Sample records for acid oxidation rates

  1. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Travis Shane; Mincher, Bruce Jay; Schmitt, Nicholas C

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show thatmore » the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.« less

  2. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  3. Oxidation of phenolic acids by soil iron and manganese oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, R.G.; Cheng, H.H.; Harsh, J.B.

    Phenolic acids are intermediary metabolites of many aromatic chemicals and may be involved in humus formation, allelopathy, and nutrient availability. Depending on their structures, six phenolic acids were shown to react at different rates with oxidized forms of Fe and Mn in a Palouse soil (fine-silty, mixed, mesic Pachic Ultic Haploxeroll). Increasing methoxy substitution on the aromatic ring of phenolic acids increased the reaction rate. Reaction rate was also increased for longer carboxyl-containing side chains. After 4 h reaction, little of the applied (10 mg kg/sup -1/ soil) p-hydroxybenzoic or p-coumaric acids had reacted, while 0 to 5, 70, 90,more » and 100% of the vanillic, ferulic, syringic, and sinapic acids, respectively, had reacted. After 72 h under conditions limiting microbial growth, none of the p-hydroxybenzoic, 30% of the p-coumaric, and 50% of the vanillic acids had reacted. The reaction was shown to be predominantly chemical, and not biological, since phenolic acid extractabilities were similar for Palouse soil and for Palouse soil pretreated with LiOBr to remove organic matter. When the Palouse soil was pretreated with a sodium dithionite-citrate solution to remove Fe and Mn oxides, none of the phenolic acids reacted after 1 h. The reaction of sinapic acid with Palouse soil was shown to produce Fe(II) and soluble Mn as reaction products. The reaction of phenolic acids with soil was thus shown to be an oxidation of the phenolic acids, coupled with a reduction of soil Fe and Mn oxides.« less

  4. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation.

    PubMed

    Leighton, F; Bergseth, S; Rørtveit, T; Christiansen, E N; Bremer, J

    1989-06-25

    The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.

  5. Kinetic dissolution of carbonates and Mn oxides in acidic water: Measurement of in situ field rates and reactive transport modeling

    USGS Publications Warehouse

    Brown, J.G.; Glynn, P.D.

    2003-01-01

    The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.

  6. The kinetics of oxidation of bilirubin and ascorbic acid in solution

    NASA Astrophysics Data System (ADS)

    Solomonov, A. V.; Rumyantsev, E. V.; Kochergin, B. A.; Antina, E. V.

    2012-07-01

    The results of a comparative study of the oxidation of bilirubin, ascorbic acid, and their mixture in aqueous solutions under the action of air oxygen and hydrogen peroxide are presented. The observed and true rate constants for the oxidation reactions were determined. It was shown that the oxidation of tetrapyrrole pigment occurred under these conditions bypassing the stage of biliverdin formation to monopyrrole products. Simultaneous oxidation of bilirubin and ascorbic acid was shown to be accompanied by the inhibition of ascorbic acid oxidation by bilirubin, whereas ascorbic acid itself activated the oxidation of bilirubin.

  7. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C.

    PubMed

    Lin, Zhaoyu; Liu, Fei; Shi, Peiliang; Song, Anying; Huang, Zan; Zou, Dayuan; Chen, Qin; Li, Jianxin; Gao, Xiang

    2018-02-26

    Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.

  8. Effect of sulfonylureas on hepatic fatty acid oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, T.B.

    1986-08-01

    In isolated rat livers perfused with oleic acid (0.1 mM), infusion of tolbutamide or glyburide decreased the rate of ketogenesis in a dose-dependent manner. The inhibition of fatty acid oxidation was maximal at 2.0 mM and 10 M concentrations of tolbutamide and glyburide, respectively. Neither tolbutamide nor glyburide inhibited ketogenesis in livers perfused with octanoate. The inhibition of hepatic ketogenesis by sulfonylureas was independent of perfusate oleic acid concentration. Additionally, in rat livers perfused with oleic acid in the presence of L-(-)-carnitine (10 mM), submaximal concentrations of tolbutamide and glyburide did not inhibit hepatic ketogenesis. Finally, glyburide infusion into liversmore » perfused with (U- $C)oleic acid (0.1 mM) increased the rate of UC label incorporation into hepatic triglycerides by 2.5-fold. These data suggest that both tolbutamide and glyburide inhibit long-chain fatty acid oxidation by inhibition the key regulatory enzyme, carnitine palmitoyltransferase I, most probably by competing with L-(-)-carnitine.« less

  9. Aspirin increases mitochondrial fatty acid oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse themore » mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.« less

  10. Extreme nitrogen deposition can change methane oxidation rate in moist acidic tundra soil in Arctic regions

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, J.; Kang, H.

    2017-12-01

    Recently, extreme nitrogen(N) deposition events are observed in Arctic regions where over 90% of the annual N deposition occurred in just a few days. Since Arctic ecosystems are typically N-limited, input of extremely high amount of N could substantially affect ecosystem processes. CH4 is a potent greenhouse gas that has 25 times greater global warming potential than CO2 over a 100-year time frame. Ammonium is known as an inhibitor of methane oxidation and nitrate also shows inhibitory effect on it in temperate ecosystems. However, effects of N addition on Arctic ecosystems are still elusive. We conducted a lab-scale incubation experiment with moist acidic tundra (MAT) soil from Council, Alaska to investigate the effect of extreme N deposition events on methane oxidation. Zero point five % methane was added to the head space to determine the potential methane oxidation rate of MAT soil. Three treatments (NH4NO3-AN, (NH4)2SO4-AS, KNO3-PN) were used to compare effects of ammonium, nitrate and salts. All treatments were added in 3 levels: 10μg N gd.w-1(10), 50μg N gd.w-1(50) and 100μg N gd.w-1(100). AN10 and AN50 increased methane oxidation rate 1.7, 6% respectively. However, AN100 shows -8.5% of inhibitory effect. In AS added samples, all 3 concentrations (AN10, AN50, AN100) stimulated methane oxidation rate with 4.7, 8.9, 4%, respectively. On the contrary, PN50 (-9%) and PN100 (-59.5%) exhibited a significant inhibitory effect. We also analyzed the microbial gene abundance and community structures of methane oxidizing bacteria using a DNA-based fingerprinting method (T-RFLP) Our study results suggest that NH4+ can stimulate methane oxidation in Arctic MAT soil, while NO3- can inhibit methane oxidation significantly.

  11. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.I.

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/more » greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.« less

  12. Aspirin Increases Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.; Bharathi, Sivakama S.; Zhang, Yuxun; Stolz, Donna B.; Goetzman, Eric S.

    2016-01-01

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 hr incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. PMID:27856258

  13. Enhanced wet air oxidation : synergistic rate acceleration upon effluent recirculation

    Treesearch

    Matthew J. Birchmeier; Charles G. Hill; Carl J. Houtman; Rajai H. Atalla; Ira A. Weinstock

    2000-01-01

    Wet air oxidation (WAO) reactions of cellobiose, phenol, and syringic acid were carried out under mild conditions (155°C; 0.93MPa 02; soluble catalyst, Na5[PV2Mo10O40]). Initial oxidation rates were rapid but decreased to small values as less reactive oxidation products accumulated. Recalcitrant oxidation products were consumed more rapidly, however, if additional...

  14. Preparation of Chloramphenicol/Amino Acid Combinations Exhibiting Enhanced Dissolution Rates and Reduced Drug-Induced Oxidative Stress.

    PubMed

    Sterren, Vanesa B; Aiassa, Virginia; Garnero, Claudia; Linck, Yamila Garro; Chattah, Ana K; Monti, Gustavo A; Longhi, Marcela R; Zoppi, Ariana

    2017-11-01

    Chloramphenicol is an old antibiotic agent that is re-emerging as a valuable alternative for the treatment of multidrug-resistant pathogens. However, it exhibits suboptimal biopharmaceutical properties and toxicity profiles. In this work, chloramphenicol was combined with essential amino acids (arginine, cysteine, glycine, and leucine) with the aim of improving its dissolution rate and reduce its toxicity towards leukocytes. The chloramphenicol/amino acid solid samples were prepared by freeze-drying method and characterized in the solid state by using Fourier transform infrared spectroscopy, powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance. The dissolution properties, antimicrobial activity, reactive oxygen species production, and stability of the different samples were studied. The dissolution rate of all combinations was significantly increased in comparison to that of the pure active pharmaceutical ingredient. Additionally, oxidative stress production in human leukocytes caused by chloramphenicol was decreased in the chloramphenicol/amino acid combinations, while the antimicrobial activity of the antibiotic was maintained. The CAP:Leu binary combination resulted in the most outstanding solid system makes it suitable candidate for the development of pharmaceutical formulations of this antimicrobial agent with an improved safety profile.

  15. Nitrous Acid as an Oxidant in Acidic Media

    DTIC Science & Technology

    1979-09-25

    nitroso oxidations were run in sulfuric acid. The Hammett acidity function is used as the abscissa because it conveniently represents the acidity region...oxidation. 13 Consistent with the general mechanism, equations (1)-(3), and in contrast to nitration, phenol nitrosation displays a primary kinetic...oxidized 1(III) + Alc - 104O + C-O (4) with the only route now removing HNO being NO+ + H - H + + 2N0 (5) Apparently while alcohol remains, equation (5

  16. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Y., E-mail: ono-y@kanagawa-iri.go.jp; Rachi, T.; Yokouchi, M.

    2013-06-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO{sub 2}/apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO{sub 2})/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acidmore » concentration, the TiO{sub 2}/HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO{sub 2} particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO{sub 2} powder, Degussa P25. The highest rate was obtained in the TiO{sub 2}/HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO{sub 2} photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO{sub 2}/HAp composites compared with the TiO{sub 2} powders.« less

  17. Co-oxidation of the sulfur-containing amino acids in an autoxidizing lipid system

    USGS Publications Warehouse

    Wedemeyer, G.A.; Dollar, A.M.

    1963-01-01

    Oxidation of the sulfur amino acids by autoxidizing lipids was studied in a model system consisting of an amino acid dispersed in cold-pressed, molecularly distilled menhaden oil (20–80% w/w). Under all conditions investigated, cysteine was oxidized completely to cystine. Preliminary results suggest that at 110°C the oxidation follows first-order kinetics for at least the first 8 hr. A specific reaction rate constant of 0.25 per hour was calculated. When fatty acids were added to the system, cystine was oxidized to its thiosulfinate ester. When the fatty acid-cystine ratio was 1:2, oxidation of cystine was a maximum. No oxidation of cystine occurred unless either a fatty acid, volatile organic acid, or ethanol was added. Under the conditions investigated, methionine was not oxidized to either its sulfoxide or its sulfone.

  18. Ferrous Iron Oxidation by Thiobacillus ferrooxidans: Inhibition with Benzoic Acid, Sorbic Acid, and Sodium Lauryl Sulfate

    PubMed Central

    Onysko, Steven J.; Kleinmann, Robert L. P.; Erickson, Patricia M.

    1984-01-01

    Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds. PMID:16346592

  19. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... Treatment of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... this page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  20. The Effect of Coenzyme A on the Metabolic Oxidation of LabeledFatty Acids: Rate Studies, Instrumentation, and Liver Fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolbert, B.M.; Hughes, Ann M.; Kirk, Martha R.

    The effect of pantothenic acid deficiency on the rate of C{sup 14}O{sub 2} excretion and on distribution of radioactivity in liver fractions has been studied in rats given sodium acetate-2-C{sup 14} and sodium heptanoate-7-C{sup 14} The rate of excretion of breath C{sub 14}O has been measured by use of a method in which a sensitive ionization chamber and electrometer directly and continuously record carbon-14 excretion. The labeled fatty acids are more rapidly metabolized to C{sup 14}O{sub 2} in PAD rats than in normal rats. CoA depresses the C{sup 14}O excretion 2 in both normal and PAD rats in experiments withmore » either labeled acid. There are differences in the oxidation of these two fatty acids, and the differences are consistent with postulated metabolic schemes. CoA increases radioactivity deposited in the fat of the liver, but does not appreciably change the radioactivity incorporated in the protein and nonsaponifiable lipid fractions.« less

  1. Nickel inhibits mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Ferrate(VI) oxidation of weak-acid dissociable cyanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ria A. Yngard; Virender K. Sharma; Jan Filip

    2008-04-15

    Cyanide is commonly found in electroplating, mining, coal gasification, and petroleum refining effluents, which require treatment before being discharged. Cyanide in effluents exists either as free cyanide or as a metal complex. The kinetics of the oxidation of weak-acid dissociable cyanides by an environmentally friendly oxidant, ferrate, were studied as a function of pH (9.1-10.5) and temperature (15-45{sup o}C) using a stopped-flow technique. The weak-acid dissociable cyanides were Cd(CN){sub 4}{sup 2-} and Ni(CN){sub 4}{sup 2-}, and the rate-laws for the oxidation may be -d(Fe(VI))/dt = k (Fe(VI))(M(CN){sub 4}{sup 2-}){sup n} where n = 0.5 and 1 for Cd(CN){sub 4}{sup 2-}more » and Ni(CN){sub 4}{sup 2-}, respectively. The rates decreased with increasing pH and were mostly related to a decrease in concentration of the reactive protonated Fe(VI) species, HFeO{sub 4}{sup -}. The stoichiometries with Fe(VI) were determined to be: 4HFeO{sub 4}{sup -} + M(CN){sub 4}{sup 2-} + 6H{sub 2}O {yields} 4Fe(OH){sub 3} + M{sup 2+} + 4NCO{sup -} + O{sub 2} + 4OH{sup -}. Mechanisms are proposed that agree with the observed reaction rate-laws and stoichiometries of the oxidation of weak-acid dissociable cyanides by Fe(VI). Results indicate that Fe(VI) is effective in removing cyanide in coke oven plant effluent, where organics are also present. 27 refs., 3 figs., 2 tabs.« less

  3. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  4. Preparation and characterization of dialdehyde starch by one-step acid hydrolysis and oxidation.

    PubMed

    Zuo, Yingfeng; Liu, Wenjie; Xiao, Junhua; Zhao, Xing; Zhu, Ying; Wu, Yiqiang

    2017-10-01

    Dialdehyde starch was prepared by one-step synthesis of acid hydrolysis and oxidation, using corn starch as the raw material, sodium periodate (NaIO 4 ) as the oxidant, and hydrochloric acid (HCl) as the acid solution. The prepared dialdehyde starch was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The results confirmed that oxidation occurred between the starch and NaIO 4 . The acid hydrolysis reaction reduced the molecular weight of starch and effectively improved the aldehyde group contents (92.7%). Scanning electron microscope (SEM) analysis indicated that the average particle size decreased after acid hydrolysis and oxidation reaction. X-ray diffraction (XRD) and thermal gravimetric analyzer (TGA) analysis demonstrated that the crystallinity of the obtained dialdehyde starch showed a downward trend and a decelerated thermal decomposition rate. The starch after acid hydrolysis and oxidation exhibited lower hot paste viscosity and higher reactivity. Copyright © 2017. Published by Elsevier B.V.

  5. DNAPL remediation with in situ chemical oxidation using potassium permanganate - Part I. Mineralogy of Mn oxide and its dissolution in organic acids

    NASA Astrophysics Data System (ADS)

    Li, X. David; Schwartz, Franklin W.

    2004-01-01

    Previous studies on in situ chemical oxidation of trichloroethylene (TCE) with potassium permanganate indicated that the solid reaction product, Mn oxide, could reduce the permeability of the porous medium and impact the success of dense non-aqueous phase liquid (DNAPL) removal. In order to address the issue of permeability reduction caused by precipitation, this study investigated the mineralogy of Mn oxides and the possibilities of removing the solid precipitates by dissolution. The solid reaction product from the oxidation of TCE by permanganate is semi-amorphous potassium-rich birnessite, which has a layered mineral structure with an interlayer spacing of 7.3 Å. The chemical formula is K 0.854Mn 1.786O 4·1.55H 2O. It has a relatively small specific surface area at 23.6±0.82 m 2/g. Its point of zero charge (pzc) was measured as 3.7±0.4. This birnessite is a relatively active species and could participate in various reactions with existing organic and inorganic matter. The dissolution kinetics of Mn oxide was evaluated in batch experiments using solutions of citric acid, oxalic acid, and ethylenediaminetetraacetic acid (EDTA). Initial dissolution rates were determined to be 0.126 mM/m 2/h for citric acid, 1.35 mM/m 2/h for oxalic acid, and 5.176 mM/m 2/h for EDTA. These rates compare with 0.0025 mM/m 2/h for nitric acid at pH=2. Organic acids dissolve Mn oxide quickly. Reaction rates increase with acid concentration, as tested with citric acid. The dissolution mechanism likely involves proton and ligand-promoted dissolution and reductive dissolution. Citric and oxalic acid can induce ligand-promoted dissolution, while EDTA can induce ligand-promoted and reductive dissolutions. At low pH, proton-promoted dissolution seems to occur with all the acids tested, but this process is not dominant. Reductive dissolution appears to be the most effective process in dissolving the solid, followed by ligand-promoted dissolution. These experiments indicate the significant

  6. Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease

    PubMed Central

    Sung, Chih-Chien; Hsu, Yu-Chuan; Lin, Yuh-Feng

    2013-01-01

    Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies. PMID:24058721

  7. ω-Alkynyl lipid surrogates for polyunsaturated fatty acids: free radical and enzymatic oxidations.

    PubMed

    Beavers, William N; Serwa, Remigiusz; Shimozu, Yuki; Tallman, Keri A; Vaught, Melissa; Dalvie, Esha D; Marnett, Lawrence J; Porter, Ned A

    2014-08-13

    Lipid and lipid metabolite profiling are important parameters in understanding the pathogenesis of many diseases. Alkynylated polyunsaturated fatty acids are potentially useful probes for tracking the fate of fatty acid metabolites. The nonenzymatic and enzymatic oxidations of ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were compared to that of linoleic and arachidonic acid. There was no detectable difference in the primary products of nonenzymatic oxidation, which comprised cis,trans-hydroxy fatty acids. Similar hydroxy fatty acid products were formed when ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were reacted with lipoxygenase enzymes that introduce oxygen at different positions in the carbon chains. The rates of oxidation of ω-alkynylated fatty acids were reduced compared to those of the natural fatty acids. Cyclooxygenase-1 and -2 did not oxidize alkynyl linoleic but efficiently oxidized alkynyl arachidonic acid. The products were identified as alkynyl 11-hydroxy-eicosatetraenoic acid, alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid, and alkynyl prostaglandins. This deviation from the metabolic profile of arachidonic acid may limit the utility of alkynyl arachidonic acid in the tracking of cyclooxygenase-based lipid oxidation. The formation of alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid compared to alkynyl prostaglandins suggests that the ω-alkyne group causes a conformational change in the fatty acid bound to the enzyme, which reduces the efficiency of cyclization of dioxalanyl intermediates to endoperoxide intermediates. Overall, ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid appear to be metabolically competent surrogates for tracking the fate of polyunsaturated fatty acids when looking at models involving autoxidation and oxidation by lipoxygenases.

  8. The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism.

    PubMed

    Cisternas, Pedro; Silva-Alvarez, Carmen; Martínez, Fernando; Fernandez, Emilio; Ferrada, Luciano; Oyarce, Karina; Salazar, Katterine; Bolaños, Juan P; Nualart, Francisco

    2014-05-01

    Vitamin C is an essential factor for neuronal function and survival, existing in two redox states, ascorbic acid (AA), and its oxidized form, dehydroascorbic acid (DHA). Here, we show uptake of both AA and DHA by primary cultures of rat brain cortical neurons. Moreover, we show that most intracellular AA was rapidly oxidized to DHA. Intracellular DHA induced a rapid and dramatic decrease in reduced glutathione that was immediately followed by a spontaneous recovery. This transient decrease in glutathione oxidation was preceded by an increase in the rate of glucose oxidation through the pentose phosphate pathway (PPP), and a concomitant decrease in glucose oxidation through glycolysis. DHA stimulated the activity of glucose-6-phosphate dehydrogenase, the rate-limiting enzyme of the PPP. Furthermore, we found that DHA stimulated the rate of lactate uptake by neurons in a time- and dose-dependent manner. Thus, DHA is a novel modulator of neuronal energy metabolism by facilitating the utilization of glucose through the PPP for antioxidant purposes. © 2014 International Society for Neurochemistry.

  9. Regio- and stereo-chemical oxidation of linoleic acid by human myoglobin and hydrogen peroxide: Tyr103 affects rate and product distribution

    PubMed Central

    2004-01-01

    Mb (myoglobin) plus H2O2 catalyses the oxidation of various substrates via a peroxidase-like activity. A Y103F (Tyr103→Phe) variant of human Mb has been constructed to assess the effect of exchanging an electron-rich oxidizable amino acid on the peroxidase activity of human Mb. Steady-state analyses of reaction mixtures containing Y103F Mb, purified linoleic acid and H2O2 revealed a lower total yield of lipid oxidation products than mixtures containing the wild-type protein, consistent with the reported decrease in the rate constant for reaction of Y103F Mb with H2O2 [Witting, Mauk and Lay (2002) Biochemistry 41, 11495–11503]. Irrespective of the Mb employed, lipid oxidation yielded 9(R/S)-HODE [9(R,S)-hydroxy-10E,12Z-octadecadienoic acid] in preference to 13(R/S)-HODE [13(R,S)-hydroxy-9Z,11E-octadecadienoic acid], while 9- and 13-keto-octadecadienoic acid were formed in trace amounts. However, lipid oxidation by the Y103F variant of Mb proceeded with a lower Vmax value and an increased Km value relative to the wild-type control. Consistent with the increased Km, the product distribution from reactions with Y103F Mb showed decreased selectivity compared with the wild-type protein, as judged by the decreased yield of 9(S)-relative to 9(R)-HODE. Together, these data verify that Tyr103 plays a significant role in substrate binding and orientation in the haem pocket of human Mb. Also, the midpoint potential for the Fe(III)/(II) one-electron reduction was shifted slightly, but significantly, to a higher potential, confirming the importance of Tyr103 to the hydrogen-bonding network involving residues that line the haem crevice of human Mb. PMID:15035657

  10. Oxidation of dimethylselenide by δMnO2: oxidation product and factors affecting oxidation rate

    USGS Publications Warehouse

    Wang, Bronwen; Burau, Richard G.

    1995-01-01

    Volatile dimethylselenide (DMSe) was transformed to a nonvolatile Se compound in a ??-MnO2 suspension. The nonvolatile product was a single compound identified as dimethylselenoxide based on its mass spectra pattern. After 24 h, 100% of the DMSe added to a ??-MnO2 suspension was converted to nonpurgable Se as opposed to 20%, 18%, and 4% conversion for chromate, permanganate, and the filtrate from the suspension, respectively. Manganese was found in solution after reaction. These results imply that the reaction between manganese oxide and DMSe was a heterogeneous redox reaction involving solid phase ??-MnO2 and solution phase DMSe. Oxidation of DMSe to dimethylselenoxide [OSe(CH3)2] by a ??-MnO2 suspension appears to be first order with respect to ??-MnO2, to DMSe, and to hydrogen ion with an overall rate law of d[OSe(CH3)2 ]/dt = 95 M-2 min-1 [MnO2]1[DMSe]1[H+]1 for the MnO2 concentration range of 0.89 ?? 10-3 - 2.46 ?? 10-3 M, the DMSe concentration range of 3.9 ?? 10-7 - 15.5 ?? 10-7 M Se, and a hydrogen ion concentation range of 7.4 ?? 10-6 -9.5 ?? 10-8 M. A general surface site adsorption model is consistent with this rate equation if the uncharged |OMnOH is the surface adsorption site. DMSe acts as a Lewis base, and the manganese oxide surface acts as a Lewis acid. DMSe adsorption to |OMnOH can be viewed as a Lewis acid/ base complex between the largely p orbitals of the DMSe lone pair and the unoccupied eg orbitals on manganese oxide. For such a complex, frontier molecular orbital theory predicts electron transfer to occur via an inner-sphere complex between the DMSe and the manganese oxide. ?? 1995 American Chemical Society.

  11. Reciprocal effects of 5-(tetradecyloxy)-2-furoic acid on fatty acid oxidation.

    PubMed

    Otto, D A; Chatzidakis, C; Kasziba, E; Cook, G A

    1985-10-01

    Under certain incubation conditions 5-(tetradecyloxy)-2-furoic acid (TOFA) stimulated the oxidation of palmitate by hepatocytes, as observed by others. A decrease in malonyl-CoA concentration accompanied the stimulation of oxidation. Under other conditions, however, TOFA inhibited fatty acid oxidation. The observed effects of TOFA depended on the TOFA and fatty acid concentrations, the cell concentration, the time of TOFA addition relative to the addition of fatty acid, and the nutritional state of the animal (fed or starved). The data indicate that only under limited incubation conditions may TOFA be used as an inhibitor of fatty acid synthesis without inhibition of fatty acid oxidation. When rat liver mitochondria were preincubated with TOFA, ketogenesis from palmitate was slightly inhibited (up to 20%) at TOFA concentrations that were less than that of CoA, but the inhibition became almost complete (up to 90%) when TOFA was greater than or equal to the CoA concentration. TOFA had only slight or no inhibitory effects on the oxidation of palmitoyl-CoA, palmitoyl(-)carnitine, or butyrate. Since TOFA can be converted to TOFyl-CoA, the data suggest that the inhibition of fatty acid oxidation from palmitate results from the decreased availability of CoA for extramitochondrial activation of fatty acids. These data, along with previous data of others, indicate that inhibition of fatty acid oxidation by CoA sequestration is a common mechanism of a group of carboxylic acid inhibitors. A general caution is appropriate with regard to the interpretation of results when using TOFA in studies of fatty acid oxidation.

  12. The effect of carboxylic acids on the oxidation of coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Lengyel, Attila; Tolnai, Gyula; Klencsár, Zoltán; Garg, Vijayendra Kumar; de Oliveira, Aderbal Carlos; Herojit Singh, L.; Homonnay, Zoltán; Szalay, Roland; Németh, Péter; Szabolcs, Bálint; Ristic, Mira; Music, Svetozar; Kuzmann, Ernő

    2018-05-01

    57Fe Mössbauer spectroscopy, XRD, and TEM were used to investigate the effect of mandelic- and salicylic acid coatings on the iron oxide nanoparticles. These two carboxylic acids have similar molecules size and stoichiometry, but different structure and acidity. Significant differences were observed between the Mössbauer spectra of samples coated with mandelic acid and salicylic acid. These results indicate that the occurrence of iron microenvironments in the mandelic- and salicylic acid-coated iron oxide nanoparticles is different. The results can be interpreted in terms of the influence of the acidity of carboxylic acids on the formation, core/shell structure, and oxidation of coated iron oxide nanocomposites.

  13. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    PubMed

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Fasting rapidly increases fatty acid oxidation in white adipose tissue of young broiler chickens.

    PubMed

    Torchon, Emmanuelle; Ray, Rodney; Hulver, Matthew W; McMillan, Ryan P; Voy, Brynn H

    2017-01-02

    Upregulating the fatty acid oxidation capacity of white adipose tissue in mice protects against diet-induced obesity, inflammation and insulin resistance. Part of this capacity results from induction of brown-like adipocytes within classical white depots, making it difficult to determine the oxidative contribution of the more abundant white adipocytes. Avian genomes lack a gene for uncoupling protein 1 and are devoid of brown adipose cells, making them a useful model in which to study white adipocyte metabolism in vivo. We recently reported that a brief (5 hour) period of fasting significantly upregulated many genes involved in mitochondrial and peroxisomal fatty acid oxidation pathways in white adipose tissue of young broiler chickens. The objective of this study was to determine if the effects on gene expression manifested in increased rates of fatty acid oxidation. Abdominal adipose tissue was collected from 21 day-old broiler chicks that were fasted for 3, 5 or 7 hours or fed ad libitum (controls). Fatty acid oxidation was determined by measuring and summing 14 CO 2 production and 14 C-labeled acid-soluble metabolites from the oxidation of [1- 14 C] palmitic acid. Fasting induced a progressive increase in complete fatty acid oxidation and citrate synthase activity relative to controls. These results confirm that fatty acid oxidation in white adipose tissue is dynamically controlled by nutritional status. Identifying the underlying mechanism may provide new therapeutic targets through which to increase fatty acid oxidation in situ and protect against the detrimental effects of excess free fatty acids on adipocyte insulin sensitivity.

  15. Methods for the Determination of Rates of Glucose and Fatty Acid Oxidation in the Isolated Working Rat Heart

    PubMed Central

    Bakrania, Bhavisha; Granger, Joey P.; Harmancey, Romain

    2016-01-01

    The mammalian heart is a major consumer of ATP and requires a constant supply of energy substrates for contraction. Not surprisingly, alterations of myocardial metabolism have been linked to the development of contractile dysfunction and heart failure. Therefore, unraveling the link between metabolism and contraction should shed light on some of the mechanisms governing cardiac adaptation or maladaptation in disease states. The isolated working rat heart preparation can be used to follow, simultaneously and in real time, cardiac contractile function and flux of energy providing substrates into oxidative metabolic pathways. The present protocol aims to provide a detailed description of the methods used in the preparation and utilization of buffers for the quantitative measurement of the rates of oxidation for glucose and fatty acids, the main energy providing substrates of the heart. The methods used for sample analysis and data interpretation are also discussed. In brief, the technique is based on the supply of 14C- radiolabeled glucose and a 3H- radiolabeled long-chain fatty acid to an ex vivo beating heart via normothermic crystalloid perfusion. 14CO2 and 3H2O, end byproducts of the enzymatic reactions involved in the utilization of these energy providing substrates, are then quantitatively recovered from the coronary effluent. With knowledge of the specific activity of the radiolabeled substrates used, it is then possible to individually quantitate the flux of glucose and fatty acid in the oxidation pathways. Contractile function of the isolated heart can be determined in parallel with the appropriate recording equipment and directly correlated to metabolic flux values. The technique is extremely useful to study the metabolism/contraction relationship in response to various stress conditions such as alterations in pre and after load and ischemia, a drug or a circulating factor, or following the alteration in the expression of a gene product. PMID:27768055

  16. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy

    PubMed Central

    Fillmore, N; Mori, J; Lopaschuk, G D

    2014-01-01

    Heart disease is a leading cause of death worldwide. In many forms of heart disease, including heart failure, ischaemic heart disease and diabetic cardiomyopathies, changes in cardiac mitochondrial energy metabolism contribute to contractile dysfunction and to a decrease in cardiac efficiency. Specific metabolic changes include a relative increase in cardiac fatty acid oxidation rates and an uncoupling of glycolysis from glucose oxidation. In heart failure, overall mitochondrial oxidative metabolism can be impaired while, in ischaemic heart disease, energy production is impaired due to a limitation of oxygen supply. In both of these conditions, residual mitochondrial fatty acid oxidation dominates over mitochondrial glucose oxidation. In diabetes, the ratio of cardiac fatty acid oxidation to glucose oxidation also increases, although primarily due to an increase in fatty acid oxidation and an inhibition of glucose oxidation. Recent evidence suggests that therapeutically regulating cardiac energy metabolism by reducing fatty acid oxidation and/or increasing glucose oxidation can improve cardiac function of the ischaemic heart, the failing heart and in diabetic cardiomyopathies. In this article, we review the cardiac mitochondrial energy metabolic changes that occur in these forms of heart disease, what role alterations in mitochondrial fatty acid oxidation have in contributing to cardiac dysfunction and the potential for targeting fatty acid oxidation to treat these forms of heart disease. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24147975

  17. Effect of trace metals and sulfite oxidation of adipic acid degradation in FGD systems. Final report Dec 81-May 82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, J.B.; Terry, J.C.; Schubert, S.A.

    The report gives results of the measurement of the adipic acid degradation rate in a bench-scale flue gas desulfurization (FGD) system, designed to simulate many of the important aspects of full-scale FGD systems. Results show that the adipic acid degradation rate depends on the sulfite oxidation rate, the adipic acid concentration, the presence of manganese in solution, and temperature. The degradation rate is also affected by pH, but only when manganese is present. Adipic acid degradation products identified in the liquid phase include valeric, butyric, propionic, succinic, and glutaric acids. When manganese was present, the predominant degradation products were succinicmore » and glutaric acids. Analysis of solids from the bench scale tests shows large concentrations of coprecipitated adipic acid in low oxidation sulfite solids. By contrast, low quantities of coprecipitated adipic acid were found in high oxidation gypsum solids.« less

  18. Production of oxalic acid from sugar beet molasses by formed nitrogen oxides.

    PubMed

    Gürü, M; Bilgesü, A Y; Pamuk, V

    2001-03-01

    Production of oxalic acid from sugar beet molasses was developed in a series of three reactors. Nitrogen oxides formed were used to manufacture oxalic acid in the second and third reactor. Parameters affecting the reaction were determined to be, air flow rate, temperature, the amount of V2O5 catalyst and the concentrations of molasses and H2SO4. The maximum yields in the second and third reactors were 78.9% and 74.6% of theoretical yield, respectively. Also, kinetic experiments were performed and the first-order rate constants were determined for the glucose consumption rate. Nitrogen oxides in off-gases from the final reactor were absorbed in water and concentrated sulphuric acid and reused in the following reactors giving slightly lower yields under similar conditions. In this novel way, it was possible to recover NO(x) and to prevent air pollution. Meanwhile, it was possible to reduce the unit cost of reactant for oxalic acid production. A maximum 77.5% and 74.1% of theoretical yield was obtained by using the absorption solutions with NO(x).

  19. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil.

    PubMed

    Lehtovirta-Morley, Laura E; Stoecker, Kilian; Vilcinskas, Andreas; Prosser, James I; Nicol, Graeme W

    2011-09-20

    Nitrification is a fundamental component of the global nitrogen cycle and leads to significant fertilizer loss and atmospheric and groundwater pollution. Nitrification rates in acidic soils (pH < 5.5), which comprise 30% of the world's soils, equal or exceed those of neutral soils. Paradoxically, autotrophic ammonia oxidizing bacteria and archaea, which perform the first stage in nitrification, demonstrate little or no growth in suspended liquid culture below pH 6.5, at which ammonia availability is reduced by ionization. Here we report the discovery and cultivation of a chemolithotrophic, obligately acidophilic thaumarchaeal ammonia oxidizer, "Candidatus Nitrosotalea devanaterra," from an acidic agricultural soil. Phylogenetic analysis places the organism within a previously uncultivated thaumarchaeal lineage that has been observed in acidic soils. Growth of the organism is optimal in the pH range 4 to 5 and is restricted to the pH range 4 to 5.5, unlike all previously cultivated ammonia oxidizers. Growth of this organism and associated ammonia oxidation and autotrophy also occur during nitrification in soil at pH 4.5. The discovery of Nitrosotalea devanaterra provides a previously unsuspected explanation for high rates of nitrification in acidic soils, and confirms the vital role that thaumarchaea play in terrestrial nitrogen cycling. Growth at extremely low ammonia concentration (0.18 nM) also challenges accepted views on ammonia uptake and metabolism and indicates novel mechanisms for ammonia oxidation at low pH.

  20. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil

    PubMed Central

    Lehtovirta-Morley, Laura E.; Stoecker, Kilian; Vilcinskas, Andreas; Prosser, James I.; Nicol, Graeme W.

    2011-01-01

    Nitrification is a fundamental component of the global nitrogen cycle and leads to significant fertilizer loss and atmospheric and groundwater pollution. Nitrification rates in acidic soils (pH < 5.5), which comprise 30% of the world's soils, equal or exceed those of neutral soils. Paradoxically, autotrophic ammonia oxidizing bacteria and archaea, which perform the first stage in nitrification, demonstrate little or no growth in suspended liquid culture below pH 6.5, at which ammonia availability is reduced by ionization. Here we report the discovery and cultivation of a chemolithotrophic, obligately acidophilic thaumarchaeal ammonia oxidizer, “Candidatus Nitrosotalea devanaterra,” from an acidic agricultural soil. Phylogenetic analysis places the organism within a previously uncultivated thaumarchaeal lineage that has been observed in acidic soils. Growth of the organism is optimal in the pH range 4 to 5 and is restricted to the pH range 4 to 5.5, unlike all previously cultivated ammonia oxidizers. Growth of this organism and associated ammonia oxidation and autotrophy also occur during nitrification in soil at pH 4.5. The discovery of Nitrosotalea devanaterra provides a previously unsuspected explanation for high rates of nitrification in acidic soils, and confirms the vital role that thaumarchaea play in terrestrial nitrogen cycling. Growth at extremely low ammonia concentration (0.18 nM) also challenges accepted views on ammonia uptake and metabolism and indicates novel mechanisms for ammonia oxidation at low pH. PMID:21896746

  1. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources ofmore » EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.« less

  2. Physiological effects of γ-linolenic acid and sesamin on hepatic fatty acid synthesis and oxidation.

    PubMed

    Ide, Takashi; Iwase, Haruka; Amano, Saaya; Sunahara, Saki; Tachihara, Ayuka; Yagi, Minako; Watanabe, Tsuyoshi

    2017-03-01

    Interrelated effects of γ-linolenic acid (GLA) and sesamin, a sesame lignan, on hepatic fatty acid synthesis and oxidation were examined. Rats were fed experimental diets supplemented with 0 or 2 g/kg sesamin (1:1 mixture of sesamin and episesamin) and containing 100 g/kg of palm oil (saturated fat), safflower oil rich in linoleic acid, or oil of evening primrose origin containing 43% GLA (GLA oil) for 18 days. In rats fed sesamin-free diets, GLA oil, compared with other oils, increased the activity and mRNA levels of various enzymes involved in fatty acid oxidation, except for some instances. Sesamin greatly increased these parameters, and the enhancing effects of sesamin on peroxisomal fatty acid oxidation rate and acyl-CoA oxidase, enoyl-CoA hydratase and acyl-CoA thioesterase activities were more exaggerated in rats fed GLA oil than in the animals fed other oils. The combination of sesamin and GLA oil also synergistically increased the mRNA levels of some peroxisomal fatty acid oxidation enzymes and of several enzymes involved in fatty acid metabolism located in other cell organelles. In the groups fed sesamin-free diets, GLA oil, compared with other oils, markedly reduced the activity and mRNA levels of various lipogenic enzymes. Sesamin reduced all these parameters, except for malic enzyme, in rats fed palm and safflower oils, but the effects were attenuated in the animals fed GLA oil. These changes by sesamin and fat type accompanied profound alterations in serum lipid levels. This may be ascribable to the changes in apolipoprotein-B-containing lipoproteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  4. ω-Oxidation of α-Chlorinated Fatty Acids

    PubMed Central

    Brahmbhatt, Viral V.; Albert, Carolyn J.; Anbukumar, Dhanalakshmi S.; Cunningham, Bryce A.; Neumann, William L.; Ford, David A.

    2010-01-01

    Myeloperoxidase-derived HOCl targets tissue- and lipoprotein-associated plasmalogens to generate α-chlorinated fatty aldehydes, including 2-chlorohexadecanal. Under physiological conditions, 2-chlorohexadecanal is oxidized to 2-chlorohexadecanoic acid (2-ClHA). This study demonstrates the catabolism of 2-ClHA by ω-oxidation and subsequent β-oxidation from the ω-end. Mass spectrometric analyses revealed that 2-ClHA is ω-oxidized in the presence of liver microsomes with initial ω-hydroxylation of 2-ClHA. Subsequent oxidation steps were examined in a human hepatocellular cell line (HepG2). Three different α-chlorinated dicarboxylic acids, 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-chloroadipic acid (2-ClAdA), were identified. Levels of 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-ClAdA produced by HepG2 cells were dependent on the concentration of 2-ClHA and the incubation time. Synthetic stable isotope-labeled 2-ClHA was used to demonstrate a precursor-product relationship between 2-ClHA and the α-chlorinated dicarboxylic acids. We also report the identification of endogenous 2-ClAdA in human and rat urine and elevations in stable isotope-labeled urinary 2-ClAdA in rats subjected to intraperitoneal administration of stable isotope-labeled 2-ClHA. Furthermore, urinary 2-ClAdA and plasma 2-ClHA levels are increased in LPS-treated rats. Taken together, these data show that 2-ClHA is ω-oxidized to generate α-chlorinated dicarboxylic acids, which include α-chloroadipic acid that is excreted in the urine. PMID:20956542

  5. Branched Chain Amino Acid Oxidation in Cultured Rat Skeletal Muscle Cells

    PubMed Central

    Pardridge, William M.; Casanello-Ertl, Delia; Duducgian-Vartavarian, Luiza

    1980-01-01

    Leucine metabolism in skeletal muscle is linked to protein turnover. Since clofibrate is known both to cause myopathy and to decrease muscle protein content, the present investigations were designed to examine the effects of acute clofibrate treatment on leucine oxidation. Rat skeletal muscle cells in tissue culture were used in these studies because cultivated skeletal muscle cells, like muscle in vivo, have been shown to actively utilize branched chain amino acids and to produce alanine. The conversion of [1-14C]leucine to 14CO2 or to the [1-14C]keto-acid of leucine (α-keto-isocaproate) was linear for at least 2 h of incubation; the production of 14CO2 from [1-14C]leucine was saturable with a Km = 6.3 mM and a maximum oxidation rate (Vmax) = 31 nmol/mg protein per 120 min. Clofibric acid selectively inhibited the oxidation of [1-14C]leucine (Ki = 0.85 mM) and [U-14C]isoleucine, but had no effect on the oxidation of [U-14C]glutamate, -alanine, -lactate, or -palmitate. The inhibition of [1-14C]leucine oxidation by clofibrate was also observed in the rat quarter-diaphragm preparation. Clofibrate primarily inhibited the production of 14CO2 and had relatively little effect on the production of [1-14C]keto-acid of leucine. A physiological concentration—3.0 g/100 ml—of albumin, which actively binds clofibric acid, inhibited but did not abolish the effects of a 2-mM concentration of clofibric acid on leucine oxidation. Clofibrate treatment stimulated the net consumption of pyruvate, and inhibited the net production of alanine. The drug also increased the cytosolic NADH/NAD+ ratio as reflected by an increase in the lactate/pyruvate ratio, in association with a decrease in cell aspartate levels. The changes in pyruvate metabolism and cell redox state induced by the drug were delayed compared with the nearly immediate inhibition of leucine oxidation. These studies suggest that clofibric acid, in concentrations that approximate high therapeutic levels of the drug

  6. Repair of oxidative DNA damage by amino acids.

    PubMed

    Milligan, J R; Aguilera, J A; Ly, A; Tran, N Q; Hoang, O; Ward, J F

    2003-11-01

    Guanyl radicals, the product of the removal of a single electron from guanine, are produced in DNA by the direct effect of ionizing radiation. We have produced guanyl radicals in DNA by using the single electron oxidizing agent (SCN)2-, itself derived from the indirect effect of ionizing radiation via thiocyanate scavenging of OH. We have examined the reactivity of guanyl radicals in plasmid DNA with the six most easily oxidized amino acids cysteine, cystine, histidine, methionine, tryptophan and tyrosine and also simple ester and amide derivatives of them. Cystine and histidine derivatives are unreactive. Cysteine, methionine, tyrosine and particularly tryptophan derivatives react to repair guanyl radicals in plasmid DNA with rate constants in the region of approximately 10(5), 10(5), 10(6) and 10(7) dm3 mol(-1) s(-1), respectively. The implication is that amino acid residues in DNA binding proteins such as histones might be able to repair by an electron transfer reaction the DNA damage produced by the direct effect of ionizing radiation or by other oxidative insults.

  7. The effects of trace element content on pyrite oxidation rates

    NASA Astrophysics Data System (ADS)

    Gregory, D. D.; Lyons, T.; Cliff, J. B.; Perea, D. E.; Johnson, A.; Romaniello, S. J.; Large, R. R.

    2017-12-01

    Pyrite acts as both an important source and sink for many different metals and metalloids in the environment, including many that are toxic. Oxidation of pyrite can release these elements while at the same time producing significant amounts of sulfuric acid. Such issues are common in the vicinity of abandoned mines and smelters, but, as pyrite is a common accessory mineral in many different lithologies, significant pyrite oxidation can occur whenever pyritic rocks are exposed to oxygenated water or the atmosphere. Accelerated exposure to oxygen can occur during deforestation, fracking for petroleum, and construction projects. Geochemical models for pyrite oxidation can help us develop strategies to mitigate these deleterious effects. An important component of these models is an accurate pyrite oxidation rate; however, current pyrite oxidation rates have been determined using relatively pure pyrite. Natural pyrite is rarely pure and has a wide range of trace element concentrations that may affect the oxidation rate. Furthermore, the position of trace elements within the mineral lattice can also affect the oxidation rate. For example, elements such as Ni and Co, which substitute into the pyrite lattice, are thought to stabilize the lattice and thus prevent pyrite oxidation. Alternatively, trace elements that are held within inclusions of other minerals could form a galvanic cell with the surrounding pyrite, thus enhancing pyrite oxidation rates. In this study, we present preliminary analyses from three different pyrite oxidation experiments each using natural pyrite with different trace element compositions. These results show that the pyrite with the highest trace element concentration has approximately an order of magnitude higher oxidation rate compared to the lowest trace element sample. To further elucidate the mechanisms, we employed microanalytical techniques to investigate how the trace elements are held within the pyrite. LA-ICPMS was used to determine the

  8. Long-chain fatty acid combustion rate is associated with unique metabolite profiles in skeletal muscle mitochondria.

    PubMed

    Seifert, Erin L; Fiehn, Oliver; Bezaire, Véronic; Bickel, David R; Wohlgemuth, Gert; Adams, Sean H; Harper, Mary-Ellen

    2010-03-24

    Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA beta-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition). Three palmitate concentrations (2, 9 and 19 microM; corresponding to low, intermediate and high oxidation rates) and 9 microM palmitate plus tricarboxylic acid (TCA) cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat metabolism and insulin signaling. Our results suggest that future studies

  9. Long-Chain Fatty Acid Combustion Rate Is Associated with Unique Metabolite Profiles in Skeletal Muscle Mitochondria

    PubMed Central

    Seifert, Erin L.; Fiehn, Oliver; Bezaire, Véronic; Bickel, David R.; Wohlgemuth, Gert; Adams, Sean H.; Harper, Mary-Ellen

    2010-01-01

    Background/Aim Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA β-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. Methodology/Principal Findings Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition). Three palmitate concentrations (2, 9 and 19 µM; corresponding to low, intermediate and high oxidation rates) and 9 µM palmitate plus tricarboxylic acid (TCA) cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. Conclusions/Significance This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat

  10. Oxidation of Hepatic Carnitine Palmitoyl Transferase-I (CPT-I) Impairs Fatty Acid Beta-Oxidation in Rats Fed a Methionine-Choline Deficient Diet

    PubMed Central

    Bellanti, Francesco; Priore, Paola; Rollo, Tiziana; Tamborra, Rosanna; Siculella, Luisa; Vendemiale, Gianluigi; Altomare, Emanuele; Gnoni, Gabriele V.

    2011-01-01

    There is growing evidence that mitochondrial dysfunction, and more specifically fatty acid β-oxidation impairment, is involved in the pathophysiology of non-alcoholic steatohepatitis (NASH). The goal of the present study was to achieve more understanding on the modification/s of carnitinepalmitoyltransferase-I (CPT-I), the rate-limiting enzyme of the mitochondrial fatty acid β-oxidation, during steatohepatitis. A high fat/methionine-choline deficient (MCD) diet, administered for 4 weeks, was used to induce NASH in rats. We demonstrated that CPT-Iactivity decreased, to the same extent, both in isolated liver mitochondria and in digitonin-permeabilized hepatocytes from MCD-diet fed rats. At the same time, the rate of total fatty acid oxidation to CO2 and ketone bodies, measured in isolated hepatocytes, was significantly lowered in treated animals when compared to controls. Finally, an increase in CPT-I mRNA abundance and protein content, together with a high level of CPT-I protein oxidation was observed in treated rats. A posttranslational modification of rat CPT-I during steatohepatitis has been here discussed. PMID:21909411

  11. Cellulose acetate layer effect toward aluminium corrosion rate in hydrochloric acid media

    NASA Astrophysics Data System (ADS)

    Andarany, K. S.; Sagir, A.; Ahmad, A.; Deni, S. K.; Gunawan, W.

    2017-09-01

    Corrosion occurs due to the oxidation and reduction reactions between the material and its environment. The oxidation reaction defined as reactions that produce electrons and reduction is between two elements that bind the electrons. Corrosion cannot be inevitable in life both within the industry and household. Corrosion cannot eliminate but can be control. According to the voltaic table, Aluminum is a metal that easily corroded. This study attempts to characterize the type of corrosion by using a strong acid media (HCl). Experiment using a strong acid (HCl), at a low concentration that occurs is pitting corrosion, whereas at high concentrations that occurs is corrosion erosion. One of prevention method is by using a coating method. An efforts are made to slow the rate of corrosion is by coating the metal with “cellulose acetate” (CA). cellulose acetate consisted of cellulose powder dissolved in 99% acetic acid, and then applied to the aluminum metal. Soaking experiments using hydrochloric acid, cellulose acetate is able to slow down the corrosion rate of 47 479%.

  12. Essential role for uncoupling protein-3 in mitochondrial adaptation to fasting but not in fatty acid oxidation or fatty acid anion export.

    PubMed

    Seifert, Erin L; Bézaire, Véronic; Estey, Carmen; Harper, Mary-Ellen

    2008-09-12

    Uncoupling protein-3 (UCP3) is a mitochondrial inner membrane protein expressed most abundantly in skeletal muscle and to a lesser extent in heart and brown adipose tissue. Evidence supports a role for UCP3 in fatty acid oxidation (FAO); however, the underlying mechanism has not been explored. In 2001 we proposed a role for UCP3 in fatty acid export, leading to higher FAO rates (Himms-Hagen, J., and Harper, M. E. (2001) Exp. Biol. Med. (Maywood) 226, 78-84). Specifically, this widely held hypothesis states that during elevated FAO rates, UCP3 exports fatty acid anions, thereby maintaining mitochondrial co-enzyme A availability; reactivation of exported fatty acid anions would ultimately enable increased FAO. Here we tested mechanistic aspects of this hypothesis as well as its functional implications, namely increased FAO rates. Using complementary mechanistic approaches in mitochondria from wild-type and Ucp3(-/-) mice, we find that UCP3 is not required for FAO regardless of substrate type or supply rate covering a 20-fold range. Fatty acid anion export and reoxidation during elevated FAO, although present in skeletal muscle mitochondria, are independent of UCP3 abundance. Interestingly, UCP3 was found to be necessary for the fasting-induced enhancement of FAO rate and capacity, possibly via mitigated mitochondrial oxidative stress. Thus, although our observations indicate that UCP3 can impact FAO rates, the mechanistic basis is not via an integral function for UCP3 in the FAO machinery. Overall our data indicate a function for UCP3 in mitochondrial adaptation to perturbed cellular energy balance and integrate previous observations that have linked UCP3 to reduced oxidative stress and FAO.

  13. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation.

    PubMed

    Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Acid monolayer functionalized iron oxide nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  15. Mechanistic Insights into the Catalytic Oxidation of Carboxylic Acids on Au/TiO 2: Partial Oxidation of Propionic and Butyric Acid to Gold Ketenylidene through Unsaturated Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEntee, Monica; Tang, Wenjie; Neurock, Matthew

    Here, the partial oxidation of model C 2–C 4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO 2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO 2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au 2C=C=O, along the way to their full oxidation to form CO 2.more » Infrared measurements of Au 2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less

  16. Mechanistic Insights into the Catalytic Oxidation of Carboxylic Acids on Au/TiO 2: Partial Oxidation of Propionic and Butyric Acid to Gold Ketenylidene through Unsaturated Acids

    DOE PAGES

    McEntee, Monica; Tang, Wenjie; Neurock, Matthew; ...

    2014-12-12

    Here, the partial oxidation of model C 2–C 4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO 2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO 2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au 2C=C=O, along the way to their full oxidation to form CO 2.more » Infrared measurements of Au 2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less

  17. Aerosol Fragmentation Driven by Coupling of Acid-Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals.

    PubMed

    Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A

    2017-08-10

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular

  18. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes.

    PubMed

    Sul, Y T; Johansson, C B; Jeong, Y; Albrektsson, T

    2001-06-01

    Titanium implants have a thin oxide surface layer. The properties of this oxide layer may explain the good biocompatibility of titanium implants. Anodic oxidation results in a thickening of the oxide film, with possible improved biocompatability of anodized implants. The aim of the present study was twofold: (1) firstly, to characterize the growth behaviour of galvanostatically prepared anodic oxide films on commercially pure (c.p.) titanium and (2) secondly, to establish a better understanding of the electroche0mical growth behaviour of anodic oxide on commercially pure titanium (ASTM grade 1) after changes of the electrochemical parameters in acetic acid, phosphoric acid, calcium hydroxide, and sodium hydroxide under galvanostatic anodizing mode. The oxide thickness was measured by Ar sputter etching in Auger Electron spectroscopy (AES) and the colours were estimated by an L*a*b* system (lightness, hue and saturation) using a spectrophotometer. In the first part of our study, it was demonstrated that the interference colours were useful to identify the thickness of titanium oxide. It was also found that the anodic forming voltages with slope (dV/dt) in acid electrolytes were higher than in alkaline electrolytes. Each of the used electrolytes demonstrates an intrinsically specific growth constant (nm/V) in the range of 1.4--2.78 nm/V. In the second part of our study we found, as a general trend, that an increase of electrolyte concentration and electrolyte temperature respectively decreases the anodic forming voltage, the anodic forming rate (nm/s) and the current efficiency (nm.cm(2)/C), while an increase of the current density and the surface area ratio of the anode to cathode increase the anodic forming voltage, the anodic forming rate and the current efficiency. The effects of electrolyte concentration, electrolyte temperature, and agitation speed were explained on the basis of the model of the electrical double layer.

  19. Activation of PPARα by Oral Clofibrate Increases Renal Fatty Acid Oxidation in Developing Pigs.

    PubMed

    He, Yonghui; Khan, Imad; Bai, Xiumei; Odle, Jack; Xi, Lin

    2017-12-08

    The objective of this study was to evaluate the effects of peroxisome proliferator-activated receptor α (PPARα) activation by clofibrate on both mitochondrial and peroxisomal fatty acid oxidation in the developing kidney. Ten newborn pigs from 5 litters were randomly assigned to two groups and fed either 5 mL of a control vehicle (2% Tween 80) or a vehicle containing clofibrate (75 mg/kg body weight, treatment). The pigs received oral gavage daily for three days. In vitro fatty acid oxidation was then measured in kidneys with and without mitochondria inhibitors (antimycin A and rotenone) using [1- 14 C]-labeled oleic acid (C18:1) and erucic acid (C22:1) as substrates. Clofibrate significantly stimulated C18:1 and C22:1 oxidation in mitochondria ( p < 0.001) but not in peroxisomes. In addition, the oxidation rate of C18:1 was greater in mitochondria than peroxisomes, while the oxidation of C22:1 was higher in peroxisomes than mitochondria ( p < 0.001). Consistent with the increase in fatty acid oxidation, the mRNA abundance and enzyme activity of carnitine palmitoyltransferase I (CPT I) in mitochondria were increased. Although mRNA of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase (mHMGCS) was increased, the β-hydroxybutyrate concentration measured in kidneys did not increase in pigs treated with clofibrate. These findings indicate that PPARα activation stimulates renal fatty acid oxidation but not ketogenesis.

  20. Monitoring bisphosphonate surface functionalization and acid stability of hierarchically porous titanium zirconium oxides.

    PubMed

    Ide, Andreas; Drisko, Glenna L; Scales, Nicholas; Luca, Vittorio; Schiesser, Carl H; Caruso, Rachel A

    2011-11-01

    To take advantage of the full potential of functionalized transition metal oxides, a well-understood nonsilane based grafting technique is required. The functionalization of mixed titanium zirconium oxides was studied in detail using a bisphosphonic acid, featuring two phosphonic acid groups with high surface affinity. The bisphosphonic acid employed was coupled to a UV active benzamide moiety in order to track the progress of the surface functionalization in situ. Using different material compositions, altering the pH environment, and looking at various annealing conditions, key features of the functionalization process were identified that consequently will allow for intelligent material design. Loading with bisphosphonic acid was highest on supports calcined at 650 °C compared to lower calcination temperatures: A maximum capacity of 0.13 mmol g(-1) was obtained and the adsorption process could be modeled with a pseudo-second-order rate relationship. Heating at 650 °C resulted in a phase transition of the mixed binary oxide to a ternary oxide, titanium zirconium oxide in the srilankite phase. This phase transition was crucial in order to achieve high loading of the bisphosphonic acid and enhanced chemical stability in highly acidic solutions. Due to the inert nature of phosphorus-oxygen-metal bonds, materials functionalized by bisphosphonic acids showed increased chemical stability compared to their nonfunctionalized counterparts in harshly acidic solutions. Leaching studies showed that the acid stability of the functionalized material was improved with a partially crystalline srilankite phase. The materials were characterized using nitrogen sorption, X-ray powder diffraction, and UV-vis spectroscopy; X-ray photoelectron spectroscopy was used to study surface coverage with the bisphosphonic acid molecules.

  1. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    PubMed

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (<5.0), but hydrolyzed to oxaluric acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  2. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Tahir, Muhammad Nawaz

    2014-11-01

    Isoniazid is the primary constituent of “triple therapy” used to effectively treat tuberculosis. In tuberculosis and other diseases, tissue inflammation and free radical burst from macrophages results in oxidative stress. These free radicals cause pulmonary inflammation if not countered by anti-oxidants. Therefore, in the present study cocrystals of isoniazid with four anti-oxidant hydroxy benzoic acids have been reported. Gallic acid, 2,3-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, and 3-hydroxybenzoic acid resulted in the formation of cocrystals when reacted with isoniazid. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the cocrystals of isoniazid with Gallic acid, 2,3-dihydroxybenzoic acid and 3-hydroxybenzoic acid. While cocrystal of 3,5-dihydroxybenzoic acid formed the pyridine-hydroxy group synthon. Other synthons of different graph sets are formed between hydrazide group of isoniazid and coformers involving Nsbnd H⋯O and Osbnd H⋯N bonds. All the cocrystals were in 1:1 stoichiometric ratio.

  3. Formation rates, stability and reactivity of sulfuric acid - amine clusters predicted by computational chemistry

    NASA Astrophysics Data System (ADS)

    Kurtén, Theo; Ortega, Ismael; Kupiainen, Oona; Olenius, Tinja; Loukonen, Ville; Reiman, Heidi; McGrath, Matthew; Vehkamäki, Hanna

    2013-04-01

    Despite the importance of atmospheric particle formation for both climate and air quality, both experiments and non-empirical models using e.g. sulfuric acid, ammonia and water as condensing vapors have so far been unable to reproduce atmospheric observations using realistic trace gas concentrations. Recent experimental and theoretical evidence has shown that this mystery is likely resolved by amines. Combining first-principles evaporation rates for sulfuric acid - dimethylamine clusters with cluster kinetic modeling, we show that even sub-ppt concentrations of amines, together with atmospherically realistic concentrations of sulfuric acid, result in formation rates close to those observed in the atmosphere. Our simulated cluster formation rates are also close to, though somewhat larger than, those measured at the CLOUD experiment in CERN for both sulfuric acid - ammonia and sulfuric acid - dimethylamine systems. A sensitivity analysis indicates that the remaining discrepancy for the sulfuric acid - amine particle formation rates is likely caused by steric hindrances to cluster formation (due to alkyl groups of the amine molecules) rather than by significant errors in the evaporation rates. First-principles molecular dynamic and reaction kinetic modeling shed further light on the microscopic physics and chemistry of sulfuric acid - amine clusters. For example, while the number and type of hydrogen bonds in the clusters typically reach their equilibrium values on a picosecond timescale, and the overall bonding patterns predicted by traditional "static" quantum chemical calculations seem to be stable, the individual atoms participating in the hydrogen bonds continuously change at atmospherically realistic temperatures. From a chemical reactivity perspective, we have also discovered a surprising phenomenon: clustering with sulfuric acid molecules slightly increases the activation energy required for the abstraction of alkyl hydrogens from amine molecules. This implies

  4. Effect of Time Lenght Fermentation to Katsuobushi Oxidation Rate As Fish Flavor Based

    NASA Astrophysics Data System (ADS)

    Amalia, U.; Rianingsih, L.; Wijayanti, I.

    2018-02-01

    Katsuobushi or dried smoked skipjack had a distinctive flavor and widely used in traditional Japanese cuisine. This study aimed to evaluate the oxidation rate of Katsuobushi with different lenght fermentation. The processing treatment of the product were the differences of fish boiling time (30 min and 60 min) and the lenght of fermentation: 1 week, 2 weeks and 3 weeks. The glutamic acid content, the oxidation rate (thiobarbituric acid and peroxide value) and Total Plate Count of katsuobushi were analyzed statistically using analysis of varians. Significant differences were found among 3 weeks of fermentation compare to 1 weeks fermentation (P < 0.05). The conclusion of this study was katsuobushi with 60 min boiling and 3 weeks fermentation was potential to be developed become basic ingredients for the fish flavor.

  5. Topical zinc oxide vs. salicylic acid-lactic acid combination in the treatment of warts.

    PubMed

    Khattar, Joe A; Musharrafieh, Umayya M; Tamim, Hala; Hamadeh, Ghassan N

    2007-04-01

    Warts are a common dermatologic problem. Treatment is painful, prolonged, and can cause scarring. To evaluate topical zinc oxide for the treatment of warts. This was a randomized, double-blind controlled trial of 44 patients. Twenty-two patients were given topical zinc oxide 20% ointment, and the other 22 received salicylic acid 15% + lactic acid 15% ointment twice daily. All patients were followed up for 3 months or until cure, whichever occurred first. All patients were observed for side-effects. Sixteen patients in the zinc group and 19 in the salicylic acid-lactic acid group completed the study. In the zinc oxide-treated group, 50% of the patients showed complete cure and 18.7% failed to respond, compared with 42% and 26%, respectively, in the salicylic acid-lactic acid-treated group. No patients developed serious side-effects. Topical zinc oxide is an efficacious, painless, and safe therapeutic option for wart treatment.

  6. Resistin Regulates Fatty Acid Β Oxidation by Suppressing Expression of Peroxisome Proliferator Activator Receptor Gamma-Coactivator 1α (PGC-1α).

    PubMed

    He, Fang; Jin, Jie-Qiong; Qin, Qing-Qing; Zheng, Yong-Qin; Li, Ting-Ting; Zhang, Yun; He, Jun-Dong

    2018-01-01

    Abnormal fatty acid β oxidation has been associated with obesity and type 2 diabetes. Resistin is an adipokine that has been considered as a potential factor in obesity-mediated insulin resistance and type 2 diabetes. However, the effect of resistin on fatty acid β oxidation needs to be elucidated. We detected the effects of resistin on the expression of fatty acid oxidation (FAO) transcriptional regulatory genes, the fatty acid transport gene, and mitochondrial β-oxidation genes using real-time PCR. The rate of FAO was measured using 14C-palmitate. Immunofluorescence assay and western blot analysis were used to explore the underlying molecular mechanisms. Resistin leads to a reduction in expression of the FAO transcriptional regulatory genes ERRα and NOR1, the fatty acid transport gene CD36, and the mitochondrial β-oxidation genes CPT1, MCAD, and ACO. Importantly, treatment with resistin led to a reduction in the rate of cellular fatty acid oxidation. In addition, treatment with resistin reduced phosphorylation of acetyl CoA carboxylase (ACC) (inhibitory). Mechanistically, resistin inhibited the activation of CREB, resulting in suppression of PGC-1α. Importantly, overexpressing PGC-1α can rescue the inhibitory effects of resistin on fatty acid β oxidation. Activating the transcriptional activity of CREB using small molecular chemicals is a potential pharmacological strategy for preventing the inhibitory effects of resistin on fatty acid β oxidation. © 2018 The Author(s). Published by S. Karger AG, Basel.

  7. Prolonged infusion of amino acids increases leucine oxidation in fetal sheep

    PubMed Central

    Maliszewski, Anne M.; Gadhia, Monika M.; O'Meara, Meghan C.; Thorn, Stephanie R.; Rozance, Paul J.

    2012-01-01

    Maternal high-protein supplements designed to increase birth weight have not been successful. We recently showed that maternal amino acid infusion into pregnant sheep resulted in competitive inhibition of amino acid transport across the placenta and did not increase fetal protein accretion rates. To bypass placental transport, singleton fetal sheep were intravenously infused with an amino acid mixture (AA, n = 8) or saline [control (Con), n = 10] for ∼12 days during late gestation. Fetal leucine oxidation rate increased in the AA group (3.1 ± 0.5 vs. 1.4 ± 0.6 μmol·min−1·kg−1, P < 0.05). Fetal protein accretion (2.6 ± 0.5 and 2.2 ± 0.6 μmol·min−1·kg−1 in AA and Con, respectively), synthesis (6.2 ± 0.8 and 7.0 ± 0.9 μmol·min−1·kg−1 in AA and Con, respectively), and degradation (3.6 ± 0.6 and 4.5 ± 1.0 μmol·min−1·kg−1 in AA and Con, respectively) rates were similar between groups. Net fetal glucose uptake decreased in the AA group (2.8 ± 0.4 vs. 3.9 ± 0.1 mg·kg−1·min−1, P < 0.05). The glucose-O2 quotient also decreased over time in the AA group (P < 0.05). Fetal insulin and IGF-I concentrations did not change. Fetal glucagon increased in the AA group (119 ± 24 vs. 59 ± 9 pg/ml, P < 0.05), and norepinephrine (NE) also tended to increase in the AA group (785 ± 181 vs. 419 ± 76 pg/ml, P = 0.06). Net fetal glucose uptake rates were inversely proportional to fetal glucagon (r2 = 0.38, P < 0.05), cortisol (r2 = 0.31, P < 0.05), and NE (r2 = 0.59, P < 0.05) concentrations. Expressions of components in the mammalian target of rapamycin signaling pathway in fetal skeletal muscle were similar between groups. In summary, prolonged infusion of amino acids directly into normally growing fetal sheep increased leucine oxidation. Amino acid-stimulated increases in fetal glucagon, cortisol, and NE may contribute to a shift in substrate oxidation by the fetus from glucose to amino acids. PMID:22454287

  8. Lack of phosphatidylethanolamine N-methyltransferase in mice does not promote fatty acid oxidation in skeletal muscle.

    PubMed

    Tasseva, Guergana; van der Veen, Jelske N; Lingrell, Susanne; Jacobs, René L; Vance, Dennis E; Vance, Jean E

    2016-02-01

    Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected from high-fat diet-induced obesity and insulin resistance, and exhibit increased whole-body energy expenditure and oxygen consumption. Since skeletal muscle is a major site of fatty acid oxidation and energy utilization, we determined if rates of fatty acid oxidation/oxygen consumption in muscle are higher in Pemt(-/-) mice than in Pemt(+/+) mice. Although PEMT is abundant in the liver, PEMT protein and activity were undetectable in four types of skeletal muscle. Moreover, amounts of PC and PE in the skeletal muscle were not altered by PEMT deficiency. Thus, we concluded that any influence of PEMT deficiency on skeletal muscle would be an indirect consequence of lack of PEMT in liver. Neither the in vivo rate of fatty acid uptake by muscle nor the rate of fatty acid oxidation in muscle explants and cultured myocytes depended upon Pemt genotype. Nor did PEMT deficiency increase oxygen consumption or respiratory function in skeletal muscle mitochondria. Thus, the increased whole body oxygen consumption in Pemt(-/-) mice, and resistance of these mice to diet-induced weight gain, are not primarily due to increased capacity of skeletal muscle for utilization of fatty acids as an energy source. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  9. Oxidation kinetics of crystal violet by potassium permanganate in acidic medium

    NASA Astrophysics Data System (ADS)

    Khan, Sameera Razi; Ashfaq, Maria; Mubashir; Masood, Summyia

    2016-05-01

    The oxidation kinetics of crystal violet (a triphenylmethane dye) by potassium permanganate was focused in an acidic medium by the spectrophotometric method at 584 nm. The oxidation reaction of crystal violet by potassium permanganate is carried out in an acidic medium at different temperatures ranging within 298-318 K. The kinetic study was carried out to investigate the effect of the concentration, ionic strength and temperature. The reaction followed first order kinetics with respect to potassium permanganate and crystal violet and the overall rate of the reaction was found to be second order. Thermodynamic activation parameters like the activation energy ( E a), enthalpy change (Δ H*), free energy change (Δ G*), and entropy change (Δ S*) have also been evaluated.

  10. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins: absolute rate constants, product analysis, and computational modeling.

    PubMed

    Pattison, David I; Hawkins, Clare L; Davies, Michael J

    2003-04-01

    Oxidation of low-density lipoproteins (LDL) is believed to contribute to the increased uptake of LDL by macrophages, which is an early event in atherosclerosis. Hypochlorous acid (HOCl) has been implicated as one of the major oxidants involved in these processes. In a previous study, the rates of reaction of HOCl with the reactive sites in proteins were investigated (Pattison, D. I., and Davies, M. J. (2001) Chem. Res. Toxicol. 14, 1453-1464). The work presented here expands on those studies to determine absolute second-order rate constants for the reactions of HOCl with various lipid components and antioxidants in aqueous solution (pH 7.4). The reactions of HOCl with phosphoryl-serine and phosphoryl-ethanolamine are rapid (k approximately 10(5) M(-)(1) s(-)(1)) and of comparable reactivity to many of the protein sites. The major products formed in these reactions are chloramines, which decay to give both nitrogen- and carbon-centered radicals. Subsequent reactions of these species may induce oxidation of the LDL lipid component. In contrast, phosphoryl-choline reacted much more slowly (k < 10(-)(2) M(-)(1) s(-)(1)). Reaction of HOCl with 3-pentenoic acid was used as a model of lipid double bonds and yielded k = 9 M(-)(1) s(-)(1). The reactions of the lipid-soluble antioxidants, alpha-tocopherol and ubiquinol-10, with HOCl were investigated with model compounds. For the reactions of HOCl with both Trolox and ubiquinol-0, k = 1.3 x 10(3) M(-)(1) s(-)(1); thus, these lipid soluble antioxidants are relatively ineffective as direct scavengers for HOCl as compared to water soluble antioxidants (e.g., ascorbate, k ca. 10(6) M(-)(1) s(-)(1)). The reaction of HOCl with hydroquinone (a simple model for ubiquinol-10) was also investigated both in aqueous solution (k = 45 M(-)(1) s(-)(1)) and in a less polar environment (k approximately 0.5 M(-)(1) s(-)(1) in THF). A computational model was developed using these kinetic parameters to predict which LDL targets are oxidized

  11. Influence of oxalic acid on the dissolution kinetics of manganese oxide

    NASA Astrophysics Data System (ADS)

    Godunov, E. B.; Artamonova, I. V.; Gorichev, I. G.; Lainer, Yu. A.

    2012-11-01

    The kinetics and electrochemical processes of the dissolution of manganese oxides with various oxidation states in sulfuric acid solutions containing oxalate ion additives is studied under variable conditions (concentration, pH, temperature). The parameters favoring a higher degree of the dissolution of manganese oxides in acidic media are determined. The optimal conditions are found for the dissolution of manganese oxides in acidic media in the presence of oxalate ions. The mechanism proposed for the dissolution of manganese oxides in sulfuric acid solutions containing oxalic acid is based on the results of kinetic and electrochemical studies. The steps of the dissolution mechanism are discussed.

  12. Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction

    PubMed Central

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S.; Collins, Samuel L.; Horton, Maureen R.

    2017-01-01

    Fatty acid oxidation in macrophages has been suggested to play a causative role in high-fat diet-induced metabolic dysfunction, particularly in the etiology of adipose-driven insulin resistance. To understand the contribution of macrophage fatty acid oxidation directly to metabolic dysfunction in high-fat diet-induced obesity, we generated mice with a myeloid-specific knockout of carnitine palmitoyltransferase II (CPT2 Mϕ-KO), an obligate step in mitochondrial long-chain fatty acid oxidation. While fatty acid oxidation was clearly induced upon IL-4 stimulation, fatty acid oxidation-deficient CPT2 Mϕ-KO bone marrow-derived macrophages displayed canonical markers of M2 polarization following IL-4 stimulation in vitro. In addition, loss of macrophage fatty acid oxidation in vivo did not alter the progression of high-fat diet-induced obesity, inflammation, macrophage polarization, oxidative stress, or glucose intolerance. These data suggest that although IL-4-stimulated alternatively activated macrophages upregulate fatty acid oxidation, fatty acid oxidation is dispensable for macrophage polarization and high-fat diet-induced metabolic dysfunction. Macrophage fatty acid oxidation likely plays a correlative, rather than causative, role in systemic metabolic dysfunction. PMID:28223293

  13. Identification of a novel malonyl-CoA IC(50) for CPT-I: implications for predicting in vivo fatty acid oxidation rates.

    PubMed

    Smith, Brennan K; Perry, Christopher G R; Koves, Timothy R; Wright, David C; Smith, Jeffrey C; Neufer, P Darrell; Muoio, Deborah M; Holloway, Graham P

    2012-11-15

    Published values regarding the sensitivity (IC(50)) of CPT-I (carnitine palmitoyltransferase I) to M-CoA (malonyl-CoA) inhibition in isolated mitochondria are inconsistent with predicted in vivo rates of fatty acid oxidation. Therefore we have re-examined M-CoA inhibition kinetics under various P-CoA (palmitoyl-CoA) concentrations in both isolated mitochondria and PMFs (permeabilized muscle fibres). PMFs have an 18-fold higher IC(50) (0.61 compared with 0.034 μM) in the presence of 25 μM P-CoA and a 13-fold higher IC(50) (6.3 compared with 0.49 μM) in the presence of 150 μM P-CoA compared with isolated mitochondria. M-CoA inhibition kinetics determined in PMFs predicts that CPT-I activity is inhibited by 33% in resting muscle compared with >95% in isolated mitochondria. Additionally, the ability of M-CoA to inhibit CPT-I appears to be dependent on P-CoA concentration, as the relative inhibitory capacity of M-CoA is decreased with increasing P-CoA concentrations. Altogether, the use of PMFs appears to provide an M-CoA IC(50) that better reflects the predicted in vivo rates of fatty acid oxidation. These findings also demonstrate that the ratio of [P-CoA]/[M-CoA] is critical for regulating CPT-I activity and may partially rectify the in vivo disconnect between M-CoA content and CPT-I flux within the context of exercise and Type 2 diabetes.

  14. Liquid-Phase Heat-Release Rates of the Systems Hydrazine-Nitric Acid and Unsymmetrical Dimethylhydrazine-Nitric Acid

    NASA Technical Reports Server (NTRS)

    Somogyi, Dezso; Feiler, Charles E.

    1960-01-01

    The initial rates of heat release produced by the reactions of hydrazine and unsymmetrical dimethylhydrazine with nitric acid were determined in a bomb calorimeter under conditions of forced mixing. Fuel-oxidant weight ratio and injection velocity were varied. The rate of heat release apparently depended on the interfacial area between the propellants. Above a narrow range of injection velocities representing a critical amount of interfacial area, the rates reached a maximum and were almost constant with injection velocity. The maximum rate for hydrazine was about 70 percent greater than that for unsymmetrical dimethylhydrazine. The total heat released did not vary with mixture ratio over the range studied.

  15. CPT1{alpha} over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion

    2005-12-16

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1{alpha} (CPT1{alpha}). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1{alpha} transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1{alpha} over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1{alpha} over-expressing cells in a concentration-dependent manner. Both, PA and CPT1{alpha} over-expression increased cell death. Interestingly,more » PA reduced total cell number only in cells over-expressing CPT1{alpha}, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo.« less

  16. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance.

    PubMed

    Koves, Timothy R; Ussher, John R; Noland, Robert C; Slentz, Dorothy; Mosedale, Merrie; Ilkayeva, Olga; Bain, James; Stevens, Robert; Dyck, Jason R B; Newgard, Christopher B; Lopaschuk, Gary D; Muoio, Deborah M

    2008-01-01

    Previous studies have suggested that insulin resistance develops secondary to diminished fat oxidation and resultant accumulation of cytosolic lipid molecules that impair insulin signaling. Contrary to this model, the present study used targeted metabolomics to find that obesity-related insulin resistance in skeletal muscle is characterized by excessive beta-oxidation, impaired switching to carbohydrate substrate during the fasted-to-fed transition, and coincident depletion of organic acid intermediates of the tricarboxylic acid cycle. In cultured myotubes, lipid-induced insulin resistance was prevented by manipulations that restrict fatty acid uptake into mitochondria. These results were recapitulated in mice lacking malonyl-CoA decarboxylase (MCD), an enzyme that promotes mitochondrial beta-oxidation by relieving malonyl-CoA-mediated inhibition of carnitine palmitoyltransferase 1. Thus, mcd(-/-) mice exhibit reduced rates of fat catabolism and resist diet-induced glucose intolerance despite high intramuscular levels of long-chain acyl-CoAs. These findings reveal a strong connection between skeletal muscle insulin resistance and lipid-induced mitochondrial stress.

  17. Monitoring the dynamics of syntrophic β-oxidizing bacteria during anaerobic degradation of oleic acid by quantitative PCR.

    PubMed

    Ziels, Ryan M; Beck, David A C; Martí, Magalí; Gough, Heidi L; Stensel, H David; Svensson, Bo H

    2015-04-01

    The ecophysiology of long-chain fatty acid-degrading syntrophic β-oxidizing bacteria has been poorly understood due to a lack of quantitative abundance data. Here, TaqMan quantitative PCR (qPCR) assays targeting the 16S rRNA gene of the known mesophilic syntrophic β-oxidizing bacterial genera Syntrophomonas and Syntrophus were developed and validated. Microbial community dynamics were followed using qPCR and Illumina-based high-throughput amplicon sequencing in triplicate methanogenic bioreactors subjected to five consecutive batch feedings of oleic acid. With repeated oleic acid feeding, the initial specific methane production rate significantly increased along with the relative abundances of Syntrophomonas and methanogenic archaea in the bioreactor communities. The novel qPCR assays showed that Syntrophomonas increased from 7 to 31% of the bacterial community 16S rRNA gene concentration, whereas that of Syntrophus decreased from 0.02 to less than 0.005%. High-throughput amplicon sequencing also revealed that Syntrophomonas became the dominant genus within the bioreactor microbiomes. These results suggest that increased specific mineralization rates of oleic acid were attributed to quantitative shifts within the microbial communities toward higher abundances of syntrophic β-oxidizing bacteria and methanogenic archaea. The novel qPCR assays targeting syntrophic β-oxidizing bacteria may thus serve as monitoring tools to indicate the fatty acid β-oxidization potential of anaerobic digester communities. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs.

    PubMed

    Wieczorek, Adam S; Drake, Harold L; Kolb, Steffen

    2011-07-01

    Aerobic methane (CH(4) ) oxidation reduces the emission of CH(4) from mires and is regulated by various environmental factors. Organic acids and alcohols are intermediates of the anaerobic degradation of organic matter or are released by plant roots. Methanotrophs isolated from mires utilize these compounds preferentially to CH(4) . Thus, the effect of organic acids and ethanol on CH(4) oxidation by methanotrophs of a mire was evaluated. Slurries of mire soil oxidized supplemental CH(4) down to subatmospheric concentrations. The dominant pmoA and mmoX genotypes were affiliated with sequences from Methylocystis species capable of utilization of acetate and atmospheric CH(4) . Soil slurries supplemented with acetate, propionate or ethanol had reduced CH(4) oxidation rates compared with unsupplemented or glucose-supplemented controls. Expression of Methylocystis-affiliated pmoA decreased when CH(4) consumption decreased in response to acetate and was enhanced after acetate was consumed, at which time the consumption of CH(4) reached control levels. The inhibition of methanotroph activity might have been due to either toxicity of organic compounds or their preferred utilization. CH(4) oxidation was reduced at 5 and 0.5 mM of supplemental organic compounds. Acetate concentrations may exceed 3 mM in the investigated mire. Thus, the oxidation of CH(4) might decrease in microzones where organic acids occur. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Role of tartaric and malic acids in wine oxidation.

    PubMed

    Danilewicz, John C

    2014-06-04

    Tartaric acid determines the reduction potential of the Fe(III)/Fe(II) redox couple. Therefore, it is proposed that it determines the ability of Fe to catalyze wine oxidation. The importance of tartaric acid was demonstrated by comparing the aerial oxidation of 4-methylcatechol (4-MeC) in model wine made up with tartaric and acetic acids at pH 3.6. Acetic acid, as a weaker Fe(III) ligand, should raise the reduction potential of the Fe couple. 4-MeC was oxidized in both systems, but the mechanisms were found to differ. Fe(II) readily reduced oxygen in tartrate model wine, but Fe(III) alone failed to oxidize the catechol, requiring sulfite assistance. In acetate model wine the reverse was found to operate. These observations should have broad application to model systems designed to study the oxidative process in foods and other beverages. Consideration should be given to the reduction potential of metal couples by the inclusion of appropriate ligands.

  20. Amino Acid Degradations Produced by Lipid Oxidation Products.

    PubMed

    Hidalgo, Francisco J; Zamora, Rosario

    2016-06-10

    Differently to amino acid degradations produced by carbohydrate-derived reactive carbonyls, amino acid degradations produced by lipid oxidation products are lesser known in spite of being lipid oxidation a major source of reactive carbonyls in food. This article analyzes the conversion of amino acids into Strecker aldehydes, α-keto acids, and amines produced by lipid-derived free radicals and carbonyl compounds, as well as the role of lipid oxidation products on the reactions suffered by these compounds: the formation of Strecker aldehydes and other aldehydes from α-keto acids; the formation of Strecker aldehydes and olefins from amines; the formation of shorter aldehydes from Strecker aldehydes; and the addition reactions suffered by the olefins produced from the amines. The relationships among all these reactions and the effect of reaction conditions on them are discussed. This knowledge should contribute to better control food processing in order to favor the formation of desirable beneficial compounds and to inhibit the production of compounds with deleterious properties.

  1. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D. Kirk; Taylor, Howard E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  2. The Aerobic Oxidation of Bromide to Dibromine Catalyzed by Homogeneous Oxidation Catalysts and Initiated by Nitrate in Acetic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partenheimer, Walt; Fulton, John L.; Sorensen, Christina M.

    A small amount of nitrate, ~0.002 molal, initiates the Co/Mn catalyzed aerobic oxidation of bromide compounds (HBr,NaBr,LiBr) to dibromine in acetic acid at room temperature. At temperatures 40oC or less , the reaction is autocatalytic. Co(II) and Mn(II) themselves and mixed with ionic bromide are known homogeneous oxidation catalysts. The reaction was discovered serendipitously when a Co/Br and Co/Mn/Br catalyst solution was prepared for the aerobic oxidation of methyaromatic compounds and the Co acetate contained a small amount of impurity i.e. nitrate. The reaction was characterized by IR, UV-VIS, MALDI and EXAFS spectroscopies and the coordination chemistry is described. Themore » reaction is inhibited by water and its rate changed by pH. The change in these variables, as well as others, are identical to those observed during homogeneous, aerobic oxidation of akylaromatics. A mechanism is proposed. Accidental addition of a small amount of nitrate compound into a Co/Mn/Br/acetic acid mixture in a large, commercial feedtank is potentially dangerous.« less

  3. Reference electrode for strong oxidizing acid solutions

    DOEpatents

    Rigdon, Lester P.; Harrar, Jackson E.; Bullock, Sr., Jack C.; McGuire, Raymond R.

    1990-01-01

    A reference electrode for the measurement of the oxidation-reduction potentials of solutions is especially suitable for oxidizing solutions such as highly concentrated and fuming nitric acids, the solutions of nitrogen oxides, N.sub.2 O.sub.4 and N.sub.2 O.sub.5, in nitric acids. The reference electrode is fabricated of entirely inert materials, has a half cell of Pt/Ce(IV)/Ce(III)/70 wt. % HNO.sub.3, and includes a double-junction design with an intermediate solution of 70 wt. % HNO.sub.3. The liquid junctions are made from Corning No. 7930 glass for low resistance and negligible solution leakage.

  4. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst.

    PubMed

    Flores, Rubia Gomes; Andersen, Silvia Layara Floriani; Maia, Leonardo Kenji Komay; José, Humberto Jorge; Moreira, Regina de Fatima Peralta Muniz

    2012-11-30

    Iron oxide particles recovered from acid mine drainage represent a potential low-cost feedstock to replace reagent-grade chemicals in the production of goethite, ferrihydrite or magnetite with relatively high purity. Also, the properties of iron oxides recovered from acid mine drainage mean that they can be exploited as catalysts and/or adsorbents to remove azo dyes from aqueous solutions. The main aim of this study was to recover iron oxides with relatively high purity from acid mine drainage to act as a catalyst in the oxidation of dye through a Fenton-like mechanism or as an adsorbent to remove dyes from an aqueous solution. Iron oxides (goethite) were recovered from acid mine drainage through a sequential precipitation method. Thermal treatment at temperatures higher than 300 °C produces hematite through a decrease in the BET area and an increase in the point of zero charge. In the absence of hydrogen peroxide, the solids adsorbed the textile dye Procion Red H-E7B according to the Langmuir model, and the maximum amount adsorbed decreased as the temperature of the thermal treatment increased. The decomposition kinetics of hydrogen peroxide is dependent on the H(2)O(2) concentration and iron oxides dosage, but the second-order rate constant normalized to the BET surface area is similar to that for different iron oxides tested in this and others studies. These results indicate that acid mine drainage could be used as a source material for the production of iron oxide catalysts/adsorbents, with comparable quality to those produced using analytical-grade reagents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Neuronal decanoic acid oxidation is markedly lower than that of octanoic acid: A mechanistic insight into the medium-chain triglyceride ketogenic diet.

    PubMed

    Khabbush, Aziza; Orford, Michael; Tsai, Yi-Chen; Rutherford, Tricia; O'Donnell, Maura; Eaton, Simon; Heales, Simon J R

    2017-08-01

    The medium-chain triglyceride (MCT) ketogenic diet contains both octanoic (C8) and decanoic (C10) acids. The diet is an effective treatment for pharmacoresistant epilepsy. Although the exact mechanism for its efficacy is not known, it is emerging that C10, but not C8, interacts with targets that can explain antiseizure effects, for example, peroxisome proliferator-activated receptor-γ (eliciting mitochondrial biogenesis and increased antioxidant status) and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. For such effects to occur, significant concentrations of C10 are likely to be required in the brain. To investigate how this might occur, we measured the β-oxidation rate of 13 C-labeled C8 and C10 in neuronal SH-SY5Y cells using isotope-ratio mass spectrometry. The effects of carnitine palmitoyltransferase I (CPT1) inhibition, with the CPT1 inhibitor etomoxir, on C8 and C10 β-oxidation were also investigated. Both fatty acids were catabolized, as judged by 13 CO 2 release. However, C10 was β-oxidized at a significantly lower rate, 20% that of C8. This difference was explained by a clear dependence of C10 on CPT1 activity, which is low in neurons, whereas 66% of C8 β-oxidation was independent of CPT1. In addition, C10 β-oxidation was decreased further in the presence of C8. It is concluded that, because CPT1 is poorly expressed in the brain, C10 is relatively spared from β-oxidation and can accumulate. This is further facilitated by the presence of C8 in the MCT ketogenic diet, which has a sparing effect upon C10 β-oxidation. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  6. Hysteresis-free high rate reactive sputtering of niobium oxide, tantalum oxide, and aluminum oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Särhammar, Erik, E-mail: erik.sarhammar@angstrom.uu.se; Berg, Sören; Nyberg, Tomas

    2014-07-01

    This work reports on experimental studies of reactive sputtering from targets consisting of a metal and its oxide. The composition of the targets varied from pure metal to pure oxide of Al, Ta, and Nb. This combines features from both the metal target and oxide target in reactive sputtering. If a certain relation between the metal and oxide parts is chosen, it may be possible to obtain a high deposition rate, due to the metal part, and a hysteresis-free process, due to the oxide part. The aim of this work is to quantify the achievable boost in oxide deposition ratemore » from a hysteresis-free process by using a target consisting of segments of a metal and its oxide. Such an increase has been previously demonstrated for Ti using a homogeneous substoichiometric target. The achievable gain in deposition rate depends on transformation mechanisms from oxide to suboxides due to preferential sputtering of oxygen. Such mechanisms are different for different materials and the achievable gain is therefore material dependent. For the investigated materials, the authors have demonstrated oxide deposition rates that are 1.5–10 times higher than what is possible from metal targets in compound mode. However, although the principle is demonstrated for oxides of Al, Ta, and Nb, a similar behavior is expected for most oxides.« less

  7. Progress of reduction of graphene oxide by ascorbic acid

    NASA Astrophysics Data System (ADS)

    De Silva, K. Kanishka H.; Huang, Hsin-Hui; Yoshimura, Masamichi

    2018-07-01

    Graphene oxide (GO) and reduced graphene oxide (RGO) are in greater demand in many research fields. As a result, the synthesis of these materials on a large scale in a costeffective manner is more concerned for numerous applications. In the present work, GO was synthesized by oxidizing natural graphite and reduced by ascorbic acid (AA), which is a green reductant. The reduced products obtained at different time periods were in detail characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results showed that the oxidation of graphite has given highly oxidized GO with a 9.30 Å interlayer space and about 33% of oxygen atomic percentage. Until 50 min of the reduction, both GO and RGO coexist. The reduction rate is fast within the first 30 min. In addition, the suitability of natural graphite over synthetic graphite for the synthesis of GO is shown. The findings of this work pave the way to select GO and RGO for applications of interest in a cheap, green and efficient manner.

  8. Adsorption of Salicylhydroxamic Acid on Selected Rare Earth Oxides and Carbonates

    NASA Astrophysics Data System (ADS)

    Galt, Greer Elaine

    Adsorption behavior of the anionic collector salicylhydroxamic acid (SHA) on a selected group of rare earth oxides (REOs) and carbonates (RECs) was studied via experimental methods and modelling software. Synthetic oxide and carbonate powders of the rare earth elements cerium (Ce), praseodymium (Pr), europium (Eu), and terbium (Tb) were tested for this research. Studies were conducted at different pH levels to analyze the kinetics of collector adsorption onto the oxide and carbonate surfaces in attempts to optimize recovery parameters for commercial flotation processes using SHA. In addition, thermodynamic software StabCal was implemented to compare theoretical adsorption behavior of collectors SHA and octylhydroxamic acid (OHA) on these four rare earth oxides and carbonates. Theoretical points of zero charge were also estimated via StabCal and compared to experimental values to establish validity. Results for oxides indicate that both the amount and rate of SHA adsorption are highest for lighter REOs, decreasing as ionic diameter increases, a chelation phenomenon common with hydroxamates. However, results for the carbonates exhibit the opposite trend: strongest SHA adsorption was seen in the heavy RECs. This pattern correlates to the increasing stability of the carbonate such that ionic diameter of the REs becomes more amenable to chelation due to differences in bonding chemistry. Overall, adsorption kinetics appear dependent on pH, coordination chemistry, and cation size.

  9. Oxidation of linoleic and palmitic acid in pre-hibernating and hibernating common noctule bats revealed by 13C breath testing.

    PubMed

    Rosner, Elisabeth; Voigt, Christian C

    2018-02-19

    Mammals fuel hibernation by oxidizing saturated and unsaturated fatty acids from triacylglycerols in adipocytes, yet the relative importance of these two categories as an oxidative fuel may change during hibernation. We studied the selective use of fatty acids as an oxidative fuel in noctule bats ( Nyctalus noctula ). Pre-hibernating noctule bats that were fed 13 C-enriched linoleic acid (LA) showed 12 times higher tracer oxidation rates compared with conspecifics fed 13 C-enriched palmitic acid (PA). After this experiment, we supplemented the diet of bats with the same fatty acids on five subsequent days to enrich their fat depots with the respective tracer. We then compared the excess 13 C enrichment (excess atom percentage, APE) in breath of bats for torpor and arousal events during early and late hibernation. We observed higher APE values in breath of bats fed 13 C-enriched LA than in bats fed 13 C-enriched PA for both states (torpor and arousal), and also for both periods. Thus, hibernating bats selectively oxidized endogenous LA instead of PA, probably because of faster transportation rates of polyunsaturated fatty acids compared with saturated fatty acids. We did not observe changes in APE values in the breath of torpid animals between early and late hibernation. Skin temperature of torpid animals increased by 0.7°C between early and late hibernation in bats fed PA, whereas it decreased by -0.8°C in bats fed LA, highlighting that endogenous LA may fulfil two functions when available in excess: serving as an oxidative fuel and supporting cell membrane functionality. © 2018. Published by The Company of Biologists Ltd.

  10. Glycerol-3-phosphate Acyltransferase Isoform-4 (GPAT4) Limits Oxidation of Exogenous Fatty Acids in Brown Adipocytes*

    PubMed Central

    Cooper, Daniel E.; Grevengoed, Trisha J.; Klett, Eric L.; Coleman, Rosalind A.

    2015-01-01

    Glycerol-3-phosphate acyltransferase-4 (GPAT4) null pups grew poorly during the suckling period and, as adults, were protected from high fat diet-induced obesity. To determine why Gpat4−/− mice failed to gain weight during these two periods of high fat feeding, we examined energy metabolism. Compared with controls, the metabolic rate of Gpat4−/− mice fed a 45% fat diet was 12% higher. Core body temperature was 1 ºC higher after high fat feeding. Food intake, fat absorption, and activity were similar in both genotypes. Impaired weight gain in Gpat4−/− mice did not result from increased heat loss, because both cold tolerance and response to a β3-adrenergic agonist were similar in both genotypes. Because GPAT4 comprises 65% of the total GPAT activity in brown adipose tissue (BAT), we characterized BAT function. A 45% fat diet increased the Gpat4−/− BAT expression of peroxisome proliferator-activated receptor α (PPAR) target genes, Cpt1α, Pgc1α, and Ucp1, and BAT mitochondria oxidized oleate and pyruvate at higher rates than controls, suggesting that fatty acid signaling and flux through the TCA cycle were enhanced. To assess the role of GPAT4 directly, neonatal BAT preadipocytes were differentiated to adipocytes. Compared with controls, Gpat4−/− brown adipocytes incorporated 33% less fatty acid into triacylglycerol and 46% more into the pathway of β-oxidation. The increased oxidation rate was due solely to an increase in the oxidation of exogenous fatty acids. These data suggest that in the absence of cold exposure, GPAT4 limits excessive fatty acid oxidation and the detrimental induction of a hypermetabolic state. PMID:25918168

  11. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, Yongkoo; Javandel, Iraj

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varyingmore » H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.« less

  12. Citric acid-modified Fenton's reaction for the oxidation of chlorinated ethylenes in soil solution systems.

    PubMed

    Seol, Yongkoo; Javandel, Iraj

    2008-06-01

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H2O2 concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H2O2 relative to iron catalysts (Fe2+/H2O2<1/330) would result in lowering the efficiency of contaminant removal by iron chelation in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  13. Tabulated Neutron Emission Rates for Plutonium Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shores, Erik Frederick

    This work tabulates neutron emission rates for 80 plutonium oxide samples as reported in the literature. Plutonium-­238 and plutonium-­239 oxides are included and such emission rates are useful for scaling tallies from Monte Carlo simulations and estimating dose rates for health physics applications.

  14. Liquid-phase oxidation of cyclohexanone over cerium oxide catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, H.C.; Weng, H.S.

    Catalytic oxidation of cyclohexanone in the liquid phase with glacial acetic acid as the solvent over cerium oxide was studied between 5 and 15 atm and 98 and 118 {degrees} C in a batch reactor. The products were adipic acid, glutaric acid, succinic acid, caprolactone, carbon oxides, etc. The reaction undergoes a short induction period prior to a rapid reaction regime. In both regimes, the reaction is independent of oxygen pressure when the system pressure is above 10 atm. The induction period is inversely proportional to both of the catalyst weight and cyclohexanone concentration.During the rapid reaction regime, the reactionmore » rate was found to be proportional to the 0.5 power of the catalyst weight and to the 1.5 power of the cyclohexanone concentration. Reaction mechanisms and rate expressions are proposed. The carbon oxides produced in this study were much lower than those previously reported. The cerium oxide catalyst is stable during the reaction.« less

  15. [Enhanced electro-chemical oxidation of Acid Red 3R solution with phosphotungstic acid supported on gamma-Al2O3].

    PubMed

    Yue, Lin; Wang, Kai-Hong; Guo, Jian-Bo; Yang, Jing-Liang; Liu, Bao-You; Lian, Jing; Wang, Tao

    2013-03-01

    Supported phosphotungstic acid catalysts on gamma-Al2O3 (HPW/gamma-Al2O3) were prepared by solution impregnation and characterized by FTIR, XRD, TG-DTA and SEM. The heteropolyanion shows a Keggin structure. Electro-chemical oxidation of Acid Red 3R was investigated in the presence of HPW supported on gamma-Al2O3 as packing materials in the reactor. The results show that HPW/gamma-Al2O3 has a good catalytic activity for decolorization of Acid Red 3R. When HPW loading was 4.6%, pH value of Acid Red 3R was 3, the voltage was 25.0 V, air-flow was 0.04 m3 x h(-1), and electrode span was 3.0 cm, the decolorization efficiency of Acid Red 3R can reach 97.6%. The removal rate of color had still about 80% in this electro-chemical oxidation system, after HPW/gamma-Al2O3 was used for 10 times, but active component loss existed. The interim product was analyzed by means of Vis-UV absorption spectrum. It shows that the conjugated structure of dye is destroyed primarily.

  16. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel.

    PubMed

    Fayyad, Eman M; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali

    2016-10-20

    An anticorrosion coating film based on the formation of nanocomposite coating is reported in this study. The composite consisted of chitosan (green matrix), oleic acid, and graphene oxide (nano filler). The nanocomposite coating was arranged on the surface of carbon steel, and the corrosion resistance was monitored using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). Compared to the pure chitosan (CS) coating, the corrosion resistance of oleic acid-modified chitosan/graphene oxide film (CS/GO-OA) is increased by 100 folds. Since the well-dispersed smart grafted nanolayers delayed the penetration rate of corrosive species and thus maintained long term anticorrosive stability which is correlated with hydrophobicity and permeability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Improvement of Pro-Oxidant Capacity of Protocatechuic Acid by Esterification

    PubMed Central

    Zeraik, Maria Luiza; Petrônio, Maicon S.; Coelho, Dyovani; Regasini, Luis Octavio; Silva, Dulce H. S.; da Fonseca, Luiz Marcos; Machado, Sergio A. S.; Bolzani, Vanderlan S.; Ximenes, Valdecir F.

    2014-01-01

    Pro-oxidant effects of phenolic compounds are usually correlated to the one-electron redox potential of the phenoxyl radicals. Here we demonstrated that, besides their oxidizability, hydrophobicity can also be a decisive factor. We found that esterification of protocatechuic acid (P0) provoked a profound influence in its pro-oxidant capacity. The esters bearing alkyl chains containing two (P2), four (P4) and seven (P7) carbons, but not the acid precursor (P0), were able to exacerbate the oxidation of trolox, α-tocopherol and rifampicin. This effect was also dependent on the catechol moiety, since neither gallic acid nor butyl gallate showed any pro-oxidant effects. A comparison was also made with apocynin, which is well-characterized regarding its pro-oxidant properties. P7 was more efficient than apocynin regarding co-oxidation of trolox. However, P7 was not able to co-oxidize glutathione and NADH, which are targets of the apocynin radical. A correlation was found between pro-oxidant capacity and the stability of the radicals, as suggested by the intensity of the peak current in the differential pulse voltammetry experiments. In conclusion, taking into account that hydroquinone and related moieties are frequently found in biomolecules and quinone-based chemotherapeutics, our demonstration that esters of protocatechuic acid are specific and potent co-catalysts in their oxidations may be very relevant as a pathway to exacerbate redox cycling reactions, which are usually involved in their biological and pharmacological mechanisms of action. PMID:25340774

  18. The oxidation of amino acids by ferrate(V). A pre-mix pulse radiolysis study.

    PubMed

    Rush, J D; Bielski, B H

    1995-06-01

    The forms of ferrate(V) which are derived from the one-electron reduction of potassium ferrate (K2FeO4) by ethanol radicals react with representative amino acids (glycine, methionine, phenylalanine and serine) at rates that are greater than 10(5)M-1s-1 near pH 10. The predominant interaction in the alkaline pH range is between the protonated ferrate(V) species, HFeO4(2-), and the amino acid anion. Fe(V) + amino acid-->Fe(III) + NH3 + alpha-keto acid The rate-determining process is the two electron reduction of ferrate(V) to iron(III) with oxidation and subsequent deamination of the amino acid. The reaction appears to involve an entry of the amino acid into the inner coordination sphere of ferrate(V). In all cases, ferrate(V) exhibits preferred attack on the amino group in contrast to the OH radical which attacks the thioether site of methionine and the phenyl ring of phenylalanine.

  19. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress.

    PubMed

    Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P

    2016-03-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA. © 2015 International Society for Neurochemistry.

  20. Electrochemical destruction of trans-cinnamic acid by advanced oxidation processes: kinetics, mineralization, and degradation route.

    PubMed

    Flores, Nelly; Thiam, Abdoulaye; Rodríguez, Rosa María; Centellas, Francesc; Cabot, Pere Lluís; Garrido, José Antonio; Brillas, Enric; Sirés, Ignasi

    2017-03-01

    Acidic solutions of trans-cinnamic acid at pH 3.0 have been comparatively treated by anodic oxidation with electrogenerated H 2 O 2 (AO-H 2 O 2 ), electro-Fenton (EF), and photoelectro-Fenton (PEF). The electrolytic experiments were carried out with a boron-doped diamond (BDD)/air-diffusion cell. The substrate was very slowly abated by AO-H 2 O 2 because of its low reaction rate with oxidizing • OH produced from water discharge at the BDD anode. In contrast, its removal was very rapid and at similar rate by EF and PEF due to the additional oxidation by • OH in the bulk, formed from Fenton's reaction between cathodically generated H 2 O 2 and added Fe 2+ . The AO-H 2 O 2 treatment yielded the lowest mineralization. The EF process led to persistent final products like Fe(III) complexes, which were quickly photolyzed upon UVA irradiation in PEF to give an almost total mineralization with 98 % total organic carbon removal. The effect of current density and substrate concentration on all the mineralization processes was examined. Gas chromatography-mass spectrometry (GC-MS) analysis of electrolyzed solutions allowed identifying five primary aromatics and one heteroaromatic molecule, whereas final carboxylic acids like fumaric, acetic, and oxalic were quantified by ion exclusion high-performance liquid chromatography (HPLC). From all the products detected, a degradation route for trans-cinnamic acid is proposed.

  1. Dietary oxidized linoleic acid lowers triglycerides via APOA5/APOClll dependent mechanisms

    PubMed Central

    Garelnabi, Mahdi; Selvarajan, Krithika; Litvinov, Dmitry; Santanam, Nalini; Parthasarathy, Sampath

    2008-01-01

    Previously we have shown that intestinal cells efficiently take up oxidized fatty acids (OxFAs) and that atherosclerosis is increased when animals are fed a high cholesterol diet in the presence of oxidized linoleic acid. Interestingly, we found that in the absence of dietary cholesterol, the oxidized fatty acid fed low-density lipoprotein (LDL) receptor negative mice appeared to have lower plasma triglyceride (TG) levels as compared to animals fed oleic acid. In the present study, we fed C57BL6 mice a normal mice diet supplemented with oleic acid or oxidized linoleic acid (at 18 mg/animal/day) for 2 weeks. After the mice were sacrificed, we measured the plasma lipids and collected livers for the isolation of RNA. The results showed that while there were no significant changes in the levels of total cholesterol and high-density lipoprotein cholesterol (HDLc), there was a significant decrease (41.14%) in the levels of plasma TG in the mice that were fed oxidized fatty acids. The decreases in plasma TG levels were accompanied by significant increases (P < 0.001) in the expressions of APOA5 and acetyl-CoA oxidase genes as well as a significant (P < 0.04) decrease in APOClll gene expression. Oxidized lipids have been suggested to be ligands for peroxisome proliferator-activated receptor (PPARα). However, there were no increases in the mRNA or protein levels of PPARα in the oxidized linoleic acid fed animals. These results suggest that oxidized fatty acids may act through an APOA5/APOClll mechanism that contributes to lowering of TG levels other than PPARα induction. PMID:18243209

  2. Structure Dependence of Long-Chain [18F]Fluorothia Fatty Acids as Myocardial Fatty Acid Oxidation Probes

    PubMed Central

    Pandey, Mukesh K.; Belanger, Anthony P.; Wang, Shuyan; DeGrado, Timothy R.

    2012-01-01

    In-vivo imaging of regional fatty acid oxidation (FAO) rates would have considerable potential for evaluation of mammalian diseases. We have synthe sized and evaluated 18F-labeled thia fatty acid analogues as metabolically trapped FAO probes to understand the effect of chain length, degree of unsaturation and placement of the thia-substituent on myocardial uptake and retention. 18-[18F]fluoro-4-thia-(9Z)-octadec-9-enoic acid (3) showed excellent heart:background radioactivity concentration ratios along with highest retention in heart and liver. Pretreatment of rats with the CPT-1 inhibitor, POCA, caused >80% reduction in myocardial uptake of 16-[18F]fluoro-4-thia-hexadecanoic acid (2), and 3 indicating high specificity for FAO. In contrast, 18-[18F]fluoro-4-thia-octadecanoic acid (4), showed dramatically reduced myocardial uptake and blunted response to POCA. 18-[18F]fluoro-6-thia-octadecanoic acid (5), showed moderate myocardial uptake and no sensitivity of myocardial uptake to POCA. The results demonstrate relationships between structures of 18F-labelled thia fatty acid and uptake, and their utility as FAO probes in various tissues. PMID:23153307

  3. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a humanmore » adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The

  4. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    PubMed

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  5. Fatty Acid Oxidation Is Required for Myxococcus xanthus Development.

    PubMed

    Bullock, Hannah A; Shen, Huifeng; Boynton, Tye O; Shimkets, Lawrence J

    2018-05-15

    Myxococcus xanthus cells produce lipid bodies containing triacylglycerides during fruiting body development. Fatty acid β-oxidation is the most energy-efficient pathway for lipid body catabolism. In this study, we used mutants in fadJ (MXAN_5371 and MXAN_6987) and fadI (MXAN_5372) homologs to examine whether β-oxidation serves an essential developmental function. These mutants contained more lipid bodies than the wild-type strain DK1622 and 2-fold more flavin adenine dinucleotide (FAD), consistent with the reduced consumption of fatty acids by β-oxidation. The β-oxidation pathway mutants exhibited differences in fruiting body morphogenesis and produced spores with thinner coats and a greater susceptibility to thermal stress and UV radiation. The MXAN_5372/5371 operon is upregulated in sporulating cells, and its expression could not be detected in csgA , fruA , or mrpC mutants. Lipid bodies were found to persist in mature spores of DK1622 and wild strain DK851, suggesting that the roles of lipid bodies and β-oxidation may extend to spore germination. IMPORTANCE Lipid bodies act as a reserve of triacylglycerides for use when other sources of carbon and energy become scarce. β-Oxidation is essential for the efficient metabolism of fatty acids associated with triacylglycerides. Indeed, the disruption of genes in this pathway has been associated with severe disorders in animals and plants. Myxococcus xanthus , a model organism for the study of development, is ideal for investigating the complex effects of altered lipid metabolism on cell physiology. Here, we show that β-oxidation is used to consume fatty acids associated with lipid bodies and that the disruption of the β-oxidation pathway is detrimental to multicellular morphogenesis and spore formation. Copyright © 2018 American Society for Microbiology.

  6. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity.

    PubMed

    Ohno, T

    2001-01-01

    Previous studies have suggested that phenolic acids from legume green manures may contribute to weed control through allelopathy. The objectives of this study were to investigate the oxidation reactions of phenolic acids in soil and to determine the subsequent effects of oxidation upon phytotoxicity. Soils were reacted for 18 h with 0.25 mmol L(-1) benzoic and cinnamic acid derivative solutions and Mn release from the suspension was used as a marker for phenolic acid oxidation. The extent of oxidation in soil suspensions was in the order of 3,4dihydroxy- > 4-hydroxy-3-methoxy- > 4-hydroxy-approximately 2-hydroxy-substituted benzoic and cinnamic acids. The same ranking was observed for cyclic voltammetry peak currents of the cinnamic acid derivatives. This suggests that the oxidation of phenolic acids is controlled by the electron transfer step from the sorbed phenolic acid to the metal oxide. A bioassay experiment showed that the 4-hydroxy-, 4-hydroxy-3-methoxy-, and 3,4-dihydroxy-substituted cinnamic acids were bioactive at 0.25 mmol L(-1) concentration. Reaction with soil for 18 h resulted in the elimination of bioactivity of these three cinnamic acids at the 5% significance level. The oxidative reactivity of phenolic acids may limit the potential of allelopathy as a component of an integrated weed management system. However, the initial phytotoxicity after soil incorporation may coincide with the early, critical stage of weed emergence and establishment, so that allelopathic phenolic acids may still play a role in weed management despite their reactivity in soil systems.

  7. Fatty Acid β-Oxidation Is Essential in Leptin-Mediated Oocytes Maturation of Yellow Catfish Pelteobagrus fulvidraco.

    PubMed

    Song, Yu-Feng; Tan, Xiao-Ying; Pan, Ya-Xiong; Zhang, Li-Han; Chen, Qi-Liang

    2018-05-14

    Although several studies have been conducted to study leptin function, information is very scarce on the molecular mechanism of leptin in fatty acid β-oxidation and oocytes maturation in fish. In this study, we investigated the potential role of fatty acid β-oxidation in leptin-mediated oocytes maturation in Pelteobagrus fulvidraco . Exp. 1 investigated the transcriptomic profiles of ovary and the differential expression of genes involved in β-oxidation and oocytes maturation following rt-hLEP injection; rt-hLEP injection was associated with significant changes in the expression of genes, including twenty-five up-regulated genes ( CPT1 , Acsl , Acadl , Acadm , Hadhb , Echsl , Hsd17b4 , Acca , PPARα , CYP8B1 , ACOX1 , ACBP , MAPK , RINGO , Cdc2 , MEK1 , IGF-1R , APC/C, Cdk2 , GnRHR, STAG3 , SMC1 , FSHβ and C-Myc ) and ten down-regulated gene ( PPARγ , FATCD36 , UBC , PDK1 , Acads , Raf , Fizzy , C3H-4 , Raf and PKC ), involved in fatty acid β-oxidation and oocytes maturation. In Exp. 2, rt-hLEP and specific inhibitors AG490 (JAK-STAT inhibitor) were used to explore whether leptin induced oocytes maturation, and found that leptin incubation increased the diameters of oocytes and percentage of germinal vesicle breakdown (GVBD)-MII oocytes, up-regulated mRNA levels of genes involved in oocytes maturation and that leptin-induced oocyte maturation was related to activation of JAK-STAT pathway. In Exp. 3, primary oocytes of P. fulvidraco were treated with (R)-(+)-etomoxir (an inhibitor of β-oxidation) or l-carnitine (an enhancer of β-oxidation) for 48 h under rt-hLEP incubation. Exp. 3 indicated that the inhibition of fatty acid β-oxidation resulted in the down-regulation of gene expression involved in oocytes maturation, and repressed the leptin-induced up-regulation of these gene expression. Activation of fatty acid β-oxidation improved the maturation rate and mean diameter of oocytes, and up-regulated gene expression involved in oocytes maturation. Leptin is

  8. Essential fatty acid-rich diets protect against striatal oxidative damage induced by quinolinic acid in rats.

    PubMed

    Morales-Martínez, Adriana; Sánchez-Mendoza, Alicia; Martínez-Lazcano, Juan Carlos; Pineda-Farías, Jorge Baruch; Montes, Sergio; El-Hafidi, Mohammed; Martínez-Gopar, Pablo Eliasib; Tristán-López, Luis; Pérez-Neri, Iván; Zamorano-Carrillo, Absalom; Castro, Nelly; Ríos, Camilo; Pérez-Severiano, Francisca

    2017-09-01

    Essential fatty acids have an important effect on oxidative stress-related diseases. The Huntington's disease (HD) is a hereditary neurologic disorder in which oxidative stress caused by free radicals is an important damage mechanism. The HD experimental model induced by quinolinic acid (QUIN) has been widely used to evaluate therapeutic effects of antioxidant compounds. The aim of this study was to test whether the fatty acid content in olive- or fish-oil-rich diet prevents against QUIN-related oxidative damage in rats. Rats were fed during 20 days with an olive- or a fish-oil-rich diet (15% w/w). Posterior to diet period, rats were striatally microinjected with QUIN (240 nmol/µl) or saline solution. Then, we evaluated the neurological damage, oxidative status, and gamma isoform of the peroxisome proliferator-activated receptor (PPARγ) expression. Results showed that fatty acid-rich diet, mainly by fish oil, reduced circling behavior, prevented the fall in GABA levels, increased PPARγ expression, and prevented oxidative damage in striatal tissue. In addition none of the enriched diets exerted changes neither on triglycerides or cholesterol blood levels, nor or hepatic function. This study suggests that olive- and fish-oil-rich diets exert neuroprotective effects.

  9. Micelle-assisted signaling of peracetic acid by the oxidation of pyreneboronic acid via monomer-excimer switching.

    PubMed

    Choi, Jiyoung; Lee, Hyo Jin; Cho, Min Jeoung; Chang, Suk-Kyu

    2015-08-15

    A simple fluorescent probe for the industrial oxidant peracetic acid (PAA) was investigated. PAA-assisted oxidative conversion of pyrene-1-boronic acid into 1-hydroxypyrene was used as the signaling tool. Pyreneboronic acid was found to display selective signaling behavior, being more responsive to PAA than to other commonly used practical oxidants such as H2O2 and HOCl. The changes in pyrene monomer fluorescence to excimer were used in the quantitative analysis of PAA. When using the surfactant hexadecyltrimethylammonium bromide as a micellar additive, the signaling of PAA was markedly enhanced. Selective fluorescence signaling of PAA by pyrene-1-boronic acid with a detection limit of 1.5×10(-6)M in aqueous environment was successfully achieved. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A self-contained 48-well fatty acid oxidation assay.

    PubMed

    Wang, Xiaojun; Wang, Rose; Nemcek, Thomas A; Cao, Ning; Pan, Jeffrey Y; Frevert, Ernst U

    2004-02-01

    The modulation of fatty acid metabolism and especially the stimulation of fatty acid oxidation in liver or skeletal muscle are attractive therapeutic approaches for the treatment of obesity and the associated insulin resistance. However, current beta-oxidation assays are run in very low throughput, which represents an obstacle for drug discovery in this area. Here we describe results for a 48-well beta-oxidation assay using a new instrument design. A connecting chamber links two adjacent wells to form an experimental unit, in which one well contains the beta-oxidation reaction and the other captures CO(2). The experimental units are sealed from each other and from the outside to prevent release of radioactivity from the labeled substrate. CO(2) capture in this instrument is linear with time and over the relevant experimental range of substrate concentration. Cellular viability is maintained in the sealed environment, and cells show the expected responses to modulators of beta-oxidation, such as the AMP kinase activator 5-aminoimidazole carboxamide riboside. Data are presented for different lipid substrates and cell lines. The increased throughput of this procedure compared with previously described methods should facilitate the evaluation of compounds that modulate fatty acid metabolism.

  11. Enantioselective oxidation of racemic lactic acid to D-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM.

    PubMed

    Gao, Chao; Qiu, Jianhua; Li, Jingchen; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping

    2009-03-01

    D-lactic acid and pyruvic acid are two important building block intermediates. Production of D-lactic acid and pyruvic acid from racemic lactic acid by biotransformation is economically interesting. Biocatalyst prepared from 9 g dry cell wt l(-1) of Pseudomonas stutzeri SDM could catalyze 45.00 g l(-1)DL-lactic acid into 25.23 g l(-1)D-lactic acid and 19.70 g l(-1) pyruvic acid in 10h. Using a simple ion exchange process, D-lactic acid and pyruvic acid were effectively separated from the biotransformation system. Co-production of d-lactic acid and pyruvic acid by enantioselective oxidation of racemic lactic acid is technically feasible.

  12. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    DOE PAGES

    Beam, Jacob P.; Bernstein, Hans C.; Jay, Zackary J.; ...

    2016-02-15

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3-3.5; temperature = 68-75°C) inmore » YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4-40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14-30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1-2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day -1 , and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems.« less

  13. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs.

    PubMed

    Beam, Jacob P; Bernstein, Hans C; Jay, Zackary J; Kozubal, Mark A; Jennings, Ryan deM; Tringe, Susannah G; Inskeep, William P

    2016-01-01

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3-3.5; temperature = 68-75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4-40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14-30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1-2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day(-1), and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems.

  14. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil

    PubMed Central

    Hayatsu, Masahito; Tago, Kanako; Uchiyama, Ikuo; Toyoda, Atsushi; Wang, Yong; Shimomura, Yumi; Okubo, Takashi; Kurisu, Futoshi; Hirono, Yuhei; Nonaka, Kunihiko; Akiyama, Hiroko; Itoh, Takehiko; Takami, Hideto

    2017-01-01

    Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, occurs in a wide range of acidic soils. However, the ammonia-oxidizing bacteria (AOB) that have been isolated from soil to date are acid-sensitive. Here we report the isolation and characterization of an acid-adapted AOB from an acidic agricultural soil. The isolated AOB, strain TAO100, is classified within the Gammaproteobacteria based on phylogenetic characteristics. TAO100 can grow in the pH range of 5–7.5 and survive in highly acidic conditions until pH 2 by forming cell aggregates. Whereas all known gammaproteobacterial AOB (γ-AOB) species, which have been isolated from marine and saline aquatic environments, are halophiles, TAO100 is not phenotypically halophilic. Thus, TAO100 represents the first soil-originated and non-halophilic γ-AOB. The TAO100 genome is considerably smaller than those of other γ-AOB and lacks several genes associated with salt tolerance which are unnecessary for survival in soil. The ammonia monooxygenase subunit A gene of TAO100 and its transcript are higher in abundance than those of ammonia-oxidizing archaea and betaproteobacterial AOB in the strongly acidic soil. These results indicate that TAO100 plays an important role in the nitrification of acidic soils. Based on these results, we propose TAO100 as a novel species of a new genus, Candidatus Nitrosoglobus terrae. PMID:28072419

  15. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil.

    PubMed

    Hayatsu, Masahito; Tago, Kanako; Uchiyama, Ikuo; Toyoda, Atsushi; Wang, Yong; Shimomura, Yumi; Okubo, Takashi; Kurisu, Futoshi; Hirono, Yuhei; Nonaka, Kunihiko; Akiyama, Hiroko; Itoh, Takehiko; Takami, Hideto

    2017-05-01

    Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, occurs in a wide range of acidic soils. However, the ammonia-oxidizing bacteria (AOB) that have been isolated from soil to date are acid-sensitive. Here we report the isolation and characterization of an acid-adapted AOB from an acidic agricultural soil. The isolated AOB, strain TAO100, is classified within the Gammaproteobacteria based on phylogenetic characteristics. TAO100 can grow in the pH range of 5-7.5 and survive in highly acidic conditions until pH 2 by forming cell aggregates. Whereas all known gammaproteobacterial AOB (γ-AOB) species, which have been isolated from marine and saline aquatic environments, are halophiles, TAO100 is not phenotypically halophilic. Thus, TAO100 represents the first soil-originated and non-halophilic γ-AOB. The TAO100 genome is considerably smaller than those of other γ-AOB and lacks several genes associated with salt tolerance which are unnecessary for survival in soil. The ammonia monooxygenase subunit A gene of TAO100 and its transcript are higher in abundance than those of ammonia-oxidizing archaea and betaproteobacterial AOB in the strongly acidic soil. These results indicate that TAO100 plays an important role in the nitrification of acidic soils. Based on these results, we propose TAO100 as a novel species of a new genus, Candidatus Nitrosoglobus terrae.

  16. Effect of artichoke extract (Cynara scolymus L.) on palmitic-1-14C acid oxidation in rats.

    PubMed

    Juzyszyn, Zygmunt; Czerny, Boguslaw; Pawlik, Andrzej; Drozdzik, Marek

    2008-05-01

    Studies on the effect of the artichoke extract (AE) on oxidation of palmitic-1-14C acid administered intravenously to rats at a dose 25 and 50 mg/kg bw demonstrated marked enhancement of both 14CO2 expiration rate and 14CO2 recovery in the expired air. The extract suppressed accumulation of palmitic-1-14C acid in serum lipids and epididymal fat pad tissue as well. The effects of the extract on 14CO2 expiration rate, 14CO2 recovery, as well as accumulation of palmitic-1-14C acid were dose dependent. Total14CO2 recovery in expired air during 60 min was elevated by 17.3% (p < 0.05) and 52.1% (p < 0.001) in rats administered the extract at a dose of 25 and 50 mg/kg, respectively. The rats supplemented with the AE at a dose of 25 and 50 mg/kg bw were characterized by 10.0% (not significant) and 19% (p < 0.05) decrease in( 14)C radioactivity of serum lipids as well as reduction of epididymal fat tissue 14C radioactivity by 8.7 and 17.5% (p < 0.05), respectively, in comparison with the control rats. Thus, the results demonstrate that the AE possess stimulatory properties with respect to oxidation of palmitic acid administered to rats, and provide new information on the mechanism of antilipemic activity of the extract associated with activation of lipid oxidation in the organism.

  17. Hepatic beta-oxidation and carnitine palmitoyltransferase I in neonatal pigs after dietary treatments of clofibric acid, isoproterenol, and medium-chain triglycerides.

    PubMed

    Peffer, Pasha Lyvers; Lin, Xi; Odle, Jack

    2005-06-01

    A suckling piglet model was used to study nutritional and pharmacologic means of stimulating hepatic fatty acid beta-oxidation. Newborn pigs were fed milk diets containing either long- or medium-chain triglycerides (LCT or MCT). The long-chain control diet was supplemented further with clofibric acid (0.5%) or isoproterenol (40 ppm), and growth was monitored for 10-12 days. Clofibrate increased rates of hepatic peroxisomal and mitochondrial beta-oxidation of [1-(14)C]-palmitate by 60 and 186%, respectively. Furthermore, malonyl-CoA sensitive carnitine palmitoyltransferase (CPT I) activity increased 64% (P < 0.05) in pigs receiving clofibrate. Increased CPT I activity was not congruent with changes in message, as elevated abundance of CPT I mRNA was not detected (P = 0.16) when assessed by qRT-PCR. Neither rates of beta-oxidation nor CPT activities were affected by dietary MCT or by isoproterenol treatment (P > 0.1). Collectively, these findings indicate that clofibrate effectively induced hepatic CPT activity concomitant with increased fatty acid beta-oxidation.

  18. The rationale for preventing cancer cachexia: targeting excessive fatty acid oxidation.

    PubMed

    Qian, Chao-Nan

    2016-07-21

    Cachexia commonly occurs at the terminal stage of cancer and has largely unclear molecular mechanisms. A recent study published in Nature Medicine, entitled "Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia," reveals that cachectic cancer cells can secrete multiple cytokines that induce excessive fatty acid oxidation, which is responsible for muscle loss in cancer cachexia. Inhibition of fatty acid oxidation using etomoxir can increase muscle mass and body weight in cancer cachexia animal models. The usage of stable cachexia animal models is also discussed in this research highlight.

  19. Mitochondrial free fatty acid β-oxidation supports oxidative phosphorylation and proliferation in cancer cells.

    PubMed

    Rodríguez-Enríquez, Sara; Hernández-Esquivel, Luz; Marín-Hernández, Alvaro; El Hafidi, Mohammed; Gallardo-Pérez, Juan Carlos; Hernández-Reséndiz, Ileana; Rodríguez-Zavala, José S; Pacheco-Velázquez, Silvia C; Moreno-Sánchez, Rafael

    2015-08-01

    Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4-3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7-13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6-6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  1. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  2. Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome

    PubMed Central

    Tanaka, Toshiya; Yamamoto, Joji; Iwasaki, Satoshi; Asaba, Hiroshi; Hamura, Hiroki; Ikeda, Yukio; Watanabe, Mitsuhiro; Magoori, Kenta; Ioka, Ryoichi X.; Tachibana, Keisuke; Watanabe, Yuichiro; Uchiyama, Yasutoshi; Sumi, Koichi; Iguchi, Haruhisa; Ito, Sadayoshi; Doi, Takefumi; Hamakubo, Takao; Naito, Makoto; Auwerx, Johan; Yanagisawa, Masashi; Kodama, Tatsuhiko; Sakai, Juro

    2003-01-01

    In this study, we defined the role of peroxisome proliferator-activated receptor β/δ (PPARδ) in metabolic homeostasis by using subtype selective agonists. Analysis of rat L6 myotubes treated with the PPARδ subtype-selective agonist, GW501516, by the Affymetrix oligonucleotide microarrays revealed that PPARδ controls fatty acid oxidation by regulating genes involved in fatty acid transport, β-oxidation, and mitochondrial respiration. Similar PPARδ-mediated gene activation was observed in the skeletal muscle of GW501516-treated mice. Accordingly, GW501516 treatment induced fatty acid β-oxidation in L6 myotubes as well as in mouse skeletal muscles. Administration of GW501516 to mice fed a high-fat diet ameliorated diet-induced obesity and insulin resistance, an effect accompanied by enhanced metabolic rate and fatty acid β-oxidation, proliferation of mitochondria, and a marked reduction of lipid droplets in skeletal muscles. Despite a modest body weight change relative to vehicle-treated mice, GW501516 treatment also markedly improved diabetes as revealed by the decrease in plasma glucose and blood insulin levels in genetically obese ob/ob mice. These data suggest that PPARδ is pivotal to control the program for fatty acid oxidation in the skeletal muscle, thereby ameliorating obesity and insulin resistance through its activation in obese animals. PMID:14676330

  3. Sex differences in the effects of 12 weeks sprint interval training on body fat mass and the rates of fatty acid oxidation and VO2max during exercise.

    PubMed

    Bagley, Liam; Slevin, Mark; Bradburn, Steven; Liu, Donghui; Murgatroyd, Chris; Morrissey, George; Carroll, Michael; Piasecki, Mathew; Gilmore, William S; McPhee, Jamie S

    2016-01-01

    The purpose of this study was to examine whether very short duration, very high intensity sprint interval training (SIT) leads to loss of body fat mass in association with improvements to VO 2 max and fatty acid oxidation, and to assess the extent of sex dimorphism in these physiological responses. A total of 24 men and 17 women (mean (SEM) age: 39 (±2) years; body mass index 24.6 (0.6)) completed measurements of the maximal rate of oxygen uptake (VO 2 max) and fatty acid oxidation (FATmax). Body fat and lean mass were measured by dual emission x-ray absorptiometry, and fasting blood lipid, glucose and insulin profiles were assessed before and after training. SIT consisted of 4×20 s sprints on a cycle ergometer at approximately 175% VO 2 max, three times per week for 12 weeks. Fat mass decreased by 1.0 kg, although men lost statistically significantly more fat than women both when expressed in Kg and as % body fat. VO 2 max increased by around 9%, but women improved VO 2 max significantly more than men. FATmax improved by around 13%, but fasting plasma glucose, insulin, total triglyceride, total cholesterol and high-density lipoprotein (HDL) did not change after training, while low-density lipoprotein decreased by 8% (p=0.028) and the HDL:Total Cholesterol ratio improved by 6%. There were no sex differences in these metabolic responses to training. These results show lower body fat %, and higher rates of fatty acid oxidation and VO 2 max after 12 weeks of training for just 4 min per week. Notably, women improved VO 2 max more than men, while men lost more fat than women.

  4. Sex differences in the effects of 12 weeks sprint interval training on body fat mass and the rates of fatty acid oxidation and VO2max during exercise

    PubMed Central

    Bagley, Liam; Slevin, Mark; Bradburn, Steven; Liu, Donghui; Murgatroyd, Chris; Morrissey, George; Carroll, Michael; Piasecki, Mathew; Gilmore, William S; McPhee, Jamie S

    2016-01-01

    Background The purpose of this study was to examine whether very short duration, very high intensity sprint interval training (SIT) leads to loss of body fat mass in association with improvements to VO2max and fatty acid oxidation, and to assess the extent of sex dimorphism in these physiological responses. Methods A total of 24 men and 17 women (mean (SEM) age: 39 (±2) years; body mass index 24.6 (0.6)) completed measurements of the maximal rate of oxygen uptake (VO2max) and fatty acid oxidation (FATmax). Body fat and lean mass were measured by dual emission x-ray absorptiometry, and fasting blood lipid, glucose and insulin profiles were assessed before and after training. SIT consisted of 4×20 s sprints on a cycle ergometer at approximately 175% VO2max, three times per week for 12 weeks. Results Fat mass decreased by 1.0 kg, although men lost statistically significantly more fat than women both when expressed in Kg and as % body fat. VO2max increased by around 9%, but women improved VO2max significantly more than men. FATmax improved by around 13%, but fasting plasma glucose, insulin, total triglyceride, total cholesterol and high-density lipoprotein (HDL) did not change after training, while low-density lipoprotein decreased by 8% (p=0.028) and the HDL:Total Cholesterol ratio improved by 6%. There were no sex differences in these metabolic responses to training. Conclusions These results show lower body fat %, and higher rates of fatty acid oxidation and VO2max after 12 weeks of training for just 4 min per week. Notably, women improved VO2max more than men, while men lost more fat than women. PMID:27900150

  5. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    PubMed

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  6. Acid volatile sulfides oxidation and metals (Mn, Zn) release upon sediment resuspension: laboratory experiment and model development.

    PubMed

    Hong, Yong Seok; Kinney, Kerry A; Reible, Danny D

    2011-03-01

    Sediment from the Anacostia River (Washington, DC, USA) was suspended in aerobic artificial river water for 14 d to investigate the dynamics of dissolved metals release and related parameters including pH, acid volatile sulfides (AVS), and dissolved/solid phase Fe(2+). To better understand and predict the underlying processes, a mathematical model is developed considering oxidation of reduced species, dissolution of minerals, pH changes, and pH-dependent metals' sorption to sediment. Oxidation rate constants of elemental sulfur and zinc sulfide, and a dissolution rate constant of carbonate minerals, were adjusted to fit observations. The proposed model and parameters were then applied, without further calibration, to literature-reported experimental observations of resuspension in an acid sulfate soil collected in a coastal flood plain. The model provided a good description of the dynamics of AVS, Fe(2+), S(0)((s)), pH, dissolved carbonates concentrations, and the release of Ca((aq)), Mg((aq)), and Zn((aq)) in both sediments. Accurate predictions of Mn((aq)) release required adjustment of sorption partitioning coefficient, presumably due to the presence of Mn scavenging by phases not accounted for in the model. The oxidation of AVS (and the resulting release of sulfide-bound metals) was consistent with a two-step process, a relatively rapid AVS oxidation to elemental sulfur (S(0)((s))) and a slow oxidation of S(0)((s)) to SO(4)(2-)((aq)), with an associated decrease in pH from neutral to acidic conditions. This acidification was the dominant factor for the release of metals into the aqueous phase. Copyright © 2010 SETAC.

  7. Improved rate of substrate oxidation catalyzed by genetically-engineered myoglobin.

    PubMed

    Chand, Subhash; Ray, Sriparna; Wanigasekara, Eranda; Yadav, Poonam; Crawford, Joshua A; Armstrong, Daniel W; Rajeshwar, Krishnan; Pierce, Brad S

    2018-02-01

    This study showcases the potential of unnatural amino acids to enable non-natural functions when incorporated in the protein scaffold of heme metalloproteins. For this purpose, a genetically-engineered myoglobin (Mb) mutant was created by incorporating redox-active 3-amino-l-tyrosine (NH 2 Tyr) into its active site, replacing the distal histidine (H64) with NH 2 Tyr. In peroxide-shunt assays, this variant exhibits an increased rate of turnover for thioanisole and benzaldehyde oxidation as compared to the wild-type (WT) Mb. Indeed, in the presence of excess hydrogen peroxide (H 2 O 2 ), a 9-fold and 81-fold increase in activity was observed over multiple turnovers for thioanisole sulfoxidation and benzoic acid formation, respectively. The increased oxidation activity in the H64NH 2 Tyr Mb mutant underlined the role of NH 2 Tyr in the distal active-site scaffold in peroxide activation. Kinetic, electrochemical, and EPR spectroscopic experiments were performed. On the basis of these studies, it is argued that the single NH 2 Tyr residue within the Mb variant simultaneously serves the role of the conserved His/Arg-pair within the distal pocket of horseradish peroxidase. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine–Dicarboxylate Complexes

    DOE PAGES

    Shaffer, David W.; Xie, Yan; Szalda, David J.; ...

    2016-11-01

    In order to gain a deeper mechanistic understanding of water oxidation by [(bda)Ru(L) 2] catalysts (bdaH 2 = [2,2'-bipyridine]-6,6'-dicarboxylic acid; L = pyridine-type ligand), a series of modified catalysts with one and two trifluoromethyl groups in the 4 position of the bda 2– ligand was synthesized and studied using stopped-flow kinetics. The additional $-$CF 3 groups increased the oxidation potentials for the catalysts and enhanced the rate of electrocatalytic water oxidation at low pH. Stopped-flow measurements of cerium(IV)-driven water oxidation at pH 1 revealed two distinct kinetic regimes depending on catalyst concentration. At relatively high catalyst concentration (ca. ≥10 –4more » M), the rate-determining step (RDS) was a proton-coupled oxidation of the catalyst by cerium(IV) with direct kinetic isotope effects (KIE > 1). At low catalyst concentration (ca. ≤10 –6 M), the RDS was a bimolecular step with k H/k D ≈ 0.8. The results support a catalytic mechanism involving coupling of two catalyst molecules. The rate constants for both RDSs were determined for all six catalysts studied. The presence of $-$CF 3 groups had inverse effects on the two steps, with the oxidation step being fastest for the unsubstituted complexes and the bimolecular step being faster for the most electron-deficient complexes. Finally, though the axial ligands studied here did not significantly affect the oxidation potentials of the catalysts, the nature of the ligand was found to be important not only in the bimolecular step but also in facilitating electron transfer from the metal center to the sacrificial oxidant.« less

  9. [Studies on the oxidation reaction of octanol-2 with nitric acid by infrared spectroscopy].

    PubMed

    Zhang, G; Zhao, G; Wang, Y; Zhang, Q; Zhang, S; Lu, F

    1998-04-01

    In this paper, the reaction process of oxidation of octanol-2 with nitric acid has been studied by IR spectroscopy. It is found that the main components of non-sapoifiable matter are different in different oxidation degrees. The relation between oxidation products and the amount of nitric acid are investigated,the reaction mechanism has also been studied. Experimental results show that the oxidation process of octanol-2 is as follows: first, octanol-2 is oxidated to octanone-2, or to nitrate, nitrite and nitrile copmpounds, then these compounds are reoxidated to caproic acid in the meantime some by-products, such as valeric, enanthic acids are also found in oxidated products.

  10. Effects of high-fat diets on hepatic fatty acid oxidation in the rat. Isolation of rat liver peroxisomes by vertical-rotor centrifugation by using a self-generated, iso-osmotic, Percoll gradient.

    PubMed Central

    Neat, C E; Thomassen, M S; Osmundsen, H

    1981-01-01

    1. Rat liver peroxisomal fractions were isolated in iso-osmotic Percoll gradients by using vertical-rotor centrifugation. The fractions obtained with rats given various dietary treatments were characterized. 2. The effect on peroxisomal beta-oxidation of feeding 15% by wt. of dietary fat for 3 weeks was investigated. High-fat diets caused induction of peroxisomal beta-oxidation, but diets rich in very-long-chain mono-unsaturated fatty acids produced a more marked induction. 3. Peroxisomal beta-oxidation induced by diets rich in very-long-chain mono-unsaturated fatty acids can oxidize such acids. Trans-isomers of mono-unsaturated fatty acids are oxidized at rates that are faster than, or similar to, those obtained with corresponding cis-isomers. 4. Rates of oxidation of [14-14C]erucic acid by isolated rat hepatocytes isolated from rats fed on high-fat diets increased with the time on those diets in a fashion very similar to that previously reported for peroxisomal beta-oxidation [see Neat, Thomassen & Osmundsen (1980) Biochem, J. 186, 369-371]. 5. Total liver capacities for peroxisomal beta-oxidation (expressed as acetyl groups produced per min) were estimated to range from 10 to 30% of mitochondrial capacities, depending on dietary treatment and fatty acid substrate. A role is proposed for peroxisomal beta-oxidation in relation to the metabolism of fatty acids that are poorly oxidized by mitochondrial beta-oxidation, and, in general, as regards oxidation of fatty acids during periods of sustained high hepatic influx of fatty acids. PMID:6272750

  11. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  12. Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer–Tropsch synthesis catalysts

    DOE PAGES

    Johnson, Gregory R.; Bell, Alexis T.

    2016-03-31

    Metal oxides of Ce, Gd, La, Mn, and Zr were investigated as promoters for improving the activity and selectivity of Co-based FTS catalysts. The extent to which these promoters decrease the selectivity toward CH 4 and increase the selectivity toward C 5+ hydrocarbons was found to depend on both the loading and the composition of the oxide promoter. Elemental mapping by STEM-EDS revealed that the propensity for a given metal oxide to associate with Co affects the sensitivity of the product distribution to changes in promoter loading. For all promoters, a sufficiently high loading resulted in the product distributions becomingmore » insensitive to further increases in promoter loading, very likely due to the formation of a half monolayer of promoter oxide over the Co surface. Simulations suggest that the fraction of Co active sites that are adjacent to the promoter moieties approaches unity at this degree of coverage. The oxidation state of the promoter metal cation under reaction conditions, determined by in situ XANES measurements, was used to calculate relative Lewis acidity of the promoter metal cation. We found a strong positive correlation between the C 5+ product selectivity and the Lewis acidity of the promoter metal cations, suggesting that the promotional effects are a consequence of Lewis acid-base interactions between the reaction intermediates and the promoter metal cations. Rate data obtained at different pressures were used to estimate the apparent rate coefficient and the CO adsorption constant appearing in the Langmuir-Hinshelwood expression that describes the CO consumption kinetics for both unpromoted and the metal oxide-promoted catalysts. Both parameters exhibited positive correlations with the promoter Lewis acidity. Our results are consistent with the hypothesis that the metal cations of the promoter act as Lewis acids that interact with the O atom of adsorbed CO to facilitate CO adsorption and dissociation.« less

  13. Green reduction of graphene oxide by ascorbic acid

    NASA Astrophysics Data System (ADS)

    Khosroshahi, Zahra; Kharaziha, Mahshid; Karimzadeh, Fathallah; Allafchian, Alireza

    2018-01-01

    Graphene, a single layer of sp2-hybridized carbon atoms in a hexagonal (two-dimensional honey-comb) lattice, has attracted strong scientific and technological interest due to its novel and excellent optical, chemical, electrical, mechanical and thermal properties. The solution-processable chemical reduction of Graphene oxide (GO is considered as the most favorable method regarding mass production of graphene. Generally, the reduction of GO is carried out by chemical approaches using different reductants such as hydrazine and sodium borohydride. These components are corrosive, combustible and highly toxic which may be dangerous for personnel health and the environment. Hence, these reducing agents are not promising choice for reducing of graphene oxide (GO). As a consequence, it is necessary for further development and optimization of eco-friendly, natural reducing agent for clean and effective reduction of GO. Ascorbic acid, an eco-friendly and natural reducing agents, having a mild reductive ability and nontoxic property. So, the aim of this research was to green synthesis of GO with ascorbic acid. For this purpose, the required amount of NaOH and ascorbic acid were added to GO solution (0.5 mg/ml) and were heated at 95 °C for 1 hour. According to the X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and electrochemical results, GO were reduced with ascorbic acid like hydrazine with better electrochemical properties and ascorbic acid is an ideal substitute for hydrazine in the reduction of graphene oxide process.

  14. Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution.

    PubMed

    Zrinyi, Nick; Pham, Anh Le-Tuan

    2017-09-01

    Heat activates persulfate (S 2 O 8 2- ) into sulfate radical (SO 4 - ), a powerful oxidant capable of transforming a wide variety of contaminants. Previous studies have shown that an increase in temperature accelerates the rates of persulfate activation and contaminant transformation. However, few studies have considered the effect of temperature on contaminant transformation pathway. The objective of this study was to determine how temperature (T = 22-70 °C) influences the activation of persulfate, the transformation of benzoic acid (i.e., a model compound), and the distribution of benzoic acid oxidation products. The time-concentration profiles of the products suggest that benzoic acid was transformed via decarboxylation and hydroxylation mechanisms, with the former becoming increasingly important at elevated temperatures. The pathway through which the products were further oxidized was also influenced by the temperature of persulfate activation. Our findings suggest that the role of temperature in the persulfate-based treatment systems is not limited only to controlling the rates of sulfate and hydroxyl radical generation. The ability of sulfate radical to initiate decarboxylation reactions and, more broadly, fragmentation reactions, as well as the effect of temperature on these transformation pathways could be important to the transformation of a number of organic contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress

    PubMed Central

    Simón, María Victoria; Agnolazza, Daniela L.; German, Olga Lorena; Garelli, Andrés; Politi, Luis E.; Agbaga, Martin-Paul; Anderson, Robert E.; Rotstein, Nora P.

    2015-01-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat (PQ) and hydrogen peroxide (H2O2). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. PMID:26662863

  16. Fusion of acid oxides for potentially radiation-resistant waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrick, C.C.; Penneman, R.A.

    1983-02-01

    Skull melting of groups VA and VB acid oxides with alkali metal oxides and urania leads to compounds with a good ability to retain radionuclides and establishes immunity to radiation damage. Substitution of neptunium and plutonium for uranium should not diminish these desirable properties. For hexavalent transplutonic elements, even at high oxygen fugacities and oxide activities, acid character losses and the reducing nature of radiation suggest the lower valences (III and IV) will be the stable states. Plutonium becomes the pivotal radionuclide when valence stability in a radiation field is considered.

  17. Mechanism of oxidation of 3-hydroxy-2,7-naphthalenedisulfonic acid disodium salt with oxygen in subcritical water.

    PubMed

    Imbierowicz, Mirosław

    2017-06-01

    The article presents the results of studies on the oxidation mechanism of 3-hydroxy-2,7-naphthalenedisulfonic acid disodium salt (R-salt) with oxygen in subcritical water. To this aim, a series of experiments were carried out which showed that at a temperature of 413 K and pH > 9 the oxidation reaction of a substrate with oxygen was relatively quick and after approximately 40 min the R-salt oxidation yield exceeded 95%. In an acidic medium (pH < 7), the rate of R-salt oxidation is small. In order to identify the mechanism of R-salt oxidation, experiments were carried out at 413-569 K in solutions with pH = 10.0 and at partial oxygen pressure p O2  = 1.73 MPa. As a result of these experiments, a stable oxidation product was isolated from the reaction mixture and subjected to spectroscopic analysis. The analysis of H NMR of this product proved that a stable intermediate product of R-salt oxidation was 4-sulfophthalic acid sodium salt. The results of the experiments have shown that destructive oxidation of R-salt can easily be obtained at a temperature of 413 K, but satisfactory reduction of TOC in wastewater containing this substrate requires the use of very high temperature: at 569 K only 60% reduction of TOC was achieved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Palmitic acid follows a different metabolic pathway than oleic acid in human skeletal muscle cells; lower lipolysis rate despite an increased level of adipose triglyceride lipase.

    PubMed

    Bakke, Siril S; Moro, Cedric; Nikolić, Nataša; Hessvik, Nina P; Badin, Pierre-Marie; Lauvhaug, Line; Fredriksson, Katarina; Hesselink, Matthijs K C; Boekschoten, Mark V; Kersten, Sander; Gaster, Michael; Thoresen, G Hege; Rustan, Arild C

    2012-10-01

    Development of insulin resistance is positively associated with dietary saturated fatty acids and negatively associated with monounsaturated fatty acids. To clarify aspects of this difference we have compared the metabolism of oleic (OA, monounsaturated) and palmitic acids (PA, saturated) in human myotubes. Human myotubes were treated with 100μM OA or PA and the metabolism of [(14)C]-labeled fatty acid was studied. We observed that PA had a lower lipolysis rate than OA, despite a more than two-fold higher protein level of adipose triglyceride lipase after 24h incubation with PA. PA was less incorporated into triacylglycerol and more incorporated into phospholipids after 24h. Supporting this, incubation with compounds modifying lipolysis and reesterification pathways suggested a less influenced PA than OA metabolism. In addition, PA showed a lower accumulation than OA, though PA was oxidized to a relatively higher extent than OA. Gene set enrichment analysis revealed that 24h of PA treatment upregulated lipogenesis and fatty acid β-oxidation and downregulated oxidative phosphorylation compared to OA. The differences in lipid accumulation and lipolysis between OA and PA were eliminated in combination with eicosapentaenoic acid (polyunsaturated fatty acid). In conclusion, this study reveals that the two most abundant fatty acids in our diet are partitioned toward different metabolic pathways in muscle cells, and this may be relevant to understand the link between dietary fat and skeletal muscle insulin resistance. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Rate and extent NOM removal during oxidation and biofiltration.

    PubMed

    Black, Kerry E; Bérubé, Pierre R

    2014-04-01

    The presence of natural organic matter (NOM) in drinking water treatment presents many challenges. Integrated treatment processes combining oxidation and biofiltration have been demonstrated to be very effective at reducing NOM, specifically biodegradable organics. Laboratory bench-scale experiments were carried out to investigate the effect of oxidation by ozonation or UV/H2O2 on NOM. Specifically the rate of biodegradation was studied by performing bench-scale biodegradation experiments using acclimatized biological activated carbon (BAC). For the source water investigated, oxidation did not preferentially react with the biodegradable or non-biodegradable NOM. In addition, the type or dose of oxidation applied did not affect the observed rate of biodegradation. The rate kinetics for biodegradation were constant for all oxidation conditions investigated. Oxidation prior to biofiltration increased the overall removal of organic matter, but did not affect the rate of biodegradation of NOM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Oxidizing action of purine N-oxide esters.

    PubMed

    Stöhrer, G; Salemnick, G

    1975-01-01

    A technique involving O-acetylation of purine N-oxide derivatives in buffered aqueous solutions has permitted studies of the reactivity of many compounds for which the O-acetyl derivatives are not otherwise available. The oxidizing properties of a variety of N-acetoxypurines have been measured through their ability to oxidize iodide ion ot iodine, a reaction which is representative of a more general oxidizing ability. Those esters that oxidize iodide ion also catalyze the autoxidation of sulfite, a property characteristic of radicals. The same esters also oxidize cysteine to cysteic acid and tryptophan, tyrosine, and uric acid to yet uncharacterized products. Their oxidizing reactivity was compared with the ability of the same esters to react as electrophiles in another assay that measured the rate of formation of pyridine substitution products. The sulfate ester of 3-hydroxyxanthine has been synthesized. Its reactivity is qualitatively the same as that of 3-acetoxyxanthine but proceeds at a higher rate. Syntheses of S-(8-xanthyl)-N-acetylcysteine, 8-(2-hydroxyethylthio)xanthine, and 1-methyl-8-mehtylmercaptoguanine are also described.

  1. Fatty Acid Composition as a Predictor for the Oxidation Stability of Korean Vegetable Oils with or without Induced Oxidative Stress

    PubMed Central

    Yun, Jung-Mi; Surh, Jeonghee

    2012-01-01

    This study was designed to investigate whether the fatty acid composition could make a significant contribution to the oxidation stability of vegetable oils marketed in Korea. Ten kinds, 97 items of vegetable oils that were produced in either an industrialized or a traditional way were collected and analyzed for their fatty acid compositions and lipid oxidation products, in the absence or presence of oxidative stress. Peroxidability index (PI) calculations based on the fatty acid composition ranged from 7.10 to 111.87 with the lowest value found in olive oils and the highest in perilla oils. In the absence of induced oxidative stress, malondialdehyde (MDA), the secondary lipid oxidation product, was generated more in the oils with higher PI (r=0.890), while the tendency was not observed when the oils were subjected to an oxidation-accelerating system. In the presence of the oxidative stress, the perilla oils produced in an industrialized manner generated appreciably higher amounts of MDA than those produced in a traditional way, although both types of oils presented similar PIs. The results implicate that the fatty acid compositions could be a predictor for the oxidation stability of the vegetable oils at the early stage of oil oxidation, but not for those at a later stage of oxidation. PMID:24471078

  2. Effect of water content on thermal oxidation of oleic acid investigated by combination of EPR spectroscopy and SPME-GC-MS/MS.

    PubMed

    Chen, Hongjian; Cao, Peirang; Li, Bo; Sun, Dewei; Wang, Yong; Li, Jinwei; Liu, Yuanfa

    2017-04-15

    Promotion of water to the thermal oxidation of oleic acid was detected by the combination of EPR, SPME-GC-MS/MS and GC. Spin-trapping technique was used to identify and quantify the radical species formed during thermal oxidation of oleic acid by using DMPO as electron spin trap. The most abundant radical species were identified as DMPO-alkyl radical adducts. EPR intensity plateau of the samples with 5% water content was 140% higher than the samples without water. It implies oleic acid samples with high water content had high level of oxidation rates. The proportion of aldehydes of the samples with 2% water content was the maximum about 59.97%. Among the formed products, (E,E)-2,4-decadienal has genotoxic and cytotoxic effects, whose percentage was nearly twice comparing with that of 5-0% water content. This study demonstrated that higher water content in frying systems would contribute to seriously oxidation and degradation of oleic acids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Physiological activities of the combination of fish oil and α-lipoic acid affecting hepatic lipogenesis and parameters related to oxidative stress in rats.

    PubMed

    Ide, Takashi

    2018-06-01

    We studied the combined effect of fish oil and α-lipoic acid on hepatic lipogenesis and fatty acid oxidation and parameters of oxidative stress in rats fed lipogenic diets high in sucrose. A control diet contained a saturated fat (palm oil) that gives high rate of hepatic lipogenesis. Male Sprague-Dawley rats were fed diets supplemented with 0 or 2.5 g/kg α-lipoic acid and containing 0, 20, or 100 g/kg fish oil, for 21 days. α-Lipoic acid significantly reduced food intake during 0-8 days but not the later period of the experiment. Fish oil and α-lipoic acid decreased serum lipid concentrations and their combination further decreased the parameters in an additive fashion. The combination of fish oil and α-lipoic acid decreased the activity and mRNA levels of hepatic lipogenic enzymes in an additive fashion. Fish oil increased the parameters of hepatic fatty acid oxidation enzymes. α-Lipoic acid appeared to antagonize the stimulating effects of fish oil of fatty acid oxidation through reductions in the activity of some fatty acid oxidation enzymes. α-Lipoic acid attenuated fish oil-dependent increases in serum and liver malondialdehyde levels, and this compound also reduced the serum 8-hydroxy-2'-deoxyguanosine level. α-Lipoic acid affected various parameters related to the antioxidant system; fish oil also affected some of the parameters. The combination of fish oil and α-lipoic acid effectively reduced serum lipid levels through the additive down-regulation of hepatic lipogenesis. α-Lipoic acid was effective in attenuating fish oil-mediated oxidative stress.

  4. The Baeyer-Villiger Oxidation with Trifluoroacetic Acid and Household Sodium Percarbonate

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Clemons, Anthony E.

    2008-01-01

    A method for carrying out the Baeyer-Villiger oxidation of cyclopentanone to [delta]-valerolactone in a large-section introductory organic chemistry laboratory course is reported. The oxidizing agent is trifluoroperoxyacetic acid generated in situ from trifluoroacetic acid and household sodium percarbonate such as OxiClean, Oxi Magic, or…

  5. Effect of acid on the aggregation of poly(ethylene xide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers.

    PubMed

    Yang, Bin; Guo, Chen; Chen, Shu; Ma, Junhe; Wang, Jing; Liang, Xiangfeng; Zheng, Lily; Liu, Huizhou

    2006-11-23

    The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.

  6. Large discharge capacity from carbon electrodes in sulfuric acid with oxidant

    NASA Astrophysics Data System (ADS)

    Inagaki, M.; Iwashita, N.

    The discharge performance of the graphite intercalation compounds in sulfuric acid containing nitric acid (H 2SO 4-GICs) was studied by focusing on the effects of oxidant and carbon nanotexture. A large discharge capacity from H 2SO 4-GICs synthesized by using an excess amount of HNO 3, more than 150 times of the theoretical value (93 mAh/g carbon), was obtained depending on the amount of oxidant added, the discharge current, and the nanotexture of carbon electrode. The experimental results are explained in terms of competition between the de-intercalation of sulfuric acid due to galvanostatic reduction and the re-intercalation due to chemical oxidation by HN03 during discharging. However, a subsidiary reaction decreases the effective amount of HNO 3 on the discharge by a small current and also on the cycle of chemical charging and electrochemical discharging. The oxidant KMnO 4 gave only a little larger capacity for discharge than the theoretical one, because it was reduced to the manganese oxide precipitates during the oxidation of the carbon electrode.

  7. Assessing Oxidative Stress in Tumors by Measuring the Rate of Hyperpolarized [1-13C]Dehydroascorbic Acid Reduction Using 13C Magnetic Resonance Spectroscopy*

    PubMed Central

    Timm, Kerstin N.; Hu, De-En; Williams, Michael; Wright, Alan J.; Kettunen, Mikko I.; Kennedy, Brett W. C.; Larkin, Timothy J.; Dzien, Piotr; Marco-Rius, Irene; Bohndiek, Sarah E.; Brindle, Kevin M.

    2017-01-01

    Rapid cancer cell proliferation promotes the production of reducing equivalents, which counteract the effects of relatively high levels of reactive oxygen species. Reactive oxygen species levels increase in response to chemotherapy and cell death, whereas an increase in antioxidant capacity can confer resistance to chemotherapy and is associated with an aggressive tumor phenotype. The pentose phosphate pathway is a major site of NADPH production in the cell, which is used to maintain the main intracellular antioxidant, glutathione, in its reduced state. Previous studies have shown that the rate of hyperpolarized [1-13C]dehydroascorbic acid (DHA) reduction, which can be measured in vivo using non-invasive 13C magnetic resonance spectroscopic imaging, is increased in tumors and that this is correlated with the levels of reduced glutathione. We show here that the rate of hyperpolarized [1-13C]DHA reduction is increased in tumors that have been oxidatively prestressed by depleting the glutathione pool by buthionine sulfoximine treatment. This increase was associated with a corresponding increase in pentose phosphate pathway flux, assessed using 13C-labeled glucose, and an increase in glutaredoxin activity, which catalyzes the glutathione-dependent reduction of DHA. These results show that the rate of DHA reduction depends not only on the level of reduced glutathione, but also on the rate of NADPH production, contradicting the conclusions of some previous studies. Hyperpolarized [1-13C]DHA can be used, therefore, to assess the capacity of tumor cells to resist oxidative stress in vivo. However, DHA administration resulted in transient respiratory arrest and cardiac depression, which may prevent translation to the clinic. PMID:27994059

  8. Aerosol Fragmentation Driven by Coupling of Acid–Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals

    DOE PAGES

    Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.; ...

    2017-07-14

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low

  9. Aerosol Fragmentation Driven by Coupling of Acid–Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low

  10. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  11. Studies on the oxidation of hexamethylbenzene 1: Oxidation of hexamethylbenzene with nitric acid

    NASA Technical Reports Server (NTRS)

    Chiba, K.; Tomura, S.; Mizuno, T.

    1986-01-01

    The oxidative reaction of hexamethylbenzene (HMB) with nitric acid was studied, and the hitherto unknown polymethylbenzenepolycarboxylic acids were isolated: tetramethylphthalic anhydride, tetramethylisophthalic acid, 1,3,5-, 1,2,4- and 1,2,3-trimethylbenzenetricarboxylic acids. When HMB was warmed with 50% nitric acid at about 80 C, tetramethylphthalic anhydride and tetramethylisophthalic acid were initially produced. The continued reaction led to the production of trimethylbenzenetricarboxylic acids, but only slight amounts of dimethylbenzenetetracarboxylic acids were detected in the reaction mixture. Whereas tetramethylphthalic anydride and tetramethylisophthalic acid were obtained, pentamethylbenzoic acid, a possible precursor of them, was scarcely produced. On the other hand, a yellow material extracted with ether from the initial reaction mixture contained bis-(nitromethyl)prehnitene (CH3)4C6(CH2NO2)2, which was easily converted into the phthalic anhydride.

  12. Oxidation and textural characteristics of butter and ice cream with modified fatty acid profiles.

    PubMed

    Gonzalez, S; Duncan, S E; O'Keefe, S F; Sumner, S S; Herbein, J H

    2003-01-01

    The primary objective of this study was to evaluate oxidation and firmness of butter and ice cream made with modified milkfat containing enhanced amounts of linoleic acid or oleic acid. The influence of the fatty acid profile of the HO milkfat relating to product properties as compared with the influence the fatty acid profile of the HL milkfat was the main focus of the research. Altering the degree of unsaturation in milkfat may affect melting characteristics and oxidation rates, leading to quality issues in dairy products. Three milkfat compositions (high-oleic, high-linoleic, and control) were obtained by modifying the diets of Holstein cows. Ice cream and butter were processed from milkfat obtained from cows in each dietary group. Butter and ice cream samples were analyzed to determine fatty acid profile and firmness. High-oleic milkfat resulted in a softer butter. Solid fat index of high-oleic and high-linoleic milkfat was lower than the control. Control ice cream mix had higher viscosity compared with high-oleic and high-linoleic, but firmness of all ice creams was similar when measured between -17 and -13 degrees C. Nutritional and textural properties of butter and ice cream can be improved by modifying the diets of cows.

  13. Influence of ultrasound on the heterogeneous Fenton-like oxidation of acetic acid.

    PubMed

    Cihanoğlu, Aydın; Gündüz, Gönül; Dükkancı, Meral

    2017-11-01

    The main objective of this study is to investigate the effect of ultrasound on the heterogeneous Fenton-like oxidation of acetic acid, which is one of the most resistant carboxylic acids to oxidation. For this purpose, firstly, the degradation of acetic acid was examined by using ultrasound alone and the effects of different parameters such as: type of sonication system, ultrasonic power, and addition of H 2 O 2 were investigated on the degradation of acetic acid. There was no chemical oxygen demand (COD) reduction in the presence of sonication alone. In the presence of the heterogeneous Fenton-like oxidation process alone, at 303 K, COD reduction reached only 7.1% after 2 h of reaction. However, the combination of the heterogeneous Fenton-like oxidation process with ultrasound increased the COD reduction from 7.1% to 25.5% after 2 h of reaction in an ultrasonic bath operated at 40 kHz, while the COD reduction only increased from 7.1% to 8.9% in the ultrasonic reactor operated at 850 kHz. This result indicates that the hybrid process of ultrasound and heterogeneous Fenton-like oxidation is a promising process to degrade acetic acid.

  14. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    PubMed Central

    Beam, Jacob P.; Bernstein, Hans C.; Jay, Zackary J.; Kozubal, Mark A.; Jennings, Ryan deM.; Tringe, Susannah G.; Inskeep, William P.

    2016-01-01

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3–3.5; temperature = 68–75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4–40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14–30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1–2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day−1, and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems. PMID:26913020

  15. Optimization of Lipase-Mediated Synthesis of 1-Nonene Oxide Using Phenylacetic Acid and Hydrogen Peroxide

    PubMed Central

    Abdulmalek, Emilia; Arumugam, Mahashanon; Basri, Mahiran; Rahman, Mohd Basyaruddin Abdul

    2012-01-01

    Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H2O2) were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity. The aliphatic terminal alkene was epoxidised efficiently in chloroform to give an excellent yield (97%–99%) under the optimum reaction conditions, including temperature (35 °C), initial H2O2 concentration (30%), H2O2 amount (4.4 mmol), H2O2 addition rate (one step), acid amount (8.8 mmol), and stirring speed (250 rpm). Interestingly, the enzyme was stable under the single-step addition of H2O2 with a catalytic activity of 190.0 Ug−1. The entire epoxidation process was carried out within 12 h using a conventional water bath shaker. PMID:23202943

  16. Effect of pH and nitrite concentration on nitrite oxidation rate.

    PubMed

    Jiménez, E; Giménez, J B; Ruano, M V; Ferrer, J; Serralta, J

    2011-10-01

    The effect of pH and nitrite concentration on the activity of the nitrite oxidizing bacteria (NOB) in an activated sludge reactor has been determined by means of laboratory batch experiments based on respirometric techniques. The bacterial activity was measured at different pH and at different total nitrite concentrations (TNO₂). The experimental results showed that the nitrite oxidation rate (NOR) depends on the TNO₂ concentration independently of the free nitrous acid (FNA) concentration, so FNA cannot be considered as the real substrate for NOB. NOB were strongly affected by low pH values (no activity was detected at pH 6.5) but no inhibition was observed at high pH values (activity was nearly the same for the pH range 7.5-9.95). A kinetic expression for nitrite oxidation process including switch functions to model the effect of TNO₂ concentration and pH inhibition is proposed. Substrate half saturation constant and pH inhibition constants have been obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Adsorption and desorption of phthalic acid esters on graphene oxide and reduced graphene oxide as affected by humic acid.

    PubMed

    Lu, Lun; Wang, Jun; Chen, Baoliang

    2018-01-01

    The implications of humic acid (HA) regarding surface properties of graphene materials and their interactions with phthalic acid esters (PAEs) are not vivid. We report the role of HA on graphene oxide (GO) and reduced graphene oxide (RGO) for sorption-desorption behavior of PAEs. Besides higher surface area and pore volume, the hydrophobic π-conjugated carbon atoms on RGO ensured prominent adsorption capacity towards PAEs in comparison to hydrophilic GO, highlighting the hydrophobic effect. After adjusting for the hydrophobic effect by calculating the hexadecane-water partition coefficient (K HW ) normalized adsorption coefficient (K d /K HW ), the dimethyl phthalate (DMP) molecule portrayed a higher adsorption affinity towards RGO by π-π electron donor-acceptor (EDA) interaction for active sites on graphene interface via sieving effect. In contrast to RGO, the weak π-π EDA interactions and H-bonding was observed between the carbonyl groups of PAEs and oxygen containing functional groups on GO. There was no obvious change in morphologies of GO and RGO before and desorption as revealed by SEM and TEM images, as desorption hysteresis did not occur in all conditions. The presence of HA also resulted in shielding effect thereby decreasing the adsorption rate and capacity of diethyl phthalate (DEP) on GO and RGO, while it had little effect on DMP, probably due to the adsorbed HA as new active sites. The desorption of DMP and DEP on RGO in presence of HA was quick and enhanced. These results should be important for evaluating the fate and health risk of graphene materials and PAEs in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Influence of humic acids of different origins on oxidation of phenol and chlorophenols by permanganate.

    PubMed

    He, Di; Guan, Xiaohong; Ma, Jun; Yang, Xue; Cui, Chongwei

    2010-10-15

    The influences of humic acids (HAs) of different origins, including two commercial HAs, three soil HAs and one aquatic HA, on phenols oxidation by permanganate were studied. The apparent second-order rate constants of 2-chlorophenol (2-CP)/phenol oxidation by permanganate in the presence of HAs at pH 7 followed the order of commercial HA (Shanghai)>soil HAs>commercial HA (Fluka)>aquatic HA. Moreover, the commercial HA (Shanghai) could accelerate the oxidation of different chlorophenols (CP) significantly under neutral condition. The FTIR analysis demonstrated greater content of CC moieties and less amount of carboxylate, aliphatic groups and polysaccharide-like substances in soil HAs than in aqueous HA, suggesting that the increase of aromaticity in HA was beneficial to the oxidation of phenols by permanganate. The apparent second-order rate constants of 2-CP/phenol oxidation by permanganate in the presence of HAs correlated well with specific visible absorption (SVA) at 665 nm of HAs. High positive correlation coefficients (R(2)>0.75) implied that pi-electrons of HA strongly influenced the reactivity of 2-CP/phenol towards permanganate oxidation, which agreed well with positive correlation between Fluorescence Regional Integration (FRI) and the apparent second-order rate constants. The pi-pi interaction between HAs and phenols, the steric hindrance effect and the dissociation of phenols may affect the oxidation of phenols by permanganate in the presence of HA at pH=7.0. 2010 Elsevier B.V. All rights reserved.

  19. Oxidation of alginate and pectate biopolymers by cerium(IV) in perchloric and sulfuric acid solutions: A comparative kinetic and mechanistic study.

    PubMed

    Fawzy, Ahmed

    2016-03-15

    The kinetics of oxidation of alginate (Alg) and pectate (Pec) carbohydrate biopolymers was studied by spectrophotometry in aqueous perchloric and sulfuric acid solutions at fixed ionic strengths and temperature. In both acids, the reactions showed a first order dependence on [Ce(IV)], whereas the orders with respect to biopolymer concentrations are less than unity. In perchloric acid, the reactions exhibited less than unit orders with respect to [H(+)] whereas those proceeded in sulfuric acid showed negative fractional-first order dependences on [H(+)]. The effect of ionic strength and dielectric constant was studied. Probable mechanistic schemes for oxidation reactions were proposed. In both acids, the final oxidation products were characterized as mono-keto derivatives of both biopolymers. The activation parameters with respect to the slow step of the mechanisms were computed and discussed. The rate laws were derived and the reaction constants involved in the different steps of the mechanisms were calculated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Phytoagents for Cancer Management: Regulation of Nucleic Acid Oxidation, ROS, and Related Mechanisms

    PubMed Central

    Shyur, Lie-Fen

    2013-01-01

    Accumulation of oxidized nucleic acids causes genomic instability leading to senescence, apoptosis, and tumorigenesis. Phytoagents are known to reduce the risk of cancer development; whether such effects are through regulating the extent of nucleic acid oxidation remains unclear. Here, we outlined the role of reactive oxygen species in nucleic acid oxidation as a driving force in cancer progression. The consequential relationship between genome instability and cancer progression highlights the importance of modulation of cellular redox level in cancer management. Current epidemiological and experimental evidence demonstrate the effects and modes of action of phytoagents in nucleic acid oxidation and provide rationales for the use of phytoagents as chemopreventive or therapeutic agents. Vitamins and various phytoagents antagonize carcinogen-triggered oxidative stress by scavenging free radicals and/or activating endogenous defence systems such as Nrf2-regulated antioxidant genes or pathways. Moreover, metal ion chelation by phytoagents helps to attenuate oxidative DNA damage caused by transition metal ions. Besides, the prooxidant effects of some phytoagents pose selective cytotoxicity on cancer cells and shed light on a new strategy of cancer therapy. The “double-edged sword” role of phytoagents as redox regulators in nucleic acid oxidation and their possible roles in cancer prevention or therapy are discussed in this review. PMID:24454991

  1. Influence of different nominal molecular weight fractions of humic acids on phenol oxidation by permanganate.

    PubMed

    He, Di; Guan, Xiaohong; Ma, Jun; Yu, Min

    2009-11-01

    The effects of humic acid (HA) and its different nominal molecular weight (NMW) fractions on the phenol oxidation by permanganate were studied. Phenol oxidation by permanganate was enhanced by the presence of HA at pH 4-8, while slightly inhibited at pH 9-10. The effects of HA on phenol oxidation by permanganate were dependent on HA concentration and permanganate/phenol molar ratios. The high NMW fractions of HA enhanced phenol oxidation by permanganate at pH 7 more significantly than the low fractions of HA. The apparent second-order rate constants of phenol oxidation by permanganate in the presence of HA correlated well with their specific ultraviolet absorption (SUVA) at 254 nm and specific violet absorption (SVA) at 465 or 665 nm. High positive correlation coefficients (R(2) > 0.72) implied that pi-electrons of HA strongly influenced the reactivity of phenol towards permanganate oxidation which agreed well with the information provided by fluorescence spectroscopy. The FTIR analysis indicated that the HA fractions rich in aliphatic character, polysaccharide-like substances, and the amount of carboxylate groups had less effect on phenol oxidation by permanganate. The negative correlation between the rate constants of phenol oxidation by permanganate and O/C ratios suggested that the oxidation of phenol increased with a decrease in the content of oxygen-containing functional groups.

  2. Field rates for natural attenuation of arsenic in Tinto Santa Rosa acid mine drainage (SW Spain).

    PubMed

    Asta, Maria P; Ayora, Carlos; Acero, Patricia; Cama, Jordi

    2010-05-15

    Reactive transport modelling of the main processes related to the arsenic natural attenuation observed in the acid mine drainage (AMD) impacted stream of Tinto Santa Rosa (SW Spain) was performed. Despite the simplicity of the kinetic expressions used to deal with arsenic attenuation processes, the model reproduced successfully the major chemical trends observed along the acid discharge. Results indicated that the rate of ferrous iron oxidation was similar to the one obtained in earlier field studies in which microbial catalysis is reported to occur. With regard to the scaled arsenic oxidation rate, it is one order of magnitude faster than the values obtained under laboratory conditions suggesting the existence of a catalytic agent in the natural system. Schwertmannite precipitation rate, which was represented by a simple kinetic expression relying on Fe(III) and pH, was in the range calculated for other AMD impacted sites. Finally, the obtained distribution coefficients used for representing arsenic sorption onto Fe(III) precipitates were lower than those deduced from reported laboratory data. This discrepancy is attributed to a decrease in the schwertmannite arsenate sorption capacity as sulphate increases in the solution. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  3. Seasonal Rates of Methane Oxidation in Anoxic Marine Sediments

    PubMed Central

    Iversen, Niels; Blackburn, T. Henry

    1981-01-01

    Methane concentrations and rates of methane oxidation were measured in intact sediment cores from an inshore marine sediment at Jutland, Denmark. The rates of methane oxidation, determined by the appearance of 14CO2 from injected 14CH4, varied with sediment depth and season. Most methane oxidation was anoxic, but oxygen may have contributed to methane oxidation at the sediment surface. Cumulative rates (0- to 12-cm depth) for methane oxidation at Kysing Fjord were 3.34, 3.48, 8.60, and 17.04 μmol m−2 day−1 for April (4°C), May (13°C), July (17°C), and August (21°C), respectively. If all of the methane was oxidized by sulfate, it would account for only 0.01 to 0.06% of the sulfate reduction. The data indicate that methane was produced, in addition to being oxidized, in the 0- to 18-cm sediment stratum. PMID:16345784

  4. Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide.

    PubMed

    Che, Chi-Ming; Yip, Wing-Ping; Yu, Wing-Yiu

    2006-09-18

    A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2Ru(III)(OH2)]CF3CO2 (1; Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80% yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one-mole scale, the oxidation of cyclohexene, cyclooctene, and 1-octanol with 1 mol % of 1 produced adipic acid (124 g, 85% yield), suberic acid (158 g, 91% yield), and 1-octanoic acid (129 g, 90% yield), respectively. The oxidative C=C bond-cleavage reaction proceeded through the formation of cis- and trans-diol intermediates, which were further oxidized to carboxylic acids via C-C bond cleavage.

  5. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    PubMed

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  6. Fructose-induced inflammation, insulin resistance and oxidative stress: A liver pathological triad effectively disrupted by lipoic acid.

    PubMed

    Castro, María Cecilia; Massa, María Laura; Arbeláez, Luisa González; Schinella, Guillermo; Gagliardino, Juan J; Francini, Flavio

    2015-09-15

    Fructose administration induces hepatic oxidative stress, insulin resistance, inflammatory and metabolic changes. We tested their potential pathogenic relationship and whether these alterations can be prevented by R/S-α-lipoic acid. Wistar rats received during 21days a commercial diet or the same diet supplemented with 10% fructose in drinking water without/with R/S-α-lipoic acid injection. After this period, we measured a) serum glucose, triglyceride, insulin, homeostasis model assessment-insulin resistance (HOMA-IR), insulin glucose ratio (IGR) and Matsuda indexes and b) liver oxidative stress, inflammatory markers and insulin signaling pathway components. Fructose fed rats had hyperinsulinemia, hypertriglyceridemia, higher HOMA-IR, IGR and lower Matsuda indices compared to control animals, together with increased oxidative stress markers, TNFα, IL1β and PAI-1 gene expression, and TNFα and COX-2 protein content. Whereas insulin receptor level was higher in fructose fed rats, their tyrosine-residue phosphorylation was lower. IRS1/IRS2 protein levels and IRS1 tyrosine-phosphorylation rate were lower in fructose fed rats. All changes were prevented by R/S-α-lipoic acid co-administration. Fructose-induced hepatic oxidative stress, insulin resistance and inflammation form a triad that constitutes a vicious pathogenic circle. This circle can be effectively disrupted by R/S-α-lipoic acid co-administration, thus suggesting mutual positive interaction among the triad components. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Palmitoleic acid (16:1n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes.

    PubMed

    Cruz, Maysa M; Lopes, Andressa B; Crisma, Amanda R; de Sá, Roberta C C; Kuwabara, Wilson M T; Curi, Rui; de Andrade, Paula B M; Alonso-Vale, Maria I C

    2018-03-20

    We have recently demonstrated that palmitoleic acid (16:1n7) increases lipolysis, glucose uptake and glucose utilization for energy production in white adipose cells. In the present study, we tested the hypothesis that palmitoleic acid modulates bioenergetic activity in white adipocytes. For this, 3 T3-L1 pre-adipocytes were differentiated into mature adipocytes in the presence (or absence) of palmitic (16:0) or palmitoleic (16:1n7) acid at 100 or 200 μM. The following parameters were evaluated: lipolysis, lipogenesis, fatty acid (FA) oxidation, ATP content, oxygen consumption, mitochondrial mass, citrate synthase activity and protein content of mitochondrial oxidative phosphorylation (OXPHOS) complexes. Treatment with 16:1n7 during 9 days raised basal and isoproterenol-stimulated lipolysis, FA incorporation into triacylglycerol (TAG), FA oxidation, oxygen consumption, protein expression of subunits representing OXPHOS complex II, III, and V and intracellular ATP content. These effects were not observed in adipocytes treated with 16:0. Palmitoleic acid, by concerted action on lipolysis, FA esterification, mitochondrial FA oxidation, oxygen consumption and ATP content, does enhance white adipocyte energy expenditure and may act as local hormone.

  8. Advances in the Understanding and Treatment of Mitochondrial Fatty Acid Oxidation Disorders.

    PubMed

    Goetzman, Eric S

    2017-09-01

    This review focuses on advances made in the past three years with regards to understanding the mitochondrial fatty acid oxidation (FAO) pathway, the pathophysiological ramifications of genetic lesions in FAO enzymes, and emerging therapies for FAO disorders. FAO has now been recognized to play a key energetic role in pulmonary surfactant synthesis, T-cell differentiation and memory, and the response of the proximal tubule to kidney injury. Patients with FAO disorders may face defects in these cellular systems as they age. Aspirin, statins, and nutritional supplements modulate the rate of FAO under normal conditions and could be risk factors for triggering symptoms in patients with FAO disorders. Patients have been identified with mutations in the ACAD9 and ECHS1 genes, which may represent new FAO disorders. New interventions for long-chain FAODs are in clinical trials. Finally, post-translational modifications that regulate fatty acid oxidation protein activities have been characterized that represent important new therapeutic targets. Recent research has led to a deeper understanding of FAO. New therapeutic avenues are being pursued that may ultimately cause a paradigm shift for patient care.

  9. Optimal Electrocatalytic Pd/MWNTs Nanocatalysts toward Formic Acid Oxidation

    PubMed Central

    Wang, Yiran; He, Qingliang; Wei, Huige; Guo, Jiang; Ding, Keqiang; Wang, Qiang; Wang, Zhe; Wei, Suying; Guo, Zhanhu

    2017-01-01

    The operating conditions such as composition of electrolyte and temperature can greatly influence the formic acid (HCOOH) oxidation reaction (FAOR). Palladium decorated multi-walled carbon nanotubes (Pd/MWNTs) were successfully synthesized and employed as nanocatalysts to explore the effects of formic acid, sulfuric acid (H2SO4) concentration and temperature on FAOR. Both the hydrogen adsorption in low potential range and the oxidation of poisoning species during the high potential range in cyclic voltammetry were demonstrated to contribute to the enhanced electroactivity of Pd/MWNTs. The as-synthesized Pd/MWNTs gave the best performance under a condition with balanced adsorptions of HCOOH and H2SO4 molecules. The dominant dehydrogenation pathway on Pd/MWNTs can be largely depressed by the increased dehydration pathway, leading to an increased charge transfer resistance (Rct). Increasing HCOOH concentration could directly increase the dehydration process proportion and cause the production of COads species. H2SO4 as donor of H+ greatly facilitated the onset oxidation of HCOOH in the beginning process but it largely depressed the HCOOH oxidation with excess amount of H+. Enhanced ion mobility with increasing the temperature was mainly responsible for the increased current densities, improved tolerance stabilities and reduced Rct values, while dehydration process was also increased simultaneously. PMID:29622817

  10. A preliminary study of the electro-oxidation of L-ascorbic acid on polycrystalline silver in alkaline solution

    NASA Astrophysics Data System (ADS)

    Majari Kasmaee, L.; Gobal, F.

    Electrochemical oxidation of L-ascorbic acid on polycrystalline silver in alkaline aqueous solutions is studied by cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (IS). The anodic electro-oxidation starts at -500 mV versus SCE and shows continued anodic oxidation in the cathodic half cycle in the CV regime signifying slowly oxidizing adsorbates. Diffusion coefficient of ascorbate ion measured under both voltammetric regimes is around 1.4 × 10 -5 cm 2 s -1. Impedance spectroscopy measures the capacitances associated with double layer and adsorption around 50 μF cm -2 and 4 mF cm -2 as well as the adsorption and decomposition resistances (rates).

  11. Neutral fat hydrolysis and long-chain fatty acid oxidation during anaerobic digestion of slaughterhouse wastewater.

    PubMed

    Masse, L; Massé, D I; Kennedy, K J; Chou, S P

    2002-07-05

    Neutral fat hydrolysis and long-chain fatty acid (LCFA) oxidation rates were determined during the digestion of slaughterhouse wastewater in anaerobic sequencing batch reactors operated at 25 degrees C. The experimental substrate consisted of filtered slaughterhouse wastewater supplemented with pork fat particles at various average initial sizes (D(in)) ranging from 60 to 450 microm. At the D(in) tested, there was no significant particle size effect on the first-order hydrolysis rate. The neutral fat hydrolysis rate averaged 0.63 +/- 0.07 d(-1). LCFA oxidation rate was modelled using a Monod-type equation. The maximum substrate utilization rate (kmax) and the half-saturation concentration (Ks) averaged 164 +/- 37 mg LCFA/L/d and 35 +/- 31 mg LCFA/L, respectively. Pork fat particle degradation was mainly controlled by LCFA oxidation rate and, to a lesser extent, by neutral fat hydrolysis rate. Hydrolysis pretreatment of fat-containing wastewaters and sludges should not substantially accelerate their anaerobic treatment. At a D(in) of 450 microm, fat particles were found to inhibit methane production during the initial 20 h of digestion. Inhibition of methane production in the early phase of digestion was the only significant effect of fat particle size on anaerobic digestion of pork slaughterhouse wastewater. Soluble COD could not be used to determine the rate of lipid hydrolysis due to LCFA adsorption on the biomass.

  12. Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer–Tropsch synthesis catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gregory R.; Bell, Alexis T.

    2016-06-17

    Metal oxides of Ce, Gd, La, Mn, and Zr were investigated as promoters for improving the activity and selectivity of Co-based FTS catalysts. The extent to which these promoters decrease the selectivity toward CH 4 and increase the selectivity toward C 5+ hydrocarbons was found to depend on both the loading and the composition of the oxide promoter. Elemental mapping by STEM–EDS revealed that the propensity for a given metal oxide to associate with Co affects the sensitivity of the product distribution to changes in promoter loading. For all promoters, a sufficiently high loading resulted in the product distributions becomingmore » insensitive to further increases in promoter loading, very likely due to the formation of a half monolayer of promoter oxide over the Co surface. Simulations suggest that the fraction of Co active sites that are adjacent to the promoter moieties approaches unity at this degree of coverage. The oxidation state of the promoter metal cation under reaction conditions, determined by in situ XANES measurements, was used to calculate relative Lewis acidity of the promoter metal cation. A strong positive correlation was found between the C 5+ product selectivity and the Lewis acidity of the promoter metal cations, suggesting that the promotional effects are a consequence of Lewis acid–base interactions between the reaction intermediates and the promoter metal cations. Rate data obtained at different pressures were used to estimate the apparent rate coefficient and the CO adsorption constant appearing in the Langmuir–Hinshelwood expression that describes the CO consumption kinetics for both unpromoted and the metal oxide-promoted catalysts. Both parameters exhibited positive correlations with the promoter Lewis acidity. In conclusion, these results are consistent with the hypothesis that the metal cations of the promoter act as Lewis acids that interact with the O atom of adsorbed CO to facilitate CO adsorption and dissociation.« less

  13. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    NASA Astrophysics Data System (ADS)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  14. The Nitric Acid Oxidation of Selected Alcohols and Ketones.

    ERIC Educational Resources Information Center

    Field, Kurt W.; And Others

    1985-01-01

    Shows that nitric acid can be used as a rapid, versatile, and economical oxidant for selected organic substances. The experiments (with background information, procedures, and results provided) require one three-hour laboratory period but could serve as open-ended projects since substrates not described could be oxidized. (JN)

  15. Monocarboxylic acids from oxidation of acyclic isoprenoid alkanes by Mycobacterium fortuitum

    NASA Technical Reports Server (NTRS)

    Cox, R. E.; Maxwell, J. R.; Myers, R. N.

    1976-01-01

    Mycobacterium fortuitum utilizes certain stereoisomeric mixtures of individual multimethyl branched alkanes as sole carbon source, including 2,6(R), 10(S), 14(RS)-tetramethylhexadecane; 2,6(R), 10(S), 14(RS)-tetramethylheptadecane; 2,6(RS), 10(RS)-trimethyltetradecane, and 2,6(R), 10(S)-trimethylpentadecane. Products of oxidation isolated from the bacterial lipids were acids derived predominantly from oxidation of the isopropyl terminus of each alkane, except in the case of 2,6(RS), 10(RS)-trimethyltetradecane. With the latter, acids from oxidation at either terminus were detected in comparable proportions.

  16. Generation of organic acids and monosaccharides by hydrolytic and oxidative transformation of food processing residues.

    PubMed

    Fischer, Klaus; Bipp, Hans-Peter

    2005-05-01

    Carbohydrate-rich biomass residues, i.e. sugar beet molasses, whey powder, wine yeast, potato peel sludge, spent hops, malt dust and apple marc, were tested as starting materials for the generation of marketable chemicals, e.g. aliphatic acids, sugar acids and mono-/disaccharides. Residues were oxidized or hydrolyzed under acidic or alkaline conditions applying conventional laboratory digestion methods and microwave assisted techniques. Yields and compositions of the oxidation products differed according to the oxidizing agent used. Main products of oxidation by 30% HNO(3) were acetic, glucaric, oxalic and glycolic acids. Applying H(2)O(2)/CuO in alkaline solution, the organic acid yields were remarkably lower with formic, acetic and threonic acids as main products. Gluconic acid was formed instead of glucaric acid throughout. Reaction of a 10% H(2)O(2) solution with sugar beet molasses generated formic and lactic acids mainly. Na(2)S(2)O(8) solutions were very inefficient at oxidizing the residues. Glucose, arabinose and galactose were formed during acidic hydrolysis of malt dust and apple marc. The glucose content reached 0.35 g per gram of residue. Important advantages of the microwave application were lower reaction times and reduced reagent demands.

  17. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  18. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia.

    PubMed

    Fukawa, Tomoya; Yan-Jiang, Benjamin Chua; Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Huang, Dan; Qian, Chao-Nan; Ong, Pauline; Li, Zhimei; Chen, Shuwen; Mak, Shi Ya; Lim, Wan Jun; Kanayama, Hiro-Omi; Mohan, Rosmin Elsa; Wang, Ruiqi Rachel; Lai, Jiunn Herng; Chua, Clarinda; Ong, Hock Soo; Tan, Ker-Kan; Ho, Ying Swan; Tan, Iain Beehuat; Teh, Bin Tean; Shyh-Chang, Ng

    2016-06-01

    Cachexia is a devastating muscle-wasting syndrome that occurs in patients who have chronic diseases. It is most commonly observed in individuals with advanced cancer, presenting in 80% of these patients, and it is one of the primary causes of morbidity and mortality associated with cancer. Additionally, although many people with cachexia show hypermetabolism, the causative role of metabolism in muscle atrophy has been unclear. To understand the molecular basis of cachexia-associated muscle atrophy, it is necessary to develop accurate models of the condition. By using transcriptomics and cytokine profiling of human muscle stem cell-based models and human cancer-induced cachexia models in mice, we found that cachectic cancer cells secreted many inflammatory factors that rapidly led to high levels of fatty acid metabolism and to the activation of a p38 stress-response signature in skeletal muscles, before manifestation of cachectic muscle atrophy occurred. Metabolomics profiling revealed that factors secreted by cachectic cancer cells rapidly induce excessive fatty acid oxidation in human myotubes, which leads to oxidative stress, p38 activation and impaired muscle growth. Pharmacological blockade of fatty acid oxidation not only rescued human myotubes, but also improved muscle mass and body weight in cancer cachexia models in vivo. Therefore, fatty acid-induced oxidative stress could be targeted to prevent cancer-induced cachexia.

  19. MOXI Is a Mitochondrial Micropeptide That Enhances Fatty Acid β-Oxidation.

    PubMed

    Makarewich, Catherine A; Baskin, Kedryn K; Munir, Amir Z; Bezprozvannaya, Svetlana; Sharma, Gaurav; Khemtong, Chalermchai; Shah, Akansha M; McAnally, John R; Malloy, Craig R; Szweda, Luke I; Bassel-Duby, Rhonda; Olson, Eric N

    2018-06-26

    Micropeptide regulator of β-oxidation (MOXI) is a conserved muscle-enriched protein encoded by an RNA transcript misannotated as non-coding. MOXI localizes to the inner mitochondrial membrane where it associates with the mitochondrial trifunctional protein, an enzyme complex that plays a critical role in fatty acid β-oxidation. Isolated heart and skeletal muscle mitochondria from MOXI knockout mice exhibit a diminished ability to metabolize fatty acids, while transgenic MOXI overexpression leads to enhanced β-oxidation. Additionally, hearts from MOXI knockout mice preferentially oxidize carbohydrates over fatty acids in an isolated perfused heart system compared to wild-type (WT) animals. MOXI knockout mice also exhibit a profound reduction in exercise capacity, highlighting the role of MOXI in metabolic control. The functional characterization of MOXI provides insight into the regulation of mitochondrial metabolism and energy homeostasis and underscores the regulatory potential of additional micropeptides that have yet to be identified. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Oxidation Stability of O/W Emulsion Prepared with Linolenic Acid Enriched Diacylglycerol.

    PubMed

    Shin, Jung-Ah; Lee, Mi-Young; Lee, Ki-Teak

    2016-10-01

    The sn-1,3-regiospecific Rhizomucor miehei lipase (Lipozyme RM IM) was employed to produce structured diacylglycerol (SL-DAG), which contained 67.3 mol% DAG with 27.2 area% of C18:3. To investigate the oxidative stability of the SL-DAG in emulsion form, 5% oil-in-water (O/W) emulsions were prepared with 200 and 400 ppm sinapic acid. It was shown that the hydroperoxide values of the control (without any antioxidant) was the highest (117.7 meq/L) on day 43 of storage and thereafter the value decreased. However, the emulsions with 200 and 400 ppm sinapic acid resulted in slow oxidation degree until day 64 of storage (30.3 and 7.3 meq/L, respectively). Aldehyde measurements for the 200 ppm sinapic acid emulsion (12.8 mmol/mol) and the 400 ppm sinapic acid emulsion (7.5 mmol/mol) also showed better oxidative stability than that for the 200 ppm catechin emulsion (27.4 mmol/mol) and the control (52.7 mmol/mol). Although the SL-DAG in the emulsions contains high levels of polyunsaturated fatty acids, the degree of oxidation in the emulsions can be reduced when sinapic acid is used as an antioxidant. © 2016 Institute of Food Technologists®.

  1. Treatability of phenol-production wastewater: Rate constant and pathway of dimethyl phenyl carbinol oxidation by hydroxyl radicals.

    PubMed

    Boonrattanakij, Nonglak; Joysampao, Atsawin; Pobsuktanasub, Tuksinaiya; Anotai, Jin; Ruangchainikom, Chalermchai

    2017-12-15

    Phenol-production wastewater is difficult to treat biologically by aerobic processes to meet the effluent standard COD of 120 mg L -1 because it contains several highly refractory aromatic pollutants, particularly dimethyl phenyl carbinol. Pretreatment revealed that dimethyl phenyl carbinol was slowly oxidized by molecular ozone; however, it readily reacted with hydroxyl radicals to yield acetophenone as a primary product. Acetophenone was further oxidized, first through five different pathways to form benzoic acid, phenyl glyoxalic acid, 4-4'-diacetyl biphenyl, and several hydroxylated aromatic compounds, and later to aliphatic carboxylic acids via ring cleavage. Regardless of system configuration (homogeneous vs heterogeneous), operating mode (batch vs continuous), and chemical concentration, the average intrinsic rate constants were 1.05 × 10 10 and 9.29 × 10 9  M -1  s -1 for dimethyl phenyl carbinol and acetophenone, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The effect of valinomycin in fibroblasts from patients with fatty acid oxidation disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ndukwe Erlingsson, Uzochi Chimdinma; Iacobazzi, Francesco; Department of Basic Medical Sciences, University of Bari, Piazza Giulio Cesare 11, Policlinico, I-70124 Bari

    Highlights: •Valinomycin can cause mitochondrial stress and stimulate fatty acid oxidation. •Cells with VLCAD deficiency fail to increase fatty acid oxidation in response to valinomycin. •Response to valinomycin can help in the diagnosis of VLCAD deficiency. -- Abstract: Disorders of the carnitine cycle and of the beta oxidation spiral impair the ability to obtain energy from fats at time of fasting and stress. This can result in hypoketotic hypoglycemia, cardiomyopathy, cardiac arrhythmia and other chronic medical problems. The in vitro study of fibroblasts from patients with these conditions is impaired by their limited oxidative capacity. Here we evaluate the capacitymore » of valinomycin, a potassium ionophore that increases mitochondrial respiration, to increase the oxidation of fatty acids in cells from patients with inherited fatty acid oxidation defects. The addition of valinomycin to fibroblasts decreased the accumulation of the lipophilic cation tetraphenylphosphonium (TPP{sup +}) at low concentrations due to the dissipation of the mitochondrial membrane potential. At higher doses, valinomycin increased TPP{sup +} accumulation due to the increased potassium permeability of the plasma membrane and subsequent cellular hyperpolarization. The incubation of normal fibroblasts with valinomycin increased [{sup 14}C]-palmitate oxidation (measured as [{sup 14}C]O{sub 2} release) in a dose-dependent manner. By contrast, valinomycin failed to increase palmitate oxidation in fibroblasts from patients with very long chain acyl CoA dehydrogenase (VLCAD) deficiency. This was not observed in fibroblasts from patients heterozygous for this condition. These results indicate that valinomycin can increase fatty acid oxidation in normal fibroblasts and could be useful to differentiate heterozygotes from patients affected with VLCAD deficiency.« less

  3. Epoxy Stearic Acid, an Oxidative Product Derived from Oleic Acid, Induces Cytotoxicity, Oxidative Stress, and Apoptosis in HepG2 Cells.

    PubMed

    Liu, Ying; Cheng, Yajun; Li, Jinwei; Wang, Yuanpeng; Liu, Yuanfa

    2018-05-23

    In the present study, effects of cis-9,10-epoxy stearic acid (ESA) generated by the thermal oxidation of oleic acid on HepG2 cells, including cytotoxicity, apoptosis, and oxidative stress, were investigated. Our results revealed that ESA decreased the cell viability and induced cell death. Cell cycle analysis with propidium iodide staining showed that ESA induced cell cycle arrest at the G0/G1 phase in HepG2 cells. Cell apoptosis analysis with annexin V and propidium iodide staining demonstrated that ESA induced HepG2 cell apoptotic events in a dose- and time-dependent manner; the apoptosis of cells after treated with 500 μM ESA for 12, 24, and 48 h was 32.16, 38.70, and 65.80%, respectively. Furthermore, ESA treatment to HepG2 cells resulted in an increase in reactive oxygen species and malondialdehyde (from 0.84 ± 0.02 to 8.90 ± 0.50 nmol/mg of protein) levels and a reduction in antioxidant enzyme activity, including superoxide dismutase (from 1.34 ± 0.27 to 0.10 ± 0.007 units/mg of protein), catalase (from 100.04 ± 5.05 to 20.09 ± 3.00 units/mg of protein), and glutathione peroxidase (from 120.44 ± 7.62 to 35.84 ± 5.99 milliunits/mg of protein). These findings provide critical information on the effects of ESA on HepG2 cells, particularly cytotoxicity and oxidative stress, which is important for the evaluation of the biosafety of the oxidative product of oleic acid.

  4. Ammonia oxidation rates and nitrification in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Newell, Silvia E.; Babbin, Andrew R.; Jayakumar, Amal; Ward, Bess B.

    2011-12-01

    Nitrification rates, as well as the relationships between rates and ammonia oxidizer abundance (both archaeal and bacterial), were investigated in the Arabian Sea. Ammonia oxidation rates were measured directly using 15N-NH4+stable isotope additions in gas-impermeable, trace metal clean trilaminate bags (500 mL) at in situ temperature. Tracer incubations were performed at three stations at depths above, below, and within the oxycline of the open-ocean oxygen minimum zone (OMZ). Ammonia oxidation rates were similar to previous open-ocean measurements, ranging from undetectable to 21.6 ± 0.1 nmol L-1 d-1. The highest rates at each station occurred at the primary nitrite maximum (above the OMZ), and rates were very low at depths greater than 900 m. The abundances of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were estimated using theamoA gene by quantitative polymerase chain reaction (qPCR). Both AOA and AOB amoA were detected above, within, and below the OMZ, although the AOA were always more abundant than the AOB, by a factor of 35-216. Nitrification rates were not directly correlated to AOA or AOB amoA abundance. These rates offer new insight into the role of nitrification in the mesopelagic zone. The abundance of AOA amoA genes at 1000 m suggests that ˜50% of the microbial biomass could be autotrophic. Additionally, the integrated nitrification rate at depth implies that nitrification could consume most of the ammonium produced by the flux of organic carbon in the mesopelagic zone.

  5. Thrombin-activated human platelets acutely generate oxidized docosahexaenoic-acid-containing phospholipids via 12-lipoxygenase.

    PubMed

    Morgan, Lloyd T; Thomas, Christopher P; Kühn, Hartmut; O'Donnell, Valerie B

    2010-10-01

    Arachidonate-containing oxidized phospholipids are acutely generated by 12-LOX (12-lipoxygenase) in agonist-activated platelets. In the present study, formation of structurally related lipids by oxidation of DHA (docosahexaenoic acid)-containing phospholipids is demonstrated using lipidomic approaches. Precursor scanning reverse-phase LC (liquid chromatography)-MS/MS (tandem MS) identified a new family of lipids that comprise phospholipid-esterified HDOHE (hydroxydocosahexaenoic acid). Two diacyl and two plasmalogen PEs (phosphatidylethanolamines) containing predominantly the 14-HDOHE positional isomer (18:0p/14-HDOHE-PE, 18:0a/14-HDOHE-PE, 16:0a/14-HDOHE-PE and 16:0p/14-HDOHE-PE) were structurally characterized using MS/MS and by comparison with biogenic standards. An involvement of 12-LOX was indicated as purified recombinant human 12-LOX also generated the 14-HDOHE isomer from DHA. Pharmacological studies using inhibitors and recombinant platelet 12-LOX indicate that they form via esterification of newly formed non-esterified HDOHE. HDOHE-PEs formed at significant rates (2-4 ng/4×10(7) cells) within 2-180 min of thrombin stimulation, and their formation was blocked by calcium chelation. In summary, a new family of oxidized phospholipid was identified in thrombin-activated human platelets.

  6. Rates of manganese oxidation in aqueous systems

    USGS Publications Warehouse

    Hem, J.D.

    1981-01-01

    The rate of crystal growth of Mn3O4 (hausmannite) and ??MnOOH (feitknechtite) in aerated aqueous manganous perchlorate systems, near 0.01 M in total manganese, was determined at pH levels ranging from 7.00 to 9.00 and at temperatures from 0.5 to 37.4??C. The process is autocatalytic, but becomes psuedo first-order in dissolved Mn2+ activity when the amount of precipitate surface is large compared to the amount of unreacted manganese. Reaction rates determined by titrations using an automated pH-stat were fitted to an equation for precipitate growth. The rates are proportional to surface area of oxide and degree of supersaturation with respect to Mn2+. The oxide obtained at the higher temperature was Mn3O4, but at 0.5?? C only ??MnOOH was formed. At intermediate temperatures, mixtures of these solids were formed. The rate of precipitation of hausmannite is strongly influenced by temperature, and that of feitknechtite much less so. The difference in activation energy may be related to differences in crystal structure of the oxides and the geometry of polymeric hydroxy ion precursors. ?? 1981.

  7. Rates of manganese oxidation in aqueous systems

    NASA Astrophysics Data System (ADS)

    Hem, John D.

    1981-08-01

    The rate of crystal growth of Mn 3O 4 (hausmannite) and βMnOOH (feitknechtite) in aerated aqueous manganous perchlorate systems, near 0.01 M in total manganese, was determined at pH levels ranging from 7.00 to 9.00 and at temperatures from 0.5 to 37.4°C. The process is autocatalytic, but becomes psuedo first-order in dissolved Mn 2+ activity when the amount of precipitate surface is large compared to the amount of unreacted manganese. Reaction rates determined by titrations using an automated pH-stat were fitted to an equation for precipitate growth. The rates are proportional to surface area of oxide and degree of supersaturation with respect to Mn 2+. The oxide obtained at the higher temperature was Mn 3O 4, but at 0.5° C only βMnOOH was formed. At intermediate temperatures, mixtures of these solids were formed. The rate of precipitation of hausmannite is strongly influenced by temperature, and that of feitknechtite much less so. The difference in activation energy may be related to differences in crystal structure of the oxides and the geometry of polymeric hydroxy ion precursors.

  8. Germanium oxide removal by citric acid and thiol passivation from citric acid-terminated Ge(100).

    PubMed

    Collins, Gillian; Aureau, Damien; Holmes, Justin D; Etcheberry, Arnaud; O'Dwyer, Colm

    2014-12-02

    Many applications of germanium (Ge) are underpinned by effective oxide removal and surface passivation. This important surface treatment step often requires H-X (X = Cl, Br, I) or HF etchants. Here, we show that aqueous citric acid solutions are effective in the removal of GeOx. The stability of citric acid-treated Ge(100) is compared to HF and HCl treated surfaces and analyzed by X-ray photoelectron spectroscopy. Further Ge surface passivation was investigated by thiolation using alkane monothiols and dithiols. The organic passivation layers show good stability with no oxide regrowth observed after 3 days of ambient exposure.

  9. Evaluation of Fe(II) oxidation at an acid mine drainage site using laboratory-scale reactors

    NASA Astrophysics Data System (ADS)

    Brown, Juliana; Burgos, William

    2010-05-01

    Acid mine drainage (AMD) is a severe environmental threat to the Appalachian region of the Eastern United States. The Susquehanna and Potomac River basins of Pennsylvania drain to the Chesapeake Bay, which is heavily polluted by acidity and metals from AMD. This study attempted to unravel the complex relationships between AMD geochemistry, microbial communities, hydrodynamic conditions, and the mineral precipitates for low-pH Fe mounds formed downstream of deep mine discharges, such as Lower Red Eyes in Somerset County, PA, USA. This site is contaminated with high concentrations of Fe (550 mg/L), Mn (115 mg/L), and other trace metals. At the site 95% of dissolved Fe(II) and 56% of total dissolved Fe is removed without treatment, across the mound, but there is no change in the concentration of trace metals. Fe(III) oxides were collected across the Red Eyes Fe mound and precipitates were analyzed by X-ray diffraction, electron microscopy and elemental analysis. Schwertmannite was the dominant mineral phase with traces of goethite. The precipitates also contained minor amounts of Al2O3, MgO,and P2O5. Laboratory flow-through reactors were constructed to quantify Fe(II) oxidation and Fe removal over time at terrace and pool depositional facies. Conditions such as residence time, number of reactors in sequence and water column height were varied to determine optimal conditions for Fe removal. Reactors with sediments collected from an upstream terrace oxidized more than 50% of dissolved Fe(II) at a ten hour residence time, while upstream pool sediments only oxidized 40% of dissolved Fe(II). Downstream terrace and pool sediments were only capable of oxidizing 25% and 20% of Fe(II), respectively. Fe(II) oxidation rates measured in the reactors were determined to be between 3.99 x 10-8and 1.94 x 10-7mol L-1s-1. The sediments were not as efficient for total dissolved Fe removal and only 25% was removed under optimal conditions. The removal efficiency for all sediments

  10. Activation of type 2 cannabinoid receptors (CB2R) promotes fatty acid oxidation through the SIRT1/PGC-1α pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xuqin; Sun, Tao; Wang, Xiaodong, E-mail: xdwang666@hotmail.com

    2013-07-05

    Highlights: •TC, a CB2R specific agonist, stimulates SIRT1 activity by PKA/CREB pathway. •TC promotes PGC-1α transcriptional activity by increasing its deacetylation. •TC increases the expression of genes linked to FAO and promotes the rate of FAO. •The effects of TC in FAO are dependent on CB2R. •Suggesting CB2R as a target to treat diseases with lipid dysregulation. -- Abstract: Abnormal fatty acid oxidation has been associated with obesity and type 2 diabetes. At the transcriptional level, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) has been reported to strongly increase the ability of hormone nuclear receptors PPARα and ERRα to drive transcriptionmore » of fatty acid oxidation enzymes. In this study, we report that a specific agonist of the type 2 cannabinoid receptor (CB2R) can lead to fatty acid oxidation through the PGC-1α pathway. We have found that CB2R is expressed in differentiated C2C12 myotubes, and that use of the specific agonist trans-caryophyllene (TC) stimulates sirtuin 1 (SIRT1) deacetylase activity by increasing the phosphorylation of cAMP response element-binding protein (CREB), thus leading to increased levels of PGC-1α deacetylation. This use of TC treatment increases the expression of genes linked to the fatty acid oxidation pathway in a SIRT1/PGC-1α-dependent mechanism and also drastically accelerates the rate of complete fatty acid oxidation in C2C12 myotubes, neither of which occur when CB2R mRNA is knocked down using siRNA. These results reveal that activation of CB2R by a selective agonist promotes lipid oxidation through a signaling/transcriptional pathway. Our findings imply that pharmacological manipulation of CB2R may provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.« less

  11. Photocatalytic Oxidation of Sulfurous Acid in an Aqueous Medium

    ERIC Educational Resources Information Center

    Romero, Alicia; Hernandez, Willie; Suarez, Marco F.

    2005-01-01

    The effect of some parameters on sulfurous acid and sulfur oxidation kinetics such as initial concentration of sulfurous acid, oxygen, TiO[2] crystalline concentration, the power of black light, and quantity of TiO[2] is investigated. The experiments can be performed in an undergraduate physical chemistry laboratory with an inexpensive…

  12. Long Chain Fatty Acid Acylated Derivatives of Quercetin-3-O-Glucoside as Antioxidants to Prevent Lipid Oxidation

    PubMed Central

    Warnakulasuriya, Sumudu N.; Ziaullah; Rupasinghe, H.P. Vasantha

    2014-01-01

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G. PMID:25384198

  13. Long chain fatty acid acylated derivatives of quercetin-3-o-glucoside as antioxidants to prevent lipid oxidation.

    PubMed

    Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha

    2014-11-06

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.

  14. The OH-initiated oxidation of atmospheric peroxyacetic acid: Experimental and model studies

    NASA Astrophysics Data System (ADS)

    Wu, Huihui; Wang, Yin; Li, Huan; Huang, Liubin; Huang, Dao; Shen, Hengqing; Xing, Yanan; Chen, Zhongming

    2017-09-01

    Peroxyacetic acid (PAA, CH3C(O)OOH) plays an important role in atmospheric chemistry, serving as reactive oxidant and affecting radical recycling. However, previous studies revealed an obvious gap between modelled and observed concentrations of atmospheric PAA, which may be partly ascribed to the uncertainty in the kinetics and mechanism of OH-oxidation. In this study, we measured the rate constant of OH radical reaction with PAA (kPAA+OH) and investigated the products in order to develop a more robust atmospheric PAA chemistry. Using the relative rates technique and employing toluene and meta-xylene as reference compounds, the kPAA+OH was determined to be (9.4-11.9) × 10-12 cm3 molecule-1 s-1 at 298 K and 1 atm, which is about (2.5-3.2) times larger than that parameter used in Master Chemical Mechanism v3.3.1 (MCM v3.3.1) (3.70 × 10-12 cm3 molecule-1 s-1). Incorporation of a box model and MCM v3.3.1 with revised PAA chemistry represented a better simulation of atmospheric PAA observed during Wangdu Campaign 2014, a rural site in North China Plain. It is found that OH-oxidation is an important sink of atmospheric PAA in this rural area, accounting for ∼30% of the total loss. Moreover, the major terminal products of PAA-OH reaction were identified as formaldehyde (HCHO) and formic acid (HC(O)OH). The modelled results show that both primary and secondary chemistry play an important role in the large HCHO and HC(O)OH formation under experimental conditions. There should exist the channel of methyl H-abstraction for PAA-OH reaction, which may also provide routes to HCHO and HC(O)OH formation.

  15. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    MedlinePlus

    Sodium picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large ... clear view of the walls of the colon. Sodium picosulfate is in a class of medications called ...

  16. Ultrasound-assisted oxidation of dibenzothiophene with phosphotungstic acid supported on activated carbon.

    PubMed

    Liu, Liyan; Zhang, Yu; Tan, Wei

    2014-05-01

    Phosphotungstic acid (HPW) supported on activated carbon (AC) was applied to catalyze deep oxidation desulfurization of fuel oil with the assist of ultrasound. The sulfur-conversion rate was evaluated by measuring the concentration of dibenzothiophene (DBT) in n-octane before and after the oxidation. Supporting HPW on AC has been verified to play a positive role in UAOD process by a series of contrast tests, where only HPW, AC or a mixture of free HPW and AC was used. The influences of catalyst dose, ultrasound power, reaction temperature, H2O2:oil volume ratio and the reuse of catalyst on the catalytic oxidation desulfurization kinetics were investigated. The DBT conversion rate of the reaction catalyzed by supported HPW under ultrasound irradiation was higher than the summation of the reactions with HPW only and AC only as catalyst. With the increase of loading amount of HPW on AC, ultrasound power, H2O2:oil volume ratio and reaction temperature, the catalytic oxidation reactivity of DBT would be enhanced. The optimum loading amount of HPW was 10%, exceed which DBT conversion would no longer increase obviously. DBT could be completely converted under the optimized conditions (volume ratio of H2O2 to model oil: 1:10, mass ratio of the supported HPW to model oil: 1.25%, temperature: 70°C) after 9 min of ultrasound irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Detailed electrochemical studies of the tetraruthenium polyoxometalate water oxidation catalyst in acidic media: identification of an extended oxidation series using Fourier transformed alternating current voltammetry.

    PubMed

    Lee, Chong-Yong; Guo, Si-Xuan; Murphy, Aidan F; McCormac, Timothy; Zhang, Jie; Bond, Alan M; Zhu, Guibo; Hill, Craig L; Geletii, Yurii V

    2012-11-05

    The electrochemistry of the water oxidation catalyst, Rb(8)K(2)[{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(γ-SiW(10)O(36))(2)] (Rb(8)K(2)-1(0)) has been studied in the presence and absence of potassium cations in both hydrochloric and sulfuric acid solutions by transient direct current (dc) cyclic voltammetry, a steady state dc method in the rotating disk configuration and the kinetically sensitive technique of Fourier transformed large-amplitude alternating current (ac) voltammetry. In acidic media, the presence of potassium ions affects the kinetics (apparent rate of electron transfer) and thermodynamics (reversible potentials) of the eight processes (A'/A to H/H') that are readily detected under dc voltammetric conditions. The six most positive processes (A'/A to F/F'), each involve a one electron ruthenium based charge transfer step (A'/A, B'/B are Ru(IV/V) oxidation and C/C' to F/F' are Ru(IV/III) reduction). The apparent rate of electron transfer of the ruthenium centers in sulfuric acid is higher than in hydrochloric acid. The addition of potassium cations increases the apparent rates and gives rise to a small shift of reversible potential. Simulations of the Fourier transformed ac voltammetry method show that the B'/B, E/E', and F/F' processes are quasi-reversible, while the others are close to reversible. A third Ru(IV/V) oxidation process is observed just prior to the positive potential limit via dc methods. Importantly, the ability of the higher harmonic components of the ac method to discriminate against the irreversible background solvent process allows this (process I) as well as an additional fourth reversible ruthenium based process (J) to be readily identified. The steady-state rotating disk electrode (RDE) method confirmed that all four Ru-centers in Rb(8)K(2)-1(0) are in oxidation state IV. The dc and ac data indicate that reversible potentials of the four ruthenium centers are evenly spaced, which may be relevant to understanding of the water oxidation

  18. An allene oxide and 12-oxophytodienoic acid are key intermediates in jasmonic acid biosynthesis by Fusarium oxysporum.

    PubMed

    Oliw, Ernst H; Hamberg, Mats

    2017-08-01

    Fungi can produce jasmonic acid (JA) and its isoleucine conjugate in large quantities, but little is known about the biosynthesis. Plants form JA from 18:3 n -3 by 13 S -lipoxygenase (LOX), allene oxide synthase, and allene oxide cyclase. Shaking cultures of Fusarium oxysporum f. sp. tulipae released over 200 mg of jasmonates per liter. Nitrogen powder of the mycelia expressed 10 R -dioxygenase-epoxy alcohol synthase activities, which was confirmed by comparison with the recombinant enzyme. The 13 S -LOX of F. oxysporum could not be detected in the cell-free preparations. Incubation of mycelia in phosphate buffer with [17,17,18,18,18- 2 H 5 ]18:3 n -3 led to biosynthesis of a [ 2 H 5 ]12-oxo-13-hydroxy-9 Z ,15 Z -octadecadienoic acid (α-ketol), [ 2 H 5 ]12-oxo-10,15 Z -phytodienoic acid (12-OPDA), and [ 2 H 5 ]13-keto- and [ 2 H 5 ]13 S -hydroxyoctadecatrienoic acids. The α-ketol consisted of 90% of the 13 R stereoisomer, suggesting its formation by nonenzymatic hydrolysis of an allene oxide with 13 S configuration. Labeled and unlabeled 12-OPDA were observed following incubation with 0.1 mM [ 2 H 5 ]18:3 n -3 in a ratio from 0.4:1 up to 47:1 by mycelia of liquid cultures of different ages, whereas 10 times higher concentration of [ 2 H 5 ]13 S -hydroperoxyoctadecatrienoic acid was required to detect biosynthesis of [ 2 H 5 ]12-OPDA. The allene oxide is likely formed by a cytochrome P450 or catalase-related hydroperoxidase. We conclude that F. oxysporum , like plants, forms jasmonates with an allene oxide and 12-OPDA as intermediates. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. [Effect of calcium cations on acid-base properties and free radical oxidation of dopamine and pyrocatechol].

    PubMed

    Lebedev, A V; Ivanova, M V; Timoshin, A A; Ruuge, E K

    2008-01-01

    Ca2+-induced increase in the rate of pyrocatechol and dopamine oxidation by dioxygen and Ca2+-dependent acid-base properties of the catechols were studied by potentiometric titration, UV/Vis-spectrophotometry, EPR-spectroscopy, and by measurement of oxygen consumption. The effect of Ca2+ on the chain reactions of oxidation can be explained by additional deprotonation (decrease in pKai) of the catechols that accelerates one electron transport to dioxygen and formation of calcium semiquinonate, undergoing further oxidation. The described Ca2+-dependent redox-conversion of ortho-phenols proposes that an additional function of calcium in the cell can be its involvement in free radical oxidoreductive reactions at pH > pKai.

  20. Comparison between conjugated linoleic acid and essential fatty acids in preventing oxidative stress in bovine mammary epithelial cells.

    PubMed

    Basiricò, L; Morera, P; Dipasquale, D; Tröscher, A; Bernabucci, U

    2017-03-01

    Some in vitro and in vivo studies have demonstrated protective effects of conjugated linoleic acid (CLA) isomers against oxidative stress and lipid peroxidation. However, only a few and conflicting studies have been conducted showing the antioxidant potential of essential fatty acids. The objectives of the study were to compare the effects of CLA to other essential fatty acids on the thiol redox status of bovine mammary epithelia cells (BME-UV1) and their protective role against oxidative damage on the mammary gland by an in vitro study. The BME-UV1 cells were treated with complete medium containing 50 μM of cis-9,trans-11 CLA, trans-10,cis-12 CLA, α-linolenic acid, γ-linolenic acid, and linoleic acid. To assess the cellular antioxidant response, glutathione, NADPH, and γ-glutamyl-cysteine ligase activity were measured 48 h after addition of fatty acids (FA). Intracellular reactive oxygen species and malondialdehyde production were also assessed in cells supplemented with FA. Reactive oxygen species production after 3 h of H 2 O 2 exposure was assessed to evaluate and to compare the potential protection of different FA against H 2 O 2 -induced oxidative stress. All FA treatments induced an intracellular GSH increase, matched by high concentrations of NADPH and an increase of γ-glutamyl-cysteine ligase activity. Cells supplemented with FA showed a reduction in intracellular malondialdehyde levels. In particular, CLA isomers and linoleic acid supplementation showed a better antioxidant cellular response against oxidative damage induced by H 2 O 2 compared with other FA. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  1. Fatty Acid Oxidation Changes and the Correlation with Oxidative Stress in Different Preeclampsia-Like Mouse Models

    PubMed Central

    Ding, Xiaoyan; Yang, Zi; Han, Yiwei; Yu, Huan

    2014-01-01

    Background Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) expression is decreased in placenta of some cases of preeclampsia (PE) which may result in free fatty acid (FFA) increased. High FFA level will induce oxidative stress, so abnormal long-chain fatty acid-oxidation may participate in the pathogenesis of PE through oxidative stress pathway. Methods PE-like groups were ApoC3 transgenic mice with abnormal fatty acid metabolism, classical PE-like models with injection of Nw-nitro-L-arginine-methyl ester (L-NA) or lipopolysaccharide (LPS) and the antiphospholipid syndrome (APS) mouse model with β2GPI injection (ApoC3+NS, ApoC3+L-NA, L-NA, LPS and β2GPI groups). The control group was wild-type mice with normal saline injection. Except for β2GPI mice, the other mice were subdivided into pre-implantation (Pre) and mid-pregnancy (Mid) subgroups by injection time. Results All PE-like groups showed hypertension and proteinuria except ApoC3+NS mice only showed hypertension. Serum FFA levels increased significantly except in LPS group compared to controls (P<0.05). LCHAD mRNA and protein expression in the liver and placenta was significantly higher for ApoC3+NS, ApoC3+L-NA and β2GPI mice and lower for L-NA mice than controls (P<0.05) but did not differ between LPS mice and controls. P47phox mRNA and protein expression in the liver significantly increased in all PE-like groups except LPS group, while P47phox expression in the placenta only significantly increased in L-NA and β2GPI groups. Conclusions Abnormal long-chain fatty acid-oxidation may play a different role in different PE-like models and in some cases participate in the pathogenesis of PE through oxidative stress pathway. PMID:25302499

  2. Gallic Acid Grafted Chitosan Has Enhanced Oxidative Stability in Bulk Oils.

    PubMed

    Gim, Seo Yeong; Hong, Seungmi; Kim, Mi-Ja; Lee, JaeHwan

    2017-07-01

    Gallic acid (GA) was grafted in chitosan and the effects of GA grafted chitosan (GA-g-CS) on the oxidative stability in bulk oil was tested at 60 and 140 °C. To text oxidative stability in oils, headspace oxygen content, conjugated dienoic acid (CDA) value, p-anisidine value (p-AV), and acid value were determined. Chitosan itself did not show antioxidative or prooxidative effects in oils at 60 °C. However, GA-g-CS and GA acted as antioxidants at 60 °C. At 140 °C heating with moisture supplied condition, different results were observed. GA-g-CS acted as antioxidants based on the results of CDA and p-AV. However, chitosan showed the highest oxidative stability based on results of acid value and brown color formation at 140 °C. This could be due to reduction of moisture content by chitosan. GA was continuously released from GA-g-CS in bulk oil. This might have provided extra antioxidant activities to oils. © 2017 Institute of Food Technologists®.

  3. Phytochemicals in regulating fatty acid β-oxidation: Potential underlying mechanisms and their involvement in obesity and weight loss.

    PubMed

    Rupasinghe, H P Vasantha; Sekhon-Loodu, Satvir; Mantso, Theodora; Panayiotidis, Mihalis I

    2016-09-01

    Excessive accumulation of fat as the result of more energy intake and less energy expenditure is known as obesity. Lipids are essential components in the human body and are vital for maintaining homeostasis and physiological as well as cellular metabolism. Fatty acid synthesis and catabolism (by fatty acid oxidation) are normal part of basic fuel metabolism in animals. Fatty acids are degraded in the mitochondria by a biochemical process called β-oxidation in which two-carbon fragments are produced in each cycle. The increase in fatty acid β-oxidation is negatively correlated with body mass index. Although healthy life style, avoiding Western diet, dieting and strenuous exercise are the commonly used methods to lose weight, they are not considered a permanent solution in addition to risk attenuation of basal metabolic rate (BMR). Pharmacotherapy offers benefits of weight loss by altering the satiety and lowering absorption of fat from the food; however, its side effects may outweigh the benefits of weight loss. Alternatively, dietary phytochemicals and natural health products offer great potential as an efficient weight loss strategy by modulating lipid metabolism and/or increasing BMR and thermogenesis. Specifically, polyphenols such as citrus flavonoids, green tea epigallocatechin gallate, resveratrol, capsaicin and curcumin, have been reported to increase lipolysis and induce fatty acid β-oxidation through modulation of hormone sensitive lipase, acetyl-coA carboxylase, carnitine acyl transferase and peroxisome proliferator-activated receptor gamma coactivator-1. In this review article, we discuss selected phytochemicals in relation to their integrated functionalities and specific mechanisms for weight loss. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Reduction of hydrogen peroxide stress derived from fatty acid beta-oxidation improves fatty acid utilization in Escherichia coli.

    PubMed

    Doi, Hidetaka; Hoshino, Yasushi; Nakase, Kentaro; Usuda, Yoshihiro

    2014-01-01

    Fatty acids are a promising raw material for substance production because of their highly reduced and anhydrous nature, which can provide higher fermentation yields than sugars. However, they are insoluble in water and are poorly utilized by microbes in industrial fermentation production. We used fatty acids as raw materials for L-lysine fermentation by emulsification and improved the limited fatty acid-utilization ability of Escherichia coli. We obtained a fatty acid-utilizing mutant strain by laboratory evolution and demonstrated that it expressed lower levels of an oxidative-stress marker than wild type. The intracellular hydrogen peroxide (H₂O₂) concentration of a fatty acid-utilizing wild-type E. coli strain was higher than that of a glucose-utilizing wild-type E. coli strain. The novel mutation rpsA(D210Y) identified in our fatty acid-utilizing mutant strain enabled us to promote cell growth, fatty-acid utilization, and L-lysine production from fatty acid. Introduction of this rpsA(D210Y) mutation into a wild-type strain resulted in lower H₂O₂ concentrations. The overexpression of superoxide dismutase (sodA) increased intracellular H₂O₂ concentrations and inhibited E. coli fatty-acid utilization, whereas overexpression of an oxidative-stress regulator (oxyS) decreased intracellular H₂O₂ concentrations and promoted E. coli fatty acid utilization and L-lysine production. Addition of the reactive oxygen species (ROS) scavenger thiourea promoted L-lysine production from fatty acids and decreased intracellular H₂O₂ concentrations. Among the ROS generated by fatty-acid β-oxidation, H₂O₂ critically affected E. coli growth and L-lysine production. This indicates that the regression of ROS stress promotes fatty acid utilization, which is beneficial for fatty acids used as raw materials in industrial production.

  5. Stable Water Oxidation in Acid Using Manganese-Modified TiO2 Protective Coatings.

    PubMed

    Siddiqi, Georges; Luo, Zhenya; Xie, Yujun; Pan, Zhenhua; Zhu, Qianhong; Röhr, Jason A; Cha, Judy J; Hu, Shu

    2018-06-06

    Accomplishing acid-stable water oxidation is a critical matter for achieving both long-lasting water-splitting devices and other fuel-forming electro- and photocatalytic processes. Because water oxidation releases protons into the local electrolytic environment, it becomes increasingly acidic during device operation, which leads to corrosion of the photoactive component and hence loss in device performance and lifetime. In this work, we show that thin films of manganese-modified titania, (Ti,Mn)O x , topped with an iridium catalyst, can be used in a coating stabilization scheme for acid-stable water oxidation. We achieved a device lifetime of more than 100 h in pH = 0 acid. We successfully grew (Ti,Mn)O x coatings with uniform elemental distributions over a wide range of manganese compositions using atomic layer deposition (ALD), and using X-ray photoelectron spectroscopy, we show that (Ti,Mn)O x films grown in this manner give rise to closer-to-valence-band Fermi levels, which can be further tuned with annealing. In contrast to the normally n-type or intrinsic TiO 2 coatings, annealed (Ti,Mn)O x films can make direct charge transfer to a Fe(CN) 6 3-/4- redox couple dissolved in aqueous electrolytes. Using the Fe(CN) 6 3-/4- redox, we further demonstrated anodic charge transfer through the (Ti,Mn)O x films to high work function metals, such as iridium and gold, which is not previously possible with ALD-grown TiO 2 . We correlated changes in the crystallinity (amorphous to rutile TiO 2 ) and oxidation state (2+ to 3+) of the annealed (Ti,Mn)O x films to their hole conductivity and electrochemical stability in acid. Finally, by combining (Ti,Mn)O x coatings with iridium, an acid-stable water-oxidation anode, using acid-sensitive conductive fluorine-doped tin oxides, was achieved.

  6. Validation of 18F-fluoro-4-thia-palmitate as a PET probe for myocardial fatty acid oxidation: effects of hypoxia and composition of exogenous fatty acids.

    PubMed

    DeGrado, Timothy R; Kitapci, Mehmet T; Wang, Shuyan; Ying, Jun; Lopaschuk, Gary D

    2006-01-01

    Fatty acid oxidation (FAO) is the predominant energy-producing pathway in the healthy heart. Abnormalities in FAO are associated with many ischemic and nonischemic disease states. The aim of the present study was to further validate 16-[(18)F]-fluoro-4-thia-palmitate ((18)F-FTP) as a metabolically trapped FAO probe in the isolated perfused rat heart model by examining both the effects of hypoxia and the effects of changes in exogenous fatty acid availability. Hearts were excised from Sprague-Dawley rats and perfused in the Langendorff mode with Krebs-Henseleit solution under the following conditions: palmitate at 0.4 mmol/L with 95% oxygen, palmitate at 0.4 mmol/L with 35% oxygen, palmitate at 0.2 mmol/L plus oleate at 0.2 mmol/L with 95% oxygen, and palmitate at 0.2 mmol/L plus oleate at 0.2 mmol/L with 35% oxygen. Hearts were paced at 270 beats per minute, and the rate of left ventricular pressure change (LV dP/dt) was monitored. (18)F-FTP in the perfusion medium was administered for 20 min, and this step was followed by a 20-min washout period without tracer in the perfusion medium. (18)F kinetics in the whole heart were monitored externally, and the time-activity curves were analyzed to determine the fractional trapping rate for (18)F-FTP (FTR(FTP)). A "lumped constant" (LC) was defined as the ratio of FTR(FTP) to the fractional rate of oxidation of fatty acid in the perfusion medium. The kinetic data for (18)F-FTP demonstrated metabolic trapping of (18)F radioactivity that was insensitive to changes in the mixture of fatty acids in the perfusion medium but that was sensitive to the inhibition of mitochondrial FAO by hypoxia. LV dP/dt was reduced 47%-67% in hypoxic hearts relative to hearts with normal oxygenation (controls). FAO rates for palmitate and oleate were similar in group 3 (palmitate alone) and group 4 (palmitate and oleate). FAO was decreased 70%-76% with hypoxia, whereas FTR(FTP) was reduced 86%-88%, demonstrating hypersensitivity of a change in

  7. Reinvestigation of the role of humic acid in the oxidation of phenols by permanganate.

    PubMed

    Sun, Bo; Zhang, Jing; Du, Juanshan; Qiao, Junlian; Guan, Xiaohong

    2013-12-17

    Humic acid (HA) affects the oxidation of phenolic compounds by permanganate, but the role of HA in the oxidation of phenols by permanganate is far from clear. The mechanisms by which HA influences the oxidation of phenols by permanganate at pH 5.0-9.0 were systematically examined in this study. The presence of HA enhanced the oxidation of phenolic compounds by permanganate at pH ≤7.0, with greater enhancement at lower pH values. The presence of HA facilitated the in situ formation of MnO2, implying the importance of reductive moieties of HA in this reaction. This was supported by the finding that HA preoxidized by ozone showed enhancements in the oxidation of phenols by permanganate at pH 5.0-6.0 smaller than those seen with pristine HA. The good correlation between HA-induced improvement in the oxidation rates of phenols by permanganate and those by preformed colloidal MnO2 at pH 5.0 confirmed that contribution of MnO2 formed in situ for the oxidation of phenols under this condition. The differences in the influence of Na2S2O3 and HA on the oxidation of phenol by permanganate revealed the fact that the continuous generation of fresh MnO2 and stabilization of the MnO2 formed in situ by HA were crucial for the HA-induced enhancement of the oxidation of phenols by permanganate at pH ≤7.0. The consumption of permanganate by HA and the poor oxidation ability of in situ-generated MnO2 under alkaline conditions resulted in the slightly negative effect of HA on the degradation rates of phenols by permanganate at pH >7.0.

  8. Beta-oxidation as channeled reaction linked to citric acid cycle: evidence from measurements of mitochondrial pyruvate oxidation during fatty acid degradation.

    PubMed

    Förster, M E; Staib, W

    1992-07-01

    1. The kinetics of mitochondrial mammalian pyruvate dehydrogenase multienzyme complex (PDHC) is studied by the formation of CO2 using tracer amounts of [1-14C]pyruvate. It is found that the Hill plot results in a (pseudo-)cooperativity with a transition of n-1----3 at a pyruvate concentration about Ks. 2. Addition of L-carnitine, octanoate, palmitoyl-CoA or palmitate + L-carnitine + fatty acid-binding protein results in a Hill coefficient of n = 2 following the kinetics of pyruvate oxidation. 3. Addition of fatty acid-binding protein to an assay system oxidizing palmitate in presence of L-carnitine alters the pattern of the kinetics in the Hill plot so that an apparently lower level of L-carnitine is necessary for the reaction course of beta-degradation. 4. It is concluded that beta-degradation is a coordinated, multienzyme-complex based mechanism tightly linked to citric acid cycle and it is proposed that L-carnitine is actively involved into the reaction and not only functioning as carrier-molecule for transmembrane transport.

  9. Aerobic Oxidation of Xylose to Xylaric acid in Water over Pt Catalysts.

    PubMed

    Saha, Basudeb; Sadula, Sunitha

    2018-05-02

    Energy-efficient catalytic conversion of biomass intermediates to functional chemicals can enable bio-products viable. Herein, we report an efficient and low temperature aerobic oxidation of xylose to xylaric acid, a promising bio-based chemical for the production of glutaric acid, over commercial catalysts in water. Among several heterogeneous catalysts investigated, Pt/C exhibits the best activity. Systematic variation of reaction parameters in the pH range of 2.5 to 10 suggests that the reaction is fast at higher temperatures but high C-C scission of intermediate C5-oxidized products to low carbon carboxylic acids undermines xylaric acid selectivity. The C-C cleavage is also high in basic solution. The oxidation at neutral pH and 60 C achieves the highest xylaric acid yield (64%). O2 pressure and Pt-amount have significant influence on the reactivity. Decarboxylation of short chain carboxylic acids results in formation of CO2, causing some carbon loss; however such decarboxylation is slow in the presence of xylose. The catalyst retained comparable activity, in terms of product selectivity, after five cycles with no sign of Pt leaching. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Amelioration of cyclophosphamide induced myelosuppression and oxidative stress by cinnamic acid.

    PubMed

    Patra, Kartick; Bose, Samadrita; Sarkar, Shehnaz; Rakshit, Jyotirmoy; Jana, Samarjit; Mukherjee, Avik; Roy, Abhishek; Mandal, Deba Prasad; Bhattacharjee, Shamee

    2012-02-05

    Cinnamic acid (C9H8O2), is a major constituent of the oriental Ayurvedic plant Cinnamomum cassia (Family: Lauraceae). This phenolic acid has been reported to possess various pharmacological properties of which its antioxidant activity is a prime one. Therefore it is rational to hypothesize that it may ameliorate myelosuppression and oxidative stress induced by cyclophosphamide, a widely used chemotherapeutic agent. Commercial cyclophosphamide, Endoxan, was administered intraperitoneally to Swiss albino mice (50mg/kg) pretreated with 15, 30 and 60mg/kg doses of cinnamic acid orally at alternate days for 15days. Cinnamic acid pre-treatment was found to reduce cyclophosphamide induced hypocellularity in the bone marrow and spleen. This recovery was also reflected in the peripheral blood count. Amelioration of hypocellularity could be correlated with the modulation of cell cycle phase distribution. Cinnamic acid pre-treatment reduced bone marrow and hepatic oxidative stress as evident by lipid peroxidation and activity assays of antioxidant enzymes such as superoxide dismutase, catalase and glutathione-S-transferase. The present study indicates that cinnamic acid pretreatment has protective influence on the myelosuppression and oxidative stress induced by cyclophosphamide. This investigation is an attempt and is the first of its kind to establish cinnamic acid as an agent whose consumption provides protection to normal cells from the toxic effects of a widely used anti-cancer drug. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Effectiveness of acidic oxidative potential water in preventing bacterial infection in islet transplantation.

    PubMed

    Miyamoto, M; Inoue, K; Gu, Y; Hoki, M; Haji, S; Ohyanagi, H

    1999-01-01

    At a number of points in the current procedures of islet isolation and islet culture after the harvesting of donor pancreata, microorganisms could potentially infect the islet preparation. Furthermore, the use of islets from multiple donors can compound the risks of contamination of individual recipients. Acidic oxidative potential water (also termed electrolyzed strong acid solution, function water, or acqua oxidation water), which was developed in Japan, is a strong acid formed on the anode in the electrolysis of water containing a small amount of sodium chloride. It has these physical properties: pH, from 2.3 to 2.7; oxidative-reduction potential, from 1,000 to 1,100 mV; dissolved chlorine, from 30 to 40 ppm; and dissolved oxygen, from 10 to 30 ppm. Because of these properties, acidic oxidative potential water has strong bactericidal effects on all bacteria including methicillin-resistant Staphylococcus aureus (MRSA), viruses including HIV, HBV, HCV, CMV, and fungi as a result of the action of the active oxygen and active chlorine that it contains. We conducted this study to evaluate the effect of acidic oxidative potential water irrigation on bacterial contamination on the harvesting of porcine pancreata from slaughterhouses for islet xenotransplantation by counting the number of pancreatic surface bacteria using the Dip-slide method, and on the results of islet culture; and to evaluate the direct effect on isolated islets when it is used to prevent bacterial contamination by the static incubation test and by morphological examination. Direct irrigation of the pancreas by acidic oxidative potential water was found to be very effective in preventing bacterial contamination, but direct irrigation of isolated islets slightly decreased their viability and function.

  12. New pathways for formation of acids and carbonyl products in low-temperature oxidation: the Korcek decomposition of γ-ketohydroperoxides.

    PubMed

    Jalan, Amrit; Alecu, Ionut M; Meana-Pañeda, Rubén; Aguilera-Iparraguirre, Jorge; Yang, Ke R; Merchant, Shamel S; Truhlar, Donald G; Green, William H

    2013-07-31

    We present new reaction pathways relevant to low-temperature oxidation in gaseous and condensed phases. The new pathways originate from γ-ketohydroperoxides (KHP), which are well-known products in low-temperature oxidation and are assumed to react only via homolytic O-O dissociation in existing kinetic models. Our ab initio calculations identify new exothermic reactions of KHP forming a cyclic peroxide isomer, which decomposes via novel concerted reactions into carbonyl and carboxylic acid products. Geometries and frequencies of all stationary points are obtained using the M06-2X/MG3S DFT model chemistry, and energies are refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. Thermal rate coefficients are computed using variational transition-state theory (VTST) calculations with multidimensional tunneling contributions based on small-curvature tunneling (SCT). These are combined with multistructural partition functions (Q(MS-T)) to obtain direct dynamics multipath (MP-VTST/SCT) gas-phase rate coefficients. For comparison with liquid-phase measurements, solvent effects are included using continuum dielectric solvation models. The predicted rate coefficients are found to be in excellent agreement with experiment when due consideration is made for acid-catalyzed isomerization. This work provides theoretical confirmation of the 30-year-old hypothesis of Korcek and co-workers that KHPs are precursors to carboxylic acid formation, resolving an open problem in the kinetics of liquid-phase autoxidation. The significance of the new pathways in atmospheric chemistry, low-temperature combustion, and oxidation of biological lipids are discussed.

  13. New Pathways for Formation of Acids and Carbonyl Products in Low-Temperature Oxidation: The Korcek Decomposition of γ-Ketohydroperoxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalan, Amrit; Alecu, Ionut M.; Meana-Pañeda, Rubén

    2013-07-31

    We present new reaction pathways relevant to low-temperature oxidation in gaseous and condensed phases. The new pathways originate from γ-ketohydroperoxides (KHP), which are well-known products in low-temperature oxidation and are assumed to react only via homolytic O-O dissociation in existing kinetic models. Our ab initio calculations identify new exothermic reactions of KHP forming a cyclic peroxide isomer, which decomposes via novel concerted reactions into carbonyl and carboxylic acid products. Geometries and frequencies of all stationary points are obtained using the M06-2X/MG3S DFT model chemistry, and energies are refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. Thermal rate coefficients are computed using variational transition-statemore » theory (VTST) calculations with multidimensional tunneling contributions based on small-curvature tunneling (SCT). These are combined with multistructural partition functions (QMS-T) to obtain direct dynamics multipath (MP-VTST/ SCT) gas-phase rate coefficients. For comparison with liquid-phase measurements, solvent effects are included using continuum dielectric solvation models. The predicted rate coefficients are found to be in excellent agreement with experiment when due consideration is made for acid-catalyzed isomerization. This work provides theoretical confirmation of the 30-year-old hypothesis of Korcek and co-workers that KHPs are precursors to carboxylic acid formation, resolving an open problem in the kinetics of liquid-phase autoxidation. The significance of the new pathways in atmospheric chemistry, low-temperature combustion, and oxidation of biological lipids are discussed.« less

  14. Imaging of Myocardial Fatty Acid Oxidation

    PubMed Central

    Mather, Kieren J; DeGrado, Tim

    2016-01-01

    Myocardial fuel selection is a key feature of the health and function of the heart, with clear links between myocardial function and fuel selection and important impacts of fuel selection on ischemia tolerance. Radiopharmaceuticals provide uniquely valuable tools for in vivo, non-invasive assessment of these aspects of cardiac function and metabolism. Here we review the landscape of imaging probes developed to provide noninvasive assessment of myocardial fatty acid oxidation (MFAO). Also, we review the state of current knowledge that myocardial fatty acid imaging has helped establish of static and dynamic fuel selection that characterizes cardiac and cardiometabolic disease and the interplay between fuel selection and various aspects of cardiac function. PMID:26923433

  15. The Effect of Citric Acid on the Oxidation of Organic Contaminants by Fenton's Reagent

    NASA Astrophysics Data System (ADS)

    Seol, Y.; Javandel, I.; Lee, G.

    2003-12-01

    Combined with acids and iron catalysts, hydrogen peroxide (H2O2) as Fenton's reagent is proven to be effective in oxidizing halogenated volatile organic compounds (VOCs). The Fenton's reagent, traditionally used for waste water treatment technique, has been applied to the remediation of contaminated soil systems and numerous investigators have found intrinsic iron salts are effective source of iron catalyst for the reaction. Citric acid, which is naturally occurring nutrients to microorganisms and less destructive to soil chemical properties, is selected for an acidifying agent to create acidic soil condition. However, citric acid has been considered as a reaction inhibitant because it sequesters ferric iron from Fenton's catalytic cycle by forming strong chelates with iron. This paper presents the feasibility of using citric acid as an acidifying agent of soil matrix for the Fenton-like oxidation. Series of batch tests were performed to test disappearance of VOCs in various aqueous systems with two acidifying agents (citric acid or sulfuric acid) and three iron sources (iron sulfate, water soluble soil iron, or soil matrix). Batch results show that soluble iron is essential for near complete disappearance of VOCs and that citric acid performs similarly to sulfuric acid at low H2O2 dosage (< 1 wt%). The test soil provided water-soluble soil iron but also contained scavengers of the oxidizing agents, resulting in limited removals of VOCs. Column tests confirmed the results of the batch tests, suggesting citric acid is also as effective as sulfuric acid in providing acidic environment for the Fenton-like oxidation. The batch experiments also reveal that higher doses of H2O2 lower the degree of VOC removals in citric acid systems. Potential explanations for this declining include that excessive presence of H2O2 expedites the oxidation of ferrous to ferric iron, which then forms a strong complex with citrate, leading to the sequestration of the iron from the Fenton

  16. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Lovley, D.R.

    1998-01-01

    Anaerobic oxidation of [1,2-14C]vinyl chloride and [1,2- 14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.

  17. Investigating the oxidation mechanism of tantalum nanoparticles at high heating rates

    NASA Astrophysics Data System (ADS)

    DeLisio, Jeffery B.; Wang, Xizheng; Wu, Tao; Egan, Garth C.; Jacob, Rohit J.; Zachariah, Michael R.

    2017-12-01

    Reduced diffusion length scales and increased specific surface areas of nanosized metal fuels have recently demonstrated increased reaction rates for these systems, increasing their relevance in a wide variety of applications. The most commonly employed metal fuel, aluminum, tends to oxidize rapidly near its melting point (660 °C) in addition to undergoing a phase change of the nascent oxide shell. To further expand on the understanding of nanosized metal fuel oxidation, tantalum nanoparticles were studied due to their high melting point (3017 °C) in comparison to aluminum. Both traditional slow heating rate and in-situ high heating rate techniques were used to probe the oxidation of tantalum nanoparticles in oxygen containing environments in addition to nanothermite mixtures. When oxidized by gas phase oxygen, the oxide shell of the tantalum nanoparticles rapidly crystallized creating cracks that may attribute to enhanced oxygen diffusion into the particle. In the case of tantalum based nanothermites, oxide shell crystallization was shown to induce reactive sintering with the metal oxide resulting in a narrow range of ignition temperatures independent of the metal oxide used. The oxidation mechanism was modeled using the Deal-Grove model to extract rate parameters, and theoretical burn times for tantalum based nanocomposites were calculated.

  18. Capillary electrophoretic study of dibasic acids of different structures: Relation to separation of oxidative intermediates in remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Z.; Cocke, D.L.

    Dicarboxylic acids are important in environmental chemistry because they are intermediates in oxidative processes involved in natural remediation and waste management processes such as oxidative detoxification and advanced oxidation. Capillary electrophoresis (CE), a promising technique for separating and analyzing these intermediates, has been used to examine a series of dibasic acids of different structures and conformations. This series includes malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, phthalic acid, and trans, trans-muconic acid. The CE parameters as well as structural variations (molecular structure and molecular isomers, buffer composition, pH, applied voltage, injection mode, current,more » temperature, and detection wavelength) that affect the separations and analytical results have been examined in this study. Those factors that affect the separation have been delineated. Among these parameters, the pH has been found to be the most important, which affects the double-layer of the capillary wall, the electro-osmotic flow and analyte mobility. The optimum pH for separating these dibasic acids, as well as the other parameters are discussed in detail and related to the development of methods for analyzing oxidation intermediates in oxidative waste management procedures.« less

  19. Graphene oxide coated with porous iron oxide ribbons for 2, 4-Dichlorophenoxyacetic acid (2,4-D) removal.

    PubMed

    Nethaji, S; Sivasamy, A

    2017-04-01

    Graphene oxide (GO) was prepared from commercially available graphite powder. Porous iron oxide ribbons were grown on the surface of GO by solvothermal process. The prepared GO-Fe 3 O 4 nanocomposites are characterized by FT-IR, XRD, VSM, SEM, TEM, Raman spectroscopy, surface functionality and zero point charge studies. The morphology of the iron oxide ribbons grown on GO is demonstrated with TEM at various magnifications. The presence of magnetite nanoparticles is evident from XRD peaks and the magnetization value is found to be 37.28emu/g. The ratio of intensity of D-peak to G-peak from Raman spectrum is 0.995. The synthesized Graphene oxide-Fe 3 O 4 nanocomposites (GO-Fe 3 O 4 ) were explored for its surface adsorptive properties by using a model organic compound, 2,4-Dichlorophenoxy acetic acid (2,4-D) from aqueous solution. Batch adsorption studies were performed and the equilibrium data are modelled with Langmuir, Freundlich and Temkin isotherms. The maximum monolayer capacity from Langmuir isotherm is 67.26mg/g. Kinetic studies were also carried out and the studied adsorption process followed pseudo second-order rate equation. Mechanism of the adsorption process is studied by fitting the data with intraparticle diffusion model and Boyd plot. The studied adsorption process is both by film diffusion and intraparticle diffusion. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Protective effects of dietary glycine and glutamic acid toward the toxic effects of oxidized mustard oil in rabbits.

    PubMed

    Zeb, Alam; Rahman, Saleem Ur

    2017-01-25

    The protective role of glycine and glutamic acid against the toxic effects of oxidized oil was studied for the first time. Mustard seed oil was thermally oxidized and characterized for quality characteristics and polyphenolic composition using reversed phase HPLC-DAD. Significant changes in the quality characteristics occurred with thermal oxidation. Fourteen polyphenolic compounds were identified and quantified in oils. Quercetin-3-glucoside, quercetin-3-feruloylsophoroside, catechin, quercetin-3-rutinoside, quercetin-3,7-diglucoside, sinapic acid and vanillic acid hexoside were the major compounds in the fresh and oxidized oil. Oxidized, un-oxidized mustard oils, glycine and glutamic acid were given to rabbits alone or in combination. The biochemical responses were studied in terms of haematological and biochemical parameters and histopathology. It has been observed that biochemical and haematological parameters were adversely affected by the oxidized oil, while supplementation of both amino acids was beneficial in normalizing these parameters. Both amino acids alone have no significant effects, however, oxidized oil affected the liver by enhancing fat accumulation, causing hepatitis, reactive Kupffer cells and necrosis. The co-administration of oxidized oils with glycine or glutamic acid revealed significant recovery of the liver structure and function. In conclusion, glycine or glutamic acid is beneficial and protective against food toxicity and can be considered as an ameliorative food supplement.

  1. Body energy metabolism and oxidative stress in mice supplemented with conjugated linoleic acid (CLA) associated to oleic acid.

    PubMed

    Baraldi, Flavia; Dalalio, Felipe; Teodoro, Bruno; Prado, Ieda; Curti, Carlos; Alberici, Luciane

    2014-10-01

    Some fatty acids may play an important role in regulating metabolism through PPARs activation. Conjugated linoleic acid (CLA) has been shown to reduce body fat accumulation and increase body metabolism; this effect has been associated with up-regulation of mitochondrial uncoupling proteins (UCPs) and PPARalfa activation. Oleic acid has shown beneficial effects on health, decreasing oxidative stress and improving clinical conditions related to obesity. Therefore, in this work, we addressed the effects of a oleic plus CLA-supplemented murine diet on body metabolism, mitochondrial energetics and oxidative stress in the liver, as well as on other associated morphological and functional parameters in C57BL/6 mice. The diet was supplemented with 2% CLA mixture (cis-9, trans-10 and trans-10, cis-12 isomers; 45% of each isomer) and/or 0.7% olive oil on alternating days (60 days) by gavage. The results showed that diet supplementation with CLA increases body metabolism and reduces lipid accumulation in adipose tissues. Groups that received oleic acid (oleic and CLA oleic) showed decreased levels of total cholesterol and cholesterol non-HDL, and increased levels of HDL-cholesterol. Livers of mice fed a diet supplemented with CLA showed high levels UCP2 mRNA, and the isolated hepatic mitochondria showed indications of UCP activity and increased ROS generation. Oleic acid partially reversed the lower lipid accumulation increasing PPARgamma content, reversed the higher ROS generation by liver mitochondria and improved liver oxidative status. These results indicate a beneficial and secure dose of CLA and oleic acid for diet supplementation in mice, which increases body metabolism inducing UCP2 overexpression/activity in liver while preserving the redox state of the liver. Therefore, diet supplementation with CLA associated to oleic acid may be regarded as a potential strategy for controlling obesity and oxidative stress. Supported by FAPESP. Copyright © 2014. Published by

  2. Neuropsychological Outcomes in Fatty Acid Oxidation Disorders: 85 Cases Detected by Newborn Screening

    ERIC Educational Resources Information Center

    Waisbren, Susan E.; Landau, Yuval; Wilson, Jenna; Vockley, Jerry

    2013-01-01

    Mitochondrial fatty acid oxidation disorders include conditions in which the transport of activated acyl-Coenzyme A (CoA) into the mitochondria or utilization of these substrates is disrupted or blocked. This results in a deficit in the conversion of fat into energy. Most patients with fatty acid oxidation defects are now identified through…

  3. Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils

    PubMed Central

    Van Trump, J. Ian; Wrighton, Kelly C.; Thrash, J. Cameron; Weber, Karrie A.; Andersen, Gary L.; Coates, John D.

    2011-01-01

    ABSTRACT This study demonstrates the prevalence, phylogenetic diversity, and physiology of nitrate-reducing microorganisms capable of utilizing reduced humic acids (HA) as electron donors in agricultural soils. Most probable number (MPN) enumeration of agricultural soils revealed large populations (104 to 106 cells g−1 soil) of microorganisms capable of reducing nitrate while oxidizing the reduced HA analog 2,6-anthrahydroquinone disulfonate (AH2DS) to its corresponding quinone. Nitrate-dependent HA-oxidizing organisms isolated from agricultural soils were phylogenetically diverse and included members of the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Advective up-flow columns inoculated with corn plot soil and amended with reduced HA and nitrate supported both HA oxidation and enhanced nitrate reduction relative to no-donor or oxidized HA controls. The additional electron donating capacity of reduced HA could reasonably be attributed to the oxidation of reduced functional groups. Subsequent 16S rRNA gene-based high-density oligonucleotide microarray (PhyloChip) indicated that reduced HA columns supported the development of a bacterial community enriched with members of the Acidobacteria, Firmicutes, and Betaproteobacteria relative to the no-donor control and initial inoculum. This study identifies a previously unrecognized role for HA in stimulating denitrification processes in saturated soil systems. Furthermore, this study indicates that reduced humic acids impact soil geochemistry and the indigenous bacterial community composition. PMID:21750120

  4. Ruthenium-catalyzed aerobic oxidative decarboxylation of amino acids: a green, zero-waste route to biobased nitriles.

    PubMed

    Claes, Laurens; Verduyckt, Jasper; Stassen, Ivo; Lagrain, Bert; De Vos, Dirk E

    2015-04-18

    Oxidative decarboxylation of amino acids into nitriles was performed using molecular oxygen as terminal oxidant and a heterogeneous ruthenium hydroxide-based catalyst. A range of amino acids was oxidized in very good yield, using water as the solvent.

  5. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress.

    PubMed

    Sautin, Yuri Y; Nakagawa, Takahiko; Zharikov, Sergey; Johnson, Richard J

    2007-08-01

    Uric acid is considered a major antioxidant in human blood that may protect against aging and oxidative stress. Despite its proposed protective properties, elevated levels of uric acid are commonly associated with increased risk for cardiovascular disease and mortality. Furthermore, recent experimental studies suggest that uric acid may have a causal role in hypertension and metabolic syndrome. All these conditions are thought to be mediated by oxidative stress. In this study we demonstrate that differentiation of cultured mouse adipocytes is associated with increased production of reactive oxygen species (ROS) and uptake of uric acid. Soluble uric acid stimulated an increase in NADPH oxidase activity and ROS production in mature adipocytes but not in preadipocytes. The stimulation of NADPH oxidase-dependent ROS by uric acid resulted in activation of MAP kinases p38 and ERK1/2, a decrease in nitric oxide bioavailability, and an increase in protein nitrosylation and lipid oxidation. Collectively, our results suggest that hyperuricemia induces redox-dependent signaling and oxidative stress in adipocytes. Since oxidative stress in the adipose tissue has recently been recognized as a major cause of insulin resistance and cardiovascular disease, hyperuricemia-induced alterations in oxidative homeostasis in the adipose tissue might play an important role in these derangements.

  6. High temperature dissolution of oxides in complexing media

    NASA Astrophysics Data System (ADS)

    Sathyaseelan, Valil S.; Rufus, Appadurai L.; Subramanian, Hariharan; Bhaskarapillai, Anupkumar; Wilson, Shiny; Narasimhan, Sevilimedu V.; Velmurugan, Sankaralingam

    2011-12-01

    Dissolution of transition metal oxides such as magnetite (Fe 3O 4), mixed ferrites (NiFe 2O 4, ZnFe 2O 4, MgFe 2O 4), bonaccordite (Ni 2FeBO 5) and chromium oxide (Cr 2O 3) in organic complexing media was attempted at higher temperatures (80-180 °C). On increasing the temperature from 80 to 180 °C, the dissolution rate of magnetite in nitrilo triacetic acid (NTA) medium increased six folds. The trend obtained for the dissolution of other oxides was ZnFe 2O 4 > NiFe 2O 4 > MgFe 2O 4 > Cr 2O 3, which followed the same trend as the lability of their metal-oxo bonds. Other complexing agents such as ethylene diamine tetra acetic acid (EDTA), pyridine dicarboxylic acid (PDCA), citric acid and reducing agents viz., oxalic acid and ascorbic acid were also evaluated for their oxide dissolution efficiency at 160 °C. EDTA showed maximum dissolution rate of 21.4 μm/h for magnetite. Addition of oxalic acid/ascorbic acid to complexing media (NTA/EDTA) showed identical effect on the dissolution of magnetite. Addition of hydrazine, another reducing agent, to NTA decreased the rate of dissolution of magnetite by 50%.

  7. Graphene oxide for solid-phase extraction of bioactive phenolic acids.

    PubMed

    Hou, Xiudan; Wang, Xusheng; Sun, Yingxin; Wang, Licheng; Guo, Yong

    2017-05-01

    A solid-phase extraction (SPE) method for the efficient analysis of trace phenolic acids (PAs, caffeic acid, ferulic acid, protocatechuic acid, cinnamic acid) in urine was established. In this work, a graphene oxide (GO) coating was grafted onto pure silica to be investigated as SPE material. The prepared GO surface had a layered and wrinkled structure that was rough and well organized, which could provide more open adsorption sites. Owing to its hydrophilicity and polarity, GO showed higher extraction efficiency toward PAs than reduced GO did, in agreement with the theoretical calculation results performed by Gaussian 09 software. The adsorption mechanism of PAs on GO@Sil was also investigated through static state and kinetic state adsorption experiments, which showed a monolayer surface adsorption. Extraction capacity of the as-prepared material was optimized using the response surface methodology. Under the optimized conditions, the as-established method provided wide linearity range (2-50 μg L -1 for protocatechuic acid and 1-50 μg L -1 for caffeic acid, ferulic acid, and cinnamic acid) and low limits of detection (0.25-1 μg L -1 ). Finally, the established method was applied for the analysis of urine from two healthy volunteers. The results indicate that the prepared material is a practical, cost-effective medium for the extraction and determination of phenolic acids in complex matrices. Graphical Abstract A graphene oxide coating was grafted onto pure silica as the SPE material for the extraction of phenolic acids in urines and the extraction mechanism was also mainly investigated.

  8. Chemoproteomic Profiling of Acetanilide Herbicides Reveals Their Role in Inhibiting Fatty Acid Oxidation.

    PubMed

    Counihan, Jessica L; Duckering, Megan; Dalvie, Esha; Ku, Wan-Min; Bateman, Leslie A; Fisher, Karl J; Nomura, Daniel K

    2017-03-17

    Acetanilide herbicides are among the most widely used pesticides in the United States, but their toxicological potential and mechanisms remain poorly understood. Here, we have used chemoproteomic platforms to map proteome-wide cysteine reactivity of acetochlor (AC), the most widely used acetanilide herbicide, in vivo in mice. We show that AC directly reacts with >20 protein targets in vivo in mouse liver, including the catalytic cysteines of several thiolase enzymes involved in mitochondrial and peroxisomal fatty acid oxidation. We show that the fatty acids that are not oxidized, due to impaired fatty acid oxidation, are instead diverted into other lipid pathways, resulting in heightened free fatty acids, triglycerides, cholesteryl esters, and other lipid species in the liver. Our findings show the utility of chemoproteomic approaches for identifying novel mechanisms of toxicity associated with environmental chemicals like acetanilide herbicides.

  9. Extra virgin olive oil modulates brain docosahexaenoic acid level and oxidative damage caused by 2,4-Dichlorophenoxyacetic acid in rats.

    PubMed

    Amel, Nakbi; Wafa, Tayeb; Samia, Dabbou; Yousra, Belaid; Issam, Chargui; Cheraif, Imed; Attia, Nebil; Mohamed, Hammami

    2016-03-01

    Oxidative stress is an important pathomechanism of neurological disorders such as Alzheimer disease and Parkinson disease, cardiovascular disorders and many others. This study sought to verify whether extra-virgin olive oil (EVOO), lipophilic fraction (OOLF) and hydrophilic fraction (OOHF) exerted a brain protective effect against the oxidative stress caused by 2,4-dichlorophenoxyacetic acid (2,4-D) pesticide at a dose of 5 mg/kg body weight. 2,4-D, EVOO and its fractions were administered to rats by gavages for four consecutive weeks. Oxidative stress was assessed by measuring brain lipid peroxide level, acetylcholinesterase (AChE), antioxidant enzyme activities and fatty acid composition. 2,4-D induced a decrease in both plasma and brain acetylcholinesterase activity and a rise in Brain TBARS (Thiobarbituric acid reactive substances) level and antioxidant enzyme activities compared with the control group. These changes were partly reversed by either EVOO or its fractions oral administration to 2,4-D treated rats. EVOO enhanced a neuroprotective effect evaluated by the restoration of brain fatty acid composition especially the level of docosahexaenoic acid (DHA). Our results indicate that EVOO exerts a neuroprotective activity against oxidative damage in brain induced by 2,4-D, which could be attributed to its antioxidative property.

  10. Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states.

    PubMed Central

    Drynan, L; Quant, P A; Zammit, V A

    1996-01-01

    The Flux Control Coefficients of mitochondrial outer membrane carnitine palmitoyltransferase (CPT I) with respect to the overall rates of beta-oxidation, ketogenesis and tricarboxylic acid cycle activity were measured in hepatocytes isolated from rats in different metabolic states (fed, 24 h-starved, starved-refed and starved/insulin-treated). These conditions were chosen because there is controversy as to whether, when significant control ceases to be exerted by CPT I over the rate of fatty oxidation [Moir and Zammit (1994) Trends Biochem. Sci. 19, 313-317], this is transferred to one or more steps proximal to acylcarnitine synthesis (e.g. decreased delivery of fatty acids to the liver) or to the reaction catalysed by mitochondrial 3-hydroxy-3-methyl-glutaryl-CoA synthase [Hegardt (1995) Biochem. Soc. Trans. 23, 486-490]. Therefore isolated hepatocytes were used in the present study to exclude the involvement of changes in the rate of delivery of non-esterified fatty acids (NEFA) to the liver, such as occur in vivo, and to ascertain whether, under conditions of constant supply of NEFA, CPT I retains control over the relevant fluxes of fatty acid oxidation to ketones and carbon dioxide, or whether control is transferred to another (intrahepatocytic) site. The results clearly show that the Flux Control Coefficients of CPT I with respect to overall beta-oxidation and ketogenesis are very high under all conditions investigated, indicating that control is not lost to another intrahepatic site during the metabolic transitions studied. The control of CPT I over tricarboxylic acid cycle activity was always very low. The significance of these findings for the integration of fatty acid and carbohydrate metabolism in the liver is discussed. PMID:8760364

  11. Associations between fatty acid oxidation, hepatic mitochondrial function, and plasma acylcarnitine levels in mice.

    PubMed

    Bjørndal, Bodil; Alterås, Eva Katrine; Lindquist, Carine; Svardal, Asbjørn; Skorve, Jon; Berge, Rolf K

    2018-01-01

    The 4-thia fatty acid tetradecylthiopropionic acid (TTP) is known to inhibit mitochondrial β-oxidation, and can be used as chemically induced hepatic steatosis-model in rodents, while 3-thia fatty acid tetradecylthioacetic acid (TTA) stimulates fatty acid oxidation through activation of peroxisome proliferator activated receptor alpha (PPARα). We wished to determine how these two compounds affected in vivo respiration and mitochondrial efficiency, with an additional goal to elucidate whether mitochondrial function is reflected in plasma acylcarnitine levels. C57BL/6 mice were divided in 4 groups of 10 mice and fed a control low-fat diet, low-fat diets with 0.4% ( w /w) TTP, 0.4% TTA or a combination of these two fatty acids for three weeks ( n  = 10). At sacrifice, β-oxidation and oxidative phosphorylation (OXPHOS) capacity was analysed in fresh liver samples. Hepatic mitochondria were studied using transmission electron microscopy. Lipid classes were measured in plasma, heart and liver, acylcarnitines were measured in plasma, and gene expression was measured in liver. The TTP diet resulted in hepatic lipid accumulation, plasma L-carnitine and acetylcarnitine depletion and elevated palmitoylcarnitine and non-esterified fatty acid levels. No significant lipid accumulation was observed in heart. The TTA supplement resulted in enhanced hepatic β-oxidation, accompanied by an increased level of acetylcarnitine and palmitoylcarnitine in plasma. Analysis of mitochondrial respiration showed that TTP reduced oxidative phosphorylation, while TTA increased the maximum respiratory capacity of the electron transport system. Combined treatment with TTP and TTA resulted in a profound stimulation of genes involved in the PPAR-response and L-carnitine metabolism, and partly prevented triacylglycerol accumulation in the liver concomitant with increased peroxisomal β-oxidation and depletion of plasma acetylcarnitines. Despite an increased number of mitochondria in the liver

  12. pH regulation of mitochondrial branch chain alpha-keto acid transport and oxidation in rat heart mitochondria.

    PubMed

    Hutson, S M

    1987-07-15

    The kinetics of branched chain alpha-keto acid uptake and efflux were studied as a function of varied external and matrix pH. Matrix pH was determined by the distribution of 5,5'-dimethyloxazolidine-2,4-dione. When rat heart mitochondria were incubated under transport conditions at pH 7.0 with succinate as respiratory substrate, the matrix pH was significantly greater than 8.0. Matrix pH remained greater than or equal to 8.0 when the medium pH was varied from 6.3 to 8.3, and it was lowered below 8.0 by addition of 5 mM phosphate or uncoupler. No pH gradient was detectable when mitochondria were incubated in the presence of valinomycin and uncoupler. Efflux of alpha-ketoisocaproate or alpha-ketoisovalerate from rat heart mitochondria obeyed first order kinetics. Varying the external pH from 6.6 to 8.3 had no significant effect on efflux, and at an external pH of 7.0, the first order rate constant for efflux was not affected by decreasing the matrix pH. On the other hand, exchange was sensitive to changes in medium but not matrix pH. The K0.5 for external branched chain alpha-keto acid was lowered by changing the medium pH from 7.6 to 6.3. At medium pH values greater than or equal to 8.0 both K0.5 and Vmax were affected. Uptake was determined either by measuring initial rates or was calculated after measuring the first order approach to a final equilibrium value. Unlike efflux, uptake was sensitive to changes in both external and matrix pH. The rate of branched chain alpha-keto acid uptake was stimulated by decreasing the medium pH from 8.3 to 6.3 and by alkalinization of the mitochondrial matrix. The estimated external pK for proton binding was 6.9. The data indicate that the branched chain alpha-keto acid transporter is asymmetric, that is, binding sites for substrate on the inside and outside of the mitochondrial membrane are not identical. alpha-Ketoisocaproate oxidation was measured at 37 degrees C in isolated mitochondria over the pH range of 6.6 to 8

  13. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids

    NASA Astrophysics Data System (ADS)

    Kao, Tzung-Ta; Chang, Yao-Chung

    2014-01-01

    The growth of anodic alumina oxide was conducted in the mixed solution of phosphoric and oxalic acids. The influence of anodizing voltage, electrolyte temperature, and concentration of phosphoric and oxalic acids on the volume expansion of anodic aluminum oxide has been investigated. Either anodizing parameter is chosen to its full extent of range that allows the anodization process to be conducted without electric breakdown and to explore the highest possible volume expansion factor. The volume expansion factors were found to vary between 1.25 and 1.9 depending on the anodizing parameters. The variation is explained in connection with electric field, ion transport number, temperature effect, concentration, and activity of acids. The formation of anodic porous alumina at anodizing voltage 160 V in 1.1 M phosphoric acid mixed with 0.14 M oxalic acid at 2 °C showed the peak volume expansion factor of 1.9 and the corresponding moderate growth rate of 168 nm/min.

  14. Sustainable Synthesis of Oxalic and Succinic Acid through Aerobic Oxidation of C6 Polyols Under Mild Conditions.

    PubMed

    Ventura, Maria; Williamson, David; Lobefaro, Francesco; Jones, Matthew D; Mattia, Davide; Nocito, Francesco; Aresta, Michele; Dibenedetto, Angela

    2018-03-22

    The sustainable chemical industry encompasses a shift from the use of fossil carbon to renewable carbon. The synthesis of chemicals from nonedible biomass (cellulosic or oil) represents one of the key steps for "greening" the chemical industry. In this paper, we report the aerobic oxidative cleavage of C6 polyols (5-HMF, glucose, fructose and sucrose) to oxalic acid (OA) and succinic acid (SA) in water under mild conditions using M@CNT and M@NCNT (M=Fe, V; CNT=carbon nanotubes; NCNT=N-doped CNT), which, under suitable conditions, were recoverable and reusable without any loss of efficiency. The influence of the temperature, O 2 pressure (PO2 ), reaction time and stirring rate are discussed and the best reaction conditions are determined for an almost complete conversion of the starting material and a good OA yield of 48 %. SA and formic acid were the only co-products. The former could be further converted into OA by oxidation in the presence of formic acid, resulting in an overall OA yield of >62 %. This process was clean and did not produce organic waste nor gas emissions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Carotenoids, Birdsong and Oxidative Status: Administration of Dietary Lutein Is Associated with an Increase in Song Rate and Circulating Antioxidants (Albumin and Cholesterol) and a Decrease in Oxidative Damage

    PubMed Central

    Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel

    2014-01-01

    Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits. PMID:25549336

  16. Carotenoids, birdsong and oxidative status: administration of dietary lutein is associated with an increase in song rate and circulating antioxidants (albumin and cholesterol) and a decrease in oxidative damage.

    PubMed

    Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel

    2014-01-01

    Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits.

  17. Effect of temperature on thermal oxidation of palmitic acid studied by combination of EPR spin trapping technique and SPME-GC-MS/MS.

    PubMed

    Chen, Hongjian; Wang, Yong; Cao, Peirang; Liu, Yuanfa

    2017-11-01

    Effect of temperatures on thermal oxidation of palmitic acid was studied by the combination of EPR and GC-MS/MS. DMPO was used as the spin trap. The experimental spectrum was simulated with alkyl and alkoxyl spin adducts. Total amount of spins, a parameter to indicate radical concentrations, detected at 180°C was nearly 10 times higher than that at 175°C. Besides, total amounts of spins detected at 180°C decreased rapidly because of the reaction between radical adducts and newly formed radicals. Signal intensities of alkyl radical adducts increased rapidly from 0.405 to 4.785 from 175°C to 180°C. Besides, more palmitic acid degraded to oxidized compounds from 175°C to 180°C than that of other temperature ranges. The C-C linkages between carbons 2 to 6 were easier to be oxidized at 180°C. The results all implied that oxidation rates of palmitic acid samples increased rapidly from 175°C to 180°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Influence of virgin coconut oil-enriched diet on the transcriptional regulation of fatty acid synthesis and oxidation in rats - a comparative study.

    PubMed

    Arunima, Sakunthala; Rajamohan, Thankappan

    2014-05-28

    The present study was carried out to evaluate the effects of virgin coconut oil (VCO) compared with copra oil, olive oil and sunflower-seed oil on the synthesis and oxidation of fatty acids and the molecular regulation of fatty acid metabolism in normal rats. Male Sprague-Dawley rats were fed the test oils at 8 % for 45 d along with a synthetic diet. Dietary supplementation of VCO decreased tissue lipid levels and reduced the activity of the enzymes involved in lipogenesis, namely acyl CoA carboxylase and fatty acid synthase (FAS) (P< 0·05). Moreover, VCO significantly (P< 0·05) reduced the de novo synthesis of fatty acids by down-regulating the mRNA expression of FAS and its transcription factor, sterol regulatory element-binding protein-1c, compared with the other oils. VCO significantly (P< 0·05) increased the mitochondrial and peroxisomal β-oxidation of fatty acids, which was evident from the increased activities of carnitine palmitoyl transferase I, acyl CoA oxidase and the enzymes involved in mitochondrial β-oxidation; this was accomplished by up-regulating the mRNA expression of PPARα and its target genes involved in fatty acid oxidation. In conclusion, the present results confirmed that supplementation of VCO has beneficial effects on lipid parameters by reducing lipogenesis and enhancing the rate of fatty acid catabolism; this effect was mediated at least in part via PPARα-dependent pathways. Thus, dietary VCO reduces the risk for CHD by beneficially modulating the synthesis and degradation of fatty acids.

  19. A new leptin-mediated mechanism for stimulating fatty acid oxidation: a pivotal role for sarcolemmal FAT/CD36.

    PubMed

    Momken, Iman; Chabowski, Adrian; Dirkx, Ellen; Nabben, Miranda; Jain, Swati S; McFarlan, Jay T; Glatz, Jan F C; Luiken, Joost J F P; Bonen, Arend

    2017-01-01

    Leptin stimulates fatty acid oxidation in muscle and heart; but, the mechanism by which these tissues provide additional intracellular fatty acids for their oxidation remains unknown. We examined, in isolated muscle and cardiac myocytes, whether leptin, via AMP-activated protein kinase (AMPK) activation, stimulated fatty acid translocase (FAT/CD36)-mediated fatty acid uptake to enhance fatty acid oxidation. In both mouse skeletal muscle and rat cardiomyocytes, leptin increased fatty acid oxidation, an effect that was blocked when AMPK phosphorylation was inhibited by adenine 9-β-d-arabinofuranoside or Compound C. In wild-type mice, leptin induced the translocation of FAT/CD36 to the plasma membrane and increased fatty acid uptake into giant sarcolemmal vesicles and into cardiomyocytes. In muscles of FAT/CD36-KO mice, and in cardiomyocytes in which cell surface FAT/CD36 action was blocked by sulfo-N-succinimidyl oleate, the leptin-stimulated influx of fatty acids was inhibited; concomitantly, the normal leptin-stimulated increase in fatty acid oxidation was also prevented, despite the normal leptin-induced increase in AMPK phosphorylation. Conversely, in muscle of AMPK kinase-dead mice, leptin failed to induce the translocation of FAT/CD36, along with a failure to stimulate fatty acid uptake and oxidation. Similarly, when siRNA was used to reduce AMPK in HL-1 cardiomyocytes, leptin failed to induce the translocation of FAT/CD36. Our studies have revealed a novel mechanism of leptin-induced fatty acid oxidation in muscle tissue; namely, this process is dependent on the activation of AMPK to induce the translocation of FAT/CD36 to the plasma membrane, thereby stimulating fatty acid uptake. Without increasing this leptin-stimulated, FAT/CD36-dependent fatty acid uptake process, leptin-stimulated AMPK phosphorylation does not enhance fatty acid oxidation. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  20. Process for etching mixed metal oxides

    DOEpatents

    Ashby, Carol I. H.; Ginley, David S.

    1994-01-01

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  1. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes

    PubMed Central

    Gan, Lu; Liu, Zhenjiang; Cao, Weina; Zhang, Zhenzhen; Sun, Chao

    2015-01-01

    Fatty acid binding protein 4 (FABP4), plays key role in fatty acid transportation and oxidation, and increases with leptin synergistically during adipose inflammation process. However, the regulation mechanism between FABP4 and leptin on mitochondrial fatty acid oxidation remains unclear. In this study, we found that FABP4 reduced the expression of leptin, CPT-1 and AOX1 in mice adipocytes. Conversely, FABP4 was down-regulated in a time-dependent manner by leptin treatment. Additionally, forced expression of FABP4 attenuated the expression of PGC1-α, UCP2, CPT-1, AOX1 and COX2 compared with leptin incubation. Moreover, mitochondrial membrane potential, fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase (LCAD) and Cyt C levels were reduced in response to the overexpression of FABP4. These reductions correspond well with the reduced release of free fatty acid and the inactivation of mitochondrial complexes I and III by FABP4 overexpression. Furthermore, addition of the Akt/mTOR pathway-specific inhibitor (MK2206) blocked the mitochondrial fatty acid oxidation and respiration factors, whereas interference of FABP4 overcame these effects. Taken together, FABP4 could reverse the activation of the leptin-induced mitochondrial fatty acid oxidation, and the inhibition of Akt/mTOR signal pathway played a key role in this process. PMID:26310911

  2. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes.

    PubMed

    Gan, Lu; Liu, Zhenjiang; Cao, Weina; Zhang, Zhenzhen; Sun, Chao

    2015-08-27

    Fatty acid binding protein 4 (FABP4), plays key role in fatty acid transportation and oxidation, and increases with leptin synergistically during adipose inflammation process. However, the regulation mechanism between FABP4 and leptin on mitochondrial fatty acid oxidation remains unclear. In this study, we found that FABP4 reduced the expression of leptin, CPT-1 and AOX1 in mice adipocytes. Conversely, FABP4 was down-regulated in a time-dependent manner by leptin treatment. Additionally, forced expression of FABP4 attenuated the expression of PGC1-α, UCP2, CPT-1, AOX1 and COX2 compared with leptin incubation. Moreover, mitochondrial membrane potential, fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase (LCAD) and Cyt C levels were reduced in response to the overexpression of FABP4. These reductions correspond well with the reduced release of free fatty acid and the inactivation of mitochondrial complexes I and III by FABP4 overexpression. Furthermore, addition of the Akt/mTOR pathway-specific inhibitor (MK2206) blocked the mitochondrial fatty acid oxidation and respiration factors, whereas interference of FABP4 overcame these effects. Taken together, FABP4 could reverse the activation of the leptin-induced mitochondrial fatty acid oxidation, and the inhibition of Akt/mTOR signal pathway played a key role in this process.

  3. Evaluating the role of acidic, basic, and polar amino acids and dipeptides on a molecular electrocatalyst for H 2 oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boralugodage, Nilusha Priyadarshani; Arachchige, Rajith Jayasingha; Dutta, Arnab

    Amino acids and peptides have been shown to have a significant influence on the H2 production and oxidation reactivity of Ni(P R 2N R’ 2) 2, where P R 2N R’ 2 = 1,5-diaza-3,7-diphosphacyclooctane, R is either phenyl (Ph) or cyclohexyl (Cy), and R’ is either an amino acid or peptide. Most recently, the Ni(P Cy 2Naminoacid 2) 2 complexes (CyAA) have shown enhanced H 2 oxidation rates, water solubility, and in the case of arginine (CyArg) and phenylalanine (CyPhe), electrocatalytic reversibility. Both the backbone –COOH and side chain interactions were shown to be critical to catalytic performance. Here wemore » further investigate the roles of the outer coordination sphere by evaluating amino acids with acidic, basic, and hydrophilic side chains, as well as dipeptides which combine multiple successful features from previous complexes. Six new complexes were prepared, three containing single amino acids: aspartic acid (CyAsp), lysine (CyLys), and serine (CySer) and three containing dipeptides: glycine-phenylalanine (Cy(GlyPhe)), phenylalanine-glycine (Cy(PheGly)), and aspartic acid-phenylananine (Cy(AspPhe)). The resulting catalytic performance demonstrates that complexes need both interactions between side chain and –COOH groups for fast, efficient catalysis. The fastest of all of the catalysts, Cy(AspPhe), had both of these features, while the other dipeptide complexes with an amide replacing the -COOH were both slower; however, the amide group was demonstrated to participate in the proton pathway when side chain interactions are present to position it. Both the hydrophilic and basic side chains, notably lacking in side chain interactions, significantly increased the overpotential, with only modest increases in TOF. Of all of the complexes, only CyAsp was reversible at room temperature, and only in water, the first of these complexes to demonstrate room temperature reversibility in water. These results continue to provide and solidify design rules for

  4. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    PubMed

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. Copyright © 2016. Published by Elsevier Ltd.

  5. Plasma acylcarnitine profiling indicates increased fatty acid oxidation relative to tricarboxylic acid cycle capacity in young, healthy low birth weight men.

    PubMed

    Ribel-Madsen, Amalie; Ribel-Madsen, Rasmus; Brøns, Charlotte; Newgard, Christopher B; Vaag, Allan A; Hellgren, Lars I

    2016-10-01

    We hypothesized that an increased, incomplete fatty acid beta-oxidation in mitochondria could be part of the metabolic events leading to insulin resistance and thereby an increased type 2 diabetes risk in low birth weight (LBW) compared with normal birth weight (NBW) individuals. Therefore, we measured fasting plasma levels of 45 acylcarnitine species in 18 LBW and 25 NBW men after an isocaloric control diet and a 5-day high-fat, high-calorie diet. We demonstrated that LBW men had higher C2 and C4-OH levels after the control diet compared with NBW men, indicating an increased fatty acid beta-oxidation relative to the tricarboxylic acid cycle flux. Also, they had higher C6-DC, C10-OH/C8-DC, and total hydroxyl-/dicarboxyl-acylcarnitine levels, which may suggest an increased fatty acid omega-oxidation in the liver. Furthermore, LBW and NBW men decreased several acylcarnitine levels in response to overfeeding, which is likely a result of an upregulation of fatty acid oxidation due to the dietary challenge. Moreover, C10-OH/C8-DC and total hydroxyl-/dicarboxyl-acylcarnitine levels tended to be negatively associated with the serum insulin level, and the total hydroxyl-/dicarboxyl-acylcarnitine level additionally tended to be negatively associated with the hepatic insulin resistance index. This indicates that an increased fatty acid omega-oxidation could be a compensatory mechanism to prevent an accumulation of lipid species that impair insulin signaling. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. Ophthalmic acid is a marker of oxidative stress in plants as in animals.

    PubMed

    Servillo, Luigi; Castaldo, Domenico; Giovane, Alfonso; Casale, Rosario; D'Onofrio, Nunzia; Cautela, Domenico; Balestrieri, Maria Luisa

    2018-04-01

    Ophthalmic acid (OPH), γ-glutamyl-L-2-aminobutyryl-glycine, a tripeptide analogue of glutathione (GSH), has recently captured considerable attention as a biomarker of oxidative stress in animals. The OPH and GSH biosynthesis, as well as some biochemical behaviors, are very similar. Here, we sought to investigate the presence of OPH in plants and its possible relationship with GSH, known to possess multiple functions in the plant development, growth and response to environmental changes. HPLC-ESI-MS/MS analysis was used to examine the occurrence of OPH in leaves from various plant species, and flours from several plant seeds. Different types of oxidative stress, i.e., water, dark, paraquat, and cadmium stress, were induced in rye, barley, oat, and winter wheat leaves to evaluate the effects on the levels of OPH and its metabolic precursors. OPH and its dipeptide precursor, γ-glutamyl-2-aminobutyric acid, were found to occur in phylogenetically distant plants. Interestingly, the levels of OPH were tightly associated with the oxidative stress tested. Levels of OPH precursors, γ-glutamyl-2-aminobutyric acid and 2-aminobutyric acid, the latter efficiently formed in plants via biosynthetic pathways absent in the animal kingdom, were also found to increase during oxidative stress. OPH occurs in plants and its levels are tightly associated with oxidative stress. OPH behaves as an oxidative stress marker and its biogenesis might occur through a biochemical pathway common to many living organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions.

    PubMed

    Zheng, Yu; Zhang, Renkuan; Yin, Haisong; Bai, Xiaolei; Chang, Yangang; Xia, Menglei; Wang, Min

    2017-09-01

    Initial acetic acid can improve the ethanol oxidation rate of acetic acid bacteria for acetic acid fermentation. In this work, Acetobacter pasteurianus was cultured in ethanol-free medium, and energy production was found to increase by 150% through glucose consumption induced by initial acetic acid. However, oxidation of ethanol, instead of glucose, became the main energy production pathway when upon culturing ethanol containing medium. Proteome assay was used to analyze the metabolism change induced by initial acetic acid, which provided insight into carbon metabolic and energy regulation of A. pasteurianus to adapt to acetic acid fermentation conditions. Results were further confirmed by quantitative real-time PCR. In summary, decreased intracellular ATP as a result of initial acetic acid inhibition improved the energy metabolism to produce more energy and thus adapt to the acetic acid fermentation conditions. A. pasteurianus upregulated the expression of enzymes related to TCA and ethanol oxidation to improve the energy metabolism pathway upon the addition of initial acetic acid. However, enzymes involved in the pentose phosphate pathway, the main pathway of glucose metabolism, were downregulated to induce a change in carbon metabolism. Additionally, the enhancement of alcohol dehydrogenase expression promoted ethanol oxidation and strengthened the acetification rate, thereby producing a strong proton motive force that was necessary for energy production and cell tolerance to acetic acid.

  8. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals.

    PubMed

    Liu, Fobang; Lai, Senchao; Tong, Haijie; Lakey, Pascale S J; Shiraiwa, Manabu; Weller, Michael G; Pöschl, Ulrich; Kampf, Christopher J

    2017-03-01

    Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.

  9. Acid-catalyzed oxidation of 2,4-dichlorophenoxyacetic acid by ammonium nitrate in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leavitt, D.D.; Abraham, M.A.

    1990-04-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) was oxidized to CO{sub 2} and water by homogeneous, liquid-phase reaction with ammonium nitrate at temperatures between 250 and 450{degree}F and pressures below 100 psi. N{sub 2} and N{sub 2}O were produced from the thermal decomposition of the ammonium nitrate oxidant. An unexpected maximum in conversion was observed at an intermediate reaction temperature, which was consistent with rapid thermal decomposition of the NH{sub 4}NO{sub 3} oxidant. Postulated reaction pathways consisting of simultaneous oxidation of 2,4-D and decomposition of the oxidant allowed estimation of kinetic constants from best-fit analysis of the data. The proposed reaction model provided amore » mathematical description of 2,4-D conversion, which allowed extrapolation of the results to reaction conditions and reactor configurations that were not experimentally investigated.« less

  10. Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice.

    PubMed

    Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Morsy, Safaa M Youssef; Omara, Enayat A; Sleem, Amany A

    2014-05-01

    Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1-2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1-2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1-2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation.

  11. Citric Acid Effects on Brain and Liver Oxidative Stress in Lipopolysaccharide-Treated Mice

    PubMed Central

    Youness, Eman R.; Mohammed, Nadia A.; Morsy, Safaa M. Youssef; Omara, Enayat A.; Sleem, Amany A.

    2014-01-01

    Abstract Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1–2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1–2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1–2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation. PMID:24433072

  12. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  13. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene oxide...

  14. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2011-06-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008) proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM-10 mM) was oxidized by OH radical. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  15. Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum.

    PubMed

    Kitamura, Takuya; Seki, Naoya; Kihara, Akio

    2017-03-28

    Although normal fatty acids (FAs) are degraded via β-oxidation, unusual FAs such as 2-hydroxy (2-OH) FAs and 3-methyl-branched FAs are degraded via α-oxidation. Phytosphingosine (PHS) is one of the long-chain bases (the sphingolipid components) and exists in specific tissues, including the epidermis and small intestine in mammals. In the degradation pathway, PHS is converted to 2-OH palmitic acid and then to pentadecanoic acid (C15:0-COOH) via FA α-oxidation. However, the detailed reactions and genes involved in the α-oxidation reactions of the PHS degradation pathway have yet to be determined. In the present study, we reveal the entire PHS degradation pathway: PHS is converted to C15:0-COOH via six reactions [phosphorylation, cleavage, oxidation, CoA addition, cleavage (C1 removal), and oxidation], in which the last three reactions correspond to the α-oxidation. The aldehyde dehydrogenase ALDH3A2 catalyzes both the first and second oxidation reactions (fatty aldehydes to FAs). In Aldh3a2 -deficient cells, the unmetabolized fatty aldehydes are reduced to fatty alcohols and are incorporated into ether-linked glycerolipids. We also identify HACL2 (2-hydroxyacyl-CoA lyase 2) [previous name, ILVBL; ilvB (bacterial acetolactate synthase)-like] as the major 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the FA α-oxidation of the PHS degradation pathway. HACL2 is localized in the endoplasmic reticulum. Thus, in addition to the already-known FA α-oxidation in the peroxisomes, we have revealed the existence of FA α-oxidation in the endoplasmic reticulum in mammals.

  16. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    PubMed

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end.

  17. Process for etching mixed metal oxides

    DOEpatents

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  18. Lipidomics of oxidized polyunsaturated fatty acids

    PubMed Central

    Massey, Karen A.; Nicolaou, Anna

    2013-01-01

    Lipid mediators are produced from the oxidation of polyunsaturated fatty acids through enzymatic and free radical-mediated reactions. When subject to oxygenation via cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases, polyunsaturated fatty acids give rise to an array of metabolites including eicosanoids, docosanoids, and octadecanoids. These potent bioactive lipids are involved in many biochemical and signaling pathways, with inflammation being of particular importance. Moreover, because they are produced by more than one pathway and substrate, and are present in a variety of biological milieus, their analysis is not always possible with conventional assays. Liquid chromatography coupled to electrospray mass spectrometry offers a versatile and sensitive approach for the analysis of bioactive lipids, allowing specific and accurate quantitation of multiple species present in the same sample. Here we explain the principles of this approach to mediator lipidomics and present detailed protocols for the assay of enzymatically produced oxygenated metabolites of polyunsaturated fatty acids that can be tailored to answer biological questions or facilitate assessment of nutritional and pharmacological interventions. PMID:22940496

  19. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-08-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated aerosol samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2 = 0.79, n = 52, Ea = 126 ± 10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2 = 0.60, n = 56, Ea = 84 ± 9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  20. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-05-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2=0.79, n=52, Ea=126±10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2=0.60, n=56, Ea=84±9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  1. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductasemore » 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.« less

  2. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  3. Acute p-synephrine ingestion increases fat oxidation rate during exercise.

    PubMed

    Gutiérrez-Hellín, Jorge; Del Coso, Juan

    2016-08-01

    p-Synephrine is a protoalkaloid widely used in dietary supplements for weight management because of its purported thermogenic effects. However, there is a lack of scientific information about its effectiveness to increase fat metabolism during exercise. The purpose of this investigation was to determine the effects of an acute ingestion of p-synephrine on fat oxidation at rest and during exercise. In a double-blind, randomized and counterbalanced experimental design, 18 healthy subjects performed two acute experimental trials after the ingestion of p-synephrine (3 mg kg(-1) ) or after the ingestion of a placebo (cellulose). Energy expenditure and fat oxidation rates were measured by indirect calorimetry at rest and during a cycle ergometer ramp exercise test (increases of 25 W every 3 min) until volitional fatigue. In comparison with the placebo, the ingestion of p-synephrine did not change energy consumption (1.6 ± 0.3 vs. 1.6 ± 0.3 kcal min(-1) ; P = 0.69) or fat oxidation rate at rest (0.08 ± 0.02 vs. 0.10 ± 0.04 g min(-1) ; P = 0.15). However, the intake of p-synephrine moved the fat oxidation-exercise intensity curve upwards during the incremental exercise (P < 0.05) without affecting energy expenditure. Moreover, p-synephrine increased maximal fat oxidation rate (0.29 ± 0.15 vs. 0.40 ± 0.18 g min(-1) ; P = 0.01) during exercise although it did not affect the intensity at which maximal fat oxidation was achieved (55.8 ± 7.7 vs. 56.7 ± 8.2% VO2peak ; P = 0.51). The acute ingestion of p-synephrine increased the fat oxidation rate while it reduced the carbohydrate oxidation rate when exercising at low-to-moderate exercise intensities. © 2016 The British Pharmacological Society.

  4. Evaluation of Pt Alloys as Electrocatalysts for Oxalic Acid Oxidation: A Combined Experimental and Computational Study

    DOE PAGES

    Perry, Albert; Babanova, Sofia; Matanovic, Ivana; ...

    2016-07-14

    Here in this study we combined experimental approaches and density functional theory to evaluate novel platinum-based materials as electrocatalysts for oxalic acid oxidation. Several Pt alloys, PtSn (1:1), PtSn (19:1), PtRu (1:4), PtRuSn (5:4:1), and PtRhSn (3:1:4), were synthetized using sacrificial support method and tested for oxidation of oxalic acid at pH 4. It was shown that PtSn (1:1) and PtRu (1:4) have higher mass activity relative to Pt. These two materials along with Pt and one of the least active alloys, PtSn (19:1), were further analyzed for the oxidation of oxalic acid at different pHs. The results show thatmore » all samples tested followed an identical trend of decreased onset potential with increased pH and increased catalytic activity with decreased pH. Density functional theory was further utilized to gain a fundamental knowledge about the mechanism of oxalic acid oxidation on Pt, PtSn (1:1), and PtRu (1:4). In conclusion, the results of the calculations along with the experimentally observed dependence of generated currents on the oxalic acid concentration indicate that the mechanism of oxalic acid oxidation on Pt proceeds without the participation of surface oxidizing species, while on Pt alloys it involves their participation.« less

  5. A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator.

    PubMed

    Braam, Kyle; Subramanian, Vivek

    2015-01-27

    A novel photopolymerized poly(acrylic acid) separator is demonstrated in a printed, high-energy-density silver oxide battery. The printed battery demonstrates a high capacity of 5.4 mA h cm(-2) at a discharge current density of 2.75 mA cm(-2) (C/2 rate) while delivering good mechanical flexibility and robustness. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode.

    PubMed

    Kaur, Balwinder; Pandiyan, Thangarasu; Satpati, Biswarup; Srivastava, Rajendra

    2013-11-01

    In this paper, we report the synthesis of silver nanoparticle-decorated reduced graphene oxide composite (AgNPs/rGO) by heating the mixture of graphene oxide and silver nitrate aqueous solution in the presence of sodium hydroxide. This material was characterized by means of X-ray diffraction, UV-vis spectroscopy, and transmission electron microscopy. AgNPs/rGO based electrochemical sensor was fabricated for the simultaneous determination of ascorbic acid, dopamine, uric acid, and tryptophan. Electrochemical studies were carried out by using cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. AgNPs/rGO modified electrode exhibited excellent electrocatalytic activity, stability, sensitivity, and selectivity with well-separated oxidation peaks toward ascorbic acid, dopamine, uric acid, and tryptophan in the simultaneous determination of their quaternary mixture. The analytical performance of this material as a chemical sensor was demonstrated for the determination of ascorbic acid and dopamine in commercial pharmaceutical samples such as vitamin C tablets and dopamine injections, respectively. The applicability of this sensor was also extended in the determination of uric acid in human urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    PubMed

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The Oxidation of Ascorbic Acid by Hexacyanoferrate(III) Ion in Acidic Aqueous Media.

    ERIC Educational Resources Information Center

    Martins, Luis J. A.; da Costa, J. Barbosa

    1988-01-01

    Describes a kinetic and mechanistic investigation of ascorbic acid by a substitution-inert complex in acidic medium suitable for the undergraduate level. Discusses obtaining the second order rate constant for the rate determining step at a given temperature and comparison with the value predicted on the basis of the Marcus cross-relation. (CW)

  9. Influence of Catalyst Acid/Base Properties in Acrolein Production by Oxidative Coupling of Ethanol and Methanol.

    PubMed

    Lilić, Aleksandra; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-05-09

    Oxidative coupling of methanol and ethanol represents a new route to produce acrolein. In this work, the overall reaction was decoupled in two steps, the oxidation and the aldolization, by using two consecutive reactors to investigate the role of the acid/base properties of silica-supported oxide catalysts. The oxidation of a mixture of methanol and ethanol to formaldehyde and acetaldehyde was performed over a FeMoO x catalyst, and then the product mixture was transferred without intermediate separation to a second reactor, in which the aldol condensation and dehydration to acrolein were performed over the supported oxides. The impact of the acid/base properties on the selectivity towards acrolein was investigated under oxidizing conditions for the first time. The acid/base properties of the catalysts were investigated by NH 3 -, SO 2 -, and methanol-adsorption microcalorimetry. A MgO/SiO 2 catalyst was the most active in acrolein production owing to an appropriate ratio of basic to acidic sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Oxidation of d-Amino Acids by a Particulate Enzyme from Pseudomonas aeruginosa

    PubMed Central

    Marshall, Vincent P.; Sokatch, John R.

    1968-01-01

    A particulate d-amino acid dehydrogenase has been partially purified from cell free extracts of Pseudomonas aeruginosa grown on dl-valine as the source of carbon and energy. A standard assay was developed which utilized 2,6-dichlorophenol-indophenol as the electron acceptor. The pH optimum for enzyme activity ranged from 6.0 to 8.0, depending on the amino acid assayed. The enzyme was most active with monoamino-monocarboxylic amino acids and histidine. The Michaelis constant for d-phenylalanine was found to be 1.3 × 10-3m d-phenylalanine. Constants could not be calculated for the other amino acids oxidized because anomalous plots of V as a function of V/S were obtained. Spectra of enzyme preparations reduced with d-valine or sodium hydrosulfite exhibited adsorption bands typical of the α, β, and γ bands of cytochromes as well as bleaching in the flavin region of the spectrum. When dl-valine was added to a medium with glycerol as the energy source, d-amino acid dehydrogenase was detected after the addition of valine and was produced at a rate directly proportional to the synthesis of total protein. The enzyme was formed when d-valine, l-valine, or dl-alanine was the source of carbon and energy, but not when glucose, glycerol, or succinate was the energy source. PMID:4384679

  11. Effectiveness of various cover scenarios on the rate of sulfide oxidation of mine tailings

    NASA Astrophysics Data System (ADS)

    Romano, Connie G.; Ulrich Mayer, K.; Jones, David R.; Ellerbroek, David A.; Blowes, David W.

    2003-02-01

    Long term environmentally sound disposal of the millions of tons of mining residue is a serious challenge to the international mining industry. This paper evaluates, through a numerical investigation, the potential performance of desulfurized tailings as a cover material for the reduction of acidic drainage from sulfidic tailings. This evaluation is facilitated through a comparison of various cover types as decommissioning options. The cover types considered consist of a desulfurized tailings material cover exposed to ambient climate conditions, a water cover (flooded tailings), and a combination cover type. As part of the evaluation of cover performances, the effect of climatic variability on the potential rate of sulfide oxidation in tailings with an open ground surface, was also assessed. The numerical analysis was conducted using the model PYROX, which was modified to allow for variably-saturated conditions, time varying moisture contents, and to account for the temperature dependence of Henry's law and gas diffusion. In the case study presented here, the benign cover material consists of a low sulfide waste stream (cassiterite float tails, CFT), a by-product of the production of tin concentrate (cassiterite, SnO 2). Modelling results after a simulation period of 100 years indicate that a water cover alone or an exposed CFT cover alone are both less effective options than the combined cover type. A water cover alone leads to a reduction of approximately 99.1%, in the oxidation rate relative to uncovered tailings while the combined cover type results in the lowest potential extent of sulfide oxidation after mine closure-an approximately 99.8% reduction. Importantly, a CFT cover exposed to ambient environmental conditions can still substantially reduce the sulfide oxidation rate, by approximately 75-82% over a 100-year time period, relative to uncovered tailings. Variability in precipitation (and hence percent saturation of the surface layer) had less of an

  12. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2012-01-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  13. High rate sodium ion battery anodes from block copolymer templated mesoporous nickel–cobalt carbonates and oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaway, Sarang M.; Tangvijitsakul, Pattarasai; Lee, Jeongwoo

    2015-09-16

    Micelle-templated ordered mesoporous nickel–cobalt carbonates and oxides are fabricated using a metal nitrate–citric acid strategy, which avoids the hydrolysis and aging requirements associated with sol–gel chemistry. A series of mesoporous Ni xCo (3-x)(CO 3) y and Ni xCo (3-x)O 4 films with varying Ni–Co compositions and 14 ± 4 nm mesopores are fabricated with the same block copolymer template. AFM and GISAXS analysis indicates that the mesostructure is maintained through the formation of the carbonate and oxide, while GIXD profiles confirm formation of pure spinel phases of semi-crystalline Ni xCo (3-x)O 4. The micelle templated mesopores are interconnected and providemore » transport paths for the electrolyte to minimize the solid-state diffusion requirements associated with battery electrodes. These materials exhibit good performance as sodium ion battery anodes even at high current densities of 4 A g -1. Amongst the mixed-metal oxides, Ni 2CoO 4 exhibits the highest specific capacity of 239 mA h g -1 after galvanostatic cycling at a current density of 1 A g -1 for 10 cycles. We attribute the superior performance of Ni 2CoO 4 at high rates to the high surface area and short ion-diffusion paths of the nanoporous anode architecture, while the higher nickel content in the mixed metal oxide provides enhanced stability during oxide formation along with enhanced electronic conductivity, leading to improved cycling stability of the anode. This micelle template metal nitrate–citric acid method enables new possibilities for fabricating variety of ordered mesoporous mixed-metal carbonates and oxides that could be used in a wide range of applications.« less

  14. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?

    PubMed

    Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-08-19

    Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.

  15. Increased hepatic beta-oxidation of docosahexaenoic acid, elongation of eicosapentaenoic acid, and acylation of lysophosphatidate in rats fed a docosahexaenoic acid-enriched diet.

    PubMed

    Kanazawa, A; Shirota, Y; Fujimoto, K

    1997-07-01

    Rats were fed a diet supplemented with corn oil (n-3 deficient), soy oil, or a mixture containing 8% 22:6n-3 ethyl ester for 6 wk. The hepatic capacities for the beta-oxidation and synthesis of 22:6n-3, in addition to the acylation of lysophosphatidate, were tested in vitro. In rats that were fed a 22:6n-3-enriched diet, both the beta-oxidation of 22:6n-3 and elongation of 20:5n-3 were enhanced compared to those in rats fed the other diets. Acylation of lysophosphatidate was also enhanced in rats fed a 22:6n-3-enriched diet, while the rate of dephosphorylation of phosphatidate was not changed. The amount of 22:6n-3 in the liver was much less than that consumed in a docosahexaenoic acid-enriched diet. These results suggest that a significant amount of dietary 22:6n-3 was degraded via beta-oxidation, and that a portion of the retroconverted 20:5n-3 was recycled for the synthesis of 22:6n-3. The recycling of 20:5n-3 might contribute to the low level of 22:6n-3 in rats fed an n-3-deficient diet.

  16. Modification of the acid/base properties of γ-Al2O3 by oxide additives: An ethanol TPD investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Ja Hun; Lee, Jaekyoung; Szanyi, Janos

    2016-02-26

    The electronic properties of oxide-modified γ Al2O3 surfaces were investigated by using ethanol TPD. Ethanol TPD showed remarkable sensitivity toward the surface structures and electronic properties of the aluminas modified by various transition metal oxides. Maximum desorption rates for the primary product of ethanol adsorption, ethylene, were observed at 225 °C on non-modified γ-Al2O3. Desorption temperature of ethanol over a γ Al2O3 samples with different amounts of BaO linearly increased with increasing loading. On the contrary, ethanol desorption temperature on Pt modified γ-Al2O3 after calcined at 500 oC linearly decreased with increasing Pt loading. These results clearly suggested that themore » acid/base properties of the γ-Al2O3 surface can be strongly affected by ad-atoms. For confirming these arguments, we performed ethanol TPD experiments on various oxide modified γ-Al2O3 and normalized the maximum desorption temperatures based on the same number of oxide dopants. These normalized ethanol desorption temperatures linearly correlate with the electronegativity of the metal atom in the oxide. This linear relationship clearly demonstrates that the acidic properties of alumina surfaces can be systematically changed by ad-atoms.« less

  17. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: a kinetic approach.

    PubMed

    Ghosh, Aniruddha; Saha, Rumpa; Ghosh, Sumanta K; Mukherjee, Kakali; Saha, Bidyut

    2013-05-15

    The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Oxidizing of ferulic acid with the use of polyoxometalates as catalysts

    NASA Astrophysics Data System (ADS)

    Povarnitsyna, T. V.; Popova, N. R.; Bogolitsyn, K. G.; Beloglazova, A. L.; Pryakhin, A. N.; Lunin, V. V.

    2010-12-01

    The kinetics of catalytic oxidation for ferulic acid with polyoxometalates used as catalysts was studied. The effect of pH and concentrations of the principal reacting components on the process kinetics was studied. A kinetic scheme of oxidation is proposed, and the values of a number of kinetic parameters of the process are determined.

  19. Selective Aerobic Oxidation of 5-(Hydroxymethyl)furfural to 5-Formyl-2-furancarboxylic Acid in Water.

    PubMed

    Ventura, Maria; Aresta, Michele; Dibenedetto, Angela

    2016-05-23

    A simple, cheap, and selective catalyst based on copper/cerium oxides is described for the oxidation of 5-(hydroxymethyl)furfural (5-HMF) in water. An almost quantitative conversion (99 %) with excellent (90 %) selectivity towards the formation of 5-formyl-2-furancarboxylic acid, a platform molecule for other high value chemicals, is observed. The catalyst does not require any pretreatment or additives, such as bases, to obtain high yield and selectivity in water as solvent and using oxygen as oxidant. When a physical mixture of the oxides is used, low conversion and selectivity are observed. Air can be used instead of oxygen, but a lower conversion rate is observed if the same overall pressure is used, and the selectivity remains high. The catalyst can be recovered almost quantitatively and reused. Deactivation of the catalyst, observed in repeated runs, is due to the deposition of humins on its surface. Upon calcination the catalyst almost completely recovers its activity and selectivity, proving that the catalyst is robust. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media

    NASA Astrophysics Data System (ADS)

    Blasco-Ahicart, Marta; Soriano-López, Joaquín; Carbó, Jorge J.; Poblet, Josep M.; Galan-Mascaros, J. R.

    2018-01-01

    Water splitting is a promising approach to the efficient and cost-effective production of renewable fuels, but water oxidation remains a bottleneck in its technological development because it largely relies on noble-metal catalysts. Although inexpensive transition-metal oxides are competitive water oxidation catalysts in alkaline media, they cannot compete with noble metals in acidic media, in which hydrogen production is easier and faster. Here, we report a water oxidation catalyst based on earth-abundant metals that performs well in acidic conditions. Specifically, we report the enhanced catalytic activity of insoluble salts of polyoxometalates with caesium or barium counter-cations for oxygen evolution. In particular, the barium salt of a cobalt-phosphotungstate polyanion outperforms the state-of-the-art IrO2 catalyst even at pH < 1, with an overpotential of 189 mV at 1 mA cm-2. In addition, we find that a carbon-paste conducting support with a hydrocarbon binder can improve the stability of metal-oxide catalysts in acidic media by providing a hydrophobic environment.

  1. HONO (nitrous acid) emissions from acidic northern soils

    NASA Astrophysics Data System (ADS)

    Maljanen, Marja; Yli-Pirilä, Pasi; Joutsensaari, Jorma; Sulassaari, Sirkka; Martikainen, Pertti J.

    2014-05-01

    The photolysis of HONO (nitrous acid) is an important source of OH radical, the key oxidizing agent in the atmosphere, contributing also to removal of atmospheric methane (CH4), the second most important greenhouse gas after carbon dioxide (CO2). There are missing sources of HONO when considering the chemical reactions in the atmosphere. Soil could be such a missing source. Emissions of HONO from soils studied in laboratory incubations have been recently reported. The soil-derived HONO has been connected to soil nitrite (NO2-) and a study with an ammonium oxidizing bacterium has shown that HONO could be produced in ammonium oxidation. Our hypothesis was that boreal acidic soils with high nitrification activity could be important sources of HONO. We selected a range of dominant northern acidic soils and showed in microcosm experiments that soils which have the highest nitrous oxide (N2O) and nitric oxide (NO) emissions (drained peatlands) also have the highest HONO production rates. The emissions of HONO are thus linked to nitrogen cycle processes. In contrast to drained peatlands, natural peatlands with high water table and boreal coniferous forests on mineral soils with low nitrification capacity had low HONO emissions. It is known that in natural peatlands with high water table and in boreal coniferous forest soils, low nitrification activity (microbial production of nitrite and nitrate) limits their N2O production. Low nitrification rate and low availability of nitrite in these soils are the likely reasons for their low HONO production rates. We studied the origin of HONO in one drained peat soil by inhibiting nitrification with acetylene. Acetylene blocked NO emissions but did not affect HONO or N2O emissions, thus ammonium oxidation is not the direct mechanism for the HONO emission in this soil. It is still an open question if HONO originates directly from some microbial process like ammonium oxidation or chemically from nitrite produced in microbial processes.

  2. Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger.

    PubMed

    Wang, Lu; Zhang, Jianhua; Cao, Zhanglei; Wang, Yajun; Gao, Qiang; Zhang, Jian; Wang, Depei

    2015-01-16

    The spore germination rate and growth characteristics were compared between the citric acid high-yield strain Aspergillus niger CGMCC 5751 and A. niger ATCC 1015 in media containing antimycin A or DNP. We inferred that differences in citric acid yield might be due to differences in energy metabolism between these strains. To explore the impact of energy metabolism on citric acid production, the changes in intracellular ATP, NADH and NADH/NAD+ were measured at various fermentation stages. In addition, the effects of antimycin A or DNP on energy metabolism and citric acid production was investigated by CGMCC 5751. By comparing the spore germination rate and the extent of growth on PDA plates containing antimycin A or DNP, CGMCC 5751 was shown to be more sensitive to antimycin A than ATCC 1015. The substrate-level phosphorylation of CGMCC 5751 was greater than that of ATCC 1015 on PDA plates with DNP. DNP at tested concentrations had no apparent effect on the growth of CGMCC 5751. There were no apparent effects on the mycelial morphology, the growth of mycelial pellets or the dry cell mass when 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP was added to medium at the 24-h time point. The concentrations of intracellular ATP, NADH and NADH/NAD+ of CGMCC 5751 were notably lower than those of ATCC 1015 at several fermentation stages. Moreover, at 96 h of fermentation, the citric acid production of CGMCC 5751 reached up to 151.67 g L(-1) and 135.78 g L(-1) by adding 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP, respectively, at the 24-h time point of fermentation. Thus, the citric acid production of CGMCC 5751 was increased by 19.89% and 7.32%, respectively. The concentrations of intracellular ATP, NADH and NADH/NAD+ of the citric acid high-yield strain CGMCC 5751 were notably lower than those of ATCC 1015. The excessive ATP has a strong inhibitory effect on citric acid accumulation by A. niger. Increasing NADH oxidation and appropriately reducing the concentration of

  3. An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute.

    PubMed

    Su, Wen-Yu; Chen, Ko-Hua; Chen, Yu-Chun; Lee, Yen-Hsien; Tseng, Ching-Li; Lin, Feng-Huei

    2011-01-01

    Vitrectomy is a common procedure for treating ocular-related diseases. The surgery involves removing the vitreous humor from the center of the eye, and vitreous substitutes are needed to replace the vitreous humor after vitrectomy. In the present study, we developed a colorless, transparent and injectable hydrogel with appropriate refractive index as a vitreous substitute. The hydrogel is formed by oxidated hyaluronic acid (oxi-HA) cross-linked with adipic acid dihydrazide (ADH). Hyaluronic acid (HA) was oxidized by sodium periodate to create aldehyde functional groups, which could be cross-linked by ADH. The refractive index of this hydrogel ranged between 1.3420 and 1.3442, which is quite similar to human vitreous humor (1.3345). The degradation tests demonstrated that the hydrogel could maintain the gel matrix over 35 days, depending on the ADH concentration. In addition, the cytotoxicity was evaluated on retina pigmented epithelium (RPE) cells cultivated following the ISO standard (tests for in vitro cytotoxicity), and the hydrogel was found to be non-toxic. In a preliminary animal study, the oxi-HA/ADH hydrogel was injected into the vitreous cavity of rabbit eyes. The evaluations of slit-lamp observation, intraocular pressure, cornea thickness and histological examination showed no significant abnormal biological reactions for 3 weeks. This study suggests that the injectable oxi-HA/ADH hydrogel should be a potential vitreous substitute. Koninklijke Brill NV, Leiden, 2011

  4. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  5. Quantification of Fatty Acid Oxidation Products Using On-line High Performance Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Levison, Bruce S.; Zhang, Renliang; Wang, Zeneng; Fu, Xiaoming; DiDonato, Joseph A.; Hazen, Stanley L.

    2013-01-01

    Oxidized fatty acids formed via lipid peroxidation are implicated in pathological processes such as inflammation and atherosclerosis. A number of methods may be used to detect specific oxidized fatty acids containing a single or multiple combinations of epoxide, hydroxyl, ketone and hydroperoxide moieties on varying carbon chain lengths from C8 up to C30. Some of these methods are nonspecific and their use in biological systems is fraught with difficulty. Measures of specific-oxidized fatty acid derivatives help in identifying oxidation pathways in pathological processes. We used liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS) as efficient, selective and sensitive methods for identifying and analyzing multiple specific fatty acid peroxidation products in human plasma and other biological matrices. We then distilled the essential components of a number of these analyses to provide an efficient protocol by which fatty acid oxidation products and their parent compounds can be determined. In this protocol, addition of synthetic internal standard to the sample, followed by base hydrolysis at elevated temperature, and liquid-liquid phase sample extraction with lighter than water solvents facilitates isolation of the oxidized fatty acid species. These species can be identified and accurately quantified using stable isotope dilution and multiple reaction monitoring. Use of a coupled multiplexed gradient HPLC system on the front end enables high-throughput chromatography and more efficient use of mass spectrometer time. PMID:23499838

  6. Peroxisomal fatty acid oxidation and inhibitors of the mitochondrial carnitine palmitoyltransferase I in isolated rat hepatocytes.

    PubMed Central

    Skorin, C; Necochea, C; Johow, V; Soto, U; Grau, A M; Bremer, J; Leighton, F

    1992-01-01

    Fatty acid oxidation was studied in the presence of inhibitors of carnitine palmitoyltransferase I (CPT I), in normal and in peroxisome-proliferated rat hepatocytes. The oxidation decreased in mitochondria, as expected, but in peroxisomes it increased. These two effects were seen, in variable proportions, with (+)-decanoylcarnitine, 2-tetradecylglycidic acid (TDGA) and etomoxir. The decrease in mitochondrial oxidation (ketogenesis) affected saturated fatty acids with 12 or more carbon atoms, whereas the increase in peroxisomal oxidation (H2O2 production) affected saturated fatty acids with 8 or more carbon atoms. The peroxisomal increase was sensitive to chlorpromazine, a peroxisomal inhibitor. To study possible mechanisms, palmitoyl-, octanoyl- and acetyl-carnitine acyltransferase activities were measured, in homogenates and in subcellular fractions from control and TDGA-treated cells. The palmitoylcarnitine acyltransferase was inhibited, as expected, but the octanoyltransferase activity also decreased. The CoA derivative of TDGA was synthesized and tentatively identified as being responsible for inhibition of the octanoylcarnitine acyltransferase. These results show that inhibitors of the mitochondrial CPT I may also inhibit the peroxisomal octanoyl transferase; they also support the hypothesis that the octanoyltransferase has the capacity to control or regulate peroxisomal fatty acid oxidation. PMID:1736904

  7. Regulation of Fatty Acid Oxidation in Mouse Cumulus-Oocyte Complexes during Maturation and Modulation by PPAR Agonists

    PubMed Central

    Dunning, Kylie R.; Anastasi, Marie R.; Zhang, Voueleng J.; Russell, Darryl L.; Robker, Rebecca L.

    2014-01-01

    Fatty acid oxidation is an important energy source for the oocyte; however, little is known about how this metabolic pathway is regulated in cumulus-oocyte complexes. Analysis of genes involved in fatty acid oxidation showed that many are regulated by the luteinizing hormone surge during in vivo maturation, including acyl-CoA synthetases, carnitine transporters, acyl-CoA dehydrogenases and acetyl-CoA transferase, but that many are dysregulated when cumulus-oocyte complexes are matured under in vitro maturation conditions using follicle stimulating hormone and epidermal growth factor. Fatty acid oxidation, measured as production of 3H2O from [3H]palmitic acid, occurs in mouse cumulus-oocyte complexes in response to the luteinizing hormone surge but is significantly reduced in cumulus-oocyte complexes matured in vitro. Thus we sought to determine whether fatty acid oxidation in cumulus-oocyte complexes could be modulated during in vitro maturation by lipid metabolism regulators, namely peroxisome proliferator activated receptor (PPAR) agonists bezafibrate and rosiglitazone. Bezafibrate showed no effect with increasing dose, while rosiglitazone dose dependently inhibited fatty acid oxidation in cumulus-oocyte complexes during in vitro maturation. To determine the impact of rosiglitazone on oocyte developmental competence, cumulus-oocyte complexes were treated with rosiglitazone during in vitro maturation and gene expression, oocyte mitochondrial activity and embryo development following in vitro fertilization were assessed. Rosiglitazone restored Acsl1, Cpt1b and Acaa2 levels in cumulus-oocyte complexes and increased oocyte mitochondrial membrane potential yet resulted in significantly fewer embryos reaching the morula and hatching blastocyst stages. Thus fatty acid oxidation is increased in cumulus-oocyte complexes matured in vivo and deficient during in vitro maturation, a known model of poor oocyte quality. That rosiglitazone further decreased fatty acid oxidation

  8. Links between Ammonia Oxidizer Community Structure, Abundance, and Nitrification Potential in Acidic Soils ▿ †

    PubMed Central

    Yao, Huaiying; Gao, Yangmei; Nicol, Graeme W.; Campbell, Colin D.; Prosser, James I.; Zhang, Limei; Han, Wenyan; Singh, Brajesh K.

    2011-01-01

    Ammonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen fertilization strategies. AOA and AOB abundance and community composition were therefore investigated in tea soils and adjacent pine forest soils, using quantitative PCR (qPCR), terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of respective ammonia monooxygenase (amoA) genes. There was strong evidence that soil pH was an important factor controlling AOB but not AOA abundance, and the ratio of AOA to AOB amoA gene abundance increased with decreasing soil pH in the tea orchard soils. In contrast, T-RFLP analysis suggested that soil pH was a key explanatory variable for both AOA and AOB community structure, but a significant relationship between community abundance and nitrification potential was observed only for AOA. High potential nitrification rates indicated that nitrification was mainly driven by AOA in these acidic soils. Dominant AOA amoA sequences in the highly acidic tea soils were all placed within a specific clade, and one AOA genotype appears to be well adapted to growth in highly acidic soils. Specific AOA and AOB populations dominated in soils at particular pH values and N content, suggesting adaptation to specific niches. PMID:21571885

  9. In situ analysis of oxygen consumption and diffusive transport in high-temperature acidic iron-oxide microbial mats.

    PubMed

    Bernstein, Hans C; Beam, Jacob P; Kozubal, Mark A; Carlson, Ross P; Inskeep, William P

    2013-08-01

    The role of dissolved oxygen as a principal electron acceptor for microbial metabolism was investigated within Fe(III)-oxide microbial mats that form in acidic geothermal springs of Yellowstone National Park (USA). Specific goals of the study were to measure and model dissolved oxygen profiles within high-temperature (65-75°C) acidic (pH = 2.7-3.8) Fe(III)-oxide microbial mats, and correlate the abundance of aerobic, iron-oxidizing Metallosphaera yellowstonensis organisms and mRNA gene expression levels to Fe(II)-oxidizing habitats shown to consume oxygen. In situ oxygen microprofiles were obtained perpendicular to the direction of convective flow across the aqueous phase/Fe(III)-oxide microbial mat interface using oxygen microsensors. Dissolved oxygen concentrations dropped from ∼ 50-60 μM in the bulk-fluid/mat surface to below detection (< 0.3 μM) at a depth of ∼ 700 μm (∼ 10% of the total mat depth). Net areal oxygen fluxes into the microbial mats were estimated to range from 1.4-1.6 × 10(-4)  μmol cm(-2)  s(-1) . Dimensionless parameters were used to model dissolved oxygen profiles and establish that mass transfer rates limit the oxygen consumption. A zone of higher dissolved oxygen at the mat surface promotes Fe(III)-oxide biomineralization, which was supported using molecular analysis of Metallosphaera yellowstonensis 16S rRNA gene copy numbers and mRNA expression of haem Cu oxidases (FoxA) associated with Fe(II)-oxidation. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Acute p‐synephrine ingestion increases fat oxidation rate during exercise

    PubMed Central

    Gutiérrez‐Hellín, Jorge

    2016-01-01

    Aims p‐Synephrine is a protoalkaloid widely used in dietary supplements for weight management because of its purported thermogenic effects. However, there is a lack of scientific information about its effectiveness to increase fat metabolism during exercise. The purpose of this investigation was to determine the effects of an acute ingestion of p‐synephrine on fat oxidation at rest and during exercise. Methods In a double‐blind, randomized and counterbalanced experimental design, 18 healthy subjects performed two acute experimental trials after the ingestion of p‐synephrine (3 mg kg−1) or after the ingestion of a placebo (cellulose). Energy expenditure and fat oxidation rates were measured by indirect calorimetry at rest and during a cycle ergometer ramp exercise test (increases of 25 W every 3 min) until volitional fatigue. Results In comparison with the placebo, the ingestion of p‐synephrine did not change energy consumption (1.6 ± 0.3 vs. 1.6 ± 0.3 kcal min−1; P = 0.69) or fat oxidation rate at rest (0.08 ± 0.02 vs. 0.10 ± 0.04 g min−1; P = 0.15). However, the intake of p‐synephrine moved the fat oxidation–exercise intensity curve upwards during the incremental exercise (P < 0.05) without affecting energy expenditure. Moreover, p‐synephrine increased maximal fat oxidation rate (0.29 ± 0.15 vs. 0.40 ± 0.18 g min−1; P = 0.01) during exercise although it did not affect the intensity at which maximal fat oxidation was achieved (55.8 ± 7.7 vs. 56.7 ± 8.2% VO2peak; P = 0.51). Conclusions The acute ingestion of p‐synephrine increased the fat oxidation rate while it reduced the carbohydrate oxidation rate when exercising at low‐to‐moderate exercise intensities. PMID:27038225

  11. Mechanistic Details and Reactivity Descriptors in Oxidation and Acid Catalysis of Methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshlahra, Prashant; Carr, Robert T.; Chai, Song-Hai

    2015-02-06

    Acid and redox reaction rates of CH₃OH-O₂ mixtures on polyoxometalate (POM) clusters, together with isotopic, spectroscopic, and theoretical assessments of catalyst properties and reaction pathways, were used to define rigorous descriptors of reactivity and to probe the compositional effects for oxidative dehydrogenation (ODH) and dehydration reactions. ³¹P-MAS NMR, transmission electron microscopy and titrations of protons with di-tert-butylpyridine during catalysis showed that POM clusters retained their Keggin structure upon dispersion on SiO₂ and after use in CH₃OH reactions. The effects of CH₃OH and O₂ pressures and of D-substitution on ODH rates show that C-H activation in molecularly adsorbed CH₃OH is themore » sole kinetically relevant step and leads to reduced centers as intermediates present at low coverages; their concentrations, measured from UV-vis spectra obtained during catalysis, are consistent with the effects of CH₃OH/O₂ ratios predicted from the elementary steps proposed. First-order ODH rate constants depend strongly on the addenda atoms (Mo vs W) but weakly on the central atom (P vs Si) in POM clusters, because C-H activation steps inject electrons into the lowest unoccupied molecular orbitals (LUMO) of the clusters, which are the d-orbitals at Mo⁶⁺ and W⁶⁺ centers. H-atom addition energies (HAE) at O-atoms in POM clusters represent the relevant theoretical probe of the LUMO energies and of ODH reactivity. The calculated energies of ODH transition states at each O-atom depend linearly on their HAE values with slopes near unity, as predicted for late transition states in which electron transfer and C-H cleavage are essentially complete. HAE values averaged over all accessible O-atoms in POM clusters provide the appropriate reactivity descriptor for oxides whose known structures allow accurate HAE calculations. CH₃OH dehydration proceeds via parallel pathways mediated by late carbenium-ion transition states

  12. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified in...

  13. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified in...

  14. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified in...

  15. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified in...

  16. Chlorogenic and Caftaric Acids in Liver Toxicity and Oxidative Stress Induced by Methamphetamine

    PubMed Central

    Koriem, Khaled M. M.; Soliman, Rowan E.

    2014-01-01

    Methamphetamine intoxication can cause acute hepatic failure. Chlorogenic and caftaric acids are the major dietary polyphenols present in various foods. The aim of this study was to evaluate the protective role of chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine in rats. Thirty-two male albino rats were divided into 4 equal groups. Group 1, which was control group, was injected (i.p) with saline (1 mL/kg) twice a day over seven-day period. Groups 2, 3, and 4 were injected (i.p) with methamphetamine (10 mg/kg) twice a day over seven-day period, where groups 3 and 4 were injected (i.p) with 60 mg/kg chlorogenic acid and 40 mg/kg caftaric acid, respectively, one day before methamphetamine injections. Methamphetamine increased serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, bilirubin, cholesterol, low-density lipoprotein, and triglycerides. Also, malondialdehyde in serum, liver, and brain and plasma and liver nitric oxide levels were increased while methamphetamine induced a significant decrease in serum total protein, albumin, globulin, albumin/globulin ratio, brain serotonin, norepinephrine and dopamine, blood and liver superoxide dismutase, and glutathione peroxidase levels. Chlorogenic and caftaric acids prior to methamphetamine injections restored all the above parameters to normal values. In conclusion, chlorogenic and caftaric acids before methamphetamine injections prevented liver toxicity and oxidative stress where chlorogenic acid was more effective. PMID:25136360

  17. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    PubMed

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production

  18. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures

    DOE PAGES

    Dutta, Arnab; DuBois, Daniel L.; Roberts, John A.; ...

    2014-11-18

    Hydrogenases interconvert H2 and protons at high rates and with high energy efficiencies, providing inspiration for the development of molecular catalysts. Studies designed to determine how the protein scaffold can influence a catalytically active site has led to the synthesis of amino acid derivatives, [Ni(PCy2NAmino acid2)2]2+ (CyAA), of [Ni(PR2NR'2)2]2+ complexes. It is shown that these CyAA derivatives can catalyze fully reversible H2 production/oxidation, a feature reminiscent of enzymes. The reversibility is achieved in acidic aqueous solutions, 0.25% H2/Ar, and elevated temperatures (tested up to 348 K) for the glycine (CyGly), arginine (CyArg), and arginine methyl ester (CyArgOMe) derivatives. As expectedmore » for a reversible process, the activity is dependent upon H2 and proton concentration. CyArg is significantly faster in both directions than the other two derivatives (~300 s-1 H2 production and 20 s-1 H2 oxidation; pH=1, 348 K). The significantly slower rates for CyArgOMe (35 s-1 production and 7 s-1 oxidation) compared to CyArg suggests an important role for the COOH group during catalysis. That CyArg is faster than CyGly (3 s-1 production and 4 s-1 oxidation under the same conditions) suggests that the additional structural features imparted by the guanidinium groups facilitate fast and reversible H2 addition/release. These observations demonstrate that appended, outer coordination sphere amino acids work in synergy with the active site and can play an equally important role for synthetic molecular electrocatalysts as the protein scaffold does for redox active enzymes. This work was funded by the Office of Science Early Career Research Program through the US DOE, BES (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US DOE, BES (DLD, JASR). PNNL is operated by Battelle for the US DOE.« less

  19. Peracetic acid oxidation of saline waters in the absence and presence of H ₂O ₂: secondary oxidant and disinfection byproduct formation.

    PubMed

    Shah, Amisha D; Liu, Zheng-Qian; Salhi, Elisabeth; Höfer, Thomas; von Gunten, Urs

    2015-02-03

    Peracetic acid (PAA) is a disinfectant considered for use in ballast water treatment, but its chemical behavior in such systems (i.e., saline waters) is largely unknown. In this study, the reactivity of PAA with halide ions (chloride and bromide) to form secondary oxidants (HOCl, HOBr) was investigated. For the PAA-chloride and PAA-bromide reactions, second-order rate constants of (1.47 ± 0.58) × 10(-5) and 0.24 ± 0.02 M(-1) s(-1) were determined for the formation of HOCl or HOBr, respectively. Hydrogen peroxide (H2O2), which is always present in PAA solutions, reduced HOCl or HOBr to chloride or bromide, respectively. As a consequence, in PAA-treated solutions with [H2O2] > [PAA], the HOBr (HOCl) steady-state concentrations were low with a limited formation of brominated (chlorinated) disinfection byproducts (DBPs). HOI (formed from the PAA-iodide reaction) affected this process because it can react with H2O2 back to iodide. H2O2 is thus consumed in a catalytic cycle and leads to less efficient HOBr scavenging at even low iodide concentrations (<1 μM). In PAA-treated solutions with [H2O2] < [PAA] and high bromide levels, mostly brominated DBPs are formed. In synthetic water, bromate was formed from the oxidation of bromide. In natural brackish waters, bromoform (CHBr3), bromoacetic acid (MBAA), dibromoacetic acid (DBAA), and tribromoacetic acid (TBAA) formed at up to 260, 106, 230, and 89 μg/L, respectively for doses of 2 mM (ca. 150 mg/L) PAA and [H2O2] < [PAA]. The same brackish waters, treated with PAA with [H2O2] ≫ [PAA], similar to conditions found in commercial PAA solutions, resulted in no trihalomethanes and only low haloacetic acid concentrations.

  20. A novel missense substitution (Val1483Ile) in the fatty acid synthase gene (FAS) is associated with percentage of body fat and substrate oxidation rates in nondiabetic Pima Indians.

    PubMed

    Kovacs, Peter; Harper, Inge; Hanson, Robert L; Infante, Aniello M; Bogardus, Clifton; Tataranni, P Antonio; Baier, Leslie J

    2004-07-01

    Inhibition of fatty acid synthase (FAS) induces a rapid decline in fat stores in mice, suggesting a role for this enzyme in energy homeostasis. The human FAS gene (FAS) maps to chromosome 17q25, a region previously shown to have suggestive linkage to adiposity in a genome-wide linkage scan for genetic determinants of obesity in Pima Indians. To investigate the potential role of FAS in the pathophysiology of human obesity, the FAS gene was sequenced and 13 single nucleotide polymorphisms (SNPs) were identified. Five representative SNPs were genotyped in 216 full-blooded, nondiabetic Pima Indians for association analyses. A Val1483Ile polymorphism (GTC to ATC; allele frequency of A = 0.10) was associated with percentage of body fat and 24-h substrate oxidation rates measured in a respiratory chamber. Compared with homozygotes for the Val variant, subjects with Ile/x had a lower mean percentage of body fat (30 +/- 1 vs. 33 +/- 1%, P = 0.002; adjusted for age, sex, and family membership) and a lower mean carbohydrate oxidation rate (983 +/- 41 vs. 1,094 +/- 19 kcal/day, P = 0.03), which resulted in a lower mean 24-h respiratory quotient (0.845 +/- 0.01 vs. 0.850 +/- 0.01 kcal/day, P = 0.04; both adjusted for age, sex, family membership, percentage of body fat, and energy balance). Our findings indicate that the Val1483Ile substitution in FAS is protective against obesity in Pima Indians, an effect possibly explained by the role of this gene in the regulation of substrate oxidation.

  1. Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandel, Kapil; Chaudhary, Umesh; Nelson, Nicholas C.

    2015-10-08

    In this study, the selective hydrogenation of fatty acids to fatty alcohols can be achieved under moderate conditions (180 °C, 30 bar H 2) by simultaneously supporting copper and iron oxides on mesoporous silica nanoparticles. The activity of the cosupported oxides is significantly higher than that of each supported metal oxide and of a physical mixture of both individually supported metal oxides. A strong interaction between both metal oxides is evident from dispersion, XRD, TPR, and acetic acid TPD measurements, which is likely responsible for the synergistic behavior of the catalyst. Copper oxide is reduced in situ to its metallicmore » form and thereby activates hydrogen.« less

  2. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    NASA Astrophysics Data System (ADS)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in

  3. Real-time Measurements of Amino Acid and Protein Hydroperoxides Using Coumarin Boronic Acid*

    PubMed Central

    Michalski, Radoslaw; Zielonka, Jacek; Gapys, Ewa; Marcinek, Andrzej; Joseph, Joy; Kalyanaraman, Balaraman

    2014-01-01

    Hydroperoxides of amino acid and amino acid residues (tyrosine, cysteine, tryptophan, and histidine) in proteins are formed during oxidative modification induced by reactive oxygen species. Amino acid hydroperoxides are unstable intermediates that can further propagate oxidative damage in proteins. The existing assays (oxidation of ferrous cation and iodometric assays) cannot be used in real-time measurements. In this study, we show that the profluorescent coumarin boronic acid (CBA) probe reacts with amino acid and protein hydroperoxides to form the corresponding fluorescent product, 7-hydroxycoumarin. 7-Hydroxycoumarin formation was catalase-independent. Based on this observation, we have developed a fluorometric, real-time assay that is adapted to a multiwell plate format. This is the first report showing real-time monitoring of amino acid and protein hydroperoxides using the CBA-based assay. This approach was used to detect protein hydroperoxides in cell lysates obtained from macrophages exposed to visible light and photosensitizer (rose bengal). We also measured the rate constants for the reaction between amino acid hydroperoxides (tyrosyl, tryptophan, and histidine hydroperoxides) and CBA, and these values (7–23 m−1 s−1) were significantly higher than that measured for H2O2 (1.5 m−1 s−1). Using the CBA-based competition kinetics approach, the rate constants for amino acid hydroperoxides with ebselen, a glutathione peroxidase mimic, were also determined, and the values were within the range of 1.1–1.5 × 103 m−1 s−1. Both ebselen and boronates may be used as small molecule scavengers of amino acid and protein hydroperoxides. Here we also show formation of tryptophan hydroperoxide from tryptophan exposed to co-generated fluxes of nitric oxide and superoxide. This observation reveals a new mechanism for amino acid and protein hydroperoxide formation in biological systems. PMID:24928516

  4. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain.

    PubMed

    Hardas, Sarita S; Sultana, Rukhsana; Clark, Amy M; Beckett, Tina L; Szweda, Luke I; Murphy, M Paul; Butterfield, D Allan

    2013-01-01

    Alzheimer disease (AD) is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP) and intracellular neurofibrillary tangles (NFTs). The major component of SP is amyloid β-peptide (Aβ), which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE). HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH) were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder.

  5. Snowmelt controls on concentration-discharge relationships and the balance of oxidative and acid-base weathering fluxes in an alpine catchment, East River, Colorado: ACID-BASE VERSUS OXIDATIVE WEATHERING FLUXES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnick, Matthew J.; Carroll, Rosemary W. H.; Williams, Kenneth H.

    Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high-elevation shale-dominated catchment in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flowpaths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyritemore » oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during baseflow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO 2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. In conclusion, future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.« less

  6. Snowmelt controls on concentration-discharge relationships and the balance of oxidative and acid-base weathering fluxes in an alpine catchment, East River, Colorado: ACID-BASE VERSUS OXIDATIVE WEATHERING FLUXES

    DOE PAGES

    Winnick, Matthew J.; Carroll, Rosemary W. H.; Williams, Kenneth H.; ...

    2017-03-01

    Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high-elevation shale-dominated catchment in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flowpaths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyritemore » oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during baseflow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO 2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. In conclusion, future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.« less

  7. Comparison of the Oxidation Rates of Some New Copper Alloys

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. Thomas; Humphrey, Donald L.

    2002-01-01

    Copper alloys were studied for oxidation resistance and mechanisms between 550 and 700 C, in reduced-oxygen environments expected in rocket engines, and their oxidation behaviors compared to that of pure copper. They included two dispersion-strengthened alloys (precipitation-strengthened and oxide-dispersion strengthened, respectively) and one solution-strengthened alloy. In all cases the main reaction was oxidation of Cu into Cu2O and CuO. The dispersion-strengthened alloys were superior to both Cu and the solution-strengthened alloy in oxidation resistance. However, factors retarding oxidation rates seemed to be different for the two dispersion-strengthened alloys.

  8. Exposure assessment of oxidant gases and acidic aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lioy, P.J.

    1989-01-01

    Clearly the presence of high ozone and acidic species in North America is primarily dependent upon photochemical air pollution. Evidence shows, however, that high acid exposures may occur in specific types of areas of high sulfur fuel use during the winter. At the present time, our concerns about exposure to local populations and regional populations should be directed primarily toward the outdoor activity patterns of individuals in the summer, and how those activity patterns relate to the location, duration, and concentrations of ozone and acid aerosol in photochemical air pollution episodes. Lioy Dyba and Mage et al have examined themore » activity patterns of children in summer camps. Because they spend more time outside than the normal population, these children form an important group of exercising individuals subject to photochemical pollution exposures. The dose of ozone inhaled by the children in the two camps was within 50% and 25% of the dose inhaled by adults in controlled clinical situations that produced clinically significant decrements in pulmonary function and increased the symptoms after 6.6 hr exposure in a given day. The chamber studies have used only ozone, whereas in the environment this effect may be enhanced by the presence of a complex mixture. The work of Lioy et al in Mendham, New Jersey found that hydrogen ion seemed to play a role in the inability of the children to return immediately to their normal peak expiratory flow rate after exposure. The camp health study conducted in Dunsville, Ontario suggested that children participating in a summer camp where moderate levels of ozone (100 ppb) but high levels of acid (46 micrograms/m3) occurred during an episode had a similar response. Thus, for children or exercising adults who are outdoors for at least one hour or more during a given day, the presence and persistence of oxidants in the environment are of particular concern. 63 references.« less

  9. Induction of cardiac Angptl4 by dietary fatty acids is mediated by peroxisome proliferator-activated receptor beta/delta and protects against fatty acid-induced oxidative stress.

    PubMed

    Georgiadi, Anastasia; Lichtenstein, Laeticia; Degenhardt, Tatjana; Boekschoten, Mark V; van Bilsen, Marc; Desvergne, Beatrice; Müller, Michael; Kersten, Sander

    2010-06-11

    Although dietary fatty acids are a major fuel for the heart, little is known about the direct effects of dietary fatty acids on gene regulation in the intact heart. To study the effect of dietary fatty acids on cardiac gene expression and explore the functional consequences. Oral administration of synthetic triglycerides composed of one single fatty acid altered cardiac expression of numerous genes, many of which are involved in the oxidative stress response. The gene most significantly and consistently upregulated by dietary fatty acids encoded Angiopoietin-like protein (Angptl)4, a circulating inhibitor of lipoprotein lipase expressed by cardiomyocytes. Induction of Angptl4 by the fatty acid linolenic acid was specifically abolished in peroxisome proliferator-activated receptor (PPAR)beta/delta(-/-) and not PPARalpha(-/-) mice and was blunted on siRNA-mediated PPARbeta/delta knockdown in cultured cardiomyocytes. Consistent with these data, linolenic acid stimulated binding of PPARbeta/delta but not PPARalpha to the Angptl4 gene. Upregulation of Angptl4 resulted in decreased cardiac uptake of plasma triglyceride-derived fatty acids and decreased fatty acid-induced oxidative stress and lipid peroxidation. In contrast, Angptl4 deletion led to enhanced oxidative stress in the heart, both after an acute oral fat load and after prolonged high fat feeding. Stimulation of cardiac Angptl4 gene expression by dietary fatty acids and via PPARbeta/delta is part of a feedback mechanism aimed at protecting the heart against lipid overload and consequently fatty acid-induced oxidative stress.

  10. Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids.

    PubMed

    Poirier, Y; Ventre, G; Caldelari, D

    1999-12-01

    Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid beta-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0. 06 mg g(-1) dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward beta-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via beta-oxidation and that a considerable flow toward beta-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids.

  11. Effect of heating on oxidation stability and fatty acid composition of microwave roasted groundnut seed oil.

    PubMed

    Abbas Ali, M; Anowarul Islam, M; Othman, Noor Hidayu; Noor, Ahmadilfitri Md

    2017-12-01

    The oxidative stability and fatty acid composition of groundnut seed oil (GSO) exposed to microwaves were evaluated during heating at 170 °C. During heating, the oxidative indices such as free fatty acid, peroxide value, p -anisidine value, TOTOX, thiobarbituric acid value, specific extinctions, and color value were increased. The increments were found to be higher in unroasted seed oils compared to roasted ones indicating lower release of lipid oxidation products in roasted GSO. After 9 h heating, the relative content of polyunsaturated fatty acid (PUFA) decreased to 89.53% and that of saturated fatty acid (SFA) increased to 117.46% in unroasted sample. The relative content of PUFA decreased to 92.05% and that of SFA increased to 105.76% in 7.5 min roasted sample after 9 h of heating. However, the roasting process slowed down the oxidative deterioration of PUFA. With increased heating times, an appreciable loss was more apparent in the triacylglycerol species OLL and OOL in unroasted samples compared to roasted ones. In FTIR, the peak intensities in unroasted samples were markedly changed in comparison with roasted samples during heating. The roasting of groundnut seed prior to the oil extraction reduced the oxidative degradation of oil samples; thereby increasing heat stability.

  12. Lipid oxidation and fatty acid composition in salt-dried yellow croaker ( Pseudosciaena polyactis) during processing

    NASA Astrophysics Data System (ADS)

    Cai, Qiuxing; Wu, Yanyan; Li, Laihao; Wang, Yueqi; Yang, Xianqing; Zhao, Yongqiang

    2017-10-01

    Lipid oxidation in salt-dried yellow croaker ( Pseudosciaena polyactis) was evaluated during processing with commonly used analytical indices, such as the peroxide value (POV), the thiobarbituric acid reactive substances (TBARS) value, and oxidative-relative lipoxygenase (LOX) activity. Additionally, fatty acids were analyzed using gas chromatography-mass spectrometry. Both POV and TBARS increased significantly ( P < 0.05) at the rinsing stage. POV reached its peak value of 3.63 meq O2 per kg sample at the drying stage, whereas TBARS constantly increased from 0.05 to 0.20 mg MDA per kg sample. Processing of salt-dried yellow croaker had an extremely significant ( P < 0.01) effect on LOX activity. Twenty-six fatty acids were identified. Combined eicosapentaenoic acid (EPA; C20:5n3) and docosahexaenoic acid (DHA; C22:6n3) content varied between (19.20 ± 0.37) mg g-1 and (23.45 ± 1.05) mg g-1. The polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) ratio in yellow croaker was 0.73-1.10, and the n-6/n-3 PUFA ratio was approximately 0.13-0.20. The contents of most fatty acids varied significantly ( P < 0.05) during the different processing stages, and these differences were caused by lipid oxidation. C18:0, C16:1n7, C19:0, and C22:6n3 showed clear changes in principle component one of a principle components analysis. These fatty acids are potential markers for evaluating lipid oxidation in fish muscle because there was a significant correlation between these markers and TBARS and LOX activity ( P < 0.05) with Pearson's coefficients > 0.931.

  13. Population and community structure shifts of ammonia oxidizers after four-year successive biochar application to agricultural acidic and alkaline soils.

    PubMed

    He, Lili; Bi, Yucui; Zhao, Jin; Pittelkow, Cameron M; Zhao, Xu; Wang, Shenqiang; Xing, Guangxi

    2018-04-01

    Long-term studies that advance our mechanistic understanding of biochar (BC)‑nitrogen (N) interactions in agricultural soils are lacking. In this study, soil potential nitrification rates (PNR), the abundance and composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities following 4-year of BC application were investigated using the shaken-slurry procedure and molecular sequencing techniques for an acidic Oxisol (QU) and an alkaline Cambisol (YU). Soils were obtained from an outdoor soil column experiment with straw-BC application rates of 0 (BC0), 2.25 (BC2.25) and 11.3 (BC11.3) Mgha -1 per cropping season for eight consecutive wheat/millet seasons. Quantitative polymerase chain reaction (qPCR) and 454 high-throughput pyrosequencing techniques were performed to quantify and sequence amoA gene copies and composition of AOA and AOB. Results showed that QU had lower PNR and a higher ratio of amoA gene copies of AOA to AOB than YU, PNR of QU with BC application was significantly associated with the amoA gene of AOB. Similar to previous short-term findings, BC application enhanced QU soil nitrification, which may be explained by the significant increase in AOB abundance and a shift in AOB community structure from Nitrosospira cluster 2 toward cluster 3, along with the disappearance of some obligate acidophile AOA groups, leading to the appearance of ammonia-oxidizers from neutral-alkaline soils in BC-amended acid soils. Canonical correspondence analysis (CCA) showed that soil pH was the most important factor driving shifts in ammonia-oxidizers composition. Although BC application did not have significant effects on PNR in YU, BC11.3 decreased AOA and AOB gene copies and influenced the relative abundance of community structure. Our findings represent the first investigation of long-term BC effects on AOA and AOB communities in agricultural soils using 454 high-throughput pyrosequencing, showing that BC application can alter soil

  14. Enzymatic Browning in Sugar Beet Leaves (Beta vulgaris L.): Influence of Caffeic Acid Derivatives, Oxidative Coupling, and Coupled Oxidation.

    PubMed

    Vissers, Anne; Kiskini, Alexandra; Hilgers, Roelant; Marinea, Marina; Wierenga, Peter Alexander; Gruppen, Harry; Vincken, Jean-Paul

    2017-06-21

    Sugar beet (Beta vulgaris L.) leaves of 8 month (8 m ) plants showed more enzymatic browning than those of 3 month (3 m ). Total phenolic content increased from 4.6 to 9.4 mg/g FW in 3 m and 8 m , respectively, quantitated by reverse-phase-ultrahigh-performance liquid chromatography-ultraviolet-mass spectrometry (RP-UHPLC-UV-MS). The PPO activity was 6.7 times higher in extracts from 8 m than from 3 m leaves. Substrate content increased from 0.53 to 2.45 mg/g FW in 3 m and 8 m , respectively, of which caffeic acid glycosyl esters were most important, increasing 10-fold with age. Caffeic acid glycosides and vitexin derivatives were no substrates. In 3 m and 8 m, nonsubstrate-to-substrate ratios were 8:1 and 3:1, respectively. A model system showed browning at 3:1 ratio due to formation of products with extensive conjugated systems through oxidative coupling and coupled oxidation. The 8:1 ratio did not turn brown as oxidative coupling occurred without much coupled oxidation. We postulate that differences in nonsubstrate-to-substrate ratio and therewith extent of coupled oxidation explain browning.

  15. Enzymatic Browning in Sugar Beet Leaves (Beta vulgaris L.): Influence of Caffeic Acid Derivatives, Oxidative Coupling, and Coupled Oxidation

    PubMed Central

    2017-01-01

    Sugar beet (Beta vulgaris L.) leaves of 8 month (8m) plants showed more enzymatic browning than those of 3 month (3m). Total phenolic content increased from 4.6 to 9.4 mg/g FW in 3m and 8m, respectively, quantitated by reverse-phase-ultrahigh-performance liquid chromatography–ultraviolet-mass spectrometry (RP-UHPLC–UV-MS). The PPO activity was 6.7 times higher in extracts from 8m than from 3m leaves. Substrate content increased from 0.53 to 2.45 mg/g FW in 3m and 8m, respectively, of which caffeic acid glycosyl esters were most important, increasing 10-fold with age. Caffeic acid glycosides and vitexin derivatives were no substrates. In 3m and 8m, nonsubstrate-to-substrate ratios were 8:1 and 3:1, respectively. A model system showed browning at 3:1 ratio due to formation of products with extensive conjugated systems through oxidative coupling and coupled oxidation. The 8:1 ratio did not turn brown as oxidative coupling occurred without much coupled oxidation. We postulate that differences in nonsubstrate-to-substrate ratio and therewith extent of coupled oxidation explain browning. PMID:28570816

  16. Physical and chemical mechanism underlying ultrasonically enhanced hydrochloric acid leaching of non-oxidative roasting of bastnaesite.

    PubMed

    Zhang, Dongliang; Li, Mei; Gao, Kai; Li, Jianfei; Yan, Yujun; Liu, Xingyu

    2017-11-01

    In this study, we investigated an alternative to the conventional hydrochloric acid leaching of roasted bastnaesite. The studies suggested that the rare earth oxyfluorides in non-oxidatively roasted bastnaesite can be selectively leached only at elevated temperatures Further, the Ce(IV) in oxidatively roasted bastnaesite does not leach readily at low temperatures, and it is difficult to induce it to form a complex with F - ions in order to increase the leaching efficiency. Moreover, it is inevitably reduced to Ce(III) at elevated temperatures. Thus, the ultrasonically-assisted hydrochloric acid leaching of non-oxidatively roasted bastnaesite was studied in detail, including, the effects of several process factors and the, physical and chemical mechanisms underlying the leaching process. The results show that the leaching rate for the ultrasonically assisted process at 55°C (65% rare earth oxides) is almost the same as that for the conventional leaching process at 85°C. Based on the obtained results, it is concluded that ultrasonic cavitation plays a key role in the proposed process, resulting not only in a high shear stress, which damages the solid surface, but also in the formation of hydroxyl radicals (OH) and hydrogen peroxide (H 2 O 2 ). Standard electrode potential analysis and experimental results indicate that Ce(III) isoxidized by the hydroxyl radicals to Ce(IV), which can be leached with F - ions in the form of a complex, and that the Ce(IV) can subsequently be reduced to Ce(III) by the H 2 O 2. This prevents the Cl - ions in the solution from being oxidized to form chlorine. These results imply that the ultrasonically-assisted process can be used for the leaching of non-oxidatively roasted bastnaesite at low temperatures in the absence of a reductant. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Synthesis of phosphonic acid silver-graphene oxide nanomaterials with photocatalytic activity through ultrasonic-assisted method.

    PubMed

    Li, Yongshen; Song, Yunna; Ma, Zheng; Niu, Shuai; Li, Jihui; Li, Ning

    2018-06-01

    In this article, phosphonic acid silver-graphene oxide nanomaterials (Nano-PAS-GO) was synthesized from silver nitrate (AgNO 3 ) solution and phosphoric graphene oxide (PGO) via the convenient ultrasonic-assisted method, and the structure and morphology were characterized, and the photocatalytic activity and recyclability were evaluated through photocatalyzing degradation of Rhodamin B (RhB) aqueous solution, and the possible photocatalytic mechanism was also discussed. Based on those, it was confirmed that Nano-PAS-GO has been synthesized from AgNO 3 solution and PGO colloidal suspension under ultrasonic-assisted condition, and Nano-PAS-GO has consisted of phosphoric acid silver nanoparticles and GO with 2D lattice (2D GO lattice) connected in the form of C-P bonds, and the photodegradation rate of Nano-PAS-GO for RhB aqueous solution has reached 93.99%, and Nano-PAS-GO has possessed the nicer recyclability when the photocatalytic time was 50 min. From those results, the strong and stable interface . between PAS nanoparticles and 2D GO lattice connected in the form of the covalent bonds has effectively inhibited the occurrence of the photocorrosion phenomenon. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Oxidative stress in the hippocampus during experimental seizures can be ameliorated with the antioxidant ascorbic acid

    PubMed Central

    Santos, Ítala Mônica Sales; da Rocha Tomé, Adriana; Saldanha, Gláucio Barros; Ferreira, Paulo Michel Pinheiro; Militão, Gardenia Carmem Gadelha

    2009-01-01

    Ascorbic acid has many nonenzymatic actions and is a powerful water-soluble antioxidant. It protects low density lipoproteins from oxidation and reduces harmful oxidants in the central nervous system. Pilocarpine-induced seizures have been suggested to be mediated by increases in oxidative stress. Current studies have suggested that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures. The objective of the present study was to evaluate the neuroprotective effects of ascorbic acid (AA) in rats, against the observed oxidative stress during seizures induced by pilocarpine. Wistar rats were treated with 0.9% saline (i.p., control group), ascorbic acid (500 mg/kg, i.p., AA group), pilocarpine (400 mg/kg, i.p., pilocarpine group), and the association of ascorbic acid (500 mg/kg, i.p.) plus pilocarpine (400 mg/kg, i.p.), 30 min before of administration of ascorbic acid (AA plus pilocarpine group). After the treatments all groups were observed for 6 h. The enzyme activities as well as the lipid peroxidation and nitrite concentrations were measured using spectrophotometric methods and the results compared to values obtained from saline and pilocarpine-treated animals. Protective effects of ascorbic acid were also evaluated on the same parameters. In pilocarpine group there was a significant increase in lipid peroxidation and nitrite level. However, no alteration was observed in superoxide dismutase and catalase activities. Antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content as well as increased the superoxide dismutase and catalase activities in hippocampus of adult rats after seizures induced by pilocarpine. Our findings strongly support the hypothesis that oxidative stress in hippocampus occurs during seizures induced by pilocarpine, proving that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and also imply that a strong

  19. Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes.

    PubMed

    Xu, Guoqiang; Chen, Xiulai; Liu, Liming; Jiang, Linghuo

    2013-11-01

    In this study, the simultaneous use of reductive and oxidative routes to produce fumaric acid was explored. The strain FMME003 (Saccharomyces cerevisiae CEN.PK2-1CΔTHI2) exhibited capability to accumulate pyruvate and was used for fumaric acid production. The fum1 mutant FMME004 could produce fumaric acid via oxidative route, but the introduction of reductive route derived from Rhizopus oryzae NRRL 1526 led to lower fumaric acid production. Analysis of the key factors associated with fumaric acid production revealed that pyruvate carboxylase had a low degree of control over the carbon flow to malic acid. The fumaric acid titer was improved dramatically when the heterologous gene RoPYC was overexpressed and 32 μg/L of biotin was added. Furthermore, under the optimal carbon/nitrogen ratio, the engineered strain FMME004-6 could produce up to 5.64 ± 0.16 g/L of fumaric acid. These results demonstrated that the proposed fermentative method is efficient for fumaric acid production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Oxidation in Acidic Medium of Lignins from Agricultural Residues

    NASA Astrophysics Data System (ADS)

    Labat, Gisele Aparecida Amaral; Gonçalves, Adilson Roberto

    Agricultural residues as sugarcane straw and bagasse are burned in boilers for generation of energy in sugar and alcohol industries. However, excess of those by-products could be used to obtain products with higher value. Pulping process generates cellulosic pulps and lignin. The lignin could be oxidized and applied in effluent treatments for heavy metal removal. Oxidized lignin presents very strong chelating properties. Lignins from sugarcane straw and bagasse were obtained by ethanol-water pulping. Oxidation of lignins was carried out using acetic acid and Co/Mn/Br catalytical system at 50, 80, and 115 °C for 5 h. Kinetics of the reaction was accomplished by measuring the UV-visible region. Activation energy was calculated for lignins from sugarcane straw and bagasse (34.2 and 23.4 kJ mol-1, respectively). The first value indicates higher cross-linked formation. Fourier-transformed infrared spectroscopy data of samples collected during oxidation are very similar. Principal component analysis applied to spectra shows only slight structure modifications in lignins after oxidation reaction.

  1. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation.

    PubMed

    Chung, Jinwook; Lee, Mikyung; Ahn, Jaehwan; Bae, Wookeun; Lee, Yong-Woo; Shim, Hojae

    2009-02-15

    Wet air oxidation processes are to treat highly concentrated organic compounds including refractory materials, sludge, and night soil, and usually operated at supercritical water conditions of high temperature and pressure. In this study, the effects of operational conditions including temperature, pressure, and oxidant dose on sludge degradation and conversion into subsequent intermediates such as organic acids were investigated at low critical wet oxidation conditions. The reaction time and temperature in the wet air oxidation process was shown an important factor affecting the liquefaction of volatile solids, with more significant effect on the thermal hydrolysis reaction rather than the oxidation reaction. The degradation efficiency of sludge and the formation of organic acids were improved with longer reaction time and higher reaction temperature. For the sludge reduction and the organic acids formation under the wet air oxidation, the optimal conditions for reaction temperature, time, pressure, and oxidant dose were shown approximately 240 degrees C, 30min, 60atm, and 2.0L/min, respectively.

  2. Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dares, C. J.; Lapides, A. M.; Mincher, B. J.

    A high surface area, tin-doped indium oxide electrode surface-derivatized with a terpyridine ligand has been applied to the oxidation of trivalent americium to Am(V) and Am(VI) in nitric acid. Potentials as low as 1.8 V vs. the saturated calomel electrode are used, 0.7 V lower than the 2.6 V potential for one-electron oxidation of Am(III) to Am(IV) in 1 M acid. This simple electrochemical procedure provides, for the first time, a method for accessing the higher oxidation states of Am in non-complexing media for developing the coordination chemistries of Am(V) and Am(VI) and, more importantly, for separation of americium frommore » nuclear waste streams.« less

  3. Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease

    PubMed Central

    Nsiah-Sefaa, Abena; McKenzie, Matthew

    2016-01-01

    Mitochondria provide the main source of energy to eukaryotic cells, oxidizing fats and sugars to generate ATP. Mitochondrial fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two metabolic pathways which are central to this process. Defects in these pathways can result in diseases of the brain, skeletal muscle, heart and liver, affecting approximately 1 in 5000 live births. There are no effective therapies for these disorders, with quality of life severely reduced for most patients. The pathology underlying many aspects of these diseases is not well understood; for example, it is not clear why some patients with primary FAO deficiencies exhibit secondary OXPHOS defects. However, recent findings suggest that physical interactions exist between FAO and OXPHOS proteins, and that these interactions are critical for both FAO and OXPHOS function. Here, we review our current understanding of the interactions between FAO and OXPHOS proteins and how defects in these two metabolic pathways contribute to mitochondrial disease pathogenesis. PMID:26839416

  4. Temperature and nutrients as drivers of microbially mediated arsenic oxidation and removal from acid mine drainage.

    PubMed

    Tardy, Vincent; Casiot, Corinne; Fernandez-Rojo, Lidia; Resongles, Eléonore; Desoeuvre, Angélique; Joulian, Catherine; Battaglia-Brunet, Fabienne; Héry, Marina

    2018-03-01

    Microbial oxidation of iron (Fe) and arsenic (As) followed by their co-precipitation leads to the natural attenuation of these elements in As-rich acid mine drainage (AMD). The parameters driving the activity and diversity of bacterial communities responsible for this mitigation remain poorly understood. We conducted batch experiments to investigate the effect of temperature (20 vs 35 °C) and nutrient supply on the rate of Fe and As oxidation and precipitation, the bacterial diversity (high-throughput sequencing of 16S rRNA gene), and the As oxidation potential (quantification of aioA gene) in AMD from the Carnoulès mine (France). In batch incubated at 20 °C, the dominance of iron-oxidizing bacteria related to Gallionella spp. was associated with almost complete iron oxidation (98%). However, negligible As oxidation led to the formation of As(III)-rich precipitates. Incubation at 35 °C and nutrient supply both stimulated As oxidation (71-75%), linked to a higher abundance of aioA gene and the dominance of As-oxidizing bacteria related to Thiomonas spp. As a consequence, As(V)-rich precipitates (70-98% of total As) were produced. Our results highlight strong links between indigenous bacterial community composition and iron and arsenic removal efficiency within AMD and provide new insights for the future development of a biological treatment of As-rich AMD.

  5. Simultaneous quantification of epoxy and hydroxy fatty acids as oxidation products of triacylglycerols in edible oils.

    PubMed

    Xia, Wei; Budge, Suzanne M

    2018-02-16

    Epoxy and hydroxy fatty acids are important intermediates during lipid oxidation; quantification of both structures may help evaluate the extent of competition among various lipid oxidation pathways. This article describes a method to simultaneously determine saturated- and unsaturated- epoxy and hydroxy fatty acids derived from oxidation of vegetable oils. The experimental procedures employed transesterification with sodium methoxide, separation of epoxy and hydroxy fatty acid methyl esters (FAME) using solid-phase extraction (SPE), and trimethylsilyl (TMS) derivatization of hydroxy groups. GC-MS was used to identify the epoxy and hydroxy FAME in two different SPE fractions, while GC-flame ionization detection (GC-FID) was used to determine their quantities. Epoxy-octadecanoate/octadecenoate and hydroxy-octadecanoate/octadecenoate/octadecadienoate were determined as lipid oxidation products generated from oxidation of sunflower and canola oils. An isomer of methyl 13-hydroxyoctadeca-9,11-dienoate (13-HODE) TMS ether co-eluted with methyl 15-hydroxyoctadeca-9,12-dienoate TMS ether, which was only present in canola oil; thus, GC-MS-selected ion monitoring (GC-MS-SIM) was used to determine the concentration of 13-HODE. The proposed method has been successfully applied to monitor epoxy and hydroxy fatty acids in sunflower oil and canola oil oxidized at 40 °C. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Stimulating ammonia oxidizing bacteria (AOB) activity drives the ammonium oxidation rate in a constructed wetland (CW).

    PubMed

    Su, Yu; Wang, Weidong; Wu, Di; Huang, Wei; Wang, Mengzi; Zhu, Guibing

    2018-05-15

    An integrated approach to document high ammonium oxidation rate in Guanjinggang constructed wetland (GJG-CW) was performed and the results showed that the substantial ammonium oxidation rate could be obtained by enhancing Ammonia Oxidizing Bacteria (AOB) activity rather than Ammonia Oxidizing Archaea (AOA) activity. In the plant-bed/ditch system, ditch center and plant-bed fringe were two active zones for NH 4 + -N removal with ammonium oxidation rate peaking at 2.98±0.04 and 2.15±0.02mgNkg -1 d -1 , respectively. The enhanced AOB activity were achieved by increasing water level fluctuations, extending hydraulic retention time (HRT) and stimulating substrate availability, which subsequently enhanced NH 4 + -N removal by 34.06% in GJG-CW. However, the high AOB activity was not correlated with high AOB abundance, but was instead mostly determined by specific AOB taxa, particularly Nitrosomonas, which dominated in the active AOB. The increased cell-specific AOA activity and high AOA diversity were also achieved using those engineering measures. Although the AOA activity decreased overall with extended HRT and increased NH 4 + -N contents in GJG-CW, AOA still played a major role on ammonium oxidation in plant-bed soil. The study illustrated that artificially enhancing AOB activity and certain species in anthropogenically polluted water ecosystems would be an effective strategy to improve NH 4 + -N removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Time resolved study of hydroxyl radical oxidation of oleic acid at the air-water interface

    NASA Astrophysics Data System (ADS)

    Zhang, Xinxing; Barraza, Kevin M.; Upton, Kathleen T.; Beauchamp, J. L.

    2017-09-01

    The ubiquity of oleic acid (OA) renders it a poster child for laboratory investigations of environmental oxidation chemistry. In the current study, mechanistic details of the oxidation of OA by hydroxyl radicals at the air-water interface are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Products from OH oxidation of both unsaturated and saturated carbon atoms are identified, and mechanisms for both types of oxidation processes are proposed. Uptake of oxygen in the interfacial layer increases linearly with time, consistent with Langmuir-Hinshelwood reaction kinetics. These results provide fundamental knowledge relating to OH initiated degradation of fatty acids in atmospheric aerosols.

  8. Evaluation of pharmacological induction of fatty acid beta-oxidation in X-linked adrenoleukodystrophy.

    PubMed

    McGuinness, M C; Zhang, H P; Smith, K D

    2001-01-01

    X-linked adrenoleukodystrophy (X-ALD) is an inherited neurometabolic disorder associated with elevated levels of saturated unbranched very-long-chain fatty acids (VLCFA; C > 22:0) in plasma and tissues, and reduced VLCFA beta-oxidation in fibroblasts, white blood cells, and amniocytes from X-ALD patients. The X-ALD gene (ABCD1) at Xq28 encodes the adrenoleukodystrophy protein (ALDP) that is related to the peroxisomal ATP-binding cassette (ABCD) transmembrane half-transporter proteins. The function of ALDP is unknown and its role in VLCFA accumulation unresolved. Previously, our laboratory has shown that sodium 4-phenylbutyrate (4PBA) treatment of X-ALD fibroblasts results in increased peroxisomal VLCFA beta-oxidation activity and increased expression of the X-ALD-related protein, ALDRP, encoded by the ABCD2 gene. In this study, the effect of various pharmacological agents on VLCFA beta-oxidation in ALD mouse fibroblasts is tested. 4PBA, styrylacetate and benzyloxyacetate (structurally related to 4PBA), and trichostatin A (functionally related to 4PBA) increase both VLCFA (peroxisomal) and long-chain fatty acid [LCFA (peroxisomal and mitochondrial)] beta-oxidation. Isobutyrate, zaprinast, hydroxyurea, and 5-azacytidine had no effect on VLCFA or LCFA beta-oxidation. Lovastatin had no effect on fatty acid beta-oxidation under normal tissue culture conditions but did result in an increase in both VLCFA and LCFA beta-oxidation when ALD mouse fibroblasts were cultured in the absence of cholesterol. The effect of trichostatin A on peroxisomal VLCFA beta-oxidation is shown to be independent of an increase in ALDRP expression, suggesting that correction of the biochemical abnormality in X-ALD is not dependent on pharmacological induction of a redundant gene (ABCD2). These studies contribute to a better understanding of the role of ALDP in VLCFA accumulation and may lead to the development of more effective pharmacological therapies. Copyright 2001 Academic Press.

  9. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer's disease and some pro-oxidant induced oxidative stress in rats' brain-in vitro.

    PubMed

    Oboh, Ganiyu; Agunloye, Odunayo M; Akinyemi, Ayodele J; Ademiluyi, Adedayo O; Adefegha, Stephen A

    2013-02-01

    This study sought to investigate and compare the interaction of caffeic acid and chlorogenic acid on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and some pro-oxidants (FeSO(4), sodium nitroprusside and quinolinic acid) induced oxidative stress in rat brain in vitro. The result revealed that caffeic acid and chlorogenic acid inhibited AChE and BChE activities in dose-dependent manner; however, caffeic acid had a higher inhibitory effect on AChE and BChE activities than chlorogenic acid. Combination of the phenolic acids inhibited AChE and BChE activities antagonistically. Furthermore, pro-oxidants such as, FeSO(4), sodium nitroprusside and quinolinic acid caused increase in the malondialdehyde (MDA) contents of the brain which was significantly decreased dose-dependently by the phenolic acids. Inhibition of AChE and BChE activities slows down acetylcholine and butyrylcholine breakdown in the brain. Therefore, one possible mechanism through which the phenolic acids exert their neuroprotective properties is by inhibiting AChE and BChE activities as well as preventing oxidative stress-induced neurodegeneration. However, esterification of caffeic acid with quinic acid producing chlorogenic acid affects these neuroprotective properties.

  10. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  11. Pharmacologic activation of peroxisome proliferator-activating receptor-α accelerates hepatic fatty acid oxidation in neonatal pigs

    PubMed Central

    Shim, Kwanseob; Jacobi, Sheila; Odle, Jack; Lin, Xi

    2018-01-01

    Up-regulation of peroxisome proliferator-activating receptor-α (PPARα) and increasing fatty acid oxidation are important for reducing pre-weaning mortality of pigs. We examined the time-dependent regulatory effects of PPARα activation via oral postnatal clofibrate administration (75 mg/(kg-BW·d) for up to 7 days) on mitochondrial and peroxisomal fatty acid oxidation in pigs, a species with limited hepatic fatty acid oxidative capacity due to low ketogenesis. Hepatic oxidation was increased by 44-147% (depending on fatty acid chain-length) and was attained after only 4 days of clofibrate treatment. Acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase I (CPTI) activities accelerated in parallel. The increase in CPTI activity was accompanied by a rapid reduction in the sensitivity of CPTI to malonyl-CoA inhibition. The mRNA abundance of CPTI and ACO, as well as peroxisomal keto-acyl-CoA thiolase (KetoACoA) and mitochondrial malonyl-CoA decarboxylase (MCD), also were augmented greatly. However, the increase in ACO activity and MCD expression were different from CPTI, and significant interactions were observed between postnatal age and clofibrate administration. Furthermore, the expression of acetyl-CoA carboxylase β (ACCβ) decreased with postnatal age and clofibrate had no effect on its expression. Collectively these results demonstrate that the expression of PPARα target genes and the increase in fatty acid oxidation induced by clofibrate are time- and age-dependent in the liver of neonatal pigs. Although the induction patterns of CPTI, MCD, ACO, KetoACoA, and ACCβ are different during the early postnatal period, 4 days of exposure to clofibrate were sufficient to robustly accelerate fatty acid oxidation.

  12. Protein and lipid oxidative damage and complex I content are lower in the brain of budgerigar and canaries than in mice. Relation to aging rate.

    PubMed

    Pamplona, Reinald; Portero-Otín, Manuel; Sanz, Alberto; Ayala, Victoria; Vasileva, Ekaterina; Barja, Gustavo

    2005-12-01

    What are the mechanisms determining the rate of animal aging? Of the two major classes of endothermic animals, bird species are strikingly long-lived compared to mammals of similar body size and metabolic rate. Thus, they are ideal models to identify longevity-related characteristics not linked to body size or low metabolic rates. Since oxidative stress seems to be related to the basic aging process, we measured specific markers of different kinds of oxidative damage to proteins, like glutamic and aminoadipic semialdehydes (GSA and AASA, specific protein carbonyls), Nɛ-(carboxyethyl)lysine (CEL), Nɛ-(carboxymethyl)lysine (CML), and Nɛ-(malondialdehyde)lysine (MDAL), as well as mitochondrial Complex I content and amino acid and membrane fatty acyl composition, in the brain of short-lived mice (maximum life span [MLSP] 3.5 years) compared with those of long-lived budgerigar 'parakeets' (MLSP, 21 years) and canaries (MLSP, 24 years). The brains of both bird species had significantly lower levels of compounds formed as a result of oxidative (GSA and AASA), glycoxidative (CEL and CML), and lipoxidative (CML and MDAL) protein modifications, as well as a lower levels of mitochondrial complex I protein. Although it is known that fatty acid unsaturation is lower in many tissues of long-lived compared to short-lived mammals, this is not true in the particular case of brain. In agreement with this, we also found that the brain tissue of bugerigars and canaries contains no fewer double bonds than that of mice. Amino acid composition analyses revealed that bird proteins have a significantly lower content of His, Leu and Phe, as well as, interestingly, of methionine, whereas Asp, Glu, Ala, Val, and Lys contents were higher than in the mammals. These results, together with those previously described in other tissues of pigeons (MLSP, 35 years) compared to rats (MLSP, 4 years), indicate that oxidative damage to proteins, lipids and mitochondrial DNA are lower in birds (very

  13. Peroxisomal fatty acid oxidation as detected by H2O2 production in intact perfused rat liver.

    PubMed Central

    Foerster, E C; Fährenkemper, T; Rabe, U; Graf, P; Sies, H

    1981-01-01

    1. H2O2 formation associated with the metabolism of added fatty acids was quantitatively determined in isolated haemoglobin-free perfused rat liver (non-recirculating system) by two different methods. 2. Organ spectrophotometry of catalase Compound I [Sies & Chance (1970) FEBS Lett. 11, 172-176] was used to detect H2O2 formation (a) by steady-state titration with added hydrogen donor, methanol or (b) by comparison of fatty-acid responses with those of the calibration compound, urate. 3. In the use of the peroxidatic reaction of catalase, [14C]methanol was added as hydrogen donor at an optimal concentration of 1 mM in the presence of 0.2 mM-L-methionine, and 14CO2 production rates were determined. 4. Results obtained by the different methods were similar. 5. The yield of H2O2 formation, expressed as the rate of H2O2 formation in relation to the rate of fatty-acid supply, was less than 1.0 in all cases, indicating that, regardless of chain length, less than one acetyl unit was formed per mol of added fatty acid by the peroxisomal system. In particular, the standard substrate used with isolated peroxisomal preparations (C16:0 fatty acid) gave low yield (close to zero). Long-chain monounsaturated fatty acids exhibit a relatively high yield of H2O2 formation. 6. The hypolipidaemic agent bezafibrate led to slightly increased yields for most of the acids tested, but the yield with oleate was decreased to one-half the original yield. 7. It is concluded that in the intact isolated perfused rat liver the assayable capacity for peroxisomal beta-oxidation is used to only a minor degree. However, the observed rates of H2O2 production with fatty acids can account for a considerable share of the endogenous H2O2 production found in the intact animal. PMID:7317011

  14. Kinetics of FeII-polyaminocarboxylate oxidation by molecular oxygen

    NASA Astrophysics Data System (ADS)

    Wilson, Jessica M.; Farley, Kevin J.; Carbonaro, Richard F.

    2018-03-01

    Complexation of iron by naturally-occurring and synthetic organic ligands has a large effect on iron oxidation and reduction rates which in turn affect the aqueous geochemistry of many other chemical constituents. In this study, the kinetics of FeII oxidation in the presence of the polyaminocarboxylate synthetic chelating agents ethylene glycol tetraacetic acid (EGTA) and trimethylenediamine-N,N,N‧,N‧-tetraacetic acid (TMDTA) was investigated over the pH range 5.50-8.53. Batch oxidation experiments in the presence of molecular oxygen were conducted using a 2:1 M concentration ratio of polyaminocarboxylate (ligand, L) to FeII. The experimental data resembled first order kinetics for the oxidation of FeII-L to FeIII-L and observed rate constants at pH 6.0 were comparable to rate constants for the oxidation of inorganic FeII. Similar to other structurally-similar FeII-polyaminocarboxylate complexes, oxidation rates of FeII-EGTA and FeII-TMDTA decrease with increasing pH, which is the opposite trend for the oxidation of FeII complexed with inorganic ligands. However, the oxidation rates of FeII complexed with EGTA and TMDTA were considerably lower (4-5 orders of magnitude) than FeII complexed to ethylenediaminetetraacetic acid (EDTA). The distinguishing feature of the slower-reacting complexes is that they have a longer backbone between diamine functional groups. An analytical equilibrium model was developed to determine the contributions of the species FeIIL2- and FeII(H)L- to the overall oxidation rate of FeII-L. Application of this model indicated that the protonated FeII(H)L species are more than three orders of magnitude more reactive than FeIIL2-. These rate constants were used in a coupled kinetic equilibrium numerical model where the ligand to iron ratio (TOTL:TOTFe) and pH were varied to evaluate the effect on the FeII oxidation rate. Overall, increasing TOTL:TOTFe for EGTA and TMDTA enhances FeII oxidation rates at lower pH and inhibits FeII oxidation

  15. Novel integrated electrodialysis/electro-oxidation process for the efficient degradation of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Raschitor, A; Llanos, J; Cañizares, P; Rodrigo, M A

    2017-09-01

    This work presents a novel approach of wastewater treatment technology that consists of a combined electrodialysis/electro-oxidation process, specially designed to allow increasing the efficiency in the oxidation of ionic organic pollutants contained in diluted waste. Respect to conventional electrolysis, the pollutant is simultaneously concentrated and oxidized, enhancing the performance of the cell due to the higher concentration achieved in the nearness of the anode. A proof of concept is tested with the ionic pesticide 2,4-D (2,4-dichlorophenoxyacetic acid) and results show that the efficiency of this new technology overcomes that electrolysis by more than double, regardless the supporting electrolyte used (either NaCl or Na 2 SO 4 ). Moreover, the removal rate of 2,4-D when using NaCl was found to be more efficient, due to the best performance of the electrode material selected (DSA ® ) towards the formation of oxidants in chloride supporting electrolyte. These results open the way for overcoming the efficiency limitations of electrochemical treatment processes for the treatment of solutions with low concentrated ionic pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Retinoic acid biosynthesis catalyzed by retinal dehydrogenases relies on a rate-limiting conformational transition associated with substrate recognition

    PubMed Central

    Bchini, Raphaël; Vasiliou, Vasilis; Branlant, Guy; Talfournier, François; Rahuel-Clermont, Sophie

    2012-01-01

    Retinoic acid (RA), a metabolite of vitamin A, exerts pleiotropic effects throughout life in vertebrate organisms. Thus, RA action must be tightly regulated through the coordinated action of biosynthetic and degradating enzymes. The last step of retinoic acid biosynthesis is irreversibly catalyzed by the NAD-dependent retinal dehydrogenases (RALDH), which are members of the aldehyde dehydrogenase (ALDH) superfamily. Low intracellular retinal concentrations imply efficient substrate molecular recognition to ensure high affinity and specificity of RALDHs for retinal. This study addresses the molecular basis of retinal recognition in human ALDH1A1 (or RALDH1) and rat ALDH1A2 (or RALDH2), through the comparison of the catalytic behavior of retinal analogs and use of the fluorescence properties of retinol. We show that, in contrast to long chain unsaturated substrates, the rate-limiting step of retinal oxidation by RALDHs is associated with acylation. Use of the fluorescence resonance energy transfer upon retinol interaction with RALDHs provides evidence that retinal recognition occurs in two steps: binding into the substrate access channel, and a slower structural reorganization with a rate constant of the same magnitude as the kcat for retinal oxidation: 0.18 vs. 0.07 s−1 and 0.25 vs. 0.1 s−1 for ALDH1A1 and ALDH1A2, respectively. This suggests that the conformational transition of the RALDH-retinal complex significantly contributes to the rate-limiting step that controls the kinetics of retinal oxidation, as a prerequisite for the formation of a catalytically competent Michaelis complex. This conclusion is consistent with the general notion that structural flexibility within the active site of ALDH enzymes has been shown to be an integral component of catalysis. PMID:23220587

  17. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... oxygen. (d) For approval, a State plan shall include emission limits for nitrogen oxides at least as...

  18. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... oxygen. (d) For approval, a State plan shall include emission limits for nitrogen oxides at least as...

  19. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... oxygen. (d) For approval, a State plan shall include emission limits for nitrogen oxides at least as...

  20. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... oxygen. (d) For approval, a State plan shall include emission limits for nitrogen oxides at least as...

  1. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    EPA Science Inventory

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  2. Oxidation of Gas-Phase SO2 on the Surfaces of Acidic Microdroplets: Implications for Sulfate and Sulfate Radical Anion Formation in the Atmospheric Liquid Phase.

    PubMed

    Hung, Hui-Ming; Hoffmann, Michael R

    2015-12-01

    The oxidation of SO2(g) on the interfacial layers of microdroplet surfaces was investigated using a spray-chamber reactor coupled to an electrospray ionization mass spectrometer. Four major ions, HSO3(-), SO3(•-), SO4(•-) and HSO4(-), were observed as the SO2(g)/N2(g) gas-mixture was passed through a suspended microdroplet flow, where the residence time in the dynamic reaction zone was limited to a few hundred microseconds. The relatively high signal intensities of SO3(•-), SO4(•-), and HSO4(-) compared to those of HSO3(-) as observed at pH < 3 without addition of oxidants other than oxygen suggests an efficient oxidation pathway via sulfite and sulfate radical anions on droplets possibly via the direct interfacial electron transfer from HSO3(-) to O2. The concentrations of HSO3(-) in the aqueous aerosol as a function of pH were controlled by the deprotonation of hydrated sulfur dioxide, SO2·H2O, which is also affected by the pH dependent uptake coefficient. When H2O2(g) was introduced into the spray chamber simultaneously with SO2(g), HSO3(-) is rapidly oxidized to form bisulfate in the pH range of 3 to 5. Conversion to sulfate was less at pH < 3 due to relatively low HSO3(-) concentration caused by the fast interfacial reactions. The rapid oxidation of SO2(g) on the acidic microdroplets was estimated as 1.5 × 10(6) [S(IV)] (M s(-1)) at pH ≤ 3. In the presence of acidic aerosols, this oxidation rate is approximately 2 orders of magnitude higher than the rate of oxidation with H2O2(g) at a typical atmospheric H2O2(g) concentration of 1 ppb. This finding highlights the relative importance of the acidic surfaces for SO2 oxidation in the atmosphere. Surface chemical reactions on aquated aerosol surfaces, as observed in this study, are overlooked in most atmospheric chemistry models. These reaction pathways may contribute to the rapid production of sulfate aerosols that is often observed in regions impacted by acidic haze aerosol such as Beijing and other

  3. Physiochemical Characterization of Iodine (V) Oxide: Hydration Rates

    DTIC Science & Technology

    2014-12-15

    decomposition .21 2 Distribution A Scheme 1. Iodine (V) Oxide‐Water System Hydration : 3I2O5(s) + H2O(g) → 2HI3O8(s) + 2H2O(g) → 6HIO3(s...dehydration steps and decomposition step for each sample. The corresponding percent compositions of the three hydration forms of the oxide have been...135 Physiochemical Characterization of Iodine (V) Oxide: Hydration Rates Distribution A: Approved for public release; distribution unlimited

  4. Effect of Reacting Surface Density on the Overall Graphite Oxidation Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang H. Oh; Eung Kim; Jong Lim

    2009-05-01

    Graphite oxidation in an air-ingress accident is presently a very important issue for the reactor safety of the very high temperature gas cooled-reactor (VHTR), the concept of the next generation nuclear plant (NGNP) because of its potential problems such as mechanical degradation of the supporting graphite in the lower plenum of the VHTR might lead to core collapse if the countermeasure is taken carefully. The oxidation process of graphite has known to be affected by various factors, including temperature, pressure, oxygen concentration, types of graphite, graphite shape and size, flow distribution, etc. However, our recent study reveals that the internalmore » pore characteristics play very important roles in the overall graphite oxidation rate. One of the main issues regarding graphite oxidation is the potential core collapse problem that may occur following the degradation of graphite mechanical strength. In analyzing this phenomenon, it is very important to understand the relationship between the degree of oxidization and strength degradation. In addition, the change of oxidation rate by graphite oxidation degree characterization by burn-off (ratio of the oxidized graphite density to the original density) should be quantified because graphite strength degradation is followed by graphite density decrease, which highly affects oxidation rates and patterns. Because the density change is proportional to the internal pore surface area, they should be quantified in advance. In order to understand the above issues, the following experiments were performed: (1)Experiment on the fracture of the oxidized graphite and validation of the previous correlations, (2) Experiment on the change of oxidation rate using graphite density and data collection, (3) Measure the BET surface area of the graphite. The experiments were performed using H451 (Great Lakes Carbon Corporation) and IG-110 (Toyo Tanso Co., Ltd) graphite. The reason for the use of those graphite materials is

  5. Electrochemical and photoelectrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and 2,5-diformylfuran

    DOEpatents

    Choi, Kyoung-Shin; Cha, Hyun Gil

    2017-03-21

    Electrochemical and photoelectrochemical cells for the oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and/or 2,5-diformylfuran are provided. Also provided are methods of using the cells to carry out the electrochemical and photoelectrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and/or 2,5-diformylfuran.

  6. Efficient depletion of ascorbate by amino acid and protein radicals under oxidative stress.

    PubMed

    Domazou, Anastasia S; Zelenay, Viviane; Koppenol, Willem H; Gebicki, Janusz M

    2012-10-15

    Ascorbate levels decrease in organisms subjected to oxidative stress, but the responsible reactions have not been identified. Our earlier studies have shown that protein C-centered radicals react rapidly with ascorbate. In aerobes, these radicals can react with oxygen to form peroxyl radicals. To estimate the relative probabilities of the reactions of ascorbate with protein C- and O-centered radicals, we measured by pulse radiolysis the rate constants of the reactions of C-centered radicals in Gly, Ala, and Pro with O₂ and of the resultant peroxyl radicals with ascorbate. Calculations based on the concentrations of ascorbate and oxygen in human tissues show that the relative probabilities of reactions of the C-centered amino acid radicals with O₂ and ascorbate vary between 1:2.6 for the pituitary gland and 1:0.02 for plasma, with intermediate ratios for other tissues. The high frequency of occurrence of Gly, Ala, and Pro in proteins and the similar reaction rate constants of their C-centered radicals with O₂ and their peroxo-radicals with ascorbate suggest that our results are also valid for proteins. Thus, the formation of protein C- or O-centered radicals in vivo can account for the loss of ascorbate in organisms under oxidative stress. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. RATES OF HYDROUS FERRIC OXIDE CRYSTALLIZATION AND THE INFLUENCE ON COPRECIPITATED ARSENATE

    EPA Science Inventory

    Arsenate coprecipitated with hydrous ferric oxide (HFO) was stabilized against dissolution during transformation of HFO to more crystalline iron (hydr)oxides. The rate of arsenate stabilization approximately coincided with the rate of HFO transformation at pH 6 and 40 ?C. Compa...

  8. Ascorbic acid reduces noise-induced nitric oxide production in the guinea pig ear.

    PubMed

    Heinrich, Ulf-Rüdiger; Fischer, Ilka; Brieger, Jürgen; Rümelin, Andreas; Schmidtmann, Irene; Li, Huige; Mann, Wolf J; Helling, Kai

    2008-05-01

    Noise-induced hearing loss can be caused, among other causes, by increased nitric oxide (NO) production in the inner ear leading to nitroactive stress and cell destruction. Some studies in the literature suggest that the degree of hearing loss (HL) could be reduced in an animal model through ascorbic acid supplementation. To identify the effect of ascorbic acid on tissue-dependent NO content in the inner ear of the guinea pig, we determined the local NO production in the organ of Corti and the lateral wall separately 6 hours after noise exposure. Prospective animal study in guinea pigs. Over a period of 7 days, male guinea pigs were supplied with minimum (25 mg/kg body weight/day) and maximum (525 mg/kg body weight/day) ascorbic acid doses, and afterwards exposed to noise (90 dB sound pressure level for 1 hour). The acoustic-evoked potentials were recorded before and after noise exposure. The organ of Corti and the lateral wall were incubated differently for 6 hours in culture medium, and the degree of NO production was determined by chemiluminescence. Ascorbic acid treatment reduced the hearing threshold shift after noise exposure depending on concentration. When the maximum ascorbic acid dose was substituted, NO production was significantly reduced in the lateral wall after noise exposure and slightly reduced in the organ of Corti. Oral supplementation of the natural radical scavenger ascorbic acid reduces the NO-production rate in the inner ear in noisy conditions. This finding supports the concept of inner ear protection by ascorbic acid supplementation.

  9. Humic substances and trace metals associated with Fe and Al oxides deposited in an acidic mountain stream

    USGS Publications Warehouse

    McKnight, Diane M.; Wershaw, R. L.; Bencala, K.E.; Zellweger, G.W.; Feder, G.L.

    1992-01-01

    Hydrous iron and aluminum oxides are deposited on the streambed in the confluence of the Snake River and Deer Creek, two streams in the Colorado Rocky Mountains. The Snake River is acidic and has high concentrations of dissolved Fe and Al. These metals precipitate at the confluence with the pristine, neutral pH, Deer Creek because of the greater pH (4.5-6.0) in the confluence. The composition of the deposited oxides changes consistently with distance downstream, with the most upstream oxide samples having the greatest Fe and organic carbon content. Fulvic acid accounts for most of the organic content of the oxides. Results indicate that streambed oxides in the confluence are not saturated with respect to their capacity to sorb dissolved humic substances from streamwater. The contents of several trace metals (Mn, Zn, Cu, Pb, Ni and Co) also decrease with distance downstream and are correlated with both the Fe and organic carbon contents. Strong metal-binding sites associated with the sorbed fulvic acid are more than sufficient to account for the trace metal content of the oxides. Complexation of trace metals by sorbed fulvic acid may explain the observed downstream decrease in trace metal content.

  10. Development of the Monolith Froth Reactor for Catalytic Wet Oxidation of CELSS Model Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Abraham, Martin

    1993-01-01

    The aqueous phase oxidation of acetic acid, used as a model compound for the treatment of CELSS (Controlled Ecological Life Support System) waste, was carried out in the monolith froth reactor which utilizes two-phase flow in the monolith channels. The catalytic oxidation of acetic acid was carried out over a Pt/Al2O3 catalyst at temperatures and pressures below the critical point of water. The effect of externally controllable parameters (temperature, liquid flow rate, distributor plate orifice size, pitch, and catalyst distance from the distributor plate) on the rate of acetic acid oxidation was investigated. Results indicate reaction rate increased with increasing temperature and exhibited a maximum with respect to liquid flow rate. The apparent activation energy calculated from reaction rate data was 99.7 kJ/mol. This value is similar to values reported for the oxidation of acetic acid in other systems and is comparable to intrinsic values calculated for oxidation reactions. The kinetic data were modeled using simple power law kinetics. The effect of "froth" feed system characteristics was also investigated. Results indicate that the reaction rate exhibits a maximum with respect to distributor plate orifice size, pitch, and catalyst distance from the distributor plate. Fundamental results obtained were used to extrapolate where the complete removal of acetic acid would be obtained and for the design and operation of a full scale CELSS treatment system.

  11. Determination of moxifloxacin and its oxidation products with kinetic evaluation under potassium permanganate treatment in acidic solution by ultra-performance liquid chromatography/tandem mass spectrometry.

    PubMed

    Hubicka, Urszula; Zmudzki, Paweł; Zajdel, Paweł; Krzek, Jan

    2013-01-01

    A simple, sensitive, and reproducible ultra-performance LC method for the determination of moxifloxacin (MOXI) oxidation stability under permanganate treatment in acidic conditions (pH 3.0-6.0) was developed. Besides the MOXI peak [retention time (RT) = 2.58], four additional products (RT = 0.86, 0.91, 1.42, and 1.89) were observed in all conditions tested. The oxidation process followed second-order reaction kinetics and depended upon solution acidity. The highest reaction rate constant was observed at pH 3.0, and this value decreased as the pH was increased to 6.0. The oxidation products were characterized, and their fragmentation pathways, derived from MS/MS data, were proposed. Two of these products were identified as hydroxyl derivatives of MOXI and two others as their oxidation product analogs with molecular ions of 418.4 and 416.4 m/z, respectively.

  12. Increased Flow of Fatty Acids toward β-Oxidation in Developing Seeds of Arabidopsis Deficient in Diacylglycerol Acyltransferase Activity or Synthesizing Medium-Chain-Length Fatty Acids1

    PubMed Central

    Poirier, Yves; Ventre, Giovanni; Caldelari, Daniela

    1999-01-01

    Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid β-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0.06 mg g−1 dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward β-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via β-oxidation and that a considerable flow toward β-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids. PMID:10594123

  13. Amino acid-assisted synthesis of zinc oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Baljinder; Moudgil, Lovika; Singh, Gurinder; Kaura, Aman

    2018-05-01

    In this manuscript we have used experimental approach that can provide a fundamental knowledge about the role played by biomolecules in designing the shape of nanostructure (NS) at a microscopic level. The three different amino acids (AAs) - Arginine (Arg), Aspartic acid (Asp) and Histidine (His) coated Zinc oxide (ZnO) NSs to explain the growth mechanism of nanoparticles of different shapes. Based on the experimental methodology we propose that AA-ZnO (Asp and Arg) nanomaterials could form of rod like configuration and His-ZnO NPs could form tablet like configuration. The synthesized samples are characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD). Results reveal that AAs are responsible for formation of different NSs

  14. Kinetics and mechanism of permanganate oxidation of iota- and lambda-carrageenan polysaccharides as sulfated carbohydrates in acid perchlorate solutions.

    PubMed

    Hassan, Refat M; Fawzy, Ahmed; Ahmed, Gamal A; Zaafarany, Ishaq A; Asghar, Basim H; Takagi, Hideo D; Ikeda, Yasuhisa

    2011-10-18

    The kinetics of oxidation of iota- and lambda-carrageenan as sulfated carbohydrates by permanganate ion in aqueous perchlorate solutions at a constant ionic strength of 2.0 mol dm(-3) have been investigated spectrophotometrically. The pseudo-first-order plots were found to be of inverted S-shape throughout the entire courses of reactions. The initial rates were found to be relatively slow in the early stages, followed by an increase in the oxidation rates over longer time periods. The experimental observations showed first-order dependences in permanganate and fractional first-order kinetics with respect to both carrageenans concentration for both the induction and autoacceleration periods. The results obtained at various hydrogen ion concentrations showed that the oxidation processes in these redox systems are acid-catalyzed throughout the two stages of oxidation reactions. The added salts lead to the prediction that Mn(III) is the reactive species throughout the autoacceleration periods. Kinetic evidence for the formation of 1:1 intermediate complexes was revealed. The kinetic parameters have been evaluated and tentative reaction mechanisms in good agreement with the kinetic results are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Three Rate-Constant Kinetic Model for Permanganate Reactions Autocatalyzed by Colloidal Manganese Dioxide: The Oxidation of L-Phenylalanine.

    PubMed

    Perez-Benito, Joaquin F; Ferrando, Jordi

    2014-12-26

    The reduction of permanganate ion to MnO(2)-Mn(2)O(3) soluble colloidal mixed oxide by l-phenylalanine in aqueous phosphate-buffered neutral solutions has been followed by a spectrophotometric method, monitoring the decay of permanganate ion at 525 nm and the formation of the colloidal oxide at 420 nm. The reaction is autocatalyzed by the manganese product, and three rate constants have been required to fit the experimental absorbance-time kinetic data. The reaction shows base catalysis, and the values of the activation parameters at different pHs have been determined. A mechanism including both the nonautocatalytic and the autocatalytic reaction pathways, and in agreement with the available experimental data, has been proposed. Some key features of this mechanism are the following: (i) of the two predominant forms of the amino acid, the anionic form exhibits a stronger reducing power than the zwitterionic form; (ii) the nonautocatalytic reaction pathway starts with the transfer of the hydrogen atom in the α position of the amino acid to permanganate ion; and (iii) the autocatalytic reaction pathway involves the reduction of Mn(IV) to Mn(II) by the amino acid and the posterior reoxidation of Mn(II) to Mn(IV) by permanganate ion.

  16. Ursodeoxycholic Acid Ameliorated Diabetic Nephropathy by Attenuating Hyperglycemia-Mediated Oxidative Stress.

    PubMed

    Cao, Aili; Wang, Li; Chen, Xia; Guo, Hengjiang; Chu, Shuang; Zhang, Xuemei; Peng, Wen

    2016-08-01

    Oxidative stress has a great role in diabetes and diabetes induced organ damage. Endoplasmic reticulum (ER) stress is involved in the onset of diabetic nephropathy. We hypothesize that ER stress inhibition could protect against kidney injury through anti-oxidative effects. To test whether block ER stress could attenuate oxidative stress and improve diabetic nephropathy in vivo and in vitro, the effect of ursodeoxycholic acid (UDCA), an ER stress inhibitor, on spontaneous diabetic nephropathy db/db mice, ER stress inducer or high glucose-triggered podocytes were studied. Mice were assigned to 3 groups (n=6 per group): control group (treated with vehicle), db/db group (treated with vehicle), and UDCA group (db/db mice treated with 40 mg/kg/d UDCA). After 8 weeks treatment, mice were sacrificed. Blood and kidneys were collected for the assessment of albumin/creatinine ratio, blood urea nitrogen (BUN), serum creatinine (SCr), insulin, total cholesterol, triglyceride, low density lipoprotein cholesterol (LDL-C), oxidized LDL-C, high density lipoprotein cholesterol (HDL-C), non-esterified fatty acid (NEFA), superoxide dismutase (SOD), catalase (CAT), methane dicarboxylic aldehyde (MDA), the expressions of SOD isoforms and glutathione peroxidase 1, as well as histopathological examination. In addition, generation of reactive oxygen species (ROS) was detected by 2'7'-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence. The results showed that UDCA alleviated renal ER stress-evoked cell death, oxidative stress, renal dysfunction, ROS production, upregulated the expression of Bcl-2 and suppressed Bax in vivo and in vitro. Hence, inhibition ER stress diminishes oxidative stress and exerts renoprotective effects.

  17. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils

    PubMed Central

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2012-01-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. 13CO2-DNA-stable isotope probing results showed significant assimilation of 13C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO2 fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active 13CO2-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils. PMID:22134644

  18. Influence of pH-control in phosphoric acid treatment of titanium oxide and their powder properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onoda, Hiroaki, E-mail: onoda@kpu.ac.jp; Matsukura, Aki

    Highlights: • The photocatalytic activity was suppressed by phosphoric acid treatment. • The obtained pigment had small particles with sub-micrometer size. • By phosphoric acid treatment, the smoothness of samples improved. - Abstract: Titanium oxide that has the photocatalytic activity is used as a white pigment for cosmetics. A certain degree of sebum on the skin is decomposed by the ultraviolet radiation in sunlight. In this work, titanium oxide was shaken with phosphoric acid at various pH to synthesize a novel white pigment for cosmetics. Their chemical composition, powder properties, photocatalytic activity, color phase, and smoothness were studied. The obtainedmore » materials indicated XRD peaks of titanium oxide, however, these peak intensity became weak by phosphoric acid treatment. These samples without heating and heated at 100 °C included the small particles with sub-micrometer size. The photocatalytic activity of the obtained powders became weak by phosphoric acid treatment at pH 4 and 5 to protect the sebum on the skin.« less

  19. Effects of oxidizing adulterants on detection of 11-nor-delta9-THC-9-carboxylic acid in urine.

    PubMed

    Paul, Buddha D; Jacobs, Aaron

    2002-10-01

    Bleach, nitrite, chromate, and hydrogen peroxide-peroxidase are effective urine adulterants used by the illicit drug users to conceal marijuana-positive results. Methods for detecting nitrite and chromate are available. Effects of other oxidizing agents that could possibly be used as adulterants and are difficult to detect or measure are presented in this report. Urine samples containing 40 ng/mL of 11-nor-delta9-THC-9-carboxylic acid (THC-acid) were treated with 10 mmol/L of commonly available oxidizing agents. Effects of horseradish peroxidase of activity 10 unit/mL and extracts from 2.5 g of red radish (Raphanus sativus, Radicula group), horseradish (Armoracia rusticana), Japanese radish (Raphanus sativus, Daikon group), and black mustard seeds (Brassica nigra), all with 10 mmol/L of hydrogen peroxide, were also examined. After 5 min, 16 h and 48 h of exposure at room temperature (23 degrees C) the specimens were tested by a gas chromatographic-mass spectrometric method for THC-acid. A control group treated with sodium hydrosulfite to reduce the oxidants, was also tested to investigate the effect of oxidizing agents on THC-acid in the extraction method. THC-acid was lost completely in the extraction method when treated with chromate, nitrite, oxone, and hydrogen peroxide/ferrous ammonium sulfate (Fenton's reagent). Some losses were also observed with persulfate and periodate (up to 25%). These oxidants, and other oxidizing agents like permanganate, periodate, peroxidase, and extracts from red radish, horseradish, Japanese radish and black mustard seeds destroyed most of the THC-acid (> 94%) within 48 h of exposure. Chlorate, perchlorate, iodate, and oxychloride under these conditions showed little or no effect. Complete loss was observed when THC-acid was exposed to 50 mmol/L of oxychloride for 48 h. Several oxidizing adulterants that are difficult to test by the present urine adulterant testing methods showed considerable effects on the destruction of THC-acid

  20. Anaerobic Carbon Metabolism by the Tricarboxylic Acid Cycle : Evidence for Partial Oxidative and Reductive Pathways during Dark Ammonium Assimilation.

    PubMed

    Vanlerberghe, G C; Horsey, A K; Weger, H G; Turpin, D H

    1989-12-01

    Nitrogen-limited cells of Selenastrum minutum (Naeg.) Collins are able to assimilate NH(4) (+) in the dark under anaerobic conditions. Addition of NH(4) (+) to anaerobic cells results in a threefold increase in tricarboxylic acid cycle (TCAC) CO(2) efflux and an eightfold increase in the rate of anaplerotic carbon fixation via phosphoenolpyruvate carboxylase. Both of these observations are consistent with increased TCAC carbon flow to supply intermediates for amino acid biosynthesis. Addition of H(14)CO(3) (-) to anaerobic cells assimilating NH(4) (+) results in the incorporation of radiolabel into the alpha-carboxyl carbon of glutamic acid. Incorporation of radiolabel into glutamic acid is not simply a short-term phenomenon following NH(4) (+) addition as the specific activity of glutamic acid increases over time. This indicates that this alga is able to maintain partial oxidative TCAC carbon flow while under anoxia to supply alpha-ketoglutarate for glutamate production. During dark aerobic NH(4) (+) assimilation, no radiolabel appears in fumarate or succinate and only a small amount occurs in malate. During anaerobic NH(4) (+) assimilation, these metabolites contain a large proportion of the total radiolabel and radiolabel accumulates in succinate over time. Also, the ratio of dark carbon fixation to NH(4) (+) assimilation is much higher under anaerobic than aerobic conditions. These observations suggest the operation of a partial reductive TCAC from oxaloacetic acid to malate, fumarate, and succinate. Such a pathway might contribute to redox balance in an anaerobic cell maintaining partial oxidative TCAC activity.

  1. Novel Hybrid Catalyst for the Oxidation of Organic Acids: Pd Nanoparticles Supported on Mn-N-3D-Graphene Nanosheets

    DOE PAGES

    Perry, Albert; Kabir, Sadia; Matanovic, Ivana; ...

    2017-06-16

    This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less

  2. Novel Hybrid Catalyst for the Oxidation of Organic Acids: Pd Nanoparticles Supported on Mn-N-3D-Graphene Nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Albert; Kabir, Sadia; Matanovic, Ivana

    This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less

  3. Anti-inflammatory and anti-oxidative effects of alpha-lipoic acid in experimentally induced acute otitis media.

    PubMed

    Tatar, A; Korkmaz, M; Yayla, M; Gozeler, M S; Mutlu, V; Halici, Z; Uslu, H; Korkmaz, H; Selli, J

    2016-07-01

    To investigate the anti-inflammatory, anti-oxidative and tissue protective effects, as well as the potential therapeutic role, of alpha-lipoic acid in experimentally induced acute otitis media. Twenty-five guinea pigs were assigned to one of five groups: a control (non-otitis) group, and otitis-induced groups treated with saline, penicillin G, alpha-lipoic acid, or alpha-lipoic acid plus penicillin G. Tissue samples were histologically analysed, and oxidative parameters in tissue samples were measured and compared between groups. The epithelial integrity was better preserved, and histological signs of inflammation and secretory metaplasia were decreased, in all groups compared to the saline treated otitis group. In the alpha-lipoic acid plus penicillin G treated otitis group, epithelial integrity was well preserved and histological findings of inflammation were significantly decreased compared to the saline, penicillin G and alpha-lipoic acid treated otitis groups. The most favourable oxidative parameters were observed in the control group, followed by the alpha-lipoic acid plus penicillin G treated otitis group. Alpha-lipoic acid, with its antioxidant, anti-inflammatory and tissue protective properties, may decrease the clinical sequelae and morbidity associated with acute otitis media.

  4. [Effects of low molecular weight organic acids on redox reactions of mercury].

    PubMed

    Zhao, Shi-Bo; Sun, Rong-Guo; Wang, Ding-Yong; Wang, Xiao-Wen; Zhang, Cheng

    2014-06-01

    To study the effects of the main component of vegetation root exudates-low molecular weight organic acids on the redox reactions of mercury, laboratory experiments were conducted to investigate the roles of tartaric, citric, and succinic acid in the redox reactions of mercury, and to analyze their interaction mechanism. The results indicated that tartaric acid significantly stimulated the mercury reduction reaction, while citric acid had inhibitory effect. Succinic acid improved the reduction rate at low concentration, and inhibited the reaction at high concentration. The mercury reduction rate by tartaric acid treatment was second-order with respect to Hg2+ concentration, ranging from 0.0014 L x (ng x min)(-1) to 0.005 6 L x (ng x min)(-1). All three organic acids showed a capacity for oxidating Hg(0) in the early stage, but the oxidized Hg(0) was subsequently reduced. The oxidation capacity of the three organic acids was in the order of citric acid > tartaric acid > succinic acid.

  5. Evaluation of fatty acid oxidation by reactive oxygen species induced in liquids using atmospheric-pressure nonthermal plasma jets

    NASA Astrophysics Data System (ADS)

    Tani, Atsushi; Fukui, Satoshi; Ikawa, Satoshi; Kitano, Katsuhisa

    2015-10-01

    We investigated fatty acid oxidation by atmospheric-pressure nonthermal helium plasma using linoleic acid, an unsaturated fatty acid, together with evaluating active species induced in liquids. If the ambient gas contains oxygen, direct plasma such as plasma jets coming into contact with the liquid surface supplies various active species, such as singlet oxygen, ozone, and superoxide anion radicals, to the liquid. The direct plasma easily oxidizes linoleic acid, indicating that fatty acid oxidation will occur in the direct plasma. In contrast, afterglow flow, where the plasma is terminated in a glass tube and does not touch the surface of the liquid sample, supplies mainly superoxide anion radicals. The fact that there was no clear observation of linoleic acid oxidation using the afterglow reveals that it may not affect lipids, even in an atmosphere containing oxygen. The afterglow flow can potentially be used for the sterilization of aqueous solutions using the reduced pH method, in medical and dental applications, because it provides bactericidal activity in the aqueous solution despite containing a smaller amount of active species.

  6. Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen.

    PubMed

    Lüdecke, Claudia; Reiche, Marco; Eusterhues, Karin; Nietzsche, Sandor; Küsel, Kirsten

    2010-10-01

    The ecological importance of Fe(II)-oxidizing bacteria (FeOB) at circumneutral pH is often masked in the presence of O(2) where rapid chemical oxidation of Fe(II) predominates. This study addresses the abundance, diversity and activity of microaerophilic FeOB in an acidic fen (pH ∼ 5) located in northern Bavaria, Germany. Mean O(2) penetration depth reached 16 cm where the highest dissolved Fe(II) concentrations (up to 140 µM) were present in soil water. Acid-tolerant FeOB cultivated in gradient tubes were most abundant (10(6) cells g(-1) peat) at the 10-20 cm depth interval. A stable enrichment culture was active at up to 29% O(2) saturation and Fe(III) accumulated 1.6 times faster than in abiotic controls. An acid-tolerant, microaerophilic isolate (strain CL21) was obtained which was closely related to the neutrophilic, lithoautotrophic FeOB Sideroxydans lithotrophicus strain LD-1. CL21 oxidized Fe(II) between pH 4 and 6.0, and produced nanoscale-goethites with a clearly lower mean coherence length (7 nm) perpendicular to the (110) plane than those formed abiotically (10 nm). Our results suggest that an acid-tolerant population of FeOB is thriving at redox interfaces formed by diffusion-limited O(2) transport in acidic peatlands. Furthermore, this well-adapted population is successfully competing with chemical oxidation and thereby playing an important role in the microbial iron cycle. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.

    PubMed

    Thapa, Dharendra; Zhang, Manling; Manning, Janet R; Guimarães, Danielle A; Stoner, Michael W; O'Doherty, Robert M; Shiva, Sruti; Scott, Iain

    2017-08-01

    Lysine acetylation is a reversible posttranslational modification and is particularly important in the regulation of mitochondrial metabolic enzymes. Acetylation uses acetyl-CoA derived from fuel metabolism as a cofactor, thereby linking nutrition to metabolic activity. In the present study, we investigated how mitochondrial acetylation status in the heart is controlled by food intake and how these changes affect mitochondrial metabolism. We found that there was a significant increase in cardiac mitochondrial protein acetylation in mice fed a long-term high-fat diet and that this change correlated with an increase in the abundance of the mitochondrial acetyltransferase-related protein GCN5L1. We showed that the acetylation status of several mitochondrial fatty acid oxidation enzymes (long-chain acyl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase, and hydroxyacyl-CoA dehydrogenase) and a pyruvate oxidation enzyme (pyruvate dehydrogenase) was significantly upregulated in high-fat diet-fed mice and that the increase in long-chain and short-chain acyl-CoA dehydrogenase acetylation correlated with increased enzymatic activity. Finally, we demonstrated that the acetylation of mitochondrial fatty acid oxidation proteins was decreased after GCN5L1 knockdown and that the reduced acetylation led to diminished fatty acid oxidation in cultured H9C2 cells. These data indicate that lysine acetylation promotes fatty acid oxidation in the heart and that this modification is regulated in part by the activity of GCN5L1. NEW & NOTEWORTHY Recent research has shown that acetylation of mitochondrial fatty acid oxidation enzymes has greatly contrasting effects on their activity in different tissues. Here, we provide new evidence that acetylation of cardiac mitochondrial fatty acid oxidation enzymes by GCN5L1 significantly upregulates their activity in diet-induced obese mice. Copyright © 2017 the American Physiological Society.

  8. Cardiac-Specific Deletion of Pyruvate Dehydrogenase Impairs Glucose Oxidation Rates and Induces Diastolic Dysfunction.

    PubMed

    Gopal, Keshav; Almutairi, Malak; Al Batran, Rami; Eaton, Farah; Gandhi, Manoj; Ussher, John Reyes

    2018-01-01

    Obesity and type 2 diabetes (T2D) increase the risk for cardiomyopathy, which is the presence of ventricular dysfunction in the absence of underlying coronary artery disease and/or hypertension. As myocardial energy metabolism is altered during obesity/T2D (increased fatty acid oxidation and decreased glucose oxidation), we hypothesized that restricting myocardial glucose oxidation in lean mice devoid of the perturbed metabolic milieu observed in obesity/T2D would produce a cardiomyopathy phenotype, characterized via diastolic dysfunction. We tested our hypothesis via producing mice with a cardiac-specific gene knockout for pyruvate dehydrogenase (PDH, gene name Pdha1 ), the rate-limiting enzyme for glucose oxidation. Cardiac-specific Pdha1 deficient ( Pdha1 Cardiac-/- ) mice were generated via crossing a tamoxifen-inducible Cre expressing mouse under the control of the alpha-myosin heavy chain (αMHC-MerCreMer) promoter with a floxed Pdha1 mouse. Energy metabolism and cardiac function were assessed via isolated working heart perfusions and ultrasound echocardiography, respectively. Tamoxifen administration produced an ~85% reduction in PDH protein expression in Pdha1 Cardiac-/- mice versus their control littermates, which resulted in a marked reduction in myocardial glucose oxidation and a corresponding increase in palmitate oxidation. This myocardial metabolism profile did not impair systolic function in Pdha1 Cardiac-/- mice, which had comparable left ventricular ejection fractions and fractional shortenings as their αMHC-MerCreMer control littermates, but did produce diastolic dysfunction as seen via the reduced mitral E/A ratio. Therefore, it does appear that forced restriction of glucose oxidation in the hearts of Pdha1 Cardiac-/- mice is sufficient to produce a cardiomyopathy-like phenotype, independent of the perturbed metabolic milieu observed in obesity and/or T2D.

  9. PPARδ activation in human myotubes increases mitochondrial fatty acid oxidative capacity and reduces glucose utilization by a switch in substrate preference.

    PubMed

    Feng, Yuan Z; Nikolić, Nataša; Bakke, Siril S; Boekschoten, Mark V; Kersten, Sander; Kase, Eili T; Rustan, Arild C; Thoresen, G Hege

    2014-02-01

    The role of peroxisome proliferator-activated receptor δ (PPARδ) activation on global gene expression and mitochondrial fuel utilization were investigated in human myotubes. Only 21 genes were up-regulated and 3 genes were down-regulated after activation by the PPARδ agonist GW501516. Pathway analysis showed up-regulated mitochondrial fatty acid oxidation, TCA cycle and cholesterol biosynthesis. GW501516 increased oleic acid oxidation and mitochondrial oxidative capacity by 2-fold. Glucose uptake and oxidation were reduced, but total substrate oxidation was not affected, indicating a fuel switch from glucose to fatty acid. Cholesterol biosynthesis was increased, but lipid biosynthesis and mitochondrial content were not affected. This study confirmed that the principal effect of PPARδ activation was to increase mitochondrial fatty acid oxidative capacity. Our results further suggest that PPARδ activation reduced glucose utilization through a switch in mitochondrial substrate preference by up-regulating pyruvate dehydrogenase kinase isozyme 4 and genes involved in lipid metabolism and fatty acid oxidation.

  10. Method of dissolving metal oxides with di- or polyphosphonic acid and a redundant

    DOEpatents

    Horwitz, Earl P.; Chiarizia, Renato

    1996-01-01

    A method of dissolving metal oxides using a mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  11. Synthesizing Pt nanoparticles in the presence of methylamine: Impact of acetic acid treatment in the electrocatalytic activity of formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Ooi, M. D. Johan; Aziz, A. Abdul

    2017-05-01

    Surfactant removal from the surface of platinum nanoparticles prepared by solution based method is a prerequisite process to accomplish a high catalytic activity for electrochemical reactions. Here, we report a possible approach of combining acid acetic with thermal treatment for improving catalytic performance of formic acid oxidation. This strategy involves conversion of amine to amide in acetic acid followed by surfactant removal via subsequent thermal treatment at 85 °C. This combined activation technique produced monodisperse nanoparticle with the size of 3 to 5 nm with enhanced formic acid oxidation activity, particularly in perchloric acid solution. Pt treated in 1 h of acetic acid and heat treatment of 9 h shows high electrochemical surface area value (27.6 m2/g) compares to Pt without activation (16.6 m2/g). The treated samples also exhibit high current stability of 0.3 mA/cm2 compares to the as-prepared mA/cm2). Shorter duration of acid wash and longer duration of heating process result in high electrocatalytic activity. This work demonstrates a possible technique in improving catalytic activity of platinum nanoparticles synthesized using methylamine as surfactant.

  12. Tissue-Specific Inactivation of Type 2 Deiodinase Reveals Multilevel Control of Fatty Acid Oxidation by Thyroid Hormone in the Mouse

    PubMed Central

    Fonseca, Tatiana L.; Werneck-De-Castro, Joao Pedro; Castillo, Melany; Bocco, Barbara M.L.C.; Fernandes, Gustavo W.; McAninch, Elizabeth A.; Ignacio, Daniele L.; Moises, Caio C.S.; Ferreira, Alexandre; Gereben, Balázs

    2014-01-01

    Type 2 deiodinase (D2) converts the prohormone thyroxine (T4) to the metabolically active molecule 3,5,3′-triiodothyronine (T3), but its global inactivation unexpectedly lowers the respiratory exchange rate (respiratory quotient [RQ]) and decreases food intake. Here we used FloxD2 mice to generate systemically euthyroid fat-specific (FAT), astrocyte-specific (ASTRO), or skeletal-muscle-specific (SKM) D2 knockout (D2KO) mice that were monitored continuously. The ASTRO-D2KO mice also exhibited lower diurnal RQ and greater contribution of fatty acid oxidation to energy expenditure, but no differences in food intake were observed. In contrast, the FAT-D2KO mouse exhibited sustained (24 h) increase in RQ values, increased food intake, tolerance to glucose, and sensitivity to insulin, all supporting greater contribution of carbohydrate oxidation to energy expenditure. Furthermore, FAT-D2KO animals that were kept on a high-fat diet for 8 weeks gained more body weight and fat, indicating impaired brown adipose tissue (BAT) thermogenesis and/or inability to oxidize the fat excess. Acclimatization of FAT-D2KO mice at thermoneutrality dissipated both features of this phenotype. Muscle D2 does not seem to play a significant metabolic role given that SKM-D2KO animals exhibited no phenotype. The present findings are unique in that they were obtained in systemically euthyroid animals, revealing that brain D2 plays a dominant albeit indirect role in fatty acid oxidation via its sympathetic control of BAT activity. D2-generated T3 in BAT accelerates fatty acid oxidation and protects against diet-induced obesity. PMID:24487027

  13. Tissue-specific inactivation of type 2 deiodinase reveals multilevel control of fatty acid oxidation by thyroid hormone in the mouse.

    PubMed

    Fonseca, Tatiana L; Werneck-De-Castro, Joao Pedro; Castillo, Melany; Bocco, Barbara M L C; Fernandes, Gustavo W; McAninch, Elizabeth A; Ignacio, Daniele L; Moises, Caio C S; Ferreira, Alexander R; Ferreira, Alexandre; Gereben, Balázs; Bianco, Antonio C

    2014-05-01

    Type 2 deiodinase (D2) converts the prohormone thyroxine (T4) to the metabolically active molecule 3,5,3'-triiodothyronine (T3), but its global inactivation unexpectedly lowers the respiratory exchange rate (respiratory quotient [RQ]) and decreases food intake. Here we used FloxD2 mice to generate systemically euthyroid fat-specific (FAT), astrocyte-specific (ASTRO), or skeletal-muscle-specific (SKM) D2 knockout (D2KO) mice that were monitored continuously. The ASTRO-D2KO mice also exhibited lower diurnal RQ and greater contribution of fatty acid oxidation to energy expenditure, but no differences in food intake were observed. In contrast, the FAT-D2KO mouse exhibited sustained (24 h) increase in RQ values, increased food intake, tolerance to glucose, and sensitivity to insulin, all supporting greater contribution of carbohydrate oxidation to energy expenditure. Furthermore, FAT-D2KO animals that were kept on a high-fat diet for 8 weeks gained more body weight and fat, indicating impaired brown adipose tissue (BAT) thermogenesis and/or inability to oxidize the fat excess. Acclimatization of FAT-D2KO mice at thermoneutrality dissipated both features of this phenotype. Muscle D2 does not seem to play a significant metabolic role given that SKM-D2KO animals exhibited no phenotype. The present findings are unique in that they were obtained in systemically euthyroid animals, revealing that brain D2 plays a dominant albeit indirect role in fatty acid oxidation via its sympathetic control of BAT activity. D2-generated T3 in BAT accelerates fatty acid oxidation and protects against diet-induced obesity.

  14. High fat diet-induced inflammation and oxidative stress are attenuated by N-acetylneuraminic acid in rats.

    PubMed

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ismail, Norsharina; Ideris, Aini; Abdullah, Maizaton Atmadini

    2015-10-24

    Serum sialic acid levels are positively correlated with coronary artery disease and inflammation. Although sialic acid is a non-specific marker, it is considered sensitive likely due to its influence in sialylation of glycoprotein structures all over the body. We hypothesized that dietary supplementation with N-acetylneuraminic acid (Neu5Ac), a type of sialic acid, will have profound effects on high fat diet- (HFD-) induced inflammation and oxidative stress in view of the widespread incorporation of sialic acid into glycoprotein structures in the body. HFD-fed rats with or without simvastatin or Neu5Ac (50 and 400 mg/kg/day) were followed up for 12 weeks. Lipid profiles, and markers of inflammation (C-reactive protein, interleukin-6, and tumor necrosis factor alpha), insulin resistance (serum insulin and adiponectin, oral glucose tolerance test and homeostatic model of insulin resistance) and oxidative stress (total antioxidant status and thiobarbituric acid reactive species) in the serum and liver were determined, while mRNA levels of hepatic antioxidant and inflammation genes were also quantified. Serum levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, urea, creatinine and uric acid were also assessed. HFD feeding caused hyperlipidemia and insulin resistance, and worsened liver and kidney functions. HFD feeding also potentiated inflammation and oxidative stress, partly through modulation of hepatic gene expression, while Neu5Ac especially at higher doses and simvastatin attenuated HFD-induced changes, although Neu5Ac showed better outcomes. Based on the present results, we surmised that Neu5Ac can prevent HFD-induced inflammation and oxidative stress, and may in fact be useful in the prevention of hyperlipidemia-associated inflammation and oxidative stress. However, the translational implications of these findings can only be determined after long-term effects are established. Hence, the use of Neu5Ac on obesity-related diseases

  15. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals are specified in paragraphs (a)(1) through (a)(3) of this section. (1) The owner or...

  16. Partial Hydrothermal Oxidation of High Molecular Weight Unsaturated Carboxylic Acids for Upgrading of Biodiesel Fuel

    NASA Astrophysics Data System (ADS)

    Kawasaki, K.; Jin, F.; Kishita, A.; Tohji, K.; Enomoto, H.

    2007-03-01

    With increasing environmental awareness and crude oil price, biodiesel fuel (BDF) is gaining recognition as a renewable fuel which may be used as an alternative diesel fuel without any modification to the engine. The cold flow and viscosity of BDF, however, is a major drawback that limited its use in cold area. In this study, therefore, we investigated that partial oxidation of high molecular weight unsaturated carboxylic acids in subcritical water, which major compositions in BDF, to upgrade biodiesel fuel. Oleic acid, (HOOC(CH2)7CH=CH(CH2)7CH3), was selected as a model compound of high molecular weight unsaturated carboxylic acids. All experiments were performed with a batch reactor made of SUS 316 with an internal volume of 5.7 cm3. Oleic acid was oxidized at 300 °C with oxygen supply varying from 1-10 %. Results showed that a large amount of carboxylic acids and aldehydes having 8-9 carbon atoms were formed. These experimental results suggest that the hydrothermal oxidative cleavage may mainly occur at double bonds and the cleavage of double bonds could improve the cold flow and viscosity of BDF.

  17. Effect of oxidation processing on the preparation of post-hydrothermolysis acid from cotton stalk.

    PubMed

    Wang, Caiwei; Zhang, Shouyu; Wu, Shunyan; Cao, Zhongyao; Zhang, Yifan; Li, Hao; Jiang, Fenghao; Lyu, Junfu

    2018-05-04

    The typical properties and yield of the refined hydrothermolytic acid (RHTA) and refined hydrothermolytic oxidation acid (RHOA) respectively prepared from cotton stalk by the hydrothermolysis process with and without hydrogen peroxide at 180-280 °C were investigated. The pH of RHOA at 180-260 °C is lower than that of RHTA. The yield of RHOA prepared at 180-280 °C is higher than that of RHTA except 230 °C. Besides, the variation trend of RHOA yield at 180-260 °C is in accordance with that of RHTA yield at 200-280 °C. The composition of RHTA and RHOA were determined using gas chromatography and mass spectrometry. The acids content of RHOA at 200 °C reaches the maximum. The phenols of RHOA at 200-230 °C is significantly higher than that of RHTA. Under oxidation atmosphere, the formation of ketones is inhibited and the secondary reactions of furan derivatives is promoted. Overall, the oxidation processing can alleviate the severe hydrothermolysis conditions for preparing post-hydrothermolysis acid. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Development of the Monolith Froth Reactor for Catalytic Wet Oxidation of CELSS Model Wastes

    NASA Technical Reports Server (NTRS)

    Abraham, Martin; Fisher, John W.

    1995-01-01

    The aqueous phase oxidation of acetic acid, used as a model compound for the treatment of CELSS (Controlled Ecological Life Support System) waste, was carried out in the monolith froth reactor which utilizes two-phase flow in the monolith channels. The catalytic oxidation of acetic acid was carried out over a Pt/Al2O3 catalyst, prepared at The University of Tulsa, at temperatures and pressures below the critical point of water. The effect of externally controllable parameters (temperature, liquid flow rate, distributor plate orifice size, pitch, and catalyst distance from the distributor plate) on the rate of acetic acid oxidation was investigated. Results indicate reaction rate increased with increasing temperature and exhibited a maximum with respect to liquid flow rate. The apparent activation energy calculated from reaction rate data was 99.7 kJ/mol. This value is similar to values reported for the oxidation of acetic acid in other systems and is comparable to intrinsic values calculated for oxidation reactions. The kinetic data were modeled using simple power law kinetics. The effect of "froth" feed system characteristics was also investigated. Results indicate that the reaction rate exhibits a maximum with respect to distributor plate orifice size, pitch, and catalyst distance from the distributor plate. Fundamental results obtained were used to extrapolate where the complete removal of acetic acid would be obtained and for the design and operation of a full scale CELSS treatment system.

  19. Ferulic acid exhibits antiepileptogenic effect and prevents oxidative stress and cognitive impairment in the kindling model of epilepsy.

    PubMed

    Hassanzadeh, Parichehr; Arbabi, Elham; Atyabi, Fatemeh; Dinarvand, Rassoul

    2017-06-15

    Some conventional antiepileptic drugs induce oxidative stress and cognitive impairment which may limit their clinical applications. Ferulic acid is a phenolic phytochemical with antioxidant and neuroprotective properties that prompted us to evaluate its therapeutic potential in epilepsy which is usually associated with oxidative stress and cognitive decline. Male Wistar rats received 30mg/kg of pentylenetetrazole (PTZ) intraperitoneally (i.p.) once every alternate day until the development of kindling. The locomotor activity, elevated plus maze, and passive avoidance tests were performed. Oxidative stress was evaluated by the determination of brain malondialdehyde and reduced glutathione. The effects of pre-treatment with ferulic acid (25, 50, 75, and 100mg/kg, i.p.) against PTZ-kindled seizures, cognitive impairment, and oxidative stress were investigated. Kindling was developed 34.18±1.54days after PTZ treatment which was associated with generalized tonic-clonic seizures (GTCS), myoclonic jerks, cognitive deficit, and oxidative stress. Ferulic acid at doses of 75 and 100mg/kg significantly reduced the seizure score, number of myoclonic jerks, cognitive decline and oxidative stress. Spontaneous locomotor activity did not significantly differ between the groups. Ferulic acid exhibits antiepileptogenic effect and prevents oxidative stress and cognitive impairment induced by PTZ kindling. Therefore, this phenolic phytochemical appears as a promising adjuvant for antiepileptic drugs. Meanwhile, further experimental and clinical studies are required to provide insights into the cellular/molecular mechanism(s) underlying the action of ferulic acid. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effect of lipoic acid consumption on oxidative stress among multiple sclerosis patients: a randomized controlled clinical trial.

    PubMed

    Khalili, Mohammad; Eghtesadi, Shahryar; Mirshafiey, Abbas; Eskandari, Ghazaleh; Sanoobar, Meisam; Sahraian, Mohamad Ali; Motevalian, Abbas; Norouzi, Abbas; Moftakhar, Shirin; Azimi, Amirreza

    2014-01-01

    Multiple sclerosis is a neurodegenerative and demyelinating disease of central nervous system. High levels of oxidative stress are associated with inflammation and play an important role in pathogenesis of multiple sclerosis. This double-blind, randomized controlled clinical study was carried out to determine the effect of daily consumption of lipoic acid on oxidative stress among multiple sclerosis patients. A total of 52 relapsing-remitting multiple sclerosis patients, aged 18-50 years with Expanded Disability Status Scale ≤5.5 were assigned to consume either lipoic acid (1200 mg/day) or placebo capsules for 12 weeks. Fasting blood samples were collected before the first dose taken and 12 hours after the last. Dietary intakes were obtained by using 3-day dietary records. Consumption of lipoic acid resulted in a significant improvement of total antioxidant capacity (TAC) in comparison to the placebo group (P = 0.004). Although a significant change of TAC (-1511 mmol/L, P = 0.001) was found within lipoic acid group, other markers of oxidative stress including superoxide dismutase activity, glutathione peroxidase activity, and malondialdehyde levels were not affected by lipoic acid consumption. These results suggest that 1200 mg of lipoic acid improves serum TAC among multiple sclerosis patients but does not affect other markers of oxidative stress.

  1. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    NASA Astrophysics Data System (ADS)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  2. An electrocatalytic oxidation and voltammetric method using a chemically reduced graphene oxide film for the determination of caffeic acid.

    PubMed

    Vilian, A T Ezhil; Chen, Shen-Ming; Chen, Ying-Hui; Ali, M Ajmal; Al-Hemaid, Fahad M A

    2014-06-01

    The present work describes the characterization of a chemically reduced graphene oxide (CRGO) modified glassy carbon electrode (GCE) for electrochemical investigation of caffeic acid (CA). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), amperometry, and electrochemical impedance spectroscopy (EIS) techniques were used to characterize the properties of the electrode. There was an obvious enhancement of the current response and a decreased over potential for the oxidation of CA. The interfacial electron transfer rate of CA was studied by EIS. Under optimal conditions, the CRGO displayed a linear response range of 1×10(-8) to 8×10(-4) M and the detection limit was 2×10(-9) M (S/N=3), with a sensitivity of 192.21 μA mM(-1) cm(-2) at an applied potential of +0.2V (vs. Ag/AgCl reference), which suggests that the CRGO is a promising sensing materials for the electrochemical investigation of CA. The results showed the good sensitivity, selectivity and high reproducibility of the CRGO modified electrode. Moreover, this modified electrode was further applied to investigate the CA in real samples of wine with satisfactory results. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils.

    PubMed

    Lu, Lu; Jia, Zhongjun

    2013-06-01

    The metabolic traits of ammonia-oxidizing archaea (AOA) and bacteria (AOB) interacting with their environment determine the nitrogen cycle at the global scale. Ureolytic metabolism has long been proposed as a mechanism for AOB to cope with substrate paucity in acid soil, but it remains unclear whether urea hydrolysis could afford AOA greater ecological advantages. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, here we show that autotrophic ammonia oxidation in two acid soils was predominately driven by AOA that contain ureC genes encoding the alpha subunit of a putative archaeal urease. In urea-amended SIP microcosms of forest soil (pH 5.40) and tea orchard soil (pH 3.75), nitrification activity was stimulated significantly by urea fertilization when compared with water-amended soils in which nitrification resulted solely from the oxidation of ammonia generated through mineralization of soil organic nitrogen. The stimulated activity was paralleled by changes in abundance and composition of archaeal amoA genes. Time-course incubations indicated that archaeal amoA genes were increasingly labelled by (13) CO2 in both microcosms amended with water and urea. Pyrosequencing revealed that archaeal populations were labelled to a much greater extent in soils amended with urea than water. Furthermore, archaeal ureC genes were successfully amplified in the (13) C-DNA, and acetylene inhibition suggests that autotrophic growth of urease-containing AOA depended on energy generation through ammonia oxidation. The sequences of AOB were not detected, and active AOA were affiliated with the marine Group 1.1a-associated lineage. The results suggest that ureolytic N metabolism could afford AOA greater advantages for autotrophic ammonia oxidation in acid soil, but the mechanism of how urea activates AOA cells remains unclear. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Glycerol-3-phosphate acyltransferase (GPAT)-1, but not GPAT4, incorporates newly synthesized fatty acids into triacylglycerol and diminishes fatty acid oxidation.

    PubMed

    Wendel, Angela A; Cooper, Daniel E; Ilkayeva, Olga R; Muoio, Deborah M; Coleman, Rosalind A

    2013-09-20

    Four glycerol-3-phosphate acyltransferase (GPAT) isoforms, each encoded by a separate gene, catalyze the initial step in glycerolipid synthesis; in liver, the major isoforms are GPAT1 and GPAT4. To determine whether each of these hepatic isoforms performs a unique function in the metabolism of fatty acid, we measured the incorporation of de novo synthesized fatty acid or exogenous fatty acid into complex lipids in primary mouse hepatocytes from control, Gpat1(-/-), and Gpat4(-/-) mice. Although hepatocytes from each genotype incorporated a similar amount of exogenous fatty acid into triacylglycerol (TAG), only control and Gpat4(-/-) hepatocytes were able to incorporate de novo synthesized fatty acid into TAG. When compared with controls, Gpat1(-/-) hepatocytes oxidized twice as much exogenous fatty acid. To confirm these findings and to assess hepatic β-oxidation metabolites, we measured acylcarnitines in liver from mice after a 24-h fast and after a 24-h fast followed by 48 h of refeeding with a high sucrose diet to promote lipogenesis. Confirming the in vitro findings, the hepatic content of long-chain acylcarnitine in fasted Gpat1(-/-) mice was 3-fold higher than in controls. When compared with control and Gpat4(-/-) mice, after the fasting-refeeding protocol, Gpat1(-/-) hepatic TAG was depleted, and long-chain acylcarnitine content was 3.5-fold higher. Taken together, these data demonstrate that GPAT1, but not GPAT4, is required to incorporate de novo synthesized fatty acids into TAG and to divert them away from oxidation.

  5. Asiatic acid alleviates hemodynamic and metabolic alterations via restoring eNOS/iNOS expression, oxidative stress, and inflammation in diet-induced metabolic syndrome rats.

    PubMed

    Pakdeechote, Poungrat; Bunbupha, Sarawoot; Kukongviriyapan, Upa; Prachaney, Parichat; Khrisanapant, Wilaiwan; Kukongviriyapan, Veerapol

    2014-01-16

    Asiatic acid is a triterpenoid isolated from Centella asiatica. The present study aimed to investigate whether asiatic acid could lessen the metabolic, cardiovascular complications in rats with metabolic syndrome (MS) induced by a high-carbohydrate, high-fat (HCHF) diet. Male Sprague-Dawley rats were fed with HCHF diet with 15% fructose in drinking water for 12 weeks to induce MS. MS rats were treated with asiatic acid (10 or 20 mg/kg/day) or vehicle for a further three weeks. MS rats had an impairment of oral glucose tolerance, increases in fasting blood glucose, serum insulin, total cholesterol, triglycerides, mean arterial blood pressure, heart rate, and hindlimb vascular resistance; these were related to the augmentation of vascular superoxide anion production, plasma malondialdehyde and tumor necrosis factor-alpha (TNF-α) levels (p<0.05). Plasma nitrate and nitrite (NOx) were markedly high with upregulation of inducible nitric oxide synthase (iNOS) expression, but dowregulation of endothelial nitric oxide synthase (eNOS) expression (p<0.05). Asiatic acid significantly improved insulin sensitivity, lipid profiles, hemodynamic parameters, oxidative stress markers, plasma TNF-α, NOx, and recovered abnormality of eNOS/iNOS expressions in MS rats (p<0.05). In conclusion, asiatic acid improved metabolic, hemodynamic abnormalities in MS rats that could be associated with its antioxidant, anti-inflammatory effects and recovering regulation of eNOS/iNOS expression.

  6. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.

    PubMed

    Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong

    2015-11-03

    Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process.

  7. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation.

    PubMed

    Kajimoto, Masaki; Ledee, Dolena R; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G; Portman, Michael A

    2014-01-01

    Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. It has previously been shown that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. METHODS AND RESULTS: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 h) and wean: normal circulation (Group-C); transient coronary occlusion (10 min) for ischemia-reperfusion (IR) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon ((13)C)-labeled lactate, medium-chain and long-chain FAs, was infused as oxidative substrates. Substrate fractional contribution (FC) to the citric acid cycle was analyzed by(13)C-nuclear magnetic resonance. ECMO depressed circulating T3 levels to 40% of the baseline at 4 h and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [adenosine triphosphate]/[adenosine diphosphate] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. T3 releases inhibition of lactate oxidation following IR injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  8. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    NASA Astrophysics Data System (ADS)

    Ahn, D. U.; Nam, K. C.

    2004-09-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  9. Square-wave stripping voltammetric determination of caffeic acid on electrochemically reduced graphene oxide-Nafion composite film.

    PubMed

    Filik, Hayati; Çetintaş, Gamze; Avan, Asiye Aslıhan; Aydar, Sevda; Koç, Serkan Naci; Boz, İsmail

    2013-11-15

    An electrochemical sensor composed of Nafion-graphene nanocomposite film for the voltammetric determination of caffeic acid (CA) was studied. A Nafion graphene oxide-modified glassy carbon electrode was fabricated by a simple drop-casting method and then graphene oxide was electrochemically reduced over the glassy carbon electrode. The electrochemical analysis method was based on the adsorption of caffeic acid on Nafion/ER-GO/GCE and then the oxidation of CA during the stripping step. The resulting electrode showed an excellent electrocatalytical response to the oxidation of caffeic acid (CA). The electrochemistry of caffeic acid on Nafion/ER-GO modified glassy carbon electrodes (GCEs) were studied by cyclic voltammetry and square-wave adsorption stripping voltammetry (SW-AdSV). At optimized test conditions, the calibration curve for CA showed two linear segments: the first linear segment increased from 0.1 to 1.5 and second linear segment increased up to 10 µM. The detection limit was determined as 9.1×10(-8) mol L(-1) using SW-AdSV. Finally, the proposed method was successfully used to determine CA in white wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome

    PubMed Central

    SOGUT, IBRAHIM; OGLAKCI, AYSEGUL; KARTKAYA, KAZIM; OL, KEVSER KUSAT; SOGUT, MELIS SAVASAN; KANBAK, GUNGOR; INAL, MINE ERDEN

    2015-01-01

    To the best of our knowledge, this is the first study concerning the effect of boric acid (BA) administration on fetal alcohol syndrome (FAS). In this study, the aim was to investigate prenatal alcohol-induced oxidative stress on the cerebral cortex of newborn rat pups and assess the protective and beneficial effects of BA supplementation on rats with FAS. Pregnant rats were divided into three groups, namely the control, alcohol and alcohol + boric acid groups. As markers of alcohol-induced oxidative stress in the cerebral cortex of the newborn pups, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels were measured. Although the MDA levels in the alcohol group were significantly increased compared with those in the control group (P<0.05), the MDA level in the alcohol + boric acid group was shown to be significantly decreased compared with that in the alcohol group (P<0.01). The CAT activity of the alcohol + boric acid group was significantly higher than that in the alcohol group (P<0.05). The GPx activity in the alcohol group was decreased compared with that in the control group (P<0.05). These results demonstrate that alcohol is capable of triggering damage to membranes of the cerebral cortex of rat pups and BA could be influential in antioxidant mechanisms against oxidative stress resulting from prenatal alcohol exposure. PMID:25667671

  11. Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome.

    PubMed

    Sogut, Ibrahim; Oglakci, Aysegul; Kartkaya, Kazim; Ol, Kevser Kusat; Sogut, Melis Savasan; Kanbak, Gungor; Inal, Mine Erden

    2015-03-01

    To the best of our knowledge, this is the first study concerning the effect of boric acid (BA) administration on fetal alcohol syndrome (FAS). In this study, the aim was to investigate prenatal alcohol-induced oxidative stress on the cerebral cortex of newborn rat pups and assess the protective and beneficial effects of BA supplementation on rats with FAS. Pregnant rats were divided into three groups, namely the control, alcohol and alcohol + boric acid groups. As markers of alcohol-induced oxidative stress in the cerebral cortex of the newborn pups, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels were measured. Although the MDA levels in the alcohol group were significantly increased compared with those in the control group (P<0.05), the MDA level in the alcohol + boric acid group was shown to be significantly decreased compared with that in the alcohol group (P<0.01). The CAT activity of the alcohol + boric acid group was significantly higher than that in the alcohol group (P<0.05). The GPx activity in the alcohol group was decreased compared with that in the control group (P<0.05). These results demonstrate that alcohol is capable of triggering damage to membranes of the cerebral cortex of rat pups and BA could be influential in antioxidant mechanisms against oxidative stress resulting from prenatal alcohol exposure.

  12. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments.

    PubMed

    Bonnefoy, Violaine; Holmes, David S

    2012-07-01

    This minireview presents recent advances in our understanding of iron oxidation and homeostasis in acidophilic Bacteria and Archaea. These processes influence the flux of metals and nutrients in pristine and man-made acidic environments such as acid mine drainage and industrial bioleaching operations. Acidophiles are also being studied to understand life in extreme conditions and their role in the generation of biomarkers used in the search for evidence of existing or past extra-terrestrial life. Iron oxidation in acidophiles is best understood in the model organism Acidithiobacillus ferrooxidans. However, recent functional genomic analysis of acidophiles is leading to a deeper appreciation of the diversity of acidophilic iron-oxidizing pathways. Although it is too early to paint a detailed picture of the role played by lateral gene transfer in the evolution of iron oxidation, emerging evidence tends to support the view that iron oxidation arose independently more than once in evolution. Acidic environments are generally rich in soluble iron and extreme acidophiles (e.g. the Leptospirillum genus) have considerably fewer iron uptake systems compared with neutrophiles. However, some acidophiles have been shown to grow as high as pH 6 and, in the case of the Acidithiobacillus genus, to have multiple iron uptake systems. This could be an adaption allowing them to respond to different iron concentrations via the use of a multiplicity of different siderophores. Both Leptospirillum spp. and Acidithiobacillus spp. are predicted to synthesize the acid stable citrate siderophore for Fe(III) uptake. In addition, both groups have predicted receptors for siderophores produced by other microorganisms, suggesting that competition for iron occurs influencing the ecophysiology of acidic environments. Little is known about the genetic regulation of iron oxidation and iron uptake in acidophiles, especially how the use of iron as an energy source is balanced with its need to take up

  13. Ferulic Acid Orchestrates Anti-Oxidative Properties of Danggui Buxue Tang, an Ancient Herbal Decoction: Elucidation by Chemical Knock-Out Approach.

    PubMed

    Gong, Amy G W; Huang, Vincent Y; Wang, Huai Y; Lin, Huang Q; Dong, Tina T X; Tsim, Karl W K

    2016-01-01

    Ferulic acid, a phenolic acid derived mainly from a Chinese herb Angelica Sinensis Radix (ASR), was reported to reduce the formation of free radicals. Danggui Buxue Tang (DBT), a herbal decoction composing of Astragali Radix (AR) and ASR, has been utilized for more than 800 years in China having known anti-oxidative property. Ferulic acid is a major active ingredient in DBT; however, the role of ferulic acid within the herbal mixture has not been resolved. In order to elucidate the function of ferulic acid within this herbal decoction, a ferulic acid-depleted herbal decoction was created and named as DBTΔfa. The anti-oxidative properties of chemically modified DBT decoction were systemically compared in cultured H9C2 rat cardiomyoblast cell line. The application of DBT and DBTΔfa into the cultures showed functions in (i) decreasing the reactive oxygen species (ROS) formation, detected by laser confocal; (ii) increasing of the activation of Akt; (iii) increasing the transcriptional activity of anti-oxidant response element (ARE); and (iv) increasing the expressions of anti-oxidant enzymes, i.e. NQO1 and GCLM. In all scenario, the aforementioned anti-oxidative properties of DBTΔfa in H9C2 cells were significantly reduced, as compared to authentic DBT. Thus, ferulic acid could be an indispensable chemical in DBT to orchestrate multi-components of DBT as to achieve maximal anti-oxidative functions.

  14. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6{omega}-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-{kappa}B (NF-{kappa}B). A{sub 4}/J{sub 4}-neuroprostanes (NPs)more » were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH{sub 4}), which concurrently abrogated A{sub 4}/J{sub 4}-NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A{sub 4}/J{sub 4} NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5{omega}-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A{sub 4}/J{sub 4}-NPs as mediators of omega-3 fatty acid-mediated protection

  15. Prevention by lactic acid bacteria of the oxidation of human LDL.

    PubMed

    Terahara, M; Kurama, S; Takemoto, N

    2001-08-01

    Ether extracts of lactic acid bacteria were analyzed for prevention of the oxidation of erythrocyte membrane and human low-density lipoprotein in vivo. Streptococcus thermophilus 1131 and Lactobacillus delbrueckii subsp. bulgaricus 2038, yogurt starters, were chosen as test-strains, and ether extracts of these cultures were used as samples. Both strain 1131 and strain 2038 produced radical scavengers and inhibited oxidation of erythrocyte membranes and low-density lipoproteins. The antioxidative activity of strain 2038 was higher than that of strain 1131.

  16. Eicosapentaenoic acid inhibits oxidation of high density lipoprotein particles in a manner distinct from docosahexaenoic acid.

    PubMed

    Sherratt, Samuel C R; Mason, R Preston

    2018-02-05

    The omega-3 fatty acid eicosapentaenoic acid (EPA) reduces oxidation of ApoB-containing particles in vitro and in patients with hypertriglyceridemia. EPA may produce these effects through a potent antioxidant mechanism, which may facilitate LDL clearance and slow plaque progression. We hypothesize that EPA antioxidant effects may extend to ApoA-containing particles like HDL, potentially preserving certain atheroprotective functions. HDL was isolated from human plasma and incubated at 37 °C in the absence (vehicle) or presence of EPA and/or DHA; 5.0 or 10.0 μM each. Samples were then subjected to copper-induced oxidation (10 μM). HDL oxidation was inhibited similarly by EPA and DHA up to 1 h. EPA (10 μM) maintained significant HDL oxidation inhibition of 89% (0.622 ± 0.066 μM MDA; p < .001) at 4 h, with continued inhibition of 64% at 14 h, vs. vehicle (5.65 ± 0.06 to 2.01 ± 0.10 μM MDA; p < .001). Conversely, DHA (10 μM) antioxidant benefit was lost by 4 h. At a lower concentration (5 μM), EPA antioxidant activity remained at 81% (5.53 ± 0.15 to 1.03 ± 0.10 μM MDA; p < .001) at 6 h, while DHA lost all antioxidant activity by 4 h. The antioxidant activity of EPA was preserved when combined with an equimolar concentration of DHA (5 μM each). EPA pretreatment prevented HDL oxidation in a dose-dependent manner that was preserved over time. These results suggest unique lipophilic and electron stabilization properties for EPA as compared to DHA with respect to inhibition of HDL oxidation. These antioxidant effects of EPA may enhance certain atheroprotective functions for HDL. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Butyric acid induces apoptosis via oxidative stress in Jurkat T-cells.

    PubMed

    Kurita-Ochiai, T; Ochiai, K

    2010-07-01

    Reactive oxygen species (ROS) are essential for the induction of T-cell apoptosis by butyric acid, an extracellular metabolite of periodontopathic bacteria. To determine the involvement of oxidative stress in apoptosis pathways, we investigated the contribution of ROS in mitochondrial signaling pathways, death-receptor-initiated signaling pathway, and endoplasmic reticulum stress in butyric-acid-induced T-cell apoptosis. N-acetyl-L-Cysteine (NAC) abrogated mitochondrial injury, cytochrome c, AIF, and Smac release, and Bcl-2 and Bcl-xL suppression and Bax and Bad activation induced by butyric acid. However, the decrease in cFLIP expression by butyric acid was not restored by treatment with NAC; increases in caspase-4 and -10 activities by butyric acid were completely abrogated by NAC. NAC also affected the elevation of GRP78 and CHOP/GADD153 expression by butyric acid. These results suggest that butyric acid is involved in mitochondrial-dysfunction- and endoplasmic reticulum stress-mediated apoptosis in human Jurkat T-cells via a ROS-dependent mechanism.

  18. Docosahexaenoic acid attenuates oxidative stress and protects human gingival fibroblasts against cytotoxicity induced by hydrogen peroxide and butyric acid.

    PubMed

    Zgorzynska, Emilia; Wierzbicka-Ferszt, Anita; Dziedzic, Barbara; Witusik-Perkowska, Monika; Zwolinska, Anna; Janas, Anna; Walczewska, Anna

    2015-01-01

    The oxidative burst of the host cells associated with bacterial pathogen infection contributes to the destruction of periodontal tissue. The present study investigates the effect of docosahexaenoic acid (DHA) on human gingival fibroblast (HGF) viability and ROS generation. The cell viability by MTT assay, ROS level using H2DCF-DA probe, and protein thiol content were measured in HGFs after 24h preincubation with different concentrations of DHA followed by treatment with H2O2. The cell death rate was determined by Annexin V/propidium iodide staining, and mitochondrial membrane potential (ΔΨm) was examined by MitoTracker Red probe in H2O2- and butyric acid-treated HGFs. The fatty acid composition of plasma membranes after incubation with DHA was determined by gas chromatography mass spectrometry. DHA preincubation in a dose-dependent manner increased the viability of HGFs exposed to H2O2 and decreased ROS generation compared to the control cells. In HGFs preincubated with 30μM DHA, the ΔΨm significantly increased in both H2O2- and butyric acid-treated cells. Moreover, incubation with DHA preserved the protein thiol level as effectively as N-acetylcysteine. Application of 50μM DHA increased the quantity of viable cells, decreased the number of necrotic cells after H2O2 treatment, and protected HGFs from apoptosis induced by butyric acid. DHA in the plasma membranes of these HGFs represented about 6% of the total amount of fatty acids. These results demonstrate that enrichment of HGFs with DHA reduces ROS generation and enhances the mitochondrial membrane potential protecting the fibroblasts against cytotoxic factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Application of salicylic acid dosimetry to evaluate hydrodynamic cavitation as an advanced oxidation process.

    PubMed

    Arrojo, S; Nerín, C; Benito, Y

    2007-03-01

    The generation of OH* radicals inside hydrodynamic cavitation bubbles was monitored using a salicylic acid dosimeter. The reaction of this scavenger with OH* produces 2,5-dihydroxybenzoic acid (2,5-DHB) and, to a lesser degree, 2,3-DHB. The former, is a specific reaction product that can be determined with a very high sensitivity using HPLC-IF. This method has been applied to study the influence of the flow-rate and the solution pH for a given cavitation chamber geometry. The salicylic dosimetry has proven especially suitable for the characteristic time scales of hydrodynamic cavitation (higher than those of ultrasonic cavitation), which usually gives rise to recombination of radicals before they can reach the liquid-phase. Working at low pH the hydrophobic salicylic acid migrates to the gas-liquid interface and reacts with the OH* radicals, increasing the trapping efficiency of the dosimeter. Hydrodynamic cavitation works as a very low frequency sonochemical reactor, and therefore its potential as an Advanced Oxidation Process might be limited to reactions at the gas-liquid interface and inner bubble (i.e. with volatiles and/or hydrophobic substances).

  20. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea

    PubMed Central

    Lu, Lu; Han, Wenyan; Zhang, Jinbo; Wu, Yucheng; Wang, Baozhan; Lin, Xiangui; Zhu, Jianguo; Cai, Zucong; Jia, Zhongjun

    2012-01-01

    The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, 15N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and forest soil (pH 5.4) and was inhibited by acetylene. Nitrification activity was significantly stimulated by urea fertilization and coupled well with abundance changes in archaeal amoA genes in acidic soils. Pyrosequencing of 16S rRNA genes at whole microbial community level demonstrates the active growth of AOA in urea-amended soils. Molecular fingerprinting further shows that changes in denaturing gradient gel electrophoresis fingerprint patterns of archaeal amoA genes are paralleled by nitrification activity changes. However, bacterial amoA and 16S rRNA genes of AOB were not detected. The results strongly suggest that archaeal ammonia oxidation is supported by hydrolysis of urea and that AOA, from the marine Group 1.1a-associated lineage, dominate nitrification in two acidic soils tested. PMID:22592820

  1. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea.

    PubMed

    Lu, Lu; Han, Wenyan; Zhang, Jinbo; Wu, Yucheng; Wang, Baozhan; Lin, Xiangui; Zhu, Jianguo; Cai, Zucong; Jia, Zhongjun

    2012-10-01

    The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, (15)N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and forest soil (pH 5.4) and was inhibited by acetylene. Nitrification activity was significantly stimulated by urea fertilization and coupled well with abundance changes in archaeal amoA genes in acidic soils. Pyrosequencing of 16S rRNA genes at whole microbial community level demonstrates the active growth of AOA in urea-amended soils. Molecular fingerprinting further shows that changes in denaturing gradient gel electrophoresis fingerprint patterns of archaeal amoA genes are paralleled by nitrification activity changes. However, bacterial amoA and 16S rRNA genes of AOB were not detected. The results strongly suggest that archaeal ammonia oxidation is supported by hydrolysis of urea and that AOA, from the marine Group 1.1a-associated lineage, dominate nitrification in two acidic soils tested.

  2. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Cao, Yang; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-12-01

    3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N2 adsorption-desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM-1 cm-2, and a possible mechanism was also given in the paper.

  3. Oxygen transfer rate estimation in oxidation ditches from clean water measurements.

    PubMed

    Abusam, A; Keesman, K J; Meinema, K; Van Straten, G

    2001-06-01

    Standard methods for the determination of oxygen transfer rate are based on assumptions that are not valid for oxidation ditches. This paper presents a realistic and simple new method to be used in the estimation of oxygen transfer rate in oxidation ditches from clean water measurements. The new method uses a loop-of-CSTRs model, which can be easily incorporated within control algorithms, for modelling oxidation ditches. Further, this method assumes zero oxygen transfer rates (KLa) in the unaerated CSTRs. Application of a formal estimation procedure to real data revealed that the aeration constant (k = KLaVA, where VA is the volume of the aerated CSTR) can be determined significantly more accurately than KLa and VA. Therefore, the new method estimates k instead of KLa. From application to real data, this method proved to be more accurate than the commonly used Dutch standard method (STORA, 1980).

  4. Fatty acid-induced mitochondrial uncoupling in adipocytes is not a promising target for treatment of insulin resistance unless adipocyte oxidative capacity is increased.

    PubMed

    Frayn, K N; Langin, D; Karpe, F

    2008-03-01

    The release of fatty acids from white adipose tissue is regulated at several levels. We have examined the suggestion that fatty acid release might be diminished by upregulation of mitochondrial fatty acid oxidation in the adipocyte, through increasing mitochondrial uncoupling. The intrinsic oxidative capacity of white adipose tissue is low, and older studies suggest that there is little fatty acid oxidation in white adipocytes, human or rodent. We have examined data on fatty acid metabolism and O(2) consumption in human white adipose tissue in vivo, and conclude that increasing fatty acid oxidation within the oxidative capacity of the tissue would produce only small changes (a few percent) in fatty acid release. The major locus of control of fatty acid release beyond the stimulation of lipolysis is the pathway of fatty acid esterification, already probably targeted by the thiazolidinedione insulin-sensitising agents. An alternative approach would be to upregulate the mitochondrial capacity of the adipocyte. We review proof-of-concept studies in which the phenotype of the white adipocyte has been changed to resemble that of the brown adipocyte by expression of peroxisome proliferator-activated receptor coactivator-1alpha. This increases oxidative capacity and also leads to fatty acid retention through upregulation of glycerol-3-phosphate production, and hence increased fatty acid re-esterification. We conclude that prevention or treatment of insulin resistance through alteration of adipocyte fatty acid handling will require more than a simple alteration of the activity of mitochondrial beta-oxidation within normal limits.

  5. Modeling the oxidation kinetics of sono-activated persulfate's process on the degradation of humic acid.

    PubMed

    Songlin, Wang; Ning, Zhou; Si, Wu; Qi, Zhang; Zhi, Yang

    2015-03-01

    Ultrasound degradation of humic acid has been investigated in the presence of persulfate anions at ultrasonic frequency of 40 kHz. The effects of persulfate anion concentration, ultrasonic power input, humic acid concentration, reaction time, solution pH and temperature on humic acid removal efficiency were studied. It is found that up to 90% humic acid removal efficiency was achieved after 2 h reaction. In this system, sulfate radicals (SO₄⁻·) were considered to be the mainly oxidant to mineralize humic acid while persulfate anion can hardly react with humic acid directly. A novel kinetic model based on sulfate radicals (SO₄⁻·) oxidation was established to describe the humic acid mineralization process mathematically and chemically in sono-activated persulfate system. According to the new model, ultrasound power, persulfate dosage, solution pH and reaction temperature have great influence on humic acid degradation. Different initial concentration of persulfate anions and humic acid, ultrasonic power, initial pH and reaction temperature have been discussed to valid the effectiveness of the model, and the simulated data showed new model had good agreement with the experiments data.

  6. Selective and Catalyst-free Oxidation of D-Glucose to D-Glucuronic acid induced by High-Frequency Ultrasound

    NASA Astrophysics Data System (ADS)

    Amaniampong, Prince N.; Karam, Ayman; Trinh, Quang Thang; Xu, Kai; Hirao, Hajime; Jérôme, François; Chatel, Gregory

    2017-01-01

    This systematic experimental investigation reveals that high-frequency ultrasound irradiation (550 kHz) induced oxidation of D-glucose to glucuronic acid in excellent yield without assistance of any (bio)catalyst. Oxidation is induced thanks to the in situ production of radical species in water. Experiments show that the dissolved gases play an important role in governing the nature of generated radical species and thus the selectivity for glucuronic acid. Importantly, this process yields glucuronic acid instead of glucuronate salt typically obtained via conventional (bio)catalyst routes, which is of huge interest in respect of downstream processing. Investigations using disaccharides revealed that radicals generated by high frequency ultrasound were also capable of promoting tandem hydrolysis/oxidation reactions.

  7. Selective and Catalyst-free Oxidation of D-Glucose to D-Glucuronic acid induced by High-Frequency Ultrasound

    PubMed Central

    Amaniampong, Prince N.; Karam, Ayman; Trinh, Quang Thang; Xu, Kai; Hirao, Hajime; Jérôme, François; Chatel, Gregory

    2017-01-01

    This systematic experimental investigation reveals that high-frequency ultrasound irradiation (550 kHz) induced oxidation of D-glucose to glucuronic acid in excellent yield without assistance of any (bio)catalyst. Oxidation is induced thanks to the in situ production of radical species in water. Experiments show that the dissolved gases play an important role in governing the nature of generated radical species and thus the selectivity for glucuronic acid. Importantly, this process yields glucuronic acid instead of glucuronate salt typically obtained via conventional (bio)catalyst routes, which is of huge interest in respect of downstream processing. Investigations using disaccharides revealed that radicals generated by high frequency ultrasound were also capable of promoting tandem hydrolysis/oxidation reactions. PMID:28084448

  8. Microwave-enhanced persulfate oxidation to treat mature landfill leachate.

    PubMed

    Chou, Yu-Chieh; Lo, Shang-Lien; Kuo, Jeff; Yeh, Chih-Jung

    2015-03-02

    Microwave oxidation process (MOP) was evaluated for treatment of landfill leachate. Kinetics of persulfate oxidation in MOP, effects of pH and persulfate doses on fates of derivative organic acids, and the energy cost of MOP were evaluated. The results showed that total organic carbon (TOC) removal of 79.4%, color removal of 88.4%, and UV254 removal of 77.1% were reached at MOP 550 W/85 °C within 30 min. The kinetics of oxidation by MOP followed the first-order reaction. For a given persulfate dose, the reaction rate increased with the microwave power setting (775 W>550 W>325 W>128 W) with reaction rate constants ranging from 10(-5) to 10(-2) min(-1). The adverse effects on reaction rates under higher microwave power settings and high persulfate doses are plausibly caused by excessive persulfate oxidation and self-scavenging termination of free radicals. During the MOP treatment, TOC/COD ratio dropped with time and an 86.7% reduction in TOC/COD ratio after 120 min at pH 7. Oxalic acid was the major derivative and its concentrations were higher under acidic conditions. Malic, lactic, and acetic acids were formed and soon degraded, and the solution pH has an insignificant effect on their fates. The energy cost of MOP (USD$6.03/m(3)) is essentially similar to that of conventional heating oxidation (CHO) (USD$6.10/m(3)). Published by Elsevier B.V.

  9. Activities of Tricarboxylic Acid Cycle Enzymes, Glyoxylate Cycle Enzymes, and Fructose Diphosphatase in Bakers' Yeast During Adaptation to Acetate Oxidation

    PubMed Central

    Gosling, J. P.; Duggan, P. F.

    1971-01-01

    Bakers' yeast oxidizes acetate at a high rate only after an adaptation period during which the capacity of the glyoxylate cycle is found to increase. There was apparently no necessity for the activity of acetyl-coenzyme A synthetase, the capacity of the tricarboxylic acid cycle, or the concentrations of the cytochromes to increase for this adaptation to occur. Elevation of fructose 1,6 diphosphatase occurred only when acetate oxidation was nearly maximal. Cycloheximide almost completely inhibited adaptation as well as increases in the activities of isocitrate lyase and aconitate hydratase, the only enzymes assayed. p-Fluorophenylalanine was partially effective and chloramphenicol did not inhibit at all. The presence of ammonium, which considerably delayed adaptation of the yeast to acetate oxidation, inhibited the increases in the activities of the glyoxylate cycle enzymes to different degrees, demonstrating noncoordinate control of these enzymes. Under the various conditions, the only enzyme activity increase consistently related to the rising oxygen uptake rate was that of isocitrate lyase which apparently limited the activity of the cycle. PMID:5557595

  10. Butyric acid retention in gingival tissue induces oxidative stress in jugular blood mitochondria.

    PubMed

    Cueno, Marni E; Imai, Kenichi; Matsukawa, Noriko; Tsukahara, Takamitsu; Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu

    2013-09-01

    Butyric acid (BA) is a major extracellular metabolite produced by anaerobic periodontopathic bacteria and is commonly deposited in the gingival tissue. BA induces mitochondrial oxidative stress in vitro; however, its effects in vivo were never elucidated. Here, we determined the effects of butyric acid retention in the gingival tissues on oxidative stress induction in the jugular blood mitochondria. We established that BA injected in the rat gingival tissue has prolonged retention in gingival tissues. Blood taken at 0, 60, and 180 min after BA injection was used for further analysis. We isolated blood mitochondria, verified its purity, and measured hydrogen peroxide (H2O2), heme, superoxide (SOD), and catalase (CAT) to determine BA effects. We found that H2O2, heme, SOD, and CAT levels all increased after BA injection. This would insinuate that mitochondrial oxidative stress was induced ascribable to BA.

  11. Studies on the oxidation of hexamethylbenzene 2: Preparation of dimethylpyromellitic acid

    NASA Technical Reports Server (NTRS)

    Chiba, K.; Tomura, S.

    1986-01-01

    Hexamethylbenzene (HMB) was difficult to be oxidized with an alkaline potassium permanganate solution, since HMB was insoluble in an aqueous alkaline solution. But, when HMB was warmed with 50% nitric acid for a short time, and then treated with aqueous potassium permanganate, the reaction occurred readily and dimethylpyromellitic acid was obtained. When HMB was warmed with 50% nitric acid for 1 to 2 minutes, a yellow material was produced, which was soluble in hot aqueous potassium hydroxide, though free from carboxylic acids. It contained a little amount of bis-(nitromethyl)prehnitene and several unknown compounds. Further, the heat stability of polyimide prepared by the reaction of tetramethyldimethylpyromellitate with 4,4 prime-diaminodiphenylmethane turned out to be nearly equal to that of polyimide prepared from tetramethylpyromellitate.

  12. Parabola-like shaped pH-rate profile for phenols oxidation by aqueous permanganate.

    PubMed

    Du, Juanshan; Sun, Bo; Zhang, Jing; Guan, Xiaohong

    2012-08-21

    Oxidation of phenols by permanganate in the pH range of 5.0-9.0 generally exhibits a parabola-like shape with the maximum reaction rate obtained at pH close to phenols' pK(a). However, a monotonic increase or decrease is observed if phenols' pK(a) is beyond the pH range of 5.0-9.0. A proton transfer mechanism is proposed in which the undissociated phenol is directly oxidized by permanganate to generate products while a phenolate-permanganate adduct, intermediate, is formed between dissociated phenol and permanganate ion and this is the rate-limiting step for phenolates oxidation by permanganate. The intermediate combines with H(+) and then decomposes to products. Rate equations derived based on the steady-state approximation can well simulate the experimentally derived pH-rate profiles. Linear free energy relationships (LFERs) were established among the parameters obtained from the modeling, Hammett constants, and oxygen natural charges in phenols and phenolates. LFERs reveal that chlorine substituents have opposite influence on the susceptibility of phenols and phenolates to permanganate oxidation and phenolates are not necessarily more easily oxidized than their neutral counterparts. The chlorine substituents regulate the reaction rate of chlorophenolates with permanganate mainly by influencing the natural charges of the oxygen atoms of dissociated phenols while they influence the oxidation of undissociated chlorophenols by permanganate primarily by forming intramolecular hydrogen bonding with the phenolic group.

  13. Inhibitory effects of indole α-lipoic acid derivatives on nitric oxide production in LPS/IFNγ activated RAW 264.7 macrophages.

    PubMed

    Karabay, Arzu Zeynep; Koc, Aslı; Gurkan-Alp, A Selen; Buyukbingol, Zeliha; Buyukbingol, Erdem

    2015-04-01

    Alpha-lipoic acid (α-lipoic acid) is a potent antioxidant compound that has been shown to possess anti-inflammatory effects. RAW 264.7 macrophages produce various inflammatory mediators such as nitric oxide, IL-1β, IL-6 and TNF-alpha upon activation with LPS (Lipopolysaccharide) and IFNγ (interferon gamma). In this study, the effect of 12 synthetic indole α-lipoic acid derivatives on nitric oxide production and iNOS (inducible nitric oxide synthase) protein expression in LPS/IFNγ activated RAW 264.7 macrophages was determined. Cell proliferation, nitric oxide levels and iNOS protein expression were examined with thiazolyl blue tetrazolium blue test, griess assay and western blot, respectively. Our results showed that all of the indole α-lipoic acid derivatives showed significant inhibitory effects on nitric oxide production and iNOS protein levels (p < 0.05). The most active compounds were identified as compound I-4b, I-4e and II-3b. In conclusion, these indole α-lipoic acid derivatives may have the potential for treatment of inflammatory conditions related with high nitric oxide production. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Safety of long-term feeding of dl-alpha-lipoic acid and its effect on reduced glutathione:oxidized glutathione ratios in beagles.

    PubMed

    Zicker, Steven C; Hagen, Tory M; Joisher, Neha; Golder, Christina; Joshi, Dinesh K; Miller, E Phillip

    2002-01-01

    Alpha-lipoic acid is touted as a powerful antioxidant and possibly a conditionally essential nutrient in older mammals. The safety and efficacy of dl-alpha-lipoic acid was evaluated in 30 adult beagles that were evenly randomized into five groups, each of which was fed one of five different foods with varying inclusion rates of dl-alpha-lipoic acid (0, 150, 1500, 3000, and 4500 ppm). All dogs were fed their respective portion of food daily as their sole source of nutrition for 6 months. Evaluations included general health, body weight, food intake, hematologic and serum biochemical parameters, and glutathione:oxidized glutathione (GSH:GSSG) ratios in lymphocytes. No signs of toxicity were observed at any except the highest level of dl-alpha-lipoic acid inclusion, and no consistent abnormalities were noted in hematologic or biochemical measures at any level. There was a significant overall effect (P< .05) of food on the difference of GSH:GSSG ratio between Day 84 and Day 0. All inclusions of dl-alpha-lipoic acid increased the ratio of GSH:GSSG with the largest numeric improvement occurring at the lowest inclusion rate (150 ppm).

  15. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions.

    PubMed

    Liang, Ningjian; Kitts, David D

    2015-12-25

    Chlorogenic acids (CGAs) are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices is linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s) for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1) the relative composition of different CGA isomers present in coffee beverages; (2) analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3) description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions.

  16. Glycerol-3-phosphate Acyltransferase (GPAT)-1, but Not GPAT4, Incorporates Newly Synthesized Fatty Acids into Triacylglycerol and Diminishes Fatty Acid Oxidation*

    PubMed Central

    Wendel, Angela A.; Cooper, Daniel E.; Ilkayeva, Olga R.; Muoio, Deborah M.; Coleman, Rosalind A.

    2013-01-01

    Four glycerol-3-phosphate acyltransferase (GPAT) isoforms, each encoded by a separate gene, catalyze the initial step in glycerolipid synthesis; in liver, the major isoforms are GPAT1 and GPAT4. To determine whether each of these hepatic isoforms performs a unique function in the metabolism of fatty acid, we measured the incorporation of de novo synthesized fatty acid or exogenous fatty acid into complex lipids in primary mouse hepatocytes from control, Gpat1−/−, and Gpat4−/− mice. Although hepatocytes from each genotype incorporated a similar amount of exogenous fatty acid into triacylglycerol (TAG), only control and Gpat4−/− hepatocytes were able to incorporate de novo synthesized fatty acid into TAG. When compared with controls, Gpat1−/− hepatocytes oxidized twice as much exogenous fatty acid. To confirm these findings and to assess hepatic β-oxidation metabolites, we measured acylcarnitines in liver from mice after a 24-h fast and after a 24-h fast followed by 48 h of refeeding with a high sucrose diet to promote lipogenesis. Confirming the in vitro findings, the hepatic content of long-chain acylcarnitine in fasted Gpat1−/− mice was 3-fold higher than in controls. When compared with control and Gpat4−/− mice, after the fasting-refeeding protocol, Gpat1−/− hepatic TAG was depleted, and long-chain acylcarnitine content was 3.5-fold higher. Taken together, these data demonstrate that GPAT1, but not GPAT4, is required to incorporate de novo synthesized fatty acids into TAG and to divert them away from oxidation. PMID:23908354

  17. Effects of dissolved low molecular weight organic acids on oxidation of ferrous iron by Acidithiobacillus ferrooxidans.

    PubMed

    Ren, Wan-Xia; Li, Pei-Jun; Zheng, Le; Fan, Shu-Xiu; Verhozina, V A

    2009-02-15

    A few researchers have reported on work concerning bioleaching of heavy-metal-contaminated soil using Acidithiobacillus ferrooxidans, since this acidophile is sensitive to dissolved low molecular weight (LMW) organic acids. Iron oxidation by A. ferrooxidans R2 as well as growth on ferrous iron was inhibited by a variety of dissolved LMW organic acids. Growth experiments with ferrous iron as an oxidant showed that the inhibition capability sequence was formic acid>acetic acid>propionic acid>oxalic acid>malic acid>citric acid. The concentrations that R2 might tolerate were formic acid 0.1mmolL(-1) (2mmolkg(-1)soil), acetic and propionic acids 0.4mmolL(-1) (8mmolkg(-1)soil), oxalic acid 2.0mmolL(-1) (40mmolkg(-1)soil), malic acid 20mmolL(-1) (400mmolkg(-1)soil), citric acid 40mmolL(-1) (800mmolkg(-1)soil), respectively. Although R2 was sensitive to organic acids, the concentrations of LMW organic acids in the contaminated soils were rather lower than the tolerable levels. Hence, it is feasible that R2 might be used for bioleaching of soils contaminated with metals or metals coupled with organic compounds because of the higher concentrations of LMW organic acids to which R2 is tolerant.

  18. HONO (nitrous acid) emissions from acidic northern soils

    NASA Astrophysics Data System (ADS)

    Maljanen, Marja; Yli-Pirilä, Pasi; Joutsensaari, Jorma; Martikainen, Pertti J.

    2015-04-01

    The photolysis of HONO (nitrous acid) is an important source of OH radical, the key oxidizing agent in the atmosphere, contributing also to removal of atmospheric methane (CH4), the second most important greenhouse gas after carbon dioxide (CO2). The emissions of HONO from soils have been recently reported in few studies. Soil HONO emissions are regarded as missing sources of HONO when considering the chemical reactions in the atmosphere. The soil-derived HONO has been connected to soil nitrite (NO2-) and also directly to the activity of ammonia oxidizing bacteria, which has been studied with one pure culture. Our hypothesis was that boreal acidic soils with high nitrification activity could be also sources of HONO and the emissions of HONO are connected with nitrification. We selected a range of dominant northern acidic soils and showed in microcosm experiments that soils which have the highest nitrous oxide (N2O) and nitric oxide (NO) emissions (drained peatlands) also have the highest HONO production rates. The emissions of HONO are thus linked to nitrogen cycle and also NO and N2O emissions. Natural peatlands and boreal coniferous forests on mineral soils had the lowest HONO emissions. It is known that in natural peatlands with high water table and in boreal coniferous forest soils, low nitrification activity (microbial production of nitrite and nitrate) limits their N2O production. Low availability of nitrite in these soils is the likely reason also for their low HONO production rates. We also studied the origin of HONO in one peat soil with acetylene and other nitrification inhibitors and we found that HONO production is not closely connected to ammonium oxidation (nitrification). Acetylene blocked NO emissions but did not affect HONO or N2O emissions, thus there is another source behind HONO emission from these soils than ammonium oxidation. It is still an open question if this process is microbial or chemical origin.

  19. Erythrocyte sialic acid content during aging in humans: correlation with markers of oxidative stress.

    PubMed

    Mehdi, Mohammad Murtaza; Singh, Prabhakar; Rizvi, Syed Ibrahim

    2012-01-01

    Sialic acids are substituted neuraminic acid derivatives which are typically found at the outermost end of glycan chains on the membrane in all cell types. The role of erythrocyte membrane sialic acids during aging has been established however the relationship between sialic acid and oxidative stress is not fully understood. The present work was undertaken to analyze the relationship between erythrocyte membrane sialic acid with its plasma level, membrane and plasma lipid hydroperoxide levels and plasma total antioxidant capacity. Results show that sialic acid content decreases significantly (P< 0.001) in RBC membrane (r= -0.901) and increases in plasma (r=0.860) as a function of age in humans. Lipid peroxidation measured in the form of hydroperoxides increases significantly (P<0.001) in plasma (r=0.830) and RBC membranes (r=0.875) with age in humans. The Trolox Equivalent Total Antioxidant Capacity (TETAC) of plasma was found to be significantly decreased (P< 0.001, r=-0.844). We observe significant correlations between decrease of erythrocyte membrane sialic acid and plasma lipid hydroperoxide and TETAC. Based on the observed correlations, we hypothesize that increase in oxidative stress during aging may influence the sialic acid decomposition from membrane thereby altering the membrane configuration affecting many enzymatic and transporter activities. Considering the importance of plasma sialic acid as a diagnostic parameter, it is important to establish age-dependent reference.

  20. A study of the kinetics of the reduction of neptunium(VI) by acetohydroxamic acid in perchloric acid

    NASA Astrophysics Data System (ADS)

    Matteson, Brent S.; Precek, Martin; Paulenova, Alena

    2010-03-01

    The kinetics of reduction of NpO22+ to NpO2+ by acetohydroxamic acid in 1 mol·L-1perchloric acid media at 10 and 22°C were studied. The reaction rate was monitored using stopped-flow and standard infrared spectroscopy. Under conditions such that acetohydroxamic acid was in excess relative to Np, the reduction rate of NpO22+ is described by the following: where k = 2.57x103 mol-1·L·sec-1 at 10°C. However, when neptunium is in a significant molar excess relative to acetohydroxamic acid, the reduction mechanism is dictated by two distinct reactions. An initial and incomplete reduction occurs as the result of the oxidation of AHA, while a slower and partial reduction of NpO22+ is likely caused by the oxidation products of AHA. The reaction rate of this first-order mechanism was calculated as 3.7x10-4 sec-1 at 10°C and 0.001 sec-1 at 22°C.

  1. Effect of DHA on plasma fatty acid availability and oxidative stress during training season and football exercise.

    PubMed

    Martorell, Miquel; Capó, Xavier; Sureda, Antoni; Batle, Joan M; Llompart, Isabel; Argelich, Emma; Tur, Josep A; Pons, Antoni

    2014-08-01

    The aim was to determine the effects of a diet supplemented with 1.14 g per day of docosahexaenoic acid (DHA) for eight weeks on the plasma oxidative balance and anti-inflammatory markers after training and acute exercise. Fifteen volunteer male football players were randomly assigned to placebo or experimental and supplemented groups. Blood samples were taken under resting conditions at the beginning and after eight weeks of training under resting and post-exercise conditions. The experimental beverage increased the plasma DHA availability in non-esterified fatty acids (NEFAs) and triglyceride fatty acids (TGFAs) and increased the polyunsaturated fatty acid (PUFA) fraction of NEFAs but had no effects on the biomarkers for oxidative balance in plasma. During training, plasma protein markers of oxidative damage, the haemolysis degree and the antioxidant enzyme activities increased, but did not affect lipid oxidative damage. Training season and DHA influenced the circulating levels of prostaglandin E2 (PGE2). Acute exercise did not alter the basal levels of plasma markers for oxidative and nitrosative damage of proteins and lipids, and the antioxidant enzyme activities, although DHA-diet supplementation significantly increased the PGE2 in plasma after acute exercise. In conclusion, the training season and acute exercise, but not the DHA diet supplementation, altered the pattern of plasma oxidative damage, as the antioxidant system proved sufficient to prevent the oxidative damage induced by the acute exercise in well-trained footballers. The DHA-diet supplementation increased the prostaglandin PGE2 plasma evidencing anti-inflammatory effects of DHA to control inflammation after acute exercise.

  2. Why does brain metabolism not favor burning of fatty acids to provide energy? - Reflections on disadvantages of the use of free fatty acids as fuel for brain

    PubMed Central

    Schönfeld, Peter; Reiser, Georg

    2013-01-01

    It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood–brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which might trigger the mitochondrial route of apoptosis. Here, we draw attention to three particular problems: (1) ATP generation linked to β-oxidation of fatty acids demands more oxygen than glucose, thereby enhancing the risk for neurons to become hypoxic; (2) β-oxidation of fatty acids generates superoxide, which, taken together with the poor anti-oxidative defense in neurons, causes severe oxidative stress; (3) the rate of ATP generation based on adipose tissue-derived fatty acids is slower than that using blood glucose as fuel. Thus, in periods of extended continuous and rapid neuronal firing, fatty acid oxidation cannot guarantee rapid ATP generation in neurons. We conjecture that the disadvantages connected with using fatty acids as fuel have created evolutionary pressure on lowering the expression of the β-oxidation enzyme equipment in brain mitochondria to avoid extensive fatty acid oxidation and to favor glucose oxidation in brain. PMID:23921897

  3. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain.

    PubMed

    Schönfeld, Peter; Reiser, Georg

    2013-10-01

    It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood-brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which might trigger the mitochondrial route of apoptosis. Here, we draw attention to three particular problems: (1) ATP generation linked to β-oxidation of fatty acids demands more oxygen than glucose, thereby enhancing the risk for neurons to become hypoxic; (2) β-oxidation of fatty acids generates superoxide, which, taken together with the poor anti-oxidative defense in neurons, causes severe oxidative stress; (3) the rate of ATP generation based on adipose tissue-derived fatty acids is slower than that using blood glucose as fuel. Thus, in periods of extended continuous and rapid neuronal firing, fatty acid oxidation cannot guarantee rapid ATP generation in neurons. We conjecture that the disadvantages connected with using fatty acids as fuel have created evolutionary pressure on lowering the expression of the β-oxidation enzyme equipment in brain mitochondria to avoid extensive fatty acid oxidation and to favor glucose oxidation in brain.

  4. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    PubMed Central

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques. PMID:28348303

  5. Ferulic Acid Orchestrates Anti-Oxidative Properties of Danggui Buxue Tang, an Ancient Herbal Decoction: Elucidation by Chemical Knock-Out Approach

    PubMed Central

    Gong, Amy G. W.; Huang, Vincent Y.; Wang, Huai Y.; Lin, Huang Q.; Dong, Tina T. X.; Tsim, Karl W. K.

    2016-01-01

    Ferulic acid, a phenolic acid derived mainly from a Chinese herb Angelica Sinensis Radix (ASR), was reported to reduce the formation of free radicals. Danggui Buxue Tang (DBT), a herbal decoction composing of Astragali Radix (AR) and ASR, has been utilized for more than 800 years in China having known anti-oxidative property. Ferulic acid is a major active ingredient in DBT; however, the role of ferulic acid within the herbal mixture has not been resolved. In order to elucidate the function of ferulic acid within this herbal decoction, a ferulic acid-depleted herbal decoction was created and named as DBTΔfa. The anti-oxidative properties of chemically modified DBT decoction were systemically compared in cultured H9C2 rat cardiomyoblast cell line. The application of DBT and DBTΔfa into the cultures showed functions in (i) decreasing the reactive oxygen species (ROS) formation, detected by laser confocal; (ii) increasing of the activation of Akt; (iii) increasing the transcriptional activity of anti-oxidant response element (ARE); and (iv) increasing the expressions of anti-oxidant enzymes, i.e. NQO1 and GCLM. In all scenario, the aforementioned anti-oxidative properties of DBTΔfa in H9C2 cells were significantly reduced, as compared to authentic DBT. Thus, ferulic acid could be an indispensable chemical in DBT to orchestrate multi-components of DBT as to achieve maximal anti-oxidative functions. PMID:27824860

  6. One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation

    PubMed Central

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-01-01

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis. PMID:24675779

  7. Triiodothyronine Activates Lactate Oxidation Without Impairing Fatty Acid Oxidation and Improves Weaning From Extracorporeal Membrane Oxygenation

    PubMed Central

    Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G.; Portman, Michael A.

    2017-01-01

    Background Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. It has previously been shown that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods and Results Nineteen immature piglets (9.1–15.3 kg) were separated into 3 groups with ECMO (6.5 h) and wean: normal circulation (Group-C); transient coronary occlusion (10 min) for ischemia-reperfusion (IR) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon (13C)-labeled lactate, medium-chain and long-chain FAs, was infused as oxidative substrates. Substrate fractional contribution (FC) to the citric acid cycle was analyzed by 13C-nuclear magnetic resonance. ECMO depressed circulating T3 levels to 40% of the baseline at 4 h and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [adenosine triphosphate]/[adenosine diphosphate] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions T3 releases inhibition of lactate oxidation following IR injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning. PMID:25421230

  8. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation

    PubMed Central

    Patsoukis, Nikolaos; Bardhan, Kankana; Chatterjee, Pranam; Sari, Duygu; Liu, Bianling; Bell, Lauren N.; Karoly, Edward D.; Freeman, Gordon J.; Petkova, Victoria; Seth, Pankaj; Li, Lequn; Boussiotis, Vassiliki A.

    2015-01-01

    During activation, T cells undergo metabolic reprogramming, which imprints distinct functional fates. We determined that on PD-1 ligation, activated T cells are unable to engage in glycolysis or amino acid metabolism but have an increased rate of fatty acid β-oxidation (FAO). PD-1 promotes FAO of endogenous lipids by increasing expression of CPT1A, and inducing lipolysis as indicated by elevation of the lipase ATGL, the lipolysis marker glycerol and release of fatty acids. Conversely, CTLA-4 inhibits glycolysis without augmenting FAO, suggesting that CTLA-4 sustains the metabolic profile of non-activated cells. Because T cells utilize glycolysis during differentiation to effectors, our findings reveal a metabolic mechanism responsible for PD-1-mediated blockade of T-effector cell differentiation. The enhancement of FAO provides a mechanistic explanation for the longevity of T cells receiving PD-1 signals in patients with chronic infections and cancer, and for their capacity to be reinvigorated by PD-1 blockade. PMID:25809635

  9. Highly Conductive and Reliable Copper-Filled Isotropically Conductive Adhesives Using Organic Acids for Oxidation Prevention

    NASA Astrophysics Data System (ADS)

    Chen, Wenjun; Deng, Dunying; Cheng, Yuanrong; Xiao, Fei

    2015-07-01

    The easy oxidation of copper is one critical obstacle to high-performance copper-filled isotropically conductive adhesives (ICAs). In this paper, a facile method to prepare highly reliable, highly conductive, and low-cost ICAs is reported. The copper fillers were treated by organic acids for oxidation prevention. Compared with ICA filled with untreated copper flakes, the ICA filled with copper flakes treated by different organic acids exhibited much lower bulk resistivity. The lowest bulk resistivity achieved was 4.5 × 10-5 Ω cm, which is comparable to that of commercially available Ag-filled ICA. After 500 h of 85°C/85% relative humidity (RH) aging, the treated ICAs showed quite stable bulk resistivity and relatively stable contact resistance. Through analyzing the results of x-ray diffraction, x-ray photoelectron spectroscopy, and thermogravimetric analysis, we found that, with the assistance of organic acids, the treated copper flakes exhibited resistance to oxidation, thus guaranteeing good performance.

  10. Effect of Acid Oxidation on the Dispersion Property of Multiwalled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Goh, P. S.; Ismail, A. F.; Aziz, M.

    2009-06-01

    A means of dispersion of multiwalled carbon nanotube (MWCNT) via mixed acid (HNO3 and H2SO4) oxidation with different treatment durations was investigated through the solubility study of the treated carbon nanotubes in some common solvents. Fourier transformed infrared (FTIR) characterization of the reaction products revealed that the surface of MWCNTs was successfully functionalized with surface acidic groups. The acid-base titration demonstrated that the amount of surface acidic groups increased in parallel with the refluxing duration. The acid modified MWCNTs were found to be well dispersed in polar solvents, such as ethanol and water due to the presence of the hydrophilic acid functional groups on the surface of raw MWCNTs. Such chemical modification of carbon nanotube properties will pave the way towards the realistic applications in the nanotechnology world.

  11. Oxidative stability of dark chicken meat through frozen storage: influence of dietary fat and alpha-tocopherol and ascorbic acid supplementation.

    PubMed

    Grau, A; Guardiola, F; Grimpa, S; Barroeta, A C; Codony, R

    2001-11-01

    We used factorial design to ascertain the influence of dietary fat source (linseed, sunflower and oxidized sunflower oils, and beef tallow) and the dietary supplementation with alpha-tocopheryl acetate (alpha-TA) (225 mg/kg of feed) and ascorbic acid (AA) (110 mg/kg) on dark chicken meat oxidation (lipid hydroperoxide and TBA values and cholesterol oxidation product content). alpha-TA greatly protected ground and vacuum-packaged raw or cooked meat from fatty acid and cholesterol oxidation after 0, 3.5, or 7 mo of storage at -20 C. In contrast, AA provided no protection, and no synergism between alpha-TA and AA was observed. Polyunsaturated fatty acid-enriched diets (those containing linseed, sunflower, or oxidized sunflower oils) increased meat susceptibility to oxidation. Cooking always involved more oxidation, especially in samples from linseed oil diets. The values of all the oxidative parameters showed a highly significant negative correlation with the alpha-tocopherol content of meat.

  12. Alcohols enhance the rate of acetic acid diffusion in S. cerevisiae: biophysical mechanisms and implications for acetic acid tolerance.

    PubMed

    Lindahl, Lina; Genheden, Samuel; Faria-Oliveira, Fábio; Allard, Stefan; Eriksson, Leif A; Olsson, Lisbeth; Bettiga, Maurizio

    2017-12-01

    Microbial cell factories with the ability to maintain high productivity in the presence of weak organic acids, such as acetic acid, are required in many industrial processes. For example, fermentation media derived from lignocellulosic biomass are rich in acetic acid and other weak acids. The rate of diffusional entry of acetic acid is one parameter determining the ability of microorganisms to tolerance the acid. The present study demonstrates that the rate of acetic acid diffusion in S. cerevisiae is strongly affected by the alcohols ethanol and n-butanol. Ethanol of 40 g/L and n-butanol of 8 g/L both caused a 65% increase in the rate of acetic acid diffusion, and higher alcohol concentrations caused even greater increases. Molecular dynamics simulations of membrane dynamics in the presence of alcohols demonstrated that the partitioning of alcohols to the head group region of the lipid bilayer causes a considerable increase in the membrane area, together with reduced membrane thickness and lipid order. These changes in physiochemical membrane properties lead to an increased number of water molecules in the membrane interior, providing biophysical mechanisms for the alcohol-induced increase in acetic acid diffusion rate. n-butanol affected S. cerevisiae and the cell membrane properties at lower concentrations than ethanol, due to greater and deeper partitioning in the membrane. This study demonstrates that the rate of acetic acid diffusion can be strongly affected by compounds that partition into the cell membrane, and highlights the need for considering interaction effects between compounds in the design of microbial processes.

  13. Alcohols enhance the rate of acetic acid diffusion in S. cerevisiae: biophysical mechanisms and implications for acetic acid tolerance

    PubMed Central

    Lindahl, Lina; Genheden, Samuel; Faria-Oliveira, Fábio; Allard, Stefan; Eriksson, Leif A.; Olsson, Lisbeth; Bettiga, Maurizio

    2017-01-01

    Microbial cell factories with the ability to maintain high productivity in the presence of weak organic acids, such as acetic acid, are required in many industrial processes. For example, fermentation media derived from lignocellulosic biomass are rich in acetic acid and other weak acids. The rate of diffusional entry of acetic acid is one parameter determining the ability of microorganisms to tolerance the acid. The present study demonstrates that the rate of acetic acid diffusion in S. cerevisiae is strongly affected by the alcohols ethanol and n-butanol. Ethanol of 40 g/L and n-butanol of 8 g/L both caused a 65% increase in the rate of acetic acid diffusion, and higher alcohol concentrations caused even greater increases. Molecular dynamics simulations of membrane dynamics in the presence of alcohols demonstrated that the partitioning of alcohols to the head group region of the lipid bilayer causes a considerable increase in the membrane area, together with reduced membrane thickness and lipid order. These changes in physiochemical membrane properties lead to an increased number of water molecules in the membrane interior, providing biophysical mechanisms for the alcohol-induced increase in acetic acid diffusion rate. n-butanol affected S. cerevisiae and the cell membrane properties at lower concentrations than ethanol, due to greater and deeper partitioning in the membrane. This study demonstrates that the rate of acetic acid diffusion can be strongly affected by compounds that partition into the cell membrane, and highlights the need for considering interaction effects between compounds in the design of microbial processes. PMID:29354649

  14. Ru (III) Catalyzed Oxidation of Aliphatic Ketones by N-Bromosuccinimide in Aqueous Acetic Acid: A Kinetic Study

    PubMed Central

    Giridhar Reddy, P.; Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Kandlikar, S.

    2012-01-01

    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated. PMID:22654610

  15. Impact of primary amine group from aminophospholipids and amino acids on marine phospholipids stability: non-enzymatic browning and lipid oxidation.

    PubMed

    Lu, F S H; Nielsen, N S; Baron, C P; Diehl, B W K; Jacobsen, C

    2013-11-15

    The main objective of this study was to investigate the oxidative stability and non-enzymatic browning reactions of marine PL in the presence or in the absence of primary amine group from aminophospholipids and amino acids. Marine phospholipids liposomal dispersions were prepared from two authentic standards (phosphatidylcholine and phosphatidylethanolamine) and two purified PL from marine sources with and without addition of amino acids (leucine, methionine and lysine). Samples were incubated at 60°C for 0, 2, 4 and 6days. Non-enzymatic browning reactions were investigated through measurement of (i) Strecker derived volatiles, (ii) yellowness index (YI), (iii) hydrophobic and (iv) hydrophilic pyrroles content. The oxidative stability of the samples was assessed through measurement of secondary lipid derived volatile oxidation products. The result showed that the presence of PE and amino acids caused the formation of pyrroles, generated Strecker derived volatiles, decreased the YI development and lowered lipid oxidation. The lower degree of lipid oxidation in liposomal dispersions containing amino acids might be attributed to antioxidative properties of pyrroles or amino acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing.

    PubMed

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Wolfgang, Michael J

    2018-01-01

    To determine the role of fatty acid oxidation on the cellular, molecular, and physiologic response of brown adipose tissue to disparate paradigms of chronic thermogenic stimulation. Mice with an adipose-specific loss of Carnitine Palmitoyltransferase 2 (Cpt2 A-/- ), that lack mitochondrial long chain fatty acid β-oxidation, were subjected to environmental and pharmacologic interventions known to promote thermogenic programming in adipose tissue. Chronic administration of β3-adrenergic (CL-316243) or thyroid hormone (GC-1) agonists induced a loss of BAT morphology and UCP1 expression in Cpt2 A-/- mice. Fatty acid oxidation was also required for the browning of white adipose tissue (WAT) and the induction of UCP1 in WAT. In contrast, chronic cold (15 °C) stimulation induced UCP1 and thermogenic programming in both control and Cpt2 A-/- adipose tissue albeit to a lesser extent in Cpt2 A-/- mice. However, thermoneutral housing also induced the loss of UCP1 and BAT morphology in Cpt2 A-/- mice. Therefore, adipose fatty acid oxidation is required for both the acute agonist-induced activation of BAT and the maintenance of quiescent BAT. Consistent with this data, Cpt2 A-/- BAT exhibited increased macrophage infiltration, inflammation and fibrosis irrespective of BAT activation. Finally, obese Cpt2 A-/- mice housed at thermoneutrality exhibited a loss of interscapular BAT and were refractory to β3-adrenergic-induced energy expenditure and weight loss. Mitochondrial long chain fatty acid β-oxidation is critical for the maintenance of the brown adipocyte phenotype both during times of activation and quiescence. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  17. Melatonin protects against uric acid-induced mitochondrial dysfunction, oxidative stress, and triglyceride accumulation in C2C12 myotubes.

    PubMed

    Maarman, Gerald J; Andrew, Brittany M; Blackhurst, Dee M; Ojuka, Edward O

    2017-04-01

    Excess uric acid has been shown to induce oxidative stress, triglyceride accumulation, and mitochondrial dysfunction in the liver and is an independent predictor of type-2 diabetes. Skeletal muscle plays a dominant role in type 2 diabetes and presents a large surface area to plasma uric acid. However, the effects of uric acid on skeletal muscle are underinvestigated. Our aim was therefore to characterize the effects of excessive uric acid on oxidative stress, triglyceride content, and mitochondrial function in skeletal muscle C 2 C 12 myotubes and assess how these are modulated by the antioxidant molecule melatonin. Differentiated C 2 C 12 myotubes were exposed to 750 µM uric acid or uric acid + 10 nM melatonin for 72 h. Compared with control, uric acid increased triglyceride content by ~237%, oxidative stress by 32%, and antioxidant capacity by 135%. Uric acid also reduced endogenous ROUTINE respiration, complex II-linked oxidative phosphorylation, and electron transfer system capacities. Melatonin counteracted the effects of uric acid without further altering antioxidant capacity. Our data demonstrate that excess uric acid has adverse effects on skeletal muscle similar to those previously reported in hepatocytes and suggest that melatonin at a low physiological concentration of 10 nM may be a possible therapy against some adverse effects of excess uric acid. NEW & NOTEWORTHY Few studies have investigated the effects of uric acid on skeletal muscle. This study shows that hyperuricemia induces mitochondrial dysfunction and triglyceride accumulation in skeletal muscle. The findings may explain why hyperuricemia is an independent predictor of diabetes. Copyright © 2017 the American Physiological Society.

  18. Measurements of in situ chemical ozone (oxidant) production rates

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Faloon, Kate; Najera, Juan; Bloss, William

    2013-04-01

    Tropospheric ozone is a major air pollutant, harmful to human health, agricultural crops and vegetation, the main precursor to the atmospheric oxidants which initiate the degradation of most reactive gases emitted to the atmosphere, and an important greenhouse gas in its own right. The capacity to understand and predict tropospheric ozone levels is a key goal for atmospheric science - but one which is challenging, as ozone is formed in the atmosphere from the complex oxidation of VOCs in the presence of NOx and sunlight, on a timescale such that in situ chemical processes, deposition and transport all affect ozone levels. Known uncertainties in emissions, chemistry, dynamics and deposition affect the accuracy of predictions of current and future ozone levels, and hinder development of optimal air quality policies to mitigate against ozone exposure. Recently new approaches to directly measure the local chemical ozone production rate, bypassing the many uncertainties in emissions and chemical schemes, have been developed (Cazorla & Brune, AMT 2010). Here, we describe the development of an analogous Ozone Production Rate (OPR) approach: Air is sampled into parallel reactors, within which ozone formation either occurs as in the ambient atmosphere, or is suppressed. Comparisons of ozone levels exiting a pair of such reactors determines the net chemical oxidant production rate, after correction for perturbation of the NOx-O3 photochemical steady state, and when operated under conditions such that wall effects are minimised. We report preliminary measurements of local chemical ozone production made during the UK NERC ClearfLo (Clean Air for London) campaign at an urban background location in London in January and July 2012. The OPR system was used to measure the local chemical oxidant formation rate, which is compared with observed trends in O3 and NOx and the prevailing meteorology, and with the predictions of a detailed zero-dimensional atmospheric chemistry model

  19. Characterization and Localization of Iron-Oxidizing Proteins in Acid Mine Drainage Biofilms

    NASA Astrophysics Data System (ADS)

    Chan, C. S.; Thelen, M. P.; Hwang, M.; Banfield, J. F.

    2005-12-01

    As molecular geomicrobiologists, we are interested in the microbially-produced molecules that effect geochemical transformations, particularly proteins involved in lithotrophic energy generation. We have identified two such proteins produced by Leptospirillum group II microbes, which dominate biofilms floating on acidic waters in the Richmond Mine at Iron Mountain, CA. Leptospirillum generates energy by iron oxidation, producing the ferric iron catalyst responsible for pyrite oxidation, subsequent acid generation and toxic metal release. We have shown that a small (~16 kDa) soluble protein, cytochrome-579, extracted from environmental biofilm samples is capable of iron oxidation in vitro, consistent with prior studies on similar cytochromes from L. ferriphilum and ferrooxidans (Blake et al., 1993; Hart et al., 1991). The abundance of cyt579 and its ability to oxidize iron makes it a key link between microbial metabolism and acid mine drainage. Given the importance of cyt579 in biofilm sustenance as well as acid generation, we want to understand more about its distribution and also the architecture of the biofilm environment in which it functions. Using transmission electron microscopy (TEM) on ultrathin sections, we observe biofilms as thin as 15 microns with densely-packed cells in a matrix of polymers. To localize cyt579 in the biofilm, we purified the protein and developed antibodies for immunolabeling. The antibodies were shown to be highly specific for cyt579 using Western blots of whole biofilm lysate. Fluorescence- and gold-labeled secondary antibodies were used to visualize immunolabeled biofilms by confocal laser scanning microscopy and TEM, respectively. Preliminary results suggest that the cytochrome is on the bacterial cell surface or in the periplasm but not throughout the biofilm, as we had postulated due to the abundance of cytochrome in extracellular fractions of biofilm samples. These localization studies will be helpful in determining the

  20. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    PubMed Central

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  1. A kinetic study of the enhancement of solution chemiluminescence of glyoxylic acid oxidation by manganese species.

    PubMed

    Otamonga, Jean-Paul; Abdel-Mageed, Amal; Agater, Irena B; Jewsbury, Roger A

    2015-08-01

    In order to study the mechanism of the enhancement of solution chemiluminescence, the kinetics of the decay of the oxidant and the chemiluminescence emission were followed for oxidations by permanganate, manganese dioxide sol and Mn(3+) (aq) of glyoxylic acid, using stopped-flow spectrophotometry. Results are reported for the glyoxylic acid oxidized under pseudo first-order conditions and in an acidic medium at 25 °C. For permanganate under these conditions, the decay is sigmoidal, consistent with autocatalysis, and for manganese dioxide sol and Mn(3+) it is pseudo first order. The effects of the presence of aqueous formaldehyde and Mn(2+) were observed and a fit to a simple mechanism is discussed. It is concluded that chemiluminescent enhancement in these systems is best explained by reaction kinetics. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Fatty-acid oxidation and calcium homeostasis are involved in the rescue of bupivacaine-induced cardiotoxicity by lipid emulsion in rats.

    PubMed

    Partownavid, Parisa; Umar, Soban; Li, Jingyuan; Rahman, Siamak; Eghbali, Mansoureh

    2012-08-01

    Lipid emulsion has been shown to be effective in resuscitating bupivacaine-induced cardiac arrest but its mechanism of action is not clear. Here we investigated whether fatty-acid oxidation is required for rescue of bupivacaine-induced cardiotoxicity by lipid emulsion in rats. We also compared the mitochondrial function and calcium threshold for triggering of mitochondrial permeability transition pore opening in bupivacaine-induced cardiac arrest before and after resuscitation with lipid emulsion. Prospective, randomized animal study. University research laboratory. Adult male Sprague-Dawley rats. Asystole was achieved with a single dose of bupivacaine (10 mg/kg over 20 secs, intravenously) and 20% lipid emulsion infusion (5 mL/kg bolus, and 0.5 mL/kg/min maintenance), and cardiac massage started immediately. The rats in CVT-4325 (CVT) group were pretreated with a single dose of fatty-acid oxidation inhibitor CVT (0.5, 0.25, 0.125, or 0.0625 mg/kg bolus intravenously) 5 mins prior to inducing asystole by bupivacaine overdose. Heart rate, ejection fraction, fractional shortening, the threshold for opening of mitochondrial permeability transition pore, oxygen consumption, and membrane potential were measured. The values are mean ± SEM. Administration of bupivacaine resulted in asystole. Lipid Emulsion infusion improved the cardiac function gradually as the ejection fraction was fully recovered within 5 mins (ejection fraction=64±4% and fractional shortening=36±3%, n=6) and heart rate increased to 239±9 beats/min (71% recovery, n=6) within 10 mins. Lipid emulsion was only able to rescue rats pretreated with low dose of CVT (0.0625 mg/kg; heart rate~181±11 beats/min at 10 mins, recovery of 56%; ejection fraction=50±1%; fractional shortening=26±0.6% at 5 mins, n=3), but was unable to resuscitate rats pretreated with higher doses of CVT (0.5, 0.25, or 0.125 mg/kg). The calcium-retention capacity in response to Ca²⁺ overload was significantly higher in cardiac

  3. Chemical Transport Knockout for Oxidized Vitamin C, Dehydroascorbic Acid, Reveals Its Functions in vivo.

    PubMed

    Tu, Hongbin; Wang, Yu; Li, Hongyan; Brinster, Lauren R; Levine, Mark

    2017-09-01

    Despite its transport by glucose transporters (GLUTs) in vitro, it is unknown whether dehydroascorbic acid (oxidized vitamin C, DHA) has any in vivo function. To investigate, we created a chemical transport knockout model using the vitamin C analog 6-bromo-ascorbate. This analog is transported on sodium-dependent vitamin C transporters but its oxidized form, 6-bromo-dehydroascorbic acid, is not transported by GLUTs. Mice (gulo -/- ) unable to synthesize ascorbate (vitamin C) were raised on 6-bromo-ascorbate. Despite normal survival, centrifugation of blood produced hemolysis secondary to near absence of red blood cell (RBC) ascorbate/6-bromo-ascorbate. Key findings with clinical implications were that RBCs in vitro transported dehydroascorbic acid but not bromo-dehydroascorbic acid; RBC ascorbate in vivo was obtained only via DHA transport; ascorbate via DHA transport in vivo was necessary for RBC structural integrity; and internal RBC ascorbate was essential to maintain ascorbate plasma concentrations in vitro/in vivo. Published by Elsevier B.V.

  4. Characterization and quantification of odor-active compounds in unsaturated fatty acid/conjugated linoleic acid (UFA/CLA)-enriched butter and in conventional butter during storage and induced oxidation.

    PubMed

    Mallia, Silvia; Escher, Felix; Dubois, Sébastien; Schieberle, Peter; Schlichtherle-Cerny, Hedwig

    2009-08-26

    Dairy products enriched in unsaturated fatty acids (UFA) and conjugated linoleic acids (CLA) have a higher nutritional value and are suggested to have beneficial health effects. However, such acids are susceptible to oxidation, and off-flavors may be formed during storage. This study was aimed to compare the most important odorants in UFA/CLA-enriched butter to that of conventional butter during storage and induced oxidation. Volatiles were isolated by solvent-assisted flavor evaporation and identified by gas chromatography-olfactometry and mass spectrometry. Aroma extract dilution analysis revealed 18 odorants that were quantified by stable isotope dilution analysis. Another important odorant, 3-methyl-1H-indole (mothball-like odor), was quantified by high-performance liquid chromatography. After storage, UFA/CLA-enriched butter showed higher concentrations of pentanal (fatty), heptanal (green), butanoic acid (cheesy), and delta-decalactone (peach-like). Photo-oxidation of butter samples induced increases in heptanal, (E)-2-octenal, and trans-4,5-epoxy-(E)-2-decenal, especially in conventional butter. The higher vitamin content in UFA/CLA samples may protect this butter from oxidation.

  5. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity.

    PubMed

    Thupari, J N; Pinn, M L; Kuhajda, F P

    2001-07-13

    Inhibition of fatty acid synthase (FAS) induces apoptosis in human breast cancer cells in vitro and in vivo without toxicity to proliferating normal cells. We have previously shown that FAS inhibition causes a rapid increase in malonyl-CoA levels identifying malonyl-CoA as a potential trigger of apoptosis. In this study we further investigated the role of malonyl-CoA during FAS inhibition. We have found that: [i] inhibition of FAS with cerulenin causes carnitine palmitoyltransferase-1 (CPT-1) inhibition and fatty acid oxidation inhibition in MCF-7 human breast cancer cells likely mediated by elevation of malonyl-CoA; [ii] cerulenin cytotoxicity is due to the nonphysiological state of increased malonyl-CoA, decreased fatty acid oxidation, and decreased fatty acid synthesis; and [iii] the cytotoxic effect of cerulenin can be mimicked by simultaneous inhibition of CPT-1, with etomoxir, and fatty acid synthesis with TOFA, an acetyl-CoA carboxylase (ACC) inhibitor. This study identifies CPT-1 and ACC as two new potential targets for cancer chemotherapy. Copyright 2001 Academic Press.

  6. Increased Postprandial Nonesterified Fatty Acid Appearance and Oxidation in Type 2 Diabetes Is Not Fully Established in Offspring of Diabetic Subjects

    PubMed Central

    Normand-Lauzière, François; Frisch, Frédérique; Labbé, Sébastien M.; Bherer, Patrick; Gagnon, René; Cunnane, Stephen C.; Carpentier, André C.

    2010-01-01

    Background It has been proposed that abnormal postprandial plasma nonesterified fatty acid (NEFA) metabolism may participate in the development of tissue lipotoxicity and type 2 diabetes (T2D). We previously found that non-diabetic offspring of two parents with T2D display increased plasma NEFA appearance and oxidation rates during intravenous administration of a fat emulsion. However, it is currently unknown whether plasma NEFA appearance and oxidation are abnormal during the postprandial state in these subjects at high-risk of developing T2D. Methodology Palmitate appearance and oxidation rates and glycerol appearance rate were determined in eleven healthy offspring of two parents with T2D (positive family history, FH+), 13 healthy subjects without first-degree relatives with T2D (FH-) and 12 subjects with T2D at fasting, during normoglycemic hyperinsulinemic clamp and during continuous oral intake of a standard liquid meal to achieve steady postprandial NEFA and triacylglycerols (TG) without and with insulin infusion to maintain similar glycemia in all three groups. Principal Findings Plasma palmitate appearance and oxidation were higher at fasting and during the clamp conditions in the T2D group (all P<0.05). In the postprandial state, palmitate appearance, oxidative and non oxidative rates were all elevated in T2D (all P<0.05) but not in FH+. Both T2D and FH+ displayed elevated postprandial TG vs. FH- (P<0.001). Acute correction of hyperglycemia during the postprandial state did not affect these group differences. Increased waist circumference and BMI were positively associated with elevated postprandial plasma palmitate appearance and oxidation. Conclusions/Significance Postprandial plasma NEFA intolerance observed in subjects with T2D is not fully established in non-diabetic offspring of both parents with T2D, despite the presence of increased postprandial plasma TG in the later. Elevated postprandial plasma NEFA appearance and oxidation in T2D is observed

  7. Relative levels of dietary EPA and DHA impact gastric oxidation and essential fatty acid uptake.

    PubMed

    Dasilva, Gabriel; Boller, Matthew; Medina, Isabel; Storch, Judith

    2018-05-01

    Previous research showed that increasing the proportion of docosahexaenoic acid (DHA) in marine lipid supplements significantly reduces associated health benefits compared with balanced eicosapentaenoic acid (EPA):DHA supplementation Dasilva et al., 2015 [1]. It was therefore hypothesized that the EPA and DHA molecules might have differential resistance to oxidation during gastric digestion and that the oxidation level achieved could be inversely correlated with intestinal absorption and, hence, with the resultant health benefits. Accordingly, we tested this proposed mechanism of action by investigating the degree of oxidation in the stomach, and the levels of bioaccessible lipids, of varying molar proportions of DHA and EPA (2:1, 1:1 and 1:2) using the dynamic gastrointestinal tract model TIM-1. In addition, small intestine enterocyte absorption and metabolism were simulated by Caco-2 cell monolayers that were incubated with these same varying proportions of DHA and EPA, and comparing oxidized and nonoxidized polyunsaturated fatty acids (PUFAs). The results show an inverse correlation between lipid oxidation products in the stomach and the levels of bioaccessible lipids. The balanced 1:1 EPA:DHA diet resulted in lower oxidation of PUFAs during stomach digestion relative to the other ratios tested. Finally, cell-based studies showed significantly lower assimilation of oxidized EPA and DHA substrates compared to nonoxidized PUFAs, as well as significant differences between the net uptake of EPA and DHA. Overall, the present work suggests that the correct design of diets and/or supplements containing marine lipids can strongly influence the stability and bioaccessibility of PUFAs during gastrointestinal digestion and subsequent absorption. This could modulate their health benefits related with inflammation, oxidative stress and metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes.

    PubMed

    Bensalah, Nasr; Dbira, Sondos; Bedoui, Ahmed

    2016-07-01

    In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond (BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in NaCl; however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and NaClO4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine (Cl2, HClO, ClO(-)) electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density (≤10mA/cm(2)) and neutral medium (pH in the range 6-9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. Copyright © 2016. Published by Elsevier B.V.

  9. A Finite Rate Chemical Analysis of Nitric Oxide Flow Contamination Effects on Scramjet Performance

    NASA Technical Reports Server (NTRS)

    Cabell, Karen F.; Rock, Kenneth E.

    2003-01-01

    The level of nitric oxide contamination in the test gas of the Langley Research Center Arc-Heated Scramjet Test Facility and the effect of the contamination on scramjet test engine performance were investigated analytically. A finite rate chemical analysis was performed to determine the levels of nitric oxide produced in the facility at conditions corresponding to Mach 6 to 8 flight simulations. Results indicate that nitric oxide levels range from one to three mole percent, corroborating previously obtained measurements. A three-stream combustor code with finite rate chemistry was used to investigate the effects of nitric oxide on scramjet performance. Results indicate that nitric oxide in the test gas causes a small increase in heat release and thrust performance for the test conditions investigated. However, a rate constant uncertainty analysis suggests that the effect of nitric oxide ranges from no net effect, to an increase of about 10 percent in thrust performance.

  10. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer.

    PubMed

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L; Eisele, Fred L; Siepmann, J Ilja; Hanson, David R; Zhao, Jun; McMurry, Peter H

    2012-11-13

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid-base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta.

  11. Degradation of anti-inflammatory drug ketoprofen by electro-oxidation: comparison of electro-Fenton and anodic oxidation processes.

    PubMed

    Feng, Ling; Oturan, Nihal; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    The electrochemical degradation of the nonsteroidal anti-inflammatory drug ketoprofen in tap water has been studied using electro-Fenton (EF) and anodic oxidation (AO) processes with platinium (Pt) and boron-doped diamond (BDD) anodes and carbon felt cathode. Fast degradation of the parent drug molecule and its degradation intermediates leading to complete mineralization was achieved by BDD/carbon felt, Pt/carbon felt, and AO with BDD anode. The obtained results showed that oxidative degradation rate of ketoprofen and mineralization of its aqueous solution increased by increasing applied current. Degradation kinetics fitted well to a pseudo-first-order reaction. Absolute rate constant of the oxidation of ketoprofen by electrochemically generated hydroxyl radicals was determined to be (2.8 ± 0.1) × 10(9) M(-1) s(-1) by using competition kinetic method. Several reaction intermediates such as 3-hydroxybenzoic acid, pyrogallol, catechol, benzophenone, benzoic acid, and hydroquinone were identified by high-performance liquid chromatography (HPLC) analyses. The formation, identification, and evolution of short-chain aliphatic carboxylic acids like formic, acetic, oxalic, glycolic, and glyoxylic acids were monitored with ion exclusion chromatography. Based on the identified aromatic/cyclic intermediates and carboxylic acids as end products before mineralization, a plausible mineralization pathway was proposed. The evolution of the toxicity during treatments was also monitored using Microtox method, showing a faster detoxification with higher applied current values.

  12. Visible-Light-Promoted Metal-Free Aerobic Oxidation of Primary Amines to Acids and Lactones.

    PubMed

    Cheng, Xiaokai; Yang, Bo; Hu, Xingen; Xu, Qing; Lu, Zhan

    2016-12-05

    A unique metal-free aerobic oxidation of primary amines via visible light photocatalytic double carbon-carbon bonds cleavage and multi carbon-hydrogen bonds oxidation was observed. Aerobic oxidation of primary amines could be controlled to afford acids by using dioxane with 18 W CFL, and lactones by using DMF with 8 W green LEDs, respectively. A plausible mechanism was proposed based on control experiments. This observation showed direct evidences for the fragmentation in the aerobic oxidation of aliphatic primary amines. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling.

    PubMed

    Barnaba, Carlo; Rodríguez-Estrada, Maria Teresa; Lercker, Giovanni; García, Hugo Sergio; Medina-Meza, Ilce Gabriela

    2016-12-01

    In this work we studied the effect of polyunsaturated fatty acids (PUFAs) methyl esters on cholesterol photo-induced oxidation. The oxidative routes were modeled with a chemical reaction network (CRN), which represents the first application of CRN to the oxidative degradation of a food-related lipid matrix. Docosahexaenoic acid (DHA, T-I), eicosapentaenoic acid (EPA, T-II) and a mixture of both (T-III) were added to cholesterol using hematoporphyrin as sensitizer, and were exposed to a fluorescent lamp for 48h. High amounts of Type I cholesterol oxidation products (COPs) were recovered (epimers 7α- and 7β-OH, 7-keto and 25-OH), as well as 5β,6β-epoxy. Fitting the experimental data with the CRN allowed characterizing the associated kinetics. DHA and EPA exerted different effects on the oxidative process. DHA showed a protective effect to 7-hydroxy derivatives, whereas EPA enhanced side-chain oxidation and 7β-OH kinetic rates. The mixture of PUFAs increased the kinetic rates several fold, particularly for 25-OH. With respect to the control, the formation of β-epoxy was reduced, suggesting potential inhibition in the presence of PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. In Vitro Monitoring of the Mitochondrial Beta-Oxidation Flux of Palmitic Acid and Investigation of Its Pharmacological Alteration by Therapeutics.

    PubMed

    Murgasova, Renata; Tor Carreras, Ester; Bourgailh, Julien

    2018-05-03

    The present study was designed to validate the functional assay that enables rapid screening of therapeutic candidates for their effect on mitochondrial fatty acid oxidation. The two whole-cell systems (tissue homogenates and hepatocytes) have been evaluated to monitor the total beta-oxidation flux of physiologically important 3 H-palmitic acid by measurement of tritiated water enrichment in incubations using UPLC coupled on-line to radioactivity monitoring and mass spectrometry. Our results with several known inhibitors of fatty acid oxidation showed that this simple assay could correctly predict a potential in alteration of mitochondrial function by drug candidates. Since the beta-oxidation of palmitic acid takes place almost exclusively in mitochondria of human hepatocytes, this model can be also utilized to distinguish between the mitochondrial and peroxisomal routes of this essential metabolic pathway in some cases. The present work offers a new in vitro screen of changes in mitochondrial beta-oxidation by xenobiotics as well as a model to study the mechanism of this pathway.

  15. Effect of dietary n - 3 polyunsaturated fatty acids on oxidant/antioxidant status in macrosomic offspring of diabetic rats.

    PubMed

    Guermouche, B; Soulimane-Mokhtari, N A; Bouanane, S; Merzouk, H; Merzouk, S; Narce, M

    2014-01-01

    The aim of this work was to determine the effect of dietary n - 3 PUFA on oxidant/antioxidant status, in vitro very low and low density lipoprotein (VLDL-LDL), and VLDL-LDL-fatty acid composition in macrosomic pups of diabetic mothers. We hypothesized that n - 3 PUFA would improve oxidative stress in macrosomia. Diabetes was induced in female Wistar rats fed with the ISIO diet (control) or with the EPAX diet (enriched in n - 3 PUFAs), by streptozotocin. The macrosomic pups were killed at birth (day 0) and at adulthood (day 90). Lipid parameters and VLDL-LDL-fatty acid composition were investigated. The oxidant/antioxidant status was determined by measuring plasma oxygen radical absorbance capacity (ORAC), hydroperoxides, carbonyl proteins, and VLDL-LDL oxidation. Macrosomic rats of ISIO fed diabetic mothers showed an increase in plasma and VLDL-LDL-triglycerides and VLDL-LDL-cholesterol levels and altered VLDL-LDL-fatty acid composition. Plasma ORAC was low with high hydroperoxide and carbonyl protein levels. The in vitro oxidizability of VLDL-LDL was enhanced in these macrosomic rats. The EPAX diet corrected lipid parameters and improved oxidant/antioxidant status but increased VLDL-LDL susceptibility to oxidation. Macrosomia is associated with lipid abnormalities and oxidative stress. n - 3 PUFA exerts favorable effects on lipid metabolism and on the oxidant/antioxidant status of macrosomic rats. However, there are no evident effects on VLDL-LDL oxidation.

  16. Effects of heat and ultraviolet radiation on the oxidative stability of pine nut oil supplemented with carnosic acid.

    PubMed

    Wang, Han; Zu, Ge; Yang, Lei; Zu, Yuan-gang; Wang, Hua; Zhang, Zhong-hua; Zhang, Ying; Zhang, Lin; Wang, Hong-zheng

    2011-12-28

    The effects of carnosic acid (CA) of different concentrations (0.05, 0.1, and 0.2 mg/g) and two common antioxidants (butylated hydroxytoluene and α-tocopherol) on oxidative stability in pine nut oil at different accelerated conditions (heating and ultraviolet radiation) were compared. The investigation focused on the increase in peroxide and conjugated diene values, as well as free fatty acid and thiobarbituric acid-reactive substances. The changes in trans fatty acid and aldehyde compound contents were investigated by Fourier transform infrared spectroscopy, while the changes in pinolenic acid content were monitored by gas chromatography-mass spectrometry. The results show that CA was more effective in restraining pine nut oil oxidation under heating, UV-A and UV-B radiation, in which a dose-response relationship was observed. The antioxidant activity of CA was stronger than that of α-tocopherol and butylated hydroxytoluene. Pine nut oil supplemented with 0.2 mg/g CA exhibited favorable antioxidant effects and is preferable for effectively avoiding oxidation.

  17. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G.B.; Chiba, Z.; Lewis, P.R.; Nelson, N.; Steward, G.A.

    1999-06-15

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO[sub 2]. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement. 2 figs.

  18. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G. Bryan; Chiba, Zoher; Lewis, Patricia R.; Nelson, Norvell; Steward, G. Anthony

    1999-01-01

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO.sub.2. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement.

  19. Clarithromycin, trimethoprim, and penicillin and oxidative nucleic acid modifications in humans: randomised, controlled trials.

    PubMed

    Larsen, Emil List; Cejvanovic, Vanja; Kjaer, Laura Kofoed; Pedersen, Morten Thorup; Popik, Sara Daugaard; Hansen, Lina Kallehave; Andersen, Jon Traerup; Jimenez-Solem, Espen; Broedbaek, Kasper; Petersen, Morten; Weimann, Allan; Henriksen, Trine; Lykkesfeldt, Jens; Torp-Pedersen, Christian; Poulsen, Henrik Enghusen

    2017-08-01

    In vitro studies have demonstrated that formation of reactive oxygen species (ROS) contributes to the effect of bactericidal antibiotics. The formation of ROS is not restricted to bacteria, but also occurs in mammalian cells. Oxidative stress is linked to several diseases. This study investigates whether antibiotic drugs induce oxidative stress in healthy humans as a possible mechanism for adverse reactions to the antibiotic drugs. This study contains information from two randomised, controlled trials. Participants underwent 1 week treatment with clarithromycin, trimethoprim, phenoxymethylpenicillin (penicillin V), or placebo. Oxidative modifications were measured as 24-h urinary excretion of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), and plasma levels of malondialdehyde before and after treatment as a measurement of DNA oxidation, RNA oxidation, and lipid peroxidation, respectively. Clarithromycin significantly increased urinary excretion of 8-oxodG by 22.0% (95% confidence interval (CI): 3.6-40.4%) and 8-oxoGuo by 14.9% (95% CI: 3.7-26.1%). Further, we demonstrated that trimethoprim significantly lowered urinary excretion of 8-oxodG by 21.7% (95% CI: 5.8-37.6%), but did not influence urinary excretion of 8-oxoGuo. Penicillin V did not influence urinary excretion of 8-oxodG or 8-oxoGuo. None of the antibiotic drugs influenced plasma levels of malondialdehyde. Clarithromycin significantly increases oxidative nucleic acid modifications. Increased oxidative modifications might explain some of clarithromycin's known adverse reactions. Trimethoprim significantly lowers DNA oxidation but not RNA oxidation. Penicillin V had no effect on oxidative nucleic acid modifications. © 2017 The British Pharmacological Society.

  20. Low molecular weight carboxylic acids in oxidizing porphyry copper tailings.

    PubMed

    Dold, Bernhard; Blowes, David W; Dickhout, Ralph; Spangenberg, Jorge E; Pfeifer, Hans-Rudolf

    2005-04-15

    The distribution of low molecular weight carboxylic acids (LMWCA) was investigated in pore water profiles from two porphyry copper tailings impoundments in Chile (Piuquenes at La Andina and Cauquenes at El Teniente mine). The objectives of this study were (1) to determine the distribution of LMWCA, which are interpreted to be the metabolic byproducts of the autotroph microbial community in this low organic carbon system, and (2) to infer the potential role of these acids in cycling of Fe and other elements in the tailings impoundments. The speciation and mobility of iron, and potential for the release of H+ via hydrolysis of the ferric iron, are key factors in the formation of acid mine drainage in sulfidic mine wastes. In the low-pH oxidation zone of the Piuquenes tailings, Fe(III) is the dominant iron species and shows high mobility. LMWCA, which occur mainly between the oxidation front down to 300 cm below the tailings surface at both locations (e.g., max concentrations of 0.12 mmol/L formate, 0.17 mmol/L acetate, and 0.01 mmol/L pyruvate at Piuquenes and 0.14 mmol/L formate, 0.14 mmol/L acetate, and 0.006 mmol/L pyruvate at Cauquenes), are observed at the same location as high Fe concentrations (up to 71.2 mmol/L Fe(II) and 16.1 mmol/L Fe(III), respectively). In this zone, secondary Fe(III) hydroxides are depleted. Our data suggest that LMWCA may influence the mobility of iron in two ways. First, complexation of Fe(III), through formation of bidentate Fe(III)-LMWCA complexes (e.g., pyruvate, oxalate), may enhance the dissolution of Fe(III) (oxy)hydroxides or may prevent precipitation of Fe(III) (oxy)hydroxides. Soluble Fe(III) chelate complexes which may be mobilized downward and convert to Fe(II) by Fe(III) reducing bacteria. Second, monodentate LMWCA (e.g., acetate and formate) can be used by iron-reducing bacteria as electron donors (e.g., Acidophilum spp.), with ferric iron as the electron acceptor. These processes may, in part, explain the low abundances

  1. Comparison of 16-iodohexadecanoic acid (IHDA) and 15-p-iodophenylpentadecanoic acid (IPPA) metabolism and kinetics in the isolated rat heart.

    PubMed

    DeGrado, T R; Holden, J E; Ng, C K; Raffel, D M; Gatley, S J

    1988-01-01

    Time courses of radioactivity (residue curves) were obtained following bolus injection into working rat hearts of two 125I-labeled long chain fatty acids: 16-iodohexadecanoic acid (IHDA) and 15-p-iodophenylpentadecanoic acid (IPPA). Residue curves were analyzed in terms of a rapid vascular washout component, an early tissue clearance component, and a very slow late component. For IHDA and IPPA in control hearts, early myocardial clearance kinetics were rate limited by the diffusion of catabolites. Sensitivity of the kinetics to impaired fatty acid oxidation was examination by pretreatment of animals with 2[5(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA). Decreased fatty acid oxidation was indicated in IHDA and IPPA residue curves by a decrease in the relative size of the early clearance component. Analysis of radiolabeled species in coronary effluent and heart homogenates showed that back diffusion of IPPA was slower than that of IHDA; this discrepancy was most apparent in POCA hearts. In vitro binding assays suggested higher tissue:albumin relative affinity for IPPA than for IHDA. Thus, IPPA early clearance kinetics were more closely related to the clearance of labeled catabolite(s) and were therefore more sensitive to the oxidation rate of long chain fatty acids.

  2. Influence of a reaction medium on the oxidation of aromatic nitrogen-containing compounds by peroxyacids

    NASA Astrophysics Data System (ADS)

    Dutka, V. S.; Matsyuk, N. V.; Dutka, Yu. V.

    2011-01-01

    The influence of different solvents on the oxidation reaction rate of pyridine (Py), quinoline (QN), acridine (AN), α-oxyquinoline (OQN) and α-picolinic acid (APA) by peroxydecanoic acid (PDA) was studied. It was found that the oxidation rate grows in the series Py < QN < AN, and the rate of the oxidation reaction of compounds containing a substituent in the α position from a reactive center is significantly lower than for unsubstituted analogues. The effective energies of activation of the oxidation reaction were found. It was shown that in the first stage, the reaction mechanism includes the rapid formation of an intermediate complex nitrogen-containing compound, peroxyacid, which forms products upon decomposing in the second stage. A kinetic equation that describes the studied process is offered. The constants of equilibrium of the intermediate complex formation ( K eq) and its decomposition constant ( k 2) in acetone and benzene were calculated. It was shown that the nature of the solvent influences the numerical values of both K p and k 2. It was established that introduction of acetic acid (which is able to form compounds with Py) into the reaction medium slows the rate of the oxidation process drastically. Correlation equations linking the polarity, polarizability, electrophilicity, and basicity of solvents with the constant of the PDA oxidation reaction rate for Py were found. It was concluded that the basicity and polarity of the solvent have a decisive influence on the oxidation reaction rate, while the polarizability and electrophilicity of the reaction medium do not influence the oxidation reaction rate.

  3. Erythrocyte Sialic Acid Content during Aging in Humans: Correlation with Markers of Oxidative Stress

    PubMed Central

    Mehdi, Mohammad Murtaza; Singh, Prabhakar; Rizvi, Syed Ibrahim

    2012-01-01

    Sialic acids are substituted neuraminic acid derivatives which are typically found at the outermost end of glycan chains on the membrane in all cell types. The role of erythrocyte membrane sialic acids during aging has been established however the relationship between sialic acid and oxidative stress is not fully understood. The present work was undertaken to analyze the relationship between erythrocyte membrane sialic acid with its plasma level, membrane and plasma lipid hydroperoxide levels and plasma total antioxidant capacity. Results show that sialic acid content decreases significantly (P < 0.001) in RBC membrane (r = −0.901) and increases in plasma (r = 0.860) as a function of age in humans. Lipid peroxidation measured in the form of hydroperoxides increases significantly (P < 0.001) in plasma (r = 0.830) and RBC membranes (r = 0.875) with age in humans. The Trolox Equivalent Total Antioxidant Capacity (TETAC) of plasma was found to be significantly decreased (P < 0.001, r = −0.844). We observe significant correlations between decrease of erythrocyte membrane sialic acid and plasma lipid hydroperoxide and TETAC. Based on the observed correlations, we hypothesize that increase in oxidative stress during aging may influence the sialic acid decomposition from membrane thereby altering the membrane configuration affecting many enzymatic and transporter activities. Considering the importance of plasma sialic acid as a diagnostic parameter, it is important to establish age-dependent reference. PMID:22377734

  4. Coulometric Study of Rates of Oxalic Acid Adsorption at a Polycrystalline Platinum Electrode

    DTIC Science & Technology

    2012-09-01

    Coulometric Study of Rates of Oxalic Acid Adsorption at a Polycrystalline Platinum Electrode by Sol Gilman ARL-TR-6165 September 2012...6165 September 2012 Coulometric Study of Rates of Oxalic Acid Adsorption at a Polycrystalline Platinum Electrode Sol Gilman Sensors and...3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Coulometric Study of Rates of Oxalic Acid Adsorption at a Polycrystalline Platinum Electrode

  5. Nitro-fatty acid metabolome: saturation, desaturation, beta-oxidation, and protein adduction.

    PubMed

    Rudolph, Volker; Schopfer, Francisco J; Khoo, Nicholas K H; Rudolph, Tanja K; Cole, Marsha P; Woodcock, Steven R; Bonacci, Gustavo; Groeger, Alison L; Golin-Bisello, Franca; Chen, Chen-Shan; Baker, Paul R S; Freeman, Bruce A

    2009-01-16

    Nitrated derivatives of fatty acids (NO2-FA) are pluripotent cell-signaling mediators that display anti-inflammatory properties. Current understanding of NO2-FA signal transduction lacks insight into how or if NO2-FA are modified or metabolized upon formation or administration in vivo. Here the disposition and metabolism of nitro-9-cis-octadecenoic (18:1-NO2) acid was investigated in plasma and liver after intravenous injection in mice. High performance liquid chromatography-tandem mass spectrometry analysis showed that no 18:1-NO2 or metabolites were detected under basal conditions, whereas administered 18:1-NO2 is rapidly adducted to plasma thiol-containing proteins and glutathione. NO2-FA are also metabolized via beta-oxidation, with high performance liquid chromatography-tandem mass spectrometry analysis of liver lipid extracts of treated mice revealing nitro-7-cis-hexadecenoic acid, nitro-5-cis-tetradecenoic acid, and nitro-3-cis-dodecenoic acid and corresponding coenzyme A derivatives of 18:1-NO2 as metabolites. Additionally, a significant proportion of 18:1-NO2 and its metabolites are converted to nitroalkane derivatives by saturation of the double bond, and to a lesser extent are desaturated to diene derivatives. There was no evidence of the formation of nitrohydroxyl or conjugated ketone derivatives in organs of interest, metabolites expected upon 18:1-NO2 hydration or nitric oxide (*NO) release. Plasma samples from treated mice had significant extents of protein-adducted 18:1-NO2 detected by exchange to added beta-mercaptoethanol. This, coupled with the observation of 18:1-NO2 release from glutathione-18:1-NO2 adducts, supports that reversible and exchangeable NO2-FA-thiol adducts occur under biological conditions. After administration of [3H]18:1-NO2, 64% of net radiolabel was recovered 90 min later in plasma (0.2%), liver (18%), kidney (2%), adipose tissue (2%), muscle (31%), urine (6%), and other tissue compartments, and may include metabolites not yet

  6. Augmenting antifungal activity of oxidizing agent with kojic acid: Control of Penicillium strains infecting crops

    USDA-ARS?s Scientific Manuscript database

    Oxidative treatment is a strategy for preventing Penicillium contamination in foods or crops. Antifungal efficacy of oxidant [hydrogen peroxide (H2O2)], biotic effector [kojic acid (KA)] and abiotic stress (heat), alone or in combination, was investigated in Penicillium. The levels of antifungal int...

  7. Effects of cinnamic acid on memory deficits and brain oxidative stress in streptozotocin-induced diabetic mice

    PubMed Central

    Hemmati, Ali Asghar; Ahangarpour, Akram

    2018-01-01

    The present study aimed to evaluate the cinnamic acid effect on memory impairment, oxidative stress, and cholinergic dysfunction in streptozotocin (STZ)-induced diabetic model in mice. In this experimental study, 48 male Naval Medical Research Institute (NMRI) mice (30–35 g) were chosen and were randomly divided into six groups: control, cinnamic acid (20 mg/kg day, i.p. ), diabetic, and cinnamic acid-treated diabetic (10, 20 and 40 mg/kg day, i.p. ). Memory was impaired by administering an intraperitoneal STZ injection of 50 mg/kg. Cinnamic acid was injected for 40 days starting from the 21st day after confirming STZ-induced dementia to observe its therapeutic effect. Memory function was assessed using cross-arm maze, morris water maze and passive avoidance test. After the administration, biochemical parameters of oxidative stress and cholinergic function were estimated in the brain. Present data indicated that inducing STZ caused significant memory impairment, whereas administration of cinnamic acid caused significant and dose-dependent memory improvement. Assessment of brain homogenates indicated cholinergic dysfunction, increase in lipid peroxidation and reactive oxygen species (ROS) levels, and decrease in glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities in the diabetic group compared to the control animals, whereas cinnamic acid administration ameliorated these indices in the diabetic mice. The present study demonstrated that cinnamic acid improves memory by reducing the oxidative stress and cholinergic dysfunction in the brain of diabetic mice. PMID:29719448

  8. Effects of cinnamic acid on memory deficits and brain oxidative stress in streptozotocin-induced diabetic mice.

    PubMed

    Hemmati, Ali Asghar; Alboghobeish, Soheila; Ahangarpour, Akram

    2018-05-01

    The present study aimed to evaluate the cinnamic acid effect on memory impairment, oxidative stress, and cholinergic dysfunction in streptozotocin (STZ)-induced diabetic model in mice. In this experimental study, 48 male Naval Medical Research Institute (NMRI) mice (30-35 g) were chosen and were randomly divided into six groups: control, cinnamic acid (20 mg/kg day, i.p. ), diabetic, and cinnamic acid-treated diabetic (10, 20 and 40 mg/kg day, i.p. ). Memory was impaired by administering an intraperitoneal STZ injection of 50 mg/kg. Cinnamic acid was injected for 40 days starting from the 21st day after confirming STZ-induced dementia to observe its therapeutic effect. Memory function was assessed using cross-arm maze, morris water maze and passive avoidance test. After the administration, biochemical parameters of oxidative stress and cholinergic function were estimated in the brain. Present data indicated that inducing STZ caused significant memory impairment, whereas administration of cinnamic acid caused significant and dose-dependent memory improvement. Assessment of brain homogenates indicated cholinergic dysfunction, increase in lipid peroxidation and reactive oxygen species (ROS) levels, and decrease in glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities in the diabetic group compared to the control animals, whereas cinnamic acid administration ameliorated these indices in the diabetic mice. The present study demonstrated that cinnamic acid improves memory by reducing the oxidative stress and cholinergic dysfunction in the brain of diabetic mice.

  9. Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters.

    PubMed

    Huber, Bettina; Herzog, Bastian; Drewes, Jörg E; Koch, Konrad; Müller, Elisabeth

    2016-07-18

    Biogenic sulfuric acid (BSA) corrosion damages sewerage and wastewater treatment facilities but is not well investigated in sludge digesters. Sulfur/sulfide oxidizing bacteria (SOB) oxidize sulfur compounds to sulfuric acid, inducing BSA corrosion. To obtain more information on BSA corrosion in sludge digesters, microbial communities from six different, BSA-damaged, digesters were analyzed using culture dependent methods and subsequent polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). BSA production was determined in laboratory scale systems with mixed and pure cultures, and in-situ with concrete specimens from the digester headspace and sludge zones. The SOB Acidithiobacillus thiooxidans, Thiomonas intermedia, and Thiomonas perometabolis were cultivated and compared to PCR-DGGE results, revealing the presence of additional acidophilic and neutrophilic SOB. Sulfate concentrations of 10-87 mmol/L after 6-21 days of incubation (final pH 1.0-2.0) in mixed cultures, and up to 433 mmol/L after 42 days (final pH <1.0) in pure A. thiooxidans cultures showed huge sulfuric acid production potentials. Additionally, elevated sulfate concentrations in the corroded concrete of the digester headspace in contrast to the concrete of the sludge zone indicated biological sulfur/sulfide oxidation. The presence of SOB and confirmation of their sulfuric acid production under laboratory conditions reveal that these organisms might contribute to BSA corrosion within sludge digesters. Elevated sulfate concentrations on the corroded concrete wall in the digester headspace (compared to the sludge zone) further indicate biological sulfur/sulfide oxidation in-situ. For the first time, SOB presence and activity is directly relatable to BSA corrosion in sludge digesters.

  10. Oxidation of cinnamic acid derivatives: A pulse radiolysis and theoretical study

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja; Mohan, Hari; Maity, Dilip Kumar; Suresh, Cherumuttathu H.; Rao, B. S. Madhav

    2008-07-01

    Second order rate constants in the range of ( k = 1.6-4.5) × 10 9 dm 3 mol -1 s -1 were obtained for the rad OH induced oxidation of nitro- and methoxycinnamic acid derivatives in neutral solutions using pulse radiolysis. The transient absorption spectra exhibited a broad peak around 360-410 nm in o-methoxy, o- and p-nitrocinnamates or two peaks around 310-330 and 370-410 nm in other isomers. Quantum chemical calculations revealed that addition of rad OH to olefinic moiety yielded considerably more stable structures than ring addition products and the para system among the latter is the most stable. Spin density analysis suggested that olefinic adducts retained the aromaticity in contrast to its loss in ring rad OH adducts. An excellent linear correlation between the relative stabilities of the rad OH adducts (after accounting for the aromatic stabilization in olefinic adducts) and the maximum Sd values is also obtained.

  11. Method for distinctive estimation of stored acidity forms in acid mine wastes.

    PubMed

    Li, Jun; Kawashima, Nobuyuki; Fan, Rong; Schumann, Russell C; Gerson, Andrea R; Smart, Roger St C

    2014-10-07

    Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.

  12. The ultrasound-assisted oxidative scission of monoenic fatty acids by ruthenium tetroxide catalysis: influence of the mixture of solvents.

    PubMed

    Rup, Sandrine; Zimmermann, François; Meux, Eric; Schneider, Michel; Sindt, Michele; Oget, Nicolas

    2009-02-01

    Carboxylic acids and diacids were synthesized from monoenic fatty acids by using RuO4 catalysis, under ultrasonic irradiation, in various mixtures of solvents. Ultrasound associated with Aliquat 336 have promoted in water, the quantitative oxidative cleavage of the CH=CH bond of oleic acid. A design of experiment (DOE) shows that the optimal mixture of solvents (H2O/MeCN, ratio 1/1, 2.2% RuCl3/4.1 eq. NaIO4) gives 81% azelaic acid and 97% pelargonic acid. With the binary heterogeneous mixture H2O/AcOEt, the oxidation of the oleic acid leads to a third product, the alpha-dione 9,10-dioxostearic acid.

  13. Nitrous acid in a street canyon environment: Sources and contributions to local oxidation capacity

    NASA Astrophysics Data System (ADS)

    Yun, Hui; Wang, Zhe; Zha, Qiaozhi; Wang, Weihao; Xue, Likun; Zhang, Li; Li, Qinyi; Cui, Long; Lee, Shuncheng; Poon, Steven C. N.; Wang, Tao

    2017-10-01

    Nitrous acid (HONO) plays an important role in radical formation and photochemical oxidation processes in the boundary layer. However, its impact on the chemistry in a street canyon microenvironment has not been thoroughly investigated. In this study, we measured HONO in a street canyon in urban Hong Kong and used an observation-based box model (OBM) with the Master Chemical Mechanism (MCM v3.3.1) to investigate the contribution of HONO to local oxidation chemistry. The observed HONO mixing ratios were in the range of 0.4-13.9 ppbv, with an average of 3.91 ppbv in the daytime and 2.86 ppbv at night. A mean HONO/NOx emission ratio of 1.0% (±0.5%) from vehicle traffic was derived. OBM simulations constrained by the observed HONO showed that the maximum concentrations of OH, HO2, and RO2 reached 4.65 × 106, 4.40 × 106, and 1.83 × 106 molecules cm-3, which were 7.9, 5.0, and 7.5 times, respectively, the results in the case without HONO constrained. Photolysis of HONO contributed to 86.5% of the total primary radical production rates and led to efficient NO2 and O3 production under the condition of weak regional transport of O3. The formation of HNO3 contributed to 98.4% of the total radical termination rates. Our results suggest that HONO could significantly increase the atmospheric oxidation capacity in a street canyon and enhance the secondary formation of HNO3 and HCHO, which can damage outdoor building materials and pose health risks to pedestrians.

  14. Acute supplementation of amino acids increases net protein accretion in IUGR fetal sheep

    PubMed Central

    Rozance, Paul J.; Thorn, Stephanie R.; Friedman, Jacob E.; Hay, William W.

    2012-01-01

    Placental insufficiency decreases fetal amino acid uptake from the placenta, plasma insulin concentrations, and protein accretion, thus compromising normal fetal growth trajectory. We tested whether acute supplementation of amino acids or insulin into the fetus with intrauterine growth restriction (IUGR) would increase net fetal protein accretion rates. Late-gestation IUGR and control (CON) fetal sheep received acute, 3-h infusions of amino acids (with euinsulinemia), insulin (with euglycemia and euaminoacidemia), or saline. Fetal leucine metabolism was measured under steady-state conditions followed by a fetal muscle biopsy to quantify insulin signaling. In CON, increasing amino acid delivery rates to the fetus by 100% increased leucine oxidation rates by 100%. In IUGR, amino acid infusion completely suppressed fetal protein breakdown rates but increased leucine oxidation rate by only 25%, resulting in increased protein accretion rates by 150%. Acute insulin infusion, however, had very little effect on amino acid delivery rates, fetal leucine disposal rates, or fetal protein accretion rates in CON or IUGR fetuses despite robust signaling of the fetal skeletal muscle insulin-signaling cascade. These results indicate that, when amino acids are given directly into the fetal circulation independently of changes in insulin concentrations, IUGR fetal sheep have suppressed protein breakdown rates, thus increasing net fetal protein accretion. PMID:22649066

  15. Serum sialic acid and oxidative stress parameters changes in cattle with leptospirosis.

    PubMed

    Erdogan, H M; Karapehlivan, M; Citil, M; Atakisi, O; Uzlu, E; Unver, A

    2008-04-01

    This study was designed to disclose some indicators of oxidative stress and inflammation in natural cases of bovine leptospirosis. For this purpose, 12 bulls exhibiting clinical signs of leptospirosis and 10 healthy bulls were used. Animals were subjected to thorough clinical examination and the clinical signs were recorded. All animals were blood sampled in order to determine serum total sialic acid (TSA), lipid bound sialic acid (LBSA), malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), uric acid (UA), total protein (TP), albumin and glucose. Urine samples were collected from each animal and examined under dark-field microscope to observe spirochetes. Diseased animals exhibited clinical signs suggesting leptospirosis and the diagnosis was supported by positive dark-field microscope examination. Mean TSA (mmol/L), LBSA (mmol/L), TP (g/dl), albumin (g/dl), glucose (mg/dl), MDA (micromol/L), GSH (mg/dl), NO (nmol/ml), and UA (mg/L) levels were 1.63 +/- 0.02, 0.40 +/- 0.10, 7.18 +/- 0.24, 3.23 +/- 0.5, 64.96 +/- 1.88, 5.71 +/- 0.11, 78.68 +/- 0.72, 7.94 +/- 0.34, and 8.75 +/- 0.41 in healthy bulls, and 2.50 +/- 0.05, 0.70 +/- 0.2, 9.27 +/- 0.17, 2.55 +/- 0.62, 107.93 +/- 2.52, 8.82 +/- 0.14, 47.85 +/- 1.85, 14.57 +/- 0.63 and 15.85 +/- 0.80 in leptospirosis cases, respectively. The differences between the two groups were statistically significant (P < 0.001). Increased TSA, LBSA, MDA, NO, UA, TP, glucose and decreased GSH and albumin concentrations were suggestive of inflammation and oxidative stress in diseased bulls. The results obtained may suggest that oxidative damage along with other mechanisms might have taken part in the pathogenesis of bovine leptospirosis and further detailed studies are needed to fully understand the mechanism(s) of the disease.

  16. Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise.

    PubMed

    O'Neill, Hayley M; Lally, James S; Galic, Sandra; Pulinilkunnil, Thomas; Ford, Rebecca J; Dyck, Jason R B; van Denderen, Bryce J; Kemp, Bruce E; Steinberg, Gregory R

    2015-07-01

    During submaximal exercise fatty acids are a predominant energy source for muscle contractions. An important regulator of fatty acid oxidation is acetyl-CoA carboxylase (ACC), which exists as two isoforms (ACC1 and ACC2) with ACC2 predominating in skeletal muscle. Both ACC isoforms regulate malonyl-CoA production, an allosteric inhibitor of carnitine palmitoyltransferase 1 (CPT-1); the primary enzyme controlling fatty acyl-CoA flux into mitochondria for oxidation. AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is activated during exercise or by pharmacological agents such as metformin and AICAR. In resting muscle the activation of AMPK with AICAR leads to increased phosphorylation of ACC (S79 on ACC1 and S221 on ACC2), which reduces ACC activity and malonyl-CoA; effects associated with increased fatty acid oxidation. However, whether this pathway is vital for regulating skeletal muscle fatty acid oxidation during conditions of increased metabolic flux such as exercise/muscle contractions remains unknown. To examine this we characterized mice lacking AMPK phosphorylation sites on ACC2 (S212 in mice/S221 in humans-ACC2-knock-in [ACC2-KI]) or both ACC1 (S79) and ACC2 (S212) (ACC double knock-in [ACCD-KI]) during submaximal treadmill exercise and/or ex vivo muscle contractions. We find that surprisingly, ACC2-KI mice had normal exercise capacity and whole-body fatty acid oxidation during treadmill running despite elevated muscle ACC2 activity and malonyl-CoA. Similar results were observed in ACCD-KI mice. Fatty acid oxidation was also maintained in muscles from ACC2-KI mice contracted ex vivo. These findings indicate that pathways independent of ACC phosphorylation are important for regulating skeletal muscle fatty acid oxidation during exercise/muscle contractions. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions

    PubMed Central

    Liang, Ningjian; Kitts, David D.

    2015-01-01

    Chlorogenic acids (CGAs) are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices are linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s) for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1) the relative composition of different CGA isomers present in coffee beverages; (2) analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3) description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions. PMID:26712785

  18. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants.

    PubMed

    Escande, Vincent; Renard, Brice-Loïc; Grison, Claude

    2015-04-01

    Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines.

  19. Oleic Acid Protects Against Oxidative Stress Exacerbated by Cytarabine and Doxorubicin in Rat Brain.

    PubMed

    Guzmán, David Calderón; Brizuela, Norma Osnaya; Herrera, Maribel Ortíz; Olguín, Hugo Juárez; García, Ernestina Hernández; Peraza, Armando Valenzuela; Mejía, Gerardo Barragán

    2016-01-01

    The objective of this study was to analyze the effect of doxorubicin and cytarabine on biogenic amines and oxidative biomarkers in the brain of rats treated with oleic acid. Thirty-six Wistar rats distributed in 6 groups, were treated as follows: group 1 (control), NaCl 0.9%; group 2 doxorubicin (1mg/kg); group 3 cytarabine (70mg /kg); group 4 oleic acid (1500μl/kg); group 5 doxorubicin + oleic acid; group 6 cytarabine + oleic acid. All compounds were administered intraperitoneally for 5 days. The Rats were sacrificed after receiving the last administration and their brains were dissected in cortex, hemispheres, and cerebellum/medulla oblongata. Blood samples were obtained on sacrifice to assess the levels of glucose and triglycerides. In each brain region, lipoperoxidation (TBARS), H2O2, Na+, K+ ATPase, glutathione (GSH), serotonin metabolites (5-HIAA) and dopamine were measured using validated methods. Cytarabine decreased the levels of dopamine, TBARS, GSH, H2O2 and ATPase in all regions. Doxorubicin combined with oleic acid increased the levels of GSH in cortex, and decreased ATPase in cerebellum/medulla oblongata. These results suggest that the reduction of dopamine and oxidant effect during cytarabine treatment could result in brain injury but could be prevented by oleic acid supplementation.

  20. Reduced graphene oxide aerogel with high-rate supercapacitive performance in aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Si, Weijiang; Wu, Xiaozhong; Zhou, Jin; Guo, Feifei; Zhuo, Shuping; Cui, Hongyou; Xing, Wei

    2013-05-01

    Reduced graphene oxide aerogel (RGOA) is synthesized successfully through a simultaneous self-assembly and reduction process using hypophosphorous acid and I2 as reductant. Nitrogen sorption analysis shows that the Brunauer-Emmett-Teller surface area of RGOA could reach as high as 830 m2 g-1, which is the largest value ever reported for graphene-based aerogels obtained through the simultaneous self-assembly and reduction strategy. The as-prepared RGOA is characterized by a variety of means such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical tests show that RGOA exhibits a high-rate supercapacitive performance in aqueous electrolytes. The specific capacitance of RGOA is calculated to be 211.8 and 278.6 F g-1 in KOH and H2SO4 electrolytes, respectively. The perfect supercapacitive performance of RGOA is ascribed to its three-dimensional structure and the existence of oxygen-containing groups.

  1. Reduced graphene oxide aerogel with high-rate supercapacitive performance in aqueous electrolytes.

    PubMed

    Si, Weijiang; Wu, Xiaozhong; Zhou, Jin; Guo, Feifei; Zhuo, Shuping; Cui, Hongyou; Xing, Wei

    2013-05-21

    Reduced graphene oxide aerogel (RGOA) is synthesized successfully through a simultaneous self-assembly and reduction process using hypophosphorous acid and I2 as reductant. Nitrogen sorption analysis shows that the Brunauer-Emmett-Teller surface area of RGOA could reach as high as 830 m2 g-1, which is the largest value ever reported for graphene-based aerogels obtained through the simultaneous self-assembly and reduction strategy. The as-prepared RGOA is characterized by a variety of means such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical tests show that RGOA exhibits a high-rate supercapacitive performance in aqueous electrolytes. The specific capacitance of RGOA is calculated to be 211.8 and 278.6 F g-1 in KOH and H2SO4 electrolytes, respectively. The perfect supercapacitive performance of RGOA is ascribed to its three-dimensional structure and the existence of oxygen-containing groups.

  2. Mechanisms of Docosahexaenoic and Eicosapentaenoic Acid Loss from Pacific Saury and Comparison of Their Retention Rates after Various Cooking Methods.

    PubMed

    Cheung, Lennie K Y; Tomita, Haruo; Takemori, Toshikazu

    2016-08-01

    The docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) contents of Pacific saury (Cololabis saira), a fatty fish and staple of the Japanese diet, have been reported to decrease after cooking. This study compared the DHA and EPA contents remaining in saury after grilling, pan-frying or deep-frying to center temperatures of 75, 85, or 95 °C, and examined physical loss, lipid oxidation, and thermal degradation as mechanisms of DHA and EPA loss. Temperature changes inside the saury were monitored using thermocouples, while DHA and EPA contents, oxygen radical absorbance capacity, and measurements of lipid oxidation (that is, carbonyl value and thiobarbituric acid value) were determined chemically. Visualization of temperature distribution inside fish samples during cooking revealed large differences in heat transfer among cooking methods. True retention rates in grilled (DHA: 84 ± 15%; EPA: 87 ± 14%) and pan-fried samples (DHA: 85 ± 16%; EPA: 77 ± 17%) were significantly higher than deep-fried samples (DHA: 58 ± 17%; EPA: 51 ± 18%), but were not affected by final center temperatures despite differences in cooking times. Physical loss via cooking losses (grilling and pan-frying) or migration into frying oil (deep-frying) accounted for large quantities of DHA and EPA loss, while lipid oxidation and thermal degradation did not appear to be major mechanisms of loss. The antioxidant capacity of saury was not significantly affected by cooking treatments. The results of this study suggest that minimization of physical losses during cooking may increase DHA and EPA contents retained in cooked Pacific saury. © 2016 Institute of Food Technologists®

  3. Mass spectrometric methodology for the analysis of highly oxidized diterpenoid acids in Old Master paintings.

    PubMed

    Berg; Boon; Pastorova; Spetter

    2000-04-01

    Diterpenoid resins from larch and pine trees and the corresponding fractions in a >100-year-old wax-resin adhesive and varnish and a 200-year-old resin/oil paint sample were analysed with by gas chromatography/mass spectrometry (GC/MS) using several off-line and on-line derivatization methods. The main resin compounds were highly oxidized abietic acids. Important products found are hydroxydehydroabietic acids (OH-DHAs), 7-oxoDHA, di-OH-DHAs and 15-OH-7-oxoDHA. The last two compounds have not been reported to occur in artworks before. Larixyl acetate, an important marker from larch resins, was found to be still present in high amounts in the adhesive. A large number of mass spectra of the different oxidation products and larixol and larixyl acetate are presented and their fragmentation behaviour under electron impact conditions is discussed. An index for the degree of oxidation (IDOX) of the abietic acids is presented as an indicator of the degree of oxidation of the matrix in which the resin is present. The IDOX was 0.10, 0.67, 0.81 and 0.76 for the fresh resins, the dark-aged adhesive, the aged varnish and the resin/oil paint, respectively (measured with pyrolysis (Py)-tetramethylammonium hydroxide (TMAH)-GC/MS). Py-TMAH-GC/MS and direct temperature-resolved mass spectrometry are reliable, valuable and fast techniques for the assessment of the presence and degree of oxidation of diterpenoid resins. Copyright 2000 John Wiley & Sons, Ltd.

  4. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism.

    PubMed

    Al-Amin, Md Mamun; Rahman, Md Mahbubur; Khan, Fazlur Rahman; Zaman, Fahmida; Mahmud Reza, Hasan

    2015-06-01

    Prenatal exposure to valproic acid on gestational day 12.5 may lead to the impaired behavior in the offspring, which is similar to the human autistic symptoms. To the contrary, astaxanthin shows neuroprotective effect by its antioxidant mechanism. We aimed to (i) develop mice model of autism and (ii) investigate the effect of astaxanthin on such model animals. Valproic acid (600 mg/kg) was administered intraperitoneally to the pregnant mice on gestational day 12.5. Prenatal valproic acid-exposed mice were divided into 2 groups on postnatal day 25 and astaxanthin (2mg/kg) was given to the experimental group (VPA_AST, n=10) while saline was given to the control group (VPA, n=10) for 4 weeks. Behavioral test including social interaction, open field and hot-plate were conducted on postnatal day 25 and oxidative stress markers such as lipid peroxidation, advanced protein oxidation product, nitric oxide, glutathione, and activity of superoxide dismutase and catalase were estimated on postnatal day 26 to confirm mice model of autism and on postnatal day 56 to assess the effect of astaxanthin. On postnatal day 25, prenatal valproic acid-exposed mice exhibited (i) delayed eye opening (ii) longer latency to respond painful stimuli, (iii) poor sociability and social novelty and (iv) high level of anxiety. In addition, an increased level of oxidative stress was found by determining different oxidative stress markers. Treatment with astaxanthin significantly (p<0.05) improved the behavioral disorder and reduced the oxidative stress in brain and liver. In conclusion, prenatal exposure to valproic day in pregnant mice leads to the development of autism-like features. Astaxanthin improves the impaired behavior in animal model of autism presumably by its antioxidant activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The Heterogeneous Oxidation of Organic Droplets -Temperature and Physical Phase Effects

    NASA Astrophysics Data System (ADS)

    Hung, H.; Tang, C.; Lin, L.

    2008-12-01

    The heterogeneous reactions of oleic acid droplets with ozone are studied at different temperatures to imitating the atmospheric condition. The reactions are monitored concomitantly by using attenuated total reflectance Fourier Transform infrared spectroscopy (ATR-FT-IR) for the organic species and UV-VIS spectrometry for the ozone concentration, in order to investigate reaction rate discrepancies reported in literature as well as the oxidation mechanism, temperature and physical phase effects. The less and semi- volatile products are identified and resolved by a liquid chromatography and a gas chromatography mass spectrometer, respectively. The identified products are predominantly composed by nananoic acid and azelaic acid and might be due to propagation reactions possibly initiated by a secondary reaction such as the stabilized Criegee intermediates reacting with oleic acid. For temperature effect, the oxidation rate decreases with temperature when the oleic acid droplets are in the same physical phases. As oleic acid turns into the solid phase, the oxidation mechanism is observed to be different from the liquid phase. Furthermore, the concentration of ozone was monitored to examine the kinetics of the oxidation reaction. The integrated ozone profile recorded by UV-VIS spectrometry shows that the consumed ozone represents only approximately 12% of total oleic acid for the solid cases at 4°C in contrast to 30% for the liquid cases at 25°C, and hence confirmed the existence of secondary reactions.

  6. Effect of preexercise ingestion of modified cornstarch on substrate oxidation during endurance exercise.

    PubMed

    Johannsen, Neil M; Sharp, Rick L

    2007-06-01

    The purpose of this study was to investigate differences in substrate oxidation between dextrose (DEX) and unmodified (UAMS) and acid/alcohol-modified (MAMS) cornstarches. Seven endurance-trained men (VO2peak = 59.1 +/- 5.4 mL.kg-1.min-1) participated in 2 h of exercise (66.4% +/- 3.3% VO2peak) 30 min after ingesting 1 g/kg body weight of the experimental carbohydrate or placebo (PLA). Plasma glucose and insulin were elevated after DEX (P < 0.05) compared with UAMS, MAMS, and PLA. Although MAMS and DEX raised carbohydrate oxidation rate through 90 min of exercise, only MAMS persisted throughout 120 min (P < 0.05 compared with all trials). Exogenous-carbohydrate oxidation rate was higher in DEX than in MAMS and UAMS until 90 min of exercise. Acid/alcohol modification resulted in augmented carbohydrate oxidation with a small, sustained increase in exogenous-carbohydrate oxidation rate. MAMS appears to be metabolizable and available for oxidation during exercise.

  7. Retinoic Acid Increases Fatty Acid Oxidation and Irisin Expression in Skeletal Muscle Cells and Impacts Irisin In Vivo.

    PubMed

    Amengual, Jaume; García-Carrizo, Francisco J; Arreguín, Andrea; Mušinović, Hana; Granados, Nuria; Palou, Andreu; Bonet, M Luisa; Ribot, Joan

    2018-01-01

    All-trans retinoic acid (ATRA) has protective effects against obesity and metabolic syndrome. We here aimed to gain further insight into the interaction of ATRA with skeletal muscle metabolism and secretory activity as important players in metabolic health. Cultured murine C2C12 myocytes were used to study direct effects of ATRA on cellular fatty acid oxidation (FAO) rate (using radioactively-labelled palmitate), glucose uptake (using radioactively-labelled 2-deoxy-D-glucose), triacylglycerol levels (by an enzymatic method), and the expression of genes related to FAO and glucose utilization (by RT-real time PCR). We also studied selected myokine production (using ELISA and immunohistochemistry) in ATRA-treated myocytes and intact mice. Exposure of C2C12 myocytes to ATRA led to increased fatty acid consumption and decreased cellular triacylglycerol levels without affecting glucose uptake, and induced the expression of the myokine irisin at the mRNA and secreted protein level in a dose-response manner. ATRA stimulatory effects on FAO-related genes and the Fndc5 gene (encoding irisin) were reproduced by agonists of peroxisome proliferator-activated receptor β/δ and retinoid X receptors, but not of retinoic acid receptors, and were partially blocked by an AMP-dependent protein kinase inhibitor. Circulating irisin levels were increased by 5-fold in ATRA-treated mice, linked to increased Fndc5 transcription in liver and adipose tissues, rather than skeletal muscle. Immunohistochemistry analysis of FNDC5 suggested that ATRA treatment enhances the release of FNDC5/irisin from skeletal muscle and the liver and its accumulation in interscapular brown and inguinal white adipose depots. These results provide new mechanistic insights on how ATRA globally stimulates FAO and enhances irisin secretion, thereby contributing to leaning effects and improved metabolic status. © 2018 The Author(s). Published by S. Karger AG, Basel.

  8. Surface Crystallographic Dependence of Voltammetric Oxidation of Polyhydric Alcohols and Related Systems at Monocrystalline Gold-Acidic Aqueous Interfaces

    DTIC Science & Technology

    1992-02-01

    Crystallographic Dependence of Voltaumetric Oxidation of Polyhydric Alcohols and Related Systems at Monocrystalline Gold -Acidic Aqueous Interfaces by...Crystallographic Dependence of Voltamnnetric Oxidation )f Polyhydric Alcohols and Related Systems at onocrystalline Gold -Acidic Aqueous [nterfaces...mannitol, on seven oriented gold surfaces, Au(lll), 100), (110), (221), (533), (311), and (210), is reported with the objective of assessing the ole of

  9. Helicobacter pylori in sedentary men is linked to higher heart rate, sympathetic activity, and insulin resistance but not inflammation or oxidative stress

    PubMed Central

    Cherkas, Andriy; Eckl, Peter; Guéraud, Françoise; Abrahamovych, Orest; Serhiyenko, Victoria; Yatskevych, Ostap; Pliatsko, Mykhailo; Golota, Sergii

    2016-01-01

    Aim To compare anthropometric parameters, body composition, hormonal and inflammatory profiles, oxidative stress indices, and heart rate variability (HRV) in Heliobacter pylori (H.pylori) positive and negative healthy sedentary participants. Methods Among 30 recruited apparently healthy male participants (age between 20 and 40) enrolled in this cross-sectional study, 18 were H.pylori negative and 12 were positive (stool antigen test). Participants underwent routine physical examination and body composition determination. The following biochemical parameters were determined in blood: fasting whole blood glucose, glycated hemoglobin, insulin, C-peptide, cortisol, aldosterone, testosterone, thyroid stimulating hormone, C-reactive protein, interleukins 6 and 10, tumor necrosis factor-α, and the urinary level of 1,4-dihydroxynonane mercapturic acid. For HRV evaluation, electrocardiogram in supine position and in orthostatic test was performed. Results H.pylori contamination was not significantly associated with any changes in anthropometric parameters, body composition, blood pressure, fasting glucose, or glycated hemoglobin levels. No significant difference was found for inflammatory markers as well as 1,4-dihydroxynonane mercapturic acid. H.pylori-positive participants, however, had significantly higher heart rate (P = 0.009), sympathetic/parasympathetic balance in orthostatic test (P = 0.029), fasting insulin level (P = 0.037), and HOMA-index (P = 0.047). Conclusions H.pylori contamination is linked to a significantly higher heart rate, sympathetic activation, and increased insulin resistance, while inflammatory and oxidative stress markers remain unaffected in healthy sedentary male subjects. PMID:27106356

  10. Evaluation of lipoic acid topical application on rats skin wound healing.

    PubMed

    Külkamp-Guerreiro, Irene Clemes; Souza, Marielly Nunes; Bianchin, Mariana Domingues; Isoppo, Mateus; Freitas, Joana Sachetti; Alves, João Alex; Piovezan, Anna Paula; Pohlmann, Adriana Raffin; Guterres, Sílvia Stanisçuaski

    2013-10-01

    To evaluate the effects of lipoic acid (thioctic acid) topical application on wound healing on rats skin, and the consequences of lipoic acid nanoencapsulation on this process. The model used was the healing activity on wounds induced by surgical incision on rats skin (n = 44). The parameters analyzed (11 days) were wound healing rate and histology (vascular proliferation, polymorphonuclear or mononuclear cells, and collagen synthesis or reepithelialization), after application of free lipoic acid or lipoic acid- loaded nanocapsules. The antioxidant activity of these formulations was evaluated by lipid peroxidation test. It was demonstrated for the first time that the topical application of lipoic acid improves wound healing. On the seventh day after surgery, the animals treated with lipoic acid showed increased healing rate (60.7 ± 8.4%) compared to the negative control group (43.0 ± 17.4%), as so improvement of histological parameters. The nanoencapsulation reverted the pro-oxidant activity presented in vitro by lipoic acid, whereas diminished wound repair. The topical application of lipoic acid produced an increase in the skin wound healing, which may be related to its pro-oxidant activity. On the other hand, the nanoencapsulation of the lipoic acid reversed the pro-oxidant activity, although presented minor healing activity.

  11. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism.

    PubMed

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner; Liu, Manway; Kasif, Simon; Dreyfuss, Jonathan M; De Sousa-Coelho, Ana Luisa; Daher, Grace; Manoli, Irini; Sysol, Justin R; Isganaitis, Elvira; Jessen, Niels; Goodyear, Laurie J; Beebe, Kirk; Gall, Walt; Venditti, Charles P; Patti, Mary-Elizabeth

    2016-10-01

    Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28). We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  12. Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae.

    PubMed

    Leber, Christopher; Choi, Jin Wook; Polson, Brian; Da Silva, Nancy A

    2016-04-01

    Biologically derived fatty acids have gained tremendous interest as an alternative to petroleum-derived fuels and chemical precursors. We previously demonstrated the synthesis of short chain fatty acids in Saccharomyces cerevisiae by introduction of the Homo sapiens fatty acid synthase (hFAS) with heterologous phosphopantetheine transferases and heterologous thioesterases. In this study, short chain fatty acid production was improved by combining a variety of novel enzyme and metabolic engineering strategies. The use of a H. sapiens-derived thioesterase and phosphopantetheine transferase were evaluated. In addition, strains were engineered to disrupt either the full β-oxidation (by deleting FAA2, PXA1, and POX1) or short chain-specific β-oxidation (by deleting FAA2, ANT1, and PEX11) pathways. Prohibiting full β-oxidation increased hexanoic and octanoic acid levels by 8- and 79-fold relative to the parent strain expressing hFAS. However, by targeting only short chain β-oxidation, hexanoic and octanoic acid levels increased further to 31- and 140-fold over the parent. In addition, an optimized hFAS gene increased hexanoic, octanoic, decanoic and total short chain fatty acid levels by 2.9-, 2.0-, 2.3-, and 2.2-fold, respectively, relative to the non-optimized counterpart. By combining these unique enzyme and metabolic engineering strategies, octanoic acid was increased more than 181-fold over the parent strain expressing hFAS. © 2015 Wiley Periodicals, Inc.

  13. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction

    PubMed Central

    Hallows, William C.; Yu, Wei; Smith, Brian C.; Devries, Mark K.; Ellinger, James J.; Someya, Shinichi; Shortreed, Michael R.; Prolla, Tomas; Markley, John L.; Smith, Lloyd M.; Zhao, Shimin; Guan, Kun-Liang; Denu, John M.

    2011-01-01

    Summary Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3−/−) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3−/− mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino-acid catabolism and β-oxidation. PMID:21255725

  14. Effects of Calcination Temperature and Acid-Base Properties on Mixed Potential Ammonia Sensors Modified by Metal Oxides

    PubMed Central

    Satsuma, Atsushi; Katagiri, Makoto; Kakimoto, Shiro; Sugaya, Satoshi; Shimizu, Kenichi

    2011-01-01

    Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ) as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO3, Bi2O3 and V2O5, while the use of WO3, Nb2O5 and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO3 > Bi2O3 > V2O5, which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified. PMID:22319402

  15. Effects of calcination temperature and acid-base properties on mixed potential ammonia sensors modified by metal oxides.

    PubMed

    Satsuma, Atsushi; Katagiri, Makoto; Kakimoto, Shiro; Sugaya, Satoshi; Shimizu, Kenichi

    2011-01-01

    Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ) as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO(3), Bi(2)O(3) and V(2)O(5), while the use of WO(3,) Nb(2)O(5) and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO(3) > Bi(2)O(3) > V(2)O(5), which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified.

  16. Preparation of iron oxide-impregnated spherical granular activated carbon-carbon composite and its photocatalytic removal of methylene blue in the presence of oxalic acid.

    PubMed

    Kadirova, Zukhra C; Hojamberdiev, Mirabbos; Katsumata, Ken-Ichi; Isobe, Toshihiro; Matsushita, Nobuhiro; Nakajima, Akira; Sharipov, Khasan; Okada, Kiyoshi

    2014-01-01

    The spherical granular activated carbon-carbon composites (GAC-Fe) with different iron oxide contents (Fe mass% = 0.6-10) were prepared by a pore volume impregnation method. The X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2-adsorption results confirm the presence of amorphous iron oxide, pyrolytic carbon, and graphitized globular carbon nanoparticles covered with amorphous carbon in the CAG-Fe. The rate of photodegradation of methylene blue (MB) in aqueous solution under UV light in the presence of oxalic acid correlates with porosity of the prepared materials. The total MB removal includes the combination of adsorption and photodegradation without the addition of H2O2. The results of total organic carbon (TOC) analysis reveal that the decolorization of MB in aqueous solution containing oxalic acid corresponds to the decomposition of organic compounds to CO2 and H2O.

  17. Oxidative stress in acidic conditions increases the production of inositol phosphates in chick retinal cells in culture.

    PubMed

    Rego, A C; Duarte, E P; Oliveira, C R

    1996-01-01

    The effect of oxidative stress on the production of [3H]inositol phosphates (InsP) by retinal cells in culture was analyzed. The process of oxidation was induced by incubating the cells with ascorbic acid and ferrous sulphate, and increased extent of oxidation was obtained by varying the pH from neutral to moderate acidosis (pH 6.5). The oxidative process significantly reduced cell viability (about 15%) by decreasing the capacity of mitochondria dehydrogenases to reduce tetrazolium salts, but had no effect on the leakage of lactate dehydrogenase. The production of [3H]InsP, in the absence of receptor activation, was increased dose dependently by oxidative stress. Maximal increases to 189 +/- 7%, 197 +/- 13%, and 329 +/- 22% were observed, respectively, for inositol monophosphates (InsP1), inositol bisphosphates (InsP2), and inositol trisphosphates (InsP3), at 2.5 nmol thiobarbituric acid reactive substances (TBARS)/mg protein. The response to cholinergic receptor activation was slightly decreased in cells oxidized in acidic conditions. Antagonists of glutamate receptors failed to inhibit the enhancement in InsP that occurred upon cellular oxidation, suggesting that the effect was not mediated by activation of glutamate receptors. Cellular oxidation increased by about two fold the uptake of 45Ca2+ in the absence of agonist stimulation. However, stimulation of phospholipase C by Ca2+ did not mediate the increase in [3H]InsP upon cell oxidation in acidic conditions, because the addition of 1-[6-[[17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino] hexyl]-1-H-pyrrole-2,5-dione (U-73122), an inhibitor of phospholipase C-dependent processes, did not affect the production of [3H]InsP in oxidized cells. Nevertheless, U-73122 significantly inhibited carbachol- and K(+)-stimulated accumulation of [3H]InsP. Furthermore, the enhancement of [3H]InsP induced by ascorbate/Fe2+ was still observed in the absence of external Ca2+. This increase in the production of InsP did not

  18. Fatty acid utilization in pressure-overload hypertrophied rat hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reibel, D.K.; O'Rourke, B.

    1986-03-05

    The authors have previously shown that the levels of total tissue coenzyme A and carnitine are reduced in hypertrophied hearts of rats subjected to aortic constriction. It was therefore of interest to determine if these changes were associated with alterations in fatty acid oxidation by the hypertrophied myocardium. Hearts were excised from sham-operated and aortic-constricted rats and perfused at 10 cm H/sub 2/O left atrial filling pressure with a ventricular afterload of 80 cm of H/sub 2/O with buffer containing 1.2 mM /sup 14/C-linoleate. Heart rate and peak systolic pressure were not different in control and hypertrophied hearts. /sup 14/CO/submore » 2/ production was linear in both groups of hearts between 10 and 30 minutes of perfusion. The rate of fatty acid oxidation determined by /sup 14/CO/sub 2/ production during this time was 0.728 +/- 0.06 ..mu..moles/min/g dry in control hearts and 0.710 +/- 0.02 ..mu..moles/min/g dry in hypertrophied hearts. Comparable rates of fatty acid oxidation were associated with comparable rates of O/sub 2/ consumption in the two groups of hearts (39.06 +/- 3.50 and 36.78 +/- 2.39 ..mu..moles/g dry/min for control and hypertrophied hearts, respectively). The data indicate that the ability of the hypertrophied heart to oxidize fatty acids under these perfusion conditions is not impaired in spite of significant reductions in tissue levels of coenzyme A and carnitine.« less

  19. Characterization of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senko, John M.; Wanjugi, Pauline; Lucas, Melanie

    2008-06-12

    We characterized the microbiologically mediated oxidative precipitation of Fe(II) from coalminederived acidic mine drainage (AMD) along flow-paths at two sites in northern Pennsylvania. At the Gum Boot site, dissolved Fe(II) was efficiently removed from AMD whereas minimal Fe(II) removal occurred at the Fridays-2 site. Neither site received human intervention to treat the AMD. Culturable Fe(II) oxidizing bacteria were most abundant at sampling locations along the AMD flow path corresponding to greatest Fe(II) removal and where overlying water contained abundant dissolved O2. Rates of Fe(II) oxidation determined in laboratory-based sediment incubations were also greatest at these sampling locations. Ribosomal RNA intergenicmore » spacer analysis and sequencing of partial 16S rRNA genes recovered from sediment bacterial communities revealed similarities among populations at points receiving regular inputs of Fe(II)-rich AMD and provided evidence for the presence of bacterial lineages capable of Fe(II) oxidation. A notable difference between bacterial communities at the two sites was the abundance of Chloroflexi-affiliated 16S rRNA gene sequences in clone libraries derived from the Gum Boot sediments. Our results suggest that inexpensive and reliable AMD treatment strategies can be implemented by mimicking the conditions present at the Gum Boot field site.« less

  20. Adsorption of fatty acids on iron (hydr)oxides from aqueous solutions.

    PubMed

    Chernyshova, Irina V; Ponnurangam, Sathish; Somasundaran, Ponisseril

    2011-08-16

    The interaction of iron (hydr)oxides with fatty acids is related to many industrial and natural processes. To resolve current controversies about the adsorption configurations of fatty acids and the conditions of the maximum hydrophobicity of the minerals, we perform a detailed study of the adsorption of sodium laurate (dodecanoate) on 150 nm hematite (α-Fe(2)O(3)) particles as a model system. The methods used include in situ FTIR spectroscopy, ex situ X-ray photoelectron spectroscopy (XPS), measurements of the adsorption isotherm and contact angle, as well as the density functional theory (DFT) calculations. We found that the laurate adlayer is present as a mixture of inner-sphere monodentate mononuclear (ISMM) and outer-sphere (OS) hydration shared complexes independent of the solution pH. Protonation of the OS complexes does not influence the conformational order of the surfactant tails. One monolayer, which is filled through the growth of domains and is reached at the micellization/precipitation edge of laurate, makes the particles superhydrophobic. These results contradict previous models of the fatty acid adsorption and suggest new interpretation of literature data. Finally, we discovered that the fractions of both the OS laurate and its molecular form increase in D(2)O, which can be used for interpreting complex spectra. We discuss shortcomings of vibrational spectroscopy in determining the interfacial coordination of carboxylate groups. This work advances the current understanding of the oxide-carboxylate interactions and the research toward improving performance of fatty acids as surfactants, dispersants, lubricants, and anticorrosion reagents.