Sample records for acid oxidation carnitine

  1. L-Carnitine suppresses oleic acid-induced membrane permeability transition of mitochondria.

    PubMed

    Oyanagi, Eri; Yano, Hiromi; Kato, Yasuko; Fujita, Hirofumi; Utsumi, Kozo; Sasaki, Junzo

    2008-10-01

    Membrane permeability transition (MPT) of mitochondria has an important role in apoptosis of various cells. The classic type of MPT is characterized by increased Ca(2+) transport, membrane depolarization, swelling, and sensitivity to cyclosporin A. In this study, we investigated whether L-carnitine suppresses oleic acid-induced MPT using isolated mitochondria from rat liver. Oleic acid-induced MPT in isolated mitochondria, inhibited endogenous respiration, caused membrane depolarization, and increased large amplitude swelling, and cytochrome c (Cyt. c) release from mitochondria. L-Carnitine was indispensable to beta-oxidation of oleic acid in the mitochondria, and this reaction required ATP and coenzyme A (CoA). In the presence of ATP and CoA, L-carnitine stimulated oleic acid oxidation and suppressed the oleic acid-induced depolarization, swelling, and Cyt. c release. L-Carnitine also contributed to maintaining mitochondrial function, which was decreased by the generation of free fatty acids with the passage of time after isolation. These results suggest that L-carnitine acts to maintain mitochondrial function and suppresses oleic acid-mediated MPT through acceleration of beta-oxidation. Copyright (c) 2008 John Wiley & Sons, Ltd.

  2. Peroxisomal fatty acid oxidation and inhibitors of the mitochondrial carnitine palmitoyltransferase I in isolated rat hepatocytes.

    PubMed Central

    Skorin, C; Necochea, C; Johow, V; Soto, U; Grau, A M; Bremer, J; Leighton, F

    1992-01-01

    Fatty acid oxidation was studied in the presence of inhibitors of carnitine palmitoyltransferase I (CPT I), in normal and in peroxisome-proliferated rat hepatocytes. The oxidation decreased in mitochondria, as expected, but in peroxisomes it increased. These two effects were seen, in variable proportions, with (+)-decanoylcarnitine, 2-tetradecylglycidic acid (TDGA) and etomoxir. The decrease in mitochondrial oxidation (ketogenesis) affected saturated fatty acids with 12 or more carbon atoms, whereas the increase in peroxisomal oxidation (H2O2 production) affected saturated fatty acids with 8 or more carbon atoms. The peroxisomal increase was sensitive to chlorpromazine, a peroxisomal inhibitor. To study possible mechanisms, palmitoyl-, octanoyl- and acetyl-carnitine acyltransferase activities were measured, in homogenates and in subcellular fractions from control and TDGA-treated cells. The palmitoylcarnitine acyltransferase was inhibited, as expected, but the octanoyltransferase activity also decreased. The CoA derivative of TDGA was synthesized and tentatively identified as being responsible for inhibition of the octanoylcarnitine acyltransferase. These results show that inhibitors of the mitochondrial CPT I may also inhibit the peroxisomal octanoyl transferase; they also support the hypothesis that the octanoyltransferase has the capacity to control or regulate peroxisomal fatty acid oxidation. PMID:1736904

  3. Metabolic profiling of PPARalpha-/- mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation.

    PubMed

    Makowski, Liza; Noland, Robert C; Koves, Timothy R; Xing, Weibing; Ilkayeva, Olga R; Muehlbauer, Michael J; Stevens, Robert D; Muoio, Deborah M

    2009-02-01

    Peroxisome proliferator-activated receptor-alpha (PPARalpha) is a master transcriptional regulator of beta-oxidation and a prominent target of hypolipidemic drugs. To gain deeper insights into the systemic consequences of impaired fat catabolism, we used quantitative, mass spectrometry-based metabolic profiling to investigate the fed-to-fasted transition in PPARalpha(+/+) and PPARalpha(-/-) mice. Compared to PPARalpha(+/+) animals, acylcarnitine profiles of PPARalpha(-/-) mice revealed 2- to 4-fold accumulation of long-chain species in the plasma, whereas short-chain species were reduced by as much as 69% in plasma, liver, and skeletal muscle. These results reflect a metabolic bottleneck downstream of carnitine palmitoyltransferase-1, a mitochondrial enzyme that catalyzes the first step in beta-oxidation. Organic and amino acid profiles of starved PPARalpha(-/-) mice suggested compromised citric acid cycle flux, enhanced urea cycle activity, and increased amino acid catabolism. PPARalpha(-/-) mice had 40-50% lower plasma and tissue levels of free carnitine, corresponding with diminished hepatic expression of genes involved in carnitine biosynthesis and transport. One week of oral carnitine supplementation conferred partial metabolic recovery in the PPARalpha(-/-) mice. In summary, comprehensive metabolic profiling revealed novel biomarkers of defective fat oxidation, while also highlighting the potential value of supplemental carnitine as a therapy and diagnostic tool for metabolic disorders.

  4. Metabolic profiling of PPARα−/− mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation

    PubMed Central

    Makowski, Liza; Noland, Robert C.; Koves, Timothy R.; Xing, Weibing; Ilkayeva, Olga R.; Muehlbauer, Michael J.; Stevens, Robert D.; Muoio, Deborah M.

    2009-01-01

    Peroxisome proliferator-activated receptor-α (PPARα) is a master transcriptional regulator of β-oxidation and a prominent target of hypolipidemic drugs. To gain deeper insights into the systemic consequences of impaired fat catabolism, we used quantitative, mass spectrometry-based metabolic profiling to investigate the fed-to-fasted transition in PPARα+/+ and PPARα−/− mice. Compared to PPARα+/+ animals, acylcarnitine profiles of PPARα−/− mice revealed 2- to 4-fold accumulation of long-chain species in the plasma, whereas short-chain species were reduced by as much as 69% in plasma, liver, and skeletal muscle. These results reflect a metabolic bottleneck downstream of carnitine palmitoyltransferase-1, a mitochondrial enzyme that catalyzes the first step in β-oxidation. Organic and amino acid profiles of starved PPARα−/− mice suggested compromised citric acid cycle flux, enhanced urea cycle activity, and increased amino acid catabolism. PPARα−/− mice had 40–50% lower plasma and tissue levels of free carnitine, corresponding with diminished hepatic expression of genes involved in carnitine biosynthesis and transport. One week of oral carnitine supplementation conferred partial metabolic recovery in the PPARα−/− mice. In summary, comprehensive metabolic profiling revealed novel biomarkers of defective fat oxidation, while also highlighting the potential value of supplemental carnitine as a therapy and diagnostic tool for metabolic disorders.—Makowski, L., Noland, R. C., Koves, T. R., Xing, W., Ilkayeva, O. R., Muehlbauer, M. J., Stevens, R. D., Muoio, D. M. Metabolic profiling of PPARα−/− mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation. PMID:18945875

  5. Carnitine supplementation and depletion: tissue carnitines and enzymes in fatty acid oxidation.

    PubMed

    Negrao, C E; Ji, L L; Schauer, J E; Nagle, F J; Lardy, H A

    1987-07-01

    Sixty-two male rats were randomly assigned into a 3 X 2 X 2 factorial design containing 12 groups according to carnitine treatment, exercise training (treadmill, 1 h, 5 times/wk, 8 wk, 26.8 m/min, 15% grade), and physical activity [rested for 60 h before they were killed or with an acute bout of exercise (1 h, 26.8 m/min, 15% grade) immediately before they were killed]. Isotonic saline was injected intraperitoneally 5 times/wk in the controls, whereas 750 mg/kg of L- or D-carnitine, respectively, were injected in the supplemented and depleted treatment groups. A significant increase in free and short-chain acyl carnitine concentration in skeletal muscle and heart was observed in L-carnitine supplemented rats, whereas a significant reduction in skeletal muscle, heart, and liver occurred in rats depleted of L-carnitine. Long-chain acyl carnitine in all tissues was not altered by carnitine treatment; training increased plasma and liver concentrations, whereas acute exercise decreased skeletal muscle and increased liver concentrations. An acute bout of exercise significantly increased short-chain acylcarnitine in liver, regardless of carnitine and/or training effects. beta-Hydroxyacyl-CoA dehydrogenase activity in skeletal muscle was induced by training but reduced by depletion. Carnitine acetyltransferase (CAT) was significantly increased in heart by L-carnitine supplementation, whereas it was reduced by depletion in skeletal muscle. Exercise training significantly increased CAT activity in skeletal muscle but not in heart, whereas acute exercise significantly increased activity in both tissues. Carnitine palmitoyltransferase activity was increased by acute exercise in the heart in only the supplemented and exercise-trained rats.

  6. L-carnitine--metabolic functions and meaning in humans life.

    PubMed

    Pekala, Jolanta; Patkowska-Sokoła, Bozena; Bodkowski, Robert; Jamroz, Dorota; Nowakowski, Piotr; Lochyński, Stanisław; Librowski, Tadeusz

    2011-09-01

    L-Carnitine is an endogenous molecule involved in fatty acid metabolism, biosynthesized within the human body using amino acids: L-lysine and L-methionine, as substrates. L-Carnitine can also be found in many foods, but red meats, such as beef and lamb, are the best choices for adding carnitine into the diet. Good carnitine sources also include fish, poultry and milk. Essentially, L-carnitine transports the chains of fatty acids into the mitochondrial matrix, thus allowing the cells to break down fat and get energy from the stored fat reserves. Recent studies have started to shed light on the beneficial effects of L-carnitine when used in various clinical therapies. Because L-carnitine and its esters help reduce oxidative stress, they have been proposed as a treatment for many conditions, i.e. heart failure, angina and weight loss. For other conditions, such as fatigue or improving exercise performance, L-carnitine appears safe but does not seem to have a significant effect. The presented review of the literature suggests that continued studies are required before L-carnitine administration could be recommended as a routine procedure in the noted disorders. Further research is warranted in order to evaluate the biochemical, pharmacological, and physiological determinants of the response to carnitine supplementation, as well as to determine the potential benefits of carnitine supplements in selected categories of individuals who do not have fatty acid oxidation defects.

  7. Beta-oxidation as channeled reaction linked to citric acid cycle: evidence from measurements of mitochondrial pyruvate oxidation during fatty acid degradation.

    PubMed

    Förster, M E; Staib, W

    1992-07-01

    1. The kinetics of mitochondrial mammalian pyruvate dehydrogenase multienzyme complex (PDHC) is studied by the formation of CO2 using tracer amounts of [1-14C]pyruvate. It is found that the Hill plot results in a (pseudo-)cooperativity with a transition of n-1----3 at a pyruvate concentration about Ks. 2. Addition of L-carnitine, octanoate, palmitoyl-CoA or palmitate + L-carnitine + fatty acid-binding protein results in a Hill coefficient of n = 2 following the kinetics of pyruvate oxidation. 3. Addition of fatty acid-binding protein to an assay system oxidizing palmitate in presence of L-carnitine alters the pattern of the kinetics in the Hill plot so that an apparently lower level of L-carnitine is necessary for the reaction course of beta-degradation. 4. It is concluded that beta-degradation is a coordinated, multienzyme-complex based mechanism tightly linked to citric acid cycle and it is proposed that L-carnitine is actively involved into the reaction and not only functioning as carrier-molecule for transmembrane transport.

  8. Effect of sulfonylureas on hepatic fatty acid oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, T.B.

    1986-08-01

    In isolated rat livers perfused with oleic acid (0.1 mM), infusion of tolbutamide or glyburide decreased the rate of ketogenesis in a dose-dependent manner. The inhibition of fatty acid oxidation was maximal at 2.0 mM and 10 M concentrations of tolbutamide and glyburide, respectively. Neither tolbutamide nor glyburide inhibited ketogenesis in livers perfused with octanoate. The inhibition of hepatic ketogenesis by sulfonylureas was independent of perfusate oleic acid concentration. Additionally, in rat livers perfused with oleic acid in the presence of L-(-)-carnitine (10 mM), submaximal concentrations of tolbutamide and glyburide did not inhibit hepatic ketogenesis. Finally, glyburide infusion into liversmore » perfused with (U- $C)oleic acid (0.1 mM) increased the rate of UC label incorporation into hepatic triglycerides by 2.5-fold. These data suggest that both tolbutamide and glyburide inhibit long-chain fatty acid oxidation by inhibition the key regulatory enzyme, carnitine palmitoyltransferase I, most probably by competing with L-(-)-carnitine.« less

  9. Toxicity of cephaloridine to carnitine transport and fatty acid metabolism in rabbit renal cortical mitochondria: structure-activity relationships.

    PubMed

    Tune, B M; Hsu, C Y

    1994-09-01

    Cephaloridine (Cld), the most widely studied nephrotoxic cephalosporin, has significant structural homology with carnitine, which facilitates the transport of long-chain fatty acids into the mitochondrial inner matrix. Because of this homology, and evidence of a role of lipids in cephaloglycin (Cgl) nephrotoxicity, protocols were designed to compare the effects of Cld and Cgl on renal cortical mitochondrial carnitine transport, on long-chain fatty acylcarnitine-mediated respiration and on the in situ mitochondrial pools and urinary excretion of carnitine and acylcarnitines. The following was found: 1) both cephalosporins reduced carnitine-facilitated pyruvate oxidation (CFPO) and palmitoylcarnitine-mediated respiration (PCMR) by 40 to 50% in mitochondria exposed in vivo (300 mg/kg b.wt., 1 hr). CFPO could be decreased by reduction of carnitine uptake, pyruvate oxidation or carnitine acetyltransferase activity; 2) neither cephalosporin reduced mitochondrial carnitine acetyltransferase or carnitine palmitoyltransferase; 3) with in vitro exposure (2000 micrograms/ml, immediate effect) Cgl had no significant toxicity to mitochondrial CFPO. Cld inhibited CFPO in a dose-dependent manner, up to 100% at 2000 micrograms/ml; this effect was reduced by increasing carnitine concentrations; 4) in vitro Cld prevented the potentiation of PCMR by preloading with carnitine, reduced mitochondrial acetylcarnitine/carnitine exchange by 70% and reduced PCMR by 30%; 5) in vivo Cld increased mitochondrial-free carnitine in the in situ kidney by 100%; and 6) in vivo Cld increased the fractional renal excretion of carnitine from 0 +/- 0 to 0.29 +/- 0.03 and the fractional excretion of long-chain acylcarnitines from 0.06 +/- 0.01 to 0.79 +/- 0.17.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control.

    PubMed

    Noland, Robert C; Koves, Timothy R; Seiler, Sarah E; Lum, Helen; Lust, Robert M; Ilkayeva, Olga; Stevens, Robert D; Hegardt, Fausto G; Muoio, Deborah M

    2009-08-21

    In addition to its essential role in permitting mitochondrial import and oxidation of long chain fatty acids, carnitine also functions as an acyl group acceptor that facilitates mitochondrial export of excess carbons in the form of acylcarnitines. Recent evidence suggests carnitine requirements increase under conditions of sustained metabolic stress. Accordingly, we hypothesized that carnitine insufficiency might contribute to mitochondrial dysfunction and obesity-related impairments in glucose tolerance. Consistent with this prediction whole body carnitine diminution was identified as a common feature of insulin-resistant states such as advanced age, genetic diabetes, and diet-induced obesity. In rodents fed a lifelong (12 month) high fat diet, compromised carnitine status corresponded with increased skeletal muscle accumulation of acylcarnitine esters and diminished hepatic expression of carnitine biosynthetic genes. Diminished carnitine reserves in muscle of obese rats was accompanied by marked perturbations in mitochondrial fuel metabolism, including low rates of complete fatty acid oxidation, elevated incomplete beta-oxidation, and impaired substrate switching from fatty acid to pyruvate. These mitochondrial abnormalities were reversed by 8 weeks of oral carnitine supplementation, in concert with increased tissue efflux and urinary excretion of acetylcarnitine and improvement of whole body glucose tolerance. Acetylcarnitine is produced by the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT). A role for this enzyme in combating glucose intolerance was further supported by the finding that CrAT overexpression in primary human skeletal myocytes increased glucose uptake and attenuated lipid-induced suppression of glucose oxidation. These results implicate carnitine insufficiency and reduced CrAT activity as reversible components of the metabolic syndrome.

  11. Carnitine Insufficiency Caused by Aging and Overnutrition Compromises Mitochondrial Performance and Metabolic Control*

    PubMed Central

    Noland, Robert C.; Koves, Timothy R.; Seiler, Sarah E.; Lum, Helen; Lust, Robert M.; Ilkayeva, Olga; Stevens, Robert D.; Hegardt, Fausto G.; Muoio, Deborah M.

    2009-01-01

    In addition to its essential role in permitting mitochondrial import and oxidation of long chain fatty acids, carnitine also functions as an acyl group acceptor that facilitates mitochondrial export of excess carbons in the form of acylcarnitines. Recent evidence suggests carnitine requirements increase under conditions of sustained metabolic stress. Accordingly, we hypothesized that carnitine insufficiency might contribute to mitochondrial dysfunction and obesity-related impairments in glucose tolerance. Consistent with this prediction whole body carnitine dimunition was identified as a common feature of insulin-resistant states such as advanced age, genetic diabetes, and diet-induced obesity. In rodents fed a lifelong (12 month) high fat diet, compromised carnitine status corresponded with increased skeletal muscle accumulation of acylcarnitine esters and diminished hepatic expression of carnitine biosynthetic genes. Diminished carnitine reserves in muscle of obese rats was accompanied by marked perturbations in mitochondrial fuel metabolism, including low rates of complete fatty acid oxidation, elevated incomplete β-oxidation, and impaired substrate switching from fatty acid to pyruvate. These mitochondrial abnormalities were reversed by 8 weeks of oral carnitine supplementation, in concert with increased tissue efflux and urinary excretion of acetylcarnitine and improvement of whole body glucose tolerance. Acetylcarnitine is produced by the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT). A role for this enzyme in combating glucose intolerance was further supported by the finding that CrAT overexpression in primary human skeletal myocytes increased glucose uptake and attenuated lipid-induced suppression of glucose oxidation. These results implicate carnitine insufficiency and reduced CrAT activity as reversible components of the metabolic syndrome. PMID:19553674

  12. Inhibited Carnitine Synthesis Causes Systemic Alteration of Nutrient Metabolism in Zebrafish

    PubMed Central

    Li, Jia-Min; Li, Ling-Yu; Qin, Xuan; Degrace, Pascal; Demizieux, Laurent; Limbu, Samwel M.; Wang, Xin; Zhang, Mei-Ling; Li, Dong-Liang; Du, Zhen-Yu

    2018-01-01

    Impaired mitochondrial fatty acid β-oxidation has been correlated with many metabolic syndromes, and the metabolic characteristics of the mammalian models of mitochondrial dysfunction have also been intensively studied. However, the effects of the impaired mitochondrial fatty acid β-oxidation on systemic metabolism in teleost have never been investigated. In the present study, we established a low-carnitine zebrafish model by feeding fish with mildronate as a specific carnitine synthesis inhibitor [0.05% body weight (BW)/d] for 7 weeks, and the systemically changed nutrient metabolism, including carnitine and triglyceride (TG) concentrations, fatty acid (FA) β-oxidation capability, and other molecular and biochemical assays of lipid, glucose, and protein metabolism, were measured. The results indicated that mildronate markedly decreased hepatic carnitine concentrations while it had no effect in muscle. Liver TG concentrations increased by more than 50% in mildronate-treated fish. Mildronate decreased the efficiency of liver mitochondrial β-oxidation, increased the hepatic mRNA expression of genes related to FA β-oxidation and lipolysis, and decreased the expression of lipogenesis genes. Mildronate decreased whole body glycogen content, increased glucose metabolism rate, and upregulated the expression of glucose uptake and glycolysis genes. Mildronate also increased whole body protein content and hepatic mRNA expression of mechanistic target of rapamycin (mtor), and decreased the expression of a protein catabolism-related gene. Liver, rather than muscle, was the primary organ targeted by mildronate. In short, mildronate-induced hepatic inhibited carnitine synthesis in zebrafish caused decreased mitochondrial FA β-oxidation efficiency, greater lipid accumulation, and altered glucose and protein metabolism. This reveals the key roles of mitochondrial fatty acid β-oxidation in nutrient metabolism in fish, and this low-carnitine zebrafish model could also be used

  13. Inhibited Carnitine Synthesis Causes Systemic Alteration of Nutrient Metabolism in Zebrafish.

    PubMed

    Li, Jia-Min; Li, Ling-Yu; Qin, Xuan; Degrace, Pascal; Demizieux, Laurent; Limbu, Samwel M; Wang, Xin; Zhang, Mei-Ling; Li, Dong-Liang; Du, Zhen-Yu

    2018-01-01

    Impaired mitochondrial fatty acid β-oxidation has been correlated with many metabolic syndromes, and the metabolic characteristics of the mammalian models of mitochondrial dysfunction have also been intensively studied. However, the effects of the impaired mitochondrial fatty acid β-oxidation on systemic metabolism in teleost have never been investigated. In the present study, we established a low-carnitine zebrafish model by feeding fish with mildronate as a specific carnitine synthesis inhibitor [0.05% body weight (BW)/d] for 7 weeks, and the systemically changed nutrient metabolism, including carnitine and triglyceride (TG) concentrations, fatty acid (FA) β-oxidation capability, and other molecular and biochemical assays of lipid, glucose, and protein metabolism, were measured. The results indicated that mildronate markedly decreased hepatic carnitine concentrations while it had no effect in muscle. Liver TG concentrations increased by more than 50% in mildronate-treated fish. Mildronate decreased the efficiency of liver mitochondrial β-oxidation, increased the hepatic mRNA expression of genes related to FA β-oxidation and lipolysis, and decreased the expression of lipogenesis genes. Mildronate decreased whole body glycogen content, increased glucose metabolism rate, and upregulated the expression of glucose uptake and glycolysis genes. Mildronate also increased whole body protein content and hepatic mRNA expression of mechanistic target of rapamycin ( mtor ), and decreased the expression of a protein catabolism-related gene. Liver, rather than muscle, was the primary organ targeted by mildronate. In short, mildronate-induced hepatic inhibited carnitine synthesis in zebrafish caused decreased mitochondrial FA β-oxidation efficiency, greater lipid accumulation, and altered glucose and protein metabolism. This reveals the key roles of mitochondrial fatty acid β-oxidation in nutrient metabolism in fish, and this low-carnitine zebrafish model could also be

  14. Acetyl-L-carnitine and alpha-lipoic acid: possible neurotherapeutic agents for mood disorders?

    PubMed

    Soczynska, Joanna K; Kennedy, Sidney H; Chow, Cindy S M; Woldeyohannes, Hanna O; Konarski, Jakub Z; McIntyre, Roger S

    2008-06-01

    Mood disorders are associated with decrements in cognitive function, which are insufficiently treated with contemporary pharmacotherapies. To evaluate the putative neurotherapeutic effects of the mitochondrial cofactors, L-carnitine, acetyl-L-carnitine, and alpha-lipoic acid; and to provide a rationale for investigating their efficacy in the treatment of neurocognitive deficits associated with mood disorders. A PubMed search of English-language articles published between January 1966 and March 2007 was conducted using the search terms carnitine and lipoic acid. L-carnitine and alpha-lipoic acid may offer neurotherapeutic effects (e.g., neurocognitive enhancement) via disparate mechanisms including antioxidant, anti-inflammatory, and metabolic regulation. Preliminary controlled trials in depressed geriatric populations also suggest an antidepressant effect with acetyl-L-carnitine. L-carnitine and alpha-lipoic acid are pleiotropic agents capable of offering neuroprotective and possibly cognitive-enhancing effects for neuropsychiatric disorders in which cognitive deficits are an integral feature.

  15. Carnitine supplementation to obese Zucker rats prevents obesity-induced type II to type I muscle fiber transition and favors an oxidative phenotype of skeletal muscle

    PubMed Central

    2013-01-01

    Background In the present study, we tested the hypothesis that carnitine supplementation counteracts obesity-induced muscle fiber transition from type I to type II. Methods 24 obese Zucker rats were randomly divided into two groups of 12 rats each (obese control, obese carnitine) and 12 lean Zucker rats were selected for lean control group. A control diet was given to both control groups and a carnitine supplemented diet (3 g/kg diet) was given to obese carnitine group for 4 wk. Components of the muscle fiber transformation in skeletal muscle were examined. Results The plasma level of carnitine were lower in the obese control group compared to the lean control group and higher in the obese carnitine group than in the other groups (P < 0.05). Plasma concentrations of triglycerides and non-esterified fatty acids were increased in obese animals compared to lean animals and the obese carnitine group had lower level compared to the obese control group (P < 0.05). The obese carnitine group had an increased number of type I muscle fibers and higher mRNA levels of type I fiber-specific myosin heavy chain, regulators of muscle fiber transition and of genes involved in carnitine uptake, fatty acid transport, β-oxidation, angiogenesis, tricarboxylic acid cycle and thermo genesis in M. rectus femoris compared to the other groups (P < 0.05). Conclusion The results demonstrate that carnitine supplementation to obese Zucker a rat counteracts the obesity-induced muscle fiber transition and restores the muscle oxidative metabolic phenotype. Carnitine supplementation is supposed to be beneficial for the treatment of elevated levels of plasma lipids during obesity or diabetes. PMID:23842456

  16. Hepatic beta-oxidation and carnitine palmitoyltransferase I in neonatal pigs after dietary treatments of clofibric acid, isoproterenol, and medium-chain triglycerides.

    PubMed

    Peffer, Pasha Lyvers; Lin, Xi; Odle, Jack

    2005-06-01

    A suckling piglet model was used to study nutritional and pharmacologic means of stimulating hepatic fatty acid beta-oxidation. Newborn pigs were fed milk diets containing either long- or medium-chain triglycerides (LCT or MCT). The long-chain control diet was supplemented further with clofibric acid (0.5%) or isoproterenol (40 ppm), and growth was monitored for 10-12 days. Clofibrate increased rates of hepatic peroxisomal and mitochondrial beta-oxidation of [1-(14)C]-palmitate by 60 and 186%, respectively. Furthermore, malonyl-CoA sensitive carnitine palmitoyltransferase (CPT I) activity increased 64% (P < 0.05) in pigs receiving clofibrate. Increased CPT I activity was not congruent with changes in message, as elevated abundance of CPT I mRNA was not detected (P = 0.16) when assessed by qRT-PCR. Neither rates of beta-oxidation nor CPT activities were affected by dietary MCT or by isoproterenol treatment (P > 0.1). Collectively, these findings indicate that clofibrate effectively induced hepatic CPT activity concomitant with increased fatty acid beta-oxidation.

  17. l-Carnitine and heart disease.

    PubMed

    Wang, Zhong-Yu; Liu, Ying-Yi; Liu, Guo-Hui; Lu, Hai-Bin; Mao, Cui-Ying

    2018-02-01

    Cardiovascular disease (CVD) is a key cause of deaths worldwide, comprising 15-17% of healthcare expenditure in developed countries. Current records estimate an annual global average of 30 million cardiac dysfunction cases, with a predicted escalation by two-three folds for the next 20-30years. Although β-blockers and angiotensin-converting-enzymes are commonly prescribed to control CVD risk, hepatotoxicity and hematological changes are frequent adverse events associated with these drugs. Search for alternatives identified endogenous cofactor l-carnitine, which is capable of promoting mitochondrial β-oxidation towards a balanced cardiac energy metabolism. l-Carnitine facilitates transport of long-chain fatty acids into the mitochondrial matrix, triggering cardioprotective effects through reduced oxidative stress, inflammation and necrosis of cardiac myocytes. Additionally, l-carnitine regulates calcium influx, endothelial integrity, intracellular enzyme release and membrane phospholipid content for sustained cellular homeostasis. Carnitine depletion, characterized by reduced expression of "organic cation transporter-2" gene, is a metabolic and autosomal recessive disorder that also frequently associates with CVD. Hence, exogenous carnitine administration through dietary and intravenous routes serves as a suitable protective strategy against ventricular dysfunction, ischemia-reperfusion injury, cardiac arrhythmia and toxic myocardial injury that prominently mark CVD. Additionally, carnitine reduces hypertension, hyperlipidemia, diabetic ketoacidosis, hyperglycemia, insulin-dependent diabetes mellitus, insulin resistance, obesity, etc. that enhance cardiovascular pathology. These favorable effects of l-carnitine have been evident in infants, juvenile, young, adult and aged patients of sudden and chronic heart failure as well. This review describes the mechanism of action, metabolism and pharmacokinetics of l-carnitine. It specifically emphasizes upon the beneficial

  18. Urinary biomarkers of oxidative damage in Maple syrup urine disease: the L-carnitine role.

    PubMed

    Guerreiro, Gilian; Mescka, Caroline Paula; Sitta, Angela; Donida, Bruna; Marchetti, Desirèe; Hammerschmidt, Tatiane; Faverzani, Jessica; Coelho, Daniella de Moura; Wajner, Moacir; Dutra-Filho, Carlos Severo; Vargas, Carmen Regla

    2015-05-01

    Maple syrup urine disease (MSUD) is a disorder of branched-chain amino acids (BCAA). The defect in the branched-chain α-keto acid dehydrogenase complex activity leads to an accumulation of these compounds and their corresponding α-keto-acids and α-hydroxy-acids. Studies have shown that oxidative stress may be involved in neuropathology of MSUD. L-carnitine (L-car), which has demonstrated an important role as antioxidant by reducing and scavenging free radicals formation and by enhancing the activity of antioxidant enzymes, have been used in the treatment of some metabolic rare disorders. This study evaluated the oxidative stress parameters, di-tyrosine, isoprostanes and antioxidant capacity, in urine of MSUD patients under protein-restricted diet supplemented or not with L-car capsules at a dose of 50 mg kg(-1) day(-1). It was also determined urinary α-keto isocaproic acid levels as well as blood free L-car concentrations in blood. It was found a deficiency of carnitine in patients before the L-car supplementation. Significant increases of di-tyrosine and isoprostanes, as well as reduced antioxidant capacity, were observed before the treatment with L-car. The L-car supplementation induced beneficial effects on these parameters reducing the di-tyrosine and isoprostanes levels and increasing the antioxidant capacity. It was also showed a significant increase in urinary of α-ketoisocaproic acid after 2 months of L-car treatment, compared to control group. In conclusion, our results suggest that L-car may have beneficial effects in the treatment of MSUD by preventing oxidative damage to the cells and that urine can be used to monitorize oxidative damage in patients affected by this disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Study of Hemodialysis Effectiveness on the Change Rate of Lipid Peroxidation and L-Carnitine Level in Hemodialysis Patients

    PubMed Central

    Isfahani, Maryam; Sheikh, Nasrin

    2010-01-01

    Carnitine is a small molecule widely present in all cells from prokaryotic to eukaryotic. It is an important element in β-oxidation of fatty acids. Carnitine is a scavenger of oxygen free radicals in mammalian tissues. Lack of carnitine in a hemodialysis patient can lead to carnitine deficiency. Oxidation of fatty acids and lipid metabolism are severly affected by carnitine deficiency. Oxidative stress is defined as imbalance between formation of free radicals and antioxidative defense mechanisms. It has been proposed to play a role in many disease states. In hemodialysis patients multiple factors can lead to a a high susceptibility to oxidative stress. The aim of this study was to determine hemodialysis effectiveness on the change rate of serum L-carnitine and lipid peroxidation. 27 patients with chronic renal failure (24-80 yrs) who undergo hemodialysis for 6-12 months were selected (M= 17, F= 10). Malondialdehyde (MDA), as an indicator of lipid peroxidation was measured colorimetrically with a standard thiobarbituric acid (TBA) method. L-carnitine was measured with enzymatic UV method (ROCHE, Spectronic Genesis 2, 340 nm). The weight mean of L-carnitine before and after hemodialysis was 7.67±3.6 mg/l and 2.07±1.6 mg/l, respectively (P<0.001). The weight mean of pre-hemodialysis MDA was 4.17±1.24 µmol/l, following hemodialysis -4.98±1.2 µmol/l (P<0.001). Results showed that 55.6% of patients suffered from carnitine defciency. Serum carnitine was found to be decreased markedly after hemodialysis (P<0.001). Our findings indicated that oxidative stress in these patients is further exacerbated by hemodialysis, as evidenced by increased lipid peroxidation. The relationship between serum L-carnitine and MDA before and after hemodialysis was observed (r=0.82; p<0.001; r=0.75; p<0.001). PMID:27683353

  20. Genotype-Phenotype Correlation in Primary Carnitine Deficiency

    PubMed Central

    Rose, Emily Cornforth; di San Filippo, Cristina Amat; Ndukwe Erlingsson, Uzochi C.; Ardon, Orly; Pasquali, Marzia; Longo, Nicola

    2011-01-01

    Primary carnitine deficiency is caused by defective OCTN2 carnitine transporters encoded by the SLC22A5 gene. Lack of carnitine impairs fatty acid oxidation resulting in hypoketotic hypoglycemia, hepatic encephalopathy, skeletal and cardiac myopathy. Recently, asymptomatic mothers with primary carnitine deficiency were identified by low carnitine levels in their infant by newborn screening. Here we evaluate mutations in the SLC22A5 gene and carnitine transport in fibroblasts from symptomatic patients and asymptomatic women. Carnitine transport was significantly reduced in fibroblasts obtained from all patients with primary carnitine deficiency, but was significantly higher in the asymptomatic women’s than in the symptomatic patients’ fibroblasts (p<0.01). By contrast, ergothioneine transport (a selective substrate of the OCTN1 transporter, tested here as a control) was similar in cells from controls and patients with carnitine deficiency. DNA sequencing indicated an increased frequency of nonsense mutations in symptomatic patients (p<0.001). Expression of the missense mutations in CHO cells indicated that many mutations retained residual carnitine transport activity, with no difference in the average activity of missense mutations identified in symptomatic versus asymptomatic patients. These results indicate that cells from asymptomatic women have on average higher levels of residual carnitine transport activity as compared to that of symptomatic patients due to the presence of at least one missense mutation. PMID:21922592

  1. Hypoglycemic Effect of Lipoic Acid, Carnitine and Nigella Sativa in Diabetic Rat Model

    PubMed Central

    Salama, Ragaa Hamdy Mohamed

    2011-01-01

    Objectives Evaluation of therapeutic potentials of α-lipoic acid (α-LA), L-carnitine, Nigella sativa (N. sativa) or combination of them in carbohydrate and lipid metabolism of DM type I. Methods Rat model of diabetes was induced by single i.p injection of Streptozocin (STZ) 65 mg/kg. The rats were randomly assigned to 6 groups (G): healthy reference (HR), diabetic (DM), DM treated with α-lipoic acid, DM treated with L-carnitine, DM treated with N. sativa, and DM treated with combination of the 3 compounds. After 30 days from onset of diabetes, serum and tissue homogenate were obtained for evaluation of glucose metabolism as fasting blood glucose, insulin, insulin sensitivity, HOMA, C-peptide, and pyruvate dehydrogenase (PDH) activity. For lipid metabolism evaluation, total cholesterol and triacylglycerol (TG) were determined. Markers of antioxidants and oxidative status as total antioxidant capacity (TAC), glutathione-S-transeferase (GST), 8-hydroxy-2-deoxyguanosine (8-OH-dG) were measured. Results Either α-LA or N. sativa significantly reduced the elevated blood glucose level. The combination of 3 compounds significantly increased the level of insulin and C-peptide. Also, increased the antioxidant activity measured by TAC and decreased the oxidative damage of DNA as measured by 8-OH-dG. HOMA- β increased in G3 and G6 compared to G2. However, the decrease in TG, and total cholesterol levels were non-significant in all groups. Conclusion Combination of α-LA, L-carnitine and N. sativa will contribute significantly in improvement of the carbohydrate metabolism and to less extent lipid metabolism in diabetic rats, thus increasing the rate of success in management of DM. Also, this combination will have implications in clinical studies and clinical applications. PMID:23267290

  2. Hypoglycemic effect of lipoic Acid, carnitine and nigella sativa in diabetic rat model.

    PubMed

    Salama, Ragaa Hamdy Mohamed

    2011-07-01

    Evaluation of therapeutic potentials of α-lipoic acid (α-LA), L-carnitine, Nigella sativa (N. sativa) or combination of them in carbohydrate and lipid metabolism of DM type I. Rat model of diabetes was induced by single i.p injection of Streptozocin (STZ) 65 mg/kg. The rats were randomly assigned to 6 groups (G): healthy reference (HR), diabetic (DM), DM treated with α-lipoic acid, DM treated with L-carnitine, DM treated with N. sativa, and DM treated with combination of the 3 compounds. After 30 days from onset of diabetes, serum and tissue homogenate were obtained for evaluation of glucose metabolism as fasting blood glucose, insulin, insulin sensitivity, HOMA, C-peptide, and pyruvate dehydrogenase (PDH) activity. For lipid metabolism evaluation, total cholesterol and triacylglycerol (TG) were determined. Markers of antioxidants and oxidative status as total antioxidant capacity (TAC), glutathione-S-transeferase (GST), 8-hydroxy-2-deoxyguanosine (8-OH-dG) were measured. Either α-LA or N. sativa significantly reduced the elevated blood glucose level. The combination of 3 compounds significantly increased the level of insulin and C-peptide. Also, increased the antioxidant activity measured by TAC and decreased the oxidative damage of DNA as measured by 8-OH-dG. HOMA- β increased in G3 and G6 compared to G2. However, the decrease in TG, and total cholesterol levels were non-significant in all groups. Combination of α-LA, L-carnitine and N. sativa will contribute significantly in improvement of the carbohydrate metabolism and to less extent lipid metabolism in diabetic rats, thus increasing the rate of success in management of DM. Also, this combination will have implications in clinical studies and clinical applications.

  3. l-Carnitine Supplementation in Recovery after Exercise.

    PubMed

    Fielding, Roger; Riede, Linda; Lugo, James P; Bellamine, Aouatef

    2018-03-13

    Given its pivotal role in fatty acid oxidation and energy metabolism, l-carnitine has been investigated as ergogenic aid for enhancing exercise capacity in the healthy athletic population. Early research indicates its beneficial effects on acute physical performance, such as increased maximum oxygen consumption and higher power output. Later studies point to the positive impact of dietary supplementation with l-carnitine on the recovery process after exercise. It is demonstrated that l-carnitine alleviates muscle injury and reduces markers of cellular damage and free radical formation accompanied by attenuation of muscle soreness. The supplementation-based increase in serum and muscle l-carnitine contents is suggested to enhance blood flow and oxygen supply to the muscle tissue via improved endothelial function thereby reducing hypoxia-induced cellular and biochemical disruptions. Studies in older adults further showed that l-carnitine intake can lead to increased muscle mass accompanied by a decrease in body weight and reduced physical and mental fatigue. Based on current animal studies, a role of l-carnitine in the prevention of age-associated muscle protein degradation and regulation of mitochondrial homeostasis is suggested.

  4. Effect of L-carnitine on diabetogenic action of streptozotocin in rats.

    PubMed

    Uysal, Nazan; Yalaz, Giray; Acikgoz, Osman; Gonenc, Sevil; Kayatekin, Berkant Muammer

    2005-08-01

    L-carnitine is a naturally compound widely distributed in the body. It has an antiradical effect and decreases lipid peroxidation. In acute or chronic streptozotocin (STZ)-induced diabetic rats, the pancreatic content of carnitine was found to be significantly lower than nondiabetic group. We investigated the effects of L-carnitine on the development of STZ-induced diabetes in rats, to determine if L-carnitine can prevent the onset of diabetes or reduce the severity of hyperglycemia and this prevention/reduction is associated with the reduction in oxidative stress. The rats were divided into 3 groups: Control, STZ-treated (65 mg/kg intraperitoneally) and L-carnitine (500 mg/kg) and STZ-treated. Oxidative stress was assessed by measuring pancreatic thiobarbituric acid reactive substance (TBARS) formation levels using the method of Rehncrona et al, pancreatic superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities using a Randox test combination (RANSOD and RANDOX). L-carnitine did not prevent the onset of diabetes at this dose. Development of diabetes was associated with an increase in pancreatic TBARS (0.028 +/- 0.008 and 0.046 +/- 0.017 nmol/mg Protein, respectively), and GPx activity (0.067 +/- 0.011 and 0.098 +/- 0.016 U/mg Protein, respectively). L-carnitine prevented this increase induced by diabetes; TBARS (0.039 +/- 0.006 nmol/mg Protein) and GPx activity (0.053 +/- 0.011 U/mg Protein). These results suggest that L-carnitine exerts anti-oxidative effect in experimental diabetes.

  5. Carnitine prevents the early mitochondrial damage induced by methylglyoxal bis(guanylhydrazone) in L1210 leukaemia cells.

    PubMed

    Nikula, P; Ruohola, H; Alhonen-Hongisto, L; Jänne, J

    1985-06-01

    We previously found that the anti-cancer drug methylglyoxal bis(guanylhydrazone) (mitoguazone) depresses carnitine-dependent oxidation of long-chain fatty acids in cultured mouse leukaemia cells [Nikula, Alhonen-Hongisto, Seppänen & Jänne (1984) Biochem. Biophys. Res. Commun. 120, 9-14]. We have now investigated whether carnitine also influences the development of the well-known mitochondrial damage produced by the drug in L1210 leukaemia cells. Palmitate oxidation was distinctly inhibited in tumour cells exposed to 5 microM-methylglyoxal bis(guanylhydrazone) for only 7 h. Electron-microscopic examination of the drug-exposed cells revealed that more than half of the mitochondria were severely damaged. Similar exposure of the leukaemia cells to the drug in the presence of carnitine not only abolished the inhibition of fatty acid oxidation but almost completely prevented the drug-induced mitochondrial damage. The protection provided by carnitine appeared to depend on the intracellular concentration of methylglyoxal bis(guanylhydrazone), since the mitochondria-sparing effect disappeared at higher drug concentrations.

  6. l-Carnitine Supplementation in Recovery after Exercise

    PubMed Central

    Fielding, Roger; Riede, Linda; Lugo, James P.; Bellamine, Aouatef

    2018-01-01

    Given its pivotal role in fatty acid oxidation and energy metabolism, l-carnitine has been investigated as ergogenic aid for enhancing exercise capacity in the healthy athletic population. Early research indicates its beneficial effects on acute physical performance, such as increased maximum oxygen consumption and higher power output. Later studies point to the positive impact of dietary supplementation with l-carnitine on the recovery process after exercise. It is demonstrated that l-carnitine alleviates muscle injury and reduces markers of cellular damage and free radical formation accompanied by attenuation of muscle soreness. The supplementation-based increase in serum and muscle l-carnitine contents is suggested to enhance blood flow and oxygen supply to the muscle tissue via improved endothelial function thereby reducing hypoxia-induced cellular and biochemical disruptions. Studies in older adults further showed that l-carnitine intake can lead to increased muscle mass accompanied by a decrease in body weight and reduced physical and mental fatigue. Based on current animal studies, a role of l-carnitine in the prevention of age-associated muscle protein degradation and regulation of mitochondrial homeostasis is suggested. PMID:29534031

  7. 21 CFR 862.1055 - Newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Newborn screening test system for amino acids... screening test system for amino acids, free carnitine, and acylcarnitines using tandem mass spectrometry. (a) Identification. A newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...

  8. 21 CFR 862.1055 - Newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Newborn screening test system for amino acids... screening test system for amino acids, free carnitine, and acylcarnitines using tandem mass spectrometry. (a) Identification. A newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...

  9. Carnitine prevents the early mitochondrial damage induced by methylglyoxal bis(guanylhydrazone) in L1210 leukaemia cells.

    PubMed Central

    Nikula, P; Ruohola, H; Alhonen-Hongisto, L; Jänne, J

    1985-01-01

    We previously found that the anti-cancer drug methylglyoxal bis(guanylhydrazone) (mitoguazone) depresses carnitine-dependent oxidation of long-chain fatty acids in cultured mouse leukaemia cells [Nikula, Alhonen-Hongisto, Seppänen & Jänne (1984) Biochem. Biophys. Res. Commun. 120, 9-14]. We have now investigated whether carnitine also influences the development of the well-known mitochondrial damage produced by the drug in L1210 leukaemia cells. Palmitate oxidation was distinctly inhibited in tumour cells exposed to 5 microM-methylglyoxal bis(guanylhydrazone) for only 7 h. Electron-microscopic examination of the drug-exposed cells revealed that more than half of the mitochondria were severely damaged. Similar exposure of the leukaemia cells to the drug in the presence of carnitine not only abolished the inhibition of fatty acid oxidation but almost completely prevented the drug-induced mitochondrial damage. The protection provided by carnitine appeared to depend on the intracellular concentration of methylglyoxal bis(guanylhydrazone), since the mitochondria-sparing effect disappeared at higher drug concentrations. Images Fig. 1. PMID:3837667

  10. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine.

    PubMed

    Marcovina, Santica M; Sirtori, Cesare; Peracino, Andrea; Gheorghiade, Mihai; Borum, Peggy; Remuzzi, Giuseppe; Ardehali, Hossein

    2013-02-01

    Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential. Copyright © 2013 Mosby, Inc. All rights reserved.

  11. Functional activity of L-carnitine transporters in human airway epithelial cells.

    PubMed

    Ingoglia, Filippo; Visigalli, Rossana; Rotoli, Bianca Maria; Barilli, Amelia; Riccardi, Benedetta; Puccini, Paola; Dall'Asta, Valeria

    2016-02-01

    Carnitine plays a physiologically important role in the β-oxidation of fatty acids, facilitating the transport of long-chain fatty acids across the inner mitochondrial membrane. Distribution of carnitine within the body tissues is mainly performed by novel organic cation transporter (OCTN) family, including the isoforms OCTN1 (SLC22A4) and OCTN2 (SLC22A5) expressed in human. We performed here a characterization of carnitine transport in human airway epithelial cells A549, Calu-3, NCl-H441, and BEAS-2B, by means of an integrated approach combining data of mRNA/protein expression with the kinetic and inhibition analyses of L-[(3)H]carnitine transport. Carnitine uptake was strictly Na(+)-dependent in all cell models. In A549 and BEAS-2B cells, carnitine uptake was mediated by one high-affinity component (Km<2 μM) identifiable with OCTN2. In both these cell models, indeed, carnitine uptake was maximally inhibited by betaine and strongly reduced by SLC22A5/OCTN2 silencing. Conversely, Calu-3 and NCl-H441 exhibited both a high (Km~20 μM) and a low affinity (Km>1 mM) transport component. While the high affinity component is identifiable with OCTN2, the low affinity uptake is mediated by ATB(0,+), a Na(+), and Cl(-)-coupled transport system for neutral and cationic amino acids, as demonstrated by the inhibition by leucine and arginine, as well as by SLC6A14/ATB(0,+) silencing. The presence of this transporter leads to a massive accumulation of carnitine inside the cells and may be of peculiar relevance in pathologic conditions of carnitine deficiency, such as those associated to OCTN2 defects. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. History of L-carnitine: implications for renal disease.

    PubMed

    Matera, Mario; Bellinghieri, Guido; Costantino, Giuseppe; Santoro, Domenico; Calvani, Menotti; Savica, Vincenzo

    2003-01-01

    L-carnitine (LC) plays an essential metabolic role that consists in transferring the long chain fatty acids (LCFAs) through the mitochondrial barrier, thus allowing their energy-yielding oxidation. Other functions of LC are protection of membrane structures, stabilizing a physiologic coenzyme-A (CoA)-sulfate hydrate/acetyl-CoA ratio, and reduction of lactate production. On the other hand, numerous observations have stressed the carnitine ability of influencing, in several ways, the control mechanisms of the vital cell cycle. Much evidence suggests that apoptosis activated by palmitate or stearate addition to cultured cells is correlated with de novo ceramide synthesis. Investigations in vitro strongly support that LC is able to inhibit the death planned, most likely by preventing sphingomyelin breakdown and consequent ceramide synthesis; this effect seems to be specific for acidic sphingomyelinase. The reduction of ceramide generation and the increase in the serum levels of insulin-like growth factor (IGF)-1, could represent 2 important mechanisms underlying the observed antiapoptotic effects of acetyl-LC. Primary carnitine deficiency is an uncommon inherited disorder, related to functional anomalies in a specific organic cation/carnitine transporter (hOCTN2). These conditions have been classified as either systemic or myopathic. Secondary forms also are recognized. These are present in patients with renal tubular disorders, in which excretion of carnitine may be excessive, and in patients on hemodialysis. A lack of carnitine in hemodialysis patients is caused by insufficient carnitine synthesis and particularly by the loss through dialytic membranes, leading, in some patients, to carnitine depletion with a relative increase in esterified forms. Many studies have shown that LC supplementation leads to improvements in several complications seen in uremic patients, including cardiac complications, impaired exercise and functional capacities, muscle symptoms

  13. Dietary L-carnitine supplementation in obese cats alters carnitine metabolism and decreases ketosis during fasting and induced hepatic lipidosis.

    PubMed

    Blanchard, Géraldine; Paragon, Bernard M; Milliat, Fabien; Lutton, Claude

    2002-02-01

    This study was designed to determine whether dietary carnitine supplement could protect cats from ketosis and improve carnitine and lipid metabolism in experimental feline hepatic lipidosis (FHL). Lean spayed queens received a diet containing 40 (CL group, n = 7) or 1000 (CH group, n = 4) mg/kg of L-carnitine during obesity development. Plasma fatty acid, beta-hydroxybutyrate and carnitine, and liver and muscle carnitine concentrations were measured during experimental induction of FHL and after treatment. In control cats (CL group), fasting and FHL increased the plasma concentrations of fatty acids two- to threefold (P < 0.0001) and beta-hydroxybutyrate > 10-fold (from a basal 0.22 +/- 0.03 to 1.70 +/- 0.73 after 3 wk fasting and 3.13 +/- 0.49 mmol/L during FHL). In carnitine-supplemented cats, these variables increased significantly (P < 0.0001) only during FHL (beta-hydroxybutyrate, 1.42 +/- 0.17 mmol/L). L-Carnitine supplementation significantly increased plasma, muscle and liver carnitine concentrations. Liver carnitine concentration increased dramatically from the obese state to FHL in nonsupplemented cats, but not in supplemented cats, which suggests de novo synthesis of carnitine from endogenous amino acids in control cats and reversible storage in supplemented cats. These results demonstrate the protective effect of a dietary L-carnitine supplement against fasting ketosis during obesity induction. Increasing the L-carnitine level of diets in cats with low energy requirements, such as after neutering, and a high risk of obesity could therefore be recommended.

  14. L-carnitine prevents memory impairment induced by chronic REM-sleep deprivation.

    PubMed

    Alzoubi, Karem H; Rababa'h, Abeer M; Owaisi, Amani; Khabour, Omar F

    2017-05-01

    Sleep deprivation (SD) negatively impacts memory, which was related to oxidative stress induced damage. L-carnitine is a naturally occurring compound, synthesized endogenously in mammalian species and known to possess antioxidant properties. In this study, the effect of L-carnitine on learning and memory impairment induced by rapid eye movement sleep (REM-sleep) deprivation was investigated. REM-sleep deprivation was induced using modified multiple platform model (8h/day, for 6 weeks). Simultaneously, L-carnitine was administered (300mg/kg/day) intraperitoneally for 6 weeks. Thereafter, the radial arm water maze (RAWM) was used to assess spatial learning and memory. Additionally, the hippocampus levels of antioxidant biomarkers/enzymes: reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG ratio, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD) and thiobarbituric acid reactive substance (TBARS) were assessed. The results showed that chronic REM-sleep deprivation impaired both short- and long-term memory (P<0.05), whereas L-carnitine treatment protected against this effect. Furthermore, L-carnitine normalized chronic REM-sleep deprivation induced reduction in the hippocampus ratio of GSH/GSSG, activity of catalase, GPx, and SOD. No change was observed in TBARS among tested groups (P>0.05). In conclusion, chronic REM-sleep deprivation induced memory impairment, and treatment with L-carnitine prevented this impairment through normalizing antioxidant mechanisms in the hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  16. Downregulation of carnitine acyl-carnitine translocase by miRNAs 132 and 212 amplifies glucose-stimulated insulin secretion.

    PubMed

    Soni, Mufaddal S; Rabaglia, Mary E; Bhatnagar, Sushant; Shang, Jin; Ilkayeva, Olga; Mynatt, Randall; Zhou, Yun-Ping; Schadt, Eric E; Thornberry, Nancy A; Muoio, Deborah M; Keller, Mark P; Attie, Alan D

    2014-11-01

    We previously demonstrated that micro-RNAs (miRNAs) 132 and 212 are differentially upregulated in response to obesity in two mouse strains that differ in their susceptibility to obesity-induced diabetes. Here we show the overexpression of miRNAs 132 and 212 enhances insulin secretion (IS) in response to glucose and other secretagogues including nonfuel stimuli. We determined that carnitine acyl-carnitine translocase (CACT; Slc25a20) is a direct target of these miRNAs. CACT is responsible for transporting long-chain acyl-carnitines into the mitochondria for β-oxidation. Small interfering RNA-mediated knockdown of CACT in β-cells led to the accumulation of fatty acyl-carnitines and enhanced IS. The addition of long-chain fatty acyl-carnitines promoted IS from rat insulinoma β-cells (INS-1) as well as primary mouse islets. The effect on INS-1 cells was augmented in response to suppression of CACT. A nonhydrolyzable ether analog of palmitoyl-carnitine stimulated IS, showing that β-oxidation of palmitoyl-carnitine is not required for its stimulation of IS. These studies establish a link between miRNA-dependent regulation of CACT and fatty acyl-carnitine-mediated regulation of IS. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. A fish protein hydrolysate alters fatty acid composition in liver and adipose tissue and increases plasma carnitine levels in a mouse model of chronic inflammation.

    PubMed

    Bjørndal, Bodil; Berge, Christ; Ramsvik, Marie Sannes; Svardal, Asbjørn; Bohov, Pavol; Skorve, Jon; Berge, Rolf K

    2013-10-07

    There is growing evidence that fish protein hydrolysate (FPH) diets affect mitochondrial fatty acid metabolism in animals. The aim of the study was to determine if FPH could influence fatty acid metabolism and inflammation in transgene mice expressing human tumor necrosis factor alpha (hTNFα). hTNFα mice (C57BL/6 hTNFα) were given a high-fat (23%, w/w) diet containing 20% casein (control group) or 15% FPH and 5% casein (FPH group) for two weeks. After an overnight fast, blood, adipose tissue, and liver samples were collected. Gene expression and enzyme activity was analysed in liver, fatty acid composition was analyzed in liver and ovarian white adipose tissue, and inflammatory parameters, carnitine, and acylcarnitines were analyzed in plasma. The n-3/n-6 fatty acid ratio was higher in mice fed the FPH diet than in mice fed the control diet in both adipose tissue and liver, and the FPH diet affected the gene expression of ∆6 and ∆9 desaturases. Mice fed this diet also demonstrated lower hepatic activity of fatty acid synthase. Concomitantly, a lower plasma INF-γ level was observed. Plasma carnitine and the carnitine precursor γ-butyrobetaine was higher in the FPH-group compared to control, as was plasma short-chained and medium-chained acylcarnitine esters. The higher level of plasma acetylcarnitine may reflect a stimulated mitochondrial and peroxisomal β-oxidation of fatty acids, as the hepatic activities of peroxisomal acyl-CoA oxidase 1 and mitochondrial carnitine palmitoyltransferase-II were higher in the FPH-fed mice. The FPH diet was shown to influence hepatic fatty acid metabolism and fatty acid composition. This indicates that effects on fatty acid metabolism are important for the bioactivity of protein hydrolysates of marine origin.

  18. Nickel inhibits mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. 21 CFR 862.1055 - Newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... mass spectrometry is a device that consists of stable isotope internal standards, control materials..., free carnitine, and acylcarnitines using tandem mass spectrometry. 862.1055 Section 862.1055 Food and... screening test system for amino acids, free carnitine, and acylcarnitines using tandem mass spectrometry. (a...

  20. 21 CFR 862.1055 - Newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... mass spectrometry is a device that consists of stable isotope internal standards, control materials..., free carnitine, and acylcarnitines using tandem mass spectrometry. 862.1055 Section 862.1055 Food and... screening test system for amino acids, free carnitine, and acylcarnitines using tandem mass spectrometry. (a...

  1. Amino acid metabolism during exercise in trained rats: the potential role of carnitine in the metabolic fate of branched-chain amino acids.

    PubMed

    Ji, L L; Miller, R H; Nagle, F J; Lardy, H A; Stratman, F W

    1987-08-01

    The influence of endurance training and an acute bout of exercise on plasma concentrations of free amino acids and the intermediates of branched-chain amino acid (BCAA) metabolism were investigated in the rat. Training did not affect the plasma amino acid levels in the resting state. Plasma concentrations of alanine (Ala), aspartic acid (Asp), asparagine (Asn), arginine (Arg), histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), and valine (Val) were significantly lower, whereas glutamate (Glu), glycine (Gly), ornithine (Orn), tryptophan (Trp), tyrosine (Tyr), creatinine, urea, and ammonia levels were unchanged, after one hour of treadmill running in the trained rats. Plasma concentration of glutamine (Glu), the branched-chain keto acids (BCKA) and short-chain acyl carnitines were elevated with exercise. Ratios of plasma BCAA/BCKA were dramatically lowered by exercise in the trained rats. A decrease in plasma-free carnitine levels was also observed. These data suggest that amino acid metabolism is enhanced by exercise even in the trained state. BCAA may only be partially metabolized within muscle and some of their carbon skeletons are released into the circulation in forms of BCKA and short-chain acyl carnitines.

  2. L-Carnitine supplementation improved clinical status without changing oxidative stress and lipid profile in women with knee osteoarthritis.

    PubMed

    Malek Mahdavi, Aida; Mahdavi, Reza; Kolahi, Sousan; Zemestani, Maryam; Vatankhah, Amir-Mansour

    2015-08-01

    Considering the pathologic importance of oxidative stress and altered lipid metabolism in osteoarthritis (OA), this study aimed to investigate the effect of l-carnitine supplementation on oxidative stress, lipid profile, and clinical status in women with knee OA. We hypothesized that l-carnitine would improve clinical status by modulating serum oxidative stress and lipid profile. In this randomized double-blind, placebo-controlled trial, 72 overweight or obese women with mild to moderate knee OA were randomly allocated into 2 groups to receive 750 mg/d l-carnitine or placebo for 8 weeks. Dietary intake was evaluated using 24-hour recall for 3 days. Serum malondialdehyde (MDA), total antioxidant capacity (TAC) and lipid profile, visual analog scale for pain intensity, and patient global assessment of severity of disease were assessed before and after supplementation. Only 69 patients (33 in the l-carnitine group and 36 in the placebo group) completed the study. l-Carnitine supplementation resulted in significant reductions in serum MDA (2.46 ± 1.13 vs 2.16 ± 0.94 nmol/mL), total cholesterol (216.09 ± 34.54 vs 206.12 ± 39.74 mg/dL), and low-density lipoprotein cholesterol (129.45 ± 28.69 vs 122.05 ± 32.76 mg/dL) levels compared with baseline (P < .05), whereas these parameters increased in the placebo group. Serum triglyceride, high-density lipoprotein cholesterol, and TAC levels did not change significantly in both groups (P > .05). No significant differences were observed in dietary intake, serum lipid profile, MDA, and TAC levels between groups after adjusting for baseline values and covariates (P > .05). There were significant intragroup and intergroup differences in pain intensity and patient global assessment of disease status after supplementation (P < .05). Collectively, l-carnitine improved clinical status without changing oxidative stress and lipid profile significantly in women with knee OA. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Evaluating effects of L-carnitine on human bone-marrow-derived mesenchymal stem cells.

    PubMed

    Fujisawa, Koichi; Takami, Taro; Fukui, Yumi; Quintanilha, Luiz Fernando; Matsumoto, Toshihiko; Yamamoto, Naoki; Sakaida, Isao

    2017-05-01

    Mesenchymal stem cells (MSCs) are multipotent cells showing potential for use in regenerative medicine. Culture techniques that are more stable and methods for the more efficient production of MSCs with therapeutic efficacy are needed. We evaluate the effects of growing bone marrow (Bm)-derived MSCs in the presence of L-carnitine, which is believed to promote lipid metabolism and to suppress apoptosis. The presence of L-carnitine decreased the degree of drug-induced apoptosis and suppressed adipogenic differentiation. Metabolomic analysis by means of the exhaustive investigation of metabolic products showed that, in addition to increased β-oxidation and the expression of all carnitine derivatives other than deoxycarnitine (an intermediate in carnitine synthesis), polysaturated and polyunsaturated acids were down-regulated. An integrated analysis incorporating both serial analysis of gene expression and metabolomics revealed increases in cell survival, suggesting the utility of carnitine. The addition of carnitine elevated the oxygen consumption rate by BmMSCs that had been cultured for only a few generations and those that had become senescent following repeated replication indicating that mitochondrial activation occurred. Our exhaustive analysis of the effects of various carnitine metabolites thus suggests that the addition of L-carnitine to BmMSCs during expansion enables efficient cell production.

  4. Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states.

    PubMed Central

    Drynan, L; Quant, P A; Zammit, V A

    1996-01-01

    The Flux Control Coefficients of mitochondrial outer membrane carnitine palmitoyltransferase (CPT I) with respect to the overall rates of beta-oxidation, ketogenesis and tricarboxylic acid cycle activity were measured in hepatocytes isolated from rats in different metabolic states (fed, 24 h-starved, starved-refed and starved/insulin-treated). These conditions were chosen because there is controversy as to whether, when significant control ceases to be exerted by CPT I over the rate of fatty oxidation [Moir and Zammit (1994) Trends Biochem. Sci. 19, 313-317], this is transferred to one or more steps proximal to acylcarnitine synthesis (e.g. decreased delivery of fatty acids to the liver) or to the reaction catalysed by mitochondrial 3-hydroxy-3-methyl-glutaryl-CoA synthase [Hegardt (1995) Biochem. Soc. Trans. 23, 486-490]. Therefore isolated hepatocytes were used in the present study to exclude the involvement of changes in the rate of delivery of non-esterified fatty acids (NEFA) to the liver, such as occur in vivo, and to ascertain whether, under conditions of constant supply of NEFA, CPT I retains control over the relevant fluxes of fatty acid oxidation to ketones and carbon dioxide, or whether control is transferred to another (intrahepatocytic) site. The results clearly show that the Flux Control Coefficients of CPT I with respect to overall beta-oxidation and ketogenesis are very high under all conditions investigated, indicating that control is not lost to another intrahepatic site during the metabolic transitions studied. The control of CPT I over tricarboxylic acid cycle activity was always very low. The significance of these findings for the integration of fatty acid and carbohydrate metabolism in the liver is discussed. PMID:8760364

  5. Mechanism of the inhibitory effect of zwitterionic drugs (levofloxacin and grepafloxacin) on carnitine transporter (OCTN2) in Caco-2 cells.

    PubMed

    Hirano, Takeshi; Yasuda, Satoru; Osaka, Yuki; Kobayashi, Masaki; Itagaki, Shirou; Iseki, Ken

    2006-11-01

    L-Carnitine plays an important role in lipid metabolism by facilitating the transport of long-chain fatty acids across the mitochondrial inner membrane followed by fatty acid beta-oxidation. It is known that L-carnitine exists as a zwitterion and that member of the OCTN family play an important role in its transport. The aims of this study were to characterize L-carnitine transport in the intestine by using Caco-2 cells and to elucidate the effects of levofloxacin (LVFX) and grepafloxacin (GPFX), which are zwitterionic drugs, on L-carnitine uptake. Kinetic analysis showed that the half-saturation Na+ concentration, Hill coefficient and Km value of L-carnitine uptake in Caco-2 cells were 10.3 +/- 4.5 mM, 1.09 and 8.0 +/- 1.0 microM, respectively, suggesting that OCTN2 mainly transports L-carnitine. LVFX and GPFX have two pKa values and the existence ratio of their zwitterionic forms is higher under a neutral condition than under an acidic condition. Experiments on the inhibitory effect of LVFX and GPFX on L-carnitine uptake showed that LVFX and GPFX inhibited L-carnitine uptake more strongly at pH 7.4 than at pH 5.5. It was concluded that the zwitterionic form of drugs plays an important role in inhibition of OCTN2 function.

  6. Feeding Healthy Beagles Medium-Chain Triglycerides, Fish Oil, and Carnitine Offsets Age-Related Changes in Serum Fatty Acids and Carnitine Metabolites

    PubMed Central

    Hall, Jean A.; Jewell, Dennis E.

    2012-01-01

    The purpose of this study was to determine if feeding dogs medium-chain triglycerides (MCT), fish oil, and L-carnitine enriched foods offsets age-associated changes in serum fatty acids (FA) and carnitine metabolites. Forty-one healthy Beagles, mean age 9.9 years (range 3.1 to 14.8), were fed control or one of two treatment foods for 6 months. All foods were complete and balanced and met the nutrient requirements for adult dogs, and had similar concentrations of moisture, protein, and fat (approx. 7.4%, 14.0%, and 18.1%, respectively). The treatment diets both contained added L-carnitine (300 mg/kg) and 0.6% (treatment food 1) or 1.5% (treatment food 2) added fish oil. Treatment food 2 also had increased MCT from coconut oil, added corn oil, and reduced animal fat. Composition of serum FA was determined by gas chromatography of FA methyl esters. Metabolomic profiles of serum samples were determined from extracted supernatants that were split and run on GC/MS and LC/MS/MS platforms, for identification and relative quantification of small metabolites. Body composition was determined by dual energy x-ray absorptiometry. Among dog groups, there was no change in total-lean-body weight, or in serum total protein and serum albumin concentrations, based on time or dietary treatment. Serum concentrations of carnitine metabolites were decreased in geriatric (>7 years) vs. mature adult (≤7 years) dogs, and supplementation with L-carnitine attenuated the effects of aging. The ratio of PUFA to SFA was significantly greater in mature dogs at baseline (P≤0.05). Serum concentrations of eicosapentaenoic and docosahexaenoic FA increased in a dose-dependent manner. Dogs consuming treatment food 2 also had increased serum concentrations of lauric and myristic FA, and decreased concentrations of SFA, MUFA, and arachidonate (all P≤0.05) and their PUFA to SFA ratio increased. In summary, dietary MCT, fish oil, and L-carnitine counterbalanced the effects of aging on circulating

  7. Feeding healthy beagles medium-chain triglycerides, fish oil, and carnitine offsets age-related changes in serum fatty acids and carnitine metabolites.

    PubMed

    Hall, Jean A; Jewell, Dennis E

    2012-01-01

    The purpose of this study was to determine if feeding dogs medium-chain triglycerides (MCT), fish oil, and L-carnitine enriched foods offsets age-associated changes in serum fatty acids (FA) and carnitine metabolites. Forty-one healthy Beagles, mean age 9.9 years (range 3.1 to 14.8), were fed control or one of two treatment foods for 6 months. All foods were complete and balanced and met the nutrient requirements for adult dogs, and had similar concentrations of moisture, protein, and fat (approx. 7.4%, 14.0%, and 18.1%, respectively). The treatment diets both contained added L-carnitine (300 mg/kg) and 0.6% (treatment food 1) or 1.5% (treatment food 2) added fish oil. Treatment food 2 also had increased MCT from coconut oil, added corn oil, and reduced animal fat. Composition of serum FA was determined by gas chromatography of FA methyl esters. Metabolomic profiles of serum samples were determined from extracted supernatants that were split and run on GC/MS and LC/MS/MS platforms, for identification and relative quantification of small metabolites. Body composition was determined by dual energy x-ray absorptiometry. Among dog groups, there was no change in total-lean-body weight, or in serum total protein and serum albumin concentrations, based on time or dietary treatment. Serum concentrations of carnitine metabolites were decreased in geriatric (>7 years) vs. mature adult (≤ 7 years) dogs, and supplementation with L-carnitine attenuated the effects of aging. The ratio of PUFA to SFA was significantly greater in mature dogs at baseline (P ≤ 0.05). Serum concentrations of eicosapentaenoic and docosahexaenoic FA increased in a dose-dependent manner. Dogs consuming treatment food 2 also had increased serum concentrations of lauric and myristic FA, and decreased concentrations of SFA, MUFA, and arachidonate (all P ≤ 0.05) and their PUFA to SFA ratio increased. In summary, dietary MCT, fish oil, and L-carnitine counterbalanced the effects of aging on circulating

  8. Reciprocal effects of 5-(tetradecyloxy)-2-furoic acid on fatty acid oxidation.

    PubMed

    Otto, D A; Chatzidakis, C; Kasziba, E; Cook, G A

    1985-10-01

    Under certain incubation conditions 5-(tetradecyloxy)-2-furoic acid (TOFA) stimulated the oxidation of palmitate by hepatocytes, as observed by others. A decrease in malonyl-CoA concentration accompanied the stimulation of oxidation. Under other conditions, however, TOFA inhibited fatty acid oxidation. The observed effects of TOFA depended on the TOFA and fatty acid concentrations, the cell concentration, the time of TOFA addition relative to the addition of fatty acid, and the nutritional state of the animal (fed or starved). The data indicate that only under limited incubation conditions may TOFA be used as an inhibitor of fatty acid synthesis without inhibition of fatty acid oxidation. When rat liver mitochondria were preincubated with TOFA, ketogenesis from palmitate was slightly inhibited (up to 20%) at TOFA concentrations that were less than that of CoA, but the inhibition became almost complete (up to 90%) when TOFA was greater than or equal to the CoA concentration. TOFA had only slight or no inhibitory effects on the oxidation of palmitoyl-CoA, palmitoyl(-)carnitine, or butyrate. Since TOFA can be converted to TOFyl-CoA, the data suggest that the inhibition of fatty acid oxidation from palmitate results from the decreased availability of CoA for extramitochondrial activation of fatty acids. These data, along with previous data of others, indicate that inhibition of fatty acid oxidation by CoA sequestration is a common mechanism of a group of carboxylic acid inhibitors. A general caution is appropriate with regard to the interpretation of results when using TOFA in studies of fatty acid oxidation.

  9. The inhibitory effects of fluoroquinolones on L-carnitine transport in placental cell line BeWo.

    PubMed

    Hirano, Takeshi; Yasuda, Satoru; Osaka, Yuki; Asari, Masaru; Kobayashi, Masaki; Itagaki, Shirou; Iseki, Ken

    2008-03-03

    L-Carnitine plays an important role in lipid metabolism by facilitating the transport of long-chain fatty acids across the mitochondrial inner membrane followed by fatty acid beta-oxidation. It is known that members of the OCTN family play an important role in L-carnitine transport in the placenta. Investigation of drug-drug or drug-nutrient interaction in the placenta is important for establishment of safety drug medication during pregnancy. The aim of this study was to determine the effects of fluoroquinolones, inhibitors of OCTN2, on L-carnitine transport in the placenta which is known to have a high expression level of OCTN2. We investigated the inhibitory effect of five fluoroquinolones, ciprofloxacin (CPFX), gatifloxacin (GFLX), ofloxacin (OFLX), levofloxacin (LVFX) and grepafloxacin (GPFX), on L-carnitine transport mediated by OCTN2 in placental cell line BeWo cells. We found that all of the fluoroquinolones inhibited L-carnitine transport, GPFX being the strongest inhibitor. We also found that the inhibitory effects of LVFX and GPFX depended on their existence ratio of zwitterionic forms as, we reported previously. Furthermore, we elucidated the LVFX transport mechanism in BeWo cells. LVFX was transported actively by transporters. However, we found that LVFX transport was Na+-independent and l-carnitine had no inhibitory effect on LVFX transport, suggesting that LVFX acts as inhibitor of OCTN2, not as a substrate for OCTN2.

  10. Carnitine derivatives: clinical usefulness.

    PubMed

    Malaguarnera, Mariano

    2012-03-01

    Carnitine and its derivatives are natural substances involved in both carbohydrate and lipid metabolism. This review summarizes the recent progress in the field in relation to the molecular mechanisms. The pool of different carnitine derivatives is formed by acetyl-L-carnitine (ALC), propionyl-L-carnitine (PLC), and isovaleryl-carnitine. ALC may have a preferential effect on the brain tissue. ALC represents a compound of great interest for its wide clinical application in various neurological disorders: it may be of benefit in treating Alzheimer's dementia, depression in the elderly, HIV infection, chronic fatigue syndrome, peripheral neuropathies, ischemia and reperfusion of the brain, and cognitive impairment associated with various conditions. PLC has been demonstrated to replenish the intermediates of the tricarboxylic acid cycle by the propionyl-CoA moiety, a greater affinity for the sarcolemmal carrier, peripheral vasodilator activity, a greater positive inotropism, and more rapid entry into myocytes. Most studies of the therapeutic use of PLC are focused on the prevention and treatment of ischemic heart disease, congestive heart failure, hypertrophic heart disease, and peripheral arterial disease. ALC and PLC are considered well tolerated without significant side-effects. A number of therapeutic effects possibly come from the interaction of carnitine and its derivatives with the elements of cellular membranes.

  11. Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction

    PubMed Central

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S.; Collins, Samuel L.; Horton, Maureen R.

    2017-01-01

    Fatty acid oxidation in macrophages has been suggested to play a causative role in high-fat diet-induced metabolic dysfunction, particularly in the etiology of adipose-driven insulin resistance. To understand the contribution of macrophage fatty acid oxidation directly to metabolic dysfunction in high-fat diet-induced obesity, we generated mice with a myeloid-specific knockout of carnitine palmitoyltransferase II (CPT2 Mϕ-KO), an obligate step in mitochondrial long-chain fatty acid oxidation. While fatty acid oxidation was clearly induced upon IL-4 stimulation, fatty acid oxidation-deficient CPT2 Mϕ-KO bone marrow-derived macrophages displayed canonical markers of M2 polarization following IL-4 stimulation in vitro. In addition, loss of macrophage fatty acid oxidation in vivo did not alter the progression of high-fat diet-induced obesity, inflammation, macrophage polarization, oxidative stress, or glucose intolerance. These data suggest that although IL-4-stimulated alternatively activated macrophages upregulate fatty acid oxidation, fatty acid oxidation is dispensable for macrophage polarization and high-fat diet-induced metabolic dysfunction. Macrophage fatty acid oxidation likely plays a correlative, rather than causative, role in systemic metabolic dysfunction. PMID:28223293

  12. The effect of fermented buckwheat on producing l-carnitine- and γ-aminobutyric acid (GABA)-enriched designer eggs.

    PubMed

    Park, Namhyeon; Lee, Tae-Kyung; Nguyen, Thi Thanh Hanh; An, Eun-Bae; Kim, Nahyun M; You, Young-Hyun; Park, Tae-Sub; Kim, Doman

    2017-07-01

    The potential of fermented buckwheat as a feed additive was studied to increase l-carnitine and γ-aminobutyric acid (GABA) in designer eggs. Buckwheat contains high levels of lysine, methionine and glutamate, which are precursors for the synthesis of l-carnitine and GABA. Rhizopus oligosporus was used for the fermentation of buckwheat to produce l-carnitine and GABA that exert positive effects such as enhanced metabolism, antioxidant activities, immunity and blood pressure control. A novel analytical method for simultaneously detecting l-carnitine and GABA was developed using liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS. The fermented buckwheat extract contained 4 and 34 times more l-carnitine and GABA respectively compared with normal buckwheat. Compared with the control, the fermented buckwheat extract-fed group showed enriched l-carnitine (13.6%) and GABA (8.4%) in the yolk, though only l-carnitine was significantly different (P < 0.05). Egg production (9.4%), albumen weight (2.1%) and shell weight (5.8%) were significantly increased (P < 0.05). There was no significant difference in yolk weight, and total cholesterol (1.9%) and triglyceride (4.9%) in the yolk were lowered (P < 0.05). Fermented buckwheat as a feed additive has the potential to produce l-carnitine- and GABA-enriched designer eggs with enhanced nutrition and homeostasis. These designer eggs pose significant potential to be utilized in superfood production and supplement industries. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C.

    PubMed

    Lin, Zhaoyu; Liu, Fei; Shi, Peiliang; Song, Anying; Huang, Zan; Zou, Dayuan; Chen, Qin; Li, Jianxin; Gao, Xiang

    2018-02-26

    Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.

  14. Dietary, anthropometric, and biochemical factors influencing plasma choline, carnitine, trimethylamine, and trimethylamine-N-oxide concentrations.

    PubMed

    Malinowska, Anna M; Szwengiel, Artur; Chmurzynska, Agata

    2017-06-01

    The objective of the study was to evaluate the nutritional, anthropometric, and biochemical factors that influence choline, l-carnitine, trimethylamine (TMA), and trimethylamine-N-oxide (TMAO) metabolism in elderly women. The volunteers' diet was assessed using a food frequency questionnaire. Dietary patterns were estimated using a self-established score method. Body mass index (BMI), serum glucose, total, HDL, LDL cholesterol, triacylglycerol, homocysteine (tHcy), free choline (fchol), L-carnitine, TMA, and TMAO were assessed. Higher concentrations of l-carnitine, fchol, and TMAO were found in those women who had more western-style dietary patterns. Nor choline or betaine intake affected plasma fchol, TMA, or TMAO. BMI was positively correlated with fchol and TMA. tHcy was positively correlated with fchol, TMA, and TMAO, while fchol was also positively correlated with TMA and TMAO. Dietary patterns and plasma tHcy concentration influence fchol, TMA, and TMAO plasma concentration. Plasma TMA and fchol may be associated with BMI.

  15. L-carnitine mitigates UVA-induced skin tissue injury in rats through downregulation of oxidative stress, p38/c-Fos signaling, and the proinflammatory cytokines.

    PubMed

    Salama, Samir A; Arab, Hany H; Omar, Hany A; Gad, Hesham S; Abd-Allah, Gamil M; Maghrabi, Ibrahim A; Al Robaian, Majed M

    2018-04-01

    UVA comprises more than 90% of the solar UV radiation reaching the Earth. Artificial lightening lamps have also been reported to emit significant amounts of UVA. Exposure to UVA has been associated with dermatological disorders including skin cancer. At the molecular level, UVA damages different cellular biomolecules and triggers inflammatory responses. The current study was devoted to investigate the potential protective effect of L-carnitine against UVA-induced skin tissue injury using rats as a mammalian model. Rats were distributed into normal control group (NC), L-carnitine control group (LC), UVA-Exposed group (UVA), and UVA-Exposed and L-carnitine-treated group (UVA-LC). L-carnitine significantly attenuated UVA-induced elevation of the DNA damage markers 8-oxo-2'-deoxyguanosine (8-oxo-dG) and cyclobutane pyrimidine dimers (CPDs) as well as decreased DNA fragmentation and the activity of the apoptotic marker caspase-3. In addition, L-carnitine substantially reduced the levels of lipid peroxidation marker (TBARS) and protein oxidation marker (PCC) and significantly elevated the levels of the total antioxidant capacity (TAC) and the antioxidant reduced glutathione (GSH) in the skin tissues. Interestingly, L-carnitine upregulated the level of the DNA repair protein proliferating cell nuclear antigen (PCNA). Besides it mitigated the UVA-induced activation of the oxidative stress-sensitive signaling protein p38 and its downstream target c-Fos. Moreover, L-carnitine significantly downregulated the levels of the early response proinflammatory cytokines TNF-α, IL-6, and IL-1β. Collectively, our results highlight, for the first time, the potential attenuating effects of L-carnitine on UVA-induced skin tissue injury in rats that is potentially mediated through suppression of UVA-induced oxidative stress and inflammatory responses. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Protein kinase C restricts transport of carnitine by amino acid transporter ATB(0,+) apically localized in the blood-brain barrier.

    PubMed

    Michalec, Katarzyna; Mysiorek, Caroline; Kuntz, Mélanie; Bérézowski, Vincent; Szczepankiewicz, Andrzej A; Wilczyński, Grzegorz M; Cecchelli, Roméo; Nałęcz, Katarzyna A

    2014-07-15

    Carnitine (3-hydroxy-4-trimethylammoniobutyrate) is necessary for transfer of fatty acids through the inner mitochondrial membrane. Carnitine, not synthesized in the brain, is delivered there through the strongly polarized blood-brain barrier (BBB). Expression and presence of two carnitine transporters - organic cation/carnitine transporter (OCTN2) and amino acid transporter B(0,+) (ATB(0,+)) have been demonstrated previously in an in vitro model of the BBB. Due to potential protein kinase C (PKC) phosphorylation sites within ATB(0,+) sequence, the present study verified effects of this kinase on transporter function and localization in the BBB. ATB(0,+) can be regulated by estrogen receptor α and up-regulated in vitro, therefore its presence in vivo was verified with the transmission electron microscopy. The analyses of brain slices demonstrated ATB(0,+) luminal localization in brain capillaries, confirmed by biotinylation experiments in an in vitro model of the BBB. Brain capillary endothelial cells were shown to control carnitine gradient. ATB(0,+) was phosphorylated by PKC, what correlated with inhibition of carnitine transport. PKC activation did not change the amount of ATB(0,+) present in the apical membrane of brain endothelial cells, but resulted in transporter exclusion from raft microdomains. ATB(0,+) inactivation by a lateral movement in plasma membrane after transporter phosphorylation has been postulated. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Sources of error in determinations of carnitine and acylcarnitine in plasma.

    PubMed

    Fishlock, R C; Bieber, L L; Snoswell, A M

    1984-02-01

    Radioactive and nonradioactive L-carnitine and acyl-L-carnitine were used to evaluate the washing procedures used during the determination of free, total, short-chain, and long-chain acylcarnitine in human and sheep plasma. The volume of fluid trapped by the protein precipitated by perchloric acid is approximately 24% of the total fluid volume and thus contains 24% of free carnitine and short-chain acylcarnitine. Washing twice with distilled water removes about 25% of the long-chain acylcarnitine along with the trapped free carnitine and short-chain acylcarnitines. Washing the pellet twice with a 60 g/L solution of perchloric acid completely removes the trapped free carnitine and short-chain acylcarnitine but does not remove the bound long-chain acylcarnitines. Thus washing with perchloric acid is essential for accurate measurement of long-chain acylcarnitines in plasma samples.

  18. CaiT of Escherichia coli, a new transporter catalyzing L-carnitine/gamma -butyrobetaine exchange.

    PubMed

    Jung, Heinrich; Buchholz, Marion; Clausen, Jurgen; Nietschke, Monika; Revermann, Anne; Schmid, Roland; Jung, Kirsten

    2002-10-18

    l-Carnitine is essential for beta-oxidation of fatty acids in mitochondria. Bacterial metabolic pathways are used for the production of this medically important compound. Here, we report the first detailed functional characterization of the caiT gene product, a putative transport protein whose function is required for l-carnitine conversion in Escherichia coli. The caiT gene was overexpressed in E. coli, and the gene product was purified by affinity chromatography and reconstituted into proteoliposomes. Functional analyses with intact cells and proteoliposomes demonstrated that CaiT is able to catalyze the exchange of l-carnitine for gamma-butyrobetaine, the excreted end product of l-carnitine conversion in E. coli, and related betaines. Electrochemical ion gradients did not significantly stimulate l-carnitine uptake. Analysis of l-carnitine counterflow yielded an apparent external K(m) of 105 microm and a turnover number of 5.5 s(-1). Contrary to related proteins, CaiT activity was not modulated by osmotic stress. l-Carnitine binding to CaiT increased the protein fluorescence and caused a red shift in the emission maximum, an observation explained by ligand-induced conformational alterations. The fluorescence effect was specific for betaine structures, for which the distance between trimethylammonium and carboxyl groups proved to be crucial for affinity. Taken together, the results suggest that CaiT functions as an exchanger (antiporter) for l-carnitine and gamma-butyrobetaine according to the substrate/product antiport principle.

  19. Cytochrome c oxidase rather than cytochrome c is a major determinant of mitochondrial respiratory capacity in skeletal muscle of aged rats: role of carnitine and lipoic acid.

    PubMed

    Tamilselvan, Jayavelu; Sivarajan, Kumarasamy; Anusuyadevi, Muthuswamy; Panneerselvam, Chinnakkannu

    2007-09-01

    The release of mitochondrial cytochrome c followed by activation of caspase cascade has been reported with aging in various tissues, whereas little is known about the caspase-independent pathway involved in mitochondrial dysfunction. To determine the functional impact of cytochrome c loss on mitochondrial respiratory capacity, we monitored NADH redox transitions and oxygen consumption in isolated skeletal muscle mitochondria of 4- and 24-month-old rats in the presence and absence of exogenous cytochrome c; and assessed the efficacy of cosupplementation of carnitine and lipoic acid on age-related alteration in mitochondrial respiration. The loss of mitochondrial cytochrome c with age was accompanied with alteration in respiratory transition, which in turn was not rescued by exogenous addition of cytochrome c to isolated mitochondria. The analysis of mitochondrial and nuclear-encoded cytochrome c oxidase subunits suggests that the decreased levels of cytochrome c oxidase may be attributed for the irresponsiveness to exogenously added cytochrome c on mitochondrial respiratory transitions, possibly through reduction of upstream electron carriers. Oral supplementation of carnitine and lipoic acid to aged rats help to maintaining the mitochondrial oxidative capacity by regulating the release of cytochrome c and improves cytochrome c oxidase transcript levels. Thus, carnitine and lipoic acid supplementation prevents the loss of cytochrome c and their associated decline in cytochrome c oxidase activity; thereby, effectively attenuating any putative decrease in cellular energy and redox status with age.

  20. Organic cation/carnitine transporter OCTN3 is present in astrocytes and is up-regulated by peroxisome proliferators-activator receptor agonist.

    PubMed

    Januszewicz, Elzbieta; Pajak, Beata; Gajkowska, Barbara; Samluk, Lukasz; Djavadian, Rouzanna L; Hinton, Barry T; Nałecz, Katarzyna A

    2009-12-01

    In the brain beta-oxidation, which takes place in astrocytes, is not a major process of energy supply. Astrocytes synthesize important lipid metabolites, mainly due to the processes taking place in peroxisomes. One of the compounds necessary in the process of mitochondrial beta-oxidation and export of acyl moieties from peroxisomes is l-carnitine. Two Na-dependent plasma membrane carnitine transporters were shown previously to be present in astrocytes: a low affinity amino acid transporter B(0,+) and a high affinity cation/carnitine transporter OCTN2. The expression of OCTN2 is known to increase in peripheral tissues upon the stimulation of peroxisome proliferators-activator receptor alpha (PPARalpha), a nuclear receptor known to up-regulate several enzymes involved in fatty acid metabolism. The present study was focused on another high affinity carnitine transporter-OCTN3, its presence, regulation and activity in astrocytes. Experiments using the techniques of real-time PCR, Western blot and immunocytochemistry analysis demonstrated the expression of octn3 in rat astrocytes and, out of two rat sequences ascribed as similar to mouse OCTN3, XM_001073573 was found in these cells. PPARalpha activator-2-[4-chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid (WY-14,643) stimulated by 50% expression of octn3, while, on the contrary to peripheral tissues, it did not change the expression of octn2. This observation was correlated with an increased Na-independent activity of carnitine transport. Analysis by transmission electron microscopy showed an augmented intracellular localization of OCTN3 upon PPARalpha stimulation, mainly in peroxisomes, indicating a physiological role of OCTN3 as peroxisomal membrane transporter. These observations point to an important role of OCTN3 in peroxisomal fatty acid metabolism in astrocytes.

  1. Hypoglycemia, hepatic dysfunction, muscle weakness, cardiomyopathy, free carnitine deficiency and long-chain acylcarnitine excess responsive to medium chain triglyceride diet.

    PubMed

    Glasgow, A M; Engel, A G; Bier, D M; Perry, L W; Dickie, M; Todaro, J; Brown, B I; Utter, M F

    1983-05-01

    Fraternal twins who had fasting hypoglycemia, hypoketonemia, muscle weakness, and hepatic dysfunction are reported. The hepatic dysfunction occurred only during periods of caloric deprivation. The surviving patient developed a cardiomyopathy. In this sibling, muscle weakness and cardiomyopathy were markedly improved by a diet high in medium chain triglycerides. There was a marked deficiency of muscle total carnitine and a mild deficiency of hepatic total carnitine. Unlike patients with systemic carnitine deficiency, serum and muscle long-chain acylcarnitine were elevated and renal reabsorption of carnitine was normal. It was postulated that the defect in long-chain fatty acid oxidation in this disorder is caused by an abnormality in the mitochondrial acylcarnitine transport. Detailed studies of the cause of the hypoglycemia revealed that insulin, growth hormone, cortisol, and glucagon secretion were appropriate and that it is unlikely that there was a major deficiency of a glycolytic or gluconeogenic enzyme. Glucose production and alanine conversion to glucose were in the low normal range when compared to normal children in the postabsorptive state. The hypoglycemia in our patients was probably due to a modest increase in glucose consumption, secondary to the decreased oxidation of fatty acids and ketones, alternate fuels which spare glucose utilization, plus a modest decrease in hepatic glucose production secondary to decreased available hepatic energy substrates.

  2. Measurement of free carnitine and acylcarnitines in plasma by HILIC-ESI-MS/MS without derivatization.

    PubMed

    Peng, Minzhi; Liu, Li; Jiang, Minyan; Liang, Cuili; Zhao, Xiaoyuan; Cai, Yanna; Sheng, Huiying; Ou, Zhiying; Luo, Hong

    2013-08-01

    Measurement of carnitine and acylcarnitines in plasma is important in diagnosis of fatty acid β-oxidation disorders and organic acidemia. The usual method uses flow injection tandem mass spectrometry (FIA-MS/MS), which has limitations. A rapid and more accurate method was developed to be used for high-risk screening and diagnosis. Carnitine and acylcarnitines were separated by hydrophilic interaction liquid chromatography (HILIC) without derivatization and detected with a QTRAP MS/MS System. Total analysis time was 9.0min. The imprecision of within- and between-run were less than 6% and 17%, respectively. Recoveries were in the range of 85-110% at three concentrations. Some acylcarnitine isomers could be separated, such as dicarboxylic and hydroxyl acylcarnitines. The method could also separate interferent to avoid false positive results. 216 normal samples and 116 patient samples were detected with the validated method, and 49 patients were identified with fatty acid oxidation disorders or organic acidemias. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Unique plasma metabolomic signatures of individuals with inherited disorders of long-chain fatty acid oxidation

    USDA-ARS?s Scientific Manuscript database

    Blood and urine acylcarnitine profiles are commonly used to diagnose long-chain fatty acid oxidation disorders (FAOD: i.e., long-chain hydroxy-acyl-CoA dehydrogenase [LCHAD] and carnitine palmitoyltransferase 2 [CPT2] deficiency), but the global metabolic impact of long-chain FAOD has not been repor...

  4. Altered carnitine transport in pressure-overload hypertrophied rat hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Rourke, B.; Foster, K.; Reibel, D.K.

    1986-03-01

    The authors have previously observed reduced carnitine levels in hypertrophied hearts of rats subjected to aortic constriction. In an attempt to determine the mechanism for reduced myocardial carnitine content, carnitine transport was examined in isolated perfused hearts. Hearts were excised from sham-operated and aortic-constricted rats 3 weeks following surgery and perfused at 60 mm Hg aortic pressure with buffer containing various concentrations of L-/sup 14/C-carnitine. Carnitine uptake by control and hypertrophied hearts was linear throughout 30 minutes of perfusion with 40 ..mu..M carnitine. Total carnitine uptake was significantly reduced by 25% in hypertrophied hearts at each time point examined. Themore » reduction in uptake by hypertrophied hearts was also evident when hearts were perfused with 100 or 200 ..mu..M carnitine. When 0.05 mM mersalyl acid was included in the buffer to inhibit the carrier-mediated component of transport, no difference in carnitine uptake was observed indicating that the transport of carnitine by diffusion was unaltered in the hypertrophied myocardium. Carrier-mediated carnitine uptake (total uptake - uptake by diffusion) was significantly reduced by approximately 40% in hypertrophied hearts at all concentrations examined. Thus, the reduction in carnitine content in the pressure-overload hypertrophied rat heart appears to be due to a reduction in carrier-mediated carnitine uptake by the heart.« less

  5. Oxygen Glucose Deprivation in Rat Hippocampal Slice Cultures Results in Alterations in Carnitine Homeostasis and Mitochondrial Dysfunction

    PubMed Central

    Rau, Thomas F.; Lu, Qing; Sharma, Shruti; Sun, Xutong; Leary, Gregory; Beckman, Matthew L.; Hou, Yali; Wainwright, Mark S.; Kavanaugh, Michael; Poulsen, David J.; Black, Stephen M.

    2012-01-01

    Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR) supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD) decreased the levels of free carnitines (FC) and increased the acylcarnitine (AC): FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT) 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD. PMID:22984394

  6. Dietary fat types differently modulate the activity and expression of mitochondrial carnitine/acylcarnitine translocase in rat liver.

    PubMed

    Priore, Paola; Stanca, Eleonora; Gnoni, Gabriele Vincenzo; Siculella, Luisa

    2012-10-01

    The carnitine/acylcarnitine translocase (CACT), an integral protein of the mitochondrial inner membrane, belongs to the carnitine-dependent system of fatty acid transport into mitochondria, where beta-oxidation occurs. CACT exchanges cytosolic acylcarnitine or free carnitine for carnitine in the mitochondrial matrix. The object of this study was to investigate in rat liver the effect, if any, of diets enriched with saturated fatty acids (beef tallow, BT, the control), n-3 polyunsaturated fatty acids (PUFA) (fish oil, FO), n-6 PUFA (safflower oil, SO), and mono-unsaturated fatty acids (MUFA) (olive oil, OO) on the activity and expression of CACT. Translocase exchange rates increased, in parallel with CACT mRNA abundance, upon FO-feeding, whereas OO-dietary treatment induced a decrease in both CACT activity and expression. No changes were observed upon SO-feeding. Nuclear run-on assay revealed that FO-treatment increased the transcriptional rate of CACT mRNA. On the other hand, only in the nuclei of hepatocytes from OO-fed rats splicing of the last intron of CACT pre-mRNA and the rate of formation of the 3'-end were affected. Overall, these findings suggest that compared to the BT-enriched diet, the SO-enriched diet did not influence CACT activity and expression, whereas FO- and OO-feeding alters CACT activity in an opposite fashion, i.e. modulating its expression at transcriptional and post-transcriptional levels, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. An Open-label Phase 2 Study of UX007 (Triheptanoin) in Subjects With Long-Chain Fatty Acid Oxidation Disorders (LC-FAOD)

    ClinicalTrials.gov

    2018-06-01

    Long-chain Fatty Acid Oxidation Disorders (LC-FAOD); Carnitine Palmitoyltransferase (CPT II) Deficiency; Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency; Longchain 3-hydroxy-acyl-CoA Dehydrogenase (LCHAD) Deficiency; Trifunctional Protein (TFP) Deficiency

  8. Metabolomic profiling reveals a role for CPT1c in neuronal oxidative metabolism.

    PubMed

    Lee, Jieun; Wolfgang, Michael J

    2012-10-25

    Carnitine Palmitoyltransferase-1c (CPT1c) is a neuron specific homologue of the carnitine acyltransferase family of enzymes. CPT1 isoenzymes transfer long chain acyl groups to carnitine. This constitutes a rate setting step for mitochondrial fatty acid beta-oxidation by facilitating the initial step in acyl transfer to the mitochondrial matrix. In general, neurons do not heavily utilize fatty acids for bioenergetic needs and definitive enzymatic activity has been unable to be demonstrated for CPT1c. Although there are studies suggesting an enzymatic role of CPT1c, its role in neurochemistry remains elusive. In order to better understand how CPT1c functions in neural metabolism, we performed unbiased metabolomic profiling on wild-type (WT) and CPT1c knockout (KO) mouse brains. Consistent with the notion that CPT1c is not involved in fatty acid beta-oxidation, there were no changes in metabolites associated with fatty acid oxidation. Endocannabinoids were suppressed in the CPT1c KO, which may explain the suppression of food intake seen in CPT1c KO mice. Although products of beta-oxidation were unchanged, small changes in carnitine and carnitine metabolites were observed. Finally, we observed changes in redox homeostasis including a greater than 2-fold increase in oxidized glutathione. This indicates that CPT1c may play a role in neural oxidative metabolism. Steady-state metabolomic analysis of CPT1c WT and KO mouse brains identified a small number of metabolites that differed between CPT1c WT and KO mice. The subtle changes in a broad range of metabolites in vivo indicate that CPT1c does not play a significant or required role in fatty acid oxidation; however, it could play an alternative role in neuronal oxidative metabolism.

  9. Effects of carnitine and its congeners on eicosanoid discharge from rat cells: implications for release of TNFα

    PubMed Central

    Elliott, Graham R.; Pruimboom, Wanda M.; Zijlstra, Freek J.; Bonta, Iván L.

    1993-01-01

    THE acyl carrier coenzyme A (CoA) is involved in fatty acid metabolism. The carnitine/CoA ratio is of particular importance in regulating the transport of long-chain fatty acids into mitochondria for oxidation. Also CoA has a role in the formation and breakdown of products from both the cyclooxygenase and lipoxygenase pathways of the precursor arachidonic acid. In the present study the effect of 4 days feeding of 300 mg/kg/day of L-carnitine, acetyl Lcarnitine and propionyl L-carnitine on the basal and calcium ionophore (A23187) stimulated release of arachidonic acid metabolites from rat carrageenin elicited peritoneal cells was investigated. There were two series of experiments carried out. In the first, the harvested peritoneal cell population consisted of less than 90% macrophages and additional polymorphonuclear (PMN) leucocytes. The basal release of prostaglandin E2 (PGE2), 6-ketoprostaglandin F1α (6-keto-PGF1α) and leukotriene B4 (LTB4) was stimulated by all treatments. The A23187 stimulated release of 6-keto-PGF1α and LTB4 was increased by all three compounds. The 6-keto-PGF1α:TxB2 and 6-keto-PGF1α:LTB4 ratios were increased by carnitine treatment. These results suggested that carnitine could modify the macrophage component of an inflammatory site in vivo. In the second series of experiments the harvested cell population was highly purified (>95% macrophages) and none of the compounds fed to the rats caused a change of either eicosanoid or TNFα formation. Moreover the 6-keto-PGF1α:TxB2 and 6-keto-PGF1α:LTB4 ratios were not enhanced by any of the compounds tested. It is conceivable that in the first series the increased ratios 6-keto-PGF1α:TxB2 and 6-keto-PGF1α:LTB4 reflected the effect of carnitine or its congeners on PMN leucocytes rather than on macrophages. PMID:18475573

  10. Effects of dietary supplementation with L-carnitine and fat on blood acid-base responses to handling in slaughter weight pigs.

    PubMed

    Bertol, T M; Ellis, M; Hamilton, D N; Johnson, E W; Ritter, M J

    2005-01-01

    Blood acid-base responses to handling were evaluated in slaughter weight pigs fed diets supplemented with l-carnitine and fat. The study was carried out as a randomized block design with a 2 x 2 factorial arrangement of treatments: 1) dietary L-carnitine supplementation (0 vs. 150 ppm, as-fed basis); and 2) dietary fat supplementation (0 vs. 5%, as-fed basis). Sixty pigs (91.1 +/- 5.14 kg BW) were housed in mixed-gender groups of five and had ad libitum access to test diets (0.68% true ileal digestible lysine, 3,340 kcal of ME/kg, as-fed basis) for 3 wk. At the end of the feeding period (110.3 +/- 7.52 kg BW), pigs were subjected to a standard handling procedure, which consisted of moving individual animals through a facility (12.2 m long x 0.91 m wide) for eight laps (up and down the facility), using electric prods (two times per lap). There was no interaction between dietary L-carnitine and fat supplementation for any measurement. Pigs fed 150 ppm of supplemental L-carnitine had lower baseline blood glucose (P < 0.05) and higher baseline blood lactate (P < 0.05) concentrations than the nonsupplemented pigs. After handling, pigs fed L-carnitine-supplemented diets had a higher (P < 0.05) blood pH and showed a smaller (P < 0.05) decrease in blood pH and base excess than those fed the nonsupplemental diets. Baseline plasma FFA concentrations were higher (P < 0.01) in pigs fed the 5% fat diet. After the handling procedure, blood glucose, lactate, and plasma FFA were higher (P < 0.05) in pigs fed the 5 vs. 0% fat diets, but blood pH, bicarbonate, and base excess were not affected by dietary fat. The handling procedure decreased (P < 0.01) blood pH, bicarbonate, base excess, and total carbon dioxide and increased (P < 0.01) blood lactate, partial pressure of oxygen, and glucose, and also increased (P < 0.01) rectal temperature. Free fatty acid concentrations were increased by handling in pigs fed both 0 and 5% fat and 150 ppm L-carnitine. In conclusion, dietary L-carnitine

  11. Analytical approaches to determination of carnitine in biological materials, foods and dietary supplements.

    PubMed

    Dąbrowska, Monika; Starek, Małgorzata

    2014-01-01

    l-Carnitine is a vitamin-like amino acid derivative, which is an essential factor in fatty acid metabolism as acyltransferase cofactor and in energy production processes, such as interconversion in the mechanisms of regulation of cetogenesis and termogenesis, and it is also used in the therapy of primary and secondary deficiency, and in other diseases. The determination of carnitine and acyl-carnitines can provide important information about inherited or acquired metabolic disorders, and for monitoring the biochemical effect of carnitine therapy. The endogenous carnitine pool in humans is maintained by biosynthesis and absorption of carnitine from the diet. Carnitine has one asymmetric carbon giving two stereoisomers d and l, but only the l form has a biological positive effect, thus chiral recognition of l-carnitine enantiomers is extremely important in biological, chemical and pharmaceutical sciences. In order to get more insight into carnitine metabolism and synthesis, a sensitive analysis for the determination of the concentration of free carnitine, carnitine esters and the carnitine precursors is required. Carnitine has been investigated in many biochemical, pharmacokinetic, metabolic and toxicokinetic studies and thus many analytical methods have been developed and published for the determination of carnitine in foods, dietary supplements, pharmaceutical formulations, biological tissues and body fluid. The analytical procedures presented in this review have been validated in terms of basic parameters (linearity, limit of detection, limit of quantitation, sensitivity, accuracy, and precision). This article presented the impact of different analytical techniques, and provides an overview of applications that address a diverse array of pharmaceutical and biological questions and samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The Impact of Carnitine on Dietary Fiber and Gut Bacteria Metabolism and Their Mutual Interaction in Monogastrics

    PubMed Central

    Ghonimy, Abdallah; Zhang, Dong Ming; Farouk, Mohammed Hamdy; Wang, Qiuju

    2018-01-01

    Carnitine has vital roles in the endogenous metabolism of short chain fatty acids. It can protect and support gut microbial species, and some dietary fibers can reduce the available iron involved in the bioactivity of carnitine. There is also an antagonistic relationship between high microbial populations and carnitine bioavailability. This review shows the interactions between carnitine and gut microbial composition. It also elucidates the role of carnitine bacterial metabolism, mitochondrial function, fiber fermentability, and short chain fatty acids (SCFAs). PMID:29597260

  13. Enzymes involved in L-carnitine biosynthesis are expressed by small intestinal enterocytes in mice: implications for gut health.

    PubMed

    Shekhawat, Prem S; Sonne, Srinivas; Carter, A Lee; Matern, Dietrich; Ganapathy, Vadivel

    2013-07-01

    Carnitine is essential for mitochondrial β-oxidation of long-chain fatty acids. Deficiency of carnitine leads to severe gut atrophy, ulceration and inflammation in animal models of carnitine deficiency. Genetic studies in large populations have linked mutations in the carnitine transporters OCTN1 and OCTN2 with Crohn's disease (CD), while other studies at the same time have failed to show a similar association and report normal serum carnitine levels in CD patients. In this report, we have studied the expression of carnitine-synthesizing enzymes in intestinal epithelial cells to determine the capability of these cells to synthesize carnitine de novo. We studied expression of five enzymes involved in carnitine biosynthesis, namely 6-N-trimethyllysine dioxygenase (TMLD), 4-trimethylaminobutyraldehyde dehydrogenase (TMABADH), serine hydroxymethyltransferase 1 and 2 (SHMT1 and 2) and γ-butyrobetaine hydroxylase (BBH) by real-time PCR in mice (C3H strain). We also measured activity of γ-BBH in the intestine using an ex vivo assay and localized its expression by in situ hybridization. Our investigations show that mouse intestinal epithelium expresses all five enzymes required for de novo carnitine biosynthesis; the expression is localized mainly in villous surface epithelial cells throughout the intestine. The final rate-limiting enzyme γ-BBH is highly active in the small intestine; its activity was 9.7 ± 3.5 pmol/mg/min, compared to 22.7 ± 7.3 pmol/mg/min in the liver. We conclude that mouse gut epithelium is able to synthesize carnitine de novo. This capacity to synthesize carnitine in the intestine may play an important role in gut health and can help explain lack of clinical carnitine deficiency signs in subjects with mutations with OCTN transporters. Copyright © 2012 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.

  14. Carnitine protects the nematode Caenorhabditis elegans from glucose-induced reduction of survival depending on the nuclear hormone receptor DAF-12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deusing, Dorothé Jenni, E-mail: Dorothe.J.Deusing@ernaehrung.uni-giessen.de; Beyrer, Melanie, E-mail: m.beyrer@web.de; Fitzenberger, Elena, E-mail: Elena.Fitzenberger@ernaehrung.uni-giessen.de

    Besides its function in transport of fatty acids into mitochondria in order to provide substrates for β-oxidation, carnitine has been shown to affect also glucose metabolism and to inhibit several mechanisms associated with diabetic complications. In the present study we used the mev-1 mutant of the nematode Caenorhabditis elegans fed on a high glucose concentration in liquid media as a diabetes model and tested the effects of carnitine supplementation on their survival under heat-stress. Carnitine at 100 μM completely prevented the survival reduction that was caused by the application of 10 mM glucose. RNA-interference for sir-2.1, a candidate genes mediating the effectsmore » of carnitine revealed no contribution of the sirtuin for the rescue of survival. Under daf-12 RNAi rescue of survival by carnitine was abolished. RNA-interference for γ-butyrobetaine hydroxylase 2, encoding the key enzyme for carnitine biosynthesis did neither increase glucose toxicity nor prevent the rescue of survival by carnitine, suggesting that the effects of carnitine supplementation on carnitine levels were significant. Finally, it was demonstrated that neither the amount of lysosomes nor the proteasomal activity were increased by carnitine, excluding that protein degradation pathways, such as autophagy or proteasomal degradation, are involved in the protective carnitine effects. In conclusion, carnitine supplementation prevents the reduction of survival caused by glucose in C. elegans in dependence on a nuclear hormone receptor which displays high homologies to the vertebrate peroxisomal proliferator activated receptors. - Highlights: • Carnitine protects from glucose-induced reduction of stress-resistance. • Carnitine acts via the PPAR homolog DAF-12 on glucose toxicity. • Carnitine protects from glucose toxicity independent of protein degradation.« less

  15. Associations between fatty acid oxidation, hepatic mitochondrial function, and plasma acylcarnitine levels in mice.

    PubMed

    Bjørndal, Bodil; Alterås, Eva Katrine; Lindquist, Carine; Svardal, Asbjørn; Skorve, Jon; Berge, Rolf K

    2018-01-01

    The 4-thia fatty acid tetradecylthiopropionic acid (TTP) is known to inhibit mitochondrial β-oxidation, and can be used as chemically induced hepatic steatosis-model in rodents, while 3-thia fatty acid tetradecylthioacetic acid (TTA) stimulates fatty acid oxidation through activation of peroxisome proliferator activated receptor alpha (PPARα). We wished to determine how these two compounds affected in vivo respiration and mitochondrial efficiency, with an additional goal to elucidate whether mitochondrial function is reflected in plasma acylcarnitine levels. C57BL/6 mice were divided in 4 groups of 10 mice and fed a control low-fat diet, low-fat diets with 0.4% ( w /w) TTP, 0.4% TTA or a combination of these two fatty acids for three weeks ( n  = 10). At sacrifice, β-oxidation and oxidative phosphorylation (OXPHOS) capacity was analysed in fresh liver samples. Hepatic mitochondria were studied using transmission electron microscopy. Lipid classes were measured in plasma, heart and liver, acylcarnitines were measured in plasma, and gene expression was measured in liver. The TTP diet resulted in hepatic lipid accumulation, plasma L-carnitine and acetylcarnitine depletion and elevated palmitoylcarnitine and non-esterified fatty acid levels. No significant lipid accumulation was observed in heart. The TTA supplement resulted in enhanced hepatic β-oxidation, accompanied by an increased level of acetylcarnitine and palmitoylcarnitine in plasma. Analysis of mitochondrial respiration showed that TTP reduced oxidative phosphorylation, while TTA increased the maximum respiratory capacity of the electron transport system. Combined treatment with TTP and TTA resulted in a profound stimulation of genes involved in the PPAR-response and L-carnitine metabolism, and partly prevented triacylglycerol accumulation in the liver concomitant with increased peroxisomal β-oxidation and depletion of plasma acetylcarnitines. Despite an increased number of mitochondria in the liver

  16. Acetyl-L-carnitine prevents total body hydroxyl free radical and uric acid production induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the rat.

    PubMed

    Loots, Du Toit; Mienie, Lodewyk J; Bergh, Jacobus J; Van der Schyf, Cornelis J

    2004-07-23

    Acetyl-L-carnitine (ALCAR) is intimately involved in the transport of long chain fatty acids across the inner mitochondrial membrane during oxidative phosphorylation. ALCAR also has been reported to attenuate the occurrence of parkinsonian symptoms associated with 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) in vivo, and protects in vitro against the toxicity of the neurotoxic 1-methyl-4-phenylpyridinium (MPP+) metabolite of MPTP. The mechanism for these protective effects remains unclear. ALCAR may attenuate hydroxyl (HO*) free radical production in the MPTP/MPP+ neurotoxic pathway through several mechanisms. Most studies on MPTP/MPP+ toxicity and protection by ALCAR have focused on in vivo brain chemistry and in vitro neuronal culture studies. The present study investigates the attenuative effects of ALCAR on whole body oxidative stress markers in the urine of rats treated with MPTP. In a first study, ALCAR totally prevented the MPTP-induced formation of HO* measured by salicylate radical trapping. In a second study, the production of uric acid after MPTP administration-a measure of oxidative stress mediated through xanthine oxidase-was also prevented by ALCAR. Because ALCAR is unlikely to be a potent radical scavenger, these studies suggest that ALCAR protects against MPTP/MPP+-mediated oxidative stress through other mechanisms. We speculate that ALCAR may operate through interference with organic cation transporters such as OCTN2 and/or carnitine-acylcarnitine translocase (CACT), based partly on the above findings and on semi-empirical electronic similarity calculations on ALCAR, MPP+, and two other substrates for these transporters.

  17. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    PubMed

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  18. Crystal Structure of an L-Carnitine Complex with Pyrogallol[4]arene

    NASA Astrophysics Data System (ADS)

    Fujisawa, I.; Takeuchi, D.; Kitamura, Y.; Okamoto, R.; Aoki, K.

    2012-03-01

    L-Carnitine is essential for the transport of long-chain fatty acids from cytosol into mitochondria for generating metabolic energy. The survey of crystal structures of carnitine-containing proteins in the Protein Data Bank reveals that carnitine can take several conformations with the quarternary trimethylammonium terminal being always bound to aromatic residues through cation-π interactions in acyltransferases or carnitine-binding proteins. In order to demonstrate the importance of cation-π interaction as a carnitine recognition mechanism in the artificial receptor-ligand system that mimics the carnitine-binding sites, we have determined the crystal structure of a complex formed between L-carnitine and pyrogallol[4]arene (pyrogallol cyclic tetramer: PCT) as a carnitine receptor, 2PCT·2(L-carnitine)·4EtOH. There form two crystallographically independent monomeric [PCT·L-carnitine] substructures, which further form an obliquely arranged capsule-like dimeric [PCT·L-carnitine]2 structure through a pair of O-H (PCT)···O (L-carnitine) hydrogen bonds. This is the first report of PCT complex with chiral molecules. In each of the two monomeric [PCT·L-carnitine] substructures, the L-carnitine molecule takes the elongated form with an intramolecular hydrogen bond between the hydroxyl group and the carboxylate oxygen, and the cationic trimethylammonium moiety is incorporated into the cavity of the bowl-shaped PCT molecule through cation-π interactions. These features are similar to those at the D-carnitine-binding site in the crystal structure of the glycine betaine/carnitine/choline-binding protein complex.

  19. Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria.

    PubMed

    Perevoshchikova, Irina V; Quinlan, Casey L; Orr, Adam L; Gerencser, Akos A; Brand, Martin D

    2013-08-01

    H2O2 production by skeletal muscle mitochondria oxidizing palmitoylcarnitine was examined under two conditions: the absence of respiratory chain inhibitors and the presence of myxothiazol to inhibit complex III. Without inhibitors, respiration and H2O2 production were low unless carnitine or malate was added to limit acetyl-CoA accumulation. With palmitoylcarnitine alone, H2O2 production was dominated by complex II (44% from site IIF in the forward reaction); the remainder was mostly from complex I (34%, superoxide from site IF). With added carnitine, H2O2 production was about equally shared between complexes I, II, and III. With added malate, it was 75% from complex III (superoxide from site IIIQo) and 25% from site IF. Thus complex II (site IIF in the forward reaction) is a major source of H2O2 production during oxidation of palmitoylcarnitine ± carnitine. Under the second condition (myxothiazol present to keep ubiquinone reduced), the rates of H2O2 production were highest in the presence of palmitoylcarnitine ± carnitine and were dominated by complex II (site IIF in the reverse reaction). About half the rest was from site IF, but a significant portion, ∼40pmol H2O2·min(-1)·mg protein(-1), was not from complex I, II, or III and was attributed to the proteins of β-oxidation (electron-transferring flavoprotein (ETF) and ETF-ubiquinone oxidoreductase). The maximum rate from the ETF system was ∼200pmol H2O2·min(-1)·mg protein(-1) under conditions of compromised antioxidant defense and reduced ubiquinone pool. Thus complex II and the ETF system both contribute to H2O2 productionduring fatty acid oxidation under appropriate conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria

    PubMed Central

    Perevoshchikova, Irina V.; Quinlan, Casey L.; Orr, Adam L.; Gerencser, Akos A.; Brand, Martin D.

    2013-01-01

    H2O2 production by skeletal muscle mitochondria oxidizing palmitoylcarnitine was examined under two conditions: the absence of respiratory chain inhibitors and the presence of myxothiazol to inhibit complex III. Without inhibitors, respiration and H2O2 production were low unless carnitine or malate was added to limit acetyl-CoA accumulation. With palmitoylcarnitine alone, H2O2 production was dominated by complex II (44% from site IIF in the forward reaction); the remainder was mostly from complex I (34%, superoxide from site IF). With added carnitine, H2O2 production was about equally shared between complexes I, II, and III. With added malate, it was 75% from complex III (superoxide from site IIIQo) and 25% from site IF. Thus complex II (site IIF in the forward reaction) is a major source of H2O2 production during oxidation of palmitoylcarnitine ± carnitine. Under the second condition (myxothiazol present to keep ubiquinone reduced), the rates of H2O2 production were highest in the presence of palmitoylcarnitine ± carnitine and were dominated by complex II (site IIF in the reverse reaction). About half the rest was from site IF, but a significant portion, ~40 pmol H2O2 · min−1 · mg protein−1, was not from complex I, II, or III and was attributed to the proteins of β-oxidation (electron-transferring flavoprotein (ETF) and ETF-ubiquinone oxidoreductase). The maximum rate from the ETF system was ~200 pmol H2O2 · min−1 ~ mg protein−1 under conditions of compromised antioxidant defense and reduced ubiqui-none pool. Thus complex II and the ETF system both contribute to H2O2 production during fatty acid oxidation under appropriate conditions. PMID:23583329

  1. Carnitine

    USDA-ARS?s Scientific Manuscript database

    Carnitine (L-g-trimethylamino-ß-hydroxybutyrate) functions metabolically as a covalent molecular chaperone of acyl compounds esterified to its hydroxyl moiety (1,2). The quintessentialmetabolic function of L-carnitine is to shuttle long-chain FAs (LCFAs)2 across the inner mitochondrial membrane to t...

  2. Muscle carnitine availability plays a central role in regulating fuel metabolism in the rodent.

    PubMed

    Porter, Craig; Constantin-Teodosiu, Dumitru; Constantin, Despina; Leighton, Brendan; Poucher, Simon M; Greenhaff, Paul L

    2017-09-01

    Meldonium inhibits endogenous carnitine synthesis and tissue uptake, and accelerates urinary carnitine excretion, although the impact of meldonium-mediated muscle carnitine depletion on whole-body fuel selection, and muscle fuel metabolism and its molecular regulation is under-investigated. Ten days of oral meldonium administration did not impact on food or fluid intake, physical activity levels or body weight gain in the rat, whereas it depleted muscle carnitine content (all moieties), increased whole-body carbohydrate oxidation and muscle and liver glycogen utilization, and reduced whole-body fat oxidation. Meldonium reduced carnitine transporter protein expression across muscles of different contractile and metabolic phenotypes. A TaqMan PCR low-density array card approach revealed the abundance of 189 mRNAs regulating fuel selection was altered in soleus muscle by meldonium, highlighting the modulation of discrete cellular functions and metabolic pathways. These novel findings strongly support the premise that muscle carnitine availability is a primary regulator of fuel selection in vivo. The body carnitine pool is primarily confined to skeletal muscle, where it regulates carbohydrate (CHO) and fat usage. Meldonium (3-(2,2,2-trimethylhydrazinium)-propionate) inhibits carnitine synthesis and tissue uptake, although the impact of carnitine depletion on whole-body fuel selection, muscle fuel metabolism and its molecular regulation is under-investigated. Male lean Zucker rats received water (control, n = 8) or meldonium-supplemented water (meldonium, n = 8) for 10 days [1.6 g kg -1 body mass (BM) day -1 days 1-2, 0.8 g kg -1  BM day -1 thereafter]. From days 7-10, animals were housed in indirect calorimetry chambers after which soleus muscle and liver were harvested. Food and fluid intake, weight gain and physical activity levels were similar between groups from days 7 to 10. Compared to control, meldonium depleted muscle total carnitine (P < 0

  3. Carnitine in parenteral nutrition.

    PubMed

    Borum, Peggy R

    2009-11-01

    Several new functions or metabolic uses of carnitine and improvements in assessment of carnitine status impact carnitine dosing recommendations. Carnitine dosing will likely be customized for patients at different stages of the life cycle and for patients with dysfunction of different organs. Nutrition supplementation of carnitine should be 2-5 mg x kg(-1) x day(-1) and be administrated via the route used for administration of macronutrients. Pharmacologic supplementation of carnitine should be 50-100 mg x kg(-1) x day(-1) and be reserved for the removal of toxic compounds from the body.

  4. Carnitine Deficiency and Pregnancy

    PubMed Central

    de Bruyn, Anouk; Jacquemyn, Yves; Kinget, Kristof; Eyskens, François

    2015-01-01

    We present two cases of carnitine deficiency in pregnancy. In our first case, systematic screening revealed L-carnitine deficiency in the first born of an asymptomatic mother. In the course of her second pregnancy, maternal carnitine levels showed a deficiency as well. In a second case, a mother known with carnitine deficiency under supplementation was followed throughout her pregnancy. Both pregnancies had an uneventful outcome. Because carnitine deficiency can have serious complications, supplementation with carnitine is advised. This supplementation should be continued throughout pregnancy according to plasma concentrations. PMID:26113999

  5. Propionyl-L-Carnitine is Efficacious in Ulcerative Colitis Through its Action on the Immune Function and Microvasculature.

    PubMed

    Scioli, Maria Giovanna; Stasi, Maria Antonietta; Passeri, Daniela; Doldo, Elena; Costanza, Gaetana; Camerini, Roberto; Fociani, Paolo; Arcuri, Gaetano; Lombardo, Katia; Pace, Silvia; Borsini, Franco; Orlandi, Augusto

    2014-03-20

    Microvascular endothelial dysfunction characterizes ulcerative colitis (UC), the most widespread form of inflammatory bowel disease. Intestinal mucosal microvessels in UC display aberrant expression of cell adhesion molecules (CAMs) and increased inflammatory cell recruitment. Propionyl-L-carnitine (PLC), an ester of L-carnitine required for the mitochondrial transport of fatty acids, ameliorates propionyl-CoA bioavailability and reduces oxidative stress in ischemic tissues. The present study aimed to document the efficacy of anti-oxidative stress properties of PLC in counteracting intestinal microvascular endothelial dysfunction and inflammation. To evaluate the efficacy in vivo, we analyzed the effects in intestinal biopsies of patients with mild-to-moderate UC receiving oral PLC co-treatment and in rat TNBS-induced colitis; in addition, we investigated antioxidant PLC action in TNF-α-stimulated human intestinal microvascular endothelial cells (HIMECs) in vitro. Four-week PLC co-treatment reduced intestinal mucosal polymorph infiltration and CD4(+) lymphocytes, ICAM-1(+) and iNOS(+) microvessels compared with placebo-treated patients with UC. Oral and intrarectal administration of PLC but not L-carnitine or propionate reduced intestinal damage and microvascular dysfunction in rat TNBS-induced acute and reactivated colitis. In cultured TNF-α-stimulated HIMECs, PLC restored β-oxidation and counteracted NADPH oxidase 4-generated oxidative stress-induced CAM expression and leukocyte adhesion. Inhibition of β-oxidation by L-aminocarnitine increased reactive oxygen species production and PLC beneficial effects on endothelial dysfunction and leukocyte adhesion. Finally, PLC reduced iNOS activity and nitric oxide accumulation in rat TNBS-induced colitis and in HIMEC cultures. Our results show that the beneficial antioxidant effect of PLC targeting intestinal microvasculature restores endothelial β-oxidation and function, and reduces mucosal inflammation in UC

  6. Pro-Lipogenic Action of Lysophosphatidic Acid in Ovarian Cancer

    DTIC Science & Technology

    2013-07-01

    One of the key mediators of fatty acid b-oxidation is carnitine pamitoyl transferase 1A (CPT1A), which is overexpressed in malignant ovarian...MAGL, inhibits growth of ovarian cancer cell lines. Most interestingly, inhibition of carnitine palmitoyl transferase 1 (CPT1), the rate-limiting...Manuscript in preparation: Shao H, Mukherjee A, Jing K, Yuan F, and Fang X. Carnitine palmitoyl transferase 1A mediates proliferation and survival of

  7. Carnitine status in Thai adults.

    PubMed

    Tanphaichitr, V; Lerdvuthisopon, N; Dhanamitta, S; Broquist, H P

    1980-04-01

    Plasma carnitine and urinary carnitine levels were measured in Thai adults living in Bangkok city and Ubol villages. The mean plasma carnitine and urinary carnitine levels expressed in micromoles per liter in Bangkok adults were higher than those in Ubol adults. Their mean plasma carnitine levels were 56.6 +/- 1.8 and 50.3 +/- 1.7 whereas urinary carnitine levels were 161 +/- 19 and 127 +/- 18 micromole/liter, respectively. The nutritional status in Ubol adults was inadequate. This was evidenced by the significant decrease in urinary creatinine excretion, serum albumin, and hematocrit levels. The dietary assessment agreed with the biochemical findings. Since rice, limiting in carnitine, was the main protein and energy source consumed by Ubol adults their inadequate carnitine status could be due to the low carnitine intake. Sex affects plasma carnitine levels in Bangkok adults and urinary carnitine excretion in both groups. This could be related to the lean body mass in which most of the body carnitine resides. This is supported by the higher urinary creatinine excretion in males and the significant positive correlation between carnitine excretion and creatinine-height index.

  8. Association between the blood concentrations of ammonia and carnitine/amino acid of schizophrenic patients treated with valproic acid.

    PubMed

    Ando, Masazumi; Amayasu, Hideaki; Itai, Takahiro; Yoshida, Hisahiro

    2017-01-01

    Administration of valproic acid (VPA) is complicated with approximately 0.9% of patients developing hyperammonemia, but the pathogenesis of this adverse effect remains to be clarified. The aim of the present study was to search for mechanisms associated with VPA-induced hyperammonemia in the light of changes in serum amino acids concentrations associated with the urea cycle of schizophrenic patients. Blood samples (10 mL) were obtained from 37 schizophrenic patients receiving VPA for the prevention of violent behaviors in the morning after overnight fast. Blood concentrations of ammonia, VPA, free carnitine, acyl-carnitine, and 40 amino acids including glutamate and citrulline were measured for each patient. Univariate and multivariate regression analyses were performed to identify amino acids or concomitantly administered drugs that were associated with variability in the blood concentrations of ammonia. The blood ammonia level was positively correlated with the serum glutamate concentration ( r  = 0.44, p  < 0.01) but negatively correlated with glutamine ( r  = -0.41, p  = 0.01), citrulline ( r  = -0.42, p  = 0.01), and glycine concentrations ( r  = -0.54, p  < 0.01). It was also revealed that the concomitant administration of the mood stabilizers ( p  = 0.04) risperidone ( p  = 0.03) and blonanserin ( p  < 0.01) was positively associated with the elevation of the blood ammonia level. We hypothisized that VPA would elevate the blood ammonia level of schizophrenic patients. The observed changes in serum amino acids are compatible with urea cycle dysfunction, possibly due to reduced carbamoyl-phosphate synthase 1 (CPS1) activity. We conclude that VPA should be prudently prescribed to schizophrenic patients, particularly those receiving mood stabilizers or certain antipsychotics.

  9. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance.

    PubMed

    Koves, Timothy R; Ussher, John R; Noland, Robert C; Slentz, Dorothy; Mosedale, Merrie; Ilkayeva, Olga; Bain, James; Stevens, Robert; Dyck, Jason R B; Newgard, Christopher B; Lopaschuk, Gary D; Muoio, Deborah M

    2008-01-01

    Previous studies have suggested that insulin resistance develops secondary to diminished fat oxidation and resultant accumulation of cytosolic lipid molecules that impair insulin signaling. Contrary to this model, the present study used targeted metabolomics to find that obesity-related insulin resistance in skeletal muscle is characterized by excessive beta-oxidation, impaired switching to carbohydrate substrate during the fasted-to-fed transition, and coincident depletion of organic acid intermediates of the tricarboxylic acid cycle. In cultured myotubes, lipid-induced insulin resistance was prevented by manipulations that restrict fatty acid uptake into mitochondria. These results were recapitulated in mice lacking malonyl-CoA decarboxylase (MCD), an enzyme that promotes mitochondrial beta-oxidation by relieving malonyl-CoA-mediated inhibition of carnitine palmitoyltransferase 1. Thus, mcd(-/-) mice exhibit reduced rates of fat catabolism and resist diet-induced glucose intolerance despite high intramuscular levels of long-chain acyl-CoAs. These findings reveal a strong connection between skeletal muscle insulin resistance and lipid-induced mitochondrial stress.

  10. Carnitine status and lactate increase in patients with type I juvenile diabetes.

    PubMed

    Evangeliou, A; Gourgiotis, D; Karagianni, C; Markouri, M; Anogianaki, N; Mamoulakis, D; Maropoulos, G; Tsakalidis, C; Frentzayias, A; Nicolaidou, P

    2010-12-01

    In 32 juvenile patients suffering from insulin dependent diabetes we observed a carnitine imbalance (increase in acylcarnitine and reduction of free carnitine), which was higher in patients with the highest levels of glycosylated hemoglobin. Parallel to that, in patients with the most prominent carnitine imbalance, there was the highest increase in the postprandial lactic acid level and the highest increase in the lactate/pyruvate ratio, without relating to ketosis. In addition, we observed a decrease in free carnitine related to the length of time after appearance of diabetes. This was a prospective study of a cohort of 32 children and young adolescents with insulin dependent diabetes mellitus. All patients were on insulin treatment. Plasma concentrations of total, free and acyl-Carnitine were evaluated in 12 hours fasting blood samples and before the morning administration of insulin. Blood glucose, cholesterol, triglycerides, and lactate, pyruvate, beta-hydroxybutyrate and free fatty acid levels were measured. The postprandial highest increase of the lactate and lactate/pyruvate ratio observed in patients with the highest degree of carnitine imbalance, namely with poorliest regulated diabetes, raises the question of a coincidental mitochondrial dysfunction. On the ground of our own data, such a claim cannot be substantiated for our patients. In contrast we suggest that the role of other factors like increased gluconeogenesis, degree of ketosis need to be sought. In order to clarify the role of carnitine in the pathophysiology of disease we need also data from other tissues. Carnitine in the peripheral blood reflects only the 1% of the total body carnitine ; furthermore, patients with diabetes exhibit changes in carnitine status not only in the peripheral blood but also in other body tissues, mainly in muscles.

  11. TXNIP regulates myocardial fatty acid oxidation via miR-33a signaling.

    PubMed

    Chen, Junqin; Young, Martin E; Chatham, John C; Crossman, David K; Dell'Italia, Louis J; Shalev, Anath

    2016-07-01

    Myocardial fatty acid β-oxidation is critical for the maintenance of energy homeostasis and contractile function in the heart, but its regulation is still not fully understood. While thioredoxin-interacting protein (TXNIP) has recently been implicated in cardiac metabolism and mitochondrial function, its effects on β-oxidation have remained unexplored. Using a new cardiomyocyte-specific TXNIP knockout mouse and working heart perfusion studies, as well as loss- and gain-of-function experiments in rat H9C2 and human AC16 cardiomyocytes, we discovered that TXNIP deficiency promotes myocardial β-oxidation via signaling through a specific microRNA, miR-33a. TXNIP deficiency leads to increased binding of nuclear factor Y (NFYA) to the sterol regulatory element binding protein 2 (SREBP2) promoter, resulting in transcriptional inhibition of SREBP2 and its intronic miR-33a. This allows for increased translation of the miR-33a target genes and β-oxidation-promoting enzymes, carnitine octanoyl transferase (CROT), carnitine palmitoyl transferase 1 (CPT1), hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase-β (HADHB), and AMPKα and is associated with an increase in phospho-AMPKα and phosphorylation/inactivation of acetyl-CoA-carboxylase. Thus, we have identified a novel TXNIP-NFYA-SREBP2/miR-33a-AMPKα/CROT/CPT1/HADHB pathway that is conserved in mouse, rat, and human cardiomyocytes and regulates myocardial β-oxidation. Copyright © 2016 the American Physiological Society.

  12. [6]-Gingerol inhibits de novo fatty acid synthesis and carnitine palmitoyltransferase-1 activity which triggers apoptosis in HepG2.

    PubMed

    Impheng, Hathaichanok; Richert, Lysiane; Pekthong, Dumrongsak; Scholfield, C Norman; Pongcharoen, Sutatip; Pungpetchara, Ittipon; Srisawang, Piyarat

    2015-01-01

    The de novo fatty acid synthesis catalyzed by key lipogenic enzymes, including fatty acid synthase (FASN) has emerged as one of the novel targets of anti-cancer approaches. The present study explored the possible inhibitory efficacy of [6]-gingerol on de novo fatty acid synthesis associated with mitochondrial-dependent apoptotic induction in HepG2 cells. We observed a dissipation of mitochondrial membrane potential accompanied by a reduction of fatty acid levels. [6]-gingerol administration manifested inhibition of FASN expression, indicating FASN is a major target of [6]-gingerol inducing apoptosis in HepG2 cells. Indeed, we found that increased ROS generation could likely be a mediator of the anti-cancer effect of [6]-gingerol. A reduction of fatty acid levels and induction of apoptosis were restored by inhibition of acetyl-CoA carboxylase (ACC) activity, suggesting an accumulation of malonyl-CoA level could be the major cause of apoptotic induction of [6]-gingerol in HepG2 cells. The present study also showed that depletion of fatty acid following [6]-gingerol treatment caused an inhibitory effect on carnitine palmitoyltransferase-1 activity (CPT-1), whereas C75 augmented CPT-1 activity, indicating that [6]-gingerol exhibits the therapeutic benefit on suppression of fatty acid β-oxidation.

  13. Propionyl-L-Carnitine is Efficacious in Ulcerative Colitis Through its Action on the Immune Function and Microvasculature

    PubMed Central

    Scioli, Maria Giovanna; Stasi, Maria Antonietta; Passeri, Daniela; Doldo, Elena; Costanza, Gaetana; Camerini, Roberto; Fociani, Paolo; Arcuri, Gaetano; Lombardo, Katia; Pace, Silvia; Borsini, Franco; Orlandi, Augusto

    2014-01-01

    Objectives: Microvascular endothelial dysfunction characterizes ulcerative colitis (UC), the most widespread form of inflammatory bowel disease. Intestinal mucosal microvessels in UC display aberrant expression of cell adhesion molecules (CAMs) and increased inflammatory cell recruitment. Propionyl-L-carnitine (PLC), an ester of L-carnitine required for the mitochondrial transport of fatty acids, ameliorates propionyl-CoA bioavailability and reduces oxidative stress in ischemic tissues. The present study aimed to document the efficacy of anti-oxidative stress properties of PLC in counteracting intestinal microvascular endothelial dysfunction and inflammation. Methods: To evaluate the efficacy in vivo, we analyzed the effects in intestinal biopsies of patients with mild-to-moderate UC receiving oral PLC co-treatment and in rat TNBS-induced colitis; in addition, we investigated antioxidant PLC action in TNF-α-stimulated human intestinal microvascular endothelial cells (HIMECs) in vitro. Results: Four-week PLC co-treatment reduced intestinal mucosal polymorph infiltration and CD4+ lymphocytes, ICAM-1+ and iNOS+ microvessels compared with placebo-treated patients with UC. Oral and intrarectal administration of PLC but not L-carnitine or propionate reduced intestinal damage and microvascular dysfunction in rat TNBS-induced acute and reactivated colitis. In cultured TNF-α-stimulated HIMECs, PLC restored β-oxidation and counteracted NADPH oxidase 4-generated oxidative stress-induced CAM expression and leukocyte adhesion. Inhibition of β-oxidation by L-aminocarnitine increased reactive oxygen species production and PLC beneficial effects on endothelial dysfunction and leukocyte adhesion. Finally, PLC reduced iNOS activity and nitric oxide accumulation in rat TNBS-induced colitis and in HIMEC cultures. Conclusions: Our results show that the beneficial antioxidant effect of PLC targeting intestinal microvasculature restores endothelial β-oxidation and function, and

  14. CPT1{alpha} over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion

    2005-12-16

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1{alpha} (CPT1{alpha}). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1{alpha} transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1{alpha} over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1{alpha} over-expressing cells in a concentration-dependent manner. Both, PA and CPT1{alpha} over-expression increased cell death. Interestingly,more » PA reduced total cell number only in cells over-expressing CPT1{alpha}, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo.« less

  15. Muscle contraction increases carnitine uptake via translocation of OCTN2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuichi, Yasuro; Sugiura, Tomoko; Kato, Yukio

    Highlights: Black-Right-Pointing-Pointer Muscle contraction augmented carnitine uptake into rat hindlimb muscles. Black-Right-Pointing-Pointer An increase in carnitine uptake was due to an intrinsic clearance, not blood flow. Black-Right-Pointing-Pointer Histochemical analysis showed sarcolemmal OCTN2 was emphasized after contraction. Black-Right-Pointing-Pointer OCTN2 protein in sarcolemmal fraction was increased in contracting muscles. -- Abstract: Since carnitine plays an important role in fat oxidation, influx of carnitine could be crucial for muscle metabolism. OCTN2 (SLC22A5), a sodium-dependent solute carrier, is assumed to transport carnitine into skeletal muscle cells. Acute regulation of OCTN2 activity in rat hindlimb muscles was investigated in response to electrically induced contractile activity.more » The tissue uptake clearance (CL{sub uptake}) of L-[{sup 3}H]carnitine during muscle contraction was examined in vivo using integration plot analysis. The CL{sub uptake} of [{sup 14}C]iodoantipyrine (IAP) was also determined as an index of tissue blood flow. To test the hypothesis that increased carnitine uptake involves the translocation of OCTN2, contraction-induced alteration in the subcellular localization of OCTN2 was examined. The CL{sub uptake} of L-[{sup 3}H]carnitine in the contracting muscles increased 1.4-1.7-fold as compared to that in the contralateral resting muscles (p < 0.05). The CL{sub uptake} of [{sup 14}C]IAP was much higher than that of L-[{sup 3}H]carnitine, but no association between the increase in carnitine uptake and blood flow was obtained. Co-immunostaining of OCTN2 and dystrophin (a muscle plasma membrane marker) showed an increase in OCTN2 signal in the plasma membrane after muscle contraction. Western blotting showed that the level of sarcolemmal OCTN2 was greater in contracting muscles than in resting muscles (p < 0.05). The present study showed that muscle contraction facilitated carnitine uptake in skeletal muscles

  16. Activation of PPARα by Oral Clofibrate Increases Renal Fatty Acid Oxidation in Developing Pigs.

    PubMed

    He, Yonghui; Khan, Imad; Bai, Xiumei; Odle, Jack; Xi, Lin

    2017-12-08

    The objective of this study was to evaluate the effects of peroxisome proliferator-activated receptor α (PPARα) activation by clofibrate on both mitochondrial and peroxisomal fatty acid oxidation in the developing kidney. Ten newborn pigs from 5 litters were randomly assigned to two groups and fed either 5 mL of a control vehicle (2% Tween 80) or a vehicle containing clofibrate (75 mg/kg body weight, treatment). The pigs received oral gavage daily for three days. In vitro fatty acid oxidation was then measured in kidneys with and without mitochondria inhibitors (antimycin A and rotenone) using [1- 14 C]-labeled oleic acid (C18:1) and erucic acid (C22:1) as substrates. Clofibrate significantly stimulated C18:1 and C22:1 oxidation in mitochondria ( p < 0.001) but not in peroxisomes. In addition, the oxidation rate of C18:1 was greater in mitochondria than peroxisomes, while the oxidation of C22:1 was higher in peroxisomes than mitochondria ( p < 0.001). Consistent with the increase in fatty acid oxidation, the mRNA abundance and enzyme activity of carnitine palmitoyltransferase I (CPT I) in mitochondria were increased. Although mRNA of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase (mHMGCS) was increased, the β-hydroxybutyrate concentration measured in kidneys did not increase in pigs treated with clofibrate. These findings indicate that PPARα activation stimulates renal fatty acid oxidation but not ketogenesis.

  17. Effect of L-Carnitine Supplementation on Reverse Remodeling in Patients with Ischemic Heart Disease Undergoing Coronary Artery Bypass Grafting: A Randomized, Placebo-Controlled Trial.

    PubMed

    da Silva Guimarães, Sheila; de Souza Cruz, Wanise; da Silva, Licinio; Maciel, Gabrielle; Huguenin, Ana Beatriz; de Carvalho, Monicque; Costa, Bárbara; da Silva, Geisiane; da Costa, Carlos; D'Ippolito, João Alvaro; Colafranceschi, Alexandre; Scalco, Fernanda; Boaventura, Gilson

    2017-01-01

    During cardiac failure, cardiomyocytes have difficulty in using the substrates to produce energy. L-carnitine is a necessary nutrient for the transport of fatty acids that are required for generating energy. Coronary artery graft surgery reduces the plasma levels of L-carnitine and increases the oxidative stress. This study demonstrates the effect of L-carnitine supplementation on the reverse remodeling of patients undergoing coronary artery bypass graft. Patients with ischemic heart failure who underwent coronary graft surgery were randomized to group A - supplemented with L-carnitine or group B controls. Left ventricular ejection fraction, left ventricular systolic and diastolic diameters were assessed preoperatively, 60 and 180 days after surgery. Our study included 28 patients (26 [93.0%] males) with a mean age ± SD of 58.1 ± 10.5 years. The parameters for the evaluation of reverse remodeling did not improve after 60 and 180 days of coronary artery bypass grafting in comparison between groups (p > 0.05). Evaluation within the L-carnitine group showed a 37.1% increase in left ventricle ejection fraction (p = 0.002) and 14.3% (p = 0.006) and 3.3% (p > 0.05) reduction in systolic and diastolic diameters, respectively. L-carnitine supplementation at a dose of 50 mg/kg combined with artery bypass surgery did not demonstrate any additional benefit in reverse remodeling. However, evaluation within the L-carnitine group may indicate a clinical benefit of L-carnitine supplementation. © 2017 S. Karger AG, Basel.

  18. Carnitine palmitoyltransferase II deficiency

    PubMed Central

    Roe, C R.; Yang, B-Z; Brunengraber, H; Roe, D S.; Wallace, M; Garritson, B K.

    2008-01-01

    Background: Carnitine palmitoyltransferase II (CPT II) deficiency is an important cause of recurrent rhabdomyolysis in children and adults. Current treatment includes dietary fat restriction, with increased carbohydrate intake and exercise restriction to avoid muscle pain and rhabdomyolysis. Methods: CPT II enzyme assay, DNA mutation analysis, quantitative analysis of acylcarnitines in blood and cultured fibroblasts, urinary organic acids, the standardized 36-item Short-Form Health Status survey (SF-36) version 2, and bioelectric impedance for body fat composition. Diet treatment with triheptanoin at 30% to 35% of total daily caloric intake was used for all patients. Results: Seven patients with CPT II deficiency were studied from 7 to 61 months on the triheptanoin (anaplerotic) diet. Five had previous episodes of rhabdomyolysis requiring hospitalizations and muscle pain on exertion prior to the diet (two younger patients had not had rhabdomyolysis). While on the diet, only two patients experienced mild muscle pain with exercise. During short periods of noncompliance, two patients experienced rhabdomyolysis with exercise. None experienced rhabdomyolysis or hospitalizations while on the diet. All patients returned to normal physical activities including strenuous sports. Exercise restriction was eliminated. Previously abnormal SF-36 physical composite scores returned to normal levels that persisted for the duration of the therapy in all five symptomatic patients. Conclusions: The triheptanoin diet seems to be an effective therapy for adult-onset carnitine palmitoyltransferase II deficiency. GLOSSARY ALT = alanine aminotransferase; AST = aspartate aminotransferase; ATP = adenosine triphosphate; BHP = β-hydroxypentanoate; BKP = β-ketopentanoate; BKP-CoA = β-ketopentanoyl–coenzyme A; BUN = blood urea nitrogen; CAC = citric acid cycle; CoA = coenzyme A; CPK = creatine phosphokinase; CPT II = carnitine palmitoyltransferase II; LDL = low-density lipoprotein; MCT

  19. Effects of Oral L-Carnitine Administration in Narcolepsy Patients: A Randomized, Double-Blind, Cross-Over and Placebo-Controlled Trial

    PubMed Central

    Miyagawa, Taku; Kawamura, Hiromi; Obuchi, Mariko; Ikesaki, Asuka; Ozaki, Akiko; Tokunaga, Katsushi; Inoue, Yuichi; Honda, Makoto

    2013-01-01

    Narcolepsy is a sleep disorder characterized by excessive daytime sleepiness, cataplexy, and rapid eye movement (REM) sleep abnormalities. A genome-wide association study (GWAS) identified a novel narcolepsy-related single nucleotide polymorphism (SNP), which is located adjacent to the carnitine palmitoyltransferase 1B (CPT1B) gene encoding an enzyme involved in β-oxidation of long-chain fatty acids. The mRNA expression levels of CPT1B were associated with this SNP. In addition, we recently reported that acylcarnitine levels were abnormally low in narcolepsy patients. To assess the efficacy of oral l-carnitine for the treatment of narcolepsy, we performed a clinical trial administering l-carnitine (510 mg/day) to patients with the disease. The study design was a randomized, double-blind, cross-over and placebo-controlled trial. Thirty narcolepsy patients were enrolled in our study. Two patients were withdrawn and 28 patients were included in the statistical analysis (15 males and 13 females, all with HLA-DQB1*06:02). l-carnitine treatment significantly improved the total time for dozing off during the daytime, calculated from the sleep logs, compared with that of placebo-treated periods. l-carnitine efficiently increased serum acylcarnitine levels, and reduced serum triglycerides concentration. Differences in the Japanese version of the Epworth Sleepiness Scale (ESS) and the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36) vitality and mental health subscales did not reach statistical significance between l-carnitine and placebo. This study suggests that oral l-carnitine can be effective in reducing excessive daytime sleepiness in narcolepsy patients. Trial Registration University hospital Medical Information Network (UMIN) UMIN000003760 PMID:23349733

  20. Mitochondrial Carnitine Palmitoyltransferase 1a (CPT1a) Is Part of an Outer Membrane Fatty Acid Transfer Complex*

    PubMed Central

    Lee, Kwangwon; Kerner, Janos; Hoppel, Charles L.

    2011-01-01

    CPT1a (carnitine palmitoyltransferase 1a) in the liver mitochondrial outer membrane (MOM) catalyzes the primary regulated step in overall mitochondrial fatty acid oxidation. It has been suggested that the fundamental unit of CPT1a exists as a trimer, which, under native conditions, could form a dimer of the trimers, creating a hexamer channel for acylcarnitine translocation. To examine the state of CPT1a in the MOM, we employed a combined approach of sizing by mass and isolation using an immunological method. Blue native electrophoresis followed by detection with immunoblotting and mass spectrometry identified large molecular mass complexes that contained not only CPT1a but also long chain acyl-CoA synthetase (ACSL) and the voltage-dependent anion channel (VDAC). Immunoprecipitation with antisera against the proteins revealed a strong interaction between the three proteins. Immobilized CPT1a-specific antibodies immunocaptured not only CPT1a but also ACSL and VDAC, further strengthening findings with blue native electrophoresis and immunoprecipitation. This study shows strong protein-protein interaction between CPT1a, ACSL, and VDAC. We propose that this complex transfers activated fatty acids through the MOM. PMID:21622568

  1. An acetyl-L-carnitine switch on mitochondrial dysfunction and rescue in the metabolomics study on aluminum oxide nanoparticles.

    PubMed

    Li, Xiaobo; Zhang, Chengcheng; Zhang, Xin; Wang, Shizhi; Meng, Qingtao; Wu, Shenshen; Yang, Hongbao; Xia, Yankai; Chen, Rui

    2016-01-16

    Due to the wide application of engineered aluminum oxide nanoparticles and increased aluminum containing particulate matter suspending in air, exposure of human to nano-scale aluminum oxide nanoparticles (Al2O3 NPs) is becoming inevitable. In the present study, RNA microarray coupled with metabolomics analysis were used to uncover mechanisms underlying cellular responses to Al2O3 NPs and imply the potential rescue. We found that Al2O3 NPs significantly triggered down-regulation of mitochondria-related genes located in complex I, IV and V, which were involved in oxidative phosphorylation and neural degeneration pathways, in human bronchial epithelial (HBE) cells. Subsequent cell- and animal- based assays confirmed that Al2O3 NPs caused mitochondria-dependent apoptosis and oxidative stress either in vitro or in vivo, which were consistent with the trends of gene regulation. To rescue the Al2O3 NPs induced mitochondria dysfunction, disruption of small molecular metabolites of HBE were profiled using metabolomics analysis, which facilitates identification of potential antagonizer or supplement against nanoparticle-involved damages. Supplementation of an antioxidant, acetyl-L-carnitine, completely or partially restored the Al2O3 NPs modulated gene expression levels in mitochondrial complex I, IV and V. It further reduced apoptosis and oxidative damages in both Al2O3 NPs treated HBE cells and animal lung tissues. Thus, our results demonstrate the potential mechanism of respiratory system damages induced by Al2O3 NPs. Meanwhile, based on the metabolomics profiling, application of acetyl-L-carnitine is suggested to ameliorate mitochondria dysfunction associated with Al2O3 NPs.

  2. The effect of dietary supplementation with calcium salts of long chain fatty acids and/or L-carnitine on ovarian activity of Rahmani ewes.

    PubMed

    El-Shahat, K H; Abo-El maaty, Amal M

    2010-01-01

    This study investigated the effect of dietary supplementation with calcium salts of long chain fatty acids with or without of l-carnitine on ovarian activity using 24 Rahmani ewes randomly allocated to four treatments. Control animals (n=6) were fed a basal diet of hay (64.2%) and barley grain (35.0%) plus minerals and vitamins (0.8%). Ewes on the three treatments received the same basal diet supplemented with calcium salts of long chain fatty acids (CSFA) at 3% of the basal diet dry matter intake (1.4 kg/ewe/d); 250 ppm l-carnitine (LC); or both these supplements (CSFA+LC). All use exhibited natural estrus on one or two occasions and were weighed at the start and the end of the study as well as body condition score was assessed at the end of study. All ewes were then synchronised for estrus using intravaginal sponges for 12 d prior to the start of the nutritional treatments and three weeks after the nutritional treatments began. The nutritional treatments were imposed for a total of 8 weeks. Blood samples were collected prior to the start of treatments and every two weeks thereafter except after sponge removal of first and second synchronisation where the blood samples were collected daily for progesterone assay. The results revealed that Rahmani ewes received basal diet (control) and l-carnitine had significantly decrease final body weight and body condition score (36.3+/-0.4; 36.8+/-0.3; 2.2+/-0.04; 2.1+/-0.05; p<0.05, respectively) than those on CSFA and CSFA+LC (38.6+/-0.9; 39.5+/-0.6; 3.3+/-0.07; 3.4+/-0.06; respectively). At the second ultrasound examination, the control animals had significantly fewer total follicles (7.3+/-0.8; p<0.05) than those on the CSFA (8.4+/-0.8), l-carnitine (8.7+/-1.5) and CSFA+LC (8.0+/-0.6) treatments. The increased numbers occurred in the medium and large categories of follicles. In addition, the ovulation rates were significantly lower (p<0.05) for control (1.3+/-0.2) and l-carnitine (1.5+/-0.00) than for CSFA (2.5+/-0.3) and

  3. Effect of Acetyl-L-Carnitine on Antioxidant Status, Lipid Peroxidation, and Oxidative Damage of Arsenic in Rat.

    PubMed

    Sepand, Mohammad Reza; Razavi-Azarkhiavi, Kamal; Omidi, Ameneh; Zirak, Mohammad Reza; Sabzevari, Samin; Kazemi, Ali Reza; Sabzevari, Omid

    2016-05-01

    Arsenic (As) is a widespread environmental contaminant present around the world in both organic and inorganic forms. Oxidative stress is postulated as the main mechanism for As-induced toxicity. This study was planned to examine the protective effect of acetyl-L-carnitine (ALC) on As-induced oxidative damage in male rats. Animals were randomly divided into four groups of control (saline), sodium arsenite (NaAsO2, 20 mg/kg), ALC (300 mg/kg), and NaAsO2 plus ALC. Animals were dosed orally for 28 successive days. Blood and tissue samples including kidney, brain, liver, heart, and lung were collected on the 28th day and evaluated for oxidative damage and histological changes. NaAsO2 exposure caused a significant lipid peroxidation as evidenced by elevation in thiobarbituric acid-reactive substances (TBARS). The activity of antioxidant enzymes such as glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), as well as sulfhydryl group content (SH group) was significantly suppressed in various organs following NaAsO2 treatment (P < 0.05). Furthermore, NaAsO2 administration increased serum values of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and bilirubin. Our findings revealed that co-administration of ALC and NaAsO2 significantly suppressed the oxidative damage induced by NaAsO2. Tissue histological studies have confirmed the biochemical findings and provided evidence for the beneficial role of ALC. The results concluded that ALC attenuated NaAsO2-induced toxicity, and this protective effect may result from the ability of ALC in maintaining oxidant-antioxidant balance.

  4. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity.

    PubMed

    Thupari, J N; Pinn, M L; Kuhajda, F P

    2001-07-13

    Inhibition of fatty acid synthase (FAS) induces apoptosis in human breast cancer cells in vitro and in vivo without toxicity to proliferating normal cells. We have previously shown that FAS inhibition causes a rapid increase in malonyl-CoA levels identifying malonyl-CoA as a potential trigger of apoptosis. In this study we further investigated the role of malonyl-CoA during FAS inhibition. We have found that: [i] inhibition of FAS with cerulenin causes carnitine palmitoyltransferase-1 (CPT-1) inhibition and fatty acid oxidation inhibition in MCF-7 human breast cancer cells likely mediated by elevation of malonyl-CoA; [ii] cerulenin cytotoxicity is due to the nonphysiological state of increased malonyl-CoA, decreased fatty acid oxidation, and decreased fatty acid synthesis; and [iii] the cytotoxic effect of cerulenin can be mimicked by simultaneous inhibition of CPT-1, with etomoxir, and fatty acid synthesis with TOFA, an acetyl-CoA carboxylase (ACC) inhibitor. This study identifies CPT-1 and ACC as two new potential targets for cancer chemotherapy. Copyright 2001 Academic Press.

  5. The possible protective effect of L-carnitine on tilmicosin-induced cardiotoxicity in mice.

    PubMed

    Kart, A; Yapar, K; Karapehlivan, M; Citil, M

    2007-04-01

    The protective effect of L-carnitine was investigated against tilmicosin-induced cardiotoxic effects including blood creatine kinase (CK), CK-MB, total sialic acid as well as the alterations in glutathione and malondialdehyde concentrations in mice. Thirty-two Balb/C mice were divided into four groups including group 1 (control), group 2 (L-carnitine, s.c., 500 mg/kg for 5 days), group 3 (tilmicosin, s.c., single dose of 75 mg/kg) and group 4 (L-carnitine plus tilmicosin). Serum CK, CK-MB and malondialdehyde (MDA) levels were significantly (P < 0.05) higher in group 3 compared with those of other groups. Total sialic acid level in group 3 was found to be significantly (P < 0.05) higher than that in groups 1 and 2, as well. Contrary to these results, glutathione level in group 3 was found to be significantly (P < 0.05) lower than that in groups 1 and 2. In group 4, serum CK, CK-MB, MDA and total sialic acid levels were found to be significantly (P < 0.05) lower than those in group 3. These results suggest that tilmicosin is cardiotoxic in mice as evidenced by higher total sialic acid, CK and CK-MB. In addition, tilmicosin caused the decrease in glutathione and increase in MDA levels. However, administration of L-carnitine could ameliorate these adverse toxic effects of tilmicosin in mice.

  6. The effect of valinomycin in fibroblasts from patients with fatty acid oxidation disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ndukwe Erlingsson, Uzochi Chimdinma; Iacobazzi, Francesco; Department of Basic Medical Sciences, University of Bari, Piazza Giulio Cesare 11, Policlinico, I-70124 Bari

    Highlights: •Valinomycin can cause mitochondrial stress and stimulate fatty acid oxidation. •Cells with VLCAD deficiency fail to increase fatty acid oxidation in response to valinomycin. •Response to valinomycin can help in the diagnosis of VLCAD deficiency. -- Abstract: Disorders of the carnitine cycle and of the beta oxidation spiral impair the ability to obtain energy from fats at time of fasting and stress. This can result in hypoketotic hypoglycemia, cardiomyopathy, cardiac arrhythmia and other chronic medical problems. The in vitro study of fibroblasts from patients with these conditions is impaired by their limited oxidative capacity. Here we evaluate the capacitymore » of valinomycin, a potassium ionophore that increases mitochondrial respiration, to increase the oxidation of fatty acids in cells from patients with inherited fatty acid oxidation defects. The addition of valinomycin to fibroblasts decreased the accumulation of the lipophilic cation tetraphenylphosphonium (TPP{sup +}) at low concentrations due to the dissipation of the mitochondrial membrane potential. At higher doses, valinomycin increased TPP{sup +} accumulation due to the increased potassium permeability of the plasma membrane and subsequent cellular hyperpolarization. The incubation of normal fibroblasts with valinomycin increased [{sup 14}C]-palmitate oxidation (measured as [{sup 14}C]O{sub 2} release) in a dose-dependent manner. By contrast, valinomycin failed to increase palmitate oxidation in fibroblasts from patients with very long chain acyl CoA dehydrogenase (VLCAD) deficiency. This was not observed in fibroblasts from patients heterozygous for this condition. These results indicate that valinomycin can increase fatty acid oxidation in normal fibroblasts and could be useful to differentiate heterozygotes from patients affected with VLCAD deficiency.« less

  7. Effect of L-carnitine supplementation on the body carnitine pool, skeletal muscle energy metabolism and physical performance in male vegetarians.

    PubMed

    Novakova, Katerina; Kummer, Oliver; Bouitbir, Jamal; Stoffel, Sonja D; Hoerler-Koerner, Ulrike; Bodmer, Michael; Roberts, Paul; Urwyler, Albert; Ehrsam, Rolf; Krähenbühl, Stephan

    2016-02-01

    More than 95% of the body carnitine is located in skeletal muscle, where it is essential for energy metabolism. Vegetarians ingest less carnitine and carnitine precursors and have lower plasma carnitine concentrations than omnivores. Principle aims of the current study were to assess the plasma and skeletal muscle carnitine content and physical performance of male vegetarians and matched omnivores under basal conditions and after L-carnitine supplementation. Sixteen vegetarians and eight omnivores participated in this interventional study with oral supplementation of 2 g L-carnitine for 12 weeks. Before carnitine supplementation, vegetarians had a 10% lower plasma carnitine concentration, but maintained skeletal muscle carnitine stores compared to omnivores. Skeletal muscle phosphocreatine, ATP, glycogen and lactate contents were also not different from omnivores. Maximal oxygen uptake (VO2max) and workload (P max) per bodyweight (bicycle spiroergometry) were not significantly different between vegetarians and omnivores. Sub-maximal exercise (75% VO2max for 1 h) revealed no significant differences between vegetarians and omnivores (respiratory exchange ratio, blood lactate and muscle metabolites). Supplementation with L-carnitine significantly increased the total plasma carnitine concentration (24% in omnivores, 31% in vegetarians) and the muscle carnitine content in vegetarians (13%). Despite this increase, P max and VO2max as well as muscle phosphocreatine, lactate and glycogen were not significantly affected by carnitine administration. Vegetarians have lower plasma carnitine concentrations, but maintained muscle carnitine stores compared to omnivores. Oral L-carnitine supplementation normalizes the plasma carnitine stores and slightly increases the skeletal muscle carnitine content in vegetarians, but without affecting muscle function and energy metabolism.

  8. L-carnitine supplementation for the management of fatigue in patients with hypothyroidism on levothyroxine treatment: a randomized, double-blind, placebo-controlled trial.

    PubMed

    An, Jee Hyun; Kim, Yoon Jung; Kim, Kyeong Jin; Kim, Sun Hwa; Kim, Nam Hoon; Kim, Hee Young; Kim, Nan Hee; Choi, Kyung Mook; Baik, Sei Hyun; Choi, Dong Seop; Kim, Sin Gon

    2016-10-29

    Hypothyroid patients experience fatigue-related symptoms despite adequate thyroid hormone replacement. Thyroid hormone plays an essential role in carnitine-dependent fatty acid import and oxidation. We investigated the effects of L-carnitine supplementation on fatigue in patients with hypothyroidism. In total, 60 patients (age 50.0 ± 9.2 years, 3 males, 57 females) who still experienced fatigue (fatigue severity scale [FSS] score ≥ 36) were given L-carnitine (n = 30, 990 mg L-carnitine twice daily) or placebo (n = 30) for 12 weeks. After 12 weeks, although neither the FSS score nor the physical fatigue score (PFS) changed significantly, the mental fatigue score (MFS) was significantly decreased by treatment with L-carnitine compared with placebo (from 4.5 ± 1.9 to 3.9 ± 1.5 vs. from 4.2 ± 1.8 to 4.6 ± 1.6, respectively; P < 0.01). In the L-carnitine group, 75.0%, 53.6%, and 50.0% of patients showed improvement in the FSS score, PFS, and MFS, respectively, but only 20.0%, 24.0%, and 24.0%, respectively, did so in the placebo group (all P < 0.05). Both the PFS and MFS were significantly improved in patients younger than 50 years and those with free T3 ≥ 4.0 pg/mL by treatment with L-carnitine compared with placebo. Additionally, the MFS was significantly improved in patients taking thyroid hormone after thyroid cancer surgery. These results suggest that L-carnitine supplementation may be useful in alleviating fatigue symptoms in hypothyroid patients, especially in those younger than 50 years and those who have hypothyroidism after thyroidectomy for thyroid cancer (ClinicalTrials.gov: NCT01769157).

  9. Effect of L-Carnitine in Patients With Liver Cirrhosis on Energy Metabolism Using Indirect Calorimetry: A Pilot Study.

    PubMed

    Sakai, Yoshiyuki; Nishikawa, Hiroki; Enomoto, Hirayuki; Yoh, Kazunori; Iwata, Yoshinori; Hasegawa, Kunihiro; Nakano, Chikage; Kishino, Kyohei; Shimono, Yoshihiro; Takata, Ryo; Nishimura, Takashi; Aizawa, Nobuhiro; Ikeda, Naoto; Takashima, Tomoyuki; Ishii, Akio; Iijima, Hiroko; Nishiguchi, Shuhei

    2016-12-01

    L-carnitine supplementation has been suggested to show several favorable effects on patients with liver cirrhosis (LC). However, there have been no reports regarding the effect of L-carnitine on energy metabolism in patients with LC using indirect calorimetry which is a well-established method for assessing the degree of liver malnutrition. We examined the effect of L-carnitine in patients with LC on energy metabolism using indirect calorimetry. A total of 13 LC patients who are scheduled to be treated with L-carnitine (1,800 mg/day) were analyzed in this study. None of the patients previously received L-carnitine. An evaluation of the nutritional status was performed at the initiation of L-carnitine therapy and after 4 weeks of L-carnitine therapy. We evaluated the effect of L-carnitine on the nutritional status and energy metabolism by comparing various clinical variables at these two time points. In addition, the changes in the nutritional status of the patients were also evaluated using indirect calorimetry. After 4 weeks of L-carnitine treatment, for all cases, the mean substrate oxidation rates of carbohydrate (%C) increased from 37.6% to 48.2%, the mean substrate oxidation rates of fat (%F) decreased from 40.2% to 31.9% and the mean substrate oxidation rates of protein (%P) decreased from 22.2% to 19.9%. In a subgroup analysis of patients with baseline non-protein respiratory quotient (npRQ) < 0.85, the mean %C increased from 15.3% to 34.2%, the mean %F decreased from 59.9% to 45.1%, and the mean %P decreased from 24.8% to 20.6%. After 4 weeks of L-carnitine treatment, for all cases (n = 13), the mean value of npRQ increased in comparison with the baseline levels, although the difference was not significant (0.868 ± 0.060 vs. 0.838 ± 0.097, P = 0.19). Conversely, in patients with baseline npRQ < 0.85, the npRQ value significantly increased after 4 weeks treatment of L-carnitine compared with the baseline levels (0.827 ± 0.030 vs. 0.760 ± 0.043, P = 0

  10. Screening of melatonin, α-tocopherol, folic acid, acetyl-L-carnitine and resveratrol for anti-dengue 2 virus activity.

    PubMed

    Paemanee, Atchara; Hitakarun, Atitaya; Roytrakul, Sittiruk; Smith, Duncan R

    2018-05-16

    Infections with the mosquito transmitted dengue virus (DENV) are a significant public health burden in many parts of the world. Despite the introduction of a commercial vaccine in some parts of the world, the majority of the populations at risk of infection remain unprotected against this disease, and there is currently no treatment for DENV infection. Natural compounds offer the prospect of cheap and sustainable therapeutics to reduce the disease burden during infection, and thus potentially alleviate the risk of more severe disease. This study evaluated the potential anti-DENV 2 activity of five natural compounds namely melatonin, α-tocopherol, folic acid, acetyl-L-carnitine and resveratrol in two different cell lines. Screening of the compounds showed that one compound (acetyl-L-carnitine) showed no effect on DENV infection, three compounds (melatonin, α-tocopherol and folic acid) slightly increased levels of infection, while the 5th compound, resveratrol, showed some limited anti-DENV activity, with resveratrol reducing virus output with an EC 50 of less than 25 μM. These results suggest that some commonly taken natural compounds may have beneficial effects on DENV infection, but that others may potentially add to the disease burden.

  11. Oxidation of Hepatic Carnitine Palmitoyl Transferase-I (CPT-I) Impairs Fatty Acid Beta-Oxidation in Rats Fed a Methionine-Choline Deficient Diet

    PubMed Central

    Bellanti, Francesco; Priore, Paola; Rollo, Tiziana; Tamborra, Rosanna; Siculella, Luisa; Vendemiale, Gianluigi; Altomare, Emanuele; Gnoni, Gabriele V.

    2011-01-01

    There is growing evidence that mitochondrial dysfunction, and more specifically fatty acid β-oxidation impairment, is involved in the pathophysiology of non-alcoholic steatohepatitis (NASH). The goal of the present study was to achieve more understanding on the modification/s of carnitinepalmitoyltransferase-I (CPT-I), the rate-limiting enzyme of the mitochondrial fatty acid β-oxidation, during steatohepatitis. A high fat/methionine-choline deficient (MCD) diet, administered for 4 weeks, was used to induce NASH in rats. We demonstrated that CPT-Iactivity decreased, to the same extent, both in isolated liver mitochondria and in digitonin-permeabilized hepatocytes from MCD-diet fed rats. At the same time, the rate of total fatty acid oxidation to CO2 and ketone bodies, measured in isolated hepatocytes, was significantly lowered in treated animals when compared to controls. Finally, an increase in CPT-I mRNA abundance and protein content, together with a high level of CPT-I protein oxidation was observed in treated rats. A posttranslational modification of rat CPT-I during steatohepatitis has been here discussed. PMID:21909411

  12. Flux control exerted by overt carnitine palmitoyltransferase over palmitoyl-CoA oxidation and ketogenesis is lower in suckling than in adult rats.

    PubMed Central

    Krauss, S; Lascelles, C V; Zammit, V A; Quant, P A

    1996-01-01

    We examined the potential of overt carnitine palmitoyltransferase (CPT I) to control the hepatic catabolism of palmitoyl-CoA in suckling and adult rats, using a conceptually simplified model of fatty acid oxidation and ketogenesis. By applying top-down control analysis, we quantified the control exerted by CPT I over total carbon flux from palmitoyl-CoA to ketone bodies and carbon dioxide. Our results show that in both suckling and adult rat, CPT I exerts very significant control over the pathways under investigation. However, under the sets of conditions we studied, less control is exerted by CPT I over total carbon flux in mitochondria isolated from suckling rats than in those isolated from adult rats. Furthermore the flux control coefficient of CPT I changes with malonyl-CoA concentration and ATP turnover rate. PMID:8912677

  13. Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats.

    PubMed

    Amin, Kamal A; Nagy, Mohamed A

    2009-10-16

    Obesity-associated type 2 diabetes is rapidly increasing throughout the world. It is generally recognized that natural products with a long history of safety can modulate obesity. To investigate the development of obesity in response to a high fat diet (HFD) and to estimate the effect of L-carnitine and an Egyptian Herbal mixture formulation (HMF) (consisting of T. chebula, Senae, rhubarb, black cumin, aniseed, fennel and licorice) on bodyweight, food intake, lipid profiles, renal, hepatic, cardiac function markers, lipid Peroxidation, and the glucose and insulin levels in blood and liver tissue in rats. White male albino rats weighing 80-90 gm, 60 days old. 10 rats were fed a normal basal diet (Cr), 30 rats fed a high-fat diet (HFD) for 14 weeks during the entire study. Rats of the HFD group were equally divided into 3 subgroups each one include 10 rats. The first group received HFD with no supplement (HFD), the 2nd group HFD+L-carnitine and the third group received HFD+HMF. Carnitine and HMF were administered at 10th week (start time for treatments) for 4 weeks.Body weight, lipid profile & renal function (urea, uric acid creatinine) ALT & AST activities, cardiac markers, (LDH, C.K-NAC and MB) the oxidative stress marker reduced glutathione (GSH), and Malondialdehyde (MDA) catalase activity, in addition to glucose, insulin, and insulin resistance in serum & tissues were analyzed. Data showed that feeding HFD diet significantly increased final body weight, triglycerides (TG), total cholesterol, & LDL concentration compared with controls, while significantly decreasing HDL; meanwhile treatment with L-carnitine, or HMF significantly normalized the lipid profile.Serum ALT, urea, uric acid, creatinine, LDH, CK-NAC, CK-MB were significantly higher in the high fat group compared with normal controls; and administration of L-carnitine or herbal extract significantly lessened the effect of the HFD. Hyperglycemia, hyperinsulinemia, and high insulin resistance (IR

  14. Replacement of C305 in heart/muscle-type isozyme of human carnitine palmitoyltransferase I with aspartic acid and other amino acids.

    PubMed

    Matsuo, Taisuke; Yamamoto, Atsushi; Yamamoto, Takenori; Otsuki, Kaoru; Yamazaki, Naoshi; Kataoka, Masatoshi; Terada, Hiroshi; Shinohara, Yasuo

    2010-04-01

    Liver- and heart/muscle-type isozymes of human carnitine palmitoyltransferase I (L- and M-CPTI, respectively) show a certain similarity in their amino acid sequences, and mutation studies on the conserved amino acids between these two isozymes often show essentially the same effects on their enzymatic properties. Earlier mutation studies on C305 in human M-CPTI and its counterpart residue, C304, in human L-CPTI showed distinct effects of the mutations, especially in the aspect of enzyme stability; however, simple comparison of these effects on the conserved Cys residue between L- and M-CPTI was difficult, because these studies were carried out using different expression systems and distinct amino acids as replacements. In the present study, we carried out mutation studies on the C305 in human M-CPTI using COS cells for the expression system. Our results showed that C305 was replaceable with aspartic acid but that substitution with other amino acids caused both loss of function and reduced expression.

  15. Genetics Home Reference: primary carnitine deficiency

    MedlinePlus

    ... 1 link) NIH Office of Dietary Supplements: Carnitine Educational Resources (5 links) Disease InfoSearch: Renal carnitine transport defect Orphanet: Systemic primary carnitine deficiency Screening, Technology, and Research in Genetics The Linus Pauling Institute: ...

  16. Simultaneous targeted analysis of trimethylamine-N-oxide, choline, betaine, and carnitine by high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Liu, Jia; Zhao, Mingming; Zhou, Juntuo; Liu, Changjie; Zheng, Lemin; Yin, Yuxin

    2016-11-01

    Trimethylamine-N-oxide (TMAO) is a metabolite generated from choline, betaine and carnitine in a gut microbiota-dependent way. This molecule is associated with development of atherosclerosis and cardiovascular events. A sensitive liquid chromatographic electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) has been developed and validated for the simultaneous determination of TMAO related molecules including TMAO, betaine, choline, and carnitine in mouse plasma. Analytes are extracted after protein precipitation by methanol and subjected to LC-ESI-MS/MS without preliminary derivatization. Separation of analytes was achieved on an amide column with acetonitrile-water as the mobile phase. This method has been fully validated in this study in terms of selectivity, linearity, sensitivity, precision, accuracy, and carryover effect, and the stability of the analyte under various conditions has been confirmed. This developed method has successfully been applied to plasma samples of our mouse model. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Anaplerotic Treatment of Long-Chain Fat Oxidation Disorders with Triheptanoin: Review of 15 years Experience

    PubMed Central

    Roe, Charles R.; Brunengraber, Henri

    2015-01-01

    Background The treatment of long-chain mitochondrial β-oxidation disorders (LC-FOD) with a low fat-high carbohydrate diet, a diet rich in medium-even-chain triglycerides (MCT), or a combination of both has been associated with high morbidity and mortality for decades. The pathological tableau appears to be caused by energy deficiency resulting from reduced availability of citric acid cycle (CAC) intermediates required for optimal oxidation of acetyl-CoA. This hypothesis was investigated by diet therapy with carnitine and anaplerotic triheptanoin (TH). Methods Fifty-two documented LC-FOD patients were studied in this investigation (age range: birth to 51 years). Safety monitoring included serial quantitative measurements of routine blood chemistries, blood levels of carnitine and acylcarnitines, and urinary organic acids. Results The average frequency of serious clinical complications were reduced from ~ 60 % with conventional diet therapy to 10 % with TH and carnitine treatment and mortality decreased from ~ 65 % with conventional diet therapy to 3.8 %. Carnitine supplementation was uncomplicated. Conclusion The energy deficiency in LC-FOD patients was corrected safely and more effectively with the triheptanoin diet and carnitine supplement than with conventional diet therapy. Safe intervention in neonates and infants will permit earlier intervention following pre-natal diagnosis or diagnosis by expanded newborn screening. PMID:26547562

  18. Acute administration of cefepime lowers L-carnitine concentrations in early lactation stage rat milk.

    PubMed

    Ling, Binbing; Alcorn, Jane

    2008-07-01

    Our study investigated the potential for important in vivo drug-nutrient transport interactions at the lactating mammary gland using the L-carnitine transporter substrates, cefepime and L-carnitine, as proof-of-concept. On d 4 (n = 6/treatment) and d 10 (n = 6/treatment) of lactation, rats were administered cefepime (250 mg/h) or saline by continuous i.v. infusion (4 h). Serum and milk L-carnitine and cefepime concentrations were quantified by HPLC-UV. In whole mammary gland, organic cation/carnitine transporter (OCTN)1, OCTN2, OCTN3, amino acid transporter B(0,+) (ATB(0,+)), and L-carnitine transporter 2 expression were determined by quantitative RT-PCR and by western blot and immunohistochemistry when possible. Cefepime caused a 56% decrease in milk L-carnitine concentrations on lactation d 4 (P = 0.0048) but did not affect milk L-carnitine at lactation d 10 or serum L-carnitine concentrations at either time. The mean L-carnitine and cefepime milk:serum ratios (M/S) decreased from 9.1 +/- 0.4 to 4.9 +/- 0.6 (P < 0.0001) and 0.89 +/- 0.3 to 0.12 +/- 0.02 (P = 0.0473), respectively, between d 4 and d 10 of lactation. In both groups, OCTN2 (P < 0.0001), OCTN3 (P = 0.0039), and ATB(0,+) (P = 0.004) mRNA expression and OCTN2 protein (P < 0.0001) were higher in mammary glands at d 4 of lactation compared with d 10. Immunohistochemistry revealed OCTN1 and OCTN2 localization in the mammary alveolar epithelium and OCTN3 expression in the interstitial space and blood vessel endothelium. In conclusion, cefepime significantly decreased milk L-carnitine concentrations only at d 4 of lactation. Relative to d 10, enhanced expression of OCTN2 and ATB(0,+) in mammary glands at d 4 of lactation and higher M/S (L-carnitine and cefepime) suggests cefepime competes with L-carnitine for L-carnitine transporters expressed in the lactating mammary gland to adversely affect L-carnitine milk concentrations and these effects depend upon lactation stage.

  19. Effects of metabolic modifiers such as carnitines, coenzyme Q10, and PUFAs against different forms of neurotoxic insults: metabolic inhibitors, MPTP, and methamphetamine.

    PubMed

    Virmani, Ashraf; Gaetani, Franco; Binienda, Zbigniew

    2005-08-01

    A number of strategies using the nutritional approach are emerging for the protection of the brain from damage caused by metabolic toxins, age, or disease. Neural dysfunction and metabolic imbalances underlie many diseases, and the inclusion of metabolic modifiers may provide an alternative and early intervention approach that may prevent further damage. Various models have been developed to study the impact of metabolism on brain function. These have also proven useful in expanding our understanding of neurodegeneration processes. For example, the metabolic compromise induced by inhibitors such as 3-nitropropionic acid (3-NPA), rotenone, and 1-methyl-4-phenylpyridinium (MPP+) can cause neurodegeneration in animal models and these models are thought to simulate the processes that may lead to diseases such as Huntington's and Parkinson's diseases. These inhibitors of metabolism are thought to selectively kill neurons by inhibiting various mitochondrial enzymes. However, the eventual cell death is attributed to oxidative stress damage of selectively vulnerable cells, especially highly differentiated neurons. Various studies indicate that the neurotoxicity resulting from these types of metabolic compromise is related to mitochondrial dysfunction and may be ameliorated by metabolic modifiers such as L-carnitine (L-C), creatine, and coenzyme Q10, as well as by antioxidants such as lipoic acid, vitamin E, and resveratrol. Mitochondrial function and cellular metabolism are also affected by the dietary intake of essential polyunsaturated fatty acids (PUFAs), which may regulate membrane composition and influence cellular processes, especially the inflammatory pathways. Cellular metabolic function may also be ameliorated by caloric restriction diets. L-C is a naturally occurring quaternary ammonium compound that is a vital cofactor for the mitochondrial entry and oxidation of fatty acids. Any factors affecting L-C levels may also affect ATP levels. This endogenous compound

  20. γ–Butyrobetaine is a pro-atherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO

    PubMed Central

    Koeth, Robert A.; Levison, Bruce S.; Culley, Miranda K.; Buffa, Jennifer A.; Wang, Zeneng; Gregory, Jill C.; Org, Elin; Wu, Yuping; Li, Lin; Smith, Jonathan D.; Wilson Tang, W. H.; DiDonato, Joseph A.; Lusis, Aldons J.; Hazen, Stanley L.

    2014-01-01

    Summary L- Carnitine, a nutrient in red meat, was recently reported to accelerate atherosclerosis via a metaorganismal pathway involving gut microbial trimethylamine (TMA) formation and host hepatic conversion into trimethylamine-N-oxide (TMAO). Herein we show that following L-carnitine ingestion, γ-butyrobetaine (γBB) is produced as an intermediary metabolite by gut microbes at a site anatomically proximal to and at a rate ~1000-fold higher than the formation of TMA. Moreover, we show γBB is the major gut microbial metabolite formed from dietary L-carnitine in mice, and like dietary L-carnitine, in a gut microbiota-dependent manner is converted into TMA and TMAO, and accelerates atherosclerosis. Gut microbial composition and functional metabolic studies reveal distinct taxa are associated with the production of γBB versus TMA/TMAO from dietary L-carnitine. Moreover, despite their close structural similarity, chronic dietary exposure to L-carnitine versus γBB promotes development of functionally distinct microbial communities optimized for the metabolism of L-carnitine versus γBB, respectively. PMID:25440057

  1. Skeletal Muscle Acute and Chronic Metabolic Response to Essential Amino Acid Supplementation in Hypertriglyceridemic Older Adults

    PubMed Central

    Marquis, Bryce J; Hurren, Nicholas M; Carvalho, Eugenia; Kim, Il-Young; Schutzler, Scott; Azhar, Gohar; Wolfe, Robert R; Børsheim, Elisabet

    2017-01-01

    Abstract Background: Supplementation with essential amino acids (EAAs) + arginine is a promising nutritional approach to decrease plasma triglyceride (TG) concentrations, which are an independent risk factor for ischemic heart disease. Objective: The objective of this study was to examine the effects of 8 wk of EAA supplementation on skeletal muscle basal metabolite concentrations and changes in metabolic response to acute EAA intake, with an emphasis on mitochondrial metabolism, in adults with elevated TGs to better understand the mechanisms of lowering plasma TGs. Methods: Older adults with elevated plasma TG concentrations were given 22 g EAAs to ingest acutely before and after an 8-wk EAA supplementation period. Skeletal muscle biopsy samples were collected before and after acute EAA intake, both pre- and postsupplementation (4 biopsy samples), and targeted metabolomic analyses of organic acids and acylcarnitines were conducted on the specimens. Results: Acute EAA intake resulted in increased skeletal muscle acylcarnitine concentrations associated with oxidative catabolism of the supplement components, with the largest increases found in acylcarnitines of branched-chain amino acid oxidative catabolism, including isovaleryl-carnitine (2200%) and 2-methylbutyryl-carnitine (2400%). The chronic EAA supplementation resulted in a 19% decrease in plasma TGs along with accumulation of long-chain acylcarnitines myristoyl- (90%) and stearoyl- (120%) carnitine in skeletal muscle and increases in succinyl-carnitine (250%) and the late-stage tricarboxylic acid cycle intermediates fumarate (44%) and malate (110%). Conclusions: Supplementation with EAAs shows promise as an approach for moderate reduction in plasma TGs. Changes in skeletal muscle metabolites suggest incomplete fatty acid oxidation and increased anaplerosis, which suggests a potential bottleneck in fatty acid metabolism.

  2. Effects of Oral L-Carnitine on Liver Functions after Transarterial Chemoembolization in Intermediate-Stage HCC Patients.

    PubMed

    Hassan, Abeer; Tsuda, Yasuhiro; Asai, Akira; Yokohama, Keisuke; Nakamura, Ken; Sujishi, Tetsuya; Ohama, Hideko; Tsuchimoto, Yusuke; Fukunishi, Shinya; Abdelaal, Usama M; Arafa, Usama A; Hassan, Ali T; Kassem, Ali M; Higuchi, Kazuhide

    2015-01-01

    Transarterial chemoembolization (TACE) is usually followed by hepatic dysfunction. We evaluated the effects of L-carnitine on post-TACE impaired liver functions. Methods. 53 cirrhotic hepatocellular carcinoma patients at Osaka Medical College were enrolled in this study and assigned into either L-carnitine group receiving 600 mg oral L-carnitine daily or control group. Liver functions were evaluated at pre-TACE and 1, 4, and 12 weeks after TACE. Results. The L-carnitine group maintained Child-Pugh (CP) score at 1 week after TACE and exhibited significant improvement at 4 weeks after TACE (P < 0.01). Conversely, the control group reported a significant CP score deterioration at 1 week (P < 0.05) and 12 weeks after TACE (P < 0.05). L-carnitine suppressed serum albumin deterioration at 1 week after TACE. There were significant differences between L-carnitine and control groups regarding mean serum albumin changes from baseline to 1 week (P < 0.05) and 4 weeks after TACE (P < 0.05). L-carnitine caused prothrombin time improvement from baseline to 1, 4 (P < 0.05), and 12 weeks after TACE. Total bilirubin mean changes from baseline to 1 week after TACE exhibited significant differences between L-carnitine and control groups (P < 0.05). The hepatoprotective effects of L-carnitine were enhanced by branched chain amino acids combination. Conclusion. L-carnitine maintained and improved liver functions after TACE.

  3. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis

    PubMed Central

    Koeth, Robert A.; Wang, Zeneng; Levison, Bruce S.; Buffa, Jennifer A.; Org, Elin; Sheehy, Brendan T.; Britt, Earl B.; Fu, Xiaoming; Wu, Yuping; Li, Lin; Smith, Jonathan D.; DiDonato, Joseph A.; Chen, Jun; Li, Hongzhe; Wu, Gary D.; Lewis, James D.; Warrier, Manya; Brown, J. Mark; Krauss, Ronald M.; Tang, W. H. Wilson; Bushman, Frederic D.; Lusis, Aldons J.; Hazen, Stanley L.

    2013-01-01

    Intestinal microbiota metabolism of choline/phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). Herein we demonstrate that intestinal microbiota metabolism of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis. Omnivorous subjects are shown to produce significantly more TMAO than vegans/vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. Specific bacterial taxa in human feces are shown to associate with both plasma TMAO and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predict increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (MI, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice significantly altered cecal microbial composition, markedly enhanced synthesis of TMA/TMAO, and increased atherosclerosis, but not following suppression of intestinal microbiota. Dietary supplementation of TMAO, or either carnitine or choline in mice with intact intestinal microbiota, significantly reduced reverse cholesterol transport in vivo. Intestinal microbiota may thus participate in the well-established link between increased red meat consumption and CVD risk. PMID:23563705

  4. Plasma fatty acyl-carnitines during 8 weeks of overfeeding: relation to diet energy expenditure and body composition: the PROOF study.

    PubMed

    Bray, George A; Redman, Leanne M; de Jonge, Lilian; Rood, Jennifer; Sutton, Elizabeth F; Smith, Steven R

    2018-06-01

    Overfeeding is a strategy for evaluating the effects of excess energy intake. In this secondary analysis we tested the possibility that different levels of dietary protein might differentially modify the response of fatty acyl-carnitines to overfeeding. Twenty-three healthy adult men and women were overfed by 40% for 8 weeks while in-patients with diets containing 5% (LPD), 15% (NPD) or 25% (HPD) protein. Plasma fatty acyl-carnitines were measured by gas chromatography/mass spectrometry (GC/MS) at baseline and after 8 weeks of overfeeding. Measurements included: body composition by DXA, energy expenditure by ventilated hood and doubly-labeled water, fat cell size from subcutaneous fat biopsies, and fat distribution by CT scan. Analysis was done on 5 groups of fatty acyl-carnitines identified by principal components analysis and 6 individual short-chain fatty acyl carnitines. Higher protein intake was associated with significantly lower 8 week levels of medium chain fatty acids and C2, C4-OH and C 6:1, but higher values of C3 and C5:1 acyl-carnitines derived from essential amino acids. In contrast energy and fat intake were only weakly related to changes in fatty acyl-carnitines. A decease or smaller rise in 8 week medium chain acyl-carnitines was associated with an increase in sleeping energy expenditure (P = 0.0004), and fat free mass (P < 0.0001) and a decrease in free fatty acid concentrations (FFA) (P = 0.0067). In contrast changes in short-chain fatty acyl-carnitines were related to changes in resting energy expenditure (P = 0.0026), and fat free mass (P = 0.0007), and C4-OH was positively related to FFA (P = 0006). Protein intake was the major factor influencing changes in fatty acyl carnitines during overfeeding with higher values of most acyl-fatty acids on the low protein diet. The association of dietary protein and fat intake may explain the changes in energy expenditure and metabolic variables resulting in the observed

  5. Hepatic β-Oxidation and Regulation of Carnitine Palmitoyltransferase (CPT) I in Blunt Snout Bream Megalobrama amblycephala Fed a High Fat Diet

    PubMed Central

    Lu, Kang-Le; Xu, Wei-Na; Wang, Li-Na; Zhang, Ding-Dong; Zhang, Chun-Nuan; Liu, Wen-Bin

    2014-01-01

    High-fat diets may promote growth, partly through their protein-sparing effects. However, high-fat diets often lead to excessive fat deposition, which may have a negative impact on fish such as poor growth and suppressive immune. Therefore, this study investigated the effects of a fat-rich diet on the mechanisms of fat deposition in the liver. Three-hundred blunt snout bream (Megalobrama amblycephala) juveniles (initial mass 18.00±0.05 g) were fed with one of two diets (5% or 15% fat) for 8 weeks. β-Oxidation capacity and regulation of rate-limiting enzymes were assessed. Large fat droplets were present in hepatocytes of fish fed the high-fat diet. This observation is thought to be largely owing to the reduced capacity for mitochondrial and peroxisomal β-oxidation in the livers of fish fed the high-fat diet, as well as the decreased activities of carnitine palmitoyltransferase (CPT) I and acyl-CoA oxidase (ACO), which are enzymes involved in fatty-acid metabolism. Study of CPT I kinetics showed that CPT I had a low affinity for its substrates and a low catalytic efficiency in fish fed the high-fat diet. Expression of both CPT I and ACO was significantly down-regulated in fish fed the high-fat diet. Moreover, the fatty-acid composition of the mitochondrial membrane varied between the two groups. In conclusion, the attenuated β-oxidation capacity observed in fish fed a high-fat diet is proposed to be owing to decreased activity and/or catalytic efficiency of the rate-limiting enzymes CPT I and ACO, via both genetic and non-genetic mechanisms. PMID:24676148

  6. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis.

    PubMed

    Koeth, Robert A; Wang, Zeneng; Levison, Bruce S; Buffa, Jennifer A; Org, Elin; Sheehy, Brendan T; Britt, Earl B; Fu, Xiaoming; Wu, Yuping; Li, Lin; Smith, Jonathan D; DiDonato, Joseph A; Chen, Jun; Li, Hongzhe; Wu, Gary D; Lewis, James D; Warrier, Manya; Brown, J Mark; Krauss, Ronald M; Tang, W H Wilson; Bushman, Frederic D; Lusis, Aldons J; Hazen, Stanley L

    2013-05-01

    Intestinal microbiota metabolism of choline and phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). We demonstrate here that metabolism by intestinal microbiota of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis in mice. Omnivorous human subjects produced more TMAO than did vegans or vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. The presence of specific bacterial taxa in human feces was associated with both plasma TMAO concentration and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predicted increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (myocardial infarction, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice altered cecal microbial composition, markedly enhanced synthesis of TMA and TMAO, and increased atherosclerosis, but this did not occur if intestinal microbiota was concurrently suppressed. In mice with an intact intestinal microbiota, dietary supplementation with TMAO or either carnitine or choline reduced in vivo reverse cholesterol transport. Intestinal microbiota may thus contribute to the well-established link between high levels of red meat consumption and CVD risk.

  7. Vegetarians have a reduced skeletal muscle carnitine transport capacity.

    PubMed

    Stephens, Francis B; Marimuthu, Kanagaraj; Cheng, Yi; Patel, Nitin; Constantin, Despina; Simpson, Elizabeth J; Greenhaff, Paul L

    2011-09-01

    Ninety-five percent of the body carnitine pool resides in skeletal muscle where it plays a vital role in fuel metabolism. However, vegetarians obtain negligible amounts of carnitine from their diet. We tested the hypothesis that muscle carnitine uptake is elevated in vegetarians compared with that in nonvegetarians to maintain a normal tissue carnitine content. Forty-one young (aged ≈22 y) vegetarian and nonvegetarian volunteers participated in 2 studies. The first study consisted of a 5-h intravenous infusion of l-carnitine while circulating insulin was maintained at a physiologically high concentration (≈170 mU/L; to stimulate muscle carnitine uptake) or at a fasting concentration (≈6 mU/L). The second study consisted of oral ingestion of 3 g l-carnitine. Basal plasma total carnitine (TC) concentration, 24-h urinary TC excretion, muscle TC content, and muscle carnitine transporter [organic cation transporter 2 (OCTN2)] messenger RNA and protein expressions were 16% (P < 0.01), 58% (P < 0.01), 17% (P < 0.05), 33% (P < 0.05), and 37% (P = 0.09) lower, respectively, in vegetarian volunteers. However, although nonvegetarians showed a 15% increase (P < 0.05) in muscle TC during l-carnitine infusion with hyperinsulinemia, l-carnitine infusion in the presence or absence of hyperinsulinemia had no effect on muscle TC content in vegetarians. Nevertheless, 24-h urinary TC excretion was 55% less in vegetarians after l-carnitine ingestion. Vegetarians have a lower muscle TC and reduced capacity to transport carnitine into muscle than do nonvegetarians, possibly because of reduced muscle OCTN2 content. Thus, the greater whole-body carnitine retention observed after a single dose of l-carnitine in vegetarians was not attributable to increased muscle carnitine storage.

  8. Nephroprotective potential of carnitine against glycerol and contrast-induced kidney injury in rats through modulation of oxidative stress, proinflammatory cytokines, and apoptosis

    PubMed Central

    Kunak, Celalettin S; Ugan, Rustem A; Karakus, Emre; Polat, Beyzagul; Halici, Zekai; Saritemur, Murat; Atmaca, Hasan T; Karaman, Adem

    2016-01-01

    Objective: Contrast media (CM) are a major cause of nephropathy in high-risk patients. The aim of this study was to examine the effects of carnitine (CAR) in advanced nephrotoxicity due to CM administration in rats with glycerol-induced renal functional disorder. Methods: 40 rats were divided randomly into five groups (n = 8): (1) healthy group; (2) glycerol only (GLY); (3) glycerol and CM (GLY + CM); (4) glycerol, CM and 200 mg kg−1 carnitine (CAR200, Carnitene®; Sigma-tau/Santa Farma, Istanbul, Turkey); and (5) glycerol, CM and 400 mg kg−1 carnitine (CAR400). Kidney injury was induced with a single-dose, intramuscular injection of 10 ml kg−1 body weight (b.w.) of GLY. CAR was administered intraperitoneally. CM (8 ml kg−1 b.w. iohexol, Omnipaque™; Opakim Medical Products, Istanbul, Turkey) was infused via the tail vein to the rats in Groups 3–5. Results: l-carnitine administration significantly decreased serum creatinine and blood urea nitrogen levels. Superoxide dismutase and glutathione activity increased significantly in the treatment groups compared with the nephrotoxic groups. CAR400 significantly reduced malondialdehyde levels to healthy levels. In the treatment groups, tumour necrosis factor (TNF)-α, transforming growth factor 1β, interleukin 1β and caspase-3 gene expression decreased compared with the nephrotoxic groups. TNF-α and nuclear factor kappa-beta (NF-κB) protein expression increased after CM and CAR administration reduced both TNF-α and NF-κB expressions. Histopathologically, hyaline and haemorrhagic casts and necrosis in proximal tubules increased in the nephrotoxicity groups and decreased in the CAR groups. Conclusion: The results reveal that l-carnitine protects the oxidant/antioxidant balance and decreases proinflammatory cytokines and apoptosis in CM-induced nephrotoxicity in rats with underlying pathology. Advances in knowledge: Depending on the underlying kidney pathologies, the incidence of CM

  9. Pharmacologic activation of peroxisome proliferator-activating receptor-α accelerates hepatic fatty acid oxidation in neonatal pigs

    PubMed Central

    Shim, Kwanseob; Jacobi, Sheila; Odle, Jack; Lin, Xi

    2018-01-01

    Up-regulation of peroxisome proliferator-activating receptor-α (PPARα) and increasing fatty acid oxidation are important for reducing pre-weaning mortality of pigs. We examined the time-dependent regulatory effects of PPARα activation via oral postnatal clofibrate administration (75 mg/(kg-BW·d) for up to 7 days) on mitochondrial and peroxisomal fatty acid oxidation in pigs, a species with limited hepatic fatty acid oxidative capacity due to low ketogenesis. Hepatic oxidation was increased by 44-147% (depending on fatty acid chain-length) and was attained after only 4 days of clofibrate treatment. Acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase I (CPTI) activities accelerated in parallel. The increase in CPTI activity was accompanied by a rapid reduction in the sensitivity of CPTI to malonyl-CoA inhibition. The mRNA abundance of CPTI and ACO, as well as peroxisomal keto-acyl-CoA thiolase (KetoACoA) and mitochondrial malonyl-CoA decarboxylase (MCD), also were augmented greatly. However, the increase in ACO activity and MCD expression were different from CPTI, and significant interactions were observed between postnatal age and clofibrate administration. Furthermore, the expression of acetyl-CoA carboxylase β (ACCβ) decreased with postnatal age and clofibrate had no effect on its expression. Collectively these results demonstrate that the expression of PPARα target genes and the increase in fatty acid oxidation induced by clofibrate are time- and age-dependent in the liver of neonatal pigs. Although the induction patterns of CPTI, MCD, ACO, KetoACoA, and ACCβ are different during the early postnatal period, 4 days of exposure to clofibrate were sufficient to robustly accelerate fatty acid oxidation.

  10. Protective effects of l-carnitine and piracetam against mitochondrial permeability transition and PC3 cell necrosis induced by simvastatin.

    PubMed

    Costa, Rute A P; Fernandes, Mariana P; de Souza-Pinto, Nadja C; Vercesi, Aníbal E

    2013-02-15

    Mitochondrial oxidative stress followed by membrane permeability transition (MPT) has been considered as a possible mechanism for statins cytotoxicity. Statins use has been associated with reduced risk of cancer incidence, especially prostate cancer. Here we investigated the pathways leading to simvastatin-induced prostate cancer cell death as well as the mechanisms of cell death protection by l-carnitine or piracetam. These compounds are known to prevent and/or protect against cell death mediated by oxidative mitochondrial damage induced by a variety of conditions, either in vivo or in vitro. The results provide evidence that simvastatin induced MPT and cell necrosis were sensitive to either l-carnitine or piracetam in a dose-dependent fashion and mediated by additive mechanisms. When combined, l-carnitine and piracetam acted at concentrations significantly lower than they act individually. These results shed new light into both the cytotoxic mechanisms of statins and the mechanisms underlying the protection against MPT and cell death by the compounds l-carnitine and piracetam. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Oxidative stress in response to aerobic and anaerobic power testing: influence of exercise training and carnitine supplementation.

    PubMed

    Bloomer, Richard J; Smith, Webb A

    2009-01-01

    The purpose of this study is to compare the oxidative stress response to aerobic and anaerobic power testing, and to determine the impact of exercise training with or without glycine propionyl-L-carnitine (GPLC) in attenuating the oxidative stress response. Thirty-two subjects were assigned (double blind) to placebo, GPLC-1 (1g PLC/d), GPLC-3 (3g PLC/d) for 8 weeks, plus aerobic exercise. Aerobic (graded exercise test: GXT) and anaerobic (Wingate cycle) power tests were performed before and following the intervention. Blood was taken before and immediately following exercise tests and analyzed for malondialdehyde (MDA), hydrogen peroxide (H2O2), and xanthine oxidase activity (XO). No interaction effects were noted. MDA was minimally effected by exercise but lower at rest for both GPLC groups following the intervention (p = 0.044). A time main effect was noted for H2O2 (p = 0.05) and XO (p = 0.003), with values increasing from pre- to postexercise. Both aerobic and anaerobic power testing increase oxidative stress to a similar extent. Exercise training plus GPLC can decrease resting MDA, but it has little impact on exercise-induced oxidative stress biomarkers.

  12. Regulation of Fatty Acid Oxidation in Mouse Cumulus-Oocyte Complexes during Maturation and Modulation by PPAR Agonists

    PubMed Central

    Dunning, Kylie R.; Anastasi, Marie R.; Zhang, Voueleng J.; Russell, Darryl L.; Robker, Rebecca L.

    2014-01-01

    Fatty acid oxidation is an important energy source for the oocyte; however, little is known about how this metabolic pathway is regulated in cumulus-oocyte complexes. Analysis of genes involved in fatty acid oxidation showed that many are regulated by the luteinizing hormone surge during in vivo maturation, including acyl-CoA synthetases, carnitine transporters, acyl-CoA dehydrogenases and acetyl-CoA transferase, but that many are dysregulated when cumulus-oocyte complexes are matured under in vitro maturation conditions using follicle stimulating hormone and epidermal growth factor. Fatty acid oxidation, measured as production of 3H2O from [3H]palmitic acid, occurs in mouse cumulus-oocyte complexes in response to the luteinizing hormone surge but is significantly reduced in cumulus-oocyte complexes matured in vitro. Thus we sought to determine whether fatty acid oxidation in cumulus-oocyte complexes could be modulated during in vitro maturation by lipid metabolism regulators, namely peroxisome proliferator activated receptor (PPAR) agonists bezafibrate and rosiglitazone. Bezafibrate showed no effect with increasing dose, while rosiglitazone dose dependently inhibited fatty acid oxidation in cumulus-oocyte complexes during in vitro maturation. To determine the impact of rosiglitazone on oocyte developmental competence, cumulus-oocyte complexes were treated with rosiglitazone during in vitro maturation and gene expression, oocyte mitochondrial activity and embryo development following in vitro fertilization were assessed. Rosiglitazone restored Acsl1, Cpt1b and Acaa2 levels in cumulus-oocyte complexes and increased oocyte mitochondrial membrane potential yet resulted in significantly fewer embryos reaching the morula and hatching blastocyst stages. Thus fatty acid oxidation is increased in cumulus-oocyte complexes matured in vivo and deficient during in vitro maturation, a known model of poor oocyte quality. That rosiglitazone further decreased fatty acid oxidation

  13. The control of fatty acid metabolism in liver cells from fed and starved sheep.

    PubMed Central

    Lomax, M A; Donaldson, I A; Pogson, C I

    1983-01-01

    Isolated liver cells prepared from starved sheep converted palmitate into ketone bodies at twice the rate seen with cells from fed animals. Carnitine stimulated palmitate oxidation only in liver cells from fed sheep, and completely abolished the difference between fed and starved animals in palmitate oxidation. The rates of palmitate oxidation to CO2 and of octanoate oxidation to ketone bodies and CO2 were not affected by starvation or carnitine. Neither starvation nor carnitine altered the ratio of 3-hydroxybutyrate to acetoacetate or the rate of esterification of [1-14C]palmitate. Propionate, lactate, pyruvate and fructose inhibited ketogenesis from palmitate in cells from fed sheep. Starvation or the addition of carnitine decreased the antiketogenic effectiveness of gluconeogenic precursors. Propionate was the most potent inhibitor of ketogenesis, 0.8 mM producing 50% inhibition. Propionate, lactate, fructose and glycerol increased palmitate esterification under all conditions examined. Lactate, pyruvate and fructose stimulated oxidation of palmitate and octanoate to CO2. Starvation and the addition of gluconeogenic precursors stimulated apparent palmitate utilization by cells. Propionate, lactate and pyruvate decreased cellular long-chain acylcarnitine concentrations. Propionate decreased cell contents of CoA and acyl-CoA. It is suggested that propionate may control hepatic ketogenesis by acting at some point in the beta-oxidation sequence. The results are discussed in relation to the differences in the regulation of hepatic fatty acid metabolism between sheep and rats. PMID:6615480

  14. Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect.

    PubMed

    Mescka, Caroline Paula; Wayhs, Carlos Alberto Yasin; Vanzin, Camila Simioni; Biancini, Giovana Brondani; Guerreiro, Gilian; Manfredini, Vanusa; Souza, Carolina; Wajner, Moacir; Dutra-Filho, Carlos Severo; Vargas, Carmen Regla

    2013-02-01

    Maple syrup urine disease (MSUD) is an inborn error of metabolism biochemically characterized by elevated levels of the branched chain amino acids (BCAA) leucine, isoleucine, valine and the corresponding branched-chain α-keto acids. This disorder is clinically characterized by ketoacidosis, seizures, coma, psychomotor delay and mental retardation whose pathophysiology is not completely understood. Recent studies have shown that oxidative stress may be involved in neuropathology of MSUD. l-Carnitine (l-Car) plays a central role in the cellular energy metabolism because it transports long-chain fatty acids for oxidation and ATP generation. In recent years many studies have demonstrated the antioxidant role of this compound. In this work, we investigated the effect of BCAA-restricted diet supplemented or not with l-Car on lipid peroxidation and in protein oxidation in MSUD patients. We found a significant increase of malondialdehyde and of carbonyl content in plasma of MSUD patients under BCAA-restricted diet compared to controls. Furthermore, patients under BCAA-restricted diet plus l-Car supplementation presented a marked reduction of malondialdehyde content in relation to controls, reducing the lipid peroxidation. In addition, free l-Car concentrations were negatively correlated with malondialdehyde levels. Our data show that l-Car may have an antioxidant effect, protecting against the lipid peroxidation and this could represent an additional therapeutic approach to the patients affected by MSUD. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  15. Relative Carnitine Deficiency in Autism

    ERIC Educational Resources Information Center

    Filipek, Pauline A.; Juranek, Jenifer; Nguyen, Minh T.; Cummings, Christa; Gargus, J. Jay

    2004-01-01

    A random retrospective chart review was conducted to document serum carnitine levels on 100 children with autism. Concurrently drawn serum pyruvate, lactate, ammonia, and alanine levels were also available in many of these children. Values of free and total carnitine ([rho] less than 0.001), and pyruvate ([rho]=0.006) were significantly reduced…

  16. Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing.

    PubMed

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Wolfgang, Michael J

    2018-01-01

    To determine the role of fatty acid oxidation on the cellular, molecular, and physiologic response of brown adipose tissue to disparate paradigms of chronic thermogenic stimulation. Mice with an adipose-specific loss of Carnitine Palmitoyltransferase 2 (Cpt2 A-/- ), that lack mitochondrial long chain fatty acid β-oxidation, were subjected to environmental and pharmacologic interventions known to promote thermogenic programming in adipose tissue. Chronic administration of β3-adrenergic (CL-316243) or thyroid hormone (GC-1) agonists induced a loss of BAT morphology and UCP1 expression in Cpt2 A-/- mice. Fatty acid oxidation was also required for the browning of white adipose tissue (WAT) and the induction of UCP1 in WAT. In contrast, chronic cold (15 °C) stimulation induced UCP1 and thermogenic programming in both control and Cpt2 A-/- adipose tissue albeit to a lesser extent in Cpt2 A-/- mice. However, thermoneutral housing also induced the loss of UCP1 and BAT morphology in Cpt2 A-/- mice. Therefore, adipose fatty acid oxidation is required for both the acute agonist-induced activation of BAT and the maintenance of quiescent BAT. Consistent with this data, Cpt2 A-/- BAT exhibited increased macrophage infiltration, inflammation and fibrosis irrespective of BAT activation. Finally, obese Cpt2 A-/- mice housed at thermoneutrality exhibited a loss of interscapular BAT and were refractory to β3-adrenergic-induced energy expenditure and weight loss. Mitochondrial long chain fatty acid β-oxidation is critical for the maintenance of the brown adipocyte phenotype both during times of activation and quiescence. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  17. Protective effect of L-carnitine and L-arginine against busulfan-induced oligospermia in adult rat.

    PubMed

    Abd-Elrazek, A M; Ahmed-Farid, O A H

    2018-02-01

    Busulfan is an anticancer drug caused variety of adverse effects for patients with cancer. But it could cause damage to the male reproductive system as one of its adverse effects. This study aimed to investigate the protective effect of L-carnitine and L-arginine on semen quality, oxidative stress parameters and testes cell energy after busulfan treatment. Adult male rats were divided into four groups: control (Con), busulfan (Bus), busulfan plus L-arginine (Bus + L-arg) and busulfan plus L-carnitine (Bus + L-car). After 28 days, the semen was collected from the epididymis and the testes were assessed. Sperm count, motility and velocity were measured by CASA, and smears were prepared for assessment of sperm morphology. Serum and testes supernatants were separated for DNA metabolites, oxidative stress and cell energy parameters. Testes tissues also subjected for caspase-3. The results showed significant improvement in sperm morphology, motility, velocity and count in the groups treated with L-arginine and L-carnitine and accompanied with an increase in MDA, GSSG and ATP, reduction in GSH, AMP, ADP, NO and 8-OHDG also recorded. These results are supported by caspase-3. Administration of L-arg and L-car attenuated the cytotoxic effects of busulfan by improving semen parameters, reducing oxidative stress and maintaining cell energy. © 2017 Blackwell Verlag GmbH.

  18. An Ethanol Extract of Artemisia iwayomogi Activates PPARδ Leading to Activation of Fatty Acid Oxidation in Skeletal Muscle

    PubMed Central

    Cho, Si Young; Jeong, Hyun Woo; Sohn, Jong Hee; Seo, Dae-Bang; Kim, Wan Gi; Lee, Sang-Jun

    2012-01-01

    Although Artemisia iwayomogi (AI) has been shown to improve the lipid metabolism, its mode of action is poorly understood. In this study, a 95% ethanol extract of AI (95EEAI) was identified as a potent ligand of peroxisome proliferator-activated receptorδ (PPARδ) using ligand binding analysis and cell-based reporter assay. In cultured primary human skeletal muscle cells, treatment of 95EEAI increased expression of two important PPARδ-regulated genes, carnitine palmitoyl-transferase-1 (CPT1) and pyruvate dehydrogenase kinase isozyme 4 (PDK4), and several genes acting in lipid efflux and energy expenditure. Furthermore, 95EEAI stimulated fatty acid oxidation in a PPARδ-dependent manner. High-fat diet-induced obese mice model further indicated that administration of 95EEAI attenuated diet-induced obesity through the activation of fatty acid oxidation in skeletal muscle. These results suggest that a 95% ethanol extract of AI may have a role as a new functional food material for the prevention and/or treatment of hyperlipidermia and obesity. PMID:22479450

  19. Serum Trimethylamine N-oxide, Carnitine, Choline, and Betaine in Relation to Colorectal Cancer Risk in the Alpha Tocopherol, Beta Carotene Cancer Prevention Study.

    PubMed

    Guertin, Kristin A; Li, Xinmin S; Graubard, Barry I; Albanes, Demetrius; Weinstein, Stephanie J; Goedert, James J; Wang, Zeneng; Hazen, Stanley L; Sinha, Rashmi

    2017-06-01

    Background: Trimethylamine N-oxide (TMAO), a choline-derived metabolite produced by gut microbiota, and its biomarker precursors have not been adequately evaluated in relation to colorectal cancer risk. Methods: We investigated the relationship between serum concentrations of TMAO and its biomarker precursors (choline, carnitine, and betaine) and incident colorectal cancer risk in a nested case-control study of male smokers in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. We measured biomarker concentrations in baseline fasting serum samples from 644 incident colorectal cancer cases and 644 controls using LC/MS-MS. Logistic regression models estimated the ORs and 95% confidence interval (CI) for colorectal cancer by quartile (Q) of serum TMAO, choline, carnitine, and betaine concentrations. Results: Men with higher serum choline at ATBC baseline had approximately 3-fold greater risk of developing colorectal cancer over the ensuing (median ± IQR) 14 ± 10 years (in fully adjusted models, Q4 vs. Q1, OR, 3.22; 95% CI, 2.24-4.61; P trend < 0.0001). The prognostic value of serum choline for prediction of incident colorectal cancer was similarly robust for proximal, distal, and rectal colon cancers (all P < 0.0001). The association between serum TMAO, carnitine, or betaine and colorectal cancer risk was not statistically significant ( P = 0.25, 0.71, and 0.61, respectively). Conclusions: Higher serum choline concentration (but not TMAO, carnitine, or betaine) was associated with increased risk of colorectal cancer. Impact: Serum choline levels showed strong prognostic value for prediction of incident colorectal cancer risk across all anatomical subsites, suggesting a role of altered choline metabolism in colorectal cancer pathogenesis. Cancer Epidemiol Biomarkers Prev; 26(6); 945-52. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Non-invasive test using palmitate in patients with suspected fatty acid oxidation defects: disease-specific acylcarnitine patterns can help to establish the diagnosis.

    PubMed

    Janzen, Nils; Hofmann, Alejandro D; Schmidt, Gunnar; Das, Anibh M; Illsinger, Sabine

    2017-12-21

    The aim of the present study was to establish a non-invasive, fast and robust enzymatic assay to confirm fatty acid oxidation defects (FAOD) in humans following informative newborn-screening or for selective screening of patients suspected to suffer from FAOD. The reliability of this method was tested in whole blood from FAOD patients with specific enzymatic defects. Whole blood samples were assayed in 30 medium chain- (MCADD, age 0 to 17 years), 6 very long chain- (VLCADD, age 0 to 4 years), 6 long chain hydroxy- (LCHAD, age 1 to 6 years), 3 short chain- (SCADD, age 10 to 13 years) acyl-CoA-dehydrogenase- and 2 primary carnitine transporter deficiencies (CTD, age 3 to 5 years). Additionally, 26 healthy children (age 0 to 17 years) served as controls. Whole blood samples were incubated with stable end-labeled palmitate; labeled acylcarnitines were analyzed by tandem mass spectrometry and compared with controls and between patient groups (Mann-Whitney Rank Sum Test). Concentrations of specific labeled acylcarnitine metabolites were compared between particular underlying MCADD- (ANOVA), VLCADD- and LCHADD- genetic variants (descriptive data analysis). 11 different acylcarnitines were analyzed. MCADD- (C8-, C10-carnitine, C8/C10- and C8/C4-carnitine), VLCADD- (C12-, C14:1-, C14:2-carnitine, C14:1/C12- and C14:2/C12-carnitine), LCHADD (C16-OH-carnitine) as well as CTD- deficiency (sum of all acylcarnitines) samples could be clearly identified and separated from control values as well as other FAOD, whereas the sum of all acylcarnitines was not conclusive between FAOD samples. Furthermore, C4- (SCADD), C14- (VLCADD) and C14-OH-carnitines (LCHADD) were discriminating between the FAOD groups. Metabolic parameters did not differ significantly between underlying MCADD variants; similar results could be observed for VLCADD- and LCHADD- variants. This functional method in whole blood samples is relatively simple, non-invasive and little time consuming. It allows to identify

  1. Neuronal decanoic acid oxidation is markedly lower than that of octanoic acid: A mechanistic insight into the medium-chain triglyceride ketogenic diet.

    PubMed

    Khabbush, Aziza; Orford, Michael; Tsai, Yi-Chen; Rutherford, Tricia; O'Donnell, Maura; Eaton, Simon; Heales, Simon J R

    2017-08-01

    The medium-chain triglyceride (MCT) ketogenic diet contains both octanoic (C8) and decanoic (C10) acids. The diet is an effective treatment for pharmacoresistant epilepsy. Although the exact mechanism for its efficacy is not known, it is emerging that C10, but not C8, interacts with targets that can explain antiseizure effects, for example, peroxisome proliferator-activated receptor-γ (eliciting mitochondrial biogenesis and increased antioxidant status) and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. For such effects to occur, significant concentrations of C10 are likely to be required in the brain. To investigate how this might occur, we measured the β-oxidation rate of 13 C-labeled C8 and C10 in neuronal SH-SY5Y cells using isotope-ratio mass spectrometry. The effects of carnitine palmitoyltransferase I (CPT1) inhibition, with the CPT1 inhibitor etomoxir, on C8 and C10 β-oxidation were also investigated. Both fatty acids were catabolized, as judged by 13 CO 2 release. However, C10 was β-oxidized at a significantly lower rate, 20% that of C8. This difference was explained by a clear dependence of C10 on CPT1 activity, which is low in neurons, whereas 66% of C8 β-oxidation was independent of CPT1. In addition, C10 β-oxidation was decreased further in the presence of C8. It is concluded that, because CPT1 is poorly expressed in the brain, C10 is relatively spared from β-oxidation and can accumulate. This is further facilitated by the presence of C8 in the MCT ketogenic diet, which has a sparing effect upon C10 β-oxidation. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  2. Carnitine acetyltransferase (CRAT) expression in macrophages is dispensable for nutrient stress sensing and inflammation.

    PubMed

    Goldberg, Emily L; Dixit, Vishwa Deep

    2017-02-01

    Fatty acid oxidation in macrophages is thought to regulate inflammatory status and insulin-sensitivity. An important unanswered question in this field is whether carnitine acetyl-transferase (CrAT) that regulates fatty acid oxidation and mitochondrial acetyl-CoA balance is required to integrate nutrient stress sensing to inflammatory response in macrophages. Mice with myeloid lineage-specific Crat deletion were subjected to several metabolic stressors, including high-fat diet-induced obesity, fasting, and LPS-induced endotoxemia. Their metabolic homeostasis was compared to that of Crat-sufficient littermate controls. Inflammatory potential of Crat-deficient and Crat-sufficient macrophages were measured both in vitro and in vivo . Our studies revealed that ablation of CrAT in myeloid lineage cells did not impact glucose homeostasis, insulin-action, adipose tissue leukocytosis, and inflammation when animals were confronted with a variety of metabolic stressors, including high-fat diet, fasting, or LPS-induced acute endotoxemia. These findings demonstrate that unlike muscle cells, substrate switch mechanisms that control macrophage energy metabolism and mitochondrial short-chain acyl-CoA pools during nutrient stress are controlled by pathways that are not solely reliant on CrAT.

  3. Analysis of amino acids and acyl carnitine profiles in low birth weight, preterm, and small for gestational age neonates.

    PubMed

    Liu, Qian; Wu, Jing; Shen, Wen; Wei, Ran; Jiang, Jianhui; Liang, Jinqun; Chen, Min; Zhong, Mei; Yin, Aihua

    2017-11-01

    To analyze the amino acids (AA) and acyl carnitine (AC) profiles in dry blood spot (DBS) specimens of low birth weight (LBW), preterm birth (PTB), and small for gestational age (SGA), and to compare the concentration difference of AA and AC with those without above. This is a retrospectively study. Eight thousand nine hundred and seventy-nine uncomplicated pregnant newborns were enrolled into the study. DBS were collected on the third day of life, and concentrations of 11 types of AA, free carnitine and 30 types of AC were detected by using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS). Shapiro-Wilk test and Kruskal-Wallis rank test were applied in statistical analysis. Concentrations of most AA and AC in infants born in SGA were significantly higher than those in non-SGA group, while lower in LBW and PTB groups than those in non-LBW and non-PTB groups (p < 0.05). The difference of concentration of AA and AC in the subgroups suggested there may be a dysutilization of AA and AC in SGA, but an inborn insufficient of AA and AC in LBW and PTB neonates.

  4. Effects of L-carnitine pretreatment in methamphetamine and 3-nitropropionic acid-induced neurotoxicity.

    PubMed

    Binienda, Zbigniew K; Przybyla, Beata D; Robinson, Bonnie L; Salem, Nadia; Virmani, Ashraf; Amato, Antonino; Ali, Syed F

    2006-08-01

    Adult, male Sprague-Dawley rats were injected with 3-ni-tropropionic acid (3-NPA) at 30 mg/kg or methamphetamine (METH) at 20 mg/kg alone or following pretreatment with L-cartnitine (LC) at 100 mg/kg. Rectal temperature was measured before and 4 h following treatment. Animals were sacrificed at 4 h posttreatment. Monoamine neurotransmitters, dopamine (DA) and serotonin (5-HT), and their metabolites were analyzed in the striatum using high-performance liquid chromatography method coupled with electrochemical detection (HPLC/ED). Transcripts of several genes related to DA metabolism were quantified using real time reverse transciption polymerase chain reaction (RT-PCR). Core temperature decreased significantly after 3-NPA acid and increased in METH-treated rats (P < 0.05). Temperature change at 4 h exhibited a significant LC effect for 3-NPA, preventing hypothermia (P < 0.05) and no effect for METH. Concentration of DA and 5-HT, and their metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA), increased significantly in 3-NPA and decreased in METH-treated rats. An increase in DOPAC/DA turnover and serotonin observed after 3-NPA was abolished in LC-/3-NPA-treated rats. In both 3-NPA- and METH-treated rats, LC prevented an increase in DA receptor D(1) gene expression. It appears that carnitine effect preventing hypothermia after 3-NPA treatments may be related not only to its mitochondriotropic actions but also to inhibitory effect on the DA and 5-HT systems activated after the exposure to 3-NPA. The same effect observed at the transcriptional level, at least for the DA receptor D(1), may account for protection against METH toxicity.

  5. Absolute and Relative Carnitine Deficiency in Patients on Hemodialysis and Peritoneal Dialysis.

    PubMed

    Naseri, Mitra; Mottaghi Moghadam Shahri, Hasan; Horri, Mohsen; Esmaeeli, Mohammad; Ghaneh Sherbaf, Fatemeh; Jahanshahi, Shohre; Moeenolroayaa, Giti; Rasoli, Zahra; Salemian, Farzaneh; Pour Hasan, Maryam

    2016-01-01

    Carnitine deficiency is commonly seen in dialysis patients. This study assessed the association dialysis and pediatric patients' characteristics with plasma carnitines levels. Plasma carnitine concentrations were measured by tandem mass spectrometry in 46 children on hemodialysis or peritoneal dialysis. The total carnitine, free carnitine (FC), and L-acyl carnitine (AC) levels of 40 µmol/L and less, less than 7 µmol/L, and less than 15 µmol/L were defined low, respectively. An FC less than 20 µmol/L and an AC/FC ratio greater than 0.4 were considered as absolute and relative carnitine deficiencies. The correlation between carnitines levels and AC/FC ratio and age, duration of dialysis, characteristics of dialysis, and blood urea nitrogen and serum albumin concentrations were assessed. Absolute carnitine deficiency, low total carnitine, and low AC concentrations were found in 66.7%, 82.6%, and 51% of the patients, respectively. All of the patients had relative carnitine deficiency. Carnitine measurements were not significantly different between the hemodialysis and peritoneal dialysis groups. More severe relative carnitine deficiency was found in those with lower blood urea nitrogen levels and those on peritoneal dialysis. No linear correlation was found between carnitine levels and age, duration of dialysis, characteristics of dialysis, serum albumin level, or blood urea nitrogen level. Absolute and relative carnitine deficiencies are common among children on dialysis. Patients with lower blood urea nitrogen levels and peritoneal dialysis patients are more prone to severe relative carnitine deficiency.

  6. Where Does Nε-Trimethyllysine for the Carnitine Biosynthesis in Mammals Come from?

    PubMed Central

    Servillo, Luigi; Giovane, Alfonso; Cautela, Domenico; Castaldo, Domenico; Balestrieri, Maria Luisa

    2014-01-01

    Nε-trimethyllysine (TML) is a non-protein amino acid which takes part in the biosynthesis of carnitine. In mammals, the breakdown of endogenous proteins containing TML residues is recognized as starting point for the carnitine biosynthesis. Here, we document that one of the main sources of TML could be the vegetables which represent an important part of daily alimentation for most mammals. A HPLC-ESI-MS/MS method, which we previously developed for the analysis of NG-methylarginines, was utilized to quantitate TML in numerous vegetables. We report that TML, believed to be rather rare in plants as free amino acid, is, instead, ubiquitous in them and at not negligible levels. The occurrence of TML has been also confirmed in some vegetables by a HPLC method with fluorescence detection. Our results establish that TML can be introduced as free amino acid in conspicuous amounts from vegetables. The current opinion is that mammals utilize the breakdown of their endogenous proteins containing TML residues as starting point for carnitine biosynthesis. However, our finding raises the question of whether a tortuous and energy expensive route as the one of TML formation from the breakdown of endogenous proteins is really preferred when the substance is so easily available in vegetable foods. On the basis of this result, it must be taken into account that in mammals TML might be mainly introduced by diet. However, when the alimentary intake becomes insufficient, as during starvation, it might be supplied by endogenous protein breakdown. PMID:24454731

  7. Ameliorative effects of l-carnitine on rats raised on a diet supplemented with lead acetate.

    PubMed

    El-Sherbini, El-Said; El-Sayed, Gehad; El Shotory, Rehab; Gheith, Nervana; Abou-Alsoud, Mohamed; Harakeh, Steve Mustapha; Karrouf, Gamal I

    2017-09-01

    Lead intoxication has been a major health hazard in humans. It affects people at all ages. Its toxicity is associated with various organs of the body and affects different metabolic pathways. Based on histological data, l-carnitine reduced the severity of tissue damage produced as a result of exposure of rats to lead acetate. The main objective of this study was to evaluate the underlying mechanism of protection offered by l-carnitine against lead acetate intoxication using male Sprague-Dawley rats. Forty male Sprague-Dawley rats were randomly divided into four groups with ten rats in each. The first group (G1) served as the control group and animals received standard diet only. The second group (G2) received lead acetate in their diet. The third group (G3) was the l-carnitine treated group and received the normal standard diet supplemented with l-carnitine. While the fourth group (G4) had a diet supplemented with both lead acetate and l-carnitine. At the end of each experiment, blood (serum and whole blood) were collected from each animal and analyzed for the following parameters: serum testosterone levels, serum nitric oxide and serum malondialdehyde. This is in addition to looking at the enzymatic activities of two important enzymes (superoxide dismutase and catalase) and on (glutathione reductase) which are indicative of the antioxidant activities in the whole blood. The results indicated that l-carnitine will counteract the undesirable effects of lead intoxication. It exerted its antioxidant potential by reducing the production of ROS and scavenging free radicals by maintaining and protecting the level of the of antioxidant enzymes SOD, CAT and glutathione peroxidase. Conclusion: l-Carnitine may play an important role in reversing the undesirable effects of lead intoxication. Future studies should be conducted to see whether such an effect is applicable in humans exposed to lead poising.

  8. Wide Tolerance to Amino Acids Substitutions In The OCTN1 Ergothioneine Transporter

    PubMed Central

    Frigeni, Marta; Iacobazzi, Francesco; Yin, Xue; Longo, Nicola

    2016-01-01

    Background Organic cation transporters transfer solutes with a positive charge across the plasma membrane. The novel organic cation transporter 1 (OCTN1) and 2 (OCTN2) transport ergothioneine and carnitine, respectively. Mutations in the SLC22A5 gene encoding OCTN2 cause primary carnitine deficiency, a recessive disorders resulting in low carnitine levels and defective fatty acid oxidation. Variations in the SLC22A4 gene encoding OCTN1 are associated with rheumatoid arthritis and Crohn disease. Methods Here we evaluate the functional properties of the OCTN1 transporter using chimeric transporters constructed by fusing different portion of the OCTN1 and OCTN2 cDNAs. Their relative abundance and subcellular distribution was evaluated through western blot analysis and confocal microscopy. Results Substitutions of the C-terminal portion of OCTN1 with the correspondent residues of OCTN2 generated chimeric OCTN transporters more active than wild-type OCTN1 in transporting ergothioneine. Additional single amino acid substitutions introduced in chimeric OCTN transporters further increased ergothioneine transport activity. Kinetic analysis indicated that increased transport activity was due to an increased Vmax, with modest changes in Km toward ergothioneine. Conclusions Our results indicate that the OCTN1 transporter is tolerant to extensive amino acid substitutions. This is in sharp contrast to the OCTN2 carnitine transporter that has been selected for high functional activity through evolution, with almost all substitutions reducing carnitine transport activity. General significance The widespread tolerance of OCTN1 to amino acid substitutions suggests that the corresponding SLC22A4 gene may have derived from a recent duplication of the SLC22A5 gene and might not yet have a defined physiological role. PMID:26994919

  9. Fatty Acid β-Oxidation Is Essential in Leptin-Mediated Oocytes Maturation of Yellow Catfish Pelteobagrus fulvidraco.

    PubMed

    Song, Yu-Feng; Tan, Xiao-Ying; Pan, Ya-Xiong; Zhang, Li-Han; Chen, Qi-Liang

    2018-05-14

    Although several studies have been conducted to study leptin function, information is very scarce on the molecular mechanism of leptin in fatty acid β-oxidation and oocytes maturation in fish. In this study, we investigated the potential role of fatty acid β-oxidation in leptin-mediated oocytes maturation in Pelteobagrus fulvidraco . Exp. 1 investigated the transcriptomic profiles of ovary and the differential expression of genes involved in β-oxidation and oocytes maturation following rt-hLEP injection; rt-hLEP injection was associated with significant changes in the expression of genes, including twenty-five up-regulated genes ( CPT1 , Acsl , Acadl , Acadm , Hadhb , Echsl , Hsd17b4 , Acca , PPARα , CYP8B1 , ACOX1 , ACBP , MAPK , RINGO , Cdc2 , MEK1 , IGF-1R , APC/C, Cdk2 , GnRHR, STAG3 , SMC1 , FSHβ and C-Myc ) and ten down-regulated gene ( PPARγ , FATCD36 , UBC , PDK1 , Acads , Raf , Fizzy , C3H-4 , Raf and PKC ), involved in fatty acid β-oxidation and oocytes maturation. In Exp. 2, rt-hLEP and specific inhibitors AG490 (JAK-STAT inhibitor) were used to explore whether leptin induced oocytes maturation, and found that leptin incubation increased the diameters of oocytes and percentage of germinal vesicle breakdown (GVBD)-MII oocytes, up-regulated mRNA levels of genes involved in oocytes maturation and that leptin-induced oocyte maturation was related to activation of JAK-STAT pathway. In Exp. 3, primary oocytes of P. fulvidraco were treated with (R)-(+)-etomoxir (an inhibitor of β-oxidation) or l-carnitine (an enhancer of β-oxidation) for 48 h under rt-hLEP incubation. Exp. 3 indicated that the inhibition of fatty acid β-oxidation resulted in the down-regulation of gene expression involved in oocytes maturation, and repressed the leptin-induced up-regulation of these gene expression. Activation of fatty acid β-oxidation improved the maturation rate and mean diameter of oocytes, and up-regulated gene expression involved in oocytes maturation. Leptin is

  10. Carnitine for fatigue in multiple sclerosis.

    PubMed

    Tejani, Aaron M; Wasdell, Michael; Spiwak, Rae; Rowell, Greg; Nathwani, Shabita

    2010-02-17

    Fatigue is reported to occur in up to 92% of patients with multiple sclerosis (MS) and has been described as the most debilitating of all MS symptoms by 28% to 40% of MS patients. To assess whether carnitine (enteral or intravenous) supplementation can improve the quality of life and reduce the symptoms of fatigue in patients with MS-related fatigue and to identify any adverse effects of carnitine when used for this purpose. A literature search was performed using Cochrane MS Group Trials Register (21 May 2009), Cochrane Central Register of Controlled Trials (CENTRAL) "The Cochrane Library 2009, issue 2, MEDLINE (PubMed) (1966-21 May 2009), EMBASE (1974-21 May 2009). Reference lists of review articles and primary studies were also screened. A hand search of the abstract book of recent relevant conference symposia was also conducted. Personal contact with MS experts and a manufacturer (Source Naturals, United States) of carnitine formulation was contacted to determine if they knew of other clinical trials. No language restrictions were applied. Full reports of published and unpublished randomized controlled trials and quasi-randomized trials of any carnitine intervention in adults with a clinical diagnosis of fatigue associated with multiple sclerosis were included. Data from the eligible trials was extracted and coded using a standardized data extraction form and entered into RevMan 5. Discrepancies were to be resolved by discussion with a third reviewer however this was not necessary. The quality items to be assessed were method of randomization, allocation concealment, blinding (participants, investigators, outcome assessors and data analysis), intention-to-treat analysis and completeness of follow up. The search identified one randomized cross-over trial. In this study patients were exposed to both acetyl L-carnitine (ALCAR(tm)) 2 grams daily and amantadine 200 mg daily in adult patients with relapsing-remitting and secondary progressive MS. The effects of

  11. Tryptophan depletion under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through reactive oxygen species-dependent and independent pathways.

    PubMed

    Eleftheriadis, Theodoros; Pissas, Georgios; Sounidaki, Maria; Antoniadi, Georgia; Rountas, Christos; Liakopoulos, Vassilios; Stefanidis, Loannis

    2017-04-01

    In atherosclerosis-associated pathologic entities characterized by malnutrition and inflammation, L-tryptophan (TRP) levels are low. Insulin resistance is an independent cardiovascular risk factor and induces endothelial dysfunction by increasing fatty acid oxidation. It is also associated with inflammation and low TRP levels. Low TRP levels have been related to worse cardiovascular outcome. This study evaluated the effect of TRP depletion on endothelial dysfunction under conditions that imitate insulin resistance. Fatty acid oxidation, harmful pathways due to increased fatty acid oxidation, and endothelial dysfunction were assessed in primary human aortic endothelial cells cultured under normal glucose, low insulin conditions in the presence or absence of TRP. TRP depletion activated general control non-derepressible 2 kinase and inhibited aryl hydrocarbon receptor. It increased fatty acid oxidation by increasing expression and activity of carnitine palmitoyltransferase 1. Elevated fatty acid oxidation increased the formation of reactive oxygen species (ROS) triggering the polyol and hexosamine pathways, and enhancing protein kinase C activity and methylglyoxal production. TRP absence inhibited nitric oxide synthase activity in a ROS-dependent way, whereas it increased the expression of ICAM-1 and VCAM-1 in a ROS independent and possibly p53-dependent manner. Thus, TRP depletion, an amino acid whose low levels have been related to worse cardiovascular outcome and to inflammatory atherosclerosis-associated pathologic entities, under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through ROS-dependent and independent pathways. These findings may offer new insights at the molecular mechanisms involved in accelerated atherosclerosis that frequently accompanies malnutrition and inflammation.

  12. Phytochemicals in regulating fatty acid β-oxidation: Potential underlying mechanisms and their involvement in obesity and weight loss.

    PubMed

    Rupasinghe, H P Vasantha; Sekhon-Loodu, Satvir; Mantso, Theodora; Panayiotidis, Mihalis I

    2016-09-01

    Excessive accumulation of fat as the result of more energy intake and less energy expenditure is known as obesity. Lipids are essential components in the human body and are vital for maintaining homeostasis and physiological as well as cellular metabolism. Fatty acid synthesis and catabolism (by fatty acid oxidation) are normal part of basic fuel metabolism in animals. Fatty acids are degraded in the mitochondria by a biochemical process called β-oxidation in which two-carbon fragments are produced in each cycle. The increase in fatty acid β-oxidation is negatively correlated with body mass index. Although healthy life style, avoiding Western diet, dieting and strenuous exercise are the commonly used methods to lose weight, they are not considered a permanent solution in addition to risk attenuation of basal metabolic rate (BMR). Pharmacotherapy offers benefits of weight loss by altering the satiety and lowering absorption of fat from the food; however, its side effects may outweigh the benefits of weight loss. Alternatively, dietary phytochemicals and natural health products offer great potential as an efficient weight loss strategy by modulating lipid metabolism and/or increasing BMR and thermogenesis. Specifically, polyphenols such as citrus flavonoids, green tea epigallocatechin gallate, resveratrol, capsaicin and curcumin, have been reported to increase lipolysis and induce fatty acid β-oxidation through modulation of hormone sensitive lipase, acetyl-coA carboxylase, carnitine acyl transferase and peroxisome proliferator-activated receptor gamma coactivator-1. In this review article, we discuss selected phytochemicals in relation to their integrated functionalities and specific mechanisms for weight loss. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. [Animal experiment studies on the changes in lipid and protein metabolism in L-carnitine-supplemented total parenteral nutrition].

    PubMed

    Böhles, H; Segerer, H; Fekl, W; Stehr, K

    1983-02-01

    The influence of i.v. L-carnitine on parameters of lipid- and nitrogen metabolism was studied during total parenteral nutrition of mini pigs (x: 4077; n = 9). The infusion protocol was divided into isocaloric and isonitrogenous 48-hour-periods. Amino acids (3 g/kg/day) were administered throughout all three periods. 140 Cal/kg/day were given as non-protein calories, consisting only of glucose during period 1. During periods 2 and 3 an amount of glucose calorically equivalent to 4 g fat/kg/day was substituted with a lipid emulsion. In period 3, L-carnitine (1,5 mg/kg/day) was added. During the entire regime key parameters of fat and nitrogen metabolism were determined. During all three periods indirect calorimetry was performed and the respiratory quotient calculated. The results demonstrate a more effective lipolysis and oxydation of fatty acids during L-carnitine supplementation. This results in an increased energy gain from exogenously administered fat and a distinct improvement of nitrogen balance.

  14. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial.

    PubMed

    Heianza, Yoriko; Sun, Dianjianyi; Li, Xiang; DiDonato, Joseph A; Bray, George A; Sacks, Frank M; Qi, Lu

    2018-06-02

    Alterations in gut microbiota have been linked to host insulin resistance, diabetes and impaired amino acid metabolism. We investigated whether changes in gut microbiota-dependent metabolite of trimethylamine N-oxide (TMAO) and its nutrient precursors (choline and L-carnitine) were associated with improvements in glucose metabolism and diabetes-related amino acids in a weight-loss diet intervention. We included 504 overweight and obese adults who were randomly assigned to one of four energy-reduced diets varying in macronutrient intake. The 6-month changes (Δ) in TMAO, choline and L-carnitine levels after the intervention were calculated. Greater decreases in choline and L-carnitine were significantly (p<0.05) associated with greater improvements in fasting insulin concentrations and homeostasis model assessment of insulin resistance (HOMA-IR) at 6 months. The reduction of choline was significantly related to 2-year improvements in glucose and insulin resistance. We found significant linkages between dietary fat intake and ΔTMAO for changes in fasting glucose, insulin and HOMA-IR (p interaction <0.05); a greater increase in TMAO was related to lesser improvements in the outcomes among participants who consumed a high-fat diet. In addition, ΔL-carnitine and Δcholine were significantly related to changes in amino acids (including branched-chain and aromatic amino acids). Interestingly, the associations of ΔTMAO, Δcholine and ΔL-carnitine with diabetes-related traits were independent of the changes in amino acids. Our findings underscore the importance of changes in TMAO, choline and L-carnitine in improving insulin sensitivity during a weight-loss intervention for obese patients. Dietary fat intake may modify the associations of TMAO with insulin sensitivity and glucose metabolism. NCT00072995. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless

  15. Genetics Home Reference: carnitine palmitoyltransferase II deficiency

    MedlinePlus

    ... Zierz S. Muscle carnitine palmitoyltransferase II deficiency: clinical and molecular genetic features and diagnostic aspects. Arch Neurol. 2005 Jan; ... K, Hermann T, Zierz S. Carnitine palmitoyltransferase II deficiency: molecular and biochemical analysis of 32 ... Bulletins Genetics Home Reference Celebrates Its ...

  16. Carnitine for fatigue in multiple sclerosis.

    PubMed

    Tejani, Aaron M; Wasdell, Michael; Spiwak, Rae; Rowell, Greg; Nathwani, Shabita

    2012-05-16

    Fatigue is reported to occur in up to 92% of patients with multiple sclerosis (MS) and has been described as the most debilitating of all MS symptoms by 28% to 40% of MS patients. To assess whether carnitine (enteral or intravenous) supplementation can improve the quality of life and reduce the symptoms of fatigue in patients with MS-related fatigue and to identify any adverse effects of carnitine when used for this purpose. A literature search was performed using Cochrane MS Group Trials Register (09 September 2011), Cochrane Central Register of Controlled Trials (CENTRAL) "The Cochrane Library 2011, issue 3", MEDLINE (PubMed) (1966-09 September 2011), EMBASE (1974-09 September 2011), and www.clinicaltrials.gov for ongoing trials retrieval. Reference lists of review articles and primary studies were also screened. A hand search of the abstract book of recent relevant conference symposia was also conducted. Personal contact with MS experts and a manufacturer (Source Naturals, United States) of carnitine formulation was contacted to determine if they knew of other clinical trials. No language restrictions were applied. Full reports of published and unpublished randomized controlled trials and quasi-randomized trials of any carnitine intervention in adults affected by multiple sclerosis with a clinical diagnosis of fatigue associated with multiple sclerosis were included. Data from the eligible trials was extracted and coded using a standardized data extraction form and entered into RevMan 5. Discrepancies were to be resolved by discussion with a third reviewer, however this was not necessary.The quality items to be assessed were method of randomization, allocation concealment, blinding (participants, investigators, outcome assessors and data analysis), intention-to-treat analysis and completeness of follow up. The search identified one ongoing randomized, placebo-controlled, cross-over trial (expected completion 2013) and one completed randomized, active

  17. Fatty acid utilization in pressure-overload hypertrophied rat hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reibel, D.K.; O'Rourke, B.

    1986-03-05

    The authors have previously shown that the levels of total tissue coenzyme A and carnitine are reduced in hypertrophied hearts of rats subjected to aortic constriction. It was therefore of interest to determine if these changes were associated with alterations in fatty acid oxidation by the hypertrophied myocardium. Hearts were excised from sham-operated and aortic-constricted rats and perfused at 10 cm H/sub 2/O left atrial filling pressure with a ventricular afterload of 80 cm of H/sub 2/O with buffer containing 1.2 mM /sup 14/C-linoleate. Heart rate and peak systolic pressure were not different in control and hypertrophied hearts. /sup 14/CO/submore » 2/ production was linear in both groups of hearts between 10 and 30 minutes of perfusion. The rate of fatty acid oxidation determined by /sup 14/CO/sub 2/ production during this time was 0.728 +/- 0.06 ..mu..moles/min/g dry in control hearts and 0.710 +/- 0.02 ..mu..moles/min/g dry in hypertrophied hearts. Comparable rates of fatty acid oxidation were associated with comparable rates of O/sub 2/ consumption in the two groups of hearts (39.06 +/- 3.50 and 36.78 +/- 2.39 ..mu..moles/g dry/min for control and hypertrophied hearts, respectively). The data indicate that the ability of the hypertrophied heart to oxidize fatty acids under these perfusion conditions is not impaired in spite of significant reductions in tissue levels of coenzyme A and carnitine.« less

  18. Comparative effects of dietary corn oil, safflower oil, fish oil and palm oil on metabolism of ethanol and carnitine in the rat.

    PubMed

    Sachan, Dileep S; Yatim, Ayub M; Daily, James W

    2002-06-01

    This study was launched to determine comparative effects of corn oil (CO), safflower oil (SO), fish oil (FO) and palm oil (PO) on carnitine status and ethanol metabolism in rats. Twenty-four male Sprague-Dawley rats (300 g bw) were randomly divided into four groups (n = 6) and fed a semisynthetic diets containing fat as oils listed above. Blood and 24 hour urine samples were collected before and after dietary treatment and acute ethanol administration. Samples were analyzed for blood-ethanol concentration (BEC) and carnitine species. The diets containing FO and PO retarded ethanol metabolism compared to the diets containing CO and SO. The effect of these dietary fats on carnitine species in plasma and urine was varied before and after dietary treatment and following a single oral ethanol dose. The liver carnitine content was higher in the PO group after dietary and ethanol treatment. It is concluded that attenuation of ethanol clearance was related to unique fatty acid makeup of the oils that in part may be attributed to the composite ratio of saturated to unsaturated fatty acids in the oils.

  19. [ACTION OF L-CARNITINE, CORVITIN AND THEIR COMBINATION ON FUNCTIONAL STATE OF LIVER IN EXPERIMENTAL MODEL OF REYE SYNDROME IN RATS].

    PubMed

    Ghonghadze, M; Antelava, N; Liluashvili, K; Okujava, M; Pachkoria, K

    2017-02-01

    Administration of Aacetylsalicylic acid in children with viral infections (influence B, chickenpox) can be related with development of Reye syndrome - severe encephalopathy and liver insufficiency with mortality in 50% of cases. During Reye syndrome most important is deficiency of carnitine and hepatocyte damage. Decreased amount of carnitine impairs the energy function of mitochondria and gluconeogenesis as well as production of urea. As a result develops toxic encephalopathy and liver insufficiency. The goal of the research was assessment of efficacy of L-Carnitine, Corvitin and their combination on functional state of liver in experimental model of Reye Syndrome in rats. The study was performed on mature white male Wistar rates with body mass 150-180g. 50 rats were randomly divided into 5 groups (10 rats in each group). The model of Reye syndrome was induced in accordance with A.Vengersky's method. Intraperitoneal administration of 4-pentenoic acid was performed once daily during seven days, the used dosage was 20mg/kg. The treatment of toxic hepatitis was carried with intraperitoneal administration of L-Carnitine 300mg/kg, Corvitine 100mg/kg and concurrent administration of these drugs. Monotherapy with Corvitin and L-Carnitin successfully improved liver function and equally decreased indicators of hepatocyte's cytolyses and increased levels of glucose and urea. The markers of cholestasis was slightly more improved during use of L-Carnitine. Simultaneous use of both drugs was effective in rats with Reye syndrome, indicators of liver damage normalized and herewith, no mortality outcome was observed. The most pronounced hepatoprotective effect of concurrent administration of L-Carnitine and Corvitin may be due to synergic action of these drugs and such regime can be recommended for correction of liver function during Reye syndrome.

  20. Influence of virgin coconut oil-enriched diet on the transcriptional regulation of fatty acid synthesis and oxidation in rats - a comparative study.

    PubMed

    Arunima, Sakunthala; Rajamohan, Thankappan

    2014-05-28

    The present study was carried out to evaluate the effects of virgin coconut oil (VCO) compared with copra oil, olive oil and sunflower-seed oil on the synthesis and oxidation of fatty acids and the molecular regulation of fatty acid metabolism in normal rats. Male Sprague-Dawley rats were fed the test oils at 8 % for 45 d along with a synthetic diet. Dietary supplementation of VCO decreased tissue lipid levels and reduced the activity of the enzymes involved in lipogenesis, namely acyl CoA carboxylase and fatty acid synthase (FAS) (P< 0·05). Moreover, VCO significantly (P< 0·05) reduced the de novo synthesis of fatty acids by down-regulating the mRNA expression of FAS and its transcription factor, sterol regulatory element-binding protein-1c, compared with the other oils. VCO significantly (P< 0·05) increased the mitochondrial and peroxisomal β-oxidation of fatty acids, which was evident from the increased activities of carnitine palmitoyl transferase I, acyl CoA oxidase and the enzymes involved in mitochondrial β-oxidation; this was accomplished by up-regulating the mRNA expression of PPARα and its target genes involved in fatty acid oxidation. In conclusion, the present results confirmed that supplementation of VCO has beneficial effects on lipid parameters by reducing lipogenesis and enhancing the rate of fatty acid catabolism; this effect was mediated at least in part via PPARα-dependent pathways. Thus, dietary VCO reduces the risk for CHD by beneficially modulating the synthesis and degradation of fatty acids.

  1. Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise.

    PubMed

    O'Neill, Hayley M; Lally, James S; Galic, Sandra; Pulinilkunnil, Thomas; Ford, Rebecca J; Dyck, Jason R B; van Denderen, Bryce J; Kemp, Bruce E; Steinberg, Gregory R

    2015-07-01

    During submaximal exercise fatty acids are a predominant energy source for muscle contractions. An important regulator of fatty acid oxidation is acetyl-CoA carboxylase (ACC), which exists as two isoforms (ACC1 and ACC2) with ACC2 predominating in skeletal muscle. Both ACC isoforms regulate malonyl-CoA production, an allosteric inhibitor of carnitine palmitoyltransferase 1 (CPT-1); the primary enzyme controlling fatty acyl-CoA flux into mitochondria for oxidation. AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is activated during exercise or by pharmacological agents such as metformin and AICAR. In resting muscle the activation of AMPK with AICAR leads to increased phosphorylation of ACC (S79 on ACC1 and S221 on ACC2), which reduces ACC activity and malonyl-CoA; effects associated with increased fatty acid oxidation. However, whether this pathway is vital for regulating skeletal muscle fatty acid oxidation during conditions of increased metabolic flux such as exercise/muscle contractions remains unknown. To examine this we characterized mice lacking AMPK phosphorylation sites on ACC2 (S212 in mice/S221 in humans-ACC2-knock-in [ACC2-KI]) or both ACC1 (S79) and ACC2 (S212) (ACC double knock-in [ACCD-KI]) during submaximal treadmill exercise and/or ex vivo muscle contractions. We find that surprisingly, ACC2-KI mice had normal exercise capacity and whole-body fatty acid oxidation during treadmill running despite elevated muscle ACC2 activity and malonyl-CoA. Similar results were observed in ACCD-KI mice. Fatty acid oxidation was also maintained in muscles from ACC2-KI mice contracted ex vivo. These findings indicate that pathways independent of ACC phosphorylation are important for regulating skeletal muscle fatty acid oxidation during exercise/muscle contractions. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  2. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction

    PubMed Central

    Scioli, Maria Giovanna; Lo Giudice, Pietro; Bielli, Alessandra; Tarallo, Valeria; De Rosa, Alfonso; De Falco, Sandro; Orlandi, Augusto

    2015-01-01

    Background Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO) production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC) is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery. Methods and Results We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS) reduction, inducible nitric oxide synthase (iNOS) and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and reduction of NADPH-oxidase 4 (Nox4) expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM) expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction. Conclusion PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction

  3. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response.

    PubMed

    Liu, Tie Fu; Vachharajani, Vidula T; Yoza, Barbara K; McCall, Charles E

    2012-07-27

    The early initiation phase of acute inflammation is anabolic and primarily requires glycolysis with reduced mitochondrial glucose oxidation for energy, whereas the later adaptation phase is catabolic and primarily requires fatty acid oxidation for energy. We reported previously that switching from the early to the late acute inflammatory response following TLR4 stimulation depends on NAD(+) activation of deacetylase sirtuin 1 (SirT1). Here, we tested whether NAD(+) sensing by sirtuins couples metabolic polarity with the acute inflammatory response. We found in TLR4-stimulated THP-1 promonocytes that SirT1 and SirT 6 support a switch from increased glycolysis to increased fatty acid oxidation as early inflammation converts to late inflammation. Glycolysis enhancement required hypoxia-inducing factor-1α to up-regulate glucose transporter Glut1, phospho-fructose kinase, and pyruvate dehydrogenase kinase 1, which interrupted pyruvate dehydrogenase and reduced mitochondrial glucose oxidation. The shift to late acute inflammation and elevated fatty acid oxidation required peroxisome proliferator-activated receptor γ coactivators PGC-1α and β to increase external membrane CD36 and fatty acid mitochondrial transporter carnitine palmitoyl transferase 1. Metabolic coupling between early and late responses also required NAD(+) production from nicotinamide phosphoryltransferase (Nampt) and activation of SirT6 to reduce glycolysis and SirT1 to increase fatty oxidation. We confirmed similar shifts in metabolic polarity during the late immunosuppressed stage of human sepsis blood leukocytes and murine sepsis splenocytes. We conclude that NAD(+)-dependent bioenergy shifts link metabolism with the early and late stages of acute inflammation.

  4. Automation of a spectrophotometric method for measuring L -carnitine in human blood serum.

    PubMed

    Galan, A; Padros, A; Arambarri, M; Martin, S

    1998-01-01

    A spectrometric method for the determination of L-carnitine has been developed based on the reaction of the 5,5' dithiobis-(2-nitrobenzoic) acid (DTNB) and adapted to a Technicon RA-2000 automatic analyser Química Farmacéutica Bayer, S.A.). The detection limit of the method is 13.2 mumol/l, with a measurement interval ranging from 30 to 320 mumoll1. Imprecision and accuracy are good even at levels close to the detection limit (coeffcient of variation of 5.4% for within-run imprecision for a concentration of 35 mumol/l). A good correlation was observed between the method studied and the radiometric method. The method evaluated has suffcient analytical sensitivity to diagnose carnitine deficiencies. The short time period required for sample processing (30 samples in 40min), the simple methodology and apparatus, the ease of personnel training and the low cost of the reagents make this method a good alternative to the classical radiometric method for evaluating serum L-carnitine in clinical laboratories without radioactive installations.

  5. Automation of a spectrophotometric method for measuring L -carnitine in human blood serum

    PubMed Central

    Galan, Amparo; Padros, Anna; Arambarri, Marta; Martin, Silvia

    1998-01-01

    A spectrometric method for the determination of L-carnitine has been developed based on the reaction of the 5, 5 ′ dithiobis-(2-nitrobenzoic) acid (DTNB) and adapted to a Technicon RA-2000 automatic analyser Química Farmacéutica Bayer, S.A.). The detection limit of the method is 13.2 μmol/l, with a measurement interval ranging from 30 to 320 μmoll1. Imprecision and accuracy are good even at levels close to the detection limit (coeffcient of variation of 5.4% for within-run imprecision for a concentration of 35 μmol/l). A good correlation was observed between the method studied and the radiometric method. The method evaluated has suffcient analytical sensitivity to diagnose carnitine deficiencies. The short time period required for sample processing (30 samples in 40min), the simple methodology and apparatus, the ease of personnel training and the low cost of the reagents make this method a good alternative to the classical radiometric method for evaluating serum L-carnitine in clinical laboratories without radioactive installations. PMID:18924818

  6. Evidence of a malonyl-CoA-insensitive carnitine palmitoyltransferase I activity in red skeletal muscle.

    PubMed

    Kim, Jong-Yeon; Koves, Timothy R; Yu, Geng-Sheng; Gulick, Tod; Cortright, Ronald N; Dohm, G Lynis; Muoio, Deborah M

    2002-05-01

    Carnitine palmitoyltransferase I (CPT I), which is expressed as two distinct isoforms in liver (alpha) and muscle (beta), catalyzes the rate-limiting step in the transport of fatty acid into the mitochondria. Malonyl-CoA, a potent inhibitor of CPT I, is considered a key regulator of fatty acid oxidation in both tissues. Still unanswered is how muscle beta-oxidation proceeds despite malonyl-CoA concentrations that exceed the IC(50) for CPT Ibeta. We evaluated malonyl-CoA-suppressible [(14)C]palmitate oxidation and CPT I activity in homogenates of red (RG) and white (WG) gastrocnemius, soleus (SOL), and extensor digitorum longus (EDL) muscles. Adding 10 microM malonyl-CoA inhibited palmitate oxidation by 29, 39, 60, and 89% in RG, SOL, EDL, and WG, respectively. Thus malonyl-CoA resistance, which correlated strongly (0.678) with absolute oxidation rates (RG > SOL > EDL > WG), was greater in red than in white muscles. Similarly, malonyl-CoA-resistant palmitate oxidation and CPT I activity were greater in mitochondria from RG compared with WG. Ribonuclease protection assays were performed to evaluate whether our data might be explained by differential expression of CPT I splice variants. We detected the presence of two CPT Ibeta splice variants that were more abundant in red compared with white muscle, but the relative expression of the two mRNA species was unrelated to malonyl-CoA resistance. These results provide evidence of a malonyl-CoA-insensitive CPT I activity in red muscle, suggesting fiber type-specific expression of distinct CPT I isoforms and/or posttranslational modulations that have yet to be elucidated.

  7. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle.

    PubMed

    Lefort, Natalie; Glancy, Brian; Bowen, Benjamin; Willis, Wayne T; Bailowitz, Zachary; De Filippis, Elena A; Brophy, Colleen; Meyer, Christian; Højlund, Kurt; Yi, Zhengping; Mandarino, Lawrence J

    2010-10-01

    The contribution of mitochondrial dysfunction to skeletal muscle insulin resistance remains elusive. Comparative proteomics are being applied to generate new hypotheses in human biology and were applied here to isolated mitochondria to identify novel changes in mitochondrial protein abundance present in insulin-resistant muscle. Mitochondria were isolated from vastus lateralis muscle from lean and insulin-sensitive individuals and from obese and insulin-resistant individuals who were otherwise healthy. Respiration and reactive oxygen species (ROS) production rates were measured in vitro. Relative abundances of proteins detected by mass spectrometry were determined using a normalized spectral abundance factor method. NADH- and FADH(2)-linked maximal respiration rates were similar between lean and obese individuals. Rates of pyruvate and palmitoyl-DL-carnitine (both including malate) ROS production were significantly higher in obesity. Mitochondria from obese individuals maintained higher (more negative) extramitochondrial ATP free energy at low metabolic flux, suggesting that stronger mitochondrial thermodynamic driving forces may underlie the higher ROS production. Tandem mass spectrometry identified protein abundance differences per mitochondrial mass in insulin resistance, including lower abundance of complex I subunits and enzymes involved in the oxidation of branched-chain amino acids (BCAA) and fatty acids (e.g., carnitine palmitoyltransferase 1B). We provide data suggesting normal oxidative capacity of mitochondria in insulin-resistant skeletal muscle in parallel with high rates of ROS production. Furthermore, we show specific abundance differences in proteins involved in fat and BCAA oxidation that might contribute to the accumulation of lipid and BCAA frequently associated with the pathogenesis of insulin resistance.

  8. Determination of L-carnitine, acetyl-L-carnitine and propionyl-L-carnitine in human plasma by high-performance liquid chromatography after pre-column derivatization with 1-aminoanthracene.

    PubMed

    Longo, A; Bruno, G; Curti, S; Mancinelli, A; Miotto, G

    1996-11-15

    A new sensitive high-performance liquid chromatographic procedure for the determination of L-carnitine (LC), acetyl-L-carnitine (ALC) and propionyl-L-carnitine (PLC) in human plasma has been developed. Precolumn derivatization with 1-aminoanthracene (1AA), performed in phosphate buffer in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) as catalyst, is involved. The fluorescent derivatives were isocratically separated on a reversed-phase column (C18). The eluate was monitored with a fluorimetric detector set at 248 nm (excitation wavelength) and 418 nm (emission wavelength). Because of the presence of endogenous carnitines, the validation was performed using dialyzed plasma. The identity of the derivatized compounds was assessed by mass spectrometry and the purity of the chromatographic peaks was confirmed by HPLC-tandem mass spectrometry. The limits of quantitation were 5 nmol/ml for LC, 1 nmol/ml for ALC and 0.25 nmol/ml for PLC. The recovery of the extraction procedure was in the range 82.6%-95.4% for all 3 compounds. Good linearity (R approximately 0.99) was observed within the calibration ranges studied: 5-160 nmol/ml for LC, 1-32 nmol/ml for ALC and 0.25-8 nmol/ml for PLC. Precision was in the range 0.3-16.8% and accuracy was always lower than 10.6%.

  9. Carnitine deficiency presenting with a decreased mental state in a patient with amyotrophic lateral sclerosis receiving long-term tube feeding: a case report.

    PubMed

    Isse, Naohi; Miura, Yoh; Obata, Toshiyuki; Takahara, Noriko

    2013-12-30

    L-carnitine is an important metabolic mediator involved in fatty acid transport. It is obtained from the diet, particularly from animal products, such as red meat. Previous reports have revealed that long-term tube feeding with a commercial product containing no or low levels of carnitine can lead to an altered mental state caused by hyperammonemia. A 72-year-old Japanese man had a 12-year history of amyotrophic lateral sclerosis. He was bedridden and had required mechanical ventilation and enteral tube feeding for 10 years at home. His main enteral solution was a commercial product that contained low carnitine levels, and he sometimes received coffee and homemade products such as miso soup. Our patient's ability to communicate gradually deteriorated over a period of one year. His serum total carnitine level was abnormally low, at 26.7μmol/L (normal range, 45 to 91μmol/L), but his ammonium level was normal. His mental state improved dramatically after starting L-carnitine supplementation (600mg twice daily). This case highlights the importance of avoiding carnitine deficiency in patients with amyotrophic lateral sclerosis undergoing long-term tube feeding. These patients experience progressive muscle atrophy that might cause impaired carnitine storage and might manifest as communication difficulties. Carnitine deficiency can be misdiagnosed as a progression of systemic muscle atrophy. Clinicians should be aware of this disorder and should consider periodically measuring carnitine levels, regardless of the patient's serum ammonium levels.

  10. Pro-inflammatory and oxidative stress pathways which compromise sperm motility and survival may be altered by L-carnitine

    PubMed Central

    Helal, Gouda K; Al-Yahya, Abdulaziz A; Aleisa, Abdulaziz M; Al-Rejaie, Salim S; Al-Bakheet, Saleh A

    2009-01-01

    The testis is an immunologically privileged organ. Sertoli cells can form a blood-testis barrier and protect sperm cells from self-immune system attacks. Spermatogenesis may be inhibited by severe illness, bacterial infections and chronic inflammatory diseases but the mechanism(s) is poorly understood. Our objective is to help in understanding such mechanism(s) to develop protective agents against temporary or permanent testicular dysfunction. Lipopolysaccaride (LPS) is used as a model of animal sepsis while L-carnitine (LCR) is used as a protective agent. A total of 60 male Swiss albino rats were divided into four groups (15/group). The control group received Saline; the 2nd group was given LCR (500 mg/kg i.p, once). The third group was treated with LPS (5 mg/kg i.p once) and the fourth group received LCR then LPS after three hours. From each group, five rats were used for histopathological examination. Biochemical parameters were assessed in the remaining ten rats. At the end of the experiment, animals were lightly anaesthetized with ether where blood samples were collected and testes were dissected on ice. Sperm count and motility were evaluated from cauda epididymis in each animal. Also, oxidative stress was evaluated by measuring testicular contents of reduced glutathione (GSH), malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-HDG, the DNA adduct for oxidative damage) in testicular DNA. The pro-inflammatory mediator nitric oxide (NO) in addition to lactate dehydrogenase (LDHx) isoenzyme-x activity as an indicator for normal spermatozoal metabolism were assessed in testicular homogenate. Serum interlukin (IL)-2 level was also assessed as a marker for T-helper cell function. The obtained data revealed that LPS induced marked reductions in sperm's count and motility, obstruction in seminiferous tubules, hypospermia and dilated congested blood vessels in testicular sections concomitant with decreased testicular GSH content and LDHx activity. Moreover, the

  11. Serum Levels of Acyl-Carnitines along the Continuum from Normal to Alzheimer's Dementia.

    PubMed

    Cristofano, Adriana; Sapere, Nadia; La Marca, Giancarlo; Angiolillo, Antonella; Vitale, Michela; Corbi, Graziamaria; Scapagnini, Giovanni; Intrieri, Mariano; Russo, Claudio; Corso, Gaetano; Di Costanzo, Alfonso

    2016-01-01

    This study aimed to determine the serum levels of free L-carnitine, acetyl-L-carnitine and 34 acyl-L-carnitine in healthy subjects and in patients with or at risk of Alzheimer's disease. Twenty-nine patients with probable Alzheimer's disease, 18 with mild cognitive impairment of the amnestic type, 24 with subjective memory complaint and 46 healthy subjects were enrolled in the study, and the levels of carnitine and acyl-carnitines were measured by tandem mass spectrometry. The concentrations of acetyl-L-carnitine progressively decreased passing from healthy subjects group (mean±SD, 5.6±1.3 μmol/L) to subjective memory complaint (4.3±0.9 μmol/L), mild cognitive impairment (4.0±0.53 μmol/L), up to Alzheimer's disease (3.5±0.6 μmol/L) group (p<0.001). The differences were significant for the comparisons: healthy subjects vs. subjective memory complaint, mild cognitive impairment or Alzheimer's disease group; and subjective memory complaint vs. Alzheimer's disease group. Other acyl-carnitines, such as malonyl-, 3-hydroxyisovaleryl-, hexenoyl-, decanoyl-, dodecanoyl-, dodecenoyl-, myristoyl-, tetradecenoyl-, hexadecenoyl-, stearoyl-, oleyl- and linoleyl-L-carnitine, showed a similar decreasing trend, passing from healthy subjects to patients at risk of or with Alzheimer's disease. These results suggest that serum acetyl-L-carnitine and other acyl-L-carnitine levels decrease along the continuum from healthy subjects to subjective memory complaint and mild cognitive impairment subjects, up to patients with Alzheimer's disease, and that the metabolism of some acyl-carnitines is finely connected among them. These findings also suggest that the serum levels of acetyl-L-carnitine and other acyl-L-carnitines could help to identify the patients before the phenotype conversion to Alzheimer's disease and the patients who would benefit from the treatment with acetyl-L-carnitine. However, further validation on a larger number of samples in a longitudinal study is needed

  12. Serum Levels of Acyl-Carnitines along the Continuum from Normal to Alzheimer's Dementia

    PubMed Central

    Sapere, Nadia; La Marca, Giancarlo; Angiolillo, Antonella; Vitale, Michela; Corbi, Graziamaria; Scapagnini, Giovanni; Intrieri, Mariano; Russo, Claudio

    2016-01-01

    This study aimed to determine the serum levels of free L-carnitine, acetyl-L-carnitine and 34 acyl-L-carnitine in healthy subjects and in patients with or at risk of Alzheimer’s disease. Twenty-nine patients with probable Alzheimer’s disease, 18 with mild cognitive impairment of the amnestic type, 24 with subjective memory complaint and 46 healthy subjects were enrolled in the study, and the levels of carnitine and acyl-carnitines were measured by tandem mass spectrometry. The concentrations of acetyl-L-carnitine progressively decreased passing from healthy subjects group (mean±SD, 5.6±1.3 μmol/L) to subjective memory complaint (4.3±0.9 μmol/L), mild cognitive impairment (4.0±0.53 μmol/L), up to Alzheimer’s disease (3.5±0.6 μmol/L) group (p<0.001). The differences were significant for the comparisons: healthy subjects vs. subjective memory complaint, mild cognitive impairment or Alzheimer’s disease group; and subjective memory complaint vs. Alzheimer’s disease group. Other acyl-carnitines, such as malonyl-, 3-hydroxyisovaleryl-, hexenoyl-, decanoyl-, dodecanoyl-, dodecenoyl-, myristoyl-, tetradecenoyl-, hexadecenoyl-, stearoyl-, oleyl- and linoleyl-L-carnitine, showed a similar decreasing trend, passing from healthy subjects to patients at risk of or with Alzheimer’s disease. These results suggest that serum acetyl-L-carnitine and other acyl-L-carnitine levels decrease along the continuum from healthy subjects to subjective memory complaint and mild cognitive impairment subjects, up to patients with Alzheimer’s disease, and that the metabolism of some acyl-carnitines is finely connected among them. These findings also suggest that the serum levels of acetyl-L-carnitine and other acyl-L-carnitines could help to identify the patients before the phenotype conversion to Alzheimer’s disease and the patients who would benefit from the treatment with acetyl-L-carnitine. However, further validation on a larger number of samples in a longitudinal

  13. L-carnitine protects against testicular dysfunction caused by gamma irradiation in mice.

    PubMed

    Ahmed, Mohamed Mohamed; Ibrahim, Zein Shaban; Alkafafy, Mohamed; El-Shazly, Samir Ahmed

    2014-07-01

    This study was conducted on mice to evaluate the radioprotective role of L-carnitine against γ-ray irradiation-induced testicular damage. Adult male mice were exposed to whole body irradiation at a total dose of 1 Gy. Radiation exposure was continued 24 h a day (0.1 Gy/day) throughout the 10 days exposure period either in the absence and/or presence of L-carnitine at an i.p. dose of 10 mg/kg body weight/day. Results revealed that γ-rays irradiation suppressed the expression of ABP and CYP450SCC mRNA, whereas treatment with L-carnitine prior and throughout γ-rays irradiation exposure inhibited this suppression. Treatment with γ-ray irradiation or L-carnitine down-regulated expression of aromatase mRNA. With combined treatment, L-carnitine significantly normalized aromatase expression. γ-Ray irradiation up-regulated expression of FasL and Cyclin D2 mRNA, while L-carnitine inhibited these up-regulations. Results also showed that γ-ray-irradiation up-regulated TNF-α, IL1-β and IFN-γ mRNA expressions compared to either controls or the L-carnitine treated group. Moreover, γ-irradiation greatly reduced serum testosterone levels, while L-carnitine, either alone or in combination with irradiation, significantly increased serum testosterone levels compared to controls. In addition, γ-irradiation induced high levels of sperm abnormalities (43%) which were decreased to 12% in the presence of L-carnitine. In parallel with these findings, histological examination showed that γ-irradiation induced severe tubular degenerative changes, which were reduced by L-carnitine pre-treatment. These results clarified the immunostimulatory effects of L-carnitine and its radioprotective role against testicular injury. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. epsilon-N-trimethyllysine availability regulates the rate of carnitine biosynthesis in the growing rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebouche, C.J.; Lehman, L.J.; Olson, L.

    1986-05-01

    Rates of carnitine biosynthesis in mammals depend on the availability of substrates and the activity of enzymes subserving the pathway. This study was undertaken to test the hypothesis that the availability of epsilon-N-trimethyllysine is rate-limiting for synthesis of carnitine in the growing rat and to evaluate diet as a source of this precursor for carnitine biosynthesis. Rats apparently absorbed greater than 90% of a tracer dose of (methyl-/sup 3/H)epsilon-N-trimethyllysine, and approximately 30% of that was incorporated into tissues as (/sup 3/H)carnitine. Rats given oral supplements of epsilon-N-trimethyllysine (0.5-20 mg/d), but no dietary carnitine, excreted more carnitine than control animals receivingmore » no dietary epsilon-N-trimethyllysine or carnitine. Rates of carnitine excretion increased in a dose-dependent manner. Tissue and serum levels of carnitine also increased with dietary epsilon-N-trimethyllysine supplementation. There was no evidence that the capacity for carnitine biosynthesis was saturated even at the highest level of oral epsilon-N-trimethyllysine supplementation. Common dietary proteins (casein, soy protein and wheat gluten) were found to be poor sources of epsilon-N-trimethyllysine for carnitine biosynthesis. The results of this study indicate that the availability of epsilon-N-trimethyllysine limits the rate of carnitine biosynthesis in the growing rat.« less

  15. Use of L-carnitine and humate in laying quail diets.

    PubMed

    Yalçin, Sakine; Ergün, A; Erol, Handan; Yalçin, Suzan; Ozsoy, B

    2005-01-01

    This experiment was carried out to determine the effects of using L-carnitine and humate alone or in combination in quail diets on laying performance, egg traits and blood parameters. A total of 280 Japanese quails aged 10 weeks, divided into one control group and three treatment groups, were used. The diets of the first, second and third treatment groups were supplemented with 100 mg L-carnitine/kg, 1.5 g humate (Farmagülatör Dry Plus)/kg and 100 mg L-camitine + 1.5 g humate/kg, respectively. The experimental period lasted 16 weeks. The addition of L-carnitine and sodium humate alone or in combination did not significantly affect body weight, feed consumption, egg production, feed conversion ratio, mortality, egg-shell thickness, egg yolk index and the percentages of egg-shell, albumen and yolk. Egg weight increased (P < 0.001) with L-carnitine supplementation. The values of egg albumen height (P < 0.05), egg albumen index (P < 0.01) and egg Haugh unit (P < 0.05) were increased with humate supplementation. Egg cholesterol content and blood serum parameters were not affected by the supplementation of L-carnitine with or without humate. The results in this study demonstrated that L-carnitine supplementation increased egg weight while humate addition increased egg albumen index and egg Haugh unit of laying quails. However, the combined administration of L-carnitine and humate did not have any significant effects on the parameters measured.

  16. Effect of Vegan Fecal Microbiota Transplantation on Carnitine- and Choline-Derived Trimethylamine-N-Oxide Production and Vascular Inflammation in Patients With Metabolic Syndrome.

    PubMed

    Smits, Loek P; Kootte, Ruud S; Levin, Evgeni; Prodan, Andrei; Fuentes, Susana; Zoetendal, Erwin G; Wang, Zeneng; Levison, Bruce S; Cleophas, Maartje C P; Kemper, E Marleen; Dallinga-Thie, Geesje M; Groen, Albert K; Joosten, Leo A B; Netea, Mihai G; Stroes, Erik S G; de Vos, Willem M; Hazen, Stanley L; Nieuwdorp, Max

    2018-03-26

    Intestinal microbiota have been found to be linked to cardiovascular disease via conversion of the dietary compounds choline and carnitine to the atherogenic metabolite TMAO (trimethylamine-N-oxide). Specifically, a vegan diet was associated with decreased plasma TMAO levels and nearly absent TMAO production on carnitine challenge. We performed a double-blind randomized controlled pilot study in which 20 male metabolic syndrome patients were randomized to single lean vegan-donor or autologous fecal microbiota transplantation. At baseline and 2 weeks thereafter, we determined the ability to produce TMAO from d 6 -choline and d 3 -carnitine (eg, labeled and unlabeled TMAO in plasma and 24-hour urine after oral ingestion of 250 mg of both isotope-labeled precursor nutrients), and fecal samples were collected for analysis of microbiota composition. 18 F-fluorodeoxyglucose positron emission tomography/computed tomography scans of the abdominal aorta, as well as ex vivo peripheral blood mononuclear cell cytokine production assays, were performed. At baseline, fecal microbiota composition differed significantly between vegans and metabolic syndrome patients. With vegan-donor fecal microbiota transplantation, intestinal microbiota composition in metabolic syndrome patients, as monitored by global fecal microbial community structure, changed toward a vegan profile in some of the patients; however, no functional effects from vegan-donor fecal microbiota transplantation were seen on TMAO production, abdominal aortic 18 F-fluorodeoxyglucose uptake, or ex vivo cytokine production from peripheral blood mononuclear cells. Single lean vegan-donor fecal microbiota transplantation in metabolic syndrome patients resulted in detectable changes in intestinal microbiota composition but failed to elicit changes in TMAO production capacity or parameters related to vascular inflammation. URL: http://www.trialregister.nl. Unique identifier: NTR 4338. © 2018 The Authors. Published on

  17. Obesity and lipid stress inhibit carnitine acetyltransferase activity.

    PubMed

    Seiler, Sarah E; Martin, Ola J; Noland, Robert C; Slentz, Dorothy H; DeBalsi, Karen L; Ilkayeva, Olga R; An, Jie; Newgard, Christopher B; Koves, Timothy R; Muoio, Deborah M

    2014-04-01

    Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes.

  18. Production and release of acylcarnitines by primary myotubes reflect the differences in fasting fat oxidation of the donors.

    PubMed

    Wolf, Magnus; Chen, Shili; Zhao, Xinjie; Scheler, Mika; Irmler, Martin; Staiger, Harald; Beckers, Johannes; de Angelis, Martin Hrabé; Fritsche, Andreas; Häring, Hans-Ulrich; Schleicher, Erwin D; Xu, Guowang; Lehmann, Rainer; Weigert, Cora

    2013-06-01

    Acylcarnitines are biomarkers of incomplete β-oxidation and mitochondrial lipid overload but indicate also high rates of mitochondrial fatty acid oxidation. It is unknown whether the production of acylcarnitines in primary human myotubes obtained from lean, metabolically healthy subjects reflects the fat oxidation in vivo. Our objective was to quantify the acylcarnitine production in myotubes obtained from subjects with low and high fasting respiratory quotient (RQ). Fasting RQ was determined by indirect calorimetry. Muscle biopsies from the vastus lateralis muscle were taken from 6 subjects with low fasting RQ (mean 0.79 ± 0.03) and 6 with high fasting RQ (0.90 ± 0.03), and satellite cells were isolated, cultured, and differentiated to myotubes. Myotubes were cultivated with 125 μM (13)C-labeled palmitate for 30 minutes and 4 and 24 hours. Quantitative profiling of 42 intracellular and 31 extracellular acylcarnitines was performed by stable isotope dilution-based metabolomics analysis by liquid chromatography coupled to mass spectrometry. Myotubes from donors with high fasting RQ produced and released significant higher amounts of medium-chain acylcarnitines. High (13)C8 and (13)C10 acylcarnitine levels in the extracellular compartment correlated with high fasting RQ. The decreased expression of medium-chain acyl-coenzyme A dehydrogenase (MCAD) in these myotubes can explain the higher rate of incomplete fatty acid oxidation. A lower intracellular [(13)C]acetylcarnitine to carnitine and lower intracellular (13)C16/(13)C18 acylcarnitine to carnitine ratio indicate reduced fatty acid oxidation capacity in these myotubes. Mitochondrial DNA content was not different. Acylcarnitine production and release from primary human myotubes of donors with high fasting RQ indicate a reduced fatty acid oxidation capacity and a higher rate of incomplete fatty acid oxidation. Thus, quantitative profiling of acylcarnitine production in human myotubes can be a suitable tool to

  19. Screening of Free Carnitine and Acylcarnitine Status in Children With Familial Mediterranean Fever.

    PubMed

    Kiykim, Ertuğrul; Aktuğlu Zeybek, Ayşe Çiğdem; Barut, Kenan; Zübarioğlu, Tanyel; Cansever, Mehmet Şerif; Alsancak, Şeyda; Kasapçopur, Özgür

    2016-06-01

    This study aims to demonstrate the patterns of free carnitine (FC) and acylcarnitine (AC) esters in familial Mediterranean fever (FMF) patients. A total of 205 patients (106 males, 99 females; mean age 131.3±52.1 months; range 24 to 254 months) with FMF and 50 healthy controls (27 males, 23 females; mean age 125.7±49.6 months; range 32 to 217 months) were enrolled. Fasting dried blood samples were taken for showing FC and AC ester levels with tandem mass spectrometry from both patients and controls. Screening of AC profile revealed increased FC, 3-hydroxypalmitoylcarnitine (C16-OH), and 3-Hydroxy octadecanoylcarnitine (C18:2-OH) carnitine levels, while decreased acetyl-carnitine (C2), propionyl-carnitine (C3), butyryl-carnitine (C4), tiglyl-carnitine (C5:1), hexanoyl-carnitine (C6), octanoyl-carnitine (C8), decenoylcarnitine (C10:1), decadienoylcarnitine (C10:2), malonylcarnitine (C3DC), methylmalonylcarnitine (C4DC), glutarylcarnitine (C5DC), hexadecenoylcarnitine (C16:1), 3-Hydroxy butyrylcarnitine (C4-OH), and 3-Hydroxy oleylcarnitine (C18:1-OH) carnitine levels in FMF patients compared to controls. Total AC levels (p<0.001) and AC to FC ratio (p<0.001) were also lower in FMF patients than the controls. In this study, we were able to detect some of the AC profile variations in FMF patients; however, usage of carnitine in all patients with FMF is not recommended since we were not able to demonstrate secondary carnitine deficiency in FMF patients of this study.

  20. beta-Methyl-15-p-iodophenylpentadecanoic acid metabolism and kinetics in the isolated rat heart.

    PubMed

    DeGrado, T R; Holden, J E; Ng, C K; Raffel, D M; Gatley, S J

    1989-01-01

    The use of 15-p-iodophenyl-beta-methyl-pentadecanoic acid (beta Me-IPPA) as an indicator of long chain fatty acid (LCFA) utilization in nuclear medicine studies was evaluated in the isolated, perfused, working rat heart. Time courses of radioactivity (residue curves) were obtained following bolus injections of both beta Me-IPPA and its straight chain counterpart 15-p-iodophenyl-pentadecanoic acid (IPPA). IPPA kinetics clearly indicated flow independent impairment of fatty acid oxidation caused by the carnitine palmitoyltransferase I inhibitor 2[5(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA). In contrast, beta Me-IPPA kinetics were insensitive to changes in fatty acid oxidation rate and net utilization of long chain fatty acid. Analysis of radiolabeled species in coronary effluent and heart homogenates showed the methylated fatty acid to be readily incorporated into complex lipids but a poor substrate for oxidation. POCA did not significantly alter metabolism of the tracer, suggesting that the tracer is poorly metabolized beyond beta Me-IPPA-CoA in the oxidative pathway.

  1. Decrease of serum carnitine levels in patients with or without gastrointestinal cancer cachexia.

    PubMed

    Malaguarnera, Mariano; Risino, Corrado; Gargante, Maria Pia; Oreste, Giovanni; Barone, Gloria; Tomasello, Anna Veronica; Costanzo, Mario; Cannizzaro, Matteo Angelo

    2006-07-28

    To evaluate the levels of serum carnitine in patients with cancer in digestive organs and to compare them with other cancers in order to provide new insights into the mechanisms of cachexia. Fifty-five cachectic patients with or without gastrointestinal cancer were enrolled in the present study. They underwent routine laboratory investigations, including examination of the levels of various forms of carnitine present in serum (i.e., long-chain acylcarnitine, short-chain acylcarnitine, free carnitine, and total carnitine). These values were compared with those found in 60 cancer patients in good nutritional status as well as with those of 30 healthy control subjects. When the cachectic patients with gastro-intestinal cancer were compared with the cachectic patients without gastrointestinal cancer, the difference was -6.8 micromol/L in free carnitine (P < 0.005), 0.04 micromol/L in long chain acylcarnitine (P < 0.05), 8.7 micromol/L in total carnitine (P < 0.001). In the cachectic patients with or without gastrointestinal cancer, the difference was 12.2 micromol/L in free carnitine (P < 0.001), 4.60 micromol/L in short chain acylcarnitine (P < 0.001), and 0.60 micromol /L in long-chain acylcarnitine (P < 0.005) and 17.4 micromol/L in total carnitine (P < 0.001). In the cachectic patients with gastrointestinal cancer and the healthy control subjects, the difference was 15.5 micromol/L in free carnitine (P < 0.001), 5.2 micromol /L in short-chain acylcarnitine (P < 0.001), 1.0 micromol/L in long chain acylcarnitine (P < 0.001), and 21.8 micromol/L in total carnitine (P < 0.001). Low serum levels of carnitine in terminal neoplastic patients are decreased greatly due to the decreased dietary intake and impaired endogenous synthesis of this substance. These low serum carnitine levels also contribute to the progression of cachexia in cancer patients.

  2. [Cellular uptake of TPS-L-carnitine synthesised as transporter-based renal targeting prodrug].

    PubMed

    Li, Li; Zhu, Di; Sun, Xun

    2012-11-01

    To synthesize transporter-based renal targeting prodrug TPS-L-Carnitine and to determine its cellular uptake in vitro. Triptolide (TP) was conjugated with L-carnitine using succinate as the linker to form TPS-L-Carnitine, which could be specifically recognized by OCTN2, a cationic transporter with high affinity to L-Carnitine and is highly expressed on the apical membrane of renal proximal tubule cells. Cellular uptake assays of the prodrug and its parent drug were performed on HK-2 cells, a human proximal tubule cell line, in different temperature, concentration and in the presence of competitive inhibitors. TPS-L-Carnitine was taken up into HK-2 cells in a saturable and temperature- and concentration-dependent manner. The uptake process could be inhibited by the competitive inhibitors. The uptake of TPS-L-Carnitine was significantly higher than that of TP at 37 degrees C in the same drug concentration. TPS-L-Carnitine was taken through endocytosis mediated by transporter. TPS-L-Carnitine provides a good renal targeting property and lays the foundation for further studies in vivo.

  3. Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle

    PubMed Central

    2010-01-01

    Background The cellular and molecular mechanisms of adipose tissue biology have been studied extensively over the last two decades. Adipose tissue growth involves both an increase in fat cell size and the formation of mature adipocytes from precursor cells. To investigate how natural substances influence these two processes, we examined the effects of lotus leaf extract (Nelumbo nucifera-extract solution obtained from Silab, France) and L-carnitine on human preadipocytes and adipocytes. Methods For our in vitro studies, we used a lotus leaf extract solution alone or in combination with L-carnitine. Utilizing cultured human preadipocytes, we investigated lotus leaf extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. Studies on human adipocytes were performed aiming to elucidate the efficacy of lotus leaf extract solution to stimulate lipolytic activity. To further characterize lotus leaf extract solution-mediated effects, we determined the expression of the transcription factor adipocyte determination and differentiation factor 1 (ADD1/SREBP-1c) on the RNA- and protein level utilizing qRT-PCR and immunofluorescence analysis. Additionally, the effect of L-carnitine on beta-oxidation was analyzed using human preadipocytes and mature adipocytes. Finally, we investigated additive effects of a combination of lotus leaf extract solution and L-carnitine on triglyceride accumulation during preadipocyte/adipocyte differentiation. Results Our data showed that incubation of preadipocytes with lotus leaf extract solution significantly decreased triglyceride accumulation during adipogenesis without affecting cell viability. Compared to controls, adipocytes incubated with lotus leaf extract solution exhibited a significant increase in lipolysis-activity. Moreover, cell populations cultivated in the presence of lotus leaf extract solution showed a decrease in adipocyte differentiation capacity as indicated

  4. Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle.

    PubMed

    Siegner, Ralf; Heuser, Stefan; Holtzmann, Ursula; Söhle, Jörn; Schepky, Andreas; Raschke, Thomas; Stäb, Franz; Wenck, Horst; Winnefeld, Marc

    2010-08-05

    The cellular and molecular mechanisms of adipose tissue biology have been studied extensively over the last two decades. Adipose tissue growth involves both an increase in fat cell size and the formation of mature adipocytes from precursor cells. To investigate how natural substances influence these two processes, we examined the effects of lotus leaf extract (Nelumbo nucifera-extract solution obtained from Silab, France) and L-carnitine on human preadipocytes and adipocytes. For our in vitro studies, we used a lotus leaf extract solution alone or in combination with L-carnitine. Utilizing cultured human preadipocytes, we investigated lotus leaf extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. Studies on human adipocytes were performed aiming to elucidate the efficacy of lotus leaf extract solution to stimulate lipolytic activity. To further characterize lotus leaf extract solution-mediated effects, we determined the expression of the transcription factor adipocyte determination and differentiation factor 1 (ADD1/SREBP-1c) on the RNA- and protein level utilizing qRT-PCR and immunofluorescence analysis. Additionally, the effect of L-carnitine on beta-oxidation was analyzed using human preadipocytes and mature adipocytes. Finally, we investigated additive effects of a combination of lotus leaf extract solution and L-carnitine on triglyceride accumulation during preadipocyte/adipocyte differentiation. Our data showed that incubation of preadipocytes with lotus leaf extract solution significantly decreased triglyceride accumulation during adipogenesis without affecting cell viability. Compared to controls, adipocytes incubated with lotus leaf extract solution exhibited a significant increase in lipolysis-activity. Moreover, cell populations cultivated in the presence of lotus leaf extract solution showed a decrease in adipocyte differentiation capacity as indicated by a decrease in the ADD1

  5. Reduced L-Carnitine Transport in Aortic Endothelial Cells from Spontaneously Hypertensive Rats

    PubMed Central

    Salsoso, Rocío; Guzmán-Gutiérrez, Enrique; Arroyo, Pablo; Salomón, Carlos; Zambrano, Sonia; Ruiz-Armenta, María Victoria; Blanca, Antonio Jesús; Pardo, Fabián; Leiva, Andrea; Mate, Alfonso; Sobrevia, Luis; Vázquez, Carmen María

    2014-01-01

    Impaired L-carnitine uptake correlates with higher blood pressure in adult men, and L-carnitine restores endothelial function in aortic rings from spontaneously hypertensive rat (SHR). Thus, endothelial dysfunction in hypertension could result from lower L-carnitine transport in this cell type. L-Carnitine transport is mainly mediated by novel organic cation transporters 1 (Octn1, Na+-independent) and 2 (Octn2, Na+-dependent); however, their kinetic properties and potential consequences in hypertension are unknown. We hypothesize that L-carnitine transport kinetic properties will be altered in aortic endothelium from spontaneously hypertensive rats (SHR). L-Carnitine transport was measured at different extracellular pH (pHo 5.5–8.5) in the absence or presence of sodium in rat aortic endothelial cells (RAECs) from non-hypertensive Wistar-Kyoto (WKY) rats and SHR. Octn1 and Octn2 mRNA relative expression was also determined. Dilation of endothelium-intact or denuded aortic rings in response to calcitonine gene related peptide (CGRP, 0.1–100 nmol/L) was measured (myography) in the absence or presence of L-carnitine. Total L-carnitine transport was lower in cells from SHR compared with WKY rats, an effect due to reduced Na+-dependent (Na+ dep) compared with Na+-independent (Na+ indep) transport components. Saturable L-carnitine transport kinetics show maximal velocity (V max), without changes in apparent K m for Na+ indep transport in SHR compared with WKY rats. Total and Na+ dep component of transport were increased, but Na+ indep transport was reduced by extracellular alkalization in WKY rats. However, alkalization reduced total and Na+ indep transport in cells from SHR. Octn2 mRNA was higher than Octn-1 mRNA expression in cells from both conditions. Dilation of artery rings in response to CGRP was reduced in vessels from SHR compared with WKY rats. CGRP effect was endothelium-dependent and restored by L-carnitine. All together these results suggest that reduced

  6. Aspirin increases mitochondrial fatty acid oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse themore » mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.« less

  7. Decrease of serum carnitine levels in patients with or without gastrointestinal cancer cachexia

    PubMed Central

    Malaguarnera, Mariano; Risino, Corrado; Gargante, Maria Pia; Oreste, Giovanni; Barone, Gloria; Tomasello, Anna Veronica; Costanzo, Mario; Cannizzaro, Matteo Angelo

    2006-01-01

    AIM: To evaluate the levels of serum carnitine in patients with cancer in digestive organs and to compare them with other cancers in order to provide new insights into the mechanisms of cachexia. METHODS: Fifty-five cachectic patients with or without gastrointestinal cancer were enrolled in the present study. They underwent routine laboratory investigations, including examination of the levels of various forms of carnitine present in serum (i.e., long-chain acylcarnitine, short-chain acylcarnitine, free carnitine, and total carnitine). These values were compared with those found in 60 cancer patients in good nutritional status as well as with those of 30 healthy control subjects. RESULTS: When the cachectic patients with gastro-intestinal cancer were compared with the cachectic patients without gastrointestinal cancer, the difference was -6.8 μmol/L in free carnitine (P < 0.005), 0.04 μmol/L in long chain acylcarnitine (P < 0.05), 8.7 μmol/L in total carnitine (P < 0.001). In the cachectic patients with or without gastrointestinal cancer, the difference was 12.2 μmol/L in free carnitine (P < 0.001), 4.60 μmol/L in short chain acylcarnitine (P < 0.001), and 0.60 μmol /L in long-chain acylcarnitine (P < 0.005) and 17.4 μmol/L in total carnitine (P < 0.001). In the cachectic patients with gastrointestinal cancer and the healthy control subjects, the difference was 15.5 μmol/L in free carnitine (P < 0.001), 5.2 μmol /L in short-chain acylcarnitine (P < 0.001), 1.0 μmol/L in long chain acylcarnitine (P < 0.001), and 21.8 μmol/L in total carnitine (P < 0.001). CONCLUSION: Low serum levels of carnitine in terminal neoplastic patients are decreased greatly due to the decreased dietary intake and impaired endogenous synthesis of this substance. These low serum carnitine levels also contribute to the progression of cachexia in cancer patients. PMID:16874868

  8. Microwave-assisted extraction and quantitative LC/ID-MS measurement of total choline and free carnitine in food standard reference materials.

    PubMed

    Phillips, Melissa M; Sander, Lane C

    2012-01-01

    The Stakeholder Panel on Infant Formula and Adult Nutritionals of AOAC INTERNATIONAL has declared both choline and carnitine to be priority nutrients in infant formulas, and ongoing efforts exist to develop or improve Official Methods of Analysis for these nutrients. As a result, matrix-based certified reference materials are needed with assigned values for these compounds. In this work, traditional acid and enzymatic hydrolysis procedures were compared to microwave-assisted acid hydrolysis, and conditions optimized to provide complete sample hydrolysis and recovery of total choline from four food standard reference materials (SRMs): whole milk powder, whole egg powder, infant formula, and soy flour. The extracts were analyzed using LC on a mixed-mode column (simultaneous RP and ion exchange) with isotope dilution-MS detection to achieve simultaneous quantification of total choline and free carnitine. Total choline has been determined in these four food matrixes with excellent precision (0.65 to 2.60%) and accuracy, as confirmed by use of SRM 1849 Infant/Adult Nutritional Formula as a control material. Free carnitine has been determined in two of these food matrixes with excellent precision (0.69 to 2.19%) and accuracy, as confirmed by use of SRM 1849 Infant/Adult Nutritional Formula as a control material. Limitations in simultaneous determination of total choline and free carnitine resulted from extreme differences in concentration of the two components in egg powder and soy flour (at least three orders of magnitude). Samples required dilution to prevent poor LC peak shape, which caused decreased precision in the determination of low concentrations of free carnitine. Despite this limitation, the described method yields results comparable to current AOAC Official Method 999.14 Choline in Infant Formula, with a decrease of more than 2 h in sample preparation time.

  9. A cross-sectional study of carnitine deficiency and fatigue in pediatric cancer patients.

    PubMed

    Lai, Jin-Shei; Haertling, Tracy; Weinstein, Joanna; Rademaker, Alfred W; Goldman, Stewart

    2016-03-01

    Carnitine deficiency has been found in cancer patients and has been associated with fatigue. This study aimed to explore the prevalence of carnitine deficiency in pediatric cancer patients and its relationship with fatigue and other potential contributing factors. Children with cancer or Langerhans cell histiocytosis who were receiving treatment or had completed therapy were eligible. Patients completed the Pediatric Functional Assessment of Chronic Illness-Fatigue, the Pediatric Quality of Life Inventory Multidimensional Fatigue Scale, a numeric fatigue rating, and had carnitine levels obtained. Carnitine deficiency was defined as a total and/or free carnitine level less than normal for age or an acylcarnitine value higher than normal for age. Data from 142 children aged 8-17 were analyzed. Twenty-eight of 142 (19.7 %) had decreased total and 42.8 % (12/28) had decreased free carnitine levels. No patients had elevated acylcarnitine levels or elevated ratios. Patients with versus without carnitine deficiency differed by age (p = 0.043), treatment (p = 0.037), duration since last chemotherapy (p = 0.020), and body mass index (p = 0.010), but not fatigue, when all data were analyzed together. Yet, a negative relationship between fatigue and carnitine levels was found on a subgroup (off-therapy; fatigue worse than the norm). No significant association between fatigue and carnitine level was demonstrated when data from all patients were analyzed together; however, a significant yet unexpected relationship was found for patients who completed therapy and reported elevated fatigue. Given the small sample size, these results should be interpreted with caution. Future studies to explore impact upon excessive carnitine levels are warranted.

  10. Methamphetamine Inhibits the Glucose Uptake by Human Neurons and Astrocytes: Stabilization by Acetyl-L-Carnitine

    PubMed Central

    Szlachetka, Adam M.; Haorah, James

    2011-01-01

    Methamphetamine (METH), an addictive psycho-stimulant drug exerts euphoric effects on users and abusers. It is also known to cause cognitive impairment and neurotoxicity. Here, we hypothesized that METH exposure impairs the glucose uptake and metabolism in human neurons and astrocytes. Deprivation of glucose is expected to cause neurotoxicity and neuronal degeneration due to depletion of energy. We found that METH exposure inhibited the glucose uptake by neurons and astrocytes, in which neurons were more sensitive to METH than astrocytes in primary culture. Adaptability of these cells to fatty acid oxidation as an alternative source of energy during glucose limitation appeared to regulate this differential sensitivity. Decrease in neuronal glucose uptake by METH was associated with reduction of glucose transporter protein-3 (GLUT3). Surprisingly, METH exposure showed biphasic effects on astrocytic glucose uptake, in which 20 µM increased the uptake while 200 µM inhibited glucose uptake. Dual effects of METH on glucose uptake were paralleled to changes in the expression of astrocytic glucose transporter protein-1 (GLUT1). The adaptive nature of astrocyte to mitochondrial β-oxidation of fatty acid appeared to contribute the survival of astrocytes during METH-induced glucose deprivation. This differential adaptive nature of neurons and astrocytes also governed the differential sensitivity to the toxicity of METH in these brain cells. The effect of acetyl-L-carnitine for enhanced production of ATP from fatty oxidation in glucose-free culture condition validated the adaptive nature of neurons and astrocytes. These findings suggest that deprivation of glucose-derived energy may contribute to neurotoxicity of METH abusers. PMID:21556365

  11. Obesity and lipid stress inhibit carnitine acetyltransferase activity[S

    PubMed Central

    Seiler, Sarah E.; Martin, Ola J.; Noland, Robert C.; Slentz, Dorothy H.; DeBalsi, Karen L.; Ilkayeva, Olga R.; An, Jie; Newgard, Christopher B.; Koves, Timothy R.; Muoio, Deborah M.

    2014-01-01

    Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes. PMID:24395925

  12. Combined effect of sesamin and α-lipoic acid on hepatic fatty acid metabolism in rats.

    PubMed

    Ide, Takashi; Azechi, Ayana; Kitade, Sayaka; Kunimatsu, Yoko; Suzuki, Natsuko; Nakajima, Chihiro

    2013-04-01

    Dietary sesamin (1:1 mixture of sesamin and episesamin) decreases fatty acid synthesis but increases fatty acid oxidation in rat liver. Dietary α-lipoic acid lowers hepatic fatty acid synthesis. These changes can account for the serum lipid-lowering effect of sesamin and α-lipoic acid. It is expected that the combination of these compounds in the diet potentially ameliorates lipid metabolism more than the individual compounds. We therefore studied the combined effect of sesamin and α-lipoic acid on lipid metabolism in rats. Male Sprague-Dawley rats were fed diets supplemented with 0 or 2 g/kg sesamin and containing 0 or 2.5 g/kg α-lipoic acid for 22 days. Sesamin and α-lipoic acid decreased serum lipid concentrations and the combination of these compounds further decreased the parameters in an additive fashion. These compounds reduced the hepatic concentration of triacylglycerol, the lignan being less effective in decreasing this value. The combination failed to cause a stronger decrease in hepatic triacylglycerol concentration. The combination of sesamin and α-lipoic acid decreased the activity and mRNA levels of hepatic lipogenic enzymes in an additive fashion. Sesamin strongly increased the parameters of hepatic fatty acid oxidation enzymes. α-Lipoic acid antagonized the stimulating effect of sesamin of fatty acid oxidation through reductions in the activity of some fatty acid oxidation enzymes and carnitine concentration in the liver. This may account for the failure to observe strong reductions in hepatic triacylglycerol concentration in rats given a diet containing both sesamin and α-lipoic acid.

  13. Aspirin Increases Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.; Bharathi, Sivakama S.; Zhang, Yuxun; Stolz, Donna B.; Goetzman, Eric S.

    2016-01-01

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 hr incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. PMID:27856258

  14. L-carnitine and cancer cachexia. I. L-carnitine distribution and metabolic disorders in cancer cachexia.

    PubMed

    Szefel, Jarosław; Kruszewski, Wiesław Janusz; Ciesielski, Maciej; Szajewski, Mariusz; Kawecki, Krzysztof; Aleksandrowicz-Wrona, Ewa; Jankun, Jerzy; Lysiak-Szydłowska, Wiesława

    2012-07-01

    Cancer cachexia (CC), a progressive loss of body mass, is associated with decreased energy production. Abnormally low levels of L-carnitine (LC) in skeletal muscle means that mitochondrial β-oxidation of long-chain fatty acids (LCFA) does not occur efficiently in patients with CC. We assessed the influence of CC on LC distribution and the effects of parenteral lipid emulsions on plasma LC levels and urinary excretion. Fifty patients with CC were randomly assigned to total parenteral nutrition (TPN) with long-chain triglycerides (LCTs), or LCTs plus medium-chain triglycerides (MCTs) as 50/50. Patients were further separated into those with body-mass index (BMI) ≤ 19 kg/m(2) and BMI >19 kg/m(2). Plasma concentrations of total LC (TC) and free LC (FC) and their urinary excretion were measured, along with skeletal muscle LC levels. On average, plasma FC and TC were higher than reference values in all patients. Patients with BMI ≤ 19 kg/m(2) had lower plasma FC and TC than those with BMI >19 kg/m(2). Skeletal muscle FC in the BMI ≤ 19 kg/m(2) group was lower than reference value, but within the normal range in others. LC and FC urinary excretion was higher than reference values. Plasma LC and its urinary excretion were higher in patients administered pure LCTs relative to those given MCTs/LCTs. A decrease in skeletal muscle LC in cancer patients with CC (BMI ≤ 19 kg/m(2)) correlates with an increase in its plasma levels and increased renal excretion. A diet of MCTs/LCTs reduces LC release from muscle to plasma and urine more effectively than LCTs.

  15. Effects of exercise intensity and altered substrate availability on cardiovascular and metabolic responses to exercise after oral carnitine supplementation in athletes.

    PubMed

    Broad, Elizabeth M; Maughan, Ronald J; Galloway S, D R

    2011-10-01

    The effects of 15 d of supplementation with L-carnitine L-tartrate (LC) on metabolic responses to graded-intensity exercise under conditions of altered substrate availability were examined. Fifteen endurance-trained male athletes undertook exercise trials after a 2-d high-carbohydrate diet (60% CHO, 25% fat) at baseline (D0), on Day 14 (D14), and after a single day of high fat intake (15% CHO, 70% fat) on Day 15 (D15) in a double-blind, placebo-controlled, pair-matched design. Treatment consisted of 3 g LC (2 g L-carnitine/d; n = 8) or placebo (P, n = 7) for 15 d. Exercise trials consisted of 80 min of continuous cycling comprising 20-min periods at each of 20%, 40%, 60%, and 80% VO2peak. There was no significant difference between whole-body rates of CHO and fat oxidation at any workload between D0 and D14 trials for either the P or LC group. Both groups displayed increased fat and reduced carbohydrate oxidation between the D14 and D15 trials (p < .05). During the D15 trial, heart rate (p < .05 for 20%, 40%, and 60% workloads) and blood glucose concentration (p < .05 for 40% and 60% workloads) were lower during exercise in the LC group than in P. These responses suggest that LC may induce subtle changes in substrate handling in metabolically active tissues when fatty-acid availability is increased, but it does not affect whole-body substrate utilization during short-duration exercise at the intensities studied.

  16. L-carnitine supplementation decreases the left ventricular mass in patients undergoing hemodialysis.

    PubMed

    Sakurabayashi, Tai; Miyazaki, Shigeru; Yuasa, Yasuko; Sakai, Shinji; Suzuki, Masashi; Takahashi, Sachio; Hirasawa, Yoshihei

    2008-06-01

    Patients on long-term hemodialysis become deficient in carnitine and are frequently treated with carnitine supplementation to offset their renal anemia, lipid abnormality and cardiac dysfunction. The therapeutic value of carnitine supplementation on left ventricular hypertrophy (LVH) in patients with normal cardiac systolic function remains uncertain. The cardiac morphology and function of 10 patients given 10 mg/kg of L-carnitine orally, immediately after hemodialysis sessions 3 times per week for a 12-month period were compared with 10 untreated control patients. Using echocardiography, left ventricular fractional shortening (LVFS) and left ventricular mass index (LVMI) were measured before and after the study period. As a result, amounts of serum-free carnitine increased from 28.4+/-4.7 to 58.5+/-12.1 micromol/L. The LVMI decreased significantly from 151.8+/-21.2 to 134.0+/-16.0 g/m(2) in treated patients (p<0.01), yet the LVMI in untreated control patients did not change significantly (ie, from 153.3+/-28.2 to 167.1+/-43.1 g/m(2)). However, LVFS values remained unchanged in both groups. Although L-carnitine promoted a 31% reduction in erythropoietin requirements, hematocrit and blood pressure did not change during the study period. Supplementation with L-carnitine induced regression of LVH in patients on hemodialysis, even for those with normal systolic function.

  17. Nitrous Acid as an Oxidant in Acidic Media

    DTIC Science & Technology

    1979-09-25

    nitroso oxidations were run in sulfuric acid. The Hammett acidity function is used as the abscissa because it conveniently represents the acidity region...oxidation. 13 Consistent with the general mechanism, equations (1)-(3), and in contrast to nitration, phenol nitrosation displays a primary kinetic...oxidized 1(III) + Alc - 104O + C-O (4) with the only route now removing HNO being NO+ + H - H + + 2N0 (5) Apparently while alcohol remains, equation (5

  18. Production of L-carnitine by secondary metabolism of bacteria

    PubMed Central

    Bernal, Vicente; Sevilla, Ángel; Cánovas, Manuel; Iborra, José L

    2007-01-01

    The increasing commercial demand for L-carnitine has led to a multiplication of efforts to improve its production with bacteria. The use of different cell environments, such as growing, resting, permeabilized, dried, osmotically stressed, freely suspended and immobilized cells, to maintain enzymes sufficiently active for L-carnitine production is discussed in the text. The different cell states of enterobacteria, such as Escherichia coli and Proteus sp., which can be used to produce L-carnitine from crotonobetaine or D-carnitine as substrate, are analyzed. Moreover, the combined application of both bioprocess and metabolic engineering has allowed a deeper understanding of the main factors controlling the production process, such as energy depletion and the alteration of the acetyl-CoA/CoA ratio which are coupled to the end of the biotransformation. Furthermore, the profiles of key central metabolic activities such as the TCA cycle, the glyoxylate shunt and the acetate metabolism are seen to be closely interrelated and affect the biotransformation efficiency. Although genetically modified strains have been obtained, new strain improvement strategies are still needed, especially in Escherichia coli as a model organism for molecular biology studies. This review aims to summarize and update the state of the art in L-carnitine production using E. coli and Proteus sp, emphasizing the importance of proper reactor design and operation strategies, together with metabolic engineering aspects and the need for feed-back between wet and in silico work to optimize this biotransformation. PMID:17910757

  19. Modulatory effects of l-carnitine plus l-acetyl-carnitine on neuroendocrine control of hypothalamic functions in functional hypothalamic amenorrhea (FHA).

    PubMed

    Genazzani, Alessandro D; Despini, Giulia; Czyzyk, Adam; Podfigurna, Agnieszka; Simoncini, Tommaso; Meczekalski, Blazej

    2017-12-01

    Functional hypothalamic amenorrhea (FHA) is a relatively frequent disease due to the combination of metabolic, physical, or psychological stressors. It is characterized by the low endogenous GnRH-induced gonadotropin secretion, thus triggering the ovarian blockade and a hypoestrogenic condition. Up to now various therapeutical strategies have been proposed, both using hormonal treatment as well as neuroactive compounds. Since carnitine, namely l-acetyl-carnitine (LAC), has been demonstrated to be effective in the modulation of the central hypothalamic control of GnRH secretion, we aimed to evaluate whether a combined integrative treatment for 12 weeks of LAC (250 mg/die) and l-carnitine (500 mg/die) was effective in improving the endocrine and metabolic pathways in a group of patients (n = 27) with FHA. After the treatment, interval mean LH plasma levels increased while those of cortisol and amylase decreased significantly. When patients were subdivided according to baseline LH levels, only hypo-LH patients showed the significant increase of LH plasma levels and the significant decrease of both cortisol and amylase plasma levels. The increased 17OHP/cortisol ratio, as index of the adrenal activity, demonstrated the reduced stress-induced adrenal activity. In conclusion, our data sustain the hypothesis that the integrative administration of LAC plus l-carnitine reduced both the metabolic and the neuroendocrine impairment of patients with FHA.

  20. Effects of Eleutherococcus senticosus Cortex on Recovery from the Forced Swimming Test and Fatty Acid β-Oxidation in the Liver and Skeletal Muscle of mice.

    PubMed

    Sumiyoshi, Maho; Kimura, Yoshiyuki

    2016-03-01

    The root and stem barks of Eleutherococcus senticosus have been used to treat emotional and physical fatigue in China, Russia, Korea, and Japan. The effects of E. senticosus on recovery from physical fatigue and the expenditure of energy currently remain unclear. We herein examined the effects of E. senticosus extract on recovery from physical fatigue after the forced swimming test as well as fatty acid β-oxidation in the liver and skeletal muscle of mice. 1) Physical fatigue; E. senticosus extract (500 and 1000 mg/kg, twice daily) was administered orally to ICR male mice for 7 consecutive days. After swimming had been performed for 15 min, each mouse was placed on the cover of a 100-mm culture plate, and the time for each mouse to move away from the cover was measured. 2) Fatty acid β-oxidation in the liver and skeletal muscle; E. senticosus extract (500 and 1000 mg/kg) was administered orally twice daily to C57BL/6J male mice for 21 consecutive days. The initial and final body and liver weight were measured, and then fatty acid β-oxidation activity in the liver and skeletal muscle was measured by methods using [1- 14 C] palmitic acid. Recovery times after forced swimming were shorter in E. senticosus extract (500 and 1000 mg/kg)-treated mice than in vehicle-treated mice. The body and liver weight had no effect by the oral administration of E. senticosus extract, vitamin mixture and L-carnitine. Fatty acid β-oxidation activity in skeletal muscle was increased by E. senticosus extract (500 and 1000 mg/kg). E. senticosus may enhance recovery from physical fatigue induced by forced swimming by accelerating energy changes through fatty acid β-oxidation in skeletal muscle.

  1. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... Treatment of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... this page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  2. Screening of carnitine and biotin deficiencies on tandem mass spectrometry.

    PubMed

    Hagiwara, Shin-Ichiro; Kubota, Mitsuru; Nambu, Ryusuke; Kagimoto, Seiichi

    2017-04-01

    It is important to assess pediatric patients for nutritional deficiency when they are receiving specific interventions, such as enteral feeding. We focused on measurement of C0 and 3-hydroxyisovalerylcarnitine (C5-OH) with tandem mass spectrometry (MS/MS), which is performed as part of the newborn mass screening. The purpose of this study was to investigate the usefulness of MS/MS for screening carnitine and biotin deficiencies. Forty-two children (24 boys, 18 girls) were enrolled between December 2013 and December 2015. Blood tests, including measurement of serum free carnitine via the enzyme cycling method, and acylcarnitine analysis on MS/MS of dried blood spot (DBS), were performed for the evaluation of nutrition status. Median patient age was 2 years (range, 2 months-14 years). Mean serum free carnitine was 41.8 ± 19.2 μmol/L. In six of the 42 patients, serum free carnitine was <20 μmol/L (range, 4.0-18.7 μmol/L). C0 and C5-OH measured on MS/MS of DBS were 33.8 ± 20.2 nmol/mL and 0.48 ± 0.22 nmol/mL, respectively. There was a strong positive correlation (r = 0.89, P < 0.001) between serum free carnitine and C0 measured on the same day. In one patient on hydrolyzed formula, C5-OH was >1.00 nmol/L. Therapy-resistant eczema was improved by treatment with additional biotin and a non-hydrolyzed formula. C0 and C5-OH, measured on MS/MS of DBS, were useful for screening carnitine and biotin deficiencies. © 2016 Japan Pediatric Society.

  3. Composition, disintegrative properties, and labeling compliance of commercially available taurine and carnitine dietary products.

    PubMed

    Bragg, Rebecca R; Freeman, Lisa M; Fascetti, Andrea J; Yu, Zengshou

    2009-01-15

    To test the quality, disintegration properties, and compliance with labeling regulations for representative commercially available taurine and carnitine dietary products. Evaluation study. 11 commercially available taurine and 10 commercially available carnitine products. For each product, the amount of taurine or carnitine was determined and compared with the label claim. All products were evaluated for concentrations of mercury, arsenic, and selenium. Disintegration properties of 5 taurine and 8 carnitine products were determined in vitro. Labels were evaluated for compliance with FDA guidelines. 10 of 11 taurine and 10 of 10 carnitine products were within 10% of the stated label claim. Three of 11 taurine and 6 of 10 carnitine products were within 5% of the stated label claim. The median percentage difference between laboratory analysis and label claim was -5.7% (range, -26.3% to 2.5%) for taurine and 3.6% (range, -2.6% to 8.8%) for carnitine. No substantial amount of contamination with mercury, arsenic, or selenium was found in any of the products. During disintegration testing, 1 of 5 taurine products and 5 of 8 carnitine products did not disintegrate within 45 minutes during at least 1 test. Disintegration time for those that did disintegrate ranged from 1.7 to 37.0 minutes. All product labels conformed with FDA regulations. Taurine and carnitine products evaluated in this study closely adhered to manufacturer claims and labeling guidelines. However, disintegration testing suggested high variability in some products, possibly limiting uptake and use by animals that receive them.

  4. Investigation of electroacupuncture and manual acupuncture on carnitine and glutathione in muscle.

    PubMed

    Toda, Shizuo

    2011-01-01

    Electroacupuncture (EA) and manual acupuncture (MA) have therapeutic effects on muscle fatigue in muscle disease. The deficiencies of carnitine and glutathione induce muscle fatigue. This report investigated the effects of EA and MA on carnitine and glutathione in muscle. After the mice of EA group were fixed in the animal cage, right Zusanli (ST36) and Jiexi (ST41) were acupunctured and stimulated with uniform reinforcing and reducing method by twirling the acupuncture needle for 15 min. And then, the needle handles were connected to an electric stimulator for stimulating the acupoint with dense-sparse waves. After the mice of MA group were fixed in an animal cage, right ST36 and ST41 were acupunctured and allowed for 15 min. The mice of normal control group were not acupunctured and stimulated for 15 min. The mice of all groups were killed for collecting muscle tissue 1 h after the final treatment. Carnitine and glutathione in homogenate of muscle tissue were determined with carnitine (Kainos Laboratories Co., Tokyo, Japan) and glutathione assay kit (Dojin Chemicals Co., Kumamoto, Japan). Carnitine level in muscle tissue of MA group was significantly higher than those of EA group and normal control group. Carnitine level in muscle tissue of EA group was not significantly different from that of normal control group. Glutathione levels in muscle tissue of EA group and MA group were significantly higher than that of normal control group. This report presented that carnitine in muscle is increased by MA, and not increased by EA, and that glutathione in muscle is increased by EA and MA.

  5. Prevention of DNA damage by L-carnitine induced by metabolites accumulated in maple syrup urine disease in human peripheral leukocytes in vitro.

    PubMed

    Mescka, Caroline Paula; Wayhs, Carlos Alberto Yasin; Guerreiro, Gilian; Manfredini, Vanusa; Dutra-Filho, Carlos Severo; Vargas, Carmen Regla

    2014-09-15

    Maple syrup urine disease (MSUD) is an inherited aminoacidopathy caused by a deficiency in branched-chain α-keto acid dehydrogenase complex activity that leads to the accumulation of the branched-chain amino acids (BCAAs) leucine (Leu), isoleucine, and valine and their respective α-keto-acids, α-ketoisocaproic acid (KIC), α keto-β-methylvaleric acid, and α-ketoisovaleric acid. The major clinical features presented by MSUD patients include ketoacidosis, failure to thrive, poor feeding, apnea, ataxia, seizures, coma, psychomotor delay, and mental retardation; however, the pathophysiology of this disease is poorly understood. MSUD treatment consists of a low protein diet supplemented with a mixture containing micronutrients and essential amino acids but excluding BCAAs. Studies have shown that oxidative stress may be involved in the neuropathology of MSUD, with the existence of lipid and protein oxidative damage in affected patients. In recent years, studies have demonstrated the antioxidant role of L-carnitine (L-Car), which plays a central function in cellular energy metabolism and for which MSUD patients have a deficiency. In this work, we investigated the in vitro effect of Leu and KIC in the presence or absence of L-Car on DNA damage in peripheral whole blood leukocytes using the alkaline comet assay with silver staining and visual scoring. Leu and KIC resulted in a DNA damage index that was significantly higher than that of the control group, and L-Car was able to significantly prevent this damage, mainly that due to KIC. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Measurement of stable isotopic enrichment and concentration of long-chain fatty acyl-carnitines in tissue by HPLC-MS.

    PubMed

    Sun, Dayong; Cree, Melanie G; Zhang, Xiao-Jun; Bøersheim, Elisabet; Wolfe, Robert R

    2006-02-01

    We have developed a new method for the simultaneous measurements of stable isotopic tracer enrichments and concentrations of individual long-chain fatty acyl-carnitines in muscle tissue using ion-pairing high-performance liquid chromatography-electrospray ionization quadrupole mass spectrometry in the selected ion monitoring (SIM) mode. Long-chain fatty acyl-carnitines were extracted from frozen muscle tissue samples by acetonitrile/methanol. Baseline separation was achieved by reverse-phase HPLC in the presence of the volatile ion-pairing reagent heptafluorobutyric acid. The SIM capability of a single quadrupole mass analyzer allows further separation of the ions of interest from the sample matrixes, providing very clean total and selected ion chromatograms that can be used to calculate the stable isotopic tracer enrichment and concentration of long-chain fatty acyl-carnitines in a single analysis. The combination of these two separation techniques greatly simplifies the sample preparation procedure and increases the detection sensitivity. Applying this protocol to biological muscle samples proves it to be a very sensitive, accurate, and precise analytical tool.

  7. L-Carnitine Supplementation Improves the Behavioral Symptoms in Autistic Children

    ERIC Educational Resources Information Center

    Fahmy, Sarah Farid; El-hamamsy, Manal H.; Zaki, Osama K.; Badary, Osama A.

    2013-01-01

    L-Carnitine was proposed as a potential treatment for patients diagnosed with autism to ameliorate the behavioral symptoms associated with the disease. Thirty children diagnosed with autism were randomly assigned to receive (100 mg/kg bodyweight/day) of liquid L-carnitine (n = 16) or placebo (n = 14) for 6 months. Measurements included changes in…

  8. L-carnitine reduces susceptibility to bupivacaine-induced cardiotoxicity: an experimental study in rats.

    PubMed

    Wong, Gail K; Pehora, Carolyne; Crawford, Mark W

    2017-03-01

    The primary aim of this study was to evaluate the effect of acute administration of L-carnitine 100 mg·kg -1 iv on susceptibility to bupivacaine-induced cardiotoxicity in rats. In the first of two experiments, L-carnitine 100 mg·kg -1 iv (n = 10) or saline iv (n = 10) was administered to anesthetized and mechanically ventilated Sprague-Dawley rats following which an infusion of bupivacaine 2.0 mg·kg -1 ·min -1 iv was given until asystole occurred. The primary outcome was the probability of survival. Secondary outcomes included times to asystole, first dysrhythmia, and to 50% reductions in heart rate (HR) and mean arterial pressure (MAP). To determine whether the same dose of L-carnitine is effective in treating established bupivacaine cardiotoxicity, we also conducted a second experiment in which bupivacaine 20 mg·kg -1 iv was infused over 20 sec. Animals (n = 10 per group) received one of four iv treatments: 30% lipid emulsion 4.0 mL·kg -1 , L-carnitine 100 mg·kg -1 , 30% lipid emulsion plus L-carnitine, or saline. The primary outcome was the return of spontaneous circulation (ROSC) during resuscitation. In the first study, L-carnitine 100 mg·kg -1 increased the probability of survival during bupivacaine infusion (hazard ratio, 12.0; 95% confidence interval, 3.5 to 41.5; P < 0.001). In L-carnitine-treated animals, the times to asystole, first dysrhythmia, and to 50% reductions in HR and MAP increased by 33% (P < 0.001), 65% (P < 0.001), 71% (P < 0.001), and 63% (P < 0.001), respectively. In the second study, no animal in the control or L-carnitine alone groups achieved ROSC when compared with the lipid emulsion groups (P < 0.01). These findings suggest that acute administration of L-carnitine 100 mg·kg -1 decreases susceptibility to bupivacaine cardiotoxicity, but is ineffective during resuscitation from bupivacaine-induced cardiac arrest.

  9. Investigation of Electroacupuncture and Manual Acupuncture on Carnitine and Glutathione in Muscle

    PubMed Central

    Toda, Shizuo

    2011-01-01

    Electroacupuncture (EA) and manual acupuncture (MA) have therapeutic effects on muscle fatigue in muscle disease. The deficiencies of carnitine and glutathione induce muscle fatigue. This report investigated the effects of EA and MA on carnitine and glutathione in muscle. After the mice of EA group were fixed in the animal cage, right Zusanli (ST36) and Jiexi (ST41) were acupunctured and stimulated with uniform reinforcing and reducing method by twirling the acupuncture needle for 15 min. And then, the needle handles were connected to an electric stimulator for stimulating the acupoint with dense-sparse waves. After the mice of MA group were fixed in an animal cage, right ST36 and ST41 were acupunctured and allowed for 15 min. The mice of normal control group were not acupunctured and stimulated for 15 min. The mice of all groups were killed for collecting muscle tissue 1 h after the final treatment. Carnitine and glutathione in homogenate of muscle tissue were determined with carnitine (Kainos Laboratories Co., Tokyo, Japan) and glutathione assay kit (Dojin Chemicals Co., Kumamoto, Japan). Carnitine level in muscle tissue of MA group was significantly higher than those of EA group and normal control group. Carnitine level in muscle tissue of EA group was not significantly different from that of normal control group. Glutathione levels in muscle tissue of EA group and MA group were significantly higher than that of normal control group. This report presented that carnitine in muscle is increased by MA, and not increased by EA, and that glutathione in muscle is increased by EA and MA. PMID:19592478

  10. Determination of Free and Total Carnitine and Choline in Infant Formulas and Adult Nutritional Products by UPLC/MS/MS: Single-Laboratory Validation, First Action 2014.04.

    PubMed

    Jing, Wei; Thompson, Joseph J; Jacobs, Wesley A; Salvati, Louis M

    2015-01-01

    A single-laboratory validation (SLV) has been performed for a method that simultaneously determines choline and carnitine in nutritional products by ultra performance LC (UPLC)/MS/MS. All 11 matrixes from the AOAC Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN) were tested. Depending on the sample preparation, either the added (free, with a water dilution and filtering) or total (after microwave digestion at 120°C in nitric acid and subsequent neutralization with ammonia) species can be detected. For nonmilk containing products, the total carnitine is almost always equal to the free carnitine. A substantial difference was noted between free and total choline in all products. All Standard Method Performance Requirements for carnitine and choline have been met. This report summarizes the material sent to the AOAC Expert Review Panel for SPIFAN nutrient methods for the review of this method, as well as some additional data from an internal validation. The method was granted AOAC First Action status for carnitine in 2014 (2014.04), but the choline data are also being presented. A comparison of choline results to those from other AOAC methods is given.

  11. Alterations to mitochondrial fatty-acid use in skeletal muscle after chronic exposure to hypoxia depend on metabolic phenotype.

    PubMed

    Malgoyre, Alexandra; Chabert, Clovis; Tonini, Julia; Koulmann, Nathalie; Bigard, Xavier; Sanchez, Hervé

    2017-03-01

    We investigated the effects of chronic hypoxia on the maximal use of and sensitivity of mitochondria to different substrates in rat slow-oxidative (soleus, SOL) and fast-glycolytic (extensor digitorum longus, EDL) muscles. We studied mitochondrial respiration in situ in permeabilized myofibers, using pyruvate, octanoate, palmitoyl-carnitine (PC), or palmitoyl-coenzyme A (PCoA). The hypophagia induced by hypoxia may also alter metabolism. Therefore, we used a group of pair-fed rats (reproducing the same caloric restriction, as observed in hypoxic animals), in addition to the normoxic control fed ad libitum. The resting respiratory exchange ratio decreased after 21 days of exposure to hypobaric hypoxia (simulated elevation of 5,500 m). The respiration supported by pyruvate and octanoate were unaffected. In contrast, the maximal oxidative respiratory rate for PCoA, the transport of which depends on carnitine palmitoyltransferase 1 (CPT-1), decreased in the rapid-glycolytic EDL and increased in the slow-oxidative SOL, although hypoxia improved affinity for this substrate in both muscle types. PC and PCoA were oxidized similarly in normoxic EDL, whereas chronic hypoxia limited transport at the CPT-1 step in this muscle. The effects of hypoxia were mediated by caloric restriction in the SOL and by hypoxia itself in the EDL. We conclude that improvements in mitochondrial affinity for PCoA, a physiological long-chain fatty acid, would facilitate fatty-acid use at rest after chronic hypoxia independently of quantitative alterations of mitochondria. Conversely, decreasing the maximal oxidation of PCoA in fast-glycolytic muscles would limit fatty-acid use during exercise. NEW & NOTEWORTHY Affinity for low concentrations of long-chain fatty acids (LCFA) in mitochondria skeletal muscles increases after chronic hypoxia. Combined with a lower respiratory exchange ratio, this suggests facility for fatty acid utilization at rest. This fuel preference is related to caloric

  12. Activation of liver carnitine palmitoyltransferase-1 and mitochondrial acetoacetyl-CoA thiolase is associated with elevated ketone body levels in the elasmobranch Squalus acanthias.

    PubMed

    Treberg, Jason R; Crockett, Elizabeth L; Driedzic, William R

    2006-01-01

    Elasmobranch fishes are an ancient group of vertebrates that have unusual lipid metabolism whereby storage lipids are mobilized from the liver for peripheral oxidation largely as ketone bodies rather than as nonesterified fatty acids under normal conditions. This reliance on ketones, even when feeding, implies that elasmobranchs are chronically ketogenic. Compared to specimens sampled within 2 d of capture (recently captured), spiny dogfish Squalus acanthias that were held for 16-33 d without apparent feeding displayed a 4.5-fold increase in plasma concentration of d- beta -hydroxybutyrate (from 0.71 to 3.2 mM) and were considered ketotic. Overt activity of carnitine palmitoyltransferase-1 in liver mitochondria from ketotic dogfish was characterized by an increased apparent maximal activity, a trend of increasing affinity (reduced apparent K(m); P=0.09) for l-carnitine, and desensitization to the inhibitor malonyl-CoA relative to recently captured animals. Acetoacetyl-CoA thiolase (ACoAT) activity in isolated liver mitochondria was also markedly increased in the ketotic dogfish compared to recently captured fish, whereas no difference in 3-hydroxy-3-methylglutaryl-CoA synthase activity was found between these groups, suggesting that ACoAT plays a more important role in the activation of ketogenesis in spiny dogfish than in mammals and birds.

  13. Leptin Induces Oxidative Stress Through Activation of NADPH Oxidase in Renal Tubular Cells: Antioxidant Effect of L-Carnitine.

    PubMed

    Blanca, Antonio J; Ruiz-Armenta, María V; Zambrano, Sonia; Salsoso, Rocío; Miguel-Carrasco, José L; Fortuño, Ana; Revilla, Elisa; Mate, Alfonso; Vázquez, Carmen M

    2016-10-01

    Leptin is a protein involved in the regulation of food intake and in the immune and inflammatory responses, among other functions. Evidences demonstrate that obesity is directly associated with high levels of leptin, suggesting that leptin may directly link obesity with the elevated cardiovascular and renal risk associated with increased body weight. Adverse effects of leptin include oxidative stress mediated by activation of NADPH oxidase. The aim of this study was to evaluate the effect of L-carnitine (LC) in rat renal epithelial cells (NRK-52E) exposed to leptin in order to generate a state of oxidative stress characteristic of obesity. Leptin increased superoxide anion (O2 (•) -) generation from NADPH oxidase (via PI3 K/Akt pathway), NOX2 expression and nitrotyrosine levels. On the other hand, NOX4 expression and hydrogen peroxide (H2 O2 ) levels diminished after leptin treatment. Furthermore, the expression of antioxidant enzymes, catalase, and superoxide dismutase, was altered by leptin, and an increase in the mRNA expression of pro-inflammatory factors was also found in leptin-treated cells. LC restored all changes induced by leptin to those levels found in untreated cells. In conclusion, stimulation of NRK-52E cells with leptin induced a state of oxidative stress and inflammation that could be reversed by preincubation with LC. Interestingly, LC induced an upregulation of NOX4 and restored the release of its product, hydrogen peroxide, which suggests a protective role of NOX4 against leptin-induced renal damage. J. Cell. Biochem. 117: 2281-2288, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. An ignored cause of red urine in children: rhabdomyolysis due to carnitine palmitoyltransferase II (CPT-II) deficiency.

    PubMed

    Melek, Engin; Bulut, Fatma Derya; Atmış, Bahriye; Yılmaz, Berna Şeker; Bayazıt, Aysun Karabay; Mungan, Neslihan Önenli

    2017-02-01

    Carnitine palmitoyltransferase II (CPT-II) deficiency is an autosomal recessively inherited disorder involving the β-oxidation of long-chain fatty acids, which leads to rhabdomyolysis and subsequent acute renal failure. The clinical phenotype varies from a severe infantile form to a milder muscle form. Here, we report a 9-year-old boy referred to our hospital for the investigation of hematuria with a 2-day history of dark urine and malaise. As no erythrocytes in the microscopic examination of the urine and hemoglobinuria were present, myoglobinuria due to rhabdomyolysis was the most probable cause of dark urine. After excluding the other causes of rhabdomyolysis, with the help of metabolic investigations, the patient was suspected to have CPT-II deficiency, the most common cause of metabolic rhabdomyolysis. Our aim in presenting this case is to emphasize considering rhabdomyolysis in the differential diagnosis of dark urine in order to prevent recurrent rhabdomyolysis and renal injury.

  15. N6-Trimethyl-lysine metabolism. 3-Hydroxy-N6-trimethyl-lysine and carnitine biosynthesis.

    PubMed Central

    Hoppel, C L; Cox, R A; Novak, R F

    1980-01-01

    Rats injected with N6-[Me-3H]trimethyl-lysine excrete in the urine five radioactively labelled metabolites. Two of these identified metabolites are carnitine and 4-trimethylammoniobutyrate. A third metabolite, identified as 5-trimethylammoniopentanoate, is not an intermediate in the biosynthesis of carnitine; the fourth and major metabolite, N2-acetyl-N6-trimethyl-lysine, is not a precursor of carnitine. The remaining metabolite (3-hydroxy-N6-trimethyl-lysine) is converted into trimethylammoniobutyrate and carnitine by rat liver slices and into trimethylammoniobutyrate by rat kidney slices. In rat liver and kidney-slice experiments, radioactivity from DL-N6-trimethyl-[1-14C]lysine and DL-N6-trimethyl-[2-14C]lysine was incorporated into N2-acetyl-N6-trimethyl-lysine and 3-hydroxy-N6-trimethyl-lysine, but not into trimethylammoniobutyrate or carnitine. A procedure was devised to purify milligram quantities of 3-hydroxy-N6-trimethyl-lysine from the urine of rats injected chronically with N6-trimethyl-lysine (100 mg/kg body wt. per day). The structure of 3-hydroxy-N6-trimethyl-lysine was confirmed chemically and by nuclear-magnetic-resonance spectrometry [Novak, Swift & Hoppel (1980) Biochem. J. 188, 521--527]. The sequence for carnitine biosynthesis in liver is: N6-trimethyl-lysine leads to 3-hydryxy-N6-trimethyl-lysine leads to leads to 4-trimethylammoniobutyrate leads to carnitine. PMID:6772168

  16. The role of changes in the sensitivity of hepatic mitochondrial overt carnitine palmitoyltransferase in determining the onset of the ketosis of starvation in the rat.

    PubMed Central

    Drynan, L; Quant, P A; Zammit, V A

    1996-01-01

    The relationships between the increase in blood ketone-body concentrations and several parameters that can potentially influence the rate of hepatic fatty acid oxidation were studied during progressive starvation (up to 24 h) in the rat in order to discover whether the sensitivity of mitochondrial overt carnitine palmitoyltransferase (CPT I) to malonyl-CoA plays an important part in determining the intrahepatic potential for fatty acid oxidation during the onset of ketogenic conditions. A rapid increase in blood ketone-body concentration occurred between 12 and 16 h of starvation, several hours after the marked fall in hepatic malonyl-CoA and in serum insulin concentrations and doubling of plasma non-esterfied fatty acid (NEFA) concentration. Consequently, both the changes in hepatic malonyl-CoA and serum NEFA preceded the increase in blood ketone-body concentration by several hours. The maximal activity of CPT I increased gradually throughout the 24 h period of starvation, but the increases did not become significant before 18 h of starvation. By contrast, the sensitivity of CPT I to malonyl-CoA and the increase in blood ketone-body concentration followed an identical time course, demonstrating the central importance of this parameter in determining the ketogenic response of the liver to the onset of the starved state. PMID:8836117

  17. Oleoyl-L-carnitine inhibits glycine transport by GlyT2

    PubMed Central

    Carland, JE; Mansfield, RE; Ryan, RM; Vandenberg, RJ

    2013-01-01

    Background and Purpose Concentrations of extracellular glycine in the CNS are regulated by two Na+/Cl–-dependent glycine transporters, GlyT1 and GlyT2. Selective inhibitors of GlyT1 have been developed for the treatment of schizophrenia, whilst selective inhibitors of GlyT2 are analgesic in animal models of pain. We have assessed a series of endogenous lipids as inhibitors of GlyT1 and GlyT2. Experimental Approach Human GlyT1 and GlyT2 were expressed in Xenopus laevis oocytes, and the inhibitory actions of a series of acylcarnitines on glycine transport were measured using electrophysiological techniques. Key Results Oleoyl-l-carnitine inhibited glycine transport by GlyT2, with an IC50 of 340 nM, which is 15-fold more potent than the previously identified lipid inhibitor N-arachidonyl-glycine. Oleoyl-l-carnitine had a slow onset of inhibition and a slow washout. Using a series of chimeric GlyT1/2 transporters and point mutant transporters, we have identified an isoleucine residue in extracellular loop 4 of GlyT2 that conferred differences in sensitivity to oleoyl-l-carnitine between GlyT2 and GlyT1. Conclusions and Implications Oleoyl-l-carnitine is a potent non-competitive inhibitor of GlyT2. Previously identified GlyT2 inhibitors show potential as analgesics and the identification of oleoyl-l-carnitine as a novel GlyT2 inhibitor may lead to new ways of treating pain. PMID:22978602

  18. Hepatic Concentration and Distribution of Coenzyme A and Carnitine during a Streptococcus pneumoniae Infection in the Rat: Possible Implications on Fatty Acid Metabolism and Ketogenesis

    DTIC Science & Technology

    1981-01-09

    subcellular distribution of carnitine and coenzyme A (CoA). Compared to fasted control ILJ rats, fasted-infected rats have a decreased ketogenic capacity...decreased ketogenic capacity that is associated with an accumulation of total hepatic carnitine and a decrease in total hepatic coenzyme A. The...cholesterol. IiA .Ii INTRODUCTION Rats infected with Streptococcus pneumoniae have a decreased hep-tic ketogenic capacity which is associated with an

  19. Serum carnitine and acyl-carnitine in patients with meningitis due to tick-borne encephalitis virus infection.

    PubMed

    Kępka, Alina; Janas, Roman M; Pancewicz, Sławomir A; Świerzbińska, Renata

    2017-01-01

    Hard ticks are the main vectors of tick-borne encephalitis virus (TBEV). Free carnitine (FC) and acylcarnitines (AC) have the basic role in β-oxidation as well as the modulation of immune and nervous system. Homeostasis of carnitines in the TBE patients was not studied so far. This study aimed to evaluate FC and AC serum concentrations in patients with meningitis due to TBEV infection before and after 14 ± 3 days of treatment. The study was performed in 14 patients aged 48 ± 29 years that were divided a posteriori (based on their FC level before and after treatment) into 2 subgroups: 1-8 and 9-14. Diagnosis was based on the neurological, serological and pleocytosis evaluation. The FC level in patients 1-8 before treatment (24.1 ± 8.1) was significantly lower than in patients post-treatment (34.4 ± 8.3), lower than in the control group (40.5 ± 7.6), and lower than in patients 9-14 before treatment (40.0 ± 13.5) but not lower than in the patients 9-14 after treatment (24.7 ± 7.3 μmol/L), respectively, p < 0.05. AC concentration in the patients 1-8 before treatment (4.7 ± 2.2) was apparently lower than in patients post-treatment (9.5 ± 3.9 μmol/L) but the values were not significantly different. In patients 9-14 before treatment the AC concentration (16.3 ± 12.6) was higher than in patients after treatment (5.3 ± 4.0 μmol/L), but the difference was not statistically significant. FC and AC homeostasis in circulation was disturbed in the patients with meningitis due to TBEV infection patients. The mean levels of FC and AC in 60% of the patients were below the normal range but normalized after treatment whereas in 40% of the patients they were near or at a normal range and significantly decreased after treatment. Explanation of this intriguing finding and its clinical significance is not easy without further studies.

  20. Carnitine Palmitoyltransferase 1B 531K Allele Carriers Sustain a Higher Respiratory Quotient after Aerobic Exercise, but β3-Adrenoceptor 64R Allele Does Not Affect Lipolysis: A Human Model

    PubMed Central

    Gómez-Gómez, Eduardo; Ríos-Martínez, Martín Efrén; Castro-Rodríguez, Elena Margarita; Del-Toro-Equíhua, Mario; Ramírez-Flores, Mario; Delgado-Enciso, Ivan; Pérez-Huitimea, Ana Lilia; Baltazar-Rodríguez, Luz Margarita; Velasco-Pineda, Gilberto; Muñiz-Murguía, Jesús

    2014-01-01

    Carnitine palmitoyltransferase IB (CPT1B) and adrenoceptor beta-3 (ADRB3) are critical regulators of fat metabolism. CPT1B transports free acyl groups into mitochondria for oxidation, and ADRB3 triggers lipolysis in adipocytes, and their respective polymorphisms E531K and W64R have been identified as indicators of obesity in population studies. It is therefore important to understand the effects of these mutations on ADRB3 and CPT1B function in adipose and skeletal muscle tissue, respectively. This study aimed to analyze the rate of lipolysis of plasma indicators (glycerol, free fatty acids, and beta hydroxybutyrate) and fat oxidation (through the non-protein respiratory quotient). These parameters were measured in 37 participants during 30 min of aerobic exercise at approximately 62% of maximal oxygen uptake, followed by 30 min of recovery. During recovery, mean respiratory quotient values were higher in K allele carriers than in non-carriers, indicating low post-exercise fatty acid oxidation rates. No significant differences in lipolysis or lipid oxidation were observed between R and W allele carriers of ADRB3 at any time during the aerobic load. The substitution of glutamic acid at position 531 by lysine in the CPT1B protein decreases the mitochondrial beta-oxidation pathway, which increases the non-protein respiratory quotient value during recovery from exercise. This may contribute to weight gain or reduced weight-loss following exercise. PMID:24905907

  1. Evaluation ofserum free carnitine/acylcarnitine levels and left ventricular systolic functions in children with idiopathic epilepsy receiving valproic acid.

    PubMed

    Kulhas Celik, Ilknur; Tasdemir, Haydar Ali; Ince, Hülya; Celik, Halil; Sungur, Metin

    2018-07-01

    In the study, the effect of valproic acid on serum free/acylcarnitine levels and left ventricular systolic function in pediatric patients with idiopathic epilepsy receiving valproic acid was investigated. Patients receiving valproic acid treatment for six months between January 2012 and December 2012 were evaluated. Blood samples were obtained from the participants twice (pretreatment and the sixth month of treatment) and serum-free and acylcarnitine levels (from C2 to C18:1-OH) were measured using tandem mass spectrometry. Cardiac functions (ejection fraction, shortening fraction, cardiac output, left ventricular systolic and diastolic diameters, left atrial diameter, aortic diameter, cardiac output, and myocardial performance index) were evaluated by echocardiography simultaneously. A total of fourty patients, 23 female (57.5%) and 17 male (42.5%), with the diagnosis of idiopathic epilepsy and receiving valproic acid monotherapy were studied. Comparison of serum-free and acylcarnitine levels measured pretreatment and sixth month of treatment revealed a decrease in average C0 and C5:1 (respectively p < 0.001, p = 0.013) and an increase in C2, C3, C5-OH, C8:1 and C4-DC levels (respectively p < 0.001, p < 0.001, p = 0.019, p = 0.013, p < 0.001). Other serum acylcarnitine levels did not change significantly (p > 0.05). No difference was observed in concurrent echocardiographic measurements of left ventricular systolic function (p > 0.05). The study demonstrated that valproic acid treatment results in low levels of free carnitine and changes in some acylcarnitine subgroups but has no influence on left ventricular systolic function. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. In HepG2 cells, coexisting carnitine deficiency masks important indicators of marginal biotin deficiency.

    PubMed

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography-tandem mass spectrometry. Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased by >8-fold. Our findings provide strong

  3. Oxidative stress in erythrocytes: a study on the effect of antioxidant mixtures during intermittent exposures to high altitude

    NASA Astrophysics Data System (ADS)

    Vani, R.; Shiva Shankar Reddy, C. S.; Asha Devi, S.

    2010-09-01

    The aim of our study was to compare and assess the effectiveness of antioxidant mixtures on the erythrocytes (RBC) of adult male albino rats (Wister) subjected to simulated intermittent high altitudes—5,100 m (AL1) and 6,700 m (AL2)—to induce oxidative stress (OS). To achieve our objective, we pre-supplemented four sets of animals with different antioxidant mixtures [vitamin E (vit.E; 50 IU/kg BW), vitamin C (vit.C; 400 mg/kg) and l-carnitine (400 mg/kg)] in different combinations [M1 (vit.E+vit.C), M2 (vit.C+carnitine), M3 (vit.E+carnitine) and M4 (vit.C+vit.E+carnitine)] for 30 days prior to as well during exposure to intermittent hypobaric hypoxia (IHH). Membrane instability, in terms of osmotic fragility and hemolysis, decreased in RBCs of supplemented animals. There was a significant increase in the activity of glutathione peroxidase in the RBCs of supplemented animals. We confirmed OS imposed by IHH with assays relating to lipid [thiobarbituric acid reactive substances (TBARS) and lipofuscin (LF)] and protein (carbonyl, PrC) oxidation, and found a positive correlation between PrC and hemolysis, with a decrease in both upon supplementation with M3 and M4 mixtures. Fluorescence microscopic observation showed a maximum decrease in the LF content in rats administered M4 and M1 compared to those on M2 and M3 mixtures at both altitudes. We suggest that multiple antioxidant fortifications are effective in overcoming increased OS experienced by RBCs at high altitudes.

  4. Mitochondrial oxidative metabolism during respiratory infection in riboflavin deficient mice.

    PubMed

    Brijlal, S; Lakshmi, A V; Bamji, M S

    1999-12-01

    Studies in children and mice have shown that respiratory infection alters riboflavin metabolism, resulting in increased urinary loss of this vitamin. This could be due to mobilization of riboflavin from the liver to blood because liver Flavin adenine dinucleotide (FAD) levels were lowered in the mice during infection. To understand the functional implications of lowered hepatic FAD levels during respiratory infection, flavoprotein functions such as oxidative phosphorylation and beta-oxidation of the liver mitochondria were examined during infection in mice. Weanling mice were fed either riboflavin-restricted or control diet for 18 days and then injected with a sublethal dose of Klebsiella pneumoniae. During infection, the state 3 respiratory rate with palmitoyl-L-carnitine and glutamate were significantly lowered (27-29%) in the riboflavin-restricted group, whereas in the control group 10% reduction was observed with palmitoyl-L-carnitine as substrate. A 22% reduction in the respiratory control ratio with palmitoyl-L-carnitine as substrate was observed during infection in the riboflavin-restricted group. The beta-oxidation of palmitoyl-L-carnitine was significantly lowered (29%) in the riboflavin-restricted infected group. The results of the study suggest that the effects of infection on vital physiologic functions were more pronounced in the riboflavin-restricted mice than in the control mice. (c) Elsevier Science Inc. 1999.

  5. Role of mitochondrial dysfunction in neurotoxicity of MPP+: partial protection of PC12 cells by acetyl-L-carnitine.

    PubMed

    Virmani, Ashraf; Gaetani, Franco; Binienda, Zbigniew; Xu, Alex; Duhart, Helen; Ali, Syed F

    2004-10-01

    The damage to the central nervous system that is observed after administration of either methamphetamine (METH) or 1-methyl-4-phenylpyridinium (MPP+), the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is known to be linked to dopamine (DA). The underlying neurotoxicity mechanism for both METH and MPP+ seem to involve free radical formation and impaired mitochondrial function. The MPP+ is thought to selectively kill nigrostriatal dopaminergic neurons by inhibiting mitochondrial complex I, with cell death being attributed to oxidative stress damage to these vulnerable DA neurons. In the present study, MPP+ was shown to significantly inhibit the response to MTT by cultured PC12 cells. This inhibitory action of MPP+ could be partially reversed by the co-incubation of the cells with the acetylated form of carnitine, acetyl-L-carnitine (ALC). Since at least part of the toxic action of MPP+ is related to mitochondrial inhibition, the partial reversal of the inhibition of MTT response by ALC could involve a partial restoration of mitochondrial function. The role carnitine derivatives, such as ALC, play in attenuating MPP+ and METH-evoked toxicity is still under investigation to elucidate the contribution of mitochondrial dysfunction in mechanisms of neurotoxicity.

  6. JAK/STAT3-Regulated Fatty Acid β-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance.

    PubMed

    Wang, Tianyi; Fahrmann, Johannes Francois; Lee, Heehyoung; Li, Yi-Jia; Tripathi, Satyendra C; Yue, Chanyu; Zhang, Chunyan; Lifshitz, Veronica; Song, Jieun; Yuan, Yuan; Somlo, George; Jandial, Rahul; Ann, David; Hanash, Samir; Jove, Richard; Yu, Hua

    2018-01-09

    Cancer stem cells (CSCs) are critical for cancer progression and chemoresistance. How lipid metabolism regulates CSCs and chemoresistance remains elusive. Here, we demonstrate that JAK/STAT3 regulates lipid metabolism, which promotes breast CSCs (BCSCs) and cancer chemoresistance. Inhibiting JAK/STAT3 blocks BCSC self-renewal and expression of diverse lipid metabolic genes, including carnitine palmitoyltransferase 1B (CPT1B), which encodes the critical enzyme for fatty acid β-oxidation (FAO). Moreover, mammary-adipocyte-derived leptin upregulates STAT3-induced CPT1B expression and FAO activity in BCSCs. Human breast-cancer-derived data suggest that the STAT3-CPT1B-FAO pathway promotes cancer cell stemness and chemoresistance. Blocking FAO and/or leptin re-sensitizes them to chemotherapy and inhibits BCSCs in mouse breast tumors in vivo. We identify a critical pathway for BCSC maintenance and breast cancer chemoresistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Serum Trimethylamine N-oxide, Carnitine, Choline and Betaine in Relation to Colorectal Cancer Risk in the Alpha Tocopherol and Beta Carotene Study

    PubMed Central

    Guertin, Kristin A.; Li, Xinmin S.; Graubard, Barry I.; Albanes, Demetrius; Weinstein, Stephanie J.; Goedert, James J.; Wang, Zeneng; Hazen, Stanley L.; Sinha, Rashmi

    2017-01-01

    Background TMAO, a choline-derived metabolite produced by gut microbiota, and its biomarker precursors have not been adequately evaluated in relation to colorectal cancer risk. Methods We investigated the relationship between serum concentrations of TMAO and its biomarker precursors (choline, carnitine and betaine) and incident colorectal cancer risk in a nested case-control study of male smokers in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. We measured biomarker concentrations in baseline fasting serum samples from 644 incident colorectal cancer cases and 644 controls using LC-MS/MS. Logistic regression models estimated the odds ratio (OR) and 95% confidence interval (CI) for colorectal cancer by quartile (Q) of serum TMAO, choline, carnitine and betaine concentrations. Results Men with higher serum choline at ATBC baseline had approximately 3-fold greater risk of developing colorectal cancer over the ensuing (median ± IQR) 14 ±10 years (in fully adjusted models, Q4 vs. Q1 OR, 3.22; 95% CI, 2.24–4.61; P trend<0.0001). The prognostic value of serum choline for prediction of incident colorectal cancer development was similarly robust for proximal, distal and rectal colon cancers (all P<0.0001). The association between serum TMAO, carnitine, or betaine and colorectal cancer risk was not statistically significant (P=0.25, P=0.71 and P=0.61, respectively). Conclusions Higher serum choline concentration (but not TMAO, carnitine, or betaine) was associated with increased risk of colorectal cancer. Impact Serum choline levels showed strong prognostic value for prediction of incident colorectal cancer risks across all anatomical subsites, suggesting a role of altered choline metabolism in colorectal cancer pathogenesis. PMID:28077427

  8. PPAR-γ Regulates Carnitine Homeostasis and Mitochondrial Function in a Lamb Model of Increased Pulmonary Blood Flow

    PubMed Central

    Rafikov, Ruslan; Kumar, Sanjiv; Hou, Yali; Oishi, Peter E.; Datar, Sanjeev A.; Raff, Gary; Fineman, Jeffrey R.; Black, Stephen M.

    2012-01-01

    Objective Carnitine homeostasis is disrupted in lambs with endothelial dysfunction secondary to increased pulmonary blood flow (Shunt). Our recent studies have also indicated that the disruption in carnitine homeostasis correlates with a decrease in PPAR-γ expression in Shunt lambs. Thus, this study was carried out to determine if there is a causal link between loss of PPAR-γ signaling and carnitine dysfunction, and whether the PPAR-γ agonist, rosiglitazone preserves carnitine homeostasis in Shunt lambs. Methods and Results siRNA-mediated PPAR-γ knockdown significantly reduced carnitine palmitoyltransferases 1 and 2 (CPT1 and 2) and carnitine acetyltransferase (CrAT) protein levels. This decrease in carnitine regulatory proteins resulted in a disruption in carnitine homeostasis and induced mitochondrial dysfunction, as determined by a reduction in cellular ATP levels. In turn, the decrease in cellular ATP attenuated NO signaling through a reduction in eNOS/Hsp90 interactions and enhanced eNOS uncoupling. In vivo, rosiglitazone treatment preserved carnitine homeostasis and attenuated the development of mitochondrial dysfunction in Shunt lambs maintaining ATP levels. This in turn preserved eNOS/Hsp90 interactions and NO signaling. Conclusion Our study indicates that PPAR-γ signaling plays an important role in maintaining mitochondrial function through the regulation of carnitine homeostasis both in vitro and in vivo. Further, it identifies a new mechanism by which PPAR-γ regulates NO signaling through Hsp90. Thus, PPAR-γ agonists may have therapeutic potential in preventing the endothelial dysfunction in children with increased pulmonary blood flow. PMID:22962578

  9. Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease

    PubMed Central

    Sung, Chih-Chien; Hsu, Yu-Chuan; Lin, Yuh-Feng

    2013-01-01

    Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies. PMID:24058721

  10. Myocardial Protective Effects of L-Carnitine on Ischemia-Reperfusion Injury in Patients With Rheumatic Valvular Heart Disease Undergoing Cardiac Surgery.

    PubMed

    Li, Ming; Xue, Li; Sun, Haifeng; Xu, Suochun

    2016-12-01

    The authors used L-carnitine as an ingredient in cardioplegic solution during valve replacement surgery to investigate the protective effect of L-carnitine on myocardial ischemia-reperfusion injury (MIRI) and its possible mechanism. Prospective, randomized study. A tertiary-care hospital. The study comprised 90 patients undergoing valve replacement under cardiopulmonary bypass. Patients were divided randomly into 3 groups. L-carnitine was added to the crystalloid cardioplegic solution for experimental group 1 (3 g/L) and experimental group 2 (6 g/L), whereas no L-carnitine was used in the control group. The remainder of the treatment was identical for all 3 groups. Serum was collected from each patient 1 hour before the surgery and at 2, 6, 24, and 72 hours after unclamping the aorta, and tissue samples were obtained before cardiac arrest and after unclamping the aorta. The postoperative levels of serum aspartate aminotransferase, creatine kinase, creatine kinase-MB isozyme, and lactic acid dehydrogenase and the apoptotic index were all lower in the 2 experimental groups than those in the control group. In addition, each of the aforementioned serum enzyme levels and the apoptotic index in all 3 groups significantly increased after unclamping the aorta compared with baseline levels taken before surgery. Bcl-2 expression was higher and Bax was lower in the 2 experimental groups compared with those of the control group after unclamping the aorta. However, there was no significant difference in all the postoperative indices between the 2 experimental groups. L-carnitine may reduce cardiopulmonary bypass-induced myocardial apoptosis through modulating the expressions of Bcl-2 and Bax, resulting in a protective effect from MIRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Effects of dietary L-carnitine and coenzyme Q10 supplementation on performance and ascites mortality of broilers.

    PubMed

    Geng, Ailian; Guo, Yuming; Yuan, Jianmin

    2004-12-01

    The study was conducted to determine the effects of dietary L-carnitine and coenzyme Q10 (CoQ10) supplementation on growth performance and ascites mortality of broilers. A 3 x 3 factorial arrangement was employed with three levels (0, 75 and 150 mg/kg) of L-carnitine and three levels of CoQ10 (0, 20 and 40 mg/kg) supplementation during the experiment. Five hundred and forty one-day-old Arbor Acre male broiler chicks were randomly allocated into nine groups with six replicates each. All birds were fed with the basal diets from day 1 to 7 and changed to the experimental diets from day 8. During day 15 to 21 all the birds were exposed to low ambient temperature (15-18 degrees C) to induce ascites. The results showed that under this condition, growth performance of broilers were not significantly affected by CoQ10 or L-carnitine + CoQ10 supplementation during week 0-3 and 0-6, but body weight gain (BWG) of broilers was significantly reduced by 150 mg/ kg L-carnitine during week 0-6. Packed cell volume (PCV) of broilers was significantly decreased by L-carnitine and L-carnitine + CoQ10 supplementation (P < 0.05). Erythrocyte osmotic fragility (EOF), ascites heart index (AHI) and ascites mortality of broilers were significantly decreased by L-carnitine, CoQ10 and L-carnitine + CoQ10 supplementation. Though no significant changes were observed in total antioxidative capability (T-AOC), total superoxide dismutase (T-SOD) was increased by L-carnitine, CoQ10 and L-carnitine + CoQ10 supplementation (P < 0.05). Malonaldehyde (MDA) content was significantly decreased by CoQ10 and L-carnitine + CoQ10 supplementation. The results indicate that dietary L-carnitine and CoQ10 supplementation reduce ascites mortality of broilers; the reason may be partially associated with their antioxidative effects.

  12. Genetics Home Reference: carnitine-acylcarnitine translocase deficiency

    MedlinePlus

    ... translocase deficiency Orphanet: Carnitine-acylcarnitine translocase deficiency Screening, Technology, and Research in Genetics Patient Support and Advocacy Resources (3 links) Children Living with Inherited Metabolic Diseases (CLIMB) FOD (Fatty ...

  13. [Evaluation of serum total carnitine values in persons with severe motor and intellectual disabilities with enteral (tube) feeding].

    PubMed

    Ohtaki, Ushio; Ozawa, Hiroshi; Ishizuka, Takehiro; Kamiishi, Akiko; Sasaki, Kyoko; Nakajima, Suemi; Katayama, Ayako; Arimoto, Kiyoshi; Yagihashi, Tatsuhiko; Kimiya, Satoshi

    2012-09-01

    The nutritive evaluation and the serum carnitine values were measured for persons with severe motor and intellectual disabilities with enteral (tube) feeding. In Shimada Rehabilitation Center, twenty one people who had serum albumin levels of 3.4 g/dl or less, and were taking nutrition with enteral (tube) feeding, were tested. Body weight, blood samples, and serum carnitine levels were measured. The total carnitine value was less than the standard value in 19 patients. The total carnitine value decreased in the group taking valporate sodium (VPA), compared to the values from the group non-taking VPA. From our evaluation, we think that daily carnitine supplements is essential for persons with sever motor and intellectual disabilities taking VPA to maintain carnitine levels in the blood, and regular urine test should be done for earlier detection secondary lack complications from the secondary lack of carnitine.

  14. L-carnitine alleviates sciatic nerve crush injury in rats: functional and electron microscopy assessments

    PubMed Central

    Avsar, Ümmü Zeynep; Avsar, Umit; Aydin, Ali; Yayla, Muhammed; Ozturkkaragoz, Berna; Un, Harun; Saritemur, Murat; Mercantepe, Tolga

    2014-01-01

    Several studies have demonstrated that L-carnitine exhibits neuroprotective effects on injured sciatic nerve of rats with diabetes mellitus. It is hypothesized that L-carnitine exhibits neuroprotective effects on injured sciatic nerve of rats. Rat sciatic nerve was crush injured by a forceps and exhibited degenerative changes. After intragastric administration of 50 and 100 mg/kg L-carnitine for 30 days, axon area, myelin sheath area, axon diameter, myelin sheath diameter, and numerical density of the myelinated axons of injured sciatic nerve were similar to normal, and the function of injured sciatic nerve also improved significantly. These findings suggest that L-carnitine exhibits neuroprotective effects on sciatic nerve crush injury in rats. PMID:25206754

  15. Ghrelin Causes a Decline in GABA Release by Reducing Fatty Acid Oxidation in Cortex.

    PubMed

    Mir, Joan Francesc; Zagmutt, Sebastián; Lichtenstein, Mathieu P; García-Villoria, Judit; Weber, Minéia; Gracia, Ana; Fabriàs, Gemma; Casas, Josefina; López, Miguel; Casals, Núria; Ribes, Antònia; Suñol, Cristina; Herrero, Laura; Serra, Dolors

    2018-02-02

    Lipid metabolism, specifically fatty acid oxidation (FAO) mediated by carnitine palmitoyltransferase (CPT) 1A, has been described to be an important actor of ghrelin action in hypothalamus. However, it is not known whether CPT1A and FAO mediate the effect of ghrelin on the cortex. Here, we show that ghrelin produces a differential effect on CPT1 activity and γ-aminobutyric acid (GABA) metabolism in the hypothalamus and cortex of mice. In the hypothalamus, ghrelin enhances CPT1A activity while GABA transaminase (GABAT) activity, a key enzyme in GABA shunt metabolism, is unaltered. However, in cortex CPT1A activity and GABAT activity are reduced after ghrelin treatment. Furthermore, in primary cortical neurons, ghrelin reduces GABA release through a CPT1A reduction. By using CPT1A floxed mice, we have observed that genetic ablation of CPT1A recapitulates the effect of ghrelin on GABA release in cortical neurons, inducing reductions in mitochondrial oxygen consumption, cell content of citrate and α-ketoglutarate, and GABA shunt enzyme activity. Taken together, these observations indicate that ghrelin-induced changes in CPT1A activity modulate mitochondrial function, yielding changes in GABA metabolism. This evidence suggests that the action of ghrelin on GABA release is region specific within the brain, providing a basis for differential effects of ghrelin in the central nervous system.

  16. Effect of glycine propionyl-L-carnitine on aerobic and anaerobic exercise performance.

    PubMed

    Smith, Webb A; Fry, Andrew C; Tschume, Lesley C; Bloomer, Richard J

    2008-02-01

    The purpose of this study was to evaluate the effect of glycine propionyl-L-carnitine (GPLC) supplementation and endurance training for 8 wk on aerobic- and anaerobic-exercise performance in healthy men and women (age 18-44 yr). Participants were randomly assigned to 1 of 3 groups: placebo (n=9), 1 g/d GPLC (n=11), or 3 g/d GPLC (n=12), in a double-blind fashion. Muscle carnitine (vastus lateralis), VO(2peak), exercise time to fatigue, anaerobic threshold, anaerobic power, and total work were measured at baseline and after an 8-wk aerobic-training program. There were no statistical differences (p> .05) between or within the 3 groups for any performance-related variable or muscle carnitine concentrations after 8 wk of supplementation and training. These results suggest that up to 3 g/d GPLC for 8 wk in conjunction with aerobic-exercise training is ineffective for increasing muscle carnitine content and has no significant effects on aerobic- or anaerobic-exercise performance.

  17. The Effect of Acetyl-L-Carnitine Administration on Persons with Down Syndrome

    ERIC Educational Resources Information Center

    Pueschel, Siegfried M.

    2006-01-01

    Since previous investigations reported improvements in cognition of patients with dementia after acetyl-L-carnitine therapy and since there is an increased risk for persons with Down syndrome to develop Alzheimer disease, this study was designed to investigate the effect of acetyl-L-carnitine administration on neurological, intellectual, and…

  18. Efficacy of L-carnitine supplementation on frailty status and its biomarkers, nutritional status, and physical and cognitive function among prefrail older adults: a double-blind, randomized, placebo-controlled clinical trial

    PubMed Central

    Badrasawi, M; Shahar, Suzana; Zahara, AM; Nor Fadilah, R; Singh, Devinder Kaur Ajit

    2016-01-01

    Background Frailty is a biological syndrome of decreased reserve and resistance to stressors due to decline in multiple physiological systems. Amino acid deficiency, including L-carnitine, has been proposed to be associated with its pathophysiology. Nevertheless, the efficacy of L-carnitine supplementation on frailty status has not been documented. Thus, this study aimed to determine the effect of 10-week L-carnitine supplement (1.5 g/day) on frailty status and its biomarkers and also physical function, cognition, and nutritional status among prefrail older adults in Klang Valley, Malaysia. Methodology This study is a randomized, double-blind, placebo-controlled clinical trial conducted among 50 prefrail subjects randomized into two groups (26 in L-carnitine group and 24 in placebo group). Outcome measures include frailty status using Fried criteria and Frailty Index accumulation of deficit, selected frailty biomarkers (interleukin-6, tumor necrosis factor-alpha, and insulin-like growth factor-1), physical function, cognitive function, nutritional status and biochemical profile. Results The results indicated that the mean scores of Frailty Index score and hand grip test were significantly improved in subjects supplemented with L-carnitine (P<0.05 for both parameters) as compared to no change in the placebo group. Based on Fried criteria, four subjects (three from the L-carnitine group and one from the control group) transited from prefrail status to robust after the intervention. Conclusion L-carnitine supplementation has a favorable effect on the functional status and fatigue in prefrail older adults. PMID:27895474

  19. Efficacy of L-carnitine supplementation on frailty status and its biomarkers, nutritional status, and physical and cognitive function among prefrail older adults: a double-blind, randomized, placebo-controlled clinical trial.

    PubMed

    Badrasawi, M; Shahar, Suzana; Zahara, A M; Nor Fadilah, R; Singh, Devinder Kaur Ajit

    2016-01-01

    Frailty is a biological syndrome of decreased reserve and resistance to stressors due to decline in multiple physiological systems. Amino acid deficiency, including L-carnitine, has been proposed to be associated with its pathophysiology. Nevertheless, the efficacy of L-carnitine supplementation on frailty status has not been documented. Thus, this study aimed to determine the effect of 10-week L-carnitine supplement (1.5 g/day) on frailty status and its biomarkers and also physical function, cognition, and nutritional status among prefrail older adults in Klang Valley, Malaysia. This study is a randomized, double-blind, placebo-controlled clinical trial conducted among 50 prefrail subjects randomized into two groups (26 in L-carnitine group and 24 in placebo group). Outcome measures include frailty status using Fried criteria and Frailty Index accumulation of deficit, selected frailty biomarkers (interleukin-6, tumor necrosis factor-alpha, and insulin-like growth factor-1), physical function, cognitive function, nutritional status and biochemical profile. The results indicated that the mean scores of Frailty Index score and hand grip test were significantly improved in subjects supplemented with L-carnitine ( P <0.05 for both parameters) as compared to no change in the placebo group. Based on Fried criteria, four subjects (three from the L-carnitine group and one from the control group) transited from prefrail status to robust after the intervention. L-carnitine supplementation has a favorable effect on the functional status and fatigue in prefrail older adults.

  20. Glial β-oxidation regulates Drosophila energy metabolism.

    PubMed

    Schulz, Joachim G; Laranjeira, Antonio; Van Huffel, Leen; Gärtner, Annette; Vilain, Sven; Bastianen, Jarl; Van Veldhoven, Paul P; Dotti, Carlos G

    2015-01-15

    The brain's impotence to utilize long-chain fatty acids as fuel, one of the dogmas in neuroscience, is surprising, since the nervous system is the tissue most energy consuming and most vulnerable to a lack of energy. Challenging this view, we here show in vivo that loss of the Drosophila carnitine palmitoyltransferase 2 (CPT2), an enzyme required for mitochondrial β-oxidation of long-chain fatty acids as substrates for energy production, results in the accumulation of triacylglyceride-filled lipid droplets in adult Drosophila brain but not in obesity. CPT2 rescue in glial cells alone is sufficient to restore triacylglyceride homeostasis, and we suggest that this is mediated by the release of ketone bodies from the rescued glial cells. These results demonstrate that the adult brain is able to catabolize fatty acids for cellular energy production.

  1. Beneficial effect of butyrate, Lactobacillus casei and L-carnitine combination in preference to each in experimental colitis

    PubMed Central

    Moeinian, Mahsa; Ghasemi-Niri, Seyedeh Farnaz; Mozaffari, Shilan; Abdolghaffari, Amir Hossein; Baeeri, Maryam; Navaea-Nigjeh, Mona; Abdollahi, Mohammad

    2014-01-01

    AIM: To investigate the beneficial effect of the combination of butyrate, Lactobacillus casei, and L-carnitine in a rat colitis model. METHODS: Rats were divided into seven groups. Four groups received oral butyrate, L-carnitine, Lactobacillus casei and the combination of three agents for 10 consecutive days. The remaining groups included negative and positive controls and a sham group. Macroscopic, histopathological examinations, and biomarkers such as tumor necrosis factor-alpha (TNF-α) and interlukin-1β (IL-1β), myeloperoxidase (MPO), thiobarbituric acid reactive substances (TBARS), and ferric reduced ability of plasma (FRAP) were determined in the colon. RESULTS: The combination therapy exhibited a significant beneficial effect in alleviation of colitis compared to controls. Overall changes in reduction of TNF-α (114.66 ± 18.26 vs 171.78 ± 9.48 pg/mg protein, P < 0.05), IL-1β (24.9 ± 1.07 vs 33.06 ± 2.16 pg/mg protein, P < 0.05), TBARS (0.2 ± 0.03 vs 0.49 ± 0.04 μg/mg protein, P < 0.01), MPO (15.32 ± 0.4 vs 27.24 ± 3.84 U/mg protein, P < 0.05), and elevation of FRAP (23.46 ± 1.2 vs 15.02 ± 2.37 μmol/L, P < 0.05) support the preference of the combination therapy in comparison to controls. Although the monotherapies were also effective in improvement of colitis markers, the combination therapy was much better in improvement of colon oxidative stress markers including FRAP, TBARS, and MPO. CONCLUSION: The present combination is a suitable mixture in control of experimental colitis and should be trialed in the clinical setting. PMID:25152589

  2. Heart dysfunction induced by choline-deficiency in adult rats: the protective role of L-carnitine.

    PubMed

    Strilakou, Athina A; Lazaris, Andreas C; Perelas, Apostolos I; Mourouzis, Iordanis S; Douzis, Ioannis Ch; Karkalousos, Petros L; Stylianaki, Aikaterini Th; Pantos, Costas I; Liapi, Charis A

    2013-06-05

    Choline is a B vitamin co-factor and its deficiency seems to impair heart function. Carnitine, a chemical analog of choline, has been used as adjunct in the management of cardiac diseases. The study investigates the effects of choline deficiency on myocardial performance in adult rats and the possible modifications after carnitine administration. Wistar Albino rats (n=24), about 3 months old, were randomized into four groups fed with: (a) standard diet (control-CA), (b) choline deficient diet (CDD), (c) standard diet and carnitine in drinking water 0.15% w/v (CARN) and (d) choline deficient diet and carnitine (CDD+CARN). After four weeks of treatment, we assessed cardiac function under isometric conditions using the Langendorff preparations [Left Ventricular Developed Pressure (LVDP-mmHg), positive and negative first derivative of LVDP were evaluated], measured serum homocysteine and brain natriuretic peptide (BNP) levels and performed histopathology analyses. In the CDD group a compromised myocardium contractility compared to control (P=0.01), as assessed by LVDP, was noted along with a significantly impaired diastolic left ventricular function, as assessed by (-) dp/dt (P=0.02) that were prevented by carnitine. Systolic force, assessed by (+) dp/dt, showed no statistical difference between groups. A significant increase in serum BNP concentration was found in the CDD group (P<0.004) which was attenuated by carnitine (P<0.05), whereas homocysteine presented contradictory results (higher in the CDD+CARN group). Heart histopathology revealed a lymphocytic infiltration of myocardium and valves in the CDD group that was reduced by carnitine. In conclusion, choline deficiency in adult rats impairs heart performance; carnitine acts against these changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. γ-BUTYROBETAINE AS A SPECIFIC ANTAGONIST FOR CARNITINE IN THE DEVELOPMENT OF THE EARLY CHICK EMBRYO

    PubMed Central

    Ito, Toshio; Fraenkel, G.

    1957-01-01

    The effect of γ-butyrobetaine alone and with the addition of carnitine on the development of the early excised chick embryo has been studied. γ-Butyrobetaine in appropriate amounts exerts an inhibitory effect which can be relieved or annulled by the inclusion of appropriate amounts of carnitine. This has been interpreted as a metabolite-antimetabolite relationship, in which the normal metabolite, carnitine, is antagonized by the structurally closely related γ-butyrobetaine, and is regarded as evidence of an important role of carnitine in the metabolism of the developing chick embryo. PMID:13475691

  4. The effect of carboxylic acids on the oxidation of coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Lengyel, Attila; Tolnai, Gyula; Klencsár, Zoltán; Garg, Vijayendra Kumar; de Oliveira, Aderbal Carlos; Herojit Singh, L.; Homonnay, Zoltán; Szalay, Roland; Németh, Péter; Szabolcs, Bálint; Ristic, Mira; Music, Svetozar; Kuzmann, Ernő

    2018-05-01

    57Fe Mössbauer spectroscopy, XRD, and TEM were used to investigate the effect of mandelic- and salicylic acid coatings on the iron oxide nanoparticles. These two carboxylic acids have similar molecules size and stoichiometry, but different structure and acidity. Significant differences were observed between the Mössbauer spectra of samples coated with mandelic acid and salicylic acid. These results indicate that the occurrence of iron microenvironments in the mandelic- and salicylic acid-coated iron oxide nanoparticles is different. The results can be interpreted in terms of the influence of the acidity of carboxylic acids on the formation, core/shell structure, and oxidation of coated iron oxide nanocomposites.

  5. In HepG2 Cells, Coexisting Carnitine Deficiency Masks Important Indicators of Marginal Biotin Deficiency123

    PubMed Central

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    Background: A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. Objective: In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. Methods: We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography–tandem mass spectrometry. Results: Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased

  6. Fatty Acid Oxidation Defects and Insulin Sensitivity

    ClinicalTrials.gov

    2018-05-14

    Very Long-chain Acyl-CoA Dehydrogenase Deficiency; Trifunctional Protein Deficiency; Long-chain 3-hydroxyacyl-CoA Dehydrogenase Deficiency; Medium-chain Acyl-CoA Dehydrogenase Deficiency; Normal Volunteers; Carnitine Palmitoyltransferase II Deficiency, Myopathic

  7. Gender differences in locomotor and stereotypic behavior associated with l-carnitine treatment in mice.

    PubMed

    Benvenga, Salvatore; Itri, Elenora; Hauser, Peter; De Tolla, Louis; Yu, Sui-Foh; Testa, Giuseppe; Pappalardo, Maria Angela; Trimarchi, Francesco; Amato, Antonino

    2011-02-01

    The carnitines exert neuroprotective and neuromodulatory actions, and carnitine supplementation increases locomotor activity (LMA) in experimental animals. We measured 13 indexes of LMA and 3 indexes of stereotypic activity (STA) in adult male and female caged mice. In a randomized 4-week trial, 10 males and 10 females received 50 mg/kg body weight PO l-carnitine, and another 10 males and 10 females received placebo. Compared with placebo-treated females, placebo-treated males had a greater number of stereotypies (NSTs), stereotypy counts (STCs), stereotypy time (STT), and right front time (RFT), but smaller total distance traveled (TDT), margin distance (MD), number of vertical movements (NVMs), and left rear time (LRT). Compared with placebo-treated males, carnitine-treated males had greater horizontal activity (HA), movement time (MT), NVM, STT, TDT, STC, MD, LRT, and clockwise revolutions (CRs), but smaller left front time (LFT) and RFT. Compared with placebo-treated females, carnitine-treated females had greater NST, STC, STT, LFT, and RFT, but smaller NM, HA, NVM, VA, MT, anticlockwise revolutions (ACRs), CR, TDT, and MD; right rear time (RRT) remained statistically insignificant across all comparisons. In summary, l-carnitine caused gender differences to persist for STC, diminish for NST and STT, disappear for LRT and NVM, change in the opposite direction for TDT and MD, appear de novo for HA, VA, NM, MT, and LFT, and remain absent for RRT and ACR. Some indexes of LMA and STA are sexually dimorphic in adult mice, and l-carnitine differentially maintains, diminishes/cancels, inverts, or creates the sexual dimorphism of particular indexes. Copyright © 2011 Elsevier HS Journals, Inc. All rights reserved.

  8. Differential induction of peroxisomal beta-oxidation enzymes by clofibric acid and aspirin in piglet tissues.

    PubMed

    Yu, X X; Odle, J; Drackley, J K

    2001-11-01

    Peroxisomal beta-oxidation (POX) of fatty acids is important in lipid catabolism and thermogenesis. To investigate the effects of peroxisome proliferators on peroxisomal and mitochondrial beta-oxidation in piglet tissues, newborn pigs (1-2 days old) were allowed ad libitum access to milk replacer supplemented with 0.5% clofibric acid (CA) or 1% aspirin for 14 days. CA increased ratios of liver weight to body weight (P < 0.07), kidney weight to body weight (P < 0.05), and heart weight to body weight (P < 0.001). Aspirin decreased daily food intake and final body weight but increased the ratio of heart weight to body weight (P < 0.01). In liver, activities of POX, fatty acyl-CoA oxidase (FAO), total carnitine palmitoyltransferase (CPT), and catalase were 2.7-, 2.2-, 1.5-fold, and 33% greater, respectively, for pigs given CA than for control pigs. In heart, these variables were 2.2-, 4.1-, 1.9-, and 1.8-fold greater, respectively, for pigs given CA than for control pigs. CA did not change these variables in either kidney or muscle, except that CPT activity was increased approximately 110% (P < 0.01) in kidney. Aspirin increased only hepatic FAO and CPT activities. Northern blot analysis revealed that CA increased the abundance of catalase mRNA in heart by approximately 2.2-fold. We conclude that 1) POX and CPT in newborn pigs can be induced by peroxisomal proliferators with tissue specificity and 2) the relatively smaller induction of POX in piglets (compared with that in young or adult rodents) may be related to either age or species differences.

  9. Comparison of plasma, liver, and skeletal muscle carnitine concentrations in cats with idiopathic hepatic lipidosis and in healthy cats.

    PubMed

    Jacobs, G; Cornelius, L; Keene, B; Rakich, P; Shug, A

    1990-09-01

    Concentrations of total, free, and esterified carnitine were determined in plasma, liver, and skeletal muscle from cats with idiopathic hepatic lipidosis and compared with values from healthy cats. The mean concentrations of plasma, liver, and skeletal muscle total carnitine; plasma and skeletal muscle free carnitine; and plasma and liver esterified carnitine were greater (P less than 0.05) in cats with idiopathic hepatic lipidosis than in control cats. The mean for the ratio of free/total carnitine in plasma and liver was lower (P less than 0.05) in cats with idiopathic hepatic lipidosis than in control cats. These data suggest that carnitine deficiency does not contribute to the pathogenesis of feline idiopathic hepatic lipidosis.

  10. Oxidative stress balance is dysregulated and represents an additional target for treating cholangiocarcinoma.

    PubMed

    Uchida, Daisuke; Takaki, Akinobu; Ishikawa, Hisashi; Tomono, Yasuko; Kato, Hironari; Tsutsumi, Koichiro; Tamaki, Naofumi; Maruyama, Takayuki; Tomofuji, Takaaki; Tsuzaki, Ryuichiro; Yasunaka, Tetsuya; Koike, Kazuko; Matsushita, Hiroshi; Ikeda, Fusao; Miyake, Yasuhiro; Shiraha, Hidenori; Nouso, Kazuhiro; Yoshida, Ryuichi; Umeda, Yuzo; Shinoura, Susumu; Yagi, Takahito; Fujiwara, Toshiyoshi; Morita, Manabu; Fukushima, Masaki; Yamamoto, Kazuhide; Okada, Hiroyuki

    2016-07-01

    Pancreatico-biliary malignancies exhibit similar characteristics, including obesity-related features and poor prognosis, and require new treatment strategies. Oxidative stress is known to induce DNA damage and carcinogenesis, and its reduction is viewed as being favorable. However, it also has anti-infection and anti-cancer functions that need to be maintained. To reveal the effect of oxidative stress on cancer progression, we evaluated oxidative stress and anti-oxidative balance in pancreatic cancer (PC) and cholangiocarcinoma (CC) patients, as well as the effect of add-on antioxidant treatment to chemotherapy in a mouse cholangiocarcinoma model. We recruited 84 CC and 80 PC patients who were admitted to our hospital. Serum levels of reactive oxygen metabolites (ROM) and the anti-oxidative OXY-adsorbent test were determined and the balance of these tests was defined as an oxidative index. A diabetic mouse-based cholangiocarcinoma model was utilized to evaluate the effects of add-on antioxidant therapy on cholangiocarcinoma chemotherapy. Serum ROM was higher and anti-oxidant OXY was lower in CC patients with poor outcomes. These parameters were not significantly different in PC patients. In mice, vitamin E administration induced antioxidant hemeoxygenase (HO)-1 protein expression in cancer tissue, while the number of stem-like cells increased. l-carnitine administration improved intestinal microbiome and biliary acid balance, upregulated the hepatic mitochondrial membrane uptake related gene Cpt1 in non-cancerous tissue, and did not alter stem-like cell numbers. Oxidative stress balance was dysregulated in cholangiocarcinoma with poor outcome. The mitochondrial function-supporting agent l-carnitine is a good candidate to control oxidative stress conditions.

  11. Oxidation of phenolic acids by soil iron and manganese oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, R.G.; Cheng, H.H.; Harsh, J.B.

    Phenolic acids are intermediary metabolites of many aromatic chemicals and may be involved in humus formation, allelopathy, and nutrient availability. Depending on their structures, six phenolic acids were shown to react at different rates with oxidized forms of Fe and Mn in a Palouse soil (fine-silty, mixed, mesic Pachic Ultic Haploxeroll). Increasing methoxy substitution on the aromatic ring of phenolic acids increased the reaction rate. Reaction rate was also increased for longer carboxyl-containing side chains. After 4 h reaction, little of the applied (10 mg kg/sup -1/ soil) p-hydroxybenzoic or p-coumaric acids had reacted, while 0 to 5, 70, 90,more » and 100% of the vanillic, ferulic, syringic, and sinapic acids, respectively, had reacted. After 72 h under conditions limiting microbial growth, none of the p-hydroxybenzoic, 30% of the p-coumaric, and 50% of the vanillic acids had reacted. The reaction was shown to be predominantly chemical, and not biological, since phenolic acid extractabilities were similar for Palouse soil and for Palouse soil pretreated with LiOBr to remove organic matter. When the Palouse soil was pretreated with a sodium dithionite-citrate solution to remove Fe and Mn oxides, none of the phenolic acids reacted after 1 h. The reaction of sinapic acid with Palouse soil was shown to produce Fe(II) and soluble Mn as reaction products. The reaction of phenolic acids with soil was thus shown to be an oxidation of the phenolic acids, coupled with a reduction of soil Fe and Mn oxides.« less

  12. Natural zwitterionic l-Carnitine as efficient cryoprotectant for solvent-free cell cryopreservation.

    PubMed

    Zhai, Hongwen; Yang, Jing; Zhang, Jiamin; Pan, Chao; Cai, Nana; Zhu, Yingnan; Zhang, Lei

    2017-07-15

    Organic solvents, such as dimethyl sulfoxide (DMSO) and glycerol, have been commonly used as cryoprotectants (CPAs) in cell cryopreservation. However, their cytotoxicity and need of complex freezing protocols have impeded their applications especially in clinical cell therapy and regenerative medicine. Trehalose has been explored as a natural CPA to cryopreserve cells, but its poor cell permeability frequently results in low cryopreservation efficacy. In this work, we presented that a natural zwitterionic molecule-l-carnitine-could serve as a promising CPA for solvent-free cryopreservation. We demonstrated that l-carnitine possessed strong ability to depress water freezing point, and with ultrarapid freezing protocol, we studied the post-thaw survival efficiency of four cell lines (GLC-82 cells, MCF-7 cells, NIH-3T3 cells and Sheep Red Blood Cells) using l-carnitine without addition of any organic solvents. At the optimum l-carnitine concentration, all four cell lines could achieve above 80% survival efficiency, compared with the significantly lower efficiency using organic CPAs and trehalose. After cryopreservation, the recovered cell behaviors including cell attachment and proliferation were found to be similar to the normal cells, indicating that the cell functionalities were not affected. Moreover, l-carnitine showed no observable cytotoxicity, which was superior to the organic CPAs. This work offered an attractive alternative to traditional CPAs and held great promise to revolutionize current cryopreservation technologies, to benefit the patients in various cell-based clinical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources ofmore » EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.« less

  14. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  15. ω-Oxidation of α-Chlorinated Fatty Acids

    PubMed Central

    Brahmbhatt, Viral V.; Albert, Carolyn J.; Anbukumar, Dhanalakshmi S.; Cunningham, Bryce A.; Neumann, William L.; Ford, David A.

    2010-01-01

    Myeloperoxidase-derived HOCl targets tissue- and lipoprotein-associated plasmalogens to generate α-chlorinated fatty aldehydes, including 2-chlorohexadecanal. Under physiological conditions, 2-chlorohexadecanal is oxidized to 2-chlorohexadecanoic acid (2-ClHA). This study demonstrates the catabolism of 2-ClHA by ω-oxidation and subsequent β-oxidation from the ω-end. Mass spectrometric analyses revealed that 2-ClHA is ω-oxidized in the presence of liver microsomes with initial ω-hydroxylation of 2-ClHA. Subsequent oxidation steps were examined in a human hepatocellular cell line (HepG2). Three different α-chlorinated dicarboxylic acids, 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-chloroadipic acid (2-ClAdA), were identified. Levels of 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-ClAdA produced by HepG2 cells were dependent on the concentration of 2-ClHA and the incubation time. Synthetic stable isotope-labeled 2-ClHA was used to demonstrate a precursor-product relationship between 2-ClHA and the α-chlorinated dicarboxylic acids. We also report the identification of endogenous 2-ClAdA in human and rat urine and elevations in stable isotope-labeled urinary 2-ClAdA in rats subjected to intraperitoneal administration of stable isotope-labeled 2-ClHA. Furthermore, urinary 2-ClAdA and plasma 2-ClHA levels are increased in LPS-treated rats. Taken together, these data show that 2-ClHA is ω-oxidized to generate α-chlorinated dicarboxylic acids, which include α-chloroadipic acid that is excreted in the urine. PMID:20956542

  16. Increased Missense Mutation Burden of Fatty Acid Metabolism Related Genes in Nunavik Inuit Population

    PubMed Central

    Zhou, Sirui; Xiong, Lan; Xie, Pingxing; Ambalavanan, Amirthagowri; Bourassa, Cynthia V.; Dionne-Laporte, Alexandre; Spiegelman, Dan; Turcotte Gauthier, Maude; Henrion, Edouard; Diallo, Ousmane; Dion, Patrick A.; Rouleau, Guy A.

    2015-01-01

    Background Nunavik Inuit (northern Quebec, Canada) reside along the arctic coastline where for generations their daily energy intake has mainly been derived from animal fat. Given this particular diet it has been hypothesized that natural selection would lead to population specific allele frequency differences and unique variants in genes related to fatty acid metabolism. A group of genes, namely CPT1A, CPT1B, CPT1C, CPT2, CRAT and CROT, encode for three carnitine acyltransferases that are important for the oxidation of fatty acids, a critical step in their metabolism. Methods Exome sequencing and SNP array genotyping were used to examine the genetic variations in the six genes encoding for the carnitine acyltransferases in 113 Nunavik Inuit individuals. Results Altogether ten missense variants were found in genes CPT1A, CPT1B, CPT1C, CPT2 and CRAT, including three novel variants and one Inuit specific variant CPT1A p.P479L (rs80356779). The latter has the highest frequency (0.955) compared to other Inuit populations. We found that by comparison to Asians or Europeans, the Nunavik Inuit have an increased mutation burden in CPT1A, CPT2 and CRAT; there is also a high level of population differentiation based on carnitine acyltransferase gene variations between Nunavik Inuit and Asians. Conclusion The increased number and frequency of deleterious variants in these fatty acid metabolism genes in Nunavik Inuit may be the result of genetic adaptation to their diet and/or the extremely cold climate. In addition, the identification of these variants may help to understand some of the specific health risks of Nunavik Inuit. PMID:26010953

  17. Increased missense mutation burden of Fatty Acid metabolism related genes in nunavik inuit population.

    PubMed

    Zhou, Sirui; Xiong, Lan; Xie, Pingxing; Ambalavanan, Amirthagowri; Bourassa, Cynthia V; Dionne-Laporte, Alexandre; Spiegelman, Dan; Turcotte Gauthier, Maude; Henrion, Edouard; Diallo, Ousmane; Dion, Patrick A; Rouleau, Guy A

    2015-01-01

    Nunavik Inuit (northern Quebec, Canada) reside along the arctic coastline where for generations their daily energy intake has mainly been derived from animal fat. Given this particular diet it has been hypothesized that natural selection would lead to population specific allele frequency differences and unique variants in genes related to fatty acid metabolism. A group of genes, namely CPT1A, CPT1B, CPT1C, CPT2, CRAT and CROT, encode for three carnitine acyltransferases that are important for the oxidation of fatty acids, a critical step in their metabolism. Exome sequencing and SNP array genotyping were used to examine the genetic variations in the six genes encoding for the carnitine acyltransferases in 113 Nunavik Inuit individuals. Altogether ten missense variants were found in genes CPT1A, CPT1B, CPT1C, CPT2 and CRAT, including three novel variants and one Inuit specific variant CPT1A p.P479L (rs80356779). The latter has the highest frequency (0.955) compared to other Inuit populations. We found that by comparison to Asians or Europeans, the Nunavik Inuit have an increased mutation burden in CPT1A, CPT2 and CRAT; there is also a high level of population differentiation based on carnitine acyltransferase gene variations between Nunavik Inuit and Asians. The increased number and frequency of deleterious variants in these fatty acid metabolism genes in Nunavik Inuit may be the result of genetic adaptation to their diet and/or the extremely cold climate. In addition, the identification of these variants may help to understand some of the specific health risks of Nunavik Inuit.

  18. Increased fatty acid β-oxidation as a possible mechanism for fat-reducing effect of betaine in broilers.

    PubMed

    Leng, Zhixian; Fu, Qin; Yang, Xue; Ding, Liren; Wen, Chao; Zhou, Yanmin

    2016-08-01

    Two hundred and forty 1-day-old male Arbor Acres broiler chickens were randomly assigned to five dietary treatments with six replicates of eight chickens per replicate cage for a 42-day feeding trial. Broiler chickens were fed a basal diet supplemented with 0 (control), 250, 500, 750 or 1000 mg/kg betaine, respectively. Growth performance was not affected by betaine. Incremental levels of betaine decreased the absolute and relative weight of abdominal fat (linear P < 0.05, quadratic P < 0.01), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and total cholesterol (TC) (linear P < 0.05), and increased concentration of nonesterified fatty acid (NEFA) (linear P = 0.038, quadratic P = 0.003) in serum of broilers. Moreover, incremental levels of betaine increased linearly (P < 0.05) the proliferator-activated receptor alpha (PPARα), the carnitine palmitoyl transferase-I (CPT-I) and 3-hydroxyacyl-coenzyme A dehydrogenase (HADH) messenger RNA (mRNA) expression, but decreased linearly (P < 0.05) the fatty acid synthase (FAS) and 3-hydroxyl-3-methylglutaryl-CoA (HMGR) mRNA expression in liver of broilers. In conclusion, this study indicated that betaine supplementation did not affect growth performance of broilers, but was effective in reducing abdominal fat deposition in a dose-dependent manner, which was probably caused by combinations of a decrease in fatty acid synthesis and an increase in β-oxidation. © 2016 Japanese Society of Animal Science.

  19. Determination of Free and Total Choline and Carnitine in Infant Formula and Adult/Pediatric Nutritional Formula by Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS): Single-Laboratory Validation, First Action 2015.10.

    PubMed

    Ellingson, David J; Shippar, Jeffrey J; Gilmore, Justin M

    2016-01-01

    Analytical methods for the analysis of both L-carnitine and choline are needed for reliable and accurate determination in infant formula and adult/pediatric nutritional formula. These compounds are different in how they are utilized by the human body, but are structurally similar. L-carnitine and choline are quaternary ammonium compounds, enabling both to be retained under acidic conditions with strong cation exchange (SCX) chromatography. This method analyzes both compounds simultaneously as either the free forms or as a total amount that includes bound sources such as phosphatidylcholine or acetylcarnitine. The free analysis consists of water extraction and analysis by LC/MS/MS, while the total analysis consists of extraction by acid assisted microwave hydrolysis and analysis by LC/MS/MS. Calibration standards used for calculations are extracted with all samples in the batch. A single laboratory validation (SLV) was performed following the guidelines of the AOAC Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN) utilizing the kit of materials provided. The results achieved meet the requirements of SMPR 2012.010 and 2012.013 for L-carnitine and total choline, respectively.

  20. Activation of peroxisome proliferator-activated receptor-{delta} by GW501516 prevents fatty acid-induced nuclear factor-{kappa}B activation and insulin resistance in skeletal muscle cells.

    PubMed

    Coll, Teresa; Alvarez-Guardia, David; Barroso, Emma; Gómez-Foix, Anna Maria; Palomer, Xavier; Laguna, Juan C; Vázquez-Carrera, Manuel

    2010-04-01

    Elevated plasma free fatty acids cause insulin resistance in skeletal muscle through the activation of a chronic inflammatory process. This process involves nuclear factor (NF)-kappaB activation as a result of diacylglycerol (DAG) accumulation and subsequent protein kinase Ctheta (PKCtheta) phosphorylation. At present, it is unknown whether peroxisome proliferator-activated receptor-delta (PPARdelta) activation prevents fatty acid-induced inflammation and insulin resistance in skeletal muscle cells. In C2C12 skeletal muscle cells, the PPARdelta agonist GW501516 prevented phosphorylation of insulin receptor substrate-1 at Ser(307) and the inhibition of insulin-stimulated Akt phosphorylation caused by exposure to the saturated fatty acid palmitate. This latter effect was reversed by the PPARdelta antagonist GSK0660. Treatment with the PPARdelta agonist enhanced the expression of two well known PPARdelta target genes involved in fatty acid oxidation, carnitine palmitoyltransferase-1 and pyruvate dehydrogenase kinase 4 and increased the phosphorylation of AMP-activated protein kinase, preventing the reduction in fatty acid oxidation caused by palmitate exposure. In agreement with these changes, GW501516 treatment reversed the increase in DAG and PKCtheta activation caused by palmitate. These effects were abolished in the presence of the carnitine palmitoyltransferase-1 inhibitor etomoxir, thereby indicating that increased fatty acid oxidation was involved in the changes observed. Consistent with these findings, PPARdelta activation by GW501516 blocked palmitate-induced NF-kappaB DNA-binding activity. Likewise, drug treatment inhibited the increase in IL-6 expression caused by palmitate in C2C12 and human skeletal muscle cells as well as the protein secretion of this cytokine. These findings indicate that PPARdelta attenuates fatty acid-induced NF-kappaB activation and the subsequent development of insulin resistance in skeletal muscle cells by reducing DAG accumulation

  1. [Therapy of arrhythmia induced by myocardial ischemia. Association of L-carnitine, propafenone and mexiletine].

    PubMed

    Mondillo, S; Faglia, S; D'Aprile, N; Mangiacotti, L; Campolo, M A; Agricola, E; Palazzuoli, V

    1995-12-01

    To assess the anti-arrythmic effect of L-carnitina, propafenone and mexiletine, we tested the drugs in 50 patients with effort angina and ventricular ectopic beats (VEB). The patients were randomized in 5 groups: Group A: was treated with oral L-carnitine at the dose of 2 g x 3 for two weeks. Group B: oral propafenone at the dose of 300 mg x 3 for two weeks. Group C: as group B+L-carnitine+g x 3 at the second weeks. Group D: oral mexiletine at the dose of 200 mg x 3 for two weeks. Group E: as group D+L-carnitine 2 gr x 3 at the second week. After 7 and 14 days of treatment, in all patients an Holter examination was performed. Our results show that L-carnitine exerts a significant reduction of the VEB and its administration potentiates the anti-arrythmic effect of propafenone and mexiletine.

  2. Fatty Acid Synthesis and Oxidation in Cumulus Cells Support Oocyte Maturation in Bovine

    PubMed Central

    Sanchez-Lazo, Laura; Brisard, Daphné; Elis, Sébastien; Maillard, Virginie; Uzbekov, Rustem; Labas, Valérie; Desmarchais, Alice; Papillier, Pascal; Monget, Philippe

    2014-01-01

    Oocyte meiotic maturation requires energy from various substrates including glucose, amino acids, and lipids. Mitochondrial fatty acid (FA) β-oxidation (FAO) in the oocyte is required for meiotic maturation, which is accompanied by differential expression of numerous genes involved in FAs metabolism in surrounding cumulus cells (CCs) in vivo. The objective was to elucidate components involved in FAs metabolism in CCs during oocyte maturation. Twenty-seven genes related to lipogenesis, lipolysis, FA transport, and FAO were chosen from comparative transcriptome analysis of bovine CCs before and after maturation in vivo. Using real-time PCR, 22 were significantly upregulated at different times of in vitro maturation (IVM) in relation to oocyte meiosis progression from germinal vesicle breakdown to metaphase-II. Proteins FA synthase, acetyl-coenzyme-A carboxylase, carnitine palmitoyltransferase, perilipin 2, and FA binding protein 3 were detected by Western blot and immunolocalized to CCs and oocyte cytoplasm, with FA binding protein 3 concentrated around oocyte chromatin. By mass spectrometry, CCs lipid profiling was shown to be different before and after IVM. FAO inhibitors etomoxir and mildronate dose-dependently decreased the oocyte maturation rate in vitro. In terms of viability, cumulus enclosed oocytes were more sensitive to etomoxir than denuded oocytes. In CCs, etomoxir (150μM) led to downregulation of lipogenesis genes and upregulated lipolysis and FAO genes. Moreover, the number of lipid droplets decreased, whereas several lipid species were more abundant compared with nontreated CCs after IVM. In conclusion, FAs metabolism in CCs is important to maintain metabolic homeostasis and may influence meiosis progression and survival of enclosed oocytes. PMID:25058602

  3. Activation of peroxisome proliferator-activated receptor (PPAR)delta promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men.

    PubMed

    Risérus, Ulf; Sprecher, Dennis; Johnson, Tony; Olson, Eric; Hirschberg, Sandra; Liu, Aixue; Fang, Zeke; Hegde, Priti; Richards, Duncan; Sarov-Blat, Leli; Strum, Jay C; Basu, Samar; Cheeseman, Jane; Fielding, Barbara A; Humphreys, Sandy M; Danoff, Theodore; Moore, Niall R; Murgatroyd, Peter; O'Rahilly, Stephen; Sutton, Pauline; Willson, Tim; Hassall, David; Frayn, Keith N; Karpe, Fredrik

    2008-02-01

    Pharmacological use of peroxisome proliferator-activated receptor (PPAR)delta agonists and transgenic overexpression of PPARdelta in mice suggest amelioration of features of the metabolic syndrome through enhanced fat oxidation in skeletal muscle. We hypothesize a similar mechanism operates in humans. The PPARdelta agonist (10 mg o.d. GW501516), a comparator PPARalpha agonist (20 mug o.d. GW590735), and placebo were given in a double-blind, randomized, three-parallel group, 2-week study to six healthy moderately overweight subjects in each group. Metabolic evaluation was made before and after treatment including liver fat quantification, fasting blood samples, a 6-h meal tolerance test with stable isotope fatty acids, skeletal muscle biopsy for gene expression, and urinary isoprostanes for global oxidative stress. Treatment with GW501516 showed statistically significant reductions in fasting plasma triglycerides (-30%), apolipoprotein B (-26%), LDL cholesterol (-23%), and insulin (-11%), whereas HDL cholesterol was unchanged. A 20% reduction in liver fat content (P < 0.05) and 30% reduction in urinary isoprostanes (P = 0.01) were also observed. Except for a lowering of triglycerides (-30%, P < 0.05), none of these changes were observed in response to GW590735. The relative proportion of exhaled CO(2) directly originating from the fat content of the meal was increased (P < 0.05) in response to GW501516, and skeletal muscle expression of carnitine palmitoyl-transferase 1b (CPT1b) was also significantly increased. The PPARdelta agonist GW501516 reverses multiple abnormalities associated with the metabolic syndrome without increasing oxidative stress. The effect is probably caused by increased fat oxidation in skeletal muscle.

  4. Sibutramine and L-carnitine compared to sibutramine alone on insulin resistance in diabetic patients.

    PubMed

    Derosa, Giuseppe; Maffioli, Pamela; Salvadeo, Sibilla A T; Ferrari, Ilaria; Gravina, Alessia; Mereu, Roberto; D'Angelo, Angela; Palumbo, Ilaria; Randazzo, Sabrina; Cicero, Arrigo F G

    2010-01-01

    To evaluate the effects of one year of treatment with sibutramine plus L-carnitine compared to sibutramine on body weight, glycemic control, and insulin resistance state in type 2 diabetic patients. Two hundred and fifty-four patients with uncontrolled type 2 diabetes mellitus (T2DM) [glycated hemoglobin (HbA(1c)) >8.0%] in therapy with different oral hypoglycemic agents or insulin were enrolled in this study and randomised to take sibutramine 10 mg plus L-carnitine 2 g or sibutramine 10 mg in monotherapy. We evaluated at baseline, and after 3, 6, 9, and 12 months these parameters: body weight, body mass index (BMI), glycated hemoglobin (HbA(1c)), fasting plasma glucose (FPG), post-prandial plasma glucose (PPG), fasting plasma insulin (FPI), homeostasis model assessment insulin resistance index (HOMA-IR), total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), triglycerides (Tg), retinol binding protein-4 (RBP-4), resistin, visfatin, high sensitivity-C reactive protein (Hs-CRP). There was a decrease in body weight, BMI, HbA(1c), FPI, HOMA-IR, and RBP-4 in both groups, even when the values obtained with sibutramine plus L-carnitine were lower than the values obtained in sibutramine group. There was a faster decrease of FPG, PPG, TC, LDL-C, resistin and Hs-CRP with sibutramine plus L-carnitine even when no differences between the two groups were obtained. Furthermore, only sibutramine plus L-carnitine improved Tg, and visfatin. Sibutramine plus L-carnitine gave a faster improvement of lipid profile, insulin resistance parameters, glycemic control, and body weight compared to sibutramine.

  5. Quantitative analysis of myocardial kinetics of 15-p-[iodine-125] iodophenylpentadecanoic acid.

    PubMed

    DeGrado, T R; Holden, J E; Ng, C K; Raffel, D M; Gatley, S J

    1989-07-01

    Myocardial extraction and the characteristic tissue clearance of radioactivity following bolus injections of a radioiodinated (125I) long chain fatty acid (LCFA) analog 15-p-iodophenylpentadecanoic acid (IPPA) were examined in the isolated perfused working rat heart. Radioactivity remaining in the heart was monitored with external scintillation probes. A compartmental model which included nonesterified tracer, catabolite, and complex lipid compartments successfully fitted tissue time-radioactivity residue curves, and gave a value for the rate of IPPA oxidation 1.8 times that obtained from steady-state release of tritiated water from labeled palmitic acid. The technique was sensitive to the impairment of LCFA oxidation in hearts of animals treated with the carnitine palmitoyltransferase I inhibitor, 2[5(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA). IPPA or similar modified fatty acids may be better than 11C-labeled physiological fatty acids such as palmitate in this type of study, because efflux of unoxidized tracer and catabolite(s) from the heart are kinetically more distinct, and their contributions to the early data can be reliably separated. This technique may be suitable for extension to in vivo measurements with position tomography and appropriate modified fatty acids.

  6. Acetyl-L-carnitine improves aged brain function.

    PubMed

    Kobayashi, Satoru; Iwamoto, Machiko; Kon, Kazuo; Waki, Hatsue; Ando, Susumu; Tanaka, Yasukazu

    2010-07-01

    The effects of acetyl-L-carnitine (ALCAR), an acetyl derivative of L-carnitine, on memory and learning capacity and on brain synaptic functions of aged rats were examined. Male Fischer 344 rats were given ALCAR (100 mg/kg bodyweight) per os for 3 months and were subjected to the Hebb-Williams tasks and AKON-1 task to assess their learning capacity. Cholinergic activities were determined with synaptosomes isolated from brain cortices of the rats. Choline parameters, the high-affinity choline uptake, acetylcholine (ACh) synthesis and depolarization-evoked ACh release were all enhanced in the ALCAR group. An increment of depolarization-induced calcium ion influx into synaptosomes was also evident in rats given ALCAR. Electrophysiological studies using hippocampus slices indicated that the excitatory postsynaptic potential slope and population spike size were both increased in ALCAR-treated rats. These results indicate that ALCAR increases synaptic neurotransmission in the brain and consequently improves learning capacity in aging rats.

  7. Fatty acids in energy metabolism of the central nervous system.

    PubMed

    Panov, Alexander; Orynbayeva, Zulfiya; Vavilin, Valentin; Lyakhovich, Vyacheslav

    2014-01-01

    In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups.

  8. Fatty Acids in Energy Metabolism of the Central Nervous System

    PubMed Central

    Orynbayeva, Zulfiya; Vavilin, Valentin; Lyakhovich, Vyacheslav

    2014-01-01

    In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups. PMID:24883315

  9. Carnitine modulates crucial myocardial adenosine triphosphatases and acetylcholinesterase enzyme activities in choline-deprived rats.

    PubMed

    Strilakou, Athina A; Tsakiris, Stylianos T; Kalafatakis, Konstantinos G; Stylianaki, Aikaterini T; Karkalousos, Petros L; Koulouris, Andreas V; Mourouzis, Iordanis S; Liapi, Charis A

    2014-01-01

    Choline is an essential nutrient, and choline deficiency has been associated with cardiovascular morbidity. Choline is also the precursor of acetylcholine (cholinergic component of the heart's autonomic nervous system), whose levels are regulated by acetylcholinesterase (AChE). Cardiac contraction-relaxation cycles depend on ion gradients established by pumps like the adenosine triphosphatases (ATPases) Na(+)/K(+)-ATPase and Mg(2+)-ATPase. This study aimed to investigate the impact of dietary choline deprivation on the activity of rat myocardial AChE (cholinergic marker), Na(+)/K(+)-ATPase, and Mg(2+)-ATPase, and the possible effects of carnitine supplementation (carnitine, structurally relevant to choline, is used as an adjunct in treating cardiac diseases). Adult male albino Wistar rats were distributed among 4 groups, and were fed a standard or choline-deficient diet for one month with or without carnitine in their drinking water (0.15% w/v). The enzyme activities were determined spectrophotometrically in the myocardium homogenate. Choline deficiency seems to affect the activity of the aforementioned parameters, but only the combination of choline deprivation and carnitine supplementation increased myocardial Na(+)/K(+)-ATPase activity along with a concomitant decrease in the activities of Mg(2+)-ATPase and AChE. The results suggest that carnitine, in the setting of choline deficiency, modulates cholinergic myocardial neurotransmission and the ATPase activity in favour of cardiac work efficiency.

  10. Acid monolayer functionalized iron oxide nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  11. Genetic polymorphisms in carnitine palmitoyltransferase 1A gene are associated with variation in body composition and fasting lipid traits in Yup'ik Eskimos[S

    PubMed Central

    Lemas, Dominick J.; Wiener, Howard W.; O'Brien, Diane M.; Hopkins, Scarlett; Stanhope, Kimber L.; Havel, Peter J.; Allison, David B.; Fernandez, Jose R.; Tiwari, Hemant K.; Boyer, Bert B.

    2012-01-01

    Variants of carnitine palmitoyltransferase 1A (CPT1A), a key hepatic lipid oxidation enzyme, may influence how fatty acid oxidation contributes to obesity and metabolic outcomes. CPT1A is regulated by diet, suggesting interactions between gene variants and diet may influence outcomes. The objective of this study was to test the association of CPT1A variants with body composition and lipids, mediated by consumption of polyunsaturated fatty acids (PUFA). Obesity phenotypes and fasting lipids were measured in a cross-sectional sample of Yup'ik Eskimo individuals (n = 1141) from the Center of Alaska Native Health Research (CANHR) study. Twenty-eight tagging CPT1A SNPs were evaluated with outcomes of interest in regression models accounting for family structure. Several CPT1A polymorphisms were associated with HDL-cholesterol and obesity phenotypes. The P479L (rs80356779) variant was associated with all obesity-related traits and fasting HDL-cholesterol. Interestingly, the association of P479L with HDL-cholesterol was still significant after correcting for body mass index (BMI), percentage body fat (PBF), or waist circumference (WC). Our findings are consistent with the hypothesis that the L479 allele of the CPT1A P479L variant confers a selective advantage that is both cardioprotective (through increased HDL-cholesterol) and associated with reduced adiposity. PMID:22045927

  12. Pharmacokinetics of propionyl-l-carnitine in humans: evidence for saturable tubular reabsorption

    PubMed Central

    Pace, S; Longo, A; Toon, S; Rolan, P; Evans, A M

    2000-01-01

    Aims Propionyl-l-carnitine (PLC) is an endogenous compound which, along with l-carnitine (LC) and acetyl-l-carnitine (ALC), forms a component of the endogenous carnitine pool in humans and most, if not all, animal species. PLC is currently under investigation for the treatment of peripheral artery disease, and the present study was conducted to assess the pharmacokinetics of intravenous propionyl-l-carnitine hydrochloride. Methods This was a placebo-controlled, double-blind, parallel group, dose-escalating study in which 24 healthy males were divided into four groups of six. Four subjects from each group received propionyl-l-carnitine hydrochloride and two received placebo. The doses (1 g, 2 g, 4 g and 8 g) were administered as a constant rate infusion over 2 h and blood and urine were collected for 24 h from the start of the infusion. PLC, ALC and LC in plasma and urine were quantified by h.p.l.c. Results All 24 subjects successfully completed the study and the infusions were well tolerated. In addition to the expected increase in PLC levels, the plasma concentrations and urinary excretion of LC and ALC also increased above baseline values following intravenous propionyl-l-carnitine hydrochloride administration. At a dose of 1 g, PLC was found to have a mean (± s.d.) half-life of 1.09 ± 0.15 h, a clearance of 11.6 ± 0.24 l h−1 and a volume of distribution of 18.3 ± 2.4 l. None of these parameters changed with dose. In placebo-treated subjects, endogenous PLC, LC and ALC underwent extensive renal tubular reabsorption, as indicated by renal excretory clearance to GFR ratios of less than 0.1. The renal-excretory clearance of PLC, which was 0.33 ± 0.38 l h−1 under baseline condition, increased (P < 0.001) from 1.98 ± 0.59 l h−1 at a dose of 1 g to 5.55 ± 1.50 l h−1 at a dose of 8 g (95% confidence interval for the difference was 2.18,4.97). As a consequence, the percent of the dose excreted unchanged in urine increased (P < 0.001) from 18.1 ± 5.5% (1 g

  13. Mechanistic Insights into the Catalytic Oxidation of Carboxylic Acids on Au/TiO 2: Partial Oxidation of Propionic and Butyric Acid to Gold Ketenylidene through Unsaturated Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEntee, Monica; Tang, Wenjie; Neurock, Matthew

    Here, the partial oxidation of model C 2–C 4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO 2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO 2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au 2C=C=O, along the way to their full oxidation to form CO 2.more » Infrared measurements of Au 2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less

  14. Mechanistic Insights into the Catalytic Oxidation of Carboxylic Acids on Au/TiO 2: Partial Oxidation of Propionic and Butyric Acid to Gold Ketenylidene through Unsaturated Acids

    DOE PAGES

    McEntee, Monica; Tang, Wenjie; Neurock, Matthew; ...

    2014-12-12

    Here, the partial oxidation of model C 2–C 4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO 2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO 2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au 2C=C=O, along the way to their full oxidation to form CO 2.more » Infrared measurements of Au 2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less

  15. Testicular toxicity and sperm quality following copper exposure in Wistar albino rats: ameliorative potentials of L-carnitine.

    PubMed

    Khushboo, Maurya; Murthy, Meesala Krishna; Devi, Maibam Sunita; Sanjeev, Sanasam; Ibrahim, Kalibulla Syed; Kumar, Nachimuthu Senthil; Roy, Vikas Kumar; Gurusubramanian, Guruswami

    2018-01-01

    Copper is a persistent toxic and bio-accumulative heavy metal of global concern. Continuous exposure of copper compounds of different origin is the most common form of copper poisoning and in turn adversely altering testis morphology and function and affecting sperm quality. L-carnitine has a vital role in the spermatogenesis, physiology of sperm, sperm production and quality. This study was designed to examine whether the detrimental effects of long-term copper consumption on sperm quality and testis function of Wistar albino rat could be prevented by L-carnitine therapy. The parameters included were sperm quality (concentration, viability, motility, and morphology), histopathology, serum aspartate aminotransferase (AST), serum alanine aminotransferase (ALT), serum urea, serum creatinine, serum testosterone and testis antioxidant enzyme levels (superoxide dismutase and glutathione-S-transferase), and biomarkers of oxidative stress (lipid peroxidation and expression of heat shock protein 70 in testis). Three-month-old male Wistar rats (n = 30) were divided into six groups as group 1 (G1, 0.9% saline control), group 2 (G2, CuSO4 200 mg/kg dissolved in 0.9% saline water), groups 3 and 4 (G3 and G4, L-carnitine 50 and 100 mg/kg dissolved in 0.9% saline water, respectively), and groups 5 and 6 (G5 and G6, CuSO 4 200 mg/kg plus L-carnitine, 50 and 100 mg/kg dissolved in 0.9% saline water, respectively). Doses of copper (200 mg/kg) and L-carnitine (50 and 100 mg/kg) alone and in combinations along with untreated control were administered orally for 30 days. The following morphological, physiological, and biochemical alterations were observed due to chronic exposure of copper (200 mg/kg) to rats in comparison with the untreated control: (1) generation of oxidative stress through rise in testis lipid peroxidation (12.21 vs 3.5 nmol MDA equivalents/mg protein) and upregulation of heat shock protein (overexpression of HSP70 in testis), (2) liver and kidney

  16. Acetyl-l-carnitine partially prevents benzene-induced hematotoxicity and oxidative stress in C3H/He mice.

    PubMed

    Sun, Rongli; Zhang, Juan; Wei, Haiyan; Meng, Xing; Ding, Qin; Sun, Fengxia; Cao, Meng; Yin, Lihong; Pu, Yuepu

    2017-04-01

    Benzene is an environmental pollutant and occupational toxicant which induces hematotoxicity. Our previous metabonomics study suggested that acetyl-l-carnitine (ALCAR) decreased in the mouse plasma and bone marrow (BM) cells due to benzene exposure. In the present study, the topic on whether ALCAR influences hematotoxicity caused by benzene exposure was explored. Thirty-two male C3H/He mice were divided into four groups: control group (C: vehicle, oil), benzene group (150mg/kg body weight (b.w.) benzene), benzene+A1 group (150mg/kg b.w. benzene+100mg/kg b.w. ALCAR), and benzene+A2 group (150mg/kg b.w. benzene+200mg/kg b.w. ALCAR). Benzene was injected subcutaneously, and ALCAR was orally administrated via gavage once daily for 4 weeks consecutively. After the experimental period, the blood routine, BM cell number and frequency of hematopoietic stem/progenitor cell (HS/PC) were assessed. The mitochondrial membrane potential and ATP level were determined to evaluate the mitochondrial function. Reactive oxygen species (ROS), hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA) levels were also examined, and the comet assay was performed to measure oxidative stress. Results showed that ALCAR intervention can partially reduce the benzene-induced damage on BM and HS/PCs and can simultaneously alleviate the DNA damage by reducing benzene-induced H 2 O 2, ROS, and MDA. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Inhibition of inflammatory gene expression in keratinocytes using a composition containing carnitine, thioctic Acid and saw palmetto extract.

    PubMed

    Chittur, Sridar; Parr, Brian; Marcovici, Geno

    2011-01-01

    Chronic inflammation of the hair follicle (HF) is considered a contributing factor in the pathogenesis of androgenetic alopecia (AGA). Previously, we clinically tested liposterolic extract of Serenoa repens (LSESr) and its glycoside, β-sitosterol, in subjects with AGA and showed a highly positive response to treatment. In this study, we sought to determine whether blockade of inflammation using a composition containing LSESr as well as two anti-inflammatory agents (carnitine and thioctic acid) could alter the expression of molecular markers of inflammation in a well-established in vitro system. Using a well-validated assay representative of HF keratinocytes, specifically, stimulation of cultured human keratinocyte cells in vitro, we measured changes in gene expression of a spectrum of well-known inflammatory markers. Lipopolysaccharide (LPS) provided an inflammatory stimulus. In particular, we found that the composition effectively suppressed LPS-activated gene expression of chemokines, including CCL17, CXCL6 and LTB(4) associated with pathways involved in inflammation and apoptosis. Our data support the hypothesis that the test compound exhibits anti-inflammatory characteristics in a well-established in vitro assay representing HF keratinocyte gene expression. These findings suggest that 5-alpha reductase inhibitors combined with blockade of inflammatory processes could represent a novel two-pronged approach in the treatment of AGA with improved efficacy over current modalities.

  18. Increasing skeletal muscle carnitine availability does not alter the adaptations to high-intensity interval training.

    PubMed

    Shannon, Christopher E; Ghasemi, Reza; Greenhaff, Paul L; Stephens, Francis B

    2018-01-01

    Increasing skeletal muscle carnitine availability alters muscle metabolism during steady-state exercise in healthy humans. We investigated whether elevating muscle carnitine, and thereby the acetyl-group buffering capacity, altered the metabolic and physiological adaptations to 24 weeks of high-intensity interval training (HIIT) at 100% maximal exercise capacity (Watt max ). Twenty-one healthy male volunteers (age 23±2 years; BMI 24.2±1.1 kg/m 2 ) performed 2 × 3 minute bouts of cycling exercise at 100% Watt max , separated by 5 minutes of rest. Fourteen volunteers repeated this protocol following 24 weeks of HIIT and twice-daily consumption of 80 g carbohydrate (CON) or 3 g l-carnitine+carbohydrate (CARN). Before HIIT, muscle phosphocreatine (PCr) degradation (P<.0001), glycogenolysis (P<.0005), PDC activation (P<.05), and acetylcarnitine (P<.005) were 2.3-, 2.1-, 1.5-, and 1.5-fold greater, respectively, in exercise bout two compared to bout 1, while lactate accumulation tended (P<.07) to be 1.5-fold greater. Following HIIT, muscle free carnitine was 30% greater in CARN vs CON at rest and remained 40% elevated prior to the start of bout 2 (P<.05). Following bout 2, free carnitine content, PCr degradation, glycogenolysis, lactate accumulation, and PDC activation were all similar between CON and CARN, albeit markedly lower than before HIIT. VO 2max , Watt max , and work output were similarly increased in CON and CARN, by 9, 15, and 23% (P<.001). In summary, increased reliance on non-mitochondrial ATP resynthesis during a second bout of intense exercise is accompanied by increased carnitine acetylation. Augmenting muscle carnitine during 24 weeks of HIIT did not alter this, nor did it enhance muscle metabolic adaptations or performance gains beyond those with HIIT alone. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    PubMed

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (<5.0), but hydrolyzed to oxaluric acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  20. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation.

    PubMed

    Leighton, F; Bergseth, S; Rørtveit, T; Christiansen, E N; Bremer, J

    1989-06-25

    The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.

  1. Hierarchical concave layered triangular PtCu alloy nanostructures: rational integration of dendritic nanostructures for efficient formic acid electrooxidation.

    PubMed

    Wu, Fengxia; Lai, Jianping; Zhang, Ling; Niu, Wenxin; Lou, Baohua; Luque, Rafael; Xu, Guobao

    2018-05-08

    The rational construction of multi-dimensional layered noble metal nanostructures is a great challenge since noble metals are not layer-structured materials. Herein, we report a one-pot hydrothermal synthetic method for PtCu hierarchical concave layered triangular (HCLT) nanostructures using dl-carnitine, KI, poly(vinylpyrrolidone), CuCl2, and H2PtCl6. The PtCu HCLT nanostructure is comprised of multilayered triangular dendrites. Its layer number is tunable by changing dl-carnitine concentrations, and the concavity/convexity of the PtCu triangle nanostructures is tunable by changing the H2PtCl6/CuCl2 ratio or KI concentrations. Hierarchical trigonal bipyramid nanoframes are also obtained under certain conditions. Because of its advantageous nanostructure and bimetallic synergetic effect, the obtained PtCu HCLT nanostructure exhibits enhanced electrocatalytic activity and prolonged stability to formic acid oxidation compared to commercial Pt black, Pd/C and some other nanostructures.

  2. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Tahir, Muhammad Nawaz

    2014-11-01

    Isoniazid is the primary constituent of “triple therapy” used to effectively treat tuberculosis. In tuberculosis and other diseases, tissue inflammation and free radical burst from macrophages results in oxidative stress. These free radicals cause pulmonary inflammation if not countered by anti-oxidants. Therefore, in the present study cocrystals of isoniazid with four anti-oxidant hydroxy benzoic acids have been reported. Gallic acid, 2,3-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, and 3-hydroxybenzoic acid resulted in the formation of cocrystals when reacted with isoniazid. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the cocrystals of isoniazid with Gallic acid, 2,3-dihydroxybenzoic acid and 3-hydroxybenzoic acid. While cocrystal of 3,5-dihydroxybenzoic acid formed the pyridine-hydroxy group synthon. Other synthons of different graph sets are formed between hydrazide group of isoniazid and coformers involving Nsbnd H⋯O and Osbnd H⋯N bonds. All the cocrystals were in 1:1 stoichiometric ratio.

  3. Regulation of Substrate Oxidation Preferences in Muscle by the Peptide Hormone Adropin

    PubMed Central

    Gao, Su; McMillan, Ryan P.; Jacas, Jordi; Zhu, Qingzhang; Li, Xuesen; Kumar, Ganesh K.; Casals, Núria; Hegardt, Fausto G.; Robbins, Paul D.; Lopaschuk, Gary D.; Hulver, Matthew W.

    2014-01-01

    Rigorous control of substrate oxidation by humoral factors is essential for maintaining metabolic homeostasis. During feeding and fasting cycles, carbohydrates and fatty acids are the two primary substrates in oxidative metabolism. Here, we report a novel role for the peptide hormone adropin in regulating substrate oxidation preferences. Plasma levels of adropin increase with feeding and decrease upon fasting. A comparison of whole-body substrate preference and skeletal muscle substrate oxidation in adropin knockout and transgenic mice suggests adropin promotes carbohydrate oxidation over fat oxidation. In muscle, adropin activates pyruvate dehydrogenase (PDH), which is rate limiting for glucose oxidation and suppresses carnitine palmitoyltransferase-1B (CPT-1B), a key enzyme in fatty acid oxidation. Adropin downregulates PDH kinase-4 (PDK4) that inhibits PDH, thereby increasing PDH activity. The molecular mechanisms of adropin’s effects involve acetylation (suggesting inhibition) of the transcriptional coactivator PGC-1α, downregulating expression of Cpt1b and Pdk4. Increased PGC-1α acetylation by adropin may be mediated by inhibiting Sirtuin-1 (SIRT1), a PGC-1α deacetylase. Altered SIRT1 and PGC-1α activity appear to mediate aspects of adropin’s metabolic actions in muscle. Similar outcomes were observed in fasted mice treated with synthetic adropin. Together, these results suggest a role for adropin in regulating muscle substrate preference under various nutritional states. PMID:24848071

  4. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders

    PubMed Central

    MacFabe, Derrick F.

    2012-01-01

    Recent evidence suggests potential, but unproven, links between dietary, metabolic, infective, and gastrointestinal factors and the behavioral exacerbations and remissions of autism spectrum disorders (ASDs). Propionic acid (PPA) and its related short-chain fatty acids (SCFAs) are fermentation products of ASD-associated bacteria (Clostridia, Bacteriodetes, Desulfovibrio). SCFAs represent a group of compounds derived from the host microbiome that are plausibly linked to ASDs and can induce widespread effects on gut, brain, and behavior. Intraventricular administration of PPA and SCFAs in rats induces abnormal motor movements, repetitive interests, electrographic changes, cognitive deficits, perseveration, and impaired social interactions. The brain tissue of PPA-treated rats shows a number of ASD-linked neurochemical changes, including innate neuroinflammation, increased oxidative stress, glutathione depletion, and altered phospholipid/acylcarnitine profiles. These directly or indirectly contribute to acquired mitochondrial dysfunction via impairment in carnitine-dependent pathways, consistent with findings in patients with ASDs. Of note, common antibiotics may impair carnitine-dependent processes by altering gut flora favoring PPA-producing bacteria and by directly inhibiting carnitine transport across the gut. Human populations that are partial metabolizers of PPA are more common than previously thought. PPA has further bioactive effects on neurotransmitter systems, intracellular acidification/calcium release, fatty acid metabolism, gap junction gating, immune function, and alteration of gene expression that warrant further exploration. These findings are consistent with the symptoms and proposed underlying mechanisms of ASDs and support the use of PPA infusions in rats as a valid animal model of the condition. Collectively, this offers further support that gut-derived factors, such as dietary or enteric bacterially produced SCFAs, may be plausible environmental

  5. Effects of high-intensity intermittent training on carnitine palmitoyl transferase activity in the gastrocnemius muscle of rats

    PubMed Central

    Carnevali, L.C.; Eder, R.; Lira, F.S.; Lima, W.P.; Gonçalves, D.C.; Zanchi, N.E.; Nicastro, H.; Lavoie, J.M.; Seelaender, M.C.L.

    2012-01-01

    We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min−1·mg protein−1) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a “time-efficient” strategy inducing metabolic adaptation. PMID:22735180

  6. Long-Chain Fatty Acid Oxidation Disorders (LC-FAOD) Extension Study for Subjects Previously Enrolled in Triheptanoin Studies.

    ClinicalTrials.gov

    2018-06-19

    Carnitine Palmitoyltransferase (CPT I or CPT II) Deficiency; Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency; Long-chain 3-hydroxy-acyl-CoA Dehydrogenase (LCHAD) Deficiency; Trifunctional Protein (TFP) Deficiency; Carnitine-acylcarnitine Translocase (CACT) Deficiency

  7. Topical zinc oxide vs. salicylic acid-lactic acid combination in the treatment of warts.

    PubMed

    Khattar, Joe A; Musharrafieh, Umayya M; Tamim, Hala; Hamadeh, Ghassan N

    2007-04-01

    Warts are a common dermatologic problem. Treatment is painful, prolonged, and can cause scarring. To evaluate topical zinc oxide for the treatment of warts. This was a randomized, double-blind controlled trial of 44 patients. Twenty-two patients were given topical zinc oxide 20% ointment, and the other 22 received salicylic acid 15% + lactic acid 15% ointment twice daily. All patients were followed up for 3 months or until cure, whichever occurred first. All patients were observed for side-effects. Sixteen patients in the zinc group and 19 in the salicylic acid-lactic acid group completed the study. In the zinc oxide-treated group, 50% of the patients showed complete cure and 18.7% failed to respond, compared with 42% and 26%, respectively, in the salicylic acid-lactic acid-treated group. No patients developed serious side-effects. Topical zinc oxide is an efficacious, painless, and safe therapeutic option for wart treatment.

  8. Enzymes involved in branched-chain amino acid metabolism in humans.

    PubMed

    Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina

    2017-06-01

    Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.

  9. Identification of a novel malonyl-CoA IC(50) for CPT-I: implications for predicting in vivo fatty acid oxidation rates.

    PubMed

    Smith, Brennan K; Perry, Christopher G R; Koves, Timothy R; Wright, David C; Smith, Jeffrey C; Neufer, P Darrell; Muoio, Deborah M; Holloway, Graham P

    2012-11-15

    Published values regarding the sensitivity (IC(50)) of CPT-I (carnitine palmitoyltransferase I) to M-CoA (malonyl-CoA) inhibition in isolated mitochondria are inconsistent with predicted in vivo rates of fatty acid oxidation. Therefore we have re-examined M-CoA inhibition kinetics under various P-CoA (palmitoyl-CoA) concentrations in both isolated mitochondria and PMFs (permeabilized muscle fibres). PMFs have an 18-fold higher IC(50) (0.61 compared with 0.034 μM) in the presence of 25 μM P-CoA and a 13-fold higher IC(50) (6.3 compared with 0.49 μM) in the presence of 150 μM P-CoA compared with isolated mitochondria. M-CoA inhibition kinetics determined in PMFs predicts that CPT-I activity is inhibited by 33% in resting muscle compared with >95% in isolated mitochondria. Additionally, the ability of M-CoA to inhibit CPT-I appears to be dependent on P-CoA concentration, as the relative inhibitory capacity of M-CoA is decreased with increasing P-CoA concentrations. Altogether, the use of PMFs appears to provide an M-CoA IC(50) that better reflects the predicted in vivo rates of fatty acid oxidation. These findings also demonstrate that the ratio of [P-CoA]/[M-CoA] is critical for regulating CPT-I activity and may partially rectify the in vivo disconnect between M-CoA content and CPT-I flux within the context of exercise and Type 2 diabetes.

  10. [Myocardial protective effect of L-carnitine in children with hand, foot and mouth disease caused by Coxsackie A16 virus].

    PubMed

    Cui, Ya-Jie; Song, Chun-Lan; Chen, Fang; Li, Peng; Cheng, Yi-Bing

    2017-08-01

    To investigate the myocardial protective effect of L-carnitine in children with hand, foot and mouth disease (HFMD) caused by Coxsackie A16 virus and possible mechanisms. A total of 60 HFMD children with abnormal myocardial enzyme after Coxsackie A16 virus infection were enrolled and randomly divided into L-carnitine group and fructose-1,6-diphosphate group (fructose group), with 30 children in each group. The two groups were given L-carnitine or fructose diphosphate in addition to antiviral and heat clearance treatment. Another 30 healthy children who underwent physical examination were enrolled as control group. The changes in myocardial zymogram, malondialdehyde (MDA), superoxide dismutase (SOD), and apoptosis factors sFas and sFasL after treatment were compared between groups. There was no significant difference in treatment response between the L-carnitine group and the fructose group (P>0.05). One child in the fructose group progressed to critical HFMD, which was not observed in the L-carnitine group. Before treatment, the L-carnitine group and the fructose group had significantly higher indices of myocardial zymogram and levels of MDA, sFas, and sFasL and a significantly lower level of SOD than the control group (P<0.05), while there were no significant differences in these indices between the L-carnitine group and the fructose group (P>0.05). After treatment, the L-carnitine group and the fructose group had significant reductions in the indices of myocardial zymogram and levels of MDA, sFas, and sFasL and a significant increase in the level of SOD (P<0.05); the fructose group had a significantly higher level of creatine kinase (CK) than the control group and the L-carnitine group, and there were no significant differences in other myocardial enzyme indices, MDA, sFas, and sFasL between the L-carnitine group and the fructose group, as well as between the L-carnitine and fructose groups and the control group (P>0.05). SOD level was negatively correlated with

  11. Long-term increased carnitine palmitoyltransferase 1A expression in ventromedial hypotalamus causes hyperphagia and alters the hypothalamic lipidomic profile.

    PubMed

    Mera, Paula; Mir, Joan Francesc; Fabriàs, Gemma; Casas, Josefina; Costa, Ana S H; Malandrino, Maria Ida; Fernández-López, José-Antonio; Remesar, Xavier; Gao, Su; Chohnan, Shigeru; Rodríguez-Peña, Maria Sol; Petry, Harald; Asins, Guillermina; Hegardt, Fausto G; Herrero, Laura; Serra, Dolors

    2014-01-01

    Lipid metabolism in the ventromedial hypothalamus (VMH) has emerged as a crucial pathway in the regulation of feeding and energy homeostasis. Carnitine palmitoyltransferase (CPT) 1A is the rate-limiting enzyme in mitochondrial fatty acid β-oxidation and it has been proposed as a crucial mediator of fasting and ghrelin orexigenic signalling. However, the relationship between changes in CPT1A activity and the intracellular downstream effectors in the VMH that contribute to appetite modulation is not fully understood. To this end, we examined the effect of long-term expression of a permanently activated CPT1A isoform by using an adeno-associated viral vector injected into the VMH of rats. Peripherally, this procedure provoked hyperghrelinemia and hyperphagia, which led to overweight, hyperglycemia and insulin resistance. In the mediobasal hypothalamus (MBH), long-term CPT1AM expression in the VMH did not modify acyl-CoA or malonyl-CoA levels. However, it altered the MBH lipidomic profile since ceramides and sphingolipids increased and phospholipids decreased. Furthermore, we detected increased vesicular γ-aminobutyric acid transporter (VGAT) and reduced vesicular glutamate transporter 2 (VGLUT2) expressions, both transporters involved in this orexigenic signal. Taken together, these observations indicate that CPT1A contributes to the regulation of feeding by modulating the expression of neurotransmitter transporters and lipid components that influence the orexigenic pathways in VMH.

  12. Long-Term Increased Carnitine Palmitoyltransferase 1A Expression in Ventromedial Hypotalamus Causes Hyperphagia and Alters the Hypothalamic Lipidomic Profile

    PubMed Central

    Fabriàs, Gemma; Casas, Josefina; Costa, Ana S. H.; Malandrino, Maria Ida; Fernández-López, José-Antonio; Remesar, Xavier; Gao, Su; Chohnan, Shigeru; Rodríguez-Peña, Maria Sol; Petry, Harald; Asins, Guillermina; Hegardt, Fausto G.; Herrero, Laura; Serra, Dolors

    2014-01-01

    Lipid metabolism in the ventromedial hypothalamus (VMH) has emerged as a crucial pathway in the regulation of feeding and energy homeostasis. Carnitine palmitoyltransferase (CPT) 1A is the rate-limiting enzyme in mitochondrial fatty acid β-oxidation and it has been proposed as a crucial mediator of fasting and ghrelin orexigenic signalling. However, the relationship between changes in CPT1A activity and the intracellular downstream effectors in the VMH that contribute to appetite modulation is not fully understood. To this end, we examined the effect of long-term expression of a permanently activated CPT1A isoform by using an adeno-associated viral vector injected into the VMH of rats. Peripherally, this procedure provoked hyperghrelinemia and hyperphagia, which led to overweight, hyperglycemia and insulin resistance. In the mediobasal hypothalamus (MBH), long-term CPT1AM expression in the VMH did not modify acyl-CoA or malonyl-CoA levels. However, it altered the MBH lipidomic profile since ceramides and sphingolipids increased and phospholipids decreased. Furthermore, we detected increased vesicular γ-aminobutyric acid transporter (VGAT) and reduced vesicular glutamate transporter 2 (VGLUT2) expressions, both transporters involved in this orexigenic signal. Taken together, these observations indicate that CPT1A contributes to the regulation of feeding by modulating the expression of neurotransmitter transporters and lipid components that influence the orexigenic pathways in VMH. PMID:24819600

  13. Dietary α-lactalbumin induced fatty liver by enhancing nuclear liver X receptor αβ/sterol regulatory element-binding protein-1c/PPARγ expression and minimising PPARα/carnitine palmitoyltransferase-1 expression and AMP-activated protein kinase α phosphorylation associated with atherogenic dyslipidaemia, insulin resistance and oxidative stress in Balb/c mice.

    PubMed

    López-Oliva, María Elvira; Garcimartin, Alba; Muñoz-Martínez, Emilia

    2017-12-01

    The effect and the role played by dietary α-lactalbumin (α-LAC) on hepatic fat metabolism are yet to be fully elucidated. We reported previously that α-LAC intake induced atherogenic dyslipidaemia in Balb/c mice. The aim of the present study was to investigate if this atherogenic effect could be due to a possible α-LAC-induced hepatic steatosis. We examine the ability of dietary α-LAC to induce liver steatosis, identifying the molecular mechanisms underlying hepatic lipid metabolism in association with the lipid profile, peripheral insulin resistance (IR) and changes in the hepatic oxidative environment. Male Balb/c mice (n 6) were fed with diets containing either chow or 14 % α-LAC for 4 weeks. The α-LAC-fed mice developed abdominal adiposity and IR. Moderate liver steatosis with increased TAG and NEFA contents was correlated with atherogenic dyslipidaemia. There was increased nuclear expression of liver X receptor αβ (LXRαβ), sterol regulatory element-binding protein-1c (SREBP-1c) and PPARγ transcription factors and of the cytosolic enzymes acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase involved in the hepatic de novo lipogenesis. The opposite was found for the nuclear receptor PPARα and the mitochondrial enzyme carnitine palmitoyltransferase-1 (CPT-1), leading to reduced fatty acid β-oxidation (FAO). These changes were associated with a significant decrease in both p-Thr172-AMP-activated protein kinase α (AMPKα) (inactivation) and p-Ser79-ACC1 (activation) and with a more oxidative liver environment increasing lipid peroxidation and protein oxidation and reducing GSH:GSSG ratio in the α-LAC-fed mice. In conclusion, 4 weeks of 14 % α-LAC feeding induced liver steatosis associated with atherogenic dyslipidaemia, IR and oxidative stress by enhancing nuclear LXRαβ/SREBP-1c/PPARγ expression and diminishing PPARα/CPT-1 expression and AMPKα phosphorylation shifting the hepatic FAO toward fatty acid synthesis in Balb/c mice.

  14. Effects of dietary L-carnitine and coenzyme Q10 at different supplemental ages on growth performance and some immune response in ascites-susceptible broilers.

    PubMed

    Geng, Ailian; Li, Baoming; Guo, Yuming

    2007-02-01

    Effects of dietary L-carnitine and coenzyme Q10 (CoQ10) at different supplemental ages on performance and some immune response were investigated in ascites-susceptible broilers. A 3 x 2 x 2 factorial design was used consisting of L-carnitine supplementation (0, 75, and 100 mg/kg), CoQ10 supplementation (0 and 40 mg/kg) and different supplemental ages (from day 1 on and from day 10 on). A total of 480 one-day-old Arbor Acre male broiler chicks were randomly allocated to 12 groups, every group had five replicates, each with eight birds. The birds were fed a corn-soybean based diet for six weeks. From day 10-21, all the birds were exposed to a low ambient temperature (12-15 degrees C) to increase the susceptibility to ascites. No significant effects were observed on growth performance by L-carnitine, CoQ10 supplementation, and different supplemental ages. Packed cell volume was significantly decreased by L-carnitine supplementation alone, and ascites heart index and ascites mortality were decreased by L-carnitine, CoQ10 supplementation alone, and L-carnitine + CoQ10 supplementation together (p < 0.05). Heart index of broilers was significantly improved by L-carnitine, CoQ10 supplementation alone during 0-3 week. Serum IgG content was improved by L-carnitine supplementation alone (p < 0.05), but lysozyme activity was increased by L-carnitine + CoQ10 supplementation together (p < 0.05). A significant L-carnitine by supplemental age interaction was observed in lysozyme activity. L-carnitine supplementation alone had no effects on the peripheral blood lymphocyte (PBL) proliferation in response to concanavalin A (ConA) and lipopolysaccharide, but supplemental CoQ10 alone and L-carnitine+ CoQ10 together decreased the PBL proliferation in response to ConA (p < 0.05). The present study suggested that L-carnitine + CoQ10 supplementation together had positive effects on some immune response of ascites-susceptible broilers, which might benefit for the reduction of broilers

  15. L-carnitine supplementation in patients with HIV/AIDS and fatigue: a double-blind, placebo-controlled pilot study.

    PubMed

    Cruciani, Ricardo A; Revuelta, Manuel; Dvorkin, Ella; Homel, Peter; Lesage, Pauline; Esteban-Cruciani, Nora

    2015-01-01

    The purpose of this study was to determine the effect of L-carnitine supplementation on fatigue in patients with terminal human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). In this randomized, double-blind, placebo-controlled, parallel-group study, patients who had end-stage HIV/AIDS with carnitine deficiency and fatigue received 3 g of oral L-carnitine or placebo for 2 weeks, followed by a 2-week, open-label phase with the same amount of L-carnitine for all patients. The primary outcome was the degree of fatigue according to the Brief Fatigue Inventory. Secondary outcomes included serum carnitine and lactate levels, physical, emotional, social, and functional well-being, performance status, mood, and CD4 count. Eighteen patients in the treatment arm and 17 in the placebo arm completed the trial. At the end of the double-blind phase, total and free carnitine levels in the treatment arm rose from 28±9 to 48±17 nM/L (P<0.001) and from 24±8 to 40±13 nM/L (P<0.001) respectively, with no changes in the placebo arm. The primary outcome, ie, fatigue measured at the end of the blinded phase, did not improve. Secondary outcomes of function, quality of life, and mood did not show improvement either. The secondary outcome of serum lactate decreased from baseline in the treatment group (1.45±0.76 to 1.28±0.52 mmol/L) and increased in the placebo group (1.38±0.62 to 1.84±0.74 mmol/L; P<0.005). Our study suggests that 3 g of oral L-carnitine supplementation for 2 weeks in terminally ill HIV/AIDS patients does not improve fatigue. This study might help to determine the dose and duration of treatment used in future clinical trials, as higher doses and/or longer periods of supplementation might be needed in order to detect an improvement. The reduction in serum lactate levels suggests a potential role for L-carnitine supplementation in patients undergoing certain types of antiretroviral therapy. This study contributes evidence-based data to the

  16. Effects of acute L-carnitine intake on metabolic and blood lactate levels of elite badminton players.

    PubMed

    Eroğlu, Hüseyin; Senel, Omer; Güzel, Nevin A

    2008-04-01

    Purpose of this study is to research the effects of acute L-Carnitine intake on badminton players' metabolic and blood lactate values. A total of 16 Turkish national badminton players (8 male, 8 female) were voluntarily participated into study. MaxVO2, MET, energy consumption, HR (heart rate), VE (minute ventilation), R (respiratory exchange ratio), AT (anaerobic threshold), oxygen pulse and blood lactate (LA) of subjects were measured by Sensormedics VmaxST and Accutrend Lactate Analyzer. The participants were subjected to the test protocol twice before and after 2g of L-Carnitine intake. The data were evaluated by the use of SPSS 13.0 for Windows. No significant differences were found between 1st. (without L-Carnitine intake) and 2nd. (with L-Carnitine intake) measurements of female participants as regards to all measured parameters. There was a significant difference in EMHR (exercise maximum heart rate) of males between two measurements (p<0.05). However the differences in other parameters were not significant. AT values of female subjects were not significant difference (p>0.05). Respiratory exchange ratio of males was significantly different at anaerobic threshold (p<0.05). Results of this study show that L-carnitine intake one hour prior to the exercise has no effect on the metabolic and blood lactate values of badminton players.

  17. The kinetics of oxidation of bilirubin and ascorbic acid in solution

    NASA Astrophysics Data System (ADS)

    Solomonov, A. V.; Rumyantsev, E. V.; Kochergin, B. A.; Antina, E. V.

    2012-07-01

    The results of a comparative study of the oxidation of bilirubin, ascorbic acid, and their mixture in aqueous solutions under the action of air oxygen and hydrogen peroxide are presented. The observed and true rate constants for the oxidation reactions were determined. It was shown that the oxidation of tetrapyrrole pigment occurred under these conditions bypassing the stage of biliverdin formation to monopyrrole products. Simultaneous oxidation of bilirubin and ascorbic acid was shown to be accompanied by the inhibition of ascorbic acid oxidation by bilirubin, whereas ascorbic acid itself activated the oxidation of bilirubin.

  18. The ineffectiveness of (±)-carnitine preventing the twitchings of striated frog muscle in 0.7% sodium chloride solution

    PubMed Central

    Friebel, H.

    1959-01-01

    The spontaneous twitchings of isolated frog sartorius muscles in 0.7% NaCl solution have been studied. Addition of 1 mg./ml. of (±)-carnitine hydrochloride, or of (±)-carnitine base, to the bath fluid had no influence on the spontaneous activity of the muscles, their excitability or their ability to liberate potassium. This indicates that carnitine is not a natural inhibitor of striated frog muscle. Fluids enriched with potassium either from twitching muscle or by addition of KCl inhibited the activity of muscles reversibly. PMID:13825014

  19. Influence of oxalic acid on the dissolution kinetics of manganese oxide

    NASA Astrophysics Data System (ADS)

    Godunov, E. B.; Artamonova, I. V.; Gorichev, I. G.; Lainer, Yu. A.

    2012-11-01

    The kinetics and electrochemical processes of the dissolution of manganese oxides with various oxidation states in sulfuric acid solutions containing oxalate ion additives is studied under variable conditions (concentration, pH, temperature). The parameters favoring a higher degree of the dissolution of manganese oxides in acidic media are determined. The optimal conditions are found for the dissolution of manganese oxides in acidic media in the presence of oxalate ions. The mechanism proposed for the dissolution of manganese oxides in sulfuric acid solutions containing oxalic acid is based on the results of kinetic and electrochemical studies. The steps of the dissolution mechanism are discussed.

  20. Effects of L-carnitine on reproductive performance, milk composition, placental development and IGF concentrations in blood plasma and placental chorions in sows.

    PubMed

    Zhang, Shihai; Tian, Min; Song, Hanqing; Shi, Kui; Wang, Yijiang; Guan, Wutai

    2018-05-29

    Recent studies have shown that L-carnitine supplementation of sows during pregnancy and lactation enhances their reproductive performance, but the underlying mechanisms are still needed to be further confirmed. This study was conducted to investigate the function of L-carnitine on placental development, milk nutrient content and release of hormones in sows. In this experiment, 40 multiparous crossbred sows (Yorkshire × Landrace) were allotted to two groups fed diets with or without a supplemental 50 mg/kg L-carnitine. The experimental diets were fed from d 1 post-coitus until d 21 post-partum. L-carnitine-treated sow had fewer weak piglets (p < 0.05) and a greater percentage of oestrus by 5 after 5-d post-partum (p < 0.05) than control sows. The percentage fat from colostrum was greater in L-carnitine-treated sow than control sows (p < 0.05). L-carnitine-treated sows had greater plasma concentrations of triglyceride and insulin-like growth factor (IGF)-1 and lesser plasma concentrations of glucose and IGF-binding protein (IGFBP-3) on day 60 of pregnancy (p < 0.05). A clearer structure of chorions, better-developed capillaries and absence of necrosis were observed in L-carnitine-treated sows compared with control sows. The protein abundance of IGF-1 and IGF-2 in placental chorions was greater in L-carnitine-treated sows compared with control sows (p < 0.05). This study suggests that sows fed an L-carnitine supplemented diet during pregnancy improved reproductive performance through enhancement of placental development and by increasing IGF concentrations in blood plasma and placental chorions.

  1. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    PubMed Central

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  2. Orlistat interaction with sibutramine and carnitine. A physicochemical and theoretical study

    NASA Astrophysics Data System (ADS)

    Nicolás-Vázquez, Inés; Hinojosa Torres, Jaime; Cruz Borbolla, Julián; Miranda Ruvalcaba, René; Aceves-Hernández, Juan Manuel

    2014-03-01

    Chemical degradation of orlistat, (ORT) after melting and reaction of decomposition byproducts with sibutramine, SIB was studied. Interactions between the active pharmaceutical ingredients by using thermal analysis, TA, methods and other experimental techniques such as PXRD, IR and UV-vis spectroscopies were carried out to investigate chemical reactions between components. It was found that orlistat melts with decomposition and byproducts quickly affect sibutramine molecule and then reacting also with carnitine, CRN when the three active pharmaceutical ingredients (API's) are mixed. However ORT byproducts do not react when ORT is mixed only with carnitine. It was found that compounds containing chlorine atoms react easily with orlistat when the temperature increases up to its melting point. Some reaction mechanisms of orlistat decomposition are proposed, the fragments in the mechanisms were found in the corresponding mass spectra. Results obtained indicate that special studies should be carried out in the formulation stage before the final composition of a poly-pill could be established. Similar results are commonly found for compounds very prone to react in presence of water, light and/or temperature. In order to explain the reactivity of orlistat with sibutramine and carnitine, theoretical calculations were carried out and the results are in agreement with the experimental results.

  3. Impact of L-carnitine on plasma lipoprotein(a) concentrations: A systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Serban, Maria-Corina; Sahebkar, Amirhossein; Mikhailidis, Dimitri P.; Toth, Peter P.; Jones, Steven R.; Muntner, Paul; Blaha, Michael J.; Andrica, Florina; Martin, Seth S.; Borza, Claudia; Lip, Gregory Y. H.; Ray, Kausik K.; Rysz, Jacek; Hazen, Stanley L.; Banach, Maciej

    2016-01-01

    We aimed to assess the impact of L-carnitine on plasma Lp(a) concentrations through systematic review and meta-analysis of available RCTs. The literature search included selected databases up to 31st January 2015. Meta-analysis was performed using fixed-effects or random-effect model according to I2 statistic. Effect sizes were expressed as weighted mean difference (WMD) and 95% confidence interval (CI). The meta-analysis showed a significant reduction of Lp(a) levels following L-carnitine supplementation (WMD: −8.82 mg/dL, 95% CI: −10.09, −7.55, p < 0.001). When the studies were categorized according to the route of administration, a significant reduction in plasma Lp(a) concentration was observed with oral (WMD: −9.00 mg/dL, 95% CI: −10.29, −7.72, p < 0.001) but not intravenous L-carnitine (WMD: −2.91 mg/dL, 95% CI: −10.22, 4.41, p = 0.436). The results of the meta-regression analysis showed that the pooled estimate is independent of L-carnitine dose (slope: −0.30; 95% CI: −4.19, 3.59; p = 0.878) and duration of therapy (slope: 0.18; 95% CI: −0.22, 0.59; p = 0.374). In conclusion, the meta-analysis suggests a significant Lp(a) lowering by oral L-carnitine supplementation. Taking into account the limited number of available Lp(a)-targeted drugs, L-carnitine might be an effective alternative to effectively reduce Lp(a). Prospective outcome trials will be required to fully elucidate the clinical value and safety of oral L-carnitine supplementation. PMID:26754058

  4. [Related factor of serum carnitine deficiency and influence of its deficiency on the length of hospital stay in critical ill patients].

    PubMed

    Zhou, Zhaoxiong; Qiu, Chunfang; Chen, Chuanxi; Wang, Luhao; Chen, Juan; Chen, Minying; Guan, Xiangdong; Ouyang, Bin

    2014-12-01

    To investigate the related factors of serum carnitine deficiency in critical ill patients, and the influence of its deficiency on the length of hospital stay. A prospective study was conducted. Critical ill patients with acute physiology and chronic health evaluation II (APACHEII) score>12 admitted to Department of Critical Care Medicine of the First Affiliated Hospital of Sun Yat-sen University from March 2013 to September 2013 were enrolled. Serum carnitine concentration and indexes of organ function were determined, and the tolerance of enteral nutrition within 5 days, the length of hospital stay, the length of intensive care unit (ICU) stay, and the hospital mortality were recorded. The relationship between serum carnitine and indexes mentioned above was analyzed. Thirty critically ill patients were enrolled. Serum carnitine concentration was very low in all critically ill patients, i.e. (8.92 ± 5.05) μmol/L (normal reference value at 43.5 μmol/L) at hospital admission. Serum carnitine concentration in patients with APACHEII score>23 (7 cases) was significantly lower than that in those with APACHEII score 12-23 (23 cases, μmol/L: 5.33 ± 1.72 vs. 10.02 ± 5.24, t=2.300, P=0.001). Serum carnitine concentration in patients with serum total bilirubin(TBil)>19 μmol/L (9 cases) was significantly lower than that in those with TBil≤19 μmol/L (21 cases, μmol/L: 5.54 ± 2.70 vs. 9.84 ± 5.08, t=2.750, P=0.014). Serum carnitine concentration was negatively correlated with the APACHEII score and the TBil (r=-0.387, P=0.035; r=-0.346, P=0.048). During the 5-day observation period, enteral feeding amount [(5 134 ± 1 173) mL] was positively correlated with serum carnitine concentration(r=0.430, P=0.022). In 30 critical patients, the incidence of abdominal distension was 40.0% (12/30), and the serum carnitine concentration of patients with abdominal distension was lower compared with that of patients without abdominal distension (μmol/L: 7.83 ± 4.98 vs. 9.12 ± 5

  5. Chlorogenic acid from honeysuckle improves hepatic lipid dysregulation and modulates hepatic fatty acid composition in rats with chronic endotoxin infusion.

    PubMed

    Zhou, Yan; Ruan, Zheng; Wen, Yanmei; Yang, Yuhui; Mi, Shumei; Zhou, Lili; Wu, Xin; Ding, Sheng; Deng, Zeyuan; Wu, Guoyao; Yin, Yulong

    2016-03-01

    Chlorogenic acid as a natural hydroxycinnamic acid has protective effect for liver. Endotoxin induced metabolic disorder, such as lipid dysregulation and hyperlipidemia. In this study, we investigated the effect of chlorogenic acid in rats with chronic endotoxin infusion. The Sprague-Dawley rats with lipid metabolic disorder (LD group) were intraperitoneally injected endotoxin. And the rats of chlorogenic acid-LD group were daily received chlorogenic acid by intragastric administration. In chlorogenic acid-LD group, the area of visceral adipocyte was decreased and liver injury was ameliorated, as compared to LD group. In chlorogenic acid-LD group, serum triglycerides, free fatty acids, hepatic triglycerides and cholesterol were decreased, the proportion of C20:1, C24:1 and C18:3n-6, Δ9-18 and Δ6-desaturase activity index in the liver were decreased, and the proportion of C18:3n-3 acid was increased, compared to the LD group. Moreover, levels of phosphorylated AMP-activated protein kinase, carnitine palmitoyltransferase-I, and fatty acid β-oxidation were increased in chlorogenic acid-LD group compared to LD rats, whereas levels of fatty acid synthase and acetyl-CoA carboxylase were decreased. These findings demonstrate that chlorogenic acid effectively improves hepatic lipid dysregulation in rats by regulating fatty acid metabolism enzymes, stimulating AMP-activated protein kinase activation, and modulating levels of hepatic fatty acids.

  6. L-carnitine supplementation in patients with HIV/AIDS and fatigue: a double-blind, placebo-controlled pilot study

    PubMed Central

    Cruciani, Ricardo A; Revuelta, Manuel; Dvorkin, Ella; Homel, Peter; Lesage, Pauline; Esteban-Cruciani, Nora

    2015-01-01

    Background The purpose of this study was to determine the effect of L-carnitine supplementation on fatigue in patients with terminal human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). Methods In this randomized, double-blind, placebo-controlled, parallel-group study, patients who had end-stage HIV/AIDS with carnitine deficiency and fatigue received 3 g of oral L-carnitine or placebo for 2 weeks, followed by a 2-week, open-label phase with the same amount of L-carnitine for all patients. The primary outcome was the degree of fatigue according to the Brief Fatigue Inventory. Secondary outcomes included serum carnitine and lactate levels, physical, emotional, social, and functional well-being, performance status, mood, and CD4 count. Results Eighteen patients in the treatment arm and 17 in the placebo arm completed the trial. At the end of the double-blind phase, total and free carnitine levels in the treatment arm rose from 28±9 to 48±17 nM/L (P<0.001) and from 24±8 to 40±13 nM/L (P<0.001) respectively, with no changes in the placebo arm. The primary outcome, ie, fatigue measured at the end of the blinded phase, did not improve. Secondary outcomes of function, quality of life, and mood did not show improvement either. The secondary outcome of serum lactate decreased from baseline in the treatment group (1.45±0.76 to 1.28±0.52 mmol/L) and increased in the placebo group (1.38±0.62 to 1.84±0.74 mmol/L; P<0.005). Conclusion Our study suggests that 3 g of oral L-carnitine supplementation for 2 weeks in terminally ill HIV/AIDS patients does not improve fatigue. This study might help to determine the dose and duration of treatment used in future clinical trials, as higher doses and/or longer periods of supplementation might be needed in order to detect an improvement. The reduction in serum lactate levels suggests a potential role for L-carnitine supplementation in patients undergoing certain types of antiretroviral therapy. This study

  7. Effects of in ovo administration of L-carnitine on hatchability performance, glycogen status and insulin-like growth factor-1 of broiler chickens.

    PubMed

    Shafey, T M; Al-Batshan, H A; Al-Owaimer, A N; Al-Samawei, K A

    2010-02-01

    1. Eggs from a meat-type breeder flock (Ross) were used in two trials to study the effects of in ovo administration of L-carnitine (carnitine) on hatchability traits (hatchability percentage, embryo deaths, pipped with live or dead embryo), chick weight at hatch as an absolute value (CWT) or expressed as a percentage of egg weight (CWT%), hatching period, glycogen status (liver and pectoral muscle) and plasma insulin-like growth factor-1 (IGF-1) of hatched chicks were investigated. There were 9 treatments with three replicates of each. Treatments were non-injected control (negative control), or injection with sterilised saline (09%, positive control), or sterilised saline with carnitine at 25, 50, 100, 200, 300, 400, and 500 microg/egg. 2. In ovo carnitine treatment increased CWT, CWT%, glycogen in the liver and pectoral muscle, glycogen index and plasma IGF-1 of hatched chicks, and did not influence hatchability traits and hatching period. The glycogen index of hatched chicks of the in ovo carnitine treatments with values (500 > 400 = 300 > 200) was higher than that of the control and in ovo carnitine at 25, 50, and 100 microg/egg treatments. The nature of response to carnitine was cubic for CWT and CWT%, and linear for glycogen in the liver and pectoral muscle, glycogen index of hatched chicks when the negative control or positive control treatment was used as base line. 3. It was concluded that in ovo administration of carnitine at 25-500 microg/egg increased chick weight at hatch and IGF-1, and did not influence hatchability traits and hatching period of eggs. The linear relationship between in ovo administration of carnitine and glycogen status of hatched chicks indicated that increasing in ovo doses improved glycogen status of hatched chicks.

  8. Proximate Composition, and l-Carnitine and Betaine Contents in Meat from Korean Indigenous Chicken

    PubMed Central

    Jung, Samooel; Bae, Young Sik; Yong, Hae In; Lee, Hyun Jung; Seo, Dong Won; Park, Hee Bok; Lee, Jun Heon; Jo, Cheorun

    2015-01-01

    This study investigated the proximate composition and l-carnitine and betaine content of meats from 5 lines of Korean indigenous chicken (KIC) for developing highly nutritious meat breeds with health benefits from the bioactive compounds such as l-carnitine and betaine in meat. In addition, the relevance of gender (male and female) and meat type (breast and thigh meat) was examined. A total of 595 F1 progeny (black [B], grey-brown [G], red-brown [R], white [W], and yellow-brown [Y]) from 70 full-sib families were used. The moisture, protein, fat, and ash contents of the meats were significantly affected by line, gender, and meat type (p<0.05). The males in line G and females in line B showed the highest protein and the lowest fat content of the meats. l-carnitine and betaine content showed effects of meat type, line, and gender (p<0.05). The highest l-carnitine content was found in breast and thigh meats from line Y in both genders. The breast meat from line G and the thigh meat from line R had the highest betaine content in males. The female breast and thigh meats showed the highest betaine content in line R. These data could be valuable for establishing selection strategies for developing highly nutritious chicken meat breeds in Korea. PMID:26580444

  9. Role of tartaric and malic acids in wine oxidation.

    PubMed

    Danilewicz, John C

    2014-06-04

    Tartaric acid determines the reduction potential of the Fe(III)/Fe(II) redox couple. Therefore, it is proposed that it determines the ability of Fe to catalyze wine oxidation. The importance of tartaric acid was demonstrated by comparing the aerial oxidation of 4-methylcatechol (4-MeC) in model wine made up with tartaric and acetic acids at pH 3.6. Acetic acid, as a weaker Fe(III) ligand, should raise the reduction potential of the Fe couple. 4-MeC was oxidized in both systems, but the mechanisms were found to differ. Fe(II) readily reduced oxygen in tartrate model wine, but Fe(III) alone failed to oxidize the catechol, requiring sulfite assistance. In acetate model wine the reverse was found to operate. These observations should have broad application to model systems designed to study the oxidative process in foods and other beverages. Consideration should be given to the reduction potential of metal couples by the inclusion of appropriate ligands.

  10. Effect of temperature on fatty acid metabolism in skeletal muscle mitochondria of untrained and endurance-trained rats.

    PubMed

    Zoladz, Jerzy A; Koziel, Agnieszka; Broniarek, Izabela; Woyda-Ploszczyca, Andrzej M; Ogrodna, Karolina; Majerczak, Joanna; Celichowski, Jan; Szkutnik, Zbigniew; Jarmuszkiewicz, Wieslawa

    2017-01-01

    We studied the effects of various assay temperatures, representing hypothermia (25°C), normothermia (35°C), and hyperthermia (42°C), on the oxidation of lipid-derived fuels in rat skeletal muscle mitochondria of untrained and endurance-trained rats. Adult 4-month-old male Wistar rats were assigned to a training group (rats trained on a treadmill for 8 weeks) or a sedentary control group. In skeletal muscle mitochondria of both control and trained rats, an increase in the assay temperature from 25°C to 42°C was accompanied by a consistent increase in the oxidation of palmitoylcarnitine and glycerol-3-phosphate. Moreover, endurance training increased mitochondrial capacity to oxidize the lipid-derived fuels at all studied temperatures. The endurance training-induced increase in mitochondrial capacity to oxidize fatty acids was accompanied by an enhancement of mitochondrial biogenesis, as shown by the elevated expression levels of Nrf2, PGC1α, and mitochondrial marker and by the elevated expression levels of mitochondrial proteins involved in fatty acid metabolism, such as fatty acid transporter CD36, carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA dehydrogenase (ACADS). We conclude that hyperthermia enhances but hypothermia attenuates the rate of the oxidation of fatty acids and glycerol-3-phosphate in rat skeletal muscle mitochondria isolated from both untrained and trained rats. Moreover, our results indicate that endurance training up-regulates mitochondrial biogenesis markers, lipid-sustained oxidative capacity, and CD36 and CPT1A proteins involved in fatty acid transport, possibly via PGC1α and Nrf2 signaling pathways.

  11. Amino Acid Degradations Produced by Lipid Oxidation Products.

    PubMed

    Hidalgo, Francisco J; Zamora, Rosario

    2016-06-10

    Differently to amino acid degradations produced by carbohydrate-derived reactive carbonyls, amino acid degradations produced by lipid oxidation products are lesser known in spite of being lipid oxidation a major source of reactive carbonyls in food. This article analyzes the conversion of amino acids into Strecker aldehydes, α-keto acids, and amines produced by lipid-derived free radicals and carbonyl compounds, as well as the role of lipid oxidation products on the reactions suffered by these compounds: the formation of Strecker aldehydes and other aldehydes from α-keto acids; the formation of Strecker aldehydes and olefins from amines; the formation of shorter aldehydes from Strecker aldehydes; and the addition reactions suffered by the olefins produced from the amines. The relationships among all these reactions and the effect of reaction conditions on them are discussed. This knowledge should contribute to better control food processing in order to favor the formation of desirable beneficial compounds and to inhibit the production of compounds with deleterious properties.

  12. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D. Kirk; Taylor, Howard E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  13. Reference electrode for strong oxidizing acid solutions

    DOEpatents

    Rigdon, Lester P.; Harrar, Jackson E.; Bullock, Sr., Jack C.; McGuire, Raymond R.

    1990-01-01

    A reference electrode for the measurement of the oxidation-reduction potentials of solutions is especially suitable for oxidizing solutions such as highly concentrated and fuming nitric acids, the solutions of nitrogen oxides, N.sub.2 O.sub.4 and N.sub.2 O.sub.5, in nitric acids. The reference electrode is fabricated of entirely inert materials, has a half cell of Pt/Ce(IV)/Ce(III)/70 wt. % HNO.sub.3, and includes a double-junction design with an intermediate solution of 70 wt. % HNO.sub.3. The liquid junctions are made from Corning No. 7930 glass for low resistance and negligible solution leakage.

  14. Changes in blood carnitine and acylcarnitine profiles of very long-chain acyl-CoA dehydrogenase-deficient mice subjected to stress.

    PubMed

    Spiekerkoetter, U; Tokunaga, C; Wendel, U; Mayatepek, E; Exil, V; Duran, M; Wijburg, F A; Wanders, R J A; Strauss, A W

    2004-03-01

    In humans with deficiency of the very long-chain acyl-CoA dehydrogenase (VLCAD), C14-C18 acylcarnitines accumulate. In this paper we have used the VLCAD knockout mouse as a model to study changes in blood carnitine and acylcarnitine profiles under stress. VLCAD knockout mice exhibit stress-induced hypoglycaemia and skeletal myopathy; symptoms resembling human VLCADD. To study the extent of biochemical derangement in response to different stressors, we determined blood carnitine and acylcarnitine profiles after exercise on a treadmill, fasting, or exposure to cold. Even in a nonstressed, well-fed state, knockout mice presented twofold higher C14-C18 acylcarnitines and a lower free carnitine of 72% as compared to wild-type littermates. After 1 h of intense exercise, the C14-C18 acylcarnitines in blood significantly increased, but free carnitine remained unchanged. After 8 h of fasting at 4 degrees C, the long-chain acylcarnitines were elevated 5-fold in knockout mice in comparison with concentrations in unstressed wild-type mice (P < 0.05), and four out of 12 knockout mice died. Free carnitine decreased to 44% as compared with unstressed wild-type mice. An increase in C14-C18 acylcarnitines and a decrease of free carnitine were also observed in fasted heterozygous and wild-type mice. Long-chain acylcarnitines in blood increase in knockout mice in response to different stressors and concentrations correlate with the clinical condition. A decrease in blood free carnitine in response to severe stress is observed in knockout mice but also in wild-type littermates. Monitoring blood acylcarnitine profiles in response to different stressors may allow systematic analysis of therapeutic interventions in VLCAD knockout mice.

  15. Effects of L-carnitine and coenzyme q10 on impaired spermatogenesis caused by isoproterenol in male rats.

    PubMed

    Ghanbarzadeh, S; Garjani, A; Ziaee, M; Khorrami, A

    2014-09-01

    Nowadays, cardiovascular diseases and male infertility are two big health problems in industrial countries.The aim of the present study was to investigate the protective role of coenzyme Q10 and L-Carnitine pretreatment in the impaired spermatogenesis caused by isoproterenol (ISO) in male rats.Thirty-two male Wistar rats were allocated in 4 groups. ISO was injected for 2 consecutive days (100 mg/kg) in ISO treated groups. Before ISO administration, pretreatment with Coenzyme Q10 (10 mg/kg/day) and L-Carnitine (350 mg/kg/day) were conducted for 20 consecutive days. Sex hormones level, malondialdehyde (MDA) and total antioxidant concentration as well as testis, epididymis and seminal vesicle weight were investigated.Increase in the concentration of MDA and decrease in total antioxidant level was observed following ISO administration. Accordingly, the sperm viability as well as testis, epididymis and seminal vesicle weights were decreased. In the case of sex hormones, the testosterone and LH levels were decreased and the concentration of FSH was increased. Pretreatment with L-carnitine and Coenzyme Q10 significantly decreased the MDA level and increased total antioxidant, LH and testosterone levels. Pretreatment with L-carnitine and Coenzyme Q10 also improved semen parameters and organs weight which were impaired by ISO administration.L-carnitine and Coenzyme Q10 pretreatment could protect spermatogenesis in male rats with ISO administration. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Thermogenesis, fatty acid synthesis with oxidation, and inflammation in the brown adipose tissue of ob/ob (-/-) mice.

    PubMed

    Martins, Fabiane Ferreira; Bargut, Thereza Cristina Lonzetti; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2017-03-01

    Brown adipose tissue (BAT) is specialized in heat production, but its metabolism in ob/ob mice is still a matter of debate. We aimed to verify ob/ob mice BAT using C57Bl/6 male mice (as the wild-type, WT) and leptin-deficient ob/ob mice (on the C57Bl/6 background strain), at three months of age (n=10/group). At euthanasia, animals had their interscapular BAT weighed, and prepared for analysis (Western blot, and RT-qPCR). In comparison with the WT group, the ob/ob group showed reduced thermogenic signaling markers (gene expression of beta 3-adrenergic receptor, beta3-AR; PPARgamma coactivator 1 alpha, PGC1alpha, and uncoupling protein 1, UCP1). The ob/ob group also showed impaired gene expression for lipid utilization (perilipin was increased, while other markers were diminished: carnitine palmitoyltransferase-1b, CPT-1b; cluster of differentiation 36, CD36; fatty acid binding protein 4, FABP4; fatty acid synthase, FAS, and sterol regulatory element-binding protein 1c, SREBP1c), and altered protein expression of insulin signaling (diminished pAKT, TC10, and GLUT-4). Lastly, the ob/ob group showed increased gene expression of markers of inflammation (interleukin 1 beta, IL-1beta; IL-6, tumor necrosis factor alpha, TNFalpha; and monocyte chemotactic protein-1, MCP-1). In conclusion, the ob/ob mice have decreased thermogenic markers associated with reduced gene expression related to fatty acid synthesis, mobilization, and oxidation. There were also alterations in insulin signaling and protein and gene expressions of inflammation. The findings suggest that the lack of substrate for thermogenesis and the local inflammation negatively regulated thermogenic signaling in the ob/ob mice. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Usefulness of L-carnitine, a naturally occurring peripheral antagonist of thyroid hormone action, in iatrogenic hyperthyroidism: a randomized, double-blind, placebo-controlled clinical trial.

    PubMed

    Benvenga, S; Ruggeri, R M; Russo, A; Lapa, D; Campenni, A; Trimarchi, F

    2001-08-01

    Old studies in animals and unblinded studies in a few hyperthyroid patients suggested that L -carnitine is a periferal antagonist of thyroid hormone action at least in some tissues. This conclusion was substantiated by our recent observation that carnitine inhibits thyroid hormone entry into the nucleus of hepatocytes, neurons, and fibroblasts. In the randomized, double-blind, placebo-controlled 6-month trial reported here, we assessed whether 2 or 4 g/d oral L-carnitine were able to both reverse and prevent/minimize nine hyperthyroidism- related symptoms. We also evaluated changes on nine thyroid hormone-sensitive biochemical parameters and on vertebral and hip mineral density (bone mineral density). Fifty women under a fixed TSH-suppressive dose of L -T(4) for all 6 months were randomly allocated to five groups of 10 subjects each. Group 0 associated placebo for 6 months; groups A2 and A4 started associating placebo (first bimester), substituted placebo with 2 or 4 g/d carnitine (second bimester), and then returned to the association with placebo. Groups B2 and B4 started associating 2 and 4 g/d carnitine for the first two bimesters, and then substituted carnitine with placebo (third bimester). Symptoms and biochemical parameters worsened in group 0. In group A, symptoms and biochemical parameters worsened during the first bimester, returned to baseline or increased minimally during the second bimester (except osteocalcin and urinary OH-proline), and worsened again in the third bimester. In group B, symptoms and biochemical parameters (except osteocalcin and urinary OH-proline) did not worsen or even improved over the first 4 months; they tended to worsen in the third bimester. In both the A and B groups, the two doses of carnitine were similarly effective. At the end of the trial, bone mineral density tended to increase in groups B and A (B > A). In conclusion, L-carnitine is effective in both reversing and preventing symptoms of hyperthyroidism and has a

  18. Parallel effects of β-adrenoceptor blockade on cardiac function and fatty acid oxidation in the diabetic heart: Confronting the maze

    PubMed Central

    Sharma, Vijay; McNeill, John H

    2011-01-01

    Diabetic cardiomyopathy is a disease process in which diabetes produces a direct and continuous myocardial insult even in the absence of ischemic, hypertensive or valvular disease. The β-blocking agents bisoprolol, carvedilol and metoprolol have been shown in large-scale randomized controlled trials to reduce heart failure mortality. In this review, we summarize the results of our studies investigating the effects of β-blocking agents on cardiac function and metabolism in diabetic heart failure, and the complex inter-related mechanisms involved. Metoprolol inhibits fatty acid oxidation at the mitochondrial level but does not prevent lipotoxicity; its beneficial effects are more likely to be due to pro-survival effects of chronic treatment. These studies have expanded our understanding of the range of effects produced by β-adrenergic blockade and show how interconnected the signaling pathways of function and metabolism are in the heart. Although our initial hypothesis that inhibition of fatty acid oxidation would be a key mechanism of action was disproved, unexpected results led us to some intriguing regulatory mechanisms of cardiac metabolism. The first was upstream stimulatory factor-2-mediated repression of transcriptional master regulator PGC-1α, most likely occurring as a consequence of the improved function; it is unclear whether this effect is unique to β-blockers, although repression of carnitine palmitoyltransferase (CPT)-1 has not been reported with other drugs which improve function. The second was the identification of a range of covalent modifications which can regulate CPT-1 directly, mediated by a signalome at the level of the mitochondria. We also identified an important interaction between β-adrenergic signaling and caveolins, which may be a key mechanism of action of β-adrenergic blockade. Our experience with this labyrinthine signaling web illustrates that initial hypotheses and anticipated directions do not have to be right in order to

  19. Parallel effects of β-adrenoceptor blockade on cardiac function and fatty acid oxidation in the diabetic heart: Confronting the maze.

    PubMed

    Sharma, Vijay; McNeill, John H

    2011-09-26

    Diabetic cardiomyopathy is a disease process in which diabetes produces a direct and continuous myocardial insult even in the absence of ischemic, hypertensive or valvular disease. The β-blocking agents bisoprolol, carvedilol and metoprolol have been shown in large-scale randomized controlled trials to reduce heart failure mortality. In this review, we summarize the results of our studies investigating the effects of β-blocking agents on cardiac function and metabolism in diabetic heart failure, and the complex inter-related mechanisms involved. Metoprolol inhibits fatty acid oxidation at the mitochondrial level but does not prevent lipotoxicity; its beneficial effects are more likely to be due to pro-survival effects of chronic treatment. These studies have expanded our understanding of the range of effects produced by β-adrenergic blockade and show how interconnected the signaling pathways of function and metabolism are in the heart. Although our initial hypothesis that inhibition of fatty acid oxidation would be a key mechanism of action was disproved, unexpected results led us to some intriguing regulatory mechanisms of cardiac metabolism. The first was upstream stimulatory factor-2-mediated repression of transcriptional master regulator PGC-1α, most likely occurring as a consequence of the improved function; it is unclear whether this effect is unique to β-blockers, although repression of carnitine palmitoyltransferase (CPT)-1 has not been reported with other drugs which improve function. The second was the identification of a range of covalent modifications which can regulate CPT-1 directly, mediated by a signalome at the level of the mitochondria. We also identified an important interaction between β-adrenergic signaling and caveolins, which may be a key mechanism of action of β-adrenergic blockade. Our experience with this labyrinthine signaling web illustrates that initial hypotheses and anticipated directions do not have to be right in order to

  20. IDO decreases glycolysis and glutaminolysis by activating GCN2K, while it increases fatty acid oxidation by activating AhR, thus preserving CD4+ T‑cell survival and proliferation.

    PubMed

    Eleftheriadis, Theodoros; Pissas, Georgios; Liakopoulos, Vassilios; Stefanidis, Ioannis

    2018-07-01

    It is generally hypothesized in the literature that indoleamine 2,3‑dioxygenase (IDO), by degrading L‑tryptophan along the kynurenine pathway, suppresses CD4+ T‑cell function by inducing apoptosis, inhibiting proliferation and promoting differentiation towards a regulatory phenotype. These effects are either accompanied or directly lead to alterations in cell metabolism. The present study evaluated the pathways that govern the effect of IDO on the utilization of the three main energy sources in CD4+ T‑cells. Two‑way mixed lymphocyte reactions were performed with or without oleate and/or the IDO inhibitor 1‑methyl‑DL‑tryptophan. In addition, isolated CD4+ T‑cells cultured in an oleate‑containing medium were activated in the presence or not of the general control nonderepressible 2 kinase (GCN2K) activator tryptophanol. L‑tryptophan, glucose and free fatty acid consumption, cell proliferation, apoptosis and the levels of key proteins involved in IDO‑mediated signal transduction, and glucose, glutamine and free fatty acid utilization were assessed. The results indicate that IDO decreased glycolysis and glutaminolysis by activating GCN2K, resulting in activation of AMP‑activated protein kinase (AMPK). In parallel with AMPK activation, IDO‑induced activation of aryl hydrocarbon receptor increased the expression of all carnitine palmitoyltransferase I isoenzymes, leading ultimately to increased free fatty acid oxidation and preservation of CD4+ T‑cell survival and proliferation. Thus, contrary to what is generally hypothesized, in a normal environment containing fatty acids, the immunosuppressive effect of IDO may not be due to a decrease in CD4+ T‑cell survival and proliferation, since IDO supplies the required energy for cell survival and proliferation by increasing free fatty acid oxidation.

  1. Protective effects of vitamins E, B and C and L-carnitine in the prevention of cisplatin-induced ototoxicity in rats.

    PubMed

    Tokgöz, S Alicura; Vuralkan, E; Sonbay, N D; Çalişkan, M; Saka, C; Beşalti, Ö; Akin, İ

    2012-05-01

    This experimental study aimed to investigate the effects of vitamins E, B and C and L-carnitine in preventing cisplatin-induced ototoxicity. Twenty-five adult, male, Wistar albino rats were randomly allocated to receive intraperitoneal cisplatin either alone or preceded by vitamins B, E or C or L-carnitine. Auditory brainstem response (i.e. hearing thresholds and wave I-IV intervals) and distortion product otoacoustic emissions (i.e. signal-to-noise ratios) were recorded before and 72 hours after cisplatin administration. The following statistically significant differences were seen: control group pre- vs post-treatment wave I-IV interval values (p < 0.05); control vs vitamin E and B groups' I-IV interval values (p < 0.05); control vs other groups' hearing thresholds; vitamin E vs vitamin B and C and L-carnitine groups' hearing thresholds (p < 0.05); and vitamin B vs vitamin C and L-carnitine groups' hearing thresholds (p < 0.05). Statistically significant decreases were seen when comparing the initial and final signal-to-noise ratios in the control, vitamin B and L-carnitine groups (2000 and 3000 Hz; p < 0.01), and the initial and final signal-to-noise ratios in the control group (at 4000 Hz; p < 0.01). Vitamins B, E and C and L-carnitine appear to reduce cisplatin-induced ototoxicity in rats. The use of such additional treatments to decrease cisplatin-induced ototoxicity in humans is still under discussion.

  2. Effects of pectin pentaoligosaccharide from Hawthorn ( Crataegus pinnatifida Bunge. var. Major) on the activity and mRNA levels of enzymes involved in fatty acid oxidation in the liver of mice fed a high-fat diet.

    PubMed

    Li, Tuo-Ping; Zhu, Ru-Gang; Dong, Yin-Ping; Liu, Yong-Hui; Li, Su-Hong; Chen, Gang

    2013-08-07

    The regulatory effects of haw pectin pentaoligosaccharide (HPPS) on fatty acid oxidation-related enzyme activities and mRNA levels were investigated in the liver of high fat diet induced hyperlipidemic mice. Results showed that HPPS (150 mg/kg for 10 weeks) significantly suppresses weight gain (32.3 ± 0.26 and 21.1 ± 0.14 g for high-fat diet and HPPS groups, respectively), decreases serum triacylglycerol levels (1.64 ± 0.09 and 0.91 ± 0.02 mmol/L, respectively), and increases lipid excretion in feces (55.7 ± 0.38 and 106.4 ± 0.57 mg/g for total lipid, respectively), compared to high-fat diet as control. HPPS significantly increased the hepatic fatty acid oxidation-related enzyme activities of acyl-CoA oxidase, carnitine palmitoyltransferase I, 3-ketoacyl-CoA thiolase, and 2,4-dienoyl-CoA reductase by 53.8, 74.2, 47.1, and 24.2%, respectively. Meanwhile, the corresponding mRNAs were up-regulated by 89.6, 85.8, 82.9, and 30.9%, respectively. Moreover, HPPS was able to up-regulate the gene and protein expressions of peroxisome proliferator-activated receptor α. Results suggest that continuous HPPS ingestion may be used as dietary therapy to prevent obesity and cardiovascular diseases.

  3. Neonatal carnitine palmitoyltransferase II deficiency associated with Dandy-Walker syndrome and sudden death.

    PubMed

    Yahyaoui, Raquel; Espinosa, María Gracia; Gómez, Celia; Dayaldasani, Anita; Rueda, Inmaculada; Roldán, Ana; Ugarte, Magdalena; Lastra, Gonzalo; Pérez, Vidal

    2011-11-01

    Neonatal onset of carnitine palmitoyltransferase II (CPT II) deficiency is an autosomal recessive, often lethal disorder of the mitochondrial beta-oxidation of long-chain fatty acids. It is a rare multiorgan disease which includes hypoketotic hypoglycemia, severe hepatomuscular symptoms, cardiac abnormalities, seizures and lethargy, as well as dysmorphic features. Until now, only 22 affected families have been described in the literature. An increasing number of mutations are being identified in the CPT2 gene, with a distinct genotype-phenotype correlation in most cases. Herein we report a new case of neonatal CPT II deficiency associated with Dandy-Walker syndrome and sudden death at 13 days of life. CPT II deficiency was suggested by acylcarnitine analysis of dried-blood on filter paper in the expanded newborn screening. Genetic analysis of the CPT2 gene identified the presence of a previously described mutation in homozygosity (c.534_558del25bpinsT). All lethal neonatal CPT II deficiency patients previously described presented severe symptoms during the first week of life, although this was not the case in our patient, who remained stable and without apparent vital risk during the first 11 days of life. The introduction of tandem mass spectrometry to newborn screening has substantially improved our ability to detect metabolic diseases in the newborn period. This case illustrates the value of expanded newborn screening in a neonate with an unusual clinical presentation, combining hydrocephalus and sudden death, that might not commonly lead to the suspicion of an inborn error of metabolism. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. A systematic review to evaluate the effectiveness of carnitine supplementation in improving walking performance among individuals with intermittent claudication.

    PubMed

    Delaney, Christopher L; Spark, J Ian; Thomas, Jolene; Wong, Yew Toh; Chan, Lok Tsung; Miller, Michelle D

    2013-07-01

    To evaluate the evidence for the use of carnitine supplementation in improving walking performance among individuals with intermittent claudication. Systematic review. An electronic search of the literature was performed using MEDLINE (PubMed), Scopus, Cochrane Central Register of Controlled Trials and The Cochrane Library from inception through to November 2012. Search terms included peripheral arterial disease, intermittent claudication and carnitine. Reference lists of review articles and primary studies were also examined. Full reports of published experimental studies including randomized controlled trials and pre-test/post-test trials were selected for inclusion. A quality assessment was undertaken according to the Jadad scale. A total of 40 articles were retrieved, of which 23 did not meet the inclusion criteria. The 17 included articles reported on a total of 18 experimental studies of carnitine supplementation (5 pre-test/post-test; 8 parallel RCT; 5 cross-over RCT) for improving walking performance in adults with intermittent claudication. For pre-test/post-test studies, 300-2000 mg propionyl-L-carnitine (PLC) was administered orally or intravenously for a maximum of 90 days (7-42 participants) with statistically significant improvements of between 74 m and 157 m in pain free walking distance and between 71 m and 135 m in maximal walking distance across 3 out of 5 studies. Similarly, PLC (600 mg-3000 mg) was administered orally in 7 out of 8 parallel RCTs (22-485 participants), the longest duration being 12 months. All but one of the smallest trials demonstrated statistically significant improvements in walking performance between 31 and 54 m greater than placebo for pain free walking distance and between 9 and 86 m greater than placebo for maximal walking distance. A double-blind parallel RCT of cilostazol plus 2000 mg oral L-carnitine or placebo for 180 days (145 participants) did not demonstrate any significant improvement in walking performance. Of 5

  5. Study of Triheptanoin for Treatment of Long-Chain Fatty Acid Oxidation Disorder

    ClinicalTrials.gov

    2017-03-21

    Very Long-chain acylCoA Dehydrogenase (VLCAD) Deficiency; Carnitine Palmitoyltransferase 2 (CPT2) Deficiency; Mitochondrial Trifunctional Protein (TFP) Deficiency; Long-chain 3 hydroxyacylCoA Dehydrogenase (LCHAD) Deficiency

  6. L-carnitine and pyruvate are prosurvival factors during the storage of stallion spermatozoa at room temperature.

    PubMed

    Gibb, Zamira; Lambourne, Sarah R; Quadrelli, Julianne; Smith, Nathan D; Aitken, Robert J

    2015-10-01

    The spermatozoa of many stallions do not tolerate being cooled, restricting the commercial viability of these animals and necessitating the development of a chemically defined room temperature (RT) storage medium. This study examined the impact of two major modulators of oxidative phosphorylation, pyruvate (Pyr) and L-carnitine (L-C), on the storage of stallion spermatozoa at RT. Optimal concentrations of Pyr (10 mM) and L-C (50 mM) were first identified and these concentrations were then used to investigate the effects of these compounds on sperm functionality and oxidative stress at RT. Mitochondrial and cytosolic reactive oxygen species, along with lipid peroxidation, were all significantly suppressed by the addition of L-C (48 h MitoSOX Red negative: 46.2% vs. 26.1%; 48 and 72 h dihydroethidium negative: 61.6% vs. 43.1% and 64.4% vs. 46.9%, respectively; 48 and 72 h 4-hydroxynonenal negative: 37.1% vs. 23.8% and 41.6% vs. 25.7%, respectively), while the Pyr + L-C combination resulted in significantly higher motility compared to the control at 72 h (total motility: 64.2% vs. 39.4%; progressive motility: 34.2% vs. 15.2%). In addition, supplementation with L-C significantly reduced oxidative DNA damage at 72 h (9.0% vs. 15.6%). To investigate the effects of L-C as an osmolyte, comparisons were made between media that were osmotically balanced with NaCl, choline chloride, or L-C. This analysis demonstrated that spermatozoa stored in the L-C balanced medium had significantly higher total motility (55.0% vs. 39.0%), rapid motility (44.0% vs. 25.7%), and ATP levels (70.9 vs. 12.8 ng/ml) following storage compared with the NaCl treatment, while choline chloride did not significantly improve these parameters compared to the control. Finally, mass spectrometry was used to demonstrate that a combination of Pyr and L-C produced significantly higher acetyl-L-carnitine production than any other treatment (6.7 pg/10(6) spermatozoa vs. control at 4.0 pg/10(6) spermatozoa

  7. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.I.

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/more » greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.« less

  8. Co-oxidation of the sulfur-containing amino acids in an autoxidizing lipid system

    USGS Publications Warehouse

    Wedemeyer, G.A.; Dollar, A.M.

    1963-01-01

    Oxidation of the sulfur amino acids by autoxidizing lipids was studied in a model system consisting of an amino acid dispersed in cold-pressed, molecularly distilled menhaden oil (20–80% w/w). Under all conditions investigated, cysteine was oxidized completely to cystine. Preliminary results suggest that at 110°C the oxidation follows first-order kinetics for at least the first 8 hr. A specific reaction rate constant of 0.25 per hour was calculated. When fatty acids were added to the system, cystine was oxidized to its thiosulfinate ester. When the fatty acid-cystine ratio was 1:2, oxidation of cystine was a maximum. No oxidation of cystine occurred unless either a fatty acid, volatile organic acid, or ethanol was added. Under the conditions investigated, methionine was not oxidized to either its sulfoxide or its sulfone.

  9. Effects of dietary L-carnitine and ractopamine HCl on the metabolic response to handling in finishing pigs.

    PubMed

    James, B W; Tokach, M D; Goodband, R D; Nelssen, J L; Dritz, S S; Owen, K Q; Woodworth, J C; Sulabo, R C

    2013-09-01

    Two experiments (384 pigs; C22 × L326; PIC) were conducted to determine the interactive effect of dietary L-carnitine and ractopamine HCl (RAC) on the metabolic response of pigs to handling. Experiments were arranged as split-split plots with handling as the main plot and diets as subplots (4 pens per treatment). Dietary L-carnitine (0 or 50 mg/kg) was fed from 36.0 kg to the end of the experiments (118 kg), and RAC (0 or 20 mg/kg) was fed the last 4 wk of each experiment. At the end of each experiment, 4 pigs per pen were assigned to 1 of 2 handling treatments. Gently handled pigs were moved at a moderate walking pace 3 times through a 50-m course and up and down a 15° loading ramp. Aggressively handled pigs were moved as fast as possible 3 times through the same course, but up and down a 30° ramp, and shocked 3 times with an electrical prod. Blood was collected immediately before and after handling in Exp. 1 and immediately after and 1 h after handling in Exp. 2. Feeding RAC increased (P < 0.01) ADG and G:F, but there was no effect (P > 0.10) of L-carnitine on growth performance. In Exp. 1 and 2, aggressive handling increased (P < 0.01) blood lactate dehydrogenase (LDH), lactate, cortisol, and rectal temperature and decreased blood pH. In Exp. 1, there was a RAC × handling interaction (P < 0.06) for the difference in pre- and posthandling blood pH and rectal temperature. Aggressively handled pigs fed RAC had decreased blood pH and increased rectal temperature compared with gently handled pigs, demonstrating the validity of the handling model. Pigs fed RAC had increased (P < 0.01) LDH compared with pigs not fed RAC. Pigs fed L-carnitine had increased (P < 0.03) lactate compared with pigs not fed L-carnitine. In Exp. 2, pigs fed RAC had lower (P < 0.02) blood pH immediately after handling, but pH returned to control levels by 1 h posthandling. Lactate, LDH, cortisol, and rectal temperature changes from immediately posthandling to 1 h posthandling were not

  10. ω-Alkynyl lipid surrogates for polyunsaturated fatty acids: free radical and enzymatic oxidations.

    PubMed

    Beavers, William N; Serwa, Remigiusz; Shimozu, Yuki; Tallman, Keri A; Vaught, Melissa; Dalvie, Esha D; Marnett, Lawrence J; Porter, Ned A

    2014-08-13

    Lipid and lipid metabolite profiling are important parameters in understanding the pathogenesis of many diseases. Alkynylated polyunsaturated fatty acids are potentially useful probes for tracking the fate of fatty acid metabolites. The nonenzymatic and enzymatic oxidations of ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were compared to that of linoleic and arachidonic acid. There was no detectable difference in the primary products of nonenzymatic oxidation, which comprised cis,trans-hydroxy fatty acids. Similar hydroxy fatty acid products were formed when ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were reacted with lipoxygenase enzymes that introduce oxygen at different positions in the carbon chains. The rates of oxidation of ω-alkynylated fatty acids were reduced compared to those of the natural fatty acids. Cyclooxygenase-1 and -2 did not oxidize alkynyl linoleic but efficiently oxidized alkynyl arachidonic acid. The products were identified as alkynyl 11-hydroxy-eicosatetraenoic acid, alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid, and alkynyl prostaglandins. This deviation from the metabolic profile of arachidonic acid may limit the utility of alkynyl arachidonic acid in the tracking of cyclooxygenase-based lipid oxidation. The formation of alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid compared to alkynyl prostaglandins suggests that the ω-alkyne group causes a conformational change in the fatty acid bound to the enzyme, which reduces the efficiency of cyclization of dioxalanyl intermediates to endoperoxide intermediates. Overall, ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid appear to be metabolically competent surrogates for tracking the fate of polyunsaturated fatty acids when looking at models involving autoxidation and oxidation by lipoxygenases.

  11. Unique plasma metabolomic signatures of individuals with inherited disorders of long-chain fatty acid oxidation

    PubMed Central

    McCoin, Colin S.; Piccolo, Brian D.; Knotts, Trina A.; Matern, Dietrich; Vockley, Jerry; Gillingham, Melanie B.; Adams, Sean H.

    2016-01-01

    Blood and urine acylcarnitine profiles are commonly used to diagnose long-chain fatty acid oxidation disorders (FAOD: i.e., long-chain hydroxy-acyl-CoA dehydrogenase [LCHAD] and carnitine palmitoyltransferase 2 [CPT2] deficiency), but the global metabolic impact of long-chain FAOD has not been reported. We utilized untargeted metabolomics to characterize plasma metabolites in 12 overnight-fasted individuals with FAOD (10 LCHAD, 2 CPT2) and 11 healthy age-, sex-, and body mass index (BMI)-matched controls, with the caveat that individuals with FAOD consume a low-fat diet supplemented with medium-chain triglycerides (MCT) while matched controls consume a typical American diet. 832 metabolites were identified in plasma, and partial least squared-discriminant analysis (PLS-DA) identified 114 non-acylcarnitine variables that discriminated FAOD subjects and controls. FAOD individuals had significantly higher triglycerides and lower specific phosphatidylethanolamines, ceramides and sphingomyelins. Differences in phosphatidylcholines were also found but the directionality differed by species. Further, there were few differences in non-lipid metabolites indicating the metabolic impact of FAOD specifically on lipid pathways. This analysis provides evidence that LCHAD/CPT2 deficiency significantly alters complex lipid pathway flux. This metabolic signature may provide powerful clinical tools capable of confirming or diagnosing FAOD, even in subjects with a mild phenotype, and provide clues regarding the biochemical and metabolic impact of FAOD that could be relevant to the etiology of FAOD symptoms. PMID:26907176

  12. Creatine, L-Carnitine, and ω3 Polyunsaturated Fatty Acid Supplementation from Healthy to Diseased Skeletal Muscle

    PubMed Central

    D'Antona, Giuseppe; Nabavi, Seyed Mohammad; Micheletti, Piero; Aquilani, Roberto; Nisoli, Enzo; Rondanelli, Mariangela; Daglia, Maria

    2014-01-01

    Myopathies are chronic degenerative pathologies that induce the deterioration of the structure and function of skeletal muscle. So far a definitive therapy has not yet been developed and the main aim of myopathy treatment is to slow the progression of the disease. Current nonpharmacological therapies include rehabilitation, ventilator assistance, and nutritional supplements, all of which aim to delay the onset of the disease and relieve its symptoms. Besides an adequate diet, nutritional supplements could play an important role in the treatment of myopathic patients. Here we review the most recent in vitro and in vivo studies investigating the role supplementation with creatine, L-carnitine, and ω3 PUFAs plays in myopathy treatment. Our results suggest that these dietary supplements could have beneficial effects; nevertheless continued studies are required before they could be recommended as a routine treatment in muscle diseases. PMID:25243159

  13. Effect of dosage and application mode of L-carnitine on plasma lipid and egg-yolk cholesterol of turkeys, hatchability of eggs and post-hatch growth of their offsprings.

    PubMed

    Oso, A O; Fafiolu, A O; Adeleke, M A; Ladokun, O A; Sobayo, R A; Jegede, A V; Peters, S O; Oyebamiji, O A; Akinsola, J

    2014-08-01

    The effect of dosage and application mode of L-carnitine on plasma lipid and egg-yolk cholesterol of breeder turkeys, hatchability of eggs and post-hatch growth response was investigated using 180 breeder hens. The hens were assigned to six dietary treatments in a 2 × 3 factorial arrangements of two application modes of L-carnitine (diet and drinking water) supplemented at 0, 50 and 100 ppm (mg/kg or mg/l) levels, respectively. Each treatment was replicated five times with six hens per replicate. Dietary inclusion of 50 ppm L-carnitine showed the lowest (p < 0.01) plasma total cholesterol (TC) and low-density lipoprotein concentration (LDL). Breeder hens offered 50 ppm L-carnitine with no regard to application mode recorded the highest (p < 0.01) plasma high-density lipoprotein (HDL). Hens offered 50 and 100 ppm L-carnitine irrespective of application mode also showed reduced (p < 0.01) egg-yolk TC concentration at 32 weeks of age. Dietary supplementation of 50 ppm L-carnitine for breeder turkeys recorded the lowest (p < 0.01) egg-yolk triglyceride (TG) at 40 weeks of age. Hens offered 50 ppm L-carnitine irrespective of application mode recorded the highest (p < 0.05) hen-day egg production. Incidence of dead-in-shell also reduced (p < 0.05) with increasing dosage of L-carnitine. Dietary supplementation of 50 ppm and oral application in drinking water of 100 ppm L-carnitine for breeder turkeys resulted in highest (p < 0.05) egg fertility. Offsprings from breeder hens fed diets supplemented with L-carnitine recorded no post-hatch mortality. Highest (p < 0.05) post-hatch final live weight and weight gain was obtained with poults obtained from hens fed diet supplemented with 50 ppm L-carnitine. In conclusion, dietary supplementation of 50 ppm L-carnitine for turkey hens showed improved serum lipid profile, egg fertility, reduced dead-in-shell, egg-yolk cholesterol and resulted in improved post-hatch growth performance.

  14. Improvement of Pro-Oxidant Capacity of Protocatechuic Acid by Esterification

    PubMed Central

    Zeraik, Maria Luiza; Petrônio, Maicon S.; Coelho, Dyovani; Regasini, Luis Octavio; Silva, Dulce H. S.; da Fonseca, Luiz Marcos; Machado, Sergio A. S.; Bolzani, Vanderlan S.; Ximenes, Valdecir F.

    2014-01-01

    Pro-oxidant effects of phenolic compounds are usually correlated to the one-electron redox potential of the phenoxyl radicals. Here we demonstrated that, besides their oxidizability, hydrophobicity can also be a decisive factor. We found that esterification of protocatechuic acid (P0) provoked a profound influence in its pro-oxidant capacity. The esters bearing alkyl chains containing two (P2), four (P4) and seven (P7) carbons, but not the acid precursor (P0), were able to exacerbate the oxidation of trolox, α-tocopherol and rifampicin. This effect was also dependent on the catechol moiety, since neither gallic acid nor butyl gallate showed any pro-oxidant effects. A comparison was also made with apocynin, which is well-characterized regarding its pro-oxidant properties. P7 was more efficient than apocynin regarding co-oxidation of trolox. However, P7 was not able to co-oxidize glutathione and NADH, which are targets of the apocynin radical. A correlation was found between pro-oxidant capacity and the stability of the radicals, as suggested by the intensity of the peak current in the differential pulse voltammetry experiments. In conclusion, taking into account that hydroquinone and related moieties are frequently found in biomolecules and quinone-based chemotherapeutics, our demonstration that esters of protocatechuic acid are specific and potent co-catalysts in their oxidations may be very relevant as a pathway to exacerbate redox cycling reactions, which are usually involved in their biological and pharmacological mechanisms of action. PMID:25340774

  15. Live imaging reveals a conserved role of fatty acid β-oxidation in early lymphatic development in zebrafish.

    PubMed

    Zecchin, Annalisa; Wong, Brian W; Tembuyser, Bieke; Souffreau, Joris; Van Nuffelen, An; Wyns, Sabine; Vinckier, Stefan; Carmeliet, Peter; Dewerchin, Mieke

    2018-06-18

    During embryonic development, lymphatic endothelial cells (LECs) differentiate from venous endothelial cells (VECs), a process that is tightly regulated by several genetic signals. While the aquatic zebrafish model is regularly used for studying lymphangiogenesis and offers the unique advantage of time-lapse video-imaging of lymphatic development, some aspects of lymphatic development in this model differ from those in the mouse. It therefore remained to be determined whether fatty acid β-oxidation (FAO), which we showed to regulate lymphatic formation in the mouse, also co-determines lymphatic development in this aquatic model. Here, we took advantage of the power of the zebrafish embryo model to visualize the earliest steps of lymphatic development through time-lapse video-imaging. By targeting zebrafish isoforms of carnitine palmitoyltransferase 1a (cpt1a), a rate controlling enzyme of FAO, with multiple morpholinos, we demonstrate that reducing CPT1A levels and FAO flux during zebrafish development impairs lymphangiogenic secondary sprouting, the initiation of lymphatic development in the zebrafish trunk, and the formation of the first lymphatic structures. These findings not only show evolutionary conservation of the importance of FAO for lymphatic development, but also suggest a role for FAO in co-regulating the process of VEC-to-LEC differentiation in zebrafish in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress.

    PubMed

    Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P

    2016-03-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA. © 2015 International Society for Neurochemistry.

  17. CYP2E1-dependent elevation of serum cholesterol, triglycerides, and hepatic bile acids by isoniazid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jie; Krausz, Kristopher W.; Li, Feng

    Isoniazid is the first-line medication in the prevention and treatment of tuberculosis. Isoniazid is known to have a biphasic effect on the inhibition–induction of CYP2E1 and is also considered to be involved in isoniazid-induced hepatotoxicity. However, the full extent and mechanism of involvement of CYP2E1 in isoniazid-induced hepatotoxicity remain to be thoroughly investigated. In the current study, isoniazid was administered to wild-type and Cyp2e1-null mice to investigate the potential toxicity of isoniazid in vivo. The results revealed that isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice, but produced elevated serum cholesterol and triglycerides, and hepatic bile acids in wild-typemore » mice, as well as decreased abundance of free fatty acids in wild-type mice and not in Cyp2e1-null mice. Metabolomic analysis demonstrated that production of isoniazid metabolites was elevated in wild-type mice along with a higher abundance of bile acids, bile acid metabolites, carnitine and carnitine derivatives; these were not observed in Cyp2e1-null mice. In addition, the enzymes responsible for bile acid synthesis were decreased and proteins involved in bile acid transport were significantly increased in wild-type mice. Lastly, treatment of targeted isoniazid metabolites to wild-type mice led to similar changes in cholesterol, triglycerides and free fatty acids. These findings suggest that while CYP2E1 is not involved in isoniazid-induced hepatotoxicity, while an isoniazid metabolite might play a role in isoniazid-induced cholestasis through enhancement of bile acid accumulation and mitochondria β-oxidation. -- Highlights: ► Isoniazid metabolites were elevated only in wild-type mice. ► Isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice. ► Isoniazid elevated serum cholesterol and triglycerides, and hepatic bile acids. ► Bile acid transporters were significantly decreased in isoniazid-treated mice.« less

  18. Dietary oxidized linoleic acid lowers triglycerides via APOA5/APOClll dependent mechanisms

    PubMed Central

    Garelnabi, Mahdi; Selvarajan, Krithika; Litvinov, Dmitry; Santanam, Nalini; Parthasarathy, Sampath

    2008-01-01

    Previously we have shown that intestinal cells efficiently take up oxidized fatty acids (OxFAs) and that atherosclerosis is increased when animals are fed a high cholesterol diet in the presence of oxidized linoleic acid. Interestingly, we found that in the absence of dietary cholesterol, the oxidized fatty acid fed low-density lipoprotein (LDL) receptor negative mice appeared to have lower plasma triglyceride (TG) levels as compared to animals fed oleic acid. In the present study, we fed C57BL6 mice a normal mice diet supplemented with oleic acid or oxidized linoleic acid (at 18 mg/animal/day) for 2 weeks. After the mice were sacrificed, we measured the plasma lipids and collected livers for the isolation of RNA. The results showed that while there were no significant changes in the levels of total cholesterol and high-density lipoprotein cholesterol (HDLc), there was a significant decrease (41.14%) in the levels of plasma TG in the mice that were fed oxidized fatty acids. The decreases in plasma TG levels were accompanied by significant increases (P < 0.001) in the expressions of APOA5 and acetyl-CoA oxidase genes as well as a significant (P < 0.04) decrease in APOClll gene expression. Oxidized lipids have been suggested to be ligands for peroxisome proliferator-activated receptor (PPARα). However, there were no increases in the mRNA or protein levels of PPARα in the oxidized linoleic acid fed animals. These results suggest that oxidized fatty acids may act through an APOA5/APOClll mechanism that contributes to lowering of TG levels other than PPARα induction. PMID:18243209

  19. L-Carnitine/Simvastatin Reduces Lipoprotein (a) Levels Compared with Simvastatin Monotherapy: A Randomized Double-Blind Placebo-Controlled Study.

    PubMed

    Florentin, M; Elisaf, M S; Rizos, C V; Nikolaou, V; Bilianou, E; Pitsavos, C; Liberopoulos, E N

    2017-01-01

    Lipoprotein (a) [Lp(a)] is an independent risk factor for cardiovascular disease. There are currently limited therapeutic options to lower Lp(a) levels. L-Carnitine has been reported to reduce Lp(a) levels. The aim of this study was to compare the effect of L-carnitine/simvastatin co-administration with that of simvastatin monotherapy on Lp(a) levels in subjects with mixed hyperlipidemia and elevated Lp(a) concentration. Subjects with levels of low-density lipoprotein cholesterol (LDL-C) >160 mg/dL, triacylglycerol (TAG) >150 mg/dL and Lp(a) >20 mg/dL were included in this study. Subjects were randomly allocated to receive L-carnitine 2 g/day plus simvastatin 20 mg/day (N = 29) or placebo plus simvastatin 20 mg/day (N = 29) for a total of 12 weeks. Lp(a) was significantly reduced in the L-carnitine/simvastatin group [-19.4%, from 52 (20-171) to 42 (15-102) mg/dL; p = 0.01], but not in the placebo/simvastatin group [-6.7%, from 56 (26-108) to 52 (27-93) mg/dL, p = NS versus baseline and p = 0.016 for the comparison between groups]. Similar significant reductions in total cholesterol, LDL-C, apolipoprotein (apo) B and TAG were observed in both groups. Co-administration of L-carnitine with simvastatin was associated with a significant, albeit modest, reduction in Lp(a) compared with simvastatin monotherapy in subjects with mixed hyperlipidemia and elevated baseline Lp(a) levels.

  20. Effects of combination of sibutramine and L-carnitine compared with sibutramine monotherapy on inflammatory parameters in diabetic patients.

    PubMed

    Derosa, Giuseppe; Maffioli, Pamela; Salvadeo, Sibilla A T; Ferrari, Ilaria; Gravina, Alessia; Mereu, Roberto; D'Angelo, Angela; Palumbo, Ilaria; Randazzo, Sabrina; Cicero, Arrigo F G

    2011-03-01

    The aim of the study was to evaluate the effects of 12-month treatment with sibutramine plus L-carnitine compared with sibutramine alone on body weight, glycemic control, insulin resistance, and inflammatory state in type 2 diabetes mellitus patients. Two hundred fifty-four patients with uncontrolled type 2 diabetes mellitus (glycated hemoglobin [HbA(1c)] >8.0%) in therapy with different oral hypoglycemic agents or insulin were enrolled in this study and randomized to take sibutramine 10 mg plus L-carnitine 2 g or sibutramine 10 mg in monotherapy. We evaluated at baseline and after 3, 6, 9, and 12 months these parameters: body weight, body mass index, HbA(1c), fasting plasma glucose, postprandial plasma glucose, fasting plasma insulin, homeostasis model assessment of insulin resistance index, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, leptin, tumor necrosis factor-α, adiponectin, vaspin, and high-sensitivity C-reactive protein. Sibutramine plus L-carnitine gave a faster improvement of fasting plasma glucose, postprandial plasma glucose, lipid profile, leptin, tumor necrosis factor-α, and high-sensitivity C-reactive protein compared with sibutramine alone. Furthermore, there was a better improvement of body weight, HbA(1c), fasting plasma insulin, homeostasis model assessment of insulin resistance index, vaspin, and adiponectin with sibutramine plus L-carnitine compared with sibutramine alone. Sibutramine plus L-carnitine gave a better and faster improvement of all the analyzed parameters compared with sibutramine alone without giving any severe adverse effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    PubMed

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  2. l-Carnitine Modulates Epileptic Seizures in Pentylenetetrazole-Kindled Rats via Suppression of Apoptosis and Autophagy and Upregulation of Hsp70.

    PubMed

    Hussein, Abdelaziz M; Adel, Mohamed; El-Mesery, Mohamed; Abbas, Khaled M; Ali, Amr N; Abulseoud, Osama A

    2018-03-14

    l-Carnitine is a unique nutritional supplement for athletes that has been recently studied as a potential treatment for certain neuropsychiatric disorders. However, its efficacy in seizure control has not been investigated. Sprague Dawley rats were randomly assigned to receive either saline (Sal) (negative control) or pentylenetetrazole (PTZ) 40 mg/kg i.p. × 3 times/week × 3 weeks. The PTZ group was further subdivided into two groups, the first received oral l-carnitine (l-Car) (100 mg/kg/day × 4 weeks) (PTZ + l-Car), while the second group received saline (PTZ + Sal). Daily identification and quantification of seizure scores, time to the first seizure and the duration of seizures were performed in each animal. Molecular oxidative markers were examined in the animal brains. l-Car treatment was associated with marked reduction in seizure score ( p = 0.0002) that was indicated as early as Day 2 of treatment and continued throughout treatment duration. Furthermore, l-Car significantly prolonged the time to the first seizure ( p < 0.0001) and shortened seizure duration ( p = 0.028). In addition, l-Car administration for four weeks attenuated PTZ-induced increase in the level of oxidative stress marker malondialdehyde (MDA) ( p < 0.0001) and reduced the activity of catalase enzyme ( p = 0.0006) and increased antioxidant GSH activity ( p < 0.0001). Moreover, l-Car significantly reduced PTZ-induced elevation in protein expression of caspase-3 ( p < 0.0001) and β-catenin ( p < 0.0001). Overall, our results suggest a potential therapeutic role of l-Car in seizure control and call for testing these preclinical results in a proof of concept pilot clinical study.

  3. Fatty Acid Oxidation Is Required for Myxococcus xanthus Development.

    PubMed

    Bullock, Hannah A; Shen, Huifeng; Boynton, Tye O; Shimkets, Lawrence J

    2018-05-15

    Myxococcus xanthus cells produce lipid bodies containing triacylglycerides during fruiting body development. Fatty acid β-oxidation is the most energy-efficient pathway for lipid body catabolism. In this study, we used mutants in fadJ (MXAN_5371 and MXAN_6987) and fadI (MXAN_5372) homologs to examine whether β-oxidation serves an essential developmental function. These mutants contained more lipid bodies than the wild-type strain DK1622 and 2-fold more flavin adenine dinucleotide (FAD), consistent with the reduced consumption of fatty acids by β-oxidation. The β-oxidation pathway mutants exhibited differences in fruiting body morphogenesis and produced spores with thinner coats and a greater susceptibility to thermal stress and UV radiation. The MXAN_5372/5371 operon is upregulated in sporulating cells, and its expression could not be detected in csgA , fruA , or mrpC mutants. Lipid bodies were found to persist in mature spores of DK1622 and wild strain DK851, suggesting that the roles of lipid bodies and β-oxidation may extend to spore germination. IMPORTANCE Lipid bodies act as a reserve of triacylglycerides for use when other sources of carbon and energy become scarce. β-Oxidation is essential for the efficient metabolism of fatty acids associated with triacylglycerides. Indeed, the disruption of genes in this pathway has been associated with severe disorders in animals and plants. Myxococcus xanthus , a model organism for the study of development, is ideal for investigating the complex effects of altered lipid metabolism on cell physiology. Here, we show that β-oxidation is used to consume fatty acids associated with lipid bodies and that the disruption of the β-oxidation pathway is detrimental to multicellular morphogenesis and spore formation. Copyright © 2018 American Society for Microbiology.

  4. Possible mechanism for species difference on the toxicity of pivalic acid between dogs and rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Toshiro; Nakajima, Yoshitsugu; Nakamura, Yutaka

    2006-07-01

    In a high dose toxicity study of pivalic acid (PA), PA caused skeletal muscle disorder in dog, and a significant increase of pivaloyl carnitine (PC) was observed in canine muscle, but not in rat muscle. In order to understand species difference of the toxicity of PA, we compared the in vitro metabolism of PA among dog, rat and rabbit, especially focussing on the carnitine conjugate. Canine muscle showed low, but significant carnitine conjugating activity, while that of rat was negligible. Canine kidney mitochondria had significant activity in the pivaloyl CoA synthesis (7 nmol/mg protein/h), but muscle mitochondria showed only tracemore » activity. Both kidney and muscle mitochondria displayed similar carnitine acyltransferase activity (2-3 nmol/mg protein/h) towards pivaloyl CoA. On the other hand, with respect to the activity of carnitine acyltransferase in the reverse direction using PC as substrate, canine muscle mitochondria showed higher activity than that of kidney mitochondria. This means that PC is not the final stable metabolite, but is converted easily to pivaloyl CoA in canine muscle. These results suggest one of the possible mechanisms for canine selective muscle disorder to be as follows. Only canine muscle can metabolize PA to its carnitine conjugate slowly, but significantly. In canine muscle, PC is not the final stable metabolite; it is easily converted to pivaloyl CoA. As carnitine conjugation is thought to be the only detoxification metabolic route in canine muscle, under certain circumstances such as carnitine deficiency, the risk of exposure with toxic pivaloyl CoA might increase and the CoASH pool in canine muscle might be exhausted, resulting in toxicity in canine muscle.« less

  5. L-carnitine is an endogenous HDAC inhibitor selectively inhibiting cancer cell growth in vivo and in vitro.

    PubMed

    Huang, Hongbiao; Liu, Ningning; Guo, Haiping; Liao, Siyan; Li, Xiaofen; Yang, Changshan; Liu, Shouting; Song, Wenbin; Liu, Chunjiao; Guan, Lixia; Li, Bing; Xu, Li; Zhang, Change; Wang, Xuejun; Dou, Q Ping; Liu, Jinbao

    2012-01-01

    L-carnitine (LC) is generally believed to transport long-chain acyl groups from fatty acids into the mitochondrial matrix for ATP generation via the citric acid cycle. Based on Warburg's theory that most cancer cells mainly depend on glycolysis for ATP generation, we hypothesize that, LC treatment would lead to disturbance of cellular metabolism and cytotoxicity in cancer cells. In this study, Human hepatoma HepG2, SMMC-7721 cell lines, primary cultured thymocytes and mice bearing HepG2 tumor were used. ATP content was detected by HPLC assay. Cell cycle, cell death and cell viability were assayed by flow cytometry and MTS respectively. Gene, mRNA expression and protein level were detected by gene microarray, Real-time PCR and Western blot respectively. HDAC activities and histone acetylation were detected both in test tube and in cultured cells. A molecular docking study was carried out with CDOCKER protocol of Discovery Studio 2.0 to predict the molecular interaction between L-carnitine and HDAC. Here we found that (1) LC treatment selectively inhibited cancer cell growth in vivo and in vitro; (2) LC treatment selectively induces the expression of p21(cip1) gene, mRNA and protein in cancer cells but not p27(kip1); (4) LC increases histone acetylation and induces accumulation of acetylated histones both in normal thymocytes and cancer cells; (5) LC directly inhibits HDAC I/II activities via binding to the active sites of HDAC and induces histone acetylation and lysine-acetylation accumulation in vitro; (6) LC treatment induces accumulation of acetylated histones in chromatin associated with the p21(cip1) gene but not p27(kip1) detected by ChIP assay. These data support that LC, besides transporting acyl group, works as an endogenous HDAC inhibitor in the cell, which would be of physiological and pathological importance.

  6. L-Carnitine Is an Endogenous HDAC Inhibitor Selectively Inhibiting Cancer Cell Growth In Vivo and In Vitro

    PubMed Central

    Liao, Siyan; Li, Xiaofen; Yang, Changshan; Liu, Shouting; Song, Wenbin; Liu, Chunjiao; Guan, Lixia; Li, Bing; Xu, Li; Zhang, Change; Wang, Xuejun; Dou, Q. Ping; Liu, Jinbao

    2012-01-01

    L-carnitine (LC) is generally believed to transport long-chain acyl groups from fatty acids into the mitochondrial matrix for ATP generation via the citric acid cycle. Based on Warburg's theory that most cancer cells mainly depend on glycolysis for ATP generation, we hypothesize that, LC treatment would lead to disturbance of cellular metabolism and cytotoxicity in cancer cells. In this study, Human hepatoma HepG2, SMMC-7721 cell lines, primary cultured thymocytes and mice bearing HepG2 tumor were used. ATP content was detected by HPLC assay. Cell cycle, cell death and cell viability were assayed by flow cytometry and MTS respectively. Gene, mRNA expression and protein level were detected by gene microarray, Real-time PCR and Western blot respectively. HDAC activities and histone acetylation were detected both in test tube and in cultured cells. A molecular docking study was carried out with CDOCKER protocol of Discovery Studio 2.0 to predict the molecular interaction between L-carnitine and HDAC. Here we found that (1) LC treatment selectively inhibited cancer cell growth in vivo and in vitro; (2) LC treatment selectively induces the expression of p21cip1 gene, mRNA and protein in cancer cells but not p27kip1; (4) LC increases histone acetylation and induces accumulation of acetylated histones both in normal thymocytes and cancer cells; (5) LC directly inhibits HDAC I/II activities via binding to the active sites of HDAC and induces histone acetylation and lysine-acetylation accumulation in vitro; (6) LC treatment induces accumulation of acetylated histones in chromatin associated with the p21cip1 gene but not p27kip1 detected by ChIP assay. These data support that LC, besides transporting acyl group, works as an endogenous HDAC inhibitor in the cell, which would be of physiological and pathological importance. PMID:23139833

  7. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity.

    PubMed

    Ohno, T

    2001-01-01

    Previous studies have suggested that phenolic acids from legume green manures may contribute to weed control through allelopathy. The objectives of this study were to investigate the oxidation reactions of phenolic acids in soil and to determine the subsequent effects of oxidation upon phytotoxicity. Soils were reacted for 18 h with 0.25 mmol L(-1) benzoic and cinnamic acid derivative solutions and Mn release from the suspension was used as a marker for phenolic acid oxidation. The extent of oxidation in soil suspensions was in the order of 3,4dihydroxy- > 4-hydroxy-3-methoxy- > 4-hydroxy-approximately 2-hydroxy-substituted benzoic and cinnamic acids. The same ranking was observed for cyclic voltammetry peak currents of the cinnamic acid derivatives. This suggests that the oxidation of phenolic acids is controlled by the electron transfer step from the sorbed phenolic acid to the metal oxide. A bioassay experiment showed that the 4-hydroxy-, 4-hydroxy-3-methoxy-, and 3,4-dihydroxy-substituted cinnamic acids were bioactive at 0.25 mmol L(-1) concentration. Reaction with soil for 18 h resulted in the elimination of bioactivity of these three cinnamic acids at the 5% significance level. The oxidative reactivity of phenolic acids may limit the potential of allelopathy as a component of an integrated weed management system. However, the initial phytotoxicity after soil incorporation may coincide with the early, critical stage of weed emergence and establishment, so that allelopathic phenolic acids may still play a role in weed management despite their reactivity in soil systems.

  8. Carnitine Acetyltransferase Mitigates Metabolic Inertia and Muscle Fatigue during Exercise.

    PubMed

    Seiler, Sarah E; Koves, Timothy R; Gooding, Jessica R; Wong, Kari E; Stevens, Robert D; Ilkayeva, Olga R; Wittmann, April H; DeBalsi, Karen L; Davies, Michael N; Lindeboom, Lucas; Schrauwen, Patrick; Schrauwen-Hinderling, Vera B; Muoio, Deborah M

    2015-07-07

    Acylcarnitine metabolites have gained attention as biomarkers of nutrient stress, but their physiological relevance and metabolic purpose remain poorly understood. Short-chain carnitine conjugates, including acetylcarnitine, derive from their corresponding acyl-CoA precursors via the action of carnitine acetyltransferase (CrAT), a bidirectional mitochondrial matrix enzyme. We show here that contractile activity reverses acetylcarnitine flux in muscle, from net production and efflux at rest to net uptake and consumption during exercise. Disruption of this switch in mice with muscle-specific CrAT deficiency resulted in acetyl-CoA deficit, perturbed energy charge, and diminished exercise tolerance, whereas acetylcarnitine supplementation produced opposite outcomes in a CrAT-dependent manner. Likewise, in exercise-trained compared to untrained humans, post-exercise phosphocreatine recovery rates were positively associated with CrAT activity and coincided with dramatic shifts in muscle acetylcarnitine dynamics. These findings show acetylcarnitine serves as a critical acetyl buffer for working muscles and provide insight into potential therapeutic strategies for combatting exercise intolerance. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. [Effect and safety of L-carnitine in the treatment of idiopathic oligoasthenozoospermia: a systemic review].

    PubMed

    Shang, Xue-jun; Wang, Ling-ling; Mo, Dun-sheng; Cai, Hong-cai; Zheng, Da-dong; Zhou, Yuan-zhong

    2015-01-01

    To evaluate the effect and safety of L-carnitine in the treatment of idiopathic oligoasthenozoospermia based on current clinical evidence. We searched the Cochrane Library, PubMed, MEDLINE, EMBASE, CNKI, VIP, CBM and Wanfang Database from the establishment to April 2014 for the published literature on the treatment of idiopathic oligoasthenozoospermia with L-carnitine. We conducted literature screening, data extraction, and assessment of the methodological quality of the included trials according to the inclusion and exclusion criteria, followed by statistical analysis with the RevMan 5. 2 software. Seven randomized controlled trials involving 751 patients with idiopathic oligoasthenozoospermia met the inclusion criteria, and 678 of them were included in the meta-analysis. L-carnitine treatment achieved a significantly increased rate of spontaneous pregnancy as compared with the control group (RR = 3.2, 95% CI 1.74 to 5.87, P = 0.0002). After 12-16 and 24-26 weeks of medication, total sperm motility (WMD = 5.21, 95% CI 2.78 to 7.64, P < 0.0001 and WMD = 9.29, 95% CI 1.28 to 17.29, P = 0.02) and the percentage of progressively motile sperm (WMD = 12.44, 95% CI 4.58 to 20.31, P = 0.002 and WMD = 9.76, 95% CI 3.56 to 15.97, P = 0.002) were remarkably higher than those in the control group, but no statistically significant differences were observed in sperm concentration between the two groups (WMD = 4.91, 95% CI -2.63 to 12.45, P = 0.2 and WMD = 0.93, 95% CI -3.48 to 5.34, P = 0.68). After 12-16 weeks of treatment, the percentage of morphologically abnormal sperm was markedly decreased in the L-carnitine group as compared with the control (WMD = -2.48, 95% CI -4.35 to -0.61, P = 0.009), but showed no significant difference from the latter group after 24-26 weeks (WMD = -4.38, 95% CI -9.66 to 0.89, P = 0.1). No statistically significant difference was found in the semen volume between the two groups after 12-16 or 24-26 weeks of medication (WMD = -0.13, 95% CI -0.43 to

  10. The effect of acetyl-L-carnitine and R-alpha-lipoic acid treatment in ApoE4 mouse as a model of human Alzheimer's disease.

    PubMed

    Shenk, Justin C; Liu, Jiankang; Fischbach, Kathryn; Xu, Kui; Puchowicz, Michel; Obrenovich, Mark E; Gasimov, Eldar; Alvarez, Ludis Morales; Ames, Bruce N; Lamanna, Joseph C; Aliev, Gjumrakch

    2009-08-15

    We measured age-dependent effects of human ApoE4 on cerebral blood flow (CBF) using ApoE4 transgenic mice compared to age-matched wild-type (WT) mice by use of [(14)C] iodoantipyrene autoradiography. ApoE4 associated factors reduce CBF gradually to create brain hypoperfusion when compared to WT, and the differences in CBF are greatest as animals age from 6-weeks to 12-months. Transmission electron microscopy with colloidal gold immunocytochemistry showed structural damage in young and aged microvessel endothelium of ApoE4 animals extended to the cytoplasm of perivascular cells, perivascular nerve terminals and hippocampal neurons and glial cells. These abnormalities coexist with mitochondrial structural alteration and mitochondrial DNA overproliferation and/or deletion in all brain cellular compartments. Spatial memory and temporal memory tests showed a trend in improving cognitive function in ApoE4 mice fed selective mitochondrial antioxidants acetyl-l-carnitine and R-alpha-lipoic acid. Our findings indicate that ApoE4 genotype-induced mitochondrial changes and associated structural damage may explain age-dependent pathology seen in AD, indicating potential for novel treatment strategies in the near future.

  11. Essential fatty acid-rich diets protect against striatal oxidative damage induced by quinolinic acid in rats.

    PubMed

    Morales-Martínez, Adriana; Sánchez-Mendoza, Alicia; Martínez-Lazcano, Juan Carlos; Pineda-Farías, Jorge Baruch; Montes, Sergio; El-Hafidi, Mohammed; Martínez-Gopar, Pablo Eliasib; Tristán-López, Luis; Pérez-Neri, Iván; Zamorano-Carrillo, Absalom; Castro, Nelly; Ríos, Camilo; Pérez-Severiano, Francisca

    2017-09-01

    Essential fatty acids have an important effect on oxidative stress-related diseases. The Huntington's disease (HD) is a hereditary neurologic disorder in which oxidative stress caused by free radicals is an important damage mechanism. The HD experimental model induced by quinolinic acid (QUIN) has been widely used to evaluate therapeutic effects of antioxidant compounds. The aim of this study was to test whether the fatty acid content in olive- or fish-oil-rich diet prevents against QUIN-related oxidative damage in rats. Rats were fed during 20 days with an olive- or a fish-oil-rich diet (15% w/w). Posterior to diet period, rats were striatally microinjected with QUIN (240 nmol/µl) or saline solution. Then, we evaluated the neurological damage, oxidative status, and gamma isoform of the peroxisome proliferator-activated receptor (PPARγ) expression. Results showed that fatty acid-rich diet, mainly by fish oil, reduced circling behavior, prevented the fall in GABA levels, increased PPARγ expression, and prevented oxidative damage in striatal tissue. In addition none of the enriched diets exerted changes neither on triglycerides or cholesterol blood levels, nor or hepatic function. This study suggests that olive- and fish-oil-rich diets exert neuroprotective effects.

  12. Branched Chain Amino Acid Oxidation in Cultured Rat Skeletal Muscle Cells

    PubMed Central

    Pardridge, William M.; Casanello-Ertl, Delia; Duducgian-Vartavarian, Luiza

    1980-01-01

    Leucine metabolism in skeletal muscle is linked to protein turnover. Since clofibrate is known both to cause myopathy and to decrease muscle protein content, the present investigations were designed to examine the effects of acute clofibrate treatment on leucine oxidation. Rat skeletal muscle cells in tissue culture were used in these studies because cultivated skeletal muscle cells, like muscle in vivo, have been shown to actively utilize branched chain amino acids and to produce alanine. The conversion of [1-14C]leucine to 14CO2 or to the [1-14C]keto-acid of leucine (α-keto-isocaproate) was linear for at least 2 h of incubation; the production of 14CO2 from [1-14C]leucine was saturable with a Km = 6.3 mM and a maximum oxidation rate (Vmax) = 31 nmol/mg protein per 120 min. Clofibric acid selectively inhibited the oxidation of [1-14C]leucine (Ki = 0.85 mM) and [U-14C]isoleucine, but had no effect on the oxidation of [U-14C]glutamate, -alanine, -lactate, or -palmitate. The inhibition of [1-14C]leucine oxidation by clofibrate was also observed in the rat quarter-diaphragm preparation. Clofibrate primarily inhibited the production of 14CO2 and had relatively little effect on the production of [1-14C]keto-acid of leucine. A physiological concentration—3.0 g/100 ml—of albumin, which actively binds clofibric acid, inhibited but did not abolish the effects of a 2-mM concentration of clofibric acid on leucine oxidation. Clofibrate treatment stimulated the net consumption of pyruvate, and inhibited the net production of alanine. The drug also increased the cytosolic NADH/NAD+ ratio as reflected by an increase in the lactate/pyruvate ratio, in association with a decrease in cell aspartate levels. The changes in pyruvate metabolism and cell redox state induced by the drug were delayed compared with the nearly immediate inhibition of leucine oxidation. These studies suggest that clofibric acid, in concentrations that approximate high therapeutic levels of the drug

  13. [The hypotriglyceridemic action of the combination of L-carnitine + simvastatin vs. L-carnitine and vs. simvastatin].

    PubMed

    Savica, V; Bellinghieri, G; Lamanna, F

    1992-01-01

    Previous studies had determined the role played by L-carnitine and simvastatin in the treatment of altered lipidemia in dialyzed patients with chronic uremia. The authors carried out a study on the above substances either singly or together administered to the same patients with chronic uremia in hemodialysis. This study was aimed at demonstrating the possible synergic normolipidemic action of both substances in comparison with their single administration, because their different mechanism of action could be metabolically enhanced. The obtained results demonstrated that the therapeutic association proposed is preferable to the use of the single substances. Moreover, a higher and more rapid normolipidemic effect was obtained after using L-carnitina associated with simvastatin with respect to the separated substances.

  14. Micelle-assisted signaling of peracetic acid by the oxidation of pyreneboronic acid via monomer-excimer switching.

    PubMed

    Choi, Jiyoung; Lee, Hyo Jin; Cho, Min Jeoung; Chang, Suk-Kyu

    2015-08-15

    A simple fluorescent probe for the industrial oxidant peracetic acid (PAA) was investigated. PAA-assisted oxidative conversion of pyrene-1-boronic acid into 1-hydroxypyrene was used as the signaling tool. Pyreneboronic acid was found to display selective signaling behavior, being more responsive to PAA than to other commonly used practical oxidants such as H2O2 and HOCl. The changes in pyrene monomer fluorescence to excimer were used in the quantitative analysis of PAA. When using the surfactant hexadecyltrimethylammonium bromide as a micellar additive, the signaling of PAA was markedly enhanced. Selective fluorescence signaling of PAA by pyrene-1-boronic acid with a detection limit of 1.5×10(-6)M in aqueous environment was successfully achieved. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A self-contained 48-well fatty acid oxidation assay.

    PubMed

    Wang, Xiaojun; Wang, Rose; Nemcek, Thomas A; Cao, Ning; Pan, Jeffrey Y; Frevert, Ernst U

    2004-02-01

    The modulation of fatty acid metabolism and especially the stimulation of fatty acid oxidation in liver or skeletal muscle are attractive therapeutic approaches for the treatment of obesity and the associated insulin resistance. However, current beta-oxidation assays are run in very low throughput, which represents an obstacle for drug discovery in this area. Here we describe results for a 48-well beta-oxidation assay using a new instrument design. A connecting chamber links two adjacent wells to form an experimental unit, in which one well contains the beta-oxidation reaction and the other captures CO(2). The experimental units are sealed from each other and from the outside to prevent release of radioactivity from the labeled substrate. CO(2) capture in this instrument is linear with time and over the relevant experimental range of substrate concentration. Cellular viability is maintained in the sealed environment, and cells show the expected responses to modulators of beta-oxidation, such as the AMP kinase activator 5-aminoimidazole carboxamide riboside. Data are presented for different lipid substrates and cell lines. The increased throughput of this procedure compared with previously described methods should facilitate the evaluation of compounds that modulate fatty acid metabolism.

  16. Effects of Combined Treatment with Branched-Chain Amino Acids, Citric Acid, L-Carnitine, Coenzyme Q10, Zinc, and Various Vitamins in Tumor-Bearing Mice.

    PubMed

    Awa, Hiroko; Futamura, Akihiko; Higashiguchi, Takashi; Ito, Akihiro; Mori, Naoharu; Murai, Miyo; Ohara, Hiroshi; Chihara, Takeshi; Kaneko, Takaaki

    2017-03-01

    A functional dietary supplement (FDS) containing Coenzyme Q10, branched-chain amino acids and L-carnitine was administered to tumor-bearing mice, investigating its effects on tumor and muscle tissues. Experiment (A): B16 melanoma cells were implanted subcutaneously into the right side of the abdomen of 8- to 9-week-old C57BL/6J mice. The mice were divided into two groups: a FDS group that received oral administration of FDS (n=10), and a control group that received oral administration of glucose (n=10). The moribund condition was used as the endpoint, and median survival time was determined. Experiment (B): On day 21 after tumor implantation, tumors, soleus muscle, gastrocnemius muscle, and suprahyoid muscles were collected. Tumor and muscle weight and other aspects were evaluated in each group: FDS group (n=15) and control group (n=15). The median survival time was comparable (21 d in the FDS group vs. 18 d in the control group, p=0.30). However, cumulative food intake was significantly higher in the FDS group than the control group (p=0.011). Metastasis of melanoma to the lung was observed in the control group but not in the FDS group (p=0.043). The weight of the suprahyoid muscles was significantly higher in the FDS group than in the control group (p=0.0045). The weight of the tumor was significantly lower in the FDS group than in the control group (p=0.013). The results possibly suggest oral administration of FDS in tumor-bearing mice enhances the maintenance of suprahyoid muscles, resulting in an extended feeding period and suppression of tumor growth and metastasis.

  17. Enantioselective oxidation of racemic lactic acid to D-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM.

    PubMed

    Gao, Chao; Qiu, Jianhua; Li, Jingchen; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping

    2009-03-01

    D-lactic acid and pyruvic acid are two important building block intermediates. Production of D-lactic acid and pyruvic acid from racemic lactic acid by biotransformation is economically interesting. Biocatalyst prepared from 9 g dry cell wt l(-1) of Pseudomonas stutzeri SDM could catalyze 45.00 g l(-1)DL-lactic acid into 25.23 g l(-1)D-lactic acid and 19.70 g l(-1) pyruvic acid in 10h. Using a simple ion exchange process, D-lactic acid and pyruvic acid were effectively separated from the biotransformation system. Co-production of d-lactic acid and pyruvic acid by enantioselective oxidation of racemic lactic acid is technically feasible.

  18. A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism.

    PubMed

    Celestino-Soper, Patrícia B S; Violante, Sara; Crawford, Emily L; Luo, Rui; Lionel, Anath C; Delaby, Elsa; Cai, Guiqing; Sadikovic, Bekim; Lee, Kwanghyuk; Lo, Charlene; Gao, Kun; Person, Richard E; Moss, Timothy J; German, Jennifer R; Huang, Ni; Shinawi, Marwan; Treadwell-Deering, Diane; Szatmari, Peter; Roberts, Wendy; Fernandez, Bridget; Schroer, Richard J; Stevenson, Roger E; Buxbaum, Joseph D; Betancur, Catalina; Scherer, Stephen W; Sanders, Stephan J; Geschwind, Daniel H; Sutcliffe, James S; Hurles, Matthew E; Wanders, Ronald J A; Shaw, Chad A; Leal, Suzanne M; Cook, Edwin H; Goin-Kochel, Robin P; Vaz, Frédéric M; Beaudet, Arthur L

    2012-05-22

    We recently reported a deletion of exon 2 of the trimethyllysine hydroxylase epsilon (TMLHE) gene in a proband with autism. TMLHE maps to the X chromosome and encodes the first enzyme in carnitine biosynthesis, 6-N-trimethyllysine dioxygenase. Deletion of exon 2 of TMLHE causes enzyme deficiency, resulting in increased substrate concentration (6-N-trimethyllysine) and decreased product levels (3-hydroxy-6-N-trimethyllysine and γ-butyrobetaine) in plasma and urine. TMLHE deficiency is common in control males (24 in 8,787 or 1 in 366) and was not significantly increased in frequency in probands from simplex autism families (9 in 2,904 or 1 in 323). However, it was 2.82-fold more frequent in probands from male-male multiplex autism families compared with controls (7 in 909 or 1 in 130; P = 0.023). Additionally, six of seven autistic male siblings of probands in male-male multiplex families had the deletion, suggesting that TMLHE deficiency is a risk factor for autism (metaanalysis Z-score = 2.90 and P = 0.0037), although with low penetrance (2-4%). These data suggest that dysregulation of carnitine metabolism may be important in nondysmorphic autism; that abnormalities of carnitine intake, loss, transport, or synthesis may be important in a larger fraction of nondysmorphic autism cases; and that the carnitine pathway may provide a novel target for therapy or prevention of autism.

  19. A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism

    PubMed Central

    Celestino-Soper, Patrícia B. S.; Violante, Sara; Crawford, Emily L.; Luo, Rui; Lionel, Anath C.; Delaby, Elsa; Cai, Guiqing; Sadikovic, Bekim; Lee, Kwanghyuk; Lo, Charlene; Gao, Kun; Person, Richard E.; Moss, Timothy J.; German, Jennifer R.; Huang, Ni; Shinawi, Marwan; Treadwell-Deering, Diane; Szatmari, Peter; Roberts, Wendy; Fernandez, Bridget; Schroer, Richard J.; Stevenson, Roger E.; Buxbaum, Joseph D.; Betancur, Catalina; Scherer, Stephen W.; Sanders, Stephan J.; Geschwind, Daniel H.; Sutcliffe, James S.; Hurles, Matthew E.; Wanders, Ronald J. A.; Shaw, Chad A.; Leal, Suzanne M.; Cook, Edwin H.; Goin-Kochel, Robin P.; Vaz, Frédéric M.; Beaudet, Arthur L.

    2012-01-01

    We recently reported a deletion of exon 2 of the trimethyllysine hydroxylase epsilon (TMLHE) gene in a proband with autism. TMLHE maps to the X chromosome and encodes the first enzyme in carnitine biosynthesis, 6-N-trimethyllysine dioxygenase. Deletion of exon 2 of TMLHE causes enzyme deficiency, resulting in increased substrate concentration (6-N-trimethyllysine) and decreased product levels (3-hydroxy-6-N-trimethyllysine and γ-butyrobetaine) in plasma and urine. TMLHE deficiency is common in control males (24 in 8,787 or 1 in 366) and was not significantly increased in frequency in probands from simplex autism families (9 in 2,904 or 1 in 323). However, it was 2.82-fold more frequent in probands from male-male multiplex autism families compared with controls (7 in 909 or 1 in 130; P = 0.023). Additionally, six of seven autistic male siblings of probands in male-male multiplex families had the deletion, suggesting that TMLHE deficiency is a risk factor for autism (metaanalysis Z-score = 2.90 and P = 0.0037), although with low penetrance (2–4%). These data suggest that dysregulation of carnitine metabolism may be important in nondysmorphic autism; that abnormalities of carnitine intake, loss, transport, or synthesis may be important in a larger fraction of nondysmorphic autism cases; and that the carnitine pathway may provide a novel target for therapy or prevention of autism. PMID:22566635

  20. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil

    PubMed Central

    Hayatsu, Masahito; Tago, Kanako; Uchiyama, Ikuo; Toyoda, Atsushi; Wang, Yong; Shimomura, Yumi; Okubo, Takashi; Kurisu, Futoshi; Hirono, Yuhei; Nonaka, Kunihiko; Akiyama, Hiroko; Itoh, Takehiko; Takami, Hideto

    2017-01-01

    Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, occurs in a wide range of acidic soils. However, the ammonia-oxidizing bacteria (AOB) that have been isolated from soil to date are acid-sensitive. Here we report the isolation and characterization of an acid-adapted AOB from an acidic agricultural soil. The isolated AOB, strain TAO100, is classified within the Gammaproteobacteria based on phylogenetic characteristics. TAO100 can grow in the pH range of 5–7.5 and survive in highly acidic conditions until pH 2 by forming cell aggregates. Whereas all known gammaproteobacterial AOB (γ-AOB) species, which have been isolated from marine and saline aquatic environments, are halophiles, TAO100 is not phenotypically halophilic. Thus, TAO100 represents the first soil-originated and non-halophilic γ-AOB. The TAO100 genome is considerably smaller than those of other γ-AOB and lacks several genes associated with salt tolerance which are unnecessary for survival in soil. The ammonia monooxygenase subunit A gene of TAO100 and its transcript are higher in abundance than those of ammonia-oxidizing archaea and betaproteobacterial AOB in the strongly acidic soil. These results indicate that TAO100 plays an important role in the nitrification of acidic soils. Based on these results, we propose TAO100 as a novel species of a new genus, Candidatus Nitrosoglobus terrae. PMID:28072419

  1. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil.

    PubMed

    Hayatsu, Masahito; Tago, Kanako; Uchiyama, Ikuo; Toyoda, Atsushi; Wang, Yong; Shimomura, Yumi; Okubo, Takashi; Kurisu, Futoshi; Hirono, Yuhei; Nonaka, Kunihiko; Akiyama, Hiroko; Itoh, Takehiko; Takami, Hideto

    2017-05-01

    Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, occurs in a wide range of acidic soils. However, the ammonia-oxidizing bacteria (AOB) that have been isolated from soil to date are acid-sensitive. Here we report the isolation and characterization of an acid-adapted AOB from an acidic agricultural soil. The isolated AOB, strain TAO100, is classified within the Gammaproteobacteria based on phylogenetic characteristics. TAO100 can grow in the pH range of 5-7.5 and survive in highly acidic conditions until pH 2 by forming cell aggregates. Whereas all known gammaproteobacterial AOB (γ-AOB) species, which have been isolated from marine and saline aquatic environments, are halophiles, TAO100 is not phenotypically halophilic. Thus, TAO100 represents the first soil-originated and non-halophilic γ-AOB. The TAO100 genome is considerably smaller than those of other γ-AOB and lacks several genes associated with salt tolerance which are unnecessary for survival in soil. The ammonia monooxygenase subunit A gene of TAO100 and its transcript are higher in abundance than those of ammonia-oxidizing archaea and betaproteobacterial AOB in the strongly acidic soil. These results indicate that TAO100 plays an important role in the nitrification of acidic soils. Based on these results, we propose TAO100 as a novel species of a new genus, Candidatus Nitrosoglobus terrae.

  2. The rationale for preventing cancer cachexia: targeting excessive fatty acid oxidation.

    PubMed

    Qian, Chao-Nan

    2016-07-21

    Cachexia commonly occurs at the terminal stage of cancer and has largely unclear molecular mechanisms. A recent study published in Nature Medicine, entitled "Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia," reveals that cachectic cancer cells can secrete multiple cytokines that induce excessive fatty acid oxidation, which is responsible for muscle loss in cancer cachexia. Inhibition of fatty acid oxidation using etomoxir can increase muscle mass and body weight in cancer cachexia animal models. The usage of stable cachexia animal models is also discussed in this research highlight.

  3. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  4. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  5. Acetyl-L-carnitine activates the peroxisome proliferator-activated receptor-γ coactivators PGC-1α/PGC-1β-dependent signaling cascade of mitochondrial biogenesis and decreases the oxidized peroxiredoxins content in old rat liver.

    PubMed

    Pesce, Vito; Nicassio, Luigi; Fracasso, Flavio; Musicco, Clara; Cantatore, Palmiro; Gadaleta, Maria Nicola

    2012-04-01

    The behavior of the peroxisome proliferator-activated receptor-γ coactivators PGC-1α/PGC-β-dependent mitochondrial biogenesis signaling pathway, as well as the level of some antioxidant enzymes and proteins involved in mitochondrial dynamics in the liver of old rats before and after 2 months of acetyl-L-carnitine (ALCAR) supplementation, was tested. The results reveal that ALCAR treatment is able to reverse the age-associated decline of PGC-1α, PGC-1β, nuclear respiratory factor 1 (NRF-1), mitochondrial transcription factor A (TFAM), nicotinamide adenine dinucleotide (NADH) dehydrogenase subunit 1 (ND1), and cytochrome c oxidase subunit IV (COX IV) protein levels, of mitochondrial DNA (mtDNA) content, and of citrate synthase activity. Moreover, it partially reverses the mitochondrial superoxide dismutase 2 (SOD2) decline and reduces the cellular content of oxidized peroxiredoxins. These data demonstrate that ALCAR treatment is able to promote in the old rat liver a new mitochondrial population that can contribute to the cellular oxidative stress reduction. Furthermore, a remarkable decline of Drp1 and of Mfn2 proteins is reported here for the first time, suggesting a reduced mitochondrial dynamics in aging liver with no effect of ALCAR treatment.

  6. Fasting rapidly increases fatty acid oxidation in white adipose tissue of young broiler chickens.

    PubMed

    Torchon, Emmanuelle; Ray, Rodney; Hulver, Matthew W; McMillan, Ryan P; Voy, Brynn H

    2017-01-02

    Upregulating the fatty acid oxidation capacity of white adipose tissue in mice protects against diet-induced obesity, inflammation and insulin resistance. Part of this capacity results from induction of brown-like adipocytes within classical white depots, making it difficult to determine the oxidative contribution of the more abundant white adipocytes. Avian genomes lack a gene for uncoupling protein 1 and are devoid of brown adipose cells, making them a useful model in which to study white adipocyte metabolism in vivo. We recently reported that a brief (5 hour) period of fasting significantly upregulated many genes involved in mitochondrial and peroxisomal fatty acid oxidation pathways in white adipose tissue of young broiler chickens. The objective of this study was to determine if the effects on gene expression manifested in increased rates of fatty acid oxidation. Abdominal adipose tissue was collected from 21 day-old broiler chicks that were fasted for 3, 5 or 7 hours or fed ad libitum (controls). Fatty acid oxidation was determined by measuring and summing 14 CO 2 production and 14 C-labeled acid-soluble metabolites from the oxidation of [1- 14 C] palmitic acid. Fasting induced a progressive increase in complete fatty acid oxidation and citrate synthase activity relative to controls. These results confirm that fatty acid oxidation in white adipose tissue is dynamically controlled by nutritional status. Identifying the underlying mechanism may provide new therapeutic targets through which to increase fatty acid oxidation in situ and protect against the detrimental effects of excess free fatty acids on adipocyte insulin sensitivity.

  7. Efficacy of l-carnitine administration on fatigue, nutritional status, oxidative stress, and related quality of life in 12 advanced cancer patients undergoing anticancer therapy.

    PubMed

    Gramignano, Giulia; Lusso, Maria Rita; Madeddu, Clelia; Massa, Elena; Serpe, Roberto; Deiana, Laura; Lamonica, Giovanna; Dessì, Mariele; Spiga, Carla; Astara, Giorgio; Macciò, Antonio; Mantovani, Giovanni

    2006-02-01

    Fatigue is a multidimensional symptom that is described in terms of perceived energy, mental capacity, and psychological status: it can impair daily functioning and lead to negative effects on quality of life. It is one of the most common side effects of chemotherapy and radiotherapy. In recent studies, l-carnitine (LC) supplementation has been demonstrated to be able to improve fatigue symptoms in patients with cancer. In the present study we tested the efficacy and safety of LC supplementation in a population of patients who had advanced cancer and developed fatigue, high blood levels of reactive oxygen species, or both. As outcome measures we evaluated fatigue and quality of life in relation to oxidative stress, nutritional status, and laboratory variables, mainly levels of reactive oxygen species, glutathione peroxidase, and proinflammatory cytokines. From March to July 2004, 12 patients who had advanced tumors (50% at stage IV) at different sites were enrolled (male-to-female ratio 2:10, mean age 60 y, range 42-73). Patients were only slightly anemic (hemoglobin 10.9 g/dL) and hemoglobin levels did not change after treatment. LC was administered orally at 6 g/d for 4 wk. All patients underwent antineoplastic treatment during LC supplementation. Fatigue, as measured by the Multidimensional Fatigue Symptom Inventory-Short Form, decreased significantly, particularly for the General and Physical scales, and for quality of life in each subscale of quality of life in relation to oxidative stress. Nutritional variables (lean body mass and appetite) increased significantly after LC supplementation. Levels of reactive oxygen species decreased and glutathione peroxidase increased but not significantly. Proinflammatory cytokines did not change significantly. Improvement of symptoms with respect to fatigue and quality of life in relation to oxidative stress may be explained mainly by an increase in lean body mass, which may be considered the most important nutritional or

  8. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy

    PubMed Central

    Fillmore, N; Mori, J; Lopaschuk, G D

    2014-01-01

    Heart disease is a leading cause of death worldwide. In many forms of heart disease, including heart failure, ischaemic heart disease and diabetic cardiomyopathies, changes in cardiac mitochondrial energy metabolism contribute to contractile dysfunction and to a decrease in cardiac efficiency. Specific metabolic changes include a relative increase in cardiac fatty acid oxidation rates and an uncoupling of glycolysis from glucose oxidation. In heart failure, overall mitochondrial oxidative metabolism can be impaired while, in ischaemic heart disease, energy production is impaired due to a limitation of oxygen supply. In both of these conditions, residual mitochondrial fatty acid oxidation dominates over mitochondrial glucose oxidation. In diabetes, the ratio of cardiac fatty acid oxidation to glucose oxidation also increases, although primarily due to an increase in fatty acid oxidation and an inhibition of glucose oxidation. Recent evidence suggests that therapeutically regulating cardiac energy metabolism by reducing fatty acid oxidation and/or increasing glucose oxidation can improve cardiac function of the ischaemic heart, the failing heart and in diabetic cardiomyopathies. In this article, we review the cardiac mitochondrial energy metabolic changes that occur in these forms of heart disease, what role alterations in mitochondrial fatty acid oxidation have in contributing to cardiac dysfunction and the potential for targeting fatty acid oxidation to treat these forms of heart disease. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24147975

  9. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    PubMed

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  10. Cellular stress responses, mitostress and carnitine insufficiencies as critical determinants in aging and neurodegenerative disorders: role of hormesis and vitagenes.

    PubMed

    Calabrese, Vittorio; Cornelius, Carolin; Stella, Anna Maria Giuffrida; Calabrese, Edward J

    2010-12-01

    The widely accepted oxidative stress theory of aging postulates that aging results from accumulation of oxidative damage. A prediction of this theory is that, among species, differential rates of aging may be apparent on the basis of intrinsic differences in oxidative damage accrual. Although widely accepted, there is a growing number of exceptions to this theory, most contingently related to genetic model organism investigations. Proteins are one of the prime targets for oxidative damage and cysteine residues are particularly sensitive to reversible and irreversible oxidation. The adaptation and survival of cells and organisms requires the ability to sense proteotoxic insults and to coordinate protective cellular stress response pathways and chaperone networks related to protein quality control and stability. The toxic effects that stem from the misassembly or aggregation of proteins or peptides, in any cell type, are collectively termed proteotoxicity. Despite the abundance and apparent capacity of chaperones and other components of homeostasis to restore folding equilibrium, the cell appears poorly adapted for chronic proteotoxic stress which increases in cancer, metabolic and neurodegenerative diseases. Pharmacological modulation of cellular stress response pathways has emerging implications for the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. A critical key to successful medical intervention is getting the dose right. Achieving this goal can be extremely challenging due to human inter-individual variation as affected by age, gender, diet, exercise, genetic factors and health status. The nature of the dose response in and adjacent to the therapeutic zones, over the past decade has received considerable advances. The hormetic dose-response, challenging long-standing beliefs about the nature of the dose-response in a lowdose zone, has the potential to affect significantly the design of pre

  11. Physiological effects of γ-linolenic acid and sesamin on hepatic fatty acid synthesis and oxidation.

    PubMed

    Ide, Takashi; Iwase, Haruka; Amano, Saaya; Sunahara, Saki; Tachihara, Ayuka; Yagi, Minako; Watanabe, Tsuyoshi

    2017-03-01

    Interrelated effects of γ-linolenic acid (GLA) and sesamin, a sesame lignan, on hepatic fatty acid synthesis and oxidation were examined. Rats were fed experimental diets supplemented with 0 or 2 g/kg sesamin (1:1 mixture of sesamin and episesamin) and containing 100 g/kg of palm oil (saturated fat), safflower oil rich in linoleic acid, or oil of evening primrose origin containing 43% GLA (GLA oil) for 18 days. In rats fed sesamin-free diets, GLA oil, compared with other oils, increased the activity and mRNA levels of various enzymes involved in fatty acid oxidation, except for some instances. Sesamin greatly increased these parameters, and the enhancing effects of sesamin on peroxisomal fatty acid oxidation rate and acyl-CoA oxidase, enoyl-CoA hydratase and acyl-CoA thioesterase activities were more exaggerated in rats fed GLA oil than in the animals fed other oils. The combination of sesamin and GLA oil also synergistically increased the mRNA levels of some peroxisomal fatty acid oxidation enzymes and of several enzymes involved in fatty acid metabolism located in other cell organelles. In the groups fed sesamin-free diets, GLA oil, compared with other oils, markedly reduced the activity and mRNA levels of various lipogenic enzymes. Sesamin reduced all these parameters, except for malic enzyme, in rats fed palm and safflower oils, but the effects were attenuated in the animals fed GLA oil. These changes by sesamin and fat type accompanied profound alterations in serum lipid levels. This may be ascribable to the changes in apolipoprotein-B-containing lipoproteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective

    PubMed Central

    Schönfeld, Peter; Wojtczak, Lech

    2016-01-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis. PMID:27080715

  13. Enhancement of learning capacity and cholinergic synaptic function by carnitine in aging rats.

    PubMed

    Ando, S; Tadenuma, T; Tanaka, Y; Fukui, F; Kobayashi, S; Ohashi, Y; Kawabata, T

    2001-10-15

    The effects of a carnitine derivative, acetyl-L-carnitine (ALCAR), on the cognitive and cholinergic activities of aging rats were examined. Rats were given ALCAR (100 mg/kg) per os for 3 months and were subjected to the Hebb-Williams tasks and a new maze task, AKON-1, to assess their learning capacity. The learning capacity of the ALCAR-treated group was superior to that of the control. Cholinergic activities were determined with synaptosomes isolated from the cortices. The high-affinity choline uptake by synaptosomes, acetylcholine synthesis in synaptosomes, and acetylcholine release from synaptosomes on membrane depolarization were all enhanced in the ALCAR group. This study indicates that chronic administration of ALCAR increases cholinergic synaptic transmission and consequently enhances learning capacity as a cognitive function in aging rats. Copyright 2001 Wiley-Liss, Inc.

  14. [Studies on the oxidation reaction of octanol-2 with nitric acid by infrared spectroscopy].

    PubMed

    Zhang, G; Zhao, G; Wang, Y; Zhang, Q; Zhang, S; Lu, F

    1998-04-01

    In this paper, the reaction process of oxidation of octanol-2 with nitric acid has been studied by IR spectroscopy. It is found that the main components of non-sapoifiable matter are different in different oxidation degrees. The relation between oxidation products and the amount of nitric acid are investigated,the reaction mechanism has also been studied. Experimental results show that the oxidation process of octanol-2 is as follows: first, octanol-2 is oxidated to octanone-2, or to nitrate, nitrite and nitrile copmpounds, then these compounds are reoxidated to caproic acid in the meantime some by-products, such as valeric, enanthic acids are also found in oxidated products.

  15. Preparation and characterization of dialdehyde starch by one-step acid hydrolysis and oxidation.

    PubMed

    Zuo, Yingfeng; Liu, Wenjie; Xiao, Junhua; Zhao, Xing; Zhu, Ying; Wu, Yiqiang

    2017-10-01

    Dialdehyde starch was prepared by one-step synthesis of acid hydrolysis and oxidation, using corn starch as the raw material, sodium periodate (NaIO 4 ) as the oxidant, and hydrochloric acid (HCl) as the acid solution. The prepared dialdehyde starch was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The results confirmed that oxidation occurred between the starch and NaIO 4 . The acid hydrolysis reaction reduced the molecular weight of starch and effectively improved the aldehyde group contents (92.7%). Scanning electron microscope (SEM) analysis indicated that the average particle size decreased after acid hydrolysis and oxidation reaction. X-ray diffraction (XRD) and thermal gravimetric analyzer (TGA) analysis demonstrated that the crystallinity of the obtained dialdehyde starch showed a downward trend and a decelerated thermal decomposition rate. The starch after acid hydrolysis and oxidation exhibited lower hot paste viscosity and higher reactivity. Copyright © 2017. Published by Elsevier B.V.

  16. Green reduction of graphene oxide by ascorbic acid

    NASA Astrophysics Data System (ADS)

    Khosroshahi, Zahra; Kharaziha, Mahshid; Karimzadeh, Fathallah; Allafchian, Alireza

    2018-01-01

    Graphene, a single layer of sp2-hybridized carbon atoms in a hexagonal (two-dimensional honey-comb) lattice, has attracted strong scientific and technological interest due to its novel and excellent optical, chemical, electrical, mechanical and thermal properties. The solution-processable chemical reduction of Graphene oxide (GO is considered as the most favorable method regarding mass production of graphene. Generally, the reduction of GO is carried out by chemical approaches using different reductants such as hydrazine and sodium borohydride. These components are corrosive, combustible and highly toxic which may be dangerous for personnel health and the environment. Hence, these reducing agents are not promising choice for reducing of graphene oxide (GO). As a consequence, it is necessary for further development and optimization of eco-friendly, natural reducing agent for clean and effective reduction of GO. Ascorbic acid, an eco-friendly and natural reducing agents, having a mild reductive ability and nontoxic property. So, the aim of this research was to green synthesis of GO with ascorbic acid. For this purpose, the required amount of NaOH and ascorbic acid were added to GO solution (0.5 mg/ml) and were heated at 95 °C for 1 hour. According to the X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and electrochemical results, GO were reduced with ascorbic acid like hydrazine with better electrochemical properties and ascorbic acid is an ideal substitute for hydrazine in the reduction of graphene oxide process.

  17. Chinese patent medicine Xin-Ke-Shu inhibits Ca2+ overload and dysfunction of fatty acid β-oxidation in rats with myocardial infarction induced by LAD ligation.

    PubMed

    Yang, Yong; Jia, Hongmei; Yu, Meng; Zhou, Chao; Sun, Lili; Zhao, Yang; Zhang, Hongwu; Zou, Zhongmei

    2018-03-15

    Myocardial infarction (MI) occurs during a sustained insufficient blood supply to the heart, eventually leading to myocardial necrosis. Xin-Ke-Shu tablet (XKS) is a prescription herbal compound and a patented medicine extensively used in the clinical treatment of coronary heart disease (CHD). To understand the molecular mechanism of the XKS action against MI in detail, it is necessary to investigate the altered metabolome and related pathways coincident with clinical features. In this study, tissue-targeted metabonomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) were developed to explore the metabolic changes associated with XKS treatment in the heart tissue of rats with MI induced by a left anterior descending coronary artery ligation (LAD). The metabolic disorder induced by LAD was alleviated after low-dose XKS (LD) and intermediate-dose XKS (MD) treatment. XKS modulated six perturbed metabolic pathways. Among them, inhibition of Ca 2+ overload and dysfunction of fatty acid β-oxidation-related metabolic pathways likely underlie the therapeutic effects of XKS against MI. In agreement with its observed effect on metabolite perturbation, XKS reversed the over-expression of the four key proteins, long-chain acyl-CoA synthetase 1 (ACSL1), carnitine palmitoyl transferase-1 (CPT1B), calcium/calmodulin-dependent kinase II (CaMKII), and phospholipase A2IIA (PLA2IIA). Both metabolite and protein changes suggested that XKS exerts its therapeutic effect on metabolic perturbations in LAD-induced MI mainly by inhibiting the Ca 2+ overload and fatty acid β-oxidation dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress

    PubMed Central

    Simón, María Victoria; Agnolazza, Daniela L.; German, Olga Lorena; Garelli, Andrés; Politi, Luis E.; Agbaga, Martin-Paul; Anderson, Robert E.; Rotstein, Nora P.

    2015-01-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat (PQ) and hydrogen peroxide (H2O2). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. PMID:26662863

  19. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    PubMed

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Fusion of acid oxides for potentially radiation-resistant waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrick, C.C.; Penneman, R.A.

    1983-02-01

    Skull melting of groups VA and VB acid oxides with alkali metal oxides and urania leads to compounds with a good ability to retain radionuclides and establishes immunity to radiation damage. Substitution of neptunium and plutonium for uranium should not diminish these desirable properties. For hexavalent transplutonic elements, even at high oxygen fugacities and oxide activities, acid character losses and the reducing nature of radiation suggest the lower valences (III and IV) will be the stable states. Plutonium becomes the pivotal radionuclide when valence stability in a radiation field is considered.

  1. Immunohistochemical determination of the extracellular matrix modulation in a rat model of choline-deprived myocardium: the effects of carnitine.

    PubMed

    Strilakou, Athina; Perelas, Apostolos; Lazaris, Andreas; Papavdi, Asteria; Karkalousos, Petros; Giannopoulou, Ioanna; Kriebardis, Anastasios; Panayiotides, Ioannis; Liapi, Charis

    2016-02-01

    Choline has been identified as an essential nutrient with crucial role in many vital biological functions. Recent studies have demonstrated that heart dysfunction can develop in the setting of choline deprivation even in the absence of underlying heart disease. Matrix metalloproteinases (MMPs) are responsible for extracellular matrix degradation, and the dysregulation of MMP-2 and MMP-9 has been involved in the pathogenesis of various cardiovascular disorders. The aim of the study was to investigate the role of MMPs and their inhibitors (TIMPs), in the pathogenesis of choline deficiency-induced cardiomyopathy, and the way they are affected by carnitine supplementation. Male Wistar Albino adult rats were divided into four groups and received standard or choline-deficient diet with or without L-carnitine in drinking water (0.15% w/v) for 1 month. Heart tissue immunohistochemistry for MMP-2, MMP-9, TIMP-1, and TIMP-2 was performed. Choline deficiency was associated with suppressed immunohistochemical expression of MMP-2 and an increased expression of TIMP-2 compared to control, while it had no impact on TIMP-1. MMP-9 expression was decreased without, however, reaching statistical significance. Carnitine did not affect MMP-2, MMP-9, TIMP-1 or TIMP-2 expression. The pattern of TIMP and MMP modulation observed in a choline deficiency setting appears to promote fibrosis. Carnitine, although shown to suppress fibrosis, does not seem to affect MMP-2, MMP-9, TIMP-1 or TIMP-2 expression. Further studies will be required to identify the mechanism underlying the beneficial effects of carnitine. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  2. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats.

    PubMed

    Ferramosca, Alessandra; Conte, Annalea; Burri, Lena; Berge, Kjetil; De Nuccio, Francesco; Giudetti, Anna Maria; Zara, Vincenzo

    2012-01-01

    Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.

  3. A Krill Oil Supplemented Diet Suppresses Hepatic Steatosis in High-Fat Fed Rats

    PubMed Central

    Ferramosca, Alessandra; Conte, Annalea; Burri, Lena; Berge, Kjetil; De Nuccio, Francesco; Giudetti, Anna Maria; Zara, Vincenzo

    2012-01-01

    Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals. PMID:22685607

  4. Effects of propionyl-L-carnitine on ischemia-reperfusion injury in hamster cheek pouch microcirculation.

    PubMed

    Lapi, Dominga; Sabatino, Lina; Altobelli, Giovanna Giuseppina; Mondola, Paolo; Cimini, Vincenzo; Colantuoni, Antonio

    2010-01-01

    Propionyl-l-carnitine (pLc) exerts protective effects in different experimental models of ischemia-reperfusion (I/R). The aim of the present study was to assess the effects of intravenously and topically applied pLc on microvascular permeability increase induced by I/R in the hamster cheek pouch preparation. The hamster cheek pouch microcirculation was visualized by fluorescence microscopy. Microvascular permeability, leukocyte adhesion to venular walls, perfused capillary length, and capillary red blood cell velocity (V(RBC)) were evaluated by computer-assisted methods. E-selectin expression was assessed by in vitro analysis. Lipid peroxidation and reactive oxygen species (ROS) formation were determined by thiobarbituric acid-reactive substances (TBARS) and 2'-7'-dichlorofluorescein (DCF), respectively. In control animals, I/R caused a significant increase in permeability and in the leukocyte adhesion in venules. Capillary perfusion and V(RBC) decreased. TBARS levels and DCF fluorescence significantly increased compared with baseline. Intravenously infused pLc dose-dependently prevented leakage and leukocyte adhesion, preserved capillary perfusion, and induced vasodilation at the end of reperfusion, while ROS concentration decreased. Inhibition of nitric oxide synthase prior to pLc caused vasoconstriction and partially blunted the pLc-induced protective effects; inhibition of the endothelium-derived hyperpolarizing factor (EDHF) abolished pLc effects. Topical application of pLc on cheek pouch membrane produced the same effects as observed with intravenous administration. pLc decreased the E-selectin expression. pLc prevents microvascular changes induced by I/R injury. The reduction of permeability increase could be mainly due to EDHF release induce vasodilatation together with NO. The reduction of E-selectin expression prevents leukocyte adhesion and permeability increase.

  5. Effects of Propionyl-L-Carnitine on Ischemia–Reperfusion Injury in Hamster Cheek Pouch Microcirculation

    PubMed Central

    Lapi, Dominga; Sabatino, Lina; Altobelli, Giovanna Giuseppina; Mondola, Paolo; Cimini, Vincenzo; Colantuoni, Antonio

    2010-01-01

    Background and purpose Propionyl-l-carnitine (pLc) exerts protective effects in different experimental models of ischemia–reperfusion (I/R). The aim of the present study was to assess the effects of intravenously and topically applied pLc on microvascular permeability increase induced by I/R in the hamster cheek pouch preparation. Methods The hamster cheek pouch microcirculation was visualized by fluorescence microscopy. Microvascular permeability, leukocyte adhesion to venular walls, perfused capillary length, and capillary red blood cell velocity (VRBC) were evaluated by computer-assisted methods. E-selectin expression was assessed by in vitro analysis. Lipid peroxidation and reactive oxygen species (ROS) formation were determined by thiobarbituric acid-reactive substances (TBARS) and 2′-7′-dichlorofluorescein (DCF), respectively. Results In control animals, I/R caused a significant increase in permeability and in the leukocyte adhesion in venules. Capillary perfusion and VRBC decreased. TBARS levels and DCF fluorescence significantly increased compared with baseline. Intravenously infused pLc dose-dependently prevented leakage and leukocyte adhesion, preserved capillary perfusion, and induced vasodilation at the end of reperfusion, while ROS concentration decreased. Inhibition of nitric oxide synthase prior to pLc caused vasoconstriction and partially blunted the pLc-induced protective effects; inhibition of the endothelium-derived hyperpolarizing factor (EDHF) abolished pLc effects. Topical application of pLc on cheek pouch membrane produced the same effects as observed with intravenous administration. pLc decreased the E-selectin expression. Conclusions pLc prevents microvascular changes induced by I/R injury. The reduction of permeability increase could be mainly due to EDHF release induce vasodilatation together with NO. The reduction of E-selectin expression prevents leukocyte adhesion and permeability increase. PMID:21423374

  6. Fatty Acid Composition as a Predictor for the Oxidation Stability of Korean Vegetable Oils with or without Induced Oxidative Stress

    PubMed Central

    Yun, Jung-Mi; Surh, Jeonghee

    2012-01-01

    This study was designed to investigate whether the fatty acid composition could make a significant contribution to the oxidation stability of vegetable oils marketed in Korea. Ten kinds, 97 items of vegetable oils that were produced in either an industrialized or a traditional way were collected and analyzed for their fatty acid compositions and lipid oxidation products, in the absence or presence of oxidative stress. Peroxidability index (PI) calculations based on the fatty acid composition ranged from 7.10 to 111.87 with the lowest value found in olive oils and the highest in perilla oils. In the absence of induced oxidative stress, malondialdehyde (MDA), the secondary lipid oxidation product, was generated more in the oils with higher PI (r=0.890), while the tendency was not observed when the oils were subjected to an oxidation-accelerating system. In the presence of the oxidative stress, the perilla oils produced in an industrialized manner generated appreciably higher amounts of MDA than those produced in a traditional way, although both types of oils presented similar PIs. The results implicate that the fatty acid compositions could be a predictor for the oxidation stability of the vegetable oils at the early stage of oil oxidation, but not for those at a later stage of oxidation. PMID:24471078

  7. The Baeyer-Villiger Oxidation with Trifluoroacetic Acid and Household Sodium Percarbonate

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Clemons, Anthony E.

    2008-01-01

    A method for carrying out the Baeyer-Villiger oxidation of cyclopentanone to [delta]-valerolactone in a large-section introductory organic chemistry laboratory course is reported. The oxidizing agent is trifluoroperoxyacetic acid generated in situ from trifluoroacetic acid and household sodium percarbonate such as OxiClean, Oxi Magic, or…

  8. Effect of acid on the aggregation of poly(ethylene xide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers.

    PubMed

    Yang, Bin; Guo, Chen; Chen, Shu; Ma, Junhe; Wang, Jing; Liang, Xiangfeng; Zheng, Lily; Liu, Huizhou

    2006-11-23

    The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.

  9. Ferrous Iron Oxidation by Thiobacillus ferrooxidans: Inhibition with Benzoic Acid, Sorbic Acid, and Sodium Lauryl Sulfate

    PubMed Central

    Onysko, Steven J.; Kleinmann, Robert L. P.; Erickson, Patricia M.

    1984-01-01

    Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds. PMID:16346592

  10. Large discharge capacity from carbon electrodes in sulfuric acid with oxidant

    NASA Astrophysics Data System (ADS)

    Inagaki, M.; Iwashita, N.

    The discharge performance of the graphite intercalation compounds in sulfuric acid containing nitric acid (H 2SO 4-GICs) was studied by focusing on the effects of oxidant and carbon nanotexture. A large discharge capacity from H 2SO 4-GICs synthesized by using an excess amount of HNO 3, more than 150 times of the theoretical value (93 mAh/g carbon), was obtained depending on the amount of oxidant added, the discharge current, and the nanotexture of carbon electrode. The experimental results are explained in terms of competition between the de-intercalation of sulfuric acid due to galvanostatic reduction and the re-intercalation due to chemical oxidation by HN03 during discharging. However, a subsidiary reaction decreases the effective amount of HNO 3 on the discharge by a small current and also on the cycle of chemical charging and electrochemical discharging. The oxidant KMnO 4 gave only a little larger capacity for discharge than the theoretical one, because it was reduced to the manganese oxide precipitates during the oxidation of the carbon electrode.

  11. Pulmonary fatty acid synthesis. I. Mitochondrial acetyl transfer by rat lung in vitro.

    PubMed

    Evans, R M; Scholz, R W

    1977-04-01

    Incorporation of tritiated water into fatty acids by rat adipose tissue and lung tissue slices incubated with 5 mM glucose indicated a level of fatty acid synthesis in rat lung approximately 15% that observed in adipose tissue in vitro. (-)-Hydroxycitrate, and inhibitor of ATP citrate lyase, markedly reduced tritiated water incorporation into fatty acids by lung tissue slices. The effects of (-)-hydroxycitrate and n-butymalonate on the incorporation of 14C-labeled glucose, pyruvate, acetate, and citrate suggested that citrate is a major acetyl carrier for de novo fatty acid synthesis in lung tissue. Alternative mechanisms to citrate as an acetyl carrier were also considered. Lung mitochondrial preparations formed significant levels of acetylcarnitine in the presence of pyruvate and carnitine. However, the effect of carnitine on the incorporation of 14C-labeled glucose, pyruvate, acetate, and citrate into fatty acids by lung tissue slices indicated that acetylcarnitine may not be a significant acetyl carrier for fatty acid synthesis but may serve as an acetyl "buffer" in the control of mitochondrial acetyl-CoA levels. Additionally, it appears unlikely that either acetylaspartate or acetoacetate are of major importance in acetyl transfer in lung tissue.

  12. Muscle-specific Deletion of Carnitine Acetyltransferase Compromises Glucose Tolerance and Metabolic Flexibility

    PubMed Central

    Muoio, Deborah M.; Noland, Robert C.; Kovalik, Jean-Paul; Seiler, Sarah E.; Davies, Michael N.; DeBalsi, Karen L.; Ilkayeva, Olga R.; Stevens, Robert D.; Kheterpal, Indu; Zhang, Jingying; Covington, Jeffrey D.; Bajpeyi, Sudip; Ravussin, Eric; Kraus, William; Koves, Timothy R.; Mynatt, Randall L.

    2012-01-01

    Summary The concept of “metabolic inflexibility” was first introduced to describe the failure of insulin resistant human subjects to appropriately adjust mitochondrial fuel selection in response to nutritional cues. This phenomenon has since gained increasing recognition as a core component of the metabolic syndrome, but the underlying mechanisms have remained elusive. Here, we identify an essential role for the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT), in regulating substrate switching and glucose tolerance. By converting acetyl-CoA to its membrane permeant acetylcarnitine ester, CrAT regulates mitochondrial and intracellular carbon trafficking. Studies in muscle-specific Crat knockout mice, primary human skeletal myocytes and human subjects undergoing L-carnitine supplementation support a model wherein CrAT combats nutrient stress, promotes metabolic flexibility and enhances insulin action by permitting mitochondrial efflux of excess acetyl moieties that otherwise inhibit key regulatory enzymes such as pyruvate dehydrogenase. These findings offer therapeutically relevant insights into the molecular basis of metabolic inflexibility. PMID:22560225

  13. Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility.

    PubMed

    Muoio, Deborah M; Noland, Robert C; Kovalik, Jean-Paul; Seiler, Sarah E; Davies, Michael N; DeBalsi, Karen L; Ilkayeva, Olga R; Stevens, Robert D; Kheterpal, Indu; Zhang, Jingying; Covington, Jeffrey D; Bajpeyi, Sudip; Ravussin, Eric; Kraus, William; Koves, Timothy R; Mynatt, Randall L

    2012-05-02

    The concept of "metabolic inflexibility" was first introduced to describe the failure of insulin-resistant human subjects to appropriately adjust mitochondrial fuel selection in response to nutritional cues. This phenomenon has since gained increasing recognition as a core component of the metabolic syndrome, but the underlying mechanisms have remained elusive. Here, we identify an essential role for the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT), in regulating substrate switching and glucose tolerance. By converting acetyl-CoA to its membrane permeant acetylcarnitine ester, CrAT regulates mitochondrial and intracellular carbon trafficking. Studies in muscle-specific Crat knockout mice, primary human skeletal myocytes, and human subjects undergoing L-carnitine supplementation support a model wherein CrAT combats nutrient stress, promotes metabolic flexibility, and enhances insulin action by permitting mitochondrial efflux of excess acetyl moieties that otherwise inhibit key regulatory enzymes such as pyruvate dehydrogenase. These findings offer therapeutically relevant insights into the molecular basis of metabolic inflexibility. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  15. Studies on the oxidation of hexamethylbenzene 1: Oxidation of hexamethylbenzene with nitric acid

    NASA Technical Reports Server (NTRS)

    Chiba, K.; Tomura, S.; Mizuno, T.

    1986-01-01

    The oxidative reaction of hexamethylbenzene (HMB) with nitric acid was studied, and the hitherto unknown polymethylbenzenepolycarboxylic acids were isolated: tetramethylphthalic anhydride, tetramethylisophthalic acid, 1,3,5-, 1,2,4- and 1,2,3-trimethylbenzenetricarboxylic acids. When HMB was warmed with 50% nitric acid at about 80 C, tetramethylphthalic anhydride and tetramethylisophthalic acid were initially produced. The continued reaction led to the production of trimethylbenzenetricarboxylic acids, but only slight amounts of dimethylbenzenetetracarboxylic acids were detected in the reaction mixture. Whereas tetramethylphthalic anydride and tetramethylisophthalic acid were obtained, pentamethylbenzoic acid, a possible precursor of them, was scarcely produced. On the other hand, a yellow material extracted with ether from the initial reaction mixture contained bis-(nitromethyl)prehnitene (CH3)4C6(CH2NO2)2, which was easily converted into the phthalic anhydride.

  16. Influence of ultrasound on the heterogeneous Fenton-like oxidation of acetic acid.

    PubMed

    Cihanoğlu, Aydın; Gündüz, Gönül; Dükkancı, Meral

    2017-11-01

    The main objective of this study is to investigate the effect of ultrasound on the heterogeneous Fenton-like oxidation of acetic acid, which is one of the most resistant carboxylic acids to oxidation. For this purpose, firstly, the degradation of acetic acid was examined by using ultrasound alone and the effects of different parameters such as: type of sonication system, ultrasonic power, and addition of H 2 O 2 were investigated on the degradation of acetic acid. There was no chemical oxygen demand (COD) reduction in the presence of sonication alone. In the presence of the heterogeneous Fenton-like oxidation process alone, at 303 K, COD reduction reached only 7.1% after 2 h of reaction. However, the combination of the heterogeneous Fenton-like oxidation process with ultrasound increased the COD reduction from 7.1% to 25.5% after 2 h of reaction in an ultrasonic bath operated at 40 kHz, while the COD reduction only increased from 7.1% to 8.9% in the ultrasonic reactor operated at 850 kHz. This result indicates that the hybrid process of ultrasound and heterogeneous Fenton-like oxidation is a promising process to degrade acetic acid.

  17. Glycine Betaine, Carnitine, and Choline Enhance Salinity Tolerance and Prevent the Accumulation of Sodium to a Level Inhibiting Growth of Tetragenococcus halophila

    PubMed Central

    Robert, Hervé; Le Marrec, Claire; Blanco, Carlos; Jebbar, Mohamed

    2000-01-01

    Natural-abundance 13C-nuclear magnetic resonance was used to probe the intracellular organic solute content of the moderately halophilic bacterium Tetragenococcus halophila. When grown in complex growth media supplemented or not with NaCl, T. halophila accumulates glycine betaine and carnitine. Unlike other moderate halophiles, T. halophila was not able to produce potent osmoprotectants (such as ectoines and glycine betaine) through de novo synthesis when cultured in defined medium under hyperosmotic constraint. Addition of 2 mM carnitine, glycine betaine, or choline to defined medium improved growth parameters, not only at high salinity (up to 2.5 M NaCl) but also in media lacking NaCl. These compounds were taken up when available in the surrounding medium. The transport activity occurred at low and high salinities and seems to be constitutive. Glycine betaine and carnitine were accumulated by T. halophila in an unmodified form, while exogenously provided choline led to an intracellular accumulation of glycine betaine. This is the first evidence of the existence of a choline-glycine betaine pathway in a lactic acid bacterium. An assay showed that the compatible solutes strikingly repressed the accumulation of glutamate and slightly increased the intracellular potassium level only at high salinity. Interestingly, osmoprotectant-treated cells were able to maintain the intracellular sodium concentration at a relatively constant level (200 to 300 nmol/mg [dry weight]), independent of the NaCl concentration of the medium. In contrast, in the absence of osmoprotectant, the intracellular sodium content increased sharply from 200 to 2,060 nmol/mg (dry weight) when the salinity of the medium was raised from 1 to 2 M. Indeed, the imported compatible solutes play an actual role in regulating the intracellular Na+ content and confer a much higher salt tolerance to T. halophila. PMID:10653711

  18. Stilbenes and resveratrol metabolites improve mitochondrial fatty acid oxidation defects in human fibroblasts

    PubMed Central

    2014-01-01

    Background Inborn enzyme defects of mitochondrial fatty acid beta-oxidation (FAO) form a large group of genetic disorders associated to variable clinical presentations ranging from life-threatening pediatric manifestations up to milder late onset phenotypes, including myopathy. Very few candidate drugs have been identified in this group of disorders. Resveratrol (RSV) is a natural polyphenol with anti-oxidant and anti-inflammatory effects, recently shown to have beneficial metabolic properties in mice models. Our study explores its possible effects on FAO and mitochondrial energy metabolism in human cells, which are still very little documented. Methods Using cells from controls and from patients with Carnitine Palmitoyl Transferase 2 (CPT2) or Very Long Chain AcylCoA Dehydrogenase (VLCAD) deficiency we characterized the metabolic effects of RSV, RSV metabolites, and other stilbenes. We also focused on analysis of RSV uptake, and on the effects of low RSV concentrations, considering the limited bioavailability of RSV in vivo. Results Time course of RSV accumulation in fibroblasts over 48 h of treatment were consistent with the resulting stimulation or correction of FAO capacities. At 48 h, half maximal and maximal FAO stimulations were respectively achieved for 37,5 microM (EC50) and 75 microM RSV, but we found that serum content of culture medium negatively modulated RSV uptake and FAO induction. Indeed, decreasing serum from 12% to 3% led to shift EC50 from 37,5 to 13 microM, and a 2.6-3.6-fold FAO stimulation was reached with 20 microM RSV at 3% serum, that was absent at 12% serum. Two other stilbenes often found associated with RSV, i.e. cis- RSV and piceid, also triggered significant FAO up-regulation. Resveratrol glucuro- or sulfo- conjugates had modest or no effects. In contrast, dihydro-RSV, one of the most abundant circulating RSV metabolites in human significantly stimulated FAO (1.3-2.3-fold). Conclusions This study provides the first compared data on

  19. Inactivation by omeprazole of the carnitine transporter (OCTN2) reconstituted in liposomes.

    PubMed

    Pochini, Lorena; Scalise, Mariafrancesca; Indiveri, Cesare

    2009-05-15

    The effect of omeprazole on the carnitine (OCTN2) transporter reconstituted in liposomes has been studied. Omeprazole externally added to the proteoliposomes, inhibited the carnitine/carnitine antiport catalysed by the reconstituted transporter. The inhibition was partially reversed by DTE indicating that it was caused by the covalent reaction of omeprazole with Cys residue(s) of the transporter. Similar results were found with intact brush border vesicles. The residual inhibition of the transport in the presence of DTE, indicated the occurrence of an alternative inhibition mechanism of non-covalent nature. The IC(50) of the two inhibition modes derived from dose-response curves, were 5.7 microM and 20.4 microM, respectively. Kinetic studies of the inhibition showed that in the absence of DTE omeprazole behaved as non-competitive inhibitor. On the contrary, in the presence of DTE competitive inhibition was found. The K(i) of the transporter for the inhibitor was 5.2 microM or 14.6 microM in the absence or presence of DTE, i.e., under condition of covalent (non-competitive) or non-covalent (competitive) interaction of the inhibitor with the transporter. The presence of the substrate during the incubation of the omeprazole (in the absence of DTE) with the proteoliposomes facilitated the covalent reaction of the pharmacological compound with the transporter. Omeprazole did not inhibit when present in the internal proteoliposomal compartment, indicating that the inhibition was specifically due to interaction with external site(s) of the protein. The pharmacological compound was not transported by the reconstituted transporter. The possible in vivo implications of the interaction of omeprazole with the transporter are discussed.

  20. Phytoagents for Cancer Management: Regulation of Nucleic Acid Oxidation, ROS, and Related Mechanisms

    PubMed Central

    Shyur, Lie-Fen

    2013-01-01

    Accumulation of oxidized nucleic acids causes genomic instability leading to senescence, apoptosis, and tumorigenesis. Phytoagents are known to reduce the risk of cancer development; whether such effects are through regulating the extent of nucleic acid oxidation remains unclear. Here, we outlined the role of reactive oxygen species in nucleic acid oxidation as a driving force in cancer progression. The consequential relationship between genome instability and cancer progression highlights the importance of modulation of cellular redox level in cancer management. Current epidemiological and experimental evidence demonstrate the effects and modes of action of phytoagents in nucleic acid oxidation and provide rationales for the use of phytoagents as chemopreventive or therapeutic agents. Vitamins and various phytoagents antagonize carcinogen-triggered oxidative stress by scavenging free radicals and/or activating endogenous defence systems such as Nrf2-regulated antioxidant genes or pathways. Moreover, metal ion chelation by phytoagents helps to attenuate oxidative DNA damage caused by transition metal ions. Besides, the prooxidant effects of some phytoagents pose selective cytotoxicity on cancer cells and shed light on a new strategy of cancer therapy. The “double-edged sword” role of phytoagents as redox regulators in nucleic acid oxidation and their possible roles in cancer prevention or therapy are discussed in this review. PMID:24454991

  1. Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide.

    PubMed

    Che, Chi-Ming; Yip, Wing-Ping; Yu, Wing-Yiu

    2006-09-18

    A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2Ru(III)(OH2)]CF3CO2 (1; Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80% yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one-mole scale, the oxidation of cyclohexene, cyclooctene, and 1-octanol with 1 mol % of 1 produced adipic acid (124 g, 85% yield), suberic acid (158 g, 91% yield), and 1-octanoic acid (129 g, 90% yield), respectively. The oxidative C=C bond-cleavage reaction proceeded through the formation of cis- and trans-diol intermediates, which were further oxidized to carboxylic acids via C-C bond cleavage.

  2. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    PubMed

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  3. Palmitoleic acid (16:1n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes.

    PubMed

    Cruz, Maysa M; Lopes, Andressa B; Crisma, Amanda R; de Sá, Roberta C C; Kuwabara, Wilson M T; Curi, Rui; de Andrade, Paula B M; Alonso-Vale, Maria I C

    2018-03-20

    We have recently demonstrated that palmitoleic acid (16:1n7) increases lipolysis, glucose uptake and glucose utilization for energy production in white adipose cells. In the present study, we tested the hypothesis that palmitoleic acid modulates bioenergetic activity in white adipocytes. For this, 3 T3-L1 pre-adipocytes were differentiated into mature adipocytes in the presence (or absence) of palmitic (16:0) or palmitoleic (16:1n7) acid at 100 or 200 μM. The following parameters were evaluated: lipolysis, lipogenesis, fatty acid (FA) oxidation, ATP content, oxygen consumption, mitochondrial mass, citrate synthase activity and protein content of mitochondrial oxidative phosphorylation (OXPHOS) complexes. Treatment with 16:1n7 during 9 days raised basal and isoproterenol-stimulated lipolysis, FA incorporation into triacylglycerol (TAG), FA oxidation, oxygen consumption, protein expression of subunits representing OXPHOS complex II, III, and V and intracellular ATP content. These effects were not observed in adipocytes treated with 16:0. Palmitoleic acid, by concerted action on lipolysis, FA esterification, mitochondrial FA oxidation, oxygen consumption and ATP content, does enhance white adipocyte energy expenditure and may act as local hormone.

  4. Optimal Electrocatalytic Pd/MWNTs Nanocatalysts toward Formic Acid Oxidation

    PubMed Central

    Wang, Yiran; He, Qingliang; Wei, Huige; Guo, Jiang; Ding, Keqiang; Wang, Qiang; Wang, Zhe; Wei, Suying; Guo, Zhanhu

    2017-01-01

    The operating conditions such as composition of electrolyte and temperature can greatly influence the formic acid (HCOOH) oxidation reaction (FAOR). Palladium decorated multi-walled carbon nanotubes (Pd/MWNTs) were successfully synthesized and employed as nanocatalysts to explore the effects of formic acid, sulfuric acid (H2SO4) concentration and temperature on FAOR. Both the hydrogen adsorption in low potential range and the oxidation of poisoning species during the high potential range in cyclic voltammetry were demonstrated to contribute to the enhanced electroactivity of Pd/MWNTs. The as-synthesized Pd/MWNTs gave the best performance under a condition with balanced adsorptions of HCOOH and H2SO4 molecules. The dominant dehydrogenation pathway on Pd/MWNTs can be largely depressed by the increased dehydration pathway, leading to an increased charge transfer resistance (Rct). Increasing HCOOH concentration could directly increase the dehydration process proportion and cause the production of COads species. H2SO4 as donor of H+ greatly facilitated the onset oxidation of HCOOH in the beginning process but it largely depressed the HCOOH oxidation with excess amount of H+. Enhanced ion mobility with increasing the temperature was mainly responsible for the increased current densities, improved tolerance stabilities and reduced Rct values, while dehydration process was also increased simultaneously. PMID:29622817

  5. Aerosol Fragmentation Driven by Coupling of Acid-Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals.

    PubMed

    Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A

    2017-08-10

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular

  6. Disorders of fatty acid oxidation and autosomal recessive polycystic kidney disease-different clinical entities and comparable perinatal renal abnormalities.

    PubMed

    Hackl, Agnes; Mehler, Katrin; Gottschalk, Ingo; Vierzig, Anne; Eydam, Marcus; Hauke, Jan; Beck, Bodo B; Liebau, Max C; Ensenauer, Regina; Weber, Lutz T; Habbig, Sandra

    2017-05-01

    Differential diagnosis of prenatally detected hyperechogenic and enlarged kidneys can be challenging as there is a broad phenotypic overlap between several rare genetic and non-genetic disorders. Metabolic diseases are among the rarest underlying disorders, but they demand particular attention as their prognosis and postnatal management differ from those of other diseases. We report two cases of cystic, hyperechogenic and enlarged kidneys detected on prenatal ultrasound images, resulting in the suspected diagnosis of autosomal recessive polycystic kidney disease (ARPKD). Postnatal clinical course and work-up, however, revealed early, neonatal forms of disorders of fatty acid oxidation (DFAO) in both cases, namely, glutaric acidemia type II, based on identification of the novel, homozygous splice-site mutation c.1117-2A > G in the ETFDH gene, in one case and carnitine palmitoyltransferase II deficiency in the other case. Review of pre- and postnatal sonographic findings resulted in the identification of some important differences that might help to differentiate DFAO from ARPKD. In DFAO, kidneys are enlarged to a milder degree than in ARPKD, and the cysts are located ubiquitously, including also in the cortex and the subcapsular area. Interestingly, recent studies have pointed to a switch in metabolic homeostasis, referred to as the Warburg effect (aerobic glycolysis), as one of the underlying mechanisms of cell proliferation and cyst formation in cystic kidney disease. DFAO are characterized by the inhibition of oxidative phosphorylation, resulting in aerobic glycolysis, and thus they do resemble the Warburg effect. We therefore speculate that this inhibition might be one of the pathomechanisms of renal hyperproliferation and cyst formation in DFAO analogous to the reported findings in ARPKD. Neonatal forms of DFAO can be differentially diagnosed in neonates with cystic or hyperechogenic kidneys and necessitate immediate biochemical work-up to provide early

  7. Reduction of apoptosis through the mitochondrial pathway by the administration of acetyl-L-carnitine to mouse fibroblasts in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillich, Rudolf Tito; Dipartimento di Genetica e Biologia Molecolare, Universita di Roma 'La Sapienza', P.le A. Moro, 5-00185 Rome; Scarsella, Gianfranco

    It is shown in literature that stress, such as deprivation of trophic factors and hypoxia, induces apoptosis in cultured cells and in tissues. In light of these results, we explored the possibility of protecting cells from programmed death by improving the metabolism of the mitochondrion. To this end, acetyl-L-carnitine was administered at various concentrations under conditions of serum deprivation. The choice of this drug was based on the accepted notion that acetyl-L-carnitine is able to stabilize mitochondrial membranes and to increase the supply of energy to the organelle. The results presented here indicate that the drug protects cells from apoptoticmore » death: this is demonstrated by a lower positivity to the TUNEL reaction and by a strong reduction of the apoptotic DNA ladder in serum-deprived cells. The involvement of the mitochondrial apoptotic pathway was assessed by cytochrome C release and immunoreactivity to caspase 3. Moreover, acetyl-L-carnitine stimulates cell proliferation.« less

  8. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    NASA Astrophysics Data System (ADS)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  9. The Nitric Acid Oxidation of Selected Alcohols and Ketones.

    ERIC Educational Resources Information Center

    Field, Kurt W.; And Others

    1985-01-01

    Shows that nitric acid can be used as a rapid, versatile, and economical oxidant for selected organic substances. The experiments (with background information, procedures, and results provided) require one three-hour laboratory period but could serve as open-ended projects since substrates not described could be oxidized. (JN)

  10. Newborn screening for citrin deficiency and carnitine uptake defect using second-tier molecular tests.

    PubMed

    Wang, Li-Yun; Chen, Nien-I; Chen, Pin-Wen; Chiang, Shu-Chuan; Hwu, Wuh-Liang; Lee, Ni-Chung; Chien, Yin-Hsiu

    2013-02-10

    Tandem mass spectrometry (MS/MS) analysis is a powerful tool for newborn screening, and many rare inborn errors of metabolism are currently screened using MS/MS. However, the sensitivity of MS/MS screening for several inborn errors, including citrin deficiency (screened by citrulline level) and carnitine uptake defect (CUD, screened by free carnitine level), is not satisfactory. This study was conducted to determine whether a second-tier molecular test could improve the sensitivity of citrin deficiency and CUD detection without increasing the false-positive rate. Three mutations in the SLC25A13 gene (for citrin deficiency) and one mutation in the SLC22A5 gene (for CUD) were analyzed in newborns who demonstrated an inconclusive primary screening result (with levels between the screening and diagnostic cutoffs). The results revealed that 314 of 46 699 newborns received a second-tier test for citrin deficiency, and two patients were identified; 206 of 30 237 newborns received a second-tier testing for CUD, and one patient was identified. No patients were identified using the diagnostic cutoffs. Although the incidences for citrin deficiency (1:23 350) and CUD (1:30 000) detected by screening are still lower than the incidences calculated from the mutation carrier rates, the second-tier molecular test increases the sensitivity of newborn screening for citrin deficiency and CUD without increasing the false-positive rate. Utilizing a molecular second-tier test for citrin deficiency and carnitine transporter deficiency is feasible.

  11. Monocarboxylic acids from oxidation of acyclic isoprenoid alkanes by Mycobacterium fortuitum

    NASA Technical Reports Server (NTRS)

    Cox, R. E.; Maxwell, J. R.; Myers, R. N.

    1976-01-01

    Mycobacterium fortuitum utilizes certain stereoisomeric mixtures of individual multimethyl branched alkanes as sole carbon source, including 2,6(R), 10(S), 14(RS)-tetramethylhexadecane; 2,6(R), 10(S), 14(RS)-tetramethylheptadecane; 2,6(RS), 10(RS)-trimethyltetradecane, and 2,6(R), 10(S)-trimethylpentadecane. Products of oxidation isolated from the bacterial lipids were acids derived predominantly from oxidation of the isopropyl terminus of each alkane, except in the case of 2,6(RS), 10(RS)-trimethyltetradecane. With the latter, acids from oxidation at either terminus were detected in comparable proportions.

  12. Generation of organic acids and monosaccharides by hydrolytic and oxidative transformation of food processing residues.

    PubMed

    Fischer, Klaus; Bipp, Hans-Peter

    2005-05-01

    Carbohydrate-rich biomass residues, i.e. sugar beet molasses, whey powder, wine yeast, potato peel sludge, spent hops, malt dust and apple marc, were tested as starting materials for the generation of marketable chemicals, e.g. aliphatic acids, sugar acids and mono-/disaccharides. Residues were oxidized or hydrolyzed under acidic or alkaline conditions applying conventional laboratory digestion methods and microwave assisted techniques. Yields and compositions of the oxidation products differed according to the oxidizing agent used. Main products of oxidation by 30% HNO(3) were acetic, glucaric, oxalic and glycolic acids. Applying H(2)O(2)/CuO in alkaline solution, the organic acid yields were remarkably lower with formic, acetic and threonic acids as main products. Gluconic acid was formed instead of glucaric acid throughout. Reaction of a 10% H(2)O(2) solution with sugar beet molasses generated formic and lactic acids mainly. Na(2)S(2)O(8) solutions were very inefficient at oxidizing the residues. Glucose, arabinose and galactose were formed during acidic hydrolysis of malt dust and apple marc. The glucose content reached 0.35 g per gram of residue. Important advantages of the microwave application were lower reaction times and reduced reagent demands.

  13. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  14. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia.

    PubMed

    Fukawa, Tomoya; Yan-Jiang, Benjamin Chua; Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Huang, Dan; Qian, Chao-Nan; Ong, Pauline; Li, Zhimei; Chen, Shuwen; Mak, Shi Ya; Lim, Wan Jun; Kanayama, Hiro-Omi; Mohan, Rosmin Elsa; Wang, Ruiqi Rachel; Lai, Jiunn Herng; Chua, Clarinda; Ong, Hock Soo; Tan, Ker-Kan; Ho, Ying Swan; Tan, Iain Beehuat; Teh, Bin Tean; Shyh-Chang, Ng

    2016-06-01

    Cachexia is a devastating muscle-wasting syndrome that occurs in patients who have chronic diseases. It is most commonly observed in individuals with advanced cancer, presenting in 80% of these patients, and it is one of the primary causes of morbidity and mortality associated with cancer. Additionally, although many people with cachexia show hypermetabolism, the causative role of metabolism in muscle atrophy has been unclear. To understand the molecular basis of cachexia-associated muscle atrophy, it is necessary to develop accurate models of the condition. By using transcriptomics and cytokine profiling of human muscle stem cell-based models and human cancer-induced cachexia models in mice, we found that cachectic cancer cells secreted many inflammatory factors that rapidly led to high levels of fatty acid metabolism and to the activation of a p38 stress-response signature in skeletal muscles, before manifestation of cachectic muscle atrophy occurred. Metabolomics profiling revealed that factors secreted by cachectic cancer cells rapidly induce excessive fatty acid oxidation in human myotubes, which leads to oxidative stress, p38 activation and impaired muscle growth. Pharmacological blockade of fatty acid oxidation not only rescued human myotubes, but also improved muscle mass and body weight in cancer cachexia models in vivo. Therefore, fatty acid-induced oxidative stress could be targeted to prevent cancer-induced cachexia.

  15. MOXI Is a Mitochondrial Micropeptide That Enhances Fatty Acid β-Oxidation.

    PubMed

    Makarewich, Catherine A; Baskin, Kedryn K; Munir, Amir Z; Bezprozvannaya, Svetlana; Sharma, Gaurav; Khemtong, Chalermchai; Shah, Akansha M; McAnally, John R; Malloy, Craig R; Szweda, Luke I; Bassel-Duby, Rhonda; Olson, Eric N

    2018-06-26

    Micropeptide regulator of β-oxidation (MOXI) is a conserved muscle-enriched protein encoded by an RNA transcript misannotated as non-coding. MOXI localizes to the inner mitochondrial membrane where it associates with the mitochondrial trifunctional protein, an enzyme complex that plays a critical role in fatty acid β-oxidation. Isolated heart and skeletal muscle mitochondria from MOXI knockout mice exhibit a diminished ability to metabolize fatty acids, while transgenic MOXI overexpression leads to enhanced β-oxidation. Additionally, hearts from MOXI knockout mice preferentially oxidize carbohydrates over fatty acids in an isolated perfused heart system compared to wild-type (WT) animals. MOXI knockout mice also exhibit a profound reduction in exercise capacity, highlighting the role of MOXI in metabolic control. The functional characterization of MOXI provides insight into the regulation of mitochondrial metabolism and energy homeostasis and underscores the regulatory potential of additional micropeptides that have yet to be identified. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Oxidation Stability of O/W Emulsion Prepared with Linolenic Acid Enriched Diacylglycerol.

    PubMed

    Shin, Jung-Ah; Lee, Mi-Young; Lee, Ki-Teak

    2016-10-01

    The sn-1,3-regiospecific Rhizomucor miehei lipase (Lipozyme RM IM) was employed to produce structured diacylglycerol (SL-DAG), which contained 67.3 mol% DAG with 27.2 area% of C18:3. To investigate the oxidative stability of the SL-DAG in emulsion form, 5% oil-in-water (O/W) emulsions were prepared with 200 and 400 ppm sinapic acid. It was shown that the hydroperoxide values of the control (without any antioxidant) was the highest (117.7 meq/L) on day 43 of storage and thereafter the value decreased. However, the emulsions with 200 and 400 ppm sinapic acid resulted in slow oxidation degree until day 64 of storage (30.3 and 7.3 meq/L, respectively). Aldehyde measurements for the 200 ppm sinapic acid emulsion (12.8 mmol/mol) and the 400 ppm sinapic acid emulsion (7.5 mmol/mol) also showed better oxidative stability than that for the 200 ppm catechin emulsion (27.4 mmol/mol) and the control (52.7 mmol/mol). Although the SL-DAG in the emulsions contains high levels of polyunsaturated fatty acids, the degree of oxidation in the emulsions can be reduced when sinapic acid is used as an antioxidant. © 2016 Institute of Food Technologists®.

  17. Effects of berberine and cinnamic acid on palmitic acid-induced intracellular triglyceride accumulation in NIT-1 pancreatic β cells.

    PubMed

    Zhao, Li; Jiang, Shu-Jun; Lu, Fu-Er; Xu, Li-Jun; Zou, Xin; Wang, Kai-Fu; Dong, Hui

    2016-07-01

    To investigate the effects of berberine (BBR) and cinnamic acid (CA), the main active components in Jiaotai Pill (, JTP), on palmitic acid (PA)-induced intracellular triglyceride (TG) accumulation in NIT-1 pancreatic β cells. Cells were incubated in culture medium containing PA (0.25 mmol/L) for 24 h. Then treatments with BBR (10 μmol/L), CA (100 μmol/L) and the combination of BBR and CA (BBR+CA) were performed respectively. Intracellular lipid accumulation was assessed by Oil Red O staining and TG content was measured by colorimetric assay. The expression of adenosine monophosphate-activated protein kinase (AMPK) protein and its downstream lipogenic and fatty acid oxidation genes, including fatty acid synthase (FAS), acetyl-coA carboxylase (ACC), phosphorylation acetyl-coA carboxylase (pACC), carnitine acyl transferase 1 (CPT-1) and sterol regulating element binding protein 1c (SREBP-1c) were determined by Western blot or real time polymerase chain reaction. PA induced an obvious lipid accumulation and a significant increase in intracellular TG content in NIT-1 cells. PA also induced a remarkable decrease in AMPK protein expression and its downstream targets such as pACC and CPT-1. Meanwhile, AMPK downstream lipogenic genes including SREBP-1c mRNA, FAS and ACC protein expressions were increased. Treatments with BBR and BBR+CA, superior to CA, significantly reversed the above genes changes in NIT-1 pancreatic β cells. However, the synergistic effect of BBR and CA on intracellular TG content was not observed in the present study. It can be concluded that in vitro, BBR and BBR+CA could inhibit PA-induced lipid accumulation by decreasing lipogenesis and increasing lipid oxidation in NIT-1 pancreatic β cells.

  18. Monitoring bisphosphonate surface functionalization and acid stability of hierarchically porous titanium zirconium oxides.

    PubMed

    Ide, Andreas; Drisko, Glenna L; Scales, Nicholas; Luca, Vittorio; Schiesser, Carl H; Caruso, Rachel A

    2011-11-01

    To take advantage of the full potential of functionalized transition metal oxides, a well-understood nonsilane based grafting technique is required. The functionalization of mixed titanium zirconium oxides was studied in detail using a bisphosphonic acid, featuring two phosphonic acid groups with high surface affinity. The bisphosphonic acid employed was coupled to a UV active benzamide moiety in order to track the progress of the surface functionalization in situ. Using different material compositions, altering the pH environment, and looking at various annealing conditions, key features of the functionalization process were identified that consequently will allow for intelligent material design. Loading with bisphosphonic acid was highest on supports calcined at 650 °C compared to lower calcination temperatures: A maximum capacity of 0.13 mmol g(-1) was obtained and the adsorption process could be modeled with a pseudo-second-order rate relationship. Heating at 650 °C resulted in a phase transition of the mixed binary oxide to a ternary oxide, titanium zirconium oxide in the srilankite phase. This phase transition was crucial in order to achieve high loading of the bisphosphonic acid and enhanced chemical stability in highly acidic solutions. Due to the inert nature of phosphorus-oxygen-metal bonds, materials functionalized by bisphosphonic acids showed increased chemical stability compared to their nonfunctionalized counterparts in harshly acidic solutions. Leaching studies showed that the acid stability of the functionalized material was improved with a partially crystalline srilankite phase. The materials were characterized using nitrogen sorption, X-ray powder diffraction, and UV-vis spectroscopy; X-ray photoelectron spectroscopy was used to study surface coverage with the bisphosphonic acid molecules.

  19. Epoxy Stearic Acid, an Oxidative Product Derived from Oleic Acid, Induces Cytotoxicity, Oxidative Stress, and Apoptosis in HepG2 Cells.

    PubMed

    Liu, Ying; Cheng, Yajun; Li, Jinwei; Wang, Yuanpeng; Liu, Yuanfa

    2018-05-23

    In the present study, effects of cis-9,10-epoxy stearic acid (ESA) generated by the thermal oxidation of oleic acid on HepG2 cells, including cytotoxicity, apoptosis, and oxidative stress, were investigated. Our results revealed that ESA decreased the cell viability and induced cell death. Cell cycle analysis with propidium iodide staining showed that ESA induced cell cycle arrest at the G0/G1 phase in HepG2 cells. Cell apoptosis analysis with annexin V and propidium iodide staining demonstrated that ESA induced HepG2 cell apoptotic events in a dose- and time-dependent manner; the apoptosis of cells after treated with 500 μM ESA for 12, 24, and 48 h was 32.16, 38.70, and 65.80%, respectively. Furthermore, ESA treatment to HepG2 cells resulted in an increase in reactive oxygen species and malondialdehyde (from 0.84 ± 0.02 to 8.90 ± 0.50 nmol/mg of protein) levels and a reduction in antioxidant enzyme activity, including superoxide dismutase (from 1.34 ± 0.27 to 0.10 ± 0.007 units/mg of protein), catalase (from 100.04 ± 5.05 to 20.09 ± 3.00 units/mg of protein), and glutathione peroxidase (from 120.44 ± 7.62 to 35.84 ± 5.99 milliunits/mg of protein). These findings provide critical information on the effects of ESA on HepG2 cells, particularly cytotoxicity and oxidative stress, which is important for the evaluation of the biosafety of the oxidative product of oleic acid.

  20. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective.

    PubMed

    Schönfeld, Peter; Wojtczak, Lech

    2016-06-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. Ablation of Steroid Receptor Coactivator-3 resembles the human CACT metabolic myopathy

    PubMed Central

    York, Brian; Reineke, Erin L.; Sagen, Jørn V.; Nikolai, Bryan C.; Zhou, Suoling; Louet, Jean-Francois; Chopra, Atul R.; Chen, Xian; Reed, Graham; Noebels, Jeffrey; Adesina, Adekunle M.; Yu, Hui; Wong, Lee-Jun C.; Tsimelzon, Anna; Hilsenbeck, Susan; Stevens, Robert D.; Wenner, Brett R.; Ilkayeva, Olga; Xu, Jianming; Newgard, Christopher B.; O’Malley, Bert W.

    2012-01-01

    Summary Oxidation of lipid substrates is essential for survival in fasting and other catabolic conditions, sparing glucose for the brain and other glucose-dependent tissues. Here we show Steroid Receptor Coactivator-3 (SRC-3) plays a central role in long chain fatty acid metabolism by directly regulating carnitine/acyl-carnitine translocase (CACT) gene expression. Genetic deficiency of CACT in humans is accompanied by a constellation of metabolic and toxicity phenotypes including hypoketonemia, hypoglycemia, hyperammonemia, and impaired neurologic, cardiac and skeletal muscle performance, each of which is apparent in mice lacking SRC-3 expression. Consistent with human cases of CACT deficiency, dietary rescue with short chain fatty acids drastically attenuates the clinical hallmarks of the disease in mice devoid of SRC-3. Collectively, our results position SRC-3 as a key regulator of β-oxidation. Moreover, these findings allow us to consider platform coactivators such as the SRCs as potential contributors to syndromes such as CACT deficiency, previously considered as monogenic. PMID:22560224

  2. Germanium oxide removal by citric acid and thiol passivation from citric acid-terminated Ge(100).

    PubMed

    Collins, Gillian; Aureau, Damien; Holmes, Justin D; Etcheberry, Arnaud; O'Dwyer, Colm

    2014-12-02

    Many applications of germanium (Ge) are underpinned by effective oxide removal and surface passivation. This important surface treatment step often requires H-X (X = Cl, Br, I) or HF etchants. Here, we show that aqueous citric acid solutions are effective in the removal of GeOx. The stability of citric acid-treated Ge(100) is compared to HF and HCl treated surfaces and analyzed by X-ray photoelectron spectroscopy. Further Ge surface passivation was investigated by thiolation using alkane monothiols and dithiols. The organic passivation layers show good stability with no oxide regrowth observed after 3 days of ambient exposure.

  3. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Y., E-mail: ono-y@kanagawa-iri.go.jp; Rachi, T.; Yokouchi, M.

    2013-06-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO{sub 2}/apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO{sub 2})/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acidmore » concentration, the TiO{sub 2}/HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO{sub 2} particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO{sub 2} powder, Degussa P25. The highest rate was obtained in the TiO{sub 2}/HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO{sub 2} photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO{sub 2}/HAp composites compared with the TiO{sub 2} powders.« less

  4. Impairment of mitochondrial β-oxidation in rats under cold-hypoxic environment

    NASA Astrophysics Data System (ADS)

    Dutta, Arkadeb; Vats, Praveen; Singh, Vijay K.; Sharma, Yogendra K.; Singh, Som N.; Singh, Shashi B.

    2009-09-01

    Mitochondrial ß-oxidation of fatty acid provides a major source of energy in mammals. High altitude (HA), characterized by hypobaric hypoxia and low ambient temperatures, causes alteration in metabolic homeostasis. Several studies have depicted that hypoxic exposure in small mammals causes hypothermia due to hypometabolic state. Moreover, cold exposure along with hypoxia reduces hypoxia tolerance in animals. The present study investigated the rate of β-oxidation and key enzymes, carnitine palmitoyl transferase-I (CPT-I) and hydroxyacyl CoA dehydrogenase (HAD), in rats exposed to cold-hypobaric hypoxic environment. Male Sprague Dawley rats (190-220 g) were randomly divided into eight groups ( n = 6 rats in each group): 1 day hypoxia (H1); 7 days hypoxia (H7); 1 day cold (C1); 7 days cold (C7); 1 day cold-hypoxia (CH1); 7 days cold-hypoxia (CH7) exposed; and unexposed control for 1 and 7 days (UC1 and UC7). After exposure, animals were anaesthetized with ketamine (50 mg/kg body weight) and xylazine (10 mg/kg body weight) intraperitonialy and sacrificed. Mitochondrial CPT-I, HAD, 14C-palmitate oxidation in gastrocnemius muscle and liver, and plasma leptin were measured. Mitochondrial CPT-I was significantly reduced in muscle and liver in CH1 and CH7 as compared to respective controls. HAD activity was significantly reduced in H1 and CH7, and in H1, H7, CH1, and CH7 as compared to unexposed controls in muscle and liver, respectively. A concomitant decrease in 14C-palmitate oxidation was found. Significant reduction in plasma leptin in hypoxia and cold-hypoxia suggested hypometabolic state. It can be concluded that ß-oxidation of fatty acids is reduced in rats exposed to cold-hypoxic environment due to the persisting hypometabolic state in cold-hypoxia exposure.

  5. Effects of volatile fatty acids on propionate metabolism and gluconeogenesis in caprine hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aiello, R.J.; Armentano, L.E.

    1987-12-01

    Isolated caprine hepatocytes were incubated with fatty acids of various chain lengths. Short-chain fatty acids effects on rates of gluconeogenesis and oxidation from (2-/sup 14/C) propionate were determined. Additions of glucose (2.5 mM) had no effect on hepatic (2-/sup 14/C)-propionate metabolism in the presence and absence of amino acids. A complete mixture of amino acids increased label incorporation from (2-/sup 14/C) propionate into (/sup 14/C) glucose by 22%. Butyrate inhibited (2-/sup 14/C) propionate metabolism and increased the apparent Michaelis constant for (2-/sup 14/C) propionate incorporation into (/sup 14/C) glucose from 2.4 +/- 1.5 to 5.6 +/- .9 mM. Butyrate's effectsmore » on propionate were similar in the presence and absence of L-carnitine (1 mM). Isobutyrate, 2-methylbutyrate, and valerate (1.25 mM) had no effect on (/sup 14/C) glucose production but decreased /sup 14/CO/sub 2/ production to 57, 61, and 54% of the control (2-/sup 14/C) propionate (1.25 mM). This inhibition on /sup 14/CO/sub 2/ was not competitive. Isovalerate had no effect on either (2-/sup 14/C) propionate incorporation into glucose of CO/sub 2/. An increase in ratio of (/sup 14/C) glucose to /sup 14/CO/sub 2/ from (2-/sup 14/C)-propionate demonstrated that short-chain fatty acids other than butyrate do not inhibit gluconeogenesis from propionate. In addition, fatty acids that generate a net synthesis of intracellular oxaloacetate may partition propionate carbons toward gluconeogenic rather than oxidative pathways in goat hepatocytes.« less

  6. Repair of oxidative DNA damage by amino acids.

    PubMed

    Milligan, J R; Aguilera, J A; Ly, A; Tran, N Q; Hoang, O; Ward, J F

    2003-11-01

    Guanyl radicals, the product of the removal of a single electron from guanine, are produced in DNA by the direct effect of ionizing radiation. We have produced guanyl radicals in DNA by using the single electron oxidizing agent (SCN)2-, itself derived from the indirect effect of ionizing radiation via thiocyanate scavenging of OH. We have examined the reactivity of guanyl radicals in plasmid DNA with the six most easily oxidized amino acids cysteine, cystine, histidine, methionine, tryptophan and tyrosine and also simple ester and amide derivatives of them. Cystine and histidine derivatives are unreactive. Cysteine, methionine, tyrosine and particularly tryptophan derivatives react to repair guanyl radicals in plasmid DNA with rate constants in the region of approximately 10(5), 10(5), 10(6) and 10(7) dm3 mol(-1) s(-1), respectively. The implication is that amino acid residues in DNA binding proteins such as histones might be able to repair by an electron transfer reaction the DNA damage produced by the direct effect of ionizing radiation or by other oxidative insults.

  7. Photocatalytic Oxidation of Sulfurous Acid in an Aqueous Medium

    ERIC Educational Resources Information Center

    Romero, Alicia; Hernandez, Willie; Suarez, Marco F.

    2005-01-01

    The effect of some parameters on sulfurous acid and sulfur oxidation kinetics such as initial concentration of sulfurous acid, oxygen, TiO[2] crystalline concentration, the power of black light, and quantity of TiO[2] is investigated. The experiments can be performed in an undergraduate physical chemistry laboratory with an inexpensive…

  8. Long Chain Fatty Acid Acylated Derivatives of Quercetin-3-O-Glucoside as Antioxidants to Prevent Lipid Oxidation

    PubMed Central

    Warnakulasuriya, Sumudu N.; Ziaullah; Rupasinghe, H.P. Vasantha

    2014-01-01

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G. PMID:25384198

  9. Long chain fatty acid acylated derivatives of quercetin-3-o-glucoside as antioxidants to prevent lipid oxidation.

    PubMed

    Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha

    2014-11-06

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.

  10. Ferrate(VI) oxidation of weak-acid dissociable cyanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ria A. Yngard; Virender K. Sharma; Jan Filip

    2008-04-15

    Cyanide is commonly found in electroplating, mining, coal gasification, and petroleum refining effluents, which require treatment before being discharged. Cyanide in effluents exists either as free cyanide or as a metal complex. The kinetics of the oxidation of weak-acid dissociable cyanides by an environmentally friendly oxidant, ferrate, were studied as a function of pH (9.1-10.5) and temperature (15-45{sup o}C) using a stopped-flow technique. The weak-acid dissociable cyanides were Cd(CN){sub 4}{sup 2-} and Ni(CN){sub 4}{sup 2-}, and the rate-laws for the oxidation may be -d(Fe(VI))/dt = k (Fe(VI))(M(CN){sub 4}{sup 2-}){sup n} where n = 0.5 and 1 for Cd(CN){sub 4}{sup 2-}more » and Ni(CN){sub 4}{sup 2-}, respectively. The rates decreased with increasing pH and were mostly related to a decrease in concentration of the reactive protonated Fe(VI) species, HFeO{sub 4}{sup -}. The stoichiometries with Fe(VI) were determined to be: 4HFeO{sub 4}{sup -} + M(CN){sub 4}{sup 2-} + 6H{sub 2}O {yields} 4Fe(OH){sub 3} + M{sup 2+} + 4NCO{sup -} + O{sub 2} + 4OH{sup -}. Mechanisms are proposed that agree with the observed reaction rate-laws and stoichiometries of the oxidation of weak-acid dissociable cyanides by Fe(VI). Results indicate that Fe(VI) is effective in removing cyanide in coke oven plant effluent, where organics are also present. 27 refs., 3 figs., 2 tabs.« less

  11. DNAPL remediation with in situ chemical oxidation using potassium permanganate - Part I. Mineralogy of Mn oxide and its dissolution in organic acids

    NASA Astrophysics Data System (ADS)

    Li, X. David; Schwartz, Franklin W.

    2004-01-01

    Previous studies on in situ chemical oxidation of trichloroethylene (TCE) with potassium permanganate indicated that the solid reaction product, Mn oxide, could reduce the permeability of the porous medium and impact the success of dense non-aqueous phase liquid (DNAPL) removal. In order to address the issue of permeability reduction caused by precipitation, this study investigated the mineralogy of Mn oxides and the possibilities of removing the solid precipitates by dissolution. The solid reaction product from the oxidation of TCE by permanganate is semi-amorphous potassium-rich birnessite, which has a layered mineral structure with an interlayer spacing of 7.3 Å. The chemical formula is K 0.854Mn 1.786O 4·1.55H 2O. It has a relatively small specific surface area at 23.6±0.82 m 2/g. Its point of zero charge (pzc) was measured as 3.7±0.4. This birnessite is a relatively active species and could participate in various reactions with existing organic and inorganic matter. The dissolution kinetics of Mn oxide was evaluated in batch experiments using solutions of citric acid, oxalic acid, and ethylenediaminetetraacetic acid (EDTA). Initial dissolution rates were determined to be 0.126 mM/m 2/h for citric acid, 1.35 mM/m 2/h for oxalic acid, and 5.176 mM/m 2/h for EDTA. These rates compare with 0.0025 mM/m 2/h for nitric acid at pH=2. Organic acids dissolve Mn oxide quickly. Reaction rates increase with acid concentration, as tested with citric acid. The dissolution mechanism likely involves proton and ligand-promoted dissolution and reductive dissolution. Citric and oxalic acid can induce ligand-promoted dissolution, while EDTA can induce ligand-promoted and reductive dissolutions. At low pH, proton-promoted dissolution seems to occur with all the acids tested, but this process is not dominant. Reductive dissolution appears to be the most effective process in dissolving the solid, followed by ligand-promoted dissolution. These experiments indicate the significant

  12. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    MedlinePlus

    Sodium picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large ... clear view of the walls of the colon. Sodium picosulfate is in a class of medications called ...

  13. [L-carnitine treatment and fish odor syndrome: an unwaited adverse effect].

    PubMed

    Rocher, F; Caruba, C; Broly, F; Lebrun, C

    2011-01-01

    Levocarnitine treatment is usually well tolerated, with essentially dose-dependent diarrhea as the main induced adverse effect. We report a case of fish odor syndrome during levocarnitine treatment which resolved after levocarnitine discontinuation. This adverse effect seems to be correlated with excedent carnitine intake and might be expressed when the elimination pathway becomes saturated or in a situation of deficiency enzymatic metabolism. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. Animal model of dementia induced by entorhinal synaptic damage and partial restoration of cognitive deficits by BDNF and carnitine.

    PubMed

    Ando, Susumu; Kobayashi, Satoru; Waki, Hatsue; Kon, Kazuo; Fukui, Fumiko; Tadenuma, Tomoko; Iwamoto, Machiko; Takeda, Yasuo; Izumiyama, Naotaka; Watanabe, Kazutada; Nakamura, Hiroaki

    2002-11-01

    A rat dementia model with cognitive deficits was generated by synapse-specific lesions using botulinum neurotoxin (BoNTx) type B in the entorhinal cortex. To detect cognitive deficits, different tasks were needed depending upon the age of the model animals. Impaired learning and memory with lesions were observed in adult rats using the Hebb-Williams maze, AKON-1 maze and a continuous alternation task in T-maze. Cognitive deficits in lesioned aged rats were detected by a continuous alternation and delayed non-matching-to-sample tasks in T-maze. Adenovirus-mediated BDNF gene expression enhanced neuronal plasticity, as revealed by behavioral tests and LTP formation. Chronic administration of carnitine over time pre- and post-lesions seemed to partially ameliorate the cognitive deficits caused by the synaptic lesion. The carnitine-accelerated recovery from synaptic damage was observed by electron microscopy. These results demonstrate that the BoNTx-lesioned rat can be used as a model for dementia and that cognitive deficits can be alleviated in part by BDNF gene transfer or carnitine administration. Copyright 2002 Wiley-Liss, Inc.

  15. An allene oxide and 12-oxophytodienoic acid are key intermediates in jasmonic acid biosynthesis by Fusarium oxysporum.

    PubMed

    Oliw, Ernst H; Hamberg, Mats

    2017-08-01

    Fungi can produce jasmonic acid (JA) and its isoleucine conjugate in large quantities, but little is known about the biosynthesis. Plants form JA from 18:3 n -3 by 13 S -lipoxygenase (LOX), allene oxide synthase, and allene oxide cyclase. Shaking cultures of Fusarium oxysporum f. sp. tulipae released over 200 mg of jasmonates per liter. Nitrogen powder of the mycelia expressed 10 R -dioxygenase-epoxy alcohol synthase activities, which was confirmed by comparison with the recombinant enzyme. The 13 S -LOX of F. oxysporum could not be detected in the cell-free preparations. Incubation of mycelia in phosphate buffer with [17,17,18,18,18- 2 H 5 ]18:3 n -3 led to biosynthesis of a [ 2 H 5 ]12-oxo-13-hydroxy-9 Z ,15 Z -octadecadienoic acid (α-ketol), [ 2 H 5 ]12-oxo-10,15 Z -phytodienoic acid (12-OPDA), and [ 2 H 5 ]13-keto- and [ 2 H 5 ]13 S -hydroxyoctadecatrienoic acids. The α-ketol consisted of 90% of the 13 R stereoisomer, suggesting its formation by nonenzymatic hydrolysis of an allene oxide with 13 S configuration. Labeled and unlabeled 12-OPDA were observed following incubation with 0.1 mM [ 2 H 5 ]18:3 n -3 in a ratio from 0.4:1 up to 47:1 by mycelia of liquid cultures of different ages, whereas 10 times higher concentration of [ 2 H 5 ]13 S -hydroperoxyoctadecatrienoic acid was required to detect biosynthesis of [ 2 H 5 ]12-OPDA. The allene oxide is likely formed by a cytochrome P450 or catalase-related hydroperoxidase. We conclude that F. oxysporum , like plants, forms jasmonates with an allene oxide and 12-OPDA as intermediates. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  16. Protective effect of acetyl-L-carnitine on propofol-induced toxicity in embryonic neural stem cells.

    PubMed

    Liu, Fang; Rainosek, Shuo W; Sadovova, Natalya; Fogle, Charles M; Patterson, Tucker A; Hanig, Joseph P; Paule, Merle G; Slikker, William; Wang, Cheng

    2014-05-01

    Propofol is a widely used general anesthetic. A growing body of data suggests that perinatal exposure to general anesthetics can result in long-term deleterious effects on brain function. In the developing brain there is evidence that general anesthetics can cause cell death, synaptic remodeling, and altered brain cell morphology. Acetyl-L-carnitine (L-Ca), an anti-oxidant dietary supplement, has been reported to prevent neuronal damage from a variety of causes. To evaluate the ability of L-Ca to protect against propofol-induced neuronal toxicity, neural stem cells were isolated from gestational day 14 rat fetuses and on the eighth day in culture were exposed for 24h to propofol at 10, 50, 100, 300 and 600 μM, with or without L-Ca (10 μM). Markers of cellular proliferation, mitochondrial health, cell death/damage and oxidative damage were monitored to determine: (1) the effects of propofol on neural stem cell proliferation; (2) the nature of propofol-induced neurotoxicity; (3) the degree of protection afforded by L-Ca; and (4) to provide information regarding possible mechanisms underlying protection. After propofol exposure at a clinically relevant concentration (50 μM), the number of dividing cells was significantly decreased, oxidative DNA damage was increased and a significant dose-dependent reduction in mitochondrial function/health was observed. No significant effect on lactase dehydrogenase (LDH) release was observed at propofol concentrations up to 100 μM. The oxidative damage at 50 μM propofol was blocked by L-Ca. Thus, clinically relevant concentrations of propofol induce dose-dependent adverse effects on rat embryonic neural stem cells by slowing or stopping cell division/proliferation and causing cellular damage. Elevated levels of 8-oxoguanine suggest enhanced oxidative damage [reactive oxygen species (ROS) generation] and L-Ca effectively blocks at least some of the toxicity of propofol, presumably by scavenging oxidative species and/or reducing

  17. Comparison between conjugated linoleic acid and essential fatty acids in preventing oxidative stress in bovine mammary epithelial cells.

    PubMed

    Basiricò, L; Morera, P; Dipasquale, D; Tröscher, A; Bernabucci, U

    2017-03-01

    Some in vitro and in vivo studies have demonstrated protective effects of conjugated linoleic acid (CLA) isomers against oxidative stress and lipid peroxidation. However, only a few and conflicting studies have been conducted showing the antioxidant potential of essential fatty acids. The objectives of the study were to compare the effects of CLA to other essential fatty acids on the thiol redox status of bovine mammary epithelia cells (BME-UV1) and their protective role against oxidative damage on the mammary gland by an in vitro study. The BME-UV1 cells were treated with complete medium containing 50 μM of cis-9,trans-11 CLA, trans-10,cis-12 CLA, α-linolenic acid, γ-linolenic acid, and linoleic acid. To assess the cellular antioxidant response, glutathione, NADPH, and γ-glutamyl-cysteine ligase activity were measured 48 h after addition of fatty acids (FA). Intracellular reactive oxygen species and malondialdehyde production were also assessed in cells supplemented with FA. Reactive oxygen species production after 3 h of H 2 O 2 exposure was assessed to evaluate and to compare the potential protection of different FA against H 2 O 2 -induced oxidative stress. All FA treatments induced an intracellular GSH increase, matched by high concentrations of NADPH and an increase of γ-glutamyl-cysteine ligase activity. Cells supplemented with FA showed a reduction in intracellular malondialdehyde levels. In particular, CLA isomers and linoleic acid supplementation showed a better antioxidant cellular response against oxidative damage induced by H 2 O 2 compared with other FA. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  18. Differential epigenetic and transcriptional response of the skeletal muscle carnitine palmitoyltransferase 1B (CPT1B) gene to lipid exposure with obesity

    PubMed Central

    Maples, Jill M.; Brault, Jeffrey J.; Witczak, Carol A.; Park, Sanghee; Hubal, Monica J.; Weber, Todd M.; Houmard, Joseph A.

    2015-01-01

    The ability to increase fatty acid oxidation (FAO) in response to dietary lipid is impaired in the skeletal muscle of obese individuals, which is associated with a failure to coordinately upregulate genes involved with FAO. While the molecular mechanisms contributing to this metabolic inflexibility are not evident, a possible candidate is carnitine palmitoyltransferase-1B (CPT1B), which is a rate-limiting step in FAO. The present study was undertaken to determine if the differential response of skeletal muscle CPT1B gene transcription to lipid between lean and severely obese subjects is linked to epigenetic modifications (DNA methylation and histone acetylation) that impact transcriptional activation. In primary human skeletal muscle cultures the expression of CPT1B was blunted in severely obese women compared with their lean counterparts in response to lipid, which was accompanied by changes in CpG methylation, H3/H4 histone acetylation, and peroxisome proliferator-activated receptor-δ and hepatocyte nuclear factor 4α transcription factor occupancy at the CPT1B promoter. Methylation of specific CpG sites in the CPT1B promoter that correlated with CPT1B transcript level blocked the binding of the transcription factor upstream stimulatory factor, suggesting a potential causal mechanism. These findings indicate that epigenetic modifications may play important roles in the regulation of CPT1B in response to a physiologically relevant lipid mixture in human skeletal muscle, a major site of fatty acid catabolism, and that differential DNA methylation may underlie the depressed expression of CPT1B in response to lipid, contributing to the metabolic inflexibility associated with severe obesity. PMID:26058865

  19. Aerobic capacity and hepatic mitochondrial lipid oxidation alters susceptibility for chronic high-fat diet-induced hepatic steatosis.

    PubMed

    Morris, E Matthew; Meers, Grace M E; Koch, Lauren G; Britton, Steven L; Fletcher, Justin A; Fu, Xiaorong; Shankar, Kartik; Burgess, Shawn C; Ibdah, Jamal A; Rector, R Scott; Thyfault, John P

    2016-10-01

    Rats selectively bred for high capacity running (HCR) or low capacity running (LCR) display divergence for intrinsic aerobic capacity and hepatic mitochondrial oxidative capacity, both factors associated with susceptibility for nonalcoholic fatty liver disease. Here, we tested if HCR and LCR rats display differences in susceptibility for hepatic steatosis after 16 wk of high-fat diets (HFD) with either 45% or 60% of kcals from fat. HCR rats were protected against HFD-induced hepatic steatosis, whereas only the 60% HFD induced steatosis in LCR rats, as marked by a doubling of liver triglycerides. Hepatic complete fatty acid oxidation (FAO) and mitochondrial respiratory capacity were all lower in LCR compared with HCR rats. LCR rats also displayed lower hepatic complete and incomplete FAO in the presence of etomoxir, suggesting a reduced role for noncarnitine palmitoyltransferase-1-mediated lipid catabolism in LCR versus HCR rats. Hepatic complete FAO and mitochondrial respiration were largely unaffected by either chronic HFD; however, 60% HFD feeding markedly reduced 2-pyruvate oxidation, a marker of tricarboxylic acid (TCA) cycle flux, and mitochondrial complete FAO only in LCR rats. LCR rats displayed lower levels of hepatic long-chain acylcarnitines than HCR rats but maintained similar levels of hepatic acetyl-carnitine levels, further supporting lower rates of β-oxidation, and TCA cycle flux in LCR than HCR rats. Finally, only LCR rats displayed early reductions in TCA cycle genes after the acute initiation of a HFD. In conclusion, intrinsically high aerobic capacity confers protection against HFD-induced hepatic steatosis through elevated hepatic mitochondrial oxidative capacity.

  20. Aerobic capacity and hepatic mitochondrial lipid oxidation alters susceptibility for chronic high-fat diet-induced hepatic steatosis

    PubMed Central

    Morris, E. Matthew; Meers, Grace M. E.; Koch, Lauren G.; Britton, Steven L.; Fletcher, Justin A.; Fu, Xiaorong; Shankar, Kartik; Burgess, Shawn C.; Ibdah, Jamal A.; Rector, R. Scott

    2016-01-01

    Rats selectively bred for high capacity running (HCR) or low capacity running (LCR) display divergence for intrinsic aerobic capacity and hepatic mitochondrial oxidative capacity, both factors associated with susceptibility for nonalcoholic fatty liver disease. Here, we tested if HCR and LCR rats display differences in susceptibility for hepatic steatosis after 16 wk of high-fat diets (HFD) with either 45% or 60% of kcals from fat. HCR rats were protected against HFD-induced hepatic steatosis, whereas only the 60% HFD induced steatosis in LCR rats, as marked by a doubling of liver triglycerides. Hepatic complete fatty acid oxidation (FAO) and mitochondrial respiratory capacity were all lower in LCR compared with HCR rats. LCR rats also displayed lower hepatic complete and incomplete FAO in the presence of etomoxir, suggesting a reduced role for noncarnitine palmitoyltransferase-1-mediated lipid catabolism in LCR versus HCR rats. Hepatic complete FAO and mitochondrial respiration were largely unaffected by either chronic HFD; however, 60% HFD feeding markedly reduced 2-pyruvate oxidation, a marker of tricarboxylic acid (TCA) cycle flux, and mitochondrial complete FAO only in LCR rats. LCR rats displayed lower levels of hepatic long-chain acylcarnitines than HCR rats but maintained similar levels of hepatic acetyl-carnitine levels, further supporting lower rates of β-oxidation, and TCA cycle flux in LCR than HCR rats. Finally, only LCR rats displayed early reductions in TCA cycle genes after the acute initiation of a HFD. In conclusion, intrinsically high aerobic capacity confers protection against HFD-induced hepatic steatosis through elevated hepatic mitochondrial oxidative capacity. PMID:27600823

  1. Fatty Acid Oxidation Changes and the Correlation with Oxidative Stress in Different Preeclampsia-Like Mouse Models

    PubMed Central

    Ding, Xiaoyan; Yang, Zi; Han, Yiwei; Yu, Huan

    2014-01-01

    Background Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) expression is decreased in placenta of some cases of preeclampsia (PE) which may result in free fatty acid (FFA) increased. High FFA level will induce oxidative stress, so abnormal long-chain fatty acid-oxidation may participate in the pathogenesis of PE through oxidative stress pathway. Methods PE-like groups were ApoC3 transgenic mice with abnormal fatty acid metabolism, classical PE-like models with injection of Nw-nitro-L-arginine-methyl ester (L-NA) or lipopolysaccharide (LPS) and the antiphospholipid syndrome (APS) mouse model with β2GPI injection (ApoC3+NS, ApoC3+L-NA, L-NA, LPS and β2GPI groups). The control group was wild-type mice with normal saline injection. Except for β2GPI mice, the other mice were subdivided into pre-implantation (Pre) and mid-pregnancy (Mid) subgroups by injection time. Results All PE-like groups showed hypertension and proteinuria except ApoC3+NS mice only showed hypertension. Serum FFA levels increased significantly except in LPS group compared to controls (P<0.05). LCHAD mRNA and protein expression in the liver and placenta was significantly higher for ApoC3+NS, ApoC3+L-NA and β2GPI mice and lower for L-NA mice than controls (P<0.05) but did not differ between LPS mice and controls. P47phox mRNA and protein expression in the liver significantly increased in all PE-like groups except LPS group, while P47phox expression in the placenta only significantly increased in L-NA and β2GPI groups. Conclusions Abnormal long-chain fatty acid-oxidation may play a different role in different PE-like models and in some cases participate in the pathogenesis of PE through oxidative stress pathway. PMID:25302499

  2. Gallic Acid Grafted Chitosan Has Enhanced Oxidative Stability in Bulk Oils.

    PubMed

    Gim, Seo Yeong; Hong, Seungmi; Kim, Mi-Ja; Lee, JaeHwan

    2017-07-01

    Gallic acid (GA) was grafted in chitosan and the effects of GA grafted chitosan (GA-g-CS) on the oxidative stability in bulk oil was tested at 60 and 140 °C. To text oxidative stability in oils, headspace oxygen content, conjugated dienoic acid (CDA) value, p-anisidine value (p-AV), and acid value were determined. Chitosan itself did not show antioxidative or prooxidative effects in oils at 60 °C. However, GA-g-CS and GA acted as antioxidants at 60 °C. At 140 °C heating with moisture supplied condition, different results were observed. GA-g-CS acted as antioxidants based on the results of CDA and p-AV. However, chitosan showed the highest oxidative stability based on results of acid value and brown color formation at 140 °C. This could be due to reduction of moisture content by chitosan. GA was continuously released from GA-g-CS in bulk oil. This might have provided extra antioxidant activities to oils. © 2017 Institute of Food Technologists®.

  3. Reduction of hydrogen peroxide stress derived from fatty acid beta-oxidation improves fatty acid utilization in Escherichia coli.

    PubMed

    Doi, Hidetaka; Hoshino, Yasushi; Nakase, Kentaro; Usuda, Yoshihiro

    2014-01-01

    Fatty acids are a promising raw material for substance production because of their highly reduced and anhydrous nature, which can provide higher fermentation yields than sugars. However, they are insoluble in water and are poorly utilized by microbes in industrial fermentation production. We used fatty acids as raw materials for L-lysine fermentation by emulsification and improved the limited fatty acid-utilization ability of Escherichia coli. We obtained a fatty acid-utilizing mutant strain by laboratory evolution and demonstrated that it expressed lower levels of an oxidative-stress marker than wild type. The intracellular hydrogen peroxide (H₂O₂) concentration of a fatty acid-utilizing wild-type E. coli strain was higher than that of a glucose-utilizing wild-type E. coli strain. The novel mutation rpsA(D210Y) identified in our fatty acid-utilizing mutant strain enabled us to promote cell growth, fatty-acid utilization, and L-lysine production from fatty acid. Introduction of this rpsA(D210Y) mutation into a wild-type strain resulted in lower H₂O₂ concentrations. The overexpression of superoxide dismutase (sodA) increased intracellular H₂O₂ concentrations and inhibited E. coli fatty-acid utilization, whereas overexpression of an oxidative-stress regulator (oxyS) decreased intracellular H₂O₂ concentrations and promoted E. coli fatty acid utilization and L-lysine production. Addition of the reactive oxygen species (ROS) scavenger thiourea promoted L-lysine production from fatty acids and decreased intracellular H₂O₂ concentrations. Among the ROS generated by fatty-acid β-oxidation, H₂O₂ critically affected E. coli growth and L-lysine production. This indicates that the regression of ROS stress promotes fatty acid utilization, which is beneficial for fatty acids used as raw materials in industrial production.

  4. Stable Water Oxidation in Acid Using Manganese-Modified TiO2 Protective Coatings.

    PubMed

    Siddiqi, Georges; Luo, Zhenya; Xie, Yujun; Pan, Zhenhua; Zhu, Qianhong; Röhr, Jason A; Cha, Judy J; Hu, Shu

    2018-06-06

    Accomplishing acid-stable water oxidation is a critical matter for achieving both long-lasting water-splitting devices and other fuel-forming electro- and photocatalytic processes. Because water oxidation releases protons into the local electrolytic environment, it becomes increasingly acidic during device operation, which leads to corrosion of the photoactive component and hence loss in device performance and lifetime. In this work, we show that thin films of manganese-modified titania, (Ti,Mn)O x , topped with an iridium catalyst, can be used in a coating stabilization scheme for acid-stable water oxidation. We achieved a device lifetime of more than 100 h in pH = 0 acid. We successfully grew (Ti,Mn)O x coatings with uniform elemental distributions over a wide range of manganese compositions using atomic layer deposition (ALD), and using X-ray photoelectron spectroscopy, we show that (Ti,Mn)O x films grown in this manner give rise to closer-to-valence-band Fermi levels, which can be further tuned with annealing. In contrast to the normally n-type or intrinsic TiO 2 coatings, annealed (Ti,Mn)O x films can make direct charge transfer to a Fe(CN) 6 3-/4- redox couple dissolved in aqueous electrolytes. Using the Fe(CN) 6 3-/4- redox, we further demonstrated anodic charge transfer through the (Ti,Mn)O x films to high work function metals, such as iridium and gold, which is not previously possible with ALD-grown TiO 2 . We correlated changes in the crystallinity (amorphous to rutile TiO 2 ) and oxidation state (2+ to 3+) of the annealed (Ti,Mn)O x films to their hole conductivity and electrochemical stability in acid. Finally, by combining (Ti,Mn)O x coatings with iridium, an acid-stable water-oxidation anode, using acid-sensitive conductive fluorine-doped tin oxides, was achieved.

  5. Pharmaco-electroencephalographic and clinical effects of the cholinergic substance--acetyl-L-carnitine--in patients with organic brain syndrome.

    PubMed

    Herrmann, W M; Dietrich, B; Hiersemenzel, R

    1990-01-01

    In two double-blind, placebo-controlled clinical studies of the nootropic compound acetyl-L-carnitine on the electroencephalogram (EEG) and impaired brain functions of elderly outpatients with mild to moderate cognitive decline of the organic brain syndrome, statistically significant effects could be detected after eight weeks (on the EEG), and after 12 weeks of treatment (on the physician's clinical global impression and the patient-rated level of activities of daily living). Side-effects of acetyl-L-carnitine were generally minor and overall rare. Longer treatment periods and further specifications with regard to the aetiopathology and degree of cognitive impairment are recommended for further clinical studies of this promising compound.

  6. Aerobic Oxidation of Xylose to Xylaric acid in Water over Pt Catalysts.

    PubMed

    Saha, Basudeb; Sadula, Sunitha

    2018-05-02

    Energy-efficient catalytic conversion of biomass intermediates to functional chemicals can enable bio-products viable. Herein, we report an efficient and low temperature aerobic oxidation of xylose to xylaric acid, a promising bio-based chemical for the production of glutaric acid, over commercial catalysts in water. Among several heterogeneous catalysts investigated, Pt/C exhibits the best activity. Systematic variation of reaction parameters in the pH range of 2.5 to 10 suggests that the reaction is fast at higher temperatures but high C-C scission of intermediate C5-oxidized products to low carbon carboxylic acids undermines xylaric acid selectivity. The C-C cleavage is also high in basic solution. The oxidation at neutral pH and 60 C achieves the highest xylaric acid yield (64%). O2 pressure and Pt-amount have significant influence on the reactivity. Decarboxylation of short chain carboxylic acids results in formation of CO2, causing some carbon loss; however such decarboxylation is slow in the presence of xylose. The catalyst retained comparable activity, in terms of product selectivity, after five cycles with no sign of Pt leaching. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Amelioration of cyclophosphamide induced myelosuppression and oxidative stress by cinnamic acid.

    PubMed

    Patra, Kartick; Bose, Samadrita; Sarkar, Shehnaz; Rakshit, Jyotirmoy; Jana, Samarjit; Mukherjee, Avik; Roy, Abhishek; Mandal, Deba Prasad; Bhattacharjee, Shamee

    2012-02-05

    Cinnamic acid (C9H8O2), is a major constituent of the oriental Ayurvedic plant Cinnamomum cassia (Family: Lauraceae). This phenolic acid has been reported to possess various pharmacological properties of which its antioxidant activity is a prime one. Therefore it is rational to hypothesize that it may ameliorate myelosuppression and oxidative stress induced by cyclophosphamide, a widely used chemotherapeutic agent. Commercial cyclophosphamide, Endoxan, was administered intraperitoneally to Swiss albino mice (50mg/kg) pretreated with 15, 30 and 60mg/kg doses of cinnamic acid orally at alternate days for 15days. Cinnamic acid pre-treatment was found to reduce cyclophosphamide induced hypocellularity in the bone marrow and spleen. This recovery was also reflected in the peripheral blood count. Amelioration of hypocellularity could be correlated with the modulation of cell cycle phase distribution. Cinnamic acid pre-treatment reduced bone marrow and hepatic oxidative stress as evident by lipid peroxidation and activity assays of antioxidant enzymes such as superoxide dismutase, catalase and glutathione-S-transferase. The present study indicates that cinnamic acid pretreatment has protective influence on the myelosuppression and oxidative stress induced by cyclophosphamide. This investigation is an attempt and is the first of its kind to establish cinnamic acid as an agent whose consumption provides protection to normal cells from the toxic effects of a widely used anti-cancer drug. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Effectiveness of acidic oxidative potential water in preventing bacterial infection in islet transplantation.

    PubMed

    Miyamoto, M; Inoue, K; Gu, Y; Hoki, M; Haji, S; Ohyanagi, H

    1999-01-01

    At a number of points in the current procedures of islet isolation and islet culture after the harvesting of donor pancreata, microorganisms could potentially infect the islet preparation. Furthermore, the use of islets from multiple donors can compound the risks of contamination of individual recipients. Acidic oxidative potential water (also termed electrolyzed strong acid solution, function water, or acqua oxidation water), which was developed in Japan, is a strong acid formed on the anode in the electrolysis of water containing a small amount of sodium chloride. It has these physical properties: pH, from 2.3 to 2.7; oxidative-reduction potential, from 1,000 to 1,100 mV; dissolved chlorine, from 30 to 40 ppm; and dissolved oxygen, from 10 to 30 ppm. Because of these properties, acidic oxidative potential water has strong bactericidal effects on all bacteria including methicillin-resistant Staphylococcus aureus (MRSA), viruses including HIV, HBV, HCV, CMV, and fungi as a result of the action of the active oxygen and active chlorine that it contains. We conducted this study to evaluate the effect of acidic oxidative potential water irrigation on bacterial contamination on the harvesting of porcine pancreata from slaughterhouses for islet xenotransplantation by counting the number of pancreatic surface bacteria using the Dip-slide method, and on the results of islet culture; and to evaluate the direct effect on isolated islets when it is used to prevent bacterial contamination by the static incubation test and by morphological examination. Direct irrigation of the pancreas by acidic oxidative potential water was found to be very effective in preventing bacterial contamination, but direct irrigation of isolated islets slightly decreased their viability and function.

  9. Imaging of Myocardial Fatty Acid Oxidation

    PubMed Central

    Mather, Kieren J; DeGrado, Tim

    2016-01-01

    Myocardial fuel selection is a key feature of the health and function of the heart, with clear links between myocardial function and fuel selection and important impacts of fuel selection on ischemia tolerance. Radiopharmaceuticals provide uniquely valuable tools for in vivo, non-invasive assessment of these aspects of cardiac function and metabolism. Here we review the landscape of imaging probes developed to provide noninvasive assessment of myocardial fatty acid oxidation (MFAO). Also, we review the state of current knowledge that myocardial fatty acid imaging has helped establish of static and dynamic fuel selection that characterizes cardiac and cardiometabolic disease and the interplay between fuel selection and various aspects of cardiac function. PMID:26923433

  10. The Effect of Citric Acid on the Oxidation of Organic Contaminants by Fenton's Reagent

    NASA Astrophysics Data System (ADS)

    Seol, Y.; Javandel, I.; Lee, G.

    2003-12-01

    Combined with acids and iron catalysts, hydrogen peroxide (H2O2) as Fenton's reagent is proven to be effective in oxidizing halogenated volatile organic compounds (VOCs). The Fenton's reagent, traditionally used for waste water treatment technique, has been applied to the remediation of contaminated soil systems and numerous investigators have found intrinsic iron salts are effective source of iron catalyst for the reaction. Citric acid, which is naturally occurring nutrients to microorganisms and less destructive to soil chemical properties, is selected for an acidifying agent to create acidic soil condition. However, citric acid has been considered as a reaction inhibitant because it sequesters ferric iron from Fenton's catalytic cycle by forming strong chelates with iron. This paper presents the feasibility of using citric acid as an acidifying agent of soil matrix for the Fenton-like oxidation. Series of batch tests were performed to test disappearance of VOCs in various aqueous systems with two acidifying agents (citric acid or sulfuric acid) and three iron sources (iron sulfate, water soluble soil iron, or soil matrix). Batch results show that soluble iron is essential for near complete disappearance of VOCs and that citric acid performs similarly to sulfuric acid at low H2O2 dosage (< 1 wt%). The test soil provided water-soluble soil iron but also contained scavengers of the oxidizing agents, resulting in limited removals of VOCs. Column tests confirmed the results of the batch tests, suggesting citric acid is also as effective as sulfuric acid in providing acidic environment for the Fenton-like oxidation. The batch experiments also reveal that higher doses of H2O2 lower the degree of VOC removals in citric acid systems. Potential explanations for this declining include that excessive presence of H2O2 expedites the oxidation of ferrous to ferric iron, which then forms a strong complex with citrate, leading to the sequestration of the iron from the Fenton

  11. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Lovley, D.R.

    1998-01-01

    Anaerobic oxidation of [1,2-14C]vinyl chloride and [1,2- 14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.

  12. Capillary electrophoretic study of dibasic acids of different structures: Relation to separation of oxidative intermediates in remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Z.; Cocke, D.L.

    Dicarboxylic acids are important in environmental chemistry because they are intermediates in oxidative processes involved in natural remediation and waste management processes such as oxidative detoxification and advanced oxidation. Capillary electrophoresis (CE), a promising technique for separating and analyzing these intermediates, has been used to examine a series of dibasic acids of different structures and conformations. This series includes malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, phthalic acid, and trans, trans-muconic acid. The CE parameters as well as structural variations (molecular structure and molecular isomers, buffer composition, pH, applied voltage, injection mode, current,more » temperature, and detection wavelength) that affect the separations and analytical results have been examined in this study. Those factors that affect the separation have been delineated. Among these parameters, the pH has been found to be the most important, which affects the double-layer of the capillary wall, the electro-osmotic flow and analyte mobility. The optimum pH for separating these dibasic acids, as well as the other parameters are discussed in detail and related to the development of methods for analyzing oxidation intermediates in oxidative waste management procedures.« less

  13. Oral carnitine supplementation reduces body weight and insulin resistance in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Samimi, Mansooreh; Jamilian, Mehri; Ebrahimi, Faraneh Afshar; Rahimi, Maryam; Tajbakhsh, Banafsheh; Asemi, Zatollah

    2016-06-01

    Limited data are available for evaluating the effects of oral carnitine supplementation on weight loss and metabolic profiles of women with polycystic ovary syndrome (PCOS). This study was designed to determine the effects of oral carnitine supplementation on weight loss, and glycaemic and lipid profiles in women with PCOS. In a prospective, randomized, double-blind, placebo-controlled trial, 60 overweight patients diagnosed with PCOS were randomized to receive either 250 mg carnitine supplements (n = 30) or placebo (n = 30) for 12 weeks. Fasting blood samples were obtained at the beginning and the end of the study to quantify parameters of glucose homoeostasis and lipid concentrations. At the end of the 12 weeks, taking carnitine supplements resulted in a significant reduction in weight (-2·7 ± 1·5 vs +0·1 ± 1·8 kg, P < 0·001), BMI (-1·1 ± 0·6 vs +0·1 ± 0·7 kg/m(2) , P < 0·001), waist circumference (WC) (-2·0 ± 1·3 vs -0·3 ± 2·0 cm, P < 0·001) and hip circumference (HC) (-2·5 ± 1·5 vs -0·3 ± 1·8 cm, P < 0·001) compared with placebo. In addition, compared with placebo, carnitine administration in women with PCOS led to a significant reduction in fasting plasma glucose (-0·38 ± 0·36 vs +0·11 ± 0·97 mmol/l, P = 0·01), serum insulin levels (-14·39 ± 25·80 vs +3·01 ± 37·25 pmol/l, P = 0·04), homoeostasis model of assessment-insulin resistance (-0·61 ± 1·03 vs +0·11 ± 1·43, P = 0·04) and dehydroepiandrosterone sulphate (-3·64 ± 7·00 vs -0·59 ± 3·20 μmol/l, P = 0·03). Overall, 12 weeks of carnitine administration in PCOS women resulted in reductions in weight, BMI, WC and HC, and beneficial effects on glycaemic control; however, it did not affect lipid profiles or free testosterone. © 2015 John Wiley & Sons Ltd.

  14. Acylcarnitines activate pro-inflammatory signaling pathways

    USDA-ARS?s Scientific Manuscript database

    Incomplete beta-oxidation of fatty acids in mitochondria is a feature of insulin resistance and type 2 diabetes mellitus (T2DM) and the resulting metabolic by-products, medium- and long-chain acylcarnitines are shown to be elevated. In preliminary studies, mixed isomers of C12- or C14-carnitine act...

  15. Protective effects of dietary glycine and glutamic acid toward the toxic effects of oxidized mustard oil in rabbits.

    PubMed

    Zeb, Alam; Rahman, Saleem Ur

    2017-01-25

    The protective role of glycine and glutamic acid against the toxic effects of oxidized oil was studied for the first time. Mustard seed oil was thermally oxidized and characterized for quality characteristics and polyphenolic composition using reversed phase HPLC-DAD. Significant changes in the quality characteristics occurred with thermal oxidation. Fourteen polyphenolic compounds were identified and quantified in oils. Quercetin-3-glucoside, quercetin-3-feruloylsophoroside, catechin, quercetin-3-rutinoside, quercetin-3,7-diglucoside, sinapic acid and vanillic acid hexoside were the major compounds in the fresh and oxidized oil. Oxidized, un-oxidized mustard oils, glycine and glutamic acid were given to rabbits alone or in combination. The biochemical responses were studied in terms of haematological and biochemical parameters and histopathology. It has been observed that biochemical and haematological parameters were adversely affected by the oxidized oil, while supplementation of both amino acids was beneficial in normalizing these parameters. Both amino acids alone have no significant effects, however, oxidized oil affected the liver by enhancing fat accumulation, causing hepatitis, reactive Kupffer cells and necrosis. The co-administration of oxidized oils with glycine or glutamic acid revealed significant recovery of the liver structure and function. In conclusion, glycine or glutamic acid is beneficial and protective against food toxicity and can be considered as an ameliorative food supplement.

  16. Body energy metabolism and oxidative stress in mice supplemented with conjugated linoleic acid (CLA) associated to oleic acid.

    PubMed

    Baraldi, Flavia; Dalalio, Felipe; Teodoro, Bruno; Prado, Ieda; Curti, Carlos; Alberici, Luciane

    2014-10-01

    Some fatty acids may play an important role in regulating metabolism through PPARs activation. Conjugated linoleic acid (CLA) has been shown to reduce body fat accumulation and increase body metabolism; this effect has been associated with up-regulation of mitochondrial uncoupling proteins (UCPs) and PPARalfa activation. Oleic acid has shown beneficial effects on health, decreasing oxidative stress and improving clinical conditions related to obesity. Therefore, in this work, we addressed the effects of a oleic plus CLA-supplemented murine diet on body metabolism, mitochondrial energetics and oxidative stress in the liver, as well as on other associated morphological and functional parameters in C57BL/6 mice. The diet was supplemented with 2% CLA mixture (cis-9, trans-10 and trans-10, cis-12 isomers; 45% of each isomer) and/or 0.7% olive oil on alternating days (60 days) by gavage. The results showed that diet supplementation with CLA increases body metabolism and reduces lipid accumulation in adipose tissues. Groups that received oleic acid (oleic and CLA oleic) showed decreased levels of total cholesterol and cholesterol non-HDL, and increased levels of HDL-cholesterol. Livers of mice fed a diet supplemented with CLA showed high levels UCP2 mRNA, and the isolated hepatic mitochondria showed indications of UCP activity and increased ROS generation. Oleic acid partially reversed the lower lipid accumulation increasing PPARgamma content, reversed the higher ROS generation by liver mitochondria and improved liver oxidative status. These results indicate a beneficial and secure dose of CLA and oleic acid for diet supplementation in mice, which increases body metabolism inducing UCP2 overexpression/activity in liver while preserving the redox state of the liver. Therefore, diet supplementation with CLA associated to oleic acid may be regarded as a potential strategy for controlling obesity and oxidative stress. Supported by FAPESP. Copyright © 2014. Published by

  17. Multi-omic profiles of hepatic metabolism in TPN-fed preterm pigs administered new generation lipid emulsions[S

    PubMed Central

    Guthrie, Gregory; Kulkarni, Madhulika; Vlaardingerbroek, Hester; Stoll, Barbara; Ng, Kenneth; Martin, Camilia; Belmont, John; Hadsell, Darryl; Heird, William; Newgard, Christopher B.; Olutoye, Oluyinka; van Goudoever, Johannes; Lauridsen, Charlotte; He, Xingxuan; Schuchman, Edward H.; Burrin, Douglas

    2016-01-01

    We aimed to characterize the lipidomic, metabolomic, and transcriptomic profiles in preterm piglets administered enteral (ENT) formula or three parenteral lipid emulsions [parenteral nutrition (PN)], Intralipid (IL), Omegaven (OV), or SMOFlipid (SL), for 14 days. Piglets in all parenteral lipid groups showed differential organ growth versus ENT piglets; whole body growth rate was lowest in IL piglets, yet there were no differences in either energy expenditure or 13C-palmitate oxidation. Plasma homeostatic model assessment of insulin resistance demonstrated insulin resistance in IL, but not OV or SL, compared with ENT. The fatty acid and acyl-CoA content of the liver, muscle, brain, and plasma fatty acids reflected the composition of the dietary lipids administered. Free carnitine and acylcarnitine (ACT) levels were markedly reduced in the PN groups compared with ENT piglets. Genes associated with oxidative stress and inflammation were increased, whereas those associated with alternative pathways of fatty acid oxidation were decreased in all PN groups. Our results show that new generation lipid emulsions directly enrich tissue fatty acids, especially in the brain, and lead to improved growth and insulin sensitivity compared with a soybean lipid emulsion. In all total PN groups, carnitine levels are limiting to the formation of ACTs and gene expression reflects the stress of excess lipid on liver function. PMID:27474222

  18. Neuropsychological Outcomes in Fatty Acid Oxidation Disorders: 85 Cases Detected by Newborn Screening

    ERIC Educational Resources Information Center

    Waisbren, Susan E.; Landau, Yuval; Wilson, Jenna; Vockley, Jerry

    2013-01-01

    Mitochondrial fatty acid oxidation disorders include conditions in which the transport of activated acyl-Coenzyme A (CoA) into the mitochondria or utilization of these substrates is disrupted or blocked. This results in a deficit in the conversion of fat into energy. Most patients with fatty acid oxidation defects are now identified through…

  19. Genetic parameters for carnitine, creatine, creatinine, carnosine, and anserine concentration in longissimus muscle and their association with palatability traits in Angus cattle.

    PubMed

    Mateescu, R G; Garmyn, A J; O'Neil, M A; Tait, R G; Abuzaid, A; Mayes, M S; Garrick, D J; Van Eenennaam, A L; VanOverbeke, D L; Hilton, G G; Beitz, D C; Reecy, J M

    2012-12-01

    The objective of this study was to estimate genetic parameters for carnitine, creatine, creatinine, carnosine, and anserine concentration in LM and to evaluate their associations with Warner-Bratzler shear force (WBSF) and beef palatability traits. Longissimus muscle samples from 2,285 Angus cattle were obtained and fabricated into steaks for analysis of carnitine, creatine, creatinine, carnosine, anserine, and other nutrients, and for trained sensory panel and WBSF assessments. Restricted maximum likelihood procedures were used to obtain estimates of variance and covariance components under a multiple-trait animal model. Estimates of heritability for carnitine, creatine, creatinine, carnosine, and anserine concentrations in LM from Angus cattle were 0.015, 0.434, 0.070, 0.383, and 0.531, respectively. Creatine, carnosine, and anserine were found to be moderately heritable, whereas almost no genetic variation was observed in carnitine and creatinine. Moderate positive genetic (0.25, P < 0.05) and phenotypic correlations (0.25, P < 0.05) were identified between carnosine and anserine. Medium negative genetic correlations were identified between creatine and both carnosine (-0.53, P < 0.05) and anserine (-0.46, P < 0.05). Beef and livery/metallic flavor were not associated with any of the 5 compounds analyzed (P > 0.10), and carnitine concentrations were not associated (P > 0.10) with any of the meat palatability traits analyzed. Carnosine was negatively associated with overall tenderness as assessed by trained sensory panelists. Similar negative associations with overall tenderness were identified for creatinine and anserine. Painty/fishy was the only flavor significantly and negatively associated with creatinine and carnosine. These results provide information regarding the concentration of these compounds, the amount of genetic variation, and evidence for negligible associations with beef palatability traits in LM of beef cattle.

  20. Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils

    PubMed Central

    Van Trump, J. Ian; Wrighton, Kelly C.; Thrash, J. Cameron; Weber, Karrie A.; Andersen, Gary L.; Coates, John D.

    2011-01-01

    ABSTRACT This study demonstrates the prevalence, phylogenetic diversity, and physiology of nitrate-reducing microorganisms capable of utilizing reduced humic acids (HA) as electron donors in agricultural soils. Most probable number (MPN) enumeration of agricultural soils revealed large populations (104 to 106 cells g−1 soil) of microorganisms capable of reducing nitrate while oxidizing the reduced HA analog 2,6-anthrahydroquinone disulfonate (AH2DS) to its corresponding quinone. Nitrate-dependent HA-oxidizing organisms isolated from agricultural soils were phylogenetically diverse and included members of the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Advective up-flow columns inoculated with corn plot soil and amended with reduced HA and nitrate supported both HA oxidation and enhanced nitrate reduction relative to no-donor or oxidized HA controls. The additional electron donating capacity of reduced HA could reasonably be attributed to the oxidation of reduced functional groups. Subsequent 16S rRNA gene-based high-density oligonucleotide microarray (PhyloChip) indicated that reduced HA columns supported the development of a bacterial community enriched with members of the Acidobacteria, Firmicutes, and Betaproteobacteria relative to the no-donor control and initial inoculum. This study identifies a previously unrecognized role for HA in stimulating denitrification processes in saturated soil systems. Furthermore, this study indicates that reduced humic acids impact soil geochemistry and the indigenous bacterial community composition. PMID:21750120

  1. Ruthenium-catalyzed aerobic oxidative decarboxylation of amino acids: a green, zero-waste route to biobased nitriles.

    PubMed

    Claes, Laurens; Verduyckt, Jasper; Stassen, Ivo; Lagrain, Bert; De Vos, Dirk E

    2015-04-18

    Oxidative decarboxylation of amino acids into nitriles was performed using molecular oxygen as terminal oxidant and a heterogeneous ruthenium hydroxide-based catalyst. A range of amino acids was oxidized in very good yield, using water as the solvent.

  2. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress.

    PubMed

    Sautin, Yuri Y; Nakagawa, Takahiko; Zharikov, Sergey; Johnson, Richard J

    2007-08-01

    Uric acid is considered a major antioxidant in human blood that may protect against aging and oxidative stress. Despite its proposed protective properties, elevated levels of uric acid are commonly associated with increased risk for cardiovascular disease and mortality. Furthermore, recent experimental studies suggest that uric acid may have a causal role in hypertension and metabolic syndrome. All these conditions are thought to be mediated by oxidative stress. In this study we demonstrate that differentiation of cultured mouse adipocytes is associated with increased production of reactive oxygen species (ROS) and uptake of uric acid. Soluble uric acid stimulated an increase in NADPH oxidase activity and ROS production in mature adipocytes but not in preadipocytes. The stimulation of NADPH oxidase-dependent ROS by uric acid resulted in activation of MAP kinases p38 and ERK1/2, a decrease in nitric oxide bioavailability, and an increase in protein nitrosylation and lipid oxidation. Collectively, our results suggest that hyperuricemia induces redox-dependent signaling and oxidative stress in adipocytes. Since oxidative stress in the adipose tissue has recently been recognized as a major cause of insulin resistance and cardiovascular disease, hyperuricemia-induced alterations in oxidative homeostasis in the adipose tissue might play an important role in these derangements.

  3. Stabilization of superoxide dismutase by acetyl-l-carnitine in human brain endothelium during alcohol exposure: novel protective approach.

    PubMed

    Haorah, James; Floreani, Nicholas A; Knipe, Bryan; Persidsky, Yuri

    2011-10-15

    Oxidative damage of the endothelium disrupts the integrity of the blood-brain barrier (BBB). We have shown before that alcohol exposure increases the levels of reactive oxygen species (ROS; superoxide and hydroxyl radical) and nitric oxide (NO) in brain endothelial cells by activating NADPH oxidase and inducible nitric oxide synthase. We hypothesize that impairment of antioxidant systems, such as a reduction in catalase and superoxide dismutase (SOD) activity, by ethanol exposure may elevate the levels of ROS/NO in endothelium, resulting in BBB damage. This study examines whether stabilization of antioxidant enzyme activity results in suppression of ROS levels by anti-inflammatory agents. To address this idea, we determined the effects of ethanol on the kinetic profile of SOD and catalase activity and ROS/NO generation in primary human brain endothelial cells (hBECs). We observed an enhanced production of ROS and NO levels due to the metabolism of ethanol in hBECs. Similar increases were found after exposure of hBECs to acetaldehyde, the major metabolite of ethanol. Ethanol simultaneously augmented ROS generation and the activity of antioxidative enzymes. SOD activity was increased for a much longer period of time than catalase activity. A decline in SOD activity and protein levels preceded elevation of oxidant levels. SOD stabilization by the antioxidant and mitochondria-protecting agent acetyl-L-carnitine (ALC) and the anti-inflammatory agent rosiglitazone suppressed ROS levels, with a marginal increase in NO levels. Mitochondrial membrane protein damage and decreased membrane potential after ethanol exposure indicated mitochondrial injury. These changes were prevented by ALC. Our findings suggest the counteracting mechanisms of oxidants and antioxidants during alcohol-induced oxidative stress at the BBB. The presence of enzymatic stabilizers favors the ROS-neutralizing antioxidant redox of the BBB, suggesting an underlying protective mechanism of NO for brain

  4. Hepatic ketogenesis in newborn pigs is limited by low mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase activity.

    PubMed Central

    Duée, P H; Pégorier, J P; Quant, P A; Herbin, C; Kohl, C; Girard, J

    1994-01-01

    In newborn-pig hepatocytes, the rate of oleate oxidation is extremely low, despite a very low malonyl-CoA concentration. By contrast, the sensitivity of carnitine palmitoyltransferase (CPT) I to malonyl-CoA inhibition is high, as suggested by the very low concentration of malonyl-CoA required for 50% inhibition of CPT I (IC50). The rates of oleate oxidation and ketogenesis are respectively 70 and 80% lower in mitochondria isolated from newborn-pig liver than from starved-adult-rat liver mitochondria. Using polarographic measurements, we showed that the oxidation of oleoyl-CoA and palmitoyl-L-carnitine is very low when the acetyl-CoA produced is channelled into the hydroxymethylglutaryl-CoA (HMG-CoA) pathway by addition of malonate. In contrast, the oxidation of the same substrates is high when the acetyl-CoA produced is directed towards the citric acid cycle by addition of malate. We demonstrate that the limitation of ketogenesis in newborn-pig liver is due to a very low amount and activity of mitochondrial HMG-CoA synthase as compared with rat liver mitochondria, and suggest that this could promote the accumulation of acetyl-CoA and/or beta-oxidation products that in turn would decrease the overall rate of fatty acid oxidation in newborn- and adult-pig livers. Images Figure 1 Figure 2 PMID:7907471

  5. Graphene oxide for solid-phase extraction of bioactive phenolic acids.

    PubMed

    Hou, Xiudan; Wang, Xusheng; Sun, Yingxin; Wang, Licheng; Guo, Yong

    2017-05-01

    A solid-phase extraction (SPE) method for the efficient analysis of trace phenolic acids (PAs, caffeic acid, ferulic acid, protocatechuic acid, cinnamic acid) in urine was established. In this work, a graphene oxide (GO) coating was grafted onto pure silica to be investigated as SPE material. The prepared GO surface had a layered and wrinkled structure that was rough and well organized, which could provide more open adsorption sites. Owing to its hydrophilicity and polarity, GO showed higher extraction efficiency toward PAs than reduced GO did, in agreement with the theoretical calculation results performed by Gaussian 09 software. The adsorption mechanism of PAs on GO@Sil was also investigated through static state and kinetic state adsorption experiments, which showed a monolayer surface adsorption. Extraction capacity of the as-prepared material was optimized using the response surface methodology. Under the optimized conditions, the as-established method provided wide linearity range (2-50 μg L -1 for protocatechuic acid and 1-50 μg L -1 for caffeic acid, ferulic acid, and cinnamic acid) and low limits of detection (0.25-1 μg L -1 ). Finally, the established method was applied for the analysis of urine from two healthy volunteers. The results indicate that the prepared material is a practical, cost-effective medium for the extraction and determination of phenolic acids in complex matrices. Graphical Abstract A graphene oxide coating was grafted onto pure silica as the SPE material for the extraction of phenolic acids in urines and the extraction mechanism was also mainly investigated.

  6. The safety of Lipistart, a medium-chain triglyceride based formula, in the dietary treatment of long-chain fatty acid disorders: a phase I study.

    PubMed

    MacDonald, Anita; Webster, Rachel; Whitlock, Matthew; Gerrard, Adam; Daly, Anne; Preece, Mary Anne; Evans, Sharon; Ashmore, Catherine; Chakrapani, Anupam; Vijay, Suresh; Santra, Saikat

    2018-03-28

    Children with long-chain fatty acid β-oxidation disorders (LCFAOD) presenting with clinical symptoms are treated with a specialist infant formula, with medium chain triglyceride (MCT) mainly replacing long chain triglyceride (LCT). It is essential that the safety and efficacy of any new specialist formula designed for LCFAOD be tested in infants and children. In an open-label, 21-day, phase I trial, we studied the safety of a new MCT-based formula (feed 1) in six well-controlled children (three male), aged 7-13 years (median 9 years) with LCFAOD (very long chain acyl CoA dehydrogenase deficiency [VLCADD], n=2; long chain 3-hydroxyacyl CoA dehydrogenase deficiency [LCHADD], n=2; carnitine acyl carnitine translocase deficiency [CACTD], n=2). Feed 1 (Lipistart; Vitaflo) contained 30% energy from MCT, 7.5% LCT and 3% linoleic acid and it was compared with a conventional MCT feed (Monogen; Nutricia) (feed 2) containing 17% energy from MCT, 3% LCT and 1.1% linoleic acid. Subjects consumed feed 2 for 7 days then feed 1 for 7 days and finally resumed feed 2 for 7 days. Vital signs, blood biochemistry, ECG, weight, height, food/feed intake and symptoms were monitored. Five subjects completed the study. Their median daily volume of both feeds was 720 mL (range 500-1900 mL/day). Feed 1 was associated with minimal changes in tolerance, free fatty acids (FFA), acylcarnitines, 3-hydroxybutyrate (3-HB), creatine kinase (CK), blood glucose, liver enzymes and no change in an electrocardiogram (ECG). No child complained of muscle pain or symptoms associated with LCFAOD on either feed. This is the first safety trial reported of an MCT formula specifically designed for infants and children with LCFAOD. In this short-term study, it appeared safe and well tolerated in this challenging group.

  7. Chemoproteomic Profiling of Acetanilide Herbicides Reveals Their Role in Inhibiting Fatty Acid Oxidation.

    PubMed

    Counihan, Jessica L; Duckering, Megan; Dalvie, Esha; Ku, Wan-Min; Bateman, Leslie A; Fisher, Karl J; Nomura, Daniel K

    2017-03-17

    Acetanilide herbicides are among the most widely used pesticides in the United States, but their toxicological potential and mechanisms remain poorly understood. Here, we have used chemoproteomic platforms to map proteome-wide cysteine reactivity of acetochlor (AC), the most widely used acetanilide herbicide, in vivo in mice. We show that AC directly reacts with >20 protein targets in vivo in mouse liver, including the catalytic cysteines of several thiolase enzymes involved in mitochondrial and peroxisomal fatty acid oxidation. We show that the fatty acids that are not oxidized, due to impaired fatty acid oxidation, are instead diverted into other lipid pathways, resulting in heightened free fatty acids, triglycerides, cholesteryl esters, and other lipid species in the liver. Our findings show the utility of chemoproteomic approaches for identifying novel mechanisms of toxicity associated with environmental chemicals like acetanilide herbicides.

  8. Extra virgin olive oil modulates brain docosahexaenoic acid level and oxidative damage caused by 2,4-Dichlorophenoxyacetic acid in rats.

    PubMed

    Amel, Nakbi; Wafa, Tayeb; Samia, Dabbou; Yousra, Belaid; Issam, Chargui; Cheraif, Imed; Attia, Nebil; Mohamed, Hammami

    2016-03-01

    Oxidative stress is an important pathomechanism of neurological disorders such as Alzheimer disease and Parkinson disease, cardiovascular disorders and many others. This study sought to verify whether extra-virgin olive oil (EVOO), lipophilic fraction (OOLF) and hydrophilic fraction (OOHF) exerted a brain protective effect against the oxidative stress caused by 2,4-dichlorophenoxyacetic acid (2,4-D) pesticide at a dose of 5 mg/kg body weight. 2,4-D, EVOO and its fractions were administered to rats by gavages for four consecutive weeks. Oxidative stress was assessed by measuring brain lipid peroxide level, acetylcholinesterase (AChE), antioxidant enzyme activities and fatty acid composition. 2,4-D induced a decrease in both plasma and brain acetylcholinesterase activity and a rise in Brain TBARS (Thiobarbituric acid reactive substances) level and antioxidant enzyme activities compared with the control group. These changes were partly reversed by either EVOO or its fractions oral administration to 2,4-D treated rats. EVOO enhanced a neuroprotective effect evaluated by the restoration of brain fatty acid composition especially the level of docosahexaenoic acid (DHA). Our results indicate that EVOO exerts a neuroprotective activity against oxidative damage in brain induced by 2,4-D, which could be attributed to its antioxidative property.

  9. Activity energy expenditure is a major determinant of dietary fat oxidation and trafficking, but the deleterious effect of detraining is more marked than the beneficial effect of training at current recommendations.

    PubMed

    Bergouignan, Audrey; Momken, Iman; Lefai, Etienne; Antoun, Edwina; Schoeller, Dale A; Platat, Carine; Chery, Isabelle; Zahariev, Alexandre; Vidal, Hubert; Gabert, Laure; Normand, Sylvie; Freyssenet, Damien; Laville, Martine; Simon, Chantal; Blanc, Stephane

    2013-09-01

    Previous studies suggested that physical activity energy expenditure (AEE) is a major determinant of dietary fat oxidation, which is a central component of fat metabolism and body weight regulation. We tested this hypothesis by investigating the effect of contrasted physical activity levels on dietary saturated and monounsaturated fatty acid oxidation in relation to insulin sensitivity while controlling energy balance. Sedentary lean men (n = 10) trained for 2 mo according to the current guidelines on physical activity, and active lean men (n = 9) detrained for 1 mo by reducing structured and spontaneous activity. Dietary [d31]palmitate and [1-¹³C]oleate oxidation and incorporation into triglyceride-rich lipoproteins and nonesterified fatty acid, AEE, and muscle markers were studied before and after interventions. Training increased palmitate and oleate oxidation by 27% and 20%, respectively, whereas detraining reduced them by 31% and 13%, respectively (P < 0.05 for all). Changes in AEE were positively correlated with changes in oleate (R² = 0.62, P < 0.001) and palmitate (R² = 0.66, P < 0.0001) oxidation. The d31-palmitate appearance in nonesterified fatty acid and very-low-density lipoprotein pools was negatively associated with changes in fatty acid translocase CD36 (R² = 0.30), fatty acid transport protein 1 (R² = 0.24), and AcylCoA synthetase long chain family member 1 (ACSL1) (R² = 0.25) expressions and with changes in fatty acid binding protein expression (R² = 0.33). The d31-palmitate oxidation correlated with changes in ACSL1 (R² = 0.39) and carnitine palmitoyltransferase 1 (R² = 0.30) expressions (P < 0.05 for all). Similar relations were observed with oleate. Insulin response was associated with AEE (R² = 0.34, P = 0.02) and oleate (R² = 0.52, P < 0.01) and palmitate (R² = 0.62, P < 001) oxidation. Training and detraining modified the oxidation of the 2 most common dietary fats, likely through a better trafficking and uptake by the muscle

  10. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil.

    PubMed

    Lehtovirta-Morley, Laura E; Stoecker, Kilian; Vilcinskas, Andreas; Prosser, James I; Nicol, Graeme W

    2011-09-20

    Nitrification is a fundamental component of the global nitrogen cycle and leads to significant fertilizer loss and atmospheric and groundwater pollution. Nitrification rates in acidic soils (pH < 5.5), which comprise 30% of the world's soils, equal or exceed those of neutral soils. Paradoxically, autotrophic ammonia oxidizing bacteria and archaea, which perform the first stage in nitrification, demonstrate little or no growth in suspended liquid culture below pH 6.5, at which ammonia availability is reduced by ionization. Here we report the discovery and cultivation of a chemolithotrophic, obligately acidophilic thaumarchaeal ammonia oxidizer, "Candidatus Nitrosotalea devanaterra," from an acidic agricultural soil. Phylogenetic analysis places the organism within a previously uncultivated thaumarchaeal lineage that has been observed in acidic soils. Growth of the organism is optimal in the pH range 4 to 5 and is restricted to the pH range 4 to 5.5, unlike all previously cultivated ammonia oxidizers. Growth of this organism and associated ammonia oxidation and autotrophy also occur during nitrification in soil at pH 4.5. The discovery of Nitrosotalea devanaterra provides a previously unsuspected explanation for high rates of nitrification in acidic soils, and confirms the vital role that thaumarchaea play in terrestrial nitrogen cycling. Growth at extremely low ammonia concentration (0.18 nM) also challenges accepted views on ammonia uptake and metabolism and indicates novel mechanisms for ammonia oxidation at low pH.

  11. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil

    PubMed Central

    Lehtovirta-Morley, Laura E.; Stoecker, Kilian; Vilcinskas, Andreas; Prosser, James I.; Nicol, Graeme W.

    2011-01-01

    Nitrification is a fundamental component of the global nitrogen cycle and leads to significant fertilizer loss and atmospheric and groundwater pollution. Nitrification rates in acidic soils (pH < 5.5), which comprise 30% of the world's soils, equal or exceed those of neutral soils. Paradoxically, autotrophic ammonia oxidizing bacteria and archaea, which perform the first stage in nitrification, demonstrate little or no growth in suspended liquid culture below pH 6.5, at which ammonia availability is reduced by ionization. Here we report the discovery and cultivation of a chemolithotrophic, obligately acidophilic thaumarchaeal ammonia oxidizer, “Candidatus Nitrosotalea devanaterra,” from an acidic agricultural soil. Phylogenetic analysis places the organism within a previously uncultivated thaumarchaeal lineage that has been observed in acidic soils. Growth of the organism is optimal in the pH range 4 to 5 and is restricted to the pH range 4 to 5.5, unlike all previously cultivated ammonia oxidizers. Growth of this organism and associated ammonia oxidation and autotrophy also occur during nitrification in soil at pH 4.5. The discovery of Nitrosotalea devanaterra provides a previously unsuspected explanation for high rates of nitrification in acidic soils, and confirms the vital role that thaumarchaea play in terrestrial nitrogen cycling. Growth at extremely low ammonia concentration (0.18 nM) also challenges accepted views on ammonia uptake and metabolism and indicates novel mechanisms for ammonia oxidation at low pH. PMID:21896746

  12. Fatty acid synthase inhibition triggers apoptosis during S phase in human cancer cells.

    PubMed

    Zhou, Weibo; Simpson, P Jeanette; McFadden, Jill M; Townsend, Craig A; Medghalchi, Susan M; Vadlamudi, Aravinda; Pinn, Michael L; Ronnett, Gabriele V; Kuhajda, Francis P

    2003-11-01

    C75, an inhibitor of fatty acid synthase (FAS), induces apoptosis in cultured human cancer cells. Its proposed mechanism of action linked high levels of malonyl-CoA after FAS inhibition to potential downstream effects including inhibition of carnitine palmitoyltransferase-1 (CPT-1) with resultant inhibition of fatty acid oxidation. Recent data has shown that C75 directly stimulates CPT-1 increasing fatty acid oxidation in MCF-7 human breast cancer cells despite inhibitory concentrations of malonyl-CoA. In light of these findings, we have studied fatty acid metabolism in MCF7 human breast cancer cells to elucidate the mechanism of action of C75. We now report that: (a) in the setting of increased fatty acid oxidation, C75 inhibits fatty acid synthesis; (b) C273, a reduced form of C75, is unable to inhibit fatty acid synthesis and is nontoxic to MCF7 cells; (c) C75 and 5-(tetradecyloxy)-2-furoic acid (TOFA), an inhibitor of acetyl-CoA carboxylase, both cause a significant reduction of fatty acid incorporation into phosphatidylcholine, the major membrane phospholipid, within 2 h; (d) pulse chase studies with [(14)C]acetate labeling of membrane lipids show that both C75 and TOFA accelerate the decay of (14)C-labeled lipid from membranes within 2 h; (e) C75 also promotes a 2-3-fold increase in oxidation of membrane lipids within 2 h; and (f) because interference with phospholipid synthesis during S phase is known to trigger apoptosis in cycling cells, we performed double-labeled terminal deoxynucleotidyltransferase-mediated nick end labeling and BrdUrd analysis with both TOFA and C75. C75 triggered apoptosis during S phase, whereas TOFA did not. Moreover, application of TOFA 2 h before C75 blocked the C75 induced apoptosis, whereas etomoxir did not. Taken together these data indicate that FAS inhibition and its downstream inhibition of phospholipid production is a necessary part of the mechanism of action of C75. CPT-1 stimulation does not likely play a role in the

  13. Peroxisome proliferator-activated receptor-alpha regulates fatty acid utilization in primary human skeletal muscle cells.

    PubMed

    Muoio, Deborah M; Way, James M; Tanner, Charles J; Winegar, Deborah A; Kliewer, Steven A; Houmard, Joseph A; Kraus, William E; Dohm, G Lynis

    2002-04-01

    In humans, skeletal muscle is a major site of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) expression, but its function in this tissue is unclear. We investigated the role of hPPAR-alpha in regulating muscle lipid utilization by studying the effects of a highly selective PPAR-alpha agonist, GW7647, on [(14)C]oleate metabolism and gene expression in primary human skeletal muscle cells. Robust induction of PPAR-alpha protein expression occurred during muscle cell differentiation and corresponded with differentiation-dependent increases in oleate oxidation. In mature myotubes, 48-h treatment with 10-1,000 nmol/l GW7647 increased oleate oxidation dose-dependently, up to threefold. Additionally, GW7647 decreased oleate esterification into myotube triacylglycerol (TAG), up to 45%. This effect was not abolished by etomoxir, a potent inhibitor of beta-oxidation, indicating that PPAR-alpha-mediated TAG depletion does not depend on reciprocal changes in fatty acid catabolism. Consistent with its metabolic actions, GW7647 induced mRNA expression of mitochondrial enzymes that promote fatty acid catabolism; carnitine palmityltransferase 1 and malonyl-CoA decarboxylase increased approximately 2-fold, whereas pyruvate dehydrogenase kinase 4 increased 45-fold. Expression of several genes that regulate glycerolipid synthesis was not changed by GW7647 treatment, implicating involvement of other targets to explain the TAG-depleting effect of the compound. These results demonstrate a role for hPPAR-alpha in regulating muscle lipid homeostasis.

  14. A new leptin-mediated mechanism for stimulating fatty acid oxidation: a pivotal role for sarcolemmal FAT/CD36.

    PubMed

    Momken, Iman; Chabowski, Adrian; Dirkx, Ellen; Nabben, Miranda; Jain, Swati S; McFarlan, Jay T; Glatz, Jan F C; Luiken, Joost J F P; Bonen, Arend

    2017-01-01

    Leptin stimulates fatty acid oxidation in muscle and heart; but, the mechanism by which these tissues provide additional intracellular fatty acids for their oxidation remains unknown. We examined, in isolated muscle and cardiac myocytes, whether leptin, via AMP-activated protein kinase (AMPK) activation, stimulated fatty acid translocase (FAT/CD36)-mediated fatty acid uptake to enhance fatty acid oxidation. In both mouse skeletal muscle and rat cardiomyocytes, leptin increased fatty acid oxidation, an effect that was blocked when AMPK phosphorylation was inhibited by adenine 9-β-d-arabinofuranoside or Compound C. In wild-type mice, leptin induced the translocation of FAT/CD36 to the plasma membrane and increased fatty acid uptake into giant sarcolemmal vesicles and into cardiomyocytes. In muscles of FAT/CD36-KO mice, and in cardiomyocytes in which cell surface FAT/CD36 action was blocked by sulfo-N-succinimidyl oleate, the leptin-stimulated influx of fatty acids was inhibited; concomitantly, the normal leptin-stimulated increase in fatty acid oxidation was also prevented, despite the normal leptin-induced increase in AMPK phosphorylation. Conversely, in muscle of AMPK kinase-dead mice, leptin failed to induce the translocation of FAT/CD36, along with a failure to stimulate fatty acid uptake and oxidation. Similarly, when siRNA was used to reduce AMPK in HL-1 cardiomyocytes, leptin failed to induce the translocation of FAT/CD36. Our studies have revealed a novel mechanism of leptin-induced fatty acid oxidation in muscle tissue; namely, this process is dependent on the activation of AMPK to induce the translocation of FAT/CD36 to the plasma membrane, thereby stimulating fatty acid uptake. Without increasing this leptin-stimulated, FAT/CD36-dependent fatty acid uptake process, leptin-stimulated AMPK phosphorylation does not enhance fatty acid oxidation. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  15. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes

    PubMed Central

    Gan, Lu; Liu, Zhenjiang; Cao, Weina; Zhang, Zhenzhen; Sun, Chao

    2015-01-01

    Fatty acid binding protein 4 (FABP4), plays key role in fatty acid transportation and oxidation, and increases with leptin synergistically during adipose inflammation process. However, the regulation mechanism between FABP4 and leptin on mitochondrial fatty acid oxidation remains unclear. In this study, we found that FABP4 reduced the expression of leptin, CPT-1 and AOX1 in mice adipocytes. Conversely, FABP4 was down-regulated in a time-dependent manner by leptin treatment. Additionally, forced expression of FABP4 attenuated the expression of PGC1-α, UCP2, CPT-1, AOX1 and COX2 compared with leptin incubation. Moreover, mitochondrial membrane potential, fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase (LCAD) and Cyt C levels were reduced in response to the overexpression of FABP4. These reductions correspond well with the reduced release of free fatty acid and the inactivation of mitochondrial complexes I and III by FABP4 overexpression. Furthermore, addition of the Akt/mTOR pathway-specific inhibitor (MK2206) blocked the mitochondrial fatty acid oxidation and respiration factors, whereas interference of FABP4 overcame these effects. Taken together, FABP4 could reverse the activation of the leptin-induced mitochondrial fatty acid oxidation, and the inhibition of Akt/mTOR signal pathway played a key role in this process. PMID:26310911

  16. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes.

    PubMed

    Gan, Lu; Liu, Zhenjiang; Cao, Weina; Zhang, Zhenzhen; Sun, Chao

    2015-08-27

    Fatty acid binding protein 4 (FABP4), plays key role in fatty acid transportation and oxidation, and increases with leptin synergistically during adipose inflammation process. However, the regulation mechanism between FABP4 and leptin on mitochondrial fatty acid oxidation remains unclear. In this study, we found that FABP4 reduced the expression of leptin, CPT-1 and AOX1 in mice adipocytes. Conversely, FABP4 was down-regulated in a time-dependent manner by leptin treatment. Additionally, forced expression of FABP4 attenuated the expression of PGC1-α, UCP2, CPT-1, AOX1 and COX2 compared with leptin incubation. Moreover, mitochondrial membrane potential, fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase (LCAD) and Cyt C levels were reduced in response to the overexpression of FABP4. These reductions correspond well with the reduced release of free fatty acid and the inactivation of mitochondrial complexes I and III by FABP4 overexpression. Furthermore, addition of the Akt/mTOR pathway-specific inhibitor (MK2206) blocked the mitochondrial fatty acid oxidation and respiration factors, whereas interference of FABP4 overcame these effects. Taken together, FABP4 could reverse the activation of the leptin-induced mitochondrial fatty acid oxidation, and the inhibition of Akt/mTOR signal pathway played a key role in this process.

  17. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    PubMed

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. Copyright © 2016. Published by Elsevier Ltd.

  18. Plasma acylcarnitine profiling indicates increased fatty acid oxidation relative to tricarboxylic acid cycle capacity in young, healthy low birth weight men.

    PubMed

    Ribel-Madsen, Amalie; Ribel-Madsen, Rasmus; Brøns, Charlotte; Newgard, Christopher B; Vaag, Allan A; Hellgren, Lars I

    2016-10-01

    We hypothesized that an increased, incomplete fatty acid beta-oxidation in mitochondria could be part of the metabolic events leading to insulin resistance and thereby an increased type 2 diabetes risk in low birth weight (LBW) compared with normal birth weight (NBW) individuals. Therefore, we measured fasting plasma levels of 45 acylcarnitine species in 18 LBW and 25 NBW men after an isocaloric control diet and a 5-day high-fat, high-calorie diet. We demonstrated that LBW men had higher C2 and C4-OH levels after the control diet compared with NBW men, indicating an increased fatty acid beta-oxidation relative to the tricarboxylic acid cycle flux. Also, they had higher C6-DC, C10-OH/C8-DC, and total hydroxyl-/dicarboxyl-acylcarnitine levels, which may suggest an increased fatty acid omega-oxidation in the liver. Furthermore, LBW and NBW men decreased several acylcarnitine levels in response to overfeeding, which is likely a result of an upregulation of fatty acid oxidation due to the dietary challenge. Moreover, C10-OH/C8-DC and total hydroxyl-/dicarboxyl-acylcarnitine levels tended to be negatively associated with the serum insulin level, and the total hydroxyl-/dicarboxyl-acylcarnitine level additionally tended to be negatively associated with the hepatic insulin resistance index. This indicates that an increased fatty acid omega-oxidation could be a compensatory mechanism to prevent an accumulation of lipid species that impair insulin signaling. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  19. Ophthalmic acid is a marker of oxidative stress in plants as in animals.

    PubMed

    Servillo, Luigi; Castaldo, Domenico; Giovane, Alfonso; Casale, Rosario; D'Onofrio, Nunzia; Cautela, Domenico; Balestrieri, Maria Luisa

    2018-04-01

    Ophthalmic acid (OPH), γ-glutamyl-L-2-aminobutyryl-glycine, a tripeptide analogue of glutathione (GSH), has recently captured considerable attention as a biomarker of oxidative stress in animals. The OPH and GSH biosynthesis, as well as some biochemical behaviors, are very similar. Here, we sought to investigate the presence of OPH in plants and its possible relationship with GSH, known to possess multiple functions in the plant development, growth and response to environmental changes. HPLC-ESI-MS/MS analysis was used to examine the occurrence of OPH in leaves from various plant species, and flours from several plant seeds. Different types of oxidative stress, i.e., water, dark, paraquat, and cadmium stress, were induced in rye, barley, oat, and winter wheat leaves to evaluate the effects on the levels of OPH and its metabolic precursors. OPH and its dipeptide precursor, γ-glutamyl-2-aminobutyric acid, were found to occur in phylogenetically distant plants. Interestingly, the levels of OPH were tightly associated with the oxidative stress tested. Levels of OPH precursors, γ-glutamyl-2-aminobutyric acid and 2-aminobutyric acid, the latter efficiently formed in plants via biosynthetic pathways absent in the animal kingdom, were also found to increase during oxidative stress. OPH occurs in plants and its levels are tightly associated with oxidative stress. OPH behaves as an oxidative stress marker and its biogenesis might occur through a biochemical pathway common to many living organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Over-expression in Escherichia coli, purification and reconstitution in liposomes of the third member of the OCTN sub-family: The mouse carnitine transporter OCTN3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scalise, Mariafrancesca; Galluccio, Michele; Pochini, Lorena

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer mOCTN3 transport protein has been cloned in pET-21a(+) and over-expressed in Escherichia coli. Black-Right-Pointing-Pointer The expressed mOCTN3 has been purified to homogeneity by Ni-chelating chromatography. Black-Right-Pointing-Pointer The protein solubilised in Triton X-100 has been reconstituted in liposomes. Black-Right-Pointing-Pointer Recombinant mOCTN3 catalyses transport of carnitine by a uniport mode. -- Abstract: pET-21a(+)-mOCTN3-6His was constructed and used for over-expression in Escherichia coli Rosetta(DE3)pLysS. After IPTG induction a protein with apparent molecular mass of 53 kDa was collected in the insoluble fraction of the cell lysate and purified by Ni{sup 2+}-chelating chromatography with a yield of 2 mg/l of cell culture.more » The over-expressed protein was identified with mOCTN3 by anti-His antibody and reconstitution in liposomes. mOCTN3 required peculiar conditions for optimal expression and reconstitution in liposomes. The protein catalyzed a time dependent [{sup 3}H]carnitine uptake which was stimulated by intraliposomal ATP and nearly independent of the pH. The K{sub m} for carnitine was 36 {mu}M. [{sup 3}H]carnitine transport was inhibited by carnitine analogues and some Cys and NH{sub 2} reagents. This paper represents the first outcome in over-expressing, in active form, the third member of the OCTN sub-family, mOCTN3, in E. coli.« less

  1. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals.

    PubMed

    Liu, Fobang; Lai, Senchao; Tong, Haijie; Lakey, Pascale S J; Shiraiwa, Manabu; Weller, Michael G; Pöschl, Ulrich; Kampf, Christopher J

    2017-03-01

    Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.

  2. Cotransporting Ion is a Trigger for Cellular Endocytosis of Transporter-Targeting Nanoparticles: A Case Study of High-Efficiency SLC22A5 (OCTN2)-Mediated Carnitine-Conjugated Nanoparticles for Oral Delivery of Therapeutic Drugs.

    PubMed

    Kou, Longfa; Yao, Qing; Sun, Mengchi; Wu, Chunnuan; Wang, Jia; Luo, Qiuhua; Wang, Gang; Du, Yuqian; Fu, Qiang; Wang, Jian; He, Zhonggui; Ganapathy, Vadivel; Sun, Jin

    2017-09-01

    OCTN2 (SLC22A5) is a Na + -coupled absorption transporter for l-carnitine in small intestine. This study tests the potential of this transporter for oral delivery of therapeutic drugs encapsulated in l-carnitine-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (LC-PLGA NPs) and discloses the molecular mechanism for cellular endocytosis of transporter-targeting nanoparticles. Conjugation of l-carnitine to a surface of PLGA-NPs enhances the cellular uptake and intestinal absorption of encapsulated drug. In both cases, the uptake process is dependent on cotransporting ion Na + . Computational OCTN2 docking analysis shows that the presence of Na + is important for the formation of the energetically stable intermediate complex of transporter-Na + -LC-PLGA NPs, which is also the first step in cellular endocytosis of nanoparticles. The transporter-mediated intestinal absorption of LC-PLGA NPs occurs via endocytosis/transcytosis rather than via the traditional transmembrane transport. The portal blood versus the lymphatic route is evaluated by the plasma appearance of the drug in the control and lymph duct-ligated rats. Absorption via the lymphatic system is the predominant route in the oral delivery of the NPs. In summary, LC-PLGA NPs can effectively target OCTN2 on the enterocytes for enhancing oral delivery of drugs and the critical role of cotransporting ions should be noticed in designing transporter-targeting nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Acid-catalyzed oxidation of 2,4-dichlorophenoxyacetic acid by ammonium nitrate in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leavitt, D.D.; Abraham, M.A.

    1990-04-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) was oxidized to CO{sub 2} and water by homogeneous, liquid-phase reaction with ammonium nitrate at temperatures between 250 and 450{degree}F and pressures below 100 psi. N{sub 2} and N{sub 2}O were produced from the thermal decomposition of the ammonium nitrate oxidant. An unexpected maximum in conversion was observed at an intermediate reaction temperature, which was consistent with rapid thermal decomposition of the NH{sub 4}NO{sub 3} oxidant. Postulated reaction pathways consisting of simultaneous oxidation of 2,4-D and decomposition of the oxidant allowed estimation of kinetic constants from best-fit analysis of the data. The proposed reaction model provided amore » mathematical description of 2,4-D conversion, which allowed extrapolation of the results to reaction conditions and reactor configurations that were not experimentally investigated.« less

  4. Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice.

    PubMed

    Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Morsy, Safaa M Youssef; Omara, Enayat A; Sleem, Amany A

    2014-05-01

    Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1-2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1-2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1-2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation.

  5. Citric Acid Effects on Brain and Liver Oxidative Stress in Lipopolysaccharide-Treated Mice

    PubMed Central

    Youness, Eman R.; Mohammed, Nadia A.; Morsy, Safaa M. Youssef; Omara, Enayat A.; Sleem, Amany A.

    2014-01-01

    Abstract Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1–2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1–2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1–2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation. PMID:24433072

  6. Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy

    PubMed Central

    Tan, Zheqiong; Xiao, Lanbo; Tang, Min; Bai, Fang; Li, Jiangjiang; Li, Liling; Shi, Feng; Li, Namei; Li, Yueshuo; Du, Qianqian; Lu, Jingchen; Weng, Xinxian; Yi, Wei; Zhang, Hanwen; Fan, Jia; Zhou, Jian; Gao, Qiang; Onuchic, José N.; Bode, Ann M.; Luo, Xiangjian; Cao, Ya

    2018-01-01

    Nasopharyngeal carcinoma (NPC) has a particularly high prevalence in southern China, southeastern Asia and northern Africa. Radiation resistance remains a serious obstacle to successful treatment in NPC. This study aimed to explore the metabolic feature of radiation-resistant NPC cells and identify new molecular-targeted agents to improve the therapeutic effects of radiotherapy in NPC. Methods: Radiation-responsive and radiation-resistant NPC cells were used as the model system in vitro and in vivo. Metabolomics approach was used to illustrate the global metabolic changes. 13C isotopomer tracing experiment and Seahorse XF analysis were undertaken to determine the activity of fatty acid oxidation (FAO). qRT-PCR was performed to evaluate the expression of essential FAO genes including CPT1A. NPC tumor tissue microarray was used to investigate the prognostic role of CPT1A. Either RNA interference or pharmacological blockade by Etomoxir were used to inhibit CPT1A. Radiation resistance was evaluated by colony formation assay. Mitochondrial membrane potential, apoptosis and neutral lipid content were measured by flow cytometry analysis using JC-1, Annexin V and LipidTOX Red probe respectively. Molecular markers of mitochondrial apoptosis were detected by western blot. Xenografts were treated with Etomoxir, radiation, or a combination of Etomoxir and radiation. Mitochondrial apoptosis and lipid droplets content of tumor tissues were detected by cleaved caspase 9 and Oil Red O staining respectively. Liquid chromatography coupled with tandem mass spectrometry approach was used to identify CPT1A-binding proteins. The interaction of CPT1A and Rab14 were detected by immunoprecipitation, immunofluorescence and in situ proximity ligation analysis. Fragment docking and direct coupling combined computational protein-protein interaction prediction method were used to predict the binding interface. Fatty acid trafficking was measured by pulse-chase assay using BODIPY C16 and Mito

  7. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene oxide...

  8. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2011-06-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008) proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM-10 mM) was oxidized by OH radical. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  9. Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum.

    PubMed

    Kitamura, Takuya; Seki, Naoya; Kihara, Akio

    2017-03-28

    Although normal fatty acids (FAs) are degraded via β-oxidation, unusual FAs such as 2-hydroxy (2-OH) FAs and 3-methyl-branched FAs are degraded via α-oxidation. Phytosphingosine (PHS) is one of the long-chain bases (the sphingolipid components) and exists in specific tissues, including the epidermis and small intestine in mammals. In the degradation pathway, PHS is converted to 2-OH palmitic acid and then to pentadecanoic acid (C15:0-COOH) via FA α-oxidation. However, the detailed reactions and genes involved in the α-oxidation reactions of the PHS degradation pathway have yet to be determined. In the present study, we reveal the entire PHS degradation pathway: PHS is converted to C15:0-COOH via six reactions [phosphorylation, cleavage, oxidation, CoA addition, cleavage (C1 removal), and oxidation], in which the last three reactions correspond to the α-oxidation. The aldehyde dehydrogenase ALDH3A2 catalyzes both the first and second oxidation reactions (fatty aldehydes to FAs). In Aldh3a2 -deficient cells, the unmetabolized fatty aldehydes are reduced to fatty alcohols and are incorporated into ether-linked glycerolipids. We also identify HACL2 (2-hydroxyacyl-CoA lyase 2) [previous name, ILVBL; ilvB (bacterial acetolactate synthase)-like] as the major 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the FA α-oxidation of the PHS degradation pathway. HACL2 is localized in the endoplasmic reticulum. Thus, in addition to the already-known FA α-oxidation in the peroxisomes, we have revealed the existence of FA α-oxidation in the endoplasmic reticulum in mammals.

  10. The ubiquitin ligase MuRF1 regulates PPARα activity in the heart by enhancing nuclear export via monoubiquitination

    PubMed Central

    Rodríguez, Jessica E.; Liao, Jie-Ying; He, Jun; Schisler, Jonathan C.; Newgard, Christopher B.; Drujan, Doreen; Glass, David L.; Frederick, C.Brandon; Yoder, Bryan C.; Lalush, David S.; Patterson, Cam; Willis, Monte S.

    2015-01-01

    The transcriptional regulation of peroxisome proliferator-activated receptor (PPAR) α by post-translational modification, such as ubiquitin, has not been described. We report here for the first time an ubiquitin ligase (muscle ring finger-1/MuRF1) that inhibits fatty acid oxidation by inhibiting PPARα, but not PPARβ/δ or PPARγ in cardiomyocytes in vitro. Similarly, MuRF1 Tg+ hearts showed significant decreases in nuclear PPARα activity and acyl-carnitine intermediates, while MuRF1−/− hearts exhibited increased PPARα activity and acyl-carnitine intermediates. MuRF1 directly interacts with PPARα, mono-ubiquitinates it, and targets it for nuclear export to inhibit fatty acid oxidation in a proteasome independent manner. We then identified a previously undescribed nuclear export sequence in PPARα, along with three specific lysines (292, 310, 388) required for MuRF1s targeting of nuclear export. These studies identify the role of ubiquitination in regulating cardiac PPARα, including the ubiquitin ligase that may be responsible for this critical regulation of cardiac metabolism in heart failure. PMID:26116825

  11. Lipidomics of oxidized polyunsaturated fatty acids

    PubMed Central

    Massey, Karen A.; Nicolaou, Anna

    2013-01-01

    Lipid mediators are produced from the oxidation of polyunsaturated fatty acids through enzymatic and free radical-mediated reactions. When subject to oxygenation via cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases, polyunsaturated fatty acids give rise to an array of metabolites including eicosanoids, docosanoids, and octadecanoids. These potent bioactive lipids are involved in many biochemical and signaling pathways, with inflammation being of particular importance. Moreover, because they are produced by more than one pathway and substrate, and are present in a variety of biological milieus, their analysis is not always possible with conventional assays. Liquid chromatography coupled to electrospray mass spectrometry offers a versatile and sensitive approach for the analysis of bioactive lipids, allowing specific and accurate quantitation of multiple species present in the same sample. Here we explain the principles of this approach to mediator lipidomics and present detailed protocols for the assay of enzymatically produced oxygenated metabolites of polyunsaturated fatty acids that can be tailored to answer biological questions or facilitate assessment of nutritional and pharmacological interventions. PMID:22940496

  12. Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs.

    PubMed

    Wieczorek, Adam S; Drake, Harold L; Kolb, Steffen

    2011-07-01

    Aerobic methane (CH(4) ) oxidation reduces the emission of CH(4) from mires and is regulated by various environmental factors. Organic acids and alcohols are intermediates of the anaerobic degradation of organic matter or are released by plant roots. Methanotrophs isolated from mires utilize these compounds preferentially to CH(4) . Thus, the effect of organic acids and ethanol on CH(4) oxidation by methanotrophs of a mire was evaluated. Slurries of mire soil oxidized supplemental CH(4) down to subatmospheric concentrations. The dominant pmoA and mmoX genotypes were affiliated with sequences from Methylocystis species capable of utilization of acetate and atmospheric CH(4) . Soil slurries supplemented with acetate, propionate or ethanol had reduced CH(4) oxidation rates compared with unsupplemented or glucose-supplemented controls. Expression of Methylocystis-affiliated pmoA decreased when CH(4) consumption decreased in response to acetate and was enhanced after acetate was consumed, at which time the consumption of CH(4) reached control levels. The inhibition of methanotroph activity might have been due to either toxicity of organic compounds or their preferred utilization. CH(4) oxidation was reduced at 5 and 0.5 mM of supplemental organic compounds. Acetate concentrations may exceed 3 mM in the investigated mire. Thus, the oxidation of CH(4) might decrease in microzones where organic acids occur. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. The effects of L-carnitine on spinal cord ischemia/reperfusion injury in rabbits.

    PubMed

    Tetik, O; Yagdi, T; Islamoglu, F; Calkavur, T; Posacioglu, H; Atay, Y; Ayik, F; Canpolat, L; Yuksel, M

    2002-02-01

    Paraplegia after distal aortic aneurysm repair remains a persistent clinical problem. We hypothesized that the tolerance of the spinal cord to an ischemic period could be improved with hypothermic Ringer's Lactate containing L-Carnitine. Twenty-eight New Zealand white rabbits were used as spinal cord ischemia models. We separated rabbits into four equal groups and clamped each animal's abdominal aorta distal to the left renal artery. We occluded the aortas above the iliac bifurcation for 30 minutes. In group I, the infrarenal aorta was clamped without infusing any solution. In group II, Ringer's Lactate solution was infused at + 25degrees C for 3 minutes at a rate of 5 ml/min into the isolated aortic segments immediately after cross-clamping and the last 3 minutes of ischemia. In group III, Ringer's Lactate solution at +3 degrees C was given in the same method as that of group II. In group IV, Ringer's Lactate solution at +3 degrees C plus 100 mg/kg of L-carnitine was infused using the same technique. We assessed the neurological status of the hind limbs 24 and 48 hours after operation according to Tarlov's criteria. All animals were sacrificed and spinal cords were harvested for histological analyses. The neurological status in groups III and IV was significantly superior to that of groups I and II. All the animals in group I had complete hind-limb paraplegia. Complete hind-limb paraplegia occurred in 5 rabbits in group II. Two of the 7 animals in group III had spastic paraplegia, and none at all in group IV. Histological analysis of the cross-clamped segments of the rabbits with paraplegia in group I, II and III revealed changes consistent with ischemic injury, while findings were normal for the normal animals in group III and IV. In this model, the infusion of hypothermic Ringer's Lactate contained L-carnitine provided sufficient spinal cord protection against ischemia. Clinically, this may be a useful adjunct for prevention of paraplegia during surgery of the

  14. Regulation of the Carnitine Pathway in Escherichia coli: Investigation of the cai-fix Divergent Promoter Region

    PubMed Central

    Buchet, Anne; Eichler, Knut; Mandrand-Berthelot, Marie-Andrée

    1998-01-01

    The divergent structural operons caiTABCDE and fixABCX of Escherichia coli are required for anaerobic carnitine metabolism. Transcriptional monocopy lacZ fusion studies showed that both operons are coexpressed during anaerobic growth in the presence of carnitine, respond to common environmental stimuli (like glucose and nitrate), and are modulated positively by the same general regulators, CRP and FNR, and negatively by H-NS. Overproduction of the CaiF specific regulatory protein mediating the carnitine signal restored induction in an fnr mutant, corresponding to its role as the primary target for anaerobiosis. Transcript analysis identified two divergent transcription start points initiating 289 bp apart. DNase I footprinting revealed three sites with various affinities for the binding of the cAMP-CRP complex inside this regulatory region. Site-directed mutagenesis experiments indicated that previously reported perfect CRP motif 1, centered at −41.5 of the cai transcriptional start site, plays a direct role in the sole cai activation. In contrast, mutation in CRP site 2, positioned at −69.5 of the fix promoter, caused only a threefold reduction in fix expression. Thus, the role of the third CRP site, located at −126.5 of fix, might be to reinforce the action of site 2. A critical 50-bp cis-acting sequence overlapping the fix mRNA start site was found, by deletion analysis, to be necessary for cai transcription. This region is thought to be involved in transduction of the signal mediated by the CaiF regulator. PMID:9573142

  15. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductasemore » 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.« less

  16. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  17. Evaluation of Pt Alloys as Electrocatalysts for Oxalic Acid Oxidation: A Combined Experimental and Computational Study

    DOE PAGES

    Perry, Albert; Babanova, Sofia; Matanovic, Ivana; ...

    2016-07-14

    Here in this study we combined experimental approaches and density functional theory to evaluate novel platinum-based materials as electrocatalysts for oxalic acid oxidation. Several Pt alloys, PtSn (1:1), PtSn (19:1), PtRu (1:4), PtRuSn (5:4:1), and PtRhSn (3:1:4), were synthetized using sacrificial support method and tested for oxidation of oxalic acid at pH 4. It was shown that PtSn (1:1) and PtRu (1:4) have higher mass activity relative to Pt. These two materials along with Pt and one of the least active alloys, PtSn (19:1), were further analyzed for the oxidation of oxalic acid at different pHs. The results show thatmore » all samples tested followed an identical trend of decreased onset potential with increased pH and increased catalytic activity with decreased pH. Density functional theory was further utilized to gain a fundamental knowledge about the mechanism of oxalic acid oxidation on Pt, PtSn (1:1), and PtRu (1:4). In conclusion, the results of the calculations along with the experimentally observed dependence of generated currents on the oxalic acid concentration indicate that the mechanism of oxalic acid oxidation on Pt proceeds without the participation of surface oxidizing species, while on Pt alloys it involves their participation.« less

  18. Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode.

    PubMed

    Kaur, Balwinder; Pandiyan, Thangarasu; Satpati, Biswarup; Srivastava, Rajendra

    2013-11-01

    In this paper, we report the synthesis of silver nanoparticle-decorated reduced graphene oxide composite (AgNPs/rGO) by heating the mixture of graphene oxide and silver nitrate aqueous solution in the presence of sodium hydroxide. This material was characterized by means of X-ray diffraction, UV-vis spectroscopy, and transmission electron microscopy. AgNPs/rGO based electrochemical sensor was fabricated for the simultaneous determination of ascorbic acid, dopamine, uric acid, and tryptophan. Electrochemical studies were carried out by using cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. AgNPs/rGO modified electrode exhibited excellent electrocatalytic activity, stability, sensitivity, and selectivity with well-separated oxidation peaks toward ascorbic acid, dopamine, uric acid, and tryptophan in the simultaneous determination of their quaternary mixture. The analytical performance of this material as a chemical sensor was demonstrated for the determination of ascorbic acid and dopamine in commercial pharmaceutical samples such as vitamin C tablets and dopamine injections, respectively. The applicability of this sensor was also extended in the determination of uric acid in human urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst.

    PubMed

    Flores, Rubia Gomes; Andersen, Silvia Layara Floriani; Maia, Leonardo Kenji Komay; José, Humberto Jorge; Moreira, Regina de Fatima Peralta Muniz

    2012-11-30

    Iron oxide particles recovered from acid mine drainage represent a potential low-cost feedstock to replace reagent-grade chemicals in the production of goethite, ferrihydrite or magnetite with relatively high purity. Also, the properties of iron oxides recovered from acid mine drainage mean that they can be exploited as catalysts and/or adsorbents to remove azo dyes from aqueous solutions. The main aim of this study was to recover iron oxides with relatively high purity from acid mine drainage to act as a catalyst in the oxidation of dye through a Fenton-like mechanism or as an adsorbent to remove dyes from an aqueous solution. Iron oxides (goethite) were recovered from acid mine drainage through a sequential precipitation method. Thermal treatment at temperatures higher than 300 °C produces hematite through a decrease in the BET area and an increase in the point of zero charge. In the absence of hydrogen peroxide, the solids adsorbed the textile dye Procion Red H-E7B according to the Langmuir model, and the maximum amount adsorbed decreased as the temperature of the thermal treatment increased. The decomposition kinetics of hydrogen peroxide is dependent on the H(2)O(2) concentration and iron oxides dosage, but the second-order rate constant normalized to the BET surface area is similar to that for different iron oxides tested in this and others studies. These results indicate that acid mine drainage could be used as a source material for the production of iron oxide catalysts/adsorbents, with comparable quality to those produced using analytical-grade reagents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    PubMed

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production. Copyright © 2016 Elsevier Ltd. All rights reserved.