Sample records for acid pla microspheres

  1. Functionalized antibiofilm thin coatings based on PLA-PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE

    NASA Astrophysics Data System (ADS)

    Grumezescu, Valentina; Socol, Gabriel; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Ficai, Anton; Truşcǎ, Roxana; Bleotu, Coralia; Balaure, Paul Cǎtǎlin; Cristescu, Rodica; Chifiriuc, Mariana Carmen

    2014-05-01

    We report the fabrication of thin coatings of PLA-PVA microspheres loaded with usnic acid by matrix assisted pulsed laser evaporation (MAPLE) onto Ti substrate. The obtained coatings have been physico-chemically characterized by scanning electron microscopy (SEM) and infrared microscopy (IRM). In vitro biological assays have been performed in order to evaluate the influence of fabricated microsphere thin coatings on the Staphylococcus aureus biofilm development as well as their biocompatibility. SEM micrographs have revealed a uniform morphology of thin coatings, while IRM investigations have proved both the homogeneity and functional groups integrity of prepared thin coatings. The obtained microsphere-based thin coatings have proved to be efficient vehicles for usnic acid natural compound with antibiofilm activity, as demonstrated by the inhibitory activity on S. aureus mature biofilm development, opening new perspectives for the prevention and therapy associated to biofilm related infections.

  2. Safety evaluation of poly(lactic-co-glycolic acid)/poly(lactic-acid) microspheres through intravitreal injection in rabbits.

    PubMed

    Rong, Xianfang; Yuan, Weien; Lu, Yi; Mo, Xiaofen

    2014-01-01

    Poly(lactic-co-glycolic acid) (PLGA) and/or poly(lactic-acid) (PLA) microspheres are important drug delivery systems. This study investigated eye biocompatibility and safety of PLGA/PLA microspheres through intravitreal injection in rabbits. Normal New Zealand rabbits were randomly selected and received intravitreal administration of different doses (low, medium, or high) of PLGA/PLA microspheres and erythropoietin-loaded PLGA/PLA microspheres. The animals were clinically examined and sacrificed at 1, 2, 4, 8, and 12 weeks postadministration, and retinal tissues were prepared for analysis. Retinal reactions to the microspheres were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end staining and glial fibrillary acidic protein immunohistochemistry. Retinal structure changes were assessed by hematoxylin and eosin staining and transmission electron microscopy. Finally, retinal function influences were explored by the electroretinography test. Terminal deoxynucleotidyl transferase-mediated dUTP nick end staining revealed no apoptotic cells in the injected retinas; immunohistochemistry did not detect any increased glial fibrillary acidic protein expression. Hematoxylin and eosin staining and transmission electron microscopy revealed no micro- or ultrastructure changes in the retinas at different time points postintravitreal injection. The electroretinography test showed no significant influence of scotopic or photopic amplitudes. The results demonstrated that PLGA/PLA microspheres did not cause retinal histological changes or functional damage and were biocompatible and safe enough for intravitreal injection in rabbits for controlled drug delivery.

  3. Effects of VEGF-ANG-1-PLA nano-sustained release microspheres on proliferation and differentiation of ADSCs.

    PubMed

    He, Yucang; Li, Zihao; Chen, Zhuojie; Yu, Xiaofang; Ji, Ziwan; Wang, Jingping; Qian, Yao; Li, Liqun

    2018-05-10

    The improvement of fat graft viability might depend on the presence of multipotent resident adipose derived stem cells (ADSCs) which is the important component of stromal vascular fraction (SVF). Vascular endothelial growth factor (VEGF) and angiogenin-1 (Ang-1) are responsible for neovascularization. However, their half-life is too short to produce a biological effect. We thus investigated whether VEGF-ANG-1-polylactic acid (PLA) microspheres could enhance the angiogenic properties of ADSCs. PLA microspheres containing VEGF and ANG-1 were prepared by in vitro ultrasonic emulsification and characterized according to their encapsulation efficiency (EE), drug-loading rate (DL), particle size and drug release. The systemic toxicity of empty loaded nanospheres (NPs) and the ability of these microspheres to promote the proliferation and differentiation of ADSCs were evaluated. The EE and DL were above 86% and 2.8%, respectively. The drug release was completed after 20 days. Systemic toxicity was verified in ADSCs that received the unloaded NPs. It was observed that ADSCs treated with VEGF-ANG-1-PLA microspheres had an increase in the proliferation and the number of CD31 positive cells. ADSCs proliferation and differentiation toward endothelial cells (ECs) could be enhanced by the addition of VEGF-ANG-1-PLA nano-sustained release microspheres. This article is protected by copyright. All rights reserved.

  4. Effects of oleic acid surface coating on the properties of nickel ferrite nanoparticles/PLA composites.

    PubMed

    Yin, Hong; Chow, Gan-Moog

    2009-11-01

    Nickel ferrite nanoparticles with or without oleic acid surface coating were mixed with poly(D,L-lactide) (PLA) by double emulsion method. If the nanoparticles were prepared without oleic acid coating, they adsorbed on the PLA surface. If the nanoparticles were coated with oleic acid, they could be readily encapsulated within the PLA microspheres. A slight depression in glass transition temperature was found in all composites and it could be related to the interfacial energies between nanoparticles and PLA. Optimum mixed composite was achieved by reducing interfacial energy. However, loading capacity was limited in this composite. Increasing the amount of nickel ferrite nanoparticles was not useful to increase loading capacity. Cytotoxicity of the composite decreased significantly when nickel ferrite nanoparticles were effectively encapsulated in PLA microspheres. (c) 2008 Wiley Periodicals, Inc.

  5. Improvement in autologous human fat transplant survival with SVF plus VEGF-PLA nano-sustained release microspheres.

    PubMed

    Li, Liqun; Pan, Shengsheng; Ni, Binting; Lin, Yuanshao

    2014-08-01

    Early neovascularization is important for autologous fat transplant survival. SVF cells are ideal seed cells. Both vascular endothelial growth factor (VEGF) and SVF cells can promote neovascularization. However, the half-life (about 50 min) of VEGF is too short to sustain an adequate local concentration. We have investigated whether VEGF-polylactic acid (PLA) nano-sustained release microspheres plus SVF cells can improve neovascularization and survival of transplanted fat tissues. SVF cells were harvested and constructed VEGF-PLA nano-sustained release microspheres in vitro. Human fat tissues was mixed with SVF cells plus VEGF-PLA, SVF cells alone or Dulbecco's modified Eagle's medium as the control. These three mixtures were injected into random sites in 18 nude mice. Two months later, the transplants were weighed and examined histologically; and capillaries were counted to quantify neovascularization. Hematoxylin-eosin (HE) and anti-VEGF stains were applied to reveal cell infiltration. The mean wet weight of fat in the SVF plus VEGF-PLA, SVF alone, and control transplants were 0.18 ± 0.013 g, 0.16 ± 0.015 g, and 0.071 ± 0.12 g, respectively; the differences between groups were statistically significant. More vessels were present in the SVF plus VEGF-PLA transplants than in the other two types. Transplants mixed with SVF cells also had an acceptable density of capillaries. Histological analysis revealed that both the SVF plus VEGF-PLA and SVF alone transplants, but not the control transplants, were composed of adipose tissue, and had less fat necrosis and less fibrosis than control specimens. SVF plus VEGF-PLA transplants had significantly greater capillary density and VEGF expression than the other two transplant groups. Thus transplanted fat tissue survival and quality can be enhanced by the addition of VEGF-PLA nano-sustained release microspheres plus SVF cells. © 2014 International Federation for Cell Biology.

  6. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    NASA Astrophysics Data System (ADS)

    Li, Fengxia; Li, Xiaoli; Li, Bin

    2011-11-01

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe 3O 4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h.

  7. Microcosmic mechanisms for protein incomplete release and stability of various amphiphilic mPEG-PLA microspheres.

    PubMed

    Wei, Yi; Wang, Yu Xia; Wang, Wei; Ho, Sa V; Qi, Feng; Ma, Guang Hui; Su, Zhi Guo

    2012-10-02

    The microcosmic mechanisms of protein (recombinant human growth hormone, rhGH) incomplete release and stability from amphiphilic poly(monomethoxypolyethylene glycol-co-D,L-lactide) (mPEG-PLA, PELA) microspheres were investigated. PELA with different hydrophilicities (PELA-1, PELA-2, and PELA-3) based on various ratios of mPEG to PLA were employed to prepare microspheres exhibiting a narrow size distribution using a combined double emulsion and premix membrane emulsification method. The morphology, rhGH encapsulation efficiency, in vitro release profile, and rhGH stability of PELA microspheres during the release were characterized and compared in detail. It was found that increasing amounts of PLA enhanced the encapsulation efficiency of PELA microspheres but reduced both the release rate of rhGH and its stability. Contact angle, atomic force microscope (AFM), and quartz crystal microbalance with dissipation (QCM-D) techniques were first combined to elucidate the microcosmic mechanism of incomplete release by measuring the hydrophilicity of the PELA film and its interaction with rhGH. In addition, the pH change within the microsphere microenvironment was monitored by confocal laser scanning microscopy (CLSM) employing a pH-sensitive dye, which clarified the stability of rhGH during the release. These results suggested that PELA hydrophilicity played an important role in rhGH incomplete release and stability. Thus, the selection of suitable hydrophilic polymers with adequate PEG lengths is critical in the preparation of optimum protein drug sustained release systems. This present work is a first report elucidating the microcosmic mechanisms responsible for rhGH stability and its interaction with the microspheres. Importantly, this research demonstrated the application of promising new experimental methods in investigating the interaction between biomaterials and biomacromolecules, thus opening up a range of exciting potential applications in the biomedical field

  8. Novel PLA modification of organic microcontainers based on ring opening polymerization: synthesis, characterization, biocompatibility and drug loading/release properties.

    PubMed

    Efthimiadou, E K; Tziveleka, L-A; Bilalis, P; Kordas, G

    2012-05-30

    In the current study, poly lactic acid (PLA) modified hollow crosslinked poly(hydroxyethyl methacrylate) (PHEMA) microspheres have been prepared, in order to obtain a stimulus-responsive, biocompatible carrier with sustained drug release properties. The synthetical process consisted of the preparation of poly(methacrylic acid)@poly(hydroxyethyl methacrylate-co-N,N'-methylene bis(acrylamide)) microspheres by a two stage distillation-precipitation polymerization technique using 2,2'-azobisisobutyronitrile as initiator. Following core removal, a PLA coating of the microspheres was formed, after ring opening polymerization of DL-lactide, attributing the initiator's role to the active hydroxyl groups of PHEMA. The anticancer drug daunorubicin (DNR) was selected for the study of loading and release behavior of the coated microspheres. The loading capacity of the PLA modified microspheres was found to be four times higher than that of the parent ones (16% compared to 4%). This coated microspherical carrier exhibited a moderate pH responsive drug release behavior due to the pH dependent water uptake of PHEMA, and PLA hydrolysis. The in vitro cytotoxicity of both the parent and the DNR-loaded or empty modified hollow microspheres has been also examined on MCF-7 breast cancer cells. The results showed that although the empty microspheres were moderately cytotoxic, the DNR-loaded microspheres had more potent anti-tumor effect than the free drug. Therefore, the prepared coated microspheres are interesting drug delivery systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Morphology control of PLA microfibers and spheres via melt electrospinning

    NASA Astrophysics Data System (ADS)

    Yu, Shu-Xin; Zheng, Jie; Yan, Xu; Wang, Xiao-Xiong; Nie, Guang-Di; Tan, Ye-Qiang; Zhang, Jun; Sui, Kun-Yan; Long, Yun-Ze

    2018-04-01

    In conventional solution electrospinning, the morphologies (e.g., spheres, beaded fibers, and fibers) of electrospun products can be controlled by solution concentration. Here, we report that the morphologies and structures of polylactic acid (PLA) via melt electrospinning also can be adjusted from microfibers to microspheres by simply increasing the spinning temperature. It was found that with temperature increasing from 200 °C to 240 °C, the average diameter of melt-electrospun PLA fibers decreased from 58.46 to 2.96 μm. Then, beaded fibers and microspheres about 14.5 μm in diameter were collected when the spinning temperature was increased to 250 °C and 260 °C. In addition, we also found that the average PLA fiber diameter decreased with increasing the applied spinning voltage, and increased with the increase of spinning distance. To explain the formation mechanism of different PLA microstructures, rheological property and infrared spectra of PLA under different spinning temperatures were also tested.

  10. Magnetically directed poly(lactic acid) [sup 90]Y-microspheres: Novel agents for targeted intracavitary radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haefeli, U.O.; Sweeney, S.M.; Beresford, B.A.

    1994-08-01

    High energy [beta]-emitting radioisotopes like Yttrium-90 have a radiotoxic range of about one centimeter. For cancer treatment they must be brought near the tumor cells and kept there for as long as they are radioactive. The authors developed as carriers for the ionic form of [sup 90]Y a matrix-type polymeric drug delivery system, poly(lactic acid) (PLA) microspheres. This radiopharmaceutical could be selectively delivered to the target site after incorporating 10% Fe[sub 3]O[sub 4] which made the magnetic microspheres (MMS) responsive to an external magnetic field. Furthermore, MMS are biodegradable and slowly hydrolyze into physiologic lactic acid after the radioactivity ismore » completely decayed. Previously prepared 10--40 [mu]m MMS were radiochemically loaded to high specific activity with [sup 90]Y at a pH of 5.7. Stability studies showed that approximately 95% of added [sup 90]Y is retained within the PLA matrix after 28 days (> 10 half-lives) at 37 C in serum, and electron microscopy showed that the microspheres retained their characteristic morphologic appearance for the same time period. Cytotoxicity studies with SK-N-SH neuroblastoma cells growing in monolayer showed that the radiocytotoxicity of the microspheres could be directed magnetically to either kill or spare specific cell populations, thus making them of great interest for targeted intracavitary tumor therapy. The authors are currently optimizing this system for use in the treatment of neoplastic meningitis.« less

  11. Antibacterial poly(lactic acid) (PLA) films grafting electrospun PLA/Ally isothioscyanate (AITC) fibers for food packaging

    USDA-ARS?s Scientific Manuscript database

    Poly(lactic acid) (PLA) fibers of submicron sizes encapsulating allyl isothiocyanate (AITC) (PfA) were made and electrospun onto the surfaces of PLA films (PfA-g-film). SEM examination confirmed that the fibers were grafted to the PLA film after the (PfA-g-film) underwent air blowing and water washi...

  12. A novel strategy for the preparation of porous microspheres and its application in peptide drug loading.

    PubMed

    Wei, Yi; Wang, Yuxia; Zhang, Huixia; Zhou, Weiqing; Ma, Guanghui

    2016-09-15

    A new strategy is developed to prepare porous microspheres with narrow size distribution for peptides controlled release, involving a fabrication of porous microspheres without any porogens followed by a pore closing process. Amphiphilic polymers with different hydrophobic segments (poly(monomethoxypolyethylene glycol-co-d,l-lactide) (mPEG-PLA), poly(monomethoxypolyethylene glycol-co-d,l-lactic-co-glycolic acid) (mPEG-PLGA)) are employed as microspheres matrix to prepare porous microspheres based on a double emulsion-premix membrane emulsification technique combined with a solvent evaporation method. Both microspheres possess narrow size distribution and porous surface, which are mainly caused by (a) hydrophilic polyethylene glycol (PEG) segments absorbing water molecules followed by a water evaporation process and (b) local explosion of microspheres due to fast evaporation of dichloromethane (MC). Importantly, mPEG-PLGA microspheres have a honeycomb like structure while mPEG-PLA microspheres have a solid structure internally, illustrating that the different hydrophobic segments could modulate the affinity between solvent and matrix polymer and influence the phase separation rate of microspheres matrix. Long term release patterns are demonstrated with pore-closed microspheres, which are prepared from mPEG-PLGA microspheres loading salmon calcitonin (SCT). These results suggest that it is potential to construct porous microspheres for drug sustained release using permanent geometric templates as new porogens. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Microspheres for the oral delivery of insulin: preparation, evaluation and hypoglycaemic effect in streptozotocin-induced diabetic rats.

    PubMed

    Zhang, Huan; Wang, Weimei; Li, Haoran; Peng, Yi; Zhang, Zhiqing

    2018-01-01

    Insulin-loaded microspheres were prepared by alternating deposition film layers that were composed of insulin and poly(vinyl sulfate) potassium on the surface of poly(lactic acid) (PLA) microspheres. The preparation of the insulin-loaded microspheres was optimized by an orthogonal test design, and the relationship between drug loading (DL) and film layers was studied. The particle size, DL and encapsulation efficiency of the obtained insulin-loaded microspheres with 10 films were 5.25 ± 0.15 µm, 111.33 ± 1.15 mg/g and 33.7 ± 0.19%, respectively. Following this, the physical characteristics of the insulin-loaded microspheres were investigated. The results from scanning electron microscopy and a laser particle size analyzer (LPSA) indicated the spherical morphology, rough surface and increasing particle sizes of the insulin-loaded microspheres, which were compared to those of PLA microspheres. An in vitro release study showed that the insulin-loaded microspheres were stable in HCl solution (pH 1.0) and released insulin slowly in phosphate-buffered solution (pH 6.8). Finally, the drug efficacy of the prepared insulin-loaded microspheres via oral administration was evaluated in rats with diabetes induced by streptozotocin, and an obvious dose-dependent hypoglycemic effect was observed. This preliminary data could illustrate the prospect of using microspheres for the oral delivery of insulin.

  14. Synthesis and characterization of poly(lactic acid-co-glycolic acid) complex microspheres as drug carriers.

    PubMed

    Wang, Fang; Liu, Xiuxiu; Yuan, Jian; Yang, Siqian; Li, Yueqin; Gao, Qinwei

    2016-10-01

    Poly(lactic-co-glycolic) acid (PLGA) is synthesized via melt polycondensation directly from lactic acid and glycolic acid with a feed molar ratio of 75/25. Bovine serum albumin, which is used as model protein, is entrapped into the poly(lactic-co-glycolic acid) microspheres with particle size of 260.9 ± 20.0 nm by the double emulsification method. Then it is the first report of producing more carboxyl groups by poly(lactic-co-glycolic acid) surface hydrolysis. The purpose is developing poly(lactic-co-glycolic acid) microspheres surface, which is modified with chitosan by chemical reaction between carboxyl groups and amine groups. The particle size and the positive zeta potential of the poly(lactic-co-glycolic acid)/chitosan microspheres are 388.2 ± 35.6 nm and 10.4 ± 2.9 mV, respectively. The drug loading ratio and encapsulation efficacy of poly(lactic-co-glycolic acid)/chitosan microspheres are 36.3% and 57.5%, which are higher than PLGA microspheres. Furthermore, the drug burst release of poly(lactic-co-glycolic acid)/chitosan microspheres at 10 h is decreased to 21.72% while the corresponding value of the poly(lactic-co-glycolic acid) microsphere is 64.56%. These results reveal that surface hydrolysis modification of poly(lactic-co-glycolic acid) is an efficient method to improve the negative potential and chemical reaction properties of the polymer. And furthermore, this study shows that chitosan-modified poly(lactic-co-glycolic acid) microspheres is a promising system for the controlled release of pharmaceutical proteins. © The Author(s) 2016.

  15. Carbidopa/levodopa-loaded biodegradable microspheres: in vivo evaluation on experimental Parkinsonism in rats.

    PubMed

    Arica, Betül; Kaş, H Süheyla; Moghdam, Amir; Akalan, Nejat; Hincal, A Atilla

    2005-02-16

    The purpose of this study was to prepare and characterize injectable carbidopa (CD)/levodopa (LD)-loaded Poly(L-lactides) (L-PLA), Poly(D,L-lactides) (D,L-PLA) and Poly(D,L-lactide-co-glycolide) (PLAGA) microspheres for the intracerebral treatment of Parkinson's disease. The microspheres were prepared by solvent evaporation method. The polymers' (L-PLA, D,L-PLA and PLAGA) concentrations were 10% (w/w) in the organic phase; the emulsifiers [sodium carboxymethylcellulose (NaCMC):sodium oleate (SO) and Polyvinyl alcohol (PVA):SO mixture (4:1 w/v)] concentrations were 0.75% in the aqueous phase. Microspheres were analyzed for morphological characteristics, size distribution, drug loading and in vitro release. The release profile of CD/LD from microspheres was characterized in the range of 12-35% within the first hour of the in vitro release experiment. The efficiency of CD- and LD-encapsulated microspheres to striatal transplantation and the altering of apomorphine-induced rotational behavior in the 6-hydroxydopamine (6-OHDA) unilaterally lesioned rat model were also tested. 6-OHDA/CD-LD-loaded microsphere groups exhibited lower rotation scores than 6-OHDA/Blank microsphere groups as early as 1 week postlesion. These benefits continued throughout the entire experimental period and they were statistically significant during the 1, 2 and 8 weeks (p<0.05). CD/LD-loaded microspheres were specifically prepared to apply as an injectable dosage forms for brain implantation.

  16. Preparation and characterization of injectable Mitoxantrone poly (lactic acid)/fullerene implants for in vivo chemo-photodynamic therapy.

    PubMed

    Li, Zhi; Zhang, Fei-long; Pan, Li-li; Zhu, Xia-li; Zhang, Zhen-zhong

    2015-08-01

    Fullerene (C60) L-phenylalanine derivative attached with poly (lactic acid) (C60-phe-PLA) was developed to prepare injectable Mitoxantrone (MTX) multifunctional implants. C60-phe-PLA was self-assembled to form microspheres consisting of a hydrophilic antitumor drug (MTX) and a hydrophobic block (C60) by dispersion-solvent diffusion method. The self-assembled microspheres showed sustained release pattern almost 15days in vitro release experiments. According to the tissue distribution of C57BL mice after intratumoral administration of the microspheres, the MTX mainly distributed in tumors, and rarely in heart, liver, spleen, lung, and kidney. Photodynamic antitumor efficacy of blank microsphere was realized. Microspheres afforded high antitumor efficacy without obvious toxic effects to normal organs, owing to its significantly increased MTX tumor retention time, low MTX levels in normal organs and strong photodynamic activity of PLA-phe-C60. These C60-phe-PLA microspheres may be promising for the efficacy with minimal side effects in future treatment of solid tumors. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios gun system.

    PubMed

    Uchida, Masaki; Natsume, Hideshi; Kobayashi, Daisuke; Sugibayashi, Kenji; Morimoto, Yasunori

    2002-05-01

    We investigated the effects of the particle size of indomethacin-loaded poly-L-lactic acid microspheres (IDM-loaded PLA MS), the helium pressure used to accelerate the particles, and the bombardment dose of PLA MS on the plasma concentration of IDM after bombarding with IDM-loaded PLA MS of different particle size ranges, 20-38, 44-53 and 75-100 microm, the abdomen of hairless rats using the Helios gene gun system (Helios gun system). Using larger particles and a higher helium pressure, produced an increase in the plasma IDM concentration and the area under the plasma concentration-time curve (AUC) and resultant F (relative bioavailability with respect to intracutaneous injection) of IDM increased by an amount depending on the particle size and helium pressure. Although a reduction in the bombardment dose led to a decrease in C(max) and AUC, F increased on decreasing the bombardment dose. In addition, a more efficient F was obtained after bombarding with IDM-loaded PLA MS of 75-100 microm in diameter at each low dose in different sites of the abdomen compared with that after bolus bombardment with a high dose (dose equivalent). These results suggest that the bombardment injection of drug-loaded microspheres by the Helios gun system is a very useful tool for delivering a variety of drugs in powder form into the skin and systemic circulation.

  18. Polylactic acid (PLA) controlled delivery carriers for biomedical applications.

    PubMed

    Tyler, Betty; Gullotti, David; Mangraviti, Antonella; Utsuki, Tadanobu; Brem, Henry

    2016-12-15

    Polylactic acid (PLA) and its copolymers have a long history of safety in humans and an extensive range of applications. PLA is biocompatible, biodegradable by hydrolysis and enzymatic activity, has a large range of mechanical and physical properties that can be engineered appropriately to suit multiple applications, and has low immunogenicity. Formulations containing PLA have also been Food and Drug Administration (FDA)-approved for multiple applications making PLA suitable for expedited clinical translatability. These biomaterials can be fashioned into sutures, scaffolds, cell carriers, drug delivery systems, and a myriad of fabrications. PLA has been the focus of a multitude of preclinical and clinical testing. Three-dimensional printing has expanded the possibilities of biomedical engineering and has enabled the fabrication of a myriad of platforms for an extensive variety of applications. PLA has been widely used as temporary extracellular matrices in tissue engineering. At the other end of the spectrum, PLA's application as drug-loaded nanoparticle drug carriers, such as liposomes, polymeric nanoparticles, dendrimers, and micelles, can encapsulate otherwise toxic hydrophobic anti-tumor drugs and evade systemic toxicities. The clinical translation of these technologies from preclinical experimental settings is an ever-evolving field with incremental advancements. In this review, some of the biomedical applications of PLA and its copolymers are highlighted and briefly summarized. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Additive Manufacturing and Characterization of Polylactic Acid (PLA) Composites Containing Metal Reinforcements

    NASA Technical Reports Server (NTRS)

    Kuentz, Lily; Salem, Anton; Singh, M.; Halbig, M. C.; Salem, J. A.

    2016-01-01

    Additive manufacturing of polymeric systems using 3D printing has become quite popular recently due to rapid growth and availability of low cost and open source 3D printers. Two widely used 3D printing filaments are based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) systems. PLA is much more environmentally friendly in comparison to ABS since it is made from renewable resources such as corn, sugarcane, and other starches as precursors. Recently, polylactic acid-based metal powder containing composite filaments have emerged which could be utilized for multifunctional applications. The composite filaments have higher density than pure PLA, and the majority of the materials volume is made up of polylactic acid. In order to utilize functionalities of composite filaments, printing behavior and properties of 3-D printed composites need to be characterized and compared with the pure PLA materials. In this study, pure PLA and composite specimens with different metallic reinforcements (Copper, Bronze, Tungsten, Iron, etc) were 3D printed at various layer heights and resulting microstructures and properties were characterized. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) behavior of filaments with different reinforcements were studied. The microscopy results show an increase in porosity between 3-D printed regular PLA and the metal composite PLA samples, which could produce weaker mechanical properties in the metal composite materials. Tensile strength and fracture toughness behavior of specimens as a function of print layer height will be presented.

  20. Molecular Cloning and Pharmacological Properties of an Acidic PLA2 from Bothrops pauloensis Snake Venom

    PubMed Central

    Ferreira, Francis Barbosa; Gomes, Mário Sérgio Rocha; Naves de Souza, Dayane Lorena; Gimenes, Sarah Natalie Cirilo; Castanheira, Letícia Eulalio; Borges, Márcia Helena; Rodrigues, Renata Santos; Yoneyama, Kelly Aparecida Geraldo; Homsi Brandeburgo, Maria Inês; Rodrigues, Veridiana M.

    2013-01-01

    In this work, we describe the molecular cloning and pharmacological properties of an acidic phospholipase A2 (PLA2) isolated from Bothrops pauloensis snake venom. This enzyme, denominated BpPLA2-TXI, was purified by four chromatographic steps and represents 2.4% of the total snake venom protein content. BpPLA2-TXI is a monomeric protein with a molecular mass of 13.6 kDa, as demonstrated by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) analysis and its theoretical isoelectric point was 4.98. BpPLA2-TXI was catalytically active and showed some pharmacological effects such as inhibition of platelet aggregation induced by collagen or ADP and also induced edema and myotoxicity. BpPLA2-TXI displayed low cytotoxicity on TG-180 (CCRF S 180 II) and Ovarian Carcinoma (OVCAR-3), whereas no cytotoxicity was found in regard to MEF (Mouse Embryonic Fibroblast) and Sarcoma 180 (TIB-66). The N-terminal sequence of forty-eight amino acid residues was determined by Edman degradation. In addition, the complete primary structure of 122 amino acids was deduced by cDNA from the total RNA of the venom gland using specific primers, and it was significantly similar to other acidic D49 PLA2s. The phylogenetic analyses showed that BpPLA2-TXI forms a group with other acidic D49 PLA2s from the gender Bothrops, which are characterized by a catalytic activity associated with anti-platelet effects. PMID:24304676

  1. EFFECTS OF THE GRAM STAIN ON MICROSPHERES FROM THERMAL POLYAMINO ACIDS1

    PubMed Central

    Fox, Sidney W.; Yuyama, Shuhei

    1963-01-01

    Fox, Sidney W. (The Florida State University, Tallahassee) and Shuhei Yuyama. Effects of the Gram stain on microspheres from thermal polyamino acids. J. Bacteriol. 85:279–283. 1963.—Microspheres produced from acid proteinoid accept the Gram stain. The stain is negative, but microspheres produced from mixtures containing a sufficient proportion of lysine proteinoid stain positive. Microspheres produced from mixtures containing the appropriate proportions contain individuals which stain positive and others which stain negative. Images PMID:13959050

  2. In-vitro evaluation of Polylactic acid (PLA) manufactured by fused deposition modeling.

    PubMed

    Wurm, Matthias C; Möst, Tobias; Bergauer, Bastian; Rietzel, Dominik; Neukam, Friedrich Wilhelm; Cifuentes, Sandra C; Wilmowsky, Cornelius von

    2017-01-01

    With additive manufacturing (AM) individual and biocompatible implants can be generated by using suitable materials. The aim of this study was to investigate the biological effects of polylactic acid (PLA) manufactured by Fused Deposition Modeling (FDM) on osteoblasts in vitro according to European Norm / International Organization for Standardization 10,993-5. Human osteoblasts (hFOB 1.19) were seeded onto PLA samples produced by FDM and investigated for cell viability by fluorescence staining after 24 h. Cell proliferation was measured after 1, 3, 7 and 10 days by cell-counting and cell morphology was evaluated by scanning electron microscopy. For control, we used titanium samples and polystyrene (PS). Cell viability showed higher viability on PLA (95,3% ± 2.1%) than in control (91,7% ±2,7%). Cell proliferation was highest in the control group (polystyrene) and higher on PLA samples compared to the titanium samples. Scanning electron microscopy revealed homogenous covering of sample surface with regularly spread cells on PLA as well as on titanium. The manufacturing of PLA discs from polylactic acid using FDM was successful. The in vitro investigation with human fetal osteoblasts showed no cytotoxic effects. Furthermore, FDM does not seem to alter biocompatibility of PLA. Nonetheless osteoblasts showed reduced growth on PLA compared to the polystyrene control within the cell experiments. This could be attributed to surface roughness and possible release of residual monomers. Those influences could be investigated in further studies and thus lead to improvement in the additive manufacturing process. In addition, further research focused on the effect of PLA on bone growth should follow. In summary, PLA processed in Fused Deposition Modelling seems to be an attractive material and method for reconstructive surgery because of their biocompatibility and the possibility to produce individually shaped scaffolds.

  3. Blends of low molecular weight of poly lactic acid (PLA) with gondorukem (gum rosin)

    NASA Astrophysics Data System (ADS)

    Kaavessina, Mujtahid; Distantina, Sperisa; Chafidz, Achmad; Utama, Aditya; Anggraeni, Venisa Mega Puteri

    2018-02-01

    The utilization of plastic was increasing as well as the increasing its demand in wide range application. Consequently, the number of plastic litter will increase and make more serious environmental problems. This research concerns to minimize waste problems by designing biodegradable plastic. In this research, biodegradable plastic was made of poly lactic acid (PLA) and gondorukem (Gum rosin, Resina colophonium) as the plasticizer. The effect of gondorukem towards PLA properties such as rheology and degradability was investigated. The research divided into two steps: (i) the polycondensation of lactic acid (LA) and (ii) modification of obtained poly lactic acid. In the first step, polycondensation was done in N2 atmosphere (138°C) for 30 hours and added 0.1 %w of SnCl2 as catalyst. Bulk modification was conducted by blending of gondurukem in varied weight (0.5, 1, and 2 g in 10 g of PLA). Furthermore, the modified PLA was analyzed its molecular structure, biodegradability and rheological property. The presence of gondorukem enhanced the biodegradability of poly lactic acid. Gondorukem could act as the plasticizer. It is confirmed that the complex viscosity of PLA melt decreased upon the addition of gondorukem

  4. Effect of palmitic acid on the characteristics and release profiles of rotigotine-loaded microspheres.

    PubMed

    Wang, Aiping; Liang, Rongcai; Liu, Wanhui; Sha, Chunjie; Li, Youxin; Sun, Kaoxiang

    2016-01-01

    The initial burst release is a major obstacle to the development of microsphere-formulated drug products. To investigate the influence of palmitic acid on the characteristics and release profiles of rotigotine-loaded poly(d,l-lactide-co-glycolide) microspheres. Rotigotine-loaded microspheres (RMS) were prepared using the oil-in-water emulsion solvent evaporation technique. The in vitro characteristics of the RMS were evaluated with scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and a particle size analyzer. The in vitro drug release and in vivo pharmacokinetics of the RMS were investigated. The SEM results showed that the addition of palmitic acid changed the surface morphology of the microspheres from smooth to dimpled and then to non-smooth as the palmitic acid content increased. DSC revealed the existence of molecularly dispersed forms of palmitic acid in the microspheres. The in vitro and in vivo release profiles indicated that the addition of 5% and 8% palmitic acid significantly decreased the burst release of rotigotine from the microspheres, and the late-stage release was delayed as the palmitic acid content increased across the investigated range (5-15%). The addition of palmitic acid to the microspheres significantly affects the release profile of rotigotine from RMS.

  5. Polymer Film-Based Screening and Isolation of Polylactic Acid (PLA)-Degrading Microorganisms.

    PubMed

    Kim, Mi Yeon; Kim, Changman; Moon, Jungheun; Heo, Jinhee; Jung, Sokhee P; Kim, Jung Rae

    2017-02-28

    Polylactic acid (PLA) has been highlighted as an alternative renewable polymer for the replacement of petroleum-based plastic materials, and is considered to be biodegradable. On the other hand, the biodegradation of PLA by terminal degraders, such as microorganisms, requires a lengthy period in the natural environment, and its mechanism is not completely understood. PLA biodegradation studies have been conducted using mainly undefined mixed cultures, but only a few bacterial strains have been isolated and examined. For further characterization of PLA biodegradation, in this study, the PLA-degrading bacteria from digester sludge were isolated and identified using a polymer film-based screening method. The enrichment of sludge on PLA granules was conducted with the serial transference of a subculture into fresh media for 40 days, and the attached biofilm was inoculated on a PLA film on an agar plate. 3D optical microscopy showed that the isolates physically degraded the PLA film due to bacterial degradation. 16S rRNA gene sequencing identified the microbial colonies to be Pseudomonas sp. MYK1 and Bacillus sp. MYK2. The two isolates exhibited significantly higher specific gas production rates from PLA biodegradation compared with that of the initial sludge inoculum.

  6. Polymer blends of polylactic acid (PLA) and polybutylene succinate-adipate

    NASA Astrophysics Data System (ADS)

    Ma, Wenguang

    A series of blends consisting of polylactic acid (PLA) and aliphatic succinate polyester (BionolleRTM #3000) had been prepared and investigated. The results of mechanical property investigations showed that using 20 wt% Bionolle#3000 can significantly increase the toughness of PLA. BionolleRTM #3000 also reduces the physical aging rate of PLA so blends remain tough longer. Conversely, the stiffness of BionolleRTM #3000 can be significantly increased by blending in PLA. DMA and DSC results show that PLA/BionolleRTM 3000 blends are not thermodynamically miscible, but are compatible blends. Studies have also been performed to determine the amount and rate of aerobic biodegradation of PLA/aliphatic succinate polyester blends in biologically active composting, enzymatic, and soil environments. The changes in molecular weight, molecular structure and thermal properties in the composting environment were also studied by GPC, NMR and DSC analyses. The research results showed BionolleRTM #3000 had a high degradation rate, while PLA had a low degradation rate. PLA/BionolleRTM #3000 blends had moderate degradation rates that increased with BionolleRTM #3000 content. The melt flow behavior of PLA/BionolleRTM #3000 blends has been studied by capillary rheometry. The relationship of the blends' viscosity with their composition, shear stress, shear rate, and temperature has been investigated. Power law index and activation energy of PLA, BionolleRTM #3000 and their blends have been calculated. The experimental and theoretical data can let us understand the processability of PLA/BionolleRTM #3000 blends. A scanning electron microscope (SEM) was used to investigate the morphological structure of the PLA/BionolleRTM #3000 blends. Micrographs of the samples made from different methods (blown film, extrudate and compression molding sheet) were taken; their differences in morphology were compared. For comparison, the micrographs of blend PLA/BionolleRTM #6000 was also studied. The

  7. Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma

    PubMed Central

    Chiang, B.; Kim, Y.C.; Doty, A.C.; Grossniklaus, H.E.; Schwendeman, S.P.; Prausnitz, M.R.

    2016-01-01

    Although effective drugs that lower intraocular pressure (IOP) in the management of glaucoma exist, their efficacy is limited by poor patient adherence to the prescribed eye drop regimen. To replace the need for eye drops, in this study we tested the hypothesis that IOP can be reduced for one month after a single targeted injection using a microneedle for administration of a glaucoma medication (i.e., brimonidine) formulated for sustained release in the supraciliary space of the eye adjacent to the drug’s site of action at the ciliary body. To test this hypothesis, brimonidine-loaded microspheres were formulated using poly(lactic acid) (PLA) to release brimonidine at a constant rate for 35 days and microneedles were designed to penetrate through the sclera, without penetrating into the choroid/retina, in order to target injection into the supraciliary space. A single administration of these microspheres using a hollow microneedle was performed in the eye of New Zealand White rabbits and was found to reduce IOP initially by 6 mm Hg and then by progressively smaller amounts for more than one month. All administrations were well tolerated without significant adverse events, although histological examination showed a foreign-body reaction to the microspheres. This study demonstrates, for the first time, that the highly-targeted delivery of brimonidine-loaded microspheres into the supraciliary space using a microneedle is able to reduce IOP for one month as an alternative to daily eye drops. PMID:26930266

  8. Tensile and morphology properties of PLA/LNR blends modified with maleic anhydride grafted-polylactic acid and -natural rubber

    NASA Astrophysics Data System (ADS)

    Ruf, Mohd Farid Hakim Mohd; Ahmad, Sahrim; Chen, Ruey Shan; Shahdan, Dalila; Zailan, Farrah Diyana

    2018-04-01

    This research was carried out to investigate the addition of grafted copolymers of maleic anhydride grafted-polylactic acid(PLA-g-MA) and maleic anhydride grafted-natural rubber (NR-g-MA) on the tensile and morphology properties of polylactic acid/ liquid natural rubber (PLA/LNR) blends. Prior to blend preparation, the PLA-g-MA and NR-g-MA was first self-synthesized using maleic anhydride (MA) and dicumyl peroxide (DCP) as initiator together with the PLA and NR respectively. The PLA/LNR, PLA/LNR/PLA-g-MA and PLA/LNR/NR-g-MA blends were prepared via melt-blending method. The loading of PLA-g-MA and NR-g-MA was varied by 5, 10 and 15 wt% respectively. The addition of PLA-g-MA led to increment in tensile strength with 5 and 10 wt% while NR-g-MA gives lower than controlled sample (PLA/LNR blend). Scanning electron microscope (SEM) showed the interaction of the components in the blends. The PLA/LNR compatibilized with PLA-g-MA and NR-g-MA shows greater dispersion and adhesion.

  9. Effect of an acid filler on hydrolysis and biodegradation of poly-lactic acid (PLA)

    NASA Astrophysics Data System (ADS)

    Iozzino, Valentina; Speranza, Vito; Pantani, Roberto

    2015-12-01

    The use of biodegradable polymers is certainly an excellent strategy to solve many of the problems related to the disposal of the traditional polymers, whose accumulation in the environment is harmful and damaging. In order to optimize the use of biodegradable polymers, it is very important to understand and control the transformation processes, the structures and the morphologies resulting from the process conditions used to produce the articles and, not least, the biodegradation. The latter is strictly dependent on the just mentioned variables. The poly-lactic acid, PLA, is a biodegradable polymer. Many studies have been carried out on the degradation process of this polymer. In the course of this work we performed degradation tests on the PLA, with a specific D-isomer content, having amorphous structure, and in particular of biodegradation and hydrolysis. An acid chemical, fumaric acid, was added to PLA with the objective of controlling the rate of hydrolysis and of biodegradation. The hydrolysis process was followed, as function of time, by means of different techniques: pH variation, variation of weight of samples and variation of crystallinity degree and glass transition temperature using DSC analysis. The samples were also analyzed in terms of biodegradability by means of a homemade respirometer apparatus, in controlled composting conditions.

  10. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity

    PubMed Central

    Fan, Rangrang; Li, Xiaoling; Deng, Jiaojiao; Gao, Xiang; Zhou, Liangxue; Zheng, Yu; Tong, Aiping; Zhang, Xiaoning; You, Chao; Guo, Gang

    2016-01-01

    One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer. PMID:27324595

  11. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity

    NASA Astrophysics Data System (ADS)

    Fan, Rangrang; Li, Xiaoling; Deng, Jiaojiao; Gao, Xiang; Zhou, Liangxue; Zheng, Yu; Tong, Aiping; Zhang, Xiaoning; You, Chao; Guo, Gang

    2016-06-01

    One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer.

  12. Preparation of uniform-sized PELA microspheres with high encapsulation efficiency of antigen by premix membrane emulsification.

    PubMed

    Wei, Qiang; Wei, Wei; Tian, Rui; Wang, Lian-Yan; Su, Zhi-Guo; Ma, Guang-Hui

    2008-07-15

    Relatively uniform-sized poly(lactide-co-ethylene glycol) (PELA) microspheres with high encapsulation efficiency were prepared rapidly by a novel method combining emulsion-solvent extraction and premix membrane emulsification. Briefly, preparation of coarse double emulsions was followed by additional premix membrane emulsification, and antigen-loaded microspheres were obtained by further solidification. Under the optimum condition, the particle size was about 1 mum and the coefficient of variation (CV) value was 18.9%. Confocal laser scanning microscope and flow cytometer analysis showed that the inner droplets were small and evenly dispersed and the antigen was loaded uniformly in each microsphere when sonication technique was occupied to prepare primary emulsion. Distribution pattern of PEG segment played important role on the properties of microspheres. Compared with triblock copolymer PLA-PEG-PLA, the diblock copolymer PLA-mPEG yielded a more stable interfacial layer at the interface of oil and water phase, and thus was more suitable to stabilize primary emulsion and protect coalescence of inner droplets and external water phase, resulting in high encapsulation efficiency (90.4%). On the other hand, solidification rate determined the time for coalescence during microspheres fabrication, and thus affected encapsulation efficiency. Taken together, improving the polymer properties and solidification rate are considered as two effective strategies to yield high encapsulation.

  13. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery

    PubMed Central

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. PMID:24855351

  14. Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing.

    PubMed

    Zhang, Pan; Yang, Hui; Wang, Guojun; Tong, Weijun; Gao, Changyou

    2016-06-01

    The poly(allylamine hydrochloride)/trisodium citrate aggregates were fabricated and further covalently crosslinked via the coupling reaction of carboxylic sites on trisodium citrate with the amine groups on polyamine, onto which poly-L-lysine and hyaluronic acid were sequentially assembled, forming stable microspheres. The pH sensitive dye and pH insensitive dye were further labeled to enable the microspheres with pH sensing property. Moreover, these microspheres could be specifically targeted to HeLa tumor cells, since hyaluronic acid can specifically recognize and bind to CD44, a receptor overexpressed on many tumor cells. Quantitative pH measurement by confocal laser scanning microscopy demonstrated that the microspheres were internalized into HeLa cells, and accumulated in acidic compartments. By contrast, only a few microspheres were adhered on the NIH 3T3 cells surface. The microspheres with combined pH sensing property and targeting ability can enhance the insight understanding of the targeted drug vehicles trafficking after cellular internalization. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Synthesis and characterization of L-lactide and polylactic acid (PLA) from L-lactic acid for biomedical applications

    NASA Astrophysics Data System (ADS)

    Rahmayetty, Sukirno, Prasetya, Bambang; Gozan, Misri

    2017-02-01

    Lactide is the monomer for the polymer polylactic acid (PLA) from lactic acid through polycondensation and depolymerization process. The properties of PLA strongly depend on the quality of the lactide monomer from which it is synthesized. Optical purity of lactide produced in depolymerization process confirmed to be L-lactide. The highest yield of crude lactide was 38.5% at temperature 210 °C with average molecular weight (Mn) of oligomer was 2389. Ring opening polymerization of lactide using Candida rugosa lipase as biocatalyst to PLLA synthesis has been achieved to generate useful biomedical materials free from heavy metal.

  16. Modification of cellulose nanocrystals (CNCs) for use in poly(lactic acid) (PLA)-CNC composite packaging products

    Treesearch

    Liqing Wei; Nicole M. Stark; Ronald C. Sabo; Laurent Matuana

    2016-01-01

    There is growing interest in developing bio-based materials for packaging. Bio-derived materials such as cellulose nanocrystals (CNCs) and poly(lactic acid) (PLA) can be used to develop sustainable packaging applications. Incorporating CNCs into PLA can increase the crystallinity and barrier properties of PLA. The challenge lies in both increasing the flexibility of...

  17. Preparation, characterization, and in vitro testing of poly(lactide-co-glycolide) and dextran magnetic microspheres for in vivo applications

    NASA Astrophysics Data System (ADS)

    Leamy, Patrick J.

    Many research groups are investigating degradable magnetic particles for magnetic resonance imaging (MRI) contrast agents and as carriers for magnetic drug guidance. These particles are composite materials with a degradable polymer matrix and iron oxide nanoparticles for magnetic properties. The degradable polymer matrix acts to provide colloidal stability and, for drug delivery applications, provides a reservoir for the storage and release of drugs. Natural polymers, like albumin and dextran, which degrade by the action of enzymes; have been used for the polymer matrix. Iron oxide nanoparticles are used for magnetic properties since they can be digested in vivo and have low toxicities. Polylactic acid (PLA) and its copolymers with polyglycolic acid (PLGA) are versatile polymers that degrade by simple hydrolysis without the aid of enzymes. Microspheres are easily formed using the solvent extraction/evaporation method and a wide range of drugs can be encapsulated in them. Magnetic PLGA microspheres suitable for applications were synthesized for the first time in this dissertation. This was accomplished by coating iron oxide nanoparticles with oleic acid to make them dispersible in the organic solvents used in the extraction/evaporation microsphere preparation method. In addition to the magnetic PLGA microspheres, a novel all-aqueous method for preparing crosslinked dextran magnetic microspheres was developed in this dissertation. This method uses free radical polymerization for crosslinking and does not require the use of flammable and harmful solvents. For efficient MRI contrast and magnetic drug guidance, maximized iron oxide content of microspheres is desirable. The two different microsphere preparation methods were optimized for iron oxide content. The effect of iron oxide content on microsphere size and morphology was studied. In addition, an in vitro circulation model was used to evaluate the ability of magnetic microspheres to be guided at physiologic blood

  18. A Micro-Ark for Cells: Highly Open Porous Polyhydroxyalkanoate Microspheres as Injectable Scaffolds for Tissue Regeneration.

    PubMed

    Wei, Dai-Xu; Dao, Jin-Wei; Chen, Guo-Qiang

    2018-06-19

    To avoid large open surgery using scaffold transplants, small-sized cell carriers are employed to repair complexly shaped tissue defects. However, most cell carriers show poor cell adherences and viability. Therefore, polyhydroxyalkanoate (PHA), a natural biopolymer, is used to prepare highly open porous microspheres (OPMs) of 300-360 µm in diameter, combining the advantages of microspheres and scaffolds to serve as injectable carriers harboring proliferating stem cells. In addition to the convenient injection to a defected tissue, and in contrast to poor performances of OPMs made of polylactides (PLA OPMs) and traditional less porous hollow microspheres (PHA HMs), PHA OPMs present suitable surface pores of 10-60 µm and interconnected passages with an average size of 8.8 µm, leading to a high in vitro cell adhesion of 93.4%, continuous proliferation for 10 d and improved differentiation of human bone marrow mesenchymal stem cells (hMSCs). PHA OPMs also support stronger osteoblast-regeneration compared with traditional PHA HMs, PLA OPMs, commercial hyaluronic acid hydrogels, and carrier-free hMSCs in an ectopic bone-formation mouse model. PHA OPMs protect cells against stresses during injection, allowing more living cells to proliferate and migrate to damaged tissues. They function like a micro-Noah's Ark to safely transport cells to a defect tissue. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Improved thermal stability of polylactic acid (PLA) composite film via PLA-β-cyclodextrin-inclusion complex systems.

    PubMed

    Byun, Youngjae; Rodriguez, Katia; Han, Jung H; Kim, Young Teck

    2015-11-01

    The effects of the incorporation of PLA-β-cyclodextrin-inclusion complex (IC) and β-cyclodextrin (β-CD) on biopolyester PLA films were investigated. Thermal stability, surface morphology, barrier, and mechanical properties of the films were measured at varying IC (1, 3, 5, and 7%) and β-CD (1 and 5%) concentrations. The PLA-IC-composite films (IC-PLA-CFs) showed uniform morphological structure, while samples containing β-CD (β-CD-PLA-CFs) showed high agglomeration of β-CD due to poor interfacial interaction between β-CD and PLA moieties. According to the thermal property analysis, the 5% IC-PLA-CFs showed 6.6 times lower dimensional changes (6.5%) at the temperature range of 20-80°C than that of pure PLA film (43.0%). The increase of IC or β-CD content in the PLA-composite films shifted the glass transition and crystallization temperature to higher temperature regions. The crystallinity of both composite films improved by increasing IC or β-CD content. Both composite films had higher oxygen and water vapor permeability as IC or β-CD content increased in comparison to pure PLA film. All the composite films had less flexibility and lower tensile strength than the pure PLA film. In conclusion, this study shows that the IC technique is valuable to improve the thermal expansion stability of PLA-based films. Published by Elsevier B.V.

  20. Preparation and physicochemical characteristics of polylactide microspheres of emamectin benzoate by modified solvent evaporation/extraction method.

    PubMed

    Zhang, Shao Fei; Chen, Peng Hao; Zhang, Fei; Yang, Yan Fang; Liu, De Kun; Wu, Gang

    2013-12-18

    Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 μm, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 ± 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 ± 2.11 and 22.7 ± 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase.

  1. Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Cai, Shuyu; Zhang, Rongbo; Liu, Peng; Chen, Hongbo; Zheng, Yi; Sun, Leilei

    2013-10-01

    A system of novel nanoparticles of star-shaped cholic acid-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment.

  2. Interaction between dimethyldioctadecylammonium bromide-modified PLGA microspheres and hyaluronic acid

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Devi, Krisanti, Elsa

    2017-02-01

    In application of intravitreal injection, an extended drug delivery system is desired so that the frequency of injection to treat diabetic retinopathy may be reduced. Poly(lactic-co-glycolic acid) polymer (PLGA) was used to encapsulate a model drug in the form of microspheres. The zeta potential of dimethyldioctadecylammonium bromide (DDAB)-modified PLGA microspheres in water was proportional to the DDAB concentration used in the preparation step, up to +57.8 mV. The scanning electron microscope pictures and the zeta potential data (SEM) confirmed that the surface of the PLGA has been modified by the cationic surfactant and that electrostatic interaction between the positively charged microspheres and the negatively charged vitreous were present.

  3. Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay.

    PubMed

    B, Ayana; Suin, Supratim; Khatua, B B

    2014-09-22

    Highly exfoliated, biodegradable thermoplastic starch (TPS)/polylactic acid (PLA)/sodium montmorillonite (NaMMT) nanocomposites were prepared by an eco-friendly approach, involving in-situ gelatinization of potato starch in presence of dispersed nanoclay followed by melt mixing with PLA. The morphological analysis revealed that the NaMMT was selectively dispersed into the TPS in a highly delaminated manner. An increase in mechanical as well as thermomechanical properties was evident in the presence of PLA and more influenced in the presence of clay. The water absorption was significantly decreased in the presence of PLA (∼8%) itself and both PLA and clay (∼8-12%) in the nanocomposites. The improved mechanical properties along with its biodegradability might lead to a new green material in the area of packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity.

    PubMed

    Ostafinska, Aleksandra; Fortelný, Ivan; Hodan, Jiří; Krejčíková, Sabina; Nevoralová, Martina; Kredatusová, Jana; Kruliš, Zdeněk; Kotek, Jiří; Šlouf, Miroslav

    2017-05-01

    Blends of two biodegradable polymers, poly(lactic acid) (PLA) and poly(ϵ-caprolactone) (PCL), with strong synergistic improvement in mechanical performance were prepared by melt-mixing using the optimized composition (80/20) and the optimized preparation procedure (a melt-mixing followed by a compression molding) according to our previous study. Three different PLA polymers were employed, whose viscosity decreased in the following order: PLC ≈ PLA1 > PLA2 > PLA3. The blends with the highest viscosity matrix (PLA1/PCL) exhibited the smallest PCL particles (d∼0.6μm), an elastic-plastic stable fracture (as determined from instrumented impact testing) and the strongest synergistic improvement in toughness (>16× with respect to pure PLA, exceeding even the toughness of pure PCL). According to the available literature, this was the highest toughness improvement in non-compatiblized PLA/PCL blends ever achieved. The decrease in the matrix viscosity resulted in an increase in the average PCL particle size and a dramatic decrease in the overall toughness: the completely stable fracture (for PLA1/PCL) changed to the stable fracture followed by unstable crack propagation (for PLA2/PCL) and finally to the completely brittle fracture (for PLA3/PCL). The stiffness of all blends remained at well acceptable level, slightly above the theoretical predictions based on the equivalent box model. Despite several previous studies, the results confirmed that PLA and PCL could behave as compatible polymers, but the final PLA/PCL toughness is extremely sensitive to the PCL particle size distribution, which is influenced by both processing conditions and PLA viscosity. PLA/PCL blends with high stiffness (due to PLA) and toughness (due to PCL) are very promising materials for medical applications, namely for the bone tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Plasma Modification of Poly Lactic Acid Solutions to Generate High Quality Electrospun PLA Nanofibers.

    PubMed

    Rezaei, Fatemeh; Nikiforov, Anton; Morent, Rino; De Geyter, Nathalie

    2018-02-02

    Physical properties of pre-electrospinning polymer solutions play a key role in electrospinning as they strongly determine the morphology of the obtained electrospun nanofibers. In this work, an atmospheric-pressure argon plasma directly submerged in the liquid-phase was used to modify the physical properties of poly lactic acid (PLA) spinning solutions in an effort to improve their electrospinnability. The electrical characteristics of the plasma were investigated by two methods; V-I waveforms and Q-V Lissajous plots while the optical emission characteristics of the plasma were also determined using optical emission spectroscopy (OES). To perform a complete physical characterization of the plasma-modified polymer solutions, measurements of viscosity, surface tension, and electrical conductivity were performed for various PLA concentrations, plasma exposure times, gas flow rates, and applied voltages. Moreover, a fast intensified charge-couple device (ICCD) camera was used to image the bubble dynamics during the plasma treatments. In addition, morphological changes of PLA nanofibers generated from plasma-treated PLA solutions were observed by scanning electron microscopy (SEM). The performed plasma treatments were found to induce significant changes to the main physical properties of the PLA solutions, leading to an enhancement of electrospinnability and an improvement of PLA nanofiber formation.

  6. Labile conjugation of a hydrophilic drug to PLA oligomers to modify a drug delivery system: cephradin in a PLAGA matrix.

    PubMed

    Ustariz-Peyret, C; Coudane, J; Vert, M; Kaltsatos, V; Boisramené, B

    2000-01-01

    The physical entrapment of a hydrophilic drug within degradable microspheres is generally difficult because of poor entrapment yield and/or fast release, depending on the microsphere fabrication method. In order to counter the effects of drug hydrophilicity, it is proposed to covalently attach the drug to lactic acid oligomers, with the aim of achieving temporary hydrophobization and slower release controlled by the separation of the drug from the degradable link within the polymer matrix. This strategy was tested on microspheres of the antibiotic cephradin. As the prodrug form, the entrapment of the drug was almost quantitative. The prodrug did degrade in an aqueous medium, modelling body fluids, but cleavage did not occur at the drug-oligomer junction and drug molecules bearing two lactyl residual units were released. When the prodrug is entrapped within a PLAGA matrix, no release was observed within the experimental time period. However, data suggest that conjugation via a bond more sensitive to hydrolysis than the main chain PLA ester bonds should make the system work as desired.

  7. PLA composites: From production to properties.

    PubMed

    Murariu, Marius; Dubois, Philippe

    2016-12-15

    Poly(lactic acid) or polylactide (PLA), a biodegradable polyester produced from renewable resources, is used for various applications (biomedical, packaging, textile fibers and technical items). Due to its inherent properties, PLA has a key-position in the market of biopolymers, being one of the most promising candidates for further developments. Unfortunately, PLA suffers from some shortcomings, whereas for the different applications specific end-use properties are required. Therefore, the addition of reinforcing fibers, micro- and/or nanofillers, and selected additives within PLA matrix is considered as a powerful method for obtaining specific end-use characteristics and major improvements of properties. This review highlights recent developments, current results and trends in the field of composites based on PLA. It presents the main advances in PLA properties and reports selected results in relation to the preparation and characterization of the most representative PLA composites. To illustrate the possibility to design the properties of composites, a section is devoted to the production and characterization of innovative PLA-based products filled with thermally-treated calcium sulfate, a by-product from the lactic acid production process. Moreover, are emphasized the last tendencies strongly evidenced in the case of PLA, i.e., the high interest to diversify its uses by moving from biomedical and packaging (biodegradation properties, "disposables") to technical applications ("durables"). Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Influence of dynamic compressive loading on the in vitro degradation behavior of pure PLA and Mg/PLA composite.

    PubMed

    Li, Xuan; Qi, Chenxi; Han, Linyuan; Chu, Chenglin; Bai, Jing; Guo, Chao; Xue, Feng; Shen, Baolong; Chu, Paul K

    2017-12-01

    The effects of dynamic compressive loading on the in vitro degradation behavior of pure poly-lactic acid (PLA) and PLA-based composite unidirectionally reinforced with micro-arc oxidized magnesium alloy wires (Mg/PLA) are investigated. Dynamic compressive loading is shown to accelerate degradation of pure PLA and Mg/PLA. As the applied stress is increased from 0.1MPa to 0.9MPa or frequency from 0.5Hz to 2.5Hz, the overall degradation rate goes up. After immersion for 21days at 0.9MPa and 2.5Hz, the bending strength retention of the composite and pure PLA is 60.1% and 50%, respectively. Dynamic loading enhances diffusion of small acidic molecules resulting in significant pH decrease in the immersion solution. The synergistic reaction between magnesium alloy wires and PLA in the composite is further clarified by electrochemical tests. The degradation behavior of the pure PLA and PLA matrix in the composite under dynamic conditions obey the first order degradation kinetics and a numerical model is postulated to elucidate the relationship of the bending strength, stress, frequency, and immersion time under dynamic conditions. We systematically study the influence of dynamic loading on the degradation behavior of pure PLA and Mg/PLA. Dynamic compressive loading is shown to accelerate degradation of pure PLA and Mg/PLA. The synergistic reaction between magnesium alloy wires and PLA in the composite is firstly clarified by electrochemical tests. The degradation behavior of the pure PLA and PLA matrix in the composite under dynamic conditions obey the first order degradation kinetics. Then, a numerical model is postulated to elucidate the relationship of the bending strength, stress, frequency, and immersion time under dynamic conditions. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Development of Poly Lactic/Glycolic Acid (PLGA) Microspheres for Controlled Release of Rho-Associated Kinase Inhibitor.

    PubMed

    Koda, Sho; Okumura, Naoki; Kitano, Junji; Koizumi, Noriko; Tabata, Yasuhiko

    2017-01-01

    The purpose of this study was to investigate the feasibility of poly lactic/glycolic acid (PLGA) as a drug delivery carrier of Rho kinase (ROCK) inhibitor for the treatment of corneal endothelial disease. ROCK inhibitor Y-27632 and PLGA were dissolved in water with or without gelatin (W1), and a double emulsion [(W1/O)/W2] was formed with dichloromethane (O) and polyvinyl alcohol (W2). Drug release curve was obtained by evaluating the released Y-27632 by using high performance liquid chromatography. PLGA was injected into the anterior chamber or subconjunctiva in rabbit eyes, and ocular complication was evaluated by slitlamp microscope and histological analysis. Y-27632 incorporated PLGA microspheres with different molecular weights, and different composition ratios of lactic acid and glycolic acid were fabricated. A high molecular weight and low content of glycolic acid produced a slower and longer release. The Y-27632 released from PLGA microspheres significantly promoted the cell proliferation of cultured corneal endothelial cells. The injection of PLGA did not induce any evident eye complication. ROCK inhibitor-incorporated PLGA microspheres were fabricated, and the microspheres achieved the sustained release of ROCK inhibitor over 7-10 days in vitro. Our data should encourage researchers to use PLGA microspheres for treating corneal endothelial diseases.

  10. Additive Manufacturing of PLA and CF/PLA Binding Layer Specimens via Fused Deposition Modeling

    NASA Astrophysics Data System (ADS)

    Li, Yuhang; Gao, Shiyou; Dong, Rongmei; Ding, Xuebing; Duan, Xiaoxi

    2018-02-01

    As one of the most popular additive manufacturing techniques, fused deposition modeling (FDM) is successfully applied in aerospace, automotive, architecture, and other fields to fabricate thermoplastic parts. Unfortunately, as a result of the limited nature of the mechanical properties and mass in raw materials, there is a pressing need to improve mechanical properties and reduce weight for FDM parts. Therefore, this paper presents an experiment of a special polylactic acid (PLA) and carbon fiber (CF)/PLA-laminated experimental specimen fabricated using the FDM process. The mechanical properties and mass analysis of the new composites for the PLA and CF/PLA binding layer specimen are investigated experimentally. Through the experimental analysis, one can conclude that the mass of laminated specimen is lighter than the CF/PLA specimen, and the tensile and flexural mechanical properties are higher than the pure PLA specimen.

  11. Investigation of Ultrasonics as a tool for energy efficient recycling of Lactic acid from postconsumer PLA products

    NASA Astrophysics Data System (ADS)

    Srinivasan, Gowrishankar

    The growing use of "ecofriendly," biodegradable polymers have created a need for a suitable recycling technique because, unlike petroleum derived plastics, their properties deteriorate during conventional recycling. These new techniques must be cost efficient and yield material properties same as virgin polymer. This research investigates the effectiveness of high-power ultrasonics as an efficient technique to recover lactic acid from postconsumer polylactic acid (PLA) products. Polylactic acid is a commercially available bioplastic derived from corn starch and/or sugar cane that is biorenewable and compostable (biodegradable). The various ongoing researches to recover lactic acid from PLA employ a common platform of high temperature, high pressure (HTHP) to effect polymer hydrolysis. The energy intensiveness of these HTHP processes prompted this work to investigate ultrasonics as an low energy alternative process to cause PLA depolymerization. The energy consumption and the time required for depolymerization were utilized as the metrics to quantify and compare depolymerization enhanced by ultrasonics with hot-bath technique. The coupled effect of catalysts concentration and different solvents, along with ultrasonic were studied based on preliminary trial results. In addition, the correlation between the rates of de-polymerization was analyzed for ultrasonic amplitude, treatment time, and catalyst concentration and types. The results indicate that depolymerization of PLA was largely effected by heating caused by ultrasonic-induced cavitations. Other effects of ultrasonics, namely cavitations and acoustic streaming, were shown to have minimal effects in enhancing depolymerization. In fact, thermal energy predominately affected the reaction kinetics; the heat introduced by conventional method (i.e., electrical heaters) was more efficient than ultrasonic heating in terms of energy (for depolymerization) per unit mass of PLA and depolymerizing time. The degree of

  12. Effect of thermoplastic polyurethane (TPU) on the thermal and mechanical properties of polylactic acid (PLA)/curcumin blends

    NASA Astrophysics Data System (ADS)

    Sharifah, I. S. S.; Adnan, M. D. A.; Nor Khairusshima, M. K.; Shaffiar, N. M.; Buys, Y. F.

    2018-01-01

    Polylactic acid (PLA) is known to be brittle by nature and thus limits the flexibility of the polymer. A possible solution to enhance the flexibility of PLA is to add a flexible polymeric based material such as thermoplastic polyurethane (TPU). In this study, 30-50 wt% of TPU was added into PLA/curcumin blends to improve its flexibility. Thermal analysis using differential scanning calorimetry shows that further additions of TPU at the expense of PLA did not affect the glass transition temperature, crystallisation temperature and melting temperature of the blends. Fibers of PLA/curcumin/TPU were successfully drawn and Single Fiber Tensile Test (SFTT) showed vast improvement in elongation at break. The initial addition of 30 wt% of TPU to the brittle PLA/curcumin composition causes a significant increase in elongation at break by 39 times and further additions at 50 wt %, the elongation at break increases by 105 times. However, with the increase in elongation, a decrease in strength and Young’s modulus was observed.

  13. Drug-conjugated PLA-PEG-PLA copolymers: a novel approach for controlled delivery of hydrophilic drugs by micelle formation.

    PubMed

    Danafar, H; Rostamizadeh, K; Davaran, S; Hamidi, M

    2017-12-01

    A conjugate of the antihypertensive drug, lisinopril, with triblock poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) copolymer was synthesized by the reaction of PLA-PEG-PLA copolymer with lisinopril in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine. The conjugated copolymer was characterized in vitro by hydrogen nuclear magnetic resonance (HNMR), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) techniques. Then, the lisinopril conjugated PLA-PEG-PLA were self-assembled into micelles in aqueous solution. The resulting micelles were characterized further by various techniques such as dynamic light scattering (DLS) and atomic force microscopy (AFM). The results revealed that the micelles formed by the lisinopril-conjugated PLA-PEG-PLA have spherical structure with the average size of 162 nm. The release behavior of conjugated copolymer, micelles and micelles physically loaded by lisinopril were compared in different media. In vitro release study showed that in contrast to physically loaded micelles, the release rate of micelles consisted of the conjugated copolymer was dependent on pH of media where it was higher at lower pH compared to the neutral medium. Another feature of the conjugated micelles was their more sustained release profile compared to the lisinopril-conjugated copolymer and physically loaded micelles.

  14. The Pharmacokinetics and Pharmacodynamics of Lidocaine-Loaded Biodegradable Poly(lactic-co-glycolic acid) Microspheres

    PubMed Central

    Liu, Jianming; Lv, Xin

    2014-01-01

    The purpose of this study was to develop novel lidocaine microspheres. Microspheres were prepared by the oil-in-water (o/w) emulsion technique using poly(d,l-lactide-co-glycolide acid) (PLGA) for the controlled delivery of lidocaine. The average diameter of lidocaine PLGA microspheres was 2.34 ± 0.3 μm. The poly disperse index was 0.21 ± 0.03, and the zeta potential was +0.34 ± 0.02 mV. The encapsulation efficiency and drug loading of the prepared microspheres were 90.5% ± 4.3% and 11.2% ± 1.4%. In vitro release indicated that the lidocaine microspheres had a well-sustained release efficacy, and in vivo studies showed that the area under the curve of lidocaine in microspheres was 2.02–2.06-fold that of lidocaine injection (p < 0.05). The pharmacodynamics results showed that lidocaine microspheres showed a significant release effect in rats, that the process to achieve efficacy was calm and lasting and that the analgesic effect had a significant dose-dependency. PMID:25268618

  15. Characterization and properties of acetylated nanocrystalline cellulose (aNC) reinforced polylactic acid (PLA) polymer

    NASA Astrophysics Data System (ADS)

    Kasa, Siti Norbaya; Omar, Mohd Firdaus; Ismail, Ismarul Nizam

    2017-12-01

    Nanocrystalline cellulose (NCC) was synthesized from banana stem through strong acid hydrolysis with measured length of approximately 287.0 ± 56.4 nm and diameter of 26.6 ± 4.8 nm. Modification of NCC was carried by acetylation reaction in order to increase the compatibility during reinforcement with polylactic acid (PLA) polymer. The reinforcing effect towards morphology, crystallinity, mechanical and thermal properties of bio-nanocomposites was investigated. Scanning Electron Microscope (SEM) micrograph reveals the uniform dispersion achieved at 1 %, 3 % and 5% aNC loading while agglomeration was found at 7 % aNC loading. Disappearance of crystallinity peak at 2θ = 22.7⁰ for low aNC loading during elemental analysis using X-Ray Diffraction (XRD) indicates the proper dispersion of aNC in PLA polymer. From the tensile test, 1 % aNC loading gives the highest mechanical properties of bio-nanocomposite film with 82.71 %, 118.7 % and 24.18 % increment in tensile strength, tensile modulus and elongation at break. However, 7 % aNC loading gives the highest increment in TGA of aNC-PLA nanocomposites which is from 310 °C to 320 °C.

  16. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.

    PubMed

    Jiang, Tao; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2006-10-01

    A three-dimensional (3-D) scaffold is one of the major components in many tissue engineering approaches. We developed novel 3-D chitosan/poly(lactic acid-glycolic acid) (PLAGA) composite porous scaffolds by sintering together composite chitosan/PLAGA microspheres for bone tissue engineering applications. Pore sizes, pore volume, and mechanical properties of the scaffolds can be manipulated by controlling fabrication parameters, including sintering temperature and sintering time. The sintered microsphere scaffolds had a total pore volume between 28% and 37% with median pore size in the range 170-200microm. The compressive modulus and compressive strength of the scaffolds are in the range of trabecular bone making them suitable as scaffolds for load-bearing bone tissue engineering. In addition, MC3T3-E1 osteoblast-like cells proliferated well on the composite scaffolds as compared to PLAGA scaffolds. It was also shown that the presence of chitosan on microsphere surfaces increased the alkaline phosphatase activity of the cells cultured on the composite scaffolds and up-regulated gene expression of alkaline phosphatase, osteopontin, and bone sialoprotein.

  17. Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity

    NASA Astrophysics Data System (ADS)

    Munteanu, Bogdanel Silvestru; Aytac, Zeynep; Pricope, Gina M.; Uyar, Tamer; Vasile, Cornelia

    2014-10-01

    The antibacterial property of silver nanoparticles (Ag-NPs) and the antioxidant activity of Vitamin E have been combined by incorporation of these two active components within polylactic acid (PLA) nanofibers via electrospinning (PLA/Ag-NP/VitaminE nanofibers). The morphological and structural characterizations of PLA/Ag-NP/VitaminE nanofibers were performed by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy and X-ray diffraction. The average fiber diameter was 140 ± 60 nm, and the size of the Ag-NP was 2.7 ± 1.5 nm. PLA/Ag-NP/VitaminE nanofibers inhibited growth of Escherichia coli, Listeria monocytogenes and Salmonella typhymurium up to 100 %. The amount of released Ag ions from the nanofibers immersed in aqueous solution was determined by Inductively Coupled Plasma Mass Spectrometry, and it has been observed that the release of Ag ions was kept approximately constant after 10 days of immersion. The antioxidant activity of PLA/Ag-NP/VitaminE nanofibers was evaluated according to DPPH (2,2-diphenyl-1-picrylhydrazyl) method and determined as 94 %. The results of the tests on fresh apple and apple juice indicated that the PLA/Ag/VitaminE nanofiber membrane actively reduced the polyphenol oxidase activity. The multifunctional electrospun PLA nanofibers incorporating Ag-NP and Vitamin E may be quite applicable in food packaging due to the extremely large surface area of nanofibers along with antibacterial and antioxidant activities. These materials could find application in food industry as a potential preservative packaging for fruits and juices.

  18. Synthesis of porous poly(styrene-co-acrylic acid) microspheres through one-step soap-free emulsion polymerization: whys and wherefores.

    PubMed

    Yan, Rui; Zhang, Yaoyao; Wang, Xiaohui; Xu, Jianxiong; Wang, Da; Zhang, Wangqing

    2012-02-15

    Synthesis of porous poly(styrene-co-acrylic acid) (PS-co-PAA) microspheres through one-step soap-free emulsion polymerization is reported. Various porous PS-co-PAA microspheres with the particle size ranging from 150 to 240 nm and with the pore size ranging from 4 to 25 nm are fabricated. The porous structure of the microspheres is confirmed by the transmission electron microscopy measurement and Brunauer-Emmett-Teller (BET) analysis. The reason for synthesis of the porous PS-co-PAA microspheres is discussed, and the phase separation between the encapsulated hydrophilic poly(acrylic acid) segment and the hydrophobic polystyrene domain within the PS-co-PAA microspheres is ascribed to the pore formation. The present synthesis of the porous PS-co-PAA microspheres is anticipated to be a new and convenient way to fabricate porous polymeric particles. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding.

    PubMed

    Mi, Hao-Yang; Salick, Max R; Jing, Xin; Jacques, Brianna R; Crone, Wendy C; Peng, Xiang-Fang; Turng, Lih-Sheng

    2013-12-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold's microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. © 2013.

  20. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding

    PubMed Central

    Mi, Hao-Yang; Salick, Max R.; Jing, Xin; Jacques, Brianna R.; Crone, Wendy C.; Peng, Xiang-Fang; Turng, Lih-Sheng

    2015-01-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold’s microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. PMID:24094186

  1. Sustained release of simvastatin from hollow carbonated hydroxyapatite microspheres prepared by aspartic acid and sodium dodecyl sulfate.

    PubMed

    Wang, Ke; Wang, Yinjing; Zhao, Xu; Li, Yi; Yang, Tao; Zhang, Xue; Wu, Xiaoguang

    2017-06-01

    Hollow carbonated hydroxyapatite (HCHAp) microspheres as simvastatin (SV) sustained-release vehicles were fabricated through a novel and simple one-step biomimetic strategy. Firstly, hollow CaCO 3 microspheres were precipitated through the reaction of CaCl 2 with Na 2 CO 3 in the presence of aspartic acid and sodium dodecyl sulfate. Then, the as-prepared hollow CaCO 3 microspheres were transformed into HCHAp microspheres with a controlled anion-exchange method. The HCHAp microspheres were 3-5μm with a shell thickness of 0.5-1μm and were constructed of short needle nanoparticles. The HCHAp microspheres were then loaded with SV, exhibiting excellent drug-loading capacity and sustained release properties. These results present a new material synthesis strategy for HCHAp microspheres and suggest that the as-prepared HCHAp microspheres are promising for applications in drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1983-01-01

    Microspheres of acrolein homopolymers and co-polymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  3. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1986-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  4. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1987-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  5. An overview of the recent developments in polylactide (PLA) research.

    PubMed

    Madhavan Nampoothiri, K; Nair, Nimisha Rajendran; John, Rojan Pappy

    2010-11-01

    The concept of biodegradable plastics is of considerable interest with respect to solid waste accumulation. Greater efforts have been made in developing degradable biological materials without any environmental pollution to replace oil-based traditional plastics. Among numerous kinds of degradable polymers, polylactic acid sometimes called polylactide, an aliphatic polyester and biocompatible thermoplastic, is currently a most promising and popular material with the brightest development prospect and was considered as the 'green' eco friendly material. Biodegradable plastics like polyglycolic acid, polylactic acid, polycaprolactone, polyhydroxybutyrate, etc. are commercially available for controlled drug releases, implantable composites, bone fixation parts, packaging and paper coatings, sustained release systems for pesticides and fertilizers and compost bags etc. This review will provide information on current PLA market, brief account on recent developments in the synthesis of lactic acid (monomer of PLA) through biological route, PLA synthesis, unique material properties of PLA and modification of those by making copolymers and composites, PLA degradation and its wide spectrum applications.

  6. Etude des melanges co-continus d'acide polylactique et d'amidon thermoplastique (PLA/TPS)

    NASA Astrophysics Data System (ADS)

    Chavez Garcia, Maria Graciela

    Les melanges co-continus sont des melanges polymeriques ou chaque composant se trouve dans une phase continue. Pour cette raison, les caracteristiques de chacun des composants se combinent et il en resulte un materiau avec une morphologie et des proprietes particulieres. L'acide polylactique (PLA) et l'amidon thermoplastique (TPS) sont des biopolymeres qui proviennent de ressources renouvelables et qui sont biodegradables. Dans ce projet, differents melanges de PLA et TPS a une haute concentration de TPS ont ete prepares dans une extrudeuse bi-vis afin de generer des structures co-continues. Grace a la technique de lixiviation selective, le TPS est enleve pour creer une structure poreuse de PLA qui a pu etre analysee au moyen de la microtomographie R-X et de la microscopie electronique a balayage MEB. L'analyse des images 2D et 3D confirme la presence de la structure co-continue dans les melanges dont la concentration en TPS. se situe entre 66% et 80%. L'effet de deux plastifiants, le glycerol seul et le melange de glycerol et de sorbitol, dans la formulation de TPS est etudie dans ce travail. De plus, nous avons evalue l'effet du PLA greffe a l'anhydride maleique (PLAg) en tant que compatibilisant. On a trouve que la phase de TPS obtenue avec le glycerol est plus grande. L'effet de recuit sur la taille de phases est aussi analyse. Grace aux memes techniques d'analyse, on a etudie l'effet du procede de moulage par injection sur la morphologie. On a constate que les pieces injectees presentent une microstructure heterogene et differente entre la surface et le centre de la piece. Pres de la surface, une peau plus riche en PLA est presente et les phases de TPS y sont allongees sous forme de lamelles. Plus au centre de la piece, une morphologie plus cellulaire est observee pour chaque phase continue. L'effet des formulations sur les proprietes mecaniques a aussi ete etudie. Les pieces injectees dont la concentration de TPS est plus grande presentent une moindre

  7. Processing and size range separation of pristine and magnetic poly(l-lactic acid) based microspheres for biomedical applications.

    PubMed

    Correia, D M; Sencadas, V; Ribeiro, C; Martins, P M; Martins, P; Gama, F M; Botelho, G; Lanceros-Méndez, S

    2016-08-15

    Biodegradable poly(l-lactic acid) (PLLA) and PLLA/CoFe2O4 magnetic microspheres with average sizes ranging between 0.16-3.9μm and 0.8-2.2μm, respectively, were obtained by an oil-in-water emulsion method using poly(vinyl alcohol) (PVA) solution as the emulsifier agent. The separation of the microspheres in different size ranges was then performed by centrifugation and the colloidal stability assessed at different pH values. Neat PLLA spheres are more stable in alkaline environments when compared to magnetic microspheres, both types being stable for pHs higher than 4, resulting in a colloidal suspension. On the other hand, in acidic environments the microspheres tend to form aggregates. The neat PLLA microspheres show a degree of crystallinity of 40% whereas the composite ones are nearly amorphous (17%). Finally, the biocompatibility was assessed by cell viability studies with MC3T3-E1 pre-osteoblast cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. pH-Sensitive Self-Assembled Microspheres Composed of Poly(Ethyleneimine) and Cinnamic Acid.

    PubMed

    Park, Danbi; Lee, Seung-Jun; Kim, Jin-Chul

    2018-01-01

    Microspheres which were sensitive to pH change were developed by utilizing cinnamic acid (CA) as a physical cross-linker for poly(ethyleneimine) (PEI). At pH 7.0, the microspheres were efficiently formed at the PEI/CA ratio of 1:3.4, 1:5.1, and 1:7.1 (w/w), which corresponded to the protonated amino group/deprotonated carboxyl group ratio of 5:5, 4:6, and 3:7. The mean diameter of wet microspheres was 3.2 ± 0.3 to 8.8 ± 0.5 μm and that of dry ones was 1.7 ± 0.2 to 2.7 ± 0.2 μm. The microspheres were disappeared upon the alkalification, possibly because the electrostatic interaction between PEI and CA was slackened down and the hydrophobic interaction among CA molecules was weakened. At pH 5.0 and 7.0, the microsphere released its content in a sustained manner and the release degree in 24 h was less than 40%. Whereas, at pH 8.0 and 9.0, the microsphere exhibited a burst release and the release degree in 24 h was greater than 80%. In the alkali condition, not only the electrostatic interaction between PEI and CA but also the hydrophobic interaction among CA molecules became weaker, leading to the disintegration of the microsphere and resulting in a burst and intensive release.

  9. Preparation of polymethacrylic acid-grafted HEMA/PVP microspheres and preliminary study on basic protein adsorption.

    PubMed

    Gao, Baojiao; Hu, Hongyan; Guo, Jianfeng; Li, Yanbin

    2010-06-01

    The crosslinked copolymeric microspheres (HEMA/NVP) of N-vinylpyrrolidone (NVP) and 2-hydroxyethyl methacrylate (HEMA) were prepared using inverse suspension polymerization method. Subsequently, the reaction of methacryloyl chloride with the hydroxyl groups on the surfaces of HEMA/NVP microspheres was performed, leading to the introduction of polymerisable double bonds onto the surfaces of microspheres HEMA/NVP. Afterward, methacrylic acid was allowed to be graft-polymerized on microspheres HEMA/NVP in the manner of "grafting from", resulting in the grafted microspheres PMAA-HEMA/NVP. The grafted microspheres PMAA-HEMA/NVP were fully characterized with several means. The graft-polymerization of MAA on microspheres HEMA/NVP was studied in detail, and the optimal reaction conditions were determined. Thereafter, the adsorption property of the grafted microspheres PMAA-HEMA/NVP for lysozyme as a basic protein model was preliminarily examined to explore the feasibility of removing deleterious basic protein such as density lipoprotein from blood. The experimental results indicate that the PMAA grafting degree on microspheres HEMA/NVP is limited because an enwinding polymer layer as a kinetic barrier on the surfaces of HEMA/NVP microspheres will be formed during the graft-polymerization, and block the graft-polymerization. In order to enhance PMAA grafting degree, reaction temperature, monomer concentration and the used amount of initiator should be effectively controlled. The experimental results also reveal that the grafted microspheres PMAA-HEMA/NVP possess very strong adsorption ability for lysozyme by right of strong electrostatic interaction. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Studies of insulin secretory responses and of arachidonic acid incorporation into phospholipids of stably transfected insulinoma cells that overexpress group VIA phospholipase A2 (iPLA2beta ) indicate a signaling rather than a housekeeping role for iPLA2beta.

    PubMed

    Ma, Z; Ramanadham, S; Wohltmann, M; Bohrer, A; Hsu, F F; Turk, J

    2001-04-20

    A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.

  11. Novel PLA-Based Conductive Polymer Composites for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Shah, Aziurah Mohd; Kadir, Mohammed Rafiq Abdul; Razak, Saiful Izwan Abd

    2017-12-01

    In this study, the electrical conductivity of polylactic acid (PLA)-based composites has been improved using polyaniline (PANI) with two different solvents: dodecylbenzene sulfonic acid and citric acid. The effects of various factors including PLA quantity, solvent concentration, type of solvent and thickness on the resistivity were investigated using the design of experiments. The experimental plan was based on irregular fraction design to develop the regression models. The results revealed that the proposed mathematical models were sufficient and could describe the performance of resistivity of PLA within the limits of a factor. The findings also indicated that thickness had the most significant effect on the resistivity of PLA, while the effect of the type of solvent was of least significance. Moreover, it was illustrated that, by incorporating two different solvents into PANI, the resistivity could be changed for further applications.

  12. A novel sustained-release formulation of recombinant human growth hormone and its pharmacokinetic, pharmacodynamic and safety profiles.

    PubMed

    Wei, Yi; Wang, Yuxia; Kang, Aijun; Wang, Wei; Ho, Sa V; Gao, Junfeng; Ma, Guanghui; Su, Zhiguo

    2012-07-02

    An effective and safe formulation of sustained-release rhGH for two months using poly(monomethoxypolyethylene glycol-co-D,L-lactide) (mPEG-PLA, PELA) microspheres was developed to reduce the frequency of medication. The rhGH-loaded PELA microspheres with a narrow size distribution were successfully prepared by a double emulsion method combined with a premix membrane emulsification technique without any exogenous stabilizing excipients. The narrow size distribution of the microspheres would guarantee repeatable productivity and release behavior. Moreover, the amphiphilic PELA improved the bioactivity retention of protein drugs since it prevented protein contact with the oil/water interface and the hydrophobic network, and modulated diffusion of acidic degradation products from the carrier system. These PELA microspheres were compared in vivo with commercial rhGH solution, conventional poly(D,L-lactic acid) (PLA) and poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres. Administration of rhGH-PELA could extend the duration of rhGH release (for up to 56 days) and increase area under the curve (AUC) compared to rhGH solution, PLA or PLGA microspheres in Sprague-Dawley (SD) rats. In addition, rhGH-PELA microspheres induced a greater response in total insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) than other rhGH formulations. With a hypophysectomized SD rat model, the pharmacological efficacy of rhGH-PELA microspheres was shown to be better than that from daily administration of rhGH solutions over 6 days based on body weight gain and width of the tibial growth plate. Histological examination of the injection sites indicated a significantly milder inflammatory response than that observed after injection of PLA and PLGA microspheres. Neither anti-rhGH antibodies nor the toxic effects on heart, liver and kidney were detectable after administration of rhGH-PELA microspheres in SD rats. These results suggest that rh

  13. In vitro perforation of human epithelial carcinoma cell with antibody-conjugated biodegradable microspheres illuminated by a single 80 femtosecond near-infrared laser pulse

    PubMed Central

    Terakawa, Mitsuhiro; Tsunoi, Yasuyuki; Mitsuhashi, Tatsuki

    2012-01-01

    Pulsed laser interaction with small metallic and dielectric particles has been receiving attention as a method of drug delivery to many cells. However, most of the particles are attended by many risks, which are mainly dependent upon particle size. Unlike other widely used particles, biodegradable particles have advantages of being broken down and eliminated by innate metabolic processes. In this paper, the perforation of cell membrane by a focused spot with transparent biodegradable microspheres excited by a single 800 nm, 80 fs laser pulse is demonstrated. A polylactic acid (PLA) sphere, a biodegradable polymer, was used. Fluorescein isothiocyanate (FITC)-dextran and short interfering RNA were delivered into many human epithelial carcinoma cells (A431 cells) by applying a single 80 fs laser pulse in the presence of antibody-conjugated PLA microspheres. The focused intensity was also simulated by the three-dimensional finite-difference time-domain method. Perforation by biodegradable spheres compared with other particles has the potential to be a much safer phototherapy and drug delivery method for patients. The present method can open a new avenue, which is considered an efficient adherent for the selective perforation of cells which express the specific antigen on the cell membrane. PMID:22679375

  14. PLA recycling by hydrolysis at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari, E-mail: sara.frattari@uniroma1.it

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  15. Cardiac Myocyte-specific Knock-out of Calcium-independent Phospholipase A2γ (iPLA2γ) Decreases Oxidized Fatty Acids during Ischemia/Reperfusion and Reduces Infarct Size *

    PubMed Central

    Moon, Sung Ho; Mancuso, David J.; Sims, Harold F.; Liu, Xinping; Nguyen, Annie L.; Yang, Kui; Guan, Shaoping; Dilthey, Beverly Gibson; Jenkins, Christopher M.; Weinheimer, Carla J.; Kovacs, Attila; Abendschein, Dana; Gross, Richard W.

    2016-01-01

    Calcium-independent phospholipase A2γ (iPLA2γ) is a mitochondrial enzyme that produces lipid second messengers that facilitate opening of the mitochondrial permeability transition pore (mPTP) and contribute to the production of oxidized fatty acids in myocardium. To specifically identify the roles of iPLA2γ in cardiac myocytes, we generated cardiac myocyte-specific iPLA2γ knock-out (CMiPLA2γKO) mice by removing the exon encoding the active site serine (Ser-477). Hearts of CMiPLA2γKO mice exhibited normal hemodynamic function, glycerophospholipid molecular species composition, and normal rates of mitochondrial respiration and ATP production. In contrast, CMiPLA2γKO mice demonstrated attenuated Ca2+-induced mPTP opening that could be rapidly restored by the addition of palmitate and substantially reduced production of oxidized polyunsaturated fatty acids (PUFAs). Furthermore, myocardial ischemia/reperfusion (I/R) in CMiPLA2γKO mice (30 min of ischemia followed by 30 min of reperfusion in vivo) dramatically decreased oxidized fatty acid production in the ischemic border zones. Moreover, CMiPLA2γKO mice subjected to 30 min of ischemia followed by 24 h of reperfusion in vivo developed substantially less cardiac necrosis in the area-at-risk in comparison with their WT littermates. Furthermore, we found that membrane depolarization in murine heart mitochondria was sensitized to Ca2+ by the presence of oxidized PUFAs. Because mitochondrial membrane depolarization and calcium are known to activate iPLA2γ, these results are consistent with salvage of myocardium after I/R by iPLA2γ loss of function through decreasing mPTP opening, diminishing production of proinflammatory oxidized fatty acids, and attenuating the deleterious effects of abrupt increases in calcium ion on membrane potential during reperfusion. PMID:27453526

  16. Compostability and biodegradation study of PLA-wheat straw and PLA-soy straw based green composites in simulated composting bioreactor.

    PubMed

    Pradhan, Ranjan; Misra, Manjusri; Erickson, Larry; Mohanty, Amar

    2010-11-01

    A laboratory scale simulated composting facility (as per ASTM D 5338) was designed and utilized to determine and evaluate the extent of degradation of polylactic acid (PLA), untreated wheat and soy straw and injection moulded composites of PLA-wheat straw (70:30) and PLA-soy straw (70:30). The outcomes of the study revealed the suitability of the test protocol, validity of the test system and defined the compostability of the composites of PLA with unmodified natural substrate. The study would help to design composites using modified soy straw and wheat straw as reinforcement/filler to satisfy ASTM D 6400 specifications. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Exploring the in vitro and in vivo compatibility of PLA, PLA/GNP and PLA/CNT-COOH biodegradable nanocomposites: Prospects for tendon and ligament applications.

    PubMed

    Correia Pinto, Viviana; Costa-Almeida, Raquel; Rodrigues, Ilda; Guardão, Luísa; Soares, Raquel; Miranda Guedes, Rui

    2017-08-01

    Anterior cruciate ligament (ACL) reconstructive surgeries are the most frequent orthopedic procedures in the knee. Currently, existing strategies fail in completely restoring tissue functionality and have a high failure rate associated, presenting a compelling argument towards the development of novel materials envisioning ACL reinforcement. Tendons and ligaments, in general, have a strong demand in terms of biomechanical features of developed constructs. We have previously developed polylactic acid (PLA)-based biodegradable films reinforced either with graphene nanoplatelets (PLA/GNP) or with carboxyl-functionalized carbon nanotubes (PLA/CNT-COOH). In the present study, we comparatively assessed the biological performance of PLA, PLA/GNP, and PLA/CNT-COOH by seeding human dermal fibroblasts (HFF-1) and studying cell viability and proliferation. In vivo tests were also performed by subcutaneous implantation in 6-week-old C57Bl/6 mice. Results showed that all formulations studied herein did not elicit cytotoxic responses in seeded HFF-1, supporting cell proliferation up to 3 days in culture. Moreover, animal studies indicated no physiological signs of severe inflammatory response after 1 and 2 weeks after implantation. Taken together, our results present a preliminary assessment on the compatibility of PLA reinforced with GNP and CNT-COOH nanofillers, highlighting the potential use of these carbon-based nanofillers for the fabrication of reinforced synthetic polymer-based structures for ACL reinforcement. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2182-2190, 2017. © 2017 Wiley Periodicals, Inc.

  18. Potential of a newly developed high-speed near-infrared (NIR) camera (Compovision) in polymer industrial analyses: monitoring crystallinity and crystal evolution of polylactic acid (PLA) and concentration of PLA in PLA/Poly-(R)-3-hydroxybutyrate (PHB) blends.

    PubMed

    Ishikawa, Daitaro; Nishii, Takashi; Mizuno, Fumiaki; Sato, Harumi; Kazarian, Sergei G; Ozaki, Yukihiro

    2013-12-01

    This study was carried out to evaluate a new high-speed hyperspectral near-infrared (NIR) camera named Compovision. Quantitative analyses of the crystallinity and crystal evolution of biodegradable polymer, polylactic acid (PLA), and its concentration in PLA/poly-(R)-3-hydroxybutyrate (PHB) blends were investigated using near-infrared (NIR) imaging. This NIR camera can measure two-dimensional NIR spectral data in the 1000-2350 nm region obtaining images with wide field of view of 150 × 250 mm(2) (approximately 100  000 pixels) at high speeds (in less than 5 s). PLA with differing crystallinities between 0 and 50% blended samples with PHB in ratios of 80/20, 60/40, 40/60, 20/80, and pure films of 100% PLA and PHB were prepared. Compovision was used to collect respective NIR spectra in the 1000-2350 nm region and investigate the crystallinity of PLA and its concentration in the blends. The partial least squares (PLS) regression models for the crystallinity of PLA were developed using absorbance, second derivative, and standard normal variate (SNV) spectra from the most informative region of the spectra, between 1600 and 2000 nm. The predicted results of PLS models achieved using the absorbance and second derivative spectra were fairly good with a root mean square error (RMSE) of less than 6.1% and a determination of coefficient (R(2)) of more than 0.88 for PLS factor 1. The results obtained using the SNV spectra yielded the best prediction with the smallest RMSE of 2.93% and the highest R(2) of 0.976. Moreover, PLS models developed for estimating the concentration of PLA in the blend polymers using SNV spectra gave good predicted results where the RMSE was 4.94% and R(2) was 0.98. The SNV-based models provided the best-predicted results, since it can reduce the effects of the spectral changes induced by the inhomogeneity and the thickness of the samples. Wide area crystal evolution of PLA on a plate where a temperature slope of 70-105 °C had occurred was also

  19. Effect of dielectric barrier discharge treatment on surface nanostructure and wettability of polylactic acid (PLA) nonwoven fabrics

    NASA Astrophysics Data System (ADS)

    Ren, Yu; Xu, Lin; Wang, Chunxia; Wang, Xiaona; Ding, Zhirong; Chen, Yuyue

    2017-12-01

    Polylactic acid (PLA) nonwoven fabrics are treated with atmospheric dielectric barrier discharge (DBD) plasma to improve surface wettability. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) show that micro- to nano-scale textures appear on the treated PLA surfaces dependent on the treatment time. X-ray photoelectron spectroscopy (XPS) analysis reveals that the DBD plasma treatments result in decreased carbon contents and increased oxygen contents as well as slightly increased nitrogen contents. The water contact angle decreases sharply with the increase of the DBD plasma treatment time. The super hydrophilic PLA surfaces (the water contact angle reached 0°) are obtained when the treatment time is longer than 90 s. Ninety days after the DBD plasma treatment, the XPS analysis shows that Csbnd O/Csbnd N and Cdbnd O/Osbnd Cdbnd O percentages decline for all treatment groups. However, the water contact angle is kept constant at 0° for the groups treated above 90 s, which could be due to the oxidized nano-structured layer on the DBD plasma treated PLA surfaces.

  20. Production of GMP-grade radioactive holmium loaded poly(L-lactic acid) microspheres for clinical application.

    PubMed

    Zielhuis, S W; Nijsen, J F W; de Roos, R; Krijger, G C; van Rijk, P P; Hennink, W E; van het Schip, A D

    2006-03-27

    Radioactive holmium-166 loaded poly(L-lactic acid) microspheres are promising systems for the treatment of liver malignancies. The microspheres are loaded with holmium acetylacetonate (HoAcAc) and prepared by a solvent evaporation method. After preparation, the microspheres (Ho-PLLA-MS) are activated by neutron irradiation in a nuclear reactor. In this paper, the aspects of the production of a (relatively) large-scale GMP batch (4 g, suitable for treatment of 5-10 patients) of Ho-PLLA-MS are described. The critical steps of the Ho-PLLA-MS production process (sieving procedure, temperature control during evaporation and raw materials) were considered and the pharmaceutical quality of the microspheres was evaluated. The pharmaceutical characteristics (residual solvents, possible bacterial contaminations and endotoxins) of the produced Ho-PLLA-MS batches were in compliance with the requirements of the European Pharmacopoeia. Moreover, neutron irradiated Ho-PLLA-MS retained their morphological integrity and the holmium remained stably associated with the microspheres; it was observed that after 270h (10 times the half-life of Ho-166) only 0.3+/-0.1% of the loading was released from the microspheres in an aqueous solution. In conclusion, Ho-PLLA-MS which are produced as described in this paper, can be clinically applied, with respect to their pharmaceutical quality.

  1. An investigation into the mechanisms of drug release from taste-masking fatty acid microspheres.

    PubMed

    Qi, Sheng; Deutsch, David; Craig, Duncan Q M

    2008-09-01

    Fatty acid microspheres based on stearic and palmitic acids are known to form effective taste masking systems, although the mechanisms by which the drug is preferentially released in the lower gastrointestinal tract are not known. The objective of the present study was to identify the mechanisms involved, with a particular view to clarify the role of acid soap formation in the dissolution process. Microspheres were prepared by a spray chilling process. Using benzoic acid as a model drug and an alkaline dissolution medium, a faster drug release was observed in the mixed fatty acid formulation (50:50 stearic:palmitic acid (w/w)) compared to the single fatty acid component systems. Thermal and powder X-ray diffraction studies indicated a greater degree of acid soap formation for the mixed formulation in alkaline media compared to the single fatty acid systems. Particle size and porosity studies indicated a modest reduction in size for the mixed systems and an increase in porosity on immersion in the dissolution medium. It is proposed that the mixed fatty acid system form a mixed crystal system which in turn facilitates interaction with the dissolution medium, thereby leading to a greater propensity for acid soap formation which in turn forms a permeable liquid crystalline phase through which the drug may diffuse. The role of dissolution of palmitic acid into the dissolution medium is also discussed as a secondary mechanism.

  2. In vitro degradation kinetics of pure PLA and Mg/PLA composite: Effects of immersion temperature and compression stress.

    PubMed

    Li, Xuan; Chu, Chenglin; Wei, Yalin; Qi, Chenxi; Bai, Jing; Guo, Chao; Xue, Feng; Lin, Pinghua; Chu, Paul K

    2017-01-15

    The effects of the immersion temperature and compression stress on the in vitro degradation behavior of pure poly-lactic acid (pure-PLA) and PLA-based composite unidirectionally reinforced with micro-arc oxidized magnesium alloy wires (Mg/PLA or MAO-MAWs/PLA) are investigated. The degradation kinetics of pure-PLA and the PLA matrix in MAO-MAWs/PLA exhibit an Arrhenius-type behavior. For the composite, the synergic degradation of MAO-MAWs maintains a steady pH and mitigates the degradation of PLA matrix during immersion. However, the external compression stress decreases the activation energy (E a ) and pre-exponential factor (k 0 ) consequently increasing the degradation rate of PLA. Under a compression stress of 1MPa, E a and k 0 of pure PLA are 57.54kJ/mol and 9.74×10 7 day -1 , respectively, but 65.5kJ/mol and 9.81×10 8 day -1 for the PLA matrix in the composite. Accelerated tests are conducted in rising immersion temperature in order to shorten the experimental time. Our analysis indicates there are well-defined relationships between the bending strength of the specimens and the PLA molecular weight during immersion, which are independent of the degradation temperature and external compression stress. Finally, a numerical model is established to elucidate the relationship of bending strength, the PLA molecular weight, activation energy, immersion time and temperature. We systematically evaluate the effects of compression stress and temperature on the degradation properties of two materials: (pure-PLA) and MAO-MAWs/PLA (or Mg/PLA). The initial in vitro degradation kinetics of the unstressed or stressed pure-PLA and MAO-MAWs/PLA composite is confirmed to be Arrhenius-like. MAO-MAWs and external compression stress would influence the degradation activation energy (E a ) and pre-exponential factor (k 0 ) of PLA, and we noticed there is a linear relationship between E a and ln k 0 . Thereafter, we noticed that Mg 2+ , not H + , plays a significant role on the

  3. PLA2 mediated arachidonate free radicals: PLA2 inhibition and neutralization of free radicals by anti-oxidants--a new role as anti-inflammatory molecule.

    PubMed

    Nanda, B L; Nataraju, A; Rajesh, R; Rangappa, K S; Shekar, M A; Vishwanath, B S

    2007-01-01

    PLA2 enzyme catalyses the hydrolysis of cellular phospholipids at the sn-2 position to liberate arachidonic acid and lysophospholipid to generate a family of pro-inflammatory eicosanoids and platelet activating factor. The generation of pro-inflammatory eicosanoids involves a series of free radical intermediates with simultaneous release of reactive oxygen species (superoxide and hydroxyl radicals). Reactive oxygen species formed during arachidonic acid metabolism generates lipid peroxides and the cytotoxic products such as 4-hydroxy nonenal and acrolein, which induces cellular damage. Thus PLA2 catalyzes the rate-limiting step in the production of pro-inflammatory eicosanoids and free radicals. These peroxides and reactive oxygen species in turn activates PLA2 enzyme and further attenuates the inflammatory process. Therefore scavenging these free radicals and inhibition of PLA2 enzyme simultaneously by a single molecule such as antioxidants is of great therapeutic relevance for the development of anti-inflammatory molecules. PLA2 enzymes have been classified into calcium dependent cPLA2 and sPLA2 and calcium independent iPLA2 forms. In several inflammatory diseases sPLA2 group IIA is the most abundant isoform identified. This isoform is therefore targeted for the development of anti-inflammatory molecules. Many secondary metabolites from plants and marine sponges exhibit both anti-inflammatory and antioxidant properties. Some of them include flavonoids, terpenes and alkaloids. But in terms of PLA2 inhibition and antioxidant activity, the structural aspects of flavonoids are well studied rather than terpenes and alkaloids. In this line, molecules having both anti-oxidant and PLA2 inhibitions are reviewed. A single molecule with dual activities may prove to be a powerful anti-inflammatory drug.

  4. Anti-Fas conjugated hyaluronic acid microsphere gels for neural stem cell delivery.

    PubMed

    Shendi, Dalia; Albrecht, Dirk R; Jain, Anjana

    2017-02-01

    Central nervous system (CNS) injuries and diseases result in neuronal damage and loss of function. Transplantation of neural stem cells (NSCs) has been shown to improve locomotor function after transplantation. However, due to the immune and inflammatory response at the injury site, the survival rate of the engrafted cells is low. Engrafted cell viability has been shown to increase when transplanted within a hydrogel. Hyaluronic acid (HA) hydrogels have natural anti-inflammatory properties and the backbone can be modified to introduce bioactive agents, such as anti-Fas, which we have previously shown to promote NSC survival while suppressing immune cell activity in bulk hydrogels in vitro. Although bulk HA hydrogels have shown to promote stem cell survival, microsphere gels for NSC encapsulation and delivery may have additional advantages. In this study, a flow-focusing microfluidic device was used to fabricate either vinyl sulfone-modified HA (VS-HA) or anti-Fas-conjugated HA (anti-Fas HA) microsphere gels encapsulated with NSCs. The majority of encapsulated NSCs remained viable for at least 24 h in the VS-HA and anti-Fas HA microsphere gels. Moreover, T-cells cultured in suspension with the anti-Fas HA microsphere gels had reduced viability after contact with the microsphere gels compared to the media control and soluble anti-Fas conditions. This approach can be adapted to encapsulate various cell types for therapeutic strategies in other physiological systems in order to increase survival by reducing the immune response. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 608-618, 2017. © 2016 Wiley Periodicals, Inc.

  5. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties.

    PubMed

    Arrieta, M P; Fortunati, E; Dominici, F; Rayón, E; López, J; Kenny, J M

    2014-07-17

    Cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose by acid hydrolysis were added into poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends to improve the final properties of the multifunctional systems. CNC were also modified with a surfactant (CNCs) to increase the interfacial adhesion in the systems maintaining the thermal stability. Firstly, masterbatch pellets were obtained for each formulation to improve the dispersion of the cellulose structures in the PLA-PHB and then nanocomposite films were processed. The thermal stability as well as the morphological and structural properties of nanocomposites was investigated. While PHB increased the PLA crystallinity due to its nucleation effect, well dispersed CNC and CNCs not only increased the crystallinity but also improved the processability, the thermal stability and the interaction between both polymers especially in the case of the modified CNCs based PLA-PHB formulation. Likewise, CNCs were better dispersed in PLA-CNCs and PLA-PHB-CNCs, than CNC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Biodegradable blends of poly (lactic acid) (PLA) / polyhydroxybutrate (PHB) copolymer and its effects on rheological, thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Sood, Nitin K.

    Poly (Lactic acid) is the most important plastic derived from the renewable resources. PLA based products have extensively been used in the medical industry. However, PLA has a few disadvantages such as inherent brittleness and low toughness despite a high modulus. A focus of this experiment was to study the improvement in toughness of PLA and to study the changes in thermal and rheological properties by blending PLA with a PHB copolymer. Where, PLA and PHB copolymer were melt blended using a twin screw Brabender extruder in the ratios of 100/0, 70/30, 50/50, 30/70, 0/100. Further, the blends were injection molded into tensile bar and impact bars for mechanical testing. Rheological properties were studied using a Galaxy capillary rheometer for melt viscosities and temperature dependence indicated a shear-thinning behavior along with power law model and consistency index. Blends were characterized to study the phase model using a differential scanning calorimetric (DSC), showed two separate phases. Mechanical properties were analyzed using a Tensile and Izod impact test indicating decrease in elastic modulus with increase in toughness and elongation as the PHB copolymer content was increased in the blend.

  7. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose.

    PubMed

    Masmoudi, Fatma; Bessadok, Atef; Dammak, Mohamed; Jaziri, Mohamed; Ammar, Emna

    2016-10-01

    The plastic materials used for packaging are increasing leading to a considerable amount of undegradable solid wastes. This work deals with the reduction of conventional plastics waste and the natural resources preservation by using cellulosic polymers from renewable resources (alfa and luffa). Plasticized starch films syntheses were achieved at a laboratory scale. These natural films showed some very attractive mechanical properties at relatively low plasticizers levels (12 to 17 % by weight). Furthermore, mixtures including polylactic acid polymer (PLA) and cellulose fibers extracted from alfa and luffa were investigated by melt extrusion technique. When used at a rate of 10 %, these fibers improved the mixture mechanical properties. Both developed materials were biodegradable, but the plasticized starch exhibited a faster biodegradation kinetic compared to the PLA/cellulose fibers. These new materials would contribute to a sustainable development and a waste reduction.

  8. A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends.

    PubMed

    Akrami, Marzieh; Ghasemi, Ismaeil; Azizi, Hamed; Karrabi, Mohammad; Seyedabadi, Mohammad

    2016-06-25

    In this study, a new compatibilizer was synthesized to improve the compatibility of the poly(lactic acid)/thermoplastic starch blends. The compatibilizer was based on maleic anhydride grafted polyethylene glycol grafted starch (mPEG-g-St), and was characterized using Fourier transform infrared spectroscopy (FTIR), dynamic mechanical thermal analysis (DMTA) and back titration techniques. The results indicated successful accomplishment of the designed reactions and formation of a starch cored structure with many connections to m-PEG chains. To assess the performance of synthesized compatibilizer, several PLA/TPS blends were prepared using an internal mixer. Consequently, their morphology, dynamic-mechanical behavior, crystallization and mechanical properties were studied. The compatibilizer enhanced interfacial adhesion, possibly due to interaction between free end carboxylic acid groups of compatibilizer and active groups of TPS and PLA phases. In addition, biodegradability of the samples was evaluated by various methods consisting of weight loss, FTIR-ATR analysis and morphology. The results revealed no considerable effect of compatibilizer on biodegradability of samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. PEG-PLA diblock copolymer micelle-like nanoparticles as all-trans-retinoic acid carrier: in vitro and in vivo characterizations

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Qi, Xian Rong; Maitani, Yoshie; Nagai, Tsuneji

    2009-02-01

    The purpose of this study was to characterize the properties in vitro, i.e. release, degradation, hemolytic potential and anticancer activity, and in vivo disposition of all-trans-retinoic acid (ATRA) in rats after administration of ATRA-loaded micelle-like nanoparticles. The amphiphilic block copolymers consisted of a micellar shell-forming mPEG block and a core-forming PLA block. The mPEG-PLA nanoparticles prepared by an acetone volatilization dialysis procedure were identified as having core-shell structure by 1H NMR spectroscopy. Critical association concentration, drug contents, loading efficiency, particle size and ξ potential were evaluated. The release of ATRA from the nanoparticles and the degradation of PLA were found to be mostly associated with the compositions of the nanoparticles. ATRA release was faster at smaller molecular weight of copolymer and lower drug contents. In vitro, the incorporation of ATRA in mPEG-PLA nanoparticles reduced the hemolytic potential of ATRA. Furthermore, anticancer activity of ATRA against HepG2 cell was increased by encapsulation, which showed an enhancement of tumor treatment of ATRA. In vivo, after intravenous injection to rats, the levels of ATRA in the blood stream and the bioavailability were higher for ATRA-loaded mPEG-PLA nanoparticles than those for ATRA solution. In conclusion, the structure of the mPEG-PLA diblock copolymer could be modulated to fit the demand of in vitro and in vivo characterizations of nanoparticles. The mPEG-PLA nanoparticles' loading ATRA have a promising future for injection administration.

  10. Fabrication of PLA Filaments and its Printable Performance

    NASA Astrophysics Data System (ADS)

    Liu, Wenjie; Zhou, Jianping; Ma, Yuming; Wang, Jie; Xu, Jie

    2017-12-01

    Fused deposition modeling (FDM) is a typical 3D printing technology and preparation of qualified filaments is the basis. In order to prepare polylactic acid (PLA) filaments suitable for personalized FDM 3D printing, this article investigated the effect of factors such as extrusion temperature and screw speed on the diameter, surface roughness and ultimate tensile stress of the obtained PLA filaments. The optimal process parameters for fabrication of qualified filaments were determined. Further, the printable performance of the obtained PLA filaments for 3D objects was preliminarily explored.

  11. Gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy.

    PubMed

    Saha, Tapan Kumar; Ichikawa, Hideki; Fukumori, Yoshinobu

    2006-12-11

    In order to provide a suitable device that would contain water-soluble drugs, highly water-soluble gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres (CMS-Gd-DTPA) were prepared by the emulsion method using glutaraldehyde as a cross-linker and Span 80 as a surfactant for gadolinium neutron-capture therapy of cancer. The gadolinium content and the mass median diameter of CMS-Gd-DTPA were estimated. The size and morphology of the CMS-Gd-DTPA were strongly influenced by the initial applied weight ratio of Gd-DTPA:chitosan. FTIR spectra showed that the electrostatic interaction between chitosan and Gd-DTPA accelerated the formation of gadolinium-enriched chitosan microspheres. Sufficient amounts of glutaraldehyde and Span 80 were necessary for producing discrete CMS-Gd-DTPA. The CMS-Gd-DTPA having a mass median diameter 11.7microm and 11.6% of gadolinium could be used in Gd-NCT following intratumoral injection.

  12. Folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell composite particles: synthesis and application in drug release.

    PubMed

    Yang, Dandan; Wei, Kaiwei; Liu, Qi; Yang, Yong; Guo, Xue; Rong, Hongren; Cheng, Mei-Ling; Wang, Guoxiu

    2013-07-01

    A drug delivery system was designed by deliberately combining the useful functions into one entity, which was composed of magnetic ZnFe2O4 hollow microsphere as the core, and mesoporous silica with folic acid molecules as the outer shell. Amine groups coated magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NH2) composite particles were first synthesized by a one-pot direct co-condensation method. Subsequently a novel kind of folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NHFA) composite particles were synthesized by conjugating folic acid as targeted molecule to MZHM-MSS-NH2. Ibuprofen, a well-known antiphlogistic drug, was used as a model drug to assess the loading and releasing behavior of the composite microspheres. The results show that the MZHM-MSS-NHFA system has the higher capacity of drug storage and good sustained drug-release property. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Ageing sensitized by iPLA2β deficiency induces liver fibrosis and intestinal atrophy involving suppression of homeostatic genes and alteration of intestinal lipids and bile acids.

    PubMed

    Jiao, Li; Gan-Schreier, Hongying; Zhu, Xingya; Wei, Wang; Tuma-Kellner, Sabine; Liebisch, Gerhard; Stremmel, Wolfgang; Chamulitrat, Walee

    2017-12-01

    Ageing is a major risk factor for various forms of liver and gastrointestinal (GI) disease and genetic background may contribute to the pathogenesis of these diseases. Group VIA phospholipase A2 or iPLA 2 β is a homeostatic PLA 2 by playing a role in phospholipid metabolism and remodeling. Global iPLA 2 β -/- mice exhibit aged-dependent phenotypes with body weight loss and abnormalities in the bone and brain. We have previously reported the abnormalities in these mutant mice showing susceptibility for chemical-induced liver injury and colitis. We hypothesize that iPLA 2 β deficiency may sensitize with ageing for an induction of GI injury. Male wild-type and iPLA 2 β -/- mice at 4 and 20-22months of age were studied. Aged, but not young, iPLA 2 β -/- mice showed increased hepatic fibrosis and biliary ductular expansion as well as severe intestinal atrophy associated with increased apoptosis, pro-inflammation, disrupted tight junction, and reduced number of mucin-containing globlet cells. This damage was associated with decreased expression of intestinal endoplasmic stress XBP1 and its regulator HNF1α, FATP4, ACSL5, bile-acid transport genes as well as nuclear receptors LXRα and FXR. By LC/MS-MS profiling, iPLA 2 β deficiency in aged mice caused an increase of intestinal arachidonate-containing phospholipids concomitant with a decrease in ceramides. By the suppression of intestinal FXR/FGF-15 signaling, hepatic bile-acid synthesis gene expression was increased leading to an elevation of secondary and hydrophobic bile acids in liver, bile, and intestine. In conclusions, ageing sensitized by iPLA 2 β deficiency caused a decline of key intestinal homeostatic genes resulting in the development of GI disease in a gut-to-liver manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Preparation and evaluation of 188 Re sulfide colloidal nanoparticles loaded biodegradable poly (L-lactic acid) microspheres for radioembolization therapy.

    PubMed

    Jamre, Mina; Shamsaei, Mojtaba; Erfani, Mostafa; Sadjadi, Sodeh; Ghannadi Maragheh, Mohammad

    2018-04-12

    Radioembolization with radioactive microspheres has been an effective method for the treatment of liver lesions. The aim of this study was to prepare carrier-free 188 Re loaded poly (L-lactic acid) (PLLA) microspheres through 188 Re sulfide colloidal nanoparticles ( 188 Re-SC nanoparticles). The formation of 188 Re-SC nanoparticles was confirmed by ultraviolet-visible spectrophotometry. The labeling yield of 188 Re-SC nanoparticles was verified using the RTLC method. Effects of synthesis parameters on morphology and size of prepared 188 Re-sulfide colloidal-PLLA microspheres ( 188 Re-SC-PLLA microspheres) were studied by scanning electron microscopy. In vitro stability of 188 Re-SC-PLLA microspheres was investigated in normal saline at room temperature and in human serum at 37°C. In vivo distribution studies and gamma camera imaging were performed in healthy BALB/c mice. The microspheres could be prepared with sizes between 13 and 48 μm (modal value 29 μm) and radiolabeling efficiency >99%. After incubation, the microspheres were found stable in vitro up to 72 hours. The biodistribution after intravenous injection in healthy BALB/c mice showed high accumulation in lung as a first capture pathway organ for microsphere followed by great retention over 48 hours for these microspheres. These data show that 188 Re-SC-PLLA microspheres are suitable candidate for clinical studies. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Characterization of PLA parts made with AM process

    NASA Astrophysics Data System (ADS)

    Spina, Roberto; Cavalcante, Bruno; Lavecchia, Fulvio

    2018-05-01

    The main objective of the presented work is to evaluate the thermal behavior of Poly-lactic acid (PLA) parts made with a Fused Deposition Modelling (FDM) process. By using a robust framework for the testing sequence of PLA parts, with the aim of establishing a standard testing cycle for the optimization of the part performance and quality. The research involves study the materials before and after 3D printing. Two biodegradable PLA polymers are investigated, characterized by different colors (one black and the other transparent). The study starts with the examination of each polymeric material and measurements of its main thermal properties.

  16. POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres.

    PubMed

    Yang, Yi-Yan; Shi, Meng; Goh, Suat-Hong; Moochhala, Shabbir M; Ng, Steve; Heller, Jorge

    2003-03-07

    The poly(ortho ester) (POE) and poly(D,L-lactide-co-glycolide) 50:50 (PLGA) composite microspheres were fabricated by a water-in-oil-in-water (w/o/w) double emulsion process. The morphology of the composite microspheres varied depending on POE content. When the POE content was 50, 60 or 70% in weight, the double walled microspheres with a dense core of POE and a porous shell of PLGA were formed. The formation of the double walled POE/PLGA microspheres was analysed. Their in vitro degradation behavior was characterized by scanning electron microscopy, gel permeation chromatography, Fourier-transform infrared microscopy and nuclear magnetic resonance spectroscopy (NMR). It was found that compared to the neat POE or PLGA microspheres, distinct degradation mechanism was achieved in the double walled POE/PLGA microspheres system. The degradation of the POE core was accelerated due to the acidic microenvironment produced by the hydrolysis of the outer PLGA layer. The formation of hollow microspheres became pronounced after the first week in vitro. 1H NMR spectra showed that the POE core was completely degraded after 4 weeks. On the other hand, the outer PLGA layer experienced slightly retarded degradation after the POE core disappeared. PLGA in the double walled microspheres kept more than 32% of its initial molecular weight over a period of 7 weeks.

  17. Preparation and mechanical properties of modified nanocellulose/PLA composites from cassava residue

    NASA Astrophysics Data System (ADS)

    Huang, Lijie; Zhang, Xiaoxiao; Xu, Mingzi; Chen, Jie; Shi, Yinghan; Huang, Chongxing; Wang, Shuangfei; An, Shuxiang; Li, Chunying

    2018-02-01

    Nanocellulose was prepared by a mechanochemical method using cassava residue as a raw material and phosphoric acid as the auxiliary agent. The prepared nanocellulose was hydrophobically modified with stearic acid to improve its dispersibility. This modified nanocellulose was added to polylactic acid (PLA) film-forming liquids at concentrations of 0%, 0.5%, 1.0%, 1.5% and 2.0%, and the effect of modified nanocellulose on the mechanical properties of polylactic acid (PLA) films were investigated. When at least 0.5% modified nanocellulose is added, more active groups of modified nanocellulose are adsorbed onto the PLA molecular chain. Although the tensile strength of the film is only improved by 13.59%, the flexibility of the film decreases, and the elastic modulus decreases by 28.91%. When 1% modified nanocellulose is added, the modified nanocellulose and PLA are tangled together through molecular chains and they co-crystallize to form a stable network structure. The tensile strength of the nanocomposite films is enhanced by 40.03%, the elastic modulus is enhanced by 55.65%, and the flexibility of the film decreases.

  18. Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process.

    PubMed

    Mingfei, Xing; Yaping, Wang; Jun, Li; Hua, Xu

    2016-03-15

    In this study, a novel process for detoxification and reutilization of waste cathode ray tube (CRT) funnel glass was developed by carbon thermal reduction enhanced acid leaching process. The key to this process is removal of lead from the CRT funnel glass and synchronous preparation of glass microspheres. Carbon powder was used as an isolation agent and a reducing agent. Under the isolation of the carbon powder, the funnel glass powder was sintered into glass microspheres. In thermal reduction, PbO in the funnel glass was first reduced to elemental Pb by carbon monoxide and then located on the surface of glass microspheres which can be removed easily by acid leaching. Experimental results showed that temperature, carbon adding amount and holding time were the major parameters that controlled lead removal rate. The maximum lead removal rate was 94.80% and glass microspheres that measured 0.73-14.74μm were obtained successfully by setting the temperature, carbon adding amount and holding time at 1200°C, 10% and 30min, respectively. The prepared glass microspheres may be used as fillers in polymer materials and abrasive materials, among others. Accordingly, this study proposed a practical and economical process for detoxification and recycling of waste lead-containing glass. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Inhibition mechanism of P-glycoprotein mediated efflux by mPEG-PLA and influence of PLA chain length on P-glycoprotein inhibition activity.

    PubMed

    Li, Wenjing; Li, Xinru; Gao, Yajie; Zhou, Yanxia; Ma, Shujin; Zhao, Yong; Li, Jinwen; Liu, Yan; Wang, Xinglin; Yin, Dongdong

    2014-01-06

    The present study aimed to investigate the effect of monomethoxy poly(ethylene glycol)-block-poly(D,L-lactic acid) (mPEG-PLA) on the activity of P-glycoprotein (P-gp) in Caco-2 cells and further unravel the relationship between PLA chain length in mPEG-PLA and influence on P-gp efflux and the action mechanism. The transport results of rhodamine 123 (R123) across Caco-2 cell monolayers suggested that mPEG-PLA unimers were responsible for its P-gp inhibitory effect. Furthermore, transport studies of R123 revealed that the inhibitory potential of P-gp efflux by mPEG-PLA analogues was strongly correlated with their structural features and showed that the hydrophilic mPEG-PLA copolymers with an intermediate PLA chain length and 10.20 of hydrophilic-lipophilic balance were more effective at inhibiting P-gp efflux in Caco-2 cells. The fluorescence polarization measurement results ruled out the plasma membrane fluidization as a contributor for inhibition of P-gp by mPEG-PLA. Concurrently, mPEG-PLA inhibited neither basal P-gp ATPase (ATP is adenosine triphosphate) activity nor substrate stimulated P-gp ATPase activity, suggesting that mPEG-PLA seemed not to be a substrate of P-gp and a competitive inhibitor. No evident alteration in P-gp surface level was detected by flow cytometry upon exposure of the cells to mPEG-PLA. The depletion of intracellular ATP, which was likely to be a result of partial inhibition of cellular metabolism, was directly correlated with inhibitory potential for P-gp mediated efflux by mPEG-PLA analogues. Hence, intracellular ATP-depletion appeared to be possible explanation to the inhibition mechanism of P-gp by mPEG-PLA. Taken together, the establishment of a relationship between PLA chain length and impact on P-gp efflux activity and interpretation of action mechanism of mPEG-PLA on P-gp are of fundamental importance and will facilitate future development of mPEG-PLA in the drug delivery area.

  20. Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications.

    PubMed

    Arrieta, Marina Patricia; Castro-López, María del Mar; Rayón, Emilio; Barral-Losada, Luis Fernando; López-Vilariño, José Manuel; López, Juan; González-Rodríguez, María Victoria

    2014-10-15

    Active biobased packaging materials based on poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends were prepared by melt blending and fully characterized. Catechin incorporation, as antioxidant compound, enhanced the thermal stability, whereas its release was improved by the addition of acetyl(tributyl citrate) (ATBC) as plasticizer. Whereas the incorporation of ATBC resulted in a reduction of elastic modulus and hardness, catechin addition produced more rigid materials due to hydrogen-bonding interactions between catechin hydroxyl groups and carbonyl groups of PLA and PHB. The quantification of catechin released into a fatty food simulant and the antioxidant effectiveness after the release process were demonstrated. The effect of the materials' exposure to a food simulant was also investigated. PHB-added materials maintained their structural and mechanical properties after 10 days in a test medium that represents the worst foreseeable conditions of the intended use. Thus, plasticized PLA-PHB blends with catechin show their potential as biobased active packaging for fatty food.

  1. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts.

    PubMed

    da Luz, Camila Macedo; Boyles, Matthew Samuel Powys; Falagan-Lotsch, Priscila; Pereira, Mariana Rodrigues; Tutumi, Henrique Rudolf; de Oliveira Santos, Eidy; Martins, Nathalia Balthazar; Himly, Martin; Sommer, Aniela; Foissner, Ilse; Duschl, Albert; Granjeiro, José Mauro; Leite, Paulo Emílio Corrêa

    2017-01-31

    Poly-lactic acid nanoparticles (PLA-NP) are a type of polymeric NP, frequently used as nanomedicines, which have advantages over metallic NP such as the ability to maintain therapeutic drug levels for sustained periods of time. Despite PLA-NP being considered biocompatible, data concerning alterations in cellular physiology are scarce. We conducted an extensive evaluation of PLA-NP biocompatibility in human lung epithelial A549 cells using high throughput screening and more complex methodologies. These included measurements of cytotoxicity, cell viability, immunomodulatory potential, and effects upon the cells' proteome. We used non- and green-fluorescent PLA-NP with 63 and 66 nm diameters, respectively. Cells were exposed with concentrations of 2, 20, 100 and 200 µg/mL, for 24, 48 and 72 h, in most experiments. Moreover, possible endocytic mechanisms of internalization of PLA-NP were investigated, such as those involving caveolae, lipid rafts, macropinocytosis and clathrin-coated pits. Cell viability and proliferation were not altered in response to PLA-NP. Multiplex analysis of secreted mediators revealed a low-level reduction of IL-12p70 and vascular epidermal growth factor (VEGF) in response to PLA-NP, while all other mediators assessed were unaffected. However, changes to the cells' proteome were observed in response to PLA-NP, and, additionally, the cellular stress marker miR155 was found to reduce. In dual exposures of staurosporine (STS) with PLA-NP, PLA-NP enhanced susceptibility to STS-induced cell death. Finally, PLA-NP were rapidly internalized in association with clathrin-coated pits, and, to a lesser extent, with lipid rafts. These data demonstrate that PLA-NP are internalized and, in general, tolerated by A549 cells, with no cytotoxicity and no secretion of pro-inflammatory mediators. However, PLA-NP exposure may induce modification of biological functions of A549 cells, which should be considered when designing drug delivery systems. Moreover

  2. Poly(methacrylic acid)-grafted chitosan microspheres via surface-initiated ATRP for enhanced removal of Cd(II) ions from aqueous solution.

    PubMed

    Huang, Liqiang; Yuan, Shaojun; Lv, Li; Tan, Guangqun; Liang, Bin; Pehkonen, S O

    2013-09-01

    Cross-linked chitosan (CCS) microspheres tethered with pH-sensitive poly(methacrylic acid) (PMAA) brushes were developed for the efficient removal of Cd(II) ions from aqueous solutions. Functional PMAA brushes containing dense and active carboxyl groups (COOH) were grafted onto the CCS microsphere surface via surface-initiated atom transfer radical polymerization (ATRP). Batch adsorption results showed that solution pH values had a major impact on cadmium adsorption by the PMAA-grafted CCS microspheres with the optimal removal observed above pH 5. The CCS-g-PMAA microsphere was found to achieve the adsorption equilibrium of Cd(II) within 1 h, much faster than about 7 h on the CCS microsphere. At pH 5 and with an initial concentration 0.089-2.49 mmol dm(-3), the maximum adsorption capacity of Cd(II), derived from the Langmuir fitting on the PMAA-grafted microspheres was around 1.3 mmol g(-1). Desorption and adsorption cycle experimental results revealed that the PMAA-grafted CCS microspheres loaded with Cd(II) can be effectively regenerated in a dilute HNO3 solution, and the adsorption capacity remained almost unchanged upon five cycle reuse. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Effect of Sterilization Methods on Electrospun Poly(lactic acid) (PLA) Fiber Alignment for Biomedical Applications.

    PubMed

    Valente, T A M; Silva, D M; Gomes, P S; Fernandes, M H; Santos, J D; Sencadas, V

    2016-02-10

    Medically approved sterility methods should be a major concern when developing a polymeric scaffold, mainly when commercialization is envisaged. In the present work, poly(lactic acid) (PLA) fiber membranes were processed by electrospinning with random and aligned fiber alignment and sterilized under UV, ethylene oxide (EO), and γ-radiation, the most common ones for clinical applications. It was observed that UV light and γ-radiation do not influence fiber morphology or alignment, while electrospun samples treated with EO lead to fiber orientation loss and morphology changing from cylindrical fibers to ribbon-like structures, accompanied to an increase of polymer crystallinity up to 28%. UV light and γ-radiation sterilization methods showed to be less harmful to polymer morphology, without significant changes in polymer thermal and mechanical properties, but a slight increase of polymer wettability was detected, especially for the samples treated with UV radiation. In vitro results indicate that both UV and γ-radiation treatments of PLA membranes allow the adhesion and proliferation of MG 63 osteoblastic cells in a close interaction with the fiber meshes and with a growth pattern highly sensitive to the underlying random or aligned fiber orientation. These results are suggestive of the potential of both γ-radiation sterilized PLA membranes for clinical applications in regenerative medicine, especially those where customized membrane morphology and fiber alignment is an important issue.

  4. Production of PLA-Starch Fibers

    USDA-ARS?s Scientific Manuscript database

    Composites of polylactic acid (PLA) with starch have been prepared previously in an effort to reduce cost as well as to modify other properties such as biodegradation rate. However, strength and elongation both decrease on addition of starch due to poor adhesion and stress concentration at the inte...

  5. Coacervate-like microspheres from lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Rohlfing, D. L.

    1975-01-01

    Microspheres form isothermally from lysine-rich proteinoid when the ionic strength of the solution is increased with NaCl or other salts. Studies with different monovalent anions and with polymers of different amino acid composition indicate that charge neutralization and hydrophobic bonding contribute to microsphere formation. The particles also form in sea water, especially if heated or made slightly alkaline. The microspheres differ from those made from acidic proteinoid but resemble coacervate droplets in some ways (isothermal formation, limited stability, stabilization by quinone, uptake of dyes). Because the constituent lysine-rich proteinoid is of simulated prebiotic origin, the study is interpreted to add emphasis to and suggest an evolutionary continuity for coacervation phenomena.

  6. Chitosan microsphere scaffold tethered with RGD-conjugated poly(methacrylic acid) brushes as effective carriers for the endothelial cells.

    PubMed

    Yang, Zhenyi; Yuan, Shaojun; Liang, Bin; Liu, Yang; Choong, Cleo; Pehkonen, Simo O

    2014-09-01

    Endothelial cell-matrix interactions play a vital role in promoting vascularization of engineered tissues. The current study reports a facile and controllable method to develop a RGD peptide-functionalized chitosan microsphere scaffolds for rapid cell expansion of human umbilical vein endothelial cells (HUVECs). Functional poly(methacrylic acid) (PMAA) brushes are grafted from the chitosan microsphere surfaces via surface-initiated ATRP. Subsequent conjugation of RGD peptides on the pendent carboxyl groups of PMAA side chain is accomplished by carbodiimide chemistry to facilitate biocompatibility of the 3D CS scaffolding system. In vitro cell-loading assay of HUVECs exhibits a significant improvment of cell adhesion, spreading, and proliferation on the RGD peptide-immobilized CS microsphere surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Stretch-induced ERK2 phosphorylation requires PLA2 activity in skeletal myotubes.

    PubMed

    Burkholder, Thomas J

    2009-08-14

    Mechanical stretch rapidly activates multiple signaling cascades, including phospholipases and kinases, to stimulate protein synthesis and growth. The purpose of this study was to determine whether PLA2 activation contributes to stretch-induced phosphorylation of ERK2 in skeletal muscle myotubes. Myotubes derived from neonatal C57 mice were cultured on silicone membranes and subjected to brief cyclic stretch. Inhibition of PLA2 prevented ERK2 phosphorylation, while inhibition of prostaglandin or leukotriene synthesis did not. ERK2 phosphorylation was also blocked by genistein and PD98059, implicating the canonical raf-MEK-ERK cassette. It appears that PLA2, but not further metabolism of arachidonic acid, is required for stretch-induced activation of ERK2. Exposure to exogenous arachidonic acid had no effect on ERK2 phosphorylation, but exposure to lysophosphatidylcholine, the other metabolite of PLA2, caused a dose-dependent increase in ERK2 phosphorylation. These results suggest that stretch-induced activation of ERK2 may result from an interaction between PLA2 derived lysophosphatidylcholine and membrane receptors.

  8. Stretch-induced ERK2 phosphorylation requires PLA2 activity in skeletal myotubes

    PubMed Central

    Burkholder, Thomas J.

    2009-01-01

    Mechanical stretch rapidly activates multiple signaling cascades, including phospholipases and kinases, to stimulate protein synthesis and growth. The purpose of this study was to determine whether PLA2 activation contributes to stretch-induced phosphorylation of ERK2 in skeletal muscle myotubes. Myotubes derived from neonatal C57 mice were cultured on silicone membranes and subjected to brief cyclic stretch. Inhibition of PLA2 prevented ERK2 phosphorylation, while inhibition of prostaglandin or leukotriene synthesis did not. ERK2 phosphorylation was also blocked by genistein and PD98059, implicating the canonical raf-MEK-ERK cassette. It appears that PLA2, but not further metabolism of arachidonic acid, is required for stretch-induced activation of ERK2. Exposure to exogenous arachidonic acid had no effect on ERK2 phosphorylation, but exposure to lysophosphatidylcholine, the other metabolite of PLA2, caused a dose-dependent increase in ERK2 phosphorylation. These results suggest that stretch-induced activation of ERK2 may result from an interaction between PLA2 derived lysophosphatidylcholine and membrane receptors. PMID:19524551

  9. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.

    PubMed

    Arrieta, M P; Fortunati, E; Dominici, F; López, J; Kenny, J M

    2015-05-05

    Optically transparent plasticized poly(lactic acid) (PLA) based bionanocomposite films intended for food packaging were prepared by melt blending. Materials were plasticized with 15wt% of acetyl(tributyl citrate) (ATBC) to improve the material processability and to obtain flexibile films. Poly(hydroxybutyrate) (PHB) was used to increase PLA crystallinity. The thermal stability of the PLA-PHB blends was improved by the addition of 5 wt% of cellulose nanocrystals (CNC) or modified cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose. The combination of ATBC and cellulose nanocrystals, mainly the better dispersed CNCs, improved the interaction between PLA and PHB. Thus, an improvement on the oxygen barrier and stretchability was achieved in PLA-PHB-CNCs-ATBC which also displayed somewhat UV light blocking effect. All bionanocomposite films presented appropriate disintegration in compost suggesting their possible applications as biodegradable packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds.

    PubMed

    Bhaskar, Birru; Owen, Robert; Bahmaee, Hossein; Wally, Zena; Sreenivasa Rao, Parcha; Reilly, Gwendolen C

    2018-05-01

    Controllable pore size and architecture are essential properties for tissue-engineering scaffolds to support cell ingrowth colonization. To investigate the effect of polyethylene glycol (PEG) addition on porosity and bone-cell behavior, porous polylactic acid (PLA)-PEG scaffolds were developed with varied weight ratios of PLA-PEG (100/0, 90/10, 75/25) using solvent casting and porogen leaching. Sugar 200-300 µm in size was used as a porogen. To assess scaffold suitability for bone tissue engineering, MLO-A5 murine osteoblast cells were cultured and cell metabolic activity, alkaline phosphatase (ALP) activity and bone-matrix production determined using (alizarin red S staining for calcium and direct red 80 staining for collagen). It was found that metabolic activity was significantly higher over time on scaffolds containing PEG, ALP activity and mineralized matrix production were also significantly higher on scaffolds containing 25% PEG. Porous architecture and cell distribution and penetration into the scaffold were analyzed using SEM and confocal microscopy, revealing that inclusion of PEG increased pore interconnectivity and therefore cell ingrowth in comparison to pure PLA scaffolds. The results of this study confirmed that PLA-PEG porous scaffolds support mineralizing osteoblasts better than pure PLA scaffolds, indicating they have a high potential for use in bone tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1334-1340, 2018. © 2018 Wiley Periodicals, Inc.

  11. Lipase-catalyzed enantioselective synthesis of (R,R)-lactide from alkyl lactate to produce PDLA (poly D-lactic acid) and stereocomplex PLA (poly lactic acid).

    PubMed

    Jeon, Byoung Wook; Lee, Jumin; Kim, Hyun Sook; Cho, Dae Haeng; Lee, Hyuk; Chang, Rakwoo; Kim, Yong Hwan

    2013-10-20

    R-lactide, a pivotal monomer for the production of poly (D-lactic acid) (PDLA) or stereocomplex poly (lactic acid) (PLA) was synthesized from alkyl (R)-lactate through a lipase-catalyzed reaction without racemization. From among several types of lipase, only lipase B from Candida antarctica (Novozym 435; CAL-B) was effective in the reaction that synthesized (R,R)-lactide. Enantiopure (R,R)-lactide, which consisted of over 99% enantiomeric excess, was synthesized from methyl (R)-lactate through CAL-B catalysis. Removal of the methanol by-product was critical to obtain a high level of lactide conversion. The (R,R)-lactide yield was 56% in a reaction containing 100 mg of Novozym 435, 10 mM methyl (R)-lactate and 1500 mg of molecular sieve 5A in methyl tert-butyl ether (MTBE). The important monomer (R,R)-lactide that is required for the production of the widely recognized bio-plastic PDLA and the PLA stereocomplex can be obtained using this novel synthetic method. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Synthesis of protein-coated biocompatible methotrexate-loaded PLA-PEG-PLA nanoparticles for breast cancer treatment

    PubMed Central

    Massadeh, Salam; Alaamery, Manal; Al-Qatanani, Shatha; Alarifi, Saqer; Bawazeer, Shahad; Alyafee, Yusra

    2016-01-01

    Background PLA-PEG-PLA triblock polymer nanoparticles are promising tools for targeted dug delivery. The main aim in designing polymeric nanoparticles for drug delivery is achieving a controlled and targeted release of a specific drug at the therapeutically optimal rate and choosing a suitable preparation method to encapsulate the drug efficiently, which depends mainly on the nature of the drug (hydrophilic or hydrophobic). In this study, methotrexate (MTX)-loaded nanoparticles were prepared by the double emulsion method. Method Biodegradable polymer polyethylene glycol-polylactide acid tri-block was used with poly(vinyl alcohol) as emulsifier. The resulting methotrexate polymer nanoparticles were coated with bovine serum albumin in order to improve their biocompatibility. This study focused on particle size distribution, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release at various concentrations of PVA (0.5%, 1%, 2%, and 3%). Results Reduced particle size of methotrexate-loaded nanoparticles was obtained using lower PVA concentrations. Enhanced encapsulation efficiency and loading capacity was obtained using 1% PVA. FT-IR characterization was conducted for the void polymer nanoparticles and for drug-loaded nanoparticles with methotrexate, and the protein-coated nanoparticles in solid state showed the structure of the plain PEG-PLA and the drug-loaded nanoparticles with methotrexate. The methotrexate-loaded PLA-PEG-PLA nanoparticles have been studied in vitro; the drug release, drug loading, and yield are reported. Conclusion The drug release profile was monitored over a period of 168 hours, and was free of burst effect before the protein coating. The results obtained from this work are promising; this work can be taken further to develop MTX based therapies.

  13. Preparation of Chitin-PLA laminated composite for implantable application.

    PubMed

    Nasrin, Romana; Biswas, Shanta; Rashid, Taslim Ur; Afrin, Sanjida; Jahan, Rumana Akhter; Haque, Papia; Rahman, Mohammed Mizanur

    2017-12-01

    The present study explores the possibilities of using locally available inexpensive waste prawn shell derived chitin reinforced and bioabsorbable polylactic acid (PLA) laminated composites to develop new materials with excellent mechanical and thermal properties for implantable application such as in bone or dental implant. Chitin at different concentration (1-20% of PLA) reinforced PLA films (CTP) were fabricated by solvent casting process and laminated chitin-PLA composites (LCTP) were prepared by laminating PLA film (obtained by hot press method) with CTP also by hot press method at 160 °C. The effect of variation of chitin concentration on the resulting laminated composite's behavior was investigated. The detailed physico-mechanical, surface morphology and thermal were assessed with different characterization technique such as FT-IR, XRD, SEM and TGA. The FTIR spectra showed the characteristic peaks for chitin and PLA in the composites. SEM images showed an excellent dispersion of chitin in the films and composites. Thermogravimetric analysis (TGA) showed that the complete degradation of chitin, PLA film, 5% chitin reinforced PLA film (CTP2) and LCTP are 98%, 95%, 87% and 98% respectively at temperature of 500 °C. The tensile strength of the LCTP was found 25.09 MPa which is significantly higher than pure PLA film (18.55 MPa) and CTP2 film (8.83 MPa). After lamination of pure PLA and CTP2 film, the composite (LCTP) yielded 0.265-1.061% water absorption from 30 min to 24 h immerse in water that is much lower than PLA and CTP. The increased mechanical properties of the laminated films with the increase of chitin content indicated good dispersion of chitin into PLA and strong interfacial actions between the polymer and chitin. The improvement of mechanical properties and the results of antimicrobial and cytotoxicity of the composites also evaluated and revealed the composite would be a suitable candidate for implant application in biomedical sector.

  14. Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation.

    PubMed

    Pandey, Sanjeev K; Patel, Dinesh K; Thakur, Ravi; Mishra, Durga P; Maiti, Pralay; Haldar, Chandana

    2015-04-01

    This study was carried out to synthesize quercetin (Qt) embedded poly(lactic acid) (PLA) nanoparticles (PLA-Qt) and to evaluate anti-cancer efficacy of PLA-Qt by using human breast cancer cells. PLA-Qt were synthesized by using novel emulsified nanoprecipitation technique with varying dimension of 32 ± 8 to 152 ± 9 nm of PLA-Qt with 62 ± 3% (w/w) entrapment efficiency by varying the concentration of polymer, emulsifier, drug and preparation temperature. The dimension of PLA-Qt was measured through transmission electron microscopy indicating larger particle size at higher concentration of PLA. The release rate of Qt from PLA-Qt was found to be more sustained for larger particle dimension (152 ± 9 nm) as compared to smaller particle dimension (32 ± 8 nm). Interaction between Qt and PLA was verified through spectroscopic and calorimetric methods. Delayed diffusion and stronger interaction in PLA-Qt caused the sustained delivery of Qt from the polymer matrix. In vitro cytotoxicity study indicate the killing of ∼ 50% breast cancer cells in two days at 100 μg/ml of drug concentration while the ∼ 40% destruction of cells require 5 days for PLA-Qt (46 ± 6 nm; 20mg/ml of PLA). Thus our results propose anticancer efficacy of PLA-Qt nanoparticles in terms of its sustained release kinetics revealing novel vehicle for the treatment of cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. [Effect of glyceryl triacetate on properties of PLA/PBAT blends].

    PubMed

    Yang, Nan; Wang, Xiyuan; Weng, Yunxuan; Jin, Yujuan; Zhang, Min

    2016-06-25

    Poly lactic acid (PLA)/Poly (butyleneadipate-co-terephthalate)(PBAT) and glyceryl triacetate (GTA) blend were prepared by torque rheometer, and the effect of GTA on thermodynamical performance, mechanical properties and microstructure of PLA/PBAT composites were studied using differential scanning calorimeter(DSC), dynamic mechanical analysis(DMA), universal testing machine, impact testing machine and scanning electron microscope(SEM). After adding GTA, Tg values of the two phases gradually became closer, blends cold crystallization temperature and melting temperature decreased. When with 3 phr GTA, the dispersed phase particle size of PLA/PBAT blend decreased. Mechanics performance test showed that the elongation at break and impact strength of the PLA/PBAT blend was greatly increased with 3 phr GTA, and the elongation at break increased 2.6 times, improved from 17.7% to 64.1%.

  16. Relationship between compatibilizer and yield strength of PLA/PP Blend

    NASA Astrophysics Data System (ADS)

    Jariyakulsith, Pattanun; Puajindanetr, Somchai

    2018-01-01

    The aim of this research is to study the relationship between compatibilizer and yield strength of polylactic acid (PLA) and polypropylene (PP) blend. The PLA is blended with PP (PLA/PP) at the ratios of 70/30, 50/50 and 30/70. In addition, (1) polypropylene grafted maleic anhydride (PP-g-MAH) as a compatibilizer at 0.3 and 0.7 part per hundred of PLA/PP resin (phr) and (2) dicumyl peroxide (DCP) being an initiator at 0.03 and 0.07 phr are added in each composition. Yield strength is characterized to study the interaction between compatibilizer, initiator and yield strength by using experimental design of multilevel full factorial. The results show that (1) the yield strength of PLA/PP blend are increased after addition of compatibilizer. Because the adding of PP-g-MAH and DCP resulted in improving compatibility between PLA and PP. (2) there are interaction between PP-g-MAH and DCP that have affected the final properties of PLA/PP blend. The highest yield strength of 27.68 MPa is provided at the ratio of 70/30 blend by using the 0.3 phr of PP-g-MAH and 0.03 phr of DCP. Linear regression model is fitted and follow the assumptions of normal distribution.

  17. Molecular modeling and cytotoxicity of diffractaic acid: HP-β-CD inclusion complex encapsulated in microspheres.

    PubMed

    Silva, Camilla V N S; Barbosa, Jéssica A P; Ferraz, Milena S; Silva, Nicácio H; Honda, Neli K; Rabello, Marcelo M; Hernandes, Marcelo Z; Bezerra, Beatriz P; Cavalcanti, Isabella M F; Ayala, Alejandro P; Santos, Noemia P S; Santos-Magalhães, Nereide S

    2016-11-01

    In this pioneer study, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was used to improve the solubility of the diffractaic acid (DA) via inclusion complex (DA:HP-β-CD). Subsequently, DA:HP-β-CD was incorporated into poly-ε-caprolactone (PCL) microspheres (DA:HP-β-CD-MS). Microspheres containing DA (DA-MS) or DA:HP-β-CD (DA:HP-β-CD-MS) were prepared using the multiple W/O/W emulsion-solvent evaporation technique. The phase-solubility diagram of DA in HP-β-CD (10-50mM) showed an A L type curve with a stability constant K 1:1 =821M -1 . 1 H NMR, FTIR, X-ray diffraction and thermal analysis showed changes in the molecular environment of DA in DA:HP-β-CD. The molecular modeling approach suggests a guest-host complex formation between the carboxylic moiety of both DA and the host (HP-β-CD). The mean particle size of the microspheres were ∅ DA-MS =5.23±1.65μm and ∅ DA:HP-β-CD-MS =4.11±1.39μm, respectively. The zeta potential values of the microspheres were ζ DA-MS =-7.85±0.32mV and ζ DA:HP-β-CD-MS =-6.93±0.46mV. Moreover, the encapsulation of DA:HP-β-CD into microspheres resulted in a more slower release (k 2 =0.042±0.001; r 2 =0.996) when compared with DA-MS (k 2 =0.183±0.005; r 2 =0.996). The encapsulation of DA or DA:HP-β-CD into microspheres reduced the cytotoxicity of DA (IC 50 =43.29μM) against Vero cells (IC 50 of DA-MS=108.48μM and IC 50 of DA:HP-β-CD-MS=142.63μM). Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Creating a Positive PLA Experience: A Step-by-Step Look at University PLA

    ERIC Educational Resources Information Center

    Leiste, Sara M.; Jensen, Kathryn

    2011-01-01

    A prior learning assessment (PLA) can be an intimidating process for adult learners. Capella University's PLA team has developed best practices, resources, and tools to foster a positive experience and to remove barriers in PLA and uses three criteria to determine how to best administer the assessment. First, a PLA must be motivating, as described…

  19. PlaMoM: a comprehensive database compiles plant mobile macromolecules.

    PubMed

    Guan, Daogang; Yan, Bin; Thieme, Christoph; Hua, Jingmin; Zhu, Hailong; Boheler, Kenneth R; Zhao, Zhongying; Kragler, Friedrich; Xia, Yiji; Zhang, Shoudong

    2017-01-04

    In plants, various phloem-mobile macromolecules including noncoding RNAs, mRNAs and proteins are suggested to act as important long-distance signals in regulating crucial physiological and morphological transition processes such as flowering, plant growth and stress responses. Given recent advances in high-throughput sequencing technologies, numerous mobile macromolecules have been identified in diverse plant species from different plant families. However, most of the identified mobile macromolecules are not annotated in current versions of species-specific databases and are only available as non-searchable datasheets. To facilitate study of the mobile signaling macromolecules, we compiled the PlaMoM (Plant Mobile Macromolecules) database, a resource that provides convenient and interactive search tools allowing users to retrieve, to analyze and also to predict mobile RNAs/proteins. Each entry in the PlaMoM contains detailed information such as nucleotide/amino acid sequences, ortholog partners, related experiments, gene functions and literature. For the model plant Arabidopsis thaliana, protein-protein interactions of mobile transcripts are presented as interactive molecular networks. Furthermore, PlaMoM provides a built-in tool to identify potential RNA mobility signals such as tRNA-like structures. The current version of PlaMoM compiles a total of 17 991 mobile macromolecules from 14 plant species/ecotypes from published data and literature. PlaMoM is available at http://www.systembioinfo.org/plamom/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Ameliorative Effect of Curcumin-Encapsulated Hyaluronic Acid-PLA Nanoparticles on Thioacetamide-Induced Murine Hepatic Fibrosis.

    PubMed

    Chen, Yu-Nong; Hsu, Shih-Lan; Liao, Ming-Yuan; Liu, Yi-Ting; Lai, Chien-Hung; Chen, Ji-Feng; Nguyen, Mai-Huong Thi; Su, Yung-Hsiang; Chen, Shang-Ting; Wu, Li-Chen

    2016-12-24

    In this study, we developed curcumin-encapsulated hyaluronic acid-polylactide nanoparticles (CEHPNPs) to be used for liver fibrosis amelioration. CD44, the hyaluronic acid (HA) receptor, is upregulated on the surface of cancer cells and on activated hepatic stellate cells (aHSCs) rather than normal cells. CEHPNPs could bind to CD44 and be internalized effectively through endocytosis to release curcumin, a poor water-soluble liver protective agent. Thus, CEHPNPs were potentially not only improving drug efficiency, but also targeting aHSCs. HA and polylactide (PLA) were crosslinked by adipic acid dihydrazide (ADH). The synthesis of HA-PLA was monitored by Fourier-transform infrared (FTIR) and Nuclear Magnetic Resonance (NMR). The average particle size was approximately 60-70 nm as determined by dynamic light scattering (DLS) and scanning electron microscope (SEM). Zeta potential was around -30 mV, which suggested a good stability of the particles. This drug delivery system induced significant aHSC cell death without affecting quiescent HSCs, hepatic epithelial, and parenchymal cells. This system reduced drug dosage without sacrificing therapeutic efficacy. The cytotoxicity IC 50 (inhibitory concentration at 50%) value of CEHPNPs was approximately 1/30 to that of the free drug treated group in vitro. Additionally, the therapeutic effects of CEHPNPs were as effective as the group treated with the same curcumin dose intensity in vivo. CEHPNPs significantly reduced serum aspartate transaminase/alanine transaminase (ALT/AST) significantly, and attenuated tissue collagen production and cell proliferation as revealed by liver biopsy. Conclusively, the advantages of superior biosafety and satisfactory therapeutic effect mean that CEHPNPs hold great potential for treating hepatic fibrosis.

  1. On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications

    PubMed Central

    Arrieta, Marina Patricia; Samper, María Dolores; Aldas, Miguel; López, Juan

    2017-01-01

    Poly(lactic acid) (PLA) is the most used biopolymer for food packaging applications. Several strategies have been made to improve PLA properties for extending its applications in the packaging field. Melt blending approaches are gaining considerable interest since they are easy, cost-effective and readily available processing technologies at the industrial level. With a similar melting temperature and high crystallinity, poly(hydroxybutyrate) (PHB) represents a good candidate to blend with PLA. The ability of PHB to act as a nucleating agent for PLA improves its mechanical resistance and barrier performance. With the dual objective to improve PLAPHB processing performance and to obtain stretchable materials, plasticizers are frequently added. Current trends to enhance PLA-PHB miscibility are focused on the development of composite and nanocomposites. PLA-PHB blends are also interesting for the controlled release of active compounds in the development of active packaging systems. This review explains the most relevant processing aspects of PLA-PHB based blends such as the influence of polymers molecular weight, the PLA-PHB composition as well as the thermal stability. It also summarizes the recent developments in PLA-PHB formulations with an emphasis on their performance with interest in the sustainable food packaging field. PLA-PHB blends shows highly promising perspectives for the replacement of traditional petrochemical based polymers currently used for food packaging. PMID:28850102

  2. On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications.

    PubMed

    Arrieta, Marina Patricia; Samper, María Dolores; Aldas, Miguel; López, Juan

    2017-08-29

    Poly(lactic acid) (PLA) is the most used biopolymer for food packaging applications. Several strategies have been made to improve PLA properties for extending its applications in the packaging field. Melt blending approaches are gaining considerable interest since they are easy, cost-effective and readily available processing technologies at the industrial level. With a similar melting temperature and high crystallinity, poly(hydroxybutyrate) (PHB) represents a good candidate to blend with PLA. The ability of PHB to act as a nucleating agent for PLA improves its mechanical resistance and barrier performance. With the dual objective to improve PLAPHB processing performance and to obtain stretchable materials, plasticizers are frequently added. Current trends to enhance PLA-PHB miscibility are focused on the development of composite and nanocomposites. PLA-PHB blends are also interesting for the controlled release of active compounds in the development of active packaging systems. This review explains the most relevant processing aspects of PLA-PHB based blends such as the influence of polymers molecular weight, the PLA-PHB composition as well as the thermal stability. It also summarizes the recent developments in PLA-PHB formulations with an emphasis on their performance with interest in the sustainable food packaging field. PLA-PHB blends shows highly promising perspectives for the replacement of traditional petrochemical based polymers currently used for food packaging.

  3. Experimental study of ASCs combined with POC-PLA patch for the reconstruction of full-thickness chest wall defects.

    PubMed

    Zhang, Yuanzheng; Fang, Shuo; Dai, Jiezhi; Zhu, Lei; Fan, Hao; Tang, Weiya; Fan, Yongjie; Dai, Haiying; Zhang, Peipei; Wang, Ying; Xing, Xin; Yang, Chao

    2017-01-01

    To explore the repairing effect of combination of adipose stem cells (ASCs) and composite scaffolds on CWR, the electrospun Poly 1, 8-octanediol-co-citric acid (POC)-poly-L-lactide acid (PLA) composite scaffolds were prepared, followed by in vitro and in vivo biocompatibility evaluation of the scaffolds. Afterwards, ASCs were seeded on POC-PLA to construct the POC-PLA-ASCs scaffolds, and the POC-PLA, POC-PLA-ASCs, and traditional materials expanded polytetrafluoroethylene (ePTFE) were adopt for CWR in New Zealand white (NZW) rabbit models. As results, the POC-PLA-ASCs patches possessed good biocompatibility as the high proliferation ability of cells surrounding the patches. Rabbits in POC-PLA-ASCs groups showed better pulmonary function, less pleural adhesion, higher degradation rate and more neovascularization when compared with that in other two groups. The results of western blot indicated that POC-PLA-ASCs patches accelerated the expression of VEGF and Collagen I in rabbit models. From the above, our present study demonstrated that POC-PLA material was applied for CWR successfully, and ASCs seeded on the sheets could improve the pleural adhesions and promote the reparation of chest wall defects.

  4. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract.

    PubMed

    Zhang, Hua; Zhao, Shangge; Zhang, Lu; Han, Bo; Yao, Xincheng; Chen, Wen; Hu, Yanli

    2016-08-01

    Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Involvement of PLA2, COX and LOX in Rhinella arenarum oocyte maturation.

    PubMed

    Ortiz, Maria Eugenia; Bühler, Marta Inés; Zelarayán, Liliana Isabel

    2014-11-01

    In Rhinella arenarum, progesterone is the physiological nuclear maturation inducer that interacts with the oocyte surface and starts a cascade of events that leads to germinal vesicle breakdown (GVBD). Polyunsaturated fatty acids and their metabolites produced through cyclooxygenase (COX) and lipoxygenase (LOX) pathways play an important role in reproductive processes. In amphibians, to date, the role of arachidonic acid (AA) metabolites in progesterone (P4)-induced oocyte maturation has not been clarified. In this work we studied the participation of three enzymes involved in AA metabolism - phospholipase A2 (PLA2), COX and LOX in Rhinella arenarum oocyte maturation. PLA2 activation induced maturation in Rhinella arenarum oocytes in a dose-dependent manner. Oocytes when treated with 0.08 μM melittin showed the highest response (78 ± 6% GVBD). In follicles, PLA2 activation did not significantly induce maturation at the assayed doses (12 ± 3% GVBD). PLA2 inhibition with quinacrine prevented melittin-induced GVBD in a dose-dependent manner, however PLA2 inactivation did not affect P4-induced maturation. This finding suggests that PLA2 is not the only phospholipase involved in P4-induced maturation in this species. P4-induced oocyte maturation was inhibited by the COX inhibitors indomethacin and rofecoxib (65 ± 3% and 63 ± 3% GVBD, respectively), although COX activity was never blocked by their addition. Follicles showed a similar response following the addition of these inhibitors. Participation of LOX metabolites in maturation seems to be correlated with seasonal variation in ovarian response to P4. During the February to June period (low P4 response), LOX inhibition by nordihydroguaiaretic acid or lysine clonixinate increased maturation by up to 70%. In contrast, during the July to January period (high P4 response), LOX inhibition had no effect on hormone-induced maturation.

  6. Electro-spun PLA-PEG-yarns for tissue engineering applications.

    PubMed

    Kruse, Magnus; Greuel, Marc; Kreimendahl, Franziska; Schneiders, Thomas; Bauer, Benedict; Gries, Thomas; Jockenhoevel, Stefan

    2018-06-27

    Electro-spinning is widely used in tissue-engineered applications mostly in form of non-woven structures. The development of e-spun yarn opens the door for textile fabrics which combine the micro to nanoscale dimension of electro-spun filaments with three-dimensional (3D) drapable textile fabrics. Therefore, the aim of the study was the implementation of a process for electro-spun yarns. Polylactic acid (PLA) and polyethylene glycol (PEG) were spun from chloroform solutions with varying PLA/PEG ratios (100:0, 90:10, 75:25 and 50:50). The yarn samples produced were analyzed regarding their morphology, tensile strength, water uptake and cytocompatibility. It was found that the yarn diameter decreased when the funnel collector rotation was increasd, however, the fiber diameter was not influenced. The tensile strength was also found to be dependent on the PEG content. While samples composed of 100% PLA showed a tensile strength of 2.5±0.7 cN/tex, the tensile strength increased with a decreasing PLA content (PLA 75%/PEG 25%) to 6.2±0.5 cN/tex. The variation of the PEG content also influenced the viscosity of the spinning solutions. The investigation of the cytocompatibility with endothelial cells was conducted for PLA/PEG 90:10 and 75:25 and indicated that the samples are cytocompatible.

  7. Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions.

    PubMed

    Zhu, Jun-You; Tang, Chuan-He; Yin, Shou-Wei; Yang, Xiao-Quan

    2018-02-01

    Biodegradable food packaging is sustainable and has a great application prospect. PLA is a promising alternative for petroleum-derived polymers. However, PLA packaging suffers from poor barrier properties compared with petroleum-derived ones. To address this issue, we designed bilayer films based on PLA and Pickering emulsions. The formed bilayer films were compact and uniform and double layers were combined firmly. This strategy enhanced mechanical resistance, ductility and moisture barrier of Pickering emulsion films, and concomitantly enhanced the oxygen barrier for PLA films. Thymol loadings in Pickering emulsion layer endowed them with antimicrobial and antioxidant activity. The release profile of thymol was well fitted with Fick's second law. The antimicrobial activity of the films depended on film types, and Pickering emulsion layer presented larger inhibition zone than PLA layer, hinting that the films possessed directional releasing role. This study opens a promising route to fabricate bilayer architecture creating synergism of each layer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cytocompatibility and Mechanical Properties of Short Phosphate Glass Fibre Reinforced Polylactic Acid (PLA) Composites: Effect of Coupling Agent Mediated Interface

    PubMed Central

    Hasan, Muhammad Sami; Ahmed, Ifty; Parsons, Andrew; Walker, Gavin; Scotchford, Colin

    2012-01-01

    In this study three chemical agents Amino-propyl-triethoxy-silane (APS), sorbitol ended PLA oligomer (SPLA) and Hexamethylene diisocyanate (HDI) were identified to be used as coupling agents to react with the phosphate glass fibre (PGF) reinforcement and the polylactic acid (PLA) polymer matrix of the composite. Composites were prepared with short chopped strand fibres (l = 20 mm, ϕ = 20 µm) in a random arrangement within PLA matrix. Improved, initial composite flexural strength (~20 MPa) was observed for APS treated fibres, which was suggested to be due to enhanced bonding between the fibres and polymer matrix. Both APS and HDI treated fibres were suggested to be covalently linked with the PLA matrix. The hydrophobicity induced by these coupling agents (HDI, APS) helped to resist hydrolysis of the interface and thus retained their mechanical properties for an extended period of time as compared to non-treated control. Approximately 70% of initial strength and 65% of initial modulus was retained by HDI treated fibre composites in contrast to the control, where only ~50% of strength and modulus was retained after 28 days of immersion in PBS at 37 °C. All coupling agent treated and control composites demonstrated good cytocompatibility which was comparable to the tissue culture polystyrene (TCP) control, supporting the use of these materials as coupling agent’s within medical implant devices. PMID:24955744

  9. The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends.

    PubMed

    Ferri, J M; Garcia-Garcia, D; Sánchez-Nacher, L; Fenollar, O; Balart, R

    2016-08-20

    In this work, poly(lactic acid), PLA and thermoplastic starch, TPS blends (with a fixed content of 30wt.% TPS) were prepared by melt extrusion process to increase the low ductile properties of PLA. The TPS used contains an aliphatic/aromatic biodegradable polyester (AAPE) that provides good resistance to aging and moisture. This blend provides slightly improved ductile properties with an increase in elongation at break of 21.5% but phase separation is observed due to the lack of strong interactions between the two polymers. Small amounts of maleinized linseed oil (MLO) can positively contribute to improve the ductile properties of these blends by a combined plasticizing-compatibilizing effect. The elongation at break increases over 160% with the only addition of 6phr MLO. One of the evidence of the plasticizing-compatibilizing effect provided by MLO is the change in the glass transition temperature (Tg) with a decrease of about 10°C. Field emission scanning electron microscopy (FESEM) of PLA-TPS blends with varying amounts of maleinized linseed oil also suggests an increase in compatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering.

    PubMed

    Haaparanta, Anne-Marie; Järvinen, Elina; Cengiz, Ibrahim Fatih; Ellä, Ville; Kokkonen, Harri T; Kiviranta, Ilkka; Kellomäki, Minna

    2014-04-01

    In this study, three-dimensional (3D) porous scaffolds were developed for the repair of articular cartilage defects. Novel collagen/polylactide (PLA), chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds were fabricated by combining freeze-dried natural components and synthetic PLA mesh, where the 3D PLA mesh gives mechanical strength, and the natural polymers, collagen and/or chitosan, mimic the natural cartilage tissue environment of chondrocytes. In total, eight scaffold types were studied: four hybrid structures containing collagen and/or chitosan with PLA, and four parallel plain scaffolds with only collagen and/or chitosan. The potential of these types of scaffolds for cartilage tissue engineering applications were determined by the analysis of the microstructure, water uptake, mechanical strength, and the viability and attachment of adult bovine chondrocytes to the scaffolds. The manufacturing method used was found to be applicable for the manufacturing of hybrid scaffolds with highly porous 3D structures. All the hybrid scaffolds showed a highly porous structure with open pores throughout the scaffold. Collagen was found to bind water inside the structure in all collagen-containing scaffolds better than the chitosan-containing scaffolds, and the plain collagen scaffolds had the highest water absorption. The stiffness of the scaffold was improved by the hybrid structure compared to plain scaffolds. The cell viability and attachment was good in all scaffolds, however, the collagen hybrid scaffolds showed the best penetration of cells into the scaffold. Our results show that from the studied scaffolds the collagen/PLA hybrids are the most promising scaffolds from this group for cartilage tissue engineering.

  11. Biodegradable microsphere-mediated cell perforation in microfluidic channel using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Ishii, Atsuhiro; Ariyasu, Kazumasa; Mitsuhashi, Tatsuki; Heinemann, Dag; Heisterkamp, Alexander; Terakawa, Mitsuhiro

    2016-05-01

    The use of small particles has expanded the capability of ultrashort pulsed laser optoinjection technology toward simultaneous treatment of multiple cells. The microfluidic platform is one of the attractive systems that has obtained synergy with laser-based technology for cell manipulation, including optoinjection. We have demonstrated the delivery of molecules into suspended-flowing cells in a microfluidic channel by using biodegradable polymer microspheres and a near-infrared femtosecond laser pulse. The use of polylactic-co-glycolic acid microspheres realized not only a higher optoinjection ratio compared to that with polylactic acid microspheres but also avoids optical damage to the microfluidic chip, which is attributable to its higher optical intensity enhancement at the localized spot under a microsphere. Interestingly, optoinjection ratios to nucleus showed a difference for adhered cells and suspended cells. The use of biodegradable polymer microspheres provides high throughput optoinjection; i.e., multiple cells can be treated in a short time, which is promising for various applications in cell analysis, drug delivery, and ex vivo gene transfection to bone marrow cells and stem cells without concerns about residual microspheres.

  12. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  13. sPLA2 IB induces human podocyte apoptosis via the M-type phospholipase A2 receptor

    PubMed Central

    Pan, Yangbin; Wan, Jianxin; Liu, Yipeng; Yang, Qian; Liang, Wei; Singhal, Pravin C.; Saleem, Moin A.; Ding, Guohua

    2014-01-01

    The M-type phospholipase A2 receptor (PLA2R) is expressed in podocytes in human glomeruli. Group IB secretory phospholipase A2 (sPLA2 IB), which is one of the ligands of the PLA2R, is more highly expressed in chronic renal failure patients than in controls. However, the roles of the PLA2R and sPLA2 IB in the pathogenesis of glomerular diseases are unknown. In the present study, we found that more podocyte apoptosis occurs in the kidneys of patients with higher PLA2R and serum sPLA2 IB levels. In vitro, we demonstrated that human podocyte cells expressed the PLA2R in the cell membrane. After binding with the PLA2R, sPLA2 IB induced podocyte apoptosis in a time- and concentration-dependent manner. sPLA2 IB-induced podocyte PLA2R upregulation was not only associated with increased ERK1/2 and cPLA2α phosphorylation but also displayed enhanced apoptosis. In contrast, PLA2R-silenced human podocytes displayed attenuated apoptosis. sPLA2 IB enhanced podocyte arachidonic acid (AA) content in a dose-dependent manner. These data indicate that sPLA2 IB has the potential to induce human podocyte apoptosis via binding to the PLA2R. The sPLA2 IB-PLA2R interaction stimulated podocyte apoptosis through activating ERK1/2 and cPLA2α and through increasing the podocyte AA content. PMID:25335547

  14. Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance.

    PubMed

    Zhang, Kunyu; Nagarajan, Vidhya; Misra, Manjusri; Mohanty, Amar K

    2014-08-13

    Multiphase blends of poly(lactic acid) (PLA), ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) terpolymer, and a series of renewable poly(ether-b-amide) elastomeric copolymer (PEBA) were fabricated through reactive melt blending in an effort to improve the toughness of the PLA. Supertoughened PLA blend showing impact strength of ∼500 J/m with partial break impact behavior was achieved at an optimized blending ratio of 70 wt % PLA, 20 wt % EMA-GMA, and 10 wt % PEBA. Miscibility and thermal behavior of the binary blends PLA/PEBA and PLA/EMA-GMA, and the multiphase blends were also investigated through differential scanning calorimetric (DSC) and dynamic mechanical analysis (DMA). Phase morphology and fracture surface morphology of the blends were studied through scanning electron microscopy (SEM) and atomic force microscopy (AFM) to understand the strong corelation between the morphology and its significant effect on imparting tremendous improvement in toughness. A unique "multiple stacked structure" with partial encapsulation of EMA-GMA and PEBA minor phases was observed for the PLA/EMA-GMA/PEBA (70/20/10) revealing the importance of particular blend composition in enhancing the toughness. Toughening mechanism behind the supertoughened PLA blends have been established by studying the impact fractured surface morphology at different zones of fracture. Synergistic effect of good interfacial adhesion and interfacial cavitations followed by massive shear yielding of the matrix was believed to contribute to the enormous toughening effect observed in these multiphase blends.

  15. Evaluation of self-assembled HCPT-loaded PEG-b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles.

    PubMed

    Yang, Xiangrui; Wu, Shichao; Wang, Yange; Li, Yang; Chang, Di; Luo, Yin; Ye, Shefang; Hou, Zhenqing

    2014-12-01

    We present a dialysis technique to prepare the 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly(D,L-lactide) (PEG-b-PLA) and PLA, respectively. Both HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that the HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively. The HCPT-loaded PEG-b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs. The HCPT-loaded PEG-b-PLA NPs presented higher cytotoxicity than the HCPT-loaded PLA NPs. These results suggested that the HCPT-loaded PEG-b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.

  16. PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions.

    PubMed

    Cavallaro, Gennara; Craparo, Emanuela Fabiola; Sardo, Carla; Lamberti, Gaetano; Barba, Anna Angela; Dalmoro, Annalisa

    2015-11-30

    Nanocarriers of amphiphilic polymeric materials represent versatile delivery systems for poorly water soluble drugs. In this work the technique of solvent evaporation from multiple emulsions was applied to produce nanovectors based on new amphiphilic copolymer, the α,β-poly(N-2-hydroxyethyl)-DL-aspartamide-polylactic acid (PHEA-PLA), purposely synthesized to be used in the controlled release of active molecules poorly soluble in water. To this aim an amphiphilic derivative of PHEA, a hydrophilic polymer, was synthesized by derivatization of the polymeric backbone with hydrophobic grafts of polylactic acid (PLA). The achieved copolymer was thus used to produce nanoparticles loaded with α tocopherol (vitamin E) adopted as lipophilic model molecule. Applying a protocol based on solvent evaporation from multiple emulsions assisted by ultrasonic energy and optimizing the emulsification process (solvent selection/separation stages), PHEA-PLA nanostructured particles with total α tocopherol entrapment efficiency (100%), were obtained. The drug release is expected to take place in lower times with respect to PLA due to the presence of the hydrophilic PHEA, therefore the produced nanoparticles can be used for semi-long term release drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Preparation and Characterization of Fluorescent SiO2 Microspheres

    NASA Astrophysics Data System (ADS)

    Xu, Cui; Zhang, Hao; Guan, Ruifang

    2018-01-01

    Fluorescent compound without typical fluorophores was synthesized with citric acid (CA) and aminopropyltriethoxysilane (APTS) firstly, and then it was grafted to the surface of the prepared SiO2 microspheres by chemical reaction. The fluorescent SiO2 microspheres with good fluorescent properties were obtained by optimizing the reaction conditions. And the morphology and structure of the fluorescent SiO2 microspheres have been characterized by scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. The results showed that the preparation of fluorescent SiO2 microspheres have good monodispersity and narrow particle size distribution. Moreover, the fluorescent SiO2 microspheres can be applied to detect Fe3+ in aqueous solution, prepare fluorescent SiO2 rubber, and have potential to be applied in the fluorescent labeling and fingerprint appearing technique fields.

  18. Pancreatic islets and insulinoma cells express a novel isoform of group VIA phospholipase A2 (iPLA2 beta) that participates in glucose-stimulated insulin secretion and is not produced by alternate splicing of the iPLA2 beta transcript.

    PubMed

    Ramanadham, Sasanka; Song, Haowei; Hsu, Fong-Fu; Zhang, Sheng; Crankshaw, Mark; Grant, Gregory A; Newgard, Christopher B; Bao, Shunzhong; Ma, Zhongmin; Turk, John

    2003-12-02

    Many cells express a group VIA 84 kDa phospholipase A(2) (iPLA(2)beta) that is sensitive to inhibition by a bromoenol lactone (BEL) suicide substrate. Inhibition of iPLA(2)beta in pancreatic islets and insulinoma cells suppresses, and overexpression of iPLA(2)beta in INS-1 insulinoma cells amplifies, glucose-stimulated insulin secretion, suggesting that iPLA(2)beta participates in secretion. Western blotting analyses reveal that glucose-responsive 832/13 INS-1 cells express essentially no 84 kDa iPLA(2)beta-immunoreactive protein but predominantly express a previously unrecognized immunoreactive iPLA(2)beta protein in the 70 kDa region that is not generated by a mechanism of alternate splicing of the iPLA(2)beta transcript. To determine if the 70 kDa-immunoreactive protein is a short isoform of iPLA(2)beta, protein from the 70 kDa region was digested with trypsin and analyzed by mass spectrometry. Such analyses reveal several peptides with masses and amino acid sequences that exactly match iPLA(2)beta tryptic peptides. Peptide sequences identified in the 70 kDa tryptic digest include iPLA(2)beta residues 7-53, suggesting that the N-terminus is preserved. We also report here that the 832/13 INS-1 cells express iPLA(2)beta catalytic activity and that BEL inhibits secretagogue-stimulated insulin secretion from these cells but not the incorporation of arachidonic acid into membrane PC pools of these cells. These observations suggest that the catalytic iPLA(2)beta activity expressed in 832/13 INS-1 cells is attributable to a short isoform of iPLA(2)beta and that this isoform participates in insulin secretory but not in membrane phospholipid remodeling pathways. Further, the finding that pancreatic islets also express predominantly a 70 kDa iPLA(2)beta-immunoreactive protein suggests that a signal transduction role of iPLA(2)beta in the native beta-cell might be attributable to a 70 kDa isoform of iPLA(2)beta.

  19. Electrospun PBLG/PLA nanofiber membrane for constructing in vitro 3D model of melanoma.

    PubMed

    Wang, Yaping; Qian, Junmin; Liu, Ting; Xu, Weijun; Zhao, Na; Suo, Aili

    2017-07-01

    Though much progress in utilizing tissue engineering technology to investigate tumor development in vitro has been made, the effective management of human melanoma is still a challenge in clinic due to lack of suitable 3D culture systems. In this study, we prepared a poly(γ-benzyl-l-glutamate)/poly(lactic acid) (PBLG/PLA) nanofiber membrane by electrospinning and demonstrated its suitability as a matrix for 3D culture of melanoma cells in vitro. The electrospun PBLG/PLA nanofiber membrane displayed a smooth and uniform fibrous morphology and had a desirable water contact angle of 79.3±0.6°. The average diameter of PBLG/PLA nanofibers was 320.3±95.1nm that was less than that (516.2±163.3nm) of pure PLA nanofibers. The addition of PBLG into PLA decreased the cold crystallization peak of PLA fibers from 93 to 75°C. The in vitro biocompatibility of PBLG/PLA nanofiber membrane was evaluated with B16F10 cells using PLA nanofiber membrane as control. It was found that, compared to PLA nanofiber membrane, PBLG/PLA nanofiber membrane could better support cell viability and proliferation, as indicated by MTT assay and live-dead staining. SEM results revealed that PBLG/PLA rather than PLA nanofiber membrane promoted the generation of tumoroid-like structures. These findings clearly demonstrated that the electrospun PBLG/PLA nanofiber membrane could mimick the extracellular matrix of melanoma microenvironment and be a promising platform for 3D cell culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Synthesis and characterisation of multifunctional alginate microspheres via the in situ formation of ZnO quantum dots and the graft of 4-(1-pyrenyl) butyric acid to sodium alginate.

    PubMed

    Luo, Guilin; Wang, Jianxin; Wang, Yingying; Feng, Bo; Weng, Jie

    2015-01-01

    Growth factor-loaded fluorescent alginate microspheres, which can realise sustained growth factor release and fluorescence imaging, were synthesised by in situ formation of ZnO quantum dots (QDs) and covalent graft of 4-(1-pyrenyl) butyric acid (PBA). BSA was chosen as a growth factor model protein to study the release kinetic of growth factors from alginate microspheres. The microsphere size and fluorescent properties were also investigated. Investigations of cell culture were used for evaluating biocompatibility of BSA-loaded fluorescent microspheres and fluorescence imaging property of ZnO QDs and PBA-grafted sodium alginate from the microspheres. The results show that they have good fluorescent property either to microspheres or to cells and fluorescent microspheres have good biocompatibility and property in sustained release of growth factors. The obtained microspheres will be expected to realise the imaging of cells and materials and also the release of growth factor in tissue engineering or in cell culture.

  1. PKCalpha regulates phosphorylation and enzymatic activity of cPLA2 in vitro and in activated human monocytes.

    PubMed

    Li, Qing; Subbulakshmi, Venkita; Oldfield, Claudine M; Aamir, Rozina; Weyman, Crystal M; Wolfman, Alan; Cathcart, Martha K

    2007-02-01

    Phospholipases A(2) (PLA(2)) are potent regulators of the inflammatory response. We have observed that Group IV cPLA(2) activity is required for the production of superoxide anion (O(2)(-)) in human monocytes [Li Q., Cathcart M.K. J. Biol. Chem. 272 (4) (1997) 2404-2411.]. We have previously identified PKCalpha as a kinase pathway required for monocyte O(2)(-) production [Li Q., Cathcart M.K. J. Biol. Chem. 269 (26) (1994) 17508-17515.]. We therefore investigated the potential interaction between PKCalpha and cPLA(2) by evaluating the requirement for specific PKC isoenzymes in the process of activating cPLA(2) enzymatic activity and protein phosphorylation upon monocyte activation. We first showed that general PKC inhibitors and antisense oligodeoxyribonucleotides (ODN) to the cPKC group of PKC enzymes inhibited cPLA(2) activity. To distinguish between PKCalpha and PKCbeta isoenzymes in regulating cPLA(2) protein phosphorylation and enzymatic activity, we employed our previously characterized PKCalpha or PKCbeta isoenzyme-specific antisense ODN [Li Q., Subbulakshmi V., Fields A.P., Murray, N.R., Cathcart M.K., J. Biol. Chem. 274 (6) (1999) 3764-3771]. Suppression of PKCalpha expression, but not PKCbeta expression, inhibited cPLA(2) protein phosphorylation and enzymatic activity. Additional studies ruled out a contribution by Erk1/2 to cPLA(2) phosphorylation and activation. We also found that cPLA(2) co-immunoprecipitated with PKCalpha and vice versa. In vitro studies demonstrated that PKCalpha could directly phosphorylate cPLA(2).and enhance enzymatic activity. Finally, we showed that addition of arachidonic acid restored the production of O(2)(-) in monocytes defective in either PKCalpha or cPLA(2) expression. Taken together, our data suggest that PKCalpha, but not PKCbeta, is the predominant cPKC isoenzyme required for cPLA(2) protein phosphorylation and maximal induction of cPLA(2) enzymatic activity upon activation of human monocytes. Our data also support the

  2. Effect of the state of water and relative humidity on ageing of PLA films.

    PubMed

    Rocca-Smith, J R; Chau, N; Champion, D; Brachais, C-H; Marcuzzo, E; Sensidoni, A; Piasente, F; Karbowiak, T; Debeaufort, F

    2017-12-01

    Various types of food are now commercialized in packaging materials based on poly(lactic acid) (PLA) due to its eco-friendly nature. However, one of the main limitations related to PLA is its reactivity with water. For food applications, it is of critical importance to better understand the hydrolysis of PLA driven by water molecules either in liquid or in vapour state. This work focuses on the modifications of PLA induced by water when simulating contact with semi-dry foods (a w ≈0.5), high moisture foods (a w ≈1) and liquid foods (a w ≈1). This study undoubtedly shows that both the chemical potential of water and its physical state influence the hydrolytic degradation of PLA films. From a practical point of view, PLA packaging is very well suited for semi-dry foods, but is highly sensitive to high moisture and liquid foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Using every trick in the book: the Pla surface protease of Yersinia pestis.

    PubMed

    Suomalainen, Marjo; Haiko, Johanna; Ramu, Päivi; Lobo, Leandro; Kukkonen, Maini; Westerlund-Wikström, Benita; Virkola, Ritva; Lähteenmäki, Kaarina; Korhonen, Timo K

    2007-01-01

    The Pla surface protease of Yersinia pestis, encoded by the Y. pestis-specific plasmid pPCP1, is a versatile virulence factor. In vivo studies have shown that Pla is essential in the establishment of bubonic plague, and in vitro studies have demonstrated various putative virulence functions for the Pla molecule. Pla is a surface protease of the omptin family, and its proteolytic targets include the abundant, circulating human zymogen plasminogen, which is activated by Pla to the serine protease plasmin. Plasmin is important in cell migration, and Pla also proteolytically inactivates the main circulating inhibitor of plasmin, alpha2-antiplasmin. Pla also is an adhesin with affinity for laminin, a major glycoprotein of mammalian basement membranes, which is degraded by plasmin but not by Pla. Together, these functions create uncontrolled plasmin proteolysis targeted at tissue barriers. Other proteolytic targets for Pla include complement proteins. Pla also mediates bacterial invasion into human endothelial cell lines; the adhesive and invasive charateristics of Pla can be genetically dissected from its proteolytic activity. Pla is a 10-stranded antiparallel beta-barrel with five surface-exposed short loops, where the catalytic residues are oriented inwards at the top of the beta-barrel. The sequence of Pla contains a three-dimensional motif for protein binding to lipid A of the lipopolysaccharide. Indeed, the proteolytic activity of Pla requires rough lipopolysaccharide but is sterically inhibited by the O antigen in smooth LPS, which may be the selective advantage of the loss of O antigen in Y. pestis. Members of the omptin family are highly similar in structure but differ in functions and virulence association. The catalytic residues of omptins are conserved, but the variable substrate specificities in proteolysis by Pla and other omptins are dictated by the amino acid sequences near or at the surface loops, and hence reflect differences in substrate binding. The

  4. Pla a 2 and Pla a 3 reactivities identify plane tree-allergic patients with respiratory symptoms or food allergy.

    PubMed

    Scala, E; Cecchi, L; Abeni, D; Guerra, E C; Pirrotta, L; Locanto, M; Giani, M; Asero, R

    2017-04-01

    Nine hundred and thirty-nine rPla a 1, nPla a 2, and rPla a 3 ImmunoCAP ISAC reactors were studied. nPla a 2 pos MUXF3 pos but Pla a 1/2 neg subjects were excluded from the study because they were cross-reactive carbohydrate determinant reactors. Among the 764 remaining participants, 71.9% were Pla a 3 pos , 54.1% Pla a 2 pos , and 10.9% Pla a 1 pos . Among Pla a 3 reactors, 89.6% were Pru p 3 pos and 86.8% Jug 3 pos , but the strongest IgE recognition relationship was observed between Pla a 3 and Jug r 3. Distinctive clinical subsets could be documented among plane tree-allergic patients. Pla a 3 reactors had both local and systemic food-induced reactions, but lower past respiratory symptoms occurrence. Pla a 2 reactivity was associated with respiratory symptoms but inversely related to systemic reactions to food. Cosensitization to Pla a 2 and Pla a 3 was associated with a lower past incidence of severe food-induced reactions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. SPHRINT - Printing Drug Delivery Microspheres from Polymeric Melts.

    PubMed

    Shpigel, Tal; Uziel, Almog; Lewitus, Dan Y

    2018-06-01

    This paper describes a simple, straightforward, and rapid method for producing microspheres from molten polymers by merely printing them in an inkjet-like manner onto a superoleophobic surface (microsphere printing, hence SPHRINT). Similar to 3D printing, a polymer melt is deposited onto a surface; however, in contrast to 2D or 3D printing, the surface is not wetted (i.e. exhibiting high contact angles with liquids, above 150°, due to its low surface energy), resulting in the formation of discrete spherical microspheres. In this study, microspheres were printed using polycaprolactone and poly(lactic-co-glycolic acid) loaded with a model active pharmaceutical ingredient-ibuprofen (IBU). The formation of microspheres was captured by high-speed imaging and was found to involve several physical phenomena characterized by non-dimensional numbers, including the thinning and breakup of highly viscous, weakly elastic filaments, which are first to be described in pure polymer melts. The resulting IBU-loaded microspheres had higher sphericity, reproducible sizes and shapes, and superior drug encapsulation efficiencies with a distinctly high process yield (>95%) as compared to the conservative solvent-based methods used presently. Furthermore, the microspheres showed sustained release profiles. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Production, characterisation, and in vitro nebulisation performance of budesonide-loaded PLA nanoparticles.

    PubMed

    Amini, Mohammad Ali; Faramarzi, Mohammad Ali; Gilani, Kambiz; Moazeni, Esmaeil; Esmaeilzadeh-Gharehdaghi, Elina; Amani, Amir

    2014-01-01

    The aim of this study is to prepare a nanosuspension of budesonide for respiratory delivery using nebuliser by optimising its particle size and characterising its in vitro deposition behaviour. PLA (poly lactic acid)-budesonide nanosuspension (BNS) was prepared using high-pressure emulsification/solvent evaporation method. To optimise particle size, different parameters such as PLA concentration, sonication time, and amplitude were investigated. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscope (SEM) analyses were performed to characterise the prepared PLA-budesonide nanoparticles. The in vitro aerodynamic characteristics of the PLA-BNS using a jet nebuliser were estimated and compared with that of commercially available suspension formulation of budesonide. Budesonide-loaded PLA nanoparticles with fine particle size (an average size of 224-360 nm), narrow size distribution, and spherical and smooth surface were prepared. The optimum condition for preparation of fine particle size for aerosolisation was found to be at PLA concentration of 1.2 mg/ml and amplitude of 70 for 75 s sonication time. The in vitro aerosolisation performance of PLA-BNS compared to that of commercial budesonide indicated that it has significantly (p < 0.05) smaller mass median aerodynamic diameter (MMAD) value with an enhancement in fine particle fraction (FPF) value. Improving the in vitro deposition of budesonide, PLA-BNS could be considered as a promising alternative suspension formulation for deep lung delivery of the drug using nebuliser.

  7. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    DOEpatents

    Paranthaman, Mariappan Parans; Liu, Hansan; Brown, Gilbert M.; Sun, Xiao-Guang; Bi, Zhonghe

    2016-12-06

    Compositions and methods of making are provided for mesoporous metal oxide microspheres electrodes. The mesoporous metal oxide microsphere compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g. The methods of making comprise forming composite powders. The methods may also comprise refluxing the composite powders in a basic solution to form an etched powder, washing the etched powder with an acid to form a hydrated metal oxide, and heat-treating the hydrated metal oxide to form mesoporous metal oxide microspheres.

  8. PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging.

    PubMed

    Moustafa, Hesham; El Kissi, Nadia; Abou-Kandil, Ahmed I; Abdel-Aziz, Mohamed S; Dufresne, Alain

    2017-06-14

    The use of biodegradable polymers is of great importance nowadays in many applications. Some of the most commonly used biopolymers are polylactic acid (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) due to their superior properties and availability. In this manuscript, we use a facile and green modification method of organoclay (OC) by antimicrobial natural rosin which is considered as a toxicity-free reinforcing material, thus keeping the green character of the material. It increases the interlayer spacing between the clay platelets. This was proven by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and found to impart antimicrobial properties to PLA/PBAT blends. The morphology of the resulting blends was conducted using scanning and transmission electron microscopies (SEM and TEM), and evidence of exfoliation and intercalation was observed. The thermal properties of the blends were studied using differential scanning calorimetry (DSC), and a detailed study of the crystallization of both PLA and PBAT was reported showing cold crystallization behavior of PLA. The final effect on mechanical and antimicrobial properties was also investigated. The obtained results reveal excellent possibility of using expanded OC modified PLA/PBAT polymer blends by adding a green material, antimicrobial natural rosin, for food packaging and biomembranes applications.

  9. PLA/CS/Nifedipine Nanocomposite Films: Properties and the In Vitro Release of Nifedipine

    NASA Astrophysics Data System (ADS)

    Trang, Nguyen Thi Thu; Chinh, Nguyen Thuy; Giang, Nguyen Vu; Thanh, Dinh Thi Mai; Lam, Tran Dai; Hoang, Thai

    2016-07-01

    The polylactic acid (PLA)/chitosan (CS) films containing a drug, nifedipine (NIF), in the presence of polyethylene oxide (PEO) as a compatibilizer were prepared by the solution method. This method has not been used to form films containing four components (PLA, CS, NIF, PEO) up to now. The CS, PEO, and NIF contents are 25 wt.%, 6-8 wt.%, and 10-50 wt.% in comparison with PLA weight, respectively. Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM) were used to characterize the interactions, properties, and morphology of the PLA/CS/PEO/NIF films. The FTIR, TGA, and DSC results show that NIF carried by PLA/CS/PEO films and PLA, CS, NIF had better interaction and were more compatible when using PEO. The surface morphology of PLA/CS/PEO/NIF films was similar to that of PLA/CS/PEO films. Moreover, this was the first time drug loading and NIF release content from PLA/CS/PEO films were determined by the ultraviolet-visible (UV-Vis) spectroscopy method. The drug loading of PLA/CS/PEO/NIF films was from 80.99% to 93.61%. The in vitro NIF release studies were carried out in pH 2, 6.8, and 7.4 solutions corresponding to the pH of stomach, colon, and duodenum regions in the human body, respectively. The NIF release content in different pH solutions is in the order: pH 2 > pH 6.8 > pH 7.4 and increases when there is increasing NIF loading. The PLA/CS/PEO films are potential materials to apply for long-circulating systems for NIF delivery.

  10. Diclofenac salts, part 6: release from lipid microspheres.

    PubMed

    Fini, Adamo; Cavallari, Cristina; Rabasco Alvarez, Antonio M; Rodriguez, Marisa Gonzalez

    2011-08-01

    The release of diclofenac (20%, w/w) was studied from lipidic solid dispersions using three different chemical forms (acid, sodium salt, and pyrrolidine ethanol salt) and two different lipid carriers (Compritol 888 ATO or Carnauba wax) either free or together with varying amounts (10%-30%, w/w) of stearic acid. Microspheres were prepared by ultrasound-assisted atomization of the molten dispersions and analyzed by scanning electron microscopy, differential scanning calorimetry, and hot stage microscopy. The effects of different formulations on the resulting drug release profiles as a function of pH were studied and the results were discussed. The formulation of the 18 systems and the chemical form of the drug were found to strongly affect the mode of the drug release. The solubility of the chemical forms in the lipid mixture is in the following order: pyrrolidine ethanol salt ≫ acid > sodium salt (according to the solubility parameters), and the nature of the systems thus obtained ranges from a matrix, for mutually soluble drug/carrier pairs, to a microcapsule, for pairs wherein mutual solubility is poor. Drug release from microspheres prepared by pure lipids was primarily controlled by diffusion, whereas the release from microspheres containing stearic acid was diffusion/erosion controlled at pH 7.4. Copyright © 2011 Wiley-Liss, Inc.

  11. Pancreatic Islets and Insulinoma Cells Express a Novel Isoform of Group VIA Phospholipase A2 (iPLA2β) that Participates in Glucose-Stimulated Insulin Secretion and Is Not Produced by Alternate Splicing of the iPLA2β Transcript†

    PubMed Central

    Ramanadham, Sasanka; Song, Haowei; Hsu, Fong-Fu; Zhang, Sheng; Crankshaw, Mark; Grant, Gregory A.; Newgard, Christopher B.; Bao, Shunzhong; Ma, Zhongmin; Turk, John

    2013-01-01

    Many cells express a group VIA 84 kDa phospholipase A2 (iPLA2β) that is sensitive to inhibition by a bromoenol lactone (BEL) suicide substrate. Inhibition of iPLA2β in pancreatic islets and insulinoma cells suppresses, and overexpression of iPLA2β in INS-1 insulinoma cells amplifies, glucose-stimulated insulin secretion, suggesting that iPLA2β participates in secretion. Western blotting analyses reveal that glucose-responsive 832/13 INS-1 cells express essentially no 84 kDa iPLA2β-immunoreactive protein but predominantly express a previously unrecognized immunoreactive iPLA2β protein in the 70 kDa region that is not generated by a mechanism of alternate splicing of the iPLA2β transcript. To determine if the 70 kDa-immunoreactive protein is a short isoform of iPLA2β, protein from the 70 kDa region was digested with trypsin and analyzed by mass spectrometry. Such analyses reveal several peptides with masses and amino acid sequences that exactly match iPLA2β tryptic peptides. Peptide sequences identified in the 70 kDa tryptic digest include iPLA2β residues 7–53, suggesting that the N-terminus is preserved. We also report here that the 832/13 INS-1 cells express iPLA2β catalytic activity and that BEL inhibits secretagogue-stimulated insulin secretion from these cells but not the incorporation of arachidonic acid into membrane PC pools of these cells. These observations suggest that the catalytic iPLA2β activity expressed in 832/13 INS-1 cells is attributable to a short isoform of iPLA2β and that this isoform participates in insulin secretory but not in membrane phospholipid remodeling pathways. Further, the finding that pancreatic islets also express predominantly a 70 kDa iPLA2β-immunoreactive protein suggests that a signal transduction role of iPLA2β in the native β-cell might be attributable to a 70 kDa isoform of iPLA2β. PMID:14636061

  12. Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review.

    PubMed

    Farah, Shady; Anderson, Daniel G; Langer, Robert

    2016-12-15

    Poly(lactic acid) (PLA), so far, is the most extensively researched and utilized biodegradable aliphatic polyester in human history. Due to its merits, PLA is a leading biomaterial for numerous applications in medicine as well as in industry replacing conventional petrochemical-based polymers. The main purpose of this review is to elaborate the mechanical and physical properties that affect its stability, processability, degradation, PLA-other polymers immiscibility, aging and recyclability, and therefore its potential suitability to fulfill specific application requirements. This review also summarizes variations in these properties during PLA processing (i.e. thermal degradation and recyclability), biodegradation, packaging and sterilization, and aging (i.e. weathering and hygrothermal). In addition, we discuss up-to-date strategies for PLA properties improvements including components and plasticizer blending, nucleation agent addition, and PLA modifications and nanoformulations. Incorporating better understanding of the role of these properties with available improvement strategies is the key for successful utilization of PLA and its copolymers/composites/blends to maximize their fit with worldwide application needs. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Structure and blood compatibility of highly oriented PLA/MWNTs composites produced by solid hot drawing.

    PubMed

    Li, Zhengqiu; Zhao, Xiaowen; Ye, Lin; Coates, Phil; Caton-Rose, Fin; Martyn, Michasel

    2014-03-01

    Highly oriented poly(lactic acid) (PLA)/multi-walled carbon nanotubes (MWNTs) composites were fabricated through solid hot drawing technology in an effort to improve the mechanical properties and blood biocompatibility of PLA as blood-contacting medical devices. It was found that proper MWNTs content and drawing orientation can improve the tensile strength and modulus of PLA dramatically. With the increase in draw ratio, the cold crystallization peak became smaller, and the glass transition and the melting peak of PLA moved to high temperature, while the crystallinity increased, and the grain size decreased, indicating the stress-induced crystallization of PLA during drawing. MWNTs showed a nucleation effect on PLA, leading to the rise in the melting temperature, increase in crystallinity and reduction of spherulite size for the composites. Moreover, the intensity of (002) diffraction of MWNTs increased with draw ratio, indicating that MWNTs were preferentially aligned and oriented during drawing. Microstructure observation demonstrated that PLA matrix had an ordered fibrillar bundle structure, and MWNTs in the composite tended to align parallel to the drawing direction. In addition, the dispersion of MWNTs in PLA was also improved by orientation. Introduction of MWNTs and drawing orientation could significantly enhance the blood compatibility of PLA by prolonging kinetic clotting time, reducing hemolysis ratio and platelet activation.

  14. Polyphosphazene/Nano-Hydroxyapatite Composite Microsphere Scaffolds for Bone Tissue Engineering

    PubMed Central

    Nukavarapu, Syam P.; Kumbar, Sangamesh G.; Brown, Justin L.; Krogman, Nicholas R.; Weikel, Arlin L.; Hindenlang, Mark D.; Nair, Lakshmi S.; Allcock, Harry R; Laurencin, Cato T.

    2009-01-01

    The non-toxic, neutral degradation products of amino acid ester polyphosphazenes make them ideal candidates for in vivo orthopaedic applications. The quest for new osteocompatible materials for load bearing tissue engineering applications has led us to investigate mechanically competent amino acid ester substituted polyphosphazenes. In this study, we have synthesized three biodegradable polyphosphazenes substituted with side groups namely leucine, valine and phenylalanine ethyl esters. Of these polymers, the phenylalanine ethyl ester substituted polyphosphazene showed the highest glass transition temperature (41.6 °C) and hence was chosen as a candidate material for forming composite microspheres with 100 nm sized hydroxyapatite (nHAp). The fabricated composite microspheres were sintered into a three-dimensional (3-D) porous scaffold by adopting a dynamic solvent sintering approach. The composite microsphere scaffolds showed compressive moduli of 46–81 MPa with mean pore diameters in the range of 86–145 µm. The three-dimensional polyphosphazene-nHAp composite microsphere scaffolds showed good osteoblast cell adhesion, proliferation and alkaline phosphatase expression, and are potential suitors for bone tissue engineering applications. PMID:18517248

  15. Controlled dexamethasone delivery via double-walled microspheres to enhance long-term adipose tissue retention

    PubMed Central

    Kelmendi-Doko, Arta; Rubin, J Peter; Klett, Katarina; Mahoney, Christopher; Wang, Sheri; Marra, Kacey G

    2017-01-01

    Current materials used for adipose tissue reconstruction have critical shortcomings such as suboptimal volume retention, donor-site morbidity, and poor biocompatibility. The aim of this study was to examine a controlled delivery system of dexamethasone to generate stable adipose tissue when mixed with disaggregated human fat in an athymic mouse model for 6 months. The hypothesis that the continued release of dexamethasone from polymeric microspheres would enhance both adipogenesis and angiogenesis more significantly when compared to the single-walled microsphere model, resulting in long-term adipose volume retention, was tested. Dexamethasone was encapsulated within single-walled poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and compared to dexamethasone encapsulated in a poly(lactic-co-glycolic acid) core surrounded by a shell of poly-l-lactide. The double-walled polymer microsphere system in the second model was developed to create a more sustainable drug delivery process. Dexamethasone-loaded poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and dexamethasone-loaded poly(lactic-co-glycolic acid)/poly-l-lactide double-walled microspheres (Dex DW MS) were prepared using single and double emulsion/solvent techniques. In vitro release kinetics were determined. Two doses of each type of microsphere were examined; 50 and 27 mg of Dex MS and Dex DW MS were mixed with 0.3 mL of human lipoaspirate. Additionally, 50 mg of empty MS and lipoaspirate-only controls were examined. Samples were analyzed grossly and histologically after 6 months in vivo. Mass and volume were measured; dexamethasone microsphere-containing samples demonstrated greater adipose tissue retention compared to the control group. Histological analysis, including hematoxylin and eosin and CD31 staining, indicated increased vascularization (p < 0.05) within the Dex MS-containing samples. Controlled delivery of adipogenic factors, such as dexamethasone via polymer microspheres, significantly

  16. PlaMoM: a comprehensive database compiles plant mobile macromolecules

    PubMed Central

    Guan, Daogang; Yan, Bin; Thieme, Christoph; Hua, Jingmin; Zhu, Hailong; Boheler, Kenneth R.; Zhao, Zhongying; Kragler, Friedrich; Xia, Yiji; Zhang, Shoudong

    2017-01-01

    In plants, various phloem-mobile macromolecules including noncoding RNAs, mRNAs and proteins are suggested to act as important long-distance signals in regulating crucial physiological and morphological transition processes such as flowering, plant growth and stress responses. Given recent advances in high-throughput sequencing technologies, numerous mobile macromolecules have been identified in diverse plant species from different plant families. However, most of the identified mobile macromolecules are not annotated in current versions of species-specific databases and are only available as non-searchable datasheets. To facilitate study of the mobile signaling macromolecules, we compiled the PlaMoM (Plant Mobile Macromolecules) database, a resource that provides convenient and interactive search tools allowing users to retrieve, to analyze and also to predict mobile RNAs/proteins. Each entry in the PlaMoM contains detailed information such as nucleotide/amino acid sequences, ortholog partners, related experiments, gene functions and literature. For the model plant Arabidopsis thaliana, protein–protein interactions of mobile transcripts are presented as interactive molecular networks. Furthermore, PlaMoM provides a built-in tool to identify potential RNA mobility signals such as tRNA-like structures. The current version of PlaMoM compiles a total of 17 991 mobile macromolecules from 14 plant species/ecotypes from published data and literature. PlaMoM is available at http://www.systembioinfo.org/plamom/. PMID:27924044

  17. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, Russell M.

    1980-01-01

    A method and apparatus for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  18. Clinical effects of transcatheter hepatic arterial embolization with holmium-166 poly(l-lactic acid) microspheres in healthy pigs

    PubMed Central

    Nijsen, J. F. W.; de Wit, T. C.; Seppenwoolde, J. H.; Krijger, G. C.; Seevinck, P. R.; Huisman, A.; Zonnenberg, B. A.; van den Ingh, T. S. G. A. M.; van het Schip, A. D.

    2008-01-01

    Purpose The aim of this study is to evaluate the toxicity of holmium-166 poly(l-lactic acid) microspheres administered into the hepatic artery in pigs. Methods Healthy pigs (20–30 kg) were injected into the hepatic artery with holmium-165-loaded microspheres (165HoMS; n = 5) or with holmium-166-loaded microspheres (166HoMS; n = 13). The microspheres’ biodistribution was assessed by single-photon emission computed tomography and/or MRI. The animals were monitored clinically, biochemically, and (166HoMS group only) hematologically over a period of 1 month (165HoMS group) or over 1 or 2 months (166HoMS group). Finally, a pathological examination was undertaken. Results After microsphere administration, some animals exhibited a slightly diminished level of consciousness and a dip in appetite, both of which were transient. Four lethal adverse events occurred in the 166HoMS group due either to incorrect administration or comorbidity: inadvertent delivery of microspheres into the gastric wall (n = 2), preexisting gastric ulceration (n = 1), and endocarditis (n = 1). AST levels were transitorily elevated post-166HoMS administration. In the other blood parameters, no abnormalities were observed. Nuclear scans were acquired from all animals from the 166HoMS group, and MRI scans were performed if available. In pigs from the 166HoMS group, atrophy of one or more liver lobes was frequently observed. The actual radioactivity distribution was assessed through ex vivo 166mHo measurements. Conclusion It can be concluded that the toxicity profile of HoMS is low. In pigs, hepatic arterial embolization with 166HoMS in amounts corresponding with liver-absorbed doses of over 100 Gy, if correctly administered, is not associated with clinically relevant side effects. This result offers a good perspective for upcoming patient trials. PMID:18330569

  19. Microspheres

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Vital information on a person's physical condition can be obtained by identifying and counting the population of T-cells and B-cells, lymphocytes of the same shape and size that help the immune system protect the body from the invasion of disease. The late Dr. Alan Rembaum developed a method for identifying the cells. The method involved tagging the T-cells and B-cells with microspheres of different fluorescent color. Microspheres, which have fluorescent dye embedded in them, are chemically treated so that they can link with antibodies. With the help of a complex antibody/antigen reaction, the microspheres bind themselves to specific 'targets,' in this case the T-cells or B-cells. Each group of cells can then be analyzed by a photoelectronic instrument at different wavelengths emitted by the fluorescent dyes. Same concept was applied to the separation of cancer cells from normal cells. Microspheres were also used to conduct many other research projects. Under a patent license Magsphere, Inc. is producing a wide spectrum of microspheres on a large scale and selling them worldwide for various applications.

  20. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.

    PubMed

    Lv, Qing; Nair, Lakshmi; Laurencin, Cato T

    2009-12-01

    Dynamic flow culture bioreactor systems have been shown to enhance in vitro bone tissue formation by facilitating mass transfer and providing mechanical stimulation. Our laboratory has developed a biodegradable poly (lactic acid glycolic acid) (PLAGA) mixed scaffold consisting of lighter-than-water (LTW) and heavier-than-water (HTW) microspheres as potential matrices for engineering tissue using a high aspect ratio vessel (HARV) rotating bioreactor system. We have demonstrated enhanced osteoblast differentiation and mineralization on PLAGA scaffolds in the HARV rotating bioreactor system when compared with static culture. The objective of the present study is to improve the mechanical properties and bioactivity of polymeric scaffolds by designing LTW polymer/ceramic composite scaffolds suitable for dynamic culture using a HARV bioreactor. We employed a microsphere sintering method to fabricate three-dimensional PLAGA/nano-hydroxyapatite (n-HA) mixed scaffolds composed of LTW and HTW composite microspheres. The mechanical properties, pore size and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLAGA/n-HA ratio. The PLAGA/n-HA (4:1) scaffold sintered at 90 degrees C for 3 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, evaluation human mesenchymal stem cells (HMSCs) response to PLAGA/n-HA scaffolds was performed. HMSCs on PLAGA/n-HA scaffolds demonstrated enhanced proliferation, differentiation, and mineralization when compared with those on PLAGA scaffolds. Therefore, PLAGA/n-HA mixed scaffolds are promising candidates for HARV bioreactor-based bone tissue engineering applications. Copyright 2008 Wiley Periodicals, Inc.

  1. The exploration of endocytic mechanisms of PLA-PEG nanoparticles prepared by coaxialtri-capillary electrospray-template removal method.

    PubMed

    Chen, Jiaming; Cao, Lihua; Cui, Yuecheng; Tu, Kehua; Wang, Hongjun; Wang, Li-Qun

    2018-01-01

    The nano-sized poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) particles with core-shell structure were efficiently prepared by using coaxial tri-capillary electrospray-template removal method. The cellular uptake mechanism, intracellular distribution and exocytosis in A549 cell model of electrosprayed PLA-PEG nanoparticles were systemically studied. The drug release behavior of electrosprayed PLA-PEG nanoparticles were also investigated. Our results showed that PLA-PEG nanoparticles can be endocytosed quickly by A549 cells. The cellular uptake of PLA-PEG nanoparticles was an energy dependent endocytosis process. Caveolae-mediated endocytosis was only one of endocytosis pathways in A549 cells for PLA-PEG nanoparticles, while clathrin mediated endocytosis was not involved in the endocytosis process. The endocytosed PLA-PEG nanoparticles enriched in the head of A549 cells and only a small amount of them was transported into lysosome after 24h incubation. These findings provided insights into the application of electrosprayed PLA-PEG nanoparticles in nano drug delivery field. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Rigid Amorphous Fraction in PLA Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Ma, Qian; Simona Cozza, Erika; Pyda, Marek; Mao, Bin; Zhu, Yazhe; Monticelli, Orietta

    2013-03-01

    Electrospun fibers of poly(lactic acid) (PLA) were formed by adopting a high-speed rotating wheel as the counter-electrode. The molecular orientation, crystallization mechanism, and phase structure and transitions of the aligned ES fibers were investigated. Using thermal analysis and wide angle X-ray scattering (WAXS), we evaluated the confinement that exists in as-spun amorphous, and heat-treated semicrystalline, fibers. Differential scanning calorimetry confirmed the existence of a constrained amorphous phase in as-spun aligned fibers, without the presence of crystals or fillers to serve as fixed physical constraints. Using WAXS, for the first time the mesophase fraction, consisting of oriented amorphous PLA chains, was quantitatively characterized in nanofibers. The authors acknowledge support from the National Science Foundation, Polymers Program under grant DMR-0602473. ESC acknowledges a Ph.D. grant supported by Italian Ministry of Education and Scientific Research.

  3. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, R.M.

    A method and apparatus is disclosed for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  4. Improved design and characterization of PLGA/PLA-coated Chitosan based micro-implants for controlled release of hydrophilic drugs.

    PubMed

    Manna, Soumyarwit; Donnell, Anna M; Kaval, Necati; Al-Rjoub, Marwan F; Augsburger, James J; Banerjee, Rupak K

    2018-05-29

    Repetitive intravitreal injections of Methotrexate (MTX), a hydrophilic chemotherapeutic drug, are currently used to treat selected vitreoretinal (VR) diseases, such as intraocular lymphoma. To avoid complications associated with the rapid release of MTX from the injections, a Polylactic acid (PLA) and Chitosan (CS)-based MTX micro-implant prototype was fabricated in an earlier study, which showed a sustained therapeutic release rate of 0.2-2.0 µg/day of MTX for a period ∼1 month in vitro and in vivo. In the current study, different combinations of Poly(lactic-co-glycolic) acid (PLGA)/PLA coatings were used for lipophilic surface modification of the CS-MTX micro-implant, such as PLGA 5050, PLGA 6535 and PLGA 7525 (PLA: PGA - 50:50, 65:35, 75:25, respectively; M.W: 54,400 - 103,000) and different PLA, such as PLA 100 and PLA 250 (MW: 102,000 and 257,000, respectively). This improved the duration of total MTX release from the coated CS-MTX micro-implants to ∼3-5 months. With an increase in PLA content in PLGA and molecular weight of PLA, a) the initial burst of MTX and the mean release rate of MTX can be reduced; and b) the swelling and biodegradation of the micro-implants can be delayed. The controlled drug release mechanism is caused by a combination of diffusion process and hydrolysis of the polymer coating, which can be modulated by a) PLA content in PLGA and b) molecular weight of PLA, as inferred from Korsmeyer Peppas model, Zero order, First order and Higuchi model fits. This improved micro-implant formulation has the potential to serve as a platform for controlled release of hydrophilic drugs to treat selected VR diseases. Copyright © 2018. Published by Elsevier B.V.

  5. Improving the engineering properties of PLA for 3D printing and beyond

    NASA Astrophysics Data System (ADS)

    Rocha Gutierrez, Carmen Raquel

    Additive manufacturing (AM), now more commonly known as 3D printing, has been classified as efficient, fast, and practical in the prototyping sector of product development. In the work presented here, we will use one of the AM techniques known as Material extrusion 3D printing (ME3DP), which has all the advantages of AM. However, one of the biggest challenges facing ME3DP technologies is the limitation of the range of materials used by this technique. Acrylonitrile butadiene styrene (ABS) and poly-lactic acid (PLA) are currently the most common thermoplastics materials used in ME3DP because of their ability to melt and be reprocessed. PLA is a biodegradable polymer derived from renewable sources such as corn, and sugarcane. The expanded use of this polymer over traditional petroleum-based plastics (ABS) will decrease the demand on petrochemicals, and also lead to less non-biodegradable polymeric waste. While PLA offers an eco-friendly solution for polymeric 3D printing, the mechanical performance is limited by PLA's inherent characteristics (such as moisture absorbance) that may degrade the plastic during processing. PLA novel systems were used through this research maintaining the compatibility with material extrusion 3D printers. The purpose of this investigation is to alter the physical properties of PLA with sustainable additives in order to improve the end use products from this material.

  6. Effect of reactive agent and transesterification catalyst on properties of PLA/PBAT blends

    NASA Astrophysics Data System (ADS)

    Pitivut, S.; Suttiruengwong, S.; Seadan, M.

    2015-07-01

    This research aimed to study the properties of poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blends with two different reactive systems: free radical reaction through peroxide (Perkadox) and transesterification catalyst (tetrabutyl titanate; TBT). Two blends composed of PLA as a matrix phase with the composition of 80 and 70 percent by weight. PLA/PBAT blends with Perkadox were prepared in twin screw extruder, whereas PLA/PBAT blends with TBT were prepared in an internal mixer. The morphology of the blends was investigated by scanning electron microscope (SEM). Tensile and impact testingsof the blends were reported. In case of the blends with Perkadox, SEM micrographs revealed that the size of particles was substantially reduced when adding more Perkadox. Young's modulus and the tensile strength of all blend ratios were insignificantly changed, whereas the elongation at break was decreased when compared to non-reactive blends due to the possible crosslinking reaction as observed from melt flow index (MFI) values. When adding Perkadox, the impact strength of PLA/PBAT (80/20) remained almost unchanged. However, the impact strength of PLA/PBAT (70/30) was enhanced, increasing to 110% for 0.05 phr Perkadox. In case of the blends with TBT, SEM micrographs showed the decrease in the particle size of PBAT phase when adding TBT. Young's modulus and the tensile strength of all blend ratios were not different, but the elongation at break was improved when adding TBT owing to the transesterification reaction. For PLA/PBAT (80/20), the elongation at break was increased by 39%, whereas the elongation at break was increased by 15% for PLA/PLA (70/30). The impact strength of all blend ratios unaffected.

  7. Crystallization and preliminary X-ray diffraction studies of BmooPLA2-I, a platelet-aggregation inhibitor and hypotensive phospholipase A2 from Bothrops moojeni venom

    PubMed Central

    Salvador, Guilherme H. M.; Marchi-Salvador, Daniela P.; Silveira, Lucas B.; Soares, Andreimar M.; Fontes, Marcos R. M.

    2011-01-01

    Phospholipases A2 (PLA2s) are enzymes that cause the liberation of fatty acids and lysophospholipids by the hydrolysis of membrane phospholipids. In addition to their catalytic action, a wide variety of pharmacological activities have been described for snake-venom PLA2s. BmooPLA2-I is an acidic, nontoxic and catalytic PLA2 isolated from Bothrops moojeni snake venom which exhibits an inhibitory effect on platelet aggregation, an immediate decrease in blood pressure, inducing oedema at a low concentration, and an effective bactericidal effect. BmooPLA2-I has been crystallized and X-ray diffraction data have been collected to 1.6 Å resolution using a synchrotron-radiation source. The crystals belonged to space group C2221, with unit-cell parameters a = 39.7, b = 53.2, c = 89.2 Å. The molecular-replacement solution of BmooPLA2-I indicated a monomeric conformation, which is in agreement with nondenaturing electrophoresis and dynamic light-scattering experiments. A comparative study of this enzyme with the acidic PLA2 from B. jararacussu (BthA-I) and other toxic and nontoxic PLA2s may provide important insights into the functional aspects of this class of proteins. PMID:21821890

  8. Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization.

    PubMed

    Grumezescu, V; Holban, A M; Grumezescu, A M; Socol, G; Ficai, A; Vasile, B S; Truscă, R; Bleotu, C; Lazar, V; Chifiriuc, C M; Mogosanu, G D

    2014-09-01

    Due to their persistence and resistance to the current therapeutic approaches, Staphylococcus aureus biofilm-associated infections represent a major cause of morbidity and mortality in the hospital environment. Since (+)-usnic acid (UA), a secondary lichen metabolite, possesses antimicrobial activity against Gram-positive cocci, including S. aureus, the aim of this study was to load magnetic polylactic-co-glycolic acid-polyvinyl alcohol (PLGA-PVA) microspheres with UA, then to obtain thin coatings using matrix-assisted pulsed laser evaporation and to quantitatively assess the capacity of the bio-nano-active modified surface to control biofilm formation by S. aureus, using a culture-based assay. The UA-loaded microspheres inhibited both the initial attachment of S. aureus to the coated surfaces, as well as the development of mature biofilms. In vitro bioevalution tests performed on the fabricated thin films revealed great biocompatibility, which may endorse them as competitive candidates for the development of improved non-toxic surfaces resistant to S. aureus colonization and as scaffolds for stem cell cultivation and tissue engineering.

  9. Development of polylactide (PLA) and PLA nanocomposite foams in injection molding for automotive applications

    NASA Astrophysics Data System (ADS)

    Najafi Chaloupli, Naqi

    Plastic materials are extensively used in automotive structures since they make cars more energy efficient. Recently, the automotive industry is searching for bio-based and renewable alternatives to petroleum-based plastics to reduce the dependence on fossil fuels. Among polymers originating from renewable sources, polylactide (PLA) has attracted significant interest. The use of this polymer in durable industries is promising. Fuel-efficient automobiles are nowadays demanded due to the increasing concerns about environmental and fuel issues. The automobile fuel efficiency can be improved by using a lightweight material and, thereby, reducing the automobile weight. A potential method to achieve this objective is the use of the foaming technology. Foam is a material where a gas phase is encapsulated by a solid phase. Foaming technology helps to manufacture lightweight parts with superior properties in comparison with their solid counterparts. The basic mechanisms of foaming process normally consists of gas implementation, formation of uniform polymer-gas solution, cell nucleation, cell growth and, finally, cell stabilization. PLA foaming has, however, proved to be difficult mainly due to poor rheological properties, small processing window, and slow crystallization kinetics. The ultimate purpose of this work is to reduce by 30 % the weight of polylactide (PLA)-clay based nanocomposites by manufacturing injection-molded foamed parts. To use standard processing equipment, a chemical blowing agent (CBA) was employed. The injection molding technique was utilized in this project because it is the most widely used fabrication process in industry that can produce complex shaped articles. This process, however, is more challenging than other foaming processes since it deals with many additional controlling parameters. In the first part of this project, we illustrated how long chain branching (LCB) and molecular structure impact the melt rheology, crystallization and batch

  10. Thermal degradation kinetics of polylactic acid/acid fabricated cellulose nanocrystal based bionanocomposites.

    PubMed

    Monika; Dhar, Prodyut; Katiyar, Vimal

    2017-11-01

    Cellulose nanocrystals (CNC) are fabricated from filter paper (as cellulosic source) by acid hydrolysis using different acids such as sulphuric (H 2 SO 4 ), phosphoric (H 3 PO 4 ), hydrochloric (HCl) and nitric (HNO 3 ) acid. The resulting acid derived CNC are melt mixed with Polylactic acid (PLA) using extruder at 180°C. Thermogravimetric (TGA) result shows that increase in 10% and 50% weight loss (T 10 , T 50 ) temperature for PLA-CNC film fabricated with HNO 3 , H 3 PO 4 and HCl derived CNC have improved thermal stability in comparison to H 2 SO 4 -CNC. Nonisothermal kinetic studies are carried out with modified-Coats-Redfern (C-R), Ozawa-Flynn-Wall (OFW) and Kissinger method to predict the kinetic and thermodynamic parameters. Subsequently prediction of these parameter leads to the proposal of thermal induced degradation mechanism of nanocomposites using Criado method. The distribution of E a calculated from OFW model are (PLA-H 3 PO 4 -CNC: 125-139 kJmol -1 ), (PLA-HNO 3 -CNC: 126-145 kJmol -1 ), (PLA-H 2 SO 4 -CNC: 102-123 kJmol -1 ) and (PLA-HCl-CNC: 140-182 kJmol -1 ). This difference among E a for the decomposition of PLA-CNC bionanocomposite is probably due to various acids used in this study. The E a calculated by these two methods are found in consonance with that observed from Kissinger method. Further, hyphenated TG-Fourier transform infrared spectroscopy (FTIR) result shows that gaseous products such as CO 2 , CO, lactide, aldehydes and other compounds are given off during the thermal degradation of PLA-CNC nanocomposite. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Analysis of Several PLA2 mRNA in Human Meningiomas

    PubMed Central

    Denizot, Yves; De Armas, Rafael; Durand, Karine; Robert, Sandrine; Moreau, Jean-Jacques; Caire, François; Weinbreck, Nicolas; Labrousse, François

    2009-01-01

    In view of the important oncogenic action of phospholipase A2(PLA2) we investigated PLA2 transcripts in human meningiomas. Real-time PCR was used to investigate PLA2 transcripts in 26 human meningioma tumors. Results indicated that three Ca2+-dependent high molecular weight PLA2 (PLA2-IVA, PLA2-IVB, PLA2-IVC), one Ca2+-independent high molecular weight PLA2 (PLA2-VI) and five low molecular weight secreted forms of PLA2 (PLA2-IB, PLA2-IIA, PLA2-III, PLA2-V, and PLA2-XII) are expressed with PLA2-IVA, PLA2-IVB, PLA2-VI, and PLA2-XIIA as the major expressed forms. PLA2-IIE, PLA2-IIF, PLA2-IVD, and PLA2-XIIB are not detected. Plasma (PLA2-VIIA) and intracellular (PLA2-VIIB) platelet-activating factor acetylhydrolase transcripts are expressed in human meningiomas. However no difference was found for PLA2 transcript amounts in relation to the tumor grade, the subtype of meningiomas, the presence of inflammatory infiltrated cells, of an associated edema, mitosis, brain invasion, vascularisation or necrosis. In conclusion numerous genes encoding multiples forms of PLA2 are expressed in meningiomas where they might act on the phospholipid remodeling and on the local eicosanoid and/or cytokine networks. PMID:20339511

  12. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process.

    PubMed

    Stloukal, Petr; Pekařová, Silvie; Kalendova, Alena; Mattausch, Hannelore; Laske, Stephan; Holzer, Clemens; Chitu, Livia; Bodner, Sabine; Maier, Guenther; Slouf, Miroslav; Koutny, Marek

    2015-08-01

    The degradation mechanism and kinetics of polylactic acid (PLA) nanocomposite films, containing various commercially available native or organo-modified montmorillonites (MMT) prepared by melt blending, were studied under composting conditions in thermophilic phase of process and during abiotic hydrolysis and compared to the pure polymer. Described first order kinetic models were applied on the data from individual experiments by using non-linear regression procedures to calculate parameters characterizing aerobic composting and abiotic hydrolysis, such as carbon mineralization, hydrolysis rate constants and the length of lag phase. The study showed that the addition of nanoclay enhanced the biodegradation of PLA nanocomposites under composting conditions, when compared with pure PLA, particularly by shortening the lag phase at the beginning of the process. Whereas the lag phase of pure PLA was observed within 27days, the onset of CO2 evolution for PLA with native MMT was detected after just 20days, and from 13 to 16days for PLA with organo-modified MMT. Similarly, the hydrolysis rate constants determined tended to be higher for PLA with organo-modified MMT, particularly for the sample PLA-10A with fastest degradation, in comparison with pure PLA. The acceleration of chain scission in PLA with nanoclays was confirmed by determining the resultant rate constants for the hydrolytical chain scission. The critical molecular weight for the hydrolysis of PLA was observed to be higher than the critical molecular weight for onset of PLA mineralization, suggesting that PLA chains must be further shortened so as to be assimilated by microorganisms. In conclusion, MMT fillers do not represent an obstacle to acceptance of the investigated materials in composting facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Efficient conversion of phenylpyruvic acid to phenyllactic acid by using whole cells of Bacillus coagulans SDM.

    PubMed

    Zheng, Zhaojuan; Ma, Cuiqing; Gao, Chao; Li, Fengsong; Qin, Jiayang; Zhang, Haiwei; Wang, Kai; Xu, Ping

    2011-04-20

    Phenyllactic acid (PLA), a novel antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi, can be produced by many microorganisms, especially lactic acid bacteria. However, the concentration and productivity of PLA have been low in previous studies. The enzymes responsible for conversion of phenylpyruvic acid (PPA) into PLA are equivocal. A novel thermophilic strain, Bacillus coagulans SDM, was isolated for production of PLA. When the solubility and dissolution rate of PPA were enhanced at a high temperature, whole cells of B. coagulans SDM could effectively convert PPA into PLA at a high concentration (37.3 g l(-1)) and high productivity (2.3 g l(-1) h(-1)) under optimal conditions. Enzyme activity staining and kinetic studies identified NAD-dependent lactate dehydrogenases as the key enzymes that reduced PPA to PLA. Taking advantage of the thermophilic character of B. coagulans SDM, a high yield and productivity of PLA were obtained. The enzymes involved in PLA production were identified and characterized, which makes possible the rational design and construction of microorganisms suitable for PLA production with metabolic engineering.

  14. Predicting drug loading in PLA-PEG nanoparticles.

    PubMed

    Meunier, M; Goupil, A; Lienard, P

    2017-06-30

    Polymer nanoparticles present advantageous physical and biopharmaceutical properties as drug delivery systems compared to conventional liquid formulations. Active pharmaceutical ingredients (APIs) are often hydrophobic, thus not soluble in conventional liquid delivery. Encapsulating the drugs in polymer nanoparticles can improve their pharmacological and bio-distribution properties, preventing rapid clearance from the bloodstream. Such nanoparticles are commonly made of non-toxic amphiphilic self-assembling block copolymers where the core (poly-[d,l-lactic acid] or PLA) serves as a reservoir for the API and the external part (Poly-(Ethylene-Glycol) or PEG) serves as a stealth corona to avoid capture by macrophage. The present study aims to predict the drug affinity for PLA-PEG nanoparticles and their effective drug loading using in silico tools in order to virtually screen potential drugs for non-covalent encapsulation applications. To that end, different simulation methods such as molecular dynamics and Monte-Carlo have been used to estimate the binding of actives on model polymer surfaces. Initially, the methods and models are validated against a series of pigments molecules for which experimental data exist. The drug affinity for the core of the nanoparticles is estimated using a Monte-Carlo "docking" method. Drug miscibility in the polymer matrix, using the Hildebrand solubility parameter (δ), and the solvation free energy of the drug in the PLA polymer model is then estimated. Finally, existing published ALogP quantitative structure-property relationships (QSPR) are compared to this method. Our results demonstrate that adsorption energies modelled by docking atomistic simulations on PLA surfaces correlate well with experimental drug loadings, whereas simpler approaches based on Hildebrand solubility parameters and Flory-Huggins interaction parameters do not. More complex molecular dynamics techniques which use estimation of the solvation free energies both in

  15. Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation

    NASA Astrophysics Data System (ADS)

    Liu, Xianqiao; Kaminski, Michael D.; Riffle, Judy S.; Chen, Haitao; Torno, Michael; Finck, Martha R.; Taylor, LaToyia; Rosengart, Axel J.

    2007-04-01

    This paper describes a single emulsion-solvent evaporation protocol to prepare PEGylated biodegradable/biocompatible magnetic carriers by utilizing hydrophobic magnetite and a mixture of poly( D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol) (PLA-PEG) (26:1 by mass) polymers. We characterized the magnetic microspheres in terms of morphology, composite microstructure, size and size distribution, and magnetic properties. Results show that the preparation produces magnetic microspheres with a good spherical morphology, small size (mean diameter of 1.2-1.5 μm) by means of large size distributions, and magnetizations up to 20-30 emu/g of microspheres.

  16. Plasma modified PLA electrospun membranes for actinorhodin production intensification in Streptomyces coelicolor immobilized-cell cultivations.

    PubMed

    Scaffaro, Roberto; Lopresti, Francesco; Sutera, Alberto; Botta, Luigi; Fontana, Rosa Maria; Gallo, Giuseppe

    2017-09-01

    Most of industrially relevant bioproducts are produced by submerged cultivations of actinomycetes. The immobilization of these Gram-positive filamentous bacteria on suitable porous supports may prevent mycelial cell-cell aggregation and pellet formation which usually negatively affect actinomycete submerged cultivations, thus, resulting in an improved biosynthetic capability. In this work, electrospun polylactic acid (PLA) membranes, subjected or not to O 2 -plasma treatment (PLA-plasma), were used as support for immobilized-cell submerged cultivations of Streptomyces coelicolor M145. This strain produces different bioactive compounds, including the blue-pigmented actinorhodin (ACT) and red-pigmented undecylprodigiosin (RED), and constitutes a model for the study of antibiotic-producing actinomycetes. Wet contact angles and X-ray photoelectron spectroscopy analysis confirmed the increased wettability of PLA-plasma due to the formation of polar functional groups such as carboxyl and hydroxyl moieties. Scanning electron microscope observations, carried out at different incubation times, revealed that S. coelicolor immobilized-cells created a dense "biofilm-like" mycelial network on both kinds of PLA membranes. Cultures of S. coelicolor immobilized-cells on PLA or PLA-plasma membranes produced higher biomass (between 1.5 and 2 fold) as well as higher levels of RED and ACT than planktonic cultures. In particular, cultures of immobilized-cells on PLA and PLA-plasma produced comparable levels of RED that were approximatively 4 and 5 fold higher than those produced by planktonic cultures, respectively. In contrast, levels of ACT produced by immobilized-cell cultures on PLA and PLA-plasma were different, being 5 and 10 fold higher than those of planktonic cultures, respectively. Therefore, this is study demonstrated the positive influence of PLA membrane on growth and secondary metabolite production in S. coelicolor and also revealed that O 2 -plasma treated PLA membranes

  17. In vitro degradation of a 3D porous Pennisetum purpureum/PLA biocomposite scaffold.

    PubMed

    Revati, R; Majid, M S Abdul; Ridzuan, M J M; Basaruddin, K S; Rahman Y, M N; Cheng, E M; Gibson, A G

    2017-10-01

    The in vitro degradation and mechanical properties of a 3D porous Pennisetum purpureum (PP)/polylactic acid (PLA)-based scaffold were investigated. In this study, composite scaffolds with PP to PLA ratios of 0%, 10%, 20%, and 30% were immersed in a PBS solution at 37°C for 40 days. Compression tests were conducted to evaluate the compressive strength and modulus of the scaffolds, according to ASTM F451-95. The compression strength of the scaffolds was found to increase from 1.94 to 9.32MPa, while the compressive modulus increased from 1.73 to 5.25MPa as the fillers' content increased from 0wt% to 30wt%. Moreover, field emission scanning electron microscopy (FESEM) and X-ray diffraction were employed to observe and analyse the microstructure and fibre-matrix interface. Interestingly, the degradation rate was reduced for the PLA/PP 20 scaffold, though insignificantly, this could be attributed to the improved mechanical properties and stronger fibre-matrix interface. Microstructure changes after degradation were observed using FESEM. The FESEM results indicated that a strong fibre-matrix interface was formed in the PLA/PP 20 scaffold, which reflected the addition of P. purpureum into PLA decreasing the degradation rate compared to in pure PLA scaffolds. The results suggest that the P. purpureum/PLA scaffold degradation rate can be altered and controlled to meet requirements imposed by a given tissue engineering application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Synthesis and characterization of curcumin loaded PLA-Hyperbranched polyglycerol electrospun blend for wound dressing applications.

    PubMed

    Perumal, Govindaraj; Pappuru, Sreenath; Chakraborty, Debashis; Maya Nandkumar, A; Chand, Dillip Kumar; Doble, Mukesh

    2017-07-01

    This study is aimed to develop curcumin (Cur) incorporated electrospun nanofibers of a blend of poly (lactic acid) (PLA) and hyperbranched polyglycerol (HPG) for wound healing applications. Both the polymers are synthesized and fabricated by electrospinning technique. The produced nanofibers were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Colorimetry (DSC) and Thermogravimetric Analysis (TGA). Electrospun scaffolds (PLA/HPG/Cur) exhibits very high hydrophilicity, high swelling and drug uptake and promotes better cell viability, adhesion and proliferation when compared to PLA/Cur electrospun nanofibers. Biodegradation study revealed that the morphology of the nanofibers were unaffected even after 14days immersion in Phosphate Buffered Saline. In vitro scratch assay indicates that migration of the cells in the scratch treated with PLA/HPG/Cur is complete within 36h. These results suggest that PLA/HPG/Cur nanofibers can be a potential wound patch dressing for acute and chronic wound applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [PLA-O-CMC nanoparticles: HGF loading and delivery behaviors in vitro].

    PubMed

    Li, Zhifeng; Chen, Zhong; Chang, Ren'an

    2011-04-01

    This paper is aimed to observe the hepatocyte growth factor (HGF) loading and delivery ability of polylactic acid and oxygen carboxymethylated chitosan copolyer nanoparticles (PLA-O-CMC NPs). We prepared PLA-O-CMC NPs loaded with HGF by ultrasound in combination with magnetic stirring method. The NPs were characterized by transmission electron microscopy, embedding ratio; drug loading and drug delivery behaviors were observed by ELISA. The characteristics of PLA-O-CMC NPs loaded with HGF showed that the mean size was 139. 82 nm, polydispersity was 0.108, maximal HGF-embedding ratio was 76. 32%. The cumulative HGF release gradually increased in the first 24 hours in vitro, with sharp increasing in the first 7 hours, and moderate and steady increasing in the following 17 hours. The HGF had a burst release in the first 24 hours, and in this process the released HGF took up 36.7% of the whole release. From the second day,the HGF release decreased obviously, while it kept on releasing steadily (45-55 ng/d) for quite long time up to 30 days. The experiment proved that PLA-O-CMC NPs is a favourable carrier of HGF. PLA-O-CMC NPs loaded with HGF could rapidly release HGF in vitro. The released HGF reached the effective drug concentration and maintained the certain effective drug concentration for a long time.

  20. Bioactivity of CaSiO3/poly-lactic acid (PLA) composites prepared by various surface loading methods of CaSiO3 powder.

    PubMed

    Okada, Kiyoshi; Hasegawa, Fumikazu; Kameshima, Yoshikazu; Nakajima, Akira

    2007-05-01

    Mixing bioactive ceramic powders with polymers is an effective method for generating bioactivity to the polymer-matrix composites but it is necessary to incorporate up to 40 vol% of bioactive ceramic powder. However, such a high mixing ratio offsets the advantages of the flexibility and formability of polymer matrix and it would be highly advantageous to lower the mixing ratio. Since surface loading of ceramic powders in the polymer is thought to be an effective way of reducing the mixing ratio of the ceramic powder while maintaining bioactive activity, CaSiO(3)/poly-lactic acid (PLA) composites were prepared by three methods; (1) casting, (2) spin coating and (3) hot pressing. In methods (1) and (2), a suspension was prepared by dissolving PLA in chloroform and dispersing CaSiO(3) powder in it. The suspension was cast and dried to form a film in the case of method (1) while it was spin-coated on a PLA substrate in method (2). In method (3), CaSiO(3) powder was surface loaded on to a PLA substrate by hot pressing. The bioactivity of these samples was investigated in vitro using simulated body fluid (SBF). Apatite formation was not observed in the samples prepared by method (1) but some apatite formation was achieved by mixing polyethylene glycol (PEG) with the PLA, producing a porous polymer matrix. In method (2), apatite was clearly observed after soaking for 7 days. Enhanced apatite formation was observed in method (3), the thickness of the resulting apatite layers becoming about 20 microm after soaking for 14 days. Since the amount of CaSiO(3) powder used in these samples was only

  1. Bioactivity of CaSiO3/poly-lactic acid (PLA) composites prepared by various surface loading methods of CaSiO3 powder.

    PubMed

    Okada, Kiyoshi; Hasegawa, Fumikazu; Kameshima, Yoshikazu; Nakajima, Akira

    2007-08-01

    Mixing bioactive ceramic powders with polymers is an effective method for generating bioactivity to the polymer-matrix composites but it is necessary to incorporate up to 40 vol% of bioactive ceramic powder. However, such a high mixing ratio offsets the advantages of the flexibility and formability of polymer matrix and it would be highly advantageous to lower the mixing ratio. Since surface loading of ceramic powders in the polymer is thought to be an effective way of reducing the mixing ratio of the ceramic powder while maintaining bioactive activity, CaSiO(3)/poly-lactic acid (PLA) composites were prepared by three methods; (1) casting, (2) spin coating and (3) hot pressing. In methods (1) and (2), a suspension was prepared by dissolving PLA in chloroform and dispersing CaSiO(3) powder in it. The suspension was cast and dried to form a film in the case of method (1) while it was spin-coated on a PLA substrate in method (2). In method (3), CaSiO(3) powder was surface loaded on to a PLA substrate by hot-pressing. The bioactivity of these samples was investigated in vitro using simulated body fluid (SBF). Apatite formation was not observed in the samples prepared by method (1) but some apatite formation was achieved by mixing polyethylene glycol (PEG) with the PLA, producing a porous polymer matrix. In method (2), apatite was clearly observed after soaking for 7 days. Enhanced apatite formation was observed in method (3), the thickness of the resulting apatite layers becoming about 20 microm after soaking for 14 days. Since the amount of CaSiO(3) powder used in these samples was only < or =0.4 vol%, it is concluded that this preparation method is very effective in generating bioactivity in polymer-matrix composites by loading with only very small amounts of ceramic powder.

  2. Antioxidant migration resistance of SiOx layer in SiOx/PLA coated film.

    PubMed

    Huang, Chongxing; Zhao, Yuan; Su, Hongxia; Bei, Ronghua

    2018-02-01

    As novel materials for food contact packaging, inorganic silicon oxide (SiO x ) films are high barrier property materials that have been developed rapidly and have attracted the attention of many manufacturers. For the safe use of SiO x films for food packaging it is vital to study the interaction between SiO x layers and food contaminants, as well as the function of a SiO x barrier layer in antioxidant migration resistance. In this study, we deposited a SiO x layer on polylactic acid (PLA)-based films to prepare SiO x /PLA coated films by plasma-enhanced chemical vapour deposition. Additionally, we compared PLA-based films and SiO x /PLA coated films in terms of the migration of different antioxidants (e.g. t-butylhydroquinone [TBHQ], butylated hydroxyanisole [BHA], and butylated hydroxytoluene [BHT]) via specific migration experiments and then investigated the effects of a SiO x layer on antioxidant migration under different conditions. The results indicate that antioxidant migration from SiO x /PLA coated films is similar to that for PLA-based films: with increase of temperature, decrease of food simulant polarity, and increase of single-sided contact time, the antioxidant migration rate and amount in SiO x /PLA coated films increase. The SiO x barrier layer significantly reduced the amount of migration of antioxidants with small and similar molecular weights and similar physical and chemical properties, while the degree of migration blocking was not significantly different among the studied antioxidants. However, the migration was affected by temperature and food simulant. Depending on the food simulants considered, the migration amount in SiO x /PLA coated films was reduced compared with that in PLA-based films by 42-46%, 44-47%, and 44-46% for TBHQ, BHA, and BHT, respectively.

  3. PLGA microspheres encapsulating siRNA.

    PubMed

    De Rosa, Giuseppe; Salzano, Giuseppina

    2015-01-01

    The therapeutic use of small interfering RNA (siRNA) represents a new and powerful approach to suppress the expression of pathologically genes. However, biopharmaceutical drawbacks, such as short half-life, poor cellular uptake, and unspecific distribution into the body, hamper the development of siRNA-based therapeutics. Poly(lactide-co-glycolide), (PLGA) microspheres can be a useful tool to overcome these issues. siRNA can be encapsulated into the PLGA microspheres, which protects the loaded nucleic acid against the enzymatic degradation. Moreover, PLGA microspheres can be injected directly into the action site, where the siRNA can be released in controlled manner, thus avoiding the need of frequent invasive administrations. The complete biodegradability of PLGA to monomers easily metabolized by the body, and its approval by FDA and EMA for parenteral administration, assure the safety of this copolymer and do not require the removal of the device after the complete drug release. In chapter, a basic protocol for the preparation of PLGA microspheres encapsulating siRNA is described. This protocol is based on a double emulsion/solvent evaporation technique, a well known and easy to reproduce method. This specific protocol has been developed to encapsulate a siRNA anti-TNFα in PLGA microspheres, and it has been designed and optimized to achieve high siRNA encapsulation efficiency and slow siRNA release in vitro. However, it can be extended also to other siRNA as well as other RNA or DNA-based oligonucleotides (miRNA, antisense, decoy, etc.). Depending on the applications, chemical modifications of the backbone and site-specific modification within the siRNA sequences could be required.

  4. Optimisation of mechanical properties of bamboo fibre reinforced-PLA biocomposites

    NASA Astrophysics Data System (ADS)

    Nurnadia M., J.; Fazita, M. R. Nurul; Abdul Khalil H. P., S.; Mohamad Haafiz M., K.

    2017-12-01

    The majority of the raw materials that have been widely used in industries are petroleum-based. Growing environmental awareness, the depletion of fossil fuels, and climate change are the key drivers to seek more ecologically friendly materials, such as natural fibres to replace synthetic fibres in polymeric composite. Among the natural fibres available, bamboo fibre has relatively high strength. Poly (lactic) acid (PLA), one of the well-known biopolymers, has been used as a matrix in order to produce totally biodegradable biocomposites. In this study, bamboo fibres were compounded with PLA by a twin screw extruder. The bamboo fibre reinforced PLA composites were then manufactured via the compression moulding method. The influences of screw speed and die temperature during extrusion on the mechanical properties, the tensile and flexural of the biocomposites, were studied. The effects of fibre content and fibre length were also investigated. Taguchi experimental design approach was adopted to determine the optimum set of conditions to achieve the "best" mechanical properties of the composites. Tensile and flexural properties were characterised based on the D638-10 and D790-10 standards, respectively. It was observed that the fibre aspect ratio and fibre content significantly affected the mechanical performance of bamboo fibres reinforced PLA composites.

  5. Preparation of surface modified TiO2/rGO microspheres and application in the photocatalytic decomposition of oleic acid

    NASA Astrophysics Data System (ADS)

    Wu, Xin; Zeng, Min; Tong, Xiaoling; Li, Fuyun; Xu, Youyou

    2018-05-01

    The comprehensive utilization of waste cooking oil is an important research topic in food science. In this study, the surface modified mesoporous anatase TiO2/reduced graphene oxide (rGO) microspheres with a high specific surface area have been successfully synthesized, through hydrothermal routes and hydrazine reduced graphene oxide. The photocatalytic decomposition of waste rapeseed oil has also been studied using TiO2/rGO microspheres as photocatalyst. The result shows that the reduced graphene oxide in these nanocomposites can act as adsorbent and photocatalyst, and the temperature and the oxygen amount also are the most important factors affecting the oleic acid decomposition products. There interesting results not only helpful for the study of the mechanism of photocatalytic, but also useful for the rational use of waste cooking oil.

  6. Flexible Microsphere-Embedded Film for Microsphere-Enhanced Raman Spectroscopy.

    PubMed

    Xing, Cheng; Yan, Yinzhou; Feng, Chao; Xu, Jiayu; Dong, Peng; Guan, Wei; Zeng, Yong; Zhao, Yan; Jiang, Yijian

    2017-09-27

    Dielectric microspheres with extraordinary microscale optical properties, such as photonic nanojets, optical whispering-gallery modes (WGMs), and directional antennas, have drawn interest in many research fields. Microsphere-enhanced Raman spectroscopy (MERS) is an alternative approach for enhanced Raman detection by dielectric microstructures. Unfortunately, fabrication of microsphere monolayer arrays is the major challenge of MERS for practical applications on various specimen surfaces. Here we report a microsphere-embedded film (MF) by immersing a highly refractive microsphere monolayer array in the poly(dimethylsiloxane) (PDMS) film as a flexible MERS sensing platform for one- to three-dimensional (1D to 3D) specimen surfaces. The directional antennas and wave-guided whispering-gallery modes (WG-WGMs) contribute to the majority of Raman enhancement by the MFs. Moreover, the MF can be coupled with surface-enhanced Raman spectroscopy (SERS) to provide an extra >10-fold enhancement. The limit of detection is therefore improved for sensing of crystal violet (CV) and Sudan I molecules in aqueous solutions at concentrations down to 10 -7 M. A hybrid dual-layer microsphere enhancer, constructed by depositing a MF onto a microsphere monolayer array, is also demonstrated, wherein the WG-WGMs become dominant and boost the enhancement ratio >50-fold. The present work opens up new opportunities for design of cost-effective and flexible MERS sensing platforms as individual or associated techniques toward practical applications in ultrasensitive Raman detection.

  7. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent.

    PubMed

    Chen, Zhijin; Yu, Dexin; Liu, Chunxi; Yang, Xiaoyan; Zhang, Na; Ma, Chunhong; Song, Jibin; Lu, Zaijun

    2011-09-01

    A nanoparticle magnetic resonance imaging (MRI) contrast agent targeted to liver was developed by conjugation of gadolinium (Gd) chelate groups onto the biocompatible poly(l-lactide)-block-poly (ethylene glycol) (PLA-PEG) nanoparticles. PLA-PEG conjugated with diethylenetriaminopentaacetic acid (DTPA) was used to formulate PLA-PEG-DTPA nanoparticles by solvent diffusion method, and then Gd was loaded onto the nanoparticles by chelated with the unfolding DTPA on the surface of the PLA-PEG-DTPA nanoparticles. The mean size of the nanoparticles was 265.9 ± 6.7 nm. The relaxivity of the Gd-labeled nanoparticles was measured, and the distribution in vivo was evaluated in rats. Compared with conventional contrast agent (Magnevist), the Gd-labeled PLA-PEG nanoparticles showed significant enhancement both on liver targeting ability and imaging signal intensity. The T(1) and T(2) relaxivities per [Gd] of the Gd-labeled nanoparticles was 18.865 mM(-1) s(-1) and 24.863 mM(-1) s(-1) at 3 T, respectively. In addition, the signal intensity in vivo was stronger comparing with the Gd-DTPA and the T(1) weight time was lasting for 4.5 h. The liver targeting efficiency of the Gd-labeled PLA-PEG nanoparticles in rats was 14.57 comparing with Magnevist injection. Therefore, the Gd-labeled nanoparticles showed the potential as targeting molecular MRI contrast agent for further clinical utilization.

  8. Synthesis and Hydrolytic Degradation of Substituted Poly(DL-Lactic Acid)s

    PubMed Central

    Tsuji, Hideto; Eto, Takehiko; Sakamoto, Yuzuru

    2011-01-01

    Non-substituted racemic poly(DL-lactic acid) (PLA) and substituted racemic poly(DL-lactic acid)s or poly(DL-2-hydroxyalkanoic acid)s with different side-chain lengths, i.e., poly(DL-2-hydroxybutanoic acid) (PBA), poly(DL-2-hydroxyhexanoic acid) (PHA), and poly(DL-2-hydroxydecanoic acid) (PDA) were synthesized by acid-catalyzed polycondensation of DL-lactic acid (LA), DL-2-hydroxybutanoic acid (BA), DL-2-hydroxyhexanoic acid (HA), and DL-2-hydroxydecanoic acid (DA), respectively. The hydrolytic degradation behavior was investigated in phosphate-buffered solution at 80 and 37 °C by gravimetry and gel permeation chromatography. It was found that the reactivity of monomers during polycondensation as monitored by the degree of polymerization (DP) decreased in the following order: LA > DA > BA > HA. The hydrolytic degradation rate traced by DP and weight loss at 80 °C decreased in the following order: PLA > PDA > PHA > PBA and that monitored by DP at 37 °C decreased in the following order: PLA > PDA > PBA > PHA. LA and PLA had the highest reactivity during polymerization and hydrolytic degradation rate, respectively, and were followed by DA and PDA. BA, HA, PBA, and PHA had the lowest reactivity during polymerization and hydrolytic degradation rate. The findings of the present study strongly suggest that inter-chain interactions play a major role in the reactivity of non-substituted and substituted LA monomers and degradation rate of the non-substituted and substituted PLA, along with steric hindrance of the side chains as can be expected. PMID:28824149

  9. RhoA/Rho Kinase Mediates Neuronal Death Through Regulating cPLA2 Activation.

    PubMed

    Wu, Xiangbing; Walker, Chandler L; Lu, Qingbo; Wu, Wei; Eddelman, Daniel B; Parish, Jonathan M; Xu, Xiao-Ming

    2017-11-01

    Activation of RhoA/Rho kinase leads to growth cone collapse and neurite retraction. Although RhoA/Rho kinase inhibition has been shown to improve axon regeneration, remyelination and functional recovery, its role in neuronal cell death remains unclear. To determine whether RhoA/Rho kinase played a role in neuronal death after injury, we investigated the relationship between RhoA/Rho kinase and cytosolic phospholipase A 2 (cPLA 2 ), a lipase that mediates inflammation and cell death, using an in vitro neuronal death model and an in vivo contusive spinal cord injury model performed at the 10th thoracic (T10) vertebral level. We found that co-administration of TNF-α and glutamate induced spinal neuron death, and activation of RhoA, Rho kinase and cPLA 2 . Inhibition of RhoA, Rho kinase and cPLA 2 significantly reduced TNF-α/glutamate-induced cell death by 33, 52 and 43 %, respectively (p < 0.001). Inhibition of RhoA and Rho kinase also significantly downregulated cPLA 2 activation by 66 and 60 %, respectively (p < 0.01). Furthermore, inhibition of RhoA and Rho kinase reduced the release of arachidonic acid, a downstream substrate of cPLA 2 . The immunofluorescence staining showed that ROCK 1 or ROCK 2 , two isoforms of Rho kinase, was co-localized with cPLA 2 in neuronal cytoplasm. Interestingly, co-immunoprecipitation (Co-IP) assay showed that ROCK 1 or ROCK 2 bonded directly with cPLA 2 and phospho-cPLA 2 . When the Rho kinase inhibitor Y27632 was applied in mice with T10 contusion injury, it significantly decreased cPLA 2 activation and expression and reduced injury-induced apoptosis at and close to the lesion site. Taken together, our results reveal a novel mechanism of RhoA/Rho kinase-mediated neuronal death through regulating cPLA 2 activation.

  10. Associations of maternal PLA2G4C and PLA2G4D polymorphisms with the risk of spontaneous preterm birth in a Chinese population

    PubMed Central

    Liu, Guang-Jian; He, Jian-Rong; Kuang, Ya-Shu; Fan, Xue-Jiao; Li, Wei-Dong; Lu, Jin-Hua; Xia, Xiao-Yan; Liu, Xiao-Dan; Chen, Nian-Nian; Mai, Wei-Bi; Xia, Hui-Min; Qiu, Xiu

    2017-01-01

    Preterm birth is the leading cause of mortality and morbidity in infants. Its etiology is multifactorial with genes and immune homeostasis. The authors investigated whether prostaglandin (PG) synthesis related single nucleotide polymorphisms (SNPs) PLA2G4C rs1366442 and PLA2G4D rs4924618 were associated with the risk of spontaneous preterm birth (SPTB) in a Chinese population of 114 cases of SPTB and 250 controls of term delivery. The risk associations were determined by odds ratios (ORs) and their 95% confidence intervals (CIs) calculated using multivariate logistic regression. Homology modeling was performed to elucidate potential mechanism of the SNP function. The maternal AT/TT genotype of PLA2G4D rs4924618 was associated with a reduced risk of SPTB (OR, 0.61; 95% CI, 0.37–0.99), while no significant association between PLA2G4C rs1366442 and SPTB risk was identified. Structure and sequence analysis revealed that the amino acid substitution introduced by this SNP located at the conserved central core of the catalytic domain of cytosolic phospholipase A2 δ and was close to the active site. These findings suggested that the polymorphism of PLA2G4D rs4924618 may have a protective influence on the SPTB susceptibility in a Chinese population, supporting a role for genetics in the association between PG synthesis and preterm birth. PMID:28440406

  11. Preparation, characterization, and in vitro release of gentamicin from coralline hydroxyapatite-alginate composite microspheres.

    PubMed

    Sivakumar, M; Rao, K Panduranga

    2003-05-01

    In this work, composite microspheres were prepared from bioactive ceramics such as coralline hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2)] granules, a biodegradable polymer, sodium alginate, and an antibiotic, gentamicin. Previously, we have shown a gentamicin release from coralline hydroxyapatite granules-chitosan composite microspheres. In the present investigation, we attempted to prepare composite microspheres containing coralline hydroxyapatite granules and sodium alginate by the dispersion polymerization technique with gentamicin incorporated by absorption method. The crystal structure of the composite microspheres was analyzed using X-ray powder diffractometer. Fourier transform infrared spectra clearly indicated the presence of per-acid of sodium alginate, phosphate, and hydroxyl groups in the composite microspheres. Scanning electron micrographs and optical micrographs showed that the composite microspheres were spherical in shape and porous in nature. The particle size of composite microspheres was analyzed, and the average size was found to be 15 microns. The thermal behavior of composite microspheres was studied using thermogravimetric analysis and differential scanning calorimetric analysis. The cumulative in vitro release profile of gentamicin from composite microspheres showed near zero order patterns. Copyright 2003 Wiley Periodicals, Inc.

  12. Efficient Conversion of Phenylpyruvic Acid to Phenyllactic Acid by Using Whole Cells of Bacillus coagulans SDM

    PubMed Central

    Zheng, Zhaojuan; Ma, Cuiqing; Gao, Chao; Li, Fengsong; Qin, Jiayang; Zhang, Haiwei; Wang, Kai; Xu, Ping

    2011-01-01

    Background Phenyllactic acid (PLA), a novel antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi, can be produced by many microorganisms, especially lactic acid bacteria. However, the concentration and productivity of PLA have been low in previous studies. The enzymes responsible for conversion of phenylpyruvic acid (PPA) into PLA are equivocal. Methodology/Principal Findings A novel thermophilic strain, Bacillus coagulans SDM, was isolated for production of PLA. When the solubility and dissolution rate of PPA were enhanced at a high temperature, whole cells of B. coagulans SDM could effectively convert PPA into PLA at a high concentration (37.3 g l−1) and high productivity (2.3 g l−1 h−1) under optimal conditions. Enzyme activity staining and kinetic studies identified NAD-dependent lactate dehydrogenases as the key enzymes that reduced PPA to PLA. Conclusions/Significance Taking advantage of the thermophilic character of B. coagulans SDM, a high yield and productivity of PLA were obtained. The enzymes involved in PLA production were identified and characterized, which makes possible the rational design and construction of microorganisms suitable for PLA production with metabolic engineering. PMID:21533054

  13. Release and Degradation of Microencapsulated Spinosad and Emamectin Benzoate.

    PubMed

    Huang, Bin Bin; Zhang, Shao Fei; Chen, Peng Hao; Wu, Gang

    2017-09-07

    The dynamics of release and degradation of the microencapsulation formulation containing spinosad (SP) and emamectin benzoate (EM) were evaluated in the present study. SP and EM were microencapsulated using biodegradable poly-lactic acid (PLA) as the wall material. Their release from and degradation within the prepared SP and EM microspheres (SP-EM-microspheres) were studied. It was found that the encapsulation significantly prolonged the insecticide release. The release could be further extended if the external aqueous phase was pre-saturated with the insecticides and the microspheres were additionally coated with gelatin. On the other hand, increasing the water content of the emulsion or the hydrophilic polycaprolactone (PCL) content in the PLA/PCL mixture accelerated the release. Due to the photolysis and hydrolysis of SP and EM by sunlight, the toxicity of the non-encapsulated insecticides in water declined continuously from 0 through the 9 th day (d), and dissipated in 13 d. In contrast, an aqueous suspension containing 5% SP-EM-microspheres maintained a mostly constant toxicity to Plutella xylostella for 17 d. The biodegradable SP-EM-microspheres showed significantly higher long-term toxicity to P. xylostella due to lower release, reduced photolysis and hydrolysis of the encapsulated insecticides, which were affected by the varied preparation conditions.

  14. Nanocrystalline nickel ferrite particles synthesized by non-hydrolytic sol-gel method and their composite with biodegradable polymer.

    PubMed

    Yin, H; Casey, P S; Chow, G M

    2012-11-01

    Targeted drug delivery has been one of the most important biomedical applications for magnetic particles. Such applications require magnetic particles to have functionalized surfaces/surface coatings that facilitate their incorporation into a polymer matrix to produce a polymer composite. In this paper, nanocrystalline nickel ferrite particles with an oleic acid surface coating were synthesized using a non-hydrolytic sol-gel method and incorporated into a biodegradable polymer matrix, poly(D,L-lactide) PLA prepared using a double emulsion method. As-synthesized nickel ferrite particles had a multi-crystalline structure with chemically adsorbed oleic acid on their surface. After forming the PLA composite, nickel ferrite particles were encapsulated in PLA microspheres. At low nickel ferrite concentrations, composites showed very similar surface charges to that of PLA. The composites were magnetically responsive and increasing the nickel ferrite concentration was found to increase magnetization of the composite.

  15. Enhanced effect of folated pluronic F87-PLA/TPGS mixed micelles on targeted delivery of paclitaxel.

    PubMed

    Xiong, Xiang Yuan; Pan, Xiaoqian; Tao, Long; Cheng, Feng; Li, Zi Ling; Gong, Yan Chun; Li, Yu Ping

    2017-10-01

    Targeted drug delivery systems have great potential to overcome the side effect and improve the bioavailability of conventional anticancer drugs. In order to further improve the antitumor efficacy of paclitaxel (PTX) loaded in folated Pluronic F87/poly(lactic acid) (FA-F87-PLA) micelles, D-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS or Vitamin E TPGS) were added into FA-F87-PLA to form FA-F87-PLA/TPGS mixed micelles. The LE of PTX-loaded mixed micelles (13.5%) was highest in the mass ratio 5 to 3 of FA-F87-PLA to TPGS. The in vitro cytotoxicity assays indicated that the IC50 values for free PTX injections, PTX-loaded FA-F87-PLA micelles and PTX-loaded FA-F87-PLA/TPGS mixed micelles after 72h of incubation were 1.52, 0.42 and 0.037mg/L, respectively. The quantitative cellular uptake of coumarin 6-loaded FA-F87-PLA/TPGS and FA-F87-PLA micelles showed that the cellular uptake efficiency of mixed micelles was higher for 2 and 4h incubation, respectively. In vivo pharmacokinetic studies found that the AUC of PTX-loaded FA-F87-PLA/TPGS mixed micelles is almost 1.4 times of that of PTX-loaded FA-F87-PLA micelles. The decreased particle size and inhibition of P-glycoprotein effect induced by the addition of TPGS could result in enhancing the cellular uptake and improving the antitumor efficiency of PTX-loaded FA-F87-PLA/TPGS mixed micelles. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Tailoring of processing parameters for sintering microsphere-based scaffolds with dense-phase carbon dioxide

    PubMed Central

    Jeon, Ju Hyeong; Bhamidipati, Manjari; Sridharan, BanuPriya; Scurto, Aaron M.; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Microsphere-based polymeric tissue-engineered scaffolds offer the advantage of shape-specific constructs with excellent spatiotemporal control and interconnected porous structures. The use of these highly versatile scaffolds requires a method to sinter the discrete microspheres together into a cohesive network, typically with the use of heat or organic solvents. We previously introduced subcritical CO2 as a sintering method for microsphere-based scaffolds; here we further explored the effect of processing parameters. Gaseous or subcritical CO2 was used for making the scaffolds, and various pressures, ratios of lactic acid to glycolic acid in poly(lactic acid-co-glycolic acid), and amounts of NaCl particles were explored. By changing these parameters, scaffolds with different mechanical properties and morphologies were prepared. The preferred range of applied subcritical CO2 was 15–25 bar. Scaffolds prepared at 25 bar with lower lactic acid ratios and without NaCl particles had a higher stiffness, while the constructs made at 15 bar, lower glycolic acid content, and with salt granules had lower elastic moduli. Human umbilical cord mesenchymal stromal cells (hUCMSCs) seeded on the scaffolds demonstrated that cells penetrate the scaffolds and remain viable. Overall, the study demonstrated the dependence of the optimal CO2 sintering parameters on the polymer and conditions, and identified desirable CO2 processing parameters to employ in the sintering of microsphere-based scaffolds as a more benign alternative to heat-sintering or solvent-based sintering methods. PMID:23115065

  17. Characteristics and cytotoxicity of folate-modified curcumin-loaded PLA-PEG micellar nano systems with various PLA:PEG ratios.

    PubMed

    Phan, Quoc Thong; Le, Mai Huong; Le, Thi Thu Huong; Tran, Thi Hong Ha; Xuan, Phuc Nguyen; Ha, Phuong Thu

    2016-06-30

    Targeting delivery system use natural drugs for tumor cells is an appealing platform help to reduce the side effects and enhance the therapeutic effects of the drug. In this study, we synthesized curcumin (Cur) loaded (D, L Poly lactic - Poly ethylenglycol) micelle (Cur/PLA-PEG) with the ratio of PLA/PEG of 3:1 2:1 1:1 1:2 and 1:3 (w/w) and another micelle modified by folate (Cur/PLA-PEG-Fol) for targeting cancer therapy. The PLA-PEG copolymer was synthesized by ring opening polymerization method. After loading onto the micelle, solubility of Cur increased from 0.38 to 0.73mgml(-1). The average size of prepared Cur/PLA-PEG micelles was from 60 to 69nm (corresponding to the ratio difference of PLA/PEG) and the drug encapsulating efficiency was from 48.8 to 91.3%. Compared with the Cur/PLA-PEG micelles, the size of Cur/PLA-PEG-Fol micelles were from 80 to 86nm and showed better in vitro cellular uptake and cytotoxicity towards HepG2 cells. The cytotoxicity of the NPs however depends much on the PEG component. The results demonstrated that Folate-modified micelles could serve as a potential nano carrier to improve solubility, anti-cancer activity of Cur and targeting ability of the system. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Mechanical behaviour׳s evolution of a PLA-b-PEG-b-PLA triblock copolymer during hydrolytic degradation.

    PubMed

    Breche, Q; Chagnon, G; Machado, G; Girard, E; Nottelet, B; Garric, X; Favier, D

    2016-07-01

    PLA-b-PEG-b-PLA is a biodegradable triblock copolymer that presents both the mechanical properties of PLA and the hydrophilicity of PEG. In this paper, physical and mechanical properties of PLA-b-PEG-b-PLA are studied during in vitro degradation. The degradation process leads to a mass loss, a decrease of number average molecular weight and an increase of dispersity index. Mechanical experiments are made in a specific experimental set-up designed to create an environment close to in vivo conditions. The viscoelastic behaviour of the material is studied during the degradation. Finally, the mechanical behaviour is modelled with a linear viscoelastic model. A degradation variable is defined and included in the model to describe the hydrolytic degradation. This variable is linked to physical parameters of the macromolecular polymer network. The model allows us to describe weak deformations but become less accurate for larger deformations. The abilities and limits of the model are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Poly(lactic acid) (PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion

    PubMed Central

    Mallegni, Norma; Phuong, Thanh Vu; Coltelli, Maria-Beatrice

    2018-01-01

    Poly(lactic acid) (PLA) was melt mixed in a laboratory extruder with poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) in the presence of polypropylene glycol di glycidyl ether (EJ400) that acted as both plasticizer and compatibilizer. The process was then scaled up in a semi-industrial extruder preparing pellets having different content of a nucleating agent (LAK). All of the formulations could be processed by blowing extrusion and the obtained films showed mechanical properties dependent on the LAK content. In particular the tearing strength showed a maximum like trend in the investigated composition range. The films prepared with both kinds of blends showed a tensile strength in the range 12–24 MPa, an elongation at break in the range 150–260% and a significant crystallinity. PMID:29342099

  20. A Functional Iron Oxide Nanoparticles Modified with PLA-PEG-DG as Tumor-Targeted MRI Contrast Agent.

    PubMed

    Xiong, Fei; Hu, Ke; Yu, Haoli; Zhou, Lijun; Song, Lina; Zhang, Yu; Shan, Xiuhong; Liu, Jianping; Gu, Ning

    2017-08-01

    Tumor targeting could greatly promote the performance of magnetic nanomaterials as MRI (Magnetic Resonance Imaging) agent for tumor diagnosis. Herein, we reported a novel magnetic nanoparticle modified with PLA (poly lactic acid)-PEG (polyethylene glycol)-DG (D-glucosamine) as Tumor-targeted MRI Contrast Agent. In this work, we took use of the D-glucose passive targeting on tumor cells, combining it on PLA-PEG through amide reaction, and then wrapped the PLA-PEG-DG up to the Fe 3 O 4 @OA NPs. The stability and anti phagocytosis of Fe 3 O 4 @OA@PLA-PEG-DG was tested in vitro; the MRI efficiency and toxicity was also detected in vivo. These functional magnetic nanoparticles demonstrated good biocompatibility and stability both in vitro and in vivo. Cell experiments showed that Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles exist good anti phagocytosis and high targetability. In vivo MRI images showed that the contrast effect of Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles prevailed over the commercial non tumor-targeting magnetic nanomaterials MRI agent at a relatively low dose. The DG can validly enhance the tumor-targetting effect of Fe 3 O 4 @OA@PLA-PEG nanoparticle. Maybe MRI agents with DG can hold promise as tumor-targetting development in the future.

  1. Preparation of porous PLA/DBM composite biomaterials and experimental research of repair rabbit radius segmental bone defect.

    PubMed

    Zhang, Yumin; Wang, Jianru; Wang, Jue; Niu, Xiaojun; Liu, Jianchun; Gao, Lan; Zhai, Xiaoyan; Chu, Kaibo

    2015-12-01

    Bone substitutes are used in wide range of orthopaedic application. An ideal bone substitute should exhibit superior osteoinductive and osteoconductive properties. Neither bio-derived materials nor synthetic materials can meet the needs of an ideal bone substitute. Preparation of composite materials is a promising way to improve properties of biomaterial. In this study, the porous poly lactic acid (PLA)/demineralized bone matrix (DBM) composite biomaterials prepared by supercritical CO2 technique were implanted to repair rabbit radius segmental bone defect. By comparing with PLA and bone autograft, the X-ray result and histological analysis showed the repair effect of PLA/DBM porous composite materials is significantly better than that of the PLA group and the blank control group, and is similar to autologous bone. The PLA/DBM can promote the healing of bone defects and can be used as a kind of ideal alternative materials to repair bone defects.

  2. Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends

    USDA-ARS?s Scientific Manuscript database

    A blend of poly(lactic acid) (PLA) (75% by weight) and poly(3-hydroxybutyrate) (PHB) (25% by weight) with a polyester plasticizer (Lapol 108) at two different concentrations (5 and 7% by weight per 100 parts of the blends) were investigated by TGA, DSC, XRD, SEM, mechanical testing and biodegradatio...

  3. mPEG-PLA Micelle for Delivery of Effective Parts of Andrographis Paniculata.

    PubMed

    Yao, Hailu; Song, Shiyong; Miao, Xiaolu; Liu, Xiao; Zhao, Junli; Wang, Zhen; Shao, Xiaoting; Zhang, Yu; Han, Guang

    2018-01-01

    Many studies have shown that Andrographis paniculata (Burm. f.) Nees has a good anti-tumor effect, but poor solubility in water and poor bioavailability hinder the modernization of it. To formulate the effective parts (mainly diterpene lactones) of Andrographis paniculata (AEP) into targeting drug delivery system, a series of poly(ethylene glycol)-poly(D.L-lactic acid)(mPEG-PLA) with different ratio of hydrophilic and hydrophobic segment was synthetized to encapsulate AEP. AEP micelles were prepared by a simple solvent-evaporation method. According to the loading capacity, the best polymer was chosen. mPEG-PLA micelles were characterized in terms of drug entrapping efficiency, loading capacity, size, the crystalline state of AEP, stability and release profile. Meanwhile, the cytotoxicity of micelles on mouse breast cancer 4T-1 was investigated. These micelle (mPEG-PLA-AEP) particles had a size of (92.84±5.63) nm and a high entrapping efficiency and loading capacity of (91.00±11.53)% and (32.14±3.02)%(w/w), respectively. The powder DSC showed that drugs were well encapsulated in the core of micelles. mPEG-PLA-AEP had a good stability against salt dissociation, protein adsorption and anion substitution and the solubility of andrographolide (AG) and 14-deoxy-11,12-didehydroandrographolide(DDAG) in AEP increased 4.51 times and 2.12 times in water, and the solubility of DAG showed no difference. mPEG-PLA-AEP had the same release profile in different dissolution medium. Cytotoxicity testing in vitro demonstrated that mPEG-PLA-AEP exhibited higher cell viability inhibition in mouse breast cancer 4T-1 than free AEP. mPEG-PLA micelles offer a promising alternative for TCM therapy with higher solubility and improved antitumor effect. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Biological and biochemical characterization of two new PLA2 isoforms Cdc-9 and Cdc-10 from Crotalus durissus cumanensis snake venom.

    PubMed

    Romero-Vargas, Frey Francisco; Ponce-Soto, Luis Alberto; Martins-de-Souza, Daniel; Marangoni, Sergio

    2010-01-01

    This work reports the purification, biological characterization and amino acid sequence of two new basic PLA(2) isoforms, Cdc-9 and Cdc-10, purified from the Crotalus durissus cumanensis venom by one step analytical chromatography reverse phase HPLC. The molecular masses of the PLA(2) were 14,175+/-2.7 Da for Cdc-9 and 14,228+/-3.5 Da for Cdc-10 both deduced by primary structure and confirmed by MALDI-TOF. The isoforms presented an amino acid sequence of 122 amino acid residues, being Cdc-9: SLVQFNKMIK FETRKSGLPF YAAYGCYCGW GGQRPKDATD RCCFVHDCCY GKVAKCNTKW DIYSYSLKSG YITCGKGTWC KEQICECDRV AAECLRRSLS TYKNEYMFYP DSRCREPPEY TC with pI value of 8.25 and Cdc-10: SLLQFNKMIK FETRKSGVPF YAAYGCYCGW GGRRPKDPTD RCCFVHDCCY GKLTKCNTKW DIYSYSLKSG YITCGKGTWC KEQICECDRV AAECLRRSLN TYKNEYMFYP DSRCRGPPEY TC with a pI value of 8.46, showing highly conserved Ca(2+)-binding and catalytic sites. The PLA(2) activity decreased when the isoforms Cdc-9 and Cdc-10 were incubated with 4-bromophenacyl bromide (p-BPB), anhydrous acetic acid and p-nitrobenzene sulfonyl fluoride (NBSF) when compared with the activity of both native isoforms. In mice, the PLA(2) isoforms Cdc-9 and Cdc-10 induced myonecrosis and edema. Myotoxic and edema activities were reduced after treatment of the isoforms with p-BPB; acetylation of the lysine residues and the treatment of PLA(2) with NBSF have also induced edema reduction. However, p-BPB strongly diminishes the local and systemic myotoxic effects.

  5. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon.

    PubMed

    Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P

    2016-01-01

    Objective of the present investigation was to prepare and evaluate the potential of enteric coated dextran microspheres for colon targeting of 5-fluorouracil (5-FU). Dextran microspheres were prepared by emulsification-crosslinking method and the formulation variables studied included different molecular weights of dextran, drug:polymer ratio, volume of crosslinking agent, stirring speed and time. Enteric coating (Eudragit S-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method using different coat:core ratios (4:1 or 8:1). Uncoated and coated dextran microspheres were characterized by particle size, surface morphology, entrapment efficiency, DSC, in vitro drug release in the presence of dextranase and 2% rat cecal contents. The release study of 5-FU from coated dextran microspheres was pH dependent. No release was observed at acidic pH; however, the drug was released quickly where Eudragit starts solublizing there was continuous release of drug from the microspheres. Organ distribution study was suggested that coated dextran microspheres retard the release of drug in gastric and intestinal pH environment and released of drug from microspheres in colon due to the degradation of dextran by colonic enzymes.

  6. Coalescence in PLA-PBAT blends under shear flow: Effects of blend preparation and PLA molecular weight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nofar, M.; Heuzey, M. C.; Carreau, P. J., E-mail: pierre.carreau@polymtl.ca

    Blends containing 75 wt. % of an amorphous polylactide (PLA) with two different molecular weights and 25 wt. % of a poly[(butylene adipate)-co-terephthalate] (PBAT) were prepared using either a Brabender batch mixer or a twin-screw extruder. These compounds were selected because blending PLA with PBAT can overcome various drawbacks of PLA such as its brittleness and processability limitations. In this study, we investigated the effects of varying the molecular weight of the PLA matrix and of two different mixing processes on the blend morphology and, further, on droplet coalescence during shearing. The rheological properties of these blends were investigated and the interfacialmore » properties were analyzed using the Palierne emulsion model. Droplet coalescence was investigated by applying shear flows of 0.05 and 0.20 s{sup −1} at a fixed strain of 60. Subsequently, small amplitude oscillatory shear tests were conducted to investigate changes in the viscoelastic properties. The morphology of the blends was also examined using scanning electron microscope (SEM) micrographs. It was observed that the PBAT droplets were much smaller when twin-screw extrusion was used for the blend preparation. Shearing at 0.05 s{sup −1} induced significant droplet coalescence in all blends, but coalescence and changes in the viscoelastic properties were much more pronounced for the PLA-PBAT blend based on a lower molecular weight PLA. The viscoelastic responses were also somehow affected by the thermal degradation of the PLA matrix during the experiments.« less

  7. Correlation between crystallization behaviour and interfacial interactions in plasticized PLA/POSS nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodal, Mehmet, E-mail: mehmet.kodal@kocaeli.edu.tr; Şirin, Hümeyra; Özkoç, Güralp, E-mail: guralp.ozkoc@kocaeli.edu.tr

    2016-03-09

    In this study, the correlation between crystallization behavior and surface chemistry of polyhedral oligomeric silsesquioxanes (POSS) for plasticized poly(lactic acid) (PLA)/POSS nanocomposites was investigated. Four different kinds of POSS particles having different chemical structures were used. Poly(ethylene glycol) (PEG, 8000 g/mol) was utilized as the plasticiser. The nanocomposites were melt-compounded in an Xplore Instruments 15 cc twin screw microcompounder at 180°C barrel temperature and 100 rpm screw speed. Non-isothermal crystallization behaviour of PLA/PEG/POSS nanocomposites were evaluated from common kinetic models such as Avrami and Avrami-Ozawa and Kissinger by using the thermal data obtained from differantial scanning calorimetry (DSC). A polarized optical microscopemore » (POM) equipped with a hot-stage was used to examine the morphology during the crystal growth. In order to investigate the interfacial interactions between POSS particles and plasticized PLA, thermodynamic work of adhesion approach was adopted using the experimentally determined surface energies. A strong correlation was obtained between interfacial chemistry and the nucleation rate in plasticized PLA/POSS nanocomposites. It was found that the polar interactions were the dominating factor which determines the nucleation activity of the POSS particles.« less

  8. Mechanical, thermal and morphological characterisation of 3D porous Pennisetum purpureum/PLA biocomposites scaffold.

    PubMed

    Revati, R; Abdul Majid, M S; Ridzuan, M J M; Normahira, M; Mohd Nasir, N F; Rahman Y, M N; Gibson, A G

    2017-06-01

    The mechanical, thermal, and morphological properties of a 3D porous Pennisetum purpureum (PP)/polylactic acid (PLA) based scaffold were investigated. In this study, a scaffold containing P. purpureum and PLA was produced using the solvent casting and particulate leaching method. P. purpureum fibre, also locally known as Napier grass, is composed of 46% cellulose, 34% hemicellulose, and 20% lignin. PLA composites with various P. purpureum contents (10%, 20%, and 30%) were prepared and subsequently characterised. The morphologies, structures and thermal behaviours of the prepared composite scaffolds were characterised using field-emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The morphology was studied using FESEM; the scaffold possessed 70-200μm-sized pores with a high level of interconnectivity. The moisture content and mechanical properties of the developed porous scaffolds were further characterised. The P. purpureum/PLA scaffold had a greater porosity factor (99%) and compression modulus (5.25MPa) than those of the pure PLA scaffold (1.73MPa). From the results, it can be concluded that the properties of the highly porous P. purpureum/PLA scaffold developed in this study can be controlled and optimised. This can be used to facilitate the construction of implantable tissue-engineered cartilage. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. iPLA2β deficiency attenuates obesity and hepatic steatosis in ob/ob mice through hepatic fatty-acyl phospholipid remodeling.

    PubMed

    Deng, Xiuling; Wang, Jiliang; Jiao, Li; Utaipan, Tanyarath; Tuma-Kellner, Sabine; Schmitz, Gerd; Liebisch, Gerhard; Stremmel, Wolfgang; Chamulitrat, Walee

    2016-05-01

    PLA2G6 or GVIA calcium-independent PLA2 (iPLA2β) is identified as one of the NAFLD modifier genes in humans, and thought to be a target for NAFLD therapy. iPLA2β is known to play a house-keeping role in phospholipid metabolism and remodeling. However, its role in NAFLD pathogenesis has not been supported by results obtained from high-fat feeding of iPLA2β-null (PKO) mice. Unlike livers of human NAFLD and genetically obese rodents, fatty liver induced by high-fat diet is not associated with depletion of hepatic phospholipids. We therefore tested whether iPLA2β could regulate obesity and hepatic steatosis in leptin-deficient mice by cross-breeding PKO with ob/ob mice to generate ob/ob-PKO mice. Here we observed an improvement in ob/ob-PKO mice with significant reduction in serum enzymes, lipids, glucose, insulin as well as improved glucose tolerance, and reduction in islet hyperplasia. The improvement in hepatic steatosis measured by liver triglycerides, fatty acids and cholesterol esters was associated with decreased expression of PPARγ and de novo lipogenesis genes, and the reversal of β-oxidation gene expression. Notably, ob/ob livers contained depleted levels of lysophospholipids and phospholipids, and iPLA2β deficiency in ob/ob-PKO livers lowers the former, but replenished the latter particularly phosphatidylethanolamine (PE) and phosphatidylcholine (PC) that contained arachidonic (AA) and docosahexaenoic (DHA) acids. Compared with WT livers, PKO livers also contained increased PE and PC containing AA and DHA. Thus, iPLA2β deficiency protected against obesity and ob/ob fatty liver which was associated with hepatic fatty-acyl phospholipid remodeling. Our results support the deleterious role of iPLA2β in severe obesity associated NAFLD. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Control of silk microsphere formation using polyethylene glycol (PEG).

    PubMed

    Wu, Jianbing; Zheng, Zhaozhu; Li, Gang; Kaplan, David L; Wang, Xiaoqin

    2016-07-15

    A one step, rapid method to prepare silk microspheres was developed, with particle size controlled by the addition of polyethylene glycol (PEG). PEG molecular weight (4.0K-20.0KDa) and concentration (20-50wt%), as well as silk concentration (5-20wt%), were key factors that determined particle sizes varying in a range of 1-100μm. Addition of methanol to the PEG-silk combinations increased the content of crystalline β-sheet in the silk microspheres. To track the distribution and degradation of silk microspheres in vivo, 3-mercaptopropionic acid (MPA)-coated CdTe quantum dots (QDs) were physically entrapped in the silk microspheres. QDs tightly bound to the β-sheet domains of silk via hydrophobic interactions, with over 96% of the loaded QDs remaining in the silk microspheres after exhaustive extraction. The fluorescence of QDs-incorporated silk microspheres less stable in cell culture medium than in phosphate buffer solution (PBS) and water. After subcutaneous injection in mice, microspheres prepared from 20% silk (approx. 30μm diameter particles) still fluoresced at 24h, while those prepared from 8% silk (approx. 4μm diameter particles) and free QDs were not detectable, reflecting the QDs quenching and particle size effect on microsphere clearance in vivo. The larger microspheres were more resistant to cell internalization and degradation. Since PEG is an FDA-approved polymer, and silk is FDA approved for some medical devices, the methods developed in the present study will be useful in a variety of biomedical applications where simple, rapid and scalable preparation of silk microspheres is required. The work is of significance to the biomaterial and controlled release society because it provides a new option for fabricating silk microspheres in one simple step of mixing silk and polyethylene glycol (PEG), with the size and properties of microspheres controllable by PEG molecular weight as well as PEG and silk concentrations. Although fabrication of silk

  11. In situ growth of copper nanocrystals from carbonaceous microspheres with electrochemical glucose sensing properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaoliang; Yan, Zhengguang, E-mail: yanzg2004@gmail.com; Han, Xiaodong, E-mail: xdhan@bjut.edu.cn

    2014-02-01

    Graphical abstract: In situ growth of copper nanoparticles from hydrothermal copper-containing carbonaceous microspheres was induced by annealing or electron beam irradiation. Obtained micro-nano carbon/copper composite microspheres show electrochemical glucose sensing properties. - Highlights: • We synthesized carbonaceous microspheres containing non-nanoparicle copper species through a hydrothermal route. • By annealing or electron beam irradiation, copper nanoparticles would form from the carbonaceous microspheres in situ. • By controlling the annealing temperature, particle size of copper could be controlled in the range of 50–500 nm. • The annealed carbon/copper hierarchical composite microspheres were used to fabricate an electrochemical glucose sensor. - Abstract: Inmore » situ growth of copper nanocrystals from carbon/copper microspheres was observed in a well-controlled annealing or an electron beam irradiation process. Carbonaceous microspheres containing copper species with a smooth appearance were yielded by a hydrothermal synthesis using copper nitrate and ascorbic acid as reactants. When annealing the carbonaceous microspheres under inert atmosphere, copper nanoparticles were formed on carbon microspheres and the copper particle sizes can be increased to a range of 50–500 nm by altering the heating temperature. Similarly, in situ formation of copper nanocrystals from these carbonaceous microspheres was observed on the hydrothermal product carbonaceous microspheres with electron beam irradiation in a vacuum transmission electron microscopy chamber. The carbon/copper composite microspheres obtained through annealing were used to modify a glassy carbon electrode and tested as an electrochemical glucose sensor.« less

  12. In vitro inhibition of lipid accumulation induced by oleic acid and in vivo pharmacokinetics of chitosan microspheres (CTMS) and chitosan-capsaicin microspheres (CCMS)

    PubMed Central

    Wu, Sihui; Pan, Haitao; Tan, Sirong; Ding, Chen; Huang, Guidong; Liu, Guihua; Guo, Jiao; Su, Zhengquan

    2017-01-01

    ABSTRACT Chitosan and capsaicin are compounds extracted from natural products and have been indicated to lower body weight and prevent fatty liver. However, their applications are limited by poor oral bioavailability, low compliance and some serious side effects. To solve these problems, we successfully prepared chitosan microspheres (CTMS) and chitosan-capsaicin microspheres (CCMS) in previous study. Therefore, in the present study, we evaluated the ability of CTMS and CCMS to eliminate lipid accumulation in hepatocytesand also characterized their pharmacokinetic parameters after administration. The results showed that the two microspheres could significantly reduce intracellular lipid accumulation and dose-dependently improve the triglyceride (TG) content in HepG2 cells. A pharmacokinetic study indicated that CTMS and CCMS were distributed in almost all of the measured tissues, especially liver and kidney, and that their absorption was better than those of chitosan and capsaicin. Simultaneously, the prolonged circulating half-lives, the lower clearance and higher plasma concentration of CTMS and CCMS showed that their bioavailability was effectively enhanced. All of the results indicated that the lipid accumulation inhibition of CTMS and CCMS was better than that of chitosan and capsaicin, and that these microspheres can be developed as preventive agents for fatty liver or obesity. PMID:28659743

  13. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review.

    PubMed

    Zhou, Huan; Lawrence, Joseph G; Bhaduri, Sarit B

    2012-07-01

    For several decades, composites made of polylactic acid-calcium phosphates (PLA-CaP) and polylactic acid-co-glycolic acid-calcium phosphates (PLGA-CaP) have seen widespread uses in orthopedic applications. This paper reviews the fabrication aspects of these composites, following the ubiquitous materials science approach by studying "processing-structure-property" correlations. Various fabrication processes such as microencapsulation, phase separation, electrospinning, supercritical gas foaming, etc., are reviewed, with specific examples of their applications in fabricating these composites. The effect of the incorporation of CaP materials on the mechanical and biological performance of PLA/PLGA is addressed. In addition, this paper describes the state of the art on challenges and innovations concerning CaP dispersion, incorporation of biomolecules/stem cells and long-term degradation of the composites. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning.

    PubMed

    Xu, Weihong; Shen, Renzhe; Yan, Yurong; Gao, Jie

    2017-01-01

    Scaffolds made by biomaterials offer favorite environment for cell grow and show a wide potential application in tissue engineering. Novel biocompatibility materials polylatic acid (PLA) nanofiber membranes with favorable biocompatibility and good mechanical strength could serve as an innovative tissue engineering scaffold. Sodium alginate (SA) could be used in biomedical areas because of its anti-bacterial property, hydrophilicity and biocompatibility. In this article, we chose PLA as continuous phase and SA as dispersion phase to prepare a W/O emulsion and then electrospun it to get a SA/PLA composite nanofiber membranes. The CLSM images illustrated that the existence of SA was located on the surface of composite fibers and the FTIR results confirmed the result. A calcium ion replacement step was used as an after-treatment for SA/PLA nanofiber membranes in order to anchor the alginic ion in a form of gelated calcium alginate (CA). The single fiber tensile test shows a good mechanical property of CA/PLA nanofiber membranes, and the nanofiber membranes are beneficial for cell proliferation and differentiation owing to MTT array as well as Alizarin red S (ARS) staining test. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. [Preparation of citrulline microspheres by spray drying technique for colonic targeting].

    PubMed

    Bahri, S; Zerrouk, N; Lassoued, M-A; Tsapis, N; Chaumeil, J-C; Sfar, S

    2014-03-01

    Citrulline is an amino acid that becomes essential in situations of intestinal insufficiency such as short bowel syndrome. It is therefore interesting to provide the patients with dosage forms for routing citrulline to the colon. The aim of this work is to formulate microspheres of citrulline for colonic targeting by the technique of spray drying. Eudragit(®) FS 30D was selected as polymer to encapsulate citrulline using the spray drying technique. Citrulline and Eudragit(®) FS 30D were dissolved in water and ethanol, respectively. The aqueous and the ethanolic solutions were then mixed in 1:2 (v/v) ratio. Microspheres were obtained by nebulizing the citrulline-Eudragit(®) FS 30D solution using a Mini spray dryer equipped with a 0.7mm nozzle. The microspheres have been formulated using citrulline and Eudragit(®) FS 30D. The size distribution of microspheres was determined by light diffraction. The morphology of the microspheres was studied by electron microscopy. Manufacturing yields, encapsulation rate and dissolution profiles were also studied. The microspheres obtained had a spherical shape with a smooth surface and a homogeneous size except for the microspheres containing the highest concentration of polymer (90 %). The formulation showed that the size and morphology of the microspheres are influenced by the polymer concentration. Manufacturing yields were about 51 % but encapsulation rate were always very high (above 90 %). The in vitro dissolution study showed that the use of the Eudragit(®) FS 30D under these conditions is not appropriate to change the dissolution profile of the citrulline. This technique has led to the formulation of microspheres with good physical properties in terms of morphology and size. The compression of the microspheres should help to control citrulline release for colonic targeting. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Age-Related Changes in Bone Morphology Are Accelerated in Group VIA Phospholipase A2 (iPLA2β)-Null Mice

    PubMed Central

    Ramanadham, Sasanka; Yarasheski, Kevin E.; Silva, Matthew J.; Wohltmann, Mary; Novack, Deborah Veis; Christiansen, Blaine; Tu, Xiaolin; Zhang, Sheng; Lei, Xiaoyong; Turk, John

    2008-01-01

    Phospholipases A2 (PLA2) hydrolyze the sn−2 fatty acid substituent, such as arachidonic acid, from phospholipids, and arachidonate metabolites are recognized mediators of bone modeling. We have previously generated knockout (KO) mice lacking the group VIA PLA2 (iPLA2β), which participates in a variety of signaling events; iPLA2β mRNA is expressed in bones of wild-type (WT) but not KO mice. Cortical bone size, trabecular bone volume, bone mineralizing surfaces, and bone strength are similar in WT and KO mice at 3 months and decline with age in both groups, but the decreases are more pronounced in KO mice. The lower bone mass phenotype observed in KO mice is not associated with an increase in osteoclast abundance/activity or a decrease in osteoblast density, but is accompanied by an increase in bone marrow fat. Relative to WT mice, undifferentiated bone marrow stromal cells (BMSCs) from KO mice express higher levels of PPAR-γ and lower levels of Runx2 mRNA, and this correlates with increased adipogenesis and decreased osteogenesis in BMSCs from these mice. In summary, our studies indicate that age-related losses in bone mass and strength are accelerated in iPLA2β-null mice. Because adipocytes and osteoblasts share a common mesenchymal stem cell origin, our findings suggest that absence of iPLA2β causes abnormalities in osteoblast function and BMSC differentiation and identify a previously unrecognized role of iPLA2β in bone formation. PMID:18349124

  17. Mechanical and moisture barrier properties of titanium dioxide nanoparticles and halloysite nanotubes reinforced polylactic acid (PLA)

    NASA Astrophysics Data System (ADS)

    Alberton, J.; Martelli, S. M.; Fakhouri, F. M.; Soldi, V.

    2014-08-01

    Polylactic acid (PLA) has been larger used in biomedical field due to its low toxicity and biodegradability. The aim of this study was to produce PLLA nanocomposites, by melt extrusion, containing Halloysite nanotubes (HNT) and/or titanium dioxide (TiO2) nanoparticles. Immediately after drying, PLLA was mechanically homogenized with the nanofillers and then melt blended using a single screw extruder (L/D = 30) at a speed of 110 rpm, with three heating zones in which the following temperatures were maintained: 150, 150 and 160°C (AX Plasticos model AX14 LD30). The film samples were obtained by compression molding in a press with a temperature profile of 235 ± 5°C for 2.5 min, after pressing, films were cooled up to room temperature. The mechanical tests were performed according to ASTM D882-09 and the water vapor permeability (WVP) was measured according to ASTM E-96, in triplicate. The tensile properties indicated that the modulus was improved with increased TiO2 content up to 1g/100g PLLA. The Young's modulus (YM) of the PLA was increased from 3047 MPa to 3222 MPa with the addition of 1g TiO2/100g PLLA. The tensile strength (TS) of films increases with the TiO2 content. In both cases, the YM and TS are achieved at the 1% content of TiO2 and is due to the reinforcing effect of nanoparticles. Pristine PLA showed a strain at break (SB) of 3.56%, while the SB of nanocomposites were significant lower, for instance the SB of composite containing 7.5 g HNT/100g PLLA was around 1.90 %. The WVP of samples was increased by increasing the nano filler content. It should be expected that an increase of nanofiller content would decrease the mass transfer of water molecules throughout the samples due to the increase in the way water molecules will have to cross to permeate the material. However, this was not observed. Therefore, this result can be explained considering the molecular structure of both fillers, which contain several hydroxyl groups in the surface, making the

  18. Fabrication of biodegradable PEG-PLA nanospheres for solubility, stabilization, and delivery of curcumin.

    PubMed

    Liang, Hongying; Friedman, Joel M; Nacharaju, Parimala

    2017-03-01

    Curcumin is an effective and safe anticancer agent, and also known to induce vasodilation, but its hydrophobicity limits its clinical application. In this study, a simple emulsion method was developed to prepare biodegradable poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) nanospheres to encapsulate curcumin to improve its solubility and stability. The nanoparticle size was around 150 nm with a narrow size distribution. Fluorescence microscopy showed that curcumin encapsulated PEG-PLA nanospheres were taken up rapidly by Hela and MDA-MB-231 cancer cells. This novel nanoparticulate carrier may improve the bioavailability of curcumin without affecting its anticancer properties.

  19. Analytical advantages of copolymeric microspheres for fluorimetric sensing - tuneable sensitivity sensors and titration agents.

    PubMed

    Stelmach, Emilia; Maksymiuk, Krzysztof; Michalska, Agata

    2017-01-15

    Analytical benefits related to application of copolymeric microspheres containing different number of carboxylic acid mers have been studied on example of acrylate copolymers. These structures can be used as a reagent in heterogeneous pH titration, benefiting from different number of reactive groups - i.e. different concentration of a titrant - within the series of copolymers. Thus introducing the same amount of different microspheres from a series to the sample, different amount of the titrant is introduced. Copolymeric microspheres also can be used as optical sensors - in this respect the increasing number of reactive groups in the series is useful to improve the analytical performance of microprobes - sensitivity of determination or/and response range. The increase in ion-permeability of the spheres with increasing number of reactive mers is advantageous. It is shown that for pH sensitive microspheres containing higher number of carboxyl groups the higher sensitivity for alkaline pH samples is observed for an indicator present in the beads. The significant increase of optical responses is related to enhanced ion transport within the microspheres. For zinc or potassium ions model sensors tested it was shown that by choice of pH conditions and type of microspheres from the series, the optical responses can be tuned - to enhance sensitivity for analyte concentration change as well as to change the response pattern from sigmoidal (higher sensitivity, narrow range) to linear (broader response range). For classical optode systems (e.g. microspheres containing an optical transducer - pH sensitive dye and optically silent ionophore - receptor) copolymeric microspheres containing carboxylic acid mers in their structure allow application of the sensor in alkaline pH range, which is usually inaccessible for applied optical transducer. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Folate-modified, curcumin and paclitaxel co-loaded PLA-TPGS nanoparticles: preparation, optimization and in vitro cytotoxicity assays

    NASA Astrophysics Data System (ADS)

    Doan Do, Hai; Le Thi, Hao; Huong Le Thi, Thu; Nguyen, Hoai Nam; Khanh Bui, Van; Nhung Hoang Thi, My; Thu Ha, Phuong

    2018-06-01

    Development of chemoresistance is a significant restriction on the success of cancer treatment. Combination chemotherapy and drug delivery nanosystem are two promising strategies to overcome this limitation. Administration of two or more anticancer drugs at the same time can promote synergistic effect and suppress drug resistance through distinct mechanisms of action. Drug delivery nanosystem, on the other hand, improves delivery, efficacy and safety of drugs, and also can escape from some mechanisms of drug resistance. In this study we prepared drug delivery nanosystems from copolymers of lactic acid (PLA) and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). The nanosystems incorporated with folic acid as targeting agent were used to load curcumin (Cur) and paclitaxel (PTX) contemporaneously and denoted as (Cur  +  PTX)-PLA-TPGS-Fol. The results showed that (Cur  +  PTX)-PLA-TPGS-Fol nanoparticles has average size range of 100–200 nm depending on the ratio between PLA and TPGS. Loading efficacy of the two drugs was about 35%–83% with the highest encapsulation efficiency belonged to the system with the highest ratio of PLA. All of the prepared nanosystems with single drug or in combination exhibited strong cytotoxicity to cancer cells, but the combination was more effective in case of A549 cancer cell line. These results showed that our combination of Cur and PTX in our drug delivery nanosystem can be a promising candidate for cancer treatment.

  1. Molecular adaptation of a plant-bacterium outer membrane protease towards plague virulence factor Pla

    PubMed Central

    2011-01-01

    Background Omptins are a family of outer membrane proteases that have spread by horizontal gene transfer in Gram-negative bacteria that infect vertebrates or plants. Despite structural similarity, the molecular functions of omptins differ in a manner that reflects the life style of their host bacteria. To simulate the molecular adaptation of omptins, we applied site-specific mutagenesis to make Epo of the plant pathogenic Erwinia pyrifoliae exhibit virulence-associated functions of its close homolog, the plasminogen activator Pla of Yersinia pestis. We addressed three virulence-associated functions exhibited by Pla, i.e., proteolytic activation of plasminogen, proteolytic degradation of serine protease inhibitors, and invasion into human cells. Results Pla and Epo expressed in Escherichia coli are both functional endopeptidases and cleave human serine protease inhibitors, but Epo failed to activate plasminogen and to mediate invasion into a human endothelial-like cell line. Swapping of ten amino acid residues at two surface loops of Pla and Epo introduced plasminogen activation capacity in Epo and inactivated the function in Pla. We also compared the structure of Pla and the modeled structure of Epo to analyze the structural variations that could rationalize the different proteolytic activities. Epo-expressing bacteria managed to invade human cells only after all extramembranous residues that differ between Pla and Epo and the first transmembrane β-strand had been changed. Conclusions We describe molecular adaptation of a protease from an environmental setting towards a virulence factor detrimental for humans. Our results stress the evolvability of bacterial β-barrel surface structures and the environment as a source of progenitor virulence molecules of human pathogens. PMID:21310089

  2. Controlled delivery of a hydrophilic drug from a biodegradable microsphere system by supercritical anti-solvent precipitation technique.

    PubMed

    Lee, S; Kim, M S; Kim, J S; Park, H J; Woo, J S; Lee, B C; Hwang, S J

    2006-11-01

    The purpose of this study was to prepare microspheres loaded with hydrophilic drug, bupivacaine HCl using poly(D,L-lactic-co-glycolic acid) (PLGA) and poly(L-lactic acid) (PLLA). Microspheres were prepared with varying the PLGA/PLLA ratio with two different levels of bupivacaine HCl (5 and 10%) using a supercritical anti-solvent (SAS) technique. Microspheres ranging from 4-10 microm in geometric mean diameter could be prepared, with high loading efficiency. Powder X-ray diffraction (PXRD) revealed that bupivacaine HCl retained its crystalline state within the polymer and was present as a dispersion within the polymer phase after SAS processing. The release of bupivacaine HCl from biodegradable polymer microspheres was rapid up to 4 h, thereafter bupivacaine HCl was continuously and slowly released for at least 7 days according to the PLGA/PLLA ratio and the molecular weight of PLLA.

  3. Morphogenesis and crystallization of ZnS microspheres by a soft template-assisted hydrothermal route: synthesis, growth mechanism, and oxygen sensitivity.

    PubMed

    Yang, Liangbao; Han, Jun; Luo, Tao; Li, Minqiang; Huang, Jiarui; Meng, Fanli; Liu, Jinhuai

    2009-01-05

    Almost monodisperse ZnS microspheres have been synthesized on a large scale by a hydrothermal route, in which tungstosilicate acid (TSA) was used as a soft template. By controlling the reaction conditions, such as reaction temperature, pH value of the solutions, and the reaction medium, almost monodisperse microspheres can be synthesized. The structure of these microspheres is sensitive to the reaction conditions. The growth mechanism of these nearly monodisperse microspheres was examined. Oxygen sensing is realized from ZnS microspheres. The current through the ZnS microspheres under UV illumination increases as the oxygen concentration decreases.

  4. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery.

    PubMed

    Li, Haiyan; Lv, Nana; Li, Xue; Liu, Botao; Feng, Jing; Ren, Xiaohong; Guo, Tao; Chen, Dawei; Fraser Stoddart, J; Gref, Ruxandra; Zhang, Jiwen

    2017-06-08

    Metal-organic frameworks (MOFs), which are typically embedded in polymer matrices as composites, are emerging as a new class of carriers for sustained drug delivery. Most of the MOFs and the polymers used so far in these composites, however, are not pharmaceutically acceptable. In the investigation reported herein, composites of γ-cyclodextrin (γ-CD)-based MOFs (CD-MOFs) and polyacrylic acid (PAA) were prepared by a solid in oil-in-oil (s/o/o) emulsifying solvent evaporation method. A modified hydrothermal protocol has been established which produces efficiently at 50 °C in 6 h micron (5-10 μm) and nanometer (500-700 nm) diameter CD-MOF particles of uniform size with smooth surfaces and powder X-ray diffraction patterns that are identical with those reported in the literature. Ibuprofen (IBU) and Lansoprazole (LPZ), both insoluble in water and lacking in stability, were entrapped with high drug loading in nanometer-sized CD-MOFs by co-crystallisation (that is more effective than impregnation) without causing MOF crystal degradation during the loading process. On account of the good dispersion of drug-loaded CD-MOF nanocrystals inside polyacrylic acid (PAA) matrices and the homogeneous distribution of the drug molecules within these crystals, the composite microspheres exhibit not only spherical shapes and sustained drug release over a prolonged period of time, but they also demonstrate reduced cell toxicity. The cumulative release rate for IBU (and LPZ) follows the trend: IBU-γ-CD complex microspheres (ca. 80% in 2 h) > IBU microspheres > IBU-CD-MOF/PAA composite microspheres (ca. 50% in 24 h). Importantly, no burst release of IBU (and LPZ) was observed from the CD-MOF/PAA composite microspheres, suggesting an even distribution of the drug as well as strong drug carrier interactions inside the CD-MOF. In summary, these composite microspheres, composed of CD-MOF nanocrystals embedded in a biocompatible polymer (PAA) matrix, constitute an efficient and

  5. Effect of platy and tubular nanoclays on behaviour of biodegradable PCL/PLA blend and related microfibrillar composites

    NASA Astrophysics Data System (ADS)

    Kelnar, Ivan; Kratochvíl, Jaroslav

    2016-05-01

    Blending of ductile poly(ɛ-caprolactone) (PCL) and rigid polylactic acid (PLA) is a promising way to tailor biodegradable materials with broad range of properties. But the mutual incompatibility of both polyesters leads to compromised behaviour only. Alternative to PCL/PLA blends is application of PLA in the form of short fibres, however, difficult dispergation of flexible fibres including their poor adhesion and limited processing is a significant restriction. More effective is in situ formation of polymeric fibre-reinforced materials using microfibrillar composites (MFC) concept based on melt- or cold-drawing of a polymer blend. Important advantage of MFC is efficient dispersion and bonding of in-situ formed reinforcing fibres This work deals with combination of structure-directing and reinforcing effects of montmorillonite (oMMT) and halloysite nanotubes (HNT) in the PCL/PLA 80/20 blend with in-situ formation of PLA fibrils in the PCL matrix. In the resulting microfibrillar composite, reinforcement by rigid PLA fibrils is combined with strengthening of both components by the nanofiller (NF). Moreover, PLA fibrils formation via melt-drawing is only possible after nanofiller addition due to favourable affecting of rheological parameters of the polymer components. The structure-properties relationship and complex effect of NF on microfibrillar composite performance, causing e.g., quite comparable parameters of both microfibrillar composites in spite of lower reinforcing effect of halloysite nanotubes on components, are discussed.

  6. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper.

    PubMed

    Song, Zhaoping; Xiao, Huining; Zhao, Yi

    2014-10-13

    New biodegradable nanocomposites have been successfully prepared by incorporating modified nano-cellulose fibers (NCF) in a biodegradable polylactic acid (PLA) matrix in this work. The hydrophobic-modified NCF was obtained by grafting hydrophobic monomers on NCF to improve the compatibility between NCF and PLA during blending. The resulting NCF/PLA composites were then applied on paper surface via a cast-coating process in an attempt to reduce the water vapor transmission rate (WVTR) of paper. The WVTR tests, conducted under various testing conditions and with different coating weights, demonstrated that the modified NCF/PLA composites coating played a critical role in lowering WVTR of paper. The lowest WVTR value was 34 g/m(2)/d, which was obtained with an addition of 1% of modified NCF to PLA and the composites coating weight at 40 g/m(2) and substantially lower than the control value at 1315 g/m(2)/d. The paper coated with the modified biodegradable composite is promising as green-based packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Processing-structure-properties relationships in PLA nanocomposite films

    NASA Astrophysics Data System (ADS)

    Di Maio, L.; Scarfato, P.; Garofalo, E.; Galdi, M. R.; D'Arienzo, L.; Incarnato, L.

    2014-05-01

    This work deals on the possibility to improve performances of PLA-based nanocomposite films, for packaging applications, through conveniently tuning materials and processing conditions in melt compounding technology. In particular, two types of polylactic acid and different types of filler selected from montmorillonites and bentonites families were used to prepare the hybrid systems by using a twin-screw extruder. The effect of biaxial drawing on morphology and properties of the nanocomposites, produced by film blowing, was investigated.

  8. A short term quality control tool for biodegradable microspheres.

    PubMed

    D'Souza, Susan; Faraj, Jabar A; Dorati, Rossella; DeLuca, Patrick P

    2014-06-01

    Accelerated in vitro release testing methodology has been developed as an indicator of product performance to be used as a discriminatory quality control (QC) technique for the release of clinical and commercial batches of biodegradable microspheres. While product performance of biodegradable microspheres can be verified by in vivo and/or in vitro experiments, such evaluation can be particularly challenging because of slow polymer degradation, resulting in extended study times, labor, and expense. Three batches of Leuprolide poly(lactic-co-glycolic acid) (PLGA) microspheres having varying morphology (process variants having different particle size and specific surface area) were manufactured by the solvent extraction/evaporation technique. Tests involving in vitro release, polymer degradation and hydration of the microspheres were performed on the three batches at 55°C. In vitro peptide release at 55°C was analyzed using a previously derived modification of the Weibull function termed the modified Weibull equation (MWE). Experimental observations and data analysis confirm excellent reproducibility studies within and between batches of the microsphere formulations demonstrating the predictability of the accelerated experiments at 55°C. The accelerated test method was also successfully able to distinguish the in vitro product performance between the three batches having varying morphology (process variants), indicating that it is a suitable QC tool to discriminate product or process variants in clinical or commercial batches of microspheres. Additionally, data analysis utilized the MWE to further quantify the differences obtained from the accelerated in vitro product performance test between process variants, thereby enhancing the discriminatory power of the accelerated methodology at 55°C.

  9. The effects of biodegradable poly(lactic-co-glycolic acid)-based microspheres loaded with quercetin on stemness, viability and osteogenic differentiation potential of stem cell spheroids.

    PubMed

    Lee, H; Nguyen, T T; Kim, M; Jeong, J-H; Park, J-B

    2018-05-31

    Quercetin has been reported to exert many beneficial effects on the protection against various diseases, such as diabetes, cancer, and inflammation. The aim of this study is to evaluate the potential osteogenic differentiation ability of mesenchymal stem cells in the presence of quercetin. Quercetin-loaded poly(lactic-co-glycolic acid) microspheres were prepared using an electrospraying technique. Characterization of the microspheres was evaluated with a scanning electron microscope and release profile. Three-dimensional cell spheroids were fabricated using silicon elastomer-based concave microwells. Qualitative results of cellular viability were seen under a confocal microscope, and quantitative cellular viability was evaluated using the Cell Counting Kit-8 assay. The alkaline phosphatase activity and Alizarin Red S staining were performed. A quantitative real-time polymerase chain reaction and a western blot analysis were performed. Spheroids were well formed irrespective of quercetin concentration. Most of the cells in spheroids emitted green fluorescence, and the morphology was round without significant changes. The application of quercetin-loaded microspheres produced a significant increase in the alkaline phosphatase activity. The real-time polymerase chain reaction results showed a significant increase in Runx2, and western blot results showed higher expression of Runx2 protein expression. Biodegradable microspheres loaded with quercetin produced prolonged release profiles with increased mineralization. Microspheres loaded with quercetin can be used for the enhancement of osteoblastic differentiation in cell therapy. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The internalization of fluorescence-labeled PLA nanoparticles by macrophages.

    PubMed

    Li, Fengjuan; Zhu, Aiping; Song, Xiaoli; Ji, Lijun; Wang, Juan

    2013-09-10

    Rhodamine B (RhB)-labeled PLA nanoparticles were prepared through surface grafting copolymerization of glycidyl methacrylate (GMA) onto PLA nanoparticles during the emulsion/evaporation process. RhB firstly interacts with sodium dodecyl sulfate (SDS) through electrostatic interaction to form hydrophobic complex (SDS-RhB). Due to the high-affinity of SDS-RhB with GMA, hydrophilic RhB can be successfully combined into PLA nanoparticles. The internalization of RhB-labeled PLA nanoparticles by macrophages was investigated with fluorescence microscope technology. The effects of the PLA nanoparticle surface nature and size on the internalization were investigated. The results indicate that the PLA particles smaller than 200 nm can avoid the uptake of phagocytosis. The bigger PLA particles (300 nm) with polyethylene glycol (PEG) surface showed less internalization by macrophage compared with those with poly(ethylene oxide-propylene oxide) copolymer (F127) or poly(vinyl alcohol) (PVA) surface. The "stealth" function of PEG on the PLA nanoparticles from internalization of macrophages due to the low protein adsorption is revealed by electrochemical impedance technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Is the Chinese Army the Real Winner in PLA Reforms

    DTIC Science & Technology

    2016-10-01

    44 Commentary / The Chinese Army and PLA Reforms JFQ 83, 4th Quarter 2016 Is the Chinese Army the Real Winner in PLA Reforms? By Phillip C. Saunders...and John Chen G round force officers run China’s military, the People’s Liberation Army ( PLA ). About 70 percent of PLA soldiers serve in the PLA ...Saunders and Chen 45 services and arms of the PLA ” has meant reductions in “technologically backward” PLAA units and personnel increases for the other

  12. Organic aerogel microspheres

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  13. Effective cell trapping using PDMS microspheres in an acoustofluidic chip.

    PubMed

    Yin, Di; Xu, Gangwei; Wang, Mengyuan; Shen, Mingwu; Xu, Tiegang; Zhu, Xiaoyue; Shi, Xiangyang

    2017-09-01

    We present a facile particle-based cell manipulation method using acoustic radiation forces. In this work, we selected several representative particles including poly(lactic-co-glycolic acid) (PLGA) microspheres, silica-coated magnetic microbeads, polydimethylsiloxane (PDMS) microspheres and investigated the responses of these particle systems to ultrasonic standing waves (USWs) in a microfluidic chip. We show that depending on the nature (positive or negative acoustic contrast factors) of the particles, these particle systems display different alignment behaviors along the microfluidic channel under USWs. Specifically, PLGA microspheres and silica-coated magnetic microbeads are able to be aligned in the middle of the microfluidic channel, while PDMS microspheres are translocated to the side walls of the channel, which is beneficial for cell trapping and manipulation. Further results demonstrate that the functional PDMS microspheres with a negative acoustic contrast factor can be used to trap cells to the pressure antinodes in the acoustofluidic chip. Cell viability tests reveal that the ultrasonic manipulation does not exert any harmful effect to the cells. This acoustic-based particle and cell manipulation technique may hold a great promise for the development of rapid, noninvasive, continuous assays for detecting of cells and separation of biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Effect of UV Aging on Antimicrobial and Mechanical Properties of PLA Films with Incorporated Zinc Oxide Nanoparticles

    PubMed Central

    Mizielińska, Małgorzata; Kowalska, Urszula; Jarosz, Michał; Sumińska, Patrycja; Landercy, Nicolas; Duquesne, Emmanuel

    2018-01-01

    The aim of this study was to examine the influence of accelerated UV-aging on the activity against chosen microorganisms and the mechanical properties of poly-lactic acid (PLA) films enhanced with ZnO nanoparticles. The pure PLA films and tri-layered PLAZnO1%/PLA/PLAZnO1% films of 150 µm thickness were extruded. The samples were treated with UV-A and Q-SUN irradiation. After irradiation the antimicrobial activity and mechanical properties of the films were analyzed. The results of the study demonstrated that PLA films did not inhibit the growth of Staphylococcus aureus, Bacillus cereus, Escherichia coli, Bacillus atrophaeus, and Candida albicans cells. PLA films with incorporated zinc oxide nanoparticles decreased the number of analyzed microorganisms. Accelerated UV aging had no negative effect on the activity of the film containing nano-ZnO against Gram-positive bacteria, but it influenced the activity against Gram-negative cells and C. albicans. Q-SUN irradiation decreased the antimicrobial effect of films with incorporated nanoparticles against B. cereus. UV-A and Q-UV irradiation did not influence the mechanical properties of PLA films containing incorporated ZnO nanoparticles. PMID:29670066

  15. The Effect of UV Aging on Antimicrobial and Mechanical Properties of PLA Films with Incorporated Zinc Oxide Nanoparticles.

    PubMed

    Mizielińska, Małgorzata; Kowalska, Urszula; Jarosz, Michał; Sumińska, Patrycja; Landercy, Nicolas; Duquesne, Emmanuel

    2018-04-18

    The aim of this study was to examine the influence of accelerated UV-aging on the activity against chosen microorganisms and the mechanical properties of poly-lactic acid (PLA) films enhanced with ZnO nanoparticles. The pure PLA films and tri-layered PLAZnO1%/PLA/PLAZnO1% films of 150 µm thickness were extruded. The samples were treated with UV-A and Q-SUN irradiation. After irradiation the antimicrobial activity and mechanical properties of the films were analyzed. The results of the study demonstrated that PLA films did not inhibit the growth of Staphylococcus aureus , Bacillus cereus , Escherichia coli , Bacillus atrophaeus , and Candida albicans cells. PLA films with incorporated zinc oxide nanoparticles decreased the number of analyzed microorganisms. Accelerated UV aging had no negative effect on the activity of the film containing nano-ZnO against Gram-positive bacteria, but it influenced the activity against Gram-negative cells and C. albicans . Q-SUN irradiation decreased the antimicrobial effect of films with incorporated nanoparticles against B. cereus . UV-A and Q-UV irradiation did not influence the mechanical properties of PLA films containing incorporated ZnO nanoparticles.

  16. Composition and structure of calcium aluminosilicate microspheres

    NASA Astrophysics Data System (ADS)

    Sharonova, O. M.; Oreshkina, N. A.; Zhizhaev, A. M.

    2017-06-01

    The composition was studied of calcium aluminosilicate microspheres of three morphological types in high-calcium fly ash from combustion of brown coal from the Kansk-Achinsk basin in slag-tap boilers at temperatures from 1400 to 1500°C and sampled in the first field of electrostatic precipitators at the Krasnoyarsk Cogeneration Power Station no. 2 (TETs-2). Gross compositions and the composition of local areas were determined using a scanning electron microscopy technique and an energy-dispersive analysis with full mapping of globules. With a high content of basic oxides O ox (68 to 79 wt %) and a low content of acid oxides K ox (21 to 31 wt %), type 1 microspheres are formed. They consist of heterogeneous areas having a porous structure and crystalline components in which the content of CaO, SiO2, or Al2O3 differs by two to three times and the content of MgO differs by seven times. With a lower content of O ox (55 to 63 wt %) and an elevated content of K ox (37 to 45 wt %), type 2 microspheres are formed. They are more homogeneous in the composition and structure and consist of similar crystalline components. Having a close content of O ox (46 to 53 wt %) and K ox (47 to 54 wt %), type 3 microspheres, which are a dense matter consisting of amorphous substance with submicron- and nanostructure of crystalline components, are formed. The basic precursor in formation of high-calcium aluminosilicate microspheres is calcium from the organomineral matter of coals with various contribution of Mg, Fe, S, or Na from the coal organic matter and Al, Fe, S, or Si in the form of single mineral inclusions in a coal particle. On the basis of the available data, the effect was analyzed of the composition of a CaO-MgO-Al2O3-SiO2-FeO system on the melting and viscous properties of the matter in microspheres and formation of globules of different morphology. The results of this analysis will help to find a correlation with properties of microspheres in their use as functional

  17. PLA2G7 genotype, Lp-PLA2 activity and coronary heart disease risk in 10,494 cases and 15,624 controls of European ancestry

    PubMed Central

    Casas, Juan P.; Ninio, Ewa; Panayiotou, Andrie; Palmen, Jutta; Cooper, Jackie A; Ricketts, Sally L; Sofat, Reecha; Nicolaides, Andrew N; Corsetti, James P; Fowkes, F Gerry R; Tzoulaki, Ioanna; Kumari, Meena; Brunner, Eric J; Kivimaki, Mika; Marmot, Michael G; Hoffmann, Michael M; Winkler, Karl; März, Winfred; Ye, Shu; Stirnadel, Heide A; MBBChir, Kay-Tee Khaw; Humphries, Steve E; Sandhu, Manjinder S; Hingorani, Aroon D; Talmud, Philippa J

    2012-01-01

    Background Higher Lp-PLA2 activity is associated with increased risk of coronary heart disease (CHD), making Lp-PLA2 a potential therapeutic target. PLA2G7 variants associated with Lp-PLA2 activity could evaluate whether this relationship is causal. Methods and Results A meta-analysis including a total of 12 studies (5 prospective, 4 case-control, 1 case-only and 2 cross-sectional, n=26,118) was undertaken to examine the association of: (i) LpPLA2 activity vs. cardiovascular biomarkers and risk factors and CHD events (two prospective studies; n=4884); ii) PLA2G7 SNPs and Lp-PLA2 activity (3 prospective, 2 case-control, 2 cross-sectional studies; up to n=6094); and iii) PLA2G7 SNPs and angiographic coronary artery disease (2 case-control, 1 case-only study; n=4971 cases) and CHD events (5 prospective, 2 case-control studies; n=5523). Lp-PLA2 activity correlated with several CHD risk markers. Hazard ratio for CHD events top vs. bottom quartile of Lp-PLA2 activity was 1.61 (95%CI: 1.31, 1.99) and 1.17 (95%CI: 0.91, 1.51) after adjustment for baseline traits. Of seven SNPs, rs1051931 (A379V) showed the strongest association with Lp-PLA2 activity, VV subjects having 7.2% higher activity than AAs. Genotype was not associated with risk markers, angiographic coronary disease (OR 1.03 (95%CI 0.80, 1.32), or CHD events (OR 0.98 (95%CI 0.82, 1.17). Conclusions Unlike Lp-PLA2 activity, PLA2G7 variants associated with modest effects on Lp-PLA2 activity were not associated with cardiovascular risk markers, coronary atheroma or CHD. Larger association studies, identification of SNPs with larger effects, or randomised trials of specific Lp-PLA2 inhibitors are needed to confirm/refute a contributory role for Lp-PLA2 in CHD. PMID:20479152

  18. PLA and single component silicone rubber blends for sub-zero temperature blown film packaging applications

    NASA Astrophysics Data System (ADS)

    Meekum, Utai; Khiansanoi, Apichart

    2018-06-01

    The poly(lactic acid) (PLA) blend with single component silicone rubber in the presence of reactive amino silane coupling agent and polyester polyols plasticizer were studied. The manufacturing of film packaging for sub-zero temperature applications from the PLA blend was the main objective. The mechanical properties, especially the impact strengths, of PLA/silicone blends were significantly depended on the silicone loading. The outstanding impact strengths, tested at sub-zero temperature, of the blend having silicone content of 8.0 phr was achieved. It was chosen as the best candidate for the processability improvement. Adding the talc filler into the PLA/silicone blend to enhance the rheological properties was investigated. The ductility of the talc filled blends were decreased with increasing the filler contents. However, the shear viscosity of the blend was raised with talc loading. The blend loaded with 40 phr of talc filler was justified as the optimal formula for the blown film process testing and it was successfully performed with a few difficulties. The obtained blown film showed relative good flexibility in comparison with LDPE but it has low transparency.

  19. Synthesis and innovation of PLA/clay nanocomposite characterization againts to mechanical and thermal properties

    NASA Astrophysics Data System (ADS)

    Salim, S.; Agusnar, H.; Wirjosentono, B.; Tamrin; Marpaung, H.; Rihayat, T.; Nurhanifa; Adriana

    2018-03-01

    Plastic polymer is one of the most dominant materials of daily human activities because of its multifunctional nature, light and strong and anti-corrosion so it is easy to apply in various equipment. Plastic is generally derived from petroleum material so it is nonbiodegradable. Therefore, this study aims to create a breakthrough of natural and biodegradable biodegradable plastic materials from plant starch (pisok kepok starch) with the help of 3 types of acid (HNO3, HCl and H2SO4) called Poly Lactid Acid (PLA). PLA is enhanced by mixing with a clay material with a variation of 1, 3 and 5% composition to form a PLA / Clay Nanocomposite material which is expected to have superior properties and resemble conventional plastics in general. Several types of characterization were performed to see the quality of the resulting material including tensile strength test with UTM tool, thermal endurance test with TGA tool, morphological structure test using SEM tool and additional test to see filler clay quality through X-RD tool. Based on the characterization of tensile and thermal test, 5B nanocomposite with addition of 5% clay and HCl acid aid showed the best tensile strength of 36 Mpa and the highest stability was 446,63 oC. Based on the results of morphological analysis of the best samples (5B) showed good interface ties. Meanwhile, based on the results of filler analysis, the opening of clay layer d-spacing occurred at 0.355 nm.

  20. Production of hollow aerogel microspheres

    DOEpatents

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  1. Biocompatible and biodegradable fibrinogen microspheres for tumor-targeted doxorubicin delivery

    PubMed Central

    Joo, Jae Yeon; Park, Gil Yong; An, Seong Soo A

    2015-01-01

    In the development of effective drug delivery carriers, many researchers have focused on the usage of nontoxic and biocompatible materials and surface modification with targeting molecules for tumor-specific drug delivery. Fibrinogen (Fbg), an abundant glycoprotein in plasma, could be a potential candidate for developing drug carriers because of its biocompatibility and tumor-targeting property via arginine–glycine–aspartate (RGD) peptide sequences. Doxorubicin (DOX), a chemotherapeutic agent, was covalently conjugated to Fbg, and the microspheres were prepared. Acid-labile and non-cleavable linkers were used for the conjugation of DOX to Fbg, resulting in an acid-triggered drug release under a mild acidic condition and a slow-controlled drug release, respectively. In vitro cytotoxicity tests confirmed low cytotoxicity in normal cells and high antitumor effect toward cancer cells. In addition, it was discovered that a longer linker could make the binding of cells to Fbg drug carriers easier. Therefore, DOX–linker–Fbg microspheres could be a suitable drug carrier for safer and effective drug delivery. PMID:26366073

  2. Microsphere Insulation Panels

    NASA Technical Reports Server (NTRS)

    Mohling, R.; Allen, M.; Baumgartner, R.

    2006-01-01

    Microsphere insulation panels (MIPs) have been developed as lightweight, longlasting replacements for the foam and vacuum-jacketed systems heretofore used for thermally insulating cryogenic vessels and transfer ducts. The microsphere core material of a typical MIP consists of hollow glass bubbles, which have a combination of advantageous mechanical, chemical, and thermal-insulation properties heretofore available only separately in different materials. In particular, a core filling of glass microspheres has high crush strength and low density, is noncombustible, and performs well in soft vacuum.

  3. Organic aerogel microspheres

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  4. Bamboo–Polylactic Acid (PLA) Composite Material for Structural Applications

    PubMed Central

    Pozo Morales, Angel; Güemes, Alfredo; Fernandez-Lopez, Antonio; Carcelen Valero, Veronica; De La Rosa Llano, Sonia

    2017-01-01

    Developing an eco-friendly industry based on green materials, sustainable technologies, and optimum processes with low environmental impact is a general societal goal, but this remains a considerable challenge to achieve. Despite the large number of research on green structural composites, limited investigation into the most appropriate manufacturing methodology to develop a structural material at industrial level has taken place. Laboratory panels have been manufactured with different natural fibers but the methodologies and values obtained could not be extrapolated at industrial level. Bamboo industry panels have increased in the secondary structural sector such as building application, flooring and sport device, because it is one of the cheapest raw materials. At industrial level, the panels are manufactured with only the inner and intermediate region of the bamboo culm. However, it has been found that the mechanical properties of the external shells of bamboo culm are much better than the average cross-sectional properties. Thin strips of bamboo (1.5 mm thick and 1500 mm long) were machined and arranged with the desired lay-up and shape to obtain laminates with specific properties better than those of conventional E-Glass/Epoxy laminates in terms of both strength and stiffness. The strips of bamboo were bonded together by a natural thermoplastic polylactic acid (PLA) matrix to meet biodegradability requirements. The innovative mechanical extraction process developed in this study can extract natural strip reinforcements with high performance, low cost, and high rate, with no negative environmental impact, as no chemical treatments are used. The process can be performed at the industrial level. Furthermore, in order to validate the structural applications of the composite, the mechanical properties were analyzed under ageing conditions. This material could satisfy the requirements for adequate mechanical properties and life cycle costs at industrial sectors such

  5. Bamboo-Polylactic Acid (PLA) Composite Material for Structural Applications.

    PubMed

    Pozo Morales, Angel; Güemes, Alfredo; Fernandez-Lopez, Antonio; Carcelen Valero, Veronica; De La Rosa Llano, Sonia

    2017-11-09

    Developing an eco-friendly industry based on green materials, sustainable technologies, and optimum processes with low environmental impact is a general societal goal, but this remains a considerable challenge to achieve. Despite the large number of research on green structural composites, limited investigation into the most appropriate manufacturing methodology to develop a structural material at industrial level has taken place. Laboratory panels have been manufactured with different natural fibers but the methodologies and values obtained could not be extrapolated at industrial level. Bamboo industry panels have increased in the secondary structural sector such as building application, flooring and sport device, because it is one of the cheapest raw materials. At industrial level, the panels are manufactured with only the inner and intermediate region of the bamboo culm. However, it has been found that the mechanical properties of the external shells of bamboo culm are much better than the average cross-sectional properties. Thin strips of bamboo (1.5 mm thick and 1500 mm long) were machined and arranged with the desired lay-up and shape to obtain laminates with specific properties better than those of conventional E-Glass/Epoxy laminates in terms of both strength and stiffness. The strips of bamboo were bonded together by a natural thermoplastic polylactic acid (PLA) matrix to meet biodegradability requirements. The innovative mechanical extraction process developed in this study can extract natural strip reinforcements with high performance, low cost, and high rate, with no negative environmental impact, as no chemical treatments are used. The process can be performed at the industrial level. Furthermore, in order to validate the structural applications of the composite, the mechanical properties were analyzed under ageing conditions. This material could satisfy the requirements for adequate mechanical properties and life cycle costs at industrial sectors such

  6. Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB

    PubMed Central

    Garcia-Campo, María Jesús; Quiles-Carrillo, Luis; Masia, Jaime; Reig-Pérez, Miguel Jorge; Montanes, Nestor

    2017-01-01

    Ternary blends of poly(lactic acid) (PLA), poly(3-hydroxybutyrate) (PHB) and poly(ε-caprolactone) (PCL) with a constant weight percentage of 60%, 10% and 30% respectively were compatibilized with soybean oil derivatives epoxidized soybean oil (ESO), maleinized soybean oil (MSO) and acrylated epoxidized soybean oil (AESO). The potential compatibilization effects of the soybean oil-derivatives was characterized in terms of mechanical, thermal and thermomechanical properties. The effects on morphology were studied by field emission scanning electron microscopy (FESEM). All three soybean oil-based compatibilizers led to a noticeable increase in toughness with a remarkable improvement in elongation at break. On the other hand, both the tensile modulus and strength decreased, but in a lower extent to a typical plasticization effect. Although phase separation occurred, all three soybean oil derivatives led somewhat to compatibilization through reaction between terminal hydroxyl groups in all three biopolyesters (PLA, PHB and PCL) and the readily reactive groups in the soybean oil derivatives, that is, epoxy, maleic anhydride and acrylic/epoxy functionalities. In particular, the addition of 5 parts per hundred parts of the blend (phr) of ESO gave the maximum elongation at break while the same amount of MSO and AESO gave the maximum toughness, measured through Charpy’s impact tests. In general, the herein-developed materials widen the potential of ternary PLA formulations by a cost effective blending method with PHB and PCL and compatibilization with vegetable oil-based additives. PMID:29165359

  7. Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB.

    PubMed

    Garcia-Campo, María Jesús; Quiles-Carrillo, Luis; Masia, Jaime; Reig-Pérez, Miguel Jorge; Montanes, Nestor; Balart, Rafael

    2017-11-22

    Ternary blends of poly(lactic acid) (PLA), poly(3-hydroxybutyrate) (PHB) and poly(ε-caprolactone) (PCL) with a constant weight percentage of 60%, 10% and 30% respectively were compatibilized with soybean oil derivatives epoxidized soybean oil (ESO), maleinized soybean oil (MSO) and acrylated epoxidized soybean oil (AESO). The potential compatibilization effects of the soybean oil-derivatives was characterized in terms of mechanical, thermal and thermomechanical properties. The effects on morphology were studied by field emission scanning electron microscopy (FESEM). All three soybean oil-based compatibilizers led to a noticeable increase in toughness with a remarkable improvement in elongation at break. On the other hand, both the tensile modulus and strength decreased, but in a lower extent to a typical plasticization effect. Although phase separation occurred, all three soybean oil derivatives led somewhat to compatibilization through reaction between terminal hydroxyl groups in all three biopolyesters (PLA, PHB and PCL) and the readily reactive groups in the soybean oil derivatives, that is, epoxy, maleic anhydride and acrylic/epoxy functionalities. In particular, the addition of 5 parts per hundred parts of the blend (phr) of ESO gave the maximum elongation at break while the same amount of MSO and AESO gave the maximum toughness, measured through Charpy's impact tests. In general, the herein-developed materials widen the potential of ternary PLA formulations by a cost effective blending method with PHB and PCL and compatibilization with vegetable oil-based additives.

  8. Demonstration of sub-femtomole sensitivity for small molecules with microsphere ring resonator sensors

    NASA Astrophysics Data System (ADS)

    White, Ian M.; Oveys, Hesam; Fan, Xudong

    2006-02-01

    Optical microsphere resonators can function as highly sensitive bio/chemical sensors due to the large Q-factor, which leads to high light-matter interaction. The whispering gallery modes (WGM) arise at the surface of the microsphere, creating a highly enhanced optical field that interacts with matter on or near the microsphere surface. As a result, the spectral position of the WGM is extremely sensitive to refractive index changes near the surface, such as when bio/chemical molecules bind to the sphere. We show the potential feasibility of a microsphere ring resonator as a sensor for small molecules by demonstrating detection of sub-femtomole changes in SiO II molecules at the surface of the microsphere. In this experiment, the silica molecules act as an excellent model for small molecule analytes because of their 60 Dalton molecular weight, and because we know nearly the exact quantity of molecules at the surface, which enables a sensitivity characterization. We measure the spectral shifts in the WGMs when low concentrations of hydrofluoric acid (HF) are added to a solution that is being probed by the microsphere. As the HF molecules break apart the SiO II molecules at the sphere surface, the WGMs shift due to the sub-nano-scale decrease in the size of the microsphere. These calculations show that the sensitivity of this microsphere resonator is on the order of 500 attomoles. Our results will lead to the utilization of optical microspheres for detection of trace quantities of small molecules for such applications as drug discovery, environmental monitoring, and enzyme detection using peptide cleavage.

  9. Modulation of the pharmacological effects of enzymatically-active PLA2 by BTL-2, an isolectin isolated from the Bryothamnion triquetrum red alga

    PubMed Central

    Oliveira, Simone CB; Fonseca, Fabiana V; Antunes, Edson; Camargo, Enilton A; Morganti, Rafael P; Aparício, Ricardo; Toyama, Daniela O; Beriam, Luís OS; Nunes, Eudismar V; Cavada, Benildo S; Nagano, Celso S; Sampaio, Alexandre H; Nascimento, Kyria S; Toyama, Marcos H

    2008-01-01

    Background An interaction between lectins from marine algae and PLA2 from rattlesnake was suggested some years ago. We, herein, studied the effects elicited by a small isolectin (BTL-2), isolated from Bryothamnion triquetrum, on the pharmacological and biological activities of a PLA2 isolated from rattlesnake venom (Crotalus durissus cascavella), to better understand the enzymatic and pharmacological mechanisms of the PLA2 and its complex. Results This PLA2 consisted of 122 amino acids (approximate molecular mass of 14 kDa), its pI was estimated to be 8.3, and its amino acid sequence shared a high degree of similarity with that of other neurotoxic and enzymatically-active PLA2s. BTL-2 had a molecular mass estimated in approximately 9 kDa and was characterized as a basic protein. In addition, BTL-2 did not exhibit any enzymatic activity. The PLA2 and BTL-2 formed a stable heterodimer with a molecular mass of approximately 24–26 kDa, estimated by molecular exclusion HPLC. In the presence of BTL-2, we observed a significant increase in PLA2 activity, 23% higher than that of PLA2 alone. BTL-2 demonstrated an inhibition of 98% in the growth of the Gram-positive bacterial strain, Clavibacter michiganensis michiganensis (Cmm), but only 9.8% inhibition of the Gram-negative bacterial strain, Xanthomonas axonopodis pv passiflorae (Xap). PLA2 decreased bacterial growth by 27.3% and 98.5% for Xap and Cmm, respectively, while incubating these two proteins with PLA2-BTL-2 inhibited their growths by 36.2% for Xap and 98.5% for Cmm. PLA2 significantly induced platelet aggregation in washed platelets, whereas BTL-2 did not induce significant platelet aggregation in any assay. However, BTL-2 significantly inhibited platelet aggregation induced by PLA2. In addition, PLA2 exhibited strong oedematogenic activity, which was decreased in the presence of BTL-2. BTL-2 alone did not induce oedema and did not decrease or abolish the oedema induced by the 48/80 compound. Conclusion The

  10. Poly(Lactic Acid) Hemodialysis Membranes with Poly(Lactic Acid)-block-Poly(2-Hydroxyethyl Methacrylate) Copolymer As Additive: Preparation, Characterization, and Performance.

    PubMed

    Zhu, Lijing; Liu, Fu; Yu, Xuemin; Xue, Lixin

    2015-08-19

    Poly(lactic acid) (PLA) hemodialysis membranes with enhanced antifouling capability and hemocompatibility were developed using poly(lactic acid)-block-poly(2-hydroxyethyl methacrylate) (PLA-PHEMA) copolymers as the blending additive. PLA-PHEMA block copolymers were synthesized via reversible addition-fragmentation (RAFT) polymerization from aminolyzed PLA. Gel permeation chromatography (GPC) and (1)H-nuclear magnetic resonance ((1)H NMR) were applied to characterize the synthesized products. By blending PLA with the amphiphilic block copolymer, PLA/PLA-PHEMA membranes were prepared by nonsolvent induced phase separation (NIPS) method. Their chemistry and structure were characterized with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and atomic force microscopy (AFM). The results revealed that PLA/PLA-PHEMA membranes with high PLA-PHEMA contents exhibited enhanced hydrophilicity, water permeability, antifouling and hemocompatibility. Especially, when the PLA-PHEMA concentration was 15 wt %, the water flux of the modified membrane was about 236 L m(-2) h(-1). Its urea and creatinine clearance was more than 0.70 mL/min, lysozyme clearance was about 0.50 mL/min, BSA clearance was as less as 0.31 mL/min. All the results suggest that PLA-PHEMA copolymers had served as effective agents for optimizing the property of PLA-based membrane for hemodialysis applications.

  11. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.

    PubMed

    Wang, Mian; Favi, Pelagie; Cheng, Xiaoqian; Golshan, Negar H; Ziemer, Katherine S; Keidar, Michael; Webster, Thomas J

    2016-12-01

    Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. However, scaffolds not only need 3D biocompatible structures that mimic the micron structure of natural tissues, they also require mimicking of the nano-scale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nano-scale roughness and chemical composition of a 3D printed scaffold surface. Water contact angles of a normal 3D printed poly-lactic-acid (PLA) scaffold dramatically dropped after CAP treatment from 70±2° to 24±2°. In addition, the nano-scale surface roughness (Rq) of the untreated 3D PLA scaffolds drastically increased (up to 250%) after 1, 3, and 5min of CAP treatment from 1.20nm to 10.50nm, 22.90nm, and 27.60nm, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that the ratio of oxygen to carbon significantly increased after CAP treatment, which indicated that the CAP treatment of PLA not only changed nano-scale roughness but also chemistry. Both changes in hydrophilicity and nano-scale roughness demonstrated a very efficient plasma treatment, which in turn significantly promoted both osteoblast (bone forming cells) and mesenchymal stem cell attachment and proliferation. These promising results suggest that CAP surface modification may have potential applications for enhancing 3D printed PLA bone tissue engineering materials (and all 3D printed materials) in a quick and an inexpensive manner and, thus, should be further studied. Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. Although their success is related to their ability to exactly mimic the structure of natural tissues and control mechanical

  12. Tabletted microspheres containing Cynara scolymus (var. Spinoso sardo) extract for the preparation of controlled release nutraceutical matrices.

    PubMed

    Gavini, E; Alamanni, M C; Cossu, M; Giunchedi, P

    2005-08-01

    Controlled release dosage forms based on tabletted microspheres containing fresh artichoke Cynara scolymus extract were performed for the oral administration of a nutritional supplement. Microspheres were prepared using a spray-drying technique; lactose or hypromellose have been chosen as excipients. Microspheres were characterized in terms of encapsulated extract content, size and morphology. Qualitative and quantitative composition of the extract before and after the spray process was determined. Compressed matrices (tablets) were prepared by direct compression of the spray-dried microspheres. In vitro release tests of microparticles and tablets prepared were carried out in both acidic and neutral media. Spray-drying is a good method to prepare microspheres containing the artichoke extract. The microspheres encapsulate an amount of extract close to the theoretical value. Particle size analyses indicate that the microparticles have dvs of approximately 6-7 microm. Electronic microscopy observations reveal that particles based on lactose have spherical shape and particles containing hypromellose are almost collapsed. The hydroalcoholic extract is stable to the microsphere production process: its polyphenolic composition (qualitative and quantitative) did not change after spraying. In vitro release studies show that microparticles characterized by a quick polyphenolic release both in acidic and neutral media due to the high water solubility of the carrier lactose. On the contrary, microspheres based hypromellose release only 20% of the loaded extract at pH 1.2 in 2 h and the total amount of polyphenols is released only after about further 6 h at pH 6.8. Matrices prepared tabletting lactose microspheres and hypromellose microparticles in the weight ratio 1:1 show a slow release rate, that lasts approximately 24 h. This one-a-day sustained release formulation containing Cynara scolymus extract could be proposed as a nutraceutical controlled release dosage form for

  13. Microspheres Assembled from Chitosan-Graft-Poly(lactic acid) Micelle-Like Core-Shell Nanospheres for Distinctly Controlled Release of Hydrophobic and Hydrophilic Biomolecules.

    PubMed

    Niu, Xufeng; Liu, Zhongning; Hu, Jiang; Rambhia, Kunal J; Fan, Yubo; Ma, Peter X

    2016-07-01

    To simultaneously control inflammation and facilitate dentin regeneration, a copolymeric micelle-in-microsphere platform is developed in this study, aiming to simultaneously release a hydrophobic drug to suppress inflammation and a hydrophilic biomolecule to enhance odontogenic differentiation of dental pulp stem cells in a distinctly controlled fashion. A series of chitosan-graft-poly(lactic acid) copolymers is synthesized with varying lactic acid and chitosan weight ratios, self-assembled into nanoscale micelle-like core-shell structures in an aqueous system, and subsequently crosslinked into microspheres through electrostatic interaction with sodium tripolyphosphate. A hydrophobic biomolecule either coumarin-6 or fluocinolone acetonide (FA) is encapsulated into the hydrophobic cores of the micelles, while a hydrophilic biomolecule either bovine serum albumin or bone morphogenetic protein 2 (BMP-2) is entrapped in the hydrophilic shells and the interspaces among the micelles. Both hydrophobic and hydrophilic biomolecules are delivered with distinct and tunable release patterns. Delivery of FA and BMP-2 simultaneously suppresses inflammation and enhances odontogenesis, resulting in significantly enhanced mineralized tissue regeneration. This result also demonstrates the potential for this novel delivery system to deliver multiple therapeutics and to achieve synergistic effects. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Identification of a novel antisense long non-coding RNA PLA2G16-AS that regulates the expression of PLA2G16 in pigs.

    PubMed

    Liu, Pengliang; Jin, Long; Zhao, Lirui; Long, Keren; Song, Yang; Tang, Qianzi; Ma, Jideng; Wang, Xun; Tang, Guoqing; Jiang, Yanzhi; Zhu, Li; Li, Xuewei; Li, Mingzhou

    2018-05-31

    Natural antisense transcripts (NATs) are widely present in mammalian genomes and act as pivotal regulator molecules to control gene expression. However, studies on the NATs of pigs are relatively rare. Here, we identified a novel antisense transcript, designated PLA2G16-AS, transcribed from the phospholipase A2 group XVI locus (PLA2G16) in the porcine genome, which is a well-known regulatory molecule of fat deposition. PLA2G16-AS and PLA2G16 were dominantly expressed in porcine adipose tissue, and were differentially expressed between Tibetan pigs and Rongchang pigs. In addition, PLA2G16-AS has a weak sequence conservation among different vertebrates. PLA2G16-AS was also shown to form an RNA-RNA duplex with PLA2G16, and to regulate PLA2G16 expression at the mRNA level. Moreover, the overexpression of PLA2G16-AS increased the stability of PLA2G16 mRNA in porcine cells. We envision that our findings of a NAT for a regulatory gene associated with lipolysis might further our understanding of the molecular regulation of fat deposition. Copyright © 2017. Published by Elsevier B.V.

  15. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature.

    PubMed

    Qutachi, Omar; Vetsch, Jolanda R; Gill, Daniel; Cox, Helen; Scurr, David J; Hofmann, Sandra; Müller, Ralph; Quirk, Robin A; Shakesheff, Kevin M; Rahman, Cheryl V

    2014-12-01

    Injectable scaffolds are of interest in the field of regenerative medicine because of their minimally invasive mode of delivery. For tissue repair applications, it is essential that such scaffolds have the mechanical properties, porosity and pore diameter to support the formation of new tissue. In the current study, porous poly(dl-lactic acid-co-glycolic acid) (PLGA) microspheres were fabricated with an average size of 84±24μm for use as injectable cell carriers. Treatment with ethanolic sodium hydroxide for 2min was observed to increase surface porosity without causing the microsphere structure to disintegrate. This surface treatment also enabled the microspheres to fuse together at 37°C to form scaffold structures. The average compressive strength of the scaffolds after 24h at 37°C was 0.9±0.1MPa, and the average Young's modulus was 9.4±1.2MPa. Scaffold porosity levels were 81.6% on average, with a mean pore diameter of 54±38μm. This study demonstrates a method for fabricating porous PLGA microspheres that form solid porous scaffolds at body temperature, creating an injectable system capable of supporting NIH-3T3 cell attachment and proliferation in vitro. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Synthesis and improved SERS performance of silver nanoparticles-decorated surface mesoporous silica microspheres

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Wang, Xiaolong; Zhang, Li; Zhou, Jun; Zhao, Ziqi

    2016-08-01

    This study reported the improved Raman enhancement ability of silver nanoparticles (Ag NPs) decorated on surface mesoporous silica microspheres (MSiO2@Ag) than that of Ag NPs on solid silica microspheres (SSiO2@Ag). These two kinds of hybrid structures were prepared by a facile single-step hydrothermal reaction with polyvinylpyrrolidone (PVP) serves as both a reductant and stabilizer. The as-synthesized MSiO2@Ag microspheres show more significant surface-enhanced Raman scattering (SERS) activity for 4-mercaptobenzoic acid (4MBA) than SSiO2@Ag microspheres with enhancement factors as 9.20 × 106 and 4.39 × 106, respectively. The proposed reason for the higher SERS activity is estimated to be the contribution of more Raman probe molecules at the mesoporous channels where an enhanced electromagnetic field exists. Such a field was identified by theoretical calculation result. The MSiO2@Ag microspheres were eventually demonstrated for the SERS detection of a typical chemical toxin namely methyl parathion with a detection limit as low as 1 × 10-3 ppm, showing its promising potential in biosensor application.

  17. Fabrication of PLA/CaCO3 hybrid micro-particles as carriers for water-soluble bioactive molecules.

    PubMed

    Kudryavtseva, Valeriya L; Zhao, Li; Tverdokhlebov, Sergei I; Sukhorukov, Gleb B

    2017-09-01

    We propose the use of polylactic acid/calcium carbonate (PLA/CaCO 3 ) hybrid micro-particles for achieving improved encapsulation of water-soluble substances. Biodegradable porous CaCO 3 microparticles can be loaded with wide range of bioactive substance. Thus, the formation of hydrophobic polymeric shell on surface of these loaded microparticles results on encapsulation and, hence, sealing internal cargo and preventing their release in aqueous media. In this study, to encapsulate proteins, we explore the solid-in-oil-in-water emulsion method for fabricating core/shell PLA/CaCO 3 systems. We used CaCO 3 particles as a protective core for encapsulated bovine serum albumin, which served as a model protein system. We prepared a PLA coating using dichloromethane as an organic solvent and polyvinyl alcohol as a surfactant for emulsification; in addition, we varied experimental parameters such as surfactant concentration and polymer-to-CaCO 3 ratio to determine their effect on particle-size distribution, encapsulation efficiency and capsule permeability. The results show that the particle size decreased and the size distribution narrowed as the surfactant concentration increased in the external aqueous phase. In addition, when the CaCO 3 /PLA mass ratio dropped below 0.8, the hybrid micro-particles were more likely to resist treatment by ethylenediaminetetraacetic acid and thus retained their bioactive cargos within the polymer-coated micro-particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Graphite nanoplatelets-modified PLA/PCL: Effect of blend ratio and nanofiller localization on structure and properties.

    PubMed

    Kelnar, Ivan; Kratochvíl, Jaroslav; Kaprálková, Ludmila; Zhigunov, Alexander; Nevoralová, Martina

    2017-07-01

    Structure and properties of poly(lactic acid) (PLA)/poly (ɛ-caprolactone) (PCL) influenced by graphite nanoplatelets (GNP) were studied in dependence on blend composition. Electron microscopy indicates predominant localization of GNP in PCL. GNP-induced changes in viscosity hinder refinement of PCL inclusions, support PCL continuity in the co-continuous system, and lead to reduction of PLA inclusions size without GNP being present at the interface in the PCL-matrix blend. Negligible differences in crystallinity of both phases indicate that mechanical behaviour is mainly influenced by reinforcement and GNP-induced changes in morphology. Addition of 5 parts of GNP leads to ~40% and ~25% increase of stiffness in the PCL- and PLA-matrix systems, respectively, whereas the reinforcing effect is practically eliminated in the co-continuous systems due to GNP-induced lower continuity of PLA which enhances toughness. Impact resistance of the 80/20 blend shows increase with 5 parts content due to synergistic effect of PCL/GNP stacks, whereas minor increase in the blend of the ductile PCL matrix with brittle PLA inclusions is caused by GNP-modification of the component parameters. Results indicate high potential of GNP in preparing biocompatible systems with wide range of structure and properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Functionalized PLA polymers to control loading and/or release properties of drug-loaded nanoparticles.

    PubMed

    Thauvin, Cédric; Schwarz, Bettina; Delie, Florence; Allémann, Eric

    2017-11-15

    Advantages associated with the use of polylactic acid (PLA) nano- or microparticles as drug delivery systems have been widely proven in the field of pharmaceutical sciences. These biodegradable and biocompatible carriers have demonstrated different loading and release properties depending on interactions with the cargo, preparation methods, particles size or molecular weight of PLA. In this study, we sought to show the possibility of influencing these properties by modifying the structure of the constituting polymer. Seven non-functionalized or functionalized PLA polymers were specifically designed and synthesized by microwave-assisted ring-opening polymerization of d,l-lactide. They presented short hydrophobic and/or hydrophilic groups thanks to the use of C20 aliphatic chain, mPEG1000, sorbitan esters (Spans ® ) or polysorbates (Tweens ® ), their PEGylated analogues, as initiators. Then, seven types of drug-loaded nanoparticles (NP) were prepared from these polymers and compared in terms of physico-chemical characteristics, drug loading and release profiles. Although the loading properties were not improved with any of the functionalized PLA NP, different release profiles were observed in an aqueous medium at 37 °C and over a period of five days. The presence of PEG moieties in the core of PLA-polysorbates NP induced a faster release while the addition of a single aliphatic chain induced a slower release due to better interactions with the active molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules.

    PubMed

    Liu, Baoxia; Wang, Yan; Yang, Fei; Wang, Xing; Shen, Hong; Cui, Haixin; Wu, Decheng

    2016-08-01

    Conventional pesticides usually need to be used in more than recommended dosages due to their loss and degradation, which results in a large waste of resources and serious environmental pollution. Encapsulation of pesticides in biodegradable carriers is a feasible approach to develop environment-friendly and efficient controlled-release delivery system. In this work, we fabricated three kinds of polylactic acid (PLA) carriers including microspheres, microcapsules, and porous microcapsules for controlled delivery of Lambda-Cyhalothrin (LC) via premix membrane emulsification (PME). The microcapsule delivery system had better water dispersion than the other two systems. Various microcapsules with a high LC contents as much as 40% and tunable sizes from 0.68 to 4.6μm were constructed by manipulating the process parameters. Compared with LC technical and commercial microcapsule formulation, the microcapsule systems showed a significantly sustained release of LC for a longer period. The LC release triggered by LC diffusion and matrix degradation could be optimally regulated by tuning LC contents and particle sizes of the microcapsules. This multi-regulated release capability is of great significance to achieve the precisely controlled release of pesticides. A preliminary bioassay against plutella xylostella revealed that 0.68μm LC-loaded microcapsules with good UV and thermal stability exhibited an activity similar to a commercial microcapsule formulation. These results demonstrated such an aqueous microcapsule delivery system had a great potential to be further explored for developing an effective and environmentally friendly pesticide-release formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Single phase dynamic CMOS PLA using charge sharing technique

    NASA Technical Reports Server (NTRS)

    Dhong, Y. B.; Tsang, C. P.

    1991-01-01

    A single phase dynamic CMOS NOR-NOR programmable logic array (PLA) using triggered decoders and charge sharing techniques for high speed and low power is presented. By using the triggered decoder technique, the ground switches are eliminated, thereby, making this new design much faster and lower power dissipation than conventional PLA's. By using the charge-sharing technique in a dynamic CMOS NOR structure, a cascading AND gate can be implemented. The proposed PLA's are presented with a delay-time of 15.95 and 18.05 nsec, respectively, which compare with a conventional single phase PLA with 35.5 nsec delay-time. For a typical example of PLA like the Signetics 82S100 with 16 inputs, 48 input minterms (m) and 8 output minterms (n), the 2-SOP PLA using the triggered 2-bit decoder is 2.23 times faster and has 2.1 times less power dissipation than the conventional PLA. These results are simulated using maximum drain current of 600 micro-A, gate length of 2.0 micron, V sub DD of 5 V, the capacitance of an input miniterm of 1600 fF, and the capacitance of an output minterm of 1500 fF.

  2. Pinolenic Acid in Structured Triacylglycerols Exhibits Superior Intestinal Lymphatic Absorption As Compared to Pinolenic Acid in Natural Pine Nut Oil.

    PubMed

    Chung, Min-Yu; Woo, Hyunjoon; Kim, Juyeon; Kong, Daecheol; Choi, Hee-Don; Choi, In-Wook; Kim, In-Hwan; Noh, Sang K; Kim, Byung Hee

    2017-03-01

    The positional distribution pattern of fatty acids (FAs) in the triacylglycerols (TAGs) affects intestinal absorption of these FAs. The aim of this study was to compare lymphatic absorption of pinolenic acid (PLA) present in structured pinolenic TAG (SPT) where PLA was evenly distributed on the glycerol backbone, with absorption of pine nut oil (PNO) where PLA was predominantly positioned at the sn-3 position. SPT was prepared via the nonspecific lipase-catalyzed esterification of glycerol with free FA obtained from PNO. Lymphatic absorption of PLA from PNO and from SPT was compared in a rat model of lymphatic cannulation. Significantly (P < 0.05) greater amounts of PLA were detected in lymph collected for 8 h from an emulsion containing SPT (28.5 ± 0.7% dose) than from an emulsion containing PNO (26.2 ± 0.6% dose), thereby indicating that PLA present in SPT has a greater capacity for lymphatic absorption than PLA from PNO.

  3. Comportement en fatigue et influence de la temperature sur les proprietes en traction du PLA

    NASA Astrophysics Data System (ADS)

    Menard, Claire

    Current environmental issues reduce the use of materials obtained from fossil resources. The usual plastics therefore tend to be replaced by more green polymers such as polylactic acid (PLA), a bio-based and biodegradable polymer. Knowledge on the properties of this material is essential, especially in terms of fatigue strength and influence of temperature on tensile stiffness and strength. In this study, the PLA samples are submitted to monotonic tensile tests, according to ASTM D638-10, at various temperatures between room temperature (23°C) and the glass transition temperature of the material (55-60°C). The results show a decrease of 30% of the modulus of elasticity and 60% of the tensile strength between these two temperatures. This decrease is mainly due to a significant drop in the mechanical properties beyond 50°C. In addition, tensile fatigue tests were conducted at loads rate between 40 and 80% of tensile strength, at room temperature in order to plot the Wohler curve of PLA. The ruptured specimens were finally observed with a scanning electron microscope (SEM) to analyze the failure mechanisms in fatigue of PLA.

  4. Bilateral PLA/alginate membranes for the prevention of postsurgical adhesions.

    PubMed

    Kessler, Martina; Esser, Eva; Groll, Jürgen; Tessmar, Jörg

    2016-11-01

    A bilateral barrier membrane for the prevention of postsurgical adhesions was developed. Thereby, a smooth PLA side was supposed to keep the affected tissues glidingly separated, while a mucoadhesive side made of alginate was meant to keep the barrier resident on the site of injury so that suturing becomes redundant or at least the membrane stays long enough to facilitate surgical handling. Because hydrophilic alginate and lipophilic PLA films show only low cohesion, solution electrospun meshes of PLA and PLA-PEG-PLA triblock copolymers with varying poly(ethylene glycol) [PEG] content were investigated as cohesion promoter to avoid an easy separation of the functionally different layers. Using direct electrospinning onto the PLA film, a modified contact surface of the mesh was created, which allowed the tested alginate solutions (3%, 5%) to infiltrate to different extents. Thereby, an increasing content of hydrophilic PEG within the mesh copolymer and a lower alginate concentration facilitated the infiltration. As a result, the PLA film with a PLA35k-PEG10k-PLA35k (racemic PLA chains) mesh and an alginate layer cast from a 3% alginate solution appeared to be the most effective combination as examined by means of a t peel test, a mucoadhesion test, a tensile test and optical evaluations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1563-1570, 2016. © 2015 Wiley Periodicals, Inc.

  5. Estimation of antigenic tetanus toxoid extracted from biodegradable microspheres.

    PubMed

    Xing, D K; McLellan, K; Corbel, M J; Sesardic, D

    1996-03-01

    Microspheres made from poly (lactic/glycolic acid) polymers have been considered as a new delivery system for single-dose tetanus toxoid (TT) vaccines. One of the most critical properties of the proposed vaccines is the loading and distribution of TT as this will have a profound effect on immunogenicity. As the concentration of TT in microspheres is very low sensitive assay methods are required. An assay incorporating monoclonal antibody (MAb) recognizing a neutralizing epitope and cross-reacting with TT was developed (MAp capture ELISA) which provided a sensitivity of 0.001 Lf/ml. An extraction procedure was devised which did not destroy the antigenicity and gave a recovery of 90.6 +/- 3.39% when applied to different preparations. The extracted TT was then quantified by MAb capture ELISA which was estimated to be 250-fold more sensitive than single-site ELISA for toxoid. The loading of 20 microspheres preparations (12 filled and 8 placebo) was determined by both protein micro-BCA assay and the developed assay for TT. The TT content obtained for the 12 filled microspheres preparations from different sources varied up to 400-fold (range 0.01-4.0 Lf/mg microspheres). The utility of the MAb capture ELISA for detection of total antigenic content in microspheres was confirmed by the observation that the determine TT loading correlated with the theoretical loading predicted from the protein content for the best preparations. Preparations with high loading gave the greatest peak response. There was no relationship between dose and the in vivo immunogenic response, suggesting that encapsulated vaccines with differential loading, release properties and presence of excipients will have different response curves in vivo. Hence, the present assay, when combined with information on toxoid release rate and presence and effect of excipients may be of value in predicting in vivo response.

  6. Making Polymeric Microspheres

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Hyson, Michael T.; Chung, Sang-Kun; Colvin, Michael S.; Chang, Manchium

    1989-01-01

    Combination of advanced techniques yields uniform particles for biomedical applications. Process combines ink-jet and irradiation/freeze-polymerization techniques to make polymeric microspheres of uniform size in diameters from 100 to 400 micrometer. Microspheres used in chromatography, cell sorting, cell labeling, and manufacture of pharmaceutical materials.

  7. Microsphere-based scaffolds encapsulating chondroitin sulfate or decellularized cartilage

    PubMed Central

    Gupta, Vineet; Tenny, Kevin M; Barragan, Marilyn; Berkland, Cory J; Detamore, Michael S

    2016-01-01

    Extracellular matrix materials such as decellularized cartilage (DCC) and chondroitin sulfate (CS) may be attractive chondrogenic materials for cartilage regeneration. The goal of the current study was to investigate the effects of encapsulation of DCC and CS in homogeneous microsphere-based scaffolds, and to test the hypothesis that encapsulation of these extracellular matrix materials would induce chondrogenesis of rat bone marrow stromal cells. Four different types of homogeneous scaffolds were fabricated from microspheres of poly(D,L-lactic-co-glycolic acid): Blank (poly(D,L-lactic-co-glycolic acid) only; negative control), transforming growth factor-β3 encapsulated (positive control), DCC encapsulated, and CS encapsulated. These scaffolds were then seeded with rat bone marrow stromal cells and cultured for 6 weeks. The DCC and CS encapsulation altered the morphological features of the microspheres, resulting in higher porosities in these groups. Moreover, the mechanical properties of the scaffolds were impacted due to differences in the degree of sintering, with the CS group exhibiting the highest compressive modulus. Biochemical evidence suggested a mitogenic effect of DCC and CS encapsulation on rat bone marrow stromal cells with the matrix synthesis boosted primarily by the inherently present extracellular matrix components. An important finding was that the cell seeded CS and DCC groups at week 6 had up to an order of magnitude higher glycosaminoglycan contents than their acellular counterparts. Gene expression results indicated a suppressive effect of DCC and CS encapsulation on rat bone marrow stromal cell chondrogenesis with differences in gene expression patterns existing between the DCC and CS groups. Overall, DCC and CS were easily included in microsphere-based scaffolds; however, there is a requirement to further refine their concentrations to achieve the differentiation profiles we seek in vitro. PMID:27358376

  8. Modification of the mechanical behavior in the glass transition region of poly(lactic acid) (PLA) through catalyzed reactive extrusion with poly(carbonate) (PC)

    NASA Astrophysics Data System (ADS)

    Phuong, Vu Thanh; Coltelli, Maria-Beatrice; Anguillesi, Irene; Cinelli, Patrizia; Lazzeri, Andrea

    2014-05-01

    In order to improve the thermal stability of PLA based materials the strategy of blending it with poly(carbonate) of bisphenol A (PC), having a higher glass transition temperature, was followed and PLA/PC blends with different compositions, obtained also in the presence of an interchange reaction catalyst, Tetrabutylammonium tetraphenylborate (TBATPB) and triacetin were prepared by melt extrusion. The dynamical mechanical characterization showed an interesting change of the storage modulus behavior in the PLA glass transition region, evident exclusively in the catalyzed blends. In particular, a new peak in the Tanδ trend at a temperature in between the one of PLA and the one of PC was observed only in the blends obtained in the presence of triacetin and TBATPB. The height and maximum temperature of the peak was different after the annealing of samples at 80°C. The data, showing an interesting improvement of thermal stability above the PLA glass transition, were explained keeping into account the formation of PLA-PC copolymer during the reactive extrusion. Furthermore, the glass transition temperature of the copolymer as a function of composition was studied and the obtained trend was discussed by comparing with literature models developed for copolymers.

  9. Hydrazone linked doxorubicin-PLA prodrug nanoparticles with high drug loading

    NASA Astrophysics Data System (ADS)

    Gatti, Simone; Agostini, Azzurra; Capasso Palmiero, Umberto; Colombo, Claudio; Peviani, Marco; Biffi, Alessandra; Moscatelli, Davide

    2018-07-01

    An optimal drug delivery system should be characterized by biocompatibility, biodegradability, high drug loading and favorable drug release profile. To achieve this goal a hydrazone linked doxorubicin-poly(lactic acid) prodrug (PLA-DOX) was synthesized by the functionalization of a short polymer chain produced by ring opening polymerization. The hydrophobic prodrug generated in this way was nanoprecipitated using a block copolymer to form polymeric nanoparticles (NPs) with a quantitative loading efficiency and a high and tunable drug loading. The effects of the concentration of the PLA-DOX prodrug and surfactant were studied by dynamic light scattering showing a range of NP size between 50 and 90 nm and monodispersed size distributions with polydispersity indexes lower then 0.27 up to a maximum DOX concentration of 27% w/w. The release profile of DOX from these NPs, tested at different pH conditions, showed a higher release rate in acidic conditions, consistent with the nature of the hydrazone bond which was used to conjugate the drug to the polymer. In vitro cytotoxicity studies performed on BV2 microglia-like cell line highlighted a specific cytotoxic effect of these NPs suggesting the maintenance of the drug efficacy and a modified release profile upon encapsulation of DOX in the NPs.

  10. Stabilization of Tetanus Toxoid Encapsulated in PLGA Microspheres

    PubMed Central

    Jiang, Wenlei; Schwendeman, Steven P.

    2014-01-01

    Delivery of vaccine antigens from controlled-release poly(lactic/glycolic acid) (PLGA) microspheres is a novel approach to reduce the number of antigen doses required for protection against infection. A major impediment to developing single-shot vaccines is encapsulated antigen instability during months of exposure to physiological conditions. For example, efforts to control neonatal tetanus in developing countries with a single-dose TT vaccine have been plagued by poor stability of the 150 kDa formaldehyde-detoxified protein antigen, tetanus toxoid (TT) in PLGA microspheres. We examined the denatured states of PLGA-encapsulated TT, revealing two primary TT instability mechanisms: 1) protein aggregation mediated by formaldehyde and 2) acid-induced protein unfolding and epitope damage. Further, we systemically identified excipients which can efficiently inhibit TT aggregation and retain TT antigenicity under simulated deleterious conditions, i.e., elevated temperature and humidity. By employing these novel additives in the PLGA system, we report the slow and continuous release of high doses of TT for one month with retained antigen stability during bioerosion of PLGA. PMID:18710256

  11. Stabilization of tetanus toxoid encapsulated in PLGA microspheres.

    PubMed

    Jiang, Wenlei; Schwendeman, Steven P

    2008-01-01

    Delivery of vaccine antigens from controlled-release poly(lactic/glycolic acid) (PLGA) microspheres is a novel approach to reduce the number of antigen doses required for protection against infection. A major impediment to developing single-shot vaccines is encapsulated antigen instability during months of exposure to physiological conditions. For example, efforts to control neonatal tetanus in developing countries with a single-dose TT vaccine based on PLGA microspheres have been plagued by poor stability of the 150 kDa formaldehyde-detoxified protein antigen, tetanus toxoid (TT), in the polymer. We examined the denatured states of PLGA-encapsulated TT, revealing two primary TT instability mechanisms: (1) protein aggregation mediated by formaldehyde and (2) acid-induced protein unfolding and epitope damage. Further, we systematically identified excipients, which can efficiently inhibit TT aggregation and retain TT antigenicity under simulated deleterious conditions, i.e., elevated temperature and humidity. By employing these novel additives in the PLGA system, we report the slow and continuous release of high doses of TT for one month with retained antigen stability during bioerosion of PLGA.

  12. Histological Comparison of Kidney Tissue Following Radioembolization with Yttrium-90 Resin Microspheres and Embolization with Bland Microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Suresh de, E-mail: suresh.desilva@unsw.edu.au; Mackie, Simon; Aslan, Peter

    BackgroundIntra-arterial brachytherapy with yttrium-90 ({sup 90}Y) resin microspheres (radioembolization) is a procedure to selectively deliver high-dose radiation to tumors. The purpose of this research was to compare the radioembolic effect of {sup 90}Y-radioembolization versus the embolic effect of bland microspheres in the porcine kidney model.MethodsIn each of six pigs, ~25–33 % of the kidney volume was embolized with {sup 90}Y resin microspheres and an equivalent number of bland microspheres in the contralateral kidney. Kidney volume was estimated visually from contrast-enhanced fluoroscopy imaging. Morphologic and histologic analysis was performed 8–9 weeks after the procedure to assess the locations of the microspheres and extentmore » of tissue necrosis from {sup 90}Y-radioembolization and bland embolization. A semi-quantified evaluation of the non-acute peri-particle and perivascular tissue reaction was conducted. All guidelines for the care and use of animals were followed.ResultsKidneys embolized with {sup 90}Y-radioembolization decreased in mass by 30–70 % versus the contralateral kidney embolized with bland microspheres. These kidneys showed significant necrosis/fibrosis, avascularization, and glomerular atrophy in the immediate vicinity of the {sup 90}Y resin microspheres. By contrast, glomerular changes were not observed, even with clusters of bland microspheres in afferent arterioles. Evidence of a foreign body reaction was recorded in some kidneys with bland microspheres, and subcapsular scarring/infarction only with the highest load (4.96 × 10{sup 6}) of bland microspheres.ConclusionThis study showed that radioembolization with {sup 90}Y resin microspheres produces localized necrosis/fibrosis and loss of kidney mass in a porcine kidney model. This result supports the study of {sup 90}Y resin microspheres for the localized treatment of kidney tumors.« less

  13. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering.

    PubMed

    Shen, Renze; Xu, Weihong; Xue, Yanxiang; Chen, Luyuan; Ye, Haicheng; Zhong, Enyi; Ye, Zhanchao; Gao, Jie; Yan, Yurong

    2018-04-16

    In this study, nanofibrous scaffolds base on pure polylactic acid (PLA) and chitosan/PLA blends were fabricated by emulsion eletrospinning. By modulating their mechanical and biological properties, cell-compatible and biodegradable scaffolds were developed for periodontal bone regeneration. Pure PLA and different weight ratios of chitosan nano-particle/PLA nano-fibers were fabricated by emulsion eletrospinning. Scanning electron microscope (SEM) was performed to observe the morphology of nano-fibers. Mechanical properties of nano-fibers were tested by single fiber strength tester. Hydrophilic/hydrophobic nature of the nano-fibers was observed by stereomicroscope. In vitro degradation was also tested. Cells were seeded on nano-fibers scaffolds. Changes in cell adhesion, proliferation and osteogenic differentiation were tested by MTT assay and Alizarin Red S staining. Reverse transcription-polymerase chain reaction (RT-PCR) assay was used to evaluate the expression of (Toll-like receptor 4) TLR4, IL-6, IL-8, IL-1β, OPG, RUNX2 mRNA. It is shown that the mean diameter of nano-fibers is about 200 nm. The mean diameter of chitosan nano-particles is about 50 nm. The combination of chitosan nano-particles enhanced the mechanical properties of pure PLA nano-fibers. By adding a certain amount of chitosan nano-particles, it promoted cell adhesion. It also promoted the osteogenic differentiation of bone marrow stem cells (BMSCs) by elevating the expression of osteogenic marker genes such as BSP, Ocn, collagen I, and OPN and enhanced ECM mineralization. Nonetheless, it caused higher expression of inflammatory mediators and TLR4 of human periodontal ligament cells (hPDLCs). The combination of chitosan nano-particles enhanced the mechanical properties of pure PLA nano-fibers and increased its hydrophilicity. Pure PLA nano-fibers scaffold facilitated BMSCs proliferation. Adding an appropriate amount of chitosan nano-particles may promote its properties of cell proliferation

  14. Cephradin-plaga microspheres for sustained delivery to cattle.

    PubMed

    Ustariz-Peyret, C; Coudane, J; Vert, M; Kaltsatos, V; Boisramé, B

    1999-01-01

    In the field of controlled drug delivery, most of the reported work is aimed at introducing new systems, or at providing basic information on the critical parameters which affect release profiles in vitro and occasionally in vivo. The situation is totally different when one wants to fulfil the specific requirements imposed by the marketing of a sustained release device to be used in humans or in animals eaten by human beings. The control of the release characteristics is then a difficult challenge. In this work, attempts were made to combine cephradin, a hydrophilic beta-lactam antibiotic, and bioresorbable polymeric matrices of a poly(alpha-hydroxy acid) in the form of microspheres with the aim of delivering the antibiotic to cattle at a dose rate of 4-5 mg/kg/day over a 3-4 days period after i.m. injection. PLAGA aliphatic polyesters were selected because they are already FDA approved as matrices. The solvent evaporation technique using PVA as the emulsion stabilizer was selected because it is efficient and can be extended to an industrial scale. Various experimental conditions were used in order to obtain the highest encapsulation yields compatible with the desired specifications. Decreasing the volume of the aqueous phase and adding a water-miscible organic solvent/non-solvent of cephradin failed. In contrast, microspheres containing up to 30% cephradin were prepared after addition of sodium chloride to the aqueous dispersing phase. The amount of entrapped drug was raised to 40% by decreasing the temperature and the pressure. Preliminary investigations using dogs showed that 20% cephradin microspheres prepared under these conditions extended the presence of cephradin in the blood circulation up to 48 h. Increasing the load led to higher blood concentrations but shorter sustained release. The fact that the microspheres were for cattle limited the volume of the injection and thus the amount of microspheres to be administered. The other limiting factors were

  15. Mitochondria-localized phospholipase A2, AoPlaA, in Aspergillus oryzae displays phosphatidylethanolamine-specific activity and is involved in the maintenance of mitochondrial phospholipid composition.

    PubMed

    Kotani, Shohei; Izawa, Sho; Komai, Noriyuki; Takayanagi, Ayumi; Arioka, Manabu

    2016-11-01

    In mammals, cytosolic phospholipases A 2 (cPLA 2 s) play important physiological roles by releasing arachidonic acid, a precursor for bioactive lipid mediators, from the biological membranes. In contrast, fungal cPLA 2 -like proteins are much less characterized and their roles have remained elusive. AoPlaA is a cPLA 2 -like protein in the filamentous fungus Aspergillus oryzae which, unlike mammalian cPLA 2 , localizes to mitochondria. In this study, we investigated the biochemical and physiological functions of AoPlaA. Recombinant AoPlaA produced in E. coli displayed Ca 2+ -independent lipolytic activity. Mass spectrometry analysis demonstrated that AoPlaA displayed PLA 2 activity to phosphatidylethanolamine (PE), but not to other phospholipids, and generated 1-acylated lysoPE. Catalytic site mutants of AoPlaA displayed almost no or largely reduced activity to PE. Consistent with PE-specific activity of AoPlaA, AoplaA-overexpressing strain showed decreased PE content in the mitochondrial fraction. In contrast, AoplaA-disruption strain displayed increased content of cardiolipin. AoplaA-overexpressing strain, but not its counterparts overexpressing the catalytic site mutants, exhibited retarded growth at low temperature, possibly because of the impairment of the mitochondrial function caused by excess degradation of PE. These results suggest that AoPlaA is a novel PE-specific PLA 2 that plays a regulatory role in the maintenance of mitochondrial phospholipid composition. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Novel enzymatic method for assaying Lp-PLA2 in serum.

    PubMed

    Yamaura, Saki; Sakasegawa, Shin-Ichi; Koguma, Emisa; Ueda, Shigeru; Kayamori, Yuzo; Sugimori, Daisuke; Karasawa, Ken

    2018-06-01

    Measurement of lipoprotein-associated phospholipase A 2 (Lp-PLA 2 ) can be used as an adjunct to traditional cardiovascular risk factors for identifying individuals at higher risk of cardiovascular events. This can be performed by quantification of the protein concentration using an ELISA platform or by measuring Lp-PLA 2 activity using platelet-activating factor (PAF) analog as substrate. Here, an enzymatic Lp-PLA 2 activity assay method using 1-O-Hexadecyl-2-acetyl-rac-glycero-3-phosphocholine (rac C 16 PAF) was developed. The newly revealed substrate specificity of lysoplasmalogen-specific phospholipase D (lysophospholipase D (LysoPLD)) was exploited. Lp-PLA 2 hydrolyzes 1-O-Hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (C 16 PAF) to 1-O-Hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine (LysoPAF). LysoPLD acted on LysoPAF, and the hydrolytically released choline was detected by choline oxidase. Regression analysis of Lp-PLA 2 activity measured by the enzymatic Lp-PLA 2 activity assay vs. two chemical Lp-PLA 2 activity assays, i.e. LpPLA 2 FS and PLAC® test, and ELISA, gave the following correlation coefficients: 0.990, 0.893 and 0.785, respectively (n = 30). Advantages of this enzymatic Lp-PLA 2 activity assay compared with chemical Lp-PLA 2 methods include the following; (i) only requires two reagents enabling a simple two-point linear calibration method with one calibrator (ii) no need for inhibitors of esterase-like activity in serum. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Acanthamoeba-Cytopathic Protein Induces Apoptosis and Proinflammatory Cytokines in Human Corneal Epithelial Cells by cPLA2α Activation

    PubMed Central

    Tripathi, Trivendra; Smith, Ashley Dawn; Abdi, Mahshid; Alizadeh, Hassan

    2012-01-01

    Purpose. We have shown that Acanthamoeba interacts with a mannosylated protein on corneal epithelial cells and stimulates trophozoites to secrete a mannose-induced 133 kDa protease (MIP-133), which facilitates corneal invasion and induces apoptosis. The mechanism of MIP-133–induced apoptosis is unknown. The aim of this study was to determine if MIP-133 induces apoptosis and proinflammatory cytokines/chemokines in human corneal epithelial (HCE) cells via the cytosolic phospholipase A2α (cPLA2α) pathway. Methods. HCE cells were incubated with or without MIP-133 at doses of 7.5, 15, and 50 μg/mL for 6, 12, and 24 hours. The effects of cPLA2α inhibitors on cPLA2α, arachidonic acid (AA) release, and apoptosis were tested in vitro. Inhibition of cPLA2α involved preincubating HCE cells for 1 hour with cPLA2α inhibitors (10 μM methyl-arachidonyl fluorophosphonate [MAFP] or 20 μM arachidonyl trifluoromethyl ketone [AACOCF3]) with or without MIP-133 for 24 hours. Expression of cPLA2α mRNA and enzyme was examined by RT-PCR and cPLA2 activity assays, respectively. Apoptosis of corneal epithelial cells was determined by caspase-3 and DNA fragmentation assays. Expression of IL-8, IL-6, IL-1β, and IFN-γ was examined by RT-PCR and ELISA. Results. MIP-133 induced significant cPLA2α (approximately two to four times) and AA release (approximately six times) from corneal cells while cPLA2α inhibitors significantly reduced cPLA2α (approximately two to four times) and AA release (approximately three times) (P < 0.05). cPLA2α inhibitors significantly inhibited MIP-133–induced DNA fragmentation approximately 7 to 12 times in HCE cells (P < 0.05). MIP-133 specifically activates cPLA2α enzyme activity in HCE cells, which is blocked by preincubation with anti–MIP-133 antibody. In addition, MIP-133 induced significant IL-8, IL-6, IL-1β, and IFN-γ production, approximately two to three times (P < 0.05). Conclusions. MIP-133 interacts with phospholipids on plasma

  18. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature

    PubMed Central

    Qutachi, Omar; Vetsch, Jolanda R.; Gill, Daniel; Cox, Helen; Scurr, David J.; Hofmann, Sandra; Müller, Ralph; Quirk, Robin A.; Shakesheff, Kevin M.; Rahman, Cheryl V.

    2014-01-01

    Injectable scaffolds are of interest in the field of regenerative medicine because of their minimally invasive mode of delivery. For tissue repair applications, it is essential that such scaffolds have the mechanical properties, porosity and pore diameter to support the formation of new tissue. In the current study, porous poly(dl-lactic acid-co-glycolic acid) (PLGA) microspheres were fabricated with an average size of 84 ± 24 μm for use as injectable cell carriers. Treatment with ethanolic sodium hydroxide for 2 min was observed to increase surface porosity without causing the microsphere structure to disintegrate. This surface treatment also enabled the microspheres to fuse together at 37 °C to form scaffold structures. The average compressive strength of the scaffolds after 24 h at 37 °C was 0.9 ± 0.1 MPa, and the average Young’s modulus was 9.4 ± 1.2 MPa. Scaffold porosity levels were 81.6% on average, with a mean pore diameter of 54 ± 38 μm. This study demonstrates a method for fabricating porous PLGA microspheres that form solid porous scaffolds at body temperature, creating an injectable system capable of supporting NIH-3T3 cell attachment and proliferation in vitro. PMID:25152354

  19. Improvement of Oral Bioavailability of Lopinavir Without Co-administration of Ritonavir Using Microspheres of Thiolated Xyloglucan.

    PubMed

    Madgulkar, Ashwini R; Bhalekar, Mangesh R; Kadam, Ashwini A

    2018-01-01

    Lopinavir is a BCS Class IV drug exhibiting poor bioavailability due to P-gp efflux and limited permeation. The aim of this research was to formulate and characterize microspheres of lopinavir using thiolated xyloglucan (TH-MPs) as carrier to improve its oral bioavailability without co-administration of ritonavir. Thiomeric microspheres were prepared by ionotropic gelation between alginic acid and calcium ions. Interaction studies were performed using Fourier transform infrared spectroscopy (FT-IR). The thiomeric microspheres were characterized for its entrapment efficiency, T 80 , surface morphology, and mucoadhesion employing in vitro wash off test. The microspheres were optimized by 3 2 factorial design. The optimized thiomeric microsphere formulation revealed 93.12% entrapment efficiency, time for 80% drug release (T 80 ) of 358.1 min, and 88% mucoadhesion after 1 h. The permeation of lopinavir from microspheres was enhanced 3.15 times as determined by ex vivo study using everted chick intestine and increased relative bioavailability over 3.22-fold over combination of lopinavir and ritonavir as determined by in vivo study in rat model.

  20. An Electrochemical DNA Microbiosensor Based on Succinimide-Modified Acrylic Microspheres

    PubMed Central

    Ulianas, Alizar; Heng, Lee Yook; Hanifah, Sharina Abu; Ling, Tan Ling

    2012-01-01

    An electrochemical microbiosensor for DNA has been fabricated based on new acrylic microspheres modified with reactive N-acryloxysuccinimide (NAS) functional groups. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesized in an emulsion form with a simple one-step photopolymerization technique. Aminated DNA probe was attached to the succinimde functional group of the acrylic microspheres via covalent bonding. The hybridization of the immobilized DNA probe with the complementary DNA was studied by differential pulse voltametry using anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) as the electroactive hybridization label. The influences of many factors such as duration of DNA probe immobilization and hybridization, pH, type of ions, buffer concentrations, ionic strength, operational temperature and non-complementary DNA on the biosensor performance were evaluated. Under optimized conditions, the DNA microbiosensor demonstrated a linear response range to target DNA over a wide concentration range of 1.0 × 10−16 and 1.0 × 10−8 M with a lower limit of detection (LOD) of 9.46 × 10−17 M (R2 = 0.97). This DNA microbiosensor showed good reproducibility with 2.84% RSD (relative standard deviation) (n = 3). Application of the NAS-modified acrylic microspheres in the construction of DNA microbiosensor had improved the overall analytical performance of the resultant DNA microbiosensor when compared with other reported DNA biosensors using other nano-materials for membranes and microspheres as DNA immobilization matrices. PMID:22778594

  1. Electrospinning synthesis and characterization of PLA-PEG-MNPs composite fibrous membranes

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Klimke, S.; Preiss, A.; Unruh, D.; Wengerowsky, D.; Lehmann, R.; Sindelar, R.; Klingelhöfer, G.; Boča, R.; Renz, F.

    2017-11-01

    An electrospinning technique was used to fabricate PLA, PLA-PEG and PLA-PEG-MNPs composite fibrous membranes. The morphology of electrospun composite membranes were characterized by scanning electron microscope. To test the potential availability of MNPs in PLA-PEG composite membranes, TG, Raman, Mössbauer, VSM and ICP-OES analysis were used. The PLA-PEG composite fibrous membranes showed the presence of MNPs, hence offers the possibility for magnetically triggered on-demand drug delivery.

  2. Enhancement of Poly(orthoester) Microspheres for DNA Vaccine Delivery by Blending with Poly(ethylenimine)

    PubMed Central

    Nguyen, David N.; Raghavan, Shyam S.; Tashima, Lauren M.; Lin, Elizabeth C.; Fredette, Stephen J.; Langer, Robert S.; Wang, Chun

    2008-01-01

    Poly(ortho ester) (POE) microspheres have been previously shown to possess certain advantages for the in vivo delivery of DNA vaccines. In particular, timing of DNA release from POE microspheres in response to acidic phagosomal pH was shown to be an important factor in determining immunogenicity, which was hypothesized to be linked to the natural progression of antigen presenting cell uptake, transfection, maturation, and antigen presentation. Here we report in vitro characterization of the enhanced the efficacy of POE microspheres by blending poly(ethylenimine) (PEI), a well-characterized cationic transfection agent, into the POE matrix. Blending of a tiny amount of PEI (approximately 0.04 wt%) with POE caused large alterations in POE microsphere properties. PEI provided greater control over the rate of pH-triggered DNA release by doubling the total release time of plasmid DNA and enhanced gene transfection efficiency of the microspheres up to 50-fold without any significant cytotoxicity. Confocal microscopy with labeled PEI and DNA plasmids revealed that PEI caused a surface-localizing distribution of DNA and PEI within the POE microsphere as well as focal co-localization of PEI with DNA. We provide evidence that upon degradation, the microspheres of POE-PEI blends released electrostatic complexes of DNA and PEI, which are responsible for the enhanced gene transfection. Furthermore, blending PEI into the POE microsphere induced 50% to 60% greater phenotypic maturation and activation of bone marrow-derived dendritic cells in vitro, judged by up-regulation of co-stimulatory markers on the cell surface. Physically blending PEI with POE is a simple approach for modulating the properties of biodegradable microspheres in terms of gene transfection efficiency and DNA release kinetics. Combined with the ability to induce maturation of antigen-presenting cells, POE-PEI blended microspheres may be excellent carriers for DNA vaccines. PMID:18400294

  3. Antifungal Activity of Phenyllactic Acid against Molds Isolated from Bakery Products

    PubMed Central

    Lavermicocca, Paola; Valerio, Francesca; Visconti, Angelo

    2003-01-01

    Phenyllactic acid (PLA) has recently been found in cultures of Lactobacillus plantarum that show antifungal activity in sourdough breads. The fungicidal activity of PLA and growth inhibition by PLA were evaluated by using a microdilution test and 23 fungal strains belonging to 14 species of Aspergillus, Penicillium, and Fusarium that were isolated from bakery products, flours, or cereals. Less than 7.5 mg of PLA ml−1 was required to obtain 90% growth inhibition for all strains, while fungicidal activity against 19 strains was shown by PLA at levels of ≤10 mg ml−1. Levels of growth inhibition of 50 to 92.4% were observed for all fungal strains after incubation for 3 days in the presence of 7.5 mg of PLA ml−1 in buffered medium at pH 4, which is a condition more similar to those in real food systems. Under these experimental conditions PLA caused an unpredictable delaying effect that was more than 2 days long for 12 strains, including some mycotoxigenic strains of Penicillium verrucosum and Penicillium citrinum and a strain of Penicillium roqueforti (the most widespread contaminant of bakery products); a growth delay of about 2 days was observed for seven other strains. The effect of pH on the inhibitory activity of PLA and the combined effects of the major organic acids produced by lactic acid bacteria isolated from sourdough bread (PLA, lactic acid, and acetic acid) were also investigated. The ability of PLA to act as a fungicide and delay the growth of a variety of fungal contaminants provides new perspectives for possibly using this natural antimicrobial compound to control fungal contaminants and extend the shelf lives of foods and/or feedstuffs. PMID:12514051

  4. Influence of some formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres.

    PubMed

    El-Bary, Ahmed Abd; Aboelwafa, Ahmed A; Al Sharabi, Ibrahim M

    2012-03-01

    The aim of this work was to understand the influence of different formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres prepared by O/O emulsion solvent evaporation method, employing pH-dependent Eudragit S and hydrophobic pH-independent ethylcellulose polymers. Formulation variables studied included concentration of Eudragit S in the internal phase and the ratios between; internal to external phase, drug to Eudragit S and Eudragit S to ethylcellulose to mesalamine. Prepared microspheres were evaluated by carrying out in vitro release studies and determination of particle size, production yield, and encapsulation efficiency. In addition, morphology of microspheres was examined using optical and scanning electron microscopy. Emulsion solvent evaporation method was found to be sensitive to the studied formulation variables. Particle size and encapsulation efficiency increased by increasing Eudragit S concentration in the internal phase, ratio of internal to external phase, and ratio of Eudragit S to the drug. Employing Eudragit S alone in preparation of the microspheres is only successful in forming acid-resistant microspheres with pulsatile release pattern at high pH. Eudragit S and ethylcellulose blend microspheres were able to control release under acidic condition and to extend drug release at high pH. The stability studies carried out at 40°C/75% RH for 6 months proved the stability of the optimized formulation. From the results of this investigation, microencapsulation of mesalamine in microspheres using blend of Eudragit S and ethylcellulose could constitute a promising approach for site-specific and controlled delivery of drug in colon.

  5. A study on properties of PLA/PBAT from blown film process

    NASA Astrophysics Data System (ADS)

    Hongdilokkul, P.; Keeratipinit, K.; Chawthai, S.; Hararak, B.; Seadan, M.; Suttiruengwong, S.

    2015-07-01

    The aim of this work was to study the properties of films based on PLA/PBAT blend prepared by the reactive compounding. PLA/PBAT blends were prepared at the weight ratio of 80:20 together with peroxide as a reactive agent in a twin screw extruder with temperature profile of 160/170/180/210/220/190/175/150°C from feed to die zone. All blended samples, neat PLA, and neat PBAT were characterized for morphology, mechanical and rheological properties. SEM micrographs showed finely dispersed phases of PBAT in PLA in all cases. The particle sizes of PBAT were around 1 μm. The results indicated that the drawability and toughness properties of PLA were greatly improved when blended with 20%wt PBAT. The interface adhesion, and mechanical properties of PLA/PBAT blends were also improved when adding a very small quantity of peroxide. PLA/PBAT blends were then used to produce films. The film characteristics and mechanical properties were examined. Tensile strength of films was significantly improved in the machine direction in PLA/PBAT/peroxide blends whereas the good optical transparent property were remained the same compared with neat PLA.

  6. Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres.

    PubMed

    Bhattacharya, Shiv Sankar; Mazahir, Farhan; Banerjee, Subham; Verma, Anurag; Ghosh, Amitava

    2013-10-15

    Interpenetrating polymer network (IPN) hydrogel microspheres of xanthan gum (XG) based superabsorbent polymer (SAP) and poly(vinyl alcohol) (PVA) were prepared by water-in-oil (w/o) emulsion crosslinking method for sustained release of ciprofloxacin hydrochloride (CIPRO). The microspheres were prepared with various ratios of hydrolyzed SAP to PVA and extent of crosslinking density. The prepared microspheres with loose and rigid surfaces were evidenced by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the IPN formation. Differential scanning calorimetry (DSC) study was performed to understand the dispersion nature of drug after encapsulation. The in vitro drug release study was extensively evaluated depending on the process variables in both acidic and alkaline media. All the formulations exhibited satisfactory physicochemical and in vitro release characteristics. Release data indicated a non-Fickian trend of drug release from the formulations. Based on the results, this study suggest that CIPRO loaded IPN microspheres were suitable for sustained release application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Enhanced biosynthesis of chiral phenyllactic acid from L-phenylalanine through a new whole-cell biocatalyst.

    PubMed

    Zheng, Zhaojuan; Xia, Meijuan; Fang, Xuchao; Jiang, Ting; Ouyang, Jia

    2018-06-22

    Phenyllactic acid (PLA) is a high-value compound, which was usually produced by lactic acid bacteria (LAB) as biocatalysts and glucose or phenylpyruvic acid (PPA) as starting materials for PLA synthesis in previous studies. However, the PLA produced using LAB is a racemic mixture. Besides, both glucose and PPA were unsatisfactory substrates, as the former could not produce high concentrations of PLA while the latter is not a renewable and green substrate. To overcome these drawbacks, in this study, a new biotransformation process was developed for chiral PLA production from L-phenylalanine via the intermediate PPA using recombinant Escherichia coli co-expressing L-amino acid deaminase, NAD-dependent L-lactate dehydrogenase or NAD-dependent D-lactate dehydrogenase, and formate dehydrogenase. After optimization, the recombinant E. coli produced L- and D-PLA at concentrations of 59.9 and 60.3 mM in 6 h, respectively. Hence, this process provides an effective and promising alternative method for chiral PLA production.

  8. Beyond the Strait: PLA Missions Other Than Taiwan

    DTIC Science & Technology

    2009-04-01

    modernization efforts through increased operational and cultural experience. In some cases , China also seeks specific diplomatic gains vis-à- vis...strategic ambiguity about the use of the PLA in cases of domestic unrest. The resolution of this dilemma surrounding the minimal use of the PLA in support...much of the PLA was destroyed and how much of China’s infrastructure or economic assets were destroyed). 34 In any case , the outcome would be a “major

  9. Polyelectrolyte multi-layers assembly of SiCHA nanopowders and collagen type I on aminolysed PLA films to enhance cell-material interactions.

    PubMed

    Baba Ismail, Yanny Marliana; Ferreira, Ana Marina; Bretcanu, Oana; Dalgarno, Kenneth; El Haj, Alicia J

    2017-11-01

    This paper presents a new approach in assembling bone extracellular matrix components onto PLA films, and investigates the most favourable environment which can be created using the technique for cell-material interactions. Poly (lactic acid) (PLA) films were chemically modified by covalently binding the poly(ethylene imine) (PEI) as to prepare the substrate for immobilization of polyelectrolyte multilayers (PEMs) coating. Negatively charged polyelectrolyte consists of well-dispersed silicon-carbonated hydroxyapatite (SiCHA) nanopowders in hyaluronic acid (Hya) was deposited onto the modified PLA films followed by SiCHA in collagen type I as the positively charged polyelectrolyte. The outermost layer was finally cross-linked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrocholoride and N-hydroxysulfosuccinimide sodium salt (EDC/NHS) solutions. The physicochemical features of the coated PLA films were monitored via X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscope (AFM). The amounts of calcium and collagen deposited on the surface were qualitatively and quantitatively determined. The surface characterizations suggested that 5-BL has the optimum surface roughness and highest amounts of calcium and collagen depositions among tested films. In vitro human mesenchymal stem cells (hMSCs) cultured on the coated PLA films confirmed that the coating materials greatly improved cell attachment and survival compared to unmodified PLA films. The cell viability, cell proliferation and Alkaline Phosphatase (ALP) expression on 5-BL were found to be the most favourable of the tested films. Hence, this newly developed coating materials assembly could contribute to the improvement of the bioactivity of polymeric materials and structures aimed to bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.

    PubMed

    Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng

    2013-05-06

    Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.

  11. Lowered iPLA2γ activity causes increased mitochondrial lipid peroxidation and mitochondrial dysfunction in a rotenone-induced model of Parkinson's disease.

    PubMed

    Chao, Honglu; Liu, Yinlong; Fu, Xian; Xu, Xiupeng; Bao, Zhongyuan; Lin, Chao; Li, Zheng; Liu, Yan; Wang, Xiaoming; You, Yongping; Liu, Ning; Ji, Jing

    2018-02-01

    iPLA 2 γ, calcium-independent phospholipase A 2 γ, discerningly hydrolyses glycerophospholipids to liberate free fatty acids. iPLA 2 γ-deficiency has been associated with abnormal mitochondrial function. More importantly, the iPLA 2 family is causative proteins in mitochondrial neurodegenerative disorders such as parkinsonian disorders. However, the mechanisms by which iPLA 2 γ affects Parkinson's disease (PD) remain unknown. Mitochondrion stress has a key part in rotenone-induced dopaminergic neuronal degeneration. The present evaluation revealed that lowered iPLA 2 γ function provokes the parkinsonian phenotype and leads to the reduction of dopamine and its metabolites, lowered survival, locomotor deficiencies, and organismal hypersensitivity to rotenone-induced oxidative stress. In addition, lowered iPLA 2 γ function escalated the amount of mitochondrial irregularities, including mitochondrial reactive oxygen species (ROS) regeneration, reduced ATP synthesis, reduced glutathione levels, and abnormal mitochondrial morphology. Further, lowered iPLA 2 γ function was tightly linked with strengthened lipid peroxidation and mitochondrial membrane flaws following rotenone treatment, which can cause cytochrome c release and eventually apoptosis. These results confirmed the important role of iPLA 2 γ, whereby decreasing iPLA 2 γ activity aggravates mitochondrial degeneration to induce neurodegenerative disorders in a rotenone rat model of Parkinson's disease. These findings may be useful in the design of rational approaches for the prevention and treatment of PD-associated symptoms. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Development and optimization of enteric coated mucoadhesive microspheres of duloxetine hydrochloride using 32 full factorial design

    PubMed Central

    Setia, Anupama; Kansal, Sahil; Goyal, Naveen

    2013-01-01

    Background: Microspheres constitute an important part of oral drug delivery system by virtue of their small size and efficient carrier capacity. However, the success of these microspheres is limited due to their short residence time at the site of absorption. Objective: The objective of the present study was to formulate and systematically evaluate in vitro performance of enteric coated mucoadhesive microspheres of duloxetine hydrochloride (DLX), an acid labile drug. Materials and Methods: DLX microspheres were prepared by simple emulsification phase separation technique using chitosan as carrier and glutaraldehyde as a cross-linking agent. Microspheres prepared were coated with eudragit L-100 using an oil-in-oil solvent evaporation method. Eudragit L-100was used as enteric coating polymer with the aim to release the drug in small intestine The microspheres prepared were characterized by particle size, entrapment efficiency, swelling index (SI), mucoadhesion time, in vitro drug release and surface morphology. A 32 full factorial design was employed to study the effect of independent variables polymer-to-drug ratio (X1) and stirring speed (X2) on dependent variables, particle size, entrapment efficiency, SI, in vitro mucoadhesion and drug release up to 24 h (t24). Results: Microspheres formed were discrete, spherical and free flowing. The microspheres exhibited good mucoadhesive property and also showed high percentage entrapment efficiency. The microspheres were able to sustain the drug release up to 24 h. Conclusion: Thus, the prepared enteric coated mucoadhesive microspheres may prove to be a potential controlled release formulation of DLX for oral administration. PMID:24167786

  13. Overcoming the Fundamental Challenges in Improving the Impact Strength and Crystallinity of PLA Biocomposites: Influence of Nucleating Agent and Mold Temperature.

    PubMed

    Nagarajan, Vidhya; Zhang, Kunyu; Misra, Manjusri; Mohanty, Amar K

    2015-06-03

    Poly(lactic acid) (PLA), one of the widely studied renewable resource based biopolymers, has yet to gain a strong commercial standpoint because of certain property limitations. This work is a successful attempt in achieving PLA biocomposites that showed concurrent improvements in impact strength and heat deflection temperature (HDT). Biocomposites were fabricated from a super toughened ternary blend of PLA, poly(ether-b-amide) elastomeric copolymer and ethylene-methyl acrylate-glycidyl methacrylate and miscanthus fibers. The effects of varying the processing parameters and addition of various nucleating agents were investigated. Crystallinity was controlled by optimizing the mold temperature and cycle time of the injection process. With the addition of 1 wt % aromatic sulfonate derivative (Lak-301) as a nucleating agent at a mold temperature of 110 °C, PLA biocomposites exhibited dramatic reduction in crystallization half time to 1.3 min with crystallinity content of 42%. Mechanical and thermal properties assessment for these biocomposites revealed a 4-fold increase in impact strength compared to neat PLA. The HDT of PLA biocomposites increased to 85 °C from 55 °C compared to neat PLA. Crystallization behavior was studied in detail using differential scanning calorimetry and was supported with observations from wide-angle X-ray diffraction profiles and polarized optical microscopy. The presence of a nucleating agent did not alter the crystal structure of PLA; however, a significant difference in spherulite size, crystallization rate and content was observed. Fracture surface morphology and distribution of nucleating agent in the PLA biocomposites were investigated through scanning electron microscopy.

  14. Development and optimization of enteric coated mucoadhesive microspheres of duloxetine hydrochloride using 3(2) full factorial design.

    PubMed

    Setia, Anupama; Kansal, Sahil; Goyal, Naveen

    2013-07-01

    Microspheres constitute an important part of oral drug delivery system by virtue of their small size and efficient carrier capacity. However, the success of these microspheres is limited due to their short residence time at the site of absorption. The objective of the present study was to formulate and systematically evaluate in vitro performance of enteric coated mucoadhesive microspheres of duloxetine hydrochloride (DLX), an acid labile drug. DLX microspheres were prepared by simple emulsification phase separation technique using chitosan as carrier and glutaraldehyde as a cross-linking agent. Microspheres prepared were coated with eudragit L-100 using an oil-in-oil solvent evaporation method. Eudragit L-100was used as enteric coating polymer with the aim to release the drug in small intestine The microspheres prepared were characterized by particle size, entrapment efficiency, swelling index (SI), mucoadhesion time, in vitro drug release and surface morphology. A 3(2) full factorial design was employed to study the effect of independent variables polymer-to-drug ratio (X1) and stirring speed (X2) on dependent variables, particle size, entrapment efficiency, SI, in vitro mucoadhesion and drug release up to 24 h (t24). Microspheres formed were discrete, spherical and free flowing. The microspheres exhibited good mucoadhesive property and also showed high percentage entrapment efficiency. The microspheres were able to sustain the drug release up to 24 h. Thus, the prepared enteric coated mucoadhesive microspheres may prove to be a potential controlled release formulation of DLX for oral administration.

  15. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    PubMed Central

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  16. Flower-like NiCo2S4 Hollow Sub-microspheres with Mesoporous Nanoshells Support Pd Nanoparticles for Enhanced Hydrogen Evolution Reaction Electrocatalysis in Both Acidic and Alkaline Conditions.

    PubMed

    Sheng, Guoqing; Chen, Jiahui; Li, Yunming; Ye, Huangqing; Hu, Zhixiong; Fu, Xian-Zhu; Sun, Rong; Huang, Weixin; Wong, Ching-Ping

    2018-06-14

    Flower-like NiCo2S4 hollow sub-microspheres are synthesized through Cu2O templates to support Pd nanoparticles as high-efficiency catalysts for HER. The diameter and shells size of NiCo2S4 hollow sub-microspheres are about 400 nm and 16 nm, respectively. In addition, the surface of shells is constructed by petal-like nanosheets. About 3 nm Pd particles uniformly incorporate with the flower-like NiCo2S4 hollow sub-microsphere to form NiCo2S4/Pd heterostructure. The NiCo2S4/Pd catalysts exhibit significantly lower overpotential of only 87 mV and 83 mV at 10 mA/cm2 for HER in both acidic and alkaline conditions, respectively, relative to NiCo2S4 (247 mV, 226 mV) and Pd (175 mV, 385mV) catalysts. Besides, the NiCo2S4/Pd catalysts also exhibit excellent stability of HER in these two conditions. The superior HER performance of NiCo2S4/Pd might be resulted from the unique architecture of metal nanoparticles anchored on the bimetallic sulfides flower-like hollow sub-microspheres which could provide high surface area, lots of active sites, strong synergetic effect and stable structure.

  17. Development of implants composed of bioactive materials for bone repair

    NASA Astrophysics Data System (ADS)

    Xiao, Wei

    The purpose of this Ph.D. research was to address the clinical need for synthetic bioactive materials to heal defects in non-loaded and loaded bone. Hollow hydroxyapatite (HA) microspheres created in a previous study were evaluated as a carrier for controlled release of bone morphogenetic protein-2 (BMP2) in bone regeneration. New bone formation in rat calvarial defects implanted with BMP2-loaded microspheres (43%) was significantly higher than microspheres without BMP2 (17%) at 6 weeks postimplantation. Then hollow HA microspheres with a carbonate-substituted composition were prepared to improve their resorption rate. Hollow HA microspheres with 12 wt. % of carbonate showed significantly higher new bone formation (73 +/- 8%) and lower residual HA (7 +/- 2%) than stoichiometric HA microspheres (59 +/- 2% new bone formation; 21 +/- 3% residual HA). The combination of carbonate-substituted hollow HA microspheres and clinically-safe doses of BMP2 could provide promising implants for healing non-loaded bone defects. Strong porous scaffolds of bioactive silicate (13-93) glass were designed with the aid of finite-element modeling, created by robocasting and evaluated for loaded bone repair. Scaffolds with a porosity gradient to mimic human cortical bone showed a compressive strength of 88 +/- 20 MPa, a flexural strength of 34 +/- 5 MPa and the ability to support bone infiltration in vivo. The addition of a biodegradable polylactic acid (PLA) layer to the external surface of these scaffolds increased their load-bearing capacity in four-point bending by 50% and dramatically enhanced their work of fracture, resulting in a "ductile" mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture conducive to bone infiltration, could provide optimal implants for structural bone repair.

  18. Expression of the patatin-related phospholipase A gene AtPLA IIA in Arabidopsis thaliana is up-regulated by salicylic acid, wounding, ethylene, and iron and phosphate deficiency.

    PubMed

    Rietz, Steffen; Holk, André; Scherer, Günther F E

    2004-09-01

    In Arabidopsis thaliana (L.) Heynh., the cytosolic, patatin-related phospholipase A enzymes comprise a family of ten genes designated AtPLAs thought to be involved in auxin and pathogen signalling [A. Holk et al. (2002) Plant Physiol 130:90-101]. One of these, AtPLA IIA, is investigated here by studying its transcriptional regulation through transgenic Arabidopsis plants containing the AtPLA IIA promoter (PIIA) fused to the beta-glucuronidase (GUS) gene. GUS activity appeared in leaves at 10-12 days and became increasingly stronger with age in all leaves. From the same age on, strong GUS activity was visible in the basal stipules of the rosette leaves. PIIA-dependent GUS activity was found in the older parts of the primary root (from 10 days on) and, later in development, in older parts of side roots, and the root cap. No GUS activity was detected in flower organs. PIIA-dependent GUS expression in 12-day-old plants was up-regulated after treatment by salicylic acid, Bion, wounding, 1-aminocyclopropane-1-carboxylic acid (ACC) and jasmonic acid. When transgenic PIIA:: uidA plants were grown devoid of iron, 9-day-old plants exhibited increased GUS activity in the leaves and, when devoid of phosphate, 11-day-old plants had increased GUS activity in the roots. In conclusion, this member of the patatin-related phospholipase A gene family showed properties of a defence and iron-stress and phosphate-stress gene, being transcriptionally up-regulated within hours or days.

  19. Onion-like microspheres with tricomponent from gelable triblock copolymers.

    PubMed

    Zhang, Ke; Gao, Lei; Chen, Yongming; Yang, Zhenzhong

    2010-06-01

    Onion-like functional microspheres with three alternate layers were obtained by aerosol-assisted self-assembly of a functional block copolymer, poly(3-(triethoxysilyl)propyl methacrylate)-block-polystyrene-block-poly(2-vinylpyridine) (PTEPM-b-PS-b-P2VP). Through self-gelation reaction occurred in the PTEPM layers, organic/inorganic hybrid functional spheres with highly ordered concentric curved lamellar structure were prepared. Using these hybrid onion-like microspheres as templates, gold ions were entrapped into the P2VP layers and then gold nanoparticles located in each P2VP layers were formed by a reduction. By dispersing in acidic water, the onion-like polymeric spheres were broken and, as a result, sandwich-like nanoplates with curved morphology were obtained. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1

    PubMed Central

    Puri, Munish; Barrow, Colin; Rao, Nalam Madhusudhana

    2016-01-01

    Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids. PMID:26978518

  1. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1.

    PubMed

    Ranjan Moharana, Tushar; Byreddy, Avinesh R; Puri, Munish; Barrow, Colin; Rao, Nalam Madhusudhana

    2016-01-01

    Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids.

  2. Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites

    PubMed Central

    Gao, Honghong; Qiang, Tao

    2017-01-01

    Polylactide (PLA)-based composite materials reinforced with ball-milled celluloses were manufactured by extrusion blending followed by injection molding. Their surface morphology from impact fracture were imaged with scanning electron microscopy (SEM) and investigated by calculating their fractal dimensions. Then, linear regression was used to explore the relationship between fractal dimension and impact strength of the resultant cellulose/PLA composite materials. The results show that filling the ball-milled celluloses into PLA can improve the impact toughness of PLA by a minimum of 38%. It was demonstrated that the fracture pattern of the cellulose/PLA composite materials is different from that of pristine PLA. For the resultant composite materials, the fractal dimension of the impact fractured surfaces increased with increasing filling content and decreasing particle size of the ball-milled cellulose particles. There were highly positive correlations between fractal dimension of the fractured surfaces and impact strength of the cellulose/PLA composites. However, the linearity between fractal dimension and impact strength were different for the different methods, due to their different R-squared values. The approach presented in this work will help to understand the structure–property relationships of composite materials from a new perspective. PMID:28772983

  3. Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites.

    PubMed

    Gao, Honghong; Qiang, Tao

    2017-06-07

    Polylactide (PLA)-based composite materials reinforced with ball-milled celluloses were manufactured by extrusion blending followed by injection molding. Their surface morphology from impact fracture were imaged with scanning electron microscopy (SEM) and investigated by calculating their fractal dimensions. Then, linear regression was used to explore the relationship between fractal dimension and impact strength of the resultant cellulose/PLA composite materials. The results show that filling the ball-milled celluloses into PLA can improve the impact toughness of PLA by a minimum of 38%. It was demonstrated that the fracture pattern of the cellulose/PLA composite materials is different from that of pristine PLA. For the resultant composite materials, the fractal dimension of the impact fractured surfaces increased with increasing filling content and decreasing particle size of the ball-milled cellulose particles. There were highly positive correlations between fractal dimension of the fractured surfaces and impact strength of the cellulose/PLA composites. However, the linearity between fractal dimension and impact strength were different for the different methods, due to their different R-squared values. The approach presented in this work will help to understand the structure-property relationships of composite materials from a new perspective.

  4. In vivo imaging of the morphology and changes in pH along the gastrointestinal tract of Japanese medaka by photonic band-gap hydrogel microspheres.

    PubMed

    Du, Xuemin; Lei, Ngai-Yu; Hu, Peng; Lei, Zhang; Ong, Daniel Hock-Chun; Ge, Xuewu; Zhang, Zhicheng; Lam, Michael Hon-Wah

    2013-07-17

    Colloidal crystalline microspheres with photonic band-gap properties responsive to media pH have been developed for in vivo imaging purposes. These colloidal crystalline microspheres were constructed from monodispersed core-shell nano-size particles with poly(styrene-co-acrylic acid) (PS-co-PAA) cores and poly(acrylic acid-co-N-isopropylacrylamide) (PAA-co-PNIPAM) hydrogel shells cross-linked by N,N'-methylenebisacrylamide. A significant shift in the photonic band-gap properties of these colloidal crystalline microspheres was observed in the pH range of 4-5. This was caused by the discontinuous volume phase transition of the hydrogel coating, due to the protonation/deprotonation of its acrylic acid moieties, on the core-shell nano-sized particles within the microspheres. The in vivo imaging capability of these pH-responsive photonic microspheres was demonstrated on a test organism - Japanese medaka, Oryzia latipes - in which the morphology and change in pH along their gastrointestinal (GI) tracts were revealed under an ordinary optical microscope. This work illustrates the potential of stimuli-responsive photonic band-gap materials in tissue-/organ-level in vivo bio-imaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Molecular modeling of the inhibition of enzyme PLA2 from snake venom by dipyrone and 1-phenyl-3-methyl-5-pyrazolone

    NASA Astrophysics Data System (ADS)

    Silva, S. L. Da; Comar, M., Jr.; Oliveira, K. M. T.; Chaar, J. S.; Bezerra, E. R. M.; Calgarotto, A. K.; Baldasso, P. A.; Veber, C. L.; Villar, J. A. F. P.; Oliveira, A. R. M.; Marangoni, S.

    Phospholipases A2 (PLA2) are enzymes that trigger the degradation cascade of the arachidonic acid, leading to the formation of pro-inflammatory eicosanoids. The selective inhibition of PLA2s is crucial in the search for a more efficient anti-inflammatory drug with fewer side effects than the drugs currently used. Hence, we studied the influences caused by two pyrazolonic inhibitors: dipyrone (DIP) and 1-phenyl-3-methyl-5-pyrazolone (PMP) on the kinetic behavior of PLA2 from Crotalus adamanteus venom. Molecular modeling results, by DFT and MM approaches, showed that DIP is strongly associated to the active site of PLA2 through three hydrogen bonds, whereas PMP is associated to the enzyme just through hydrophobic interactions. In addition, only PMP presents an intramolecular hydrogen bond that make difficult the formation of more efficient interactions with PLA2. These results help in the understanding of the experimental observations. Experimentally, the results showed that PLA2 from C. adamanteus present a typical Michaelian behavior. In addition, the calculated kinetic parameters showed that, in the presence of DIP or PMP, the maximum enzymatic velocity (VMAX) value was kept constant, whereas the Michaelis constant (KM) values increased and the inhibition constant (KI) decreased, indicating competitive inhibition. These results show that the phenyl-pyrazolonic structures might help in the development and design of new drugs able to selectively inhibit PLA2.

  6. Effect of Commercial SiO2 and SiO2 from rice husk ash loading on biodegradation of Poly (lactic acid) and crosslinked Poly (lactic acid)

    NASA Astrophysics Data System (ADS)

    Prapruddivongs, C.; Apichartsitporn, M.; Wongpreedee, T.

    2017-09-01

    In this work, biodegradation behavior of poly (lactic acid) (PLA) and crosslinked PLA filled with two types of SiO2, precipitated SiO2 (commercial SiO2) and SiO2 from rice husk ash, were studied. Rice husks were first treated with 2 molar hydrochloric acid (HCl) to produce high purity SiO2, before burnt in a furnace at 800°C for 6 hours. All components were melted bending by an internal mixer then hot pressed using compression molder to form tested specimens. FTIR spectra of SiO2 and PLA samples were investigated. The results showed the lack of silanol group (Si-OH) of rice husk ash after steric acid surface modification, while the addition of particles can affect the crosslinking of the PLA. For biodegradation test by evaluating total amount of carbon dioxide (CO2) evolved during 60 days incubation at a controlled temperature of 58±2°C, the results showed that the biodegradation of crosslinked PLA occurred slower than the neat PLA. However, SiO2 incorporation enhanced the degree of biodegradation In particular, introducing commercial SiO2 in PLA and crosslinked PLA tended to clearly increase the degree of biodegradation as a consequence of the more accelerated hydrolysis degradation.

  7. Microspheres and their methods of preparation

    DOEpatents

    Bose, Anima B; Yang, Junbing

    2015-03-24

    Carbon microspheres are doped with boron to enhance the electrical and physical properties of the microspheres. The boron-doped carbon microspheres are formed by a CVD process in which a catalyst, carbon source and boron source are evaporated, heated and deposited onto an inert substrate.

  8. An Accelerated Release Method of Risperidone Loaded PLGA Microspheres with Good IVIVC.

    PubMed

    Hu, Xiaoqin; Zhang, Jianwei; Tang, Xuemei; Li, Mingyuan; Ma, Siyu; Liu, Cheng; Gao, Yue; Zhang, Yue; Liu, Yan; Yu, Fanglin; Yang, Yang; Guo, Jia; Li, Zhiping; Mei, Xingguo

    2018-01-01

    A long release period lasting several days or several weeks is always needed and thereby it is tedious and time consuming to screen formulations of such microspheres with so long release period and evaluate their release profiles in vitro with conventional long-term or "real-time" release method. So, an accelerated release testing of such system is necessary for formulation design as well as quality control purpose. The purpose of this study is to obtain an accelerated release method of risperidone loaded poly(lactic-co-glycolic acid) (PLGA) microspheres with good in vitro/in vivo correlation (IVIVC). Two formulations of risperidone loaded PLGA microspheres used for evaluating IVIVC were prepared by O/W method. The accelerated release condition was optimized by investigating the effect of pH, osmotic pressure, temperature and ethanol concentration on the release of risperidone from microspheres and the in vitro accelerated release profiles of risperidone from PLGA microspheres were obtained under this optimized accelerated release condition. The plasma concentration of risperidone were also detected after subcutaneous injection of risperidone loaded microspheres to rats. The in vivo cumulative absorption profiles were then calculated using Wagner-Nelson model, Loo- Riegelman model and numerical convolution model, respectively. The correlation between in vitro accelerated release and in vivo cumulative absorption were finally evaluated with Least Square Method. It was shown that temperature and ethanol concentration significantly affected the release of risperidone from the microspheres while pH and osmotic pressure of release media slightly affected the release behavior of risperidone. The in vitro release of risperidone from microspheres were finally undergone in PBS (pH7.0, 300mosm) with 20% (V/V) ethanol at 45°C. The sustained and complete release of risperidone was observed in both formulations under the accelerated release condition although these two release

  9. Investigation of the Effect of Mixing Methods and Chemical Treatments on the Conductivity of the CNT/PLA Based Composites

    NASA Astrophysics Data System (ADS)

    Talwar, Brijpal Singh

    The growing popularity of Poly lactic acid (PLA) is mainly due to its biocompatibility, good mechanical properties, and its synthesis from renewable resources. PLA can be compounded with electrically conductive fillers (e.g., carbon nanotubes (CNTs)) to form conductive polymer composites (CPCs). These fillers provide conductive functionality to the composite material by forming percolation paths. Featuring very low weight densities, CPCs have the potential to replace metals in the electronic industry, if they exhibit similar electrical conductivities to that of the metals. The current challenges being faced during the mixing of CNTs in the polymer matrix are: formation of aggregates due to strong van der Waals forces and breakage of CNTs during dispersion. In this study, we compare: (1) two fabrication methods to create CPCs (i.e., solution mixing by sonication and melt extrusion) (2) effect of various CNT functionalization techniques (i.e., acid and plasma treatments) on the conductivity of CPCs and (3) effect of using binding molecules like para-phenylenediamine, that act as bridges in between the CNTs in the CPCs and its effect on the conductivity of CPCs. Such conductive composite materials find widespread technological applications which either require, or could benefit from, the ability to pattern micro-sized features in two-dimensional (2D) and three-dimensional (3D) architectures. Direct-write fabrication technique is used to realise these printed patterns, using the CPC solution as ink. First, the composites comprising of 30% PLA by weight in Dichloromethane (DCM) and CNTs in different concentrations (up to 5wt. %) are fabricated using a two-step sonication method (i.e., dissolving PLA in DCM and then dispersing the CNTs in this polymer solution). Second, CPCs are fabricated using a twin screw micro extruder operating at 180°C. To verify the effects of functionalization of the CNTs on the conductivity of composites, the CNTs are functionalized by three

  10. Nano-functionalization of protein microspheres

    NASA Astrophysics Data System (ADS)

    Yoon, Sungkwon; Nichols, William T.

    2014-08-01

    Protein microspheres are promising building blocks for the assembly of complex functional materials. Here we demonstrate a set of three techniques that add functionality to the surface of protein microspheres. In the first technique, a positive surface charge on the protein spheres is deposited by electrostatic adsorption. Negatively charged silica and gold nanoparticle colloids can then electrostatically bind reversibly to the microsphere surface. In the second technique, nanoparticles are covalently anchored to the protein shell using a simple one-pot process. The strong covalent bond between sulfur groups in cysteine in the protein shell irreversibly binds to the gold nanoparticles. In the third technique, surface morphology of the protein microsphere is tuned through hydrodynamic instability at the water-oil interface. This is accomplished through the degree of solubility of the oil phase in water. Taken together these three techniques form a platform to create nano-functionalized protein microspheres, which can then be used as building blocks for the assembly of more complex macroscopic materials.

  11. Metal containing polymeric functional microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1979-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  12. From honeycomb- to microsphere-patterned surfaces of poly(lactic acid) and a starch-poly(lactic acid) blend via the breath figure method.

    PubMed

    Duarte, Ana Rita C; Maniglio, Devid; Sousa, Nuno; Mano, João F; Reis, Rui L; Migliaresi, Claudio

    2017-01-26

    This study investigated the preparation of ordered patterned surfaces and/or microspheres from a natural-based polymer, using the breath figure and reverse breath figure methods. Poly(D,L-lactic acid) and starch poly(lactic acid) solutions were precipitated in different conditions - namely, polymer concentration, vapor atmosphere temperature and substrate - to evaluate the effect of these conditions on the morphology of the precipitates obtained. The possibility of fine-tuning the properties of the final patterns simply by changing the vapor atmosphere was also demonstrated here using a range of compositions of the vapor phase. Porous films or discrete particles are formed when the differences in surface tension determine the ability of polymer solution to surround water droplets or methanol to surround polymer droplets, respectively. In vitro cytotoxicity was assessed applying a simple standard protocol to evaluate the possibility to use these materials in biomedical applications. Moreover, fluorescent microscopy images showed a good interaction of cells with the material, which were able to adhere on the patterned surfaces after 24 hours in culture. The development of patterned surfaces using the breath figure method was tested in this work for the preparation of both poly(lactic acid) and a blend containing starch and poly(lactic acid). The potential of these films to be used in the biomedical area was confirmed by a preliminary cytotoxicity test and by morphological observation of cell adhesion.

  13. Hydroxyapatite-armored poly(ε-caprolactone) microspheres and hydroxyapatite microcapsules fabricated via a Pickering emulsion route.

    PubMed

    Fujii, Syuji; Okada, Masahiro; Nishimura, Taiki; Maeda, Hayata; Sugimoto, Tatsuya; Hamasaki, Hiroyuki; Furuzono, Tsutomu; Nakamura, Yoshinobu

    2012-05-15

    Hydroxyapatite (HAp) nanoparticle-armored poly(ε-caprolactone) (PCL) microspheres were fabricated via a "Pickering-type" emulsion solvent evaporation method in the absence of any molecular surfactants. It was clarified that the interaction between carbonyl/carboxylic acid groups of PCL and the HAp nanoparticles at an oil-water interface played a crucial role in the preparation of the stable Pickering-type emulsions and the HAp nanoparticle-armored microspheres. The HAp nanoparticle-armored PCL microspheres were characterized in terms of size, size distribution, morphology, and chemical compositions using scanning electron microscopy, laser diffraction, energy dispersive X-ray microanalysis, and thermogravimetric analysis. The presence of HAp nanoparticles at the surface of the microspheres was confirmed by scanning electron microscopy and energy dispersive X-ray microanalysis. Pyrolysis of the PCL cores led to the formation of the corresponding HAp hollow microcapsules. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Influence of the Formulation Parameters on the Particle Size and Encapsulation Efficiency of Resveratrol in PLA and PLA-PEG Blend Nanoparticles: A Factorial Design.

    PubMed

    Lindner, Gabriela da Rocha; Dalmolin, Luciana Facco; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2015-12-01

    Polymeric nanoparticles are colloidal systems that promote protection and modification of physicochemical characteristics of a drug and that also ensure controlled and extended drug release. This paper reports a 2(3) factorial design study to optimize poly(lactide) (PLA) and poly(lactide)-polyethylene glycol (PLA-PEG) blend nanoparticles containing resveratrol (RVT) for prolonged release. The independent variables analyzed were solvent composition, surfactant concentration and ratio of aqueous to organic phase (two levels each factor). Mean particle size and RVT encapsulation efficiency were set as the dependent variables. The selected optimized parameters were set as organic phase comprised of a mixture of dichloromethane and ethyl acetate, 1% of surfactant polyvinyl alcohol and a 3:1 ratio of aqueous to organic phase, for both PLA and PLA-PEG blend nanoparticles. This formulation originated nanoparticles with size of 228 ± 10 nm and 185 ± 70 nm and RVT encapsulation efficiency of 82 ± 10% and 76 ± 7% for PLA and PLA-PEG blend nanoparticles, respectively. The in vitro release study showed a biphasic pattern with prolonged RVT release and PEG did not influence the RVT release. The in vitro release data were in favor of Higuchi-diffusion kinetics for both nanoformulations and the Kossmeyer-Peppas coefficient indicated that anomalous transport was the main release mechanism of RVT. PLA and PLA-PEG blend nanoparticles produced with single emulsion-solvent evaporation technology were found to be a promising approach for the incorporation of RVT and promoted its controlled release. The factorial design is a tool of great value in choosing formulations with optimized parameters.

  15. Microsphere-Based Scaffolds Encapsulating Tricalcium Phosphate And Hydroxyapatite For Bone Regeneration

    PubMed Central

    Gupta, Vineet; Lyne, Dina V.; Barragan, Marilyn; Berkland, Cory J.; Detamore, Michael S.

    2016-01-01

    Bioceramic mixtures of tricalcium phosphate (TCP) and hydroxyapatite (HAp) are widely used for bone regeneration because of their excellent cytocompatibility, osteoconduction, and osteoinduction. Therefore, we hypothesized that incorporation of a mixture of TCP and HAp in microsphere-based scaffolds would enhance osteogenesis of rat bone marrow stromal cells (rBMSCs) compared to a positive control of scaffolds with encapsulated bone-morphogenic protein-2 (BMP-2). Poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds encapsulating TCP and HAp mixtures in two different ratios (7:3 and 1:1) were fabricated with the same net ceramic content (30 wt%) to evaluate how incorporation of these ceramic mixtures would affect the osteogenesis in rBMSCs. Encapsulation of TCP/HAp mixtures impacted microsphere morphologies and the compressive moduli of the scaffolds. Additionally, TCP/HAp mixtures enhanced the end-point secretion of extracellular matrix (ECM) components relevant to bone tissue compared to the “blank” (PLGA-only) microsphere-based scaffolds as evidenced by the biochemical, gene expression, histology, and immunohistochemical characterization. Moreover, the TCP/HAp mixture groups even surpassed the BMP-2 positive control group in some instances in terms of matrix synthesis and gene expression. Lastly, gene expression data suggested that the rBMSCs responded differently to different TCP/HAp ratios presented to them. Altogether, it can be concluded that TCP/HAp mixtures stimulated the differentiation of rBMSCs toward an osteoblastic phenotype, and therefore may be beneficial in gradient microsphere-based scaffolds for osteochondral regeneration. PMID:27272903

  16. Endothelial cell behaviour on gas-plasma-treated PLA surfaces: the roles of surface chemistry and roughness.

    PubMed

    Shah, Amita; Shah, Sarita; Mani, Gopinath; Wenke, Joseph; Agrawal, Mauli

    2011-04-01

    Glow-discharge gas-plasma (GP) treatment has been shown to induce surface modifications such that cell adhesion and growth are enhanced. However, it is not known which gas used in GP treatment is optimal for endothelial cell function. Polylactic acid (PLA) films treated oxygen, argon, or nitrogen GP were characterized using contact angles, scanning electron microscopy, atomic force microscopy, optical profilometry, and x-ray photoelectron spectroscopy. All three GP treatments decreased the carbon atomic concentration and surface roughness and increased the oxygen atomic concentration. Human umbilical vein endothelial cells were cultured on the PLA films for up to 7 days. Based on proliferation and live/dead assays, surface chemistry was shown to have the greatest effect on the attachment, proliferation, and viability of these cells, while roughness did not have a significant influence. Of the different gases, endothelial cell viability, attachment and proliferation were most significantly increased on PLA surfaces treated with oxygen and argon gas plasma. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material.

    PubMed

    Dasan, Y K; Bhat, A H; Ahmad, Faiz

    2017-02-10

    The current research discusses the development of poly (lactic acid) (PLA) and poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced nanocrystalline cellulose bionanocomposites. The nanocrystalline cellulose was derived from waste oil palm empty fruit bunch fiber by acid hydrolysis process. The resulting nanocrystalline cellulose suspension was then surface functionalized by TEMPO-mediated oxidation and solvent exchange process. Furthermore, the PLA/PHBV/nanocrystalline cellulose bionanocomposites were produced by solvent casting method. The effect of the addition of nanocrystalline cellulose on structural, morphology, mechanical and barrier properties of bionanocomposites was investigated. The results revealed that the developed bionanocomposites showed improved mechanical properties and decrease in oxygen permeability rate. Therefore, the developed bio-based composite incorporated with an optimal composition of nanocrystalline cellulose exhibits properties as compared to the polymer blend. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Surface modification of polylactic acid films by atmospheric pressure plasma treatment

    NASA Astrophysics Data System (ADS)

    Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.

    2017-09-01

    A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.

  19. In silico modelling of drug–polymer interactions for pharmaceutical formulations

    PubMed Central

    Ahmad, Samina; Johnston, Blair F.; Mackay, Simon P.; Schatzlein, Andreas G.; Gellert, Paul; Sengupta, Durba; Uchegbu, Ijeoma F.

    2010-01-01

    Selecting polymers for drug encapsulation in pharmaceutical formulations is usually made after extensive trial and error experiments. To speed up excipient choice procedures, we have explored coarse-grained computer simulations (dissipative particle dynamics (DPD) and coarse-grained molecular dynamics using the MARTINI force field) of polymer–drug interactions to study the encapsulation of prednisolone (log p = 1.6), paracetamol (log p = 0.3) and isoniazid (log p = −1.1) in poly(l-lactic acid) (PLA) controlled release microspheres, as well as the encapsulation of propofol (log p = 4.1) in bioavailability enhancing quaternary ammonium palmitoyl glycol chitosan (GCPQ) micelles. Simulations have been compared with experimental data. DPD simulations, in good correlation with experimental data, correctly revealed that hydrophobic drugs (prednisolone and paracetamol) could be encapsulated within PLA microspheres and predicted the experimentally observed paracetamol encapsulation levels (5–8% of the initial drug level) in 50 mg ml−1 PLA microspheres, but only when initial paracetamol levels exceeded 5 mg ml−1. However, the mesoscale technique was unable to model the hydrophilic drug (isoniazid) encapsulation (4–9% of the initial drug level) which was observed in experiments. Molecular dynamics simulations using the MARTINI force field indicated that the self-assembly of GCPQ is rapid, with propofol residing at the interface between micellar hydrophobic and hydrophilic groups, and that there is a heterogeneous distribution of propofol within the GCPQ micelle population. GCPQ–propofol experiments also revealed a population of relatively empty and drug-filled GCPQ particles. PMID:20519214

  20. Hierarchically assembled Au microspheres and sea urchin-like architectures: formation mechanism and SERS study

    NASA Astrophysics Data System (ADS)

    Wang, Xiansong; Yang, Da-Peng; Huang, Peng; Li, Min; Li, Chao; Chen, Di; Cui, Daxiang

    2012-11-01

    The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors.The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of

  1. Cross-reactivity of anti-PLA2R1 autoantibodies to rabbit and mouse PLA2R1 antigens and development of two novel ELISAs with different diagnostic performances in idiopathic membranous nephropathy.

    PubMed

    Seitz-Polski, Barbara; Dolla, Guillaume; Payré, Christine; Tomas, Nicola M; Lochouarn, Marine; Jeammet, Louise; Mariat, Christophe; Krummel, Thierry; Burtey, Stéphane; Courivaud, Cécile; Schlumberger, Wolfgang; Zorzi, Kévin; Benzaken, Sylvia; Bernard, Ghislaine; Esnault, Vincent L M; Lambeau, Gérard

    2015-11-01

    About 70% of patients with idiopathic membranous nephropathy (iMN) have autoantibodies to the phospholipase A2 receptor PLA2R1. We screened sera from iMN patients for their cross-reactivity to human (h), rabbit (rb) and mouse (m) PLA2R1 by western blot (WB) and antigen-specific ELISAs. All iMN patients recognized hPLA2R1 and rbPLA2R1 by WB, and a rbPLA2R1 ELISA was as sensitive as the standardized hPLA2R1 ELISA to monitor anti-PLA2R1 in patients with active disease or in drug-induced remission. In contrast, only 51% of patients were reactive to mPLA2R1 by WB, and a maximum of 78% were weakly to highly positive in the mPLA2R1 ELISA, suggesting that iMN patients exhibit different subsets of anti-PLA2R1 autoantibodies against epitopes that are shared or not among PLA2R1 orthologs. In a cohort of 41 patients with a mean follow-up of 42 months from anti-PLA2R1 assay, the detection of anti-mPLA2R1 autoantibodies was an independent predictor of clinical outcome in multivariate analysis (p = 0.009), and a ROC curve analysis identified a threshold of 605 RU/mL above which 100% of patients (12 patients) had a poor renal outcome (p < 0.001). A similar threshold could not be defined in hPLA2R1 and rbPLA2R1 ELISAs. We conclude that rbPLA2R1 is an alternative antigen to hPLA2R1 to measure anti-PLA2R1 in active disease while mPLA2R1 is a unique antigen that can detect a subset of anti-PLA2R1 autoantibodies present at high levels (>605 RU/mL) only in iMN patients at risk of poor prognosis, and is thus useful to predict iMN outcome. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. The standard aqueous stem bark extract of Mangifera indica L. inhibits toxic PLA2 - NN-XIb-PLA2 of Indian cobra venom.

    PubMed

    Dhananjaya, Bhadrapura Lakkappa; Sudarshan, Shivalingaiah; Dongol, Yashad; More, Sunil S

    2016-05-01

    The aqueous extract of Mangifera indica is known to possess diverse medicinal properties, which also includes anti-snake venom activities. However, its inhibitory potency and mechanism of action on multi-toxic snake venom phospholipases A2s are still unknown. Therefore, the objective of this study was to evaluate the modulatory effect of standard aqueous bark extract of M. indica on NN-XIb-PLA2 of Indian cobra venom. The in vitro sPLA2, in situ hemolytic and in vivo edema inhibition effect were carried out as described. Also the effect of substrate and calcium concentration was carried out. M. indica extract dose dependently inhibited the GIA sPLA2 (NN-XIb-PLA2) activity with an IC50 value of 7.6 μg/ml. M. indica extract effectively inhibited the indirect hemolytic activity up to 98% at ∼40 μg/ml concentration. Further, M. indica extract (0-50 μg/ml) inhibited the edema formed in a dose dependent manner. When examined as a function of increased substrate and calcium concentration, there was no relieve of inhibitory effect of M. indica extract on the NN-XIb-PLA2. Further, the inhibition was irreversible as evident from binding studies. The in vitro inhibition is well correlated with in situ and in vivo edema inhibiting activities of M. indica. As the inhibition is independent of substrate and calcium and was irreversible, it can be concluded that M. indica extract mode of inhibition could be due to direct interaction of components present in the extract with the PLA2 enzyme. The aqueous extract of M. indica effectively inhibits svPLA2 enzymatic and its associated toxic activities, which substantiate their anti-snake venom properties. Further in-depth studies on the role and mechanism of the principal constituents present in the extract, responsible for the anti-PLA2 activity will be interesting to develop them into potent antisnake component and also as an anti-inflammatory agent.

  3. Phospholipase PlaB is a new virulence factor of Legionella pneumophila.

    PubMed

    Schunder, Eva; Adam, Patrick; Higa, Futoshi; Remer, Katharina A; Lorenz, Udo; Bender, Jennifer; Schulz, Tino; Flieger, Antje; Steinert, Michael; Heuner, Klaus

    2010-06-01

    We previously identified Legionella pneumophila PlaB as the major cell-associated phospholipase A/lysophospholipase A with contact-dependent hemolytic activity. In this study, we further characterized this protein and found it to be involved in the virulence of L. pneumophila. PlaB was mainly expressed and active during exponential growth. Active PlaB was outer membrane-associated and at least in parts surface-exposed. Transport to the outer membrane was not dependent on the type I (T1SS), II (T2SS), IVB (T4BSS) or Tat secretion pathways. Furthermore, PlaB activity was not dependent on the presence of the macrophage infectivity potentiator (Mip) or the major secreted zinc metalloproteinase A (MspA). Despite the fact that PlaB is not essential for replication in protozoa or macrophage cell lines, we found that plaB mutants were impaired for replication in the lungs and dissemination to the spleen in the guinea pig infection model. Histological sections monitored less inflammation and destruction of the lung tissue after infection with the plaB mutants compared to L. pneumophila wild type. Taken together, PlaB is the first phospholipase A/lysophospholipase A with a confirmed role in the establishment of Legionnaires' disease. Copyright 2010 Elsevier GmbH. All rights reserved.

  4. Novel genetic approach to investigate the role of plasma secretory phospholipase A2 (sPLA2)-V isoenzyme in coronary heart disease: modified Mendelian randomization analysis using PLA2G5 expression levels.

    PubMed

    Holmes, Michael V; Exeter, Holly J; Folkersen, Lasse; Nelson, Christopher P; Guardiola, Montse; Cooper, Jackie A; Sofat, Reecha; Boekholdt, S Matthijs; Khaw, Kay-Tee; Li, Ka-Wah; Smith, Andrew J P; Van't Hooft, Ferdinand; Eriksson, Per; Franco-Cereceda, Anders; Asselbergs, Folkert W; Boer, Jolanda M A; Onland-Moret, N Charlotte; Hofker, Marten; Erdmann, Jeanette; Kivimaki, Mika; Kumari, Meena; Reiner, Alex P; Keating, Brendan J; Humphries, Steve E; Hingorani, Aroon D; Mallat, Ziad; Samani, Nilesh J; Talmud, Philippa J

    2014-04-01

    Secretory phospholipase A2 (sPLA2) enzymes are considered to play a role in atherosclerosis. sPLA2 activity encompasses several sPLA2 isoenzymes, including sPLA2-V. Although observational studies show a strong association between elevated sPLA2 activity and CHD, no assay to measure sPLA2-V levels exists, and the only evidence linking the sPLA2-V isoform to atherosclerosis progression comes from animal studies. In the absence of an assay that directly quantifies sPLA2-V levels, we used PLA2G5 mRNA levels in a novel, modified Mendelian randomization approach to investigate the hypothesized causal role of sPLA2-V in coronary heart disease (CHD) pathogenesis. Using data from the Advanced Study of Aortic Pathology, we identified the single-nucleotide polymorphism in PLA2G5 showing the strongest association with PLA2G5 mRNA expression levels as a proxy for sPLA2-V levels. We tested the association of this SNP with sPLA2 activity and CHD events in 4 prospective and 14 case-control studies with 27 230 events and 70 500 controls. rs525380C>A showed the strongest association with PLA2G5 mRNA expression (P=5.1×10(-6)). There was no association of rs525380C>A with plasma sPLA2 activity (difference in geometric mean of sPLA2 activity per rs525380 A-allele 0.4% (95% confidence intervals [-0.9%, 1.6%]; P=0.56). In meta-analyses, the odds ratio for CHD per A-allele was 1.02 (95% confidence intervals [0.99, 1.04]; P=0.20). This novel approach for single-nucleotide polymorphism selection for this modified Mendelian randomization analysis showed no association between rs525380 (the lead single-nucleotide polymorphism for PLA2G5 expression, a surrogate for sPLA2-V levels) and CHD events. The evidence does not support a causal role for sPLA2-V in CHD.

  5. Thermal response of chalcogenide microsphere resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, H; Aryanfar, I; Lim, K S

    2012-05-31

    A chalcogenide microsphere resonator (CMR) used for temperature sensing is proposed and demonstrated. The CMR is fabricated using a simple technique of heating chalcogenide glass and allowing the molten glass to form a microsphere on the waist of a tapered silica fibre. The thermal responses of the CMR is investigated and compared to that of a single-mode-fibre (SMF) based microsphere resonator. It is observed that the CMR sensitivity to ambient temperature changes is 8 times higher than that of the SMF-based microsphere resonator. Heating the chalcogenide microsphere with a laser beam periodically turned on and off shows periodic shifts inmore » the transmission spectrum of the resonator. By injecting an intensity-modulated cw signal through the resonator a thermal relaxation time of 55 ms is estimated.« less

  6. In vitro degradation of MAO/PLA coating on Mg-1.21Li-1.12Ca-1.0Y alloy

    NASA Astrophysics Data System (ADS)

    Zeng, Rong-Chang; Qi, Wei-Chen; Song, Ying-Wei; He, Qin-Kun; Cui, Hong-Zhi; Han, En-Hou

    2014-12-01

    Magnesium and its alloys are promising biomaterials due to their biocompatibility and osteoinduction. The plasticity and corrosion resistance of commercial magnesium alloys cannot meet the requirements for degradable biomaterials completely at present. Particularly, the alkalinity in the microenvironment surrounding the implants, resulting from the degradation, arouses a major concern. Micro-arc oxidation (MAO) and poly(lactic acid) (PLA) composite (MAO/PLA) coating on biomedical Mg-1.21Li-1.12Ca-1.0Y alloy was prepared to manipulate the pH variation in an appropriate range. Surface morphologies were discerned using SEM and EMPA. And corrosion resistance was evaluated via electrochemical polarization and impedance and hydrogen volumetric method. The results demonstrated that the MAO coating predominantly consisted of MgO, Mg2SiO4 and Y2O3. The composite coating markedly improved the corrosion resistance of the alloy. The rise in solution pH for the MAO/PLA coating was tailored to a favorable range of 7.5-7.8. The neutralization caused by the alkalinity of MAO and Mg substrate and acidification of PLA was probed. The result designates that MAO/PLA composite coating on Mg-1.21Li-1.12Ca-1.0Y alloys may be a promising biomedical coating.

  7. Preparation and Mechanical Properties of Fiber Reinforced PLA for 3D Printing Materials

    NASA Astrophysics Data System (ADS)

    Li, Xionghao; Ni, Zhongjin; Bai, Shuyang; Lou, Baiyang

    2018-03-01

    The cellulose prepared by means of TEMPO oxidation method and glass fibre was blended with PLA respectively, and were spun into enhanced PLA wires. This study evaluates the wire rods that is from extruder is suitable for FDM printing by various physical characterization tests to determine their feasibility as a 3D printing filament materials. The cellulose and glass fibre is blended with PLA and spun into the reinforced PLA filament respectively, which is applied to FDM printing technology. The results showed that the intensity of strike resistant of the reinforced PLA filament made from cellulose and PLA is 34% to 60% higher than the PLA filament, meanwhile the tensile strength is 43% to 52% higher than the pure one. The other enhanced PLA filament is 13% to 35% higher than the PLA filament in intensity of strike resistant, and the tensile strength is 54% to 61% higher than the pure one.

  8. Efficacy and safety of injection with poly-L-lactic acid compared with hyaluronic acid for correction of nasolabial fold: a randomized, evaluator-blinded, comparative study.

    PubMed

    Hyun, M Y; Lee, Y; No, Y A; Yoo, K H; Kim, M N; Hong, C K; Chang, S E; Won, C H; Kim, B J

    2015-03-01

    Hyaluronic acid (HA) fillers and poly-L-lactic acid (PLA) fillers are frequently used to correct facial wrinkles. To compare the efficacy and safety of a novel injectable poly-L-lactic acid (PLA) filler and a well-studied biphasic HA filler for the treatment of moderate to severe nasolabial folds. In this multicentre, randomized, evaluator-blinded, comparative study, subjects were randomized for injections with PLA or HA into both nasolabial folds. Efficacy was determined by calculating the change in Wrinkle Severity Rating Scale (WSRS) relative to baseline. Local safety was assessed by reported adverse events. At week 24, mean improvement in WSRS from baseline was 2.09 ± 0.68 for the PLA side and 1.54 ± 0.65 for the HA side. Both injections were well tolerated, and the adverse reactions were mild and transient in most cases. PLA provides noninferior efficacy compared with HA 6 months after being used to treat moderate to severe nasolabial folds. © 2014 British Association of Dermatologists.

  9. cPLA2α Gene Activation by IL-1β is Dependent on an Upstream Kinase pathway, Enzymatic Activation and Downstream 15-lipoxygenase Activity: A Positive Feedback Loop

    PubMed Central

    Walters, Jewell N.; Bickford, Justin S.; Beachy, Dawn E.; Newsom, Kimberly J.; Herlihy, John-David H.; Peck, Molly V.; Qiu, Xiaolei; Nick, Harry S.

    2011-01-01

    Cytosolic phospholipase A2α (cPLA2α) is the most widely studied member of the Group IV PLA2 family. The enzyme is Ca2+-dependent with specificity for phospholipid substrates containing arachidonic acid. As the pinnacle of the arachidonic acid pathway, cPLA2α has a primary role in the biosynthesis of a diverse family of eicosanoid metabolites, with potent physiological, inflammatory and pathological consequences. cPLA2α activity is regulated by pro-inflammatory stimuli through pathways involving increased intracellular Ca2+ levels, phosphorylation coupled to increased enzymatic activity and de novo gene transcription. This study addresses the signal transduction pathways for protein phosphorylation and gene induction following IL-1β stimulation in human fetal lung fibroblasts. Our results utilizing both inhibitors and kinase-deficient cells demonstrate that cPLA2α is phosphorylated within 10 min of IL-1β treatment, an event requiring p38 MAPK as well as the upstream kinase, MKK3/MKK6. Inhibition of p38 MAPK also blocks the phosphorylation of a downstream, nuclear kinase, MSK-1. Our results further demonstrate that the activities of both cPLA2α and a downstream lipoxygenase (15-LOX2) are required for IL-1β-dependent induction of cPLA2α mRNA expression. Overall, these data support an MKK3/MKK6→p38 MAPK→MSK-1→cPLA2α→15-LOX2-dependent, positive feedback loop where a protein’s enzymatic activity is required to regulate its own gene induction by a pro-inflammatory stimulus. PMID:21771656

  10. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, William E.

    1984-01-01

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  11. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, W.E.

    1982-09-30

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  12. Coating gigaporous polystyrene microspheres with cross-linked poly(vinyl alcohol) hydrogel as a rapid protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Huan, Guan-Sheng; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo; Huang, Fang

    2014-08-13

    Gigaporous polystyrene (PS) microspheres were hydrophilized by in situ polymerization to give a stable cross-linked poly(vinyl alcohol) (PVA) hydrogel coating, which can shield proteins from the hydrophobic PS surface underneath. The amination of microspheres (PS-NH2) was first carried out through acetylization, oximation and reduction, and then 4,4'-azobis (4-cyanovaleric acid) (ACV), a polymerization initiator, was covalently immobilized on PS-NH2 through amide bond formation, and the cross-linked poly(vinyl acetate) (PVAc) was prepared by radical polymerization at the surfaces of ACV-immobilized PS microspheres (PS-ACV). Finally, the cross-linked PVA hydrogel coated gigaporous PS microspheres (PS-PVA) was easily achieved through alcoholysis of PVAc. Results suggested that the PS microspheres were effectively coated with cross-linked PVA hydrogel, where the gigaporrous structure remained under optimal conditions. After hydrophilic modification (PS-PVA), the protein-resistant ability of microspheres was greatly improved. The hydroxyl-rich PS-PVA surface can be easily derivatized by classical chemical methods. Performance advantages of the PS-PVA column in flow experiment include good permeability, low backpressure, and mechanical stability. These results indicated that PS-PVA should be promising in rapid protein chromatography.

  13. Dynamic in vivo imaging of dual-triggered microspheres for sustained release applications: synthesis, characterization and cytotoxicity study.

    PubMed

    Efthimiadou, Eleni K; Tapeinos, Christos; Chatzipavlidis, Alexandros; Boukos, Nikos; Fragogeorgi, Eirini; Palamaris, Lazaros; Loudos, George; Kordas, George

    2014-01-30

    This paper deals with the synthesis, characterization and property evaluation of drug-loaded magnetic microspheres with pH-responsive cross-linked polymer shell. The synthetic procedure consists of 3 steps, of which the first two comprise the synthesis of a poly methyl methacrylate (PMMA) template and the synthesis of a shell by using acrylic acid (AA) and methyl methacrylate (MMA) as monomers, and divinyl benzene (DVB) as cross-linker. The third step of the procedure refers to the formation of magnetic nanoparticles on the microsphere's surface. AA that attaches pH-sensitivity in the microspheres and magnetic nanoparticles in the inner and the outer surface of the microspheres, enhance the efficacy of this intelligent drug delivery system (DDS), which constitutes a promising approach toward cancer therapy. A number of experimental techniques were used to characterize the resulting microspheres. In order to investigate the in vitro controlled release behavior of the synthesized microspheres, we studied the Dox release percentage under different pH conditions and under external magnetic field. Hyperthermia caused by an alternating magnetic field (AFM) is used in order to study the doxorubicin (Dox) release behavior from microspheres with pH functionality. The in vivo fate of these hybrid-microspheres was tracked by labeling them with the γ-emitting radioisotope (99m)Tc after being intravenously injected in normal mice. According to our results, microsphere present a pH depending and a magnetic heating, release behavior. As expected, labeled microspheres were mainly found in the mononuclear phagocyte system (MPS). The highlights of the current research are: (i) to illustrate the advantages of controlled release by combining hyperthermia and pH-sensitivity and (ii) to provide noninvasive, in vivo information on the spatiotemporal biodistribution of these microsphere by dynamic γ-imaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. PLA realizations for VLSI state machines

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.; Whitaker, S.; Maki, G.; Liu, K.

    1990-01-01

    A major problem associated with state assignment procedures for VLSI controllers is obtaining an assignment that produces minimal or near minimal logic. The key item in Programmable Logic Array (PLA) area minimization is the number of unique product terms required by the design equations. This paper presents a state assignment algorithm for minimizing the number of product terms required to implement a finite state machine using a PLA. Partition algebra with predecessor state information is used to derive a near optimal state assignment. A maximum bound on the number of product terms required can be obtained by inspecting the predecessor state information. The state assignment algorithm presented is much simpler than existing procedures and leads to the same number of product terms or less. An area-efficient PLA structure implemented in a 1.0 micron CMOS process is presented along with a summary of the performance for a controller implemented using this design procedure.

  15. Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis

    PubMed Central

    Zimbler, Daniel L.; Eddy, Justin L.; Schroeder, Jay A.

    2015-01-01

    Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague. PMID:26553463

  16. Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis.

    PubMed

    Zimbler, Daniel L; Eddy, Justin L; Schroeder, Jay A; Lathem, Wyndham W

    2016-01-01

    Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Platelet indirect radioactive Coombs test. Its utilization for PLA1 grouping.

    PubMed

    Soulier, J P; Patereau, C; Drouet, J

    1975-01-01

    A platelet indirect radioactive Coombs test (PIRC) has been described. The technique for purification and labelling the antiglobulin has been precised. This test allowed the typing of platelets in the PLA system by using an absorbed serum from a mother of a thrombocytopenic child. Six other families of neonatal thrombocytopenias were tested. In three of them, the mothers were found PLA1 negative (PLA2, PLA2). Among a panel of 93 platelets, two (0.022) were found PLA1, negative. This PIRC test has many advantages compared to other tests such as platelet complement fixation, assay for blocking antibodies or antiglobulin consumption: it gives objective and quantitative results and is highly reproducible; anticomplementary serum may be tested.

  18. Advanced composite materials based on polyhydroxybutyrate and polylactic acid

    NASA Astrophysics Data System (ADS)

    Tubaeva, P. M.; Olkhov, A. A.; Podzorova, M. V.; Popov, A. A.

    2017-12-01

    In this paper, we consider the main characteristics of polyhydroxybutyrate (PHB) and polylactic acid (PLA) as well as the prospects and possibility of the medical use of PHB-PLA compositions as these polymers are most relevant to such application. The study establishes the main thermophysical parameters of PHB and PLA. It is found that PHB and PLA are hydrophobic enough. The study by the electron paramagnetic resonance method reveals a small amount of the radical infiltrated in PLA and PHB, which indicates the chain rigidity of both polymeric structures. Mechanical properties of PLA and PHB are characterized by high strength and low elasticity.

  19. Magnetic susceptibility characterisation of superparamagnetic microspheres

    NASA Astrophysics Data System (ADS)

    Grob, David Tim; Wise, Naomi; Oduwole, Olayinka; Sheard, Steve

    2018-04-01

    The separation of magnetic materials in microsystems using magnetophoresis has increased in popularity. The wide variety and availability of magnetic beads has fuelled this drive. It is important to know the magnetic characteristics of the microspheres in order to accurately use them in separation processes integrated on a lab-on-a-chip device. To investigate the magnetic susceptibility of magnetic microspheres, the magnetic responsiveness of three types of Dynabeads microspheres were tested using two different approaches. The magnetophoretic mobility of individual microspheres is studied using a particle tracking system and the magnetization of each type of Dynabeads microsphere is measured using SQUID relaxometry. The magnetic beads' susceptibility is obtained at four different applied magnetic fields in the range of 38-70 mT for both the mobility and SQUID measurements. The susceptibility values in both approaches show a consistent magnetic field dependence.

  20. Polarization Dependent Whispering Gallery Modes in Microspheres

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor); Wrbanek, Susan Y. (Inventor)

    2016-01-01

    A tunable resonant system is provided and includes a microsphere that receives an incident portion of a light beam generated via a light source, the light beam having a fundamental mode, a waveguide medium that transmits the light beam from the light source to the microsphere, and a polarizer disposed in a path of the waveguide between the light source and the microsphere. The incident portion of the light beam creates a fundamental resonance inside the microsphere. A change in a normalized frequency of the wavelength creates a secondary mode in the waveguide and the secondary mode creates a secondary resonance inside the microsphere.

  1. In vitro evaluation of biodegradable microspheres with surface-bound ligands.

    PubMed

    Keegan, Mark E; Royce, Sara M; Fahmy, Tarek; Saltzman, W Mark

    2006-02-21

    Protein ligands were conjugated to the surface of biodegradable microspheres. These microsphere-ligand conjugates were then used in two in vitro model systems to evaluate the effect of conjugated ligands on microsphere behavior. Microsphere retention in agarose columns was increased by ligands on the microsphere surface specific for receptors on the agarose matrix. In another experiment, conjugating the lectin Ulex europaeus agglutinin 1 to the microsphere surface increased microsphere adhesion to Caco-2 monolayers compared to control microspheres. This increase in microsphere adhesion was negated by co-administration of l-fucose, indicating that the increase in adhesion is due to specific interaction of the ligand with carbohydrate receptors on the cell surface. These results demonstrate that the ligands conjugated to the microspheres maintain their receptor binding activity and are present on the microsphere surface at a density sufficient to target the microspheres to both monolayers and three-dimensional matrices bearing complementary receptors.

  2. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    NASA Astrophysics Data System (ADS)

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  3. The Complex Sol-Gel Process for producing small ThO2 microspheres

    NASA Astrophysics Data System (ADS)

    Brykala, Marcin; Rogowski, Marcin

    2016-05-01

    Thorium based fuels offer several benefits compared to uranium based fuels thus they might be an attractive alternative to conventional fuel types. This study is devoted to the synthesis and the characterization of small thorium dioxide microspheres (Ø <50 μm). Their application involves using powder-free process, called the Complex Sol-Gel Process. The source sols used for the processes were prepared by the method where in the starting ascorbic acid solution the solid thorium nitrate was dissolved and partially neutralized by aqueous ammonia under pH control. The microspheres of thorium-ascorbate gel were obtained using the ICHTJ Process (INCT in English). Studies allowed to determine an optimal heat treatment with calcination temperature of 700 °C and temperature rate not higher than 2 °C/min which enabled us to obtain a crack-free surface of microspheres. The main parameters which have a strong influence on the synthesis method and features of the spherical particles of thorium dioxide are described in this article.

  4. PLA-Based Curriculum: Humanistic Model of Higher Education

    ERIC Educational Resources Information Center

    Popova-Gonci, Viktoria; Tobol, Amy Ruth

    2011-01-01

    The authors believe that there is no inherent academic validity or lack of thereof in the notion of prior learning assessment (PLA)-based curriculum. If mishandled, it can become the tool for carrying out diploma mill practices. Conversely, if implemented and facilitated appropriately, PLA-based curricula can offer humanistic educational values…

  5. Porous Zirconium-Furandicarboxylate Microspheres for Efficient Redox Conversion of Biofuranics.

    PubMed

    Li, Hu; Liu, Xiaofang; Yang, Tingting; Zhao, Wenfeng; Saravanamurugan, Shunmugavel; Yang, Song

    2017-04-22

    Biofuranic compounds, typically derived from C 5 and C 6 carbohydrates, have been extensively studied as promising alternatives to chemicals based on fossil resources. The present work reports the simple assembly of biobased 2,5-furandicarboxylic acid (FDCA) with different metal ions to prepare a range of metal-FDCA hybrids under hydrothermal conditions. The hybrid materials were demonstrated to have porous structure and acid-base bifunctionality. Zr-FDCA-T, in particular, showed a microspheric structure, high thermostability (ca. 400 °C), average pore diameters of approximately 4.7 nm, large density, moderate strength of Lewis-base/acid centers (ca. 1.4 mmol g -1 ), and a small number of Brønsted-acid sites. This material afforded almost quantitative yields of biofuranic alcohols from the corresponding aldehydes under mild conditions through catalytic transfer hydrogenation (CTH). Isotopic 1 H NMR spectroscopy and kinetic studies verified that direct hydride transfer was the dominant pathway and rate-determining step of the CTH. Importantly, the Zr-FDCA-T microspheres could be recycled with no decrease in catalytic performance and little leaching of active sites. Moreover, good yields of C 5 (i.e., furfural) or C 4 products [i.e., maleic acid and 2(5H)-furanone] could be obtained from furfuryl alcohol without oxidation of the furan ring over these metal-FDCA hybrids. The content and ratio of Lewis-acid/base sites were demonstrated to dominantly affect the catalytic performance of these redox reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Pickering-type water-in-oil-in-water multiple emulsions toward multihollow nanocomposite microspheres.

    PubMed

    Maeda, Hayata; Okada, Masahiro; Fujii, Syuji; Nakamura, Yoshinobu; Furuzono, Tsutomu

    2010-09-07

    Multihollow hydroxyapatite (HAp)/poly(L-lactic acid) (PLLA) nanocomposite microspheres were readily fabricated by solvent evaporation from a "Pickering-type" water-in-(dichloromethane solution of PLLA)-in-water multiple emulsion stabilized with HAp nanoparticles. The multiple emulsion was stabilized with the aid of PLLA molecules used as a wettability modifier for HAp nanoparticles, although HAp nanoparticles did not work solely as particulate emulsifiers for Pickering-type emulsions consisting of pure dichloromethane and water. The interaction between PLLA and HAp nanoparticles at the oil-water interfaces plays a crucial role toward the preparation of stable multiple emulsion and multihollow microspheres.

  7. Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma

    PubMed Central

    González-Gómez, P.; de la Fuente, M.; Hernández-Laín, Aurelio; Mira, H.; Sánchez-Gómez, P.; Garcia-Fuentes, M.

    2015-01-01

    Glioblastoma tumor initiating cells are believed to be the main drivers behind tumor recurrence, and therefore therapies that specifically manage this population are of great medical interest. In a previous work, we synthesized controlled release microspheres optimized for intracranial delivery of BMP7, and showed that these devices are able to stop the in vitro growth of a glioma cell line. Towards the translational development of this technology, we now explore these microspheres in further detail and characterize the mechanism of action and the in vivo therapeutic potential using tumor models relevant for the clinical setting: human primary glioblastoma cell lines. Our results show that BMP7 can stop the proliferation and block the self-renewal capacity of those primary cell lines that express the receptor BMPR1B. BMP7 was encapsulated in poly (lactic-co-glycolic acid) microspheres in the form of a complex with heparin and Tetronic, and the formulation provided effective release for several weeks, a process controlled by carrier degradation. Data from xenografts confirmed reduced and delayed tumor formation for animals treated with BMP7-loaded microspheres. This effect was coincident with the activation of the canonical BMP signaling pathway. Importantly, tumors treated with BMP7-loaded microspheres also showed downregulation of several markers that may be related to a malignant stem cell-like phenotype: CD133+, Olig2, and GFAPδ. We also observed that tumors treated with BMP7-loaded microspheres showed enhanced expression of cell cycle inhibitors and reduced expression of the proliferation marker PCNA. In summary, BMP7-loaded controlled release microspheres are able to inhibit GBM growth and reduce malignancy markers. We envisage that this kind of selective therapy for tumor initiating cells could have a synergistic effect in combination with conventional cytoreductive therapy (chemo-, radiotherapy) or with immunotherapy. PMID:25860932

  8. Coupling system to a microsphere cavity

    NASA Technical Reports Server (NTRS)

    Iltchenko, Vladimir (Inventor); Maleki, Lute (Inventor); Yao, Steve (Inventor); Wu, Chi (Inventor)

    2002-01-01

    A system of coupling optical energy in a waveguide mode, into a resonator that operates in a whispering gallery mode. A first part of the operation uses a fiber in its waveguide mode to couple information into a resonator e.g. a microsphere. The fiber is cleaved at an angle .PHI. which causes total internal reflection within the fiber. The energy in the fiber then forms an evanescent field and a microsphere is placed in the area of the evanescent field. If the microsphere resonance is resonant with energy in the fiber, then the information in the fiber is effectively transferred to the microsphere.

  9. Using Student Feedback to Improve PLA Portfolio Courses

    ERIC Educational Resources Information Center

    Rust, Dianna Zeh; Brinthaupt, Thomas M.

    2017-01-01

    The purpose of this article is to examine the qualitative data gathered in a recent survey study of students who completed a prior learning assessment (PLA) portfolio online course in order to inform practice at institutions currently utilizing or considering such a course. PLA programs and system-wide initiatives are proliferating (Klein-Collins…

  10. Properties of PLA/PCL particles as vehicles for oral delivery of the androgen hormone 17α-methyltestosterone.

    PubMed

    Sacchetin, Priscila Soares Costa; Setti, Rafaela Ferreira; Vieira e Rosa, Paulo de Tarso; Moraes, Ângela Maria

    2016-01-01

    The aim of this study was to produce PLA (poly(lactic acid)) and PCL (polycaprolactone) oral carriers through the precipitation of the polymer solutions using supercritical CO2 as an antisolvent for the controlled release of the hydrophobic model drug 17α-methyltestosterone (MT). Such drug is a steroidal hormone used orally to develop and sustain primary and secondary male sex characteristics, e.g. for female Nile tilapia sex reversal in aquaculture. The influence of hormone, PLA and PCL concentrations on particle formation was analyzed, showing that high PCL concentrations produced particles with rougher surfaces and greater mean diameters. The incorporation efficiency of MT ranged from 20 to 51%, and its addition resulted in increases in particle mean diameter from 23 to 54 μm. Aggregation was observed for particles incorporating or not MT and high concentrations of MT led to the formation of more amorphous structures, changing the thermal behavior of the particles. The exposure of the PLA/PCL particles to pH conditions simulating gastrointestinal fish conditions showed that hormone release fraction at acidic pH ranged from 8 to 63% (over 2h), while in the basic pH the proportion released varied from 23 to 60% (over 10h), reaching levels adequate for the desired in vivo activity. Copyright © 2015. Published by Elsevier B.V.

  11. Hollow microspheres based on - Folic acid modified - Hydroxypropyl Cellulose and synthetic multi-responsive bio-copolymer for targeted cancer therapy: controlled release of daunorubicin, in vitro and in vivo studies.

    PubMed

    Metaxa, Aikaterini-Foteini; Efthimiadou, Eleni K; Boukos, Nikos; Fragogeorgi, Eirini A; Loudos, George; Kordas, George

    2014-12-01

    Conventional chemotherapy drugs such as anthracyclines show no specific activity. They destroy cancer cells but also and the healthy ones, and for that reason exhibit high toxicity. In order to alleviate the toxic effects of chemotherapeutic drugs, the administration dose is being minimized, while their reactivity against tumor cells is lessened. This problem can be overcome or at least reduced by using nanoscale drug delivery systems to target the pathogenic area. The present work deals with the synthesis, characterization and biological evaluation of multi-responsive hollow microspheres coated with Hydroxypropyl Cellulose (HPC)-a biocompatible and thermosensitive polysaccharide-conjugated with folic acid as well promising drug vehicles for targeted cancer therapy. The synthetic route consists of two steps. In the first step, a single layer of sensitive copolymers is ((Methacrylic acid (MAA), N-(2-Hydroxypropyl) methacrylamide (HPMA) and N,N'-(disulfanediylbis(ethane-2,1-diyl))bis(2-methylacrylamide) (DSBMA)) fabricated on a sacrificial template of SiO2 and in the second step, an additional layer of the folic acid modified HPC coat the microspheres' surface. The layers fabrication is performed through a combination of distillation precipitation co-polymerization and chemical deposition method. The loading capacity (% LC) and encapsulation efficiency (% EE) percentages of the chemotherapeutic agent daunorubicin (DNR) in the fabricated microspheres were calculated through the standard curve methodology. In addition, the releasing properties of the resulting spheres are investigated, using the above mentioned methodology. It is worth mentioning that, spheres release the entrapped drug under combined conditions such acidic and reductive environment along with conventional hyperthermia. Cytotoxic activity of the synthesized spheres was investigated by using the well-established method of MTT assay in MCF-7 (breast cancer), HeLa (cervical cancer) and HEK 293 (Human

  12. Size effect of optical silica microsphere pressure sensors

    NASA Astrophysics Data System (ADS)

    Jiao, Xinbing; Hao, Ruirui; Pan, Qian; Zhao, Xinwei; Bai, Xue

    2018-07-01

    Two types of optical pressure sensors with silica microspheres are proposed. The size effect of optical silica microsphere pressure sensors is studied by using a single-wavelength laser beam and polarimeters. The silica microspheres with diameters of 1.0 μm, 1.5 μm and 2.0 μm are prepared on garnet substrates by a self-assembly method. The pressure and the optical properties of the silica microspheres are measured by a resistance strain sensor and Thorlabs Stokes polarimeters as a function of the external direct current (DC) voltage. The optical silica microsphere sensor in transmission mode is suitable for pressure measuring. The results show that the pressure increases, while the diameter of the silica microspheres decreases. The maximum internal pressure can reach up to 7.3 × 107 Pa when the diameter of the silica microspheres is 1.0 μm.

  13. The effect of the stretching of PLA extruded films on their crystallinity and gas barrier properties

    NASA Astrophysics Data System (ADS)

    Guinault, A.; Menary, G. H.; Courgneau, C.; Griffith, D.; Ducruet, V.; Miri, V.; Sollogoub, C.

    2011-05-01

    Driven by environmental concerns, new polymers based on renewable resources are arriving on the market to replace conventional polymers, obtained from petroleum, for different applications like food packaging. One of the most prominent polymers among these materials is poly(lactic acid) (PLA), a biodegradable, thermoplastic, aliphatic polyester derived from renewable resources, such as corn starch (in the USA) or sugarcanes (in the rest of the world). However this polymer presents different disadvantages and especially low gas barrier properties [1]. Thermal crystallization can be used to increase its gas barrier properties but long times are necessary [2] and are not compatible with an industrial process. Another way to increase the gas barrier properties consists in stretching the film in order to increase its crystallinity and so its diffusion coefficient. We have prepared stretched PLA films with different stretch ratio and we have studied the effect of the stretching parameters on the gas barrier properties of PLA films. Finally we compared this process with the isothermal crystallization process by taking into account the crystallinity degree and the crystalline morphology.

  14. Preparation and Characterization of Silica Aerogel Microspheres

    PubMed Central

    Chen, Qifeng; Wang, Hui; Sun, Luyi

    2017-01-01

    Silica aerogel microspheres based on alkali silica sol were synthesized using the emulsion method. The experimental results revealed that the silica aerogel microspheres (4–20 µm in diameter) were mesoporous solids with an average pore diameter ranging from 6 to 35 nm. The tapping densities and specific surface areas of the aerogel microspheres are in the range of 0.112–0.287 g/cm3 and 207.5–660.6 m2/g, respectively. The diameter of the silica aerogel microspheres could be tailored by varying the processing conditions including agitation rate, water/oil ratio, mass ratio of Span 80: Tween 80, and emulsifier concentration. The effects of these parameters on the morphology and textural properties of the synthesized silica aerogel microspheres were systematically investigated. Such silica aerogel microspheres can be used to prepare large-scale silica aerogels at an ambient pressure for applications in separation and high efficiency catalysis, which requires features of high porosity and easy fill and recovery. PMID:28772795

  15. Preparation and Characterization of Silica Aerogel Microspheres.

    PubMed

    Chen, Qifeng; Wang, Hui; Sun, Luyi

    2017-04-20

    Silica aerogel microspheres based on alkali silica sol were synthesized using the emulsion method. The experimental results revealed that the silica aerogel microspheres (4-20 µm in diameter) were mesoporous solids with an average pore diameter ranging from 6 to 35 nm. The tapping densities and specific surface areas of the aerogel microspheres are in the range of 0.112-0.287 g/cm³ and 207.5-660.6 m²/g, respectively. The diameter of the silica aerogel microspheres could be tailored by varying the processing conditions including agitation rate, water/oil ratio, mass ratio of Span 80: Tween 80, and emulsifier concentration. The effects of these parameters on the morphology and textural properties of the synthesized silica aerogel microspheres were systematically investigated. Such silica aerogel microspheres can be used to prepare large-scale silica aerogels at an ambient pressure for applications in separation and high efficiency catalysis, which requires features of high porosity and easy fill and recovery.

  16. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    PubMed Central

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors. PMID:26703621

  17. Ultrasonic assisted rapid synthesis of high uniform super-paramagnetic microspheres with core-shell structure and robust magneto-chromatic ability

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyan; Chen, Jiahua; Wang, Wei; Lu, GongXuan; Hao, Lingyun; Ni, Yaru; Lu, Chunhua; Xu, Zhongzi

    2017-03-01

    Super-paramagnetic core-shell microspheres were synthesized by ultrasonic assisted routine under low ultrasonic irradiation powers. Compared with conventional routine, ultrasonic effect could not only improve the uniformity of the core-shell structure of Fe3O4@SiO2, but shorten the synthesis time in large scale. Owing to their hydrophilicity and high surface charge, the Fe3O4@SiO2 microspheres could be dispersed well in distilled water to form homogeneous colloidal suspension. The suspensions have favorable magneto-chromatic ability that they sensitively exhibit brilliant colorful ribbons by magnetic attraction. The colorful ribbons, which distributed along the magnetic lines, make morphology of the magnetic fields become "visible" to naked eyed. Those colorful ribbons originate from strong magnetic interaction between the microspheres and magnetic fields. Furthermore, the magneto-chromatic performance is reversible as the colorful ribbons vanished rapidly with the removing of magnetic fields. The silica layer effectively enhanced the acid resistance and surface-oxidation resistance of theFe3O4@SiO2 microspheres, so they could exhibit stable magnetic nature and robust magneto-chromatic property in acid environment.

  18. Integrated Cryogenic Experiment (ICE) microsphere investigation

    NASA Technical Reports Server (NTRS)

    Spradley, I.; Read, D.

    1989-01-01

    The main objective is to determine the performance of microsphere insulation in a 0-g environment and compare its performance to reference insulations such as multilayer insulation. The Lockheed Helium Extended-Life Dewar (HELD) is used to provide superfluid-helium cold sink for the experiment. The use of HELD allows the low-g dynamic properties of Passive Orbital Disconnect Struts (PODS) to be characterized and provides a flight demonstration of the PODS system. The thermal performance of microspheres in 1 and 0 g was predicted, a flight experiment was designed to determine microsphere thermal performance, and the interface was also designed between the experimental package and the shuttle through HELD and the Hitchhiker-M carrier. A single test cell was designed and fabricated. The cell was filled with uncoated glass microspheres and tested with a liquid-nitrogen cold sink. The data were found to agree with predictions of microsphere performance in 1 g.

  19. Effect of Chlorogenic Acid (5-Caffeoylquinic Acid) Isolated from Baccharis oxyodonta on the Structure and Pharmacological Activities of Secretory Phospholipase A2 from Crotalus durissus terrificus

    PubMed Central

    Toyama, Daniela O.; Ferreira, Marcelo J. P.; Romoff, Paulete; Fávero, Oriana A.; Gaeta, Henrique H.; Toyama, Marcos H.

    2014-01-01

    The aim of this paper was to investigate the effect of chlorogenic acid (5-caffeoylquinic acid, 5CQA), isolated from Baccharis oxyodonta, on the structure and pharmacological effect of secretory phospholipase A2 (sPLA2) from Crotalus durissus terrificus. All in vitro and in vivo experiments were conducted using a purified sPLA2 compared under the same experimental conditions with sPLA2 : 5CQA. 5CQA induced several discrete modifications in the secondary structure and the hydrophobic characteristics of native sPLA2 that induced slight changes in the α-helical content, increase in the random coil structure, and decrease of fluorescence of native sPLA2. Moreover, 5CQA significantly decreased the enzymatic activity and the oedema and myonecrosis induced by native sPLA2. As the catalytic activity of sPLA2 plays an important role in several of its biological and pharmacological properties, antibacterial activity was used to confirm the decrease in its enzymatic activity by 5CQA, which induced massive bacterial cell destruction. We found that 5CQA specifically abolished the enzymatic activity of sPLA2 and induced discrete protein unfolding that mainly involved the pharmacological site of sPLA2. These results showed the potential application of 5CQA in the snake poisoning treatment and modulation of the pathological effect of inflammation induced by secretory PLA2. PMID:25258715

  20. Blending Novatein¯ thermoplastic protein with PLA for carbon dioxide assisted batch foaming

    NASA Astrophysics Data System (ADS)

    Walallavita, Anuradha; Verbeek, Casparus J. R.; Lay, Mark

    2016-03-01

    The convenience of polymeric foams has led to their widespread utilisation in everyday life. However, disposal of synthetic petroleum-derived foams has had a detrimental effect on the environment which needs to be addressed. This study uses a clean and sustainable approach to investigate the foaming capability of a blend of two biodegradable polymers, polylactic acid (PLA) and Novatein® Thermoplastic Protein (NTP). PLA, derived from corn starch, can successfully be foamed using a batch technique developed by the Biopolymer Network Ltd. NTP is a patented formulation of bloodmeal and chemical additives which can be extruded and injection moulded similar to other thermoplastics. However, foaming NTP is a new area of study and its interaction with blowing agents in the batch process is entirely unknown. Subcritical and supercritical carbon dioxide have been examined individually in two uniquely designed pressure vessels to foam various compositions of NTP-PLA blends. Foamed material were characterised in terms of expansion ratio, cell size, and cellular morphology in order to study how the composition of NTP-PLA affects foaming with carbon dioxide. It was found that blends with 5 wt. % NTP foamed using subcritical CO2 expanded up to 11 times due to heterogeneous nucleation. Morphology analysis using scanning electron microscopy showed that foams blown with supercritical CO2 had a finer cell structure with consistent cell size, whereas, foams blown with subcritical CO2 ranged in cell size and showed cell wall rupture. Ultimately, this research would contribute to the production of a biodegradable foam material to be used in packaging applications, thereby adding to the application potential of NTP.

  1. PLA-PEG-PLA copolymer-based polymersomes as nanocarriers for delivery of hydrophilic and hydrophobic drugs: preparation and evaluation with atorvastatin and lisinopril.

    PubMed

    Danafar, H; Rostamizadeh, K; Davaran, S; Hamidi, M

    2014-10-01

    Tri-block poly(lactide)-poly(ethylene glycol)-poly(lactide) (PLA-PEG-PLA) copolymers were synthesized and used to prepare polymersomes loaded separately by the hydrophobic and hydrophilic model drugs, atorvastatin and lisinopril, respectively. The resulting nanostructures were characterized by various techniques such as FTIR, DSC, PCS and AFM. The polymersomes exhibited high encapsulation efficiencies of almost 78% and 70.8% for atorvastatin and lisinopril, respectively. Investigation on FTIR and DSC results revealed that such a high encapsulation efficiency is due to strong interaction between atorvastatin and the copolymer. The impact of drug/copolymer ratio and copolymer composition on drug-loading efficiency and drug release behavior were also studied. The results showed that in case of lisinopril, polymersomes exhibited a triphasic drug release, while for atorvastatin a biphasic release profile was obtained. Overall, the results indicated that PLA-PEG-PLA polymersomes can be considered as a promising carrier for both hydrophilic and hydrophobic drugs.

  2. Simulation of mechanical behavior and optimization of simulated injection molding process for PLA based antibacterial composite and nanocomposite bone screws using central composite design.

    PubMed

    Heidari, Behzad Shiroud; Oliaei, Erfan; Shayesteh, Hadi; Davachi, Seyed Mohammad; Hejazi, Iman; Seyfi, Javad; Bahrami, Mozhgan; Rashedi, Hamid

    2017-01-01

    In this study, injection molding of three poly lactic acid (PLA) based bone screws was simulated and optimized through minimizing the shrinkage and warpage of the bone screws. The optimization was carried out by investigating the process factors such as coolant temperature, mold temperature, melt temperature, packing time, injection time, and packing pressure. A response surface methodology (RSM), based on the central composite design (CCD), was used to determine the effects of the process factors on the PLA based bone screws. Upon applying the method of maximizing the desirability function, optimization of the factors gave the lowest warpage and shrinkage for nanocomposite PLA bone screw (PLA9). Moreover, PLA9 has the greatest desirability among the selected materials for bone screw injection molding. Meanwhile, a finite element analysis (FE analysis) was also performed to determine the force values and concentration points which cause yielding of the screws under certain conditions. The Von-Mises stress distribution showed that PLA9 screw is more resistant against the highest loads as compared to the other ones. Finally, according to the results of injection molding simulations, the design of experiments (DOE) and structural analysis, PLA9 screw is recommended as the best candidate for the production of biomedical materials among all the three types of screws. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    PubMed

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-04

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. High-density, microsphere-based fiber optic DNA microarrays.

    PubMed

    Epstein, Jason R; Leung, Amy P K; Lee, Kyong Hoon; Walt, David R

    2003-05-01

    A high-density fiber optic DNA microarray has been developed consisting of oligonucleotide-functionalized, 3.1-microm-diameter microspheres randomly distributed on the etched face of an imaging fiber bundle. The fiber bundles are comprised of 6000-50000 fused optical fibers and each fiber terminates with an etched well. The microwell array is capable of housing complementary-sized microspheres, each containing thousands of copies of a unique oligonucleotide probe sequence. The array fabrication process results in random microsphere placement. Determining the position of microspheres in the random array requires an optical encoding scheme. This array platform provides many advantages over other array formats. The microsphere-stock suspension concentration added to the etched fiber can be controlled to provide inherent sensor redundancy. Examining identical microspheres has a beneficial effect on the signal-to-noise ratio. As other sequences of interest are discovered, new microsphere sensing elements can be added to existing microsphere pools and new arrays can be fabricated incorporating the new sequences without altering the existing detection capabilities. These microarrays contain the smallest feature sizes (3 microm) of any DNA array, allowing interrogation of extremely small sample volumes. Reducing the feature size results in higher local target molecule concentrations, creating rapid and highly sensitive assays. The microsphere array platform is also flexible in its applications; research has included DNA-protein interaction profiles, microbial strain differentiation, and non-labeled target interrogation with molecular beacons. Fiber optic microsphere-based DNA microarrays have a simple fabrication protocol enabling their expansion into other applications, such as single cell-based assays.

  5. Application of phage display for the development of a novel inhibitor of PLA2 activity in Western cottonmouth venom

    PubMed Central

    Titus, James K; Kay, Matthew K; Glaser, CDR Jacob J

    2017-01-01

    Snakebite envenomation is an important global health concern. The current standard treatment approach for snakebite envenomation relies on antibody-based antisera, which are expensive, not universally available, and can lead to adverse physiological effects. Phage display techniques offer a powerful tool for the selection of phage-expressed peptides, which can bind with high specificity and affinity towards venom components. In this research, the amino acid sequences of Phospholipase A2 (PLA2) from multiple cottonmouth species were analyzed, and a consensus peptide synthesized. Three phage display libraries were panned against this consensus peptide, crosslinked to capillary tubes, followed by a modified surface panning procedure. This high throughput selection method identified four phage clones with anti-PLA2 activity against Western cottonmouth venom, and the amino acid sequences of the displayed peptides were identified. This is the first report identifying short peptide sequences capable of inhibiting PLA2 activity of Western cottonmouth venom in vitro, using a phage display technique. Additionally, this report utilizes synthetic panning targets, designed using venom proteomic data, to mimic epitope regions. M13 phages displaying circular 7-mer or linear 12-mer peptides with antivenom activity may offer a novel alternative to traditional antibody-based therapy. PMID:29285351

  6. Application of phage display for the development of a novel inhibitor of PLA2 activity in Western cottonmouth venom.

    PubMed

    Titus, James K; Kay, Matthew K; Glaser, Cdr Jacob J

    2017-01-01

    Snakebite envenomation is an important global health concern. The current standard treatment approach for snakebite envenomation relies on antibody-based antisera, which are expensive, not universally available, and can lead to adverse physiological effects. Phage display techniques offer a powerful tool for the selection of phage-expressed peptides, which can bind with high specificity and affinity towards venom components. In this research, the amino acid sequences of Phospholipase A 2 (PLA 2 ) from multiple cottonmouth species were analyzed, and a consensus peptide synthesized. Three phage display libraries were panned against this consensus peptide, crosslinked to capillary tubes, followed by a modified surface panning procedure. This high throughput selection method identified four phage clones with anti-PLA 2 activity against Western cottonmouth venom, and the amino acid sequences of the displayed peptides were identified. This is the first report identifying short peptide sequences capable of inhibiting PLA 2 activity of Western cottonmouth venom in vitro , using a phage display technique. Additionally, this report utilizes synthetic panning targets, designed using venom proteomic data, to mimic epitope regions. M13 phages displaying circular 7-mer or linear 12-mer peptides with antivenom activity may offer a novel alternative to traditional antibody-based therapy.

  7. Controlled delivery of tauroursodeoxycholic acid from biodegradable microspheres slows retinal degeneration and vision loss in P23H rats

    PubMed Central

    Lax, Pedro; Arranz-Romera, Alicia; Maneu, Victoria; Esteban-Pérez, Sergio; Pinilla, Isabel; Puebla-González, María del Mar; Herrero-Vanrell, Rocío

    2017-01-01

    Successful drug therapies for treating ocular diseases require effective concentrations of neuroprotective compounds maintained over time at the site of action. The purpose of this work was to assess the efficacy of intravitreal controlled delivery of tauroursodeoxycholic acid (TUDCA) encapsulated in poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres for the treatment of the retina in a rat model of retinitis pigmentosa. PLGA microspheres (MSs) containing TUDCA were produced by the O/W emulsion-solvent evaporation technique. Particle size and morphology were assessed by light scattering and scanning electronic microscopy, respectively. Homozygous P23H line 3 rats received a treatment of intravitreal injections of TUDCA-PLGA MSs. Retinal function was assessed by electroretinography at P30, P60, P90 and P120. The density, structure and synaptic contacts of retinal neurons were analyzed using immunofluorescence and confocal microscopy at P90 and P120. TUDCA-loaded PLGA MSs were spherical, with a smooth surface. The production yield was 78%, the MSs mean particle size was 23 μm and the drug loading resulted 12.5 ± 0.8 μg TUDCA/mg MSs. MSs were able to deliver the loaded active compound in a gradual and progressive manner over the 28-day in vitro release study. Scotopic electroretinografic responses showed increased ERG a- and b-wave amplitudes in TUDCA-PLGA-MSs-treated eyes as compared to those injected with unloaded PLGA particles. TUDCA-PLGA-MSs-treated eyes showed more photoreceptor rows than controls. The synaptic contacts of photoreceptors with bipolar and horizontal cells were also preserved in P23H rats treated with TUDCA-PLGA MSs. This work indicates that the slow and continuous delivery of TUDCA from PLGA-MSs has potential neuroprotective effects that could constitute a suitable therapy to prevent neurodegeneration and visual loss in retinitis pigmentosa. PMID:28542454

  8. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions.

    PubMed

    Lu, Songhua; Zhu, Kairuo; Song, Wencheng; Song, Gang; Chen, Diyun; Hayat, Tasawar; Alharbi, Njud S; Chen, Changlun; Sun, Yubing

    2018-07-15

    The discharge of microplastics into aquatic environment poses the potential threat to the hydrocoles and human health. The fate and transport of microplastics in aqueous solutions are significantly influenced by water chemistry. In this study, the effect of water chemistry (i.e., pH, foreign salts and humic acid) on the surface charge and aggregation of polystyrene microsphere in aqueous solutions was conducted by batch, zeta potentials, hydrodynamic diameters, FT-IR and XPS analysis. Compared to Na + and K + , the lower negative zeta potentials and larger hydrodynamic diameters of polystyrene microspheres after introduction of Mg 2+ were observed within a wide range of pH (2.0-11.0) and ionic strength (IS, 0.01-500mmol/L). No effect of Cl - , HCO 3 - and SO 4 2- on the zeta potentials and hydrodynamic diameters of polystyrene microspheres was observed at low IS concentrations (<5mmol/L), whereas the zeta potentials and hydrodynamic diameters of polystyrene microspheres after addition of SO 4 2- were higher than that of Cl - and HCO 3 - at high IS concentrations (>10mmol/L). The zeta potentials of polystyrene microspheres after HA addition were decreased at pH2.0-11.0, whereas the lower hydrodynamic diameters were observed at pH<4.0. According to FT-IR and XPS analysis, the change in surface properties of polystyrene microspheres after addition of hydrated Mg 2+ and HA was attributed to surface electrostatic and/or steric repulsions. These investigations are crucial for understanding the effect of water chemistry on colloidal stability of microplastics in aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Validation of fluorescent-labeled microspheres for measurement of relative blood flow in severely injured lungs

    NASA Technical Reports Server (NTRS)

    Hubler, M.; Souders, J. E.; Shade, E. D.; Hlastala, M. P.; Polissar, N. L.; Glenny, R. W.

    1999-01-01

    The aim of the study was to validate a nonradioactive method for relative blood flow measurements in severely injured lungs that avoids labor-intensive tissue processing. The use of fluorescent-labeled microspheres was compared with the standard radiolabeled-microsphere method. In seven sheep, lung injury was established by using oleic acid. Five pairs of radio- and fluorescent-labeled microspheres were injected before and after established lung injury. Across all animals, 175 pieces were selected randomly. The radioactivity of each piece was determined by using a scintillation counter. The fluorescent dye was extracted from each piece with a solvent without digestion or filtering. The fluorescence was determined with an automated fluorescent spectrophotometer. Perfusion was calculated for each piece from both the radioactivity and fluorescence and volume normalized. Correlations between flow determined by the two methods were in the range from 0.987 +/- 0.007 (SD) to 0.991 +/- 0.002 (SD) after 9 days of soaking. Thus the fluorescent microsphere technique is a valuable tool for investigating regional perfusion in severely injured lungs and can replace radioactivity.

  10. Metronidazole loaded pectin microspheres for colon targeting.

    PubMed

    Vaidya, Ankur; Jain, Aviral; Khare, Piush; Agrawal, Ram K; Jain, Sanjay K

    2009-11-01

    A multiparticulate system having pH-sensitive property and specific enzyme biodegradability for colon-targeted delivery of metronidazole was developed. Pectin microspheres were prepared using emulsion-dehydration technique. These microspheres were coated with Eudragit(R) S-100 using oil-in-oil solvent evaporation method. The SEM was used to characterize the surface of these microspheres and a distinct coating over microspheres could be seen. The in vitro drug release studies exhibited no drug release at gastric pH, however continuous release of drug was observed from the formulation at colonic pH. Further, the release of drug from formulation was found to be higher in the presence of rat caecal contents, indicating the effect of colonic enzymes on the pectin microspheres. The in vivo studies were also performed by assessing the drug concentration in various parts of the GIT at different time intervals which exhibited the potentiality of formulation for colon targeting. Hence, it can be concluded that Eudragit coated pectin microspheres can be used for the colon specific delivery of drug. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  11. Lanthanide-Containing Polymer Microspheres by Multiple-Stage Dispersion Polymerization for Highly Multiplexed Bioassays

    PubMed Central

    Abdelrahman, Ahmed I.; Dai, Sheng; Thickett, Stuart C.; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A.

    2009-01-01

    We describe the synthesis and characterization of metal-encoded polystyrene microspheres by multiple-stage dispersion polymerization with diameters on the order of 2 µm and a very narrow size distribution. Different lanthanides were loaded into these microspheres through the addition of a mixture of LnCl3 salts and excess acrylic acid or acetoacetylethyl methacrylate (AAEM) dissolved in ethanol to the reaction after about 10% conversion of styrene, i.e., well after the particle nucleation stage was complete. Individual microspheres contain ca. 106 – 108 chelated lanthanide ions, of either a single element or a mixture of elements. These microspheres were characterized one-by-one utilizing a novel mass cytometer with an inductively coupled plasma (ICP) ionization source and time-of-flight (TOF) mass spectrometry detection. Microspheres containing a range of different metals at different levels of concentration were synthesized to meet the requirements of binary encoding and enumeration encoding protocols. With four different metals at five levels of concentration, we could achieve a variability of 624, and the strategy we report should allow one to obtain much larger variability. To demonstrate the usefulness of element-encoded beads for highly multiplexed immunoassays, we carried out a proof-of-principle model bioassay involving conjugation of mouse IgG to the surface of La and Tm containing particles, and its detection by an anti-mouse IgG bearing a metal-chelating polymer with Pr. PMID:19807075

  12. Lanthanide-containing polymer microspheres by multiple-stage dispersion polymerization for highly multiplexed bioassays.

    PubMed

    Abdelrahman, Ahmed I; Dai, Sheng; Thickett, Stuart C; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A

    2009-10-28

    We describe the synthesis and characterization of metal-encoded polystyrene microspheres by multiple-stage dispersion polymerization with diameters on the order of 2 mum and a very narrow size distribution. Different lanthanides were loaded into these microspheres through the addition of a mixture of lanthanide salts (LnCl(3)) and excess acrylic acid (AA) or acetoacetylethyl methacrylate (AAEM) dissolved in ethanol to the reaction after about 10% conversion of styrene, that is, well after the particle nucleation stage was complete. Individual microspheres contain ca. 10(6)-10(8) chelated lanthanide ions, of either a single element or a mixture of elements. These microspheres were characterized one-by-one utilizing a novel mass cytometer with an inductively coupled plasma (ICP) ionization source and time-of-flight (TOF) mass spectrometry detection. Microspheres containing a range of different metals at different levels of concentration were synthesized to meet the requirements of binary encoding and enumeration encoding protocols. With four different metals at five levels of concentration, we could achieve a variability of 624, and the strategy we report should allow one to obtain much larger variability. To demonstrate the usefulness of element-encoded beads for highly multiplexed immunoassays, we carried out a proof-of-principle model bioassay involving conjugation of mouse IgG to the surface of La and Tm containing particles and its detection by an antimouse IgG bearing a metal-chelating polymer with Pr.

  13. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration.

    PubMed

    Rosenzweig, Derek H; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet

    2015-07-03

    Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.

  14. Protective effect of recombinant staphylococcal enterotoxin A entrapped in polylactic-co-glycolic acid microspheres against Staphylococcus aureus infection

    PubMed Central

    2012-01-01

    Staphylococcus aureus is an important cause of nosocomial and community-acquired infections in humans and animals, as well as the cause of mastitis in dairy cattle. Vaccines aimed at preventing S. aureus infection in bovine mastitis have been studied for many years, but have so far been unsuccessful due to the complexity of the bacteria, and the lack of suitable vaccine delivery vehicles. The current study developed an Escherichia coli protein expression system that produced a recombinant staphylococcal enterotoxin A (rSEA) encapsulated into biodegradable microparticles generated by polylactic-co-glycolic acid (PLGA) dissolved in methylene chloride and stabilized with polyvinyl acetate. Antigen loading and surface properties of the microparticles were investigated to optimize particle preparation protocols. The prepared PLGA-rSEA microspheres had a diameter of approximately 5 μm with a smooth and regular surface. The immunogenicity of the PLGA-rSEA vaccine was assessed using mice as an animal model and showed that the vaccine induced a strong humoral immune response and increased the percent survival of challenged mice and bacterial clearance. Histological analysis showed moderate impairment caused by the pathogen upon challenge afforded by immunization with PLGA-rSEA microspheres. Antibody titer in the sera of mice immunized with PLGA-rSEA microparticles was higher than in vaccinated mice with rSEA. In conclusion, the PLGA-rSEA microparticle vaccine developed here could potentially be used as a vaccine against enterotoxigenic S. aureus. PMID:22429499

  15. Method for introduction of gases into microspheres

    DOEpatents

    Hendricks, Charles D.; Koo, Jackson C.; Rosencwaig, Allan

    1981-01-01

    A method for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500.mu. with both thin walls (0.5 to 4.mu.) and thick walls (5 to 20.mu.) that contain various fill gases, such as Ar, Kr, Xe, Br, DT, H.sub.2, D.sub.2, He, N.sub.2, Ne, CO.sub.2, etc. in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace. Almost any gas can be introduced into the inner cavity of a glass microsphere by this method during the formation of the microsphere provided that the gas is diffused into the gel membrane or microsphere prior to its transformation into glass. The process of this invention provides a significant savings of time and related expense of filling glass microspheres with various gases. For example, the time for filling a glass microballoon with 1 atmosphere of DT is reduced from about two hours to a few seconds.

  16. Intestinal absorption of PLAGA microspheres in the rat.

    PubMed

    Damgé, C; Aprahamian, M; Marchais, H; Benoit, J P; Pinget, M

    1996-12-01

    Rhodamine B-labelled poly (DL-lactide-co-glycolide) (PLAGA) microspheres of 2 different sizes, 1-5 microns and 5-10 microns, were administered as a single dose (1.44 x 10(9) and 1.83 x 10(8) particles, respectively) into the ileal lumen of adult rats. The content of rhodamine in the mesenteric vein and ileal lumen was analysed periodically from 10 min to 48 h as well as the distribution of microspheres in the intestinal mucosa and various other tissues. The concentration of rhodamine decreased progressively in the intestinal lumen and was negligible after 24 h. The number of microspheres in the mesenteric vein increased rapidly and reached a maximum after 4 h whatever the size of the particles. It then decreased progressively, but more rapidly with microspheres > 5 microns than with microspheres < 5 microns. The absorption efficiency was low for the former batch (about 0.11% of the administered dose) and higher for the latter (about 12.7%). The intraileal administration of free rhodamine B was followed by intense labelling of the epithelial cells and basement membranes in mesenteric lymph nodes, spleen, kidney and liver. PLAGA microspheres mainly crossed the intestinal mucosa at the site of Peyer's patches where microspheres of < 5 microns appeared after 3 h. Microspheres > 5 microns were retained in the ileal lumen. A few small microspheres were occasionally observed in the epithelial cells. Only the smallest particles were recovered in the liver, lymph nodes and spleen while basement membranes were always labelled. It is concluded that PLAGA microspheres could be useful for the oral delivery of antigens if their size is between 1 and 5 microns.

  17. Microsphere based improved sunscreen formulation of ethylhexyl methoxycinnamate.

    PubMed

    Gogna, Deepak; Jain, Sunil K; Yadav, Awesh K; Agrawal, G P

    2007-04-01

    Polymethylmethacrylate (PMMA) microspheres of ethylhexyl methoxycinnamate (EHM) were prepared by emulsion solvent evaporation method to improve its photostability and effectiveness as sunscreening agent. Process parameters like stirring speed and aqueous polyvinyl alcohol (PVA) concentration were analyzed in order to optimize the formulations. Shape and surface morphology of the microspheres were examined using scanning electron microscopy. Particle size of the microspheres was determined using laser diffraction particle size analyzer. The PMMA microspheres of EHM were incorporated in water-removable cream base. The in vitro drug release of EHM in pH 7.4 was performed using dialysis membrane. Thin layer chromatography was performed to determine photostability of EHM inside the microspheres. The formulations were evaluated for sun protection factor (SPF) and minimum erythema dose (MED) in albino rats. Cream base formulation containing microspheres prepared using EHM:PMMA in ratio of 1:3 (C(3)) showed slowest drug (EHM) release and those prepared with EHM: PMMA in ratio of 1:1 showed fastest release. The cream base formulations containing EHM loaded microspheres had shown better SPF (more than 16.0) as compared to formulation C(d) that contained 3% free EHM as sunscreen agent and showed SPF 4.66. These studies revealed that the incorporation of EHM loaded PMMA microspheres into cream base had greatly increased the efficacy of sunscreen formulation approximately four times. Further, photostability was also shown to be improved in PMMA microspheres.

  18. Controlled drug delivery for glaucoma therapy using montmorillonite/Eudragit microspheres as an ion-exchange carrier.

    PubMed

    Tian, Shuangyan; Li, Juan; Tao, Qi; Zhao, Yawen; Lv, Zhufen; Yang, Fan; Duan, Haoyun; Chen, Yanzhong; Zhou, Qingjun; Hou, Dongzhi

    2018-01-01

    Glaucoma is a serious eye disease that can lead to loss of vision. Unfortunately, effective treatments are limited by poor bioavailability of antiglaucoma medicine due to short residence time on the preocular surface. To solve this, we successfully prepared novel controlled-release ion-exchange microparticles to deliver betaxolol hydrochloride (BH). Montmorillonite/BH complex (Mt-BH) was prepared by acidification-intercalation, and this complex was encapsulated in microspheres (Mt-BH encapsulated microspheres [BMEMs]) by oil-in-oil emulsion-solvent evaporation method. The BH loaded into ion-exchange Mt was 47.45%±0.54%. After the encapsulation of Mt-BH into Eudragit microspheres, the encapsulation efficiency of BH into Eudragit microspheres was 94.35%±1.01% and BH loaded into Eudragit microspheres was 14.31%±0.47%. Both Fourier transform infrared spectra and X-ray diffraction patterns indicated that BH was successfully intercalated into acid-Mt to form Mt-BH and then Mt-BH was encapsulated into Eudragit microspheres to obtain BMEMs. Interestingly, in vitro release duration of the prepared BMEMs was extended to 12 hours, which is longer than both of the BH solution (2.5 hours) and the conventional BH microspheres (5 hours). Moreover, BMEM exhibited lower toxicity than that of BH solution as shown by the results of cytotoxicity tests, chorioallantoic membrane-trypan blue staining, and Draize rabbit eye test. In addition, both in vivo and in vitro preocular retention capacity study of BMEMs showed a prolonged retention time. The pharmacodynamics showed that BMEMs could extend the drug duration of action. The developed BMEMs have the potential to be further applied as ocular drug delivery systems for the treatment of glaucoma.

  19. Insulin delivery through nasal route using thiolated microspheres.

    PubMed

    Nema, Tarang; Jain, Ashish; Jain, Aviral; Shilpi, Satish; Gulbake, Arvind; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    The aim of the present study was to investigate the potential of developed thiolated microspheres for insulin delivery through nasal route. In the present study, cysteine was immobilized on carbopol using EDAC. A total of 269.93 µmol free thiol groups per gram polymer were determined. The prepared nonthiolated and thiolated microspheres were studied for particle shape, size, drug content, swellability, mucoadhesion and in vitro insulin release. The thiolated microspheres exhibited higher mucoadhesion due to formation of covalent bonds via disulfide bridges with the mucus gel layer. Drug permeation through goat nasal mucosa of nonthiolated and thiolated microspheres were found as 52.62 ± 2.4% and 78.85 ± 3.1% in 6 h, respectively. Thiolated microspheres bearing insulin showed better reduction in blood glucose level (BGL) in comparison to nonthiolated microspheres as 31.23 ± 2.12% and 75.25 ± 0.93% blood glucose of initial BGL were observed at 6 h after nasal delivery of thiolated and nonthiolated microspheres in streptozotocin-induced diabetic rabbits.

  20. Hierarchically assembled Au microspheres and sea urchin-like architectures: formation mechanism and SERS study.

    PubMed

    Wang, Xiansong; Yang, Da-Peng; Huang, Peng; Li, Min; Li, Chao; Chen, Di; Cui, Daxiang

    2012-12-21

    The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors.

  1. Acrolein Microspheres Are Bonded To Large-Area Substrates

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan; Yen, Richard C. K.

    1988-01-01

    Reactive cross-linked microspheres produced under influence of ionizing radiation in aqueous solutions of unsaturated aldehydes, such as acrolein, with sodium dodecyl sulfate. Diameters of spheres depend on concentrations of ingredients. If polystyrene, polymethylmethacrylate, or polypropylene object immersed in solution during irradiation, microspheres become attached to surface. Resulting modified surface has grainy coating with reactivity similar to free microspheres. Aldehyde-substituted-functional microspheres react under mild conditions with number of organic reagents and with most proteins. Microsphere-coated macrospheres or films used to immobilize high concentrations of proteins, enzymes, hormones, viruses, cells, and large number of organic compounds. Applications include separation techniques, clinical diagnostic tests, catalytic processes, and battery separators.

  2. In vitro and in vivo tests of PLA/d-HAp nanocomposite

    NASA Astrophysics Data System (ADS)

    Thom Nguyen, Thi; Hoang, Thai; Mao Can, Van; Son Ho, Anh; Hai Nguyen, Song; Thu Trang Nguyen, Thi; Pham, Thi Nam; Phuong Nguyen, Thu; Le Hien Nguyen, Thi; Thanh Dinh Thi, Mai

    2017-12-01

    The bioactivity of the PLA/d-HAp nanocomposite with 30 wt.% d-HAp was evaluated by in vitro tests and indicated that after 7 immersion days in SBF solution, PLA amorphous part was hydrolyzed and PLA crystal part was remained. The formation of apatite on the surface of the material was observed. The in vivo test results of PLA/d-HAp nanocomposite (70/30 wt/wt) on femur of dogs displayed that 3 months after grafting, the materials did not induce any osteitis, osteomyelitis or structural abnormalities. The histological and x-ray image demonstrated a growth of the bone into the material area, while osteitis and osteomyelitis were not observed.

  3. Characterization of a Polyamine Microsphere and Its Adsorption for Protein

    PubMed Central

    Wang, Feng; Liu, Pei; Nie, Tingting; Wei, Huixian; Cui, Zhenggang

    2013-01-01

    A novel polyamine microsphere, prepared from the water-in-oil emulsion of polyethylenimine, was characterized. The investigation of scanning electron microscopy showed that the polyamine microsphere is a regular ball with a smooth surface. The diameter distribution of the microsphere is 0.37–4.29 μm. The isoelectric point of the microsphere is 10.6. The microsphere can adsorb proteins through the co-effect of electrostatic and hydrophobic interactions. Among the proteins tested, the highest value of adsorption of microsphere, 127.8 mg·g−1 microsphere, was obtained with lipase. In comparison with other proteins, the hydrophobic force is more important in promoting the adsorption of lipase. The microsphere can preferentially adsorb lipase from an even mixture of proteins. The optimum temperature and pH for the selective adsorption of lipase by the microsphere was 35 °C and pH 7.0. PMID:23344018

  4. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.

    PubMed

    Jiang, Tao; Khan, Yusuf; Nair, Lakshmi S; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2010-06-01

    Scaffolds exhibiting biological recognition and specificity play an important role in tissue engineering and regenerative medicine. The bioactivity of scaffolds in turn influences, directs, or manipulates cellular responses. In this study, chitosan/poly(lactic acid-co-glycolic acid) (chitosan/PLAGA) sintered microsphere scaffolds were functionalized via heparin immobilization. Heparin was successfully immobilized on chitosan/PLAGA scaffolds with controllable loading efficiency. Mechanical testing showed that heparinization of chitosan/PLAGA scaffolds did not significantly alter the mechanical properties and porous structures. In addition, the heparinized chitosan/PLAGA scaffolds possessed a compressive modulus of 403.98 +/- 19.53 MPa and a compressive strength of 9.83 +/- 0.94 MPa, which are in the range of human trabecular bone. Furthermore, the heparinized chitosan/PLAGA scaffolds had an interconnected porous structure with a total pore volume of 30.93 +/- 0.90% and a median pore size of 172.33 +/- 5.89 mum. The effect of immobilized heparin on osteoblast-like MC3T3-E1 cell growth was investigated. MC3T3-E1 cells proliferated three dimensionally throughout the porous structure of the scaffolds. Heparinized chitosan/PLAGA scaffolds with low heparin loading (1.7 microg/scaffold) were shown to be capable of stimulating MC3T3-E1 cell proliferation by MTS assay and cell differentiation as evidenced by elevated osteocalcin expression when compared with nonheparinized chitosan/PLAGA scaffold and chitosan/PLAGA scaffold with high heparin loading (14.1 microg/scaffold). This study demonstrated the potential of functionalizing chitosan/PLAGA scaffolds via heparinization with improved cell functions for bone tissue engineering applications.

  5. Release behavior and kinetic evaluation of berberine hydrochloride from ethyl cellulose/chitosan microspheres

    NASA Astrophysics Data System (ADS)

    Zhou, Hui-Yun; Cao, Pei-Pei; Zhao, Jie; Wang, Zhi-Ying; Li, Jun-Bo; Zhang, Fa-Liang

    2014-12-01

    Novel ethyl cellulose/chitosan microspheres (ECCMs) were prepared by the method of w/o/w emulsion and solvent evaporation. The microspheres were spherical, adhesive, and aggregated loosely with a size not bigger than 5 μm. The drug loading efficiency of berberine hydrochloride (BH) loaded in microspheres were affected by chitosan (CS) concentration, EC concentration and the volume ratio of V(CS)/ V(EC). ECCMs prepared had sustained release efficiency on BH which was changed with different preparation parameters. In addition, the pH value of release media had obvious effect on the release character of ECCMs. The release rate of BH from sample B was only a little more than 30% in diluted hydrochloric acid (dHCl) and that was almost 90% in PBS during 24 h. Furthermore, the drug release data were fitted to different kinetic models to analyze the release kinetics and the mechanism from the microspheres. The released results of BH indicated that ECCMs exhibited non-Fickian diffusion mechanism in dHCl and diffusion-controlled drug release based on Fickian diffusion in PBS. So the ECCMs might be an ideal sustained release system especially in dHCl and the drug release was governed by both diffusion of the drug and dissolution of the polymeric network.

  6. Hydrolysis of Phosphatidylcholine-Isoprostanes (PtdCho-IP) by Peripheral Human Group IIA, V and X Secretory Phospholipases A2 (sPLA2).

    PubMed

    Kuksis, Arnis; Pruzanski, Waldemar

    2017-06-01

    Biologically active F- and E/D-type-prostane ring isomers (F 2 -IP and E 2 /D 2 -IP, respectively) are produced in situ by non-enzymatic peroxidation of arachidonic acid esterified to GroPCho (PtdCho-IP) and are universally distributed in tissue lipoproteins and cell membranes. Previous work has shown that platelet-activating factor acetylhydrolases (PAF-AH) are the main endogenous PLA 2 involved in degradation of PtdCho-IP. The present study shows that the PtdCho-IP are also subject to hydrolysis by group IIA, V and X secretory PLA 2 , which also have a wide peripheral tissue distribution. For this demonstration, we compared the LC/MS profiles of PtdCho-IP of auto-oxidized plasma lipoproteins after incubation for 1-4 h (37 °C) in the absence or presence of recombinant human sPLA 2 (1-2.5 µg/ml). In the absence of exogenously added sPLA 2 the total PtdCho-IP level after 4 h incubation reached 15.9, 21.6 and 8.7 nmol/mg protein of LDL, HDL and HDL 3 , respectively. In the presence of group V or group X sPLA 2 (2.5 µg/ml), the PtdCho-IP was completely hydrolyzed in 1 h, while in the presence of group IIA sPLA 2 (2.5 µg/ml) the hydrolysis was less than 25% in 4 h, although it was complete after 8-24 h incubation. This report provides the first demonstration that PtdCho-IP are readily hydrolyzed by group IIA, V and X sPLA 2 . A co-location of sPLA 2 and the substrates in various tissues has been recorded. Thus, the initiation of interaction and production of isoprostanes in situ are highly probable.

  7. Intestinal absorption of PLAGA microspheres in the rat.

    PubMed Central

    Damgé, C; Aprahamian, M; Marchais, H; Benoit, J P; Pinget, M

    1996-01-01

    Rhodamine B-labelled poly (DL-lactide-co-glycolide) (PLAGA) microspheres of 2 different sizes, 1-5 microns and 5-10 microns, were administered as a single dose (1.44 x 10(9) and 1.83 x 10(8) particles, respectively) into the ileal lumen of adult rats. The content of rhodamine in the mesenteric vein and ileal lumen was analysed periodically from 10 min to 48 h as well as the distribution of microspheres in the intestinal mucosa and various other tissues. The concentration of rhodamine decreased progressively in the intestinal lumen and was negligible after 24 h. The number of microspheres in the mesenteric vein increased rapidly and reached a maximum after 4 h whatever the size of the particles. It then decreased progressively, but more rapidly with microspheres > 5 microns than with microspheres < 5 microns. The absorption efficiency was low for the former batch (about 0.11% of the administered dose) and higher for the latter (about 12.7%). The intraileal administration of free rhodamine B was followed by intense labelling of the epithelial cells and basement membranes in mesenteric lymph nodes, spleen, kidney and liver. PLAGA microspheres mainly crossed the intestinal mucosa at the site of Peyer's patches where microspheres of < 5 microns appeared after 3 h. Microspheres > 5 microns were retained in the ileal lumen. A few small microspheres were occasionally observed in the epithelial cells. Only the smallest particles were recovered in the liver, lymph nodes and spleen while basement membranes were always labelled. It is concluded that PLAGA microspheres could be useful for the oral delivery of antigens if their size is between 1 and 5 microns. Images Fig. 1 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8982822

  8. Bis(PheOH) maleic acid amide-fumaric acid amide photoizomerization induces microsphere-to-gel fiber morphological transition: the photoinduced gelation system.

    PubMed

    Frkanec, Leo; Jokić, Milan; Makarević, Janja; Wolsperger, Kristina; Zinić, Mladen

    2002-08-21

    The photoinduced gelation system based on 1 (non-gelling) to 2 (gelling) molecular photoisomerization in water results by microspheres (1) to gel fibers (2) transformation at the supramolecular level.

  9. Rosmarinic acid, a new snake venom phospholipase A2 inhibitor from Cordia verbenacea (Boraginaceae): antiserum action potentiation and molecular interaction.

    PubMed

    Ticli, Fábio K; Hage, Lorane I S; Cambraia, Rafael S; Pereira, Paulo S; Magro, Angelo J; Fontes, Marcos R M; Stábeli, Rodrigo G; Giglio, José R; França, Suzelei C; Soares, Andreimar M; Sampaio, Suely V

    2005-09-01

    Many plants are used in traditional medicine as active agents against various effects induced by snakebite. The methanolic extract from Cordia verbenacea (Cv) significantly inhibited paw edema induced by Bothrops jararacussu snake venom and by its main basic phospholipase A2 homologs, namely bothropstoxins I and II (BthTXs). The active component was isolated by chromatography on Sephadex LH-20 and by RP-HPLC on a C18 column and identified as rosmarinic acid (Cv-RA). Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid [2-O-cafeoil-3-(3,4-di-hydroxy-phenyl)-R-lactic acid]. This is the first report of RA in the species C. verbenacea ('baleeira', 'whaler') and of its anti-inflammatory and antimyotoxic properties against snake venoms and isolated toxins. RA inhibited the edema and myotoxic activity induced by the basic PLA2s BthTX-I and BthTX-II. It was, however, less efficient to inhibit the PLA2 activity of BthTX-II and, still less, the PLA2 and edema-inducing activities of the acidic isoform BthA-I-PLA2 from the same venom, showing therefore a higher inhibitory activity upon basic PLA2s. RA also inhibited most of the myotoxic and partially the edema-inducing effects of both basic PLA2s, thus reinforcing the idea of dissociation between the catalytic and pharmacological domains. The pure compound potentiated the ability of the commercial equine polyvalent antivenom in neutralizing lethal and myotoxic effects of the crude venom and of isolated PLA2s in experimental models. CD data presented here suggest that, after binding, no significant conformation changes occur either in the Cv-RA or in the target PLA2. A possible model for the interaction of rosmarinic acid with Lys49-PLA2 BthTX-I is proposed.

  10. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Liqin; Li, Xuemin; Liu, Lingrong; Zhang, Qiqing

    2013-02-01

    Oral chemotherapy is a key step towards `chemotherapy at home', a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer.

  11. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer

    PubMed Central

    2013-01-01

    Oral chemotherapy is a key step towards ‘chemotherapy at home’, a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer. PMID:23394588

  12. Blending Novatein{sup ®} thermoplastic protein with PLA for carbon dioxide assisted batch foaming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walallavita, Anuradha, E-mail: asw15@students.waikato.ac.nz; Verbeek, Casparus J. R., E-mail: jverbeek@waikato.ac.nz; Lay, Mark, E-mail: mclay@waikato.ac.nz

    2016-03-09

    The convenience of polymeric foams has led to their widespread utilisation in everyday life. However, disposal of synthetic petroleum-derived foams has had a detrimental effect on the environment which needs to be addressed. This study uses a clean and sustainable approach to investigate the foaming capability of a blend of two biodegradable polymers, polylactic acid (PLA) and Novatein® Thermoplastic Protein (NTP). PLA, derived from corn starch, can successfully be foamed using a batch technique developed by the Biopolymer Network Ltd. NTP is a patented formulation of bloodmeal and chemical additives which can be extruded and injection moulded similar to othermore » thermoplastics. However, foaming NTP is a new area of study and its interaction with blowing agents in the batch process is entirely unknown. Subcritical and supercritical carbon dioxide have been examined individually in two uniquely designed pressure vessels to foam various compositions of NTP-PLA blends. Foamed material were characterised in terms of expansion ratio, cell size, and cellular morphology in order to study how the composition of NTP-PLA affects foaming with carbon dioxide. It was found that blends with 5 wt. % NTP foamed using subcritical CO{sub 2} expanded up to 11 times due to heterogeneous nucleation. Morphology analysis using scanning electron microscopy showed that foams blown with supercritical CO{sub 2} had a finer cell structure with consistent cell size, whereas, foams blown with subcritical CO{sub 2} ranged in cell size and showed cell wall rupture. Ultimately, this research would contribute to the production of a biodegradable foam material to be used in packaging applications, thereby adding to the application potential of NTP.« less

  13. PLA Binaries in the Context of Competency-Based Assessment

    ERIC Educational Resources Information Center

    Popova, Viktoria; Clougherty, R. J., Jr.

    2014-01-01

    In this article, the authors report that, as the importance of competency-based learning (CBL) in higher education discourse surges, it not only further validates prior learning assessment (PLA), but it demonstrates PLA's essential nature as an important framework for assessing learning that has been acquired outside of traditional academia.…

  14. Antibacterial, antifungal and anticoagulant activities of chicken PLA2 group V expressed in Pichia pastoris.

    PubMed

    Karray, Aida; Bou Ali, Madiha; Kharrat, Nedia; Gargouri, Youssef; Bezzine, Sofiane

    2018-03-01

    Secretory class V phospholipase A2 (PLA2-V) has been shown to be involved in inflammatory processes in cellular studies, but the biochemical and physical properties of this important enzyme have been unclear. As a first step towards understanding the structure, function and regulation of this PLA2, we report the expression and characterization of PLA2-V from chicken (ChPLA2-V). The ChPLA2-V cDNA was synthesized from chicken heart polyA mRNA by RT-PCR, and an expression construct containing the PLA2 was established. After expression in Pichia pastoris cells, the active enzyme was purified. The purified ChPLA2-V protein was biochemically and physiologically characterized. The recombinant ChPLA2-V has an absolute requirement for Ca 2+ for enzymatic activity. The optimum pH for this enzyme is pH 8.5 in Tris-HCl buffer with phosphatidylcholine as substrate. ChPLA2-V was found to display potent Gram-positive and Gram-negative bactericidal activity and antifungal activity in vitro. The purified enzyme ChPLA2-V with much stronger anticoagulant activity compared with the intestinal and pancreatic chicken PLA2-V was approximately 10 times more active. Chicken group V PLA2, like mammal one, may be considered as a future therapeutic agents against fungal and bacterial infections and as an anticoagulant agent. Copyright © 2017. Published by Elsevier B.V.

  15. Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics.

    PubMed

    Baba, Takashi; Kashiwagi, Yuriko; Arimitsu, Nagisa; Kogure, Takeshi; Edo, Ayumi; Maruyama, Tomohiro; Nakao, Kazuki; Nakanishi, Hiroki; Kinoshita, Makoto; Frohman, Michael A; Yamamoto, Akitsugu; Tani, Katsuko

    2014-04-18

    Recent studies have suggested that phosphatidic acid (PA), a cone-shaped phospholipid that can generate negative curvature of lipid membranes, participates in mitochondrial fusion. However, precise mechanisms underling the production and consumption of PA on the mitochondrial surface are not fully understood. Phosphatidic acid-preferring phospholipase A1 (PA-PLA1)/DDHD1 is the first identified intracellular phospholipase A1 and preferentially hydrolyzes PA in vitro. Its cellular and physiological functions have not been elucidated. In this study, we show that PA-PLA1 regulates mitochondrial dynamics. PA-PLA1, when ectopically expressed in HeLa cells, induced mitochondrial fragmentation, whereas its depletion caused mitochondrial elongation. The effects of PA-PLA1 on mitochondrial morphology appear to counteract those of MitoPLD, a mitochondrion-localized phospholipase D that produces PA from cardiolipin. Consistent with high levels of expression of PA-PLA1 in testis, PA-PLA1 knock-out mice have a defect in sperm formation. In PA-PLA1-deficient sperm, the mitochondrial structure is disorganized, and an abnormal gap structure exists between the middle and principal pieces. A flagellum is bent at that position, leading to a loss of motility. Our results suggest a possible mechanism of PA regulation of the mitochondrial membrane and demonstrate an in vivo function of PA-PLA1 in the organization of mitochondria during spermiogenesis.

  16. Student Perceptions of and Experiences with a PLA Course and Portfolio Review

    ERIC Educational Resources Information Center

    Rust, Dianna Z.; Brinthaupt, Thomas M.

    2017-01-01

    Prior learning assessment (PLA) is the process whereby a student's outside-of-the-classroom learning is evaluated for college-level credit. PLA has been gaining momentum across the United States as part of the efforts to improve institutional completion rates for adult learners. In the present article, we provide an overview of the PLA portfolio…

  17. Acceleration of hard and soft tissue healing in the oral cavity by a single transmucosal injection of fluvastatin-impregnated poly (lactic-co-glycolic acid) microspheres. An in vitro and rodent in vivo study.

    PubMed

    Yasunami, Noriyuki; Ayukawa, Yasunori; Furuhashi, Akihiro; Atsuta, Ikiru; Rakhmatia, Yunia Dwi; Moriyama, Yasuko; Masuzaki, Tomohiro; Koyano, Kiyoshi

    2015-12-23

    Antihyperlipidemic drug statins reportedly promote both bone formation and soft tissue healing. We examined the effect of sustained-release, fluvastatin-impregnated poly(lactic-co-glycolic acid) (PLGA) microspheres on the promotion of bone and gingival healing at an extraction socket in vivo, and the effect of fluvastatin on epithelial cells and fibroblasts in vitro. The maxillary right first molar was extracted in rats, then one of the following was immediately injected, as a single dose, into the gingivobuccal fold: control (no administration), PLGA microspheres without a statin (active control), or PLGA microspheres containing 20 or 40 μg kg(-1) of fluvastatin. At days 1, 3, 7, 14, and 28 after injection, bone and soft tissue healing were histologically evaluated. Cell proliferation was measured under the effect of fluvastatin at dosages of 0, 0.01, 0.1, 1.0, 10, and 50 μM. Cell migration and morphology were observed at dosages of 0 and 0.1 μM. Following tooth extraction, the statin significantly enhanced bone volume and density, connective tissue volume, and epithelial wound healing. In the in vitro study, it promoted significant proliferation and migration of epithelial cells and fibroblasts. A single dose of topically administered fluvastatin-impregnated PLGA microspheres promoted bone and soft tissue healing at the extraction site.

  18. Preparation and drug controlled release of porous octyl-dextran microspheres.

    PubMed

    Hou, Xin; Liu, Yanfei

    2015-01-01

    In this work, porous octyl-dextran microspheres with excellent properties were prepared by two steps. Firstly, dextran microspheres were synthesized by reversed-phase suspension polymerization. Secondly, octyl-dextran microspheres were prepared by the reaction between dextran microspheres and ethylhexyl glycidyl ether and freezing-drying method. Porous structure of microspheres was formed through the interaction between octyl groups and organic solvents. The structure, morphology, dry density, porosity and equilibrium water content of porous octyl-dextran microspheres were systematically investigated. The octyl content affected the properties of microspheres. The results showed that the dry density of microspheres decreased from 2.35 to 1.21 g/ml, porosity increased from 80.68 to 95.05% with the octyl content increasing from 0.49 to 2.28 mmol/g. Meanwhile, the equilibrium water content presented a peak value (90.18%) when the octyl content was 2.25 mmol/g. Octyl-dextran microspheres showed high capacity. Naturally drug carriers play an important role in drug-delivery systems for their biodegradability, wide raw materials sources and nontoxicity. Doxorubicin (DOX) was used as a drug model to examine the drug-loading capacity of porous octyl-dextran microspheres. The drug-loading efficiency increased with the increase in microspheres/drug ratio, while the encapsulation efficiency decreased. When microspheres/drug mass ratio was 4/1, the drug-loading efficiency and encapsulation efficiency were 10.20 and 51.00%, respectively. The release rate of DOX increased as drug content and porosity increased. In conclusion, porous octyl-dextran microspheres were synthesized successfully and have the potential to serve as an effective delivery system in drug controlled release.

  19. Preparation and evaluation of sustained release loxoprofen loaded microspheres.

    PubMed

    Venkatesan, P; Manavalan, R; Valliappan, K

    2011-06-01

    The aim of present study was to formulate and evaluate the loxoprofen loaded Sustained release microspheres by emulsion solvent evaporation technique. Ethylcellulose, a biocompatible polymer is used as the retardant material. The effects of process conditions such as drug loading, polymer type and solvent type on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their particle size and drug loading and drug release. The in-vitro release studies were carried out in phosphate buffer at pH 7.4. The prepared microspheres were white, free flowing and spherical in shape. The drug-loaded microspheres showed 71.2% of entrapment and the in-vitro release studies showed that Loxoprofen microspheres of 1:3 ratios showed better sustained effect over a period of 8 hours.

  20. Controlled drug delivery for glaucoma therapy using montmorillonite/Eudragit microspheres as an ion-exchange carrier

    PubMed Central

    Tian, Shuangyan; Li, Juan; Tao, Qi; Zhao, Yawen; Lv, Zhufen; Yang, Fan; Duan, Haoyun; Chen, Yanzhong; Zhou, Qingjun; Hou, Dongzhi

    2018-01-01

    Background Glaucoma is a serious eye disease that can lead to loss of vision. Unfortunately, effective treatments are limited by poor bioavailability of antiglaucoma medicine due to short residence time on the preocular surface. Materials and methods To solve this, we successfully prepared novel controlled-release ion-exchange microparticles to deliver betaxolol hydrochloride (BH). Montmorillonite/BH complex (Mt-BH) was prepared by acidification-intercalation, and this complex was encapsulated in microspheres (Mt-BH encapsulated microspheres [BMEMs]) by oil-in-oil emulsion–solvent evaporation method. The BH loaded into ion-exchange Mt was 47.45%±0.54%. After the encapsulation of Mt-BH into Eudragit microspheres, the encapsulation efficiency of BH into Eudragit microspheres was 94.35%±1.01% and BH loaded into Eudragit microspheres was 14.31%±0.47%. Results Both Fourier transform infrared spectra and X-ray diffraction patterns indicated that BH was successfully intercalated into acid-Mt to form Mt-BH and then Mt-BH was encapsulated into Eudragit microspheres to obtain BMEMs. Interestingly, in vitro release duration of the prepared BMEMs was extended to 12 hours, which is longer than both of the BH solution (2.5 hours) and the conventional BH microspheres (5 hours). Moreover, BMEM exhibited lower toxicity than that of BH solution as shown by the results of cytotoxicity tests, chorioallantoic membrane-trypan blue staining, and Draize rabbit eye test. In addition, both in vivo and in vitro preocular retention capacity study of BMEMs showed a prolonged retention time. The pharmacodynamics showed that BMEMs could extend the drug duration of action. Conclusion The developed BMEMs have the potential to be further applied as ocular drug delivery systems for the treatment of glaucoma. PMID:29391798

  1. Hollow porous-wall glass microspheres for hydrogen storage

    DOEpatents

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  2. Microspheres and nanoparticles from ultrasound

    NASA Astrophysics Data System (ADS)

    Suh, Won Hyuk

    Improved preparations of various examples of monodispersed, porous, hollow, and core-shell metal and semiconductor nanoparticles or nanowires have been developed. Now titania microspheres and nanoparticles and silica microspheres can be synthesized using an inexpensive high frequency (1.7 MHz) ultrasonic generator (household humidifier; ultrasonic spray pyrolysis; USP). Morphology and pore size of titania microspheres were controlled by the silica to Ti(IV) ratio and silica particle size. Fine tuning the precursor ratio affords sub-50 nm titania nanoparticles as well. In terms of silica microspheres, morphology was controlled by the silica to organic monomer ratio. In liquids irradiated with high intensity ultrasound (20 kHz; HIUS), acoustic cavitation produces high energy chemistry through intense local heating inside the gas phase of collapsing bubbles in the liquid. HIUS and USP confine the chemical reactions to isolated sub-micron reaction zones, but sonochemistry does so in a heated gas phase within a liquid, while USP uses a hot liquid droplet carried by a gas flow. Thus, USP can be viewed as a method of phase-separated synthesis using submicron-sized droplets as isolated chemical reactors for nanomaterial synthesis. While USP has been used to create both titania and silica spheres separately, there are no prior reports of titania-silica composites. Such nanocomposites of metal oxides have been produced, and by further manipulation, various porous structures with fascinating morphologies were generated. Briefly, a precursor solution was nebulized using a commercially available household ultrasonic humidifier (1.7 MHz ultrasound generator), and the resulting mist was carried in a gas stream of air through a quartz glass tube in a hot furnace. After exiting the hot zone, these microspheres are porous or hollow and in certain cases magnetically responsive. In the case of titania microspheres, they are rapidly taken up into the cytoplasm of mammalian cells and

  3. Synthesis of novel quaternary silica hybrid bioactive microspheres.

    PubMed

    Angelopoulou, A; Efthimiadou, E Κ; Kordas, G

    2018-01-01

    To survey the preparation of novel hybrid microspheres of quaternary silicate glassy composition (SiO 2 P 2 O 5 CaONa 2 O) and the prospect of using them as an osteogenic system with enhanced bioactive properties for the development of hydroxyapatite. In line with our previous synthetic procedure a two-step process was followed, wherein polystyrene (PS) microspheres were prepared by the emulsifier free-emulsion polymerization method and constituted the core for the sol-gel coating of the silicate inorganic shell. The development of the hybrid microspheres was based on silane and phosphate precursors and was assesses at different ratio of ethanol/water (of 9/1, 4/1, and 2/1, in mL) and at varied ammonia concentration of 4.8-1.0 mL. The hybrid microspheres had an average size ranged between 350 and 550 nm according to SEM, depending on the ethanol/water solution rate and ammonia content. The final microspheres probably exhibited a porous-like structure through the formation of diffused voids along with the low carbon content of the EDX analysis, which could be regulated by the catalyst content. The hybrid microspheres exhibited effective in vitro bioactivity assessed in simulated body fluids (SBF). Quaternary hybrid silica microspheres were effectively synthesized. The bioassay evaluation of the final microspheres revealed the rapid in vitro formation of a bone-like apatite layer. The results verify the bioactivity of the microspheres and promote further research of their suitability on regenerative treatment of bone abnormalities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 112-120, 2018. © 2016 Wiley Periodicals, Inc.

  4. Electrospun fibrinogen-PLA nanofibres for vascular tissue engineering.

    PubMed

    Gugutkov, D; Gustavsson, J; Cantini, M; Salmeron-Sánchez, M; Altankov, G

    2017-10-01

    Here we report on the development of a new type of hybrid fibrinogen-polylactic acid (FBG-PLA) nanofibres (NFs) with improved stiffness, combining the good mechanical properties of PLA with the excellent cell recognition properties of native FBG. We were particularly interested in the dorsal and ventral cell response to the nanofibres' organization (random or aligned), using human umbilical endothelial cells (HUVECs) as a model system. Upon ventral contact with random NFs, the cells developed a stellate-like morphology with multiple projections. The well-developed focal adhesion complexes suggested a successful cellular interaction. However, time-lapse analysis shows significantly lowered cell movements, resulting in the cells traversing a relatively short distance in multiple directions. Conversely, an elongated cell shape and significantly increased cell mobility were observed in aligned NFs. To follow the dorsal cell response, artificial wounds were created on confluent cell layers previously grown on glass slides and covered with either random or aligned NFs. Time-lapse analysis showed significantly faster wound coverage (within 12 h) of HUVECs on aligned samples vs. almost absent directional migration on random ones. However, nitric oxide (NO) release shows that endothelial cells possess lowered functionality on aligned NFs compared to random ones, where significantly higher NO production was found. Collectively, our studies show that randomly organized NFs could support the endothelization of implants while aligned NFs would rather direct cell locomotion for guided neovascularization. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Crosslinked bicontinuous biobased PLA/NR blends via dynamic vulcanization using different curing systems.

    PubMed

    Yuan, Daosheng; Chen, Kunling; Xu, Chuanhui; Chen, Zhonghua; Chen, Yukun

    2014-11-26

    In this study, blends of entirely biosourced polymers, namely polylactide (PLA) and natural rubber (NR), were prepared through dynamic vulcanization using dicumyl peroxide (DCP), sulphur (S) and phenolic resin (2402) as curing agents, respectively. The crosslinked NR phase was found to be a continuous structure in all the prepared blends. The molecular weight changes of PLA were studied by gel permeation chromatography. Interfacial compatibilization between PLA and NR was investigated using Fourier transform infrared spectroscopy and scanning electron microscopy. The thermal properties of blends were evaluated by differential scanning calorimetry and thermogravimetric analysis instrument. It was found that the molecular weight of PLA and interfacial compatibilizaion between PLA and NR showed a significant influence on the mechanical and thermal properties of blends. The PLA/NR blend (60/40 w/w) by DCP-induced dynamic vulcanization owned the finest mechanical properties and thermal stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The role of cPLA2 in Methylglyoxal-induced cell apoptosis of HUVECs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Jie; Zhu, Chao; Hong, Yali

    2017-05-15

    Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is mainly formed as a byproduct of glycolysis. Elevated MGO level is known to induce apoptosis of vascular endothelial cells, which is implicated with progression of atherosclerosis and diabetic complications. However, the underlying mechanisms have not been exhaustively investigated yet. Here, we further characterized the mechanisms how MGO induced apoptosis in human umbilical vein endothelial cells (HUVECs). Our data revealed that cytosolic phospholipase A2 (cPLA2) played an important role in MGO-induced cell apoptosis. It was found that MGO could increase both the activity and expression of cPLA2. Inhibition of cPLA2 by Pyrrophenone (PYR)more » or siRNA significantly attenuated the MGO-induced apoptosis. Additionally, MGO time-dependently decreased the phosphorylation of nuclear factor κB (NF-κB). Pretreatment of the cells with NF-κB inhibitor, BAY11-7082, further increased MGO-induced apoptosis of HUVECs, indicating that NF-κB played a survival role in this MGO-induced apoptosis. Furthermore, in the presence of si-cPLA2 or PYR, MGO no longer decreased NF-κB phosphorylation. Beyond that, the antioxidant N-acetyl cysteine (NAC) could reverse the changes of both cPLA2 and NF-κB caused by MGO. p38, the upstream of cPLA2, was also significantly phosphorylated by MGO. However, p38 inhibitor failed to reverse the apoptosis induced by MGO. This study gives an important insight into the downstream signaling mechanisms of MGO, cPLA2-NF-κB, in endothelial apoptosis. - Highlights: • cPLA2 participated in MGO-induced HUVECs apoptosis. • Inhibition of NF-κB was involved in MGO-cPLA2-mediated cell apoptosis. • Antioxidant NAC attenuated MGO-induced cPLA2 activation and cell apoptosis.« less

  7. Physicochemical characterization of camptothecin membrane binding properties and polymeric microsphere formulations

    NASA Astrophysics Data System (ADS)

    Selvi, Bilge

    acidic media CPT-loaded microspheres were prepared in a 10 N HCl-methylene chloride mixture using the H-series of poly(D,L-lactide-co-glycolide) (H-PLGA). The system was then compared with a standard microsphere formation method and the results were evaluated with respect to particle morphology and drug release profile. Rough surface of the particles were obtained from the preparation method where a 10 N HCl solution was used. The release pattern of CPT was biphasic comprising a first burst effect followed by zero order release for all the formulations. However, the release of the drug was slightly faster from the microspheres formed with the modified method compared to the standard. Until now clinical application of CPT has been highly restricted by the insolubility and instability of the drug in its active lactone form, resulting in less antitumor potency and poor bioavailability. The pH-dependent release of the CPT-loaded microspheres was also compared and faster initial release (burst phase) was found at neutral pH, whereas at low pH the release was zero order for all the formulations. The results indicate that the stabilization and sustained release of CPT from H-PLGA microspheres might reduce local toxicity while simultaneously prolonging efficiency, suggesting new perspectives in CPT chemotherapy.

  8. Identification of continuous interaction sites in PLA(2)-based protein complexes by peptide arrays.

    PubMed

    Fortes-Dias, Consuelo Latorre; Santos, Roberta Márcia Marques dos; Magro, Angelo José; Fontes, Marcos Roberto de Mattos; Chávez-Olórtegui, Carlos; Granier, Claude

    2009-01-01

    Crotoxin (CA.CB) is a beta-neurotoxin from Crotalus durissus terrificus snake venom that is responsible for main envenomation effects upon biting by this snake. It is a heterodimer of an acidic protein (CA) devoid of any biological activity per se and a basic, enzymatically active, PLA(2) counterpart (CB). Both lethal and enzymatic activities of crotoxin have been shown to be inhibited by CNF, a protein from the blood of C. d. terrificus snakes. CNF replaces CA in the CA.CB complex, forming a stable, non-toxic complex CNF.CB. The molecular sites involved in the tight interfacial protein-protein interactions in these PLA(2)-based complexes have not been clearly determined. To help address this question, we used the peptide arrays approach to map possible interfacial interaction sites in CA.CB and CNF.CB. Amino acid stretches putatively involved in these interactions were firstly identified in the primary structure of CB. Further analysis of the interfacial availability of these stretches in the presumed biologically active structure of CB, suggested two interaction main sites, located at the amino-terminus and beta-wing regions. Peptide segments at the carboxyl-terminus of CB were also suggested to play a secondary role in the binding of both CA and CNF.

  9. PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties.

    PubMed

    Lizundia, Erlantz; Fortunati, Elena; Dominici, Franco; Vilas, José Luis; León, Luis Manuel; Armentano, Ilaria; Torre, Luigi; Kenny, Josè M

    2016-05-20

    Cellulose nanocrystals (CNC), extracted from microcrystalline cellulose by acid hydrolysis, were grafted by ring opening polymerization of L-Lactide initiated from the hydroxyl groups available at their surface and two different CNC:L-lactide ratios (20:80 and 5:95) were obtained. The resulting CNC-g-PLLA nanohybrids were incorporated in poly(lactic acid) (PLA) matrix by an optimized extrusion process at two different content (1 wt.% and 3 wt.%) and obtained bionanocomposite films were characterized by thermal, mechanical, optical and morphological properties. Thermal analysis showed CNC grafted with the higher ratio of lactide play a significant role as a nucleating agent. Moreover, they contribute to a significant increase in the crystallization rate of PLA, and the best efficiency was revealed with 3 wt.% of CNC-g-PLLA. This effect was confirmed by the increased in Young's modulus, suggesting the CNC graft ratio and content contribute significantly to the good dispersion in the matrix, positively affecting the final bionanocomposite properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A reproducible accelerated in vitro release testing method for PLGA microspheres.

    PubMed

    Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2016-02-10

    The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures). Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Preparation and evaluation of sustained release loxoprofen loaded microspheres

    PubMed Central

    Venkatesan, P.; Manavalan, R.; Valliappan, K.

    2011-01-01

    The aim of present study was to formulate and evaluate the loxoprofen loaded Sustained release microspheres by emulsion solvent evaporation technique. Ethylcellulose, a biocompatible polymer is used as the retardant material. The effects of process conditions such as drug loading, polymer type and solvent type on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their particle size and drug loading and drug release. The in-vitro release studies were carried out in phosphate buffer at pH 7.4. The prepared microspheres were white, free flowing and spherical in shape. The drug-loaded microspheres showed 71.2% of entrapment and the in-vitro release studies showed that Loxoprofen microspheres of 1:3 ratios showed better sustained effect over a period of 8 hours PMID:24826017

  12. Demonstration of Microsphere Insulation in Cryogenic Vessels

    NASA Astrophysics Data System (ADS)

    Baumgartner, R. G.; Myers, E. A.; Fesmire, J. E.; Morris, D. L.; Sokalski, E. R.

    2006-04-01

    While microspheres have been recognized as a legitimate insulation material for decades, actual use in full-scale cryogenic storage tanks has not been demonstrated until now. The performance and life-cycle-cost advantages previously predicted have now been proven. Most bulk cryogenic storage tanks are insulated with either multilayer insulation (MLI) or perlite. Microsphere insulation, consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. These properties were proven during recent field testing of two 22,700-L (6,000-gallon) liquid nitrogen tanks, one insulated with microsphere insulation and the other with perlite. Normal evaporation rates (NER) for both tanks were monitored with precision test equipment and insulation levels within the tanks were observed through view ports as an indication of insulation compaction. Specific industrial applications were evaluated based on the test results and beneficial properties of microsphere insulation. Over-the-road trailers previously insulated with perlite will benefit not only from the reduced heat leak, but also the reduced mass of microsphere insulation. Economic assessments for microsphere-insulated cryogenic vessels including life-cycle cost are also presented.

  13. Homocomposites of Polylactide (PLA) with Induced Interfacial Stereocomplex Crystallites

    PubMed Central

    2015-01-01

    The demand for “green” degradable composite materials increases with growing environmental awareness. The key challenge is achieving the preferred physical properties and maintaining their eco-attributes in terms of the degradability of the matrix and the filler. Herein, we have designed a series of “green” homocomposites materials based purely on polylactide (PLA) polymers with different structures. Film-extruded homocomposites were prepared by melt-blending PLA matrixes (which had different degrees of crystallinity) with PLLA and PLA stereocomplex (SC) particles. The PLLA and SC particles were spherical and with 300–500 nm size. Interfacial crystalline structures in the form of stereocomplexes were obtained for certain particulate-homocomposite formulations. These SC crystallites were found at the particle/matrix interface when adding PLLA particles to a PLA matrix with d-lactide units, as confirmed by XRD and DSC data analyses. For all homocomposites, the PLLA and SC particles acted as nucleating agents and enhanced the crystallization of the PLA matrixes. The SC particles were more rigid and had a higher Young’s modulus compared with the PLLA particles. The mechanical properties of the homocomposites varied with particle size, rigidity, and the interfacial adhesion between the particles and the matrix. An improved tensile strength in the homocomposites was achieved from the interfacial stereocomplex formation. Hereafter, homocomposites with tunable crystalline arrangements and subsequently physical properties, are promising alternatives in strive for eco-composites and by this, creating materials that are completely degradable and sustainable. PMID:26523245

  14. Magnetic poly(glycidyl methacrylate) microspheres for protein capture.

    PubMed

    Koubková, Jana; Müller, Petr; Hlídková, Helena; Plichta, Zdeněk; Proks, Vladimír; Vojtěšek, Bořivoj; Horák, Daniel

    2014-09-25

    The efficient isolation and concentration of protein antigens from complex biological samples is a critical step in several analytical methods, such as mass spectrometry, flow cytometry and immunochemistry. These techniques take advantage of magnetic microspheres as immunosorbents. The focus of this study was on the development of new superparamagnetic polymer microspheres for the specific isolation of the tumor suppressor protein p53. Monodisperse macroporous poly(glycidyl methacrylate) (PGMA) microspheres measuring approximately 5 μm and containing carboxyl groups were prepared by multistep swelling polymerization of glycidyl methacrylate (GMA), 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA) and ethylene dimethylacrylate (EDMA) as a crosslinker in the presence of cyclohexyl acetate as a porogen. To render the microspheres magnetic, iron oxide was precipitated within their pores; the Fe content in the particles received ∼18 wt%. Nonspecific interactions between the magnetic particles and biological media were minimized by coating the microspheres with poly(ethylene glycol) (PEG) terminated by carboxyl groups. The carboxyl groups of the magnetic PGMA microspheres were conjugated with primary amino groups of mouse monoclonal DO-1 antibody using conventional carbodiimide chemistry. The efficiency of protein p53 capture and the degree of nonspecific adsorption on neat and PEG-coated magnetic microspheres were determined by western blot analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Preparation and Characterization of Thermoresponsive Poly(N-isopropylacrylamide-co-acrylic acid)-Grafted Hollow Fe3O4/SiO2 Microspheres with Surface Holes for BSA Release

    PubMed Central

    Zhao, Jing; Zeng, Ming; Zheng, Kaiqiang; He, Xinhua; Xie, Minqiang; Fu, Xiaoyi

    2017-01-01

    Thermoresponsive P(NIPAM-AA)/Fe3O4/SiO2 microspheres with surface holes serving as carriers were prepared using p-Fe3O4/SiO2 microspheres with a thermoresponsive copolymer. The p-Fe3O4/SiO2 microspheres was obtained using a modified Pickering method and chemical etching. The surface pore size of p-Fe3O4/SiO2 microspheres was in the range of 18.3 nm~37.2 nm and the cavity size was approximately 60 nm, which are suitable for loading and transporting biological macromolecules. P(NIPAM-AA) was synthesized inside and outside of the p-Fe3O4/SiO2 microspheres via atom transfer radical polymerization of NIPAM, MBA and AA. The volume phase transition temperature (VPTT) of the specifically designed P(NIPAM-AA)/Fe3O4/SiO2 microspheres was 42.5 °C. The saturation magnetization of P(NIPAM-AA)/Fe3O4/SiO2 microspheres was 72.7 emu/g. The P(NIPAM-AA)/Fe3O4/SiO2 microspheres were used as carriers to study the loading and release behavior of BSA. This microsphere system shows potential for the loading of proteins as a drug delivery platform. PMID:28772770

  16. Cytosolic phospholipaseA2 inhibition with PLA-695 radiosensitizes tumors in lung cancer animal models.

    PubMed

    Thotala, Dinesh; Craft, Jeffrey M; Ferraro, Daniel J; Kotipatruni, Rama P; Bhave, Sandeep R; Jaboin, Jerry J; Hallahan, Dennis E

    2013-01-01

    Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted.

  17. Experimental study on microsphere assisted nanoscope in non-contact mode

    NASA Astrophysics Data System (ADS)

    Ling, Jinzhong; Li, Dancui; Liu, Xin; Wang, Xiaorui

    2018-07-01

    Microsphere assisted nanoscope was proposed in existing literatures to capture super-resolution images of the nano-structures beneath the microsphere attached on sample surface. In this paper, a microsphere assisted nanoscope working in non-contact mode is designed and demonstrated, in which the microsphere is controlled with a gap separated to sample surface. With a gap, the microsphere is moved in parallel to sample surface non-invasively, so as to observe all the areas of interest. Furthermore, the influence of gap size on image resolution is studied experimentally. Only when the microsphere is close enough to the sample surface, super-resolution image could be obtained. Generally, the resolution decreases when the gap increases as the contribution of evanescent wave disappears. To keep an appropriate gap size, a quantitative method is implemented to estimate the gap variation by observing Newton's rings around the microsphere, serving as a real-time feedback for tuning the gap size. With a constant gap, large-area image with high resolution can be obtained during microsphere scanning. Our study of non-contact mode makes the microsphere assisted nanoscope more practicable and easier to implement.

  18. Pluronic F127/chitosan blend microspheres for mucoadhesive drug delivery

    NASA Astrophysics Data System (ADS)

    Gu, W. Z.; Hu, X. F.

    2017-01-01

    Pluronic F127/chitosan blend microspheres were prepared via emulsification and cross-linking process using glutaraldehyde as a cross-linker. Compared with chitosan microspheres fabricated under the same experimental conditions, blend microspheres exhibited better physical stability and higher swelling capacity. Puerarin, a traditional Chinese medicine, was incorporated into microparticlesas the model drug. The in vitro release of puerarin from blend microspheres was reduced because of the improved compatibility of the drug with the matrices. According to the results from in vitro adhesion experiments, mucoadhesive behavior of blend microspheres on a mucosa-like surface was similar to that of chitosan microspheres, despite their good ability of anti-protein absorption in solution.

  19. Lignin-coated cellulose nanocrystals as promising nucleating agent for poly(lactic acid)

    Treesearch

    Anju Gupta; William Simmons; Gregory T. Schueneman; Eric A. Mintz

    2016-01-01

    We report the effect of lignin-coated cellulose nanocrystals (L-CNCs) on the crystallization behavior of poly(lactic acid) (PLA). PLA/L-CNC nanocomposites were prepared by melt mixing, and the crystallization behavior of PLA was investigated using differential scanning calorimetry. Isothermal crystallization data were analyzed using Avrami and Lauritzen–Hoffman...

  20. Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple.

    PubMed

    Li, Wenhui; Li, Lin; Cao, Yun; Lan, Tianqing; Chen, Haiyan; Qin, Yuyue

    2017-07-31

    A novel nanopackaging film was synthesized by incorporating ZnO nanoparticles into a poly-lactic acid (PLA) matrix, and its effect on the quality of fresh-cut apple during the period of preservation was investigated at 4 ± 1 °C for 14 days. Six wt % cinnamaldehyde was added into the nano-blend film. Scanning electron microscope (SEM) analysis showed a rougher cross-section of the nano-blend films and an X-ray diffraction (XRD) was carried out to determine the structure of the ZnO nanoparticles. Compared to the pure PLA film, the nano-blend film had a higher water vapor permeability (WVP) and lower oxygen permeability. With the increase of the nanoparticles (NPs) in the PLA, the elongation at break (ε) and elastic modulus (EM) increased, while tensile strength (TS) decreased. Thermogravimetric analysis (TGA) presented a relatively good thermostability. Most importantly, the physical and biochemical properties of the fresh-cut apple were also measured, such as weight loss, firmness, polyphenol oxidase (PPO), total phenolic content, browning index (BI), sensory quality, and microbiological level. The results indicated that nano-blend packaging films had the highest weight loss at the end of storage compared to the pure PLA film; however, nanopackaging provided a better retention of firmness, total phenolic countent, color, and sensory quality. It also had a remarkable inhibition on the growth of microorganisms. Therefore, Nano-ZnO active packaging could be used to improve the shelf-life of fresh-cut produce.

  1. Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple

    PubMed Central

    Li, Lin; Cao, Yun; Lan, Tianqing; Chen, Haiyan

    2017-01-01

    A novel nanopackaging film was synthesized by incorporating ZnO nanoparticles into a poly-lactic acid (PLA) matrix, and its effect on the quality of fresh-cut apple during the period of preservation was investigated at 4 ± 1 °C for 14 days. Six wt % cinnamaldehyde was added into the nano-blend film. Scanning electron microscope (SEM) analysis showed a rougher cross-section of the nano-blend films and an X-ray diffraction (XRD) was carried out to determine the structure of the ZnO nanoparticles. Compared to the pure PLA film, the nano-blend film had a higher water vapor permeability (WVP) and lower oxygen permeability. With the increase of the nanoparticles (NPs) in the PLA, the elongation at break (ε) and elastic modulus (EM) increased, while tensile strength (TS) decreased. Thermogravimetric analysis (TGA) presented a relatively good thermostability. Most importantly, the physical and biochemical properties of the fresh-cut apple were also measured, such as weight loss, firmness, polyphenol oxidase (PPO), total phenolic content, browning index (BI), sensory quality, and microbiological level. The results indicated that nano-blend packaging films had the highest weight loss at the end of storage compared to the pure PLA film; however, nanopackaging provided a better retention of firmness, total phenolic countent, color, and sensory quality. It also had a remarkable inhibition on the growth of microorganisms. Therefore, Nano-ZnO active packaging could be used to improve the shelf-life of fresh-cut produce. PMID:28758980

  2. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.

    PubMed

    Angelopoulou, A; Voulgari, E; Diamanti, E K; Gournis, D; Avgoustakis, K

    2015-06-01

    To investigate the application of water-dispersible poly(lactide)-poly(ethylene glycol) (PLA-PEG) copolymers for the stabilization of graphene oxide (GO) aqueous dispersions and the feasibility of using the PLA-PEG stabilized GO as a delivery system for the potent anticancer agent paclitaxel. A modified Staudenmaier method was applied to synthesize graphene oxide (GO). Diblock PLA-PEG copolymers were synthesized by ring-opening polymerization of dl-lactide in the presence of monomethoxy-poly(ethylene glycol) (mPEG). Probe sonication in the presence of PLA-PEG copolymers was applied in order to reduce the hydrodynamic diameter of GO to the nano-size range according to dynamic light scattering (DLS) and obtain nano-graphene oxide (NGO) composites with PLA-PEG. The composites were characterized by atomic force microscopy (AFM), thermogravimetric analysis (TGA), and DLS. The colloidal stability of the composites was evaluated by recording the size of the composite particles with time and the resistance of composites to aggregation induced by increasing concentrations of NaCl. The composites were loaded with paclitaxel and the in vitro release profile was determined. The cytotoxicity of composites against A549 human lung cancer cells in culture was evaluated by flow cytometry. The uptake of FITC-labeled NGO/PLA-PEG by A549 cells was also estimated with flow cytometry and visualized with fluorescence microscopy. The average hydrodynamic diameter of NGO/PLA-PEG according to DLS ranged between 455 and 534 nm, depending on the molecular weight and proportion of PLA-PEG in the composites. NGO/PLA-PEG exhibited high colloidal stability on storage and in the presence of high concentrations of NaCl (far exceeding physiological concentrations). Paclitaxel was effectively loaded in the composites and released by a highly sustained fashion. Drug release could be regulated by the molecular weight of the PLA-PEG copolymer and its proportion in the composite. The paclitaxel

  3. Dual Enzyme-Responsive Capsules of Hyaluronic Acid-block-Poly(Lactic Acid) for Sensing Bacterial Enzymes.

    PubMed

    Tücking, Katrin-Stephanie; Grützner, Verena; Unger, Ronald E; Schönherr, Holger

    2015-07-01

    The synthesis of novel amphiphilic hyaluronic acid (HYA) and poly(lactic acid) (PLA) block copolymers is reported as the key element of a strategy to detect the presence of pathogenic bacterial enzymes. In addition to the formation of defined HYA-block-PLA assemblies, the encapsulation of fluorescent reporter dyes and the selective enzymatic degradation of the capsules by hyaluronidase and proteinase K are studied. The synthesis of the dual enzyme-responsive HYA-b-PLA is carried out by copper-catalyzed Huisgen 1,3-dipolar cycloaddition. The resulting copolymers are assembled in water to form vesicular structures, which are characterized by scanning electron microscopy, transmission electron microscopy, dynamic light scattering (DLS), and fluorescence lifetime imaging microscopy (FLIM). DLS measurements show that both enzymes cause a rapid decrease in the hydrodynamic diameter of the nanocapsules. Fluorescence spectroscopy data confirm the liberation of encapsulated dye, which indicates the disintegration of the capsules and validates the concept of enzymatically triggered payload release. Finally, cytotoxicity assays confirm that the HYA-b-PLA nanocapsules are biocompatible with primary human dermal microvascular endothelial cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Organic aerogel microspheres and fabrication method therefor

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1996-04-16

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  5. Organic aerogel microspheres and fabrication method therefor

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1996-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  6. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres.

    PubMed

    Song, Kedong; Liu, Yingchao; Macedo, Hugo M; Jiang, Lili; Li, Chao; Mei, Guanyu; Liu, Tianqing

    2013-04-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27-55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99±2.51) %, (89.66±0.66) % and (73.77±3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24±0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44±1.81)×10(-2) mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a promising technique

  7. Bio-reinforced composite development for additive manufacturing: Nanocellulose-PLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekinalp, Halil L.; Lu, Yuan; Kunc, Vlastimil

    Additive manufacturing (AM) is transitioning from being only a prototyping method towards becoming a manufacturing technique for the quick production of parts with complex geometries. For the complete realization of this transition, the mechanical properties of the printed parts have to meet the requirements of actual load-bearing structural components. Integration of a reinforcing second phase into a polymer is a viable approach for the improvement of resins mechanical performance. Addition of carbon fibers into acrylonitrile-butadiene-styrene (ABS) has already been shown to improve its mechanical properties compared to the neat ABS resin (both additively manufactured), and led to the manufacture ofmore » world s first 3D-printed car. However, both ABS resin and carbon fibers are petroleum-based products, and there is a continuous search for alternative, bio-sourced, renewable materials as a feedstock for manufacturing. Towards this direction, we have investigated the potential of cellulose nanofibril-reinforced polylactic acid (PLA) resin systems as an alternative. CNF-PLA composite systems with up to 40 wt% CNF loadings were prepared via compression molding technique and tested. Significant improvements in both tensile strength (80%) and elastic modulus (128%) were observed. Filaments prepared from the same compositions were also successfully 3D-printed into tensile testing specimens with up to 30% CNF concentrations, and showed similar improvements in mechanical performance. Although CNFs were not individually dispersed in PLA matrix, they were observed to be well blended with the polymer based on SEM micrographs. In summary, preparation and 3D-printing of a 100% bio-based feedstock material with the mechanical properties comparable to the carbon fiber-ABS system was successfully demonstrated that it can open up new window of opportunities in the additive manufacturing industry. Acknowledgement Research sponsored by the U.S. Department of Energy, Office of

  8. Microsphere coated substrate containing reactive aldehyde groups

    NASA Technical Reports Server (NTRS)

    Yen, Richard C. K. (Inventor); Rembaum, Alan (Inventor)

    1984-01-01

    A synthetic organic resin is coated with a continuous layer of contiguous, tangential, individual microspheres having a uniform diameter preferably between 100 Angstroms and 2000 Angstroms. The microspheres are an addition polymerized polymer of an unsaturated aldehyde containing 4 to 20 carbon atoms and are covalently bonded to the substrate by means of high energy radiation grafting. The microspheres contain reactive aldehyde groups and can form conjugates with proteins such as enzymes or other aldehyde reactive materials.

  9. 21 CFR 870.1360 - Trace microsphere.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Trace microsphere. 870.1360 Section 870.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1360 Trace microsphere. (a...

  10. 21 CFR 870.1360 - Trace microsphere.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Trace microsphere. 870.1360 Section 870.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1360 Trace microsphere. (a...

  11. Nanofibrous spongy microspheres enhance odontogenic differentiation of human dental pulp stem cells.

    PubMed

    Kuang, Rong; Zhang, Zhanpeng; Jin, Xiaobing; Hu, Jiang; Gupte, Melanie J; Ni, Longxing; Ma, Peter X

    2015-09-16

    Dentin regeneration is challenging due to its complicated anatomical structure and the shortage of odontoblasts. In this study, a novel injectable cell carrier, nanofibrous spongy microspheres (NF-SMS), is developed for dentin regeneration. Biodegradable and biocompatible poly(l-lactic acid)-block-poly(l-lysine) are synthesized and fabricated into NF-SMS using self-assembly and thermally induced phase separation techniques. It is hypothesized that NF-SMS with interconnected pores and nanofibers can enhance the proliferation and odontogenic differentiation of human dental pulp stem cells (hDPSCs), compared to nanofibrous microspheres (NF-MS) without pore structure and conventional solid microspheres (S-MS) with neither nanofibers nor pore structure. During the first 9 d in culture, hDPSCs proliferate significantly faster on NF-SMS than on NF-MS or S-MS (p < 0.05). Following in vitro odontogenic induction, all the examined odontogenic genes (alkaline phosphatase content, osteocalcin, bone sialoprotein, collagen 1, dentin sialophosphoprotein (DSPP)), calcium content, and DSPP protein content are found significantly higher in the NF-SMS group than in the control groups. Furthermore, 6 weeks after subcutaneous injection of hDPSCs and microspheres into nude mice, histological analysis shows that NF-SMS support superior dentin-like tissue formation compared to NF-MS or S-MS. Taken together, NF-SMS have great potential as an injectable cell carrier for dentin regeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cytosolic PhospholipaseA2 Inhibition with PLA-695 Radiosensitizes Tumors in Lung Cancer Animal Models

    PubMed Central

    Ferraro, Daniel J.; Kotipatruni, Rama P.; Bhave, Sandeep R.; Jaboin, Jerry J.; Hallahan, Dennis E.

    2013-01-01

    Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted. PMID:23894523

  13. Participation of PLA2 and PLC in DhL-induced activation of Rhinella arenarum oocytes.

    PubMed

    Zapata-Martínez, J; Medina, M F; Gramajo-Bühler, M C; Sánchez-Toranzo, G

    2016-08-01

    Rhinella arenarum oocytes can be artificially activated, a process known as parthenogenesis, by a sesquiterpenic lactone of the guaianolide group, dehydroleucodine (DhL). Transient increases in the concentration of cytosolic Ca2+ are essential to trigger egg activation events. In this sense, the 1-4-5 inositol triphosphate receptors (IP3R) seem to be involved in the Ca2+ transient release induced by DhL in this species. We analyzed the involvement of phosphoinositide metabolism, especially the participation of phospholipase A2 (PLA2) and phospholipase C (PLC) in DhL-induced activation. Different doses of quinacrine, aristolochic acid (ATA) (PLA2 inhibitors) or neomycin, an antibiotic that binds to PIP2, thus preventing its hydrolysis, were used in mature Rhinella arenarum oocytes. In order to assay the participation of PI-PLC and PC- PLC we used U73122, a competitive inhibitor of PI-PLC dependent events and D609, an inhibitor of PC-PLC. We found that PLA2 inhibits quinacrine more effectively than ATA. This difference could be explained by the fact that quinacrine is not a specific inhibitor for PLA2 while ATA is specific for this enzyme. With respect to the participation of PLC, a higher decrease in oocyte activation was detected when cells were exposed to neomycin. Inhibition of PC-PLC with D609 and IP-PLC with U73122 indicated that the last PLC has a significant participation in the effect of DhL-induced activation. Results would indicate that DhL induces activation of in vitro matured oocytes of Rhinella arenarum by activation of IP-PLC, which in turn may induce IP3 formation which produces Ca2+ release.

  14. Complete regression of xenograft tumors using biodegradable mPEG-PLA-SN38 block copolymer micelles.

    PubMed

    Lu, Lu; Zheng, Yan; Weng, Shuqiang; Zhu, Wenwei; Chen, Jinhong; Zhang, Xiaomin; Lee, Robert J; Yu, Bo; Jia, Huliang; Qin, Lunxiu

    2016-06-01

    7-Ethyl-10-hydroxy-comptothecin (SN38) is an active metabolite of irinotecan (CPT-11) and the clinical application of SN38 is limited by its hydrophobicity and instability. To address these issues, a series of novel amphiphilic mPEG-PLA-SN38-conjugates were synthesized by linking SN38 to mPEG-PLA-SA, and they could form micelles by self-assembly. The effects of mPEG-PLA composition were studied in vitro and in vivo. The mean diameters of mPEG2K-PLA-SN38 micelles and mPEG4K-PLA-SN38 micelles were 10-20nm and 120nm, respectively, and mPEG2K-PLA-SN38 micelles showed greater antitumor efficacy than mPEG4K-PLA-SN38 micelles both in vitro and in vivo. These data suggest that the lengths of mPEG and PLA chains had a major impact on the physicochemical characteristics and antitumor activity of SN38-conjugate micelles. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Utilizing hyaluronic acid as a versatile platform for fluorescence resonance energy transfer-based glucose sensing.

    PubMed

    Ge, Minghao; Bai, Pengli; Chen, Mingli; Tian, Jingjing; Hu, Jun; Zhi, Xu; Yin, Huancai; Yin, Jian

    2018-03-01

    Here, we utilized the ultrasonic emulsification technique to generate hyaluronic acid microspheres incorporating a fluorescence-based glucose biosensor. We synthesized a novel lanthanide ion luminophore based on Eu 3+ . Eu sulfosuccinimidyl dextran (Eu-dextran) and Alexa Fluor 647 sulfosuccinimidyl-ConA (Alexa Fluor 647-ConA) were encapsulated in hyaluronic acid hydrogel to generate microspheres. Glucose sensing was carried out using a fluorescence resonance energy transfer (FRET)-based assay principle. A proportional fluorescence intensity increase was found within a 0.5-10-mM glucose concentration range. The glucose-sensing strategy showed an excellent tolerance for potential interferents. Meanwhile, the fluorescent signal of hyaluronic acid microspheres was very stable after testing for 72 h in glucose solution. Overall, hyaluronic acid microspheres encapsulating sensing biomolecules offer a stable and biocompatible biosensor for a variety of applications including cell culture systems, tissue engineering, detection of blood glucose, etc. Graphical abstract We report an ingenious biosensor encapsulated in hyaluronic acid microspheres for monitoring of glucose. Glucose sensing is carried out using a fluorescence resonance energy transfer-based assay principle with a novel lanthanide ions luminophore. The glucose detection system has excellent biocompatibility and stability for monitoring of glucose.

  16. Study of Effects on Mechanical Properties of PLA Filament which is blended with Recycled PLA Materials

    NASA Astrophysics Data System (ADS)

    Babagowda; Kadadevara Math, R. S.; Goutham, R.; Srinivas Prasad, K. R.

    2018-02-01

    Fused deposition modeling is a rapidly growing additive manufacturing technology due to its ability to build functional parts having complex geometry. The mechanical properties of the build part is depends on several process parameters and build material of the printed specimen. The aim of this study is to characterize and optimize the parameters such as layer thickness and PLA build material which is mixed with recycled PLA material. Tensile and flexural or bending test are carried out to determine the mechanical response characteristics of the printed specimen. Taguchi method is used for number of experiments and Taguchi S/N ratio is used to identify the set of parameters which give good results for respective response characteristics, effectiveness of each parameters is investigated by using analysis of variance (ANOVA).

  17. Amorphous Ni(OH)2/CQDs microspheres for highly sensitive non-enzymatic glucose detection prepared via CQDs induced aggregation process

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajie; Yin, Haoyong; Cui, Zhenzhen; Qin, Dongyu; Gong, Jianying; Nie, Qiulin

    2017-10-01

    Non-enzymatic electrochemical sensors for the detection of glucose were designed based on amorphous Ni(OH)2/CQDs microspheres. The amorphous Ni(OH)2/CQDs microspheres were prepared by a CQDs assistant crystallization inhibition process. The morphologies and composition of the microspheres were characterized by SEM, TEM, XRD, EDS, and TG/DSC. The results showed that the microspheres had uniform heterogeneous phases with amorphous Ni(OH)2 and CQDs. The sensor based on amorphous Ni(OH)2/CQDs microspheres showed remarkable electrocatalytic activity towards glucose oxidation comparing to the conventional crystalline Ni(OH)2, which included two linear range (20 μM-350 μM and 0.45mM-2.5 mM) with high selectivity of 2760.05 and 1853.64 μA mM-1cm-2. Moreover, the interference from the commonly interfering species such as urea, ascorbic acid, NaCl, L-proline and L-Valine, can be effectively avoided. The high sensitivity, wide glucose detection range and good selectivity of the electrode may be due to their synergistic effect of amorphous phase and CQDs incorporation. These findings may promote the application of amorphous Ni(OH)2 as advanced electrochemical glucose sensing materials.

  18. Differential Regulation of Angiogenesis using Degradable VEGF-Binding Microspheres

    PubMed Central

    Belair, David G.; Miller, Michael J.; Wang, Shoujian; Darjatmokon, Soesiawati R.; Binder, Bernard Y.K.; Sheibani, Nader; Murphy, William L.

    2016-01-01

    Vascular endothelial growth factor (VEGF) spatial and temporal activity must be tightly controlled during angiogenesis to form perfusable vasculature in a healing wound. The native extracellular matrix (ECM) regulates growth factor activity locally via sequestering, and researchers have used ECM-mimicking approaches to regulate the activity of VEGF in cell culture and in vivo. However, the impact of dynamic, affinity-mediated growth factor sequestering has not been explored in detail with biomaterials. Here, we sought to modulate VEGF activity dynamically over time using poly(ethylene glycol) microspheres containing VEGF-binding peptides (VBPs) and exhibiting varying degradation rates. The degradation rate of VBP microspheres conferred a differential ability to up- or down-regulate VEGF activity in culture with primary human endothelial cells. VBP microspheres with fast-degrading crosslinks reduced VEGF activity and signaling, while VBP microspheres with no inherent degradability sequestered and promoted VEGF activity in culture with endothelial cells. VBP microspheres with degradable crosslinks significantly reduced neovascularization in vivo, but neither non-degradable VBP microspheres nor bolus delivery of soluble VBP reduced neovascularization. The covalent incorporation of VBP to degradable microspheres was required to reduce neovascularization in a mouse model of choroidal neovascularization in vivo, which demonstrates a potential clinical application of degradable VBP microspheres to reduce pathological angiogenesis. The results herein highlight the ability to modulate the activity of a sequestered growth factor by changing the crosslinker identity within PEG hydrogel microspheres. The insights gained here may instruct the design and translation of affinity-based growth factor sequestering biomaterials for regenerative medicine applications. PMID:27061268

  19. Super-focusing of center-covered engineered microsphere.

    PubMed

    Wu, Mengxue; Chen, Rui; Soh, Jiahao; Shen, Yue; Jiao, Lishi; Wu, Jianfeng; Chen, Xudong; Ji, Rong; Hong, Minghui

    2016-08-16

    Engineered microsphere possesses the advantage of strong light manipulation at sub-wavelength scale and emerges as a promising candidate to shrink the focal spot size. Here we demonstrated a center-covered engineered microsphere which can adjust the transverse component of the incident beam and achieve a sharp photonic nanojet. Modification of the beam width and working distance of the photonic nanojet were achieved by tuning the cover ratio of the engineered microsphere, leading to a sharp spot size which exceeded the optical diffraction limit. At a wavelength of 633 nm, a focal spot of 245 nm (0.387 λ) was achieved experimentally under plane wave illumination. Strong localized field with Bessel-like distribution was demonstrated by employing the linearly polarized beam and a center-covered mask being engineered on the microsphere.

  20. Alkali-corrosion synthesis and excellent DSSC performance of novel jujube-like hierarchical TiO2 microspheres

    NASA Astrophysics Data System (ADS)

    Xiao, Jiajia; Li, Po; Wen, Xiaogang

    2018-04-01

    Novel jujube-like hierarchical TiO2 microspheres (HTMs) were synthesized by an alkali-corrosion process of titanium phosphate (Ti2O3(H2PO4)2 · 2H2O) microspheres. The hierarchical titanium phosphate microsphere (HTPM) intermediates consisting of nanoflakes with a thickness of 20 nm were firstly prepared by a facile hydrothermal method. After reacting with diluted NaOH at low temperature and atmospheric pressure, followed by subsequent acid washing and a calcination process, the HTPM intermediates were transformed to TiO2 with the microsphere morphology well retained, while the nanoflakes became porous, and some new nanowires were formed between the nanoflakes. Finally, HTMs consisting of porous nanoflakes and nanowires were obtained. The possible growth mechanisms of HTPMs and HTMs are discussed. The HTMs demonstrate high specific surface area and excellent light-scattering ability. The performance of the dye sensitized solar cells (DSSCs) of the HTMs synthesized under different conditions is studied, and a total conversion efficiency of up to 8.93% was obtained. The improved DSSC performance was attributed to the enhanced dye loading, light-scattering, and charge transporting ability of the HTMs with a unique hierarchical nanostructure.

  1. Alkali-corrosion synthesis and excellent DSSC performance of novel jujube-like hierarchical TiO2 microspheres.

    PubMed

    Xiao, Jiajia; Li, Po; Wen, Xiaogang

    2018-04-27

    Novel jujube-like hierarchical TiO 2 microspheres (HTMs) were synthesized by an alkali-corrosion process of titanium phosphate (Ti 2 O 3 (H 2 PO 4 ) 2  · 2H 2 O) microspheres. The hierarchical titanium phosphate microsphere (HTPM) intermediates consisting of nanoflakes with a thickness of 20 nm were firstly prepared by a facile hydrothermal method. After reacting with diluted NaOH at low temperature and atmospheric pressure, followed by subsequent acid washing and a calcination process, the HTPM intermediates were transformed to TiO 2 with the microsphere morphology well retained, while the nanoflakes became porous, and some new nanowires were formed between the nanoflakes. Finally, HTMs consisting of porous nanoflakes and nanowires were obtained. The possible growth mechanisms of HTPMs and HTMs are discussed. The HTMs demonstrate high specific surface area and excellent light-scattering ability. The performance of the dye sensitized solar cells (DSSCs) of the HTMs synthesized under different conditions is studied, and a total conversion efficiency of up to 8.93% was obtained. The improved DSSC performance was attributed to the enhanced dye loading, light-scattering, and charge transporting ability of the HTMs with a unique hierarchical nanostructure.

  2. Hydrophilic porous magnetic poly(GMA-MBAA-NVP) composite microspheres containing oxirane groups: An efficient carrier for immobilizing penicillin G acylase

    NASA Astrophysics Data System (ADS)

    Xue, Ping; Su, Weiguang; Gu, Yaohua; Liu, Haifeng; Wang, Julan

    2015-03-01

    Magnetic hydrophilic polymeric microspheres containing oxirane groups were prepared by inverse suspension polymerization of glycidyl methacrylate (GMA), N, N‧-methylene bisacrylamide (MBAA) and N-vinyl pyrrolidone (NVP) in the existence of formamide, which were denoted as magnetic poly(GMA-MBAA-NVP) microspheres. The magnetic poly(GMA-MBAA-NVP) microspheres were characterized by scanning electron microscopy (SEM), FT-IR spectroscopy, X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and so on. The results showed that poly(GMA-MBAA-NVP) microspheres possessed well spherical shape, narrow size distribution, abundant porous structure, reactive oxirane groups and superparamagnetic properties. Formamide used in the present work served as a modifier, a dispersant and a porogen to form final porous polymer microspheres. The penicillin G acylase (PGA) was covalently immobilized onto the magnetic microspheres through the reaction between the amino groups of enzyme and the oxirane groups on the microspheres for producing 6-aminopenicillanic acid (6-APA). The effects of GMA/NVP ratio and crosslink density on the activity of immobilized PGA were investigated. The highest apparent activity, enzyme loading and coupling yield of immobilized PGA were 821 IU/g, 65.3 mg/g and 42.3% respectively when the mass ratio of GMA/NVP was 1:1 and crosslink density was 60%. Compared with the free PGA, immobilized PGA showed a wider range of pH value and reaction temperature. The relative activity and reaction rate of immobilized PGA remained almost constant after 20 recycles. The magnetic poly(GMA-MBAA-NVP) microspheres would be very promising carriers for immobilizing enzymes in industrial application.

  3. Synthesis of microspheres of triuranium octaoxide by simultaneous water and nitrate extraction from ascorbate-uranyl sols.

    PubMed

    Brykala, M; Deptula, A; Rogowski, M; Lada, W; Olczak, T; Wawszczak, D; Smolinski, T; Wojtowicz, P; Modolo, G

    A new method for synthesis of uranium oxide microspheres (diameter <100 μm) has been developed. It is a variant of our patented Complex Sol-Gel Process, which has been used to synthesize high-quality powders of a wide variety of complex oxides. Starting uranyl-nitrate-ascorbate sols were prepared by addition of ascorbic acid to uranyl nitrate hexahydrate solution and alkalizing by aqueous ammonium hydroxide and then emulsified in 2-ethylhexanol-1 containing 1v/o SPAN-80. Drops of emulsion were firstly gelled by extraction of water by the solvent. Destruction of the microspheres during thermal treatment, owing to highly reactive components in the gels, requires modification of the gelation step by Double Extraction Process-simultaneously extraction of water and nitrates using Primene JMT, which completely eliminates these problem. Final step was calcination in air of obtained microspheres of gels to triuranium octaoxide.

  4. Preparation and release characteristics of polymer-coated and blended alginate microspheres.

    PubMed

    Lee, D W; Hwang, S J; Park, J B; Park, H J

    2003-01-01

    To prevent a rapid drug release from alginate microspheres in simulated intestinal media, alginate microspheres were coated or blended with polymers. Three polymers were selected and evaluated such as HPMC, Eudragit RS 30D and chitosan, as both coating materials and additive polymers for controlling the drug release. This study focused on the release characteristics of polymer-coated and blended alginate microspheres, varying the type of polymer and its concentration. The alginate microspheres were prepared by dropping the mixture of drug and sodium alginate into CaCl(2) solution using a spray-gun. Polymer-coated microspheres were prepared by adding alginate microspheres into polymer solution with mild stirring. Polymer-blended microspheres were prepared by dropping the mixture of drug, sodium alginate and additive polymer with plasticizer into CaCl(2) solution. In vitro release test was carried out to investigate the release profiles in 500 ml of phosphate buffered saline (PBS, pH 7.4). As the amount of polymer in sodium alginate or coating solution increase, the drug release generally decreased. HPMC-blended microspheres swelled but withstood the disintegration, showing an ideal linear release profiles. Chitosan-coated microspheres showed smooth and round surface and extended the release of drug. In comparison with chitosan-coated microspheres, HPMC-blended alginate microspheres can be easily made and used for controlled drug delivery systems due to convenient process and controlled drug release.

  5. Purification and immunochemical characterization of Pla l 2, the profilin from Plantago lanceolata.

    PubMed

    Moya, Raquel; Rubio, Virginia; Beitia, Juan Mª; Carnés, Jerónimo; López-Matas, M Angeles

    2017-03-01

    Profilins are small actin-binding proteins found in eukaryotes and involved in cell development, cytokinesis, membrane trafficking, and cell motility. From an allergenic point of view, profilins are panallergens usually involved in allergic polysensitization, although they are generally recognized as minor allergens. The objectives of this study were to identify and characterize the profilin from Plantago lanceolata pollen and to investigate the cross-reactivity between profilins from different pollen allergenic sources. Profilins from P. lancelolata (Pla l 2) and palm tree pollen (Pho d 2) were purified by affinity chromatography, deeply characterized and identified by mass spectrometry. Pla l 2 allergenicity was confirmed by immunoblot with serum samples from a patient population sensitized to profilin. Immunoblot inhibition was performed to study IgG reactivity between different pollen profilins. IgE cross-reactivity was demonstrated by ImmunoCAP inhibition. Pla l 2 is the second P. lanceolata allergen included in the IUIS Allergen Nomenclature database. Four peptides from purified Pla l 2 were identified with percentages of homology with other pollen profilins between 73 and 86%. Eighty-six percent (21/24) of the patient population recognized Pla l 2. The allergenic relatedness between Pla l 2, Pho d 2 and six pollen profilins was confirmed, and IgE cross-reactivity of Pla l 2 with rBet v 2 and rPhl p 12 was demonstrated. Pla l 2 is the profilin from P. lanceolata. The demonstrated allergenicity of this protein and its cross-reactivity with other pollen profilins support its use in profilin diagnostic assays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Polylactic acid composites incorporating casein functionalized cellulose nanowhiskers

    PubMed Central

    2013-01-01

    Background Polylactic acid (PLA) is considered to be a sustainable alternative to petroleum-based polymers for many applications. Using cellulose fiber to reinforce PLA is of great interest recently due to its complete biodegradability and potential improvement of the mechanical performance. However, the dispersion of hydrophilic cellulose fibers in the hydrophobic polymer matrix is usually poor without using hazardous surfactants. The goal of this study was to develop homogenously dispersed cellulose nanowhisker (CNW) reinforced PLA composites using whole milk casein protein, which is an environmentally compatible dispersant. Results In this study, whole milk casein was chosen as a dispersant in the PLA-CNW system because of its potential to interact with the PLA matrix and cellulose. The affinity of casein to PLA was studied by surface plasmon resonance (SPR) imaging. CNWs were functionalized with casein and used as reinforcements to make PLA composites. Fluorescent staining of CNWs in the PLA matrix was implemented as a novel and simple way to analyze the dispersion of the reinforcements. The dispersion of CNWs in PLA was improved when casein was present. The mechanical properties of the composites were studied experimentally. Compared to pure PLA, the PLA composites had higher Young’s modulus. Casein (CS) functionalized CNW reinforced PLA (PLA-CS-CNW) at 2 wt% filler content maintained higher strain at break compared to normal CNW reinforced PLA (PLA-CNW). The Young’s modulus of PLA-CS-CNW composites was also higher than that of PLA-CNW composites at higher filler content. However, all composites exhibited lower strain at break and tensile strength at high filler content. Conclusions The presence of whole milk casein improved the dispersion of CNWs in the PLA matrix. The improved dispersion of CNWs provided higher modulus of the PLA composites at higher reinforcement loading and maintained the strain and stress at break of the composites at relatively low

  7. Hydrothermal synthesis and photocatalytic performance of hierarchical Bi{sub 2}MoO{sub 6} microspheres using BiOI microspheres as self-sacrificing templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ming; Zhang, Wei-De, E-mail: zhangwd@scut.edu.cn

    2015-07-15

    Bi{sub 2}MoO{sub 6} hierarchical microspheres were successfully prepared through phase transformation from BiOI microspheres with the assistance of sodium citrate under hydrothermal condition. The possible formation mechanism for the conversion of BiOI to Bi{sub 2}MoO{sub 6} is discussed here. After being annealed at 300 °C for 2 h, the obtained Bi{sub 2}MoO{sub 6} microspheres exhibited remarkably enhanced photocatalytic activity towards the degradation of rhodamine B and phenol. The superior catalytic performance can be attributed to its larger surface area and higher crystallinity. In addition, Bi{sub 2}MoO{sub 6} microspheres are stable during the degradation reaction and can be used repeatedly. -more » Graphical abstract: Bi{sub 2}MoO{sub 6} hierarchical microspheres were successfully prepared through a facile partial anion exchange strategy using BiOI microspheres as self-sacrificing templates. The Bi{sub 2}MoO{sub 6} microspheres show high visible light photocatalytic activity. - Highlights: • Bi{sub 2}MoO{sub 6} microspheres were prepared via self-sacrificing template anion exchange. • Sodium citrate-assisted anion exchange for preparation of Bi{sub 2}MoO{sub 6} photocatalyst. • Bi{sub 2}MoO{sub 6} catalysts show high visible light photocatalytic activity.« less

  8. Albumin microspheres as an ocular delivery system for pilocarpine nitrate.

    PubMed

    Rathod, Sudha; Deshpande, S G

    2008-01-01

    Pilocarpine nitrate loaded egg albumin microspheres were prepared by thermal denaturation process in the size range of 1-12 mum. A series of batches were prepared to study factors, which may affect the size and entrapment efficiency of drug in microspheres and optimized the process. Drug loaded microspheres so obtained were evaluated for their size, entrapment efficiency, release rate and biological response. Electron photomicrographs were taken (8000X) to study the morphological characteristics of microspheres. The entrapment and encapsulation of pilocarpine after process optimization was found to be 82.63% and 62.5% respectively. In vitro dissolution rate studies revealed that the release of drug from the microspheres followed spherical matrix mechanism. Biological response of microspheric suspension was measured by reduction in intraocular pressure in albino rabbit eyes and compared with marketed eye drops. Various pharmacokinetic parameters viz. onset of action, duration of action, Tmax and AUC were studied. A measurable difference was found in the mean miotic response, duration and AUC of pilocarpine nitrate microspheric suspension.

  9. Preparation of antimicrobial membranes: coextrusion of poly(lactic acid) and Nisaplin in the presence of Plasticizers.

    PubMed

    Liu, Linshu; Jin, Tony Z; Coffin, David R; Hicks, Kevin B

    2009-09-23

    Nisin is a naturally occurring antimicrobial polypeptide and is popularly used in the food and food-packaging industries. Nisin is deactivated at temperatures higher than 120 degrees C and, therefore, cannot be directly incorporated into poly(L-lactic acid) (PLA), a biomass-derived biodegradable polymer, by coextrusion because PLA melts at temperatures around 160 degrees C or above. However, PLA can remain in a melt state at temperatures below the T(m) in the presence of lactic acid or other plasticizers. In the present study, PLA was coextruded with lactic acid, or lactide, or glycerol triacetate at 160 degrees C. After the PLA was melted, the temperature of the barrels was reduced to 120 degrees C, and then Nisaplin, the commercial formulation of nisin, was added and the extrusion was continued. The resultant extrudates possess the capability to suppress the growth of the pathogenic bacterial Listeria monocytogenes , demonstrating a significant antimicrobial activity. The present study provides a simple method to produce PLA-based antimicrobial membranes. The method can also be used for the coextrusion of other heat-sensitive substances and thermoplastics with high melting temperature.

  10. Synthesis and study of sericin-g-PLA

    NASA Astrophysics Data System (ADS)

    Saetae, S.; Magaraphan, R.

    2015-05-01

    In this paper we present an experiment for bulk synthesis of the sericin-g-PLA by using Sn(Oct)2 as catalyst and study the effect of Thai silk cocoon species (Dok Bua, Luang Pirote, Nang Noi and Nang Lai) on properties of the sericin-g-PLA. We investigated the chemical structure of the grafted copolymers by using FTIR and GPC. Moreover, the grafting percentage was determined by soxhlet extaction. The IR spectra of extracted sample showed peaks at 1188 and 1215 cm-1 that assigned to the symmetric C-O-C stretching modes of the ester group. The methyl rocking stretching and C-CH3 vibration of polylactide appeared at 1130 and 1045 cm-1, respectively. The peak positioned 3440 cm-1 belonged to the hydroxyl group and the amino group of sericin which became less after polymerized with lactide. These evidences suggested that the lactide was reacted with sericin. Also, the molecular weight of the grafted copolymers were in range from 5.2 to 6.1 kg/mole. And Nang Lai-g-PLA showed the highest grafting percentage of the grafted copolymers.

  11. Nanomechanics of biocompatible hollow thin-shell polymer microspheres.

    PubMed

    Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis

    2009-07-07

    The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.

  12. Imaging of drug loading distributions in individual microspheres of calcium silicate hydrate - an X-ray spectromicroscopy study

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoxuan; Wang, Zhiqiang; Wu, Jin; Wang, Jian; Zhu, Ying-Jie; Sham, Tsun-Kong

    2015-04-01

    Imaging is one of the most direct and ideal ways to track drug loading distributions in drug carriers on the molecular level, which will facilitate the optimization of drug carriers and drug loading capacities. Herein, we report the mapping of an individual mesoporous calcium silicate hydrate (CSH) microsphere before and after the loading of ibuprofen (IBU) and the interactions between drug carriers and drug molecules simultaneously by scanning transmission X-ray microscopy (STXM). Nanoscaled X-ray absorption near edge structure (XANES) spectroscopy clearly indicates that IBU is bonded to calcium and silicate sites via carboxylic acid groups. More importantly, STXM has been successfully used to determine the absolute thickness of IBU, revealing its distribution in the CSH microsphere.Imaging is one of the most direct and ideal ways to track drug loading distributions in drug carriers on the molecular level, which will facilitate the optimization of drug carriers and drug loading capacities. Herein, we report the mapping of an individual mesoporous calcium silicate hydrate (CSH) microsphere before and after the loading of ibuprofen (IBU) and the interactions between drug carriers and drug molecules simultaneously by scanning transmission X-ray microscopy (STXM). Nanoscaled X-ray absorption near edge structure (XANES) spectroscopy clearly indicates that IBU is bonded to calcium and silicate sites via carboxylic acid groups. More importantly, STXM has been successfully used to determine the absolute thickness of IBU, revealing its distribution in the CSH microsphere. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07471h

  13. Facile synthesis of biphasic calcium phosphate microspheres with engineered surface topography for controlled delivery of drugs and proteins.

    PubMed

    Zarkesh, Ibrahim; Ghanian, Mohammad Hossein; Azami, Mahmoud; Bagheri, Fatemeh; Baharvand, Hossein; Mohammadi, Javad; Eslaminejad, Mohamadreza Baghaban

    2017-09-01

    Biphasic calcium phosphate (BCP) microspheres are of great interest due to their high stability and osteoinductive properties at specific compositions. However, the need for optimal performance at a unique composition limits their flexibility for tuning drug release by modulation of bulk properties and presents the question of engineering surface topography as an alternative. It is necessary to have a facile method to control surface topography at a defined bulk composition. Here, we have produced BCP microspheres with different surface topographies that have the capability to be used as tunable drug release systems. We synthesized calcium deficient hydroxyapatite (CDHA) microparticles by precipitating calcium and phosphate ions onto ethylenediaminetetraacetic acid (EDTA) templates. The morphology and surface topography of CDHA microparticles were controlled using process parameters, which governed nucleation and growth. These parameters included template concentration, heat rate, and stirring speed. Under low heat rate and static conditions, we could obtain spherical microparticles with long and short nanosheets on their surfaces at low and high EDTA concentrations, respectively. These nanostructured microspheres were subsequently crystallized by thermal treatment to produce EDTA-free BCP microspheres with intact morphology. These biocompatible BCP microspheres were highly effective in loading and prolonged release of both small molecule [dexamethasone (Dex)] and protein [bovine serum albumin (BSA)] models. This strategy has enabled us to control the surface topography of BCP microspheres at defined compositions and holds tremendous promise for drug delivery and tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Super-focusing of center-covered engineered microsphere

    PubMed Central

    Wu, Mengxue; Chen, Rui; Soh, Jiahao; Shen, Yue; Jiao, Lishi; Wu, Jianfeng; Chen, Xudong; Ji, Rong; Hong, Minghui

    2016-01-01

    Engineered microsphere possesses the advantage of strong light manipulation at sub-wavelength scale and emerges as a promising candidate to shrink the focal spot size. Here we demonstrated a center-covered engineered microsphere which can adjust the transverse component of the incident beam and achieve a sharp photonic nanojet. Modification of the beam width and working distance of the photonic nanojet were achieved by tuning the cover ratio of the engineered microsphere, leading to a sharp spot size which exceeded the optical diffraction limit. At a wavelength of 633 nm, a focal spot of 245 nm (0.387 λ) was achieved experimentally under plane wave illumination. Strong localized field with Bessel-like distribution was demonstrated by employing the linearly polarized beam and a center-covered mask being engineered on the microsphere. PMID:27528093

  15. Electrospinning of Polyaniline/Poly(Lactic Acid) Ultrathin Fibers: Process and Statistical Modeling using a Non-Gaussian Approach

    USDA-ARS?s Scientific Manuscript database

    Fibers of poly(lactic acid) (PLA) blended with p-toluenesulfonic acid-doped polyaniline, PAni.TSA, were obtained by lectrospinning, following a factorial design which was used mainly to study the effect of four process parameters (PLA solution concentration, PAni solution concentration, applied volt...

  16. Enhanced visible-light-driven photocatalytic H2-production activity of CdS-loaded TiO2 microspheres with exposed (001) facets

    NASA Astrophysics Data System (ADS)

    Gao, Bifen; Yuan, Xia; Lu, Penghui; Lin, Bizhou; Chen, Yilin

    2015-12-01

    CdS-loaded TiO2 microspheres with highly exposed (001) facets were prepared by hydrothermal treatment of a TiF4-HCl-H2O mixed solution followed by a chemical bath deposition of CdS onto TiO2 microspheres. The crystal structure, surficial micro-structure and photo-absorption property of the samples were characterized by XRD, FE-SEM, TEM and UV-vis diffuse reflectance spectroscopy, etc. The as-prepared samples exhibited superior visible-light-driven photocatalytic H2-production activity from lactic acid aqueous solution in comparison with CdS-sensitized TiO2 nanoparticles, whose surface was dominated by (101) facets. Photoelectrochemical measurement confirmed that (001) facet is beneficial for the transfer of photo-generated electron from CdS to TiO2 microsphere, which led to the unexpected high photocatalytic activity of CdS-loaded TiO2 microspheres.

  17. Protein microspheres for controlled drug delivery and related analysis of biopolymers

    NASA Astrophysics Data System (ADS)

    Kirk, James Forrest

    Rheumatoid arthritis (RA) is a systemic disorder which manifests itself most notably in the synovial joints. In recent years, methotrexate (MTX), a foliate antagonist, has been used with some success for treatment of RA. MTX has a maximum cumulative dose beyond which it becomes dangerous to administer due primarily to liver toxicity. This unfortunate side effect has prompted research into means of delivering MTX to the synovial joint in hopes of making more efficient use of the drug. Both MTX and its sodium salt (Na-MTX) were loaded into microspheres (MS) composed of bovine serum albumin (BSA) stabilized by cross linking with dialdehydes or ferric ion. MS were prepared with two levels of drug loading at two different levels of cross linking. MTX loading densities as high as 46.8% w/w were achieved in the aldehyde cross linking system and as high as 46.3% w/w were achieved with ferric ion cross linking. Using Na-MTX, the values were 37.2% w/w and 31.7% w/w respectively. Both MTX and Na-MTX were elutable from the MS into phosphate buffered saline at 37sp°C. MTX elution from aldehyde cross linked microspheres was load dependent with ca. 60% eluted by 9 hours at low loading and ca. 60% eluted by 24 hours at high loading. In the ferric ion cross link system, the elution was independent of loading with 50% elution occurring between 20 and 48 hours. Na-MTX elution was independent of drug loading or cross link system with 50% elution occurring in less than two hours in all cases. Other investigations included the loading of mitoxantrone (NOV) and of enzyme. NOV was loaded onto BSA microspheres to a concentration of 19.3% w/w and was used successfully in the treatment of murine ovarian tumors. Acid phosphatase was successfully loaded onto and into BSA microspheres. This enzyme retained its initial activity up to four months on post-loaded spheres. The enzyme also remained active inside the microsphere as demonstrated by a substrate cleavage assay.

  18. Two Isoforms of Yersinia pestis Plasminogen Activator Pla: Intraspecies Distribution, Intrinsic Disorder Propensity, and Contribution to Virulence.

    PubMed

    Dentovskaya, Svetlana V; Platonov, Mikhail E; Svetoch, Tat'yana E; Kopylov, Pavel Kh; Kombarova, Tat'yana I; Ivanov, Sergey A; Shaikhutdinova, Rima Z; Kolombet, Lyubov' V; Chauhan, Sadhana; Ablamunits, Vitaly G; Motin, Vladimir L; Uversky, Vladimir N; Anisimov, Andrey P

    2016-01-01

    It has been shown previously that several endemic Y. pestis isolates with limited virulence contained the I259 isoform of the outer membrane protease Pla, while the epidemic highly virulent strains possessed only the T259 Pla isoform. Our sequence analysis of the pla gene from 118 Y. pestis subsp. microtus strains revealed that the I259 isoform was present exclusively in the endemic strains providing a convictive evidence of more ancestral origin of this isoform. Analysis of the effects of the I259T polymorphism on the intrinsic disorder propensity of Pla revealed that the I259T mutation slightly increases the intrinsic disorder propensity of the C-terminal tail of Pla and makes this protein slightly more prone for disorder-based protein-protein interactions, suggesting that the T259 Pla could be functionally more active than the I259 Pla. This assumption was proven experimentally by assessing the coagulase and fibrinolytic activities of the two Pla isoforms in human plasma, as well as in a direct fluorometric assay with the Pla peptide substrate. The virulence testing of Pla-negative or expressing the I259 and T259 Pla isoforms Y. pestis subsp. microtus and subsp. pestis strains did not reveal any significant difference in LD50 values and dose-dependent survival assays between them by using a subcutaneous route of challenge of mice and guinea pigs or intradermal challenge of mice. However, a significant decrease in time-to-death was observed in animals infected with the epidemic T259 Pla-producing strains as compared to the parent Pla-negative variants. Survival curves of the endemic I259 Pla+ strains fit between them, but significant difference in mean time to death post infection between the Pla-strains and their I259 Pla+ variants could be seen only in the isogenic set of subsp. pestis strains. These findings suggest an essential role for the outer membrane protease Pla evolution in Y. pestis bubonic infection exacerbation that is necessary for intensification

  19. Secreted phospholipase A2 inhibitor modulates fatty acid composition and reduces obesity-induced inflammation in Beagle dogs.

    PubMed

    Xu, J; Bourgeois, H; Vandermeulen, E; Vlaeminck, B; Meyer, E; Demeyere, K; Hesta, M

    2015-05-01

    Secreted phospholipase A2 inhibitor (sPLA2i) has been reported to have an anti-inflammatory function by blocking the production of inflammatory mediators. Obesity is characterized by low-grade inflammation and oxidative stress. The aim of this study was to investigate the effects of dietary supplementation of sPLA2i on inflammation, oxidative stress and serum fatty acid profile in dogs. Seven obese and seven lean Beagle dogs were used in a 28-day double blind cross-over design. Dogs were fed a control diet without supplemental sPLA2i or an sPLA2i supplemented diet. The sPLA2i diet decreased plasma fibrinogen levels and increased the protein:fibrinogen ratio in obese dogs to levels similar to those of lean dogs fed the same diet. Obese dogs had a higher plasma concentration of the lipophilic vitamin A with potential antioxidative capacity and a lower ratio of retinol binding protein 4:vitamin A compared to lean dogs, independent of the diets. A higher proportion of myristic acid (C14:0) and a lower proportion of linoleic acid (C18:2n-6) were observed in the dogs fed with the sPLA2i diet compared to dogs fed with the control diet. Furthermore, a higher ratio of n-6 to n-3, a lower proportion of n-3 polyunsaturated fatty acids and lower omega-3 index were observed in obese compared to lean dogs. The results indicate that obese dogs are characterized by a more 'proinflammatory' serum fatty acid profile and that diet inclusion of sPLA2i may reduce inflammation and alter fatty acid profile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Enhanced thermal and mechanical properties of PLA/MoS2 nanocomposites synthesized via the in-situ ring-opening polymerization

    NASA Astrophysics Data System (ADS)

    Chen, Pengpeng; Liang, Xiao; Xu, Ying; Zhou, Yifeng; Nie, Wangyan

    2018-05-01

    In this work, MoS2 nanosheets were employed to reinforce PLA. In order to promote the homogeneous dispersion of MoS2 in PLA and form a strong interface between MoS2 and PLA, the MoS2 nanosheets were firstly modified by mercapto-ethylamine, and then functionalized with PLA chains through ring-opening polymerization of poly(L-lactide). The XRD, XPS, TGA and 1H NMR characterizations confirmed the successful amino and PLA functionalization of MoS2 nanosheets. The obtained MoS2-g-PLA nanosheets were then introduced to reinforce PLA. SEM images displayed that the MoS2-g-PLA nanosheets were dispersed in PLA matrix uniformly. TGA results showed that initial decomposition temperature was improved from 275.6 °C to 334.8 °C with 0.5 wt% of MoS2-g-PLA nanosheets. The storage modulus of PLA/MoS2-g-PLA-0.5 wt% in the glass state and rubber state were both greatly enhanced compared with neat PLA.

  1. Mechanism of the formation and growth of fine particles clustered polymer microspheres by simple one-step polymerization in aqueous alcohol system

    NASA Astrophysics Data System (ADS)

    Mao, Hui; Wen, Chao; Wu, Shuyao; Liu, Daliang; Zhang, Yu; Song, Xi-Ming

    2016-02-01

    By using the one-step copolymerization of styrene (St) and 1-vinyl-3-ethylimidazolium bromide (VEIB), fine particles clustered (FPC) poly(St-co-VEIB) microspheres have been successfully prepared in the present of sodium dodecylsulfonate (SDS) in aqueous alcohol system. The FPC poly(St-co-VEIB) microspheres are composed of small poly(St-co-VEIB) nanospheres with the average diameter of 40 nm. The formation mechanism of FPC poly(St-co-VEIB) microspheres is proposed by investigating the influence of reaction conditions on their morphologies and observing their growth process. It can be well convinced that VEIB not only acted as a kind of monomers, which participated in the polymerization and provided electropositivity for FPC poly(St-co-VEIB) microspheres, but also acted as emulsifier and reactive stabilizer. The FPC poly(St-co-VEI[SO3CF3]) microspheres, which were obtained by anion-exchange between -SO3CF3 of HSO3CF3 and Br- in FPC poly(St-co-VEIB) microspheres due to the existence of imidazolium groups with electropositivity, showed higher catalytic efficiency for hydration of 1,2-epoxypropane with H2O and esterification between acetic acid and ethanol than that of H2SO4.

  2. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres

    DOE PAGES

    Baginska, Marta; Blaiszik, Benjamin J.; Rajh, Tijana; ...

    2014-07-17

    Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anodemore » coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm –2 of PDA-coated microspheres to the electrode. Furthermore, the PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres.« less

  3. Melting of α'- and α-crystals of poly(lactic acid)

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, Maria Laura; Androsch, René

    2016-05-01

    The influence of chain structure on thermal stability of α'-crystals of poly(lactic acid) (PLA) with high L-lactic acid content (96-100 %) is detailed in this contribution. α'-crystals of PLA grow at temperatures below 120 °C, and spontaneously transform into stable α-modification during heating. Using conventional differential scanning calorimetry (DSC) and fast scanning chip calorimetry (FSC), a wide range of scanning rates, between about 10-1 and 102 K s-1 could be tested. It was found that reorganization of disordered α'-crystals into stable α-crystals can be suppressed by fast heating. The critical heating rate needed to completely melt α'-crystals and to avoid formation of α-crystals on continuation of heating varies with the chain composition, and decreases upon increase of the D-lactic acid content in the PLA chain.

  4. Cellular uptake and intracellular trafficking of PEG-b-PLA polymeric micelles.

    PubMed

    Zhang, Zhen; Xiong, Xiaoqin; Wan, Jiangling; Xiao, Ling; Gan, Lu; Feng, Youmei; Xu, Huibi; Yang, Xiangliang

    2012-10-01

    Besides as an inert carrier for hydrophobic anticancer agents, polymeric micelles composed of di-block copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-b-PLA) function as biological response modifiers including reversal of multidrug resistance in cancer. However, the uptake mechanisms and the subsequent intracellular trafficking remain to be elucidated. In this paper, we found that the uptake of PEG-b-PLA polymeric micelles incorporating nile red (M-NR) was significantly inhibited by both dynamin inhibitor dynasore and dynamin-2 dominant negative mutant (dynamin-2 K44A). Exogenously expressed caveolin-1 colocalized with M-NR and upregulated M-NR internalization in HepG2 cells expressing low level of endogenous caveolin-1, while caveolin-1 dominant negative mutant (caveolin-1 Y14F) significantly downregulated M-NR internalization in C6 cells expressing high level of endogenous caveolin-1. Exogenously expressed clathrin light chain A (clathrin LCa) did not mainly colocalize with the internalized M-NR and had no effect on M-NR uptake. These results suggested that dynamin- and caveolin-dependent but clathrin-independent endocytosis was involved in M-NR cellular uptake. We further found that M-NR colocalized with lysosome and microtubulin after internalization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization

    NASA Astrophysics Data System (ADS)

    Stoleru, Elena; Dumitriu, Raluca Petronela; Munteanu, Bogdanel Silvestru; Zaharescu, Traian; Tănase, Elisabeta Elena; Mitelut, Amalia; Ailiesei, Gabriela-Liliana; Vasile, Cornelia

    2016-03-01

    A novel two step procedure was applied for poly(lactic acid) (PLA) functionalization consisting in the exposure to cold radiofrequency plasma in nitrogen atmosphere or to gamma irradiation followed by ;grafting to; of a chitosan layer using carbodiimide chemistry. The adhesion and stability of the deposited surface layer was assured by plasma/gamma irradiation treatment while the chitosan layer offers antifungal/antibacterial/antioxidant activities. Chitosan with different viscosities/deacetylation degree was deposited by electrospinning or immersion methods. Correlations between rheological behavior of chitosan solutions and chitosan layer deposition conditions are made. The PLA surface properties were investigated by water contact angle measurements, ATR-FTIR spectroscopy, AFM, chemiluminiscence, etc. It has been established that the surface roughness increases direct proportional with cold plasma duration and gamma irradiation dose and further increases by chitosan coating which at its turn depends on chitosan characteristics (viscosity and deacetylation degree) and method of deposition. Nano-fibers with relatively homogeneous and reproducible features are obtained by electrospinning of highly viscous chitosan while with the other two types of chitosan both microparticles and nano-fibers are formed. The chitosan coating obtained by immersion is more homogenous and compact and has a better antibacterial activity than the electrospun layer as fiber meshes.

  6. Recent advances in testing of microsphere drug delivery systems.

    PubMed

    Andhariya, Janki V; Burgess, Diane J

    2016-01-01

    This review discusses advances in the field of microsphere testing. In vitro release-testing methods such as sample and separate, dialysis membrane sacs and USP apparatus IV have been used for microspheres. Based on comparisons of these methods, USP apparatus IV is currently the method of choice. Accelerated in vitro release tests have been developed to shorten the testing time for quality control purposes. In vitro-in vivo correlations using real-time and accelerated release data have been developed, to minimize the need to conduct in vivo performance evaluation. Storage stability studies have been conducted to investigate the influence of various environmental factors on microsphere quality throughout the product shelf life. New tests such as the floating test and the in vitro wash-off test have been developed along with advancement in characterization techniques for other physico-chemical parameters such as particle size, drug content, and thermal properties. Although significant developments have been made in microsphere release testing, there is still a lack of guidance in this area. Microsphere storage stability studies should be extended to include microspheres containing large molecules. An agreement needs to be reached on the use of particle sizing techniques to avoid inconsistent data. An approach needs to be developed to determine total moisture content of microspheres.

  7. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  8. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach.

    PubMed

    Gu, Bing; Burgess, Diane J

    2015-11-10

    Hydrophobic drug release from poly (lactic-co-glycolic acid) (PLGA) microspheres typically exhibits a tri-phasic profile with a burst release phase followed by a lag phase and a secondary release phase. High burst release can be associated with adverse effects and the efficacy of the formulation cannot be ensured during a long lag phase. Accordingly, the development of a long-acting microsphere product requires optimization of all drug release phases. The purpose of the current study was to investigate whether a blend of low and high molecular weight polymers can be used to reduce the burst release and eliminate/minimize the lag phase. A single emulsion solvent evaporation method was used to prepare microspheres using blends of two PLGA polymers (PLGA5050 (25 kDa) and PLGA9010 (113 kDa)). A central composite design approach was applied to investigate the effect of formulation composition on dexamethasone release from these microspheres. Mathematical models obtained from this design of experiments study were utilized to generate a design space with maximized microsphere drug loading and reduced burst release. Specifically, a drug loading close to 15% can be achieved and a burst release less than 10% when a composition of 80% PLGA9010 and 90 mg of dexamethasone is used. In order to better describe the lag phase, a heat map was generated based on dexamethasone release from the PLGA microsphere/PVA hydrogel composite coatings. Using the heat map an optimized formulation with minimum lag phase was selected. The microspheres were also characterized for particle size/size distribution, thermal properties and morphology. The particle size was demonstrated to be related to the polymer concentration and the ratio of the two polymers but not to the dexamethasone concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of composition ratio on the thermal and physical properties of semicrystalline PLA/PHB-HHx composites.

    PubMed

    Lim, Jung Seop; Park, Ku-il; Chung, Gun Soo; Kim, Jong Hoon

    2013-05-01

    In this study, composites of semicrystalline, biodegradable polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHB-HHx) were prepared by direct melt compounding. The physical and thermal properties of the composites were investigated as a function of the composition ratio. Differential scanning calorimetry analysis indicated that PLA and PHB-HHx formed immiscible composites over the observed range of composition. The crystallization of PLA was gradually suppressed by increasing proportions of PHB-HHx. Dynamic mechanical analysis results confirmed that the innate ductility of PHB-HHX and its inhibiting effect on PLA crystallization improved the stiffness of the composite compared to those of neat PLA. The infrared spectra of the immiscible PLA/PHB-HHx composites at two crystallization temperatures (30 °C, 130 °C) were obtained and presented. At 30 °C, PHB-HHx existed as crystalline domains in the PLA matrix, while, amorphous phase of molten PHB-HHx was diffused within the crystalline phase of PLA at 130 °C. The interaction between PHB-HHX and PLA could not be elucidated from the temperature data. Mechanical tests showed that the addition of PHB-HHx improves ductility of PLA/PHB-HHx composite. Morphological analysis revealed that small proportions of PHB-HHx exhibited less tendency to aggregate, which resulted in greater plastic deformation and improved toughness. From this study, PLA blended with small portions of PHB-HHx may further expand the use of bio-friendly resources in a variety of applications such as flexible films, food packaging and something like that. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Electrospun PLA: PCL composites embedded with unmodified and 3-aminopropyltriethoxysilane (ASP) modified halloysite nanotubes (HNT)

    NASA Astrophysics Data System (ADS)

    Haroosh, Hazim J.; Dong, Yu; Chaudhary, Deeptangshu S.; Ingram, Gordon D.; Yusa, Shin-ichi

    2013-02-01

    Electrospinning is a simple and versatile fiber synthesis technique in which a high-voltage electric field is applied to a stream of polymer melt or polymer solution, resulting in the formation of continuous micro/nanofibers. Halloysite nanotubes (HNT) have been found to achieve improved structural and mechanical properties when embedded into various polymer matrices. This research work focuses on blending poly( ɛ-caprolactone) (PCL) (9 and 15 wt%/v) and poly(lactic acid) (PLA) (fixed at 8 wt%/v) solutions with HNT at two different concentrations 1 and 2 wt%/v. Both unmodified HNT and HNT modified with 3-aminopropyltriethoxysilane (ASP) were utilized in this study. Fiber properties have been shown to be strongly related to the solution viscosity and electrical conductivity. The addition of HNT increased the solution viscosity, thus resulting in the production of uniform fibers. For both PCL concentrations, the average fiber diameter increased with the increasing of HNT concentration. The average fiber diameters with HNT-ASP were reduced considerably in comparison to those with unmodified HNT when using 15 wt%/v PCL. Slightly better dispersion was obtained for PLA: PCL composites embedded with HNT-ASP compared to unmodified HNT. Furthermore, the addition of HNT-ASP to the polymeric blends resulted in a moderate decrease in the degree of crystallinity, as well as slight reductions of glass transition temperature of PCL, the crystallization temperature and melting temperature of PLA within composite materials. The infrared spectra of composites confirmed the successful embedding of HNT-ASP into PLA: PCL nanofibers relative to unmodified HNT due to the premodification using ASP to reduce the agglomeration behavior. This study provides a new material system that could be potentially used in drug delivery, and may facilitate good control of the drug release process.

  11. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium

    PubMed Central

    2013-01-01

    Background The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. Results We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, 13C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. Conclusions We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In

  12. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium.

    PubMed

    Varman, Arul M; Yu, Yi; You, Le; Tang, Yinjie J

    2013-11-25

    The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, (13)C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In the late growth phase, the

  13. Functional magnetic microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Landel, Robert F. (Inventor); Yen, Shiao-Ping S. (Inventor)

    1981-01-01

    Functional magnetic particles are formed by dissolving a mucopolysaccharide such as chitosan in acidified aqueous solution containing a mixture of ferrous chloride and ferric chloride. As the pH of the solution is raised magnetite is formed in situ in the solution by raising the pH. The dissolved chitosan is a polyelectrolyte and forms micelles surrounding the granules at pH of 8-9. The chitosan precipitates on the granules to form microspheres containing the magnetic granules. On addition of the microspheres to waste aqueous streams containing dissolved ions, the hydroxyl and amine functionality of the chitosan forms chelates binding heavy metal cations such as lead, copper, and mercury and the chelates in turn bind anions such as nitrate, fluoride, phosphate and borate.

  14. Growth, structural, spectral, mechanical, thermal and dielectric characterization of phosphoric acid admixtured L-alanine (PLA) single crystals.

    PubMed

    Rose, A S J Lucia; Selvarajan, P; Perumal, S

    2011-10-15

    Phosphoric acid admixtured L-alanine (PLA) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 18 mm×12 mm×8 mm have been obtained in 28 days. The grown crystals were colorless and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV-visible transmittance spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Two Isoforms of Yersinia pestis Plasminogen Activator Pla: Intraspecies Distribution, Intrinsic Disorder Propensity, and Contribution to Virulence

    PubMed Central

    Dentovskaya, Svetlana V.; Platonov, Mikhail E.; Svetoch, Tat’yana E.; Kopylov, Pavel Kh.; Kombarova, Tat’yana I.; Ivanov, Sergey A.; Shaikhutdinova, Rima Z.; Kolombet, Lyubov’ V.; Chauhan, Sadhana; Ablamunits, Vitaly G.; Motin, Vladimir L.; Uversky, Vladimir N.

    2016-01-01

    It has been shown previously that several endemic Y. pestis isolates with limited virulence contained the I259 isoform of the outer membrane protease Pla, while the epidemic highly virulent strains possessed only the T259 Pla isoform. Our sequence analysis of the pla gene from 118 Y. pestis subsp. microtus strains revealed that the I259 isoform was present exclusively in the endemic strains providing a convictive evidence of more ancestral origin of this isoform. Analysis of the effects of the I259T polymorphism on the intrinsic disorder propensity of Pla revealed that the I259T mutation slightly increases the intrinsic disorder propensity of the C-terminal tail of Pla and makes this protein slightly more prone for disorder-based protein-protein interactions, suggesting that the T259 Pla could be functionally more active than the I259 Pla. This assumption was proven experimentally by assessing the coagulase and fibrinolytic activities of the two Pla isoforms in human plasma, as well as in a direct fluorometric assay with the Pla peptide substrate. The virulence testing of Pla-negative or expressing the I259 and T259 Pla isoforms Y. pestis subsp. microtus and subsp. pestis strains did not reveal any significant difference in LD50 values and dose-dependent survival assays between them by using a subcutaneous route of challenge of mice and guinea pigs or intradermal challenge of mice. However, a significant decrease in time-to-death was observed in animals infected with the epidemic T259 Pla-producing strains as compared to the parent Pla-negative variants. Survival curves of the endemic I259 Pla+ strains fit between them, but significant difference in mean time to death post infection between the Pla−strains and their I259 Pla+ variants could be seen only in the isogenic set of subsp. pestis strains. These findings suggest an essential role for the outer membrane protease Pla evolution in Y. pestis bubonic infection exacerbation that is necessary for

  16. Fabrication of (U,Am)O2 pellet with controlled porosity from oxide microspheres

    NASA Astrophysics Data System (ADS)

    Ramond, Laure; Coste, Philippe; Picart, Sébastien; Gauthé, Aurélie; Bataillea, Marc

    2017-08-01

    U1-xAmxO2±δ mixed-oxides are considered as promising compounds for americium heterogeneous transmutation in Sodium Fast Neutron Reactor. Porous microstructure is envisaged in order to facilitate helium and fission gas release and to reduce pellet swelling during irradiation and under self-irradiation. In this study, the porosity is created by reducing (U,Am)3O8 microspheres into (U,Am)O2 during the sintering. This reduction is accompanied by a decrease of the lattice volume that leads to the creation of open porosity. Finally, an (U0.90Am0.10)O2 porous ceramic pellet (D∼89% of the theoretical density TD) with controlled porosity (≥8% open porosity) was obtained from mixed-oxide microspheres obtained by the Weak Acid Resin (WAR) process.

  17. 5-Fluorouracil:carnauba wax microspheres for chemoembolization: an in vitro evaluation.

    PubMed

    Benita, S; Zouai, O; Benoit, J P

    1986-09-01

    5-Fluorouracil:carnauba wax microspheres were prepared using a meltable dispersion process with the aid of a surfactant as a wetting agent. It was noted that only hydrophilic surfactants were able to wet the 5-fluorouracil and substantially increased its content in the microspheres. No marked effect was observed in the particle size distribution of the solid microspheres as a function of the nature of the surfactant. Increasing the stirring rate in the preparation process decreased, first, the mean droplet size of the emulsified melted dispersion in the vehicle during the heating process, and, consequently, the mean particle size of the solidified microspheres during the cooling process. 5-Fluorouracil cumulative release from the microspheres followed first-order kinetics, as shown by nonlinear regression analysis. Although the kinetic results were not indicative of the true release mechanism from a single microsphere, it was believed that 5-fluorouracil release from the microspheres was probably governed by a dissolution process, rather than by a leaching process through the carnauba wax microspheres.

  18. Development and characterization of sugar palm starch and poly(lactic acid) bilayer films.

    PubMed

    Sanyang, M L; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J

    2016-08-01

    The development and characterization of environmentally friendly bilayer films from sugar palm starch (SPS) and poly(lactic acid) (PLA) were conducted in this study. The SPS-PLA bilayer films and their individual components were characterized for their physical, mechanical, thermal and water barrier properties. Addition of 50% PLA layer onto 50% SPS layer (SPS50-PLA50) increased the tensile strength of neat SPS film from 7.74 to 13.65MPa but reduced their elongation at break from 46.66 to 15.53%. The incorporation of PLA layer significantly reduced the water vapor permeability as well as the water uptake and solubility of bilayer films which was attributed to the hydrophobic characteristic of the PLA layer. Furthermore, scanning electron microscopy (SEM) image of SPS50-PLA50 revealed lack of strong interfacial adhesion between the SPS and PLA. Overall, the incorporation of PLA layer onto SPS films enhances the suitability of SPS based films for food packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Inhibition by local bupivacaine-releasing microspheres of acute postoperative pain from hairy skin incision.

    PubMed

    Ohri, Rachit; Wang, Jeffrey Chi-Fei; Blaskovich, Phillip D; Pham, Lan N; Costa, Daniel S; Nichols, Gary A; Hildebrand, William P; Scarborough, Nelson L; Herman, Clifford J; Strichartz, Gary R

    2013-09-01

    Acute postoperative pain causes physiological deficits and slows recovery. Reduction of such pain by local anesthetics that are delivered for several days postoperatively is a desirable clinical objective, which is approached by a new formulation and applied in animal studies reported here. We subcutaneously injected a new formulation of poly-lactic-co-glycolic acid polymer microspheres, which provides steady drug release for 96+ hours into rats at the dorsal region 2 hours before surgery. A single 1.2-cm-long skin incision was followed by blunt dissection of skin away from the underlying fascia, and closed by 2 sutures, followed by 14 days of testing. Microspheres containing 5, 10, 20, and 40 mg bupivacaine were injected locally 2 hours before surgery; bupivacaine-free microspheres were the vehicle control, and bupivacaine HCl solution (0.5%), the positive control. Mechanical sensitivity was determined by the frequency of local muscle contractions to repeated pokes with nylon monofilaments (von Frey hairs) exerting 4 and 15 g forces, testing, respectively, allodynia and hyperalgesia, and by pinprick. Injection of bupivacaine microspheres (40 mg drug) into intact skin reduced responses to 15 g von Frey hairs for 6 hours and to pinprick for 36 hours. Respective reductions from bupivacaine HCl lasted for 3 and 2 hours. Skin incision and dissection alone caused mechanical allodynia and hyperalgesia for 14 days. Microspheres containing 20 or 40 mg bupivacaine suppressed postoperative hypersensitivity for up to 3 days, reduced integrated allodynia (area under curve of response versus time) over postoperative days 1 to 5 by 51% ± 20% (mean ± SE) and 78% ± 12%, and reduced integrated hyperalgesia by 55% ± 13% and 64% ± 11%, for the respective doses. Five and ten milligrams bupivacaine in microspheres and the 0.5% bupivacaine solution were ineffective in reducing postoperative hypersensitivity, as were 40 mg bupivacaine microspheres injected contralateral to the

  20. New Method to Prepare Mitomycin C Loaded PLA-Nanoparticles with High Drug Entrapment Efficiency

    NASA Astrophysics Data System (ADS)

    Hou, Zhenqing; Wei, Heng; Wang, Qian; Sun, Qian; Zhou, Chunxiao; Zhan, Chuanming; Tang, Xiaolong; Zhang, Qiqing

    2009-07-01

    The classical utilized double emulsion solvent diffusion technique for encapsulating water soluble Mitomycin C (MMC) in PLA nanoparticles suffers from low encapsulation efficiency because of the drug rapid partitioning to the external aqueous phase. In this paper, MMC loaded PLA nanoparticles were prepared by a new single emulsion solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of MMC by formation of MMC-SPC complex. Four main influential factors based on the results of a single-factor test, namely, PLA molecular weight, ratio of PLA to SPC (wt/wt) and MMC to SPC (wt/wt), volume ratio of oil phase to water phase, were evaluated using an orthogonal design with respect to drug entrapment efficiency. The drug release study was performed in pH 7.2 PBS at 37 °C with drug analysis using UV/vis spectrometer at 365 nm. MMC-PLA particles prepared by classical method were used as comparison. The formulated MMC-SPC-PLA nanoparticles under optimized condition are found to be relatively uniform in size (594 nm) with up to 94.8% of drug entrapment efficiency compared to 6.44 μm of PLA-MMC microparticles with 34.5% of drug entrapment efficiency. The release of MMC shows biphasic with an initial burst effect, followed by a cumulated drug release over 30 days is 50.17% for PLA-MMC-SPC nanoparticles, and 74.1% for PLA-MMC particles. The IR analysis of MMC-SPC complex shows that their high liposolubility may be attributed to some weak physical interaction between MMC and SPC during the formation of the complex. It is concluded that the new method is advantageous in terms of smaller size, lower size distribution, higher encapsulation yield, and longer sustained drug release in comparison to classical method.

  1. Optimization of sustained release aceclofenac microspheres using response surface methodology.

    PubMed

    Deshmukh, Rameshwar K; Naik, Jitendra B

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14±0.015% to 85.34±0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12h. The optimized microspheres formulation showed E.E. of 84.87±0.005 with small error value (1.39). The low magnitudes of error and the significant value of R(2) in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Doxorubicin-loaded PLA/pearl electrospun nanofibrous scaffold for drug delivery and tumor cell treatment

    NASA Astrophysics Data System (ADS)

    Dai, Jiamu; Jin, Junhong; Yang, Shenglin; Li, Guang

    2017-07-01

    A drug-loaded implantable scaffold is a promising substitute for the treatment of tissue defects after a tumor resection operation. In this work, natural pearl powder with good biocompatibility and osteoconductivity was incorporated into polylactic (PLA) nanofibers via electrospinning, and doxorubicin hydrochloride (DOX) was also loaded in the PLA/pearl scaffold, resulting in a drug-loaded composite nanofibrous scaffold (DOX@PLA/pearl). In vitro drug delivery of DOX from a PLA/pearl composite scaffold was measured and in vitro anti-tumor efficacy was also examined, in particular the effect of the pearl content on both key properties were studied. The results showed that DOX was successfully loaded into PLA/pearl composite nanofibrous scaffolds with different pearl content. More importantly, the delivery rate of DOX kept rising as the pearl content increased, and the anti-tumor efficacy of the drug-loaded scaffold on HeLa cells was improved at an appropriate pearl powder concentration. Thus, we expect that the prepared DOX@PLA/pearl powder nanofibrous mat is a highly promising implantable scaffold that has great potential in postoperative cancer treatment.

  3. Method of detecting luminescent target ions with modified magnetic microspheres

    DOEpatents

    Shkrob, Ilya A; Kaminski, Michael D

    2014-05-13

    This invention provides methods of using modified magnetic microspheres to extract target ions from a sample in order to detect their presence in a microfluidic environment. In one or more embodiments, the microspheres are modified with molecules on the surface that allow the target ions in the sample to form complexes with specific ligand molecules on the microsphere surface. In one or more embodiments, the microspheres are modified with molecules that sequester the target ions from the sample, but specific ligand molecules in solution subsequently re-extract the target ions from the microspheres into the solution, where the complexes form independent of the microsphere surface. Once the complexes form, they are exposed to an excitation wavelength light source suitable for exciting the target ion to emit a luminescent signal pattern. Detection of the luminescent signal pattern allows for determination of the presence of the target ions in the sample.

  4. Measurement of thermal diffusivity of depleted uranium metal microspheres

    NASA Astrophysics Data System (ADS)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-03-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  5. Characterization of Lignocellulosic-Poly(lactic acid) reinforced composites

    Treesearch

    Q.X. Hou; X.S. Chai; R. Yang; T. Elder; A.J. Ragauskas

    2005-01-01

    The effects of adding poly(lactic acid) (PLA) to the physical strength of paper test sheets prepared from three unbleached loblolly pine kraft pulps with different amounts of lignin and an aspen bleached chemothermomechanical pulp were studied. The physical strength studies demonstrated that relatively low levels of PLA addition (0.5-4.0%) could dramatically improve...

  6. Thermal expansion of an epoxy-glass microsphere composite

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Burks, H. D.

    1977-01-01

    The thermal expansion of a composite of epoxy (diglycidyl ether of bisphenol A) and solid glass microspheres was investigated. The microspheres had surfaces which were either untreated or treated with a silicone release agent, an epoxy coupling agent, or a general purpose silane coupling agent. Both room temperature (about 300 K) and elevated temperature (about 475 K) cures were used for the epoxy. Two microsphere size ranges were used, about 50 microns, which is applicable in filled moldings, and about 125 microns, which is applicable as bond line spacers. The thermal expansion of the composites was measured from 300 to 350 K or from 300 to 500 K, depending on the epoxy cure temperature. Measurements were made on composites containing up to .6 volume fraction microspheres. Two predictive models, which required only the values of thermal expansion of the polymer and glass and their specific gravities, were tested against the experimental data. A finite element analysis was made of the thermal strain of a composite cell containing a single microsphere surrounded by a finite-thickness interface.

  7. Structure and Barrier Properties of Multinanolayered Biodegradable PLA/PBSA Films: Confinement Effect via Forced Assembly Coextrusion.

    PubMed

    Messin, Tiphaine; Follain, Nadège; Guinault, Alain; Sollogoub, Cyrille; Gaucher, Valérie; Delpouve, Nicolas; Marais, Stéphane

    2017-08-30

    Multilayer coextrusion processing was applied to produce 2049-layer film of poly(butylene succinate-co-butylene adipate) (PBSA) confined against poly(lactic acid) (PLA) using forced assembly, where the PBSA layer thickness was about 60 nm. This unique technology allowed to process semicrystalline PBSA as confined polymer and amorphous PLA as confining polymer in a continuous manner. The continuity of PBSA layers within the 80/20 wt % PLA/PBSA layered films was clearly evidenced by atomic force microscopy (AFM). Similar thermal events to the reference films were revealed by thermal studies; indicating no diffusion of polymers during the melt-processing. Mechanical properties were measured for the multilayer film and the obtained results were those expected considering the fraction of each polymer, revealing the absence of delamination in the PLA/PBSA multinanolayer film. The confinement effect induced by PLA led to a slight orientation of the crystals, an increase of the rigid amorphous fraction (RAF) in PBSA with a densification of this fraction without changing film crystallinity. These structural changes allowed to strongly improve the water vapor and gas barrier properties of the PBSA layer into the multilayer film up to two decades in the case of CO 2 gas. By confining the PBSA structure in very thin and continuous layers, it was then possible to improve the barrier performances of a biodegradable system and the resulting barrier properties were successfully correlated to the effect of confinement on the microstructure and the chain segment mobility of the amorphous phase. Such investigation on these multinanolayers of PLA/PBSA with the aim of evidencing relationships between microstructure implying RAF and barrier performances has never been performed yet. Besides, gas and water permeation results have shown that the barrier improvement obtained from the multilayer was mainly due to the reduction of solubility linked to the reduction of the free volume while

  8. Effect of Polymer Porosity on Aqueous Self-Healing Encapsulation of Proteins in PLGA Microspheres

    PubMed Central

    Reinhold, Samuel E.

    2014-01-01

    Self-healing (SH) poly(lactic-co-glycolic acid) (PLGA) microspheres are a unique class of functional biomaterials capable of microencapsulating process-sensitive proteins by simple mixing and heating the drug-free polymer in aqueous protein solution. Drug-free SH microspheres of PLGA 50/50 with percolating pore networks of varying porosity (ε = 0.49–73) encapsulate increasing lysozyme (~1–10% w/w) with increasing ε, with typically ~20–25% pores estimated assessible to entry by the enzyme from the external solution. Release kinetics of lysozyme under physiological conditions is continuous over > 2 weeks and most strongly influenced by ε and protein loading before reaching a lag phase until 28 days at the study completion. Recovered enzyme after release is typically predominantly monomeric and active. Formulations containing acid-neutralizing MgCO3 at >4.3% exhibit >97% monomeric and active protein after the release with full mass balance recovery. Hence, control of SH polymer ε is a key parameter to development of this new class of biomaterials. PMID:24285573

  9. Generation of N-Acylphosphatidylethanolamine by Members of the Phospholipase A/Acyltransferase (PLA/AT) Family*

    PubMed Central

    Uyama, Toru; Ikematsu, Natsuki; Inoue, Manami; Shinohara, Naoki; Jin, Xing-Hua; Tsuboi, Kazuhito; Tonai, Takeharu; Tokumura, Akira; Ueda, Natsuo

    2012-01-01

    Bioactive N-acylethanolamines (NAEs), including N-palmitoylethanolamine, N-oleoylethanolamine, and N-arachidonoylethanolamine (anandamide), are formed from membrane glycerophospholipids in animal tissues. The pathway is initiated by N-acylation of phosphatidylethanolamine to form N-acylphosphatidylethanolamine (NAPE). Despite the physiological importance of this reaction, the enzyme responsible, N-acyltransferase, remains molecularly uncharacterized. We recently demonstrated that all five members of the HRAS-like suppressor tumor family are phospholipid-metabolizing enzymes with N-acyltransferase activity and are renamed HRASLS1–5 as phospholipase A/acyltransferase (PLA/AT)-1–5. However, it was poorly understood whether these proteins were involved in the formation of NAPE in living cells. In the present studies, we first show that COS-7 cells transiently expressing recombinant PLA/AT-1, -2, -4, or -5, and HEK293 cells stably expressing PLA/AT-2 generated significant amounts of [14C]NAPE and [14C]NAE when cells were metabolically labeled with [14C]ethanolamine. Second, as analyzed by liquid chromatography-tandem mass spectrometry, the stable expression of PLA/AT-2 in cells remarkably increased endogenous levels of NAPEs and NAEs with various N-acyl species. Third, when NAPE-hydrolyzing phospholipase D was additionally expressed in PLA/AT-2-expressing cells, accumulating NAPE was efficiently converted to NAE. We also found that PLA/AT-2 was partly responsible for NAPE formation in HeLa cells that endogenously express PLA/AT-2. These results suggest that PLA/AT family proteins may produce NAPEs serving as precursors of bioactive NAEs in vivo. PMID:22825852

  10. Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites.

    PubMed

    Arjmandi, Reza; Hassan, Azman; Haafiz, M K M; Zakaria, Zainoha; Islam, Md Saiful

    2016-01-01

    Polylactic acid (PLA) nanocomposites reinforced with hybrid montmorillonite/cellulose nanowhiskers [MMT/CNW(SO4)] were prepared by solution casting. The CNW(SO4) nanofiller was first isolated from microcrystalline cellulose using acid hydrolysis treatment. PLA/MMT/CNW(SO4) hybrid nanocomposites were prepared by the addition of various amounts of CNW(SO4) [1-9 parts per hundred parts of polymer (phr)] into PLA/MMT nanocomposite at 5 phr MMT content, based on highest tensile strength values as reported previously. The biodegradability, thermal, tensile, morphological, water absorption and transparency properties of PLA/MMT/CNW(SO4) hybrid nanocomposites were investigated. The Biodegradability, thermal stability and crystallinity of hybrid nanocomposites increased compared to PLA/MMT nanocomposite and neat PLA. The highest tensile strength of hybrid nanocomposites was obtained by incorporating 1 phr CNW(SO4) [∼ 36 MPa]. Interestingly, the ductility of hybrid nanocomposites increased significantly by 87% at this formulation. The Young's modulus increased linearly with increasing CNW(SO4) content. This is due to the relatively good dispersion of nanofillers in the hybrid nanocomposites, as revealed by transmission electron microscopy. Fourier transform infrared spectroscopy indicated the formation of some polar interactions. In addition, water resistance of the hybrid nanocomposites improved and the visual transparency of neat PLA film did not affect by addition of CNW(SO4). Copyright © 2015 Elsevier B.V. All rights reserved.

  11. RNA Whole-Mount In situ Hybridisation Proximity Ligation Assay (rISH-PLA), an Assay for Detecting RNA-Protein Complexes in Intact Cells.

    PubMed

    Roussis, Ioannis M; Guille, Matthew; Myers, Fiona A; Scarlett, Garry P

    2016-01-01

    Techniques for studying RNA-protein interactions have lagged behind those for DNA-protein complexes as a consequence of the complexities associated with working with RNA. Here we present a method for the modification of the existing In Situ Hybridisation-Proximity Ligation Assay (ISH-PLA) protocol to adapt it to the study of RNA regulation (rISH-PLA). As proof of principle we used the well-characterised interaction of the Xenopus laevis Staufen RNA binding protein with Vg1 mRNA, the complex of which co-localises to the vegetal pole of Xenopus oocytes. The applicability of both the Stau1 antibody and the Locked Nucleic Acid probe (LNA) recognising Vg1 mRNA were independently validated by whole-mount Immunohistochemistry and whole-mount in situ hybridisation assays respectively prior to combining them in the rISH-PLA assay. The rISH-PLA assay allows the identification of a given RNA-protein complex at subcellular and single cell resolution, thus avoiding the lack of spatial resolution and sensitivity associated with assaying heterogenous cell populations from which conventional RNA-protein interaction detection techniques suffer. This technique will be particularly usefully for studying the activity of RNA binding proteins (RBPs) in complex mixtures of cells, for example tissue sections or whole embryos.

  12. Leptin attenuates lipopolysaccharide-induced apoptosis of thymocytes partially via down-regulation of cPLA2 and p38 MAPK activation.

    PubMed

    Liang, Chen; Liao, Jie; Deng, Zihui; Song, Cuihong; Zhang, Jinying; Zabeau, Lennart; Tavernier, Jan; Zhang, Kai; Xue, Hui; Yan, Guangtao

    2013-03-01

    Leptin, a 16-kDa protein that is mainly secreted by adipocytes, plays a protective role in many cell types. It has been shown that leptin acts in the central and peripheral immune system to protect thymocytes. Cytosolic phospholipase A(2) (cPLA(2)) is an enzyme that can specifically initiate the release of arachidonic acid (AA) to produce eicosanoids, which regulate inflammation and immune responses. Our previous work has shown that leptin is important to prevent apoptosis of thymocytes. However, the role of cPLA(2) is still unclear, and the precise mechanism also remains to be elucidated. In this work, we demonstrated that leptin inhibited the LPS-induced toxicity and apoptosis of thymocytes. Western blot and RT-PCR showed that leptin led to a reduction of cPLA(2) activity and mRNA level, as well as caspase-3 cleavage. Moreover, we found that leptin could decrease the activation of p38 MAPK. Accordingly, we pre-treated apoptotic thymocytes with the p38 MAPK inhibitor, SB203580 and observed an effect similar to the leptin alone treated group. SB203580 also suppressed expression of cPLA(2) and cleavage of caspase-3. Based on these results, we suggest that leptin could attenuate LPS-induced apoptotic injury in mouse thymocyte cells, mainly through the p38/cPLA(2) signalling pathway. The study of the regulatory role of leptin in LPS-induced thymocyte apoptosis can help to explain the role of leptin in the immune system and may provide a novel treatment option in cases of severe trauma, infection, shock, organ failure and autoimmune disease caused by thymic atrophy. Copyright © 2013. Published by Elsevier B.V.

  13. Material Characterization of Microsphere-Based Scaffolds with Encapsulated Raw Materials

    PubMed Central

    Sridharan, BanuPriya; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.

    2016-01-01

    “Raw materials,” or materials capable of serving both as building blocks and as signals, which are often but not always natural materials, are taking center stage in biomaterials for contemporary regenerative medicine. In osteochondral tissue engineering, a field leveraging the underlying bone to facilitate cartilage regeneration, common raw materials include chondroitin sulfate (CS) for cartilage and β-tricalcium phosphate (TCP) for bone. Building on our previous work with gradient scaffolds based on microspheres, here we delved deeper into the characterization of individual components. In the current study, the release of CS and TCP from poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds was evaluated over a time period of 4 weeks. Raw material encapsulated groups were compared to ‘blank’ groups and evaluated for surface topology, molecular weight, and mechanical performance as a function of time. The CS group may have led to increased surface porosity, and the addition of CS improved the mechanical performance of the scaffold. The finding that CS was completely released into the surrounding media by 4 weeks has a significant impact on future in vivo studies, given rapid bioavailability. The addition of TCP seemed to contribute to the rough external appearance of the scaffold. The current study provides an introduction to degradation patterns of homogenous raw material encapsulated scaffolds, providing characterization data to advance the field of microsphere-based scaffolds in tissue engineering. PMID:27040236

  14. Starch/fiber/poly(lactic acid) foam and compressed foam composites

    USDA-ARS?s Scientific Manuscript database

    Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...

  15. Beat frequency ultrasonic microsphere contrast agent detection system

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III (Inventor); Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    1995-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  16. Beat frequency ultrasonic microsphere contrast agent detection system

    NASA Technical Reports Server (NTRS)

    Pretlow, III, Robert A. (Inventor); Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    1997-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  17. Preparation and in vitro/in vivo evaluation of PLGA microspheres containing norquetiapine for long-acting injection.

    PubMed

    Park, Chun-Woong; Lee, Hyo-Jung; Oh, Dong-Won; Kang, Ji-Hyun; Han, Chang-Soo; Kim, Dong-Wook

    2018-01-01

    Norquetiapine ( N -desalkyl quetiapine, NQ) is an active metabolite of quetiapine with stable pharmacokinetic and pharmacological properties. However, its short half-life is a drawback for clinical applications, and long-acting formulations are required. The objectives of this study were to prepare improved entrapment efficiency NQ freebase microspheres by the solvent evaporation method with poly(d,l-lactic-co-glycolic acid) (PLGA) as a release modulator and to evaluate their physicochemical and in vitro/in vivo release properties. NQ freebase PLGA (1:5 w/w) formulations were prepared by the oil-in-water (o/w) emulsion-solvent evaporation method. A solution of the drug and PLGA in 9:1 v/v dichloromethane:ethanol was mixed with 0.2% polyvinyl alcohol and homogenized at 2,800 rpm. The emulsion was stirred for 3 h to dilute and evaporate the solvent. After that, the resulting product was freeze-dried. Drug-loading capacity was measured by the validated RP-HPLC method. The surface morphology of the microspheres was observed by scanning electron microscopy (SEM), and the physicochemical properties were evaluated by differential scanning calorimetry, powder X-ray diffraction, and Fourier-transform infrared spectroscopy particle size distribution. The in vitro dissolution test was performed using a rotary shaking bath at 37°C, with constant shaking at 50 rpm in sink condition. The NQ freebase microspheres prepared by o/w emulsion-solvent evaporation showed over 30% efficiency. NQ was confirmed to be amorphous in the microspheres by powder X-ray diffraction and differential scanning calorimetry. Special chemical interaction in the microspheres was not observed by FT-IR. The in vitro dissolution test demonstrated that the prepared microspheres' release properties were maintained for more than 20 days. The in vivo test also confirmed that the particles' long acting properties were maintained. Therefore, good in vitro-in vivo correlation was established. In this study, NQ

  18. FORMULATION AND EVALUATION OF MICROSPHERES CONTAINING LOSARTAN POTASSIUM BY SPRAY-DRYING TECHNIQUE.

    PubMed

    Balwierz, Radoslaw; Jankowski, Andrzej; Jasinska, Agata; Marciniak, Dominik; Pluta, Janusz

    2016-09-01

    Despite numerous applications of microspheres, few works devoted to the preparation of microspheres containing cardiac medications have been published. This study presents the potential of receiving microspheres containing losartan potassium, based on a matrix containing Eudragit L30D55. The study focuses on the possibilities of controlled release of losartan potassium from microspheres in order to reduce the dosage frequency, and also provides information on the effect of the addition of excipients to the quality of the microspheres. Microspheres are monolithic, porous or smooth microparticles ranging from 1 to 500 microns in size. For the preparation of microspheres containing losartan potassium, the spray-drying method was used. The performed study confirmed that the spray-drying technology used to obtain microspheres meets the criteria of size and morphology of the microparticles. The assessment of the kinetics of losartan potassium release from the examined microspheres demonstrated that the release profile followed the first- and/or zero-order kinetics. The use of spray-drying techniques as well as Eudragit L30D55 polymer matrix to obtain the microspheres containing losartan potassium makes it possible to obtain a product with the required particle morphology and particle size ensuring the release of the active substance up to 12 h.

  19. [Pharmacokinetics of α-asarone after intranasal and intravenous administration with PLA-α-asarone nanoparticles].

    PubMed

    Lu, Jin; Guo, Li-Wei; Fu, Ting-Ming; Zhu, Guo-Long; Dai, Zhen-Nan; Zhan, Guan-Jun; Chen, Li-Li

    2017-06-01

    PLA-α-asarone nanoparticles were prepared by using organic solvent evaporation method, and their in vivo distribution and brain targeting after intranasal administration were studied as compared with intravenous administration. The results showed that brain targeting coefficient of PLA-α-asarone nanoparticles after intranasal and intravenous administration was 1.65 and 1.16 respectively. The absolute bioavailability, brain-targeting efficiency and the percentage of nasal-brain delivery of PLA-α-asarone nanoparticles were 74.2%, 142.24 and 29.83%, respectively after intranasal administration. The results of fluorescence labeling showed that the fluorescent intensity of coumarin-6 in the brain tissue was the highest after intranasal administration of PLA-α-asarone fluorescent nanoparticles, achieving the purpose of brain-targeted drug delivery. The fluorescent intensity of coumarin-6 in liver tissue after intravenous administration of PLA-α-asarone nanoparticles was much higher than that after intranasal administration, indicating that intranasal administration of PLA-α-asarone nanoparticles could decrease drug-induced hepatotoxicity. In addition, the fluorescent intensity of coumarin-6 in lung tissue was weaker after intranasal administration, which solved the shortcomings of intranasal administration of α-asarone dry powder prepared by airflow pulverization method. In vivo studies indicated that PLA-α-asarone nanoparticles after intranasal administration had a stronger brain targeting as compared with intravenous administration. Copyright© by the Chinese Pharmaceutical Association.

  20. Moving the Starting Line through Prior Learning Assessment (PLA). Research Brief

    ERIC Educational Resources Information Center

    Council for Adult and Experiential Learning (NJ1), 2011

    2011-01-01

    Prior learning assessment (PLA) methods can help adult students earn college credit for what they already know. PLA can be an important offering by postsecondary degree programs because it can save students time and money. In addition, the Council for Adult and Experiential Learning's (CAEL's) "Fueling the Race to Postsecondary Success"…