Science.gov

Sample records for acid o-methyl transferase

  1. Developmental changes in the activities of aromatic amino acid decarboxylase and catechol-O-methyl transferase in the porcine brain: a positron emission tomography study.

    PubMed

    Brust, Peter; Walter, Bernd; Hinz, Rainer; Füchtner, Frank; Müller, Marco; Steinbach, Jörg; Bauer, Reinhard

    2004-07-01

    Newborn (7-10 days old) and young (6-8 weeks old) pigs were used to study the metabolism of 6-[18F]fluoro-L-DOPA (FDOPA) in various brain regions with positron emission tomography (PET). Compartmental modeling of PET data was used to calculate the rate constants for the decarboxylation of FDOPA (k3) and for the metabolism of the resulting [18F]fluoro-dopamine (kcl). Whereas general physiological parameters such as cerebral blood flow, cerebral oxygen uptake, arterial blood gases and glucose concentration remained unchanged in young pigs as compared to newborns, a 50-200% increase of k3 in frontal cortex, striatum and mesencephalon was found. Also a 60% enhancement of kcl in the frontal cortex was measured, which is related to changes of the catechol-O-methyl-transferase (COMT) activity and implies a special function of this enzyme in the development of this brain region. In addition, measurement of plasma metabolites of FDOPA with HPLC was performed. The metabolism of FDOPA in young pigs was significantly faster than in newborns. Calculation of the rate constant for O-methylation of FDOPA by COMT revealed a significant elevation of this enzyme activity in young pigs compared to newborns. The increase of AADC and COMT activity with brain development is considered to be associated with special stages of neuronal maturation and tissue differentiation. PMID:15196667

  2. Methionine sulfoxide reductase regulates brain catechol-O-methyl transferase activity.

    PubMed

    Moskovitz, Jackob; Walss-Bass, Consuelo; Cruz, Dianne A; Thompson, Peter M; Bortolato, Marco

    2014-10-01

    Catechol-O-methyl transferase (COMT) plays a key role in the degradation of brain dopamine (DA). Specifically, low COMT activity results in higher DA levels in the prefrontal cortex (PFC), thereby reducing the vulnerability for attentional and cognitive deficits in both psychotic and healthy individuals. COMT activity is markedly reduced by a non-synonymous single-nucleotide polymorphism (SNP) that generates a valine-to-methionine substitution on the residue 108/158, by means of as-yet incompletely understood post-translational mechanisms. One post-translational modification is methionine sulfoxide, which can be reduced by the methionine sulfoxide reductase (Msr) A and B enzymes. We used recombinant COMT proteins (Val/Met108) and mice (wild-type (WT) and MsrA knockout) to determine the effect of methionine oxidation on COMT activity and COMT interaction with Msr, through a combination of enzymatic activity and Western blot assays. Recombinant COMT activity is positively regulated by MsrA, especially under oxidative conditions, whereas brains of MsrA knockout mice exhibited lower COMT activity (as compared with their WT counterparts). These results suggest that COMT activity may be reduced by methionine oxidation, and point to Msr as a key molecular determinant for the modulation of COMT activity in the brain. The role of Msr in modulating cognitive functions in healthy individuals and schizophrenia patients is yet to be determined. PMID:24735585

  3. The catechol-O-methyl transferase Val158Met polymorphism and experience of reward in the flow of daily life.

    PubMed

    Wichers, Marieke; Aguilera, Mari; Kenis, Gunter; Krabbendam, Lydia; Myin-Germeys, Inez; Jacobs, Nele; Peeters, Frenk; Derom, Catherine; Vlietinck, Robert; Mengelers, Ron; Delespaul, Philippe; van Os, Jim

    2008-12-01

    Genetic moderation of experience of reward in response to environmental stimuli is relevant for the study of many psychiatric disorders. Experience of reward, however, is difficult to capture, as it involves small fluctuations in affect in response to small events in the flow of daily life. This study examined a momentary assessment reward phenotype in relation to the catechol-O-methyl transferase (COMT) Val(158)Met polymorphism. A total of 351 participants from a twin study participated in an Experience Sampling Method procedure to collect daily life experiences concerning events, event appraisals, and affect. Reward experience was operationalized, as the effect of event appraisal on positive affect (PA). Associations between COMT Val(158)Met genotype and event appraisal on the one hand and PA on the other were examined using multilevel random regression analysis. Ability to experience reward increased with the number of 'Met' alleles of the subject, and this differential effect of genotype was greater for events that were experienced as more pleasant. The effect size of genotypic moderation was quite large: subjects with the Val/Val genotype generated almost similar amounts of PA from a 'very pleasant event' as Met/Met subjects did from a 'bit pleasant event'. Genetic variation with functional impact on cortical dopamine tone has a strong influence on reward experience in the flow of daily life. Genetic moderation of ecological measures of reward experience is hypothesized to be of major relevance to the development of various behavioral disorders, including depression and addiction. PMID:17687265

  4. 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein

    PubMed Central

    Urbanowicz, Breeanna R.; Peña, Maria J.; Ratnaparkhe, Supriya; Avci, Utku; Backe, Jason; Steet, Heather F.; Foston, Marcus; Li, Hongjia; O’Neill, Malcolm A.; Ragauskas, Arthur J.; Darvill, Alan G.; Wyman, Charles; Gilbert, Harry J.; York, William S.

    2012-01-01

    The hemicellulose 4-O-methyl glucuronoxylan is one of the principle components present in the secondary cell walls of eudicotyledonous plants. However, the biochemical mechanisms leading to the formation of this polysaccharide and the effects of modulating its structure on the physical properties of the cell wall are poorly understood. We have identified and functionally characterized an Arabidopsis glucuronoxylan methyltransferase (GXMT) that catalyzes 4-O-methylation of the glucuronic acid substituents of this polysaccharide. AtGXMT1, which was previously classified as a domain of unknown function (DUF) 579 protein, specifically transfers the methyl group from S-adenosyl-l-methionine to O-4 of α-d-glucopyranosyluronic acid residues that are linked to O-2 of the xylan backbone. Biochemical characterization of the recombinant enzyme indicates that GXMT1 is localized in the Golgi apparatus and requires Co2+ for optimal activity in vitro. Plants lacking GXMT1 synthesize glucuronoxylan in which the degree of 4-O-methylation is reduced by 75%. This result is correlated to a change in lignin monomer composition and an increase in glucuronoxylan release during hydrothermal treatment of secondary cell walls. We propose that the DUF579 proteins constitute a previously undescribed family of cation-dependent, polysaccharide-specific O-methyl-transferases. This knowledge provides new opportunities to selectively manipulate polysaccharide O-methylation and extends the portfolio of structural targets that can be modified either alone or in combination to modulate biopolymer interactions in the plant cell wall. PMID:22893684

  5. Aerobic Copper-Catalyzed O-Methylation with Methylboronic Acid.

    PubMed

    Jacobson, Clare E; Martinez-Muñoz, Noelia; Gorin, David J

    2015-07-17

    The oxidative coupling of alkylboronic acids with oxygen nucleophiles offers a strategy for replacing toxic, electrophilic alkylating reagents. Although the Chan-Lam reaction has been widely applied in the arylation of heteroatom nucleophiles, O-alkylation with boronic acids is rare. We report a Cu-catalyzed nondecarboxylative methylation of carboxylic acids with methylboronic acid that proceeds in air with no additional oxidant. An isotope-labeling study supports an oxidative cross-coupling mechanism, in analogy to that proposed for Chan-Lam arylation. PMID:26111825

  6. Inhibition of catechol-O-methyl transferase (COMT) by tolcapone restores reductions in microtubule-associated protein 2 (MAP2) and synaptophysin (SYP) following exposure of neuronal cells to neurotropic HIV.

    PubMed

    Lee, Ting Ting; Chana, Gursharan; Gorry, Paul R; Ellett, Anne; Bousman, Chad A; Churchill, Melissa J; Gray, Lachlan R; Everall, Ian P

    2015-10-01

    This investigation aimed to assess whether inhibition of cathecol-O-methyl transferase (COMT) by tolcapone could provide neuroprotection against HIV-associated neurodegenerative effects. This study was conducted based on a previous work, which showed that a single nucleotide polymorphism (SNP) at position 158 (val158met) in COMT, resulted in 40 % lower COMT activity. Importantly, this reduction confers a protective effect against HIV-associated neurocognitive disorders (HAND), which have been linked to HIV-associated brain changes. SH-SY5Y-differentiated neurons were exposed to macrophage-propagated HIV (neurotropic MACS2-Br strain) in the presence or absence of tolcapone for 6 days. RNA was extracted, and qPCR was performed using Qiagen RT2 custom array consisting of genes for neuronal and synaptic integrity, COMT and pro-inflammatory markers. Immunofluorescence was conducted to validate the gene expression changes at the protein level. Our findings demonstrated that HIV significantly increased the messenger RNA (mRNA) expression of COMT while reducing the expression of microtubule-associated protein 2 (MAP2) (p = 0.0015) and synaptophysin (SYP) (p = 0.012) compared to control. A concomitant exposure of tolcapone ameliorated the perturbed expression of MAP2 (p = 0.009) and COMT (p = 0.024) associated with HIV. Immunofluorescence revealed a trend reduction of SYP and MAP2 with exposure to HIV and that concomitant exposure of tolcapone increased SYP (p = 0.016) compared to HIV alone. Our findings demonstrated in vitro that inhibition of COMT can ameliorate HIV-associated neurodegenerative changes that resulted in the decreased expression of the structural and synaptic components MAP2 and SYP. As HIV-associated dendritic and synaptic damage are contributors to HAND, inhibition of COMT may represent a potential strategy for attenuating or preventing some of the symptoms of HAND. PMID:26037113

  7. Structural and biochemical analyses reveal how ornithine acetyl transferase binds acidic and basic amino acid substrates.

    PubMed

    Iqbal, Aman; Clifton, Ian J; Chowdhury, Rasheduzzaman; Ivison, David; Domene, Carmen; Schofield, Christopher J

    2011-09-21

    Structural and biochemical analyses reveal how ornithine acetyl-transferases catalyse the reversible transfer of an acetyl-group from a basic (ornithine) to an acidic (glutamate) amino acid by employing a common mechanism involving an acetyl-enzyme intermediate but using different side chain binding modes. PMID:21796301

  8. Insights into lignin primary structure and deconstruction from Arabidopsis thaliana COMT (caffeic acid O-methyl transferase) mutant Atomt1.

    PubMed

    Moinuddin, Syed G A; Jourdes, Michaël; Laskar, Dhrubojyoti D; Ki, Chanyoung; Cardenas, Claudia L; Kim, Kye-Won; Zhang, Dianzhong; Davin, Laurence B; Lewis, Norman G

    2010-09-01

    The Arabidopsis mutant Atomt1 lignin differs from native lignin in wild type plants, in terms of sinapyl (S) alcohol-derived substructures in fiber cell walls being substituted by 5-hydroxyconiferyl alcohol (5OHG)-derived moieties. During programmed lignin assembly, these engender formation of benzodioxane substructures due to intramolecular cyclization of their quinone methides that are transiently formed following 8-O-4' radical-radical coupling. Thioacidolytic cleavage of the 8-O-4' inter-unit linkages in the Atomt1 mutant, relative to the wild type, indicated that cleavable sinapyl (S) and coniferyl (G) alcohol-derived monomeric moieties were stoichiometrically reduced by a circa 2 : 1 ratio. Additionally, lignin degradative analysis resulted in release of a 5OHG-5OHG-G trimer from the Atomt1 mutant, which then underwent further cleavage. Significantly, the trimeric moiety released provides new insight into lignin primary structure: during polymer assembly, the first 5OHG moiety is linked via a C8-O-X inter-unit linkage, whereas subsequent addition of monomers apparently involves sequential addition of 5OHG and G moieties to the growing chain in a 2 : 1 overall stoichiometry. This quantification data thus provides further insight into how inter-unit linkage frequencies in native lignins are apparently conserved (or near conserved) during assembly in both instances, as well as providing additional impetus to resolve how the overall question of lignin macromolecular assembly is controlled in terms of both type of monomer addition and primary sequence. PMID:20652169

  9. Regiospecific O-methylation of naphthoic acids catalyzed by NcsB1, an O-methyltransferase involved in the biosynthesis of the enediyne antitumor antibiotic neocarzinostatin.

    PubMed

    Luo, Yinggang; Lin, Shuangjun; Zhang, Jian; Cooke, Heather A; Bruner, Steven D; Shen, Ben

    2008-05-23

    Neocarzinostatin, a clinical anticancer drug, is the archetypal member of the chromoprotein family of enediyne antitumor antibiotics that are composed of a nonprotein chromophore and an apoprotein. The neocarzinostatin chromophore consists of a nine-membered enediyne core, a deoxyaminosugar, and a naphthoic acid moiety. We have previously cloned and sequenced the neocarzinostatin biosynthetic gene cluster and proposed that the biosynthesis of the naphthoic acid moiety and its incorporation into the neocarzinostatin chromophore are catalyzed by five enzymes NcsB, NcsB1, NcsB2, NcsB3, and NcsB4. Here we report the biochemical characterization of NcsB1, unveiling that: (i) NcsB1 is an S-adenosyl-L-methionine-dependent O-methyltransferase; (ii) NcsB1 catalyzes regiospecific methylation at the 7-hydroxy group of its native substrate, 2,7-dihydroxy-5-methyl-1-naphthoic acid; (iii) NcsB1 also recognizes other dihydroxynaphthoic acids as substrates and catalyzes regiospecific O-methylation; and (iv) the carboxylate and its ortho-hydroxy groups of the substrate appear to be crucial for NcsB1 substrate recognition and binding, and O-methylation takes place only at the free hydroxy group of these dihydroxynaphthoic acids. These findings establish that NcsB1 catalyzes the third step in the biosynthesis of the naphthoic acid moiety of the neocarzinostatin chromophore and further support the early proposal for the biosynthesis of the naphthoic acid and its incorporation into the neocarzinostatin chromophore with free naphthoic acids serving as intermediates. NcsB1 represents another opportunity that can now be exploited to produce novel neocarzinostatin analogs by engineering neocarzinostatin biosynthesis or applying directed biosynthesis strategies. PMID:18387946

  10. Peripheral Aromatic L-Amino Acids Decarboxylase Inhibitor in Parkinsonism. I. EFFECT ON O-METHYLATED METABOLITES OF L-DOPA-2-14C

    PubMed Central

    Messiha, F. S.; Hsu, T. H.; Bianchine, J. R.

    1972-01-01

    The effects of MK-486, an inhibitor of peripheral aromatic L-amino acids decarboxylase, on the urinary metabolites derived from orally administered L-Dopa-2-14C were studied in three Parkinsonian patients. Treatment with MK-486 before L-Dopa-2-14C markedly reduced radioactivity found in catecholamines fraction by 70-80% during 48 hr, but increased 3-O-methyldopa fraction by threefold, as compared with a nonpretreated base line value. Pretreatment with MK-486 for a period of 1 wk resulted in less inhibition of O-methylated amine and acid metabolite fractions than that measured after a single dose of the inhibitor. PMID:5009125

  11. Zaragozic acids D and D2: potent inhibitors of squalene synthase and of Ras farnesyl-protein transferase.

    PubMed

    Dufresne, C; Wilson, K E; Singh, S B; Zink, D L; Bergstrom, J D; Rew, D; Polishook, J D; Meinz, M; Huang, L; Silverman, K C

    1993-11-01

    Two new zaragozic acids, D and D2, have been isolated from the keratinophilic fungus Amauroascus niger. Zaragozic acids D [4] and D2 [5] are related to the previously described zaragozic acids A [1], B [2], and C [3] and are potent inhibitors of squalene synthase. Furthermore, all the zaragozic acids (A, B, C, D, and D2) are also active against farnesyl transferase. Zaragozic acids D and D2 inhibit farnesyl transferase with IC50 values of 100 nM, while zaragozic acids A and B are less potent. PMID:8289063

  12. Tetra-O-Methyl Nordihydroguaiaretic Acid Broadly Suppresses Cancer Metabolism and Synergistically Induces Strong Anticancer Activity in Combination with Etoposide, Rapamycin and UCN-01

    PubMed Central

    Kimura, Kotohiko; Huang, Ru Chih C.

    2016-01-01

    The ability of Tetra-O-methyl nordihydroguaiaretic acid (M4N) to induce rapid cell death in combination with Etoposide, Rapamycin, or UCN-01 was examined in LNCaP cells, both in cell culture and animal experiments. Mice treated with M4N drug combinations with either Etoposide or Rapamycin showed no evidence of tumor and had a 100% survival rate 100 days after tumor implantation. By comparison all other vehicles or single drug treated mice failed to survive longer than 30 days after implantation. This synergistic improvement of anticancer effect was also confirmed in more than 20 cancer cell lines. In LNCaP cells, M4N was found to reduce cellular ATP content, and suppress NDUFS1 expression while inducing hyperpolarization of mitochondrial membrane potential. M4N-treated cells lacked autophagy with reduced expression of BNIP3 and ATG5. To understand the mechanisms of this anticancer activity of M4N, the effect of this drug on three cancer cell lines (LNCaP, AsPC-1, and L428 cells) was further examined via transcriptome and metabolomics analyses. Metabolomic results showed that there were reductions of 26 metabolites essential for energy generation and/or production of cellular components in common with these three cell lines following 8 hours of M4N treatment. Deep RNA sequencing analysis demonstrated that there were sixteen genes whose expressions were found to be modulated following 6 hours of M4N treatment similarly in these three cell lines. Six out of these 16 genes were functionally related to the 26 metabolites described above. One of these up-regulated genes encodes for CHAC1, a key enzyme affecting the stress pathways through its degradation of glutathione. In fact M4N was found to suppress glutathione content and induce reactive oxygen species production. The data overall indicate that M4N has profound specific negative impacts on a wide range of cancer metabolisms supporting the use of M4N combination for cancer treatments. PMID:26886430

  13. Tetra-O-Methyl Nordihydroguaiaretic Acid Broadly Suppresses Cancer Metabolism and Synergistically Induces Strong Anticancer Activity in Combination with Etoposide, Rapamycin and UCN-01.

    PubMed

    Kimura, Kotohiko; Huang, Ru Chih C

    2016-01-01

    The ability of Tetra-O-methyl nordihydroguaiaretic acid (M4N) to induce rapid cell death in combination with Etoposide, Rapamycin, or UCN-01 was examined in LNCaP cells, both in cell culture and animal experiments. Mice treated with M4N drug combinations with either Etoposide or Rapamycin showed no evidence of tumor and had a 100% survival rate 100 days after tumor implantation. By comparison all other vehicles or single drug treated mice failed to survive longer than 30 days after implantation. This synergistic improvement of anticancer effect was also confirmed in more than 20 cancer cell lines. In LNCaP cells, M4N was found to reduce cellular ATP content, and suppress NDUFS1 expression while inducing hyperpolarization of mitochondrial membrane potential. M4N-treated cells lacked autophagy with reduced expression of BNIP3 and ATG5. To understand the mechanisms of this anticancer activity of M4N, the effect of this drug on three cancer cell lines (LNCaP, AsPC-1, and L428 cells) was further examined via transcriptome and metabolomics analyses. Metabolomic results showed that there were reductions of 26 metabolites essential for energy generation and/or production of cellular components in common with these three cell lines following 8 hours of M4N treatment. Deep RNA sequencing analysis demonstrated that there were sixteen genes whose expressions were found to be modulated following 6 hours of M4N treatment similarly in these three cell lines. Six out of these 16 genes were functionally related to the 26 metabolites described above. One of these up-regulated genes encodes for CHAC1, a key enzyme affecting the stress pathways through its degradation of glutathione. In fact M4N was found to suppress glutathione content and induce reactive oxygen species production. The data overall indicate that M4N has profound specific negative impacts on a wide range of cancer metabolisms supporting the use of M4N combination for cancer treatments. PMID:26886430

  14. Optically active aromatic amino acids. Part VI. Synthesis and properties of (Leu5)-enkephalin analogues containing O-methyl-L-tyrosine1 with ring substitution at position 3'.

    PubMed

    Arnold, Z S; Schiller, P W

    2000-06-01

    Twelve new [Tyr(Me)1, Leu5]-enkephalin analogues with substituents at position 3' of the Tyr ring have been synthesized using traditional solution methods. The substituents were -CO2H, -CONH2, -CO2Me, -(E)-CH=NOH, -(E)-CH=NOMe and CH2OH. The analogues were C-terminated with methyl esters, amides or as free acids. In the in vitro biological assays a remarkable agonist activity to the opiate receptor mu in guinea pig ileum (GPI) relative to Leu-ENK was shown by the following: Leu-ENK, 100; [Tyr(Me)(3'-CO2Me)1, Leu-OMe5]-ENK (I), 8.1; [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-OMe5]-ENK (VI), 26.2; [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-OH5]-ENK (VII), 2.9; [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-NH2(5)]-ENK (VIII), 4.7; and [Tyr(Me)(3'-CH2OH)1, Leu-OMe5]-ENK (X), 5.6. The agonist effect was naltrexone- or naloxone-reversible. The masking of the hydroxyl group in (E)-hydroxyiminomethyl group of analogue (VI) by O-methylation has totally abolished its GPI agonist activity. It seems that the (E)-CH=NOH group shows affinity and plays an analogous role to the phenol group Tyr1 in leucine-enkephalin and in the tyramine group of the opiate alkaloids. The analogues: [Tyr(Me)(3'-CO2Me)1, Leu-OMe5]-ENK (I), [Tyr(Me)(3'-CO2H)1, Leu-OMe5]-ENK (II), [Tyr(Me)(3'-CO2Me)1, Leu-NH2(5)]-ENK (III), [Tyr(Me)(3'-CO2H)1, Leu-NH2(5)]-ENK (IV), [Tyr(Me)(3'-CONH2)1, Leu-NH2(5)]-ENK (V), [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-OMe5]-ENK (VI), [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-OH5]-ENK (VII), [Tyr(Me)(3'-(E)-CH=NOH)1, Leu-NH2(5)]-ENK (VIII), [Tyr(Me)(3'-(E)-CH=NOMe)1, Leu-OMe5]-ENK (IX), [Tyr(Me)(3'-CH2OH)1, Leu-OMe5]-ENK (X), [Tyr(Me)(3'-CH2OH)1, Leu-OH5]-ENK (XI) and [Tyr(Me)(3'-CH2OH)1, Leu-NH2(5)]-ENK (XII) under testing had no significant agonist activity to the enkephalinergic receptor in mouse vas deferens (MVD). All methyl esters of synthesized analogues of [Leu5]-ENK showed higher activity to mu receptors than structurally identical C-terminal amides. It is a surprising result since usually C-terminate amides are stronger

  15. Inhibition of human placenta glutathione transferase P1-1 by calvatic acid.

    PubMed

    Caccuri, A M; Ricci, G; Desideri, A; Buffa, M; Fruttero, R; Gasco, A; Ascenzi, P

    1994-04-01

    The inhibition mechanism of the dimeric human placenta glutathione transferase (GST P1-1) by the antibiotic p-carboxyphenylazoxycyanide (calvatic acid) has been investigated at pH 7.0 and 30.0 degrees C. Experiments performed at different calvatic acid/GST P1-1 molar ratios indicate that one mole of calvatic acid inactivates one mole of the homodimeric enzyme molecule, containing two catalytically equivalent active sites. The apparent second order rate constant for GST P1-1 inactivation is 2.4 +/- 0.3 M-1 s-1. The recovery of all the 5,5'-dithio-bis(2-nitro-benzoic acid)-titratable thiol groups as well as the original catalytic activity of GST P1-1 after treatment of the inhibited enzyme with dithiothreitol indicates that two disulfide bridges per dimer, likely between Cys47 and Cys101, have been formed during the reaction with calvatic acid. To the best of the authors knowledge, calvatic acid represents a unique case of enzyme inhibitor acting also throughout its reaction product(s). PMID:8069231

  16. A shotgun lipidomics study of a putative lysophosphatidic acid acyl transferase (PlsC) in Sinorhizobium meliloti.

    PubMed

    Basconcillo, Libia Saborido; Zaheer, Rahat; Finan, Turlough M; McCarry, Brian E

    2009-09-15

    A shotgun lipidomics approach was used to study the knockout mutant of a putative lysophosphatidic acyl acid transferase (PlsC) in order to delineate the function of this enzyme in Sinorhizobium meliloti. In plsC knockout mutant lipids that contained 16:0 and 16:1 fatty acids and their biosynthetically related cyclopropane fatty acid (cis-9,10-methylene hexadecanoic acid) decreased up to 93%. Tandem mass spectrometry experiments in the presence of added Li(+) showed that the putative PlsC (SMc00714) functioned as a lysophosphatidic acid acyl transferase specific for the transfer of C16 fatty acids to the sn-2 position of lipids. The levels of lipids containing C18 fatty acids were unaffected in plsC mutant, suggesting the presence of one or more fatty acyl transferases in the genome of S. meliloti with selectivity towards C18 fatty acids. Two non-phosphorus containing lipid classes, sulfoquinovosyldiacylglycerol and 1,2-diacylglyceryl-trimethylhomoserine lipids, showed similar decreases in C16 fatty acid content as phospholipids in plsC knockout mutant; these non-phosphorus containing lipids share a common biosynthetic origin with phospholipids, most likely involving phosphatidic acid. Ornithine lipids containing C16 fatty acids also showed decreased levels in PlsC knockout mutant, suggesting that PlsC is also involved in their biosynthesis. PMID:19525157

  17. Potent and sustained cellular inhibition of miR-122 by lysine-derivatized peptide nucleic acids (PNA) and phosphorothioate locked nucleic acid (LNA)/2'-O-methyl (OMe) mixmer anti-miRs in the absence of transfection agents

    PubMed Central

    Torres, Adrian G.; Threlfall, Richard N.

    2011-01-01

    Efficient cell delivery of antisense oligonucleotides (ONs) is a key issue for their potential therapeutic use. It has been shown recently that some ONs can be delivered into cells without the use of transfection agents (gymnosis), but this generally requires cell incubation over several days and high amounts of ONs (micromolar concentrations). Here we have targeted microRNA 122 (miR-122), a small non-coding RNA involved in regulation of lipid metabolism and in the replication of hepatitis C virus, with ONs of different chemistries (anti-miRs) by gymnotic delivery in cell culture. Using a sensitive dual-luciferase reporter assay, anti-miRs were screened for their ability to enter liver cells gymnotically and inhibit miR-122 activity. Efficient miR-122 inhibition was obtained with cationic PNAs and 2'-O-methyl (OMe) and Locked Nucleic Acids (LNA)/OMe mixmers containing either phosphodiester (PO) or phosphorothioate (PS) linkages at sub-micromolar concentrations when incubated with cells for just 4 hours. Furthermore, PNA and PS-containing anti-miRs were able to sustain miR-122 inhibitory effects for at least 4 days. LNA/OMe PS anti-miRs were the most potent anti-miR chemistry tested in this study, an ON chemistry that has been little exploited so far as anti-miR agents towards therapeutics. PMID:22567190

  18. Inhibition of various isoforms of rat liver glutathione S-transferases by tannic acid and butein.

    PubMed

    Zhang, K; Mack, P; Wong, K P

    1997-07-01

    Glutathione S-transferases (EC.2.5.1.18, GSTs) were purified from rat liver by S-hexylglutathione affinity chromatography and six isoforms, namely C-1, C-2, C-3, C-4, A-2 and A-1, were isolated by CM-cellulose and DEAE-cellulose ion-exchange columns. Tannic acid and butein showed varying degrees of inhibition on the six individual GST isoforms. When 1-chloro-2,4-dinitrobenzene (CDNB) was used as a substrate, butein exerted significantly more potent inhibition on the cationic isoforms C-2, C-3 and C-4 with IC50 values of 6.8, 8.5 and 8.0 muM respectively. All the isoforms showed lower activity towards p-nitrobenzyt chloride when compared to CDNB and inhibition of the p-nitrobenzyl chloride-activity by tannic acid and butein was also weaker. The inhibitory effects of tannic acid and butein on each isoform decreased generally with increasing pH in the range of 6.0 to 8.0. The optimum pHs for inhibitions by tannic acid and butein on the six individual isoforms lie in the pH range of 6.0 to 6.5. PMID:19856286

  19. Three CoA Transferases Involved in the Production of Short Chain Fatty Acids in Porphyromonas gingivalis

    PubMed Central

    Sato, Mitsunari; Yoshida, Yasuo; Nagano, Keiji; Hasegawa, Yoshiaki; Takebe, Jun; Yoshimura, Fuminobu

    2016-01-01

    Butyryl-CoA:acetate CoA transferase, which produces butyrate and acetyl-CoA from butyryl-CoA and acetate, is responsible for the final step of butyrate production in bacteria. This study demonstrates that in the periodontopathogenic bacterium Porphyromonas gingivalis this reaction is not catalyzed by PGN_1171, previously annotated as butyryl-CoA:acetate CoA transferase, but by three distinct CoA transferases, PGN_0725, PGN_1341, and PGN_1888. Gas chromatography/mass spectrometry (GC-MS) and spectrophotometric analyses were performed using crude enzyme extracts from deletion mutant strains and purified recombinant proteins. The experiments revealed that, in the presence of acetate, PGN_0725 preferentially utilized butyryl-CoA rather than propionyl-CoA. By contrast, this preference was reversed in PGN_1888. The only butyryl-CoA:acetate CoA transferase activity was observed in PGN_1341. Double reciprocal plots revealed that all the reactions catalyzed by these enzymes follow a ternary-complex mechanism, in contrast to previously characterized CoA transferases. GC-MS analysis to determine the concentrations of short chain fatty acids (SCFAs) in culture supernatants of P. gingivalis wild type and mutant strains revealed that PGN_0725 and PGN_1888 play a major role in the production of butyrate and propionate, respectively. Interestingly, a triple deletion mutant lacking PGN_0725, PGN_1341, and PGN_1888 produced low levels of SCFAs, suggesting that the microorganism contains CoA transferase(s) in addition to these three enzymes. Growth rates of the mutant strains were mostly slower than that of the wild type, indicating that many carbon compounds produced in the SCFA synthesis appear to be important for the biological activity of this microorganism. PMID:27486457

  20. Three CoA Transferases Involved in the Production of Short Chain Fatty Acids in Porphyromonas gingivalis.

    PubMed

    Sato, Mitsunari; Yoshida, Yasuo; Nagano, Keiji; Hasegawa, Yoshiaki; Takebe, Jun; Yoshimura, Fuminobu

    2016-01-01

    Butyryl-CoA:acetate CoA transferase, which produces butyrate and acetyl-CoA from butyryl-CoA and acetate, is responsible for the final step of butyrate production in bacteria. This study demonstrates that in the periodontopathogenic bacterium Porphyromonas gingivalis this reaction is not catalyzed by PGN_1171, previously annotated as butyryl-CoA:acetate CoA transferase, but by three distinct CoA transferases, PGN_0725, PGN_1341, and PGN_1888. Gas chromatography/mass spectrometry (GC-MS) and spectrophotometric analyses were performed using crude enzyme extracts from deletion mutant strains and purified recombinant proteins. The experiments revealed that, in the presence of acetate, PGN_0725 preferentially utilized butyryl-CoA rather than propionyl-CoA. By contrast, this preference was reversed in PGN_1888. The only butyryl-CoA:acetate CoA transferase activity was observed in PGN_1341. Double reciprocal plots revealed that all the reactions catalyzed by these enzymes follow a ternary-complex mechanism, in contrast to previously characterized CoA transferases. GC-MS analysis to determine the concentrations of short chain fatty acids (SCFAs) in culture supernatants of P. gingivalis wild type and mutant strains revealed that PGN_0725 and PGN_1888 play a major role in the production of butyrate and propionate, respectively. Interestingly, a triple deletion mutant lacking PGN_0725, PGN_1341, and PGN_1888 produced low levels of SCFAs, suggesting that the microorganism contains CoA transferase(s) in addition to these three enzymes. Growth rates of the mutant strains were mostly slower than that of the wild type, indicating that many carbon compounds produced in the SCFA synthesis appear to be important for the biological activity of this microorganism. PMID:27486457

  1. The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center.

    PubMed

    Englander, Michael T; Avins, Joshua L; Fleisher, Rachel C; Liu, Bo; Effraim, Philip R; Wang, Jiangning; Schulten, Klaus; Leyh, Thomas S; Gonzalez, Ruben L; Cornish, Virginia W

    2015-05-12

    The cellular translational machinery (TM) synthesizes proteins using exclusively L- or achiral aminoacyl-tRNAs (aa-tRNAs), despite the presence of D-amino acids in nature and their ability to be aminoacylated onto tRNAs by aa-tRNA synthetases. The ubiquity of L-amino acids in proteins has led to the hypothesis that D-amino acids are not substrates for the TM. Supporting this view, protein engineering efforts to incorporate D-amino acids into proteins using the TM have thus far been unsuccessful. Nonetheless, a mechanistic understanding of why D-aa-tRNAs are poor substrates for the TM is lacking. To address this deficiency, we have systematically tested the translation activity of D-aa-tRNAs using a series of biochemical assays. We find that the TM can effectively, albeit slowly, accept D-aa-tRNAs into the ribosomal aa-tRNA binding (A) site, use the A-site D-aa-tRNA as a peptidyl-transfer acceptor, and translocate the resulting peptidyl-D-aa-tRNA into the ribosomal peptidyl-tRNA binding (P) site. During the next round of continuous translation, however, we find that ribosomes carrying a P-site peptidyl-D-aa-tRNA partition into subpopulations that are either translationally arrested or that can continue translating. Consistent with its ability to arrest translation, chemical protection experiments and molecular dynamics simulations show that P site-bound peptidyl-D-aa-tRNA can trap the ribosomal peptidyl-transferase center in a conformation in which peptidyl transfer is impaired. Our results reveal a novel mechanism through which D-aa-tRNAs interfere with translation, provide insight into how the TM might be engineered to use D-aa-tRNAs, and increase our understanding of the physiological role of a widely distributed enzyme that clears D-aa-tRNAs from cells. PMID:25918365

  2. The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center

    PubMed Central

    Englander, Michael T.; Avins, Joshua L.; Fleisher, Rachel C.; Liu, Bo; Effraim, Philip R.; Wang, Jiangning; Schulten, Klaus; Leyh, Thomas S.; Gonzalez, Ruben L.; Cornish, Virginia W.

    2015-01-01

    The cellular translational machinery (TM) synthesizes proteins using exclusively L- or achiral aminoacyl-tRNAs (aa-tRNAs), despite the presence of D-amino acids in nature and their ability to be aminoacylated onto tRNAs by aa-tRNA synthetases. The ubiquity of L-amino acids in proteins has led to the hypothesis that D-amino acids are not substrates for the TM. Supporting this view, protein engineering efforts to incorporate D-amino acids into proteins using the TM have thus far been unsuccessful. Nonetheless, a mechanistic understanding of why D-aa-tRNAs are poor substrates for the TM is lacking. To address this deficiency, we have systematically tested the translation activity of D-aa-tRNAs using a series of biochemical assays. We find that the TM can effectively, albeit slowly, accept D-aa-tRNAs into the ribosomal aa-tRNA binding (A) site, use the A-site D-aa-tRNA as a peptidyl-transfer acceptor, and translocate the resulting peptidyl-D-aa-tRNA into the ribosomal peptidyl-tRNA binding (P) site. During the next round of continuous translation, however, we find that ribosomes carrying a P-site peptidyl-D-aa-tRNA partition into subpopulations that are either translationally arrested or that can continue translating. Consistent with its ability to arrest translation, chemical protection experiments and molecular dynamics simulations show that P site-bound peptidyl-D-aa-tRNA can trap the ribosomal peptidyl-transferase center in a conformation in which peptidyl transfer is impaired. Our results reveal a novel mechanism through which D-aa-tRNAs interfere with translation, provide insight into how the TM might be engineered to use D-aa-tRNAs, and increase our understanding of the physiological role of a widely distributed enzyme that clears D-aa-tRNAs from cells. PMID:25918365

  3. Induction of carnitine palmitoyl transferase 1 and fatty acid oxidation by retinoic acid in HepG2 cells.

    PubMed

    Amengual, Jaume; Petrov, Petar; Bonet, M Luisa; Ribot, Joan; Palou, Andreu

    2012-11-01

    The vitamin A derivative retinoic acid (RA) is an important regulator of mammalian adiposity and lipid metabolism, primarily acting at the gene expression level through nuclear receptors of the RA receptor (RAR) and retinoid X receptor (RXR) subfamilies. Here, we studied cell-autonomous effects of RA on fatty acid metabolism, particularly fatty acid oxidation, in human hepatoma HepG2 cells. Exposure to all-trans RA (ATRA) up-regulated the expression of carnitine palmitoyl transferase-1 (CPT1-L) in HepG2 cells in a dose- and time-dependent manner, and increased cellular oxidation rate of exogenously added radiolabeled palmitate. The effect of ATRA on gene expression of CPT1-L was: dependent on ongoing transcription, reproduced by both 9-cis RA and a pan-RXR agonist (but not a pan-RAR agonist) and abolished following RXRα partial siRNA-mediated silencing. CPT1-L gene expression was synergistically induced in HepG2 cells simultaneously exposed to ATRA and a selective peroxisome proliferator-activated receptor α agonist. We conclude that ATRA treatment enhances fatty acid catabolism in hepatocytes through RXR-mediated mechanisms that likely involve the transactivation of the PPARα:RXR heterodimer. Knowledge of agents and nutrient-derivatives capable of enhancing substrate oxidation systemically and specifically in liver, and their mechanisms of action, may contribute to new avenues of prevention and treatment of fatty liver, obesity and other metabolic syndrome-related disorders. PMID:22871568

  4. A phosphopantetheinyl transferase that is essential for mitochondrial fatty acid biosynthesis.

    PubMed

    Guan, Xin; Chen, Hui; Abramson, Alex; Man, Huimin; Wu, Jinxia; Yu, Oliver; Nikolau, Basil J

    2015-11-01

    In this study we report the molecular genetic characterization of the Arabidopsis mitochondrial phosphopantetheinyl transferase (mtPPT), which catalyzes the phosphopantetheinylation and thus activation of mitochondrial acyl carrier protein (mtACP) of mitochondrial fatty acid synthase (mtFAS). This catalytic capability of the purified mtPPT protein (encoded by AT3G11470) was directly demonstrated in an in vitro assay that phosphopantetheinylated mature Arabidopsis apo-mtACP isoforms. The mitochondrial localization of the AT3G11470-encoded proteins was validated by the ability of their N-terminal 80-residue leader sequence to guide a chimeric GFP protein to this organelle. A T-DNA-tagged null mutant mtppt-1 allele shows an embryo-lethal phenotype, illustrating a crucial role of mtPPT for embryogenesis. Arabidopsis RNAi transgenic lines with reduced mtPPT expression display typical phenotypes associated with a deficiency in the mtFAS system, namely miniaturized plant morphology, slow growth, reduced lipoylation of mitochondrial proteins, and the hyperaccumulation of photorespiratory intermediates, glycine and glycolate. These morphological and metabolic alterations are reversed when these plants are grown in a non-photorespiratory condition (i.e. 1% CO2 atmosphere), demonstrating that they are a consequence of a deficiency in photorespiration due to the reduced lipoylation of the photorespiratory glycine decarboxylase. PMID:26402847

  5. Novel Hydroxycinnamoyl-Coenzyme A Quinate Transferase Genes from Artichoke Are Involved in the Synthesis of Chlorogenic Acid1[W

    PubMed Central

    Sonnante, Gabriella; D'Amore, Rosalinda; Blanco, Emanuela; Pierri, Ciro L.; De Palma, Monica; Luo, Jie; Tucci, Marina; Martin, Cathie

    2010-01-01

    Artichoke (Cynara cardunculus subsp. scolymus) extracts have high antioxidant capacity, due primarily to flavonoids and phenolic acids, particularly chlorogenic acid (5-caffeoylquinic acid [CGA]), dicaffeoylquinic acids, and caffeic acid, which are abundant in flower bracts and bioavailable to humans in the diet. The synthesis of CGA can occur following different routes in plant species, and hydroxycinnamoyl-coenzyme A transferases are important enzymes in these pathways. Here, we report on the isolation and characterization of two novel genes both encoding hydroxycinnamoyl-coenzyme A quinate transferases (HQT) from artichoke. The recombinant proteins (HQT1 and HQT2) were assayed after expression in Escherichia coli, and both showed higher affinity for quinate over shikimate. Their preferences for acyl donors, caffeoyl-coenzyme A or p-coumaroyl-coenzyme A, were examined. Modeling and docking analyses were used to propose possible pockets and residues involved in determining substrate specificities in the HQT enzyme family. Quantitative real-time polymerase chain reaction analysis of gene expression indicated that HQT1 might be more directly associated with CGA content. Transient and stable expression of HQT1 in Nicotiana resulted in a higher production of CGA and cynarin (1,3-dicaffeoylquinic acid). These findings suggest that several isoforms of HQT contribute to the synthesis of CGA in artichoke according to physiological needs and possibly following various metabolic routes. PMID:20431089

  6. 2'-O-Methyl- and 2'-O-propargyl-5-methylisocytidine: synthesis, properties and impact on the isoCd-dG and the isoCd-isoGd base pairing in nucleic acids with parallel and antiparallel strand orientation.

    PubMed

    Jana, Sunit K; Leonard, Peter; Ingale, Sachin A; Seela, Frank

    2016-06-01

    Oligonucleotides containing 2'-O-methylated 5-methylisocytidine (3) and 2'-O-propargyl-5-methylisocytidine (4) as well as the non-functionalized 5-methyl-2'-deoxyisocytidine (1b) were synthesized. MALDI-TOF mass spectra of oligonucleotides containing 1b are susceptible to a stepwise depyrimidination. In contrast, oligonucleotides incorporating 2'-O-alkylated nucleosides 3 and 4 are stable. This is supported by acid catalyzed hydrolysis experiments performed on nucleosides in solution. 2'-O-Alkylated nucleoside 3 was synthesized from 2'-O-5-dimethyluridine via tosylation, anhydro nucleoside formation and ring opening. The corresponding 4 was obtained by direct regioselective alkylation of 5-methylisocytidine (1d) with propargyl bromide under phase-transfer conditions. Both compounds were converted to phosphoramidites and employed in solid-phase oligonucleotide synthesis. Hybridization experiments resulted in duplexes with antiparallel or parallel chains. In parallel duplexes, methylation or propargylation of the 2'-hydroxyl group of isocytidine leads to destabilization while in antiparallel DNA this effect is less pronounced. 2'-O-Propargylated 4 was used to cross-link nucleosides and oligonucleotides to homodimers by a stepwise click ligation with a bifunctional azide. PMID:27221215

  7. Advantages of 2'-O-methyl oligoribonucleotide probes for detecting RNA targets.

    PubMed Central

    Majlessi, M; Nelson, N C; Becker, M M

    1998-01-01

    We have compared various kinetic and melting properties of oligoribonucleotide probes containing 2'-O-methylnucleotides or 2'-deoxynucleotides with regard to their use in assays for the detection of nucleic acid targets. 2'-O-Methyl oligoribonucleotide probes bound to RNA targets faster and with much higher melting temperatures (Tm values) than corresponding 2'-deoxy oligoribonucleotide probes at all lengths tested (8-26 bases). Tm values of both probes increased with length up to approximately 19 bases, with maximal differences in Tm between 2'-O-methyl and 2'-deoxy oligoribonucleotide probes observed at lengths of 16 bases or less. In contrast to RNA targets, 2'-O-methyl oligoribonucleotide probes bound more slowly and with the same Tm to DNA targets as corresponding 2'-deoxy oligoribonucleotide probes. Because of their greatly enhanced Tm when bound to RNA, 2'-O-methyl oligoribonucleotide probes can efficiently bind to double-stranded regions of structured RNA molecules. A 17 base 2'-O-methyl oligoribonucleotide probe was able to bind a double-stranded region of rRNA whereas the same 17 base 2'- deoxy oligoribonucleotide probe did not. Due to their enhanced Tm when bound to RNA targets, shorter 2'-O-methyl oligoribonucleotide probes can be used in assays in place of longer 2'-deoxy oligoribonucleotide probes, resulting in enhanced discrimination between matched and mismatched RNA targets. A 12 base 2'-O-methyl oligoribonucleotide probe had the same Tm as a 19 base 2'-deoxy oligoribonucleotide probe when bound to a matched RNA target but exhibited a much larger decrease in Tm than the 2'-deoxy oligoribonucleotide probe when bound to an RNA target containing either 1 or 2 mismatched bases. The increased Tm, faster kinetics of hybridization, ability to bind to structured targets and increased specificity of 2'-O-methyl oligoribonucleotide probes render them superior to corresponding 2'-deoxy oligoribonucleotides for use in assays that detect RNA targets. PMID

  8. Aedes aegypti juvenile hormone acid methyl transferase, the ultimate enzyme in the biosynthetic pathway of juvenile hormone III, exhibits substrate control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the cloning, sequencing, characterization, 3D modeling and docking of Aedes aegypti juvenile hormone acid methyl transferase (AeaJHAMT), the enzyme that converts juvenile hormone acid (JHA) into juvenile hormone (JH). Purified recombinant AeaJHAMT was extensively characterized for enzym...

  9. The molecular basis for the post-translational addition of amino acids by L/F transferase in the N-end rule pathway.

    PubMed

    Fung, Angela Wai S; Fahlman, Richard P

    2015-01-01

    The N-end rule pathway is a conserved targeted proteolytic process observed in organisms ranging from eubacteria to mammals. The N-end rule relates the metabolic stability of a protein to its N-terminal amino acid residue. The identity of the N-terminal amino acid residue is a primary degradation signal, often referred to as an N-degron, which is recognized by the components of the N-end rule when it is a destabilizing N-terminus. N-degrons may be exposed by non-processive proteolytic cleavages or by post-translational modifications. One modification is the post-translational addition of amino acids to the N-termini of proteins, a reaction catalyzed by aminoacyl-tRNA protein transferases. The aminoacyl-tRNA protein transferase in eubacteria like Escherichia coli is L/F transferase. Recent investigations have reported unexpected observations regarding the L/F transferase catalytic mechanism and its mechanisms of substrate recognition. Additionally, recent proteome-wide identification of putative in vivo substrates facilitates hypothesis into the yet elusive biological functions of the prokaryotic N-end rule pathway. Here we summarize the recent findings on the molecular mechanisms of catalysis and substrate recognition by the E. coli L/F transferase in the prokaryotic N-end rule pathway. PMID:25692952

  10. Participation of analogues of lysophosphatidic acid (LPA): oleoyl-sn-glycero-3-phosphate (L-alpha-LPA) and 1-oleoyl-2-O-methyl-rac-glycerophosphothionate (OMPT) in uterine smooth muscle contractility of the pregnant pigs.

    PubMed

    Markiewicz, W; Kamińska, K; Bogacki, M; Maślanka, T; Jaroszewski, J

    2012-01-01

    Recent studies show that a representative of phospholipids, namely lysophosphatidic acid (LPA) and its receptors (LPA1.3) play a significant role in the reproductive processes, i. a, in the modulation of the uterine contractility. The participation of LPA3 in the reproductive processes has been revealed in mice and has not been studied in gilts. Therefore, in the present study we investigated the role/action of LPA and its receptors LPA1, LPA2 and LPA3 on the contraction activity in the porcine uterus. The study was conducted on an experimental model in which the pig uterus consisted of the one whole uterine horn and a part of the second horn, both connected with the uterine corpus. Uterine strips consisting of the endometrium with the myometrium (ENDO/MYO) and myometrium (MYO) alone were collected on days 12-14 of the estrous cycle (control group; n = 5) or pregnancy (experimental group; n = 5). Two analogues of LPA at increasing doses were used: oleoyl-sn-glycero-3-phosphate (L-alpha-LPA, a selective agonist of LPA1 and LPA2 receptors; 10(-7) M; 10(-6) M and 10(-5) M) and 1-oleoyl-2-O-methyl-rac-glycerophosphothionate (OMPT, a selective agonist of LPA3 receptor; 68 nM; 136 nM and 680 nM). L-alpha-LPA caused an increase in the contraction tension, amplitude and frequency of ENDO/MYO from the uterine horn with the developing embryos. This effect was not observed in MYO in both groups examined. In the ENDO/MYO strips of the uterine horn with developing embryos, OMPT significantly increased the contraction tension at the highest dose (680 nM) and amplitude at all doses examined, while frequency of contractions was decreased at doses of 136 nM and 680 nM. In the MYO strips of the uterine horn with embryos a significant increase in the contraction tension and amplitude after the highest dose of OMPT was observed. The results obtained imply the important role of receptors LPA1, LPA2 and LPA3 in the contraction activity of the porcine uterus during early pregnancy. PMID

  11. Enzymatic aryl-O-methyl-/sup 14/C labeling of model lignin monomers

    SciTech Connect

    Frazer, A.C.; Bossert, I.; Young, L.Y.

    1986-01-01

    Aryl-O-methyl ethers are abundant in aerobic and anaerobic environments. In particular, lignin is composed of units of this type. Lignin monomers specifically radiolabeled in methoxy, side chain, and ring carbons have been synthesized by chemical procedures and are important in studies of lignin synthesis and degradation, humus formation, and microbial O-demethylation. In this paper attention is drawn to an enzymatic procedure for preparing O-methyl-/sup 14/C-labeled aromatic lignin monomers which has not previously been exploited in microbial ecology and physiology studies and which has several advantages compared with chemical synthesis procedures. O-(methyl-/sup 14/C)vanillic and O-(methyl-/sup 14/C)ferulic acids were prepared with S-(methyl-/sup 14/C)adenosyl-L-methionine as the methyl donor, using commercially obtained porcine liver catechol-O-methyltransferase (EC 2.1.1.6). The specific activity of the methylated products was the same as that of the methyl donor, a maximum of about 58 ..mu..Ci/..mu..mol, and the yields were 42% (vanillate) and 35% (ferulate). Thus lignin monomers are readily prepared as O-methylated products of the catechol-O-methyltransferase reaction and, with this enzyme method of preparation, would be more widely available than labeled compounds which require chemical synthesis.

  12. Regiocomplementary O-Methylation of Catechols by Using Three-Enzyme Cascades.

    PubMed

    Siegrist, Jutta; Aschwanden, Simon; Mordhorst, Silja; Thöny-Meyer, Linda; Richter, Michael; Andexer, Jennifer N

    2015-12-01

    S-Adenosylmethionine (SAM)-dependent enzymes have great potential for selective alkylation processes. In this study we investigated the regiocomplementary O-methylation of catechols. Enzymatic methylation is often hampered by the need for a stoichiometric supply of SAM and the inhibitory effect of the SAM-derived byproduct on most methyltransferases. To counteract these issues we set up an enzyme cascade. Firstly, SAM was generated from l-methionine and ATP by use of an archaeal methionine adenosyltransferase. Secondly, 4-O-methylation of the substrates dopamine and dihydrocaffeic acid was achieved by use of SafC from the saframycin biosynthesis pathway in 40-70 % yield and high selectivity. The regiocomplementary 3-O-methylation was catalysed by catechol O-methyltransferase from rat. Thirdly, the beneficial influence of a nucleosidase on the overall conversion was demonstrated. The results of this study are important milestones on the pathway to catalytic SAM-dependent alkylation processes. PMID:26437744

  13. Control of larval and egg development in Aedes aegypti with RNA interference against juvenile hormone acid methyl transferase.

    PubMed

    Van Ekert, Evelien; Powell, Charles A; Shatters, Robert G; Borovsky, Dov

    2014-11-01

    RNA interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including mosquitoes and many other insects. Little has been done, however, to harness this approach in order to control adult and larval mosquitoes. Juvenile hormone (JH) plays a pivotal role in the control of reproduction in adults and metamorphism in larval mosquitoes. This report describes an approach to control Aedes aegypti using RNAi against JH acid methyl transferase (AeaJHAMT), the ultimate enzyme in the biosynthetic pathway of JH III that converts JH acid III (JHA III) into JH III. In female A. aegypti that were injected or fed jmtA dsRNA targeting the AeaJHAMT gene (jmtA) transcript, egg development was inhibited in 50% of the treated females. In mosquito larvae that were fed transgenic Pichia pastoris cells expressing long hair pin (LHP) RNA, adult eclosion was delayed by 3 weeks causing high mortality. Northern blot analyses and qPCR studies show that jmtA dsRNA causes inhibition of jmtA transcript in adults and larvae, which is consistent with the observed inhibition of egg maturation and larval development. Taken together, these results suggest that jmtA LHP RNA expressed in heat inactivated genetically modified P. pastoris cells could be used to control mosquito populations in the marsh. PMID:25111689

  14. Separation of catechins and O-methylated (-)-epigallocatechin gallate using polyamide thin-layer chromatography.

    PubMed

    Wang, Kunbo; Chen, Qincao; Lin, Yong; Yu, Shuangshang; Lin, Haiyan; Huang, Jianan; Liu, Zhonghua

    2016-04-01

    Thin-layer chromatography (TLC) method for the separation and quantitative determination of seven related compounds: (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3″Me) and (-)-epigallocatechin- 3-O-(4-O-methyl) gallate (EGCG4″Me) has been developed. The above-mentioned seven compounds have been resolved using polyamide TLC plates using a double-development with methanol followed by acetone/acetic acid (2:1, v/v). In addition, separation of the phenolic acids namely gallic acid, chlorogenic acid, and caffeic acid was achieved using the same solvent system. The applicability of the method was checked by screening of extracts of green, black, oolong, white tea and tea cultivars leaves. PMID:26990737

  15. Glutathione S-transferases act as isomerases in isomerization of 13-cis-retinoic acid to all-trans-retinoic acid in vitro.

    PubMed Central

    Chen, H; Juchau, M R

    1997-01-01

    A discovery that rapid enzymic isomerization of 13-cis-retinoic acid (13-cRA) to all-trans-retinoic acid (t-RA) can be catalysed by purified hepatic glutathione S-transferases (GSTs; EC 2.5.1.18) from rat is now reported. Rates of cis-trans isomerization were determined quantitatively by HPLC. GST-catalysed reactions reached equilibrium rapidly, in marked contrast with uncatalysed or GSH-catalysed isomerizations. The GST-catalysed reaction exhibited substrate saturation kinetics with a Km of approx. 8 microM. The maximal velocity of the reaction and the catalytic efficiency of GSTs were determined. The initial rate of the reaction increased linearly as a function of enzyme concentration. Catalysis by GSTs was independent of the presence of GSH, indicating that GSTs act as GSH-independent isomerases as well as transferases. Incubation with guanidine (7-8 M) or heat-inactivation of GSTs (100 degrees C for 3 min) decreased isomerase activities by approx. 50% and 75% respectively. The same heat treatment did not significantly inhibit isomerization catalysed by GSH and apoferritin, indicating that the observed decrease in isomerase activity by heat inactivation was not primarily due to oxidation of protein thiol groups in the GSTs. The specific activity of GSTs was approx. 23- and 340-fold those of GSH and apoferritin respectively when comparisons were made on the basis of free thiol concentrations, indicating that free thiol in GSTs cannot account for the majority of observed isomerase activities and suggesting that specific conformations of GSTs are important for such activities. Complete inhibition of the reaction by low concentrations of N-ethylmaleimide (10 microM) demonstrated that intact protein thiols are required for the isomerase activities of GSTs. PMID:9581548

  16. Control of larval and egg development in Aedes aegypti with Ribonucleic acid interference (RNAi) against juvenile hormone acid methyl transferase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ribonucleic acid interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including mosquitoes and many other insects. Little has been done, however, to harness this approach in order to control adult and larval mosquitoes. Juvenile hormone (JH) plays a pi...

  17. WaaA of the hyperthermophilic bacterium Aquifex aeolicus is a monofunctional 3-deoxy-D-manno-oct-2-ulosonic acid transferase involved in lipopolysaccharide biosynthesis.

    PubMed

    Mamat, Uwe; Schmidt, Helgo; Munoz, Eva; Lindner, Buko; Fukase, Koichi; Hanuszkiewicz, Anna; Wu, Jing; Meredith, Timothy C; Woodard, Ronald W; Hilgenfeld, Rolf; Mesters, Jeroen R; Holst, Otto

    2009-08-14

    The hyperthermophile Aquifex aeolicus belongs to the deepest branch in the bacterial genealogy. Although it has long been recognized that this unique Gram-negative bacterium carries genes for different steps of lipopolysaccharide (LPS) formation, data on the LPS itself or detailed knowledge of the LPS pathway beyond the first committed steps of lipid A and 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) synthesis are still lacking. We now report the functional characterization of the thermostable Kdo transferase WaaA from A. aeolicus and provide evidence that the enzyme is monofunctional. Compositional analysis and mass spectrometry of purified A. aeolicus LPS, showing the incorporation of a single Kdo residue as an integral component of the LPS, implicated a monofunctional Kdo transferase in LPS biosynthesis of A. aeolicus. Further, heterologous expression of the A. aeolicus waaA gene in a newly constructed Escherichia coli DeltawaaA suppressor strain resulted in synthesis of lipid IVA precursors substituted with one Kdo sugar. When highly purified WaaA of A. aeolicus was subjected to in vitro assays using mass spectrometry for detection of the reaction products, the enzyme was found to catalyze the transfer of only a single Kdo residue from CMP-Kdo to differently modified lipid A acceptors. The Kdo transferase was capable of utilizing a broad spectrum of acceptor substrates, whereas surface plasmon resonance studies indicated a high selectivity for the donor substrate. PMID:19546212

  18. WaaA of the Hyperthermophilic Bacterium Aquifex aeolicus Is a Monofunctional 3-Deoxy-d-manno-oct-2-ulosonic Acid Transferase Involved in Lipopolysaccharide Biosynthesis*

    PubMed Central

    Mamat, Uwe; Schmidt, Helgo; Munoz, Eva; Lindner, Buko; Fukase, Koichi; Hanuszkiewicz, Anna; Wu, Jing; Meredith, Timothy C.; Woodard, Ronald W.; Hilgenfeld, Rolf; Mesters, Jeroen R.; Holst, Otto

    2009-01-01

    The hyperthermophile Aquifex aeolicus belongs to the deepest branch in the bacterial genealogy. Although it has long been recognized that this unique Gram-negative bacterium carries genes for different steps of lipopolysaccharide (LPS) formation, data on the LPS itself or detailed knowledge of the LPS pathway beyond the first committed steps of lipid A and 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) synthesis are still lacking. We now report the functional characterization of the thermostable Kdo transferase WaaA from A. aeolicus and provide evidence that the enzyme is monofunctional. Compositional analysis and mass spectrometry of purified A. aeolicus LPS, showing the incorporation of a single Kdo residue as an integral component of the LPS, implicated a monofunctional Kdo transferase in LPS biosynthesis of A. aeolicus. Further, heterologous expression of the A. aeolicus waaA gene in a newly constructed Escherichia coli ΔwaaA suppressor strain resulted in synthesis of lipid IVA precursors substituted with one Kdo sugar. When highly purified WaaA of A. aeolicus was subjected to in vitro assays using mass spectrometry for detection of the reaction products, the enzyme was found to catalyze the transfer of only a single Kdo residue from CMP-Kdo to differently modified lipid A acceptors. The Kdo transferase was capable of utilizing a broad spectrum of acceptor substrates, whereas surface plasmon resonance studies indicated a high selectivity for the donor substrate. PMID:19546212

  19. Driving carbon flux through exogenous butyryl-CoA: Acetate CoA-transferase to produce butyric acid at high titer in Thermobifida fusca.

    PubMed

    Deng, Yu; Mao, Yin; Zhang, Xiaojuan

    2015-12-20

    Butyric acid, a 4-carbon short chain fatty acid, is widely used in chemical, food, and pharmaceutical industries. The low activity of butyryl-CoA: acetate CoA-transferase in Thermobifida fusca muS, a thermophilic actinobacterium whose optimal temperature was 55°C, was found to hinder the accumulation of high yield of butyric acid. In order to solve this problem, an exogenous butyryl-CoA: acetate CoA-transferase gene (actA) from Thermoanaerobacterium thermosaccharolyticum DSM571 was integrated into the chromosome of T. fusca muS by replacing celR gene, forming T. fusca muS-1. We demonstrated that on 5g/L cellulose, the yield of butyric acid by the engineered muS-1 strain was increased by 42.9 % compared to the muS strain. On 100g/L of cellulose, the muS-1 strain could consume 90.5% of total cellulose in 144h, with 33.2g/L butyric acid produced. Furthermore, on the mix substrates including the major components of biomass: cellulose, xylose, mannose and galactose, 70.4g/L butyric acid was produced in 168h by fed-batch fermentation. To validate the ability of fermenting biomass, the muS-1 strain was grown on the milled corn stover ranging from 200 to 250μm. The muS-1 strain had the highest butyrate titer 17.1g/L on 90g/L corn stover. PMID:26535965

  20. Precocious leaf senescence by functional loss of PROTEIN S-ACYL TRANSFERASE14 involves the NPR1-dependent salicylic acid signaling

    PubMed Central

    Zhao, Xin-Ying; Wang, Jia-Gang; Song, Shi-Jian; Wang, Qun; Kang, Hui; Zhang, Yan; Li, Sha

    2016-01-01

    We report here that Arabidopsis PROTEIN S-ACYL TRANSFERASE14 (PAT14), through its palmitate transferase activity, acts at the vacuolar trafficking route to repress salicylic acid (SA) signaling, thus mediating age-dependent but not carbon starvation-induced leaf senescence. Functional loss of PAT14 resulted in precocious leaf senescence and its transcriptomic analysis revealed that senescence was dependent on salicylic acid. Overexpressing PAT14 suppressed the expression of SA responsive genes. Introducing the SA deficient mutants, npr1-5 and NahG, but not other hormonal mutants, completely suppressed the precocious leaf senescence of PAT14 loss-of-function, further supporting the epistatic relation between PAT14 and the SA pathway. By confocal fluorescence microscopy, we showed that PAT14 is localized at the Golgi, the trans-Golg network/early endosome, and prevacuolar compartments, indicating its roles through vacuolar trafficking. By reporter analysis and real time PCRs, we showed that the expression PAT14, unlike most of the senescence associated genes, is not developmentally regulated, suggesting post-transcriptional regulatory mechanisms on its functionality. We further showed that the maize and wheat homologs of PAT14 fully rescued the precocious leaf senescence of pat14-2, demonstrating that the role of PAT14 in suppressing SA signaling during age-dependent leaf senescence is evolutionarily conserved between dicots and monocots. PMID:26842807

  1. A propionate CoA-transferase of Ralstonia eutropha H16 with broad substrate specificity catalyzing the CoA thioester formation of various carboxylic acids.

    PubMed

    Lindenkamp, Nicole; Schürmann, Marc; Steinbüchel, Alexander

    2013-09-01

    In this study, we have investigated a propionate CoA-transferase (Pct) homologue encoded in the genome of Ralstonia eutropha H16. The corresponding gene has been cloned into the vector pET-19b to yield a histidine-tagged enzyme which was expressed in Escherichia coli BL21 (DE3). After purification, high-performance liquid chromatography/mass spectrometry (HPLC/MS) analyses revealed that the enzyme exhibits a broad substrate specificity for carboxylic acids. The formation of the corresponding CoA-thioesters of acetate using propionyl-CoA as CoA donor, and of propionate, butyrate, 3-hydroxybutyrate, 3-hydroxypropionate, crotonate, acrylate, lactate, succinate and 4-hydroxybutyrate using acetyl-CoA as CoA donor could be shown. According to the substrate specificity, the enzyme can be allocated in the family I of CoA-transferases. The apparent molecular masses as determined by gel filtration and detected by SDS polyacrylamide gel electrophoresis were 228 and 64 kDa, respectively, and point to a quaternary structure of the native enzyme (α4). The enzyme exhibited similarities in sequence and structure to the well investigated Pct of Clostridium propionicum. It does not contain the typical conserved (S)ENG motif, but the derived motif sequence EXG with glutamate 342 to be, most likely, the catalytic residue. Due to the homo-oligomeric structure and the sequence differences with the subclasses IA-C of family I CoA-transferases, a fourth subclass of family I is proposed, comprising - amongst others - the Pcts of R. eutropha H16 and C. propionicum. A markerless precise-deletion mutant R. eutropha H16∆pct was generated. The growth and accumulation behaviour of this mutant on gluconate, gluconate plus 3,3'-dithiodipropionic acid (DTDP), acetate and propionate was investigated but resulted in no observable phenotype. Both, the wild type and the mutant showed the same growth and storage behaviour with these carbon sources. It is probable that R. eutropha H16 is upregulating

  2. Pharmacological profile of opicapone, a thirdgeneration nitrocatechol catechol-O-methyl transferase inhibitor, in the rat

    PubMed Central

    Bonifácio, M J; Torrão, L; Loureiro, A I; Palma, P N; Wright, L C; Soares-da-Silva, P

    2015-01-01

    Background and Purpose Catechol-O-methyltransferase (COMT) is an important target in the levodopa treatment of Parkinson's disease; however, the inhibitors available have problems, and not all patients benefit from their efficacy. Opicapone was developed to overcome those limitations. In this study, opicapone's pharmacological properties were evaluated as well as its potential cytotoxic effects. Experimental Approach The pharmacodynamic effects of opicapone were explored by evaluating rat COMT activity and levodopa pharmacokinetics, in the periphery through microdialysis and in whole brain. The potential cytotoxicity risk of opicapone was explored in human hepatocytes by assessing cellular ATP content and mitochondrial membrane potential. Key Results Opicapone inhibited rat peripheral COMT with ED50 values below 1.4 mg⋅kg−1 up to 6 h post-administration. The effect was sustained over the first 8 h and by 24 h COMT had not returned to control values. A single administration of opicapone resulted in increased and sustained plasma levodopa levels with a concomitant reduction in 3-O-methyldopa from 2 h up to 24 h post-administration, while tolcapone produced significant effects only at 2 h post-administration. The effects of opicapone on brain catecholamines after levodopa administration were sustained up to 24 h post-administration. Opicapone was also the least potent compound in decreasing both the mitochondrial membrane potential and the ATP content in human primary hepatocytes after a 24 h incubation period. Conclusions and Implications Opicapone has a prolonged inhibitory effect on peripheral COMT, which extends the bioavailability of levodopa, without inducing toxicity. Thus, it exhibits some improved properties compared to the currently available COMT inhibitors. PMID:25409768

  3. Arabidopsis Deficient in Cutin Ferulate Encodes a Transferase Required for Feruloylation of ω-Hydroxy Fatty Acids in Cutin Polyester1[W][OA

    PubMed Central

    Rautengarten, Carsten; Ebert, Berit; Ouellet, Mario; Nafisi, Majse; Baidoo, Edward E.K.; Benke, Peter; Stranne, Maria; Mukhopadhyay, Aindrila; Keasling, Jay D.; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2012-01-01

    The cuticle is a complex aliphatic polymeric layer connected to the cell wall and covers surfaces of all aerial plant organs. The cuticle prevents nonstomatal water loss, regulates gas exchange, and acts as a barrier against pathogen infection. The cuticle is synthesized by epidermal cells and predominantly consists of an aliphatic polymer matrix (cutin) and intracuticular and epicuticular waxes. Cutin monomers are primarily C16 and C18 unsubstituted, ω-hydroxy, and α,ω-dicarboxylic fatty acids. Phenolics such as ferulate and p-coumarate esters also contribute to a minor extent to the cutin polymer. Here, we present the characterization of a novel acyl-coenzyme A (CoA)-dependent acyl-transferase that is encoded by a gene designated Deficient in Cutin Ferulate (DCF). The DCF protein is responsible for the feruloylation of ω-hydroxy fatty acids incorporated into the cutin polymer of aerial Arabidopsis (Arabidopsis thaliana) organs. The enzyme specifically transfers hydroxycinnamic acids using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs, preferentially feruloyl-CoA and sinapoyl-CoA, as acyl donors in vitro. Arabidopsis mutant lines carrying DCF loss-of-function alleles are devoid of rosette leaf cutin ferulate and exhibit a 50% reduction in ferulic acid content in stem insoluble residues. DCF is specifically expressed in the epidermis throughout all green Arabidopsis organs. The DCF protein localizes to the cytosol, suggesting that the feruloylation of cutin monomers takes place in the cytoplasm. PMID:22158675

  4. Human monomethylarsonic acid (MMA(V)) reductase is a member of the glutathione-S-transferase superfamily.

    PubMed

    Zakharyan, R A; Sampayo-Reyes, A; Healy, S M; Tsaprailis, G; Board, P G; Liebler, D C; Aposhian, H V

    2001-08-01

    The drinking of water containing large amounts of inorganic arsenic is a worldwide major public health problem because of arsenic carcinogenicity. Yet an understanding of the specific mechanism(s) of inorganic arsenic toxicity has been elusive. We have now partially purified the rate-limiting enzyme of inorganic arsenic metabolism, human liver MMA(V) reductase, using ion exchange, molecular exclusion, and hydroxyapatite chromatography. When SDS-beta-mercaptoethanol-PAGE was performed on the most purified fraction, seven protein bands were obtained. Each band was excised from the gel, sequenced by LC-MS/MS and identified according to the SWISS-PROT and TrEMBL Protein Sequence databases. Human liver MMA(V) reductase is 100% identical, over 92% of sequence that we analyzed, with the recently discovered human glutathione-S-transferase Omega class hGSTO 1-1. Recombinant human GSTO1-1 had MMA(V) reductase activity with K(m) and V(max) values comparable to those of human liver MMA(V) reductase. The partially purified human liver MMA(V) reductase had glutathione S-transferase (GST) activity. MMA(V) reductase activity was competitively inhibited by the GST substrate, 1-chloro 2,4-dinitrobenzene and also by the GST inhibitor, deoxycholate. Western blot analysis of the most purified human liver MMA(V) reductase showed one band when probed with hGSTO1-1 antiserum. We propose that MMA(V) reductase and hGSTO 1-1 are identical proteins. PMID:11511179

  5. Biological Roles of the O-Methyl Phosphoramidate Capsule Modification in Campylobacter jejuni

    PubMed Central

    Richards, Michele R.; Fodor, Christopher; Ashmus, Roger A.; Stahl, Martin; Karlyshev, Andrey V.; Wren, Brendan W.; Stintzi, Alain; Miller, William G.; Lowary, Todd L.; Szymanski, Christine M.

    2014-01-01

    Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, and the capsular polysaccharide (CPS) of this organism is required for persistence and disease. C. jejuni produces over 47 different capsular structures, including a unique O-methyl phosphoramidate (MeOPN) modification present on most C. jejuni isolates. Although the MeOPN structure is rare in nature it has structural similarity to some synthetic pesticides. In this study, we have demonstrated, by whole genome comparisons and high resolution magic angle spinning NMR, that MeOPN modifications are common to several Campylobacter species. Using MeOPN biosynthesis and transferase mutants generated in C. jejuni strain 81–176, we observed that loss of MeOPN from the cell surface correlated with increased invasion of Caco-2 epithelial cells and reduced resistance to killing by human serum. In C. jejuni, the observed serum mediated killing was determined to result primarily from activation of the classical complement pathway. The C. jejuni MeOPN transferase mutant showed similar levels of colonization relative to the wild-type in chickens, but showed a five-fold drop in colonization when co-infected with the wild-type in piglets. In Galleria mellonella waxmoth larvae, the MeOPN transferase mutant was able to kill the insects at wild-type levels. Furthermore, injection of the larvae with MeOPN-linked monosaccharides or CPS purified from the wild-type strain did not result in larval killing, indicating that MeOPN does not have inherent insecticidal activity. PMID:24498018

  6. Effects of mace (Myristica fragrans, Houtt.) on cytosolic glutathione S-transferase activity and acid soluble sulfhydryl level in mouse liver.

    PubMed

    Kumari, M V; Rao, A R

    1989-07-15

    The aril of plant Myristica fragrans Houtt. commonly known as mace, which is consumed as a spice as well as used as a folk-medicine, was screened for its effects on the levels of cytosolic glutathione S-transferase (GST) and acid-soluble sulfhydryl (SH) groups in the liver of young adult male and female Swiss albino mice. Animals were assorted into 4 groups comprised of either sex and received either normal diet (negative control), 1% 2,3-tert-butyl-4-hydroxyanisole (BHA) diet (positive control), 1% mace diet or 2% mace diet for 10 days. There was a significant increase in the GST activity in the liver of mice exposed to BHA or mace. In addition, there was a significant increase in the SH content in the liver of mice fed on 1% BHA and 2% mace diets. PMID:2752386

  7. Aedes aegypti juvenile hormone acid methyl transferase, the ultimate enzyme in the biosynthetic pathway of juvenile hormone III, exhibits substrate control.

    PubMed

    Van Ekert, Evelien; Heylen, Kevin; Rougé, Pierre; Powell, Charles A; Shatters, Robert G; Smagghe, Guy; Borovsky, Dov

    2014-05-01

    We report on the cloning, sequencing, characterization, 3D modeling and docking of Aedes aegypti juvenile hormone acid methyl transferase (AeaJHAMT), the enzyme that converts juvenile hormone acid (JHA) into juvenile hormone (JH). Purified recombinant AeaJHAMT was extensively characterized for enzymatic activity and the Michaelis Menten kinetic parameters Km, Vmax, k(cat) (turn over number) and k(cat)/Km (catalytic efficiency) using JHA and its analogues as substrates. AeaJHAMT methylates JHA III 5-fold faster than farnesoic acid (FA). Significant differences in lower methyl transferase (MT) activities towards the cis/trans/trans, cis/trans/cis and the trans/cis/cis isomers of JHA I (1.32, 4.71 and 156-fold, respectively) indicate that substrate chirality is important for proper alignment at the catalytic cavity and for efficient methyl transfer by S-adenosyl methionine (SAM). Our 3D model shows a potential binding site below the main catalytic cavity for JHA analogues causing conformational change and steric hindrance in the transfer of the methyl group to JHA III. These, in silico, observations were corroborated by, in vitro, studies showing that several JHA analogues are potent inhibitors of AeaJHAMT. In vitro, and in vivo studies using [(3)H-methyl]SAM show that the enzyme is present and active throughout the adult life stage of A. aegypti. Tissue specific expressions of the JHAMT gene of A. aegypti (jmtA) transcript during the life cycle of A. aegypti show that AeaJHAMT is a constitutive enzyme and jmtA transcript is expressed in the corpora allata (CA), and the ovary before and after the blood meal. These results indicate that JH III can be synthesized from JHA III by the mosquito ovary, suggesting that ovarian JH III may play an important physiological role in ovarian development and reproduction. Incubating AeaJHAMT with highly pure synthetic substrates indicates that JHA III is the enzyme's preferred substrate, suggesting that AeaJHAMT is the ultimate

  8. The potato suberin feruloyl transferase FHT which accumulates in the phellogen is induced by wounding and regulated by abscisic and salicylic acids.

    PubMed

    Boher, Pau; Serra, Olga; Soler, Marçal; Molinas, Marisa; Figueras, Mercè

    2013-08-01

    The present study provides new insights on the role of the potato (Solanum tuberosum) suberin feruloyl transferase FHT in native and wound tissues, leading to conclusions about hitherto unknown properties of the phellogen. In agreement with the enzymatic role of FHT, it is shown that its transcriptional activation and protein accumulation are specific to tissues that undergo suberization such as the root boundary layers of the exodermis and the endodermis, along with the tuber periderm. Remarkably, FHT expression and protein accumulation within the periderm is restricted to the phellogen derivative cells with phellem identity. FHT levels in the periderm are at their peak near harvest during periderm maturation, with the phellogen becoming meristematically inactive and declining thereafter. However, periderm FHT levels remain high for several months after harvest, suggesting that the inactive phellogen retains the capacity to synthesize ferulate esters. Tissue wounding induces FHT expression and the protein accumulates from the first stages of the healing process onwards. FHT is up-regulated by abscisic acid and down-regulated by salicylic acid, emphasizing the complex regulation of suberin synthesis and wound healing. These findings open up new prospects important for the clarification of the suberization process and yield important information with regard to the skin quality of potatoes. PMID:23918964

  9. Optically detected magnetic resonance study of the interaction of an arsenic(III) derivative of cacodylic acid with EcoRI methyl transferase

    SciTech Connect

    Tsao, D.H.H.; Maki, A.H. )

    1991-05-07

    The interaction of the enzyme Escherichia coli RI methyl transferase (methylase) with an arsenic(III) derivative of cacodylic acid has been investigated by optical detection of triplet-state magnetic resonance (ODMR) spectroscopy in zero applied magnetic field. The reactive derivative (CH{sub 3}){sub 2}AsSR is formed by the reduction of cacodylate by a thiol. The As(III) derivative binds to the enzyme by mercaptide exchange with a cysteine (Cys) residue located close to a tryptophan (Trp) site. The arsenical binding selectively induces an external heavy-atom effect, perturbing the nearby Trp residue in the enzyme. Zero-field splittings (ZFS) and total decay rate constants of the individual triplet-state sublevels of the Trp residue in the presence and absence of perturbation by As(III) have been determined. The results indicate that the arsenical binding site in methylase which produces the Trp heavy-atom effect is protected from this ligand by ternary complex formation or the enzyme undergoes a conformation change, removing the Cys from the Trp site. This protection is also observed in fluorescence quenching experiments. In the ternary complex methylase-sinefungin-DNA, no heavy-atom perturbation of the two Trp residues in the enzyme by BrU was observed, demonstrating that Trp residues are not involved in close-range interactions with the two heavy-atom-derivatized nucleic acid bases.

  10. Specific Synthesis of Neurostatin and Gangliosides O-Acetylated in the Outer Sialic Acids Using a Sialate Transferase

    PubMed Central

    Romero-Ramírez, Lorenzo; García-Álvarez, Isabel; Campos-Olivas, Ramón; Gilbert, Michel; Goneau, Marie-France; Fernández-Mayoralas, Alfonso; Nieto-Sampedro, Manuel

    2012-01-01

    Gangliosides are sialic acid containing glycosphingolipids, commonly found on the outer leaflet of the plasma membrane. O-acetylation of sialic acid hydroxyl groups is one of the most common modifications in gangliosides. Studies on the biological activity of O-acetylated gangliosides have been limited by their scarcity in nature. This comparatively small change in ganglioside structure causes major changes in their physiological properties. When the ganglioside GD1b was O-acetylated in the outer sialic acid, it became the potent inhibitor of astroblast and astrocytoma proliferation called Neurostatin. Although various chemical and enzymatic methods to O-acetylate commercial gangliosides have been described, O-acetylation was nonspecific and produced many side-products that reduced the yield. An enzyme with O-acetyltransferase activity (SOAT) has been previously cloned from the bacteria Campylobacter jejuni. This enzyme catalyzed the acetylation of oligosaccharide-bound sialic acid, with high specificity for terminal alpha-2,8-linked residues. Using this enzyme and commercial gangliosides as starting material, we have specifically O-acetylated the gangliosides’ outer sialic acids, to produce the corresponding gangliosides specifically O-acetylated in the sialic acid bound in alpha-2,3 and alpha-2,8 residues. We demonstrate here that O-acetylation occurred specifically in the C-9 position of the sialic acid. In summary, we present a new method of specific O-acetylation of ganglioside sialic acids that permits the large scale preparation of these modified glycosphingolipids, facilitating both, the study of their mechanism of antitumoral action and their use as therapeutic drugs for treating glioblastoma multiform (GBM) patients. PMID:23226505

  11. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-met...

  12. A Novel Red Clover Hydroxycinnamoyl Transferase Has Enzymatic Activities Consistent With a Role in Phaselic Acid Biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red clover (Trifolium pratense L.) leaves accumulate several micromol per g fresh weight of phaselic acid [2-O-(caffeoyl)-L-malate]. Post-harvest oxidation of such o-diphenols to o-quinones by endogenous polyphenol oxidases prevents breakdown of forage protein during storage. Forages like alfalfa (M...

  13. Engineering alfalfa to accumulate useful caffeic acid derivatives and characterization of hydroxycinnamoyl-CoA transferases from legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some forages crops, such as red clover, accumulate high levels of caffeic acid derivatives. Oxidation of these o-diphenols to quinones by endogenous polyphenol oxidases (PPOs) and the subsequent reactions of these quinones (probably with endogenous plant proteases) result in a significant reduction ...

  14. Three-dimensional structure of Schistosoma japonicum glutathione S-transferase fused with a six-amino acid conserved neutralizing epitope of gp41 from HIV

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Ho, Joseph X.; Keeling, Kim; Gilliland, Gary L.; Ji, Xinhua; Rueker, Florian; Carter, Daniel C.

    1994-01-01

    The 3-dimensional crystal structure of glutathione S-transferase (GST) of Schistosoma japonicum (Sj) fused with a conserved neutralizing epitope on gp41 (glycoprotein, 41 kDa) of human immunodeficiency virus type 1 (HIV-1) was determined at 2.5 A resolution. The structure of the 3-3 isozyme rat GST of the mu gene class was used as a molecular replacement model. The structure consists of a 4-stranded beta-sheet and 3 alpha-helices in domain 1 and 5 alpha-helices in domain 2. The space group of the Sj GST crystal is P4(sub 3)2(sub 1)2 with unit cell dimensions of a = b = 94.7 A, and c = 58.1 A. The crystal has 1 GST monomer per asymmetric unit, and 2 monomers that form an active dimer are related by crystallographic 2-fold symmetry. In the binding site, the ordered structure of reduced glutathione is observed. The gp41 peptide (Glu-Leu-Asp-Lys-Trp-Ala) fused to the C-terminus of Sj GST forms a loop stabilized by symmetry-related GSTs. The Sj GST structure is compared with previously determined GST structures of mammalian gene classes mu, alpha, and pi. Conserved amino acid residues among the 4 GSTs that are important for hydrophobic and hydrophilic interactions for dimer association and glutathione binding are discussed.

  15. Induction of the pi class of glutathione S-transferase by carnosic acid in rat Clone 9 cells via the p38/Nrf2 pathway.

    PubMed

    Lin, Chia-Yuan; Wu, Chi-Rei; Chang, Shu-Wei; Wang, Yu-Jung; Wu, Jia-Jiuan; Tsai, Chia-Wen

    2015-06-01

    Induction of phase II enzymes is important in cancer chemoprevention. We compared the effect of rosemary diterpenes on the expression of the pi class of glutathione S-transferase (GSTP) in rat liver Clone 9 cells and the signaling pathways involved. Culturing cells with 1, 5, 10, or 20 μM carnosic acid (CA) or carnosol (CS) for 24 h in a dose-dependent manner increased the GSTP expression. CA was more potent than CS. The RNA level and the enzyme activity of GSTP were also enhanced by CA treatment. Treatment with 10 μM CA highly induced the reporter activity of the enhancer element GPEI. Furthermore, CA markedly increased the translocation of nuclear factor erythroid-2 related factor 2 (Nrf2) from the cytosol to the nucleus after 30 to 60 min. CA the stimulated the protein induction of p38, nuclear Nrf2, and GSTP was diminished in the presence of SB203580 (a p38 inhibitor). In addition, SB203580 pretreatment or silencing of Nrf2 by siRNA suppressed the CA-induced GPEI-DNA binding activity and GSTP protein expression. Knockdown of p38 or Nrf2 by siRNA abolished the activation of p38 and Nrf2 as well as the protein induction and enzyme activity of GSTP by CA. These results suggest that CA up-regulates the expression and enzyme activity of GSTP via the p38/Nrf2/GPEI pathway. PMID:25974399

  16. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate.

    PubMed

    Tieman, Denise; Zeigler, Michelle; Schmelz, Eric; Taylor, Mark G; Rushing, Sarah; Jones, Jeffrey B; Klee, Harry J

    2010-04-01

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-methyltransferases. In order to elaborate the mechanism of MeSA synthesis in tomato, we screened a set of O-methyltransferases for activity against multiple substrates. An enzyme that specifically catalyzes methylation of SA, SlSAMT, as well as enzymes that act upon jasmonic acid and indole-3-acetic acid were identified. Analyses of transgenic over- and under-producing lines validated the function of SlSAMT in vivo. The SlSAMT gene was mapped to a position near the bottom of chromosome 9. Analysis of MeSA emissions from an introgression population derived from a cross with Solanum pennellii revealed a quantitative trait locus (QTL) linked to higher fruit methyl salicylate emissions. The higher MeSA emissions associate with significantly higher SpSAMT expression, consistent with SAMT gene expression being rate limiting for ripening-associated MeSA emissions. Transgenic plants that constitutively over-produce MeSA exhibited only slightly delayed symptom development following infection with the disease-causing bacterial pathogen, Xanthomonas campestris pv. vesicatoria (Xcv). Unexpectedly, pathogen-challenged leaves accumulated significantly higher levels of SA as well as glycosylated forms of SA and MeSA, indicating a disruption in control of the SA-related metabolite pool. Taken together, the results indicate that SlSAMT is critical for methyl salicylate synthesis and methyl salicylate, in turn, likely has an important role in controlling SA synthesis. PMID:20070566

  17. Analysis of phenanthrene diol epoxide mercapturic acid detoxification products in human urine: relevance to molecular epidemiology studies of glutathione S-transferase polymorphisms

    PubMed Central

    Hecht, Stephen S.; Villalta, Peter W.; Hochalter, J.Bradley

    2008-01-01

    Many studies have investigated the effects of glutathione S-transferase (GST) polymorphisms on cancer incidence in people exposed to carcinogenic polycyclic aromatic hydrocarbons (PAHs). The basis for this is that the carcinogenic bay region diol epoxide metabolites of several PAH are detoxified by GSTs in in vitro studies. However, there are no reports in the literature on the identification in urine of the mercapturic acid metabolites that would result from this process in humans. We addressed this by developing a method for quantitation in human urine of mercapturic acids which would be formed from angular ring diol epoxides of phenanthrene (Phe), the simplest PAH with a bay region, and a common environmental pollutant. We prepared standard mercapturic acids by reactions of syn- or anti-Phe-1,2-diol-3,4-epoxide and syn- or anti-Phe-3,4-diol-1,2-epoxide with N-acetylcysteine. Analysis of human urine conclusively demonstrated that the only detectable mercapturic acid of this type—N-acetyl-S-(r-4,t-2,3-trihydroxy-1,2,3,4-tetrahydro-c/t-1-phenanthryl)-L-cysteine (anti-PheDE-1-NAC)—was derived from the ‘reverse diol epoxide’, anti-Phe-3,4-diol-1,2-epoxide, and not from the bay region diol epoxides, syn- or anti-Phe-1,2-diol-3,4-epoxide. Levels of anti-PheDE-1-NAC in the urine of 36 smokers were (mean ± SD) 728 ± 859 fmol/ml urine. The results of this study provide the first evidence for a mercapturic acid of a PAH diol epoxide in human urine, but it was not derived from a bay region diol epoxide as molecular epidemiologic studies have presumed, but rather from a reverse diol epoxide, representative of metabolites with little if any carcinogenic activity. These results demonstrate the need for integration of genotyping and phenotyping information in molecular epidemiology studies. PMID:18477646

  18. Sulforaphane and alpha-lipoic acid upregulate the expression of the pi class of glutathione S-transferase through c-jun and Nrf2 activation.

    PubMed

    Lii, Chong-Kuei; Liu, Kai-Li; Cheng, Yi-Ping; Lin, Ai-Hsuan; Chen, Haw-Wen; Tsai, Chia-Wen

    2010-05-01

    The anticarcinogenic effect of dietary organosulfur compounds has been partly attributed to their modulation of the activity and expression of phase II detoxification enzymes. Our previous studies indicated that garlic allyl sulfides upregulate the expression of the pi class of glutathione S-transferase (GSTP) through the activator protein-1 pathway. Here, we examined the modulatory effect of sulforaphane (SFN) and alpha-lipoic acid (LA) or dihydrolipoic acid (DHLA) on GSTP expression in rat Clone 9 liver cells. Cells were treated with LA or DHLA (50-600 micromol/L) or SFN (0.2-5 micromol/L) for 24 h. Immunoblots and real-time PCR showed that SFN, LA, and DHLA dose dependently induced GSTP protein and mRNA expression. Compared with the induction by the garlic organosulfur compound diallyl trisulfide (DATS), the effectiveness was in the order of SFN > DATS > LA = DHLA. The increase in GSTP enzyme activity in cells treated with 5 micromol/L SFN, 50 micromol/L DATS, and 600 micromol/L LA and DHLA was 172, 75, 122, and 117%, respectively (P < 0.05). A reporter assay showed that the GSTP enhancer I (GPEI) was required for GSTP induction by the organosulfur compounds. Electromobility gel shift assays showed that the DNA binding of GPEI to nuclear proteins reached a maximum at 0.5-1 h after SFN, LA, and DHLA treatment. Super-shift assay revealed that the transcription factors c-jun and nuclear factor erythroid-2 related factor 2 (Nrf2) were bound to GPEI. These results suggest that SFN and LA in either its oxidized or reduced form upregulate the transcription of the GSTP gene by activating c-jun and Nrf2 binding to the enhancer element GPEI. PMID:20237067

  19. Marine n-3 fatty acid intake, glutathione S-transferase polymorphisms and breast cancer risk in post-menopausal Chinese women in Singapore.

    PubMed

    Gago-Dominguez, Manuela; Castelao, J Esteban; Sun, Can-Lan; Van Den Berg, David; Koh, Woon-Puay; Lee, Hin-Peng; Yu, Mimi C

    2004-11-01

    We have previously found marine n-3 fatty acids to be inversely related to post-menopausal breast cancer in Chinese women from Singapore. Post-menopausal women with high [quartiles 2-4 (Q2-Q4)] versus low [quartile 1 (Q1)] intake exhibited a statistically significant reduction in risk of breast cancer after adjustment for potential confounders [relative risk (RR) = 0.66, 95% confidence interval (CI) = 0.50, 0.87]. Experimental studies have demonstrated a direct role for the peroxidation products of marine n-3 fatty acids in breast cancer protection. There is a suggestion that the glutathione S-transferases (GSTs) may be major catalysts in the elimination of these beneficial by-products. Therefore, we hypothesized that individuals possessing the low activity genotypes of GSTM1, GSTT1 and/or GSTP1 (i.e. the GSTM1 null, GSTT1 null and GSTP1 AB/BB genotypes, respectively) may exhibit a stronger marine n-3 fatty acid-breast cancer association than their high activity counterparts. The Singapore Chinese Health Study is a prospective investigation involving 35,298 middle-aged and older women, who were enrolled between April 1993 and December 1998. In this case-control analysis, nested within the Singapore Chinese Health Study, we compared 258 incident breast cancer cases with 670 cohort controls. Overall, breast cancer risk was unrelated to GSTM1 and GSTP1 genotypes. However, the GSTT1 null genotype was associated with a 30% reduced risk of breast cancer [odds ratio (OR) = 0.71, 95% CI = 0.52, 0.96]. Among women with high activity GST genotypes (i.e. GSTM1 positive, GSTT1 positive and GSTP1 AA), no marine n-3 fatty acid-breast cancer relationships were observed in either pre-menopausal or post-menopausal women at baseline. However, post-menopausal women possessing the combined GSTM1 null and GSTP1 AB/BB genotypes showed a statistically significant reduction in risk after adjustment for potential confounders (Q2-Q4 versus Q1, OR = 0.36, 95% CI = 0.14, 0.94). A similar

  20. Three-dimensional structure of Schistosoma japonicum glutathione S-transferase fused with a six-amino acid conserved neutralizing epitope of gp41 from HIV

    NASA Technical Reports Server (NTRS)

    Lim, K.; Ho, J. X.; Keeling, K.; Gilliland, G. L.; Ji, X.; Ruker, F.; Carter, D. C.

    1994-01-01

    The 3-dimensional crystal structure of glutathione S-transferase (GST) of Schistosoma japonicum (Sj) fused with a conserved neutralizing epitope on gp41 (glycoprotein, 41 kDa) of human immunodeficiency virus type 1 (HIV-1) (Muster T et al., 1993, J Virol 67:6642-6647) was determined at 2.5 A resolution. The structure of the 3-3 isozyme rat GST of the mu gene class (Ji X, Zhang P, Armstrong RN, Gilliland GL, 1992, Biochemistry 31:10169-10184) was used as a molecular replacement model. The structure consists of a 4-stranded beta-sheet and 3 alpha-helices in domain 1 and 5 alpha-helices in domain 2. The space group of the Sj GST crystal is P4(3)2(1)2, with unit cell dimensions of a = b = 94.7 A, and c = 58.1 A. The crystal has 1 GST monomer per asymmetric unit, and 2 monomers that form an active dimer are related by crystallographic 2-fold symmetry. In the binding site, the ordered structure of reduced glutathione is observed. The gp41 peptide (Glu-Leu-Asp-Lys-Trp-Ala) fused to the C-terminus of Sj GST forms a loop stabilized by symmetry-related GSTs. The Sj GST structure is compared with previously determined GST structures of mammalian gene classes mu, alpha, and pi. Conserved amino acid residues among the 4 GSTs that are important for hydrophobic and hydrophilic interactions for dimer association and glutathione binding are discussed.

  1. Benzene Uptake and Glutathione S-transferase T1 Status as Determinants of S-Phenylmercapturic Acid in Cigarette Smokers in the Multiethnic Cohort.

    PubMed

    Haiman, Christopher A; Patel, Yesha M; Stram, Daniel O; Carmella, Steven G; Chen, Menglan; Wilkens, Lynne R; Le Marchand, Loic; Hecht, Stephen S

    2016-01-01

    Research from the Multiethnic Cohort (MEC) demonstrated that, for the same quantity of cigarette smoking, African Americans and Native Hawaiians have a higher lung cancer risk than Whites, while Latinos and Japanese Americans are less susceptible. We collected urine samples from 2,239 cigarette smokers from five different ethnic groups in the MEC and analyzed each sample for S-phenylmercapturic acid (SPMA), a specific biomarker of benzene uptake. African Americans had significantly higher (geometric mean [SE] 3.69 [0.2], p<0.005) SPMA/ml urine than Whites (2.67 [0.13]) while Japanese Americans had significantly lower levels than Whites (1.65 [0.07], p<0.005). SPMA levels in Native Hawaiians and Latinos were not significantly different from those of Whites. We also conducted a genome-wide association study in search of genetic risk factors related to benzene exposure. The glutathione S-transferase T1 (GSTT1) deletion explained between 14.2-31.6% (p = 5.4x10-157) and the GSTM1 deletion explained between 0.2%-2.4% of the variance (p = 1.1x10-9) of SPMA levels in these populations. Ethnic differences in levels of SPMA remained strong even after controlling for the effects of these two deletions. These results demonstrate the powerful effect of GSTT1 status on SPMA levels in urine and show that uptake of benzene in African American, White, and Japanese American cigarette smokers is consistent with their lung cancer risk in the MEC. While benzene is not generally considered a cause of lung cancer, its metabolite SPMA could be a biomarker for other volatile lung carcinogens in cigarette smoke. PMID:26959369

  2. Effects of cadmium alone and in combination with low molecular weight chitosan on metallothionein, glutathione-S-transferase, acid phosphatase, and ATPase of freshwater crab Sinopotamon yangtsekiense.

    PubMed

    Li, Ruijin; Zhou, Yanying; Wang, Lan; Ren, Guorui; Zou, Enmin

    2014-03-01

    Cadmium (Cd) is an environmental contaminant showing a variety of deleterious effects, including the potential threat for the ecological environment and human health via food chains. Low molecular weight chitosan (LMWC) has been demonstrated to be an effective antioxidant. Metallothionein (MT) mRNA levels and activities of glutathione-S-transferase (GST), superoxide dismutase (SOD), acid phosphatase (ACP), Na(+),K(+)-ATPase, and Ca(2+)-ATPase as well as malondialdehyde (MDA) contents in the gills of the freshwater crab Sinopotamon yangtsekiense were analyzed in vivo in order to determine the injury of Cd exposure on the gill tissues as well as the protective effect of LMWC against this injury. The results showed that there was an apparent accumulation of Cd in the gills, which was lessened by the presence of LMWC. Moreover, Cd(2+) significantly increased the gill MT mRNA levels, ACP activity and MDA content while decreasing the activities of SOD, GST, Na(+),K(+)-ATPase, and Ca(2+)-ATPase in the crabs relative to the control. Cotreatment with LMWC reduced the levels of MT mRNA and ACP but raised the activities of GST, Na(+),K(+)-ATPase, and Ca(2+)-ATPase in gill tissues compared with the crabs exposed to Cd(2+) alone. These results suggest that LMWC may exert its protective effect through chelating Cd(2+) to form LMWC-Cd(2+) complex, elevating the antioxidative activities of GST, Na(+),K(+)-ATPase, and Ca(2+)-ATPase as well as alleviating the stress pressure on MT and ACP, consequently protecting the cell from the adverse effects of Cd. PMID:22331632

  3. Induction of Pi form of glutathione S-transferase by carnosic acid is mediated through PI3K/Akt/NF-κB pathway and protects against neurotoxicity.

    PubMed

    Lin, Chia-Yuan; Chen, Jing-Hsien; Fu, Ru-Huei; Tsai, Chia-Wen

    2014-11-17

    Carnosic acid (CA), a diterpene found in the rosemary (Rosmarinus officinalis), has been reported to have a neuroprotective effect. Glutathione S-transferase (GST) P (GSTP) is a phase II detoxifying enzyme that provides a neuroprotective effect. The aim of this study was to explore whether the neuroprotective effect of CA is via an upregulation of GSTP expression and the possible signaling pathways involved. SH-SY5Y cells were pretreated with 1 μM CA followed by treatment with 100 μM 6-hydroxydopamine (6-OHDA). Both immunoblotting and enzyme activity results show that CA also induced protein expression and enzyme activity of GSTP. Moreover, CA significantly increased the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/Akt, the nuclear translocation of p65, but not mitogen-activated protein kinases (p < 0.05). Pretreatment with LY294002 (a PI3K/Akt inhibitor) suppressed the CA-induced phosphorylation of IκB kinase (IKK) and IκBα, p65 nuclear translocation, and nuclear factor-kappa B (NF-κB)-DNA binding activity as well as GSTP protein expression. Furthermore, CA attenuated 6-OHDA-induced caspase 3 activation, and cell death was reversed by GSTP siRNA or LY294002 treatment. Additionally, male Wistar rats with lesions induced by 6-OHDA treatment in the right striatum responded to treatment with CA, which significantly reversed the reduction in GSTP protein expression that resulted from lesioning. We suggest that CA prevents 6-OHDA-induced apoptosis through an increase in GSTP expression via activation of the PI3K/Akt/NF-κB pathway. Therefore, CA may be a promising candidate for use in the prevention of Parkinson's disease. PMID:25271104

  4. Benzene Uptake and Glutathione S-transferase T1 Status as Determinants of S-Phenylmercapturic Acid in Cigarette Smokers in the Multiethnic Cohort

    PubMed Central

    Haiman, Christopher A.; Patel, Yesha M.; Stram, Daniel O.; Carmella, Steven G.; Chen, Menglan; Wilkens, Lynne R.; Le Marchand, Loic; Hecht, Stephen S.

    2016-01-01

    Research from the Multiethnic Cohort (MEC) demonstrated that, for the same quantity of cigarette smoking, African Americans and Native Hawaiians have a higher lung cancer risk than Whites, while Latinos and Japanese Americans are less susceptible. We collected urine samples from 2,239 cigarette smokers from five different ethnic groups in the MEC and analyzed each sample for S-phenylmercapturic acid (SPMA), a specific biomarker of benzene uptake. African Americans had significantly higher (geometric mean [SE] 3.69 [0.2], p<0.005) SPMA/ml urine than Whites (2.67 [0.13]) while Japanese Americans had significantly lower levels than Whites (1.65 [0.07], p<0.005). SPMA levels in Native Hawaiians and Latinos were not significantly different from those of Whites. We also conducted a genome-wide association study in search of genetic risk factors related to benzene exposure. The glutathione S-transferase T1 (GSTT1) deletion explained between 14.2–31.6% (p = 5.4x10-157) and the GSTM1 deletion explained between 0.2%-2.4% of the variance (p = 1.1x10-9) of SPMA levels in these populations. Ethnic differences in levels of SPMA remained strong even after controlling for the effects of these two deletions. These results demonstrate the powerful effect of GSTT1 status on SPMA levels in urine and show that uptake of benzene in African American, White, and Japanese American cigarette smokers is consistent with their lung cancer risk in the MEC. While benzene is not generally considered a cause of lung cancer, its metabolite SPMA could be a biomarker for other volatile lung carcinogens in cigarette smoke. PMID:26959369

  5. O-Methyl sugars in lipopolysaccharides of Rhodospirillacea. Identification of 3-O-methyl-d-mannose in Rhodopseudomonas viridis and of 4-O-methyl-d-xylose and 3-O-methyl-6-deoxy-d-talose in Rhodopseudomonas palustris respectively

    PubMed Central

    Weckesser, Jürgen; Mayer, Hubert; Fromme, Inge

    1973-01-01

    1. This paper deals with the identification of three O-methyl sugars in lipopolysaccharides isolated from strains of the Gram-negative photosynthetic family Rhodospirillaceae. In addition to the previously described 3-O-methyl-l-xylose, a second O-methyl sugar was encountered in the lipopolysaccharide of Rhodopseudomonas viridis F, namely 3-O-methyl-d-mannose. The lipopolysaccharides of two strains of Rhodopseudomonas palustris (strain 1e5 and 8/1) contain two O-methylsugars, 4-O-methyl-d-xylose and 3-O-methyl-6-deoxy-d-talose (d-acovenose). 4-O-Methyl-d-xylose, but not 3-O-methyl-6-deoxy-d-talose, could be identified in the lipopolysaccharides of the strains K/1 and 2/2 of the same species. 2. The O-methyl sugars described in this communication were isolated by paper chromatography and identified by g.l.c., paper chromatography, high-voltage electrophoresis and mass spectrometry. Besides the genuine sugars, their alditol acetates and their demethylated (parental) forms were investigated. Optical rotation measurements and, in one case, enzymic reactions were used to establish the optical configuration of the sugars under investigation. PMID:4764262

  6. Effects of 2′-O-Methyl Nucleotide Substitution on EcoRI Endonuclease Cleavage Activities

    PubMed Central

    Zhao, Guojie; Zhao, Bin; Tong, Zhaoxue; Mu, Runqing; Guan, Yifu

    2013-01-01

    To investigate the effect of sugar pucker conformation on DNA-protein interactions, we used 2′-O-methyl nucleotide (2′-OMeN) to modify the EcoRI recognition sequence -TGAATTCT-, and monitored the enzymatic cleavage process using FRET method. The 2′-O-methyl nucleotide has a C3′-endo sugar pucker conformation different from the C2′-endo sugar pucker conformation of native DNA nucleotides. The initial reaction velocities were measured and the kinetic parameters, Km and Vmax were derived using Michaelis-Menten equation. Experimental results showed that 2′-OMeN substitutions for the EcoRI recognition sequence decreased the cleavage efficiency for A2, A3 and T4 substitutions significantly, and 2′-OMeN substitution for T5 residue inhibited the enzymatic activity completely. In contrast, substitutions for G1 and C6 could maintain the original activity. 2′-fluoro nucleic acid (2′-FNA) and locked nucleic acid (LNA) having similar C3′-endo sugar pucker conformation also demonstrated similar enzymatic results. This position-dependent enzymatic cleavage property might be attributed to the phosphate backbone distortion caused by the switch from C2′-endo to C3′-endo sugar pucker conformation, and was interpreted on the basis of the DNA-EcoRI structure. These 2′-modified nucleotides could behave as a regulatory element to modulate the enzymatic activity in vitro, and this property will have potential applications in genetic engineering and biomedicine. PMID:24194862

  7. Dual Catalytic Activity of Hydroxycinnamoyl-Coenzyme A Quinate Transferase from Tomato Allows It to Moonlight in the Synthesis of Both Mono- and Dicaffeoylquinic Acids1[W][OPEN

    PubMed Central

    Moglia, Andrea; Lanteri, Sergio; Comino, Cinzia; Hill, Lionel; Knevitt, Daniel; Cagliero, Cecilia; Rubiolo, Patrizia; Bornemann, Stephen

    2014-01-01

    Tomato (Solanum lycopersicum), like other Solanaceous species, accumulates high levels of antioxidant caffeoylquinic acids, which are strong bioactive molecules and protect plants against biotic and abiotic stresses. Among these compounds, the monocaffeoylquinic acids (e.g. chlorogenic acid [CGA]) and the dicaffeoylquinic acids (diCQAs) have been found to possess marked antioxidative properties. Thus, they are of therapeutic interest both as phytonutrients in foods and as pharmaceuticals. Strategies to increase diCQA content in plants have been hampered by the modest understanding of their biosynthesis and whether the same pathway exists in different plant species. Incubation of CGA with crude extracts of tomato fruits led to the formation of two new products, which were identified by liquid chromatography-mass spectrometry as diCQAs. This chlorogenate:chlorogenate transferase activity was partially purified from ripe fruit. The final protein fraction resulted in 388-fold enrichment of activity and was subjected to trypsin digestion and mass spectrometric sequencing: a hydroxycinnamoyl-Coenzyme A:quinate hydroxycinnamoyl transferase (HQT) was selected as a candidate protein. Assay of recombinant HQT protein expressed in Escherichia coli confirmed its ability to synthesize diCQAs in vitro. This second activity (chlorogenate:chlorogenate transferase) of HQT had a low pH optimum and a high Km for its substrate, CGA. High concentrations of CGA and relatively low pH occur in the vacuoles of plant cells. Transient assays demonstrated that tomato HQT localizes to the vacuole as well as to the cytoplasm of plant cells, supporting the idea that in this species, the enzyme catalyzes different reactions in two subcellular compartments. PMID:25301886

  8. Interrelationship between anionic and cationic forms of glutathione S-transferases of human liver.

    PubMed Central

    Awasthi, Y C; Dao, D D; Saneto, R P

    1980-01-01

    Human liver glutathione S-transferases (GSH S-transferases) were fractionated into cationic and anionic proteins. During fractionation with (NH4)2SO4 the anionic GSH S-transferases are concentrated in the 65%-saturated-(NH4)2SO4 fraction, whereas the cationic GSH S-transferases separate in the 80%-saturated-(NH4)2SO4 fraction. From the 65%-saturated-(NH4)2SO4 fraction two new anionic GSH S-transferases, omega and psi, were purified to homogeneity by using ion-exchange chromatography on DEAE-cellulose, Sephadex G-200 gel filtration, affinity chromatography on GSH bound to epoxy-activated Sepharose and isoelectric focusing. By a similar procedure, cationic GSH S-transferases were purified from the 80%-saturated-(NH4)2SO4 fraction. Isoelectric points of GSH S-transferases omega and psi are 4.6 and 5.4 respectively. GSH S-transferase omega is the major anionic GSH S-transferase of human liver, whereas GSH S-transferase psi is present only in traces. The subunit mol.wt. of GSH S-transferase omega is about 22500, whereas that of cationic GSH S-transferases is about 24500. Kinetic and structural properties as well as the amino acid composition of GSH S-transferase omega are described. The antibodies raised against cationic GSH S-transferases cross-react with GSH S-transferase omega. There are significant differences between the catalytic properties of GSH S-transferase omega and the cationic GSH S-transferases. GSH peroxidase II activity is displayed by all five cationic GSH S-transferases, whereas both anionic GSH S-transferases do not display this activity. Images Fig. 3. PMID:7470087

  9. [Effect of co-expression of nicotinic acid phosphoribosyl transferase and pyruvate carboxylase on succinic acid production in Escherichia coli BA002].

    PubMed

    Cao, Weijia; Gou, Dongmei; Liang, Liya; Liu, Rongming; Chen, Kequan; Ma, Jiangfeng; Jiang, Min

    2013-12-01

    Escherichia coli BA002, in which the ldhA and pflB genes are deleted, cannot utilize glucose anaerobically due to the inability to regenerate NAD+. To restore glucose utilization, overexpression of nicotinic acid phosphoribosyltransferase (NAPRTase) encoded by the pncB gene, a rate-limiting enzyme of NAD(H) synthesis pathway, resulted in a significant increase in cell mass and succinate production under anaerobic conditions. However, a high concentration of pyruvate was accumulated. Thus, co-expression of NAPRTase and the heterologous pyruvate carboxylase (PYC) of Lactococcus lactis subsp. cremoris NZ9000 in recombinant E. coli BA016 was investigated. Results in 3 L fermentor showed that OD600 is 4.64 and BA016 consumed 35.00 g/L glucose and produced 25.09 g/L succinate after 112 h under anaerobic conditions. Overexpression of pncB and pyc in BA016, the accumulation of pyruvic acid was further decreased, and the formation of succinic acid was further increased. PMID:24660633

  10. Bacterial O-methylation of halogen-substituted phenols. [Rhodococcus; Acinetobacter

    SciTech Connect

    Allard, A.S.; Remberger, M.; Neilson, A.H.

    1987-04-01

    Two strains of bacteria capable of carrying out the O-methylation of phenolic compounds, one from the gram-positive genus Rhodococcus and one from the gram-negative genus Acinetobacter, were used to examine the O-methylation of phenols carrying fluoro-, chloro-, and bromo-substituents. Zero-order rates of O-methylation were calculated from data for the chloro- and bromophenols; there was no simple relationship between the rate of reaction and the structure of the substrates, and significant differences were observed in the responses of the two test organisms. For the gram-negative strain, the pattern of substitution was as important as the number of substituents. Hexachlorophene was resistant to O-methylation by both strains, and tetrabromobisphenol-A was O-methylated only by the gram-positive strain. It is suggested that in the natural environment, bacterial O-methylation of phenols carrying electron-attracting substituents might be a significant alternative to biodegradation.

  11. A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2'O-Methylated Self RNA.

    PubMed

    Schuberth-Wagner, Christine; Ludwig, Janos; Bruder, Ann Kristin; Herzner, Anna-Maria; Zillinger, Thomas; Goldeck, Marion; Schmidt, Tobias; Schmid-Burgk, Jonathan L; Kerber, Romy; Wolter, Steven; Stümpel, Jan-Philip; Roth, Andreas; Bartok, Eva; Drosten, Christian; Coch, Christoph; Hornung, Veit; Barchet, Winfried; Kümmerer, Beate M; Hartmann, Gunther; Schlee, Martin

    2015-07-21

    The cytosolic helicase retinoic acid-inducible gene-I (RIG-I) initiates immune responses to most RNA viruses by detecting viral 5'-triphosphorylated RNA (pppRNA). Although endogenous mRNA is also 5'-triphosphorylated, backbone modifications and the 5'-ppp-linked methylguanosine ((m7)G) cap prevent immunorecognition. Here we show that the methylation status of endogenous capped mRNA at the 5'-terminal nucleotide (N1) was crucial to prevent RIG-I activation. Moreover, we identified a single conserved amino acid (H830) in the RIG-I RNA binding pocket as the mediator of steric exclusion of N1-2'O-methylated RNA. H830A alteration (RIG-I(H830A)) restored binding of N1-2'O-methylated pppRNA. Consequently, endogenous mRNA activated the RIG-I(H830A) mutant but not wild-type RIG-I. Similarly, knockdown of the endogenous N1-2'O-methyltransferase led to considerable RIG-I stimulation in the absence of exogenous stimuli. Studies involving yellow-fever-virus-encoded 2'O-methyltransferase and RIG-I(H830A) revealed that viruses exploit this mechanism to escape RIG-I. Our data reveal a new role for cap N1-2'O-methylation in RIG-I tolerance of self-RNA. PMID:26187414

  12. Single prenyl-binding site on protein prenyl transferases

    PubMed Central

    Desnoyers, Luc; Seabra, Miguel C.

    1998-01-01

    Three distinct protein prenyl transferases, one protein farnesyl transferase (FTase) and two protein geranylgeranyl transferases (GGTase), catalyze prenylation of many cellular proteins. One group of protein substrates contains a C-terminal CAAX motif (C is Cys, A is aliphatic, and X is a variety of amino acids) in which the single cysteine residue is modified with either farnesyl or geranylgeranyl (GG) by FTase or GGTase type-I (GGTase-I), respectively. Rab proteins constitute a second group of substrates that contain a C-terminal double-cysteine motif (such as XXCC in Rab1a) in which both cysteines are geranylgeranylated by Rab GG transferase (RabGGTase). Previous characterization of CAAX prenyl transferases showed that the enzymes form stable complexes with their prenyl pyrophosphate substrates, acting as prenyl carriers. We developed a prenyl-binding assay and show that RabGGTase has a prenyl carrier function similar to the CAAX prenyl transferases. Stable RabGGTase:GG pyrophosphate (GGPP), FTase:GGPP, and GGTase-I:GGPP complexes show 1:1 (enzyme:GGPP) stoichiometry. Chromatographic analysis of prenylated products after single turnover reactions by using isolated RabGGTase:GGPP complex revealed that Rab is mono-geranylgeranylated. This study establishes that all three protein prenyl transferases contain a single prenyl-binding site and suggests that RabGGTase transfers two GG groups to Rabs in independent and consecutive reactions. PMID:9770475

  13. Nonintracellular, cell-associated O-methylation of isoproterenol in the isolated rabbit thoracic aorta

    SciTech Connect

    Head, R.J.; Irvine, R.J.; Barone, S.; Stitzel, R.E.; de la Lande, I.S.

    1985-07-01

    The present study examines the subcellular site of catecholamine O-methylation in extraneuronal tissue. S-Adenosyl-l-methionine, a methyl donor that does not diffuse across biological membranes, was used to assess the participation of plasma membrane bound catechol-O-methyltransferase vs. cytoplasmic catechol-O-methyltransferase in the catecholamine O-methylating process. Segments of rabbit thoracic aorta incubated with (methyl-/sup 3/H)-S-adenosyl-l-methionine and isoproterenol generate (/sup 3/H)methoxy-isoproterenol. The formation of (/sup 3/H)methoxy-isoproterenol from (methyl-/sup 3/H)-S-adenosyl-l-methionine was proportional to the isoproterenol concentrations in the range of 0.1 to 1.0 microM. There was a marked preference for the O-methylation of the (+)- rather than the (-)-isomer of isoproterenol. The O-methylation of isoproterenol in the presence of (methyl-/sup 3/H)-S-adenosyl-l-methionine was stimulated as much as 8-fold by the removal of calcium ions from the incubation solutions. In contrast, the O-methylation of (+)-(/sup 3/H)isoproterenol by endogenous, intracellular S-adenosyl-l-methionine was only slightly inhibited by the removal of calcium ions from incubation solutions. The formation of (/sup 3/H)methoxy-isoproterenol from (methyl-/sup 3/H)-S-adenosyl-l-methionine and isoproterenol was not inhibited by pretreatment of tissues with phenoxybenzamine (32 microM) or treatment with metanephrine (27 mumol 1(-1) or deoxycorticosterone acetate (27 microM), i.e., drug treatments that inhibit the extraneuronal uptake and O-methylation of (/sup 3/H)-isoproterenol by endogenous intracellular S-adenosyl-l-methionine. The results of this study provide evidence for a nonintracellular, cell-associated site of O-methylation of isoproterenol in the rabbit aorta.

  14. 2'-O-Methylation within Bacterial RNA Acts as Suppressor of TLR7/TLR8 Activation in Human Innate Immune Cells.

    PubMed

    Rimbach, Katharina; Kaiser, Steffen; Helm, Mark; Dalpke, Alexander H; Eigenbrod, Tatjana

    2015-01-01

    Microbial RNA is an important stimulator of innate immune responses. Differences in posttranscriptional RNA modification profiles enable the immune system to discriminate between self and non-self nucleic acids. This principle may be exploited by certain bacteria to circumvent immune cell activation. In this regard, 2'-O-methylation of Escherichia coli tRNATyr at position 18 (Gm18) has recently been described to inhibit TLR7-mediated IFN-α production in human plasmacytoid dendritic cells (pDCs). Extending these findings, we now demonstrate that Gm18 also potently inhibits TLR7-independent human monocyte activation by RNA derived from a variety of bacterial strains. The half minimal inhibitory concentration values were similar to those found for IFN-α inhibition in pDCs. Mechanistically, 2'-O-methylated RNA impaired upstream signalling events, including MAP kinase and NFx03BA;B activation. Our results suggest that antagonizing effects of Gm18-modified RNA are due to competition with stimulatory RNA for receptor binding. The antagonistic effect was specific for RNA because the small molecule TLR7/8 agonist R848 was not inhibited. Despite the striking phenotype in human cells, 2'-O-methylated RNA did not interfere with TLR13 activation by bacterial 23S rRNA in murine DC and BMDM. Thus, we identify here Gm18 in E. coli tRNA(Tyr) as a universal suppressor of innate immune activation in the human but not the murine system. PMID:25823462

  15. Epimerization of tea catechins and O-methylated derivatives of (-)-epigallocatechin-3-O-gallate: relationship between epimerization and chemical structure.

    PubMed

    Suzuki, Masazumi; Sano, Mitsuaki; Yoshida, Risa; Degawa, Masakuni; Miyase, Toshio; Maeda-Yamamoto, Mari

    2003-01-15

    Epimerization at C-2 of O-methylated catechin derivatives and four major tea catechins were investigated. The epimeric isomers of (-)-epicatechin (I), (-)-epicatechin-3-O-gallate (II), (-)-epigallocatechin (III), (-)-epigallocatechin-3-O-gallate (IV), and (-)-epigallocatechin-3-O-(3-O-methyl)gallate (V) in green tea extracts increased time-dependently at 90 degrees C. The epimerization rates of authentic tea catechins in distilled water are much lower than those in tea infusion or in pH 6.0 buffer solution. The addition of tea infusion to the authentic catechin solution accelerated the epimerization, and the addition of ethylenediaminetetraacetic acid, disodium salt (Na(2)EDTA) decreased the epimerization in the pH 6.0 buffer solution. Therefore, the metal ions in tea infusion may affect the rate of epimerization. The proportions of the epimers to authentic tea catechins [III, IV, V, and (-)-epigallocatechin-3-O-(4-O-methyl)gallate (VI)] in pH 6.0 buffer solution after heating at 90 degrees C for 30 min were 42.4%, 37.0%, 41.7%, and 30.4%, respectively. These values were higher than those of I and II (23.5% and 23.6%, respectively). The O-methylated derivatives at the 4'-position on the B ring of IV and VI were hardly epimerized. These results suggest that the hydroxyl moiety on the B ring of catechins plays an important role in the epimerization in the order 3',4',5'-triol type > 3',4'-diol type > 3',5'-diol type. PMID:12517118

  16. Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I.

    PubMed

    Devarkar, Swapnil C; Wang, Chen; Miller, Matthew T; Ramanathan, Anand; Jiang, Fuguo; Khan, Abdul G; Patel, Smita S; Marcotrigiano, Joseph

    2016-01-19

    RNAs with 5'-triphosphate (ppp) are detected in the cytoplasm principally by the innate immune receptor Retinoic Acid Inducible Gene-I (RIG-I), whose activation triggers a Type I IFN response. It is thought that self RNAs like mRNAs are not recognized by RIG-I because 5'ppp is capped by the addition of a 7-methyl guanosine (m7G) (Cap-0) and a 2'-O-methyl (2'-OMe) group to the 5'-end nucleotide ribose (Cap-1). Here we provide structural and mechanistic basis for exact roles of capping and 2'-O-methylation in evading RIG-I recognition. Surprisingly, Cap-0 and 5'ppp double-stranded (ds) RNAs bind to RIG-I with nearly identical Kd values and activate RIG-I's ATPase and cellular signaling response to similar extents. On the other hand, Cap-0 and 5'ppp single-stranded RNAs did not bind RIG-I and are signaling inactive. Three crystal structures of RIG-I complexes with dsRNAs bearing 5'OH, 5'ppp, and Cap-0 show that RIG-I can accommodate the m7G cap in a cavity created through conformational changes in the helicase-motif IVa without perturbing the ppp interactions. In contrast, Cap-1 modifications abrogate RIG-I signaling through a mechanism involving the H830 residue, which we show is crucial for discriminating between Cap-0 and Cap-1 RNAs. Furthermore, m7G capping works synergistically with 2'-O-methylation to weaken RNA affinity by 200-fold and lower ATPase activity. Interestingly, a single H830A mutation restores both high-affinity binding and signaling activity with 2'-O-methylated dsRNAs. Our work provides new structural insights into the mechanisms of host and viral immune evasion from RIG-I, explaining the complexity of cap structures over evolution. PMID:26733676

  17. Cocaine inhibits extraneuronal O-methylation of exogenous norepinephrine in nasal and oral tissues of the rabbit

    SciTech Connect

    de la Lande, I.S.; Parker, D.A.S.; Proctor, C.H.; Marino, V.; Mackay-Sim, A.

    1987-11-30

    Nasal mucosa (respirator and olfactory) and lingual gingiva of the rabbit were depleted of their sympathetic nerves by superior cervical ganglionectomy. In the innervated nasal mucosa, exogenous tritiated norepinephrine (/sup 3/H-NE) was metabolized mainly to tritiated 3,4-dihydroxyphenylethylene glycol (/sup 3/HDOPEG) and 3,4-dihydroxy mandelic acid (/sup 3/HDOMA), whereas after denervation it was metabolized mainly to tritiated normetanephrine (/sup 3/HNMN). In the denervated mucosa, cocaine(30umol/l) inhibited /sup 3/HNMN formation by 50-60%. Cocaine also inhibited /sup 3/HNMN formation by 60% in the denervated lingual gingiva. It is concluded that the tissues metabolize /sup 3/H-NE via a cocaine-sensitive extraneuronal uptake and O-methylating system similar to that which has been shown to be present in dental pulp. 17 references, 1 table.

  18. Effect of 2'-O-methyl/thiophosphonoacetate-modified antisense oligonucleotides on huntingtin expression in patient-derived cells.

    PubMed

    Matsui, Masayuki; Threlfall, Richard N; Caruthers, Marvin H; Corey, David R

    2014-12-15

    Optimizing oligonucleotides as therapeutics will require exploring how chemistry can be used to enhance their effects inside cells. To achieve this goal it will be necessary to fully explore chemical space around the native DNA/RNA framework to define the potential of diverse chemical modifications. In this report we examine the potential of thiophosphonoacetate (thioPACE)-modified 2'-O-methyl oligoribonucleotides as inhibitors of human huntingtin (HTT) expression. Inhibition occurred, but was less than with analogous locked nucleic acid (LNA)-substituted oligomers lacking the thioPACE modification. These data suggest that thioPACE oligonucleotides have the potential to control gene expression inside cells. However, advantages relative to other modifications were not demonstrated. Additional modifications are likely to be necessary to fully explore any potential advantages of thioPACE substitutions. PMID:26865404

  19. Detection and quantification of RNA 2'-O-methylation and pseudouridylation.

    PubMed

    Huang, Chao; Karijolich, John; Yu, Yi-Tao

    2016-07-01

    RNA-guided RNA modification is a naturally occurring process that introduces 2'-O-methylation and pseudouridylation into rRNA, spliceosomal snRNA and several other types of RNA. The Box C/D ribonucleoproteins (RNP) and Box H/ACA RNP, each containing one unique guide RNA (Box C/D RNA or Box H/ACA RNA) and a set of core proteins, are responsible for 2'-O-methylation and pseudouridylation respectively. Box C/D RNA and Box H/ACA RNA provide the modification specificity through base pairing with their RNA substrate. These post-transcriptional modifications could profoundly alter the properties and functions of substrate RNAs. Thus it is desirable to establish reliable and standardized modification methods to study biological functions of modified nucleotides in RNAs. Here, we present several sensitive and efficient methods and protocols for detecting and quantifying post-transcriptional 2'-O-methylation and pseudouridylation. PMID:26853326

  20. Biological roles of the O-methyl phosphoramidate capsule modification in Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, and the capsular polysaccharide (CPS) of this organism is required for persistence and disease. C. jejuni produces over 47 different capsular structures, including a unique O-methyl phosphoramidate (MeOPN) modification pre...

  1. O-Methylation of Chlorinated para-Hydroquinones by Rhodococcus chlorophenolicus

    PubMed Central

    Häggblom, Max M.; Apajalahti, Juha H. A.; Salkinoja-Salonen, Mirja S.

    1988-01-01

    Rhodococcus chlorophenolicus PCP-I, a degrader of polychlorinated phenols, guaiacols (2-methoxyphenols), and syringols (2,6-dimethoxyphenols), was shown to O-methylate the degradation intermediate, a chlorinated para-hydroquinone, into 4-methoxyphenol. O-methylation was constitutively expressed, whereas the degradation of chlorophenols and chlorohydroquinones was inducible in R. chlorophenolicus. The O-methylating reaction required two hydroxyl groups in positions para to each other. R. chlorophenolicus selectively methylated the hydroxyl group flanked by two chlorine substituents. Tetrachlorohydroquinone, trichlorohydroquinone, and 2,6-dichlorohydroquinone were methylated into tetrachloro-4-methoxyphenol, 2,3,5-trichloro-4-methoxyphenol, and 3,5-dichloro-4-methoxyphenol, respectively. Chlorohydroquinones with only one chlorine adjacent to a hydroxyl group were methylated only in trace amounts, and no metabolite was formed from hydroquinone. The degradation intermediates formed in hydroxylation of tetrachloroguaiacol and trichlorosyringol by R. chlorophenolicus were O-methylated into two isomeric trichlorodimethoxyphenols and two isomeric dichlorotrimethoxyphenols, respectively. R. chlorophenolicus also degraded the polychlorinated methylation products (tetrachlorinated and trichlorinated 4-methoxyphenols), but not mono- and dichlorinated 4-methoxyphenols. PMID:16347691

  2. A NOVEL RED CLOVER HYDROXYCINNAMOYL TRANSFERASE HAS ENZYMATIC ACTIVITIES CONSISTENT WITH A ROLE IN PHASALIC ACID [2-O-(CAFFEOYL)-L-MALATE] BIOSYNTHESIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenylpropanoid o-diphenols accumulate in tissues of many plants functioning as defensive molecules and antioxidants. Red clover leaves accumulate high levels of two o-diphenols, phasalic acid [2-O-(caffeoyl)-L-malate] and clovamide [N-(caffeoyl)-L-DOPA]. In red clover, post-harvest oxidation of the...

  3. HCT2, a Novel Hydroxycinnamoyl-Malate Transferase, is Responsible for Phaselic Acid (2-O-Caffeoyl-L-Malate) Biosynthesis in Red Clover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In red clover, post-harvest oxidation of o-diphenol caffeic acid derivatives to o-quinones by an endogenous polyphenol oxidase (PPO) prevents breakdown of forage protein during storage (1). Agronomically important forages like alfalfa lack both PPO and o-diphenols. Consequently, breakdown of their p...

  4. O-methylated theaflavins suppress the intracellular accumulation of triglycerides from terminally differentiated human visceral adipocytes.

    PubMed

    Tanaka, Yoshihisa; Kirita, Masanobu; Miyata, Satoshi; Abe, Yuko; Tagashira, Motoyuki; Kanda, Tomomasa; Maeda-Yamamoto, Mari

    2013-12-26

    A known O-methylated theaflavin, theaflavin 3-O-(3-O-methyl)gallate (3MeTF3G), and the new theaflavin 3-O-(3,5-di-O-methyl)gallate (3,5diMeTF3G) were synthesized via the O-methylation of theaflavin 3-O-gallate (TF3G). Both 3MeTF3G and 3,5diMeTF3G are more stable than TF3G at pH 7.5 in the order 3,5diMeTF3G > 3MeTF3G > TF3G. The inhibitory effects of these compounds on the intracellular accumulation of triglycerides from terminally differentiated human visceral adipocytes were investigated. Compound 3MeTF3G exhibited an inhibitory effect similar to that of TF3G at 3 μM and a slightly lower effect than that of TF3G at 10 μM. The result suggested that the degradants and oxidatively polymerized products of TF3G may also have inhibitory effects. For cells treated with 3,5diMeTF3G at 3 and 10 μM, intracellular triglyceride accumulation was dose dependent and significantly lower compared with that for other compounds. It was suggested that the higher effect of 3,5diMeTF3G was due to its higher stability and likely improved absorption owing to di-O-methylation. PMID:24308363

  5. Terminal Deoxynucleotidyl Transferase: The Story of a Misguided DNA Polymerase

    PubMed Central

    Motea, Edward A.; Berdis, Anthony J.

    2009-01-01

    Nearly every DNA polymerase characterized to date exclusively catalyzes the incorporation of mononucleotides into a growing primer using a DNA or RNA template as a guide to direct each incorporation event. There is, however, one unique DNA polymerase designated terminal deoxynucleotidyl transferase that performs DNA synthesis using only single-stranded DNA as the nucleic acid substrate. In this chapter, we review the biological role of this enigmatic DNA polymerase and the biochemical mechanism for its ability to perform DNA synthesis in the absence of a templating strand. We compare and contrast the molecular events for template-independent DNA synthesis catalyzed by terminal deoxynucleotidyl transferase with other well-characterized DNA polymerases that perform template-dependent synthesis. This includes a quantitative inspection of how terminal deoxynucleotidyl transferase binds DNA and dNTP substrates, the possible involvement of a conformational change that precedes phosphoryl transfer, and kinetic steps that are associated with the release of products. These enzymatic steps are discussed within the context of the available structures of terminal deoxynucleotidyl transferase in the presence of DNA or nucleotide substrate. In addition, we discuss the ability of proteins involved in replication and recombination to regulate the activity of the terminal deoxynucleotidyl transferase. Finally, the biomedical role of this specialized DNA polymerase is discussed focusing on its involvement in cancer development and its use in biomedical applications such as labeling DNA for detecting apoptosis. PMID:19596089

  6. Genetic basis for Rhizobium etli CE3 O-antigen O-methylated residues that vary according to growth conditions.

    PubMed

    Ojeda, Kristylea J; Box, Jodie M; Noel, K Dale

    2010-02-01

    The Rhizobium etli CE3 O antigen is a fixed-length heteropolymer with O methylation being the predominant type of sugar modification. There are two O-methylated residues that occur, on average, once per complete O antigen: a multiply O-methylated terminal fucose and 2-O methylation of a fucose residue within a repeating unit. The amount of the methylated terminal fucose decreases and the amount of 2-O-methylfucose increases when bacteria are grown in the presence of the host plant, Phaseolus vulgaris, or its seed exudates. Insertion mutagenesis was used to identify open reading frames required for the presence of these O-methylated residues. The presence of the methylated terminal fucose required genes wreA, wreB, wreC, wreD, and wreF, whereas 2-O methylation of internal fucoses required the methyltransferase domain of bifunctional gene wreM. Mutants lacking only the methylated terminal fucose, lacking only 2-O methylation, or lacking both the methylated terminal fucose and 2-O methylation exhibited no other lipopolysaccharide structural defects. Thus, neither of these decorations is required for normal O-antigen length, transport, or assembly into the final lipopolysaccharide. This is in contrast to certain enteric bacteria in which the absence of a terminal decoration severely affects O-antigen length and transport. R. etli mutants lacking only the methylated terminal fucose were not altered in symbiosis with host Phaseolus vulgaris, whereas mutants lacking only 2-O-methylfucose exhibited a delay in nodule development during symbiosis. These results support previous conclusions that the methylated terminal fucose is dispensable for symbiosis, whereas 2-O methylation of internal fucoses somehow facilitates early events in symbiosis. PMID:19948805

  7. Genetic Basis for Rhizobium etli CE3 O-Antigen O-Methylated Residues That Vary According to Growth Conditions▿

    PubMed Central

    Ojeda, Kristylea J.; Box, Jodie M.; Noel, K. Dale

    2010-01-01

    The Rhizobium etli CE3 O antigen is a fixed-length heteropolymer with O methylation being the predominant type of sugar modification. There are two O-methylated residues that occur, on average, once per complete O antigen: a multiply O-methylated terminal fucose and 2-O methylation of a fucose residue within a repeating unit. The amount of the methylated terminal fucose decreases and the amount of 2-O-methylfucose increases when bacteria are grown in the presence of the host plant, Phaseolus vulgaris, or its seed exudates. Insertion mutagenesis was used to identify open reading frames required for the presence of these O-methylated residues. The presence of the methylated terminal fucose required genes wreA, wreB, wreC, wreD, and wreF, whereas 2-O methylation of internal fucoses required the methyltransferase domain of bifunctional gene wreM. Mutants lacking only the methylated terminal fucose, lacking only 2-O methylation, or lacking both the methylated terminal fucose and 2-O methylation exhibited no other lipopolysaccharide structural defects. Thus, neither of these decorations is required for normal O-antigen length, transport, or assembly into the final lipopolysaccharide. This is in contrast to certain enteric bacteria in which the absence of a terminal decoration severely affects O-antigen length and transport. R. etli mutants lacking only the methylated terminal fucose were not altered in symbiosis with host Phaseolus vulgaris, whereas mutants lacking only 2-O-methylfucose exhibited a delay in nodule development during symbiosis. These results support previous conclusions that the methylated terminal fucose is dispensable for symbiosis, whereas 2-O methylation of internal fucoses somehow facilitates early events in symbiosis. PMID:19948805

  8. Detection and quantification of flavivirus NS5 methyl-transferase activities.

    PubMed

    Lim, Siew Pheng; Bodenreider, Christophe; Shi, Pei-Yong

    2013-01-01

    Flavivirus NS5 is the most conserved protein amongst the flavivirus proteins and is an essential enzyme for viral mRNA capping and replication. It encodes a methyl-transferase (MTase) domain at its N-terminal region which carries out sequential N7 and 2'-O methylation, resulting in the formation of the cap1 structure on its viral RNA genome. Two key methods have been established to measure these activities in vitro: thin-layer chromatography (TLC) and scintillation proximity assays (SPA). TLC offers the advantage of direct visualization of the amounts and types of cap structures formed whilst the SPA assay is more sensitive and quantitative. It is also amenable to high-throughput compound screening. The drawback of both assays is the need for radioisotope usage. We further describe the adaptation of a nonradioactive immune-competitive fluorescence polarization assay for detection of dengue virus MTase activity. PMID:23821274

  9. Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I

    PubMed Central

    Devarkar, Swapnil C.; Wang, Chen; Miller, Matthew T.; Ramanathan, Anand; Jiang, Fuguo; Khan, Abdul G.; Patel, Smita S.; Marcotrigiano, Joseph

    2016-01-01

    RNAs with 5′-triphosphate (ppp) are detected in the cytoplasm principally by the innate immune receptor Retinoic Acid Inducible Gene-I (RIG-I), whose activation triggers a Type I IFN response. It is thought that self RNAs like mRNAs are not recognized by RIG-I because 5′ppp is capped by the addition of a 7-methyl guanosine (m7G) (Cap-0) and a 2′-O-methyl (2′-OMe) group to the 5′-end nucleotide ribose (Cap-1). Here we provide structural and mechanistic basis for exact roles of capping and 2′-O-methylation in evading RIG-I recognition. Surprisingly, Cap-0 and 5′ppp double-stranded (ds) RNAs bind to RIG-I with nearly identical Kd values and activate RIG-I’s ATPase and cellular signaling response to similar extents. On the other hand, Cap-0 and 5′ppp single-stranded RNAs did not bind RIG-I and are signaling inactive. Three crystal structures of RIG-I complexes with dsRNAs bearing 5′OH, 5′ppp, and Cap-0 show that RIG-I can accommodate the m7G cap in a cavity created through conformational changes in the helicase-motif IVa without perturbing the ppp interactions. In contrast, Cap-1 modifications abrogate RIG-I signaling through a mechanism involving the H830 residue, which we show is crucial for discriminating between Cap-0 and Cap-1 RNAs. Furthermore, m7G capping works synergistically with 2′-O-methylation to weaken RNA affinity by 200-fold and lower ATPase activity. Interestingly, a single H830A mutation restores both high-affinity binding and signaling activity with 2′-O-methylated dsRNAs. Our work provides new structural insights into the mechanisms of host and viral immune evasion from RIG-I, explaining the complexity of cap structures over evolution. PMID:26733676

  10. Transferrin-conjugated SNALPs encapsulating 2'-O-methylated miR-34a for the treatment of multiple myeloma.

    PubMed

    Scognamiglio, Immacolata; Di Martino, Maria Teresa; Campani, Virginia; Virgilio, Antonella; Galeone, Aldo; Gullà, Annamaria; Gallo Cantafio, Maria Eugenia; Misso, Gabriella; Tagliaferri, Pierosandro; Tassone, Pierfrancesco; Caraglia, Michele; De Rosa, Giuseppe

    2014-01-01

    Stable nucleic acid lipid vesicles (SNALPs) encapsulating miR-34a to treat multiple myeloma (MM) were developed. Wild type or completely 2'-O-methylated (OMet) MiR-34a was used in this study. Moreover, SNALPs were conjugated with transferrin (Tf) in order to target MM cells overexpressing transferrin receptors (TfRs). The type of miR-34a chemical backbone did not significantly affect the characteristics of SNALPs in terms of mean size, polydispersity index, and zeta potential, while the encapsulation of an OMet miR-34a resulted in a significant increase of miRNA encapsulation into the SNALPs. On the other hand, the chemical conjugation of SNALPs with Tf resulted in a significant decrease of the zeta potential, while size characteristics and miR-34a encapsulation into SNALPs were not significantly affected. In an experimental model of MM, all the animals treated with SNALPs encapsulating miR-34a showed a significant inhibition of the tumor growth. However, the use of SNALPs conjugated with Tf and encapsulating OMet miR-34a resulted in the highest increase of mice survival. These results may represent the proof of concept for the use of SNALPs encapsulating miR-34a for the treatment of MM. PMID:24683542

  11. Structural and Functional Characterization of a Novel Family GH115 4-O-Methyl-α-Glucuronidase with Specificity for Decorated Arabinogalactans.

    PubMed

    Aalbers, Friso; Turkenburg, Johan P; Davies, Gideon J; Dijkhuizen, Lubbert; Lammerts van Bueren, Alicia

    2015-12-01

    Glycoside hydrolases are clustered into families based on amino acid sequence similarities, and belonging to a particular family can infer biological activity of an enzyme. Family GH115 contains α-glucuronidases where several members have been shown to hydrolyze terminal α-1,2-linked glucuronic acid and 4-O-methylated glucuronic acid from the plant cell wall polysaccharide glucuronoxylan. Other GH115 enzymes show no activity on glucuronoxylan, and therefore, it has been proposed that family GH115 may be a poly-specific family. In this study, we reveal that a putative periplasmic GH115 from the human gut symbiont Bacteroides thetaiotaomicron, BtGH115A, hydrolyzes terminal 4-O-methyl-glucuronic acid residues from decorated arabinogalactan isolated from acacia tree. The three-dimensional structure of BtGH115A reveals that BtGH115A has the same domain architecture as the other structurally characterized member of this family, BoAgu115A; however the position of the C-terminal module is altered with respect to each individual enzyme. Phylogenetic analysis of GH115 amino sequences divides the family into distinct clades that may distinguish different substrate specificities. Finally, we show that BtGH115A α-glucuronidase activity is necessary for the sequential digestion of branched galactans from acacia gum by a galactan-β-1,3-galactosidase from family GH43; however, while B. thetaiotaomicron grows on larch wood arabinogalactan, the bacterium is not able to metabolize acacia gum arabinogalactan, suggesting that BtGH115A is involved in degradation of arabinogalactan fragments liberated by other microbial species in the gastrointestinal tract. PMID:26186997

  12. Computational studies of the regioselectivities of COMT-catalyzed meta-/para-O methylations of luteolin and quercetin.

    PubMed

    Cao, Yang; Chen, Zhong-Jian; Jiang, Hui-Di; Chen, Jian-Zhong

    2014-01-16

    Catechol-O-methyltransferase (COMT, EC 2.1.1.6) plays a central role in the inactivation of neurotransmitters sharing a catecholic motif by transferring a methyl group from AdoMet. Methylation of the meta-hydroxyl is much more common than that of the para-hydroxyl in many COMT substrates, such as dopamine and norepinephrine. Our experimental data showed that quercetin preferred meta-methylation but luteolin favored a para-methylation. To elucidate the mechanism for different preferences of methylations of quercetin and luteolin, we performed a theoretical investigation on the different regioseletivities of COMT-catalyzed methylations for quercetin and luteolin by a combined approach of MD simulations, ab initio calculations, and QM/MM computations. The ab initio calculation results showed that both quercetin and luteolin have more negative charge distributions on the meta-O atom than the para-O atom, which indicated that meta-O preferred SN2 reaction for their methylation. Our QM/MM computations also confirmed that these two flavonoids have lower reaction energetic barriers for COMT-catalyzed meta-O-methylation than para-O-methylation. On the other hand, our binding free energy computation results indicated that quercetin has a more stable binding mode for meta-O-methylation than para-O-methylation but luteolin has a more stable binding mode for para-O-methylation than meta-O-methylation. We gave a comprehensive explanation considering both thermodynamics and reaction kinetics aspects and discussed the protein-inhibitor interactions as well as the O-methylation mechanism in our present work. PMID:24354565

  13. Innate immune restriction and antagonism of viral RNA lacking 2׳-O methylation.

    PubMed

    Hyde, Jennifer L; Diamond, Michael S

    2015-05-01

    N-7 and 2'-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m(7)GpppN; cap 1, m(7)GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2'-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on their RNA through cap-snatching or virally-encoded 2'-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5'-end of viral RNA modulate host pathogen recognition responses to promote infection and disease. PMID:25682435

  14. Synthesis, optical and electrochemical properties of substituted 2-cinnamoyl-1, 3-indandione O-methyl ethers

    NASA Astrophysics Data System (ADS)

    Malina, Ilze; Kampars, Valdis; Turovska, Baiba

    2016-07-01

    Seven new 2-cinnamoyl-1,3-indandione (2CID) O-methyl ethers with different substituents (R = -H, -CH3, -OCH3, -N(C6H5)2, -N(CH2CH2CN)2, julolidyl, -N(CH3)2) in 4-position of the cinnamoyl moiety were synthesized. The methylation with dimethylsulfate occurred at the oxygen atom of the exocyclic enol group with high selectivity. The synthesized compounds were characterized by 1H, 13C NMR, IR, UV-Vis and luminescence spectroscopy, their electrochemical properties were investigated by cyclic voltammetry. The obtained results indicates that introducing an electron donating substituents in the 4-position of cinnamoyl moiety facilitates electrochemical oxidation, remarkably shifts absorption and emission bands to longer wavelengths, simultaneously increases extinction coefficient (ε). O-methyl ethers with strong electron donating groups (R = -N(C6H5)2, -N(CH2CH2CN)2, julolidyl, -N(CH3)2) in molecule are characterized by luminescence with maximum in range from 547 to 647 nm and absolute photoluminescence quantum yields from 0.02 to 0.32. Quantum yield (QY) of chromophore containing julolidyl fragment is solvent dependent. It was 0.32 in chloroform and decreased in other polar (ethanol, acetone) solvents.

  15. Innate immune restriction and antagonism of viral RNA lacking 2'-O methylation

    SciTech Connect

    Hyde, Jennifer L.; Diamond, Michael S.

    2015-05-15

    N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m{sup 7}GpppN; cap 1, m{sup 7}GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on their RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease.

  16. Innate immune restriction and antagonism of viral RNA lacking 2′-O methylation

    PubMed Central

    Hyde, Jennifer L.; Diamond, Michael S.

    2015-01-01

    N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m7GpppN; cap 1, m7GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation are sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on their RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease. PMID:25682435

  17. Selectivity and affinity of DNA triplex forming oligonucleotides containing the nucleoside analogues 2'-O-methyl-5-(3-amino-1-propynyl)uridine and 2'-O-methyl-5-propynyluridine.

    PubMed

    Li, Hong; Miller, Paul S; Seidman, Michael M

    2008-11-21

    Triplex forming oligonucleotides (TFOs) containing the nucleoside analogues 2'-O-methyl-5-propynyluridine (1) and 2'-O-methyl-5-(3-amino-1-propynyl)uridine (2) were synthesized. The affinity and selectivity of triplex formation by these TFOs were studied by gel shift analysis, T(m) value measurement, and association rate assays. The results show that the introduction of 1 and 2 into TFOs can improve the stability of the triplexes under physiological conditions. Optimized distribution of 1 or 2 in the TFOs combined with a cluster of contiguous nucleosides with 2'-aminoethoxy sugars resulted in formation of triplexes with further enhanced stability and improved selectivity. PMID:18972052

  18. Direct and site-specific quantification of RNA 2'-O-methylation by PCR with an engineered DNA polymerase.

    PubMed

    Aschenbrenner, Joos; Marx, Andreas

    2016-05-01

    Methylation of the 2'-hydroxyl-group of ribonucleotides is found in all major classes of RNA in eukaryotes and is one of the most abundant posttranscriptional modifications of stable RNAs. In spite of intense studies, the multiple functions of RNA 2'-O-methylation are still not understood. One major obstacle in the field are the technical demanding detection methods, which are typically laborious and do not always deliver unambiguous results. We present a thermostable KlenTaq DNA polymerase variant with significant reverse transcription activity that is able to discriminate 2'-O-methylated from unmethylated RNAs. The engineered enzyme catalyzes DNA synthesis from DNA as well as RNA templates and enables expeditious quantification of 2'-O-methylation of individual nucleotides directly from total RNA extracts by a simple qRT-PCR. PMID:27016740

  19. Direct and site-specific quantification of RNA 2′-O-methylation by PCR with an engineered DNA polymerase

    PubMed Central

    Aschenbrenner, Joos; Marx, Andreas

    2016-01-01

    Methylation of the 2′-hydroxyl-group of ribonucleotides is found in all major classes of RNA in eukaryotes and is one of the most abundant posttranscriptional modifications of stable RNAs. In spite of intense studies, the multiple functions of RNA 2′-O-methylation are still not understood. One major obstacle in the field are the technical demanding detection methods, which are typically laborious and do not always deliver unambiguous results. We present a thermostable KlenTaq DNA polymerase variant with significant reverse transcription activity that is able to discriminate 2′-O-methylated from unmethylated RNAs. The engineered enzyme catalyzes DNA synthesis from DNA as well as RNA templates and enables expeditious quantification of 2′-O-methylation of individual nucleotides directly from total RNA extracts by a simple qRT-PCR. PMID:27016740

  20. Apiose and mono-O-methyl sugars as minor constituents of the leaves of deciduous trees and various other species

    PubMed Central

    Bacon, J. S. D.; Cheshire, M. V.

    1971-01-01

    1. Leaves of a number of species were hydrolysed with aqueous sulphuric acid and the resulting mixtures of sugars were fractionated by chromatography on activated charcoal. Paper chromatography of the fractions showed the presence in all the hydrolysates of minor constituents with RF values similar to or greater than those of the common hexoses and pentoses. 2. Two of these were identified as 2-O-methylxylose and 2-O-methylfucose. Estimates of the amounts present in whole leaves, and in fractions prepared from them, showed that they were associated with the hemicelluloses. 3. A third constituent was identified, by the formation of its di-isopropylidene derivative, as apiose. It also was associated chiefly with the hemicellulose fraction; none could be found in aqueous extracts from leaves of Tilia vulgaris, nor in aqueous extracts of Zostera marina, in which apiose is a major constituent of the water-insoluble polysaccharide. 4. A further constituent, after further purification by preparative paper chromatography, was tentatively identified, by gas–liquid chromatography of derivatives, as 3-O-methylgalactose, and was probably accompanied by small amounts of 4-O-methylgalactose. 5. These observations confirm the widespread occurrence of 2-O-methylxylose, 2-O-methylfucose and apiose, but 3-O-methylgalactose was hitherto known only in slippery-elm mucilage, and 4-O-methylgalactose in soil polysaccharides. Some experiments on the digestion of leaf hemicellulose fractions by snail crop-juice suggested that the mono-O-methyl sugars might confer resistance to enzymic degradation. PMID:5135242

  1. Targeting vertebrate intron-encoded box C/D 2′-O-methylation guide RNAs into the Cajal body

    PubMed Central

    Marnef, Aline; Richard, Patrica; Pinzón, Natalia; Kiss, Tamás

    2014-01-01

    Post-transcriptional pseudouridylation and 2′-O-methylation of splicesomal small nuclear ribonucleic acids (snRNAs) is mediated by box H/ACA and box C/D small Cajal body (CB)-specific ribonucleoproteins (scaRNPs), respectively. The WD-repeat protein 79 (WDR79) has been proposed to interact with both classes of modification scaRNPs and target them into the CB. The box H/ACA scaRNAs carry the common CAB box motif (consensus, ugAG) that is required for both WDR79 binding and CB-specific accumulation. Thus far, no cis-acting CB-localization element has been reported for vertebrate box C/D scaRNAs. In this study, systematic mutational analysis of the human U90 and another newly identified box C/D scaRNA, mgU2-47, demonstrated that the CB-specific accumulation of vertebrate intron-encoded box C/D scaRNAs relies on GU- or UG-dominated dinucleotide repeat sequences which are predicted to form the terminal stem-loop of the RNA apical hairpin. While the loop nucleotides are unimportant, the adjacent terminal helix that is composed mostly of consecutive G.U and U.G wobble base-pairs is essential for CB-specific localization of box C/D scaRNAs. Co-immunoprecipitation experiments confirmed that the newly identified CB localization element, called the G.U/U.G wobble stem, is crucial for in vivo association of box C/D scaRNPs with WDR79. PMID:24753405

  2. Structure and conformational analysis of spiroketals from 6-O-methyl-9(E)-hydroxyiminoerythronolide A

    PubMed Central

    Ćaleta, Irena; Žiher, Dinko; Vine, Mark B; Elenkov, Ivaylo J; Dukši, Marko; Gembarovski, Dubravka; Ilijaš, Marina; Dragojević, Snježana; Malnar, Ivica; Alihodžić, Sulejman

    2015-01-01

    Summary Three novel spiroketals were prepared by a one-pot transformation of 6-O-methyl-9(E)-hydroxyiminoerythronolide A. We present the formation of a [4.5]spiroketal moiety within the macrolide lactone ring, but also the unexpected formation of a 10-C=11-C double bond and spontaneous change of stereochemistry at position 8-C. As a result, a thermodynamically stable structure was obtained. The structures of two new diastereomeric, unsaturated spiroketals, their configurations and conformations, were determined by means of NMR spectroscopy and molecular modelling. The reaction kinetics and mechanistic aspects of this transformation are discussed. These rearrangements provide a facile synthesis of novel macrolide scaffolds. PMID:26425201

  3. Characterization of prenyl protein transferase enzymes in a human keratinocyte cell line.

    PubMed

    MacNulty, E E; Ryder, N S

    1996-02-01

    Prenylation is a post-translational modification of proteins that involves the attachment of an isoprenoid group derived from mevalonic acid, either 15-carbon farnesyl or 20-carbon geranylgeranyl, to a specific carboxy-terminal domain of acceptor proteins. Three prenyl transferase enzymes have been identified so far. In this paper we report the presence of two prenyl transferases in the HaCaT human keratinocyte cell line. Chromatography of a cytosolic extract from these cells resolved a farnesyl protein transferase (FPT) and geranylgeranyl protein transferase-I (GGPT-I) whose activities were measured using a novel peptide-based assay. Both enzymes were inhibited dose dependently by zaragozic acids A and C. Zaragozic acid C was more active towards the FPT than GGPT-I while zaragozic acid A inhibited both enzymes with similar potency. Incubation of HaCaT cell homogenates with [3H] prenyl precursors resulted in the labelling of a number of proteins which was increased when the cells were pretreated with an inhibitor of hydroxymethylglutaryl CoA reductase. Given the role of prenylated proteins in proliferative and inflammatory processes, our finding that prenyl transferases capable of prenylating endogenous substrates are also present in keratinocytes suggests that these enzymes might provide novel therapeutic targets of dermatological importance. PMID:8605230

  4. Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis.

    PubMed

    Tu, Bin; Liu, Li; Xu, Chi; Zhai, Jixian; Li, Shengben; Lopez, Miguel A; Zhao, Yuanyuan; Yu, Yu; Ramachandran, Vanitharani; Ren, Guodong; Yu, Bin; Li, Shigui; Meyers, Blake C; Mo, Beixin; Chen, Xuemei

    2015-04-01

    3' uridylation is increasingly recognized as a conserved RNA modification process associated with RNA turnover in eukaryotes. 2'-O-methylation on the 3' terminal ribose protects micro(mi)RNAs from 3' truncation and 3' uridylation in Arabidopsis. Previously, we identified HESO1 as the nucleotidyl transferase that uridylates most unmethylated miRNAs in vivo, but substantial 3' tailing of miRNAs still remains in heso1 loss-of-function mutants. In this study, we found that among nine other potential nucleotidyl transferases, UTP:RNA uridylyltransferase 1 (URT1) is the single most predominant nucleotidyl transferase that tails miRNAs. URT1 and HESO1 prefer substrates with different 3' end nucleotides in vitro and act cooperatively to tail different forms of the same miRNAs in vivo. Moreover, both HESO1 and URT1 exhibit nucleotidyl transferase activity on AGO1-bound miRNAs. Although these enzymes are able to add long tails to AGO1-bound miRNAs, the tailed miRNAs remain associated with AGO1. Moreover, tailing of AGO1-bound miRNA165/6 drastically reduces the slicing activity of AGO1-miR165/6, suggesting that tailing reduces miRNA activity. However, monouridylation of miR171a by URT1 endows the miRNA the ability to trigger the biogenesis of secondary siRNAs. Therefore, 3' tailing could affect the activities of miRNAs in addition to leading to miRNA degradation. PMID:25928405

  5. Metabolic stability and inhibitory effect of O-methylated theaflavins on H2O2-induced oxidative damage in human HepG2 cells.

    PubMed

    Tanaka, Yoshihisa; Kirita, Masanobu; Abe, Yuko; Miyata, Satoshi; Tagashira, Motoyuki; Kanda, Tomomasa; Maeda-Yamamoto, Mari

    2014-01-01

    Seven new O-methylated theaflavins (TFs) were synthesized by using O-methyltransferase from an edible mushroom. Using TFs and O-methylated TFs, metabolic stability in pooled human liver S9 fractions and inhibitory effect on H(2)O(2)-induced oxidative damage in human HepG2 cells were investigated. In O-methylation of theaflavin 3'-O-gallate (TF3'G), metabolic stability was potentiated by an increase in the number of introduced methyl groups. O-methylation of TF3,3'G did not affect metabolic stability, which was likely because of a remaining 3-O-galloyl group. The inhibitory effect on oxidative damage was assessed by measuring the viability of H(2)O(2)-damaged HepG2 cells treated with TFs and O-methylated TFs. TF3,3'G and O-methylated TFs increased cell viabilities significantly compared with DMSO, which was the compound vehicle (p < 0.05), and improved to approximately 100%. Only TF3'G did not significantly increase cell viability. It was suggested that the inhibitory effect on H(2)O(2)-induced oxidative damage was potentiated by O-methylation or O-galloylation of TFs. PMID:25229848

  6. Efficient telomerase inhibition in human non-small cell lung cancer cells by liposomal delivery of 2'-O-methyl-RNA.

    PubMed

    Beisner, Julia; Dong, Meng; Taetz, Sebastian; Piotrowska, Kamilla; Kleideiter, Elke; Friedel, Godehard; Schaefer, Ulrich; Lehr, Claus-Michael; Klotz, Ulrich; Mürdter, Thomas E

    2009-05-01

    The antisense oligonucleotide 2'-O-methyl-RNA is a selective telomerase inhibitor targeting the telomerase RNA component and represents a potential candidate for anticancer therapy. The poor cellular uptake of 2'-O-methyl-RNA is a limiting factor that may contribute to the lack of functional efficacy. To improve delivery of 2'-O-methyl-RNA and consequently antitumoral efficiency in human lung cancer cells, we have investigated several transfection reagents. The transfection reagents DOTAP, MegaFectin 60, SuperFect, FuGENE 6 and MATra-A were tested for intracellular delivery. A FAM-labeled 2'-O-methyl-RNA was used to assess the intracellular distribution by confocal laser scanning microscopy in A549 human non-small cell lung cancer cells. Telomerase activity was measured using the telomeric repeat amplification protocol. Cell viability after transfection was quantified by the MTT assay. All transfection reagents enhanced 2'-O-methyl-RNA uptake in A549 cells but the cationic lipid reagents DOTAP and MegaFectin 60 were most efficient in the delivery of 2'-O-methyl-RNA resulting in telomerase inhibition. Among both DOTAP exhibited the lowest cytotoxicity. Our experiments show that DOTAP is the most suitable transfection reagent for the delivery of 2'-O-methyl-RNA in human lung cancer cells according to its relatively low cytotoxicity and its ability to promote efficient uptake leading to the inhibition of telomerase. PMID:18803262

  7. Preservation of mouse sperm by convective drying and storing in 3-O-methyl-D-glucose.

    PubMed

    Liu, Jie; Lee, Gloria Y; Lawitts, Joel A; Toner, Mehmet; Biggers, John D

    2012-01-01

    With the fast advancement in the genetics and bio-medical fields, the vast number of valuable transgenic and rare genetic mouse models need to be preserved. Preservation of mouse sperm by convective drying and subsequent storing at above freezing temperatures could dramatically reduce the cost and facilitate shipping. Mouse sperm were convectively dried under nitrogen gas in the Na-EGTA solution containing 100 mmol/L 3-O-methyl-D-glucose and stored in LiCl sorption jars (Relative Humidity, RH, 12%) at 4°C and 22°C for up to one year. The functionality of these sperm samples after storage was tested by intracytoplasmic injection into mouse oocytes. The percentages of blastocysts produced from sperm stored at 4°C for 1, 2, 3, 6, and 12 months were 62.6%, 53.4%, 39.6%, 33.3%, and 30.4%, respectively, while those stored at 22°C for 1, 2, and 3 months were 28.8%, 26.6%, and 12.2%, respectively. Transfer of 38 two- to four-cell embryos from sperm stored at 4°C for 1 year produced two live pups while 59 two- to four-cell embryos from sperm stored at 22°C for 3 months also produced two live pups. Although all the pups looked healthy at 3 weeks of age, normality of offspring produced using convectively dried sperm needs further investigation. The percentages of blastocyst from sperm stored in the higher relative humidity conditions of NaBr and MgCl(2) jars and driest condition of P(2)O(5) jars at 4°C and 22°C were all lower. A simple method of mouse sperm preservation is demonstrated. Three-O-methyl-D-glucose, a metabolically inactive derivative of glucose, offers significant protection for dried mouse sperm at above freezing temperatures without the need for poration of cell membrane. PMID:22272261

  8. Argonaute pull-down and RISC analysis using 2'-O-methylated oligonucleotides affinity matrices.

    PubMed

    Jannot, Guillaume; Vasquez-Rifo, Alejandro; Simard, Martin J

    2011-01-01

    During the last decade, several novel small non-coding RNA pathways have been unveiled, which reach out to many biological processes. Common to all these pathways is the binding of a small RNA molecule to a protein member of the Argonaute family, which forms a minimal core complex called the RNA-induced silencing complex or RISC. The RISC targets mRNAs in a sequence-specific manner, either to induce mRNA cleavage through the intrinsic activity of the Argonaute protein or to abrogate protein synthesis by a mechanism that is still under investigation. We describe here, in details, a method for the affinity chromatography of the let-7 RISC starting from extracts of the nematode Caenorhabditis elegans. Our method exploits the sequence specificity of the RISC and makes use of biotinylated and 2'-O-methylated oligonucleotides to trap and pull-down small RNAs and their associated proteins. Importantly, this technique may easily be adapted to target other small RNAs expressed in different cell types or model organisms. This method provides a useful strategy to identify the proteins associated with the RISC, and hence gain insight in the functions of small RNAs. PMID:21528458

  9. Roles for glutathione transferases in antioxidant recycling

    PubMed Central

    Dixon, David P; Steel, Patrick G

    2011-01-01

    Uniquely among the plant glutathione transferases, two classes possess a catalytic cysteine capable of performing glutathione-dependent reductions. These are the dehydroascorbate reductases (DHARs) and the lambda-class glutathione transferases (GSTLs). Using immobilized GSTLs probed with crude plant extracts we have identified flavonols as high affinity ligands and subsequently demonstrated a novel glutathione-dependent role for these enzymes in recycling oxidized quercetin. By comparing the activities of DHARs and GSTLs we now propose a unified catalytic mechanism that suggests oxidized anthocyanidins and tocopherols may be alternative polyphenolic substrates of GSTLs. PMID:21778824

  10. Peptide conjugation of 2'-O-methyl phosphorothioate antisense oligonucleotides enhances cardiac uptake and exon skipping in mdx mice.

    PubMed

    Jirka, Silvana M G; Heemskerk, Hans; Tanganyika-de Winter, Christa L; Muilwijk, Daan; Pang, Kar Him; de Visser, Peter C; Janson, Anneke; Karnaoukh, Tatyana G; Vermue, Rick; 't Hoen, Peter A C; van Deutekom, Judith C T; Aguilera, Begoña; Aartsma-Rus, Annemieke

    2014-02-01

    Antisense oligonucleotide (AON)-mediated exon skipping is a promising therapeutic approach for Duchenne muscular dystrophy that is currently being tested in various clinical trials. This approach is based on restoring the open reading frame of dystrophin transcripts resulting in shorter but partially functional dystrophin proteins as found in patients with Becker muscular dystrophy. After systemic administration, a large proportion of AONs ends up in the liver and kidneys. Therefore, enhancing AON uptake by skeletal and cardiac muscle would improve the AONs' therapeutic effect. For phosphorodiamidate morpholino oligomer, AONs use nonspecific positively charged cell penetrating peptides to enhance efficacy. However, this is challenging for negatively charged 2'-O-methyl phosphorothioate oligomer. Therefore, we screened a 7-mer phage display peptide library to identify muscle and heart homing peptides in vivo in the mdx mouse model and found a promising candidate peptide capable of binding muscle cells in vitro and in vivo. Upon systemic administration in dystrophic mdx mice, conjugation of a 2'-O-methyl phosphorothioate AON to this peptide indeed improved uptake in skeletal and cardiac muscle, and resulted in higher exon skipping levels with a significant difference in heart and diaphragm. Based on these results, peptide conjugation represents an interesting strategy to enhance the therapeutic effect of exon skipping with 2'-O-methyl phosphorothioate AONs for Duchenne muscular dystrophy. PMID:24320790

  11. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate.

    PubMed

    Senent, M L; Puzzarini, C; Hochlaf, M; Domínguez-Gómez, R; Carvajal, M

    2014-09-14

    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH3-S-CHO (MSCHO) and O-methyl thioformate CH3-O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH3-S-CHO represents the most stable structure lying 4372.2 cm(-1) below cis-CH3-O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm(-1)) than for MOCHS (1963.6 cm(-1)). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V3(cis) are determined to be 139.7 cm(-1) (CH3-S-CHO) and 670.4 cm(-1) (CH3-O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm(-1) for CH3-S-CHO and negligible for CH3-O-CHS. PMID:25217912

  12. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate

    SciTech Connect

    Senent, M. L.; Puzzarini, C.; Hochlaf, M.; Domínguez-Gómez, R.; Carvajal, M.

    2014-09-14

    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH{sub 3}-S-CHO (MSCHO) and O-methyl thioformate CH{sub 3}-O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH{sub 3}-S-CHO represents the most stable structure lying 4372.2 cm{sup −1} below cis-CH{sub 3}-O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm{sup −1}) than for MOCHS (1963.6 cm{sup −1}). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V{sub 3}(cis) are determined to be 139.7 cm{sup −1} (CH{sub 3}-S-CHO) and 670.4 cm{sup −1} (CH{sub 3}-O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm{sup −1} for CH{sub 3}-S-CHO and negligible for CH{sub 3}-O-CHS.

  13. Transferrin-Conjugated SNALPs Encapsulating 2′-O-Methylated miR-34a for the Treatment of Multiple Myeloma

    PubMed Central

    Scognamiglio, Immacolata; Di Martino, Maria Teresa; Campani, Virginia; Virgilio, Antonella; Galeone, Aldo; Gullà, Annamaria; Gallo Cantafio, Maria Eugenia; Tagliaferri, Pierosandro; Tassone, Pierfrancesco; Caraglia, Michele

    2014-01-01

    Stable nucleic acid lipid vesicles (SNALPs) encapsulating miR-34a to treat multiple myeloma (MM) were developed. Wild type or completely 2′-O-methylated (OMet) MiR-34a was used in this study. Moreover, SNALPs were conjugated with transferrin (Tf) in order to target MM cells overexpressing transferrin receptors (TfRs). The type of miR-34a chemical backbone did not significantly affect the characteristics of SNALPs in terms of mean size, polydispersity index, and zeta potential, while the encapsulation of an OMet miR-34a resulted in a significant increase of miRNA encapsulation into the SNALPs. On the other hand, the chemical conjugation of SNALPs with Tf resulted in a significant decrease of the zeta potential, while size characteristics and miR-34a encapsulation into SNALPs were not significantly affected. In an experimental model of MM, all the animals treated with SNALPs encapsulating miR-34a showed a significant inhibition of the tumor growth. However, the use of SNALPs conjugated with Tf and encapsulating OMet miR-34a resulted in the highest increase of mice survival. These results may represent the proof of concept for the use of SNALPs encapsulating miR-34a for the treatment of MM. PMID:24683542

  14. Sugar composition of the pectic polysaccharides of charophytes, the closest algal relatives of land-plants: presence of 3-O-methyl-d-galactose residues

    PubMed Central

    O’Rourke, Christina; Gregson, Timothy; Murray, Lorna; Sadler, Ian H.; Fry, Stephen C.

    2015-01-01

    Background and Aims During evolution, plants have acquired and/or lost diverse sugar residues as cell-wall constituents. Of particular interest are primordial cell-wall features that existed, and in some cases abruptly changed, during the momentous step whereby land-plants arose from charophytic algal ancestors. Methods Polysaccharides were extracted from four charophyte orders [Chlorokybales (Chlorokybus atmophyticus), Klebsormidiales (Klebsormidium fluitans, K. subtile), Charales (Chara vulgaris, Nitella flexilis), Coleochaetales (Coleochaete scutata)] and an early-diverging land-plant (Anthoceros agrestis). ‘Pectins’ and ‘hemicelluloses’, operationally defined as extractable in oxalate (100 °C) and 6 m NaOH (37 °C), respectively, were acid- or Driselase-hydrolysed, and the monosaccharides analysed chromatographically. One unusual monosaccharide, ‘U’, was characterized by 1H/13C-nuclear magnetic resonance spectroscopy and also enzymically. Key Results ‘U’ was identified as 3-O-methyl-d-galactose (3-MeGal). All pectins, except in Klebsormidium, contained acid- and Driselase-releasable galacturonate, suggesting homogalacturonan. All pectins, without exception, released rhamnose and galactose on acid hydrolysis; however, only in ‘higher’ charophytes (Charales, Coleochaetales) and Anthoceros were these sugars also efficiently released by Driselase, suggesting rhamnogalacturonan-I. Pectins of ‘higher’ charophytes, especially Chara, contained little arabinose, instead possessing 3-MeGal. Anthoceros hemicelluloses were rich in glucose, xylose, galactose and arabinose (suggesting xyloglucan and arabinoxylan), none of which was consistently present in charophyte hemicelluloses. Conclusions Homogalacturonan is an ancient streptophyte feature, albeit secondarily lost in Klebsormidium. When conquering the land, the first embryophytes already possessed rhamnogalacturonan-I. In contrast, charophyte and land-plant hemicelluloses differ

  15. Purification and characterization of the Oligosaccharyl transferase

    SciTech Connect

    Kapoor, T.M.

    1990-11-01

    Oligosaccharyl transferase was characterized to be a glycoprotein with at least one saccharide unit that had a D-manno or D- glucopyranose configuration with unmodified hydroxy groups at C-3, C-4 and C-6, using a Concanavalin A affinity column. This afforded a 100 fold increase in the transferase purity in the solubilized microsomal sample and also removed over 90% of the microsomal proteins (the cytosolic ones being removed before solubilization). The detergent, N,N-Dimethyldodecylamine N-oxide (LDAO) was used for solubilization and it yielded a system compatible with the assay and the purification steps. An efficient method for detergent extraction without dilution of sample or protein precipitation was also developed.

  16. [(1)H] magnetic resonance spectroscopy of urine: diagnosis of a guanidinoacetate methyl transferase deficiency case.

    PubMed

    Tassini, Maria; Zannolli, Raffaella; Buoni, Sabrina; Engelke, Udo; Vivi, Antonio; Valensin, Gianni; Salomons, Gajja S; De Nicola, Anna; Strambi, Mirella; Monti, Lucia; Morava, Eva; Wevers, Ron A; Hayek, Joseph

    2010-01-01

    For the first time, the use of urine [(1)H] magnetic resonance spectroscopy has allowed the detection of 1 case of guanidinoacetate methyl transferase in a database sample of 1500 pediatric patients with a diagnosis of central nervous system impairment of unknown origin. The urine [(1)H] magnetic resonance spectroscopy of a 9-year-old child, having severe epilepsy and nonprogressive mental and motor retardation with no apparent cause, revealed a possible guanidinoacetic acid increase. The definitive assignment of guanidinoacetic acid was checked by addition of pure substance to the urine sample and by measuring [(1)H]-[(1)H] correlation spectroscopy. Diagnosis of guanidinoacetate methyl transferase deficiency was further confirmed by liquid chromatography-mass spectrometry, brain [(1)H] magnetic resonance spectroscopy, and mutational analysis of the guanidinoacetate methyl transferase gene. The replacement therapy was promptly started and, after 1 year, the child was seizure free. We conclude that for this case, urine [(1)H] magnetic resonance spectroscopy screening was able to diagnose guanidinoacetate methyl transferase deficiency. PMID:19461121

  17. Glutathione S-transferase class {pi} polymorphism in baboons

    SciTech Connect

    Aivaliotis, M.J.; Cantu, T.; Gilligan, R.

    1995-02-01

    Glutathione S-transferase (GST) comprises a family of isozymes with broad substrate specificities. One or more GST isozymes are present in most animal tissues and function in several detoxification pathways through the conjugation of reduced glutathione with various electrophiles, thereby reducing their potential toxicity. Four soluble GST isozymes encoded by genes on different chromosomes have been identified in humans. The acidic class pi GST, GSTP (previously designated GST-3), is widely distributed in adult tissues and appears to be the only GST isozyme present in leukocytes and placenta. Previously reported electrophoretic analyses of erythrocyte and leukocyte extracts revealed single bands of activity, which differed slightly in mobility between the two cell types, or under other conditions, a two-banded pattern. To our knowledge, no genetically determined polymorphisms have previously been reported in GSTP from any species. We now report a polymorphism of GSTP in baboon leukocytes, and present family data that verifies autosomal codominant inheritance. 14 refs., 2 figs., 1 tab.

  18. Red clover HCT2, a hydroxycinnamoyl-coenzyme A:malate hydroxycinnamoyl transferase, plays a crucial role in biosynthesis of phaselic acid and other hydroxycinnamoyl-malate esters in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In red clover (Trifolium pratense) leaves, phaselic acid (2-O-caffeoyl-L-malate) accumulates to several mmol kg-1 fresh weight and is a crucial component of a natural system that prevents protein breakdown during harvest and storage of this forage crop. Previously, we identified HCT2, a red clover g...

  19. Crystallographic trapping of the glutamyl-CoA thioester intermediate of family I CoA transferases

    SciTech Connect

    Rangarajan,E.; Li, Y.; Ajamian, E.; Iannuzzi, P.; Kernaghan, S.; Fraser, M.; Cygler, M.; Matte, A.

    2005-01-01

    Coenzyme A transferases are involved in a broad range of biochemical processes in both prokaryotes and eukaryotes, and exhibit a diverse range of substrate specificities. The YdiF protein from Escherichia coli O157:H7 is an acyl-CoA transferase of unknown physiological function, and belongs to a large sequence family of CoA transferases, present in bacteria to humans, which utilize oxoacids as acceptors. In vitro measurements showed that YdiF displays enzymatic activity with short-chain acyl-CoAs. The crystal structures of YdiF and its complex with CoA, the first co-crystal structure for any Family I CoA transferase, have been determined and refined at 1.9 and 2.0 Angstrom resolution, respectively. YdiF is organized into tetramers, with each monomer having an open {alpha}/{beta} structure characteristic of Family I CoA transferases. Co-crystallization of YdiF with a variety of CoA thioesters in the absence of acceptor carboxylic acid resulted in trapping a covalent {gamma}-glutamyl-CoA thioester intermediate. The CoA binds within a well defined pocket at the N- and C-terminal domain interface, but makes contact only with the C-terminal domain. The structure of the YdiF complex provides a basis for understanding the different catalytic steps in the reaction of Family I CoA transferases.

  20. Probing the leucyl/phenylalanyl tRNA protein transferase active site with tRNA substrate analogues.

    PubMed

    Fung, Angela Wai Shan; Ebhardt, H Alexander; Krishnakumar, Kollappillil S; Moore, Jack; Xu, Zhizhong; Strazewski, Peter; Fahlman, Richard P

    2014-07-01

    Aminoacyl-tRNA protein transferases post-translationally conjugate an amino acid from an aminoacyl-tRNA onto the N-terminus of a target polypeptide. The eubacterial aminoacyl-tRNA protein transferase, L/F transferase, utilizes both leucyl-tRNA(Leu) and phenylalanyl-tRNA(Phe) as substrates. X-ray crystal structures with substrate analogues, the minimal substrate phenylalanyl adenosine (rA-Phe) and inhibitor puromycin, have been used to characterize tRNA recognition by L/F transferase. However analyses of these two X-ray crystal structures reveal significant differences in binding. Through structural analyses, mutagenesis, and enzymatic activity assays, we rationalize and demonstrate that the substrate analogues bind to L/F transferase with similar binding affinities using a series of different interactions by the various chemical groups of the analogues. Our data also demonstrates that enlarging the hydrophobic pocket of L/F transferase selectively enhances puromycin inhibition and may aid in the development of improved inhibitors for this class of enzymes. PMID:24521222

  1. Glycosyl transferases in chondroitin sulphate biosynthesis. Effect of acceptor structure on activity.

    PubMed Central

    Gundlach, M W; Conrad, H E

    1985-01-01

    The D-glucuronosyl (GlcA)- and N-acetyl-D-galactosaminyl (GalNAc)-transferases involved in chondroitin sulphate biosynthesis were studied in a microsomal preparation from chick-embryo chondrocytes. Transfer of GlcA and GalNAc from their UDP derivatives to 3H-labelled oligosaccharides prepared from chondroitin sulphate and hyaluronic acid was assayed by h.p.l.c. of the reaction mixture. Conditions required for maximal activities of the two enzymes were remarkably similar. Activities were stimulated 3.5-6-fold by neutral detergents. Both enzymes were completely inhibited by EDTA and maximally stimulated by MnCl2 or CoCl2. MgCl2 neither stimulated nor inhibited. The GlcA transferase showed a sharp pH optimum between pH5 and 6, whereas the GalNAc transferase gave a broad optimum from pH 5 to 8. At pH 7 under optimal conditions, the GalNAc transferase gave a velocity that was twice that of the GlcA transferase. Oligosaccharides prepared from chondroitin 4-sulphate and hyaluronic acid were almost inactive as acceptors for both enzymes, whereas oligosaccharides from chondroitin 6-sulphate and chondroitin gave similar rates that were 70-80-fold higher than those observed with the endogenous acceptors. Oligosaccharide acceptors with degrees of polymerization of 6 or higher gave similar Km and Vmax. values, but the smaller oligosaccharides were less effective acceptors. These results are discussed in terms of the implications for regulation of the overall rates of the chain-elongation fractions in chondroitin sulphate synthesis in vivo. PMID:3921015

  2. A single naturally occurring 2'-O-methylation converts a TLR7- and TLR8-activating RNA into a TLR8-specific ligand.

    PubMed

    Jung, Stephanie; von Thülen, Tina; Laukemper, Viktoria; Pigisch, Stephanie; Hangel, Doris; Wagner, Hermann; Kaufmann, Andreas; Bauer, Stefan

    2015-01-01

    TLR7 and TLR8 recognize RNA from pathogens and lead to subsequent immune stimulation. Here we demonstrate that a single naturally occurring 2'-O-methylation within a synthetic 18s rRNA derived RNA sequence prevents IFN-α production, however secretion of proinflammatory cytokines such as IL-6 is not impaired. By analysing TLR-deficient plasmacytoid dendritic cells and performing HEK293 genetic complementation assays we could demonstrate that the single 2'-O-methylation containing RNA still activated TLR8 but not TLR7. Therefore this specific 2'-O-ribose methylation in rRNA converts a TLR7/TLR8 ligand to an exclusively TLR8-specific ligand. Interestingly, other modifications at this position such as 2'-O-deoxy or 2'-fluoro had no strong modulating effect on TLR7 or TLR8 activation suggesting an important role of 2'-O-methylation for shaping differential TLR7 or TLR8 activation. PMID:25785446

  3. An automatic analyzer for catecholamines and their 3-O-methyl metabolites using a micro coulometric flow cell as a postcolumn reactor for fluorogenic reaction.

    PubMed

    Takezawa, K; Tsunoda, M; Watanabe, N; Imai, K

    2000-09-01

    A coulometric flow cell for a miniaturized LC system was developed. The cell was examined, as 3-O-methyl catecholamines were converted to their relative omicron-quinones for subsequent fluorometric and chemiluminescence detection. Its performance was evaluated in comparison with commercially available amperometric and coulometric detectors in terms of specification of the low dead volume and high conversion efficiency. The fully automated small-bore LC analyzer for simultaneous determination of catecholamines and their 3-O-methyl metabolites included precolumn pretreatment, column switching, column separation, postcolumn oxidative conversion, fluorometric derivatization, and chemiluminescence detection. The detection limits were 0.3-2.0 fmol for catecholamines and their 3-O-methyl metabolites. Because of the high sensitivity, the required volume of rat plasma sample was only 15 microL. PMID:10994958

  4. Imidazopyridine and Pyrazolopiperidine Derivatives as Novel Inhibitors of Serine Palmitoyl Transferase.

    PubMed

    Genin, Michael J; Gonzalez Valcarcel, Isabel C; Holloway, William G; Lamar, Jason; Mosior, Marian; Hawkins, Eric; Estridge, Thomas; Weidner, Jeffrey; Seng, Thomas; Yurek, David; Adams, Lisa A; Weller, Jennifer; Reynolds, Vincent L; Brozinick, Joseph T

    2016-06-23

    To develop novel treatments for type 2 diabetes and dyslipidemia, we pursued inhibitors of serine palmitoyl transferase (SPT). To this end compounds 1 and 2 were developed as potent SPT inhibitors in vitro. 1 and 2 reduce plasma ceramides in rodents, have a slight trend toward enhanced insulin sensitization in DIO mice, and reduce triglycerides and raise HDL in cholesterol/cholic acid fed rats. Unfortunately these molecules cause a gastric enteropathy after chronic dosing in rats. PMID:27213958

  5. Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3' tailing of small RNAs in Arabidopsis.

    PubMed

    Wang, Xiaoyan; Zhang, Shuxin; Dou, Yongchao; Zhang, Chi; Chen, Xuemei; Yu, Bin; Ren, Guodong

    2015-04-01

    All types of small RNAs in plants, piwi-interacting RNAs (piRNAs) in animals and a subset of siRNAs in Drosophila and C. elegans are subject to HEN1 mediated 3' terminal 2'-O-methylation. This modification plays a pivotal role in protecting small RNAs from 3' uridylation, trimming and degradation. In Arabidopsis, HESO1 is a major enzyme that uridylates small RNAs to trigger their degradation. However, U-tail is still present in null hen1 heso1 mutants, suggesting the existence of (an) enzymatic activities redundant with HESO1. Here, we report that UTP: RNA uridylyltransferase (URT1) is a functional paralog of HESO1. URT1 interacts with AGO1 and plays a predominant role in miRNA uridylation when HESO1 is absent. Uridylation of miRNA is globally abolished in a hen1 heso1 urt1 triple mutant, accompanied by an extensive increase of 3'-to-5' trimming. In contrast, disruption of URT1 appears not to affect the heterochromatic siRNA uridylation. This indicates the involvement of additional nucleotidyl transferases in the siRNA pathway. Analysis of miRNA tailings in the hen1 heso1 urt1 triple mutant also reveals the existence of previously unknown enzymatic activities that can add non-uridine nucleotides. Importantly, we show HESO1 may also act redundantly with URT1 in miRNA uridylation when HEN1 is fully competent. Taken together, our data not only reveal a synergistic action of HESO1 and URT1 in the 3' uridylation of miRNAs, but also independent activities of multiple terminal nucleotidyl transferases in the 3' tailing of small RNAs and an antagonistic relationship between uridylation and trimming. Our results may provide further insight into the mechanisms of small RNA 3' end modification and stability control. PMID:25928341

  6. Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2’-O-Methylation Mutant

    PubMed Central

    Ruggieri, Alessia; Acosta, Eliana Gisela; Bartenschlager, Marie; Reuter, Antje; Fischl, Wolfgang; Harder, Nathalie; Bergeest, Jan-Philip; Flossdorf, Michael; Rohr, Karl; Höfer, Thomas; Bartenschlager, Ralf

    2015-01-01

    Dengue virus (DENV) is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN) response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2’-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2’-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells. PMID:26720415

  7. Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2'-O-Methylation Mutant.

    PubMed

    Schmid, Bianca; Rinas, Melanie; Ruggieri, Alessia; Acosta, Eliana Gisela; Bartenschlager, Marie; Reuter, Antje; Fischl, Wolfgang; Harder, Nathalie; Bergeest, Jan-Philip; Flossdorf, Michael; Rohr, Karl; Höfer, Thomas; Bartenschlager, Ralf

    2015-12-01

    Dengue virus (DENV) is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN) response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2'-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2'-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells. PMID:26720415

  8. Determination of Neutral Monosaccharides as Per-O-methylated Derivatives Directly from a Drop of Whole Blood by Gas Chromatography-Mass Spectrometry.

    PubMed

    Ciucanu, Ionel; Pilat, Luminiţa; Ciucanu, Cristian Ionuţ; Şişu, Eugen

    2015-11-01

    A new analytical procedure was developed for the simultaneous quantification of neutral monosaccharides from a drop of whole blood using gas chromatography-mass spectrometry analysis (GC-MS) of their per-O-methylated derivatives. The per-O-methylation reaction with methyl iodide and solid sodium hydroxide in methyl sulfoxide was used for the first time for analysis of blood monosaccharides. A blood drop volume of 0.6 μL was used without special purification. The elimination of the undesirable components was carried out during methylation in the presence of a strong base and by liquid extraction of the per-O-methylated monosaccharides. The neutral monosaccharides with an anomeric center gave four per-O-methylated isomers, which were well-separated using a capillary column. Identification was done by electron impact mass spectrometry fragmentation, retention times, and library searching. The limits of detection were determined for standards and varied from 2.0 to 2.3 ng mL(-1). Recoveries for human blood samples varied from 99.22% to 99.65%. The RSD values ranged from 1.92 to 2.37. The method is fast, sensitive, reproducible, and an alternative to current methods for quantitative analysis of blood monosaccharides. PMID:26444378

  9. O-METHYL PHOSPHORAMIDATE MODIFICATIONS ON THE CAPSULAR POLYSACCHARIDE OF CAMPYLOBACTER JEJUNI ARE INVOLVED IN SERUM RESISTANCE, INFECTION, AND INSECTICIDAL ACTIVITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is the most commonly reported cause of bacterial foodborne illness in North America. C. jejuni decorates its surface polysaccharides with a variety of variable phosphorylated structures, including O-methyl phosphoramidate (MeOPN) modifications on the capsular polysaccharide. Alt...

  10. Nomenclature for mammalian soluble glutathione transferases.

    PubMed

    Mannervik, Bengt; Board, Philip G; Hayes, John D; Listowsky, Irving; Pearson, William R

    2005-01-01

    The nomenclature for human soluble glutathione transferases (GSTs) is extended to include new members of the GST superfamily that have been discovered, sequenced, and shown to be expressed. The GST nomenclature is based on primary structure similarities and the division of GSTs into classes of more closely related sequences. The classes are designated by the names of the Greek letters: Alpha, Mu, Pi, etc., abbreviated in Roman capitals: A, M, P, and so on. (The Greek characters should not be used.) Class members are distinguished by Arabic numerals and the native dimeric protein structures are named according to their subunit composition (e.g., GST A1-2 is the enzyme composed of subunits 1 and 2 in the Alpha class). Soluble GSTs from other mammalian species can be classified in the same manner as the human enzymes, and this chapter presents the application of the nomenclature to the rat and mouse GSTs. PMID:16399376

  11. Identification of a diazinon-metabolizing glutathione S-transferase in the silkworm, Bombyx mori.

    PubMed

    Yamamoto, Kohji; Yamada, Naotaka

    2016-01-01

    The glutathione S-transferase superfamily play key roles in the metabolism of numerous xenobiotics. We report herein the identification and characterization of a novel glutathione S-transferase in the silkworm, Bombyx mori. The enzyme (bmGSTu2) conjugates glutathione to 1-chloro-2,4-dinitrobenzene, as well as metabolizing diazinon, one of the organophosphate insecticides. Quantitative reverse transcription-polymerase chain reaction analysis of transcripts demonstrated that bmGSTu2 expression was induced 1.7-fold in a resistant strain of B. mori. Mutagenesis of putative amino acid residues in the glutathione-binding site revealed that Ile54, Glu66, Ser67, and Asn68 are crucial for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTu2 and into the detoxification of organophosphate insecticides. PMID:27440377

  12. Identification of a diazinon-metabolizing glutathione S-transferase in the silkworm, Bombyx mori

    PubMed Central

    Yamamoto, Kohji; Yamada, Naotaka

    2016-01-01

    The glutathione S-transferase superfamily play key roles in the metabolism of numerous xenobiotics. We report herein the identification and characterization of a novel glutathione S-transferase in the silkworm, Bombyx mori. The enzyme (bmGSTu2) conjugates glutathione to 1-chloro-2,4-dinitrobenzene, as well as metabolizing diazinon, one of the organophosphate insecticides. Quantitative reverse transcription–polymerase chain reaction analysis of transcripts demonstrated that bmGSTu2 expression was induced 1.7-fold in a resistant strain of B. mori. Mutagenesis of putative amino acid residues in the glutathione-binding site revealed that Ile54, Glu66, Ser67, and Asn68 are crucial for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTu2 and into the detoxification of organophosphate insecticides. PMID:27440377

  13. Selective inhibition of farnesyl-protein transferase blocks ras processing in vivo.

    PubMed

    Gibbs, J B; Pompliano, D L; Mosser, S D; Rands, E; Lingham, R B; Singh, S B; Scolnick, E M; Kohl, N E; Oliff, A

    1993-04-15

    The ras oncogene product, Ras, is synthesized in vivo as a precursor protein that requires post-translational processing to become biologically active and to be capable of transforming mammalian cells. Farnesylation appears to be a critical modification of Ras, and thus inhibitors of the farnesyl-protein transferase (FPTase) that catalyzes this reaction may block ras-dependent tumorigenesis. Three structural classes of FPTase inhibitors were identified: (alpha-hydroxyfarnesyl)phosphonic acid, chaetomellic acids, and zaragozic acids. By comparison, these compounds were weaker inhibitors of geranylgeranyl-protein transferases. Each of these inhibitors was competitive with respect to farnesyl diphosphate in the FPTase reaction. All compounds were assayed for inhibition of Ras processing in Ha-ras-transformed NIH3T3 fibroblasts. Ras processing was inhibited by 1 microM (alpha-hydroxyfarnesyl)phosphonic acid. Neither chaetomellic acid nor zaragozic acid were active in this assay. These results are the first demonstration that a small organic chemical selected for inhibition of FPTase can inhibit Ras processing in vivo. PMID:8463291

  14. Induction of glutathione-S-transferase activity by antioxidants in hepatocyte culture.

    PubMed

    Chen, L H; Shiau, C C

    1989-01-01

    Twelve male Sprague-Dawley rats were used for the study. Six rats were injected with benzo(a)pyrene (BP); the other six rats served as the control. Twenty-four hours after injection, hepatocytes were isolated and cultured. The cultured plates were divided into 5 groups and treated with absolute ethanol (control), butylated hydroxytoluene, vitamin E, ascorbic acid or vitamin Elascorbic acid. After 48 hours, the hepatocytes were harvested for enzyme activation determination. With both control and BP-injected rats, each antioxidant treatment significantly increased glutathione-S-transferase activity. The results suggest that antioxidants may have a detoxifying effect against BP-induced carcinogenesis. PMID:2817788

  15. Cloning and expression of clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli

    SciTech Connect

    Cary, J.W.; Petersen, D.J.; Bennett, G.N. ); Papoutsakis, E.T. )

    1990-06-01

    Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase (butyrate-acetoacetate CoA-transferase) (EC 2.8.3.9)) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The genes encoding the two subunits of this enzyme have been cloned and subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defect in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of M{sub r} of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E.coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli. In the plasmid, however, transcription appears to be primarily from the lac promoter of the vector.

  16. Isolation, purification and identification of ellagic acid derivatives, catechins, and procyanidins from the root bark of Anisophyllea dichostyla R. Br.

    PubMed

    Khallouki, F; Haubner, R; Hull, W E; Erben, G; Spiegelhalder, B; Bartsch, H; Owen, R W

    2007-03-01

    The root bark of Anisophyllea dichostyla R. Br. is traditionally used in the Democratic Republic Congo for the treatment of several conditions such as anorexia, fatigue and intestinal infections. We have identified and quantitated several polyphenol antioxidants in the methanol extract of the root bark (120g). The polyphenol content (3.32g/kg) was predominantly ellagitannins (25%) and polyhydroxyflavan-3-ols (catechins and procyanidins, 75%) with 3'-O-methyl-3,4-methylenedioxo ellagic acid 4'-O-beta-d-glucopyranoside and (-)-epicatechin as the major species in each class. These two compounds and the following species were identified unequivocally by NMR spectroscopy: (+)-catechin, (-)-epicatechin 3-O-gallate, 3-O-methyl ellagic acid, 3,3'-di-O-methyl ellagic acid, 3'-O-methyl-3,4-methylenedioxo ellagic acid, 3'-O-methyl-3,4-methylenedioxo ellagic acid 4'-O-beta-d-glucopyranoside, and 3'-O-methyl ellagic acid 4-O-beta-d-xylopyranoside. The following additional compounds were purified by semi-preparative HPLC and tentatively identified on the basis of UV spectra, HPLC-ESI-MS and nano-ESI-MS-MS: (+)-catechin-3-O-beta-d-glucopyranoside, epicatechin-(4beta-->8)-catechin (procyanidin B(1)), epicatechin-(4beta-->8)-epicatechin (procyanidin B(2)), an (epi)catechin trimer, 3-O-methyl ellagic acid 4-O-beta-d-glucopyranoside, (-)-epicatechin 3-O-vanillate, 3,4-methylenedioxo ellagic acid 4'-O- beta-d-glucopyranoside, and 3,3'-di-O-methyl ellagic acid 4-O-beta-d-xylopyranoside. Fractionation of the raw extract by column chromatography on silicic acid yielded 10 fractions. In the hypoxanthine/xanthine oxidase antioxidant assay system, CC-9 which contained a range of polyphenols dominated by (-)-epicatechin-O-gallate proved to be the most potent antioxidant fraction (IC(50)=52 micro g/mL) in terms of ROS scavenging. In terms of XO inhibition CC-8, dominated by (epi)catechin trimer and which also contained appreciable amounts of 3'-O-methyl ellagic acid 4'-O

  17. Inactivation of Anopheles gambiae Glutathione Transferase ε2 by Epiphyllocoumarin

    PubMed Central

    Marimo, Patience; Hayeshi, Rose; Mukanganyama, Stanley

    2016-01-01

    Glutathione transferases (GSTs) are part of a major family of detoxifying enzymes that can catalyze the reductive dehydrochlorination of dichlorodiphenyltrichloroethane (DDT). The delta and epsilon classes of insect GSTs have been implicated in conferring resistance to this insecticide. In this study, the inactivation of Anopheles gambiae GSTε2 by epiphyllocoumarin (Tral 1) was investigated. Recombinant AgGSTε2 was expressed in Escherichia coli cells containing a pET3a-AGSTε2 plasmid and purified by affinity chromatography. Tral 1 was shown to inactivate GSTε2 both in a time-dependent manner and in a concentration-dependent manner. The half-life of GSTε2 in the presence of 25 μM ethacrynic acid (ETA) was 22 minutes and with Tral 1 was 30 minutes, indicating that Tral 1 was not as efficient as ETA as an inactivator. The inactivation parameters kinact and KI were found to be 0.020 ± 0.001 min−1 and 7.5 ± 2.1 μM, respectively, after 90 minutes of incubation. Inactivation of GSTε2 by Tral 1 implies that Tral 1 covalently binds to this enzyme in vitro and would be expected to exhibit time-dependent effects on the enzyme in vivo. Tral 1, therefore, would produce irreversible effects when used together with dichlorodiphenyltrichloroethane (DDT) in malaria control programmes where resistance is mediated by GSTs. PMID:26925266

  18. Crystal structure of E. coli lipoprotein diacylglyceryl transferase

    PubMed Central

    Mao, Guotao; Zhao, Yan; Kang, Xusheng; Li, Zhijie; Zhang, Yan; Wang, Xianping; Sun, Fei; Sankaran, Krishnan; Zhang, Xuejun C.

    2016-01-01

    Lipoprotein biogenesis is essential for bacterial survival. Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) is an integral membrane enzyme that catalyses the first reaction of the three-step post-translational lipid modification. Deletion of the lgt gene is lethal to most Gram-negative bacteria. Here we present the crystal structures of Escherichia coli Lgt in complex with phosphatidylglycerol and the inhibitor palmitic acid at 1.9 and 1.6 Å resolution, respectively. The structures reveal the presence of two binding sites and support the previously reported structure–function relationships of Lgt. Complementation results of lgt-knockout cells with different mutant Lgt variants revealed critical residues, including Arg143 and Arg239, that are essential for diacylglyceryl transfer. Using a GFP-based in vitro assay, we correlated the activities of Lgt with structural observations. Together, the structural and biochemical data support a mechanism whereby substrate and product, lipid-modified lipobox-containing peptide, enter and leave the enzyme laterally relative to the lipid bilayer. PMID:26729647

  19. Crystal structure of E. coli lipoprotein diacylglyceryl transferase.

    PubMed

    Mao, Guotao; Zhao, Yan; Kang, Xusheng; Li, Zhijie; Zhang, Yan; Wang, Xianping; Sun, Fei; Sankaran, Krishnan; Zhang, Xuejun C

    2016-01-01

    Lipoprotein biogenesis is essential for bacterial survival. Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) is an integral membrane enzyme that catalyses the first reaction of the three-step post-translational lipid modification. Deletion of the lgt gene is lethal to most Gram-negative bacteria. Here we present the crystal structures of Escherichia coli Lgt in complex with phosphatidylglycerol and the inhibitor palmitic acid at 1.9 and 1.6 Å resolution, respectively. The structures reveal the presence of two binding sites and support the previously reported structure-function relationships of Lgt. Complementation results of lgt-knockout cells with different mutant Lgt variants revealed critical residues, including Arg143 and Arg239, that are essential for diacylglyceryl transfer. Using a GFP-based in vitro assay, we correlated the activities of Lgt with structural observations. Together, the structural and biochemical data support a mechanism whereby substrate and product, lipid-modified lipobox-containing peptide, enter and leave the enzyme laterally relative to the lipid bilayer. PMID:26729647

  20. Benzene oxide is a substrate for glutathione S-transferases.

    PubMed

    Zarth, Adam T; Murphy, Sharon E; Hecht, Stephen S

    2015-12-01

    Benzene is a known human carcinogen which must be activated to benzene oxide (BO) to exert its carcinogenic potential. BO can be detoxified in vivo by reaction with glutathione and excretion in the urine as S-phenylmercapturic acid. This process may be catalyzed by glutathione S-transferases (GSTs), but kinetic data for this reaction have not been published. Therefore, we incubated GSTA1, GSTT1, GSTM1, and GSTP1 with glutathione and BO and quantified the formation of S-phenylglutathione. Kinetic parameters were determined for GSTT1 and GSTP1. At 37 °C, the putative Km and Vmax values for GSTT1 were 420 μM and 450 fmol/s, respectively, while those for GSTP1 were 3600 μM and 3100 fmol/s. GSTA1 and GSTM1 did not exhibit sufficient activity for determination of kinetic parameters. We conclude that GSTT1 is a critical enzyme in the detoxification of BO and that GSTP1 may also play an important role, while GSTA1 and GSTM1 seem to be less important. PMID:26554337

  1. The Genetic Architecture of Murine Glutathione Transferases

    PubMed Central

    Lu, Lu; Pandey, Ashutosh K.; Houseal, M. Trevor; Mulligan, Megan K.

    2016-01-01

    Glutathione S-transferase (GST) genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6) and DBA2/J (D2)—the BXD family—was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs) in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01) with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes. PMID:26829228

  2. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    PubMed Central

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  3. Characterization of affinity-purified isoforms of Acinetobacter calcoaceticus Y1 glutathione transferases.

    PubMed

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  4. Inclusion interaction of chloramphenicol and heptakis (2,6-di- O-methyl)-β-cyclodextrin: Phase solubility and spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Shi, Jie-Hua; Zhou, Ya-fang

    2011-12-01

    The inclusion interaction between chloramphenicol and heptakis (2,6-di- O-methyl)-β-cyclodextrin (DMBCD) had been investigated by phase solubility and spectroscopic methods such as UV-vis spectroscopy, circular dichroism, Fourier transform infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance spectroscopy ( 1H NMR) as well as 2D-ROESY spectra. Phase solubility analysis showed A L-type diagram with DMBCD, which suggested the formation of 1:1 inclusion complex of DMBCD with chloramphenicol. The estimated stability constant ( Ks) of the inclusion complex of chloramphenicol with DMBCD is 493 M -1 at 293 K. The solubility enhancement of chloramphenicol in the presence of DMBCD is stronger than that in the presence of β-CD, HP-β-CD and M-β-CD. The results obtained by spectroscopic methods showed that the nitrophenyl moiety of chloramphenicol is deeply inserted into inner cavity of DMBCD from the narrow rim of DMBCD, which the inclusion model of chloramphenicol with DMBCD differs from that with β-CD.

  5. Evaluation of a di-O-methylated glycan as a potential antigenic target for the serodiagnosis of human toxocariasis.

    PubMed

    Elefant, G R; Roldán, W H; Seeböck, A; Kosma, P

    2016-04-01

    Serodiagnosis of human toxocariasis is based on the detection of specific IgG antibodies by the enzyme-linked immunosorbent assay (ELISA) using Toxocara larvae excretory-secretory (TES) antigens, but its production is a laborious and time-consuming process being also limited by the availability of adult females of T. canis as source for ova to obtain larvae. Chemical synthesis of the di-O-methylated (DiM) glycan structure found in the TES antigens has provided material for studying the antibody reactivity in a range of mammalian hosts, showing reactivity with human IgM and IgG. In this study, we have evaluated the performance of the DiM glycan against a panel of sera including patients with toxocariasis (n = 60), patients with other helminth infections (n = 75) and healthy individuals (n = 94), showing that DiM is able to detect IgG antibodies with a sensitivity and specificity of 91·7% and 94·7%, respectively, with a very good agreement with the TES antigens (kappa = 0·825). However, cross-reactivity was observed in some sera from patients with ascariasis, hymenolepiasis and fascioliasis. These results show that the DiM glycan could be a promising antigenic tool for the serodiagnosis of human toxocariasis. PMID:26896376

  6. Structural and biochemical insights into 2'-O-methylation at the 3'-terminal nucleotide of RNA by Hen1.

    PubMed

    Mui Chan, Chio; Zhou, Chun; Brunzelle, Joseph S; Huang, Raven H

    2009-10-20

    Small RNAs of approximately 20-30 nt have diverse and important biological roles in eukaryotic organisms. After being generated by Dicer or Piwi proteins, all small RNAs in plants and a subset of small RNAs in animals are further modified at their 3'-terminal nucleotides via 2'-O-methylation, carried out by the S-adenosylmethionine-dependent methyltransferase (MTase) Hen1. Methylation at the 3' terminus is vital for biological functions of these small RNAs. Here, we report four crystal structures of the MTase domain of a bacterial homolog of Hen1 from Clostridium thermocellum and Anabaena variabilis, which are enzymatically indistinguishable from the eukaryotic Hen1 in their ability to methylate small single-stranded RNAs. The structures reveal that, in addition to the core fold of the MTase domain shared by other RNA and DNA MTases, the MTase domain of Hen1 possesses a motif and a domain that are highly conserved and are unique to Hen1. The unique motif and domain are likely to be involved in RNA substrate recognition and catalysis. The structures allowed us to construct a docking model of an RNA substrate bound to the MTase domain of bacterial Hen1, which is likely similar to that of the eukaryotic counterpart. The model, supported by mutational studies, provides insight into RNA substrate specificity and catalytic mechanism of Hen1. PMID:19822745

  7. Enzymatic cleavage of type II restriction endonucleases on the 2'-O-methyl nucleotide and phosphorothioate substituted DNA.

    PubMed

    Zhao, Guojie; Li, Jun; Tong, Zhaoxue; Zhao, Bin; Mu, Runqing; Guan, Yifu

    2013-01-01

    The effects of nucleotide analogue substitution on the cleavage efficiencies of type II restriction endonucleases have been investigated. Six restriction endonucleases (EcoRV, SpeI, XbaI, XhoI, PstI and SphI) were investigated respectively regarding their cleavage when substrates were substituted by 2'-O-methyl nucleotide (2'-OMeN) and phosphorothioate (PS). Substitutions were made in the recognition sequence and the two nucleotides flanking the recognition sequence for each endonuclease. The endonuclease cleavage efficiencies were determined using FRET-based assay. Results demonstrated a position-dependent inhibitory effect of substitution on the cleavage efficiency for all the six endonucleases. In general, the 2'-OMeN substitutions had greater impact than the PS substitutions on the enzymatic activities. Nucleotides of optimal substitutions for protection against RE cleavage were identified. Experimental results and conclusions in this study facilitate our insight into the DNA-protein interactions and the enzymatic cleavage mechanism, particularly for those whose detailed structure information is not available. In addition, the information could benefit the development of bioengineering and synthetic biology. PMID:24260216

  8. Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily.

    PubMed

    Wrabl, J O; Grishin, N V

    2001-11-30

    The O-linked GlcNAc transferases (OGTs) are a recently characterized group of largely eukaryotic enzymes that add a single beta-N-acetylglucosamine moiety to specific serine or threonine hydroxyls. In humans, this process may be part of a sugar regulation mechanism or cellular signaling pathway that is involved in many important diseases, such as diabetes, cancer, and neurodegeneration. However, no structural information about the human OGT exists, except for the identification of tetratricopeptide repeats (TPR) at the N terminus. The locations of substrate binding sites are unknown and the structural basis for this enzyme's function is not clear. Here, remote homology is reported between the OGTs and a large group of diverse sugar processing enzymes, including proteins with known structure such as glycogen phosphorylase, UDP-GlcNAc 2-epimerase, and the glycosyl transferase MurG. This relationship, in conjunction with amino acid similarity spanning the entire length of the sequence, implies that the fold of the human OGT consists of two Rossmann-like domains C-terminal to the TPR region. A conserved motif in the second Rossmann domain points to the UDP-GlcNAc donor binding site. This conclusion is supported by a combination of statistically significant PSI-BLAST hits, consensus secondary structure predictions, and a fold recognition hit to MurG. Additionally, iterative PSI-BLAST database searches reveal that proteins homologous to the OGTs form a large and diverse superfamily that is termed GPGTF (glycogen phosphorylase/glycosyl transferase). Up to one-third of the 51 functional families in the CAZY database, a glycosyl transferase classification scheme based on catalytic residue and sequence homology considerations, can be unified through this common predicted fold. GPGTF homologs constitute a substantial fraction of known proteins: 0.4% of all non-redundant sequences and about 1% of proteins in the Escherichia coli genome are found to belong to the GPGTF

  9. Detection of glutathione transferase activity on polyacrylamide gels.

    PubMed

    Ricci, G; Lo Bello, M; Caccuri, A M; Galiazzo, F; Federici, G

    1984-12-01

    A simple and sensitive assay for glutathione transferase activity on polyacrylamide gel is described. The method is based on the fast reduction of nitroblue tetrazolium salt by glutathione. Blue insoluble formazan colors the gel except in the glutathione transferase area. The stable and defined colorless zone is still detectable with 0.005 unit enzyme. This technique has been successfully applied with enzyme preparations of human heart and other tissues. PMID:6532239

  10. Impact of age-associated increase in 2′-O-methylation of miRNAs on aging and neurodegeneration in Drosophila

    PubMed Central

    Abe, Masashi; Naqvi, Ammar; Hendriks, Gert-Jan; Feltzin, Virzhiniya; Zhu, Yongqing; Grigoriev, Andrey; Bonini, Nancy M.

    2014-01-01

    MicroRNAs (miRNAs) are 20- to ∼24-nucleotide (nt) small RNAs that impact a variety of biological processes, from development to age-associated events. To study the role of miRNAs in aging, studies have profiled the levels of miRNAs with time. However, evidence suggests that miRNAs show heterogeneity in length and sequence in different biological contexts. Here, by examining the expression pattern of miRNAs by Northern blot analysis, we found that Drosophila miRNAs show distinct isoform pattern changes with age. Surprisingly, an increase of some miRNAs reflects increased 2′-O-methylation of select isoforms. Small RNA deep sequencing revealed a global increase of miRNAs loaded into Ago2, but not into Ago1, with age. Our data suggest increased loading of miRNAs into Ago2, but not Ago1, with age, indicating a mechanism for differential loading of miRNAs with age between Ago1 and Ago2. Mutations in Hen1 and Ago2, which lack 2′-O-methylation of miRNAs, result in accelerated neurodegeneration and shorter life span, suggesting a potential impact of the age-associated increase of 2′-O-methylation of small RNAs on age-associated processes. Our study highlights that miRNA 2′-O-methylation at the 3′ end is modulated by differential partitioning of miRNAs between Ago1 and Ago2 with age and that this process, along with other functions of Ago2, might impact age-associated events in Drosophila. PMID:24395246

  11. Systematic analysis of O-methyltransferase gene family and identification of potential members involved in the formation of O-methylated flavonoids in Citrus.

    PubMed

    Liu, Xiaogang; Luo, Yan; Wu, Hongkun; Xi, Wanpeng; Yu, Jie; Zhang, Qiuyun; Zhou, Zhiqin

    2016-01-10

    The O-methylation of various secondary metabolites is mainly catalyzed by S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase (OMT) proteins that are encoded by the O-methyltransferase gene family. Citrus fruits are a rich source of O-methylated flavonoids that have a broad spectrum of biological activities, including anti-inflammatory, anticarcinogenic, and antiatherogenic properties. However, little is known about this gene family and its members that are involved in the O-methylation of flavonoids and their regulation in Citrus. In this study, 58 OMT genes were identified from the entire Citrus sinensis genome and compared with those from 3 other representative dicot plants. A comprehensive analysis was performed, including functional/substrate predictions, identification of chromosomal locations, phylogenetic relationships, gene structures, and conserved motifs. Distribution mapping revealed that the 58 OMT genes were unevenly distributed on the 9 citrus chromosomes. Phylogenetic analysis of 164 OMT proteins from C.sinensis, Arabidopsis thaliana, Populus trichocarpa, and Vitis vinifera showed that these proteins were categorized into group I (COMT subfamily) and group II (CCoAOMT subfamily), which were further divided into 10 and 2 subgroups, respectively. Finally, digital gene expression and quantitative real-time polymerase chain reaction analyses revealed that citrus OMT genes had distinct temporal and spatial expression patterns in different tissues and developmental stages. Interestingly, 18 and 11 of the 27 genes predicted to be involved in O-methylation of flavonoids had higher expression in the peel and pulp during fruit development, respectively. The citrus OMT gene family identified in this study might help in the selection of appropriate candidate genes and facilitate functional studies in Citrus. PMID:26407870

  12. De Novo Asymmetric Synthesis of a 6-O-Methyl-d-glycero-l-gluco-heptopyranose-Derived Thioglycoside for the Preparation of Campylobacter jejuni NCTC11168 Capsular Polysaccharide Fragments.

    PubMed

    Ashmus, Roger A; Jayasuriya, Anushka B; Lim, Ying-Jie; O'Doherty, George A; Lowary, Todd L

    2016-04-01

    An enantioselective de novo synthesis of a thioglycoside derivative of the 6-O-methyl-d-glycero-l-gluco-heptopyranose residue found in the Campylobacter jejuni NCTC11168 (HS:2) capsular polysaccharide is reported. The compound is obtained from a furfural-derived chiral diol in 11 steps. Notably, compared to the only previous synthesis of this molecule, this approach significantly reduces the number of purification steps required to obtain the target. PMID:26982173

  13. Structural analysis of colanic acid from Escherichia coli by using methylation and base-catalysed fragmentation. Comparison with polysaccharides from other bacterial sources

    PubMed Central

    Lawson, C. J.; McCleary, C. W.; Nakada, Henry I.; Rees, D. A.; Sutherland, I. W.; Wilkinson, J. F.

    1969-01-01

    Essentially the same methanolysis products were obtained after methylation of the slime and capsular polysaccharides from Escherichia coli K12 (S53 and S53C sub-strains) and the slime polysaccharides from E. coli K12 (S61), Aerobacter cloacae N.C.T.C. 5290 and Salmonella typhimurium SL1543. These were the methyl glycosides of 2-O-methyl-l-fucose, 2,3-di-O-methyl-l-fucose, 2,3-di-O-methyl-d-glucuronic acid methyl ester, 2,4,6-tri-O-methyl-d-glucose, 2,4,6-tri-O-methyl-d-galactose and the pyruvic acid ketal, 4,6-O-(1′-methoxycarbonylethylidene)-2,3-O-methyl-d-galactose. All were identified as crystalline derivatives from an E. coli polysaccharide. The structure of the ketal was proved by proton-magnetic-resonance and mass spectrometry, and by cleavage to pyruvic acid and 2,3-di-O-methyl-d-galactose. All these polysaccharides are therefore regarded as variants on the same fundamental structure for which the name colanic acid is adopted. Although containing the same sugar residues, quite different methanolysis products were obtained after methylation of the extracellular polysaccharide from Klebsiella aerogenes (1.2 strain). The hydroxypropyl ester of E. coli polysaccharide, when treated with base under anhydrous conditions, underwent β-elimination at the uronate residues with release of a 4,6-O-(1′-alkoxycarbonylethylidene)-d-galactose. Together with the identification of 3-O-(d-glucopyranosyluronic acid)-d-galactose as a partial hydrolysis product, this establishes the nature of most, if not all, of the side chains as O-[4,6-O-(1′-carboxyethylidene)-d-galactopyranosyl]-(1→4)-O-(d-glucopyranosyluronic acid)-(1→3)-d-galactopyranosyl... PMID:4902692

  14. Morphological changes in gray matter volume correlate with catechol-O-methyl transferase gene Val158Met polymorphism in first-episode treatment-naïve patients with schizophrenia.

    PubMed

    Li, Ming-Li; Xiang, Bo; Li, Yin-Fei; Hu, Xun; Wang, Qiang; Guo, Wan-Jun; Lei, Wei; Huang, Chao-Hua; Zhao, Lian-Sheng; Li, Na; Ren, Hong-Yan; Wang, Hui-Yao; Ma, Xiao-Hong; Deng, Wei; Li, Tao

    2015-02-01

    The catechol-O-methyltransferase (COMT) gene is a schizophrenia susceptibility gene. A common functional polymorphism of this gene, Val158/158Met, has been proposed to influence gray matter volume (GMV). However, the effects of this polymorphism on cortical thickness/surface area in schizophrenic patients are less clear. In this study, we explored the relationship between the Val158Met polymorphism of the COMT gene and the GMV/cortical thickness/cortical surface area in 150 first-episode treatment-naïve patients with schizophrenia and 100 healthy controls. Main effects of diagnosis were found for GMV in the cerebellum and the visual, medial temporal, parietal, and middle frontal cortex. Patients with schizophrenia showed reduced GMVs in these regions. And main effects of genotype were detected for GMV in the left superior frontal gyrus. Moreover, a diagnosis × genotype interaction was found for the GMV of the left precuneus, and the effect of the COMT gene on GMV was due mainly to cortical thickness rather than cortical surface area. In addition, a pattern of increased GMV in the precuneus with increasing Met dose found in healthy controls was lost in patients with schizophrenia. These findings suggest that the COMTMet variant is associated with the disruption of dopaminergic influence on gray matter in schizophrenia, and the effect of the COMT gene on GMV in schizophrenia is mainly due to changes in cortical thickness rather than in cortical surface area. PMID:25564193

  15. Relationship between the catechol-O-methyl transferase Val108/158Met genotype and brain volume in treatment-naive major depressive disorder: Voxel-based morphometry analysis.

    PubMed

    Watanabe, Keita; Kakeda, Shingo; Yoshimura, Reiji; Abe, Osamu; Ide, Satoru; Hayashi, Kenji; Katsuki, Asuka; Umene-Nakano, Wakako; Watanabe, Rieko; Nakamura, Jun; Korogi, Yukunori

    2015-09-30

    Catechol-O-methyltransferase (COMT) is a methylation enzyme engaged in the degradation of dopamine and noradrenaline by catalyzing the transfer of a methyl group from S-adenosylmethionine. An association was found between the Valine (Val) 108/158Methionine (Met) COMT polymorphism (rs4680) and major depressive disorder (MDD). The authors prospectively investigated the relationship between the Val108/158Met COMT genotype and voxel-based morphometry (VBM) findings for patients with first-episode and treatment-naïve MDD and healthy subjects (HS). Participants comprised 30 MDD patients and 48 age- and sex-matched HS who were divided according to the COMT genotype. Effects of diagnosis, COMT genotype, and the genotype-diagnosis interaction in relation to brain morphology in the Val/Met and Val/Val individuals were evaluated using a VBM analysis of high-resolution magnetic resonance imaging findings. Among the Val/Met individuals, the volume of the bilateral caudate was significantly smaller for MDD patients than for HS. In the Val/Val individuals, the caudate volume was comparable between MDD patients and HS. Significant genotype-diagnosis interaction effects on brain morphology were noted in the right caudate. PMID:26253436

  16. Identification of a Mycoloyl Transferase Selectively Involved in O-Acylation of Polypeptides in Corynebacteriales

    PubMed Central

    Huc, Emilie; de Sousa-D'Auria, Célia; de la Sierra-Gallay, Inès Li; Salmeron, Christophe; van Tilbeurgh, Herman; Bayan, Nicolas; Houssin, Christine

    2013-01-01

    We have previously described the posttranslational modification of pore-forming small proteins of Corynebacterium by mycolic acid, a very-long-chain α-alkyl and β-hydroxy fatty acid. Using a combination of chemical analyses and mass spectrometry, we identified the mycoloyl transferase (Myt) that catalyzes the transfer of the fatty acid residue to yield O-acylated polypeptides. Inactivation of corynomycoloyl transferase C (cg0413 [Corynebacterium glutamicum mytC {CgmytC}]), one of the six Cgmyt genes of C. glutamicum, specifically abolished the O-modification of the pore-forming proteins PorA and PorH, which is critical for their biological activity. Expectedly, complementation of the cg0413 mutant with either the wild-type gene or its orthologues from Corynebacterium diphtheriae and Rhodococcus, but not Nocardia, fully restored the O-acylation of the porins. Consistently, the three-dimensional structure of CgMytC showed the presence of a unique loop that is absent from enzymes that transfer mycoloyl residues onto both trehalose and the cell wall arabinogalactan. These data suggest the implication of this structure in the enzyme specificity for protein instead of carbohydrate. PMID:23852866

  17. Prednisolone treatment does not interfere with 2'-O-methyl phosphorothioate antisense-mediated exon skipping in Duchenne muscular dystrophy.

    PubMed

    Verhaart, Ingrid E C; Heemskerk, Hans; Karnaoukh, Tatyana G; Kolfschoten, Ingrid G M; Vroon, Anne; van Ommen, Gert-Jan B; van Deutekom, Judith C T; Aartsma-Rus, Annemieke

    2012-03-01

    In Duchenne muscular dystrophy (DMD), dystrophin deficiency leading to progressive muscular degeneration is caused by frame-shifting mutations in the DMD gene. Antisense oligonucleotides (AONs) aim to restore the reading frame by skipping of a specific exon(s), thereby allowing the production of a shorter, but semifunctional protein, as is found in the mostly more mildly affected patients with Becker muscular dystrophy. AONs are currently being investigated in phase 3 placebo-controlled clinical trials. Most of the participating patients are treated symptomatically with corticosteroids (mainly predniso[lo]ne) to stabilize the muscle fibers, which might affect the uptake and/or efficiency of AONs. Therefore the effect of prednisolone on 2'-O-methyl phosphorothioate AON efficacy in patient-derived cultured muscle cells and the mdx mouse model (after local and systemic AON treatment) was assessed in this study. Both in vitro and in vivo skip efficiency and biomarker expression were comparable between saline- and prednisolone-cotreated cells and mice. After systemic exon 23-specific AON (23AON) treatment for 8 weeks, dystrophin was detectable in all treated mice. Western blot analyses indicated slightly higher dystrophin levels in prednisolone-treated mice, which might be explained by better muscle condition and consequently more target dystrophin pre-mRNA. In addition, fibrotic and regeneration biomarkers were normalized to some extent in prednisolone- and/or 23AON-treated mice. Overall these results show that the use of prednisone forms no barrier to participation in clinical trials with AONs. PMID:22017442

  18. A novel method for the analysis of the substitution pattern of O-methyl-[alpha]- and [beta]-1,4-glucans by means of electrospray ionisation-mass spectrometry/collision induced dissociation

    NASA Astrophysics Data System (ADS)

    Adden, Roland; Mischnick, Petra

    2005-03-01

    The substitution pattern of O-methyl amylose and O-methyl cellulose was analysed after per-O-methylation (Me-d3), and partial hydrolysis by subsequent ESI-MS/CID of the sodium (MS2) and the lithium adducts (MS3). Based on previous studies about the influence of regioselective O-methylation on the fragmentation pathways of malto- and cello-oligosaccharides, we could calculate the contribution of a certain methyl pattern to a distinct signal in the reproducible ESI-MS2 daughter spectrum. Signal intensities obtained from each O-methyl-O-methyl-d3 disaccharide were distributed on the corresponding methyl patterns and accumulated for all peaks of the mother mass spectrum. Data from ESI-MS2 were not sufficient for disaccharides bearing methyl and deuteromethyl groups in the combination 2 and 4, 3 and 3, or 4 and 2. Further independent information was obtained by ESI-MS3 of the lithium adducts. Monomer composition of methyl celluloses and methyl amyloses obtained by this novel approach were in very good agreement with reference data from GLC of the partially methylated glucitol acetates after complete hydrolysis, reduction and acetylation.

  19. Phosphonocarboxylates Inhibit the Second Geranylgeranyl Addition by Rab Geranylgeranyl Transferase*

    PubMed Central

    Baron, Rudi A.; Tavaré, Richard; Figueiredo, Ana C.; Błażewska, Katarzyna M.; Kashemirov, Boris A.; McKenna, Charles E.; Ebetino, Frank H.; Taylor, Adam; Rogers, Michael J.; Coxon, Fraser P.; Seabra, Miguel C.

    2009-01-01

    Rab geranylgeranyl transferase (RGGT) catalyzes the post-translational geranylgeranyl (GG) modification of (usually) two C-terminal cysteines in Rab GTPases. Here we studied the mechanism of the Rab geranylgeranylation reaction by bisphosphonate analogs in which one phosphonate group is replaced by a carboxylate (phosphonocarboxylate, PC). The phosphonocarboxylates used were 3-PEHPC, which was previously reported, and 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid ((+)-3-IPEHPC), a >25-fold more potent related compound as measured by both IC50 and Ki.(+)-3-IPEHPC behaves as a mixed-type inhibitor with respect to GG pyrophosphate (GGPP) and an uncompetitive inhibitor with respect to Rab substrates. We propose that phosphonocarboxylates prevent only the second GG transfer onto Rabs based on the following evidence. First, geranylgeranylation of Rab proteins ending with a single cysteine motif such as CAAX, is not affected by the inhibitors, either in vitro or in vivo. Second, the addition of an -AAX sequence onto Rab-CC proteins protects the substrate from inhibition by the inhibitors. Third, we demonstrate directly that in the presence of (+)-3-IPEHPC, Rab-CC and Rab-CXC proteins are modified by only a single GG addition. The presence of (+)-3-IPEHPC resulted in a preference for the Rab N-terminal cysteine to be modified first, suggesting an order of cysteine geranylgeranylation in RGGT catalysis. Our results further suggest that the inhibitor binds to a site distinct from the GGPP-binding site on RGGT. We suggest that phosphonocarboxylate inhibitors bind to a GG-cysteine binding site adjacent to the active site, which is necessary to align the mono-GG-Rab for the second GG addition. These inhibitors may represent a novel therapeutic approach in Rab-mediated diseases. PMID:19074143

  20. DNA sequencing and expression of the formyl coenzyme A transferase gene, frc, from Oxalobacter formigenes.

    PubMed Central

    Sidhu, H; Ogden, S D; Lung, H Y; Luttge, B G; Baetz, A L; Peck, A B

    1997-01-01

    Oxalic acid, a highly toxic by-product of metabolism, is catabolized by a limited number of bacterial species utilizing an activation-decarboxylation reaction which yields formate and CO2. frc, the gene encoding formyl coenzyme A transferase, an enzyme which transfers a coenzyme A moiety to activate oxalic acid, was cloned from the bacterium Oxalobacter formigenes. DNA sequencing revealed a single open reading frame of 1,284 bp capable of encoding a 428-amino-acid protein. A presumed promoter region and a rho-independent termination sequence suggest that this gene is part of a monocistronic operon. A PCR fragment containing the open reading frame, when overexpressed in Escherichia coli, produced a product exhibiting enzymatic activity similar to the purified native enzyme. With this, the two genes necessary for bacterial catabolism of oxalate, frc and oxc, have now been cloned, sequenced, and expressed. PMID:9150242

  1. Inhibition of hepatic glutathione transferases by propylthiouracil and its metabolites.

    PubMed

    Kariya, K; Sawahata, T; Okuno, S; Lee, E

    1986-05-01

    The effects of propylthiouracil (PTU) and its metabolites on the activity of GSH transferases were examined using rat liver cytosol. PTU inhibited the enzyme activity toward both CDNB and DCNB in a concentration-dependent manner. At the concentration of 10 mM, PTU caused 25% inhibition, which was the maximum effect. PTU derivatives such as propyluracil and thiouracil showed the same effect as the parent compound. On the other hand, S-oxides of PTU such as PTU-SO2 and PTU-SO3, which were chemically synthesized by the oxidation of PTU, were more potent inhibitors of GSH transferases than the parent PTU. A significant inhibition was observed at a concentration of 0.1 mM of PTU S-oxides. At a concentration of 10 mM the S-oxides caused an 80% inhibition of the enzyme activity. PTU inhibited the transferase activity by competing with GSH but the S-oxides of PTU acted by another mechanism. In contrast to the effect on GSH transferases, PTU-SO3 had a weak inhibitory effect on GSH peroxidase activity. Thus, oxidation of PTU leads to products which are potent inhibitors of GSH transferases. PMID:3707612

  2. Steric inhibition of human immunodeficiency virus type-1 Tat-dependent trans-activation in vitro and in cells by oligonucleotides containing 2′-O-methyl G-clamp ribonucleoside analogues

    PubMed Central

    Holmes, Stephen C.; Arzumanov, Andrey A.; Gait, Michael J.

    2003-01-01

    We report the synthesis of a novel 2′-O-methyl (OMe) riboside phosphoramidite derivative of the G-clamp tricyclic base and incorporation into a series of small steric blocking OMe oligonucleotides targeting the apical stem–loop region of human immunodeficiency virus type 1 (HIV-1) trans- activation-responsive (TAR) RNA. Binding to TAR RNA is substantially enhanced for certain single site substitutions in the centre of the oligonucleotide, and doubly substituted anti-TAR OMe 9mers or 12mers exhibit remarkably low binding constants of <0.1 nM. G-clamp-containing oligomers achieved 50% inhibition of Tat-dependent in vitro transcription at ∼25 nM, 4-fold lower than for a TAR 12mer OMe oligonucleotide and better than found for any other oligonucleotide tested to date. Addition of one or two OMe G-clamps did not impart cellular trans-activation inhibition activity to cellularly inactive OMe oligonucleotides. Addition of an OMe G-clamp to a 12mer OMe–locked nucleic acid chimera maintained, but did not enhance, inhibition of Tat-dependent in vitro transcription and cellular trans-activation in HeLa cells. The results demonstrate clearly that an OMe G-clamp has remarkable RNA-binding enhancement ability, but that oligonucleotide effectiveness in steric block inhibition of Tat-dependent trans-activation both in vitro and in cells is governed by factors more complex than RNA-binding strength alone. PMID:12771202

  3. Fluorescent techniques for discovery and characterization of phosphopantetheinyl transferase inhibitors

    PubMed Central

    Kosa, Nicolas M.; Foley, Timothy L.; Burkart, Michael D.

    2016-01-01

    Phosphopantetheinyl transferase (E.C. 2.7.8.-) activates biosynthetic pathways that synthesize both primary and secondary metabolites in bacteria. Inhibitors of these enzymes have the potential to serve as antibiotic compounds that function through a unique mode of action and possess clinical utility. Here we report a direct and continuous assay for this enzyme class based upon monitoring polarization of a fluorescent phosphopantetheine analog as it is transferred from a low molecular weight coenzyme A substrate to higher molecular weight protein acceptor. We demonstrate the utility of this method for the biochemical characterization of phosphopantetheinyl transferase Sfp, a canonical representative from this class. We also establish the portability of this technique to other homologs by adapting the assay to function with the human phosphopantetheinyl transferase, a target for which a microplate detection method does not currently exist. Comparison of these targets provides a basis to predict therapeutic index of inhibitor candidates and offers a valuable characterization of enzyme activity. PMID:24192555

  4. Thioltransferase activity of bovine lens glutathione S-transferase.

    PubMed Central

    Dal Monte, M; Cecconi, I; Buono, F; Vilardo, P G; Del Corso, A; Mura, U

    1998-01-01

    A Mu-class glutathione S-transferase purified to electrophoretic homogeneity from bovine lens displayed thioltransferase activity, catalysing the transthiolation reaction between GSH and hydroxyethyldisulphide. The thiol-transfer reaction is composed of two steps, the formation of GSSG occurring through the generation of an intermediate mixed disulphide between GSH and the target disulphide. Unlike glutaredoxin, which is only able to catalyse the second step of the transthiolation process, glutathioneS-transferase catalyses both steps of the reaction. Data are presented showing that bovine lens glutathione S-transferase and rat liver glutaredoxin, which was used as a thioltransferase enzyme model, can operate in synergy to catalyse the GSH-dependent reduction of hydroxyethyldisulphide. PMID:9693102

  5. 2'-O-methyl-5-formylcytidine (f5Cm), a new modified nucleotide at the 'wobble' of two cytoplasmic tRNAs Leu (NAA) from bovine liver.

    PubMed Central

    Païs de Barros, J P; Keith, G; El Adlouni, C; Glasser, A L; Mack, G; Dirheimer, G; Desgrès, J

    1996-01-01

    The nucleotide analysis of a cytoplasmic tRNA(Leu) isolated from bovine liver revealed the presence of an unknown modified nucleotide N. The corresponding N nucleoside was isolated by different enzymatic and chromatographic protocols from a partially purified preparation of this tRNA(Leu). Its chemical characterization was determined from its chromatographic properties, UV-absorption spectroscopy and mass spectrometric measurements, as well as from those of the borohydride reduced N nucleoside and its etheno-trimethylsilyl derivative. The structure of N was established as 2'-O-methyl-5-formylcytidine (f5CM), and its reduced derivative as 2'-O-methyl-5-hydroxy-methylcytidine (om5Cm). By sequencing the bovine liver tRNA(Leu), the structure of the anticodon was determined as f5CmAA. In addition, the nucleotide sequence showed two primary structures differing only by the nucleotide 47c which is either uridine or adenosine. The two slightly differing bovine liver tRNAs-Leu(f5CmAA) are the only tRNAs so far sequenced which contain f5Cm. The role of such a modified cytidine at the first position of the anticodon is discussed in terms of decoding properties for the UUG and UUA leucine codons. Recently, precise evidence was obtained for the presence of f5Cm at the same position in tRNAs(Leu)(NAA) isolated from rabbit and lamb liver. Therefore, the 2'-O-methyl-5-formyl modification of cytidine at position 34 could be a general feature of cytoplasmic tRNAs(Leu)(NAA) in mammals. PMID:8628682

  6. Two unusual rotenoid derivatives, 7a-O-methyl-12a-hydroxydeguelol and spiro-13-homo-13-oxaelliptone, from the seeds of Derris trifoliata.

    PubMed

    Yenesew, Abiy; Kiplagat, John T; Derese, Solomon; Midiwo, Jacob O; Kabaru, Jacques M; Heydenreich, Matthias; Peter, Martin G

    2006-05-01

    The crude methanol extract of the seeds of Derris trifoliata showed potent and dose dependent larvicidal activity against the 2nd instar larvae of Aedes aegypti. From this extract two unusual rotenoid derivatives, a rotenoloid (named 7a-O-methyl-12a-hydroxydeguelol) and a spirohomooxarotenoid (named spiro-13-homo-13-oxaelliptone), were isolated and characterised. In addition a rare natural chromanone (6,7-dimethoxy-4-chromanone) and the known rotenoids rotenone, tephrosin and dehydrodeguelin were identified. The structures were assigned on the basis of spectroscopic evidence. The larvicidal activity of the crude extract is mainly due to rotenone. PMID:16483619

  7. 3-O-methyl sugars as constituents of glycoproteins. Identification of 3-O-methylgalactose and 3-O-methylmannose in pulmonate gastropod haemocyanins.

    PubMed

    Hall, R L; Wood, E J; Kamberling, J P; Gerwig, G J; Vliegenthart, F G

    1977-07-01

    In addition to the already knownonosaccharides fucose, xylose, mannose, galactose, glucose, N-acetylgalactosamine and N-acetylglucosamine, the carbohydrate part of the haemocyanin from Helix pomatia (Roman snail) contains 3-O-methylgalactose, and that from Lymnaea stagnalis (a freshwater snail) 3-O-methylgalactose and 3-O-methylmannose. The 3-O-methyl sugars were identified by g.l.c.-mas spectrometry of the corresponding trimethylsilyl methyl glycosides and the alditol acetates, and by co-chromatography with the synthetic reference substances. PMID:889564

  8. Crystal structure of 1,2,3,4-di-O-methyl­ene-α-d-galacto­pyran­ose

    PubMed Central

    Tiritiris, Ioannis; Tussetschläger, Stefan; Kantlehner, Willi

    2015-01-01

    The title compound, C8H12O6, was synthesized by de­acetyl­ation of 6-acetyl-1,2,3,4-di-O-methyl­ene-α-d-galactose with sodium methoxide. The central part of the mol­ecule consists of a six-membered C5O pyran­ose ring with a twist-boat conformation. Both fused dioxolane rings adopt an envelope conformation with C and O atoms as the flap. In the crystal, O—H⋯O and C—H⋯O hydrogen bonds are present between adjacent mol­ecules, generating a three-dimensional network. PMID:26870551

  9. GLUTATHIONE S-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE

    EPA Science Inventory

    GLUTATHIONE s-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE. M K Ross1 and R A Pegram2. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill; 2Experimental Toxicology Division, NHEERL/ORD, United States Environmental Protection Agency, Research Triangl...

  10. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ornithine carbamyl transferase test system. 862.1535 Section 862.1535 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1535 Ornithine...

  11. Rational design of an organometallic glutathione transferase inhibitor

    SciTech Connect

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  12. METAL-INDUCED INHIBITION OF GLUTATHIONE S-TRANSFERASES

    EPA Science Inventory

    The glutathione S-transferases comprise a group of multi-functional enzymes involved in the biotransformation/detoxication of a broad spectrum of hydrophobic compounds bearing an electrophilic center. The enzymes facilitate the nucleophilic attack of the -SH group of reduced glut...

  13. Inhibition of liver glutathione S-transferase activity in rats by hypolipidemic drugs related or unrelated to clofibrate.

    PubMed

    Foliot, A; Touchard, D; Mallet, L

    1986-05-15

    The effects of in vivo administration of six hypolipidemic drugs on rat liver glutathione S-transferase activity were compared. This activity was measured with sulfobromophthalein (BSP), 1,2-dichloro-4-nitrobenzene (DCNB) or 1-chloro-2,4-dinitrobenzene (CDNB) as substrate. Except for the nicotinic acid derivative ethanolamine oxiniacate, all the compounds tested significantly reduced it, whether or not they were related to clofibrate. The hepatic glutathione concentration either remained unchanged or only increased slightly after treatment with the various drugs. When measured, the maximal excretion rate of bile BSP dropped significantly, but not that of phenol-3,6-dibromophthalein (DBSP). Hepatic dye uptake and storage were not impaired. These results show that hypolipidemic drugs of the peroxisome proliferator type inhibit rat liver glutathione S-transferase activity and may reduce transport of anions conjugated with glutathione before excretion. PMID:3707598

  14. Genetics Home Reference: succinyl-CoA:3-ketoacid CoA transferase deficiency

    MedlinePlus

    ... CoA:3-ketoacid CoA transferase deficiency succinyl-CoA:3-ketoacid CoA transferase deficiency Enable Javascript to view ... PDF Open All Close All Description Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is an inherited ...

  15. Inhibitory impact of 3'-terminal 2'-O-methylated small silencing RNA on target-primed polymerization and unbiased amplified quantification of the RNA in Arabidopsis thaliana.

    PubMed

    Chen, Feng; Fan, Chunhai; Zhao, Yongxi

    2015-09-01

    3'-terminal 2'-O-methylation has been found in several kinds of small silencing RNA, regarded as a protective mechanism against enzymatic 3' → 5' degradation and 3'-end uridylation. The influence of this modification on enzymatic polymerization, however, remains unknown. Herein, a systematic investigation is performed to explore this issue. We found these methylated small RNAs exhibited a suppression behavior in target-primed polymerization, revealing biased result for the manipulation of these small RNAs by conventional polymerization-based methodology. The related potential mechanism is investigated and discussed, which is probably ascribed to the big size of modified group and its close location to 3'-OH. Furthermore, two novel solutions each utilizing base-stacking hybridization and three-way junction structure have been proposed to realize unbiased recognition of small RNAs. On the basis of phosphorothioate against nicking, a creative amplified strategy, phosphorothioate-protected polymerization/binicking amplification, has also been developed for the unbiased quantification of methylated small RNA in Arabidopsis thaliana, demonstrating its promising potential for real sample analysis. Collectively, our studies uncover the polymerization inhibition by 3'-terminal 2'-O-methylated small RNAs with mechanistic discussion, and propose novel unbiased solutions for amplified quantification of small RNAs in real sample. PMID:26244621

  16. Simultaneous automatic determination of catecholamines and their 3-O-methyl metabolites in rat plasma by high-performance liquid chromatography using peroxyoxalate chemiluminescence reaction.

    PubMed

    Tsunoda, M; Takezawa, K; Santa, T; Imai, K

    1999-05-01

    A highly specific and sensitive automated high-performance liquid chromatographic method for the simultaneous determination of catecholamines (CAs; norepinephrine, epinephrine, and dopamine) and their 3-O-methyl metabolites (normetanephrine, metanephrine, and 3-methoxytyramine) is described. Automated precolumn ion-exchange extraction of diluted plasma is coupled with HPLC separation of CAs and their 3-O-methyl metabolites on an ODS column, postcolumn coulometric oxidation, fluorescence derivatization with ethylenediamine, and finally peroxyoxalate chemiluminescence reaction detection. The detection limits were about 3 fmol for norepinephrine, epinephrine, and dopamine, 5 fmol for normetanephrine, and 10 fmol for metanephrine and 3-methoxytyramine (signal-to-noise ratio of 3). Fifty microliters of rat plasma was used and 4-methoxytyramine was employed as an internal standard. The relative standard deviations for the method (n = 5) were 2.5-7.6% for the intraday assay and 6.3-9.1% for the interday assay. The method was applicable to the determination of normetanephrine and metanephrine in 50 microl of rat plasma. PMID:10222014

  17. Efficient RNA 2′-O-methylation requires juxtaposed and symmetrically assembled archaeal box C/D and C′/D′ RNPs

    PubMed Central

    Tran, Elizabeth J.; Zhang, Xinxin; Maxwell, E.Stuart

    2003-01-01

    Box C/D ribonucleoprotein (RNP) complexes direct the nucleotide-specific 2′-O-methylation of ribonucleotide sugars in target RNAs. In vitro assembly of an archaeal box C/D sRNP using recombinant core proteins L7, Nop56/58 and fibrillarin has yielded an RNA:protein enzyme that guides methylation from both the terminal box C/D core and internal C′/D′ RNP complexes. Reconstitution of sRNP complexes containing only box C/D or C′/D′ motifs has demonstrated that the terminal box C/D RNP is the minimal methylation-competent particle. However, efficient ribonucleotide 2′-O-methylation requires that both the box C/D and C′/D′ RNPs function within the full-length sRNA molecule. In contrast to the eukaryotic snoRNP complex, where the core proteins are distributed asymmetrically on the box C/D and C′/D′ motifs, all three archaeal core proteins bind both motifs symmetrically. This difference in core protein distribution is a result of altered RNA-binding capabilities of the archaeal and eukaryotic core protein homologs. Thus, evolution of the box C/D nucleotide modification complex has resulted in structurally distinct archaeal and eukaryotic RNP particles. PMID:12881427

  18. Efficient RNA 2'-O-methylation requires juxtaposed and symmetrically assembled archaeal box C/D and C'/D' RNPs.

    PubMed

    Tran, Elizabeth J; Zhang, Xinxin; Maxwell, E Stuart

    2003-08-01

    Box C/D ribonucleoprotein (RNP) complexes direct the nucleotide-specific 2'-O-methylation of ribonucleotide sugars in target RNAs. In vitro assembly of an archaeal box C/D sRNP using recombinant core proteins L7, Nop56/58 and fibrillarin has yielded an RNA:protein enzyme that guides methylation from both the terminal box C/D core and internal C'/D' RNP complexes. Reconstitution of sRNP complexes containing only box C/D or C'/D' motifs has demonstrated that the terminal box C/D RNP is the minimal methylation-competent particle. However, efficient ribonucleotide 2'-O-methylation requires that both the box C/D and C'/D' RNPs function within the full-length sRNA molecule. In contrast to the eukaryotic snoRNP complex, where the core proteins are distributed asymmetrically on the box C/D and C'/D' motifs, all three archaeal core proteins bind both motifs symmetrically. This difference in core protein distribution is a result of altered RNA-binding capabilities of the archaeal and eukaryotic core protein homologs. Thus, evolution of the box C/D nucleotide modification complex has resulted in structurally distinct archaeal and eukaryotic RNP particles. PMID:12881427

  19. BC1-FMRP interaction is modulated by 2′-O-methylation: RNA-binding activity of the tudor domain and translational regulation at synapses

    PubMed Central

    Lacoux, Caroline; Di Marino, Daniele; Pilo Boyl, Pietro; Zalfa, Francesca; Yan, Bing; Ciotti, Maria Teresa; Falconi, Mattia; Urlaub, Henning; Achsel, Tilmann; Mougin, Annie; Caizergues-Ferrer, Michèle; Bagni, Claudia

    2012-01-01

    The brain cytoplasmic RNA, BC1, is a small non-coding RNA that is found in different RNP particles, some of which are involved in translational control. One component of BC1-containing RNP complexes is the fragile X mental retardation protein (FMRP) that is implicated in translational repression. Peptide mapping and computational simulations show that the tudor domain of FMRP makes specific contacts to BC1 RNA. Endogenous BC1 RNA is 2′-O-methylated in nucleotides that contact the FMRP interface, and methylation can affect this interaction. In the cell body BC1 2′-O-methylations are present in both the nucleus and the cytoplasm, but they are virtually absent at synapses where the FMRP–BC1–mRNA complex exerts its function. These results strongly suggest that subcellular region-specific modifications of BC1 affect the binding to FMRP and the interaction with its mRNA targets. We finally show that BC1 RNA has an important role in translation of certain mRNAs associated to FMRP. All together these findings provide further insights into the translational regulation by the FMRP–BC1 complex at synapses. PMID:22238374

  20. Synthesis and Insecticidal Activity of Spinosyns with C9-O-Benzyl Bioisosteres in Place of the 2',3',4'-Tri-O-methyl Rhamnose.

    PubMed

    Oliver, M Paige; Crouse, Gary D; Demeter, David A; Sparks, Thomas C

    2015-06-17

    The spinosyns are fermentation-derived natural products active against a wide range of insect pests. They are structurally complex, consisting of two sugars (forosamine and rhamnose) coupled to a macrocyclic tetracycle. Removal of the rhamnose sugar results in a >100-fold reduction in insecticidal activity. C9-O-benzyl analogues of spinosyn D were synthesized to determine if the 2',3',4'-tri-O-methyl rhamnose moiety could be replaced with a simpler, synthetic bioisostere. Insecticidal activity was evaluated against larvae of Spodoptera exigua (beet armyworm) and Helicoverpa zea (corn earworm). Whereas most analogues were far less active than spinosyn D, a few of the C9-O-benzyl analogues, such as 4-CN, 4-Cl, 2-isopropyl, and 3,5-diOMe, were within 3-15 times the activity of spinosyn D for larvae of S. exigua and H. zea. Thus, although not yet quite as effective, synthetic bioisosteres can substitute for the naturally occurring 2',3',4'-tri-O-methyl rhamnose moiety. PMID:25993441

  1. Expression of glutathione transferases in corneal cell lines, corneal tissues and a human cornea construct.

    PubMed

    Kölln, Christian; Reichl, Stephan

    2016-06-15

    Glutathione transferase (GST) expression and activity were examined in a three-dimensional human cornea construct and were compared to those of excised animal corneas. The objective of this study was to characterize phase II enzyme expression in the cornea construct with respect to its utility as an alternative to animal cornea models. The expression of the GSTO1-1 and GSTP1-1 enzymes was investigated using immunofluorescence staining and western blotting. The level of total glutathione transferase activity was determined using 1-chloro-2,4- dinitrobenzene as the substrate. Furthermore, the levels of GSTO1-1 and GSTP1-1 activity were examined using S-(4-nitrophenacyl)glutathione and ethacrynic acid, respectively, as the specific substrates. The expression and activity levels of these enzymes were examined in the epithelium, stroma and endothelium, the three main cellular layers of the cornea. In summary, the investigated enzymes were detected at both the protein and functional levels in the cornea construct and the excised animal corneas. However, the enzymatic activity levels of the human cornea construct were lower than those of the animal corneas. PMID:27113863

  2. Selective inhibitors of glutathione transferase P1 with trioxane structure as anticancer agents.

    PubMed

    Bräutigam, Maria; Teusch, Nicole; Schenk, Tobias; Sheikh, Miriam; Aricioglu, Rocky Z; Borowski, Swantje H; Neudörfl, Jörg-Martin; Baumann, Ulrich; Griesbeck, Axel G; Pietsch, Markus

    2015-04-01

    The response to chemotherapy in cancer patients is frequently compromised by drug resistance. Although chemoresistance is a multifactorial phenomenon, many studies have demonstrated that altered drug metabolism through the expression of phase II conjugating enzymes, including glutathione transferases (GSTs), in tumor cells can be directly correlated with resistance against a wide range of marketed anticancer drugs. In particular, overexpression of glutathione transferase P1 (GSTP1) appears to be a factor for poor prognosis during cancer therapy. Former and ongoing clinical trials have confirmed GSTP1 inhibition as a principle for antitumor therapy. A new series of 1,2,4-trioxane GSTP1 inhibitors were designed via a type II photooxygenation route of allylic alcohols followed by acid-catalyzed peroxyacetalization with aldehydes. A set of novel inhibitors exhibit low micromolar to high nanomolar inhibition of GSTP1, revealing preliminary SAR for further lead optimization. Importantly, high selectivity over another two human GST classes (GSTA1 and GSTM2) has been achieved. The trioxane GSTP1 inhibitors may therefore serve as a basis for the development of novel drug candidates in overcoming chemoresistance. PMID:25694385

  3. STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo.

    PubMed Central

    Zufferey, R; Knauer, R; Burda, P; Stagljar, I; te Heesen, S; Lehle, L; Aebi, M

    1995-01-01

    N-linked glycosylation is a ubiquitous protein modification, and is essential for viability in eukaryotic cells. A lipid-linked core-oligosaccharide is assembled at the membrane of the endoplasmic reticulum and transferred to selected asparagine residues of nascent polypeptide chains by the oligosaccharyl transferase (OTase) complex. Based on the synthetic lethal phenotype of double mutations affecting the assembly of the lipid-linked core-oligosaccharide and the OTase activity, we have performed a novel screen for mutants in Saccharomyces cerevisiae with altered N-linked glycosylation. Besides novel mutants deficient in the assembly of the lipid-linked oligosaccharide (alg mutants), we identified the STT3 locus as being required for OTase activity in vivo. The essential STT3 protein is approximately 60% identical in amino acid sequence to its human homologue. A mutation in the STT3 locus affects substrate specificity of the OTase complex in vivo and in vitro. In stt3-3 cells very little glycosyl transfer occurs from incomplete lipid-linked oligosaccharide, whereas the transfer of full-length Glc3Man9GlcNAc2 is hardly affected as compared with wild-type cells. Depletion of the STT3 protein results in loss of transferase activity in vivo and a deficiency in the assembly of OTase complex. Images PMID:7588624

  4. Kinetics and catalytic properties of coenzyme A transferase from Peptostreptococcus elsdenii.

    PubMed Central

    Schulman, M; Valentino, D

    1976-01-01

    Coenzyme A (CoA) transferase from Peptostreptococcus elsdenii was purified to homogeneity, and some of its physical and catalytic properties were determined. The native enzyme has a molecular weight of 181,000 and is composed of two alpha subunits (molecular weight, 65,000) and one beta subunit (molecular weight 50,000). Heat treatment of the crude cell extract to 58 degrees C causes proteolysis of the native enzyme and yields a catalytically active enzyme with an approximate molecular weight of 120,000. The native CoA transferase is specific for CoA esters of short-chain alkyl monocarboxylic acids. With acetate as CoA acceptor the enzyme is active with propionyl-, butyryl-, isobutyryl-, valeryl-, isovaleryl,- and hexanoyl-CoA but not with heptanoyl or longer-chain CoA esters. There is no activity with acetoacetyl-CoA or the CoA esters of dicarboxylic acids. Steady-state kinetics indicated that the reaction proceeds via a classical bi-, bi-ping-pong mechanism. Maximal activity is obtained with propionyl- or butyryl-CoA, and both the Vmax and Km decrease as the alkyl chain length of the CoA ester increases. All CoA esters apompetitive inhibitor although it is not active as a substrate. Evidence for an enzyme CoA intermediate was provided by demonstration of an exchange between 14C-free acids (acetate and butyrate) and their corresponding CoA esters and by isolation of a 3H-labeled CoA enzyme after incubation of the enzyme with 3H-labeled acetyl-CoA. Approximately 2 mol of CoA was bound per mol of enzyme. Images PMID:977540

  5. Synthetically useful Brønsted acid-promoted arylbenzyl ether --> o-benzylphenol rearrangements.

    PubMed

    Luzzio, Frederick A; Chen, Juan

    2009-08-01

    Camphorsulfonic acid in warm fluorobenzene facilitates the ortho rearrangement of (alkoxy-substituted) benzyl ethers of 1-(O-methyl)-2-nitroresorcinols to the corresponding o-(alkoxy-substituted) arylmethylnitrophenols. The substrate phenolic ethers are prepared by ultrasound-promoted arylmethylation of the appropriate 1-alkoxy-substituted 2-nitroresorcinol. PMID:19518072

  6. Developmental aspects of glutathione S-transferase B (ligandin) in rat liver.

    PubMed Central

    Hales, B F; Neims, A H

    1976-01-01

    The postnatal development in male Sprague-Dawley rats of hepatic glutathione S-transferase B (ligandin) in relation to the other glutathione S-transferases is described. The concentration of glutathione S-transferase B in 1-day-old male rats is about one-fifth of that in adult animals. The enzyme reaches adult concentrations 4-5 weeks later. When assessed by substrate specificity or immunologically, the proportion of transferase B relative to the other glutathione S-transferases is high during the first week after birth. At this age, 67.5% of the transferase activity towards 1-chloro-2,4-dinitrobenzene is immunoprecipitable by anti-(transferase B), compared with about 50% in adults and older pups. Between the second and the fifth postnatal week, the fraction of transferase B increases in parallel fashion with the other transferases in hepatic cytosol. Neither L-thyroxine nor cortisol induce a precocious increase in glutathione S-transferase activity. Phenobarbital did induce transferase activity towards 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene in both pups and adults. The extent of induction by phenobarbital was a function of basal activity during development such that the percentage stimulation remained constant from 5 days postnatally to adulthood. PMID:1008852

  7. Purification and kinetic mechanism of the major glutathione S-transferase from bovine brain.

    PubMed Central

    Young, P R; Briedis, A V

    1989-01-01

    The major glutathione S-transferase isoenzyme from bovine brain was isolated and purified approx. 500-fold. The enzyme has a pI of 7.39 +/- 0.02 and consists of two non-identical subunits having apparent Mr values of 22,000 and 24,000. The enzyme is uniformly distributed in brain, and kinetic data at pH 6.5 with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate suggest a random rapid-equilibrium mechanism. The kinetics of inhibition by product, by GSH analogues and by NADH are consistent with the suggested mechanism and require inhibitor binding to several different enzyme forms. Long-chain fatty acids are excellent inhibitors of the enzyme, and values of 1nKi for hexanoic acid, octanoic acid, decanoic acid and lauric acid form a linear series when plotted as a function of alkyl chain length. A free-energy change of -1900 J/mol (-455 cal/mol) per CH2 unit is calculated for the contribution of hydrophobic binding energy to the inhibition constants. The turnover number of the purified enzyme dimer is approx. 3400/min. When compared with the second-order rate constant for the reaction between CDNB and GSH, the enzyme is providing a rate acceleration of about 1000-fold. The role of entropic contributions to this small rate acceleration is discussed. PMID:2930465

  8. 3-Methyleneoxindole: an affinity label of glutathione S-transferase pi which targets tryptophan 38.

    PubMed

    Pettigrew, N E; Brush, E J; Colman, R F

    2001-06-26

    The compound 3-methyleneoxindole (MOI), a photooxidation product of the plant auxin indole-3-acetic acid, functions as an affinity label of the dimeric pi class glutathione S-transferase (GST) isolated from pig lung. MOI inactivates the enzyme to a limit of 14% activity. The k for inactivation by MOI is decreased 20-fold by S-hexylglutathione but only 2-fold by S-methylglutathione, suggesting that MOI does not react entirely within the glutathione site. The striking protection against inactivation provided by S-(hydroxyethyl)ethacrynic acid indicates that MOI reacts in the active site region involving both the glutathione and the xenobiotic substrate sites. Incorporation of [(3)H]MOI up to approximately 1 mol/mol of enzyme dimer concomitant with maximum inactivation suggests that there are interactions between subunits. Fractionation of the proteolytic digest of [(3)H]MOI-modified GST pi yielded Trp38 as the only labeled amino acid. The crystal structure of the human GST pi-ethacrynic acid complex (2GSS) shows that the indole of Trp38 is less than 4 A from ethacrynic acid. Similarly, MOI may bind in this substrate site. In contrast to its effect on the pi class GST, MOI inactivates much less rapidly and extensively alpha and mu class GSTs isolated from the rat. These results show that MOI reacts preferentially with GST pi. Such a compound may be useful in novel combination chemotherapy to enhance the efficacy of alkylating cancer drugs while minimizing toxic side effects. PMID:11412109

  9. Purification and characterization of a DNA strand transferase from broccoli.

    PubMed

    Tissier, A F; Lopez, M F; Signer, E R

    1995-05-01

    A protein with DNA binding, renaturation, and strand-transfer activities has been purified to homogeneity from broccoli (Brassica oleracea var italica). The enzyme, broccoli DNA strand transferase, has a native molecular mass of at least 200 kD and an apparent subunit molecular mass of 95 kD and is isolated as a set of isoforms differing only in charge. All three activities are saturated at very low stoichiometry, one monomer per approximately 1000 nucleotides of single-stranded DNA. Strand transfer is not effected by nuclease activity and reannealing, is only slightly dependent on ATP, and is independent of added Mg2+. Transfer requires homologous single- and double-stranded DNA and at higher enzyme concentrations results in very high molecular mass complexes. As with Escherichia coli RecA, transfer by broccoli DNA strand transferase depends strongly on the presence of 3' homologous ends. PMID:7784508

  10. Inhibition of the recombinant cattle tick Rhipicephalus (Boophilus) annulatus glutathione S-transferase.

    PubMed

    Guneidy, Rasha A; Shahein, Yasser E; Abouelella, Amira M K; Zaki, Eman R; Hamed, Ragaa R

    2014-09-01

    Rhipicephalus (Boophilus) annulatus is a bloodsucking ectoparasite that causes severe production losses in the cattle industry. This study aims to evaluate the in vitro effects of tannic acid, hematin (GST inhibitors) and different plant extracts (rich in tannic acid) on the activity of the recombinant glutathione S-transferase enzyme of the Egyptian cattle tick R. annulatus (rRaGST), in order to confirm their ability to inhibit the parasitic essential detoxification enzyme glutathione S-transferase. Extraction with 70% ethanol of Hibiscus cannabinus (kenaf flowers), Punica granatum (red and white pomegranate peel), Musa acuminata (banana peel) (Musaceae), Medicago sativa (alfalfa seeds), Tamarindus indicus (seed) and Cuminum cyminum (cumin seed) were used to assess: (i) inhibitory capacities of rRaGST and (ii) their phenolic and flavonoid contents. Ethanol extraction of red pomegranate peel contained the highest content of phenolic compounds (29.95mg gallic acid/g dry tissue) compared to the other studied plant extracts. The highest inhibition activities of rRaGST were obtained with kenaf and red pomegranate peel (P. granatum) extracts with IC50 values of 0.123 and 0.136mg dry tissue/ml, respectively. Tannic acid was the more effective inhibitor of rRaGST with an IC50 value equal to 4.57μM compared to delphinidine-HCl (IC50=14.9±3.1μM). Gossypol had a weak inhibitory effect (IC50=43.7μM), and caffeic acid had almost no effect on tick GST activity. The IC50 values qualify ethacrynic acid as a potent inhibitor of rRaGST activity (IC50=0.034μM). Cibacron blue and hematin showed a considerable inhibition effect on rRaGST activity, and their IC50 values were 0.13μM and 7.5μM, respectively. The activity of rRaGST was highest for CDNB (30.2μmol/min/mg protein). The enzyme had also a peroxidatic activity (the specific activity equals 26.5μmol/min/mg protein). Both tannic acid and hematin inhibited rRaGST activity non-competitively with respect to GSH and

  11. 23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction.

    PubMed

    Yang, Rui; Cruz-Vera, Luis R; Yanofsky, Charles

    2009-06-01

    Distinct features of the ribosomal peptide exit tunnel are known to be essential for recognition of specific amino acids of a nascent peptidyl-tRNA. Thus, a tryptophan residue at position 12 of the peptidyl-tRNA TnaC-tRNA(Pro) leads to the creation of a free tryptophan binding site within the ribosome at which bound tryptophan inhibits normal ribosome functions. The ribosomal processes that are inhibited are hydrolysis of TnaC-tRNA(Pro) by release factor 2 and peptidyl transfer of TnaC of TnaC-tRNA(Pro) to puromycin. These events are normally performed in the ribosomal peptidyl transferase center. In the present study, changes of 23S rRNA nucleotides in the 2585 region of the peptidyl transferase center, G2583A and U2584C, were observed to reduce maximum induction of tna operon expression by tryptophan in vivo without affecting the concentration of tryptophan necessary to obtain 50% induction. The growth rate of strains with ribosomes with either of these changes was not altered appreciably. In vitro analyses with mutant ribosomes with these changes showed that tryptophan was not as efficient in protecting TnaC-tRNA(Pro) from puromycin action as wild-type ribosomes. However, added tryptophan did prevent sparsomycin action as it normally does with wild-type ribosomes. These findings suggest that these two mutational changes act by reducing the ability of ribosome-bound tryptophan to inhibit peptidyl transferase activity rather than by reducing the ability of the ribosome to bind tryptophan. Thus, the present study identifies specific nucleotides within the ribosomal peptidyl transferase center that appear to be essential for effective tryptophan induction of tna operon expression. PMID:19329641

  12. Biochemical properties of an omega-class glutathione S-transferase of the silkmoth, Bombyx mori.

    PubMed

    Yamamoto, Kohji; Nagaoka, Sumiharu; Banno, Yutaka; Aso, Yoichi

    2009-05-01

    A cDNA encoding an omega-class glutathione S-transferase of the silkmoth, Bombyx mori (bmGSTO), was cloned by reverse transcriptase-polymerase chain reaction. The resulting clone was sequenced and deduced for amino acid sequence, which revealed 40, 40, and 39% identities to omega-class GSTs from human, pig, and mouse, respectively. A recombinant protein (rbmGSTO) was functionally overexpressed in Escherichia coli cells in a soluble form and purified to homogeneity. rbmGSTO was able to catalyze the biotranslation of glutathione with 1-chloro-2,4-dinitrobenzene, a model substrate for GST, as well as with 4-hydroxynonenal, a product of lipid peroxidation. This enzyme was shown to have high affinity for organophosphorus insecticide and was present abundantly in silkmoth strain exhibiting fenitrothion resistance. These results indicate that bmGSTO could be involved in the increase in level of insecticide resistance for lepidopteran insects. PMID:19022397

  13. Glutathione S-transferase GSTT1 and GSTM1 allozymes: beyond null alleles.

    PubMed

    Agúndez, José A G; Ladero, José M

    2008-03-01

    Moyer AM, Salavaggione OE, Hebbring SJ et al.: Glutathione S-transferase T1 and M1: gene sequence variation and functional genomics. Clin. Cancer Res. 13, 7207-7216 (2007). Genetic variations in the glutathione S-transferases GSTT1 and GSTM1 have been studied in many human populations, and association of these variations with environmentally-related cancers, drug-induced hepatotoxicity and even chronification of viral hepatitis has been shown. However, studies carried out to date have been limited to gene deletion, designated as null alleles, and no extensive studies on other types of genetic variations have been carried out. This study is of great importance, as it describes the occurrence and the allele frequencies for 18 SNPs in the GSTT1 gene, including four nonsynonymous SNPs, and 69 SNPs, two of which are nonsynonymous, in the GSTM1 gene. The GSTT1 SNPs leading to the amino acid substitutions Asp43Asn, Thr65Met, Thr104Pro and a single nucleotide deletion in exon 4 cause a decrease in immunoreactive protein. Interestingly, the previously described nonsynonymous GSTT1 SNPs rs2266635 (Ala21Thr), rs11550606 (Leu30Pro), rs17856199 (Phe45Cys), rs11550605 (Thr104Pro), rs2266633 (Asp141Asn) and rs2234953 (Glu173Lys) were not identified in 400 subjects, thus indicating that these variant alleles are expected to occur at extremely low frequencies. This study reinforces the need to combine SNP databases and resequencing. On combining the data reported in this study with SNP databases, the most promising target SNPs for GSTT1 association studies are those causing the amino acid changes Asp43Asn, Thr65Met, Thr104Pro and the single nucleotide deletion in exon 4. These gene variants should be analyzed in African-American and Hispanic subjects to increase the predictive capacity of genetic tests. For Caucasians and Oriental subjects, testing for null alleles seems to be sufficient. PMID:18303971

  14. Determination of Activity of the Enzymes Hypoxanthine Phosphoribosyl Transferase (HPRT) and Adenine Phosphoribosyl Transferase (APRT) in Blood Spots on Filter Paper.

    PubMed

    Auler, Kasie; Broock, Robyn; Nyhan, William L

    2015-01-01

    Hypoxanthine-guanine phosphoribosyl-transferase (HPRT) deficiency is the cause of Lesch-Nyhan disease. Adenine phosphoribosyl-transferase (APRT) deficiency causes renal calculi. The activity of each enzyme is readily determined on spots of whole blood on filter paper. This unit describes a method for detecting deficiencies of HPRT and APRT. PMID:26132002

  15. Theoretical and Molecular Docking Study of Ketoconazole on Heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin as Chiral Selector.

    PubMed

    Arsad, Siti Rosilah; Maarof, Hasmerya; Wan Ibrahim, Wan Aini; Aboul-Enein, Hassan Y

    2016-03-01

    A molecular docking study, using molecular mechanics calculations with AutoDock and semi-empirical PM3 calculations, was used to predict the enantiodiscrimination of heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TMβCD) and ketoconazole (KTZ) enantiomers. A Density Functional Theory (DFT) single-point calculation at the level of B3LYP/6-311G (d,p) was performed for the PM3-optimized complexes to obtain more accurate binding energy and the electronic structures of the complexes. The difference in energies of the inclusion complexes between the KTZ enantiomers and TMβCD is probably a measure of chiral discrimination, which results in the separation of the enantiomers as observed in the experimental studies. PMID:26708260

  16. Characterization and evaluation of synthetic riluzole with β-cyclodextrin and 2,6-di-O-methyl-β-cyclodextrin inclusion complexes.

    PubMed

    Wang, Lili; Li, Shanshan; Tang, Peixiao; Yan, Jin; Xu, Kailin; Li, Hui

    2015-09-20

    β-Cyclodextrin (β-CD) and 2,6-di-O-methyl-β-cyclodextrin (DM-β-CD) inclusion complexes with riluzole (RLZ) were prepared to improve water solubility and broaden potential pharmaceutical applications. CDs/RLZ inclusion complexes were confirmed via phase solubility studies, FT-IR spectroscopy, PXRD, DSC, (1)H NMR, and SEM. Phase solubility studies indicated that β-CD and DM-β-CD can form 1:1 inclusion complexes with RLZ, and the stability constants were 663.17 and 1609.07M(-1), respectively. Water solubility and dissolution rate of RLZ were significantly improved in complex forms, implying that the inclusion complexes may develop pharmaceutical applications. Preliminary in vitro cytotoxicity assay also showed that RLZ hepatotoxicity was not increased in the inclusion complexes. PMID:26050882

  17. New asymmetrical per-substituted cyclodextrins (2-O-methyl-3-O-ethyl- and 2-O-ethyl-3-O-methyl-6-O-t-butyldimethylsilyl-beta-derivatives) as chiral selectors for enantioselective gas chromatography in the flavour and fragrance field.

    PubMed

    Bicchi, Carlo; Cagliero, Cecilia; Liberto, Erica; Sgorbini, Barbara; Martina, Katia; Cravotto, Giancarlo; Rubiolo, Patrizia

    2010-02-12

    Asymmetrically substituted 6(I-VII)-O-t-butyldimethylsilyl(TBDMS)-3(I-VII)-O-ethyl-2(I-VII)-O-methyl-beta-cyclodextrin (MeEt-CD) and 6(I-VII)-O-TBDMS-2(I-VII)-O-ethyl-3(I-VII)-O-methyl-beta-cyclodextrin (EtMe-CD) were synthesised to evaluate the role of the substitution pattern in positions 2 and 3 on the enantioselectivity, in particular in view of their application to routine analysis in fast enantioselective gas chromatography (Es-GC). The chromatographic properties and enantioselectivities of the new derivatives were tested by separating the enantiomers of a series of medium-to-high volatility racemates in the flavour and fragrance field, and compared to those of the corresponding symmetrically substituted 6(I-VII)-O-TBDMS-2(I-VII),3(I-VII)-O-methyl-beta-CD (MeMe-CD) and 6(I-VII)-O-TBDMS-2(I-VII),3(I-VII)-O-ethyl-beta-CD (EtEt-CD), and were then applied to analysis of real-world essential oil (e.o.) samples. A new synthetic process including the sonochemical approach to obtain synthetic reproducibility and significant yields of the per-substituted derivatives with acceptable reaction times was developed. The results show that asymmetrically substituted methyl/ethyl CDs compared to the methyl or ethyl symmetrical derivatives in general provide better enantioselectivity in terms of both enantiomer resolution and number of separated chiral compounds, and show how the substitution pattern in positions 2 and 3 of the CD ring can influence the separation. Moreover, these new CD derivatives with better enantioselectivity are also shown to be very useful in routine analysis for the exhaustive control of samples containing several chiral characterizing markers in a single run. PMID:19846102

  18. Defects in tRNA Anticodon Loop 2'-O-Methylation Are Implicated in Nonsyndromic X-Linked Intellectual Disability due to Mutations in FTSJ1.

    PubMed

    Guy, Michael P; Shaw, Marie; Weiner, Catherine L; Hobson, Lynne; Stark, Zornitza; Rose, Katherine; Kalscheuer, Vera M; Gecz, Jozef; Phizicky, Eric M

    2015-12-01

    tRNA modifications are crucial for efficient and accurate protein synthesis, and modification defects are frequently associated with disease. Yeast trm7Δ mutants grow poorly due to lack of 2'-O-methylated C32 (Cm32 ) and Gm34 on tRNA(Phe) , catalyzed by Trm7-Trm732 and Trm7-Trm734, respectively, which in turn results in loss of wybutosine at G37 . Mutations in human FTSJ1, the likely TRM7 homolog, cause nonsyndromic X-linked intellectual disability (NSXLID), but the role of FTSJ1 in tRNA modification is unknown. Here, we report that tRNA(Phe) from two genetically independent cell lines of NSXLID patients with loss-of-function FTSJ1 mutations nearly completely lacks Cm32 and Gm34 , and has reduced peroxywybutosine (o2yW37 ). Additionally, tRNA(Phe) from an NSXLID patient with a novel FTSJ1-p.A26P missense allele specifically lacks Gm34 , but has normal levels of Cm32 and o2yW37 . tRNA(Phe) from the corresponding Saccharomyces cerevisiae trm7-A26P mutant also specifically lacks Gm34 , and the reduced Gm34 is not due to weaker Trm734 binding. These results directly link defective 2'-O-methylation of the tRNA anticodon loop to FTSJ1 mutations, suggest that the modification defects cause NSXLID, and may implicate Gm34 of tRNA(Phe) as the critical modification. These results also underscore the widespread conservation of the circuitry for Trm7-dependent anticodon loop modification of eukaryotic tRNA(Phe) . PMID:26310293

  19. 2-O-methylation of fucosyl residues of a rhizobial lipopolysaccharide is increased in response to host exudate and is eliminated in a symbiotically defective mutant.

    PubMed

    Noel, K Dale; Box, Jodie M; Bonne, Valerie J

    2004-03-01

    When Rhizobium etli CE3 was grown in the presence of Phaseolus vulgaris seed extracts containing anthocyanins, its lipopolysaccharide (LPS) sugar composition was changed in two ways: greatly decreased content of what is normally the terminal residue of the LPS, di-O-methylfucose, and a doubling of the 2-O-methylation of other fucose residues in the LPS O antigen. R. etli strain CE395 was isolated after Tn5 mutagenesis of strain CE3 by screening for mutant colonies that did not change antigenically in the presence of seed extract. The LPS of this strain completely lacked 2-O-methylfucose, regardless of whether anthocyanins were present during growth. The mutant gave only pseudonodules in association with P. vulgaris. Interpretation of this phenotype was complicated by a second LPS defect exhibited by the mutant: its LPS population had only about 50% of the normal amount of O-antigen-containing LPS (LPS I). The latter defect could be suppressed genetically such that the resulting strain (CE395 alpha 395) synthesized the normal amount of an LPS I that still lacked 2-O-methylfucose residues. Strain CE395 alpha 395 did not elicit pseudonodules but resulted in significantly slower nodule development, fewer nodules, and less nitrogenase activity than lps(+) strains. The relative symbiotic deficiency was more severe when seeds were planted and inoculated with bacteria before they germinated. These results support previous conclusions that the relative amount of LPS I on the bacterial surface is crucial in symbiosis, but LPS structural features, such as 2-O-methylation of fucose, also may facilitate symbiotic interactions. PMID:15006776

  20. 2-O-Methylation of Fucosyl Residues of a Rhizobial Lipopolysaccharide Is Increased in Response to Host Exudate and Is Eliminated in a Symbiotically Defective Mutant

    PubMed Central

    Noel, K. Dale; Box, Jodie M.; Bonne, Valerie J.

    2004-01-01

    When Rhizobium etli CE3 was grown in the presence of Phaseolus vulgaris seed extracts containing anthocyanins, its lipopolysaccharide (LPS) sugar composition was changed in two ways: greatly decreased content of what is normally the terminal residue of the LPS, di-O-methylfucose, and a doubling of the 2-O-methylation of other fucose residues in the LPS O antigen. R. etli strain CE395 was isolated after Tn5 mutagenesis of strain CE3 by screening for mutant colonies that did not change antigenically in the presence of seed extract. The LPS of this strain completely lacked 2-O-methylfucose, regardless of whether anthocyanins were present during growth. The mutant gave only pseudonodules in association with P. vulgaris. Interpretation of this phenotype was complicated by a second LPS defect exhibited by the mutant: its LPS population had only about 50% of the normal amount of O-antigen-containing LPS (LPS I). The latter defect could be suppressed genetically such that the resulting strain (CE395α395) synthesized the normal amount of an LPS I that still lacked 2-O-methylfucose residues. Strain CE395α395 did not elicit pseudonodules but resulted in significantly slower nodule development, fewer nodules, and less nitrogenase activity than lps+ strains. The relative symbiotic deficiency was more severe when seeds were planted and inoculated with bacteria before they germinated. These results support previous conclusions that the relative amount of LPS I on the bacterial surface is crucial in symbiosis, but LPS structural features, such as 2-O-methylation of fucose, also may facilitate symbiotic interactions. PMID:15006776

  1. Inhibitory effects of plant polyphenols on rat liver glutathione S-transferases.

    PubMed

    Zhang, K; Das, N P

    1994-06-01

    Several novel naturally occurring flavonoids and other polyphenols exerted varying degrees of concentration-dependent inhibition on uncharacterized rat liver glutathione S-transferase (EC 2.5.1.18, GST) isoforms. The order of inhibitory potencies of the five most potent polyphenols was tannic acid > 2-hydroxyl chalcone > butein > morin > quercetin, and their IC50 values were 1.044, 6.758, 9.033, 13.710 and 18.732 microM, respectively. Their inhibitions were reversible, as indicated by dialysis experiments. The optimum pH for the inhibitions by four of the compounds (tannic acid, butein, 2-hydroxyl chalcone and morin) was in the range of pH 6.0 to 6.5, but for quercetin the optimum pH was 8.0. These potent inhibitors possess one or more of the following chemical structural features: (a) polyhydroxylation substitutions, (b) absence of a sugar moiety, (c) for the chalcones, the presence of an open C-ring and hydroxylation at either the C-2 or C-3 position, (d) for the flavonoids, the attachment of the B-ring to C-2, and (e) a double bond between C-2 and C-3. Butein exhibited a non-competitive inhibition toward both glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB). Interestingly, tannic acid showed a non-competitive inhibition toward CDNB but a competitive inhibition toward GSH. The inhibitory potency of tannic acid on rat liver GSTs was concentration and substrate dependent. Using CDNB, p-nitrobenzyl chloride, 4-nitropyridine-N-oxide, and ethacrynic acid as substrates, the IC50 values for tannic acid were 1.044, 11.151, 20.206, and 57.664 microM, respectively. PMID:8010991

  2. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a)...

  3. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a)...

  4. Partial characterization of glutathione S-transferases from wheat (Triticum spp.) and purification of a safener-induced glutathione S-transferase from Triticum tauschii.

    PubMed Central

    Riechers, D E; Irzyk, G P; Jones, S S; Fuerst, E P

    1997-01-01

    Hexaploid wheat (Triticum aestivum L.) has very low constitutive glutathione S-transferase (GST) activity when assayed with the chloroacetamide herbicide dimethenamid as a substrate, which may account for its low tolerance to dimethenamid in the field. Treatment of seeds with the herbicide safener fluxofenim increased the total GST activity extracted from T. aestivum shoots 9-fold when assayed with dimethenamid as a substrate, but had no effect on glutathione levels. Total GST activity in crude protein extracts from T. aestivum, Triticum durum, and Triticum tauschii was separated into several component GST activities by anion-exchange fast-protein liquid chromatography. These activities (isozymes) differed with respect to their activities toward dimethenamid or 1-chloro-2,4-dinitrobenzene as substrates and in their levels of induction by safener treatment. A safener-induced GST isozyme was subsequently purified by anion-exchange and affinity chromatography from etiolated shoots of the diploid wheat species T. tauschii (a progenitor of hexaploid wheat) treated with the herbicide safener cloquintocet-mexyl. The isozyme bound to a dimethenamid-affinity column and had a subunit molecular mass of 26 kD based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme (designated GST TSI-1) was recognized by an antiserum raised against a mixture of maize (Zea mays) GSTs. Amino acid sequences obtained from protease-digested GST TSI-1 had significant homology with the safener-inducible maize GST V and two auxin-regulated tobacco (Nicotiana tabacum) GST isozymes. PMID:9276955

  5. Glutathione transferase mimics: micellar catalysis of an enzymic reaction.

    PubMed Central

    Lindkvist, B; Weinander, R; Engman, L; Koetse, M; Engberts, J B; Morgenstern, R

    1997-01-01

    Substances that mimic the enzyme action of glutathione transferases (which serve in detoxification) are described. These micellar catalysts enhance the reaction rate between thiols and activated halogenated nitroarenes as well as alpha,beta-unsaturated carbonyls. The nucleophilic aromatic substitution reaction is enhanced by the following surfactants in descending order: poly(dimethyldiallylammonium - co - dodecylmethyldiallylammonium) bromide (86/14) >>cetyltrimethylammonium bromide>zwittergent 3-16 (n-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulphonate)>zwittergent+ ++ 3-14 (n-tetradecyl-N,N-dimethyl - 3 - ammonio -1 - propanesulphonate) approximately N,N - dimethyl - laurylamine N-oxide>N,N-dimethyloctylamine N-oxide. The most efficient catalyst studied is a polymeric material that incorporates surfactant properties (n-dodecylmethyldiallylammonium bromide) and opens up possibilities for engineering sequences of reactions on a polymeric support. Michael addition to alpha,beta-unsaturated carbonyls is exemplified by a model substance, trans-4-phenylbut-3-en-2-one, and a toxic compound that is formed during oxidative stress, 4-hydroxy-2-undecenal. The latter compound is conjugated with the highest efficiency of those tested. Micellar catalysts can thus be viewed as simple models for the glutathione transferases highlighting the influence of a positive electrostatic field and a non-specific hydrophobic binding site, pertaining to two catalytic aspects, namely thiolate anion stabilization and solvent shielding. PMID:9173899

  6. Nucleotidyl transferase assisted DNA labeling with different click chemistries

    PubMed Central

    Winz, Marie-Luise; Linder, Eva Christina; André, Timon; Becker, Juliane; Jäschke, Andres

    2015-01-01

    Here, we present a simple, modular and efficient strategy that allows the 3′-terminal labeling of DNA, regardless of whether it has been chemically or enzymatically synthesized or isolated from natural sources. We first incorporate a range of modified nucleotides at the 3′-terminus, using terminal deoxynucleotidyl transferase. In the second step, we convert the incorporated nucleotides, using either of four highly efficient click chemistry-type reactions, namely copper-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, Staudinger ligation or Diels-Alder reaction with inverse electron demand. Moreover, we create internal modifications, making use of either ligation or primer extension, after the nucleotidyl transferase step, prior to the click reaction. We further study the influence of linker variants on the reactivity of azides in different click reactions. We find that different click reactions exhibit distinct substrate preferences, a fact that is often overlooked, but should be considered when labeling oligonucleotides or other biomolecules with click chemistry. Finally, our findings allowed us to extend our previously published RNA labeling strategy to the use of a different copper-free click chemistry, namely the Staudinger ligation. PMID:26013812

  7. Combining in vitro and in silico approaches to evaluate the multifunctional profile of rosmarinic acid from Blechnum brasiliense on targets related to neurodegeneration.

    PubMed

    Andrade, Juliana Maria de Mello; Dos Santos Passos, Carolina; Kieling Rubio, Maria Angélica; Mendonça, Jacqueline Nakau; Lopes, Norberto Peporine; Henriques, Amélia Teresinha

    2016-07-25

    Natural products are important sources of chemical diversity leading to unique scaffolds that can be exploited in the discovery of new drug candidates or chemical probes. In this context, chemical and biological investigation of ferns and lycophytes occurring in Brazil is an approach adopted by our research group aiming at discovering bioactive molecules acting on neurodegeneration targets. In the present study, rosmarinic acid (RA) isolated from Blechnum brasiliense showed an in vitro multifunctional profile characterized by antioxidant effects, and monoamine oxidases (MAO-A and MAO-B) and catechol-O-methyl transferase (COMT) inhibition. RA showed antioxidant effects against hydroxyl (HO(•)) and nitric oxide (NO) radicals (IC50 of 29.4 and 140 μM, respectively), and inhibition of lipid peroxidation (IC50 of 19.6 μM). In addition, RA inhibited MAO-A, MAO-B and COMT enzymes with IC50 values of 50.1, 184.6 and 26.7 μM, respectively. The MAO-A modulation showed a non-time-dependent profile, suggesting a reversible mechanism of inhibition. Structural insights on RA interactions with MAO-A and COMT were investigated by molecular docking. Finally, RA (up to 5 mM) demonstrated no cytotoxicity on polymorphonuclear rat cells. Taken together, our results suggest that RA may be exploited as a template for the development of new antioxidant molecules possessing additional MAO and COMT inhibition effects to be further investigated on in vitro and in vivo models of neurodegenerative diseases. PMID:27270453

  8. Properties of succinyl-coenzyme A:L-malate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus.

    PubMed

    Friedmann, Silke; Steindorf, Astrid; Alber, Birgit E; Fuchs, Georg

    2006-04-01

    The 3-hydroxypropionate cycle has been proposed to operate as the autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus. In this pathway, acetyl coenzyme A (acetyl-CoA) and two bicarbonate molecules are converted to malate. Acetyl-CoA is regenerated from malyl-CoA by L-malyl-CoA lyase. The enzyme forming malyl-CoA, succinyl-CoA:L-malate coenzyme A transferase, was purified. Based on the N-terminal amino acid sequence of its two subunits, the corresponding genes were identified on a gene cluster which also contains the gene for L-malyl-CoA lyase, the subsequent enzyme in the pathway. Both enzymes were severalfold up-regulated under autotrophic conditions, which is in line with their proposed function in CO2 fixation. The two CoA transferase genes were cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified and studied. Succinyl-CoA:L-malate CoA transferase forms a large (alphabeta)n complex consisting of 46- and 44-kDa subunits and catalyzes the reversible reaction succinyl-CoA + L-malate --> succinate + L-malyl-CoA. It is specific for succinyl-CoA as the CoA donor but accepts L-citramalate instead of L-malate as the CoA acceptor; the corresponding d-stereoisomers are not accepted. The enzyme is a member of the class III of the CoA transferase family. The demonstration of the missing CoA transferase closes the last gap in the proposed 3-hydroxypropionate cycle. PMID:16547052

  9. Structure and expression of a cluster of glutathione S-transferase genes from a marine fish, the plaice (Pleuronectes platessa).

    PubMed Central

    Leaver, M J; Wright, J; George, S G

    1997-01-01

    Glutathione S-transferases are involved in the detoxification of reactive electrophilic compounds, including intracellular metabolites, drugs, pollutants and pesticides. A cluster of three glutathione S-transferase genes, designated GSTA, GSTA1 and GSTA2, was isolated from the marine flatfish, plaice (Pleuronectes platessa). GSTA and GSTA1 code for protein products with 76% amino acid identity. GSTA2 appears to contain a single nucleotide deletion which would render any product non-functional. All of these genes consist of six exons of similar sizes and greater than 70% nucleotide identity, and are interrupted by five introns of differing sizes. GSTA and GSTA1 mRNAs were present in a range of tissues, while GSTA2 mRNA was no detected. Expression of GSTA mRNA was increased in plaice intestine and spleen by pretreatment with beta-naphthoflavone, and expression of both GSTA and GSTA1 mRNAs was increased in plaice liver and gill by pretreatment with the peroxisome proliferating agent perfluoro-octanoic acid. PMID:9020873

  10. Contribution of liver mitochondrial membrane-bound glutathione transferase to mitochondrial permeability transition pores

    SciTech Connect

    Hossain, Quazi Sohel; Ulziikhishig, Enkhbaatar; Lee, Kang Kwang; Yamamoto, Hideyuki; Aniya, Yoko

    2009-02-15

    We recently reported that the glutathione transferase in rat liver mitochondrial membranes (mtMGST1) is activated by S-glutathionylation and the activated mtMGST1 contributes to the mitochondrial permeability transition (MPT) pore and cytochrome c release from mitochondria [Lee, K.K., Shimoji, M., Quazi, S.H., Sunakawa, H., Aniya, Y., 2008. Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria. Toxcol. Appl. Pharmacol. 232, 109-118]. In the present study we investigated the effect of reactive oxygen species (ROS), generator gallic acid (GA) and GST inhibitors on mtMGST1 and the MPT. When rat liver mitochondria were incubated with GA, mtMGST1 activity was increased to about 3 fold and the increase was inhibited with antioxidant enzymes and singlet oxygen quenchers including 1,4-diazabicyclo [2,2,2] octane (DABCO). GA-mediated mtMGST1 activation was prevented by GST inhibitors such as tannic acid, hematin, and cibacron blue and also by cyclosporin A (CsA). In addition, GA induced the mitochondrial swelling which was also inhibited by GST inhibitors, but not by MPT inhibitors CsA, ADP, and bongkrekic acid. GA also released cytochrome c from the mitochondria which was inhibited completely by DABCO, moderately by GST inhibitors, and somewhat by CsA. Ca{sup 2+}-mediated mitochondrial swelling and cytochrome c release were inhibited by MPT inhibitors but not by GST inhibitors. When the outer mitochondrial membrane was isolated after treatment of mitochondria with GA, mtMGST1 activity was markedly increased and oligomer/aggregate of mtMGST1 was observed. These results indicate that mtMGST1 in the outer mitochondrial membrane is activated by GA through thiol oxidation leading to protein oligomerization/aggregation, which may contribute to the formation of ROS-mediated, CsA-insensitive MPT pore, suggesting a novel mechanism for regulation of the MPT by mtMGST1.

  11. Oxoaporphine alkaloids: conversion of lysicamine into liriodendronine and its 2-O-methyl ether, and antifungal activity.

    PubMed

    Pabuccuoglu, V; Rozwadowska, M D; Brossi, A; Clark, A; Hufford, C D; George, C; Flippen-Anderson, J L

    1991-01-01

    Pschorr reaction of diazonium salt 7 in aqueous methanolic sulfuric acid afforded, besides lysicamine 2, the orange colored sulfate of oxodibenzopyrrocoline (8). The structure is fully supported by an X-ray analysis of its picrate salt. Selective ether cleavage of lysicamine (2) with 48% HBr afforded a hydrobromide of 9, and free betaine 9 on treatment with pyridine-water. Both compounds methylated on treatment with etherial diazomethane on nitrogen to give the known 2-O,N-dimethylliriodendronine (11). Liriodendronine (10) was obtained from lysicamine (2) on heating with pyridine HBr at 189 degrees C, and treatment with pyridine-water, as a dark violet betaine. Betaine 12 was obtained by heating 11.HCl to 200 degrees C. The quaternary salts of lysicamine, lysicamine methiodide (3) and lysicamine methosulfate (4) were comparable in anticandidal activity to liriodenine (1), but were not as active as liriodenine methiodide (13). PMID:2043039

  12. Terameprocol (tetra-O-methyl nordihydroguaiaretic acid), an inhibitor of Sp1-mediated survivin transcription, induces radiosensitization in non-small cell lung carcinoma

    PubMed Central

    Sun, Yunguang; Giacalone, Nicholas J.; Lu, Bo

    2010-01-01

    Introduction Survivin, an inhibitor of apoptosis protein (IAP) and key regulator of mitosis, is up-regulated in a variety of cancers and is often associated with a worse prognosis. Terameprocol down-regulates the Sp1-mediated transcription of survivin and Cdk1, which is important for cell cycle progression, as well as many other proteins. Survivin inhibition has previously been shown to result in the induction of apoptosis and radiosensitization. Methods This study examined the effects of terameprocol administration on survivin transcription and expression in HCC2429 and H460 lung cancer cells. We also examined the combined effects of radiation and terameprocol on apoptosis and radiosensitivity. Results Using immunoblot analysis and luciferase assays, we confirmed that terameprocol decreases survivin transcription and protein expression. Ultimately, however, decreases in survivin expression failed to correlate with an increase in apoptosis. Nonetheless, clonogenic assay revealed that terameprocol induces increased radiosensitization in HCC2429 (DER = 1.26, p = 0.019) and H460 (DER = 1.18, p = 0.001) cells. Additionally, the data show no effect of terameprocol on cell cycle in either HCC2429 or H460 cells. Conclusions Terameprocol significantly enhances the sensitivity of non-small cell lung carcinoma cell lines to radiation therapy, although the mechanism of action remains unclear. Further study is warranted to assess the potential of terameprocol as an agent that may enhance the therapeutic ratio of radiotherapy in lung cancer. PMID:21107289

  13. Serum gamma glutamyl transferase as a specific indicator of bile duct lesions in the rat liver.

    PubMed Central

    Leonard, T. B.; Neptun, D. A.; Popp, J. A.

    1984-01-01

    Serum gamma-glutamyl transferase (GGT), a marker of hepatic injury used extensively in humans, has been used rarely in rats because its specificity has not been previously defined. Studies were designed for investigation of the specificity of serum GGT activity with the use of cell type specific hepatotoxicants in Fischer 344 rats. Single necrogenic doses of CCl4, allyl alcohol (AA), and alpha-naphthylisothiocyanate (ANIT) were used to produce cell specific injury in centrilobular hepatocytes, periportal hepatocytes, and bile duct cells, respectively. Administration of CCl4 markedly increased serum activities of alanine aminotransferase (ALT), alkaline phosphatase (AP), and serum bile acid concentrations within 24 hours but had no effect on serum GGT activity. ANIT treatment increased serum GGT and AP activities and bile acid concentration 24 hours following administration. Allyl alcohol administration increased serum ALT activity but had no effect on GGT activity. Administration of ANIT in the diet at 0.01%, 0.022%, 0.047%, and 0.1% for 2, 4, and 6 weeks produced dose- and time-dependent increases in serum GGT activity which strongly correlated with quantitative increases in hepatic bile duct volume, which was determined morphometrically. These observations support the use of serum GGT activity in the rat as diagnostic of bile duct cell necrosis when increases are detected shortly after the insult and as an indicator of possible bile duct hyperplasia. Images Figure 1 Figure 3 PMID:6147091

  14. Serum gamma glutamyl transferase as a specific indicator of bile duct lesions in the rat liver.

    PubMed

    Leonard, T B; Neptun, D A; Popp, J A

    1984-08-01

    Serum gamma-glutamyl transferase (GGT), a marker of hepatic injury used extensively in humans, has been used rarely in rats because its specificity has not been previously defined. Studies were designed for investigation of the specificity of serum GGT activity with the use of cell type specific hepatotoxicants in Fischer 344 rats. Single necrogenic doses of CCl4, allyl alcohol (AA), and alpha-naphthylisothiocyanate (ANIT) were used to produce cell specific injury in centrilobular hepatocytes, periportal hepatocytes, and bile duct cells, respectively. Administration of CCl4 markedly increased serum activities of alanine aminotransferase (ALT), alkaline phosphatase (AP), and serum bile acid concentrations within 24 hours but had no effect on serum GGT activity. ANIT treatment increased serum GGT and AP activities and bile acid concentration 24 hours following administration. Allyl alcohol administration increased serum ALT activity but had no effect on GGT activity. Administration of ANIT in the diet at 0.01%, 0.022%, 0.047%, and 0.1% for 2, 4, and 6 weeks produced dose- and time-dependent increases in serum GGT activity which strongly correlated with quantitative increases in hepatic bile duct volume, which was determined morphometrically. These observations support the use of serum GGT activity in the rat as diagnostic of bile duct cell necrosis when increases are detected shortly after the insult and as an indicator of possible bile duct hyperplasia. PMID:6147091

  15. Glutathione transferase from Plasmodium falciparum--interaction with malagashanine and selected plant natural products.

    PubMed

    Mangoyi, Rumbidzai; Hayeshi, Rose; Ngadjui, Bonventure; Ngandeu, Francois; Bezabih, Merhatibebe; Abegaz, Berhanu; Razafimahefa, Solofoniaina; Rasoanaivo, Philippe; Mukanganyama, Stanley

    2010-12-01

    A glutathione transferase (PfGST) isolated from Plasmodium falciparum has been associated with chloroquine resistance. A range of natural products including malagashanine (MG) were screened for inhibition of PfGST by a GST assay with 1-chloro-2,4-dinitrobenzene as a substrate. Only the sesquiterpene (JBC 42C), the bicoumarin (Tral-1), ellagic acid and curcumin, were shown to be potent inhibitors of PfGST with IC(50) values of 8.5, 12, 50 and 69 μM, respectively. Kinetic studies were performed on PfGST using ellagic acid as an inhibitor. Uncompetitive and mixed types of inhibition were obtained for glutathione (GSH) and 1-chloro-2, 4-dinitrobenzene (CDNB). The K(i) for GSH and CDNB were -0.015 μM and 0.011 μM, respectively. Malagashanine (100 µM) only reduced the activity of PfGST to 80% but showed a time-dependent inactivation of PfGST with a t(1/2) of 34 minutes compared to >120 minutes in the absence of MG or in the presence of 5 mM GSH. This work facilitates the understanding of the interaction of PfGST with some plant derived compounds. PMID:20521884

  16. Activated Drosophila Ras1 is selectively suppressed by isoprenyl transferase inhibitors.

    PubMed Central

    Kauffmann, R C; Qian, Y; Vogt, A; Sebti, S M; Hamilton, A D; Carthew, R W

    1995-01-01

    Ras CAAX (C = cysteine, A = aliphatic amino acid, and X = any amino acid) peptidomimetic inhibitors of farnesyl protein transferase suppress Ras-dependent cell transformation by preventing farnesylation of the Ras oncoprotein. These compounds are potential anticancer agents for tumors associated with Ras mutations. The peptidomimetic FTI-254 was tested for Ras1-inhibiting activity in whole animals by injection of activated Ras1val12 Drosophila larvae. FTI-254 decreased the ability of Ras1val12 to form supernumerary R7 photoreceptor cells in the compound eye of transformed flies. In contrast, it had no effect on the related supernumerary R7 phenotypes of flies transformed with either the activated sevenless receptor tyrosine kinase, Raf kinase, or a chimeric Ras1val12 protein that is membrane associated through myristylation instead of isoprenylation. Therefore, FTI-254 acts as an isoprenylation inhibitor to selectively inhibit Ras1val12 signaling activity in a whole-animal model system. Images Fig. 2 PMID:7479910

  17. [Selective N-heterylazimine inhibition of reactions catalyzed by rat liver glutathione transferase].

    PubMed

    Stulovskiĭ, A V; Voznyĭ, I V; Rozengart, E V; Suvorov, A A; Khovanskikh, A E

    1992-01-01

    Three reactions (nucleophile substitution, thiolysis and N-deoxygenation) catalyzed by rat liver glutathione transferase have been studied using several N-heterylazimine inhibitors. The inhibitors are sharply different in their effectiveness in the transferase reactions. Their efficiency depends on their structure. The mechanism which underlies the found regularities is suggested. PMID:1413125

  18. Structural and biochemical insights into 2′-O-methylation at the 3′-terminal nucleotide of RNA by Hen1

    SciTech Connect

    Chan, Chio Mui; Zhou, Chun; Brunzelle, Joseph S.; Huang, Raven H.

    2010-01-28

    Small RNAs of {approx}20-30 nt have diverse and important biological roles in eukaryotic organisms. After being generated by Dicer or Piwi proteins, all small RNAs in plants and a subset of small RNAs in animals are further modified at their 3'-terminal nucleotides via 2'-O-methylation, carried out by the S-adenosylmethionine-dependent methyltransferase (MTase) Hen1. Methylation at the 3' terminus is vital for biological functions of these small RNAs. Here, we report four crystal structures of the MTase domain of a bacterial homolog of Hen1 from Clostridium thermocellum and Anabaena variabilis, which are enzymatically indistinguishable from the eukaryotic Hen1 in their ability to methylate small single-stranded RNAs. The structures reveal that, in addition to the core fold of the MTase domain shared by other RNA and DNA MTases, the MTase domain of Hen1 possesses a motif and a domain that are highly conserved and are unique to Hen1. The unique motif and domain are likely to be involved in RNA substrate recognition and catalysis. The structures allowed us to construct a docking model of an RNA substrate bound to the MTase domain of bacterial Hen1, which is likely similar to that of the eukaryotic counterpart. The model, supported by mutational studies, provides insight into RNA substrate specificity and catalytic mechanism of Hen1.

  19. Lipase regio- and stereoselectivities toward three enantiomeric pairs of didecanoyl-deoxyamino-O methyl glycerol: a kinetic study by the monomolecular film technique.

    PubMed

    Douchet, Isabelle; De Haas, Gerard; Verger, Robert

    2003-03-01

    A kinetic study was carried out on the regio- and stereoselectivities of 12 lipases of animal and microbial origin. For this purpose, monomolecular films consisting of three pairs of enantiomers (didecanoyl-deoxyamino-O methyl glycerol, DDG) containing a single hydrolyzable decanoyl ester bond and two lipase-resistant groups were spread at the air-water interface. Each of the lipases tested displayed a particular type of behavior, on the basis of which they were classified in two groups, depending on their ability to hydrolyze the sn-2 position. From the qualitative point of view, the sn-2 preference measured on triacylglycerides and DDG were in good agreement. The inductive chemical effect might explain why a greater level of hydrolytic activity was observed with the diglycerides than with DDG. With most of the lipases tested, it was observed that the enantiomeric pair having two distal acyl chains was more clearly differentiated stereochemically than the two homologous pairs with two adjacent acyl chains. This finding is consistent with the hypothesis that during the chiral recognition process two of the three attachment points may be the external (distal) hydrophobic chains, which is in line with the hypothesis of a tuning fork conformation of a triglyceride in the lipase active site. PMID:12582987

  20. Analysis of repaglinide enantiomers in pharmaceutical formulations by capillary electrophoresis using 2,6-di-o-methyl-β-cyclodextrin as a chiral selector.

    PubMed

    Li, Cen; Jiang, Ye

    2012-09-01

    This study used the general applicability of 2,6-didi-o-methyl-β-cyclodextrin (DM-β-CD) as the chiral selector in capillary electrophoresis for fast and efficient chiral separation of repaglinide enantiomers. A systematic study of the parameters affecting separation was performed with UV detection at 243 nm. The optimum conditions were determined to be 1.25% (w/v) DM-β-CD in 20 mM sodium phosphate (pH 2.5) as the running buffer and separation voltage at 20 kV. DM-β-CD had the best enantiomer resolution properties under the tested conditions, whereas other β-cyclodextrins showed inferior performances or no performance. The proposed method had a linear calibration curve in the concentration range of 12.5-400 µg/mL. The limit of detection was 100 ng/mL. The intra-day and inter-day precisions were 2.8 and 3.2%, respectively. Recoveries of 97.9-100.9% were obtained. The proposed method was fast and convenient, and was determined to be efficient for separating enantiomers and applicable for analyzing repaglinide enantiomers in quality control of pharmaceutical production. PMID:22618022

  1. Varioxiranols A-G and 19-O-Methyl-22-methoxypre-shamixanthone, PKS and Hybrid PKS-Derived Metabolites from a Sponge-Associated Emericella variecolor Fungus.

    PubMed

    Wu, Qi; Wu, Chongming; Long, Hailin; Chen, Ran; Liu, Dong; Proksch, Peter; Guo, Peng; Lin, Wenhan

    2015-10-23

    Chemical examination of a sponge (Cinachyrella sp.)-associated Emericella variecolor fungus resulted in the isolation of seven new polyketide derivatives, namely, varioxiranols A-G (1-7), and a new hybrid PKS-isoprenoid metabolite, 19-O-methyl-22-methoxypre-shamixanthone (8), together with nine known analogues. Their structures were elucidated on the basis of extensive spectroscopic analyses, including ECD effects, Mosher's method, X-ray diffraction, and chemical conversion for the determination of absolute configurations. Varioxiranols F and G were found for the first time to link a xanthone moiety with a benzyl alcohol via an ether bond, while the dioxolanone group of 5 is unusual in nature. A cell-based lipid-lowering assay revealed that pre-shamixanthone (12) exerted significant inhibition against lipid accumulation in HepG2 cells without cytotoxic effects, accompanying the potent reduction of total cholesterol and triglycerides. Real-time quantitative PCR indicated that pre-shamixanthone (12) mediated the reduction of lipid accumulation related to the down-regulation of the expression of the key lipogenic transcriptional factor SREBP-1c and its downstream genes encoding FAS and ACC. PMID:26394166

  2. Distribution and kinetics of 3-O-methyl-6-(18F)fluoro-L-dopa in the rhesus monkey brain

    SciTech Connect

    Doudet, D.J.; McLellan, C.A.; Carson, R.; Adams, H.R.; Miyake, H.; Aigner, T.G.; Finn, R.T.; Cohen, R.M. )

    1991-09-01

    Most attempts to model accurately (18F)-DOPA imaging of the dopamine system are based on the assumptions that its main peripheral metabolite, 3-O-methyl-6-(18F)fluoro-L-DOPA ((18F)3-OM-DOPA), crosses the blood-brain barrier but is present as a homogenous distribution throughout the brain, in part because it is not converted into (18F)DOPA in significant quantities. These assumptions were based mainly on data in rodents. Little information is available in the primate. To verify the accuracy of the above assumptions, the authors administered 18F-labeled 3-OM-DOPA to normal rhesus monkeys and animals with lesions of the DA nigrostriatal system. No selective 18F regional accumulation in brain was apparent in normal or lesioned animals. The plasma metabolite analysis revealed that only the negatively charged metabolites (e.g., sulfated conjugates) that do not cross the blood-brain barrier were found in significant quantities in the plasma. A one-compartment, three-parameter model was adequate to describe the kinetics of (18F)3-OM-DOPA. In conclusion, assumptions concerning (18F)3-OM-DOPA's behavior in brain appear acceptable for (18F)DOPA modeling purposes.

  3. Single-molecule detection and tracking of RNA transcripts in living cells using phosphorothioate-optimized 2'-O-methyl RNA molecular beacons.

    PubMed

    Zhao, Dan; Yang, Yantao; Qu, Na; Chen, Mingming; Ma, Zhao; Krueger, Christopher J; Behlke, Mark A; Chen, Antony K

    2016-09-01

    Molecular Beacons (MBs) composed of 2'-O-methyl RNA (2Me) and phosphorothioate (PS) linkages throughout the backbone (2Me/PSFULL MBs) have enabled long-term imaging of RNA in living cells, but excess PS modification can induce nonspecific binding, causing false-positive signals. In this study, we evaluate the intracellular stability of MBs composed of 2Me with various PS modifications, and found that false-positive signals could be reduced to marginal levels when the MBs possess a fully PS-modified loop domain and a phosphodiester stem (2Me/PSLOOP MB). Additionally, 2Me/PSLOOP MBs exhibited uncompromised hybridization kinetics, prolonged functionality and >88% detection accuracy for single RNA transcripts, and could do so without interfering with gene expression or cell growth. Finally, 2Me/PSLOOP MBs could image the dynamics of single mRNA transcripts in the nucleus and the cytoplasm simultaneously, regardless of whether the MBs targeted the 5'- or the 3'-UTR. Together, these findings demonstrate the effectiveness of loop-domain PS modification in reducing nonspecific signals and the potential for sensitive and accurate imaging of individual RNAs at the single-molecule level. With the growing interest in the role of RNA localization and dynamics in health and disease, 2Me/PSLOOP MBs could enable new discoveries in RNA research. PMID:27261815

  4. Structural Basis for piRNA 2-O-methylated 3-end Recognition by Piwi PAZ (Piwi/Argonaute/Awille) Domains

    SciTech Connect

    Y Tian; D Simanshu; J Ma; D Patel

    2011-12-31

    Argonaute and Piwi proteins are key players in the RNA silencing pathway, with the former interacting with micro-RNAs (miRNAs) and siRNAs, whereas the latter targets piwi-interacting RNAs (piRNAs) that are 2'-O-methylated (2'-OCH{sub 3}) at their 3' ends. Germline-specific piRNAs and Piwi proteins play a critical role in genome defense against transposable elements, thereby protecting the genome against transposon-induced defects in gametogenesis and fertility. Humans contain four Piwi family proteins designated Hiwi1, Hiwi2, Hiwi3, and Hili. We report on the structures of Hili-PAZ (Piwi/Argonaute/Zwille) domain in the free state and Hiwi1 PAZ domain bound to self-complementary 14-mer RNAs (12-bp + 2-nt overhang) containing 2'-OCH{sub 3} and 2'-OH at their 3' ends. These structures explain the molecular basis underlying accommodation of the 2'-OCH{sub 3} group within a preformed Hiwi1 PAZ domain binding pocket, whose hydrophobic characteristics account for the preferential binding of 2'-OCH{sub 3} over 2'-OH 3' ends. These results contrast with the more restricted binding pocket for the human Ago1 PAZ domain, which exhibits a reverse order, with preferential binding of 2'-OH over 2'-OCH{sub 3} 3' ends.

  5. Alkylphenol Activity against Candida spp. and Microsporum canis: A Focus on the Antifungal Activity of Thymol, Eugenol and O-Methyl Derivatives.

    PubMed

    Fontenelle, Raquel O S; Morais, Selene M; Brito, Erika H S; Brilhante, Raimunda S N; Cordeiro, Rossana A; Lima, Ynayara C; Brasil, Nilce V G P S; Monteiro, André J; Sidrim, José J C; Rocha, Marcos F G

    2011-01-01

    In recent years there has been an increasing search for new antifungal compounds due to the side effects of conventional antifungal drugs and fungal resistance. The aims of this study were to test in vitro the activity of thymol, eugenol, estragole and anethole and some O-methyl-derivatives (methylthymol and methyleugenol) against Candida spp. and Microsporum canis. The broth microdilution method was used to determine the minimum inhibitory concentration (MIC). The minimum fungicidal concentrations (MFC) for both Candida spp. and M. canis were found by subculturing each fungal suspension on potato dextrose agar. Thymol, methylthymol, eugenol, methyl-eugenol, anethole, estragole and griseofulvin respectively, presented the following MIC values against M. canis: 4.8-9.7; 78-150; 39; 78-150; 78-150; 19-39 µg/mL and 0.006-2.5 mg/mL. The MFC values for all compounds ranged from 9.7 to 31 µg/mL. Concerning Candida spp, thymol, methylthymol, eugenol, methyleugenol, anethole, estragole and amphotericin, respectively, showed the following MIC values: 39; 620-1250; 150-620; 310-620; 620; 620-1250 and 0.25-2.0 mg/mL. The MFC values varied from 78 to 2500 µg/mL. All tested compounds thus showed in vitro antifungal activity against Candida spp. and M. canis. Therefore, further studies should be carried out to confirm the usefulness of these alkylphenols in vivo. PMID:25134762

  6. Pluronic-PEI copolymers enhance exon-skipping of 2'-O-methyl phosphorothioate oligonucleotide in cell culture and dystrophic mdx mice.

    PubMed

    Wang, M; Wu, B; Lu, P; Tucker, J D; Milazi, S; Shah, S N; Lu, Q L

    2014-01-01

    A series of small-size polyethylenimine (PEI)-conjugated pluronic polycarbamates (PCMs) have been investigated for the ability to modulate the delivery of 2'-O-methyl phosphorothioate RNA (2'-OMePS) in vitro and in dystrophic mdx mice. The PCMs retain strong binding capacity to negatively charged oligomer as demonstrated by agarose gel retardation assay, with the formation of condensed polymer/oligomer complexes at a wide-range weight ratio from 1:1 to 20:1. The condensed polymer/oligomer complexes form 100-300 nm nanoparticles. Exon-skipping effect of 2'-OMePS was dramatically enhanced with the use of the most effective PCMs in comparison with 2'-OMePS alone in both cell culture and in vivo, respectively. More importantly, the effective PCMs, especially those composed of moderate size (2k-5kDa) and intermediate hydrophilic-lipophilic balance (7-23) of pluronics, enhanced exon-skipping of 2'-OMePS with low toxicity as compared with Lipofectamine-2000 in vitro or PEI 25k in vivo. The variability of individual PCM for delivery of antisense oligomer and plasmid DNA indicate the complexity of interaction between polymer and their cargos. Our data demonstrate the potential of PCMs to mediate delivery of modified antisense oligonucleotides to the muscle for treating muscular dystrophy or other appropriate myodegenerative diseases. PMID:24131982

  7. Recombinant baculovirus vectors expressing glutathione-S-transferase fusion proteins.

    PubMed

    Davies, A H; Jowett, J B; Jones, I M

    1993-08-01

    Recombinant baculoviruses are a popular means of producing heterologous protein in eukaryotic cells. Purification of recombinant proteins away from the insect cell background can, however, remain an obstacle for many developments. Recently, prokaryotic fusion protein expression systems have been developed allowing single-step purification of the heterologous protein and specific proteolytic cleavage of the affinity tag moiety from the desired antigen. Here we report the introduction of these attributes to the baculovirus system. "Baculo-GEX" vectors enable baculovirus production of fusion proteins with the above advantages, but in a eukaryotic post-translational processing environment. Glutathione-S-transferase (GST) fusions are stable cytoplasmic proteins in insect cells and may therefore be released by sonication alone, avoiding the solubility problems and detergent requirements of bacterial systems. Thus large amounts of authentic antigen may be purified in a single, non-denaturing step. PMID:7763917

  8. Immunohistochemical localization and activity of glutathione transferase zeta (GSTZ1-1) in rat tissues.

    PubMed

    Lantum, Hoffman B M; Baggs, Raymond B; Krenitsky, Daria M; Board, Philip G; Anders, M W

    2002-06-01

    Glutathione transferase zeta (GSTZ1-1) catalyzes the biotransformation of a range of alpha-haloacids, including dichloroacetic acid (DCA), and the penultimate step in the tyrosine degradation pathway. DCA is a rodent carcinogen and a common drinking water contaminant. DCA also causes multiorgan toxicity in rodents and dogs. The objective of this study was to determine the expression and activities of GSTZ1-1 in rat tissues with maleylacetone and chlorofluoroacetic acid as substrates. GSTZ1-1 protein was detected in most tissues by immunoblot analysis after immunoprecipitation of GSTZ1-1 and by immunohistochemical analysis; intense staining was observed in the liver, testis, and prostate; moderate staining was observed in the brain, heart, pancreatic islets, adrenal medulla, and the epithelial lining of the gastrointestinal tract, airways, and bladder; and sparse staining was observed in the renal juxtaglomerular regions, skeletal muscle, and peripheral nerve tissue. These patterns of expression corresponded to GSTZ1-1 activities in the different tissues with maleylacetone and chlorofluoroacetic acid as substrates. Specific activities ranged from 258 +/- 17 (liver) to 1.1 +/- 0.4 (muscle) nmol/min/mg of protein with maleylacetone as substrate and from 4.6 +/- 0.89 (liver) to 0.09 +/- 0.01 (kidney) nmol/min/mg of protein with chlorofluoroacetic acid as substrate. Rats given DCA had reduced amounts of immunoreactive GSTZ1-1 protein and activities of GSTZ1-1 in most tissues, especially in the liver. These findings indicate that the DCA-induced inactivation of GSTZ1-1 in different tissues may result in multiorgan disorders that may be associated with perturbed tyrosine metabolism. PMID:12019185

  9. Functional analysis and localisation of a delta-class glutathione S-transferase from Sarcoptes scabiei.

    PubMed

    Pettersson, Eva U; Ljunggren, Erland L; Morrison, David A; Mattsson, Jens G

    2005-01-01

    The mite Sarcoptes scabiei causes sarcoptic mange, or scabies, a disease that affects both animals and humans worldwide. Our interest in S. scabiei led us to further characterise a glutathione S-transferase. This multifunctional enzyme is a target for vaccine and drug development in several parasitic diseases. The S. scabiei glutathione S-transferase open reading frame reported here is 684 nucleotides long and yields a protein with a predicted molecular mass of 26 kDa. Through phylogenetic analysis the enzyme was classified as a delta-class glutathione S-transferase, and our paper is the first to report that delta-class glutathione S-transferases occur in organisms other than insects. The recombinant S. scabiei glutathione S-transferase was expressed in Escherichia coli via three different constructs and purified for biochemical analysis. The S. scabiei glutathione S-transferase was active towards the substrate 1-chloro-2,4-dinitrobenzene, though the positioning of fusion partners influenced the kinetic activity of the enzyme. Polyclonal antibodies raised against S. scabiei glutathione S-transferase specifically localised the enzyme to the integument of the epidermis and cavities surrounding internal organs in adult parasites. However, some minor staining of parasite intestines was observed. No staining was seen in host tissues, nor could we detect any antibody response against S. scabiei glutathione S-transferase in sera from naturally S. scabiei infected dogs or pigs. Additionally, the polyclonal sera raised against recombinant S. scabiei glutathione S-transferase readily detected a protein from mites, corresponding to the predicted size of native glutathione S-transferase. PMID:15619514

  10. Relative reactivities in the O-methylation of glucomannans: the influence of stereochemistry at C-2 and the solvent effect.

    PubMed

    Zhang, Yujia; Li, Jiebing; Lindström, Mikael E; Mischnick, Petra

    2015-01-30

    The main hemicellulose in softwood, glucomannan (GM), structurally resembles cellulose but has quite different physical and chemical properties. In addition to branching and original acetylation, the only other difference between these two β-1,4-linked glycans is the configuration at C-2 in approximately 80% of the sugar residues. In contrast to glucose, the 2-OH in mannose has an axial orientation. The influence of this stereochemistry on the relative reactivities of glucosyl compared to mannosyl units in methylation reactions are studied in this work. Glucomannan isolated from spruce (SGM) and commercially available konjac glucomannan (KGM) was methylated in DMSO/Li-dimsyl/MeI and water/NaOH/MeI system, respectively. In the early stage of the reaction, the glucose part of the SGM achieved slightly higher DS values than the mannose residues, but the overall relative rate constants were close to 1:1. The order of reactivities in glucose was k2>k3>k6 and k3>k2>k6 for mannose (in DMSO/Li-dimsyl/MeI). The rate constants did not remain constant, but k3 decreased when k2 increased for both epimeric sugars. In water/NaOH/MeI, the methylation of the primary 6-OH was much more pronounced with an order of reactivity of O-6>O-2>O-3 for mannose and O-2>O-6>O-3 for glucose. The results are discussed with respect to the OH-acidity and the stereoelectronic, sterical, and solvent effects. PMID:25498017

  11. Effect of municipal waste water effluent upon the expression of Glutathione S-transferase isoenzymes of brine shrimp Artemia.

    PubMed

    Grammou, Athina; Papadimitriou, Chrisa; Samaras, Peter; Vasara, Eleni; Papadopoulos, Athanasios I

    2011-06-01

    Multiple isoenzymes of the detoxification enzyme family Glutathione S-transferase are expressed in the brine shrimp Artemia. The number of the major ones detected in crude extract by means of chromatofocusing varied between three and four, depending on the age. Two isoenzymes, one alkaline and one neutral (with corresponding isoelectric points of 8.5 and 7.2) appear to be dominant in all three developmental stages studied, (24, 48, and 72 h after hatching). Culturing Artemia for 48 h after hatching, in artificial sea water prepared by municipal wastewater effluent resulted to significant alterations of the isoenzyme profile. In comparison to organisms cultured for the same period of time in artificial sea water prepared by filtered tap water, the expression of the alkaline isoenzyme decreased by 62% while that of the neutral isoenzyme increased by 58%. Furthermore, the enzyme activity of the major isoenzyme of the acidic area increased by more than two folds. It is worth mentioning that although the specific activity of the total enzyme in the whole body homogenate was elevated, no statistically significant alteration of the Km value was observed. These findings suggest that study of the isoenzyme profile of Glutathione S-transferase may offer high sensitivity in detecting environmental pollution and needs to be further investigated. PMID:21429555

  12. Carnitine palmitoyl transferase-1A (CPT1A): a new tumor specific target in human breast cancer

    PubMed Central

    Zonetti, Maria Josè; Fisco, Tommaso; Polidoro, Chiara; Bocchinfuso, Gianfranco; Palleschi, Antonio; Novelli, Giuseppe; Spagnoli, Luigi G.

    2016-01-01

    Transcriptional mechanisms epigenetically-regulated in tumoral tissues point out new targets for anti-cancer therapies. Carnitine palmitoyl transferase I (CPT1) is the rate-limiting enzyme in the transport of long-chain fatty acids for β-oxidation. Here we identified the tumor specific nuclear CPT1A as a product of the transcript variant 2, that doesn't retain the classical transferase activity and is strongly involved in the epigenetic regulation of cancer pro-survival, cell death escaping and tumor invasion pathways. The knockdown of CPT1A variant 2 by small interfering RNAs (siRNAs), was sufficient to induce apoptosis in MCF-7, SK-BR3 and MDA-MB-231 breast cancer cells. The cell death triggered by CPT1A silencing correlated with reduction of HDAC activity and histone hyperacetylation. Docking experiments and molecular dynamics simulations confirmed an high binding affinity of the variant 2 for HDAC1. The CPT1A silenced cells showed an up-regulated transcription of pro-apoptotic genes (BAD, CASP9, COL18A1) and down-modulation of invasion and metastasis related-genes (TIMP-1, PDGF-A, SERPINB2). These findings provide evidence of the CPT1 variant 2 involvement in breast cancer survival, cell death escape and invasion. Thus, we propose nuclear CPT1A as a striking tumor specific target for anticancer therapeutics, more selective and effective as compared with the well-known HDAC inhibitors. PMID:26799588

  13. Effect of green tea powder (Camellia sinensis L. cv. Benifuuki) particle size on O-methylated EGCG absorption in rats; The Kakegawa Study.

    PubMed

    Maeda-Yamamoto, Mari; Ema, Kaori; Tokuda, Yoshiko; Monobe, Manami; Tachibana, Hirofumi; Sameshima, Yoichi; Kuriyama, Shinichi

    2011-03-01

    Tea polyphenols, e.g., (-)-epigallocatechin-3-O-(3-O-methyl gallate (EGCG3"Me), (-)-epigallocatechin-3-O-gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin-3-O-gallate (ECG), and (-)-epicatechin (EC), are believed to be responsible for the beneficial effects of tea. 'Benifuuki', a tea (Camellia sinensis L.) cultivar grown in Japan, is rich in the anti-allergic molecule epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3"Me). Pulverized Benifuuki green tea powder (BGP) is more widely distributed than leaf tea in Japan. Japanese people mix their pulverized tea with water directly, whereas it is common to drink leaf tea after extraction. However, few studies of the effects of BGP particle size on polyphenol bioavailability have been performed. This study was conducted to investigate the absorption of catechins in rats after the intragastric administration of Benifuuki green tea. Therefore, we assessed the plasma concentrations of catechins following the ingestion of BGP with different mean particle sizes (2.86, 18.6, and 76.1 μm) or Benifuuki green tea infusion (BGI) as a control in rats. The bioavailabilities of EGCG3"Me, EGCG, ECG, EGC, and EC were analyzed after the oral administration of a single dose of Benifuuki green tea (125 mg/rat) to rats. The plasma concentrations of tea catechins were determined by HPLC analysis combined with of electrochemical detection (ECD) using a coulometric array. The AUC (area under the drug concentration versus time curve; min μg/mL) of ester-type catechins (EGCG3"Me, EGCG, and ECG) for the BGP 2.86 μm were significantly higher than those in the infusion and 18.6 and 76.1 μm BGP groups, but the AUC of free-type catechins (EGC and EC) showed no differences between these groups. Regarding the peak plasma level of EGCG3"Me adjusted for intake, BGP 2.86 μm and BGI showed higher values than the BGP 18.6 and 76.1 μm groups, and the peak plasma levels of the other catechins displayed the same tendency. The present study

  14. Thermotropic phase properties of 1,2-di-O-tetradecyl-3-O-(3-O-methyl- beta-D-glucopyranosyl)-sn-glycerol.

    PubMed Central

    Trouard, T P; Mannock, D A; Lindblom, G; Rilfors, L; Akiyama, M; McElhaney, R N

    1994-01-01

    The hydration properties and the phase structure of 1,2-di-O-tetradecyl-3-O(3-O-methyl-beta-D-glucopyranosyl)-sn-glycerol (3-O-Me-beta-D-GlcDAIG) in water have been studied via differential scanning calorimetry, 1H-NMR and 2H-NMR spectroscopy, and x-ray diffraction. Results indicate that this lipid forms a crystalline (Lc) phase up to temperatures of 60-70 degrees C, where a transition through a metastable reversed hexagonal (Hll) phase to a reversed micellar solution (L2) phase occurs. Experiments were carried out at water concentrations in a range from 0 to 35 wt%, which indicate that all phases are poorly hydrated, taking up < 5 mol water/mol lipid. The absence of a lamellar liquid crystalline (L alpha) phase and the low levels of hydration measured in the discernible phases suggest that the methylation of the saccharide moiety alters the hydrogen bonding properties of the headgroup in such a way that the 3-O-Me-beta-D-GlcDAIG headgroup cannot achieve the same level of hydration as the unmethylated form. Thus, in spite of the small increase in steric bulk resulting from methylation, there is an increase in the tendency of 3-O-Me-beta-D-GlcDAIG to form nonlamellar structures. A similar phase behavior has previously been observed for the Acholeplasma laidlawii A membrane lipid 1,2-diacyl-3-O-(6-O-acyl-alpha-D-glucopyranosyl)-sn-glycerol in water (Lindblom et al. 1993. J. Biol. Chem. 268:16198-16207). The phase behavior of the two lipids suggests that hydrophobic substitution of a hydroxyl group in the sugar ring of the glucopyranosylglycerols has a very strong effect on their physicochemical properties, i.e., headgroup hydration and the formation of different lipid aggregate structures. PMID:7811919

  15. Reduced 3-O-methyl-dopa levels in OCD patients and their unaffected parents is associated with the low activity M158 COMT allele

    PubMed Central

    Delorme, Richard; Betancur, Catalina; Chaste, Pauline; Kernéis, Solen; Stopin, Astrid; Mouren, Marie-Christine; Collet, Corinne; Bourgeron, Thomas; Leboyer, Marion; Launay, Jean-Marie

    2010-01-01

    Background The catechol-O-methyltransferase (COMT) gene is considered as a candidate gene in obsessive-compulsive disorder (OCD). Specifically, the COMT low-activity M158 allele has been suggested to be associated with OCD. However, there is no study reporting that COMT activity is decreased in OCD patients and that the decrease is mediated by the V158M polymorphism. Therefore, the purpose of our study was to assess COMT activity in OCD by measuring plasma levels of 3-O-methyl-dopa (3-OMD), which result from the methylation of levodopa by COMT, and to investigate the relationship between 3-OMD levels and the V158M polymorphism. We also examined whether 3-OMD levels represented an endophenotype, associated with the genetic liability to OCD, by assessing unaffected relatives of OCD patients. Method We assessed plasma 3-OMD levels in a sample of drug-free OCD probands (n = 34) and their unaffected parents (n = 63), and compared them with controls (n = 85). The COMT V158M polymorphism was genotyped in all participants. Results Lower plasma 3-OMD levels were found in OCD probands and their unaffected parents compared to controls. The COMT M158 allele was associated with reduced plasma 3-OMD levels in a co-dominant manner, both in OCD probands and their relatives, but not in controls. Conclusion Our results suggest that COMT activity could act as a limiting factor for the production of 3-OMD in OCD patients and in their relatives. These findings further support a role of COMT in the susceptibility to OCD and provide evidence that 3-OMD levels could represent an endophenotype in OCD. PMID:19676096

  16. Dynamic guide–target interactions contribute to sequential 2′-O-methylation by a unique archaeal dual guide box C/D sRNP

    PubMed Central

    Singh, Sanjay K.; Gurha, Priyatansh; Gupta, Ramesh

    2008-01-01

    Assembly and guide–target interaction of an archaeal box C/D-guide sRNP was investigated under various conditions by analyzing the lead (II)-induced cleavage of the guide RNA. Guide and target RNAs derived from Haloferax volcanii pre-tRNATrp were used with recombinant Methanocaldococcus jannaschii core proteins in the reactions. Core protein L7Ae binds differentially to C/D and C′/D′ motifs of the guide RNA, and interchanging the two motifs relative to the termini of the guide RNA did not affect L7Ae binding or sRNA function. L7Ae binding to the guide RNA exposes its D′-guide sequence first followed by the D guide. These exposures are reduced when aNop5p and aFib proteins are added. The exposed guide sequences did not pair with the target sequences in the presence of L7Ae alone. The D-guide sequence could pair with the target in the presence of L7Ae and aNop5p, suggesting a role of aNop5p in target recruitment and rearrangement of sRNA structure. aFib binding further stabilizes this pairing. After box C/D-guided modification, target–guide pairing at the D-guide sequence is disrupted, suggesting that each round of methylation may require some conformational change or reassembly of the RNP. Asymmetric RNPs containing only one L7Ae at either of the two box motifs can be assembled, but a functional RNP requires L7Ae at the box C/D motif. This arrangement resembles the asymmetric eukaryal snoRNP. Observations of initial D-guide–target pairing and the functional requirement for L7Ae at the box C/D motif are consistent with our previous report of the sequential 2′-O-methylations of the target RNA. PMID:18515549

  17. Structural features of the guide:target RNA duplex required for archaeal box C/D sRNA-guided nucleotide 2′-O-methylation

    PubMed Central

    Appel, C. Denise; Maxwell, E. Stuart

    2007-01-01

    Archaeal box C/D sRNAs guide the 2′-O-methylation of target nucleotides using both terminal box C/D and internal C′/D′ RNP complexes. In vitro assembly of a catalytically active Methanocaldococcus jannaschii sR8 box C/D RNP provides a model complex to determine those structural features of the guide:target RNA duplex important for sRNA-guided nucleotide methylation. Watson–Crick pairing of guide and target nucleotides was found to be essential for methylation, and mismatched bases within the guide:target RNA duplex also disrupted nucleotide modification. However, dependence upon Watson–Crick base-paired guide:target nucleotides for methylation was compromised in elevated Mg2+ concentrations where mismatched target nucleotides were modified. Nucleotide methylation required that the guide:target duplex consist of an RNA:RNA duplex as a target ribonucleotide within a guide RNA:target DNA duplex that was not methylated. Interestingly, D and D′ target RNAs exhibited different levels of methylation when deoxynucleotides were inserted into the target RNA or when target methylation was carried out in elevated Mg2+ concentrations. These observations suggested that unique structural features of the box C/D and C′/D′ RNPs differentially affect their respective methylation capabilities. The ability of the sR8 box C/D sRNP to methylate target nucleotides positioned within highly structured RNA hairpins suggested that the sRNP can facilitate unwinding of double-stranded target RNAs. Finally, increasing target RNA length to extend beyond those nucleotides that base pair with the sRNA guide sequence significantly increased sRNP turnover and thus nucleotide methylation. This suggests that target RNA interaction with the sRNP core proteins is also important for box C/D sRNP-guided nucleotide methylation. PMID:17438123

  18. Structural features of the guide:target RNA duplex required for archaeal box C/D sRNA-guided nucleotide 2'-O-methylation.

    PubMed

    Appel, C Denise; Maxwell, E Stuart

    2007-06-01

    Archaeal box C/D sRNAs guide the 2'-O-methylation of target nucleotides using both terminal box C/D and internal C'/D' RNP complexes. In vitro assembly of a catalytically active Methanocaldococcus jannaschii sR8 box C/D RNP provides a model complex to determine those structural features of the guide:target RNA duplex important for sRNA-guided nucleotide methylation. Watson-Crick pairing of guide and target nucleotides was found to be essential for methylation, and mismatched bases within the guide:target RNA duplex also disrupted nucleotide modification. However, dependence upon Watson-Crick base-paired guide:target nucleotides for methylation was compromised in elevated Mg(2+) concentrations where mismatched target nucleotides were modified. Nucleotide methylation required that the guide:target duplex consist of an RNA:RNA duplex as a target ribonucleotide within a guide RNA:target DNA duplex that was not methylated. Interestingly, D and D' target RNAs exhibited different levels of methylation when deoxynucleotides were inserted into the target RNA or when target methylation was carried out in elevated Mg(2+) concentrations. These observations suggested that unique structural features of the box C/D and C'/D' RNPs differentially affect their respective methylation capabilities. The ability of the sR8 box C/D sRNP to methylate target nucleotides positioned within highly structured RNA hairpins suggested that the sRNP can facilitate unwinding of double-stranded target RNAs. Finally, increasing target RNA length to extend beyond those nucleotides that base pair with the sRNA guide sequence significantly increased sRNP turnover and thus nucleotide methylation. This suggests that target RNA interaction with the sRNP core proteins is also important for box C/D sRNP-guided nucleotide methylation. PMID:17438123

  19. N-acetylcolchinol O-methyl ether and thiocolchicine, potent analogs of colchicine modified in the C ring. Evaluation of the mechanistic basis for their enhanced biological properties

    SciTech Connect

    Kang, G.J.; Getahun, Z.; Muzaffar, A.; Brossi, A.; Hamel, E. )

    1990-06-25

    Two colchicine analogs with modifications only in the C ring are better inhibitors than colchicine of cell growth and tubulin polymerization. Radiolabeled thiocolchicine (with a thiomethyl instead of a methoxy group at position C-10) and N-acetylcolchinol O-methyl ether (NCME) (with a methoxy-substituted benzenoid instead of the methoxy-substituted tropone C ring) were prepared for comparison with colchicine. Scatchard analysis indicated a single binding site with KD values of 1.0-2.3 microM. Thiocolchicine was bound 2-4 times as rapidly as colchicine, but the activation energies of the reactions were nearly identical (18 kcal/mol for colchicine, 20 kcal/mol for thiocolchicine). NCME bound to tubulin in a biphasic reaction. The faster phase was 60 times as fast as colchicine binding at 37 degrees C, and a substantial reaction occurred at 0 degrees C. The rate of the faster phase of NCME binding changed relatively little as a function of temperature, so the activation energy was only 7.0 kcal/mol. Dissociation reactions were also evaluated, and at 37 degrees C the half-lives of the tubulin-drug complexes were 11 min for NCME, 24 h for thiocolchicine, and 27 h for colchicine. Relative dissociation rates as a function of temperature varied little among the drug complexes. Activation energies for the dissociation reactions were 30 kcal/mol for thiocolchicine, 27 kcal/mol for NCME, and 24 kcal/mol for colchicine. Comparison of the activation energies of association and dissociation yielded free energies for the binding reactions of -20 kcal/mol for NCME, -10 kcal/mol for thiocolchicine, and -6 kcal/mol for colchicine. The greater effectiveness of NCME and thiocolchicine as compared with colchicine in biological assays probably derives from their more rapid binding to tubulin and the lower free energies of their binding reactions.

  20. Coal structural inferences derived from the alkylation of acidic C--H bonds with pK sub a > 33

    SciTech Connect

    Chambers, R.R. Jr. )

    1989-01-01

    Our approach for analyzing the acidic C--H bonds in coal is to treat O-methyl coal with a series of indicator bases, BLi, followed by methylation with C-14 methyl iodide. By varying the identity of BLi, and thus the pK{sub a} of the conjugate acid BH, it is possible to evaluate the number of C--H bonds as a function of pK{sub a}. 13 refs.

  1. Ghrelin O-Acyl Transferase in Zebrafish Is an Evolutionarily Conserved Peptide Upregulated During Calorie Restriction.

    PubMed

    Hatef, Azadeh; Yufa, Roman; Unniappan, Suraj

    2015-10-01

    Ghrelin is a multifunctional orexigenic hormone with a unique acyl modification enabled by ghrelin O-acyl transferase (GOAT). Ghrelin is well-characterized in nonmammals, and GOAT sequences of several fishes are available in the GenBank. However, endogenous GOAT in non-mammals remains poorly understood. In this research, GOAT sequence comparison, tissue-specific GOAT expression, and its regulation by nutrient status and exogenous ghrelin were studied. It was found that the bioactive core of zebrafish GOAT amino acid sequence share high identity with that of mammals. GOAT mRNA was most abundant in the gut. GOAT-like immunoreactivity (i.r.) was found colocalized with ghrelin in the gastric mucosa. Food deprivation increased, and feeding decreased GOAT and preproghrelin mRNA expression in the brain and gut. GOAT and ghrelin peptides in the gut and brain showed corresponding decrease in food-deprived state. Intraperitoneal injection of acylated fish ghrelin caused a significant decrease in GOAT mRNA expression, suggesting a feedback mechanism regulating its abundance. Together, these results provide the first in-depth characterization of GOAT in a non-mammal. Our results demonstrate that endogenous GOAT expression is responsive to metabolic status and availability of acylated ghrelin, providing further evidences for GOAT in the regulation of feeding in teleosts. PMID:26226634

  2. Glutathione transferase A4-4 resists adduction by 4-hydroxynonenal☆

    PubMed Central

    Shireman, Laura M.; Kripps, Kimberly A.; Balogh, Larissa M.; Conner, Kip P.; Whittington, Dale; Atkins, William M.

    2010-01-01

    4-Hydroxy-2-trans-nonenal (HNE) is a lipid peroxidation product that contributes to the pathophysiology of several diseases with components of oxidative stress. The electrophilic nature of HNE results in covalent adduct formation with proteins, fatty acids and DNA. However, it remains unclear whether enzymes that metabolize HNE avoid inactivation by it. Glutathione transferase A4-4 (GST A4-4) plays a significant role in the elimination of HNE by conjugating it with glutathione (GSH), with catalytic activity toward HNE that is dramatically higher than the homologous GST A1-1 or distantly related GSTs. To determine whether enzymes that metabolize HNE resist its covalent adduction, the rates of adduction of these GST isoforms were compared and the functional effects of adduction on catalytic properties were determined. Although GST A4-4 and GST A1-1 have striking structural similarity, GST A4-4 was insensitive to adduction by HNE under conditions that yield modest adduction of GST A1-1 and extensive adduction of GST P1-1. Furthermore, adduction of GST P1-1 by HNE eliminated its activity toward the substrates 1-chloro- 2,4-dinitrobenzene (CDNB) and toward HNE itself. HNE effects on GST A4-4 and A1-1 were less significant. The results indicate that enzymes that metabolize HNE may have evolved structurally to resist covalent adduction by it. PMID:20836986

  3. Glutathione transferase A4-4 resists adduction by 4-hydroxynonenal.

    PubMed

    Shireman, Laura M; Kripps, Kimberly A; Balogh, Larissa M; Conner, Kip P; Whittington, Dale; Atkins, William M

    2010-12-15

    4-Hydroxy-2-trans-nonenal (HNE) is a lipid peroxidation product that contributes to the pathophysiology of several diseases with components of oxidative stress. The electrophilic nature of HNE results in covalent adduct formation with proteins, fatty acids and DNA. However, it remains unclear whether enzymes that metabolize HNE avoid inactivation by it. Glutathione transferase A4-4 (GST A4-4) plays a significant role in the elimination of HNE by conjugating it with glutathione (GSH), with catalytic activity toward HNE that is dramatically higher than the homologous GST A1-1 or distantly related GSTs. To determine whether enzymes that metabolize HNE resist its covalent adduction, the rates of adduction of these GST isoforms were compared and the functional effects of adduction on catalytic properties were determined. Although GST A4-4 and GST A1-1 have striking structural similarity, GST A4-4 was insensitive to adduction by HNE under conditions that yield modest adduction of GST A1-1 and extensive adduction of GST P1-1. Furthermore, adduction of GST P1-1 by HNE eliminated its activity toward the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and toward HNE itself. HNE effects on GST A4-4 and A1-1 were less significant. The results indicate that enzymes that metabolize HNE may have evolved structurally to resist covalent adduction by it. PMID:20836986

  4. Erythrocyte glutathione transferase: a general probe for chemical contaminations in mammals

    PubMed Central

    Bocedi, A; Fabrini, R; Lai, O; Alfieri, L; Roncoroni, C; Noce, A; Pedersen, JZ; Ricci, G

    2016-01-01

    Glutathione transferases (GSTs) are enzymes devoted to the protection of cells against many different toxins. In erythrocytes, the isoenzyme (e-GST) mainly present is GSTP1-1, which is overexpressed in humans in case of increased blood toxicity, as it occurs in nephrophatic patients or in healthy subjects living in polluted areas. The present study explores the possibility that e-GST may be used as an innovative and highly sensitive biomarker of blood toxicity also for other mammals. All distinct e-GSTs from humans, Bos taurus (cow), Sus scrofa (pig), Capra hircus (goat), Equus caballus (horse), Equus asinus (donkey) and Ovis aries (sheep), show very similar amino acid sequences, identical kinetics and stability properties. Reference values for e-GST in all these mammals reared in controlled farms span from 3.5±0.2 U/gHb in the pig to 17.0±0.9 U/gHb in goat; such activity levels can easily be determined with high precision using only a few microliters of whole blood and a simple spectrophotometric assay. Possibly disturbing factors have been examined to avoid artifact determinations. This study provides the basis for future screening studies to verify if animals have been exposed to toxicologic insults. Preliminary data on cows reared in polluted areas show increased expression of e-GST, which parallels the results found for humans. PMID:27551520

  5. Erythrocyte glutathione transferase: a general probe for chemical contaminations in mammals.

    PubMed

    Bocedi, A; Fabrini, R; Lai, O; Alfieri, L; Roncoroni, C; Noce, A; Pedersen, J Z; Ricci, G

    2016-01-01

    Glutathione transferases (GSTs) are enzymes devoted to the protection of cells against many different toxins. In erythrocytes, the isoenzyme (e-GST) mainly present is GSTP1-1, which is overexpressed in humans in case of increased blood toxicity, as it occurs in nephrophatic patients or in healthy subjects living in polluted areas. The present study explores the possibility that e-GST may be used as an innovative and highly sensitive biomarker of blood toxicity also for other mammals. All distinct e-GSTs from humans, Bos taurus (cow), Sus scrofa (pig), Capra hircus (goat), Equus caballus (horse), Equus asinus (donkey) and Ovis aries (sheep), show very similar amino acid sequences, identical kinetics and stability properties. Reference values for e-GST in all these mammals reared in controlled farms span from 3.5±0.2 U/gHb in the pig to 17.0±0.9 U/gHb in goat; such activity levels can easily be determined with high precision using only a few microliters of whole blood and a simple spectrophotometric assay. Possibly disturbing factors have been examined to avoid artifact determinations. This study provides the basis for future screening studies to verify if animals have been exposed to toxicologic insults. Preliminary data on cows reared in polluted areas show increased expression of e-GST, which parallels the results found for humans. PMID:27551520

  6. Characterization of Discrete Phosphopantetheinyl Transferases in Streptomyces tsukubaensis L19 Unveils a Complicate Phosphopantetheinylation Network

    PubMed Central

    Wang, Yue-Yue; Zhang, Xiao-Sheng; Luo, Hong-Dou; Ren, Ni-Ni; Jiang, Xin-Hang; Jiang, Hui; Li, Yong-Quan

    2016-01-01

    Phosphopantetheinyl transferases (PPTases) play essential roles in both primary metabolisms and secondary metabolisms via post-translational modification of acyl carrier proteins (ACPs) and peptidyl carrier proteins (PCPs). In this study, an industrial FK506 producing strain Streptomyces tsukubaensis L19, together with Streptomyces avermitilis, was identified to contain the highest number (five) of discrete PPTases known among any species thus far examined. Characterization of the five PPTases in S. tsukubaensis L19 unveiled that stw ACP, an ACP in a type II PKS, was phosphopantetheinylated by three PPTases FKPPT1, FKPPT3, and FKACPS; sts FAS ACP, the ACP in fatty acid synthase (FAS), was phosphopantetheinylated by three PPTases FKPPT2, FKPPT3, and FKACPS; TcsA-ACP, an ACP involved in FK506 biosynthesis, was phosphopantetheinylated by two PPTases FKPPT3 and FKACPS; FkbP-PCP, an PCP involved in FK506 biosynthesis, was phosphopantetheinylated by all of these five PPTases FKPPT1-4 and FKACPS. Our results here indicate that the functions of these PPTases complement each other for ACPs/PCPs substrates, suggesting a complicate phosphopantetheinylation network in S. tsukubaensis L19. Engineering of these PPTases in S. tsukubaensis L19 resulted in a mutant strain that can improve FK506 production. PMID:27052100

  7. A glutathione S-transferase gene associated with antioxidant properties isolated from Apis cerana cerana

    NASA Astrophysics Data System (ADS)

    Liu, Shuchang; Liu, Feng; Jia, Haihong; Yan, Yan; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2016-06-01

    Glutathione S-transferases (GSTs) are an important family of multifunctional enzymes in aerobic organisms. They play a crucial role in the detoxification of exogenous compounds, especially insecticides, and protection against oxidative stress. Most previous studies of GSTs in insects have largely focused on their role in insecticide resistance. Here, we isolated a theta class GST gene designated AccGSTT1 from Apis cerana cerana and aimed to explore its antioxidant and antibacterial attributes. Analyses of homology and phylogenetic relationships suggested that the predicted amino acid sequence of AccGSTT1 shares a high level of identity with the other hymenopteran GSTs and that it was conserved during evolution. Quantitative real-time PCR showed that AccGSTT1 is most highly expressed in adult stages and that the expression profile of this gene is significantly altered in response to various abiotic stresses. These results were confirmed using western blot analysis. Additionally, a disc diffusion assay showed that a recombinant AccGSTT1 protein may be roughly capable of inhibiting bacterial growth and that it reduces the resistance of Escherichia coli cells to multiple adverse stresses. Taken together, these data indicate that AccGSTT1 may play an important role in antioxidant processes under adverse stress conditions.

  8. A glutathione S-transferase gene associated with antioxidant properties isolated from Apis cerana cerana.

    PubMed

    Liu, Shuchang; Liu, Feng; Jia, Haihong; Yan, Yan; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2016-06-01

    Glutathione S-transferases (GSTs) are an important family of multifunctional enzymes in aerobic organisms. They play a crucial role in the detoxification of exogenous compounds, especially insecticides, and protection against oxidative stress. Most previous studies of GSTs in insects have largely focused on their role in insecticide resistance. Here, we isolated a theta class GST gene designated AccGSTT1 from Apis cerana cerana and aimed to explore its antioxidant and antibacterial attributes. Analyses of homology and phylogenetic relationships suggested that the predicted amino acid sequence of AccGSTT1 shares a high level of identity with the other hymenopteran GSTs and that it was conserved during evolution. Quantitative real-time PCR showed that AccGSTT1 is most highly expressed in adult stages and that the expression profile of this gene is significantly altered in response to various abiotic stresses. These results were confirmed using western blot analysis. Additionally, a disc diffusion assay showed that a recombinant AccGSTT1 protein may be roughly capable of inhibiting bacterial growth and that it reduces the resistance of Escherichia coli cells to multiple adverse stresses. Taken together, these data indicate that AccGSTT1 may play an important role in antioxidant processes under adverse stress conditions. PMID:27126403

  9. Effects of antioxidants on glutathione-S-transferase activities in hepatocyte culture

    SciTech Connect

    Chen, L.H. )

    1991-03-15

    Hepatocyte cultures from control rats and rats injected with 3-methylcholanthrene(3-MC) were used to study the effects of antioxidants on the activity of glutathione-S-transferases (GSH-S-T). This group of enzymes catalyzes conjugation of xenobiotics or their metabolites with reduced glutathione and plays an important role in detoxification of xenobiotics. In Experiment 1, treatment of hepatocyte cultures from both control and 3-MC-injected rats with 25 {mu}M or 50 {mu}M butylated hydroxyanisole (BHA) for 24 hours or 48 hours significantly increased GSH-S-T activity with I-chloro-2,4-dinitrobenzene (CDNB) as the substrate. In Experiment 2, treatment of hepatocytes from both control and 3-MC-treated rats with 25 {mu}M ethoxyquin or vitamin E, but not vitamin A or ascorbic acid, significantly increased GSH-S-T activity when CDNB, 1,2-dichloro-4-nitrobenzene or p-nitrobenzyl chloride was used as the substrate, respectively. The results suggested that BHA, ethoxyquin and vitamin E may have detoxification effects against 3-MC-induced carcinogenesis.

  10. Development of pyrethroid-like fluorescent substrates for glutathione S-transferase

    PubMed Central

    Huang, Huazhang; Yao, Hongwei; Liu, Jun-Yan; Samra, Aman I.; Kamita, Shizuo G.; Cornel, Anthony J.; Hammock, Bruce D.

    2012-01-01

    The availability of highly sensitive substrates is critical for the development of precise and rapid assays for detecting changes in glutathione S-transferase (GST) activity that are associated with GST-mediated metabolism of insecticides. In this study, six pyrethroid-like compounds were synthesized and characterized as substrates for insect and mammalian GSTs. All of the substrates were esters composed of the same alcohol moiety, 7-hydroxy-4-methylcoumarin, and acid moieties that structurally mimic some commonly used pyrethroid insecticides including cypermethrin and cyhalothrin. CpGSTD1, a recombinant Delta class GST from the mosquito Culex pipiens, metabolized our pyrethroid-like substrates with both chemical and geometric (i.e., the cis-isomers were metabolized at 2- to 5-fold higher rates than the corresponding trans-isomers) preference. A GST preparation from mouse liver also metabolized most of our pyrethroid-like substrates with both chemical and geometric preference but at 10- to 170-fold lower rates. CpGSTD1 and mouse GSTs metabolized CDNB, a general GST substrate, at more than 200-fold higher rates than our novel pyrethroid-like substrates. There was a 10-fold difference in the specificity constant (kcat/KM ratio) of CpGSTD1 for CDNB and those of CpGSTD1 for cis-DCVC and cis-TFMCVC suggesting that cis-DCVC and cis-TFMCVC may be useful for the detection of GST-based metabolism of pyrethroids in mosquitoes. PMID:23000005