour to the maximum at 12 h, and returning to baseline at 24 h. Ang II-dependent proliferation was blocked by the antioxidant N-acetyl-L-cysteine (NAC). Confocal microscopy revealed the presence of two sources of intracellular ROS in C17.2 cells: i) mitochondrial and ii) extramitochondrial; the latter indicative of involvement of one or more specific isoforms of Nox. Of the Nox family, mRNA expression for one member, Nox4, is abundant in neural stem cell cultures, and Ang II treatment resulted in elevation of the relative levels of Nox4 protein. SiRNA targeting of Nox4 mRNA reduced both the constitutive and Ang II-induced Nox4 protein levels and attenuated Ang II-driven increases in superoxide levels and stem cell proliferation. Our findings are consistent with our hypothesis that Ang II-induced proliferation of neural stem cells occurs via Nox4-generated superoxide, suggesting that an Ang II/Nox4 axis is an important regulator of neural stem cell self-renewal and as such may fine-tune normal or stress- or disease-modifying neurogenesis. PMID:23751520

  9. Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells.

    PubMed

    Radde, Brandie N; Alizadeh-Rad, Negin; Price, Stephanie M; Schultz, David J; Klinge, Carolyn M

    2016-11-01

    Anacardic acid is a dietary and medicinal phytochemical that inhibits breast cancer cell proliferation and uncouples oxidative phosphorylation (OXPHOS) in isolated rat liver mitochondria. Since mitochondrial-targeted anticancer therapy (mitocans) may be useful in breast cancer, we examined the effect of anacardic acid on cellular bioenergetics and OXPHOS pathway proteins in breast cancer cells modeling progression to endocrine-independence: MCF-7 estrogen receptor α (ERα)+ endocrine-sensitive; LCC9 and LY2 ERα+, endocrine-resistant, and MDA-MB-231 triple negative breast cancer (TNBC) cells. At concentrations similar to cell proliferation IC50 s, anacardic acid reduced ATP-linked oxygen consumption rate (OCR), mitochondrial reserve capacity, and coupling efficiency while increasing proton leak, reflecting mitochondrial toxicity which was greater in MCF-7 compared to endocrine-resistant and TNBC cells. These results suggest tolerance in endocrine-resistant and TNBC cells to mitochondrial stress induced by anacardic acid. Since anacardic acid is an alkylated 2-hydroxybenzoic acid, the effects of salicylic acid (SA, 2-hydroxybenzoic acid moiety) and oleic acid (OA, monounsaturated alkyl moiety) were tested. SA inhibited whereas OA stimulated cell viability. In contrast to stimulation of basal OCR by anacardic acid (uncoupling effect), neither SA nor OA altered basal OCR- except OA inhibited basal and ATP-linked OCR, and increased ECAR, in MDA-MB-231 cells. Changes in OXPHOS proteins correlated with changes in OCR. Overall, neither the 2-hydroxybenzoic acid moiety nor the monounsaturated alky moiety of anacardic acid is solely responsible for the observed mitochondria-targeted anticancer activity in breast cancer cells and hence both moieties are required in the same molecule for the observed effects. J. Cell. Biochem. 117: 2521-2532, 2016. © 2016 Wiley Periodicals, Inc. PMID:26990649

  10. Human epidermal neural crest stem cells as a source of Schwann cells

    PubMed Central

    Sakaue, Motoharu; Sieber-Blum, Maya

    2015-01-01

    We show that highly pure populations of human Schwann cells can be derived rapidly and in a straightforward way, without the need for genetic manipulation, from human epidermal neural crest stem cells [hEPI-NCSC(s)] present in the bulge of hair follicles. These human Schwann cells promise to be a useful tool for cell-based therapies, disease modelling and drug discovery. Schwann cells are glia that support axons of peripheral nerves and are direct descendants of the embryonic neural crest. Peripheral nerves are damaged in various conditions, including through trauma or tumour-related surgery, and Schwann cells are required for their repair and regeneration. Schwann cells also promise to be useful for treating spinal cord injuries. Ex vivo expansion of hEPI-NCSC isolated from hair bulge explants, manipulating the WNT, sonic hedgehog and TGFβ signalling pathways, and exposure of the cells to pertinent growth factors led to the expression of the Schwann cell markers SOX10, KROX20 (EGR2), p75NTR (NGFR), MBP and S100B by day 4 in virtually all cells, and maturation was completed by 2 weeks of differentiation. Gene expression profiling demonstrated expression of transcripts for neurotrophic and angiogenic factors, as well as JUN, all of which are essential for nerve regeneration. Co-culture of hEPI-NCSC-derived human Schwann cells with rodent dorsal root ganglia showed interaction of the Schwann cells with axons, providing evidence of Schwann cell functionality. We conclude that hEPI-NCSCs are a biologically relevant source for generating large and highly pure populations of human Schwann cells. PMID:26251357

  11. Planar cell polarity links axes of spatial dynamics in neural-tube closure.

    PubMed

    Nishimura, Tamako; Honda, Hisao; Takeichi, Masatoshi

    2012-05-25

    Neural-tube closure is a critical step of embryogenesis, and its failure causes serious birth defects. Coordination of two morphogenetic processes--convergent extension and neural-plate apical constriction--ensures the complete closure of the neural tube. We now provide evidence that planar cell polarity (PCP) signaling directly links these two processes. In the bending neural plates, we find that a PCP-regulating cadherin, Celsr1, is concentrated in adherens junctions (AJs) oriented toward the mediolateral axes of the plates. At these AJs, Celsr1 cooperates with Dishevelled, DAAM1, and the PDZ-RhoGEF to upregulate Rho kinase, causing their actomyosin-dependent contraction in a planar-polarized manner. This planar-polarized contraction promotes simultaneous apical constriction and midline convergence of neuroepithelial cells. Together our findings demonstrate that PCP signals confer anisotropic contractility on the AJs, producing cellular forces that promote the polarized bending of the neural plate. PMID:22632972

  12. Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model.

    PubMed

    Khan, Zaheer Ullah; Hayat, Maqsood; Khan, Muazzam Ali

    2015-01-21

    Enzyme catalysis is one of the most essential and striking processes among of all the complex processes that have evolved in living organisms. Enzymes are biological catalysts, which play a significant role in industrial applications as well as in medical areas, due to profound specificity, selectivity and catalytic efficiency. Refining catalytic efficiency of enzymes has become the most challenging job of enzyme engineering, into acidic and alkaline. Discrimination of acidic and alkaline enzymes through experimental approaches is difficult, sometimes impossible due to lack of established structures. Therefore, it is highly desirable to develop a computational model for discriminating acidic and alkaline enzymes from primary sequences. In this study, we have developed a robust, accurate and high throughput computational model using two discrete sample representation methods Pseudo amino acid composition (PseAAC) and split amino acid composition. Various classification algorithms including probabilistic neural network (PNN), K-nearest neighbor, decision tree, multi-layer perceptron and support vector machine are applied to predict acidic and alkaline with high accuracy. 10-fold cross validation test and several statistical measures namely, accuracy, F-measure, and area under ROC are used to evaluate the performance of the proposed model. The performance of the model is examined using two benchmark datasets to demonstrate the effectiveness of the model. The empirical results show that the performance of PNN in conjunction with PseAAC is quite promising compared to existing approaches in the literature so for. It has achieved 96.3% accuracy on dataset1 and 99.2% on dataset2. It is ascertained that the proposed model might be useful for basic research and drug related application areas. PMID:25452135

  13. Modeling and prediction of retardance in citric acid coated ferrofluid using artificial neural network

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Fung; Sheu, Jer-Jia

    2016-06-01

    Citric acid coated (citrate-stabilized) magnetite (Fe3O4) magnetic nanoparticles have been conducted and applied in the biomedical fields. Using Taguchi-based measured retardances as the training data, an artificial neural network (ANN) model was developed for the prediction of retardance in citric acid (CA) coated ferrofluid (FF). According to the ANN simulation results in the training stage, the correlation coefficient between predicted retardances and measured retardances was found to be as high as 0.9999998. Based on the well-trained ANN model, the predicted retardance at excellent program from Taguchi method showed less error of 2.17% compared with a multiple regression (MR) analysis of statistical significance. Meanwhile, the parameter analysis at excellent program by the ANN model had the guiding significance to find out a possible program for the maximum retardance. It was concluded that the proposed ANN model had high ability for the prediction of retardance in CA coated FF.

  14. IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis

    PubMed Central

    Rosiak, Kamila; Smolarz, Maciej; Stec, Wojciech J.; Peciak, Joanna; Grzela, Dawid; Winiecka-Klimek, Marta; Stoczynska-Fidelus, Ewelina; Krynska, Barbara; Piaskowski, Sylwester; Rieske, Piotr

    2016-01-01

    Background The high frequency of mutations in the isocitrate dehydrogenase 1 (IDH1) gene in diffuse gliomas indicates its importance in the process of gliomagenesis. These mutations result in loss of the normal function and acquisition of the neomorphic activity converting α-ketoglutarate to 2-hydroxyglutarate. This potential oncometabolite may induce the epigenetic changes, resulting in the deregulated expression of numerous genes, including those related to the differentiation process or cell survivability. Methods Neural stem cells were derived from human induced pluripotent stem cells following embryoid body formation. Neural stem cells transduced with mutant IDH1R132H, empty vector, non-transduced and overexpressing IDH1WT controls were differentiated into astrocytes and neurons in culture. The neuronal and astrocytic differentiation was determined by morphology and expression of lineage specific markers (MAP2, Synapsin I and GFAP) as determined by real-time PCR and immunocytochemical staining. Apoptosis was evaluated by real-time observation of Caspase-3 activation and measurement of PARP cleavage by Western Blot. Results Compared with control groups, cells expressing IDH1R132H retained an undifferentiated state and lacked morphological changes following stimulated differentiation. The significant inhibitory effect of IDH1R132H on neuronal and astrocytic differentiation was confirmed by immunocytochemical staining for markers of neural stem cells. Additionally, real-time PCR indicated suppressed expression of lineage markers. High percentage of apoptotic cells was detected within IDH1R132H-positive neural stem cells population and their derivatives, if compared to normal neural stem cells and their derivatives. The analysis of PARP and Caspase-3 activity confirmed apoptosis sensitivity in mutant protein-expressing neural cells. Conclusions Our study demonstrates that expression of IDH1R132H increases apoptosis susceptibility of neural stem cells and their

  15. Sequential Differentiation of Embryonic Stem Cells into Neural Epithelial-Like Stem Cells and Oligodendrocyte Progenitor Cells

    PubMed Central

    Bian, Jing; Zheng, Jiao; Li, Shen; Luo, Lan; Ding, Fei

    2016-01-01

    Background Recent advances in stem cell technology afford an unlimited source of neural progenitors and glial cells for cell based therapy in central nervous system (CNS) disorders. However, current differentiation strategies still need to be improved due to time-consuming processes, poorly defined culture conditions, and low yield of target cell populations. Methodology/Principle Findings This study aimed to provide a precise sequential differentiation to capture two transient stages: neural epithelia-like stem cells (NESCs) and oligodendrocytes progenitor cells (OPCs) derived from mouse embryonic stem cells (ESCs). CHIR99021, a glycogen synthase kinase 3 (GSK-3) inhibitor, in combination with dual SMAD inhibitors, could induce ESCs to rapidly differentiate into neural rosette-like colonies, which facilitated robust generation of NESCs that had a high self-renewal capability and stable neuronal and glial differentiation potentials. Furthermore, SHH combined with FGF-2 and PDGF-AA could induce NESCs to differentiate into highly expandable OPCs. These OPCs not only robustly differentiated into oligodendrocytes, but also displayed an increased migratory activity in vitro. Conclusions/Significance We developed a precise and reliable strategy for sequential differentiation to capture NESCs and OPCs derived from ESCs, thus providing unlimited cell source for cell transplantation and drug screening towards CNS repair. PMID:27192219

  16. Crestospheres: Long-Term Maintenance of Multipotent, Premigratory Neural Crest Stem Cells

    PubMed Central

    Kerosuo, Laura; Nie, Shuyi; Bajpai, Ruchi; Bronner, Marianne E.

    2015-01-01

    Summary Premigratory neural crest cells comprise a transient, embryonic population that arises within the CNS, but subsequently migrates away and differentiates into many derivatives. Previously, premigratory neural crest could not be maintained in a multipotent, adhesive state without spontaneous differentiation. Here, we report conditions that enable maintenance of neuroepithelial “crestospheres” that self-renew and retain multipotency for weeks. Moreover, under differentiation conditions, these cells can form multiple derivatives in vitro and in vivo after transplantation into chick embryos. Similarly, human embryonic stem cells directed to a neural crest fate can be maintained as crestospheres and subsequently differentiated into several derivatives. By devising conditions that maintain the premigratory state in vitro, these results demonstrate that neuroepithelial neural crest precursors are capable of long-term self-renewal. This approach will help uncover mechanisms underlying their developmental potential, differentiation and, together with the induced pluripotent stem cell techniques, the pathology of human neurocristopathies. PMID:26441305

  17. Crestospheres: Long-Term Maintenance of Multipotent, Premigratory Neural Crest Stem Cells.

    PubMed

    Kerosuo, Laura; Nie, Shuyi; Bajpai, Ruchi; Bronner, Marianne E

    2015-10-13

    Premigratory neural crest cells comprise a transient, embryonic population that arises within the CNS, but subsequently migrates away and differentiates into many derivatives. Previously, premigratory neural crest could not be maintained in a multipotent, adhesive state without spontaneous differentiation. Here, we report conditions that enable maintenance of neuroepithelial "crestospheres" that self-renew and retain multipotency for weeks. Moreover, under differentiation conditions, these cells can form multiple derivatives in vitro and in vivo after transplantation into chick embryos. Similarly, human embryonic stem cells directed to a neural crest fate can be maintained as crestospheres and subsequently differentiated into several derivatives. By devising conditions that maintain the premigratory state in vitro, these results demonstrate that neuroepithelial neural crest precursors are capable of long-term self-renewal. This approach will help uncover mechanisms underlying their developmental potential, differentiation and, together with the induced pluripotent stem cell techniques, the pathology of human neurocristopathies. PMID:26441305

  18. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells

    NASA Astrophysics Data System (ADS)

    Li, Ning; Zhang, Qi; Gao, Song; Song, Qin; Huang, Rong; Wang, Long; Liu, Liwei; Dai, Jianwu; Tang, Mingliang; Cheng, Guosheng

    2013-04-01

    Neural stem cell (NSC) based therapy provides a promising approach for neural regeneration. For the success of NSC clinical application, a scaffold is required to provide three-dimensional (3D) cell growth microenvironments and appropriate synergistic cell guidance cues. Here, we report the first utilization of graphene foam, a 3D porous structure, as a novel scaffold for NSCs in vitro. It was found that three-dimensional graphene foams (3D-GFs) can not only support NSC growth, but also keep cell at an active proliferation state with upregulation of Ki67 expression than that of two-dimensional graphene films. Meanwhile, phenotypic analysis indicated that 3D-GFs can enhance the NSC differentiation towards astrocytes and especially neurons. Furthermore, a good electrical coupling of 3D-GFs with differentiated NSCs for efficient electrical stimulation was observed. Our findings implicate 3D-GFs could offer a powerful platform for NSC research, neural tissue engineering and neural prostheses.

  19. Retinoic acid reduces solvent-induced neuropathy and promotes neural regeneration in mice.

    PubMed

    Palencia, Guadalupe; Hernández-Pedro, Norma; Saavedra-Perez, David; Peña-Curiel, Omar; Ortiz-Plata, Alma; Ordoñez, Graciela; Flores-Estrada, Diana; Sotelo, Julio; Arrieta, Oscar

    2014-08-01

    In humans, exposure to organic solvents (OS) is frequent in work activities or as a recreational inhalant, inducing severe neuropathy (secondary to demyelization of peripheral nerves). We have previously shown that all-trans retinoic acid (ATRA) increases local content of neural growth factor (NGF), improving peripheral neuropathy of diverse origins. In this study, we evaluated the effect of ATRA on OS-induced peripheral neuropathy in experimental mice. Two simultaneous experiments were performed. The first one aimed to evaluate ATRA for the prevention of damage induced by OS, the second to test ATRA as an OS-induced neuropathy treatment. Nociceptive threshold latency and NGF concentration in serum and in peripheral nerves were determined. Morphological changes and evidence of sciatic nerve regeneration were evaluated. Mice exposed to OS developed neuropathy and axonal degeneration. ATRA diminished the effects of OS inhalation on sensorial changes and nerve morphology. Treatment with ATRA reversed sensorial and nerve morphological changes of OS-induced neuropathy, and this was associated with increased contents of NGF. Similar to previous experiences on diabetic and toxic neuropathy, ATRA reduced and partially reversed the peripheral neuropathy caused by OS exposure. These favorable effects apparently are due to local production of NGF induced by neural regeneration in response to the administration of retinoic acid. PMID:24647975

  20. Maintenance of neural stem cell regional identity in culture.

    PubMed

    Delgado, Ryan N; Lu, Changqing; Lim, Daniel A

    2016-01-01

    Neural stem cells (NSCs) are distributed throughout the ventricular-subventricular zone (V-SVZ) in the adult mouse brain. NSCs located in spatially distinct regions of the V-SVZ generate different types of olfactory bulb (OB) neurons, and the regional expression of specific transcription factors correlates with these differences in NSC developmental potential. In a recent article, we show that Nkx2.1-expressing embryonic precursors give rise to NKX2.1+ NSCs located in the ventral V-SVZ of adult mice. Here we characterize a V-SVZ monolayer culture system that retains regional gene expression and neurogenic potential of NSCs from the dorsal and ventral V-SVZ. In particular, we find that Nkx2.1-lineage V-SVZ NSCs maintain Nkx2.1 expression through serial passage and can generate new neurons in vitro. Thus, V-SVZ NSCs retain key aspects of their in vivo regional identity in culture, providing new experimental opportunities for understanding how such developmental patterns are established and maintained during development. PMID:27606338

  1. Standardized Generation and Differentiation of Neural Precursor Cells from Human Pluripotent Stem Cells

    PubMed Central

    Kozhich, O; Hamilton, RS; Mallon, BS

    2012-01-01

    Precise, robust and scalable directed differentiation of pluripotent stem cells is an important goal with respect to disease modeling or future therapies. Using the AggreWell™400 system we have standardized the differentiation of human embryonic and induced pluripotent stem cells to a neuronal fate using defined conditions. This allows reproducibility in replicate experiments and facilitates the direct comparison of cell lines. Since the starting point for EB formation is a single cell suspension, this protocol is suitable for standard and novel methods of pluripotent stem cell culture. Moreover, an intermediate population of neural precursor cells, which are routinely >95% NCAMpos and Tra-1–60neg by FACS analysis, may be expanded and frozen prior to differentiation allowing a convenient starting point for downstream experiments. PMID:22388559

  2. Retinoic Acid-Treated Pluripotent Stem Cells Undergoing Neurogenesis Present Increased Aneuploidy and Micronuclei Formation

    PubMed Central

    Sartore, Rafaela C.; Campos, Priscila B.; Trujillo, Cleber A.; Ramalho, Bia L.; Negraes, Priscilla D.; Paulsen, Bruna S.; Meletti, Tamara; Costa, Elaine S.; Chicaybam, Leonardo; Bonamino, Martin H.; Ulrich, Henning; Rehen, Stevens K.

    2011-01-01

    The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs) are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA) in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC) cells, embryonic stem (ES) cells and induced pluripotent stem (iPS) cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal variation accompanies

  3. Ionic mechanisms subserving mechanosensory transduction and neural integration in statocyst hair cells of Hermissenda

    NASA Technical Reports Server (NTRS)

    Farley, Joseph

    1988-01-01

    The neural processing of gravitational-produced sensory stimulation of statocyst hair cells in the nudibranch mollusk Hermissenda was studied. The goal in these studies was to understand how: gravireceptor neurons sense or transduce gravitational forces, gravitational stimulation is integrated so as to produce a graded receptor potential, and ultimately the generation of an action potential, and various neural adaptation phenomena which hair cells exhibit arise. The approach to these problems was primarily electrophysical.

  4. Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation.

    PubMed

    Ilkhanizadeh, Shirin; Teixeira, Ana I; Hermanson, Ola

    2007-09-01

    Inkjet printing allows for the rapid and inexpensive printing of cells, materials, and protein molecules. However, the combination of inkjet printing and control of neural stem cell (NSC) multipotency and differentiation has remained unexplored. We used an inkjet printer (Canon BJC-2100) to print biologically active macromolecules on poly-acrylamide-based hydrogels (HydroGel(TM)), which were subsequently seeded with primary fetal NSCs. NSCs cultured on areas printed with fibroblast growth factor-2 (FGF2) remained undifferentiated, consistent with the effects of FGF2 when administered in solution. NSCs cultured in parallel on the same hydrogels but in areas printed with ciliary neurotrophic factor (CNTF) or fetal bovine serum (FBS) displayed a rapid induction of markers for astrocytic (glial fibrillary acidic protein, GFAP) or smooth muscle (smooth muscle actin, SMA) differentiation, respectively. These results are consistent with known actions of CNTF and FBS on NSCs. Importantly, NSCs cultured on a printed gradient of increasing levels of CNTF showed a linear increase in numbers of cells expressing GFAP, demonstrating a functional gradient of CNTF. Lastly, genetically modified NSCs proved to respond properly to printed macromolecules, suggesting that inkjet printing can successfully be combined with gene delivery to achieve effective control of stem cell differentiation. PMID:17576007

  5. Dynamic changes in glucose metabolism accompanying the expression of the neural phenotype after differentiation in PC12 cells.

    PubMed

    Waki, A; Yano, R; Yoshimoto, M; Sadato, N; Yonekura, Y; Fujibayashi, Y

    2001-03-01

    To assess what properties of glucose metabolism are most closely related to expression of the neural phenotype, some parameters of glucose metabolism in PC12 cells before (tumor-type) and after differentiation (neuron-type) were investigated. Neuron-type cells exhibited a 2.7-fold higher level of [3H]DG retention than tumor-type cells, accompanied by a higher glucose transport rate and higher levels of hexokinase activity. [14C]CO2 production from [U-14C]glucose in neuron-type was also more than four-times greater than that in tumor-type cells. The levels of [14C]carbon in macromolecules from [14C]glucose in neuron-type cells were also much higher (10.6-fold) than those in tumor-type cells, and the levels of incorporation of [14C]carbon were almost as high as those of [14C]CO2. From the metabolite analysis, amino acids appeared to be the major compounds converted from glucose. On the other hand, the uptakes of [35S]methionine-[35S]cysteine and [3H]uridine in neuron-type cells were lower than those in tumor-type cells. Following depolarization with 50 mM potassium, [14C]CO2 production increased, but the retention of [14C]carbon was not changed in neuron-type cells. The largest change accompanied by acquisition of the neural phenotype was carbon incorporation into the macromolecules derived from glucose. This property may be important for the expression of the neural phenotype as well as the higher levels of both glucose uptake and oxygen consumption. PMID:11245818

  6. CD4-independent infection of human neural cells by human immunodeficiency virus type 1.

    PubMed Central

    Harouse, J M; Kunsch, C; Hartle, H T; Laughlin, M A; Hoxie, J A; Wigdahl, B; Gonzalez-Scarano, F

    1989-01-01

    A number of studies have indicated that central nervous system-derived cells can be infected with human immunodeficiency virus type 1 (HIV-1). To determine whether CD4, the receptor for HIV-1 in lymphoid cells, was responsible for infection of neural cells, we characterized infectable human central nervous system tumor lines and primary fetal neural cells and did not detect either CD4 protein or mRNA. We then attempted to block infection with anti-CD4 antibodies known to block infection of lymphoid cells; we noted no effect on any of these cultured cells. The results indicate that CD4 is not the receptor for HIV-1 infection of the glioblastoma line U373-MG, medulloblastoma line MED 217, or primary human fetal neural cells. Images PMID:2786088

  7. Gene amplification during differentiation of mammalian neural stem cells in vitro and in vivo.

    PubMed

    Fischer, Ulrike; Backes, Christina; Raslan, Abdulrahman; Keller, Andreas; Meier, Carola; Meese, Eckart

    2015-03-30

    In development of amphibians and flies, gene amplification is one of mechanisms to increase gene expression. In mammalian cells, gene amplification seems to be restricted to tumorigenesis and acquiring of drug-resistance in cancer cells. Here, we report a complex gene amplification pattern in mouse neural progenitor cells during differentiation with approximately 10% of the genome involved. Half of the amplified mouse chromosome regions overlap with amplified regions previously reported in human neural progenitor cells, indicating conserved mechanisms during differentiation. Using fluorescence in situ hybridization, we verified the amplification in single cells of primary mouse mesencephalon E14 (embryonic stage) neurosphere cells during differentiation. In vivo we confirmed gene amplifications of the TRP53 gene in cryosections from mouse embryos at stage E11.5. Gene amplification is not only a cancer-related mechanism but is also conserved in evolution, occurring during differentiation of mammalian neural stem cells. PMID:25760141

  8. Elk3 is essential for the progression from progenitor to definitive neural crest cell.

    PubMed

    Rogers, Crystal D; Phillips, Jacquelyn L; Bronner, Marianne E

    2013-02-15

    Elk3/Net/Sap2 (here referred to as Elk3) is an Ets ternary complex transcriptional repressor known for its involvement in angiogenesis during embryonic development. Although Elk3 is expressed in various tissues, additional roles for the protein outside of vasculature development have yet to be reported. Here, we characterize the early spatiotemporal expression pattern of Elk3 in the avian embryo using whole mount in situ hybridization and quantitative RT-PCR and examine the effects of its loss of function on neural crest development. At early stages, Elk3 is expressed in the head folds, head mesenchyme, intersomitic vessels, and migratory cranial neural crest (NC) cells. Loss of the Elk3 protein results in the retention of Pax7+ precursors in the dorsal neural tube that fail to upregulate neural crest specifier genes, FoxD3, Sox10 and Snail2, resulting in embryos with severe migration defects. The results putatively place Elk3 downstream of neural plate border genes, but upstream of neural crest specifier genes in the neural crest gene regulatory network (NC-GRN), suggesting that it is critical for the progression from progenitor to definitive neural crest cell. PMID:23266330

  9. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain.

    PubMed

    Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan

    2016-04-01

    Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. PMID:26828681

  10. Dnmt3a regulates both cell proliferation and differentiation of mouse neural stem cells

    PubMed Central

    Wu, Zhourui; Huang, Kevin; Yu, Juehua; Le, Thuc; Namihira, Masakasu; Liu, Yupeng; Zhang, Jun; Xue, Zhigang; Cheng, Liming; Fan, Guoping

    2012-01-01

    DNA methylation is known to regulate cell differentiation and neuronal function in vivo. Here we examined whether deficiency of a de novo DNA methyltransferase, Dnmt3a, affects in vitro differentiation of mouse embryonic stem cells (mESCs) to neuronal and glial cell lineages. Early passage neural stem cells (NSCs) derived from Dnmt3a-deficient ESCs exhibited a moderate phenotype in precocious glial differentiation compared to wild-type counterparts. However, successive passaging to passage six (P6), when wild-type NSCs become gliogenic, revealed a robust phenotype of precocious astrocyte and oligodendrocyte differentiation in Dnmt3a−/− NSCs, consistent with our previous findings in the more severely hypomethylated Dnmt1−/− NSCs. Mass-spectrometry analysis revealed total levels of methylcytosine in Dnmt3a−/− NSCs at P6 were globally hypomethylated. Moreover, Dnmt3a−/− NSC proliferation rate was significantly increased when compared to control from P6 on. Thus, our work revealed a novel role for Dnmt3a in regulating both the timing of neural cell differentiation and cell proliferation in the paradigm of mESC-derived-NSCs. PMID:22714992

  11. Paracrine Neuroprotective Effects of Neural Stem Cells on Glutamate-Induced Cortical Neuronal Cell Excitotoxicity

    PubMed Central

    Geranmayeh, Mohammad Hossein; Baghbanzadeh, Ali; Barin, Abbas; Salar-Amoli, Jamileh; Dehghan, Mohammad Mehdi; Rahbarghazi, Reza; Azari, Hassan

    2015-01-01

    Purpose: Glutamate is a major excitatory neurotransmitter in mammalian central nervous system. Excessive glutamate releasing overactivates its receptors and changes calcium homeostasis that in turn leads to a cascade of intracellular events causing neuronal degeneration. In current study, we used neural stem cells conditioned medium (NSCs-CM) to investigate its neuroprotective effects on glutamate-treated primary cortical neurons. Methods: Embryonic rat primary cortical cultures were exposed to different concentrations of glutamate for 1 hour and then they incubated with NSCs-CM. Subsequently, the amount of cell survival in different glutamate excitotoxic groups were measured after 24 h of incubation by trypan blue exclusion assay and MTT assay. Hoechst and propidium iodide were used for determining apoptotic and necrotic cell death pathways proportion and then the effect of NSCs-CM was investigated on this proportion. Results: NSCs conditioned medium increased viability rate of the primary cortical neurons after glutamate-induced excitotoxicity. Also we found that NSCs-CM provides its neuroprotective effects mainly by decreasing apoptotic cell death rate rather than necrotic cell death rate. Conclusion: The current study shows that adult neural stem cells could exert paracrine neuroprotective effects on cortical neurons following a glutamate neurotoxic insult. PMID:26819924

  12. Analysis of cell identity, morphology, apoptosis and mitotic activity in a primary neural cell culture system in Drosophila

    PubMed Central

    2012-01-01

    In Drosophila, most neurogenetic research is carried out in vivo. Mammalian research demonstrates that primary cell culture techniques provide a powerful model to address cell autonomous and non-autonomous processes outside their endogenous environment. We developed a cell culture system in Drosophila using wildtype and genetically manipulated primary neural tissue for long-term observations. We assessed the molecular identity of distinct neural cell types by immunolabeling and genetically expressed fluorescent cell markers. We monitored mitotic activity of cell cultures derived from wildtype and tumorous larval brains. Our system provides a powerful approach to unveil developmental processes in the nervous system and to complement studies in vivo. PMID:22554060

  13. The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate.

    PubMed

    Dottori, M; Gross, M K; Labosky, P; Goulding, M

    2001-11-01

    The neural crest is a migratory cell population that gives rise to multiple cell types in the vertebrate embryo. The intrinsic determinants that segregate neural crest cells from multipotential dorsal progenitors within the neural tube are poorly defined. In this study, we show that the winged helix transcription factor Foxd3 is expressed in both premigratory and migratory neural crest cells. Foxd3 is genetically downstream of Pax3 and is not expressed in regions of Pax3 mutant mice that lack neural crest, implying that Foxd3 may regulate aspects of the neural crest differentiation program. We show that misexpression of Foxd3 in the chick neural tube promotes a neural crest-like phenotype and suppresses interneuron differentiation. Cells that ectopically express Foxd3 upregulate HNK1 and Cad7, delaminate and emigrate from the neural tube at multiple dorsoventral levels. Foxd3 does not induce Slug and RhoB, nor is its ability to promote a neural crest-like phenotype enhanced by co-expression of Slug. Together these results suggest Foxd3 can function independently of Slug and RhoB to promote the development of neural crest cells from neural tube progenitors. PMID:11684651

  14. Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury

    PubMed Central

    Cole, Alistair E.; Murray, Simon S.; Xiao, Junhua

    2016-01-01

    Substantial progress has been made in identifying the extracellular signalling pathways that regulate neural stem and precursor cell biology in the central nervous system (CNS). The bone morphogenetic proteins (BMPs), in particular BMP4, are key players regulating neuronal and glial cell development from neural precursor cells in the embryonic, postnatal, and injured CNS. Here we review recent studies on BMP4 signalling in the generation of neurons, astrocytes, and oligodendroglial cells in the CNS. We also discuss putative mechanisms that BMP4 may utilise to influence glial cell development following CNS injury and highlight some questions for further research. PMID:27293450

  15. Corrosion free phosphoric acid fuel cell

    DOEpatents

    Wright, Maynard K.

    1990-01-01

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.

  16. Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering.

    PubMed

    Stewart, Elise; Kobayashi, Nao R; Higgins, Michael J; Quigley, Anita F; Jamali, Sina; Moulton, Simon E; Kapsa, Robert M I; Wallace, Gordon G; Crook, Jeremy M

    2015-04-01

    Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modeling, translational drug discovery, and regenerative medicine. PMID:25296166

  17. BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium

    PubMed Central

    Stottmann, Rolf W.; Choi, Murim; Mishina, Yuji; Meyers, Erik N.; Klingensmith, John

    2010-01-01

    Summary The neural crest is a multipotent, migratory cell population arising from the border of the neural and surface ectoderm. In mouse, the initial migratory neural crest cells occur at the five-somite stage. Bone morphogenetic proteins (BMPs), particularly BMP2 and BMP4, have been implicated as regulators of neural crest cell induction, maintenance, migration, differentiation and survival. Mouse has three known BMP2/4 type I receptors, of which Bmpr1a is expressed in the neural tube sufficiently early to be involved in neural crest development from the outset; however, earlier roles in other domains obscure its requirement in the neural crest. We have ablated Bmpr1a specifically in the neural crest, beginning at the five-somite stage. We find that most aspects of neural crest development occur normally; suggesting that BMPRIA is unnecessary for many aspects of early neural crest biology. However, mutant embryos display a shortened cardiac outflow tract with defective septation, a process known to require neural crest cells and to be essential for perinatal viability. Surprisingly, these embryos die in mid-gestation from acute heart failure, with reduced proliferation of ventricular myocardium. The myocardial defect may involve reduced BMP signaling in a novel, minor population of neural crest derivatives in the epicardium, a known source of ventricular myocardial proliferation signals. These results demonstrate that BMP2/4 signaling in mammalian neural crest derivatives is essential for outflow tract development and may regulate a crucial proliferation signal for the ventricular myocardium. PMID:15073157

  18. Multifunctional Nucleic Acids for Tumor Cell Treatment

    PubMed Central

    Pofahl, Monika; Wengel, Jesper

    2014-01-01

    We report on a multifunctional nucleic acid, termed AptamiR, composed of an aptamer domain and an antimiR domain. This composition mediates cell specific delivery of antimiR molecules for silencing of endogenous micro RNA. The introduced multifunctional molecule preserves cell targeting, anti-proliferative and antimiR function in one 37-nucleotide nucleic acid molecule. It inhibits cancer cell growth and induces gene expression that is pathologically damped by an oncomir. These findings will have a strong impact on future developments regarding aptamer- and antimiR-related applications for tumor targeting and treatment. PMID:24494617

  19. The Genetic and Epigenetic Journey of Embryonic Stem Cells into Mature Neural Cells

    PubMed Central

    Olynik, Brendan M.; Rastegar, Mojgan

    2012-01-01

    Epigenetic changes occur throughout life from embryonic development into adulthood. This results in the timely expression of developmentally important genes, determining the morphology and identity of different cell types and tissues within the body. Epigenetics regulate gene expression and cellular morphology through multiple mechanisms without alteration in the underlying DNA sequences. Different epigenetic mechanisms include chromatin condensation, post-translational modification of histone proteins, DNA cytosine marks, and the activity of non-coding RNA molecules. Epigenetics play key roles in development, stem cell differentiation, and have high impact in human disease. In this review, we will discuss our current knowledge about these epigenetic mechanisms, with a focus on histone and DNA marks. We will then talk about the genetics and epigenetics of embryonic stem cell self-renewal and differentiation into neural stem cells, and further into specific neuronal cell types. PMID:22629283

  20. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    PubMed Central

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

  1. Partial Dedifferentiation of Murine Radial Glia-Type Neural Stem Cells by Brn2 and c-Myc Yields Early Neuroepithelial Progenitors.

    PubMed

    Bung, Raffaela; Wörsdörfer, Philipp; Thier, Marc Christian; Lemke, Kathrin; Gebhardt, Martina; Edenhofer, Frank

    2016-04-10

    Direct cell conversion developed into an important paradigm for generating cells with enhanced differentiation capability. We combined a transcription-factor-based cell fate conversion strategy with the use of pharmacological compounds to derive early neuroepithelial progenitor cells from developmentally more restricted radial glia-type neural stem cells. By combining the small molecules CHIR99021, Tranylcypromine, SB431542 and valproic acid with viral transduction of the transcription factor c-Myc and the POU domain transcription factor Brn2, we dedifferentiated radial glia-type neural stem cells into an early neuroepithelial progenitor cell state within 6days. Reverse transcription PCR analyses showed a rapid down-regulation of the radial glia markers Olig2 and Vimentin during conversion, whereas the neuroepithelial markers Dach1 and Sox1 were fastly up-regulated. Furthermore, a switch from N-Cadherin to E-Cadherin indicates a mesenchymal-to-epithelial transition. The differentiation of cells converted by Brn2/c-Myc yielded smooth muscle actin- and Peripherin-positive cells in addition to the neuronal marker TUJ1 and cells that are positive for the glial marker GFAP. This differentiation potential suggests that the applied reprogramming strategy induced an early neuroepithelial cell population, which might resemble cells of the neural border or even more primitive neuroepithelial cells. PMID:26555748

  2. Short Report: Olfactory Ensheathing Cells Promote Differentiation of Neural Stem Cells and Robust Neurite Extension

    PubMed Central

    Sethi, Rosh; Sethi, Roshan; Redmond, Andy

    2014-01-01

    Aims The goal of this study was to gain insight into the signaling between olfactory ensheathing cells (OECs) and neural stem cells (NSCs). We sought to understand the impact of OECs on NSC differentiation and neurite extension and to begin to elucidate the factors involved in these interactions to provide new targets for therapeutic interventions. Materials and Methods We utilized lines of OECs that have been extremely well characterized in vitro and in vivo along with well studied NSCs in gels to determine the impact of the coculture in three dimensions. To further elucidate the signaling, we used conditioned media from the OECs as well as fractioned components on NSCs to determine the molecular weight range of the soluble factors that was most responsible for the NSC behavior. Results We found that the coculture of NSCs and OECs led to robust NSC differentiation and extremely long neural processes not usually seen with NSCs in three dimensional gels in vitro. Through culture of NSCs with fractioned OEC media, we determined that molecules larger than 30 kDa have the greatest impact on the NSC behavior. Conclusions Overall, our findings suggest that cocultures of NSCs and OECs may be a novel combination therapy for neural injuries including spinal cord injury (SCI). Furthermore, we have identified a class of molecules which plays a substantial role in the behavior that provides new targets for investigating pharmacological therapies. PMID:24996386

  3. Spirulina Promotes Stem Cell Genesis and Protects against LPS Induced Declines in Neural Stem Cell Proliferation

    PubMed Central

    Bachstetter, Adam D.; Jernberg, Jennifer; Schlunk, Andrea; Vila, Jennifer L.; Hudson, Charles; Cole, Michael J.; Shytle, R. Douglas; Tan, Jun; Sanberg, Paul R.; Sanberg, Cyndy D.; Borlongan, Cesario; Kaneko, Yuji; Tajiri, Naoki; Gemma, Carmelina; Bickford, Paula C.

    2010-01-01

    Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1β in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS). To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg). The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p.) and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020) of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected against the negative

  4. Hnrpab regulates neural development and neuron cell survival after glutamate stimulation

    PubMed Central

    Sinnamon, John R.; Waddell, Catherine B.; Nik, Sara; Chen, Emily I.; Czaplinski, Kevin

    2012-01-01

    The molecular mechanisms that govern the timing and fate of neural stem-cell differentiation toward the distinct neural lineages of the nervous system are not well defined. The contribution of post-transcriptional regulation of gene expression to neural stem-cell maintenance and differentiation, in particular, remains inadequately characterized. The RNA-binding protein Hnrpab is highly expressed in developing nervous tissue and in neurogenic regions of the adult brain, but its role in neural development and function is unknown. We raised a mouse that lacks Hnrpab expression to define what role, if any, Hnrpab plays during mouse neural development. We performed a genome-wide quantitative analysis of protein expression within the hippocampus of newborn mice to demonstrate significantly altered gene expression in mice lacking Hnrpab relative to Hnrpab-expressing littermates. The proteins affected suggested an altered pattern of neural development and also unexpectedly indicated altered glutamate signaling. We demonstrate that Hnrpab−/− neural stem and progenitor cells undergo altered differentiation patterns in culture, and mature Hnrpab−/− neurons demonstrate increased sensitivity to glutamate-induced excitotoxicity. We also demonstrate that Hnrpab nucleocytoplasmic distribution in primary neurons is regulated by developmental stage. PMID:22332140

  5. The fatty acid desaturase 2 (FADS2) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells

    PubMed Central

    Park, Hui Gyu; Park, Woo Jung; Kothapalli, Kumar S. D.; Brenna, J. Thomas

    2015-01-01

    Docosahexaenoic acid (DHA) is a Δ4-desaturated C22 fatty acid and the limiting highly unsaturated fatty acid (HUFA) in neural tissue. The biosynthesis of Δ4-desaturated docosanoid fatty acids 22:6n-3 and 22:5n-6 are believed to proceed via a circuitous biochemical pathway requiring repeated use of a fatty acid desaturase 2 (FADS2) protein to perform Δ6 desaturation on C24 fatty acids in the endoplasmic reticulum followed by 1 round of β-oxidation in the peroxisomes. We demonstrate here that the FADS2 gene product can directly Δ4-desaturate 22:5n-3→22:6n-3 (DHA) and 22:4n-6→22:5n-6. Human MCF-7 cells lacking functional FADS2-mediated Δ6-desaturase were stably transformed with FADS2, FADS1, or empty vector. When incubated with 22:5n-3 or 22:4n-6, FADS2 stable cells produce 22:6n-3 or 22:5n-6, respectively. Similarly, FADS2 stable cells when incubated with d5-18:3n-3 show synthesis of d5-22:6n-3 with no labeling of 24:5n-3 or 24:6n-3 at 24 h. Further, both C24 fatty acids are shown to be products of the respective C22 fatty acids via elongation. Our results demonstrate that the FADS2 classical transcript mediates direct Δ4 desaturation to yield 22:6n-3 and 22:5n-6 in human cells, as has been widely shown previously for desaturation by fish and many other organisms.—Park, H. G., Park, W. J., Kothapalli, K. S. D., Brenna, J. T. The fatty acid desaturase 2 (FADS2) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells. PMID:26065859

  6. Interplay between autophagy and programmed cell death in mammalian neural stem cells

    PubMed Central

    Chung, Kyung Min; Yu, Seong-Woon

    2013-01-01

    Mammalian neural stem cells (NSCs) are of particular interest because of their role in brain development and function. Recent findings suggest the intimate involvement of programmed cell death (PCD) in the turnover of NSCs. However, the underlying mechanisms of PCD are largely unknown. Although apoptosis is the best-defined form of PCD, accumulating evidence has revealed a wide spectrum of PCD encompassing apoptosis, autophagic cell death (ACD) and necrosis. This mini-review aims to illustrate a unique regulation of PCD in NSCs. The results of our recent studies on autophagic death of adult hippocampal neural stem (HCN) cells are also discussed. HCN cell death following insulin withdrawal clearly provides a reliable model that can be used to analyze the molecular mechanisms of ACD in the larger context of PCD. More research efforts are needed to increase our understanding of the molecular basis of NSC turnover under degenerating conditions, such as aging, stress and neurological diseases. Efforts aimed at protecting and harnessing endogenous NSCs will offer novel opportunities for the development of new therapeutic strategies for neuropathologies. [BMB Reports 2013; 46(8): 383-390] PMID:23977985

  7. Human neural progenitor cells generated from induced pluripotent stem cells can survive, migrate, and integrate in the rodent spinal cord

    PubMed Central

    Sareen, Dhruv; Gowing, Geneviève; Sahabian, Anais; Staggenborg, Kevin; Paradis, Renée; Avalos, Pablo; Latter, Jessica; Ornelas, Loren; Garcia, Leslie; Svendsen, Clive N.

    2014-01-01

    Transplantation of human neural progenitor cells (NPCs) into the brain or spinal cord to replace lost cells, modulate the injury environment or create a permissive milieu to protect and regenerate host neurons is a promising therapeutic strategy for neurological diseases. Deriving NPCs from human fetal tissue is feasible, though problematic issues include limited sources and ethical concerns. Here we describe a new and abundant source of NPCs derived from human induced pluripotent stem cells (iPSCs). A novel chopping technique was used to transform adherent iPSCs into free-floating spheres that were easy to maintain and were expandable (EZ spheres) (Ebert et al., 2013). These EZ spheres could be differentiated towards NPC spheres with a spinal cord phenotype using a combination of all-trans retinoic acid (ATRA) and epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) mitogens. Suspension cultures of NPCs derived from human iPSCs or fetal tissue have similar characteristics, though they were not similar when grown as adherent cells. In addition, iPSC-derived NPCs (iNPCs) survived grafting into the spinal cord of athymic nude rats with no signs of overgrowth and with a very similar profile to human fetal-derived NPCs (fNPCs). These results suggest that human iNPCs behave like fNPCs and could thus be a valuable alternative for cellular regenerative therapies of neurological diseases. PMID:24610630

  8. Diverse roles of the vasculature within the neural stem cell niche

    PubMed Central

    Goldberg, Joshua S; Hirschi, Karen K

    2010-01-01

    An interdependent relationship between the vascular and nervous systems begins during the earliest stages of development and persists through the mammalian lifespan. Accordingly, the process of adult neurogenesis involves the coordinated response of both systems to maintain a specialized microenvironment (niche) that tips the scale towards maintenance or regeneration, as needed. Understanding the nature and regulation of this balance will provide a foundation on which the potential for molecular-and stem cell-based therapies can be developed to treat prevalent CNS diseases and disorders. The vasculature is cited as a prominent feature within the adult subventricular zone and subgranular zone, known adult neural stem cell niches, helping to retain neural stem and progenitor cell potential. The vascular compartment within the neural stem cell niche has the unique opportunity to not only regulate neural stem and progenitor cells through direct contact with, and paracrine signaling from, endothelial and mural cells that make up blood vessels, but also integrates systemic signals into the local microenvironment via distribution of soluble factors from blood circulation to regulate stem cell niche behavior. Understanding the intricate role that the vasculature plays to influence neural stem cells in the context of niche regulation will help to bridge the gap from bench to bedside for the development of regeneration-based therapies for the CNS. PMID:19903006

  9. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    PubMed Central

    Xiong, Liu-lin; Chen, Zhi-wei; Wang, Ting-hua

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews. PMID:27212919

  10. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews.

    PubMed

    Xiong, Liu-Lin; Chen, Zhi-Wei; Wang, Ting-Hua

    2016-04-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews. PMID:27212919

  11. Molecular Targeting of Neural Cancer Stem Cells: TTAGGG, You're It!

    PubMed Central

    Hjelmeland, Anita B.; Rich, Jeremy N.

    2011-01-01

    Summary Telomerase is an important mechanism by which cancers escape replicative senescence. In neural tumors, cancer stem cells express telomerase suggesting that this may explain their preferential tumorigenesis. Oligonucleotide telomerase targeting selectively disrupts cancer stem cell growth through the induction of differentiation, adding to the armamentarium of anti-cancer stem cell therapies. PMID:21208901

  12. Roles of bHLH genes in neural stem cell differentiation

    SciTech Connect

    Kageyama, Ryoichiro . E-mail: rkageyam@virus.kyoto-u.ac.jp; Ohtsuka, Toshiyuki; Hatakeyama, Jun; Ohsawa, Ryosuke

    2005-06-10

    Neural stem cells change their characteristics over time during development: they initially proliferate only and then give rise to neurons first and glial cells later. In the absence of the repressor-type basic helix-loop-helix (bHLH) genes Hes1, Hes3 and Hes5, neural stem cells do not proliferate sufficiently but prematurely differentiate into neurons and become depleted without making the later born cell types such as astrocytes and ependymal cells. Thus, Hes genes are essential for maintenance of neural stem cells to make cells not only in correct numbers but also in full diversity. Hes genes antagonize the activator-type bHLH genes, which include Mash1, Math and Neurogenin. The activator-type bHLH genes promote the neuronal fate determination and induce expression of Notch ligands such as Delta. These ligands activate Notch signaling and upregulate Hes1 and Hes5 expression in neighboring cells, thereby maintaining these cells undifferentiated. Thus, the activator-type and repressor-type bHLH genes regulate each other, allowing only subsets of cells to undergo differentiation while keeping others to stay neural stem cells. This regulation is essential for generation of complex brain structures of appropriate size, shape and cell arrangement.

  13. What is the role of the vasculature in the neural stem cell niche?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Review of article: Ramirez-Castillejo C, Sanchez-Sanchez F, Andreu-Agullo C et al.: Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat. Neurosci. 9(3), 331–339 (2006). Vascular cells are essential components of the cytoarchitecture of multiple stem cell niches, alt...

  14. Culture conditions affect the cholinergic development of an isolated subpopulation of chick mesencephalic neural crest cells.

    PubMed

    Barald, K F

    1989-10-01

    Although neural crest cells are known to be very responsive to environmental cues during their development, recent evidence indicates that at least some subpopulations may be committed to a specific differentiation program prior to migration. Because the neural crest is composed of a heterogeneous mixture of cells that contributes to many vertebrate cell lineages, assessing the properties of specific subpopulations and the effect of the environment on their development has been difficult. To address this problem, we have isolated a pure subpopulation of chick mesencephalic neural crest cells by fluorescence no-flow cytometry after labeling them with monoclonal antibodies (Mabs) to a 75-kDa cell surface antigen that is associated with high affinity choline uptake. When cultures of chick mesencephalic neural crest cells are labeled with these Mabs and a fluorescent second step antibody, approximately 5% of the cells are antigen-positive (A+). After sorting, 100% of the resulting cultured mesencephalic neural crest cells are A+. The Mabs we used also label all of the neurons of the embryonic chick and quail ciliary ganglion in vivo and in vitro. We have compared the effect of various cell culture media on the isolated neural crest subpopulation and the heterogeneous chick mesencephalic neural crest from which it was derived. A+ cells were passaged and grown in a variety of media, each of which differently affected its characteristics and development. A+ cells proliferated in the presence of 15% fetal bovine serum (FBS) and high concentrations (10-15%) of chick embryo extract, but did not differentiate, although they retained basal levels of choline acetyltransferase (ChAT) activity. However, in chick serum and high (25 mM as opposed to 7 mM) K+, and heart-, iris-, or lung-conditioned medium, all of which are known to promote survival and/or cholinergic development of ciliary ganglion neurons, the cells ceased to proliferate and all of the cells in the culture became

  15. Vgll2a is required for neural crest cell survival during zebrafish craniofacial development

    PubMed Central

    Johnson, Christopher W.; Hernandez-Lagunas, Laura; Feng, Weiguo; Melvin, Vida Senkus; Williams, Trevor; Artinger, Kristin Bruk

    2011-01-01

    Invertebrate and vertebrate vestigial (vg) and vestigial-like (vgl) genes are involved in embryonic patterning and cell fate determination. These genes encode cofactors that interact with members of the TEAD/Scalloped family of transcription factors and modulate their activity. We have previously shown that, in mice, Vgll2 is differentially expressed in the developing facial prominences. In this study, we show that the zebrafish ortholog vgll2a is expressed in the pharyngeal endoderm and ectoderm surrounding the neural crest derived mesenchyme of the pharyngeal arches. Moreover, both the FGF and retinoic acid (RA) signaling pathways, which are critical components of the hierarchy controlling craniofacial patterning, regulate this domain of vgll2a expression. Consistent with these observations, vgll2a is required within the pharyngeal endoderm for NCC survival and pharyngeal cartilage development. Specifically, knockdown of Vgll2a in zebrafish embryos using Morpholino injection results in increased cell death within the pharyngeal arches, aberrant endodermal pouch morphogenesis, and hypoplastic cranial cartilages. Overall, our data reveal a novel non-cell autonomous role for Vgll2a in development of the NCC-derived vertebrate craniofacial skeleton. PMID:21741961

  16. Temporal Response of Endogenous Neural Progenitor Cells Following Injury to the Adult Rat Spinal Cord

    PubMed Central

    Mao, Yilin; Mathews, Kathryn; Gorrie, Catherine A.

    2016-01-01

    A pool of endogenous neural progenitor cells (NPCs) found in the ependymal layer and the sub-ependymal area of the spinal cord are reported to upregulate Nestin in response to traumatic spinal cord injury (SCI). These cells could potentially be manipulated within a critical time period offering an innovative approach to the repair of SCI. However, little is known about the temporal response of endogenous NPCs following SCI. This study used a mild contusion injury in rat spinal cord and immunohistochemistry to determine the temporal response of ependymal NPCs following injury and their correlation to astrocyte activation at the lesion edge. The results from the study demonstrated that Nestin staining intensity at the central canal peaked at 24 h post-injury and then gradually declined over time. Reactive astrocytes double labeled by Nestin and glial fibrillary acidic protein (GFAP) were found at the lesion edge and commenced to form the glial scar from 1 week after injury. We conclude that the critical time period for manipulating endogenous NPCs following a spinal cod injury in rats is between 24 h when Nestin expression in ependymal cells is increased and 1 week when astrocytes are activated in large numbers. PMID:27013972

  17. Periprostatic implantation of neural differentiated mesenchymal stem cells restores cavernous nerve injury-mediated erectile dysfunction

    PubMed Central

    Fang, Jia-Feng; Jia, Chang-Chang; Zheng, Zong-Heng; Ye, Xiao-Long; Wei, Bo; Huang, Li-Jun; Wei, Hong-Bo

    2016-01-01

    Mesenchymal stem cells (MSCs) have been utilized to restore erectile function in animal models of cavernous nerve injury (CNI). However, transplantation of primary MSCs may lead to unpredictable therapeutic outcomes. In this study, we investigated the efficiency of neural differentiated MSCs (d-MSCs) on the restoration of erectile function in CNI rats. Rat bone marrow MSCs (r-BM-MSCs) were treated with all-trans retinoic acid to induce neural differentiation. Rats were divided into five groups: a sham operation group; a bilateral CNI group that received an intracavernous injection of r-BM-MSCs (IC group); and three groups that received periprostatic implantation of either r-BM-MSCs (IP group), d-MSCs (IP-d group), or PBS (PBS group). The data revealed that IP injection of d-MSCs ameliorated erectile function in a similar manner to an IC injection of MSCs and enhanced erectile function compared to an IP injection of MSCs. An in vivo time course of d-MSCs survival revealed that PKH26-labled d-MSCs were detectable either within or surrounding the cavernous nerve tissue. In addition, the expression of caspase-3 significantly increased in the PBS group and decreased after treatment with MSCs, especially in the IC and IP-d groups. Furthermore, the expression levels of neurotrophic factors increased significantly in d-MSCs. This study demonstrated that periprostatic implantation of d-MSCs effectively restored erectile function in CNI rats. The mechanism might be ascribed to decreases in the frequency of apoptotic cells, as well as paracrine signaling by factors derived from d-MSCs. PMID:27398139

  18. Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells.

    PubMed

    Karumbaiah, Lohitash; Enam, Syed Faaiz; Brown, Ashley C; Saxena, Tarun; Betancur, Martha I; Barker, Thomas H; Bellamkonda, Ravi V

    2015-12-16

    Neural stem cells (NSCs) possess great potential for neural tissue repair after traumatic injuries to the central nervous system (CNS). However, poor survival and self-renewal of NSCs after injury severely limits its therapeutic potential. Sulfated chondroitin sulfate glycosaminoglycans (CS-GAGs) linked to CS proteoglycans (CSPGs) in the brain extracellular matrix (ECM) have the ability to bind and potentiate trophic factor efficacy, and promote NSC self-renewal in vivo. In this study, we investigated the potential of CS-GAG hydrogels composed of monosulfated CS-4 (CS-A), CS-6 (CS-C), and disulfated CS-4,6 (CS-E) CS-GAGs as NSC carriers, and their ability to create endogenous niches by enriching specific trophic factors to support NSC self-renewal. We demonstrate that CS-GAG hydrogel scaffolds showed minimal swelling and degradation over a period of 15 days in vitro, absorbing only 6.5 ± 0.019% of their initial weight, and showing no significant loss of mass during this period. Trophic factors FGF-2, BDNF, and IL10 bound with high affinity to CS-GAGs, and were significantly (p < 0.05) enriched in CS-GAG hydrogels when compared to unsulfated hyaluronic acid (HA) hydrogels. Dissociated rat subventricular zone (SVZ) NSCs when encapsulated in CS-GAG hydrogels demonstrated ∼88.5 ± 6.1% cell viability in vitro. Finally, rat neurospheres in CS-GAG hydrogels conditioned with the mitogen FGF-2 demonstrated significantly (p < 0.05) higher self-renewal when compared to neurospheres cultured in unconditioned hydrogels. Taken together, these findings demonstrate the ability of CS-GAG based hydrogels to regulate NSC self-renewal, and facilitate growth factor enrichment locally. PMID:26440046

  19. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  20. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  1. Morphological changes in human neural cells following tick-borne encephalitis virus infection.

    PubMed

    Růzek, Daniel; Vancová, Marie; Tesarová, Martina; Ahantarig, Arunee; Kopecký, Jan; Grubhoffer, Libor

    2009-07-01

    Tick-borne encephalitis (TBE) is one of the leading and most dangerous human viral neuroinfections in Europe and north-eastern Asia. The clinical manifestations include asymptomatic infections, fevers and debilitating encephalitis that might progress into chronic disease or fatal infection. To understand TBE pathology further in host nervous systems, three human neural cell lines, neuroblastoma, medulloblastoma and glioblastoma, were infected with TBE virus (TBEV). The susceptibility and virus-mediated cytopathic effect, including ultrastructural and apoptotic changes of the cells, were examined. All the neural cell lines tested were susceptible to TBEV infection. Interestingly, the neural cells produced about 100- to 10,000-fold higher virus titres than the conventional cell lines of extraneural origin, indicating the highly susceptible nature of neural cells to TBEV infection. The infection of medulloblastoma and glioblastoma cells was associated with a number of major morphological changes, including proliferation of membranes of the rough endoplasmic reticulum and extensive rearrangement of cytoskeletal structures. The TBEV-infected cells exhibited either necrotic or apoptotic morphological features. We observed ultrastructural apoptotic signs (condensation, margination and fragmentation of chromatin) and other alterations, such as vacuolation of the cytoplasm, dilatation of the endoplasmic reticulum cisternae and shrinkage of cells, accompanied by a high density of the cytoplasm. On the other hand, infected neuroblastoma cells did not exhibit proliferation of membranous structures. The virions were present in both the endoplasmic reticulum and the cytoplasm. Cells were dying preferentially by necrotic mechanisms rather than apoptosis. The neuropathological significance of these observations is discussed. PMID:19264624

  2. Meninges harbor cells expressing neural precursor markers during development and adulthood

    PubMed Central

    Bifari, Francesco; Berton, Valeria; Pino, Annachiara; Kusalo, Marijana; Malpeli, Giorgio; Di Chio, Marzia; Bersan, Emanuela; Amato, Eliana; Scarpa, Aldo; Krampera, Mauro; Fumagalli, Guido; Decimo, Ilaria

    2015-01-01

    Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood. PMID:26483637

  3. Nifurtimox Is Effective Against Neural Tumor Cells and Is Synergistic with Buthionine Sulfoximine.

    PubMed

    Du, Michael; Zhang, Linna; Scorsone, Kathleen A; Woodfield, Sarah E; Zage, Peter E

    2016-01-01

    Children with aggressive neural tumors have poor survival rates and novel therapies are needed. Previous studies have identified nifurtimox and buthionine sulfoximine (BSO) as effective agents in children with neuroblastoma and medulloblastoma. We hypothesized that nifurtimox would be effective against other neural tumor cells and would be synergistic with BSO. We determined neural tumor cell viability before and after treatment with nifurtimox using MTT assays. Assays for DNA ladder formation and poly-ADP ribose polymerase (PARP) cleavage were performed to measure the induction of apoptosis after nifurtimox treatment. Inhibition of intracellular signaling was measured by Western blot analysis of treated and untreated cells. Tumor cells were then treated with combinations of nifurtimox and BSO and evaluated for viability using MTT assays. All neural tumor cell lines were sensitive to nifurtimox, and IC50 values ranged from approximately 20 to 210 μM. Nifurtimox treatment inhibited ERK phosphorylation and induced apoptosis in tumor cells. Furthermore, the combination of nifurtimox and BSO demonstrated significant synergistic efficacy in all tested cell lines. Additional preclinical and clinical studies of the combination of nifurtimox and BSO in patients with neural tumors are warranted. PMID:27282514

  4. Nifurtimox Is Effective Against Neural Tumor Cells and Is Synergistic with Buthionine Sulfoximine

    PubMed Central

    Du, Michael; Zhang, Linna; Scorsone, Kathleen A.; Woodfield, Sarah E.; Zage, Peter E.

    2016-01-01

    Children with aggressive neural tumors have poor survival rates and novel therapies are needed. Previous studies have identified nifurtimox and buthionine sulfoximine (BSO) as effective agents in children with neuroblastoma and medulloblastoma. We hypothesized that nifurtimox would be effective against other neural tumor cells and would be synergistic with BSO. We determined neural tumor cell viability before and after treatment with nifurtimox using MTT assays. Assays for DNA ladder formation and poly-ADP ribose polymerase (PARP) cleavage were performed to measure the induction of apoptosis after nifurtimox treatment. Inhibition of intracellular signaling was measured by Western blot analysis of treated and untreated cells. Tumor cells were then treated with combinations of nifurtimox and BSO and evaluated for viability using MTT assays. All neural tumor cell lines were sensitive to nifurtimox, and IC50 values ranged from approximately 20 to 210 μM. Nifurtimox treatment inhibited ERK phosphorylation and induced apoptosis in tumor cells. Furthermore, the combination of nifurtimox and BSO demonstrated significant synergistic efficacy in all tested cell lines. Additional preclinical and clinical studies of the combination of nifurtimox and BSO in patients with neural tumors are warranted. PMID:27282514

  5. EWS-FLI1 causes neuroepithelial defects and abrogates emigration of neural crest stem cells.

    PubMed

    Coles, Edward G; Lawlor, Elizabeth R; Bronner-Fraser, Marianne

    2008-09-01

    The most frequently occurring chromosomal translocation that gives rise to the Ewing's sarcoma family of tumors (ESFT) is the chimeric fusion gene EWS-FLI1 that encodes an oncogenic protein composed of the N terminus of EWS and the C terminus of FLI1. Although the genetic basis of ESFT is fairly well understood, its putative cellular origin remains to be determined. Previous work has proposed that neural crest progenitor cells may be the causative cell type responsible for ESFT. However, surprisingly little is known about the expression pattern or role of either wild-type EWS or wild-type FLI1 in this cell population during early embryonic development. Using the developing chick embryo as a model system, we identified EWS expression in emigrating and migratory neural crest stem cells, whereas FLI1 transcripts were found to be absent in these populations and were restricted to developing endothelial cells. By ectopically expressing EWS-FLI1 or wild-type FLI1 in the developing embryo, we have been able to study the cellular transformations that ensue in the context of an in vivo model system. Our results reveal that misexpression of the chimeric EWS-FLI1 fusion gene, or wild-type FLI1, in the developing neural crest stem cell population leads to significant aberrations in neural crest development. An intriguing possibility is that misexpression of the EWS-FLI1 oncogene in neural crest-derived stem cells may be an initiating event in ESFT genesis. PMID:18556509

  6. miR-430 regulates oriented cell division during neural tube development in zebrafish.

    PubMed

    Takacs, Carter M; Giraldez, Antonio J

    2016-01-15

    MicroRNAs have emerged as critical regulators of gene expression. Originally shown to regulate developmental timing, microRNAs have since been implicated in a wide range of cellular functions including cell identity, migration and signaling. miRNA-430, the earliest expressed microRNA during zebrafish embryogenesis, is required to undergo morphogenesis and has previously been shown to regulate maternal mRNA clearance, Nodal signaling, and germ cell migration. The functions of miR-430 in brain morphogenesis, however, remain unclear. Herein we find that miR-430 instructs oriented cell divisions in the neural rod required for neural midline formation. Loss of miR-430 function results in mitotic spindle misorientation in the neural rod, failed neuroepithelial integration after cell division, and ectopic cell accumulation in the dorsal neural tube. We propose that miR-430, independently of canonical apicobasal and planar cell polarity (PCP) pathways, coordinates the stereotypical cell divisions that instruct neural tube morphogenesis. PMID:26658217

  7. Dynamic methylation and expression of Oct4 in early neural stem cells.

    PubMed

    Lee, Shih-Han; Jeyapalan, Jennie N; Appleby, Vanessa; Mohamed Noor, Dzul Azri; Sottile, Virginie; Scotting, Paul J

    2010-09-01

    Neural stem cells are a multipotent population of tissue-specific stem cells with a broad but limited differentiation potential. However, recent studies have shown that over-expression of the pluripotency gene, Oct4, alone is sufficient to initiate a process by which these can form 'induced pluripotent stem cells' (iPS cells) with the same broad potential as embryonic stem cells. This led us to examine the expression of Oct4 in endogenous neural stem cells, as data regarding its expression in neural stem cells in vivo are contradictory and incomplete. In this study we have therefore analysed the expression of Oct4 and other genes associated with pluripotency throughout development of the mouse CNS and in neural stem cells grown in vitro. We find that Oct4 is still expressed in the CNS by E8.5, but that this expression declines rapidly until it is undetectable by E15.5. This decline is coincident with the gradual methylation of the Oct4 promoter and proximal enhancer. Immunostaining suggests that the Oct4 protein is predominantly cytoplasmic in location. We also found that neural stem cells from all ages expressed the pluripotency associated genes, Sox2, c-Myc, Klf4 and Nanog. These data provide an explanation for the varying behaviour of cells from the early neuroepithelium at different stages of development. The expression of these genes also provides an indication of why Oct4 alone is sufficient to induce iPS formation in neural stem cells at later stages. PMID:20646110

  8. Nucleic Acid Aptamers for Living Cell Analysis

    NASA Astrophysics Data System (ADS)

    Xiong, Xiangling; Lv, Yifan; Chen, Tao; Zhang, Xiaobing; Wang, Kemin; Tan, Weihong

    2014-06-01

    Cells as the building blocks of life determine the basic functions and properties of a living organism. Understanding the structure and components of a cell aids in the elucidation of its biological functions. Moreover, knowledge of the similarities and differences between diseased and healthy cells is essential to understanding pathological mechanisms, identifying diagnostic markers, and designing therapeutic molecules. However, monitoring the structures and activities of a living cell remains a challenging task in bioanalytical and life science research. To meet the requirements of this task, aptamers, as “chemical antibodies,” have become increasingly powerful tools for cellular analysis. This article reviews recent advances in the development of nucleic acid aptamers in the areas of cell membrane analysis, cell detection and isolation, real-time monitoring of cell secretion, and intracellular delivery and analysis with living cell models. Limitations of aptamers and possible solutions are also discussed.

  9. Folic acid supplementation of pregnant mice suppresses heat-induced neural tube defects in the offspring.

    PubMed

    Shin, J H; Shiota, K

    1999-11-01

    Neural tube defects (NTD) are a group of malformations that result from the failure of the neural tube to close early in embryonic development and among the most common congenital malformations in humans. It has been reported that a substantial proportion of NTD in humans can be prevented by folic acid (FA) supplementation prior to conception and during the first months of pregnancy, and myo-inositol (MI) was shown to reduce the incidence of NTD in curly tail mice which are not prevented by FA. Brief maternal hyperthermia (HT) early in pregnancy has been implicated in NTD both in humans and laboratory animals, and anterior NTD including exencephaly and anencephaly are induced frequently when pregnant mice are exposed to HT. We examined the effect of FA or MI supplementation of pregnant mice on the occurrence of heat-induced NTD in the offspring. When pregnant mice were treated with FA (3 mg/kg) daily from gestational day (GD) 0.5 through GD 9.5 and heated at GD 8.5, the prevalence of NTD in the fetuses (26.6%) was significantly lower than the corresponding figure in the HT alone group (38.6%; P < 0.05). However we failed to detect the preventive effect of MI (500 mg/kg). The results of this study suggest that prenatal FA supplementation decreases HT-induced NTD in mice and sufficient FA intake during early pregnancy may be recommended to avoid the birth of malformed children. PMID:10539786

  10. Efficient differentiation of neural stem cells induced by the rat bone marrow stromal cells

    PubMed Central

    Gu, Ping; Qiu, Fu-Cheng; Han, Rui; Zhang, Zhong-Xia; Dong, Ci; Zhang, Li-Na; Wang, Yan-Yong; Ma, Qing-Ying; Yan, Bao-Yong

    2015-01-01

    Neural stem cells (NSCs) are valuable self-renewing cells that can maintain the capacity to differentiate into specific brain cell types. NSCs may repair and even replace the brain tissue, and ultimatley promoting the central nervous system regeneration. Therefore, it is important, for scientists and pjysicians, to study the method for efficient culture and differentiation of NSCs. Our previous study demonstrated that Bone Marrow Stromal Cells (BMSCs) can directly regulate the differentiation of NSCs into neurons, and soluble molecules excreted by BMSCs played a key role in this process. Hereby, we further identified the BMSCs-induced neurons could form the synapses, convey dopamine and express voltage-depend and receptor-depend calcium channels. Moreover, the extracellular signal-regulated protein kinase ERK1/2 pathway was founded to be involved in the process of neuron differentiation and proliferation by the in vitro experiments. Finally, by using protein array, we, for the first time, found that the cytokine-induced neutrophil chemoattractant-3 (CINC-3, a small molecule cytokine) can promote the leukocytes invasion into the inflammation site, and have the ability to induce mesencephal NSCs into neurons. Consequently, these positive findings suggested that our BMSCs-induced culture system could provide a useful tool to investigate the molecular mechanisms of neural differentiation of NSCs, which may be benifical for neurodegenerative diseases in the near future. PMID:26221209

  11. Vision-based force measurement using neural networks for biological cell microinjection.

    PubMed

    Karimirad, Fatemeh; Chauhan, Sunita; Shirinzadeh, Bijan

    2014-03-21

    This paper presents a vision-based force measurement method using an artificial neural network model. The proposed model is used for measuring the applied load to a spherical biological cell during micromanipulation process. The devised vision-based method is most useful when force measurement capability is required, but it is very challenging or even infeasible to use a force sensor. Artificial neural networks in conjunction with image processing techniques have been used to estimate the applied load to a cell. A bio-micromanipulation system capable of force measurement has also been established in order to collect the training data required for the proposed neural network model. The geometric characterization of zebrafish embryos membranes has been performed during the penetration of the micropipette prior to piercing. The geometric features are extracted from images using image processing techniques. These features have been used to describe the shape and quantify the deformation of the cell at different indentation depths. The neural network is trained by taking the visual data as the input and the measured corresponding force as the output. Once the neural network is trained with sufficient number of data, it can be used as a precise sensor in bio-micromanipulation setups. However, the proposed neural network model is applicable for indentation of any other spherical elastic object. The results demonstrate the capability of the proposed method. The outcomes of this study could be useful for measuring force in biological cell micromanipulation processes such as injection of the mouse oocyte/embryo. PMID:24411067

  12. Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function

    PubMed Central

    Landowski, Lila M.; Young, Kaylene M.

    2016-01-01

    The central nervous system (CNS) is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL) receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions. PMID:26949399

  13. Catalog of gene expression in adult neural stem cells and their in vivo microenvironment

    SciTech Connect

    Williams, Cecilia; Wirta, Valtteri; Meletis, Konstantinos; Wikstroem, Lilian; Carlsson, Leif; Frisen, Jonas; Lundeberg, Joakim . E-mail: joakim.lundeberg@biotech.kth.se

    2006-06-10

    Stem cells generally reside in a stem cell microenvironment, where cues for self-renewal and differentiation are present. However, the genetic program underlying stem cell proliferation and multipotency is poorly understood. Transcriptome analysis of stem cells and their in vivo microenvironment is one way of uncovering the unique stemness properties and provides a framework for the elucidation of stem cell function. Here, we characterize the gene expression profile of the in vivo neural stem cell microenvironment in the lateral ventricle wall of adult mouse brain and of in vitro proliferating neural stem cells. We have also analyzed an Lhx2-expressing hematopoietic-stem-cell-like cell line in order to define the transcriptome of a well-characterized and pure cell population with stem cell characteristics. We report the generation, assembly and annotation of 50,792 high-quality 5'-end expressed sequence tag sequences. We further describe a shared expression of 1065 transcripts by all three stem cell libraries and a large overlap with previously published gene expression signatures for neural stem/progenitor cells and other multipotent stem cells. The sequences and cDNA clones obtained within this framework provide a comprehensive resource for the analysis of genes in adult stem cells that can accelerate future stem cell research.

  14. Aberrant Lipid Metabolism in the Forebrain Niche Suppresses Adult Neural Stem Cell Proliferation in an Animal Model of Alzheimer's Disease.

    PubMed

    Hamilton, Laura K; Dufresne, Martin; Joppé, Sandra E; Petryszyn, Sarah; Aumont, Anne; Calon, Frédéric; Barnabé-Heider, Fanie; Furtos, Alexandra; Parent, Martin; Chaurand, Pierre; Fernandes, Karl J L

    2015-10-01

    Lipid metabolism is fundamental for brain development and function, but its roles in normal and pathological neural stem cell (NSC) regulation remain largely unexplored. Here, we uncover a fatty acid-mediated mechanism suppressing endogenous NSC activity in Alzheimer's disease (AD). We found that postmortem AD brains and triple-transgenic Alzheimer's disease (3xTg-AD) mice accumulate neutral lipids within ependymal cells, the main support cell of the forebrain NSC niche. Mass spectrometry and microarray analyses identified these lipids as oleic acid-enriched triglycerides that originate from niche-derived rather than peripheral lipid metabolism defects. In wild-type mice, locally increasing oleic acid was sufficient to recapitulate the AD-associated ependymal triglyceride phenotype and inhibit NSC proliferation. Moreover, inhibiting the rate-limiting enzyme of oleic acid synthesis rescued proliferative defects in both adult neurogenic niches of 3xTg-AD mice. These studies support a pathogenic mechanism whereby AD-induced perturbation of niche fatty acid metabolism suppresses the homeostatic and regenerative functions of NSCs. PMID:26321199

  15. Human Neural Crest Stem Cells Derived from Human ESCs and Induced Pluripotent Stem Cells: Induction, Maintenance, and Differentiation into Functional Schwann Cells

    PubMed Central

    Liu, Qiuyue; Spusta, Steven C.; Mi, Ruifa; Lassiter, Rhonda N.T.; Stark, Michael R.; Höke, Ahmet; Rao, Mahendra S.

    2012-01-01

    The neural crest (NC) is a transient, multipotent, migratory cell population unique to vertebrates that gives rise to diverse cell lineages. Much of our knowledge of NC development comes from studies of organisms such as chicken and zebrafish because human NC is difficult to obtain because of its transient nature and the limited availability of human fetal cells. Here we examined the process of NC induction from human pluripotent stem cells, including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). We showed that NC cells could be efficiently induced from hESCs by a combination of growth factors in medium conditioned on stromal cells and that NC stem cells (NCSCs) could be purified by p75 using fluorescence-activated cell sorting (FACS). FACS-isolated NCSCs could be propagated in vitro in five passages and cryopreserved while maintaining NCSC identity characterized by the expression of a panel of NC markers such as p75, Sox9, Sox10, CD44, and HNK1. In vitro-expanded NCSCs were able to differentiate into neurons and glia (Schwann cells) of the peripheral nervous system, as well as mesenchymal derivatives. hESC-derived NCSCs appeared to behave similarly to endogenous embryonic NC cells when injected in chicken embryos. Using a defined medium, we were able to generate and propagate a nearly pure population of Schwann cells that uniformly expressed glial fibrillary acidic protein, S100, and p75. Schwann cells generated by our protocol myelinated rat dorsal root ganglia neurons in vitro. To our knowledge, this is the first report on myelination by hESC- or iPSC-derived Schwann cells. PMID:23197806

  16. The role of folic acid fortification in neural tube defects: a review.

    PubMed

    Osterhues, Anja; Ali, Nyima S; Michels, Karin B

    2013-01-01

    The worldwide prevalence of neural tube defects (NTDs) has fallen noticeably during the past 30 years, but the specific etiology and causative mechanism of NTDs remain unknown. Since introduction of mandatory fortification of grains with folic acid, a further decrease in NTD prevalence has been reported in North America and other countries with large variations among ethnic subgroups. However, a significant portion of NTDs still persists. Population data suggest that women of childbearing age may not yet be adequately targeted, while the general population may be overfortified with folic acid. While an excessive folate intake may be associated with adverse effects, there remains uncertainty about the minimum effective folate intake and status required for NTD prevention, and the safe upper folate level. Besides folate, several other lifestyle and environmental factors as well as genetic variations may influence NTD development, possibly by affecting one-carbon metabolism and thus epigenetic events. In conclusion, mandatory folic acid fortification plays a significant part in the reduction of NTD prevalence, but possibly at a cost and with a portion of NTDs remaining. More effective preventive strategies require better understanding of the etiology of this group of birth defects. PMID:24007422

  17. Folic acid supplementation influences the distribution of neural tube defect subtypes: A registry-based study.

    PubMed

    Bergman, J E H; Otten, E; Verheij, J B G M; de Walle, H E K

    2016-01-01

    Periconceptional folic acid (FA) reduces neural tube defect (NTD) risk, but seems to have a varying effect per NTD subtype. We aimed to study the effect of FA supplementation on NTD subtype distribution using data from EUROCAT Northern Netherlands. We included all birth types with non-syndromal NTDs born in 1997-2012. By Fisher's exact test we analyzed possible differences in NTD subtype distribution between a correct FA supplementation group and incorrect FA supplementation group. We found proportionally fewer cervical/thoracic spina bifida cases and more lumbar/sacral spina bifida cases in the correct FA supplementation group, irrespective of the presence of the main NTD risk factors. The effect on NTD subtype distribution was only seen when FA supplementation was started before conception. We conclude that FA not only prevents the occurrence of a significant proportion of NTDs, but might also decrease the severity of NTDs, as long as supplementation is started before conception. PMID:26627544

  18. Neural networks applied to determine the thermophysical properties of amino acid based ionic liquids.

    PubMed

    Cancilla, John C; Perez, Ana; Wierzchoś, Kacper; Torrecilla, José S

    2016-03-01

    A series of models based on artificial neural networks (ANNs) have been designed to estimate the thermophysical properties of different amino acid-based ionic liquids (AAILs). Three different databases of AAILs were modeled using these algorithms with the goal set to estimate the density, viscosity, refractive index, ionic conductivity, and thermal expansion coefficient, and requiring only data regarding temperature and electronic polarizability of the chemicals. Additionally, a global model was designed combining all of the databases to determine the robustness of the method. In general, the results were successful, reaching mean prediction errors below 1% in many cases, as well as a statistically reliable and accurate global model. Attaining these successful models is a relevant fact as AAILs are novel biodegradable and biocompatible compounds which may soon make their way into the health sector forming a part of useful biomedical applications. Therefore, understanding the behavior and being able to estimate their thermophysical properties becomes crucial. PMID:26899458

  19. Optimization of surface-immobilized extracellular matrices for the proliferation of neural progenitor cells derived from induced pluripotent stem cells.

    PubMed

    Komura, Takashi; Kato, Koichi; Konagaya, Shuhei; Nakaji-Hirabayashi, Tadashi; Iwata, Hiroo

    2015-11-01

    Neural progenitor cells derived from induced pluripotent stem cells have been considered as a potential source for cell-transplantation therapy of central nervous disorders. However, efficient methods to expand neural progenitor cells are further required for their clinical applications. In this study, a protein array was fabricated with nine extracellular matrices and used to screen substrates suitable for the expansion of neural progenitor cells derived from mouse induced pluripotent stem cells. The results showed that neural progenitor cells efficiently proliferated on substrates with immobilized laminin-1, laminin-5, or Matrigel. Based on this result, further attempts were made to develop clinically compliant substrates with immobilized polypeptides that mimic laminin-1, one of the most effective extracellular matrices as identified in the array-based screening. We used here recombinant DNA technology to prepare polypeptide containing the globular domain 3 of laminin-1 and immobilized it onto glass-based substrates. Our results showed that neural progenitor cells selectively proliferated on substrate with the immobilized polypeptide while maintaining their differentiated state. PMID:25943789

  20. Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases

    PubMed Central

    Prajumwongs, Piya; Weeranantanapan, Oratai; Jaroonwitchawan, Thiranut; Noisa, Parinya

    2016-01-01

    Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs) recapitulated those in the early embryo development in vivo at certain degree. This underscores the usefulness of hESCs in understanding early human neural development and reinforces the need to integrate the principles of developmental biology and hESC biology for an efficient neural differentiation. PMID:27239201

  1. Formic acid fuel cells and catalysts

    SciTech Connect

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  2. Quantitative changes in gene transcription during induction of differentiation in porcine neural progenitor cells

    PubMed Central

    Yang, Jing; Gu, Ping; Menges, Steven

    2012-01-01

    Purpose Differentiation of neural stem/progenitor cells involves changes in the gene expression of these cells. Less clear is the extent to which incremental changes occur and the time course of such changes, particularly in non-rodents. Methods Using porcine genome microarrays, we analyzed changes in the expression of 23,256 genes in porcine neural progenitor cells (pNPCs) subject to two established differentiation protocols. In addition, we performed sequential quantitative assessment of a defined transcription profile consisting of 15 progenitor- and lineage-associated genes following exposure to the same treatment protocols, to examine the temporal dynamics of phenotypic changes following induction of differentiation. Immunocytochemistry was also used to examine the expression of seven of these phenotypically important genes at the protein level. Initial primary isolates were passaged four times in proliferation medium containing 20 ng/ml epidermal growth factor (EGF) and 20 ng/ml basic fibroblast growth factor (bFGF) before differentiation was induced. Differentiation was induced by medium without EGF or bFGF and containing either 10 ng/ml ciliary neurotrophic factor or 10% fetal bovine serum (FBS). Cultures were fed every two days and harvested on days 0, 1, 3, and 5 for quantitative real-time PCR. Results The microarray results illustrated and contrasted the global shifts in the porcine transcriptome associated with both treatment conditions. PCR confirmed dramatic upregulation of transcripts for myelin basic protein (up to 88 fold), claudin 11 (up to 32 fold), glial fibrillary acidic protein (GFAP; up to 26 fold), together with notable (>twofold) increases in message for microtubule associated protein 2 (MAP2) and C-X-C chemokine receptor type 4 (CXCR4), Janus kinase 1 (Jak1), signal transducer and activator of transcription 1 (STAT1), and signal transducer and activator of transcription 3 (STAT3). Transcripts for nestin and Krüppel-like factor 4 (KLF4

  3. Not all cases of neural-tube defect can be prevented by increasing the intake of folic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the beneficial effects of different levels of folic acid administration on the prevalence of neural tube defects, with a concurrent assessment of other potential benefits or adverse effects. The evaluation was based on a systematic review of the published ...

  4. Will Increasing Folic Acid in Fortified Grain Products Further Reduce Neural Tube Defects without Causing Harm?: Consideration of the Evidence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Will Increasing Folic Acid in Fortified Grain Products Further Reduce Neural Tube Defects without Causing Harm?: Consideration of the Evidence. In the January issue of this journal, Johnston (1) includes our group’s recent analysis of data from the 1999-2002 National Health and Nutrition Examination...

  5. Apical accumulation of MARCKS in neural plate cells during neurulation in the chick embryo

    PubMed Central

    Zolessi, Flavio R; Arruti, Cristina

    2001-01-01

    Background The neural tube is formed by morphogenetic movements largely dependent on cytoskeletal dynamics. Actin and many of its associated proteins have been proposed as important mediators of neurulation. For instance, mice deficient in MARCKS, an actin cross-linking membrane-associated protein that is regulated by PKC and other kinases, present severe developmental defects, including failure of cranial neural tube closure. Results To determine the distribution of MARCKS, and its possible relationships with actin during neurulation, chick embryos were transversely sectioned and double labeled with an anti-MARCKS polyclonal antibody and phalloidin. In the neural plate, MARCKS was found ubiquitously distributed at the periphery of the cells, being conspicuously accumulated in the apical cell region, in close proximity to the apical actin meshwork. This asymmetric distribution was particularly noticeable during the bending process. After the closure of the neural tube, the apically accumulated MARCKS disappeared, and this cell region became analogous to the other peripheral cell zones in its MARCKS content. Actin did not display analogous variations, remaining highly concentrated at the cell subapical territory. The transient apical accumulation of MARCKS was found throughout the neural tube axis. The analysis of another epithelial bending movement, during the formation of the lens vesicle, revealed an identical phenomenon. Conclusions MARCKS is transiently accumulated at the apical region of neural plate and lens placode cells during processes of bending. This asymmetric subcellular distribution of MARCKS starts before the onset of neural plate bending. These results suggest possible upstream regulatory actions of MARCKS on some functions of the actin subapical meshwork. PMID:11329360

  6. Phosphoric Acid Fuel Cell Technology Status

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; King, R. B.; Prokopius, P. R.

    1981-01-01

    A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.

  7. Roles of planar cell polarity pathways in the development of neural [correction of neutral] tube defects.

    PubMed

    Wu, Gang; Huang, Xupei; Hua, Yimin; Mu, Dezhi

    2011-01-01

    Neural tube defects (NTDs) are the second most common birth defect in humans. Despite many advances in the understanding of NTDs and the identification of many genes related to NTDs, the fundamental etiology for the majority of cases of NTDs remains unclear. Planar cell polarity (PCP) signaling pathway, which is important for polarized cell movement (such as cell migration) and organ morphogenesis through the activation of cytoskeletal pathways, has been shown to play multiple roles during neural tube closure. The disrupted function of PCP pathway is connected with some NTDs. Here, we summarize our current understanding of how PCP factors affect the pathogenesis of NTDs. PMID:21864354

  8. Heterogeneity of neural progenitor cells revealed by enhancers in the nestin gene

    PubMed Central

    Yaworsky, Paul J.; Kappen, Claudia

    2014-01-01

    Using transgenic embryos, we have identified two distinct CNS progenitor cell-specific enhancers, each requiring the cooperation of at least two independent regulatory sites, within the second intron of the rat nestin gene. One enhancer is active throughout the developing CNS while the other is specifically active in the ventral midbrain. These experiments demonstrate that neural progenitor cells in the midbrain constitute a unique subpopulation based upon their ability to activate the midbrain regulatory elements. Our finding of differential enhancer activity from a gene encoding a structural protein reveals a previously unrecognized diversity in neural progenitor cell populations. PMID:9917366

  9. Transplantation and Magnetic Resonance Imaging of Canine Neural Progenitor Cell Grafts in the Postnatal Dog Brain

    PubMed Central

    Walton, Raquel M.; Magnitsky, Sergey G.; Seiler, Gabriela S.; Poptani, Harish; Wolfe, John H.

    2009-01-01

    Cellular transplantation in the form of bone marrow has been one of the primary treatments of many lysosomal storage diseases (LSDs). Although bone marrow transplantation can help central nervous system manifestations in some cases, it has little impact in many LSD patients. Canine models of neurogenetic LSDs provide the opportunity for modeling central nervous system transplantation strategies in brains that more closely approximate the size and architectural complexity of the brains of children. Canine olfactory bulb-derived neural progenitor cells (NPCs) isolated from dog brains were expanded ex vivo and implanted into the caudate nucleus/thalamus or cortex of allogeneic dogs. Canine olfactory bulb-derived NPCs labeled with micron-sized superparamagnetic iron oxide particles were detected by magnetic resonance imaging both in vivo and postmortem. Grafts expressed markers of NPCs (i.e. nestin and glial fibrillary acidic protein), but not the neuronal markers Map2ab or β-tubulin III. The NPCs were from dogs with the LSD mucopolysaccharidosis VII, which is caused by a deficiency of β-glucuronidase. When mucopolysaccharidosis VII canine olfactory bulb-NPCs that were genetically corrected with a lentivirus vector ex vivo were transplanted into mucopolysaccharidosis VII recipient brains, they were detected histologically by β-glucuronidase expression in areas identified by antemortem magnetic resonance imaging tracking. These results demonstrate the potential for ex vivo stem cell-based gene therapy and noninvasive tracking of therapeutic grafts in vivo. PMID:18800012

  10. Neural stem cell protects aged rat brain from ischemia–reperfusion injury through neurogenesis and angiogenesis

    PubMed Central

    Tang, Yaohui; Wang, Jixian; Lin, Xiaojie; Wang, Liuqing; Shao, Bei; Jin, Kunlin; Wang, Yongting; Yang, Guo-Yuan

    2014-01-01

    Neural stem cells (NSCs) show therapeutic potential for ischemia in young-adult animals. However, the effect of aging on NSC therapy is largely unknown. In this work, NSCs were transplanted into aged (24-month-old) and young-adult (3-month-old) rats at 1 day after stroke. Infarct volume and neurobehavioral outcomes were examined. The number of differentiated NSCs was compared in aged and young-adult ischemic rats and angiogenesis and neurogenesis were also determined. We found that aged rats developed larger infarcts than young-adult rats after ischemia (P<0.05). The neurobehavioral outcome was also worse for aged rats comparing with young-adult rats. Brain infarction and neurologic deficits were attenuated after NSC transplantation in both aged and young-adult rats. The number of survived NSCs in aged rats was similar to that of the young-adult rats (P>0.05) and most of them were differentiated into glial fibrillary acidic protein+ (GFAP+) cells. More importantly, angiogenesis and neurogenesis were greatly enhanced in both aged and young-adult rats after transplantation compared with phosphate-buffered saline (PBS) control (P<0.05), accompanied by increased expression of vascular endothelial growth factor (VEGF). Our results showed that NSC therapy reduced ischemic brain injury, along with increased angiogenesis and neurogenesis in aged rats, suggesting that aging-related microenvironment does not preclude a beneficial response to NSCs transplantation during cerebral ischemia. PMID:24714034

  11. FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells.

    PubMed

    Yeo, Hyeonju; Lyssiotis, Costas A; Zhang, Yuqing; Ying, Haoqiang; Asara, John M; Cantley, Lewis C; Paik, Ji-Hye

    2013-10-01

    Forkhead Box O (FoxO) transcription factors act in adult stem cells to preserve their regenerative potential. Previously, we reported that FoxO maintains the long-term proliferative capacity of neural stem/progenitor cells (NPCs), and that this occurs, in part, through the maintenance of redox homeostasis. Herein, we demonstrate that among the FoxO3-regulated genes in NPCs are a host of enzymes in central carbon metabolism that act to combat reactive oxygen species (ROS) by directing the flow of glucose and glutamine carbon into defined metabolic pathways. Characterization of the metabolic circuit observed upon loss of FoxO3 revealed a drop in glutaminolysis and filling of the tricarboxylic acid (TCA) cycle. Additionally, we found that glucose uptake, glucose metabolism and oxidative pentose phosphate pathway activity were similarly repressed in the absence of FoxO3. Finally, we demonstrate that impaired glucose and glutamine metabolism compromises the proliferative potential of NPCs and that this is exacerbated following FoxO3 loss. Collectively, our findings show that a FoxO3-dependent metabolic programme supports redox balance and the neurogenic potential of NPCs. PMID:24013118

  12. Roles of neural stem cells and adult neurogenesis in adolescent alcohol use disorders

    PubMed Central

    Nixon, K.; Morris, S.A.; Liput, D.J.; Kelso, M.L.

    2009-01-01

    This review discusses the contributions of a newly considered form of plasticity, the ongoing production of new neurons from neural stem cells, or adult neurogenesis, within the context of neuropathologies that occur with excessive alcohol intake in the adolescent. Neural stem cells and adult neurogenesis are now thought to contribute to the structural integrity of the hippocampus, a limbic system region involved in learning, memory, behavioral control, and mood. In adolescents with alcohol use disorders, the hippocampus appears to be particularly vulnerable to the neurodegenerative effects of alcohol, but the role of neural stem cells and adult neurogenesis in alcoholic neuropathology has only recently been considered. This review encompasses a brief overview of neural stem cells and the processes involved in adult neurogenesis, how neural stem cells are affected by alcohol, and possible differences in the neurogenic niche between adults and adolescents. Specifically, what is known about developmental differences in adult neurogenesis between the adult and adolescent is gleaned from the literature, as well as how alcohol affects this process differently between the age groups. And finally, this review suggests differences that may exist in the neurogenic niche between adults and adolescents and how these differences may contribute to the susceptibility of the adolescent hippocampus to damage. However, many more studies are needed to discern whether these developmental differences contribute to the vulnerability of the adolescent to developing an alcohol use disorder. PMID:20113873

  13. ATM Deficiency Results in Accumulation of DNA-Topoisomerase I Covalent Intermediates in Neural Cells

    PubMed Central

    Sharma, Abhishek; El-Khamisy, Sherif F.

    2013-01-01

    Accumulation of peptide-linked DNA breaks contributes to neurodegeration in humans. This is typified by defects in tyrosyl DNA phosphodiesterase 1 (TDP1) and human hereditary ataxia. TDP1 primarily operates at single-strand breaks (SSBs) created by oxidative stress or by collision of transcription machinery with topoisomerase I intermediates (Top1-CCs). Cellular and cell-free studies have shown that Top1 at stalled Top1-CCs is first degraded to a small peptide resulting in Top1-SSBs, which are the primary substrates for TDP1. Here we established an assay to directly compare Top1-SSBs and Top1-CCs. We subsequently employed this assay to reveal an increased steady state level of Top1-CCs in neural cells lacking Atm; the protein mutated in ataxia telangiectasia. Our data suggest that the accumulation of endogenous Top1-CCs in Atm-/- neural cells is primarily due to elevated levels of reactive oxygen species. Biochemical purification of Top1-CCs from neural cell extract and the use of Top1 poisons further confirmed a role for Atm during the formation/resolution of Top1-CCs. Finally, we report that global transcription is reduced in Atm-/- neural cells and fails to recover to normal levels following Top1-mediated DNA damage. Together, these data identify a distinct role for ATM during the formation/resolution of neural Top1-CCs and suggest that their accumulation contributes to the neuropathology of ataxia telangiectasia. PMID:23626666

  14. A Supramolecular Gel Approach to Minimize the Neural Cell Damage during Cryopreservation Process.

    PubMed

    Zeng, Jie; Yin, Yixia; Zhang, Li; Hu, Wanghui; Zhang, Chaocan; Chen, Wanyu

    2016-03-01

    The storage method for living cells is one of the major challenges in cell-based applications. Here, a novel supramolecular gel cryopreservation system (BDTC gel system) is introduced, which can observably increase the neural cell viability during cryopreservation process because this system can (1) confine the ice crystal growth in the porous of BDTC gel system, (2) decrease the amount of ice crystallization and cryopreservation system's freezing point, and (3) reduce the change rates of cell volumes and osmotic shock. In addition, thermoreversible BDTC supramolecular gel is easy to be removed after thawing so it does not hinder the adherence, growth, and proliferation of cells. The results of functionality assessments indicate that BDTC gel system can minimize the neural cell damage during cryopreservation process. This method will be potentially applied in cryopreservation of other cell types, tissues, or organs and will benefit cell therapy, tissue engineering, and organs transplantation. PMID:26611502

  15. Pioglitazone significantly prevented decreased rate of neural differentiation of mouse embryonic stem cells which was reduced by Pex11β knock-down.

    PubMed

    Esmaeili, M; Ghaedi, K; Shoaraye Nejati, A; Nematollahi, M; Shiralyian, H; Nasr-Esfahani, M H

    2016-01-15

    Peroxisomes constitute special cellular organelles which display a variety of metabolic functions including fatty acid oxidation and free radical elimination. Abundance of these flexible organelles varies in response to different environmental stimuli. It has been demonstrated that PEX11β, a peroxisomal membrane elongation factor, is involved in the regulation of size, shape and number of peroxisomes. To investigate the role of PEX11β in neural differentiation of mouse embryonic stem cells (mESCs), we generated a stably transduced mESCs line that derives the expression of a short hairpin RNA against Pex11β gene following doxycycline (Dox) induction. Knock-down of Pex11β, during neural differentiation, significantly reduced the expression of neural progenitor cells and mature neuronal markers (p<0.05) indicating that decreased expression of PEX11β suppresses neuronal maturation. Additionally, mRNA levels of other peroxisome-related genes such as PMP70, Pex11α, Catalase, Pex19 and Pex5 were also significantly reduced by Pex11β knock-down (p<0.05). Interestingly, pretreatment of transduced mESCs with peroxisome proliferator-activated receptor γ agonist (pioglitazone (Pio)) ameliorated the inhibitory effects of Pex11β knock down on neural differentiation. Pio also significantly (p<0.05) increased the expression of neural progenitor and mature neuronal markers besides the expression of peroxisomal genes in transduced mESC. Results elucidated the importance of Pex11β expression in neural differentiation of mESCs, thereby highlighting the essential role of peroxisomes in mammalian neural differentiation. The observation that Pio recovered peroxisomal function and improved neural differentiation of Pex11β knocked-down mESCs, proposes a potential new pharmacological implication of Pio for neurogenesis in patients with peroxisomal defects. PMID:26562432

  16. Transplantation of Neural Stem Cells Cultured in Alginate Scaffold for Spinal Cord Injury in Rats

    PubMed Central

    Sharafkhah, Ali; Koohi-Hosseinabadi, Omid; Semsar-Kazerooni, Maryam

    2016-01-01

    Study Design This study investigated the effects of transplantation of alginate encapsulated neural stem cells (NSCs) on spinal cord injury in Sprague-Dawley male rats. The neurological functions were assessed for 6 weeks after transplantation along with a histological study and measurement of caspase-3 levels. Purpose The aim of this study was to discover whether NSCs cultured in alginate transplantation improve recovery from spinal cord injury. Overview of Literature Spinal cord injury is one of the leading causes of disability and it has no effective treatment. Spinal cord injury can also cause sensory impairment. With an impetus on using stem cells therapy in various central nervous system settings, there is an interest in using stem cells for addressing spinal cord injury. Neural stem cell is one type of stem cells that is able to differentiate to all three neural lineages and it shows promise in spinal injury treatment. Furthermore, a number of studies have shown that culturing NSCs in three-dimensional (3D) scaffolds like alginate could enhance neural differentiation. Methods The NSCs were isolated from 14-day-old rat embryos. The isolated NSCs were cultured in growth media containing basic fibroblast growth factor and endothelial growth factor. The cells were characterized by differentiating to three neural lineages and they were cultured in an alginate scaffold. After 7 days the cells were encapsulated and transplanted in a rat model of spinal cord injury. Results Our data showed that culturing in an alginate 3D scaffold and transplantation of the NSCs could improve neurological outcome in a rat model of spinal cord injury. The inflammation scores and lesion sizes and also the activity of caspase-3 (for apoptosis evaluation) were less in encapsulated neural stem cell transplantation cases. Conclusions Transplantation of NSCs that were cultured in an alginate scaffold led to a better clinical and histological outcome for recovery from spinal cord injury in

  17. To proliferate or to die: role of Id3 in cell cycle progression and survival of neural crest progenitors

    PubMed Central

    Kee, Yun; Bronner-Fraser, Marianne

    2005-01-01

    The neural crest is a unique population of mitotically active, multipotent progenitors that arise at the vertebrate neural plate border. Here, we show that the helix-loop-helix transcriptional regulator Id3 has a novel role in cell cycle progression and survival of neural crest progenitors in Xenopus. Id3 is localized at the neural plate border during gastrulation and neurulation, overlapping the domain of neural crest induction. Morpholino oligonucleotide-mediated depletion of Id3 results in the absence of neural crest precursors and a resultant loss of neural crest derivatives. This appears to be mediated by cell cycle inhibition followed by cell death of the neural crest progenitor pool, rather than a cell fate switch. Conversely, overexpression of Id3 increases cell proliferation and results in expansion of the neural crest domain. Our data suggest that Id3 functions by a novel mechanism, independent of cell fate determination, to mediate the decision of neural crest precursors to proliferate or die. PMID:15769946

  18. Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood

    SciTech Connect

    Lee, Myoung Woo; Moon, Young Joon; Yang, Mal Sook; Kim, Sun Kyung; Jang, In Keun; Eom, Young-woo; Park, Joon Seong; Kim, Hugh C.; Song, Kye Yong; Park, Soon Cheol; Lim, Hwan Sub; Kim, Young Jin . E-mail: jin@lifecord.co.kr

    2007-06-29

    Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types, including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications.

  19. Generation and properties of a new human ventral mesencephalic neural stem cell line

    SciTech Connect

    Villa, Ana; Liste, Isabel; Courtois, Elise T.; Seiz, Emma G.; Ramos, Milagros; Meyer, Morten; Juliusson, Bengt; Kusk, Philip

    2009-07-01

    Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal of growth factors, proliferation and expression of v-myc were dramatically reduced and the cells differentiated into astrocytes, oligodendrocytes and neurons. hVM1 cells yield a large number of dopaminergic neurons (about 12% of total cells are TH{sup +}) after differentiation, which also produce dopamine. In addition to proneural genes (NGN2, MASH1), differentiated cells show expression of several genuine mesencephalic dopaminergic markers such as: LMX1A, LMX1B, GIRK2, ADH2, NURR1, PITX3, VMAT2 and DAT, indicating that they retain their regional identity. Our data indicate that this cell line and its clonal derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing.

  20. Calorie Restriction Alleviates Age-Related Decrease in Neural Progenitor Cell Division in the Aging Brain

    PubMed Central

    Park, June-Hee; Glass, Zachary; Sayed, Kasim; Michurina, Tatyana V.; Lazutkin, Alexander; Mineyeva, Olga; Velmeshev, Dmitry; Ward, Walter F.; Richardson, Arlan; Enikolopov, Grigori

    2013-01-01

    Production of new neurons from stem cells is important for cognitive function, and the reduction of neurogenesis in the aging brain may contribute to the accumulation of age-related cognitive deficits. Restriction of calorie intake and prolonged treatment with rapamycin have been shown to extend the lifespan of animals and delay the onset of age-related decline in tissue and organ function. Using a reporter line in which neural stem and progenitor cells are marked by the expression of GFP, we examined the effect of prolonged exposure to calorie restriction (CR) or rapamycin on hippocampal neural stem and progenitor cell proliferation in aging mice. We show that CR increases the number of dividing cells in the dentate gyrus (DG) of female mice. The majority of these cells corresponded to Nestin-GFP-expressing neural stem or progenitor cells; however, this increased proliferative activity of stem and progenitor cells did not result in a significant increase in the number of doublecortin-positive newborn neurons. Our results suggest that restricted calorie intake may increase the number of divisions that neural stem and progenitor cells undergo in the aging brain of females. PMID:23773068

  1. Dimethyloxalylglycine may be enhance the capacity of neural-like cells in treatment of Alzheimer disease.

    PubMed

    Ghasemi Moravej, Fahimeh; Vahabian, Mehrangiz; Soleimani Asl, Sara

    2016-06-01

    Although using differentiated stem cells is the best proposed option for the treatment of Alzheimer disease (AD), an efficient differentiation and cell therapy require enhanced cell survival and homing and decreased apoptosis. It seems that hypoxia preconditioning via Dimethyloxalylglycine (DMOG) may increase the capacity of MSC to induce neural like stem cells (NSCs). Furthermore, it can likely improve the viability of NSCs when transplanted into the brain of AD rats. PMID:27005959

  2. Bioactive DNA-Peptide Nanotubes Enhance the Differentiation of Neural Stem Cells Into Neurons

    PubMed Central

    2015-01-01

    We report the construction of DNA nanotubes covalently functionalized with the cell adhesion peptide RGDS as a bioactive substrate for neural stem cell differentiation. Alteration of the Watson–Crick base pairing program that builds the nanostructures allowed us to probe independently the effect of nanotube architecture and peptide bioactivity on stem cell differentiation. We found that both factors instruct synergistically the preferential differentiation of the cells into neurons rather than astrocytes. PMID:25546084

  3. Polarized neural stem cells derived from adult bone marrow stromal cells develop a rosette-like structure.

    PubMed

    Darabi, Shahram; Tiraihi, Taki; Ruintan, Atefeh; Abbaszadeh, Hojatt Allah; Delshad, AliReza; Taheri, Taher

    2013-09-01

    Bone marrow stromal cells (BMSCs) were reported to form floating aggregation of cells with expression of nestin, a marker for neural stem cells (NSCs). The purpose of this investigation is to evaluate the morphology and the molecular markers expressed by NSCs derived from these neurospheres. The BMSCs were isolated from Sprague Dawley rats and evaluated for osteogenesis, lipogenesis, and expression of fibronectin, CD90, CD106, CD31, and Oct4. The BMSCs were cultured with Dulbecco's modified Eagle's medium (DMEM)/F12 containing 15% fetal bovine serum, then with DMEM/F12 containing 2% B27, basic fibroblast growth factor, and epidermal growth factor. The cell aggregates or spheres were stained with acridine orange, which showed that the neurospheres comprised aggregated cells at either premitotic/postsynthetic (PS), postmitotic/presynthetic (PM) phases of cell cycle, or a mixture of both. The NSCs harvested from the neurospheres were polar with eccentric nucleus, and at either a PS or a PM cell cycle phases, some cells at the latter phase tended to form rosette-like structures. The cells were immunostained for molecular markers such as nestin, neurofilament 68 (NF68), NF160, and NF200 and glial fibrillary acidic protein (GFAP). Myelin basic protein (MBP), the pluripotency (Oct4, Nanog, and SOX2), and the differentiation genes (NeuroD1, Tubb4, and Musashi I) were also evaluated using reverse transcription polymerase chain reaction (RT-PCR). Nestin, NF68, NF160, NF200, GFAP, O4, and N-cadherin were expressed in the NSCs. The percentage of immunoreactive cells to nestin was significantly higher than that of the other neuronal markers. MBP was not expressed in BMSCs, neurospheres, and NSCs. The neurospheres were immunoreactive to GFAP. RT-PCR showed the expression of NeuroD1 and Musashi I. The pluripotency gene (SOX2) was expressed in NSCs. Oct4 and Nanog were expressed in BMSCs, while Oct4 and SOX2 were expressed in the neurosphere. This indicates that a pluripotency

  4. Transplantation of Neural Stem Cells Clonally Derived from Embryonic Stem Cells Promotes Recovery After Murine Spinal Cord Injury

    PubMed Central

    Salewski, Ryan P.; Mitchell, Robert A.; Shen, Carl

    2015-01-01

    The pathology of spinal cord injury (SCI) makes it appropriate for cell-based therapies. Treatments using neural stem cells (NSCs) in animal models of SCI have shown positive outcomes, although uncertainty remains regarding the optimal cell source. Pluripotent cell sources such as embryonic stem cells (ESCs) provide a limitless supply of therapeutic cells. NSCs derived using embryoid bodies (EB) from ESCs have shown tumorigenic potential. Clonal neurosphere generation is an alternative method to generate safer and more clinically relevant NSCs without the use of an EB stage for use in cell-based therapies. We generated clonally derived definitive NSCs (dNSCs) from ESC. These cells were transplanted into a mouse thoracic SCI model. Embryonic stem cell-derived definitive neural stem cell (ES-dNSC)-transplanted mice were compared with controls using behavioral measures and histopathological analysis of tissue. In addition, the role of remyelination in injury recovery was investigated using transmission electron microscopy. The SCI group that received ES-dNSC transplantation showed significant improvements in locomotor function compared with controls in open field and gait analysis. The cell treatment group had a significant enhancement of spared neural tissue. Immunohistological assessments showed that dNSCs differentiated primarily to oligodendrocytes. These cells were shown to express myelin basic protein, associate with axons, and support nodal architecture as well as display proper compact, multilayer myelination in electron microscopic analysis. This study provides strong evidence that dNSCs clonally derived from pluripotent cells using the default pathway of neuralization improve motor function after SCI and enhance sparing of neural tissue, while remaining safe and clinically relevant. PMID:25119334

  5. The Neural Crest in Cardiac Congenital Anomalies

    PubMed Central

    Keyte, Anna; Hutson, Mary Redmond

    2012-01-01

    This review discusses the function of neural crest as they relate to cardiovascular defects. The cardiac neural crest cells are a subpopulation of cranial neural crest discovered nearly 30 years ago by ablation of premigratory neural crest. The cardiac neural crest cells are necessary for normal cardiovascular development. We begin with a description of the crest cells in normal development, including their function in remodeling the pharyngeal arch arteries, outflow tract septation, valvulogenesis, and development of the cardiac conduction system. The cells are also responsible for modulating signaling in the caudal pharynx, including the second heart field. Many of the molecular pathways that are known to influence specification, migration, patterning and final targeting of the cardiac neural crest cells are reviewed. The cardiac neural crest cells play a critical role in the pathogenesis of various human cardiocraniofacial syndromes such as DiGeorge, Velocardiofacial, CHARGE, Fetal Alcohol, Alagille, LEOPARD, and Noonan syndromes, as well as Retinoic Acid Embryopathy. The loss of neural crest cells or their dysfunction may not always directly cause abnormal cardiovascular development, but are involved secondarily because crest cells represent a major component in the complex tissue interactions in the head, pharynx and outflow tract. Thus many of the human syndromes linking defects in the heart, face and brain can be better understood when considered within the context of a single cardiocraniofacial developmental module with the neural crest being a key cell type that interconnects the regions. PMID:22595346

  6. CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells.

    PubMed

    Pfenninger, Cosima V; Roschupkina, Teona; Hertwig, Falk; Kottwitz, Denise; Englund, Elisabet; Bengzon, Johan; Jacobsen, Sten Eirik; Nuber, Ulrike A

    2007-06-15

    Human brain tumor stem cells have been enriched using antibodies against the surface protein CD133. An antibody recognizing CD133 also served to isolate normal neural stem cells from fetal human brain, suggesting a possible lineage relationship between normal neural and brain tumor stem cells. Whether CD133-positive brain tumor stem cells can be derived from CD133-positive neural stem or progenitor cells still requires direct experimental evidence, and an important step toward such investigations is the identification and characterization of normal CD133-presenting cells in neurogenic regions of the embryonic and adult brain. Here, we present evidence that CD133 is a marker for embryonic neural stem cells, an intermediate radial glial/ependymal cell type in the early postnatal stage, and for ependymal cells in the adult brain, but not for neurogenic astrocytes in the adult subventricular zone. Our findings suggest two principal possibilities for the origin of brain tumor stem cells: a derivation from CD133-expressing cells, which are normally not present in the adult brain (embryonic neural stem cells and an early postnatal intermediate radial glial/ependymal cell type), or from CD133-positive ependymal cells in the adult brain, which are, however, generally regarded as postmitotic. Alternatively, brain tumor stem cells could be derived from proliferative but CD133-negative neurogenic astrocytes in the adult brain. In the latter case, brain tumor development would involve the production of CD133. PMID:17575139

  7. Acupuncture Induces the Proliferation and Differentiation of Endogenous Neural Stem Cells in Rats with Traumatic Brain Injury

    PubMed Central

    Jiang, Shuting; Chen, Weihao; Zhang, Yimin; Zhang, Yujuan; Chen, Ailian; Dai, Qiufu; Lin, Shujun; Lin, Hanyu

    2016-01-01

    Purpose. To investigate whether acupuncture induced the proliferation and differentiation of endogenous neural stem cells (NSCs) in a rat model of traumatic brain injury (TBI). Methods. 104 Sprague-Dawley rats were randomly divided into normal, model, and acupuncture groups. Each group was subdivided into three-day (3 d), seven-day (7 d), and fourteen-day (14 d) groups. The rat TBI model was established using Feeney's freefall epidural impact method. The rats in the acupuncture group were treated at acupoints (Baihui, Shuigou, Fengfu, Yamen, and bilateral Hegu). The normal and model groups did not receive acupuncture. The establishment of the rat TBI model and the therapeutic effect of acupuncture were assessed using neurobehavioral scoring and hematoxylin-eosin staining. The proliferation and differentiation of NSCs in TBI rats were analyzed using immunofluorescence microscopy. Results. The levels of nestin-expressing cells and bromodeoxyuridine/glial fibrillary acidic protein- (BrdU/GFAP-) and BrdU/S100 calcium-binding protein B-positive and BrdU/microtubule-associated protein 2- and BrdU/galactocerebrosidase-positive cells were more significantly increased at various time points in the acupuncture group than in the model group (P < 0.01), except for a decreased level of BrdU/GFAP-positive cells at 7 d and 14 d. Conclusion. Acupuncture induced the proliferation and differentiation of NSCs, thereby promoting neural repair in the TBI rats. PMID:27313641

  8. Ghrelin regulates cell cycle-related gene expression in cultured hippocampal neural stem cells.

    PubMed

    Chung, Hyunju; Park, Seungjoon

    2016-08-01

    We have previously demonstrated that ghrelin stimulates the cellular proliferation of cultured adult rat hippocampal neural stem cells (NSCs). However, little is known about the molecular mechanisms by which ghrelin regulates cell cycle progression. The purpose of this study was to investigate the potential effects of ghrelin on cell cycle regulatory molecules in cultured hippocampal NSCs. Ghrelin treatment increased proliferation assessed by CCK-8 proliferation assay. The expression levels of proliferating cell nuclear antigen and cell division control 2, well-known cell-proliferating markers, were also increased by ghrelin. Fluorescence-activated cell sorting analysis revealed that ghrelin promoted progression of cell cycle from G0/G1 to S phase, whereas this progression was attenuated by the pretreatment with specific inhibitors of MEK/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/Akt, mammalian target of rapamycin, and janus kinase 2/signal transducer and activator of transcription 3. Ghrelin-induced proliferative effect was associated with increased expression of E2F1 transcription factor in the nucleus, as determined by Western blotting and immunofluorescence. We also found that ghrelin caused an increase in protein levels of positive regulators of cell cycle, such as cyclin A and cyclin-dependent kinase (CDK) 2. Moreover, p27(KIP1) and p57(KIP2) protein levels were reduced when cell were exposed to ghrelin, suggesting downregulation of CDK inhibitors may contribute to proliferative effect of ghrelin. Our data suggest that ghrelin targets both cell cycle positive and negative regulators to stimulate proliferation of cultured hippocampal NSCs. PMID:27325242

  9. Hyaluronan, neural stem cells and tissue reconstruction after acute ischemic stroke

    PubMed Central

    Moshayedi, Pouria; Carmichael, S. Thomas

    2013-01-01

    Focal stroke is a disabling disease with lifelong sensory, motor and cognitive impairments. Given the paucity of effective clinical treatments, basic scientists are developing novel options for protection of the affected brain and regeneration of lost tissue. Tissue bioengineering and stem/progenitor cell treatments have both been individually pursued for stroke neural repair therapies, with some benefit in tissue recovery. Emerging directions in stroke neural repair approaches combine these two therapies to use biopolymers with stem/progenitor transplants to promote greater cell survival in the transplant and directed delivery of bioactive molecules to the transplanted cells and the adjacent injured tissue. In this review the background literature on a combined use of neural stem/progenitor cells encapsulated in hyaluronan gels is discussed and the way this therapeutic approach can affect the important processes involved in brain tissue reconstruction, such as angiogenesis, axon regeneration, neural differentiation and inflammation is clarified. The glycosaminoglycan hyaluronan can optimize those processes and be employed in a successful neural tissue engineering approach. PMID:23507922

  10. Raman study of analysis for the states of maturation of neural cell

    NASA Astrophysics Data System (ADS)

    Hashimoto, Kosuke; Kudoh, Suguru N.; Sato, Hidetoshi

    2014-03-01

    The combination of confocal micro-Raman spectroscopy and multivariate analysis is carried out for analysis of maturation of neurons. This study suggests that Raman data reflects the stages of neural maturation which relates with the expression of new neural function such as spontaneous activity. Neurons obtained from a hippocampus of rat embryos are cultured in a dish with quartz bottom. According to the previous electrophysiological study, matured neural cell network showed regulated pulsation with interval of several seconds without any stimulation. It suggested that alterations in the molecular composition took place in the cell. The Raman measurements are carried out to observe this alteration along with the maturing process of neurons. The spectra of live neural cells measured after 2, 8, 15, 30, 45, 60, 75, 90, 105 and 120 days of culturing are analyzed by principal component analysis (PCA). The result shows several groups suggesting the maturation scheme which is observed by the electrophysiological studies. It demonstrates that the maturation process of neural cells can be monitored by Raman spectroscopy.

  11. Smad4 is required to regulate the fate of cranial neural crest cells

    PubMed Central

    Ko, Seung O; Chung, Il Hyuk; Xu, Xun; Oka, Shoji; Zhao, Hu; Cho, Eui Sic; Deng, Chuxia; Chai, Yang

    2009-01-01

    Smad4 is the central mediator for TGF-β/BMP signals, which are involved in regulating cranial neural crest (CNC) cell formation, migration, proliferation and fate determination. It is unclear whether TGF-β/BMP signals utilize Smad-dependent or –independent pathways to control the development of CNC cells. To investigate the functional significance of Smad4 in regulating CNC cells, we generated mice with neural crest specific inactivation of the Smad4 gene. Our study shows that Smad4 is not required for the migration of CNC cells, but is required in neural crest cells for the development of the cardiac outflow tract. Smad4 is essential in mediating BMP signaling in the CNC-derived ectomesenchyme during early stages of tooth development because conditional inactivation of Smad4 in neural crest derived cells results in incisor and molar development arrested at the dental lamina stage. Furthermore, Smad-mediated TGF-β/BMP signaling controls the homeobox gene patterning of oral/aboral and proximal/distal domains within the first branchial arch. At the cellular level, a Smad4-mediated downstream target gene(s) is required for the survival of CNC cells in the proximal domain of the first branchial arch. Smad4 mutant mice show underdevelopment of the first branchial arch and midline fusion defects. Taken together, our data show that TGF-β/BMP signals rely on Smad-dependent pathways in the ectomesenchyme to mediate epithelial-mesenchymal interactions that control craniofacial organogenesis. PMID:17964566

  12. Where is my mind? How sponges and placozoans may have lost neural cell types.

    PubMed

    Ryan, Joseph F; Chiodin, Marta

    2015-12-19

    Recent phylogenomic evidence suggests that ctenophores may be the sister group to the rest of animals. This phylogenetic arrangement opens the possibility that sponges and placozoans could have lost neural cell types or that the ctenophore nervous system evolved independently. We critically review evidence to date that has been put forth in support of independent evolution of neural cell types in ctenophores. We observe a reluctance in the literature to consider a lost nervous system in sponges and placozoans and suggest that this may be due to historical bias and the commonly misconstrued concept of animal complexity. In support of the idea of loss (or modification beyond recognition), we provide hypothetical scenarios to show how sponges and placozoans may have benefitted from the loss and/or modification of their neural cell types. PMID:26554046

  13. Genetically Engineered Plant Viral Nanoparticles Direct Neural Cells Differentiation and Orientation.

    PubMed

    Feng, Sheng; Lu, Lin; Zan, Xingjie; Wu, Yehong; Lin, Yuan; Wang, Qian

    2015-09-01

    An important aim of tissue engineering is to design biomimetic materials with specific cell binding motifs and precisely controlled structural organization, thereby providing biochemical and physical cues for desired cellular behaviors. Previously, our group generated genetically modified tobacco mosaic virus (TMV) displaying integrin binding motifs, RGD1, RGD7, PSHRN3, P15, and DGEA. The resulting rod-like virus particles displaying integrin binding motifs were biocompatible with Neuro 2A (N2a), a mouse neural crest-derived cell line, and could promote the neurite outgrowth of N2a. The genetically modified viruses could be assembled with aligned orientation in the capillary by applying a shear force. The resulting aligned substrates were able to dictate directional neurite outgrowth of N2a cells. Therefore, this method could be potentially applied for neural tissue engineering, as a neural conduit for repairing peripheral nerve injuries. PMID:26247572

  14. Effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells.

    PubMed

    Shu, Tao; Wu, Tao; Pang, Mao; Liu, Chang; Wang, Xuan; Wang, Juan; Liu, Bin; Rong, Limin

    2016-06-01

    Melatonin, a lipophilic molecule mainly synthesized in the pineal gland, has properties of antioxidation, anti-inflammation, and antiapoptosis to improve neuroprotective functions. Here, we investigate effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells (iPSCs). iPSCs were induced into neural stem cells (NSCs), then further differentiated into neurons in medium with or without melatonin, melatonin receptor antagonist (Luzindole) or Phosphatidylinositide 3 kinase (PI3K) inhibitor (LY294002). Melatonin significantly promoted the number of neurospheres and cell viability. In addition, Melatonin markedly up-regulated gene and protein expression of Nestin and MAP2. However, Luzindole or LY294002 attenuated these increase. The expression of pAKT/AKT were increased by Melatonin, while Luzindole or LY294002 declined these melatonin-induced increase. These results suggest that melatonin significantly increased neural differentiation of iPSCs via activating PI3K/AKT signaling pathway through melatonin receptor. PMID:27130826

  15. Microarray analysis of neural stem cell differentiation in the striatum of the fetal rat.

    PubMed

    Wen, Tieqiao; Gu, Ping; Minning, Todd A; Wu, Qi; Liu, Min; Chen, Fuxue; Liu, Hao; Huang, Haihua

    2002-08-01

    1. Gene expression profiles in neural stem cell differentiation in vitro were determined by cDNA microarray analysis. 2. Total RNA was extracted and reverse transcripted into cDNA from differentiated and undifferentiated neural stem cells. The 33P labeled cDNA was hybridized with a cDNA microarray consisting of 14,000 human genes. 3. The results showed that a total of 1406 genes were differentially expressed, of which 148 genes exhibited more than twofold differences. Some genes were obviously activated while others were strongly repressed. These changes in gene expression suggest that differentiation is regulated by different genes at different expressional levels. By biological classification, the differentially expressed genes were divided into four functional categories: molecular function, biological process, cellular component, and new functional genes or ESTs. 4. These findings will be a valuable contribution for gene expression profiling and elucidation of neural stem cell differentiation mechanisms. PMID:12507390

  16. Neural Stem Cells: Implications for the Conventional Radiotherapy of Central Nervous System Malignancies

    SciTech Connect

    Barani, Igor J.; Benedict, Stanley H.; Lin, Peck-Sun . E-mail: plin@vcu.edu

    2007-06-01

    Advances in basic neuroscience related to neural stem cells and their malignant counterparts are challenging traditional models of central nervous system tumorigenesis and intrinsic brain repair. Neurogenesis persists into adulthood predominantly in two neurogenic centers: subventricular zone and subgranular zone. Subventricular zone is situated adjacent to lateral ventricles and subgranular zone is confined to the dentate gyrus of the hippocampus. Neural stem cells not only self-renew and differentiate along multiple lineages in these regions, but also contribute to intrinsic brain plasticity and repair. Ionizing radiation can depopulate these exquisitely sensitive regions directly or impair in situ neurogenesis by indirect, dose-dependent and inflammation-mediated mechanisms, even at doses <2 Gy. This review discusses the fundamental neural stem cell concepts within the framework of cumulative clinical experience with the treatment of central nervous system malignancies using conventional radiotherapy.

  17. Icariin promotes cell proliferation and regulates gene expression in human neural stem cells in vitro.

    PubMed

    Yang, Pan; Guan, Yun-Qian; Li, Ya-Li; Zhang, Li; Zhang, Lan; Li, Lin

    2016-08-01

    Icariin (ICA), which is an essential bioactive component extracted from the herb Epimedium, possesses neuroprotective properties. The aim of the present study was to investigate the regulatory roles of ICA in cell proliferation and gene expression in human neural stem cells (NSCs) in vitro. Single cells were isolated from the corpus striatum of 16‑20‑week human fetuses obtained following spontaneous abortion. The cells were cultured in Dulbecco's modified Eagle's medium/F12 complete medium and were characterized by immunostaining and cell differentiation assay. NSCs were treated with ICA, and cell proliferation was assessed using the Cell Counting kit‑8 cell proliferation assay kit. In addition, neurosphere formation was comparatively studied between the ICA‑treated and control cells. cDNA microarray analysis was performed to examine the effects of ICA on gene expression. Altered expression of genes important for regulating NSC proliferation was further analyzed by quantitative polymerase chain reaction (qPCR). The results demonstrated that typical neurospheres appeared after 7‑10 days of culturing of individual cells isolated from the corpus striatum. These cells expressed nestin, an important NSC marker, and in the presence of differentiation medium they expressed β‑III‑tubulin, a specific neuronal marker, and glial fibrillary acidic protein, an astrocyte marker. Treatment with ICA enhanced NSC proliferation and the formation of neurospheres. Microarray data and pathway analysis revealed that the genes regulated by ICA were involved in several signaling pathways, including the Wnt and basic fibroblast growth factor (bFGF) pathways, which are important for the regulation of NSC function. Upregulation of frizzled class receptor 7 and dishevelled segment polarity protein 3, which are key players in the Wnt pathway, and fibroblast growth factor receptor 1, which is the receptor for bFGF, and downregulation of glycogen synthase kinase‑3β, which

  18. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation

    SciTech Connect

    Capkovic, Katie L.; Stevenson, Severin; Johnson, Marc C.; Thelen, Jay J.; Cornelison, D.D.W.

    2008-04-15

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression.

  19. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation.

    PubMed

    Capkovic, Katie L; Stevenson, Severin; Johnson, Marc C; Thelen, Jay J; Cornelison, D D W

    2008-04-15

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression. PMID:18308302

  20. 12-Deoxyphorbols Promote Adult Neurogenesis by Inducing Neural Progenitor Cell Proliferation via PKC Activation

    PubMed Central

    Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; Murillo-Carretero, Maribel; García-Bernal, Francisco; Carrasco, Manuel; Macías-Sánchez, Antonio J.; Domínguez-Riscart, Jesús; Verástegui, Cristina; Hernández-Galán, Rosario

    2016-01-01

    Background: Neuropsychiatric and neurological disorders frequently occur after brain insults associated with neuronal loss. Strategies aimed to facilitate neuronal renewal by promoting neurogenesis constitute a promising therapeutic option to treat neuronal death-associated disorders. In the adult brain, generation of new neurons occurs physiologically throughout the entire life controlled by extracellular molecules coupled to intracellular signaling cascades. Proteins participating in these cascades within neurogenic regions constitute potential pharmacological targets to promote neuronal regeneration of injured areas of the central nervous system. Methodology: We have performed in vitro and in vivo approaches to determine neural progenitor cell proliferation to understand whether activation of kinases of the protein kinase C family facilitates neurogenesis in the adult brain. Results: We have demonstrated that protein kinase C activation by phorbol-12-myristate-13-acetate induces neural progenitor cell proliferation in vitro. We also show that the nontumorogenic protein kinase C activator prostratin exerts a proliferative effect on neural progenitor cells in vitro. This effect can be reverted by addition of the protein kinase C inhibitor G06850, demonstrating that the effect of prostratin is mediated by protein kinase C activation. Additionally, we show that prostratin treatment in vivo induces proliferation of neural progenitor cells within the dentate gyrus of the hippocampus and the subventricular zone. Finally, we describe a library of diterpenes with a 12-deoxyphorbol structure similar to that of prostratin that induces a stronger effect than prostratin on neural progenitor cell proliferation both in vitro and in vivo. Conclusions: This work suggests that protein kinase C activation is a promising strategy to expand the endogenous neural progenitor cell population to promote neurogenesis and highlights the potential of 12-deoxyphorbols as pharmaceutical

  1. EVALUATION OF HUMAN NEURAL PROGENITOR CELLS FOR DEVELOPMENTAL NEUROTOXICITY SCREENING: TIME COURSE OF EFFECTS ON CELL PROLIFERATION AND VIABILITY.

    EPA Science Inventory

    Current testing methods for developmental neurotoxicity (DNT) make evaluation of the effects of large numbers of chemicals impractical and prohibitively expensive. As such, we are evaluating human neural progenitor cells (NPCs) as a screen for DNT. ReNcell CX (ReN CX) cells are a...

  2. Folic Acid Intake and Neural Tube Defects: Two Egyptian Centers Experience.

    PubMed

    El-Shabrawi, Mortada H; Kamal, Naglaa Mohamed; Elhusseini, Mona Abbas; Hussein, Laila; Abdallah, Enas Abdallah Ali; Ali, Yahia Zakaria Abdelalim; Azab, Ahmed Abelfattah; Salama, Mostafa Abdelazim; Kassab, Muna; Krawinkel, Michael

    2015-09-01

    Neural tube defects (NTDs) are a group of congenital malformations with worldwide distribution and complex etiopathogenesis. Folic acid plays a pivotal role in their prevention. We aimed to identify the protective effect of folic acid intake against NTDs and its dependence on different socioeconomic and environmental factors in a cohort of mothers in Egypt. A cross-sectional study was carried over a period of 12 months on mothers who gave birth to babies with NTDs (group 1) and a control group with healthy offsprings (group 2). Both groups completed 2 questionnaires: food frequency questionnaire targeting the daily folate intake, and socioeconomic status and medical history questionnaire. Both groups of mothers received folate <800 μg/day, recommended for pregnant women. A strong association was detected between NTDs and urban residency with medium educated mothers, with negative consanguinity, who had folate intake < 400 μg daily, and who had their food long cooked. Each of these factors separately had a limited impact to cause NTDs, but when present together they did augment each other. Interestingly enough is the role of fava bean, cauliflower, spinach, and mango in predisposing of NTDs in the presence of the above-mentioned factors. The protective effect of folic acid intake against NTDs may depend on the synergism of different socioeconomic and environmental factors (which differ from country to another). In Egypt, females especially the medium-educated who live in urban areas should be well-informed with the value of folate intake in the periconceptional period. PMID:26376380

  3. Folic Acid Intake and Neural Tube Defects: Two Egyptian Centers Experience

    PubMed Central

    El-Shabrawi, Mortada H.; Kamal, Naglaa Mohamed; Elhusseini, Mona Abbas; Hussein, Laila; Abdallah, Enas Abdallah Ali; Ali, Yahia Zakaria Abdelalim; Azab, Ahmed Abelfattah; Salama, Mostafa Abdelazim; Kassab, Muna; Krawinkel, Michael

    2015-01-01

    Abstract Neural tube defects (NTDs) are a group of congenital malformations with worldwide distribution and complex etiopathogenesis. Folic acid plays a pivotal role in their prevention. We aimed to identify the protective effect of folic acid intake against NTDs and its dependence on different socioeconomic and environmental factors in a cohort of mothers in Egypt. A cross-sectional study was carried over a period of 12 months on mothers who gave birth to babies with NTDs (group 1) and a control group with healthy offsprings (group 2). Both groups completed 2 questionnaires: food frequency questionnaire targeting the daily folate intake, and socioeconomic status and medical history questionnaire. Both groups of mothers received folate <800 μg/day, recommended for pregnant women. A strong association was detected between NTDs and urban residency with medium educated mothers, with negative consanguinity, who had folate intake < 400 μg daily, and who had their food long cooked. Each of these factors separately had a limited impact to cause NTDs, but when present together they did augment each other. Interestingly enough is the role of fava bean, cauliflower, spinach, and mango in predisposing of NTDs in the presence of the above-mentioned factors. The protective effect of folic acid intake against NTDs may depend on the synergism of different socioeconomic and environmental factors (which differ from country to another). In Egypt, females especially the medium-educated who live in urban areas should be well-informed with the value of folate intake in the periconceptional period. PMID:26376380

  4. Efficient and Rapid Derivation of Primitive Neural Stem Cells and Generation of Brain Subtype Neurons From Human Pluripotent Stem Cells

    PubMed Central

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir

    2013-01-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are unique cell sources for disease modeling, drug discovery screens, and cell therapy applications. The first step in producing neural lineages from hPSCs is the generation of neural stem cells (NSCs). Current methods of NSC derivation involve the time-consuming, labor-intensive steps of an embryoid body generation or coculture with stromal cell lines that result in low-efficiency derivation of NSCs. In this study, we report a highly efficient serum-free pluripotent stem cell neural induction medium that can induce hPSCs into primitive NSCs (pNSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. The pNSCs expressed the neural stem cell markers Pax6, Sox1, Sox2, and Nestin; were negative for Oct4; could be expanded for multiple passages; and could be differentiated into neurons, astrocytes, and oligodendrocytes, in addition to the brain region-specific neuronal subtypes GABAergic, dopaminergic, and motor neurons. Global gene expression of the transcripts of pNSCs was comparable to that of rosette-derived and human fetal-derived NSCs. This work demonstrates an efficient method to generate expandable pNSCs, which can be further differentiated into central nervous system neurons and glia with temporal, spatial, and positional cues of brain regional heterogeneity. This method of pNSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions. PMID:24113065

  5. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival.

    PubMed

    Umka Welbat, Jariya; Sirichoat, Apiwat; Chaijaroonkhanarak, Wunnee; Prachaney, Parichat; Pannangrong, Wanassanun; Pakdeechote, Poungrat; Sripanidkulchai, Bungorn; Wigmore, Peter

    2016-01-01

    Valproic acid (VPA) is commonly prescribed as an anticonvulsant and mood stabilizer used in the treatment of epilepsy and bipolar disorder. A recent study has demonstrated that VPA reduces histone deacetylase (HDAC) activity, an action which is believed to contribute to the effects of VPA on neural stem cell proliferation and differentiation which may explain the cognitive impairments produced in rodents and patients. Asiatic acid is a triterpenoid derived from the medicinal plant Centella asiatica. Our previous study has shown that Asiatic acid improves working spatial memory and increases cell proliferation in the sub granular zone of the hippocampal dentate gyrus. In the present study we investigate the effects of Asiatic acid in preventing the memory and cellular effects of VPA. Male Spraque-Dawley rats were orally administered Asiatic acid (30 mg/kg/day) for 28 days, while VPA-treated animals received injections of VPA (300 mg/kg) twice a day from Day 15 to Day 28 for 14 days. Spatial memory was determined using the novel object location (NOL) test and hippocampal cell proliferation and survival was quantified by immuostaining for Ki-67 and Bromodeoxyuridine (BrdU), respectively. The results showed that VPA-treated animals were unable to discriminate between objects in familiar and novel locations. Moreover, VPA significantly reduced numbers of Ki-67 and BrdU positive cells. These results indicate that VPA treatment caused impairments of spatial working memory, cell proliferation and survival in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). However, these abnormalities were restored to control levels by co-treatment with Asiatic acid. These data demonstrate that Asiatic acid could prevent the spatial memory and neurogenesis impairments caused by VPA. PMID:27213437

  6. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival

    PubMed Central

    Umka Welbat, Jariya; Sirichoat, Apiwat; Chaijaroonkhanarak, Wunnee; Prachaney, Parichat; Pannangrong, Wanassanun; Pakdeechote, Poungrat; Sripanidkulchai, Bungorn; Wigmore, Peter

    2016-01-01

    Valproic acid (VPA) is commonly prescribed as an anticonvulsant and mood stabilizer used in the treatment of epilepsy and bipolar disorder. A recent study has demonstrated that VPA reduces histone deacetylase (HDAC) activity, an action which is believed to contribute to the effects of VPA on neural stem cell proliferation and differentiation which may explain the cognitive impairments produced in rodents and patients. Asiatic acid is a triterpenoid derived from the medicinal plant Centella asiatica. Our previous study has shown that Asiatic acid improves working spatial memory and increases cell proliferation in the sub granular zone of the hippocampal dentate gyrus. In the present study we investigate the effects of Asiatic acid in preventing the memory and cellular effects of VPA. Male Spraque-Dawley rats were orally administered Asiatic acid (30 mg/kg/day) for 28 days, while VPA-treated animals received injections of VPA (300 mg/kg) twice a day from Day 15 to Day 28 for 14 days. Spatial memory was determined using the novel object location (NOL) test and hippocampal cell proliferation and survival was quantified by immuostaining for Ki-67 and Bromodeoxyuridine (BrdU), respectively. The results showed that VPA-treated animals were unable to discriminate between objects in familiar and novel locations. Moreover, VPA significantly reduced numbers of Ki-67 and BrdU positive cells. These results indicate that VPA treatment caused impairments of spatial working memory, cell proliferation and survival in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). However, these abnormalities were restored to control levels by co-treatment with Asiatic acid. These data demonstrate that Asiatic acid could prevent the spatial memory and neurogenesis impairments caused by VPA. PMID:27213437

  7. Designer Self-Assembling Peptide Nanofiber Scaffolds for Adult Mouse Neural Stem Cell 3-Dimensional Cultures

    PubMed Central

    Gelain, Fabrizio; Bottai, Daniele; Vescovi, Angleo; Zhang, Shuguang

    2006-01-01

    Biomedical researchers have become increasingly aware of the limitations of conventional 2-dimensional tissue cell culture systems, including coated Petri dishes, multi-well plates and slides, to fully address many critical issues in cell biology, cancer biology and neurobiology, such as the 3-D microenvironment, 3-D gradient diffusion, 3-D cell migration and 3-D cell-cell contact interactions. In order to fully understand how cells behave in the 3-D body, it is important to develop a well-controlled 3-D cell culture system where every single ingredient is known. Here we report the development of a 3-D cell culture system using a designer peptide nanofiber scaffold with mouse adult neural stem cells. We attached several functional motifs, including cell adhesion, differentiation and bone marrow homing motifs, to a self-assembling peptide RADA16 (Ac-RADARADARADARADA-COHN2). These functionalized peptides undergo self-assembly into a nanofiber structure similar to Matrigel. During cell culture, the cells were fully embedded in the 3-D environment of the scaffold. Two of the peptide scaffolds containing bone marrow homing motifs significantly enhanced the neural cell survival without extra soluble growth and neurotrophic factors to the routine cell culture media. In these designer scaffolds, the cell populations with β-Tubulin+, GFAP+ and Nestin+ markers are similar to those found in cell populations cultured on Matrigel. The gene expression profiling array experiments showed selective gene expression, possibly involved in neural stem cell adhesion and differentiation. Because the synthetic peptides are intrinsically pure and a number of desired function cellular motifs are easy to incorporate, these designer peptide nanofiber scaffolds provide a promising controlled 3-D culture system for diverse tissue cells, and are useful as well for general molecular and cell biology. PMID:17205123

  8. Nitric oxide stimulates the proliferation of neural stem cells bypassing the epidermal growth factor receptor.

    PubMed

    Carreira, Bruno Pereira; Morte, Maria Inês; Inácio, Angela; Costa, Gabriel; Rosmaninho-Salgado, Joana; Agasse, Fabienne; Carmo, Anália; Couceiro, Patrícia; Brundin, Patrik; Ambrósio, António Francisco; Carvalho, Caetana Monteiro; Araújo, Inês Maria

    2010-07-01

    Nitric oxide (NO) was described to inhibit the proliferation of neural stem cells. Some evidence suggests that NO, under certain conditions, can also promote cell proliferation, although the mechanisms responsible for a potential proliferative effect of NO in neural stem cells have remained unaddressed. In this work, we investigated and characterized the proliferative effect of NO in cell cultures obtained from the mouse subventricular zone. We found that the NO donor NOC-18 (10 microM) increased cell proliferation, whereas higher concentrations (100 microM) inhibited cell proliferation. Increased cell proliferation was detected rapidly following exposure to NO and was prevented by blocking the mitogen-activated kinase (MAPK) pathway, independently of the epidermal growth factor (EGF) receptor. Downstream of the EGF receptor, NO activated p21Ras and the MAPK pathway, resulting in a decrease in the nuclear presence of the cyclin-dependent kinase inhibitor 1, p27(KIP1), allowing for cell cycle progression. Furthermore, in a mouse model that shows increased proliferation of neural stem cells in the hippocampus following seizure injury, we observed that the absence of inducible nitric oxide synthase (iNOS(-/-) mice) prevented the increase in cell proliferation observed following seizures in wild-type mice, showing that NO from iNOS origin is important for increased cell proliferation following a brain insult. Overall, we show that NO is able to stimulate the proliferation of neural stem cells bypassing the EGF receptor and promoting cell division. Moreover, under pathophysiological conditions in vivo, NO from iNOS origin also promotes proliferation in the hippocampus. PMID:20506358

  9. Transplanted Neural Progenitor Cells from Distinct Sources Migrate Differentially in an Organotypic Model of Brain Injury

    PubMed Central

    Ngalula, Kapinga P.; Cramer, Nathan; Schell, Michael J.; Juliano, Sharon L.

    2015-01-01

    Brain injury is a major cause of long-term disability. The possibility exists for exogenously derived neural progenitor cells to repair damage resulting from brain injury, although more information is needed to successfully implement this promising therapy. To test the ability of neural progenitor cells (NPCs) obtained from rats to repair damaged neocortex, we transplanted neural progenitor cell suspensions into normal and injured slice cultures of the neocortex acquired from rats on postnatal day 0–3. Donor cells from E16 embryos were obtained from either the neocortex, including the ventricular zone (VZ) for excitatory cells, ganglionic eminence (GE) for inhibitory cells or a mixed population of the two. Cells were injected into the ventricular/subventricular zone (VZ/SVZ) or directly into the wounded region. Transplanted cells migrated throughout the cortical plate with GE and mixed population donor cells predominately targeting the upper cortical layers, while neocortically derived NPCs from the VZ/SVZ migrated less extensively. In the injured neocortex, transplanted cells moved predominantly into the wounded area. NPCs derived from the GE tended to be immunoreactive for GABAergic markers while those derived from the neocortex were more strongly immunoreactive for other neuronal markers such as MAP2, TUJ1, or Milli-Mark. Cells transplanted in vitro acquired the electrophysiological characteristics of neurons, including action potential generation and reception of spontaneous synaptic activity. This suggests that transplanted cells differentiate into neurons capable of functionally integrating with the host tissue. Together, our data suggest that transplantation of neural progenitor cells holds great potential as an emerging therapeutic intervention for restoring function lost to brain damage. PMID:26500604

  10. Sp8 expression in putative neural progenitor cells in guinea pig and human cerebrum.

    PubMed

    Zhang, Xue-Mei; Cai, Yan; Wang, Fang; Wu, Jun; Mo, Lin; Zhang, Feng; Patrylo, Peter R; Pan, Aihua; Ma, Chao; Fu, Jin; Yan, Xiao-Xin

    2016-09-01

    Neural stem/progenitor cells have been characterized at neurogenic sites in adult mammalian brain with various molecular markers. Here it has been demonstrated that Sp8, a transcription factor typically expressed among mature GABAergic interneurons, also labels putative neural precursors in adult guinea pig and human cerebrum. In guinea pigs, Sp8 immunoreactive (Sp8+) cells were localized largely in the superficial layers of the cortex including layer I, as well as the subventricular zone (SVZ) and subgranular zone (SGZ). Sp8+ cells at the SGZ showed little colocalization with mature and immature neuronal markers, but co-expressed neural stem cell markers including Sox2. Some layer I Sp8+ cells also co-expressed Sox2. The amount of Sp8+ cells in the dentate gyrus was maintained 2 weeks after X-ray irradiation, while that of doublecortin (DCX+) cells was greatly reduced. Mild ischemic insult caused a transient increase of Sp8+ cells in the SGZ and layer I, with the subgranular Sp8+ cells exhibited an increased colabeling for the mitotic marker Ki67 and pulse-chased bromodeoxyuridine (BrdU). Sp8+ cells in the dentate gyrus showed an age-related decline in guinea pigs, in parallel with the loss of DCX+ cells in the same region. In adult humans, Sp8+ cells exhibited comparable morphological features as seen in guinea pigs, with those at the SGZ and some in cortical layer I co-expressed Sox2. Together, these results suggested that Sp8 may label putative neural progenitors in guinea pig and human cerebrum, with the labeled cells in the SGZ appeared largely not mitotically active under normal conditions. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 939-955, 2016. PMID:26585436

  11. Conjugation of pH-Responsive Nanoparticles to Neural Stem Cells Improves Intratumoral Therapy

    PubMed Central

    Mooney, Rachael; Weng, Yiming; Garcia, Elizabeth; Bhojane, Sukhada; Smith-Powell, Leslie; Kim, Seung U.; Annala, Alexander J.; Aboody, Karen S.; Berlin, Jacob M.

    2014-01-01

    Intratumoral drug delivery is an inherently appealing approach for concentrating toxic chemotherapies at the site of action. This mode of administration is currently used in a number of clinical treatments such as neoadjuvant, adjuvant, and even standalone therapies when radiation and surgery are not possible. However, even when injected locally, it is difficult to achieve efficient distribution of chemotherapeutics throughout the tumor. This is primarily attributed to the high interstitial pressure which results in gradients that drive fluid away from the tumor center. The stiff extracellular matrix also limits drug penetration throughout the tumor. We have previously shown that neural stem cells can penetrate tumor interstitium, actively migrating even to hypoxic tumor cores. When used to deliver therapeutics, these migratory neural stem cells result in dramatically enhanced tumor coverage relative to conventional delivery approaches. We recently showed that neural stem cells maintain their tumor tropic properties when surface-conjugated to nanoparticles. Here we demonstrate that this hybrid delivery system can be used to improve the efficacy of docetaxel-loaded nanoparticles when administered intratumorally. This was achieved by conjugating drug-loaded nanoparticles to the surface of neural stem cells using a bond that allows the stem cells to efficiently distribute nanoparticles throughout the tumor before releasing the drug for uptake by tumor cells. The modular nature of this system suggests that it could be used to improve the efficacy of many chemotherapy drugs after intratumoral administration. PMID:24952368

  12. The Role of Direct Current Electric Field-Guided Stem Cell Migration in Neural Regeneration.

    PubMed

    Yao, Li; Li, Yongchao

    2016-06-01

    Effective directional axonal growth and neural cell migration are crucial in the neural regeneration of the central nervous system (CNS). Endogenous currents have been detected in many developing nervous systems. Experiments have demonstrated that applied direct current (DC) electric fields (EFs) can guide axonal growth in vitro, and attempts have been made to enhance the regrowth of damaged spinal cord axons using DC EFs in in vivo experiments. Recent work has revealed that the migration of stem cells and stem cell-derived neural cells can be guided by DC EFs. These studies have raised the possibility that endogenous and applied DC EFs can be used to direct neural tissue regeneration. Although the mechanism of EF-directed axonal growth and cell migration has not been fully understood, studies have shown that the polarization of cell membrane proteins and the activation of intracellular signaling molecules are involved in the process. The application of EFs is a p