Science.gov

Sample records for acid prevents calcium

  1. N-methyl-D-aspartate preconditioning prevents quinolinic acid-induced deregulation of glutamate and calcium homeostasis in mice hippocampus.

    PubMed

    Vandresen-Filho, S; Severino, P C; Constantino, L C; Martins, W C; Molz, S; Dal-Cim, T; Bertoldo, D B; Silva, F R M B; Tasca, C I

    2015-02-01

    The search for new therapeutic strategies through modulation of glutamatergic transmission using effective neuroprotective agents is essential. Glutamatergic excitotoxicity is a major factor common to neurodegenerative diseases and in acute events such as cerebral ischemia, traumatic brain injury and epilepsy. We have previously demonstrated that N-methyl-D-aspartate (NMDA) preconditioning in mice showed 50 % of protection against seizures and full protection against damage to neuronal tissue induced by quinolinic acid (QA). In this study, cellular and molecular mechanisms involved on NMDA preconditioning and neuroprotection were investigated in mice treated with NMDA 24 h before QA insult. Calcium uptake and D-aspartate release from hippocampal slices obtained from mice treated with NMDA plus QA and not displaying seizures (protected mice) were similar to control (saline) or NMDA preconditioned mice. Increased calcium uptake and glutamate release is evidenced in unprotected (convulsed) mice as well as QA control, demonstrating that calcium and glutamate are involved in NMDA-induced preconditioning. Increased glutamate release evoked by QA was blocked by MK-801, whereas increased calcium uptake was abolished by voltage-dependent calcium channels inhibitors, but not MK-801. NMDA preconditioning is effective in normalizing the deregulation of glutamate transport and calcium homeostasis evoked by QA due to aberrant NMDA receptors activation that culminates in seizures and hippocampal cells damage. PMID:25367806

  2. The Role of Calcium in Prevention and Treatment of Osteoporosis.

    ERIC Educational Resources Information Center

    Heaney, Robert P.

    1987-01-01

    Osteoporosis results from several factors. Calcium deficiency is only one, and high calcium intake will prevent only those cases in which calcium is the limiting factor. Calcium cannot reverse, but only arrest, bone loss. A high calcium intake for every member of the population is advocated. (Author/MT)

  3. Acidic Calcium Stores of Saccharomyces cerevisiae

    PubMed Central

    Cunningham, Kyle W.

    2011-01-01

    Fungi and animals constitute sister kingdoms in the eukaryotic domain of life. The major classes of transporters, channels, sensors, and effectors that move and respond to calcium ions were already highly networked in the common ancestor of fungi and animals. Since that time, some key components of the network have been moved, altered, relocalized, lost, or duplicated in the fungal and animal lineages and at the same time some of the regulatory circuitry has been dramatically rewired. Today the calcium transport and signaling networks in fungi provide a fresh perspective on the scene that has emerged from studies of the network in animal cells. This review provides an overview of calcium signaling networks in fungi, particularly the model yeast Saccharomyces cerevisiae, with special attention to the dominant roles of acidic calcium stores in fungal cell physiology. PMID:21377728

  4. Acidic calcium stores of Saccharomyces cerevisiae.

    PubMed

    Cunningham, Kyle W

    2011-08-01

    Fungi and animals constitute sister kingdoms in the eukaryotic domain of life. The major classes of transporters, channels, sensors, and effectors that move and respond to calcium ions were already highly networked in the common ancestor of fungi and animals. Since that time, some key components of the network have been moved, altered, relocalized, lost, or duplicated in the fungal and animal lineages and at the same time some of the regulatory circuitry has been dramatically rewired. Today the calcium transport and signaling networks in fungi provide a fresh perspective on the scene that has emerged from studies of the network in animal cells. This review provides an overview of calcium signaling networks in fungi, particularly the model yeast Saccharomyces cerevisiae, with special attention to the dominant roles of acidic calcium stores in fungal cell physiology. PMID:21377728

  5. Retinoic acid affects calcium signaling in adult molluscan neurons

    PubMed Central

    Vesprini, Nicholas D.; Dawson, Taylor F.; Yuan, Ye; Bruce, Doug

    2014-01-01

    Retinoic acid, the active metabolite of vitamin A, is important for nervous system development, regeneration, as well as cognitive functions of the adult central nervous system. These central nervous system functions are all highly dependent on neuronal activity. Retinoic acid has previously been shown to induce changes in the firing properties and action potential waveforms of adult molluscan neurons in a dose- and isomer-dependent manner. In this study, we aimed to determine the cellular pathways by which retinoic acid might exert such effects, by testing the involvement of pathways previously shown to be affected by retinoic acid. We demonstrated that the ability of all-trans retinoic acid (atRA) to induce electrophysiological changes in cultured molluscan neurons was not prevented by inhibitors of protein synthesis, protein kinase A or phospholipase C. However, we showed that atRA was capable of rapidly reducing intracellular calcium levels in the same dose- and isomer-dependent manner as shown previously for changes in neuronal firing. Moreover, we also demonstrated that the transmembrane ion flux through voltage-gated calcium channels was rapidly modulated by retinoic acid. In particular, the peak current density was reduced and the inactivation rate was increased in the presence of atRA, over a similar time course as the changes in cell firing and reductions in intracellular calcium. These studies provide further evidence for the ability of atRA to induce rapid effects in mature neurons. PMID:25343782

  6. Retinoic acid affects calcium signaling in adult molluscan neurons.

    PubMed

    Vesprini, Nicholas D; Dawson, Taylor F; Yuan, Ye; Bruce, Doug; Spencer, Gaynor E

    2015-01-01

    Retinoic acid, the active metabolite of vitamin A, is important for nervous system development, regeneration, as well as cognitive functions of the adult central nervous system. These central nervous system functions are all highly dependent on neuronal activity. Retinoic acid has previously been shown to induce changes in the firing properties and action potential waveforms of adult molluscan neurons in a dose- and isomer-dependent manner. In this study, we aimed to determine the cellular pathways by which retinoic acid might exert such effects, by testing the involvement of pathways previously shown to be affected by retinoic acid. We demonstrated that the ability of all-trans retinoic acid (atRA) to induce electrophysiological changes in cultured molluscan neurons was not prevented by inhibitors of protein synthesis, protein kinase A or phospholipase C. However, we showed that atRA was capable of rapidly reducing intracellular calcium levels in the same dose- and isomer-dependent manner as shown previously for changes in neuronal firing. Moreover, we also demonstrated that the transmembrane ion flux through voltage-gated calcium channels was rapidly modulated by retinoic acid. In particular, the peak current density was reduced and the inactivation rate was increased in the presence of atRA, over a similar time course as the changes in cell firing and reductions in intracellular calcium. These studies provide further evidence for the ability of atRA to induce rapid effects in mature neurons. PMID:25343782

  7. Vitamin D and Calcium for Fracture Prevention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inadequate intakes of vitamin D and calcium lead to reduced calcium absorption, higher bone-remodeling rates and increased bone loss. Vitamin D has also been linked to muscle function and risk of falling. In older men and women, higher 25-hydroxyvitamin D [25(OH)D] levels are associated with bette...

  8. Calcium Supplementation to Prevent Preeclampsia: Translating Guidelines into Practice in Low-Income Countries.

    PubMed

    Omotayo, Moshood O; Dickin, Katherine L; O'Brien, Kimberly O; Neufeld, Lynnette M; De Regil, Luz Maria; Stoltzfus, Rebecca J

    2016-03-01

    The WHO issued a strong recommendation that pregnant women be provided calcium supplements to prevent preeclampsia. This is the first recommended nutritional intervention to prevent this condition, a leading cause of maternal mortality globally. As health systems seek to implement this new intervention, a number of issues require further clarification and guidance, including dosage regimen, supplement formulation, and alignment with other antenatal nutritional interventions. We summarize key evidence on the above points and offer our views on good practices. Most developing countries have low calcium intake, so where habitual calcium intake is unknown, calcium supplements are likely beneficial. In our view, policymakers and program planners should consider adopting doses between 1.0 and 1.5 g elemental calcium/d, depending on the local average and variation in dietary calcium intake, logistical feasibility, and acceptability in the target population. Prudent practice would entail daily administration as calcium carbonate administered in divided doses of not >500 mg elemental calcium per dose. For ease of prescribing and adherence, calcium [as with iron and folic acid (IFA)] should be administered routinely to pregnant women from the earliest contact in pregnancy until delivery. Calcium's acute inhibitory effect on iron absorption translates to minimal effects in clinical studies. Therefore, to simplify the regimen and facilitate adherence, providers should not counsel that calcium and IFA pills must be taken separately. Although further research will shed more light on clinical and programmatic issues, policies can be implemented with ongoing revision as we continue to learn what works to improve maternal and newborn health. PMID:26980810

  9. Genetic ablation of calcium-independent phospholipase A2gamma prevents obesity and insulin resistance during high fat feeding by mitochondrial uncoupling and increased adipocyte fatty acid oxidation.

    PubMed

    Mancuso, David J; Sims, Harold F; Yang, Kui; Kiebish, Michael A; Su, Xiong; Jenkins, Christopher M; Guan, Shaoping; Moon, Sung Ho; Pietka, Terri; Nassir, Fatiha; Schappe, Timothy; Moore, Kristin; Han, Xianlin; Abumrad, Nada A; Gross, Richard W

    2010-11-19

    Phospholipases are critical enzyme mediators participating in many aspects of cellular function through modulating the generation of lipid 2nd messengers, membrane physical properties, and cellular bioenergetics. Here, we demonstrate that mice null for calcium-independent phospholipase A(2)γ (iPLA(2)γ(-/-)) are completely resistant to high fat diet-induced weight gain, adipocyte hypertrophy, hyperinsulinemia, and insulin resistance, which occur in iPLA(2)γ(+/+) mice after high fat feeding. Notably, iPLA(2)γ(-/-) mice were lean, demonstrated abdominal lipodystrophy, and remained insulin-sensitive despite having a marked impairment in glucose-stimulated insulin secretion after high fat feeding. Respirometry of adipocyte explants from iPLA(2)γ(-/-) mice identified increased rates of oxidation of multiple different substrates in comparison with adipocyte explants from wild-type littermates. Shotgun lipidomics of adipose tissue from wild-type mice demonstrated the anticipated 2-fold increase in triglyceride content after high fat feeding. In sharp contrast, the adipocyte triglyceride content was identical in iPLA(2)γ(-/-) mice fed either a standard diet or a high fat diet. Respirometry of skeletal muscle mitochondria from iPLA(2)γ(-/-) mice demonstrated marked decreases in state 3 respiration using multiple substrates whose metabolism was uncoupled from ATP production. Shotgun lipidomics of skeletal muscle revealed a decreased content of cardiolipin with an altered molecular species composition thereby identifying the mechanism underlying mitochondrial uncoupling in the iPLA(2)γ(-/-) mouse. Collectively, these results identify iPLA(2)γ as an obligatory upstream enzyme that is necessary for efficient electron transport chain coupling and energy production through its participation in the alterations of cellular bioenergetics that promote the development of the metabolic syndrome. PMID:20817734

  10. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2016-02-01

    Skin cancer is among the most common cancers worldwide and identifiable molecular changes for early and late stage of skin tumorigenesis can suggest the better targets for its control. In this study, we investigated the status of K-Ras-PI3K-AKTpathway followed by NF-κB, cyclin D1, MMP-9 and regulatory micro RNA during 7, 12-dimethylbenz[a]anthracene (DMBA) induced mouse skin tumorigenesis and its prevention by butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG), individually or in combination with respect to time. DMBA upregulated the K-Ras, PI3K, Akt, NF-κB, cyclin D1 and MMP-9, but downregulated the PTEN in a time dependent manner. DMBA also reduced the levels of micoRNA let-7a but induced the levels of miR-21 and miR-20a as a function of time. BA, NA and CAG were found to prevent DMBA induced changes, but they were most effective when used together in a combination. Reduced let-7a and miR-211 were correlated with the overexpression of K-Ras and MMP-9. Overexpression of miR-21 and miR-20a was correlated with the down regulation of PTEN and overexpression of Cyclin D1. Collectively, the enhanced chemopreventive potential of natural compound in combination via regulation of K-Ras-PI3K-AKTpathway along with regulatory micro RNAs provide a newer and effective mean for cancer management. PMID:26655363

  11. Oxalic acid decreases calcium absorption in rats

    SciTech Connect

    Weaver, C.M.; Martin, B.R.; Ebner, J.S.; Krueger, C.A.

    1987-11-01

    Calcium absorption from salts and foods intrinsically labeled with /sup 45/Ca was determined in the rat model. Calcium bioavailability was nearly 10 times greater for low oxalate kale, CaCO/sub 3/ and CaCl/sub 2/ than from CaC/sub 2/O/sub 4/ (calcium oxalate) and spinach (high in oxalates). Extrinsic and intrinsic labeling techniques gave a similar assessment of calcium bioavailability from kale but not from spinach.

  12. Prevention of urinary catheter incrustations by acetohydroxamic acid.

    PubMed

    Burns, J R; Gauthier, J F

    1984-09-01

    Acetohydroxamic acid was administered in 5 patients to determine its effect in reducing urinary catheter incrustations. All patients had chronic indwelling catheters that required frequent changes because of severe incrustations and catheter occlusion. Incrustations were analyzed chemically for calcium, magnesium, ammonia nitrogen and phosphorus. The degree of incrustation before and during acetohydroxamic acid therapy was compared in each patient and was decreased significantly (average 81 per cent) during therapy (p less than 0.05). Catheter changes were required less frequently during therapy in all patients. Acetohydroxamic acid is effective in preventing catheter incrustations and should be considered in patients with this problem. PMID:6381758

  13. The role of dietary calcium concentration in the use of anionic salts to prevent parturient paresis in dairy cows.

    PubMed

    Gelfert, Carl-Christian; Staufenbiel, Rudolf

    2008-01-01

    The role of dietary calcium concentration during the feeding of anionic salts (AS) was reviewed. Hypocalcaemia is still the major cause of parturient paresis in dairy cows. Feeding AS is an established method for preventing severe hypocalcaemia by activating the calcium metabolism in the last two to three weeks before parturition by inducing a metabolic acidosis. In compensation for this acidosis, the organism increases the concentrations of ionised Ca [Ca2+] in the blood. This increase leads to an increasing excretion of calcium via the urine, which is ensued by an increased calcium absorption in the intestine. The ongoing metabolic acidosis changed the flux of Ca. The size of the Ca pool, however, remained unchanged. As the calcium metabolism is activated by AS, it seems necessary to increase the amount of calcium that is fed to the cows. Several studies examined the impact of different dietary calcium concentrations on the acid-base balance and the calcium metabolism in cows fed anionic salts. The study designs vary concerning the amounts of calcium fed and the use of pregnant or non-pregnant cows. Only one study combined the feeding of AS with a very low amount of calcium, which fell below the daily requirements of pregnant cows in the last three weeks before parturition. In this study, the calcium balance post partum was better in the cows that were administered AS and a high calcium diet. In the other studies, the amount of calcium in the different experimental groups and the difference between the amounts of calcium fed varied greatly. As far as it was monitored in the studies, the calcium concentration of the diet did not have a significant impact on the degree of acidosis induced by AS. In pregnant cows, no significant differences in the calcium concentration in serum or urine occurred before parturition. Some of the researchers found a lower incidence of parturient paresis when cows were fed a combination of AS and a higher amount of calcium, but some other researches did not. Interestingly, the parameters of bone metabolism did not change between experimental groups. According to what is currently known, the feeding of AS to transition cows should not be combined with a dietary calcium concentration that falls below the requirement of cows in this stage of lactation. On the other hand, there is no need to increase the Ca concentration. When AS are used the dietary calcium concentration should be between 9 g and 12 g/kg dry matter. Further research is needed to investigate the role of dietary calcium regarding the use of AS for improving Ca metabolism in dairy cows around parturition. PMID:18712261

  14. Ascorbic acid, calcium, phosphorus and magnesium intake variations: effects on calcium, phosphorus and magnesium utilization by human adults

    SciTech Connect

    Kies, C.; Brennan, M.A.; Parks, S.K.; Stauffer, D.J.; Wang, H.Y.; Young, S.F.; Fox, H.M.

    1986-03-01

    The objective of the study was to determine the effects of feeding two levels of ascorbic acid, calcium, phosphorus, magnesium and ascorbic acid on the apparent utilization of calcium, phosphorus and magnesium by healthy, human adult subjects. During 4 randomly-arranged experimental periods of 7 days each, a laboratory-controlled diet alone or with supplements of ascorbic acid, dicalcium phosphate or magnesium oxide was fed to the 18 subjects. Results indicated that ascorbic acid supplementation tended to reduce urinary phosphorus loss and to slightly increase fecal phosphorus loss so that overall phosphorus balances became more positive. Conversely, under these conditions, urinary calcium losses were little affected but fecal calcium losses were increased resulting in an overall decrease in calcium balance with ascorbic acid supplementation. Ascorbic acid supplementation resulted in decreased urine and fecal losses of magnesium and more positive magnesium balances. Magnesium supplementation resulted in more positive calcium and phosphorus balances as did calcium phosphate supplementation on magnesium balance.

  15. Conjugated linoleic acid and calcium co-supplementation improves bone health in ovariectomised mice

    PubMed Central

    Park, Yooheon; Kim, Jonggun; Scrimgeour, Angus G.; Condlin, Michelle L.; Kim, Daeyoung; Park, Yeonhwa

    2013-01-01

    Osteoporosis is a significant health concern for the elderly; conjugated linoleic acid (CLA) has been shown to improve overall bone mass when calcium is included as a co-supplement. However, potential effects of CLA and calcium on bone mass during a period of bone loss have not been reported. The purpose of this study was to determine how dietary calcium modulates the effects of conjugated linoleic acid (CLA) in preventing bone loss, using an ovariectomised mouse model. CLA supplementation significantly prevented ovariectomy-associated weight and fat mass gain, compared to non-supplemented controls. CLA significantly increased bone markers without major changes in bone mineral composition in the femur compared to respective controls. CLA treatment increased serum parathyroid hormone (PTH) significantly (p = 0.0172), while serum 1,25-dihydroxyvitamin D3 concentration was not changed by CLA. Meanwhile, CLA significantly reduced femur tartrate resistant acid phosphatase (TRAP) activity, suggesting potential reduction of osteoclastogenesis. The data suggest that CLA, along with dietary calcium, has great potential to be used to prevent bone loss and weight gain associated with menopause. PMID:23578644

  16. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    SciTech Connect

    Bosche, Bert; Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne ; Schäfer, Matthias; Graf, Rudolf; Härtel, Frauke V.; Schäfer, Ute; Noll, Thomas

    2013-05-03

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium chloride before the inhibition of ATP synthesis abolished both phases of the 2-DG-induced [Ca{sup 2+}]{sub i} increase. This effect was not observed when lithium chloride was added simultaneously with 2-DG. We conclude that lithium chloride abolishes the injurious [Ca{sup 2+}]{sub i} overload in EC and that this most likely occurs by preventing inositol 3-phosphate-sensitive Ca{sup 2+}-release from the endoplasmic reticulum. Though further research is needed, these findings provide a novel option for therapeutic strategies to protect the endothelium against imminent barrier failure.

  17. Adsorption characteristics of amino acids on to calcium oxalate.

    PubMed

    He, Junbin; Lin, Rihui; Long, Han; Liang, Yuwei; Chen, Yangyang

    2015-09-15

    Adsorption of amino acids on to calcium oxalate found in urinary calculus has been studied and the adsorption characteristics were analyzed. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to fit the kinetics data. The pseudo-second-order model best described the dynamic behavior of the adsorption process. The uptake of glutamic acid and aspartic acid were found to decrease as solution pH increasing from 4 to 8. The experimental data obtained at different pH conditions were analyzed and fitted by Langmuir, Freundlich, Redlich-Peterson, Temkin and Sips isotherm models using linear and nonlinear regression analysis. Error analysis (correlation coefficient, residual root mean square error and chi-square test) showed that the Langmuir I isotherm model and the non-linear form of Sips isotherm model should be primarily adopted for fitting the equilibrium data. The maximum adsorption capacity of glutamic acid and aspartic acid onto calcium oxalate monohydrate crystals are 0.059 and 0.066μmol/g at pH 4, respectively. These studies have the vital significance for research aimed at exploring the role of urinary amino acids effect the formation process of calcium oxalate crystals found in urinary calculus and for potential application in the design of synthetic peptides used for urinary calculi therapy. PMID:26021431

  18. Preventing birth defects with folic acid.

    PubMed

    Stein, Quinn; Keppen, Laura; Watson, William J

    2002-09-01

    There a few birth defects known to be preventable, but neural tube defects (NTDs) are one group of congenital anomalies that can potentially be prevented. When 400 micrograms of maternal periconceptional folic acid is taken daily, it can prevent many neural tube-related birth defects and thus reduce morbidity and mortality due to these birth defects. Health care providers should encourage every woman of reproductive age to consume 400 micrograms of synthetic folic acid daily, not just those who are planning a pregnancy. Supplementation needs to be started prior to conception for optimal effectiveness. PMID:12360641

  19. Aluminum Citrate Prevents Renal Injury from Calcium Oxalate Crystal Deposition

    PubMed Central

    Besenhofer, Lauren M.; Cain, Marie C.; Dunning, Cody

    2012-01-01

    Calcium oxalate monohydrate crystals are responsible for the kidney injury associated with exposure to ethylene glycol or severe hyperoxaluria. Current treatment strategies target the formation of calcium oxalate but not its interaction with kidney tissue. Because aluminum citrate blocks calcium oxalate binding and toxicity in human kidney cells, it may provide a different therapeutic approach to calcium oxalate-induced injury. Here, we tested the effects of aluminum citrate and sodium citrate in a Wistar rat model of acute high-dose ethylene glycol exposure. Aluminum citrate, but not sodium citrate, attenuated increases in urea nitrogen, creatinine, and the ratio of kidney to body weight in ethylene glycol–treated rats. Compared with ethylene glycol alone, the addition of aluminum citrate significantly increased the urinary excretion of both crystalline calcium and crystalline oxalate and decreased the deposition of crystals in renal tissue. In vitro, aluminum citrate interacted directly with oxalate crystals to inhibit their uptake by proximal tubule cells. These results suggest that treating with aluminum citrate attenuates renal injury in rats with severe ethylene glycol toxicity, apparently by inhibiting calcium oxalate’s interaction with, and retention by, the kidney epithelium. PMID:23138489

  20. SANITARY DIPS WITH CALCIUM PROPIONATE, CALCIUM CHLORIDE, OR A CALCIUM AMINO ACID CHELATE MAINTAIN QUALITY AND SHELF STABILITY OF HONEYDEW CHUNKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Freshly cut honeydew chunks were dipped for 30 seconds in a solution containing 100 uL/L sodium hypochlorite (ClO) without and with a 40 mM concentration of calcium (Ca) propionate, a Ca amino acid chelate formulation (Ca chelate), calcium chloride (CaCl2) or not treated. Respiration and ethylene p...

  1. Short term tolvaptan increases water intake and effectively decreases urinary calcium oxalate, calcium phosphate, and uric acid supersaturations

    PubMed Central

    Cheungpasitporn, Wisit; Erickson, Stephen B.; Rule, Andrew D.; Enders, Felicity; Lieske, John C.

    2016-01-01

    Purpose Many patients cannot effectively increase water intake and urine volume to prevent urinary stones. Tolvaptan, a V2 receptor antagonist, blocks water reabsorption in the collecting duct and should reduce urinary supersaturation (SS) of stone forming solutes, but this has never been proven. Materials and Methods We conducted a double blind, randomized, placebo-controlled, crossover study in 21 adult calcium urinary stone formers stratified as majority calcium oxalate(CaOx, n=10) or calcium phosphate(CaP, n=11). Patients received tolvaptan 45 mg/day or placebo for 1 week, followed by a washout week and crossover to tolvaptan or placebo for week 3. A 24h urines was collected at the end of weeks 1 and 3. Results Tolvaptan vs. placebo decreased urinary osmolality (204±96 vs 529±213 mOsm/kg, P<0.001) and increased urinary volume (4.8±2.9 vs 1.8±0.9 L, P<0.001). The majority of urinary solute excretion rates including sodium and calcium did not significantly change, although oxalate secretion slightly increased (23±8 to 15±8 mg/24h, P = 0.009). Urinary CaOx SS (−0.01±1.14 vs 0.95±0.87 DG, P<0.001), CaP SS (−1.66±1.17 vs −0.13±1.02 DG, P<0.001) and Uric Acid SS (−2.05±4.05 vs −5.24±3.12 DG, P=0.04) all dramatically decreased. Effects did not differ between CaOx and CaP groups (P>0.05 for all interactions). Conclusions Tolvaptan increases urine volume and decreases urinary SS in calcium stone formers. Further study is needed to determine if long term use of V2 receptor antagonists results in fewer stone events. PMID:26598423

  2. Calcium ion binding to a soil fulvic acid using a donnan potential model

    USGS Publications Warehouse

    Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.

    1999-01-01

    Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.

  3. Ferulic acid prevents cerebral ischemic injury-induced reduction of hippocalcin expression.

    PubMed

    Koh, Phil-Ok

    2013-07-01

    Intracellular calcium overload is a critical pathophysiological factor in ischemic injury. Hippocalcin is a neuronal calcium sensor protein that buffers intracellular calcium levels and protects cells from apoptotic stimuli. Ferulic acid exerts a neuroprotective effect in cerebral ischemia through its anti-oxidant and anti-inflammation activity. This study investigated whether ferulic acid contributes to hippocalcin expression during cerebral ischemia and glutamate exposure-induced neuronal cell death. Rats were immediately treated with vehicle or ferulic acid (100 mg/kg, i.v.) after middle cerebral artery occlusion (MCAO). Brain tissues were collected 24 h after MCAO and followed by assessment of cerebral infarct. Ferulic acid reduced MCAO-induced infarct regions. A proteomics approach elucidated a decrease in hippocalcin in MCAO-operated animals, ferulic acid attenuates the injury-induced decrease in hippocalcin expression. Reverse transcription-polymerase chain reaction and Western blot analyses confirmed that ferulic acid prevents the injury-induced decrease in hippocalcin. In cultured HT22 hippocampal cells, glutamate exposure increased the intracellular Ca(2+) levels, whereas ferulic acid attenuated this increase. Moreover, ferulic acid attenuated the glutamate toxicity-induced decrease in hippocalcin expression. These findings can suggest the possibility that ferulic acid exerts a neuroprotective effect through modulating hippocalcine expression and regulating intracellular calcium levels. PMID:23401261

  4. Soil-calcium depletion linked to acid rain and forest growth in the eastern United States

    USGS Publications Warehouse

    Lawrence, Gregory B.; Huntington, T.G.

    1999-01-01

    Since the discovery of acid rain in the 1970's, scientists have been concerned that deposition of acids could cause depletion of calcium in forest soils. Research in the 1980's showed that the amount of calcium in forest soils is controlled by several factors that are difficult to measure. Further research in the 1990's, including several studies by the U.S. Geological Survey, has shown that (1) calcium in forest soils has decreased at locations in the northeastern and southeastern U.S., and (2) acid rain and forest growth (uptake of calcium from the soil by roots) are both factors contributing to calcium depletion.

  5. Interactions between red light, abscisic acid, and calcium in gravitropism

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; LaFavre, A. K.

    1989-01-01

    The effect of red light on orthogravitropism of Merit corn (Zea mays L.) roots has been attributed to its effects on the transduction phase of gravitropism (AC Leopold, SH Wettlaufer [1988] Plant Physiol 87:803-805). In an effort to characterize the orthogravitropic transduction system, comparative experiments have been carried out on the effects of red light, calcium, and abscisic acid (ABA). The red light effect can be completely satisfied with added ABA (100 micromolar) or with osmotic shock, which is presumed to increase endogenous ABA. The decay of the red light effect is closely paralleled by the decay of the ABA effect. ABA and exogenous calcium show strong additive effects when applied to either Merit or a line of corn which does not require red light for orthogravitropism. Measurements of the ABA content show marked increases in endogenous ABA in the growing region of the roots after red light. The interpretation is offered that red light or ABA may serve to increase the cytoplasmic concentrations of calcium, and that this may be an integral part of orthogravitropic transduction.

  6. Calcium and Cancer Prevention: Strengths and Limits of the Evidence

    MedlinePlus

    ... sources was not associated with a reduction in risk ( 23 ). Another analysis that involved more than 30,000 women in ... Abstract] Wu K, Willett WC, Fuchs CS, Colditz GA, Giovannucci EL. Calcium intake and risk of colon cancer in women and men. Journal ...

  7. CALCIUM-INDUCED LIPID PEROXIDATION IS MEDIATED BY RHODNIUS HEME-BINDING PROTEIN (RHBP) AND PREVENTED BY VITELLIN.

    PubMed

    Paes, Marcia C; Silveira, Alan B; Ventura-Martins, Guilherme; Luciano, Monalisa; Coelho, Marsen G P; Todeschini, Adriane R; Bianconi, M Lucia; Atella, Georgia C; Silva-Neto, Mário A C

    2015-10-01

    Lipid peroxidation is promoted by the quasi-lipoxygenase (QL) activity of heme proteins and enhanced by the presence of free calcium. Unlike mammalian plasma, the hemolymph of Rhodnius prolixus, a vector of Chagas disease, contains both a free heme-binding protein (RHBP) and circulating lipoproteins. RHBP binds and prevents the heme groups of the proteins from participating in lipid peroxidation reactions. Herein, we show that despite being bound to RHBP, heme groups promote lipid peroxidation through a calcium-dependent QL reaction. This reaction is readily inhibited by the presence of ethylene glycol tetraacetic acid (EGTA), the antioxidant butylated hydroxytoluene or micromolar levels of the main yolk phosphoprotein vitellin (Vt). The inhibition of lipid peroxidation is eliminated by the in vitro dephosphorylation of Vt, indicating that this reaction depends on the interaction of free calcium ions with negatively charged phosphoamino acids. Our results demonstrate that calcium chelation mediated by phosphoproteins occurs via an antioxidant mechanism that protects living organisms from lipid peroxidation. PMID:26111116

  8. Phosphate decreases urine calcium and increases calcium balance: A meta-analysis of the osteoporosis acid-ash diet hypothesis

    PubMed Central

    Fenton, Tanis R; Lyon, Andrew W; Eliasziw, Michael; Tough, Suzanne C; Hanley, David A

    2009-01-01

    Background The acid-ash hypothesis posits that increased excretion of "acidic" ions derived from the diet, such as phosphate, contributes to net acidic ion excretion, urine calcium excretion, demineralization of bone, and osteoporosis. The public is advised by various media to follow an alkaline diet to lower their acidic ion intakes. The objectives of this meta-analysis were to quantify the contribution of phosphate to bone loss in healthy adult subjects; specifically, a) to assess the effect of supplemental dietary phosphate on urine calcium, calcium balance, and markers of bone metabolism; and to assess whether these affects are altered by the b) level of calcium intake, c) the degree of protonation of the phosphate. Methods Literature was identified through computerized searches regarding phosphate with surrogate and/or direct markers of bone health, and was assessed for methodological quality. Multiple linear regression analyses, weighted for sample size, were used to combine the study results. Tests of interaction included stratification by calcium intake and degree of protonation of the phosphate supplement. Results Twelve studies including 30 intervention arms manipulated 269 subjects' phosphate intakes. Three studies reported net acid excretion. All of the meta-analyses demonstrated significant decreases in urine calcium excretion in response to phosphate supplements whether the calcium intake was high or low, regardless of the degree of protonation of the phosphate supplement. None of the meta-analyses revealed lower calcium balance in response to increased phosphate intakes, whether the calcium intake was high or low, or the composition of the phosphate supplement. Conclusion All of the findings from this meta-analysis were contrary to the acid ash hypothesis. Higher phosphate intakes were associated with decreased urine calcium and increased calcium retention. This meta-analysis did not find evidence that phosphate intake contributes to demineralization of bone or to bone calcium excretion in the urine. Dietary advice that dairy products, meats, and grains are detrimental to bone health due to "acidic" phosphate content needs reassessment. There is no evidence that higher phosphate intakes are detrimental to bone health. PMID:19754972

  9. 40 CFR 721.10382 - Diphosphoric acid, calcium salt (1:1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Diphosphoric acid, calcium salt (1:1... Specific Chemical Substances § 721.10382 Diphosphoric acid, calcium salt (1:1). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as diphosphoric acid,...

  10. Injectable hydrogels derived from phosphorylated alginic acid calcium complexes.

    PubMed

    Kim, Han-Sem; Song, Minsoo; Lee, Eun-Jung; Shin, Ueon Sang

    2015-06-01

    Phosphorylation of sodium alginate salt (NaAlg) was carried out using H3PO4/P2O5/Et3PO4 followed by acid-base reaction with Ca(OAc)2 to give phosphorylated alginic acid calcium complexes (CaPAlg), as a water dispersible alginic acid derivative. The modified alginate derivatives including phosphorylated alginic acid (PAlg) and CaPAlg were characterized by nuclear magnetic resonance spectroscopy for (1)H, and (31)P nuclei, high resolution inductively coupled plasma optical emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. CaPAlg hydrogels were prepared simply by mixing CaPAlg solution (2w/v%) with NaAlg solution (2w/v%) in various ratios (2:8, 4:6, 6:4, 8:2) of volume. No additional calcium salts such as CaSO4 or CaCl2 were added externally. The gelation was completed within about 3-40min indicating a high potential of hydrogel delivery by injection in vivo. Their mechanical properties were tested to be ≤6.7kPa for compressive strength at break and about 8.4kPa/mm for elastic modulus. SEM analysis of the CaPAlg hydrogels showed highly porous morphology with interconnected pores of width in the range of 100-800μm. Cell culture results showed that the injectable hydrogels exhibited comparable properties to the pure alginate hydrogel in terms of cytotoxicity and 3D encapsulation of cells for a short time period. The developed injectable hydrogels showed suitable physicochemical and mechanical properties for injection in vivo, and could therefore be beneficial for the field of soft tissue engineering. PMID:25842118

  11. The study of modified calcium hydroxides with surfactants for acid gas removal during incineration.

    PubMed

    Tseng, H H; Wey, M Y; Lu, C Y

    2002-01-01

    The primary objective of the present work is to use additives to extend the sulfation reaction of the calcium hydroxide (Ca(OH)2) used to control SO2 emission from incineration processes. There are two reasons for adding surfactants (surface-active agent): (1) to provide an appropriate dispersion of the Ca(OH)2', thus preventing particle agglomeration due to humidity; (2) to alter the sulfation reaction environment by adsorbing heterogeneous materials on the surface of the Ca(OH)2 to extend the adsorption equilibrium. A dry scrubber integrated with a fabric filter was employed to study the effect of surfactants on the removal efficiency of acid gas in the flue gas with Ca(OH)2 as the sorbent. The operating parameters evaluated include: (1) the different surfactants (calcium lignosulfonate, sodium lignosulfonate, alkyl naphthalene sodium sulfonate and beta-naphthalene sodium sulfonate condensates) and (2) the composition of acid gas (i.e. sulfur dioxide (SO2), nitrogen oxide (NO) and hydrogen chloride (HCl)). The results show that modified Ca(OH)2 with surfactants could effectively decrease the emission of acid gas during incineration. Different additives had individual absorption efficiencies on different acid gases. On the whole, sodium lignosulfonate and beta-naphthalene sodium sulfonate condensates had better sorption capacity for SO2 and NO, but not for HCl. In addition, when SO2 coexisted with NO and HCl, the concentration of NO and HCl will result in decrease or increase of the removal efficiency of SO2. PMID:11924579

  12. Effect of dietary calcium and magnesium on experimental renal tubular deposition of calcium oxalate crystal induced by ethylene glycol administration and its prevention with phytin and citrate.

    PubMed

    Ebisuno, S; Morimoto, S; Yoshida, T; Fukatani, T; Yasukawa, S; Ohkawa, T

    1987-01-01

    Oral administration of ethylene glycol to rats, and the resultant intratubular depositions of microcrystals of calcium oxalate were studied investigating the influences of dietary calcium or magnesium and assessing the protective efficacies against the crystallizations by treatment with phytin and sodium citrate. With increase of calcium intake and consequent increase of urinary calcium excretion there was a marked increase in the amount of tubular deposit of calcium oxalate crystal and in the calcium content of renal tissue. Although magnesium deficiency accelerated renal tubular calcium oxalate deposition, the protection against the crystal formation was not observed with excessive dietary magnesium. When rats were fed a high-calcium diet supplemented with phytin, a significant inhibition of the intratubular crystallization was observed. It appeared obvious that a hypocalciuric action of phytin was attributed to the effect of the prevention. There was vigorous protection of crystal formation by treatment with sodium citrate, which correlated with the level of citrate concentration in the drinking water. PMID:3433579

  13. [EXPERIENCE OF USE OF BLEMAREN® IN THE TREATMENT OF PATIENTS IN URIC ACID AND CALCIUM OXALATE UROLITHIASIS].

    PubMed

    Konstantinova, O V; Yanenko, E K

    2015-01-01

    154 patients with urolithiasis were under outpatient observation for 2-8 years. Among them there were 76 women and 78 men aged 21-66 years, of which 46 patients with uric acid urolithiasis, and 88--with calcium oxalate urolithiasis. Treatment of patients was carried out systematically, depending on their condition. Indications for the application of Blemaren® included the presence of uric acid stones, uric acid and/or oxalate crystalluria. The duration of treatment was 6.1 months. The dosage of the drug varied from 6 to 18 g per day and was selected individually, depending on the purpose of the appointment of Blemaren®. Reduction of the urine pH to 6.2- 6.8-7.2 was the criterion for properly selected dose. To dissolve uric acid stones in the presence of hyperuricemia and/or hyperuricuria, Blemaren® was administered in combination with allopurinol at a dose of 0.1 g 3-4 times a day. Besides pharmacotherapy, treatment included diet therapy. It was found that the morning urine pH in urate urolithiasis is sustainable and has a range of 5.0-6.0, in 80.4% of cases--range of 5.0-5.5. In calcium oxalate urolithiasis this parameter is also stable and has a range of 5.0-6.7, in 82.9% of cases--range of 5.5-6.0. Optimal urine pH to eliminate uric acid and oxalate crystalluria in patients with uric acid and calcium oxalate urolithiasis is the interval of 6.2-6.4. It was shown that Blemaren® is a highly effective agent for treatment and prevention of uric acid and calcium oxalate crystalluria in calcium oxalate and uric acid urolithiasis. Further, its effectiveness in dissolving of uric acid stones in the absence of an infectious inflammatory process is 82.3%. PMID:26859932

  14. Colorectal Chemoprevention with Calcium and Vitamin D | Division of Cancer Prevention

    Cancer.gov

    DESCRIPTION: In this application we propose to complete CA098286, a double-blind, randomized, controlled trial of supplementation with vitamin D and/or calcium for the prevention of colorectal adenomas. The study builds on extensive epidemiological and experimental data indicating that both vitamin D and calcium have anti-neoplastic effects in the large bowel and that these agents interact, each requiring the other for full effect. Despite the strong supporting |

  15. Effect of acid rain on calcium carbonate saturation in the Albemarle sound of North Carolina

    SciTech Connect

    Rudolph, K.A.; Burgess, S.K.; Willey, J.D.; Kieber, R.J.

    1996-10-01

    The effects of acidic rainwater additions on calcium carbonate solubility and alkalinity in the poorly buffered, biologically active and commercially important waters of the Albemarle Sound, NC are reported. Samples collected monthly at four sites were analyzed for salinity, pK total alkalinity, and calcium concentrations. Five percent and 10% dilutions of sulfuric acid at pH 4, mimicking acid rain additions, were added and total alkalinity and calcium concentrations again determined. The addition of acid decreased the alkalinity in the Albemarle samples by as much as 15%, although the magnitude of the impact depended both on site and season. The effects of acid additions on dissolved calcium concentrations were more variable,. and also displayed a site and season dependency. Calcium concentrations, alkalinity, and pH values were also determined during controlled laboratory experiments, where 25 mg/L Callinectes sapidus shells were added to Albemarle Sound water. All three analytes increased significantly upon acid additions relative to controls.

  16. The anti-inflammatory effect of calcium for preventing endothelial cell activation in preeclampsia.

    PubMed

    DeSousa, J; Tong, M; Wei, J; Chamley, L; Stone, P; Chen, Q

    2016-05-01

    Preeclampsia is a disorder of pregnancy characterized by endothelial activation. It is believed to be a response to a 'toxin(s)' from the placenta including trophoblastic debris and inflammatory cytokines. Calcium is known to reduce the risk of preeclampsia but the mechanism of its protective effect remains unknown. In this study, we investigated the potential mechanism(s) of calcium supplementation for preventing endothelial activation induced by trophoblastic debris. Trophoblastic debris was harvested from preeclamptic placentae and also from first-trimester placentae, which had been treated with preeclamptic sera. Endothelial cells were then cultured with trophoblastic debris in the presence of calcium. Endothelial activation was measured by quantifying endothelial cell-surface intercellular adhesion molecule-1 (ICAM-1) and by U937 monocyte adhesion to endothelial cells. The expression of ICAM-1 and U937 adhesion to endothelial cells were significantly reduced following exposure of endothelial cells to trophoblastic debris from preeclamptic placenta or from first-trimester placentae treated with preeclamptic sera in the presence of calcium compared with treatment without calcium. The expression of ICAM-1 was also significantly reduced following exposure of endothelial cells to trophoblastic debris with the nitric oxide donor or following treatment of endothelial cells with interleukin (IL)-1β in the presence of calcium. Our study demonstrated that calcium supplementation prevented endothelial cell activation induced by trophoblastic debris from preeclamptic placentae. The nitric oxide synthase (NOS) pathway and anti-inflammatory effects are involved in the action of calcium on endothelial cell activation. These findings may suggest, at least in part, the protective mechanism of calcium supplementation on preeclampsia. PMID:26155993

  17. Calcium supplements

    MedlinePlus

    ... calcium: Drink more fluids. Eat high-fiber foods Switch to another form of calcium if the diet ... Washington, DC, 2010. Moyer VA; U.S. Preventive Services Task Force. Vitamin D and calcium supplementation to prevent ...

  18. Carboxylic Acid Ionophores as Probes of the Role of Calcium in Biological Systems

    NASA Technical Reports Server (NTRS)

    Reed, P. W.

    1983-01-01

    The biological effects of calcium ionophores are described, focusing on arachidonic acid oxygenation, and the formation of a number of oxygenated metabolites of arachidonic acid. These metabolites are involved in a number of bodily functions, and their production may be regulated by calcium.

  19. Comparative effects of oral aromatic and branched-chain amino acids on urine calcium and excretion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aromatic amino acids (AAAs) bind to the calcium sensor receptor (CaR) but branched-chain amino acids (B-CAAs) do not; by binding to this receptor, AAAs have an increased potential to affect calcium homeostasis. This study was conducted to determine and compare the effects of AAAs and B-CAAs on calci...

  20. 40 CFR 721.10382 - Diphosphoric acid, calcium salt (1:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Diphosphoric acid, calcium salt (1:1... Specific Chemical Substances § 721.10382 Diphosphoric acid, calcium salt (1:1). (a) Chemical substance and... salt (1:1) (PMN P-10-313; CAS No. 14866-19-4) is subject to reporting under this section for...

  1. 40 CFR 721.10382 - Diphosphoric acid, calcium salt (1:1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Diphosphoric acid, calcium salt (1:1... Specific Chemical Substances § 721.10382 Diphosphoric acid, calcium salt (1:1). (a) Chemical substance and... salt (1:1) (PMN P-10-313; CAS No. 14866-19-4) is subject to reporting under this section for...

  2. Antimicrobial Effect of Calcium Chloride Alone and Combined with Lactic Acid Injected into Chicken Breast Meat

    PubMed Central

    Alahakoon, Amali U.; Jayasena, Dinesh D.; Jung, Samooel; Kim, Sun Hyo

    2014-01-01

    Chicken breast meat was injected with calcium chloride alone and in combination with lactic acid (0.01% and 0.002%, respectively). The inhibitory effects of the treatments on microbial growth were determined in the injected chicken breast meat stored at 4°C under aerobic packaging condition for 0, 3, and 7 d. Calcium chloride combined with 0.002% and 0.01% lactic acid reduced microbial counts by 0.14 and 1.08 Log CFU/g, respectively, however, calcium chloride alone was unable to inhibit microbial growth. Calcium chloride combined with 0.01% lactic acid was the most effective antimicrobial treatment and resulted in the highest initial redness value. Calcium chloride alone and combined with lactic acid suppressed changes in pH and the Hunter color values during storage. However, injection of calcium chloride and lactic acid had adverse effects on lipid oxidation and sensory characteristics. The higher TBARS values were observed in samples treated with calcium chloride and lactic acid when compared to control over the storage period. Addition of calcium chloride and lactic acid resulted in lower sensory scores for parameters tested, except odor and color, compared to control samples. Therefore, the formulation should be improved in order to overcome such defects prior to industrial application. PMID:26760942

  3. Premixed acidic calcium phosphate cement: characterization of strength and microstructure.

    PubMed

    Aberg, J; Brisby, H; Henriksson, H B; Lindahl, A; Thomsen, P; Engqvist, H

    2010-05-01

    By using a premixed calcium phosphate cement (CPC), the handling properties of the cement are drastically improved, which is a challenge for traditional injectable CPCs. Previously premixed cements have been based on apatitic cements. In this article, acidic cement has been developed and evaluated. Monocalcium phosphate monohydrate and beta-tricalcium phosphate were mixed with glycerol to form a paste. As the paste does not contain water, no setting reaction starts and thus the working time is indefinite. Powder/liquid ratios (P/L) of 2.25, 3.5 and 4.75 were evaluated. Setting time (ST) and compressive strength (CS) were measured after 1 day, 1 week and 4 weeks in phosphate buffered saline (PBS) solution, and the corresponding microstructure was evaluated using electron microscopy and X-ray diffraction. The ST started when the cements were placed in PBS and ranged from 28 to 75 min, higher P/L gave a lower ST. Higher P/L also gave a higher CS, which ranged from 2 to 16 MPa. The microstructure mainly consisted of monetite, 1-5 microm in grain size. After 4 weeks in PBS, the strength increased. As acidic cements are resorbed faster in vivo, this cement should allow faster bone regeneration than apatitic cements. Premixed cements show a great handling benefit when compared with normal CPCs and can be formulated with similar ST and mechanical properties. PMID:20127991

  4. Effect of QMix, peracetic acid and ethylenediaminetetraacetic acid on calcium loss and microhardness of root dentine

    PubMed Central

    Taneja, Sonali; Kumari, Manju; Anand, Surbhi

    2014-01-01

    Objectives: The objective of this in vitro study was to assess the effect of different chelating agents on the calcium loss and its subsequent effect on the microhardness of the root dentin. Materials and Methods: Ten single rooted lower premolars were selected. The teeth were decoronated and thick transverse sections of 2 mm were obtained from the coronal third of the root. Each section was then divided into four quarters, each part constituting a sample specimen from the same tooth for each group. The treatment groups were: Group 1 (Control): 5% Sodium hypochlorite (NaOCl) for 5 min + distilled water for 5 min; Group 2: 5% NaOCl for 5 min + 17% ethylenediaminetetraacetic acid (EDTA) for 5 min; Group 3: 5% NaOCl for 5 min + 2.25% Peracetic acid (PAA) for 5 min and Group 4: 5% NaOCl for 5 min + QMix for 5 min respectively. The calcium loss of the samples was evaluated using the Atomic Absorption Spectrophotometer followed by determination of their microhardness using Vickers Hardness Tester. Data was analyzed using one-way ANOVA, Post hoc Tukey test and Pearson correlation. Results: The maximum calcium loss and minimum microhardness was observed in Group 3 followed by Group 2, Group 4 and Group 1. There was a statistically significant difference between all the groups except between Groups 2 and 4. Conclusions: Irrigation with NaOCl + 2.25% PAA caused the maximum calcium loss from root dentin and reduced microhardness. A negative correlation existed between the calcium loss and reduction in the microhardness of root dentin. PMID:24778513

  5. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a...

  6. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a...

  7. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a...

  8. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a...

  9. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a...

  10. CO.sub.2 Pretreatment prevents calcium carbonate formation

    DOEpatents

    Neavel, Richard C.; Brunson, Roy J.; Chaback, Joseph J.

    1980-01-01

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by pretreatment with carbon dioxide. The carbon dioxide pretreatment is believed to convert the scale-forming components to the corresponding carbonate prior to liquefaction. The pretreatment is accomplished at a total pressure within the range from about 14 to about 68 atmospheres and a carbon dioxide partial pressure within the range from about 14 to about 34 atmospheres. Temperature during pretreatment will generally be within the range from about 100.degree. to about 200.degree. C.

  11. Phytoplankton calcification as an effective mechanism to prevent cellular calcium poisoning

    NASA Astrophysics Data System (ADS)

    Müller, M. N.; Ramos, J. Barcelos e.; Schulz, K. G.; Riebesell, U.; Kaźmierczak, J.; Gallo, F.; Mackinder, L.; Li, Y.; Nesterenko, P. N.; Trull, T. W.; Hallegraeff, G. M.

    2015-08-01

    Marine phytoplankton has developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 μmol L-1 in the presence of seawater Ca2+ concentrations of 10 mmol L-1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, phytoplankton taxonomic groups appear to have evolved different strategies, which may affect their ability to cope with changes in seawater Ca2+ concentrations in their environment on geological time scales. For example, the Cretaceous (145 to 66 Ma ago), an era known for the high abundance of coccolithophores and the production of enormous calcium carbonate deposits, exhibited seawater calcium concentrations up to four times present-day levels. We show that calcifying coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica and Coccolithus braarudii) are able to maintain their relative fitness (in terms of growth rate and photosynthesis) at simulated Cretaceous seawater calcium concentrations, whereas these rates are severely reduced under these conditions in some non-calcareous phytoplankton species (Chaetoceros sp., Ceratoneis closterium and Heterosigma akashiwo). Most notably, this also applies to a non-calcifying strain of E. huxleyi which displays a calcium-sensitivity similar to the non-calcareous species. We hypothesize that the process of calcification in coccolithophores provides an efficient mechanism to prevent cellular calcium poisoning and thereby offered a potential key evolutionary advantage, responsible for the proliferation of coccolithophores during times of high seawater calcium concentrations.

  12. Prevention of hip fractures by correcting calcium and vitamin D insufficiencies in elderly people.

    PubMed

    Meunier, P

    1996-01-01

    For a 50-year old caucasian woman today, the risk of a hip fracture over her remaining lifetime is about 17%. Tomorrow the situation will clearly be worse because the continual increase in life expectancy will cause a 3-fold rise in worldwide fracture incidence over the next 60 years, particularly in women, but also in men. In addition, a secular increase in the incidence of hip fractures in individuals of the same age has been noted in both sexes by several investigators, and the cost of hip fractures is expected to dramatically increase in the next decades. Consequently, preventive strategies are urgently required. A great deal has been learned in recent years about the risk factors for hip fracture, the pathophysiology of this fracture, and the prediction of fracture risk, particularly through bone mass measurements on the hip and biochemical evaluations of parathyroid and vitamin D status. The two main determinants of hip fractures are falls and bone loss leading to an intrinsic femoral fragility. A substantial femoral bone loss continues throughout the old age, with a continuous and exponential increase in the risk of hip fracture, and any reduction or arrest of this loss will induce an important reduction in the incidence of hip fractures. A preventive effect on the risk of hip fracture may be partly achieved by using long term estrogen replacement therapy after menopause, but also by using vitamin D and calcium supplements for a late prevention in elderly people. Vitamin D insufficiency and deficit in calcium intake are very common in elderly people living either in institutions or at home, particularly in Europe where dairy products are not fortified with vitamin D. The cumulative response to this deficit in calcium intake and low vitamin D status is a negative calcium balance which stimulates parathyroid hormone secretion. In 300 residents of nursing homes, we recently found a significant negative correlation between serum 25 OHD and log serum PTH after age-adjustment. In addition, in 446 elderly women living at home in 5 French cities and selected from the voting lists, we also found an age-adjusted relationship between serum 25 OHD and PTH concentrations. This senile secondary hyperparathyroidism is one of the determinants of femoral bone loss and can be reversed by calcium and vitamin D supplements. We have shown in a 3-year controlled prospective study that the daily use of these supplements (1.2 g of calcium and 800 IU of vitamin D3) given in a large population of 3270 elderly ambulatory women living in nursing homes reduced of 23% (intention-to-treat analysis) the number of hip fractures and other non vertebral fractures. In parallel, serum perathyroid hormone concentration was reduced of 28% and low serum 25-hydroxyvitamin D concentration returned to normal values. After 18 months of treatment the bone density of the total proximal femoral region had increased 2.7% the vitamin D3-calcium group and decreased 4.6% in the placebo group (p < 0.001). This prevention is safe and can be recommended in people living in institutions. It could be also useful in other elderly subjects particularly at risk because of a low calcium intake, an absence of solar exposure and a previous history of falls. From the data of our study we assessed the economic consequences in terms of medical cost of this prevention. In case of treatment of all women living in nursing homes in France, this would saved FF 150000000 per year, the economic balance of prevention becoming positive as soon as the age of the beginning of the prevention reaches 73.5 years. It is now possible to partly stop bone loss in elderly people and it is never too late to prevent hip fractures with calcium and vitamin D supplements. PMID:8966494

  13. Direct Imaging of Hippocampal Epileptiform Calcium Motifs Following Kainic Acid Administration in Freely Behaving Mice

    PubMed Central

    Berdyyeva, Tamara K.; Frady, E. Paxon; Nassi, Jonathan J.; Aluisio, Leah; Cherkas, Yauheniya; Otte, Stephani; Wyatt, Ryan M.; Dugovic, Christine; Ghosh, Kunal K.; Schnitzer, Mark J.; Lovenberg, Timothy; Bonaventure, Pascal

    2016-01-01

    Prolonged exposure to abnormally high calcium concentrations is thought to be a core mechanism underlying hippocampal damage in epileptic patients; however, no prior study has characterized calcium activity during seizures in the live, intact hippocampus. We have directly investigated this possibility by combining whole-brain electroencephalographic (EEG) measurements with microendoscopic calcium imaging of pyramidal cells in the CA1 hippocampal region of freely behaving mice treated with the pro-convulsant kainic acid (KA). We observed that KA administration led to systematic patterns of epileptiform calcium activity: a series of large-scale, intensifying flashes of increased calcium fluorescence concurrent with a cluster of low-amplitude EEG waveforms. This was accompanied by a steady increase in cellular calcium levels (>5 fold increase relative to the baseline), followed by an intense spreading calcium wave characterized by a 218% increase in global mean intensity of calcium fluorescence (n = 8, range [114–349%], p < 10−4; t-test). The wave had no consistent EEG phenotype and occurred before the onset of motor convulsions. Similar changes in calcium activity were also observed in animals treated with 2 different proconvulsant agents, N-methyl-D-aspartate (NMDA) and pentylenetetrazol (PTZ), suggesting the measured changes in calcium dynamics are a signature of seizure activity rather than a KA-specific pathology. Additionally, despite reducing the behavioral severity of KA-induced seizures, the anticonvulsant drug valproate (VA, 300 mg/kg) did not modify the observed abnormalities in calcium dynamics. These results confirm the presence of pathological calcium activity preceding convulsive motor seizures and support calcium as a candidate signaling molecule in a pathway connecting seizures to subsequent cellular damage. Integrating in vivo calcium imaging with traditional assessment of seizures could potentially increase translatability of pharmacological intervention, leading to novel drug screening paradigms and therapeutics designed to target and abolish abnormal patterns of both electrical and calcium excitation. PMID:26973444

  14. Direct Imaging of Hippocampal Epileptiform Calcium Motifs Following Kainic Acid Administration in Freely Behaving Mice.

    PubMed

    Berdyyeva, Tamara K; Frady, E Paxon; Nassi, Jonathan J; Aluisio, Leah; Cherkas, Yauheniya; Otte, Stephani; Wyatt, Ryan M; Dugovic, Christine; Ghosh, Kunal K; Schnitzer, Mark J; Lovenberg, Timothy; Bonaventure, Pascal

    2016-01-01

    Prolonged exposure to abnormally high calcium concentrations is thought to be a core mechanism underlying hippocampal damage in epileptic patients; however, no prior study has characterized calcium activity during seizures in the live, intact hippocampus. We have directly investigated this possibility by combining whole-brain electroencephalographic (EEG) measurements with microendoscopic calcium imaging of pyramidal cells in the CA1 hippocampal region of freely behaving mice treated with the pro-convulsant kainic acid (KA). We observed that KA administration led to systematic patterns of epileptiform calcium activity: a series of large-scale, intensifying flashes of increased calcium fluorescence concurrent with a cluster of low-amplitude EEG waveforms. This was accompanied by a steady increase in cellular calcium levels (>5 fold increase relative to the baseline), followed by an intense spreading calcium wave characterized by a 218% increase in global mean intensity of calcium fluorescence (n = 8, range [114-349%], p < 10(-4); t-test). The wave had no consistent EEG phenotype and occurred before the onset of motor convulsions. Similar changes in calcium activity were also observed in animals treated with 2 different proconvulsant agents, N-methyl-D-aspartate (NMDA) and pentylenetetrazol (PTZ), suggesting the measured changes in calcium dynamics are a signature of seizure activity rather than a KA-specific pathology. Additionally, despite reducing the behavioral severity of KA-induced seizures, the anticonvulsant drug valproate (VA, 300 mg/kg) did not modify the observed abnormalities in calcium dynamics. These results confirm the presence of pathological calcium activity preceding convulsive motor seizures and support calcium as a candidate signaling molecule in a pathway connecting seizures to subsequent cellular damage. Integrating in vivo calcium imaging with traditional assessment of seizures could potentially increase translatability of pharmacological intervention, leading to novel drug screening paradigms and therapeutics designed to target and abolish abnormal patterns of both electrical and calcium excitation. PMID:26973444

  15. Acid diet (high meat protein) effects on calcium metabolism and bone health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review: Update recent advancements regarding the effect of high animal protein on calcium utilization and bone health. Recent findings: Increased potential renal acid load resulting from a high protein (meat) intake has been closely associated with increased urinary calcium excretion. How...

  16. Comparison of sodium and calcium heparin in prevention of venous thromboembolism.

    PubMed

    Cade, J F; Andrews, J T; Stubbs, A E

    1982-10-01

    The relative efficacy of sodium and calcium heparin in preventing venous thromboembolism and their relative side-effects were studied in 234 high-risk patients in a randomised, double-blind, placebo-controlled trial. The two heparin preparations were from the same batch and in the same concentration, and were given in a dose of 5000 U 12 hourly. Positive leg scans were found in 19% after placebo, 12% after sodium heparin and 8% after calcium heparin. Bruising at the injection site was more common after calcium heparin (66%) than after sodium heparin (53%) or placebo (38%). Pain at the injection site was also more common after calcium heparin (26%) than after sodium heparin (8%) or placebo (6%). Changes in the activated partial thromboplastin time were small and did not correlate with leg scan results or bruising. While there was a tendency for calcium heparin to be possibly more effective, it was followed by significantly more local haematoma and pain. PMID:6758747

  17. Calcium antagonist verapamil prevented pulmonary arterial hypertension in broilers with ascites by arresting pulmonary vascular remodeling.

    PubMed

    Yang, Ying; Qiao, Jian; Wang, Huiyu; Gao, Mingyu; Ou, Deyuan; Zhang, Jianjun; Sun, Maohong; Yang, Xin; Zhang, Xiaobo; Guo, Yuming

    2007-04-30

    Calcium signaling has been reported to be involved in the pathogenesis of hypertension. Verapamil, one of the calcium antagonists, is used to characterize the role of calcium signaling in the development of pulmonary arterial hypertension syndrome in broilers. The suppression effect of verapamil on pulmonary arterial hypertension and pulmonary vascular remodeling was examined in broilers, from the age of 16 days to 43 days. Our results showed that oral administration of lower dose of verapamil (5 mg/kg body weight every 12 h) prevented the mean pulmonary arterial pressure, the ascites heart index and the erythrocyte packed cell volume of birds at low temperature from increasing, the heart rate from decreasing, and pulmonary arteriole median from thickening, and no pulmonary arteriole remodeling in broilers treated with the two doses of verapamil at low temperature was observed. Our results indicated that calcium signaling was involved in the development of broilers' pulmonary arterial hypertension, which leads to the development of ascites, and we suggest that verapamil may be used as a preventive agent to reduce the occurrence and development of pulmonary arterial hypertension in broilers. PMID:17320074

  18. Houttuyniae Herba Attenuates Kainic Acid-Induced Neurotoxicity via Calcium Response Modulation in the Mouse Hippocampus.

    PubMed

    Kim, Hyo Geun; Jeong, Hyun Uk; Hong, Sung In; Oh, Myung Sook

    2015-12-01

    Epilepsy is a complex neurological disorder characterized by the repeated occurrence of electrical activity known as seizures. This activity induces increased intracellular calcium, which ultimately leads to neuronal damage. Houttuyniae Herba, the aerial part of Houttuynia cordata, has various pharmacological effects and is widely used as a traditional herb. In the present study, we evaluated the protective effects of Houttuyniae Herba water extract on kainic acid-induced neurotoxicity. Kainic acid directly acts on calcium release, resulting in seizure behavior, neuronal damage, and cognitive impairment. In a rat primary hippocampal culture system, Houttuyniae Herba water extract significantly protected neuronal cells from kainic acid toxicity. In a seizure model where mice received intracerebellar kainic acid injections, Houttuyniae Herba water extract treatment resulted in a lower seizure stage score, ameliorated cognitive impairment, protected neuronal cells against kainic acid-induced toxicity, and suppressed neuronal degeneration in the hippocampus. In addition, Houttuyniae Herba water extract regulated increases in the intracellular calcium level, its related downstream pathways (reactive oxygen species production and mitochondrial dysfunction), and calcium/calmodulin complex kinase type II immunoreactivity in the mouse hippocampus, which resulted from calcium influx stimulation induced by kainic acid. These results demonstrate the neuroprotective effects of Houttuyniae Herba water extract through inhibition of calcium generation in a kainic acid-induced epileptic model. PMID:26366753

  19. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid.

    PubMed

    Larkindale, Jane; Knight, Marc R

    2002-02-01

    Plants, in common with all organisms, have evolved mechanisms to cope with the problems caused by high temperatures. We examined specifically the involvement of calcium, abscisic acid (ABA), ethylene, and salicylic acid (SA) in the protection against heat-induced oxidative damage in Arabidopsis. Heat caused increased thiobarbituric acid reactive substance levels (an indicator of oxidative damage to membranes) and reduced survival. Both effects required light and were reduced in plants that had acquired thermotolerance through a mild heat pretreatment. Calcium channel blockers and calmodulin inhibitors increased these effects of heating and added calcium reversed them, implying that protection against heat-induced oxidative damage in Arabidopsis requires calcium and calmodulin. Similar to calcium, SA, 1-aminocyclopropane-1-carboxylic acid (a precursor to ethylene), and ABA added to plants protected them from heat-induced oxidative damage. In addition, the ethylene-insensitive mutant etr-1, the ABA-insensitive mutant abi-1, and a transgenic line expressing nahG (consequently inhibited in SA production) showed increased susceptibility to heat. These data suggest that protection against heat-induced oxidative damage in Arabidopsis also involves ethylene, ABA, and SA. Real time measurements of cytosolic calcium levels during heating in Arabidopsis detected no increases in response to heat per se, but showed transient elevations in response to recovery from heating. The magnitude of these calcium peaks was greater in thermotolerant plants, implying that these calcium signals might play a role in mediating the effects of acquired thermotolerance. Calcium channel blockers and calmodulin inhibitors added solely during the recovery phase suggest that this role for calcium is in protecting against oxidative damage specifically during/after recovery. PMID:11842171

  20. Calcium

    MedlinePlus

    ... and drink lactose-reduced or lactose-free milk. Vegans (vegetarians who eat no animal products) and ovo- ... osteoporosis and bone fractures. Symptoms of serious calcium deficiency include numbness and tingling in the fingers, convulsions, ...

  1. Calcium

    MedlinePlus

    ... such as milk, cheese, and yogurt Leafy, green vegetables Fish with soft bones that you eat, such as canned sardines and salmon Calcium-enriched foods such as breakfast cereals, fruit juices, soy and rice drinks, and tofu. Check ...

  2. Long-Chain Fatty Acids Activate Calcium Channels in Ventricular Myocytes

    NASA Astrophysics Data System (ADS)

    Huang, James Min-Che; Xian, Hu; Bacaner, Marvin

    1992-07-01

    Nonesterified fatty acids accumulate at sites of tissue injury and necrosis. In cardiac tissue the concentrations of oleic acid, arachidonic acid, leukotrienes, and other fatty acids increase greatly during ischemia due to receptor or nonreceptor-mediated activation of phospholipases and/or diminished reacylation. In ischemic myocardium, the time course of increase in fatty acids and tissue calcium closely parallels irreversible cardiac damage. We postulated that fatty acids released from membrane phospholipids may be involved in the increase of intracellular calcium. We report here that low concentrations (3-30 μM) of each long-chain unsaturated (oleic, linoleic, linolenic, and arachidonic) and saturated (palmitic, stearic, and arachidic) fatty acid tested induced multifold increases in voltage-dependent calcium currents (ICa) in cardiac myocytes. In contrast, neither short-chain fatty acids (<12 carbons) or fatty acid esters (oleic and palmitic methyl esters) had any effect on ICa, indicating that activation of calcium channels depended on chain length and required a free carboxyl group. Inhibition of protein kinases C and A, G proteins, eicosanoid production, or nonenzymatic oxidation did not block the fatty acid-induced increase in ICa. Thus, long-chain fatty acids appear to directly activate ICa, possibly by acting at some lipid sites near the channels or directly on the channel protein itself. We suggest that the combined effects of fatty acids released during ischemia on ICa may contribute to ischemia-induced pathogenic events on the heart that involve calcium, such as arrhythmias, conduction disturbances, and myocardial damage due to cytotoxic calcium overload.

  3. Buffering effects of calcium salts in kimchi: lowering acidity, elevating lactic acid bacterial population and dextransucrase activity.

    PubMed

    Chae, Seo Eun; Moon, Jin Seok; Jung, Jee Yun; Kim, Ji-Sun; Eom, Hyun-Ju; Kim, So-Young; Yoon, Hyang Sik; Han, Nam Soo

    2009-12-01

    This study investigates the buffering effects of calcium salts in kimchi on total acidity, microbial population, and dextransucrase activity. Calcium chloride or calcium carbonate was added in dongchimi-kimchi, a watery-radish kimchi, and their effects on various biochemical attributes were analyzed. The addition of 0.1% calcium chloride produced a milder decrease in the pH after 24 days of incubation, which allowed the lactic acid bacteria to survive longer than in the control. In particular, the heterofermentative Leuconostoc genus population was 10-fold higher than that in the control. When sucrose and maltose were also added along with the calcium salts, the dextransucrase activity in the kimchi was elevated and a higher concentration of isomaltooligosaccharides was synthesized when compared with the control. Calcium chloride was determined as a better activator compound of dextransucrase than calcium carbonate, probably because of its higher solubility. Therefore, the results of this study confirm the ability of the proposed approach to modulate the kimchi fermentation process and possibly enhance the quality of kimchi based on the addition of dietary calcium salts. PMID:20075632

  4. Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells.

    PubMed

    Centuori, Sara M; Gomes, Cecil J; Trujillo, Jesse; Borg, Jamie; Brownlee, Joshua; Putnam, Charles W; Martinez, Jesse D

    2016-07-01

    Obesity and a western diet have been linked to high levels of bile acids and the development of colon cancer. Specifically, increased levels of the bile acid deoxycholic acid (DCA), an established tumor promoter, has been shown to correlate with increased development of colorectal adenomas and progression to carcinoma. Herein we investigate the mechanism by which DCA leads to EGFR-MAPK activation, a candidate mechanism by which DCA may promote colorectal tumorigenesis. DCA treated colon cancer cells exhibited strong and prolonged activation of ERK1/2 when compared to EGF treatment alone. We also showed that DCA treatment prevents EGFR degradation as opposed to the canonical EGFR recycling observed with EGF treatment. Moreover, the combination of DCA and EGF treatment displayed synergistic activity, suggesting DCA activates MAPK signaling in a non-canonical manner. Further evaluation showed that DCA treatment increased intracellular calcium levels and CAMKII phosphorylation, and that blocking calcium with BAPTA-AM abrogated MAPK activation induced by DCA, but not by EGF. Finally we showed that DCA-induced CAMKII leads to MAPK activation through the recruitment of c-Src. Taken together, we demonstrated that DCA regulates MAPK activation through calcium signaling, an alternative mechanism not previously recognized in human colon cancer cells. Importantly, this mechanism allows for EGFR to escape degradation and thus achieve a constitutively active state, which may explain its tumor promoting effects. PMID:27086143

  5. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid.

    PubMed

    Thai, Van Viet; Lee, Byong-Taek

    2010-06-01

    In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4 x 2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37 degrees C. PMID:20333539

  6. Fabrication of calcium phosphate–calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid

    PubMed Central

    Thai, Van Viet

    2010-01-01

    In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4·2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37°C. PMID:20333539

  7. Calcium channel blocker prevents stress-induced activation of renin and aldosterone in conscious pig

    SciTech Connect

    Ceremuzynski, L.K.; Klos, J.; Barcikowski, B.; Herbaczynska-Cedro, K. )

    1991-06-01

    A considerable amount of data suggest the involvement of calcium-mediated processes in the activation of the renin-angiotensin-aldosterone (RAA) cascade. To investigate the effect of calcium-channel inhibition on the RAA system, the authors studied 21 conscious pigs. Blood renin and aldosterone levels increased by subjecting animals to 24 hours of immobilization stress. Renin and aldosterone levels were repeatedly measured by radioimmunoassay in blood samples taken periodically over 24 hours from a chronically implanted arterial cannula. Pretreatment of the animals (N = 11) with nisoldipine, 2 {times} 20 mg p.o. daily for 2 days before and on the day of immobilization, transiently attenuated the stress-induced increase of plasma renin activity and completely prevented the rise of aldosterone, as compared to nontreated controls (N = 10). The finding that nisoldipine suppresses RAA activation induced by a nonpharmacologic stimulus in the conscious intact animal may have clinical implications.

  8. Developing precipitation modes for preventing the calcium-oxalate contamination of sugar beet pectins.

    PubMed

    Guo, Xiaoming; Meng, Hecheng; Zhu, Siming; Tang, Qiang; Pan, Runquan; Yu, Shujuan

    2015-09-01

    Effects of precipitation modes on the co-precipitation of insoluble oxalates particles during the purification of sugar beet pectins (SBP) from the extract were investigated. It was observed that soluble oxalate ions formed insoluble oxalate salts with calcium and precipitated with pectins during ethanol precipitation as pH of the medium increased and the solvent changed from water to ethanol-water mixture. Comparison among the employed precipitation methods revealed that both the dialysis-ethanol-precipitation and metal precipitation effectively prevented the calcium-oxalate contamination of SBP. Emulsifying properties of DEPP, EPP and MPP were also studied. It was observed that DEPP performed better than the remainder with respect to emulsifying ability. Based on these results, we concluded that the dialysis-ethanolic-precipitation can be a suitable method for improving the purity as well as emulsifying properties of the resulting pectins. PMID:25842309

  9. Aspirin plus calcium supplementation to prevent superimposed preeclampsia: a randomized trial

    PubMed Central

    Souza, E.V.; Torloni, M.R.; Atallah, A.N.; dos Santos, G.M.S.; Kulay, L.; Sass, N.

    2014-01-01

    Preeclampsia is an important cause of maternal and perinatal morbidity and mortality. Previous studies have tested calcium supplementation and aspirin separately to reduce the incidence of preeclampsia but not the effects of combined supplementation. The objective of this study was to investigate the effectiveness of aspirin combined with calcium supplementation to prevent preeclampsia in women with chronic hypertension. A double-blind, placebo-controlled randomized clinical trial was carried out at the antenatal clinic of a large university hospital in São Paulo, SP, Brazil. A total of 49 women with chronic hypertension and abnormal uterine artery Doppler at 20-27 weeks gestation were randomly assigned to receive placebo (N = 26) or 100 mg aspirin plus 2 g calcium (N = 23) daily until delivery. The main outcome of this pilot study was development of superimposed preeclampsia. Secondary outcomes were fetal growth restriction and preterm birth. The rate of superimposed preeclampsia was 28.6% lower among women receiving aspirin plus calcium than in the placebo group (52.2 vs 73.1%, respectively, P=0.112). The rate of fetal growth restriction was reduced by 80.8% in the supplemented group (25 vs 4.8% in the placebo vs supplemented groups, respectively; P=0.073). The rate of preterm birth was 33.3% in both groups. The combined supplementation of aspirin and calcium starting at 20-27 weeks of gestation produced a nonsignificant decrease in the incidence of superimposed preeclampsia and fetal growth restriction in hypertensive women with abnormal uterine artery Doppler. PMID:24728212

  10. BENCH-SCALE EVALUATION OF CALCIUM SORBENTS FOR ACID GAS EMISSION CONTROL

    EPA Science Inventory

    Calcium sorbents for acid gas emission control were evaluated for effectiveness in removing SO2/HCl and SO2/NO from simulated incinerator and boiler flue gases. All tests were conducted in a bench-scale reactor (fixed-bed) simulating fabric filter conditions in an acid gas remova...

  11. Arachidonic acid stimulates /sup 45/calcium efflux and HPL release in isolated trophoblast cells

    SciTech Connect

    Zeitler, P.; Murphy, E.; Handwerger, S.

    1986-01-13

    Previous investigations from this laboratory have indicated that arachidonic acid stimulates a rapid, dose-dependent and reversible increase in hPL release which is not dependent on cyclooxygenase or lipoxygenase metabolism. To investigate further the mechanism by which arachidonic acid stimulates the release of hPL, the effect of arachidonic acid on the release of /sup 45/Ca from perifused cells prelabelled with /sup 45/Ca was examined in an enriched cell culture population of term human syncytiotrophoblast. Arachidonic acid (10-100 ..mu..M) stimulated a dose-dependent, rapid, and reversible increase in the release of both /sup 45/Ca and hPL from the perifused placental cells. On the other hand, palmitic acid had little effect on either hPL release or /sup 45/Ca release even at concentrations as high as 100 ..mu..M. Ionophore A23187 (1-10..mu..M) also stimulated a dose-dependent and reversible increase in hPL release. Since arachidonic acid increases the mobilization of cellular calcium, as reflected by the increased /sup 45/calcium efflux, and since an increase in the intracellular calcium concentration appears to stimulate an increase in hPL release, these results suggest that the stimulation of hPL release by arachidonic acid may be due, at least in part, to the effects of the fatty acid on cellular calcium mobilization. 26 references, 5 figures.

  12. A Trial of Calcium and Vitamin D for the Prevention of Colorectal Adenomas

    PubMed Central

    Baron, John A.; Barry, Elizabeth L.; Mott, Leila A.; Rees, Judy R.; Sandler, Robert S.; Snover, Dale C.; Bostick, Roberd M.; Ivanova, Anastasia; Cole, Bernard F.; Ahnen, Dennis J.; Beck, Gerald J.; Bresalier, Robert S.; Burke, Carol A.; Church, Timothy R.; Cruz-Correa, Marcia; Figueiredo, Jane C.; Goodman, Michael; Kim, Adam S.; Robertson, Douglas J.; Rothstein, Richard; Shaukat, Aasma; Seabrook, March E.; Summers, Robert W.

    2015-01-01

    BACKGROUND Epidemiologic and preclinical data suggest that higher intake and serum levels of vitamin D and higher intake of calcium reduce the risk of colorectal neoplasia. To further study the chemopreventive potential of these nutrients, we conducted a randomized, double-blind, placebo-controlled trial of supplementation with vitamin D, calcium, or both for the prevention of colorectal adenomas. METHODS We recruited patients with recently diagnosed adenomas and no known colorectal polyps remaining after complete colonoscopy. We randomly assigned 2259 participants to receive daily vitamin D3 (1000 IU), calcium as carbonate (1200 mg), both, or neither in a partial 2×2 factorial design. Women could elect to receive calcium plus random assignment to vitamin D or placebo. Follow-up colonoscopy was anticipated to be performed 3 or 5 years after the baseline examinations, according to the endoscopist’s recommendation. The primary end point was adenomas diagnosed in the interval from randomization through the anticipated surveillance colonoscopy. RESULTS Participants who were randomly assigned to receive vitamin D had a mean net increase in serum 25-hydroxyvitamin D levels of 7.83 ng per milliliter, relative to participants given placebo. Overall, 43% of participants had one or more adenomas diagnosed during follow-up. The adjusted risk ratios for recurrent adenomas were 0.99 (95% confidence interval [CI], 0.89 to 1.09) with vitamin D versus no vitamin D, 0.95 (95% CI, 0.85 to 1.06) with calcium versus no calcium, and 0.93 (95% CI, 0.80 to 1.08) with both agents versus neither agent. The findings for advanced adenomas were similar. There were few serious adverse events. CONCLUSIONS Daily supplementation with vitamin D3 (1000 IU), calcium (1200 mg), or both after removal of colorectal adenomas did not significantly reduce the risk of recurrent colorectal adenomas over a period of 3 to 5 years. (Funded by the National Cancer Institute; ClinicalTrials.gov number, NCT00153816.) PMID:26465985

  13. Nicotinic acid modulates intracellular calcium concentration and disassembles the cytoskeleton

    PubMed Central

    LI, JIEJING; LI, YANXI; ZHANG, PENGHUI; NIU, HUA; SHI, YU

    2014-01-01

    Nicotinic acid (NA), a member of the vitamin B family, is well known for its functions in the treatment and prevention of atherosclerosis due to decreasing plasma levels of low-density lipoprotein cholesterol. In recent years, the major side effect of NA, cutaneous flushing, has also attracted extensive attention. However, the effects of NA in other aspects of physiology or cell biology have remained elusive. The present study provided evidence that high concentrations of NA were able to first reduce and later elevate intracellular [Ca2+] in the NIH3T3 cell line. The reduction of the intracellular Ca2+ concentration was achieved within the initial 10 sec, and was preceded by a gradual elevation of intracellular [Ca2+]. Notably, marked accumulation of opaque materials in the perinuclear region was observed in NIH3T3 cells treated with 70 mM NA. Further analysis revealed that treatment with 70 mM NA for 1 h disassembled the microtubule and F-actin cytoskeleton systems and resulted in β-tubulin degradation in an ubiquitin-proteasome-dependent manner. These data indicated that high concentrations of NA disrupted cytoskeleton structures, which may have contributed to minus end (nucleus region) to plus end (cell membrane region)-directed transport processes and resulted in the deposition of material in the perinuclear region. Artificially increasing [Ca2+] adding CaCl2 to the culture media effected the disassembly of F-actin, while it had no apparent effect on microtubules. These results suggested that the disruption of the cytoskeleton systems was not entirely due to the NA-induced elevation of [Ca2+]. Finally, microinjection of NA into xenopus embryos blocked the transport of melanosomes to the peripheral cellular area. In conclusion, the present study indicated that NA disassembles F-actin and microtubule systems, thereby blocking cytoskeleton-dependent intracellular transport. PMID:25241762

  14. Folic acid in the prevention of birth defects.

    PubMed

    Allen, W P

    1996-12-01

    Maternal use of folic acid prior to conception reduces the risk for neural tube defects. In addition, other birth defects may be prevented by the periconceptional use of folic acid. Homocysteine-methionine metabolism appears to be altered in women with pregnancies affected by neural tube defects; however, the specific mechanisms of causation are not yet known. Fortification of flour with folic acid has been approved by the Food and Drug Administration, although at a level that still requires folic acid supplementation as recommended by the Public Health Service for all women of childbearing age to prevent neural tube defects. PMID:9018449

  15. Recovery of calcium carbonate from steelmaking slag and utilization for acid mine drainage pre-treatment.

    PubMed

    Mulopo, J; Mashego, M; Zvimba, J N

    2012-01-01

    The conversion of steelmaking slag (a waste product of the steelmaking process) to calcium carbonate (CaCO(3)) was tested using hydrochloric acid, ammonium hydroxide and carbon dioxide via a pH-swing process. Batch reactors were used to assess the technical feasibility of calcium carbonate recovery and its use for pre-treatment of acid mine drainage (AMD) from coal mines. The effects of key process parameters, such as the amount of acid (HCl/calcium molar ratio), the pH and the CO(2) flow rate were considered. It was observed that calcium extraction from steelmaking slag significantly increased with an increase in the amount of hydrochloric acid. The CO(2) flow rate also had a positive effect on the carbonation reaction rate but did not affect the morphology of the calcium carbonate produced for values less than 2 L/min. The CaCO(3) recovered from the bench scale batch reactor demonstrated effective neutralization ability during AMD pre-treatment compared with the commercial laboratory grade CaCO(3). PMID:22643421

  16. Folic acid and birth defect prevention

    MedlinePlus

    ... of certain birth defects. These include spina bifida, anencephaly, and some heart defects. Experts recommend women who ... Women who have had a baby with a neural tube defect may need a higher dose of folic acid. ...

  17. Effects of pyruvate salts, pyruvic acid, and bicarbonate salts in preventing experimental oxalate urolithiasis in rats.

    PubMed

    Ogawa, Y; Yamaguchi, K; Tanaka, T; Morozumi, M

    1986-05-01

    Sodium pyruvate, potassium pyruvate, pyruvic acid, sodium bicarbonate and potassium bicarbonate were added to a calcium-oxalate lithogenic diet (a glycolic-acid diet) in order to determine their effects in preventing lithogenicity. Male Wistar-strain rats who had been fed the glycolic-acid diet developed marked urinary calculi within four weeks. Rats in the sodium and potassium pyruvate groups had, however, almost no stones in the urinary system. Rats in the bicarbonate and pyruvic-acid groups showed slightly less effect than those in the pyruvate groups. Urinary oxalate excretion was high in all the groups during the experiment. The urinary oxalate concentration was relatively higher in the sodium-pyruvate group, and significantly higher in the potassium-pyruvate group, than in the glycolic-acid group. Urinary citrate excretion was high both in the pyruvate and bicarbonate groups; the urinary citrate concentration was, however, significantly higher in the pyruvate groups than in the bicarbonate groups at the fourth experimental week. The urinary calcium and magnesium concentrations were irrelevant to the diets administered. Therefore, it can be concluded that pyruvate salts inhibit urinary calculi formation, not by decreasing oxalate synthesis, but by increasing the urinary citrate concentration; bicarbonate salts work in the same manner, but a little less effectively. PMID:3007782

  18. Low-dose calcium supplementation for preventing pre-eclampsia: a systematic review and commentary

    PubMed Central

    Hofmeyr, GJ; Belizn, JM; von Dadelszen, P

    2014-01-01

    Background Epidemiological data link low dietary calcium with pre-eclampsia. Current recommendations are for 1.52g/day calcium supplementation for low-intake pregnant women, based on randomised controlled trials of ?1g/day calcium supplementation from 20weeks of gestation. This is problematic logistically in low-resource settings; excessive calcium may be harmful; and 20weeks may be too late to alter outcomes. Objectives To review the impact of lower dose calcium supplementation on pre-eclampsia risk. Search strategy and selection criteria We searched PubMed and the Cochrane Pregnancy and Childbirth Group trials register. Data collection and analysis Two authors extracted data from eligible randomised and quasi-randomised trials of low-dose calcium (LDC, <1g/day), with or without other supplements. Main results Pre-eclampsia was reduced consistently with LDC with or without co-supplements (nine trials, 2234 women, relative risk [RR] 0.38; 95% confidence interval [95% CI] 0.280.52), as well as for subgroups: LDC alone (four trials, 980 women, RR 0.36; 95% CI 0.230.57]); LDC plus linoleic acid (two trials, 134 women, RR 0.23; 95% CI 0.090.60); LDC plus vitamin D (two trials, 1060 women, RR 0.49; 0.310.78) and a trend for LDC plus antioxidants (one trial, 60 women, RR 0.24; 95% CI 0.061.01). Overall results were consistent with the single quality trial of LDC alone (171 women, RR 0.30; 95% CI 0.061.38). LDC plus antioxidants commencing at 812weeks tended to reduce miscarriage (one trial, 60 women, RR 0.06; 95% CI 0.001.04). Conclusions These limited data are consistent with LDC reducing the risk of pre-eclampsia; confirming this in sufficiently powered randomised controlled trials would have implications for current guidelines and their global implementation. PMID:24621141

  19. Improvement of Tear Trough by Monophasic Hyaluronic Acid and Calcium Hydroxylapatite

    PubMed Central

    2014-01-01

    Tear trough deformities are a sign of facial aging. The anatomical base is well understood. In many patients, minimal invasive surgical procedures are useful to improve appearance. Here, the authors describe the use of monophasic hyaluronic acid dermal filler and calcium hydroxylapatite injection for correction. Forty female patients with a mean age of 50 years have been treated. On average, an improvement of one class of Hidman’s severity score could be achieved by single treatment. Mean duration of the effect was 10.1 months for hyaluronic acid and 12.8 months for calcium hydroxylapatite. Adverse effects were mild and temporary. Patients satisfaction was high (95%). PMID:25371770

  20. Catechin prevents the calcium oxalate monohydrate induced renal calcium crystallization in NRK-52E cells and the ethylene glycol induced renal stone formation in rat

    PubMed Central

    2013-01-01

    Background Reactive oxygen species play important roles in renal calcium crystallization. In this study, we examined the effects of catechin, which have been shown to have antioxidant properties on the renal calcium crystallization. Methods In the vitro experiment, the changes of the mitochondrial membrane potential, expression of superoxide dismutase (SOD), 4-hydroxynonenal (4-HNE), cytochrome c, and cleaved caspase 3 were measured to show the effects of catechin treatment on the NRK-52E cells induced by calcium oxalate monohydrate (COM). In the vivo study, Sprague–Dawley rats were administered 1% ethylene glycol (EG) to generate a rat kidney stone model and then treated with catechin (2.5 and 10 mg/kg/day) for 14 days. The urine and serum variables were dected on 7 and 14 days after EG administration. The expression of cytochrome c, cleaved caspase 3, SOD, osteopontin (OPN), malondialdehyde (MDA), 8-hydroxy-2′-deoxyguanosine (8-OHdG) in kidney were measured. Furthermore, the mitochondrial microstructure in the kidney was also examined by transmission electron microscopy. Results Catechin treatment could prevent the changes in mitochondrial membrane potential and expression of SOD, 4-HNE, cytochrome c, and cleaved caspase 3 in NRK-52E cells induced by the COM. For the in vivo experiments, the EG administration induced renal calcium crystallization was also prevented by the catechin. The expression of SOD, OPN, MDA, OPN and 8-OHdG, were increased after EG administration and this increase was diminished by catechin. Moreover, catechin also prevented EG induced mitochondrial collapse in rat. Conclusions Catechin has preventive effects on renal calcium crystallization both in vivo and in vitro, and provide a potential therapeutic treatment for this disease. PMID:24044655

  1. The primary prevention of birth defects: Multivitamins or folic acid?

    PubMed

    Czeizel, Andrew E

    2004-01-01

    Periconceptional use of folic acid alone or in multivitamin supplements is effective for the primary prevention of neural-tube defects. The Hungarian randomized and two-cohort controlled trials showed that periconceptional multivitamin supplementation can reduce the occurrence of some other structural birth defects, i.e. congenital abnormalities. These findings were supported by many, but not all observational studies. Recently there have been two main debated questions. The first one is whether the use of folic acid alone or folic acid-containing multivitamins is better. The second one is connected with the dilemma of whether high dose of folic acid (e.g. 5 mg) might be better than a daily multivitamin with 0.4 - 0.8 mg of folic acid. Comparison of the pooled data of two Hungarian trials using a multivitamin containing 0.8 mg folic acid and the data of the Hungarian Case-Control Surveillance of Congenital Abnormalities using high dose of folic acid seemed to be appropriate to answer these questions. Multivitamins containing 0.4 - 0.8 mg of folic acid were more effective for the reduction of neural-tube defects than high dose of folic acid. Both multivitamins and folic acid can prevent some part of congenital cardiovascular malformations. Only multivitamins were able to reduce the prevalence at birth of obstructive defects of urinary tract, limb deficiencies and congenital pyloric stenosis. However, folic acid was effective in preventing some part of rectal/anal stenosis/atresia, and high dose of folic acid had effect in preventing some orofacial clefts. The findings are consistent that periconceptional multivitamin and folic acid supplementation reduce the overall occurrence of congenital abnormalities in addition to the demonstrated effect on neural-tube defects. PMID:15912190

  2. Effect of zoledronic acid on serum calcium in Paget’s disease patients after educational strategies to improve calcium and vitamin D supplementation

    PubMed Central

    Bone, Henry G.; Su, Guoqin; Tan, Monique; Ozturk, Zafer E.; Aftring, Paul

    2015-01-01

    Objective: Bisphosphonates are the most effective therapeutic agents in patients with Paget’s disease of bone. As a result of their inhibition of osteoclastic activity, hypocalcemia of variable frequency and severity following intravenous bisphosphonate therapy has been reported. The present study assessed the effect of physician and patient education on adequate supplementation of calcium and vitamin D to reduce the potential risk of developing hypocalcemia following infusion of 5 mg zoledronic acid. Methods: This was an open-label, multicenter, controlled registry trial in which patients with Paget’s disease were treated with a single intravenous infusion of zoledronic acid. Physicians were provided with educational materials focusing on optimization of calcium and vitamin D supplementation following zoledronic infusion that they used to educate their patients. The primary safety variable was the percentage of patients with serum calcium level <2.07mmol/l 9–11 days after zoledronic acid infusion. Results: A total of 75 patients were evaluable in the post dose hypocalcemia safety analysis. Of these, only 1 patient had treatment-emergent hypocalcemia, with a serum calcium level of 1.92 mmol/l 4 days following therapy. Hypocalcemia-related symptoms were not reported in this patient and the serum calcium returned to normal range at 2.17 mmol/l within 1 week on oral calcium supplementation. Conclusions: These results suggest that, with optimization of calcium and vitamin D supplementation by physician and patient education, hypocalcemia is an infrequent occurrence following zoledronic acid infusion. PMID:26301065

  3. Adsorption and release of amino acids mixture onto apatitic calcium phosphates analogous to bone mineral

    NASA Astrophysics Data System (ADS)

    El Rhilassi, A.; Mourabet, M.; El Boujaady, H.; Bennani-Ziatni, M.; Hamri, R. El; Taitai, A.

    2012-10-01

    Study focused on the interaction of adsorbate with poorly crystalline apatitic calcium phosphates analogous to bone mineral. Calcium phosphates prepared in water-ethanol medium at physiological temperature (37 °C) and neutral pH, their Ca/P ratio was between 1.33 and 1.67. Adsorbate used in this paper takes the mixture form of two essential amino acids L-lysine and DL-leucine which have respectively a character hydrophilic and hydrophobic. Adsorption and release are investigated experimentally; they are dependent on the phosphate type and on the nature of adsorbate L-lysine, DL-leucine and their mixture. Adsorption of mixture of amino acids on the apatitic calcium phosphates is influenced by the competition between the two amino acids: L-lysine and DL-leucine which exist in the medium reaction. The adsorption kinetics is very fast while the release kinetics is slow. The chemical composition of apatite has an influence on both adsorption and release. The interactions adsorbate-adsorbent are electrostatic type. Adsorption and release reactions of the amino acid mixture are explained by the existence of the hydrated surface layer of calcium phosphate apatite. The charged sbnd COOsbnd and sbnd NH3+ of adsorbates are the strongest groups that interact with the surface of apatites, the adsorption is mainly due to the electrostatic interaction between the groups sbnd COOsbnd of amino acids and calcium Ca2+ ions of the apatite. Comparative study of interactions between adsorbates (L-lysine, DL-leucine and their mixture) and apatitic calcium phosphates is carried out in vitro by using UV-vis and infrared spectroscopy IR techniques.

  4. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii.

    PubMed Central

    Cunningham, J E; Kuiack, C

    1992-01-01

    An isolate of Penicillium bilaii previously reported to solubilize mineral phosphates and enhance plant uptake of phosphate was studied. Using agar media with calcium phosphate and the pH indicator alizarin red S, the influence of the medium composition on phosphate solubility and medium acidification was recorded. The major acidic metabolites produced by P. bilaii in a sucrose nitrate liquid medium were found to be oxalic acid and citric acid. Citric acid production was promoted under nitrogen-limited conditions, while oxalic acid production was promoted under carbon-limited conditions. Citric acid was produced in both growth and stationary phases, but oxalic acid production occurred only in stationary phase. When submerged cultures which normally produce acid were induced to sporulate, the culture medium shifted toward alkaline rather than acid reaction with growth. PMID:1622211

  5. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells.

    PubMed

    Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; Nguyen, Desiree; Yong, Taiming; Yang, Paul G; Poretsky, Elly; Belknap, Thomas F; Waadt, Rainer; Alemán, Fernando; Schroeder, Julian I

    2015-01-01

    A central question is how specificity in cellular responses to the eukaryotic second messenger Ca(2+) is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca(2+)-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca(2+)-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca(2+)-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca(2+)-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca(2+)-dependent and Ca(2+)-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca(2+)-signaling on a cellular, genetic, and biochemical level. PMID:26192964

  6. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells

    PubMed Central

    Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; Nguyen, Desiree; Yong, Taiming; Yang, Paul G; Poretsky, Elly; Belknap, Thomas F; Waadt, Rainer; Alemán, Fernando; Schroeder, Julian I

    2015-01-01

    A central question is how specificity in cellular responses to the eukaryotic second messenger Ca2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca2+-dependent and Ca2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca2+-signaling on a cellular, genetic, and biochemical level. DOI: http://dx.doi.org/10.7554/eLife.03599.001 PMID:26192964

  7. Maleic Acid – but Not Structurally Related Methylmalonic Acid – Interrupts Energy Metabolism by Impaired Calcium Homeostasis

    PubMed Central

    Wang, Bei-Tzu; Okun, Jürgen Günther; Kölker, Stefan; Morath, Marina Alexandra; Sauer, Sven Wolfgang

    2015-01-01

    Maleic acid (MA) has been shown to induce Fanconi syndrome via disturbance of renal energy homeostasis, though the underlying pathomechanism is still under debate. Our study aimed to examine the pathomechanism underlying maleic acid-induced nephrotoxicity. Methylmalonic acid (MMA) is structurally similar to MA and accumulates in patients affected with methymalonic aciduria, a defect in the degradation of branched-chain amino acids, odd-chain fatty acids and cholesterol, which is associated with the development of tubulointerstitial nephritis resulting in chronic renal failure. We therefore used MMA application as a control experiment in our study and stressed hPTECs with MA and MMA to further validate the specificity of our findings. MMA did not show any toxic effects on proximal tubule cells, whereas maleic acid induced concentration-dependent and time-dependent cell death shown by increased lactate dehydrogenase release as well as ethidium homodimer and calcein acetoxymethyl ester staining. The toxic effect of MA was blocked by administration of single amino acids, in particular L-alanine and L-glutamate. MA application further resulted in severe impairment of cellular energy homeostasis on the level of glycolysis, respiratory chain, and citric acid cycle resulting in ATP depletion. As underlying mechanism we could identify disturbance of calcium homeostasis. MA toxicity was critically dependent on calcium levels in culture medium and blocked by the extra- and intracellular calcium chelators EGTA and BAPTA-AM respectively. Moreover, MA-induced cell death was associated with activation of calcium-dependent calpain proteases. In summary, our study shows a comprehensive pathomechanistic concept for MA-induced dysfunction and damage of human proximal tubule cells. PMID:26086473

  8. Tranexamic acid in the prevention of periventricular haemorrhage.

    PubMed Central

    Hensey, O J; Morgan, M E; Cooke, R W

    1984-01-01

    Increased fibrinolytic activity in the ganglionic eminence of the preterm human brain has been proposed as a factor in the aetiology of periventricular haemorrhage. The effect of tranexamic acid in preventing periventricular haemorrhage was evaluated in 100 infants in a double blind, randomised controlled trial. Haemorrhages developed in 22 infants who received tranexamic acid and in 20 of those who received placebo. A significant reduction in fibrin degradation products in treated infants was seen. Our study suggests that excessive fibrinolytic activity is not an important factor in the aetiology of periventricular haemorrhage and that treatment with tranexamic acid will not prevent its occurrence. PMID:6383225

  9. Preeclampsia prevention

    PubMed Central

    Herrera-Medina, Rodolfo; Pineda, Lucia M

    2015-01-01

    Background: Preeclampsia is the main complication of pregnancy in developing countries. Calcium starting at 14 weeks of pregnancy is indicated to prevent the disease. Recent advances in prevention of preeclampsia endorse the addition of conjugated linoleic acid. Objective: To estimate the protective effect from calcium alone, compared to calcium plus conjugated linoleic acid in nulliparous women at risk of preeclampsia. Methods: A case-control design nested in the cohort of nulliparous women attending antenatal care from 2010 to 2014. The clinical histories of 387 cases of preeclampsia were compared with 1,054 normotensive controls. The exposure was prescriptions for calcium alone, the first period, or calcium plus conjugated linoleic acid, the second period, from 12 to 16 weeks of gestational age to labor. Confounding variables were controlled, allowing only nulliparous women into the study and stratifying by age, education and ethnic group. Results: The average age was 26.4 yrs old (range= 13-45), 85% from mixed ethnic backgrounds and with high school education. There were no differences between women who received calcium carbonate and those who did not (OR= 0.96; 95% CI= 0.73-1.27). The group of adolescents (13 to 18 years old) in the calcium plus conjugated linoleic acid was protected for preeclampsia (OR= 0.00; 95% CI= 0.00-0.44) independent of the confounder variables. Conclusions: 1. Calcium supplementation during pregnancy did not have preventive effects on preeclampsia. 2. Calcium plus Conjugated Linoleic acid provided to adolescents was observed to have preventive effect on Preeclampsia. PMID:26848195

  10. Alleviating aluminium toxicity on an acid sulphate soils in Peninsular Malaysia with application of calcium silicate

    NASA Astrophysics Data System (ADS)

    Elisa, A. A.; Ninomiya, S.; Shamshuddin, J.; Roslan, I.

    2015-10-01

    A study was conducted to alleviate Al toxicity of an acid sulphate soils collected from paddy cultivation area in Kedah, Peninsular Malaysia. For this purpose, the collected acid sulphate soils were treated with calcium silicate. The treated soils were incubated for 120 days in submerged condition in a glasshouse. Subsamples were collected every 30 days throughout the incubation period. Soil pH and exchangeable Al showed positive effect; soil pH increased from 2.9 to 3.5, meanwhile exchangeable Al was reduced from 4.26 to 0.82 cmolc kg-1, which was well below the critical Al toxicity level for rice growth of 2 cmolc kg-1. It was noted that the dissolution of calcium silicate (CaSiO3) supplied substantial amount of Ca2+ and H4SiO42- ions into the soil, noted with increment in Si (silicate) content from 21.21 to 40 mg kg-1 at day 30 and reduction of exchangeable Al at day 90 from 4.26 to below 2 cmolc kg-1. During the first 60 days of incubation, Si content was positively correlated with soil pH, while the exchangeable Al was negatively correlated with Si content. It is believed that the silicate anions released by calcium silicate were active in neutralizing H+ ions that governs the high acidity (pH 2.90) of the acid sulphate soils. This scenario shows positive effect of calcium silicate to reduce soil acidity, therefore creates a favourable soil condition for good rice growth during its vegetative phase (30 days). Thus, application of calcium silicate to alleviate Al toxicity of acid sulphate soils for rice cultivation is a good soil amendment.

  11. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    SciTech Connect

    Miller, M.J.; Zhang, x.J.; Gu, x.A.; Clark, D.A. )

    1991-07-01

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of {sup 51}Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in {sup 51}Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal {sup 51}Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol.

  12. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application

    NASA Astrophysics Data System (ADS)

    Elisa, A. A.; Ninomiya, S.; Shamshuddin, J.; Roslan, I.

    2016-03-01

    In response to human population increase, the utilization of acid sulfate soils for rice cultivation is one option for increasing production. The main problems associated with such soils are their low pH values and their associated high content of exchangeable Al, which could be detrimental to crop growth. The application of soil amendments is one approach for mitigating this problem, and calcium silicate is an alternative soil amendment that could be used. Therefore, the main objective of this study was to ameliorate soil acidity in rice-cropped soil. The secondary objective was to study the effects of calcium silicate amendment on soil acidity, exchangeable Al, exchangeable Ca, and Si content. The soil was treated with 0, 1, 2, and 3 Mg ha-1 of calcium silicate under submerged conditions and the soil treatments were sampled every 30 days throughout an incubation period of 120 days. Application of calcium silicate induced a positive effect on soil pH and exchangeable Al; soil pH increased from 2.9 (initial) to 3.5, while exchangeable Al was reduced from 4.26 (initial) to 0.82 cmolc kg-1. Furthermore, the exchangeable Ca and Si contents increased from 1.68 (initial) to 4.94 cmolc kg-1 and from 21.21 (initial) to 81.71 mg kg-1, respectively. Therefore, it was noted that calcium silicate was effective at alleviating Al toxicity in acid sulfate, rice-cropped soil, yielding values below the critical level of 2 cmolc kg-1. In addition, application of calcium silicate showed an ameliorative effect as it increased soil pH and supplied substantial amounts of Ca and Si.

  13. Activation of the calcium sensing receptor stimulates serum gastrin and gastric acid secretion in healthy subjects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gastric acid secretion is a complex process regulated by neuronal and hormonal pathways. Ex vivo studies in human gastric tissues indicate that the calcium sensing receptor (CaR), expressed on the surface of G and parietal cells, may be involved in this regulation. We sought to determine whether cin...

  14. Activiation of the calcium sensing receptor stimulates serum gastrin and gastric acid secretion in healthy subjects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gastric acid secretion is a complex process regulated by neuronal and hormonal pathways. Ex vivo studies in human gastric tissues indicate that the calcium sensing receptor (CaR), expressed on the surface of G and parietal cells, may be involved in this regulation. We sought to determine whether cin...

  15. Activation of the calcium sensing receptor stimulates gastrin and gastric acid secretion in healthy participants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gastric acid secretion is a complex process regulated by neuronal and hormonal pathways. Ex vivo studies in human gastric tissues indicate that the calcium sensing receptor (CaR), expressed on the surface of G and parietal cells, may be involved in this regulation. We sought to determine whether cin...

  16. Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences.

    PubMed

    Moncrief, N D; Kretsinger, R H; Goodman, M

    1990-06-01

    The relationships among 153 EF-hand (calcium-modulated) proteins of known amino acid sequence were determined using the method of maximum parsimony. These proteins can be ordered into 12 distinct subfamilies--calmodulin, troponin C, essential light chain of myosin, regulatory light chain, sarcoplasmic calcium binding protein, calpain, aequorin, Stronglyocentrotus purpuratus ectodermal protein, calbindin 28 kd, parvalbumin, alpha-actinin, and S100/intestinal calcium-binding protein. Eight individual proteins--calcineurin B from Bos, troponin C from Astacus, calcium vector protein from Branchiostoma, caltractin from Chlamydomonas, cell-division-cycle 31 gene product from Saccharomyces, 10-kd calcium-binding protein from Tetrahymena, LPS1 eight-domain protein from Lytechinus, and calcium-binding protein from Streptomyces--are tentatively identified as unique; that is, each may be the sole representative of another subfamily. We present dendrograms showing the relationships among the subfamilies and uniques as well as dendrograms showing relationships within each subfamily. The EF-hand proteins have been characterized from a broad range of organismal sources, and they have an enormous range of function. This is reflected in the complexity of the dendrograms. At this time we urge caution in assigning a simple scheme of gene duplications to account for the evolution of the 600 EF-hand domains of known sequence. PMID:2115931

  17. Intra-Arterial Calcium Gluconate Treatment After Hydrofluoric Acid Burn of the Hand

    SciTech Connect

    Thomas, D. Jaeger, U.; Sagoschen, I.; Lamberti, C.; Wilhelm, K.

    2009-01-15

    Hydrofluoric acid (HF) is a colorless corrosive acid used in different industrial branches. Exposure to HF typically results from spills, and most often the hand or fingers are involved. Tissue damage through cutaneous HF exposure occurs through corrosive burns due to the free hydrogen ions and through skin penetration of the fluoride ions, causing a depletion of calcium in the deep tissue layers, ultimately leading to cell death and tissue necrosis. Treatment of HF burns consists of thoroughly flushing the exposed area with water and applying calcium gluconate gel to the skin. If topical treatment does not suffice, subcutaneous injections, as well as intravascular-both intravenous and intra-arterial-calcium gluconate therapy, have been advocated. We report for the first time a case of HF burn of the hand and digits associated with vasospasm. Pain and vasospasm were successfully treated by repeated intra-arterial calcium gluconate injection. We conclude that intra-arterial calcium gluconate injection is a successful and well-tolerated therapy for HF burn associated with Raynaud's syndrome. Intra-arterial injection allows for well-controlled delivery of therapy as well as assessment of the vascular status.

  18. Influence of maleic acid copolymers on calcium orthophosphates crystallization at low temperature

    NASA Astrophysics Data System (ADS)

    Pelin, Irina M.; Popescu, Irina; Suflet, Dana M.; Aflori, Magdalena; Bulacovschi, Victor

    2013-08-01

    The goal of this study was to investigate the maleic acid copolymers role on calcium orthophosphates crystallization at low temperature. In this respect, two maleic acid copolymers with different structures [poly(sodium maleate-co-vinyl acetate) and poly(sodium maleate-co-methyl methacrylate)] were used. The syntheses of the calcium orthophosphates in the absence and in the presence of the copolymers were performed through the wet chemical method using calcium nitrate, ammonium dihydrogen phosphate and ammonium hydroxide as reactants. The syntheses were monitored in situ by potentiometric and conductometric measurements. To ensure the transformation of less thermodynamically stable calcium orthophosphates into more stable forms, the samples were aged 30 days in mother solutions, at room temperature. The presence of the copolymers in the final products was evidenced by FTIR spectroscopy and thermogravimetric analysis. Scanning and transmission electron microscopy and laser light scattering measurements gave information about the composites morphology and the size of the formed structures. X-ray diffraction evidenced that, as a function of comonomer structure and of copolymer concentration, the products could contain hydroxyapatite with low crystallinity, calcium-deficient or carbonated hydroxyapatite. At high concentration of poly(sodium maleate-co-methyl methacrylate) the transformation of brushite into apatitic structures was inhibited.

  19. Inhibitors of ORAI1 Prevent Cytosolic Calcium-Associated Injury of Human Pancreatic Acinar Cells and Acute Pancreatitis in 3 Mouse Models

    PubMed Central

    Wen, Li; Voronina, Svetlana; Javed, Muhammad A.; Awais, Muhammad; Szatmary, Peter; Latawiec, Diane; Chvanov, Michael; Collier, David; Huang, Wei; Barrett, John; Begg, Malcolm; Stauderman, Ken; Roos, Jack; Grigoryev, Sergey; Ramos, Stephanie; Rogers, Evan; Whitten, Jeff; Velicelebi, Gonul; Dunn, Michael; Tepikin, Alexei V.; Criddle, David N.; Sutton, Robert

    2015-01-01

    Background & Aims Sustained activation of the cytosolic calcium concentration induces injury to pancreatic acinar cells and necrosis. The calcium release–activated calcium modulator ORAI1 is the most abundant Ca2+ entry channel in pancreatic acinar cells; it sustains calcium overload in mice exposed to toxins that induce pancreatitis. We investigated the roles of ORAI1 in pancreatic acinar cell injury and the development of acute pancreatitis in mice. Methods Mouse and human acinar cells, as well as HEK 293 cells transfected to express human ORAI1 with human stromal interaction molecule 1, were hyperstimulated or incubated with human bile acid, thapsigargin, or cyclopiazonic acid to induce calcium entry. GSK-7975A or CM_128 were added to some cells, which were analyzed by confocal and video microscopy and patch clamp recordings. Acute pancreatitis was induced in C57BL/6J mice by ductal injection of taurolithocholic acid 3-sulfate or intravenous' administration of cerulein or ethanol and palmitoleic acid. Some mice then were given GSK-7975A or CM_128, which inhibit ORAI1, at different time points to assess local and systemic effects. Results GSK-7975A and CM_128 each separately inhibited toxin-induced activation of ORAI1 and/or activation of Ca2+ currents after Ca2+ release, in a concentration-dependent manner, in mouse and human pancreatic acinar cells (inhibition >90% of the levels observed in control cells). The ORAI1 inhibitors also prevented activation of the necrotic cell death pathway in mouse and human pancreatic acinar cells. GSK-7975A and CM_128 each inhibited all local and systemic features of acute pancreatitis in all 3 models, in dose- and time-dependent manners. The agents were significantly more effective, in a range of parameters, when given at 1 vs 6 hours after induction of pancreatitis. Conclusions Cytosolic calcium overload, mediated via ORAI1, contributes to the pathogenesis of acute pancreatitis. ORAI1 inhibitors might be developed for the treatment of patients with pancreatitis. PMID:25917787

  20. Omega-3 fatty acids for breast cancer prevention and survivorship.

    PubMed

    Fabian, Carol J; Kimler, Bruce F; Hursting, Stephen D

    2015-01-01

    Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case-control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship. PMID:25936773

  1. Effects of calcium salts of acidic monomers on mineral induction of phosphoprotein immobilized to agarose beads.

    PubMed

    Ito, Shuichi; Iijima, Masahiro; Motai, Fumiko; Mizoguchi, Itaru; Saito, Takashi

    2012-10-01

    The aim of this study is to evaluate the mineralizing potential of acidic monomers and their calcium salts for mineralization, using an in vitro mineral induction model. Phosvitin (PV) was used as a model phosphoprotein in this study. PV was immobilized on agarose beads with divinyl sulfone. Five aliquots of agarose-immobilized PV, acidic monomers, and their calcium salts were incubated in mineralizing solution at various concentrations. The PV beads and acidic monomers were incubated at 37°C. Samples were taken at several time points during the incubation. Then, the agarose beads were analyzed for bound calcium by atomic absorption spectrometry. The mineral formed on the agarose beads was identified as an apatite by microarea X-ray diffraction. Additionally, the specimens were observed using scanning electron microscopy (SEM). Mineral induction time decreased with increasing solution saturation. 4-METCa salt [calcium salt of 4-methacryloxyethyl trimellitate (CMET)] significantly reduced the mineral induction time. Using these data, the interfacial tension for mineral induction of PV and CMET was determined to be 90.1 and 92.7 ergs/cm(2), respectively. The mineral induced in each specimen after incubation for 24 h was identified by its X-ray diffraction pattern as apatite. SEM observation showed that lath-shaped crystals were formed on the surfaces of the CMET. We conclude that CMET could play a role in dentin remineralization. PMID:22623052

  2. Effects of calcium channel blockers on gastric emptying and acid secretion of the rat in vivo.

    PubMed Central

    Brage, R.; Cortijo, J.; Esplugues, J.; Esplugues, J. V.; Martí-Bonmatí, E.; Rodriguez, C.

    1986-01-01

    Experiments were designed to evaluate the effects of three calcium channel blockers (verapamil, diltiazem and cinnarizine) on gastric emptying and secretion in the rat. Pretreatment with the calcium blockers delayed gastric emptying of phenol red in a dose-dependent manner. Verapamil was the most effective of the agents tested. Verapamil and diltiazem inhibited gastric acid secretion in the pylorus-ligated rat without affecting pepsin output. Cinnarizine was ineffective in this model. When the perfused lumen of the anaesthetized rat was used, verapamil was found to inhibit responses to carbachol or histamine more than those to pentagastrin. Further, we found a greater sensitivity to verapamil for basal compared with vagal-stimulated (2-deoxy-D-glucose) acid secretion. Neither diltiazem nor cinnarizine modified gastric acid secretion in this experimental model. These findings are discussed in relation to the role of extracellular calcium in gastric motility and secretion, and the existence of a regional and functional selectivity for calcium blockers is proposed. PMID:3814903

  3. Renal calcium and magnesium excretion during vasopressin administration into sheep with acid or alkaline urine.

    PubMed Central

    Beal, A M

    1979-01-01

    1. The proposition that changes in renal calcium excretion during vasopressin administration are positively correlated with concurrent changes in urine hydrogen ion concentration was tested by administration of vasopressin into twelve conscious diuresing sheep receiving either alkalinizing or acidifying infusions. 2. Vasopressin-induced antidiuresis in sheep with alkaline urine was associated with significant increases in urinary pH and decreases in the rate of calcium excretion whereas antidiuresis in sheep with acid urine was associated with significant decreases in urinary pH and no consistent effect on calcium excretion. 3. Magnesium excretion increased during vasopressin administration in most experiments regardless of urinary pH changes. 4. Vasopressin administration did not significantly alter the rate of excretion of sodium, potassium, chloride and phosphate or the rates of sodium, potassium, chloride, inulin, para-aminohippurate and osmolal clearance in sheep with either acid or alkaline urine. Potassium excretion and clearance in sheep with alkaline ruine was higher than that of sheep with acid urine during vasopressin infusion. 5. The results support the hypothesis that changes in renal tubular hydrogen ion concentration or bicarbonate concentration caused by water reabsorption from the collecting duct and possibly the late distal tubule could be part of the explanation for changes in renal calcium excretion which occur during vasopressin-induced antidiuresis. PMID:41939

  4. [Efficacy of oral calcium and/or sodium phosphate in the prevention of parturient paresis in cows].

    PubMed

    Braun, U; Bryce, B; Liesegang, A; Hässig, M; Bleul, U

    2008-07-01

    The goal of this study was to investigate the efficacy of calcium chloride, sodium phosphate or a combination of these two substances administered orally immediately postpartum for the prevention of parturient paresis in cows. Thirty-two cows that had had parturient paresis at the previous calving, and in which serum biochemistry had shown hypocalcaemia and hypophosphataemia, were used in the study. The cows were transferred to the Department of Farm Animals, University of Zurich, five days before their expected due dates. On a randomized trial, the cows were given calcium chloride, sodium phosphate, both substances or no treatment (controls) via a stomach tube immediately postpartum and 12 hours later. The cows were monitored for 96 hours during which time blood was collected on a regular basis for the determination of total calcium, ionized calcium, inorganic phosphorus and magnesium concentrations. Of the 32 cows treated, 19 (59%) had parturient paresis and 13 (41%) did not. The incidence of parturient paresis did not differ significantly among the groups although there was a tendency for a lower incidence in cows treated with both calcium chloride and sodium phosphate. The various treatments had no apparent effect on serum calcium concentration. The concentration of inorganic phosphorus increased significantly in cows treated with sodium phosphate compared with the controls. The results of this study showed that cows treated with both calcium chloride and sodium phosphate orally tended to have a lower incidence of parturient paresis. Further investigation into multiple administrations of oral calcium chloride and sodium phosphate, started before parturition, for the prevention of parturient paresis is required. PMID:18714936

  5. Habit modification of calcium carbonate in the presence of malic acid

    NASA Astrophysics Data System (ADS)

    Mao, Zhaofeng; Huang, Jianhua

    2007-02-01

    The ability of malic acid to control calcium carbonate morphology has been investigated by aging calcium chloride solution in the presence of urea in a 90 °C bath. Malic acid favors the formation of calcite. A transition from single block to aggregate with special morphology occurs upon increasing malic acid concentration. The morphological development of CaCO 3 crystal obviously depends on the starting pH. CaCO 3 crystal grows from spindle seed to dumbbell in the pH regime from 7 to 11; while it evolves from spindle seed, through peanut, to sphere at pH=11.5. Both dumbbell and sphere consist of rods that are elongated along c-axis and capped with three smooth, well-defined rhombic {1 0 4} faces. A tentative growth mechanism is proposed based on the fractal model suggested by R. Kniep and S. Busch [Angew. Chem. Int. Ed. Engl. 35 (1996) 2624].

  6. Effects of acid deposition on calcium nutrition and health of Southern Appalachian spruce fir forests

    SciTech Connect

    McLaughlin, S.B.; Wullschleger, S.; Stone, A.; Wimmer, R.; Joslin, J.D.

    1995-02-01

    The role of acid deposition in the health of spruce fir forests in the Southern Appalachian Mountains has been investigated by a wide variety of experimental approaches during the past 10 years. These studies have proceeded from initial dendroecological documentation of altered growth patterns of mature trees to increasingly more focused ecophysiological research on the causes and characteristics of changes in system function associated with increased acidic deposition. Field studies across gradients in deposition and soil chemistry have been located on four mountains spanning 85 km of latitude within the Southern Appalachians. The conclusion that calcium nutrition is an important component regulating health of red spruce in the Southern Appalachians and that acid deposition significantly reduces calcium availability in several ways has emerged as a consistent result from multiple lines or research. These have included analysis of trends in wood chemistry, soil solution chemistry, foliar nutrition, gas exchange physiology, root histochemistry, and controlled laboratory and field studies in which acid deposition and/or calcium nutrition has been manipulated and growth and nutritional status of saplings or mature red spruce trees measured. This earlier research has led us to investigate the broader implications and consequences of calcium deficiency for changing resistance of spruce-fir forests to natural stresses. Current research is exploring possible relationships between altered calcium nutrition and shifts in response of Fraser fir to insect attack by the balsam wooly adelgid. In addition, changes in wood ultrastructural properties in relation to altered wood chemistry is being examined to evaluate its possible role in canopy deterioration, under wind and ice stresses typical of high elevation forests.

  7. Assay of calcium borogluconate veterinary medicines for calcium gluconate, boric acid, phosphorus, and magnesium by using inductively coupled plasma emission spectrometry

    SciTech Connect

    Lyons, D.J.; Spann, K.P.

    1985-03-01

    An inductively coupled plasma spectrometric method is described for the determination of 4 elements (Ca, B, P, and Mg) in calcium borogluconate veterinary medicines. Samples are diluted, acidified, and sprayed directly into the plasma. Reproducibility relative confidence intervals for a single sample assay are +/- 1.4% (calcium), +/- 1.8% (boron), +/- 2.6% (phosphorus), and +/- 1.4% (magnesium). The total element concentrations for each of 4 elements compared favorably with concentrations determined by alternative methods. Formulation estimates of levels of calcium gluconate, boric acid, phosphorus, and magnesium salts can be made from the analytical data.

  8. Erosive effects of different acids on bovine enamel: release of calcium and phosphate in vitro.

    PubMed

    Hannig, Christian; Hamkens, Arne; Becker, Klaus; Attin, Rengin; Attin, Thomas

    2005-06-01

    The present study intended to investigate minimal erosive effects of different acids on enamel during short time incubation via determination of calcium and phosphate dissolution. Bovine enamel specimens were eroded for 1-5 min with eight different acids of pH 2, 2.3 and 3 (citric (CA), maleic (MA), lactic (LA), tartaric (TA), phosphoric (PA), oxalic (OA), acetic (AA) and hydrochloric acid (HCl)). Calcium (Ca) and phosphate (P) release were determined photometrically using arsenazo III (calcium) and malachite green (phosphate) as substrates. Each subgroup contained eight enamel specimens. Amount of titratable acid was determined for all acidic solutions. MA, LA, TA, AA and HCl caused linear release of Ca and P, PA of Ca, CA of P. For CA, MA, LA, TA, AA, PA and HCl mineral loss was shown to be pH-dependent. Ca dissolution varied between 28.6+/-4.4 (LA, pH 2) and 2.4+/-0.7 nmol mm(-2)min(-1) (HCl, pH 3), P dissolution ranged between 17.2+/-2.6 (LA, pH 2) and 1.4+/-0.4 nmol mm(-2)min(-1) (HCl, pH 3). LA was one of the most erosive acids. AA was very erosive at pH 3. HCl and MA were shown to have the lowest erosive effects. There was only a weak correlation (r=0.28) between P and Ca release and the amount of titratable acid. The method of the present study allows investigation of minimal erosive effects via direct determination of P and Ca dissolution. During short time exposition at constant pH level, erosive effects mainly depend on pH and type of acid but not on amount of titratable acid. PMID:15848147

  9. Filler modification for papermaking with starch/oleic acid complexes with the aid of calcium ions.

    PubMed

    Huang, Xiujie; Shen, Jing; Qian, Xueren

    2013-10-15

    To mitigate the negative effect of filler addition on paper strength and improve filler retention, filler modification with hydrogen bonding polymers (e.g., starch) or their composites is an interesting research topic. Differing from previous reports, the concept related to the deposition of starch/oleic acid complexes on precipitated calcium carbonate (PCC) with the aid of calcium ions was demonstrated. The introduction of calcium ions resulted in effective starch deposition. As a result of filler modification, filler retention and the tensile strength of the filled paper were simultaneously improved essentially due to the aggregation of PCC particles in filler modification process as well as improved filler bondability. The concept demonstrated in this brief study may provide an alternative approach to filler bondability enhancement for improved papermaking performances. PMID:23987430

  10. Steel corrosion protection by means of alkyd paints pigmented with calcium acid phosphate

    SciTech Connect

    Amo, B. del; Romagnoli, R.; Vetere, V.F.

    1999-06-01

    The use of classic anticorrosive pigments is becoming more and more restricted by increasing environmental concerns; they are gradually being replaced by zinc phosphate and related compounds. Other anticorrosive pigments such as surface-exchanged silicas were also proposed. The object of this research is to study the anticorrosive properties of calcium acid phosphate as an inhibitive pigment, introducing a careful selection of complementary pigments in order to achieve an efficient anticorrosive protection. Several alkyd paints were prepared and evaluated through accelerated and electrochemical tests. The nature of the passive film formed was also studied. Paint containing zinc oxide and calcium carbonate (50/50) as complementary pigments showed the best performance in the salt spray test. Zinc oxide and calcium carbonate decreased film permeability and improved steel passivation. The passive film was composed of ferric oxyhydroxide, the pores of which became plugged by ferric phosphate.

  11. Hexavalent chromium damages chamomile plants by alteration of antioxidants and its uptake is prevented by calcium.

    PubMed

    Kováčik, Jozef; Babula, Petr; Hedbavny, Josef; Klejdus, Bořivoj

    2014-05-30

    Toxicity of low (3μM) and high (60 and 120μM) concentrations of hexavalent chromium/Cr(VI) in chamomile plants was studied. Fluorescence staining confirmed reduction of Cr(VI) to Cr(III). Cr was mainly accumulated in the roots with translocation factor <0.007. Notwithstanding this, both shoots and roots revealed increase in oxidative stress and depletion of glutathione, total thiols, ascorbic acid and activities of glutathione reductase and partially ascorbate peroxidase mainly at 120μM Cr. Though some protective mechanisms were detected (elevation of nitric oxide, enhancement of GPX activity and increase in phenols and lignin), this was not sufficient to counteract the oxidative damage. Consequently, soluble proteins, tissue water content and biomass production were considerably depleted. Surprising increase in some mineral nutrients in roots (Ca, Fe, Zn and Cu) was also detected. Subsequent experiment confirmed that exogenous calcium suppressed oxidative symptoms and Cr uptake but growth of chamomile seedlings was not improved. Alteration of naturally present reductants could be a reason for Cr(III) signal detected using specific fluorescence reagent: in vitro assay confirmed disappearance of ascorbic acid in equimolar mixture with dichromate (>96% at pH 4 and 7) while such response of glutathione was substantially less visible. PMID:24727012

  12. Morphological modifications of electrodeposited calcium phosphate coatings under amino acids effect

    NASA Astrophysics Data System (ADS)

    Drevet, R.; Lemelle, A.; Untereiner, V.; Manfait, M.; Sockalingum, G. D.; Benhayoune, H.

    2013-03-01

    Calcium phosphate coatings are synthesized on titanium alloy (Ti6Al4V) substrates by pulsed electrodeposition. This work aims to observe the morphological modifications of the coating when an amino acid is added to the electrolytic solution used in the process. The effects of two amino acids (glutamic acid and aspartic acid) are studied at a low and a high concentration. The coating morphology is observed at a nanometer scale by field emission gun-scanning electron microscopy (FEG-SEM). The structural characterization of the coating is performed by Fourier transformed infrared spectroscopy (FT-IR), Raman spectroscopy and X-ray diffraction (XRD). Moreover, corrosion measurements of the prosthetic surfaces are carried out by potentiodynamic polarization experiments in a physiological solution named Dulbecco's modified eagle medium (DMEM). The results show that the addition of an amino acid to the electrolytic solution leads to the decrease of the size of the crystallites which compose the prosthetic calcium phosphate coating that becomes denser and less porous than the coatings obtained without amino acid. Consequently, the corrosion behavior of the prosthetic material immersed in DMEM is improved.

  13. Lubricating oil compositions containing overbased calcium sulfonates and metal salts of alkyl catechol dithiophosphoric acid

    SciTech Connect

    Yamaguchi, E.S.; Cerrito, E.; Liston, T.V.

    1987-05-26

    This patent describes a lubricating oil composition containing an overbased calcium hydrocarbyl sulfonate. The improvement wherein the lubricating oil composition additionally comprises an effective amount to reduce wear of a metal salt of an alkyl catechol dithiophosphoric acid ester of the formula: wherein R is alkyl containing 10 to 18 carbon atoms, or mixtures thereof, M is an alkali or alkaline earth metal or transition metal and n corresponds to the valence of the metal M.

  14. CITRIC ACID AS A SET RETARDER FOR CALCIUM ALUMINATE PHOSPHATE CEMENTS.

    SciTech Connect

    SUGAMA,T.; BROTHERS, L.E.

    2005-01-01

    Citric acid added as set retarder significantly contributed to enhancing the setting temperature and to extending the thickening time of a calcium aluminate phosphate (CaP) geothermal cement slurry consisting of calcium aluminate cement (CAC) as the base reactant and sodium polyphosphate (NaP) solution as the acid reactant. The set-retarding activity of citric acid was due to the uptake of Ca{sup 2+} ions from the CAC by carboxylic acid groups within the citric acid. This uptake led to the precipitation of a Ca-complexed carboxylate compound as a set-retarding barrier layer on the CAC grains' surfaces. However, this barrier layer was vulnerable to disintegration by the attack of free Ca{sup 2+} ions from CAC, and also to degradation at elevated temperature, thereby promoting the generation of exothermic energy from acid-base reactions between the CAC and NaP after the barrier was broken. The exothermic reaction energy that was promoted in this way minimized the loss in strength of the citric acid-retarded cement. The phase composition assembled in both retarded and non-retarded cements after autoclaving at 180 C encompassed three reaction products, hydroxyapatite (HOAp), hydrogrossular and boehmite, which are responsible for strengthening the autoclaved cement. The first two reaction products were susceptible to reactions with sulfuric acid and sodium sulfate to form crystalline bassanite scale as the corrosion product. The boehmite phase possessed a great resistance to acid and sulfate. Although the bassanite scales clinging to the cement's surfaces were the major factor governing the loss in weight, they served in protecting the cement from further acid- and sulfate-corrosion until their spallation eventually occurred. Nevertheless, the repetitive processes of HOAp and hydrogrossular {yields} bassanite {yields} spallation played an important role in extending the useful lifetime of CaP cement in a low pH environment at 180 C.

  15. Synthesis, characterization and cation adsorption of p-aminobenzoic acid intercalated on calcium phosphate

    SciTech Connect

    Silva, Camila F.N.; Lazarin, Angélica M.; Sernaglia, Rosana L.; Andreotti, Elza I.S.

    2012-06-15

    Graphical abstract: Scanning electron microscopy photographs of calcium phosphate (a) and intercalated with p-aminobenzoic acid (b). Highlights: ► Calcium phosphate was intercalated with p-aminobenzoic acid. ► Guest molecule contains nitrogen and oxygen atoms from amine and carboxylic groups. ► These basic centers are potentially useful for cation coordination in ethanol solution. ► Crystal morphology of compounds is lamellar, it agrees with expected structural characteristics. -- Abstract: Crystalline lamellar calcium phosphate retained 4-aminobenzoic acid inside its cavity without leaching. The intense infrared bands in the 1033 and 1010 cm{sup −1} interval confirmed the presence of the phosphonate groups attached to the inorganic layer, with sharp and intense peaks in X-ray diffraction patterns, which gave basal distances of 712 and 1578 pm for the original and the intercalated compounds, respectively. Solid-state {sup 31}P nuclear magnetic resonance spectra presented only one peak for the phosphate groups attached to the main inorganic polymeric structure near −2.4 ppm. The adsorption isotherms from ethanol gave the maximum adsorption capacities of 6.44 and 3.34 mmol g{sup −1} for nickel and cobalt, respectively, which stability constant and distribution coefficient followed Co > Ni.

  16. Preventive Effect of Phytic Acid on Isoproterenol-Induced Cardiotoxicity in Wistar Rats

    PubMed Central

    Brindha, E.; Rajasekapandiyan, M.

    2015-01-01

    This study was aimed to evaluate the preventive role of phytic acid on membrane bound enzymes such as sodium potassium- dependent adenosine triphosphatase (Na+ /K+ ATPase), calcium-dependent adenosine triphosphatase (Ca2+ ATPase) and magnesium- dependent adenosine triphosphatase (Mg2+ ATPase) and glycoproteins such as hexose, hexosamine, fucose and sialic acid in isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Male albino Wistar rats were pretreated with phytic acid (25 and 50 mg/kg, respectively) for a period of 56 days. After the treatment period, ISO (85 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days. ISO-induced rats showed a significant decrease in the activity of Na+ /K+ ATPase and increase in the activities of Ca2+ and Mg2+ ATPase in the heart and a significant (P<0.05) increase in the levels of glycoproteins in serum and the heart were also observed in ISO-induced rats. Pretreatment with phytic acid for a period of 56 days exhibited a significant (P<0.05) effect and altered these biochemical parameters positively in ISO-induced rats. Thus, our study shows that phytic acid has cardioprotective role in ISO-induced MI in rats.

  17. A calcium and free fatty acid-modulated protein kinase as putative effector of the fusicoccin 14-3-3 receptor.

    PubMed Central

    van der Hoeven, P C; Siderius, M; Korthout, H A; Drabkin, A V; de Boer, A H

    1996-01-01

    A protein kinase that is activated by calcium and cis-unsaturated fatty acids has been characterized from oat (Avena sativa L.) root plasma membranes. The kinase phosphorylates a synthetic peptide with a motif (-R-T-L-S-) that can be phosphorylated by both protein kinase C (PKC) and calcium-dependent protein kinase (CDPK)-type kinases. Calphostin C and chelerythrine, two PKC inhibitors, completely inhibited the kinase activity with values of inhibitor concentration for 50% inhibition of 0.7 and 30 microns, respectively. At low Ca2+ concentrations cis-unsaturated fatty acids (linolenic acid, linoleic acid, arachidonic acid, and oleic acid) stimulated the kinase activity almost 10-fold. The two inhibitors of the kinase, calphostin C and chelerythrin, strongly reduced the fusicoccin (FC)-induced H+ extrusion, and the activators of the kinase, the cis-unsaturated fatty acids, prevented [3H]FC binding to the FC 14-3-3 receptor. CDPK antibodies cross-reacted with a 43-kD band in the plasma membrane and in a purified FC receptor fraction. A polypeptide with the same apparent molecular mass was recognized by a synthetic peptide that has a sequence homologous to the annexin-like domain from barely 14-3-3. The possibility of the involvement of a kinase, with properties from both CDPK and PKC, and a phospholipase A2 in the FC Signal transduction pathway is discussed. PMID:8754686

  18. Curcumin prevents free radical-mediated cataractogenesis through modulations in lens calcium.

    PubMed

    Manikandan, Ramar; Thiagarajan, Raman; Beulaja, Sivagnanam; Sudhandiran, Ganapasam; Arumugam, Munuswamy

    2010-02-15

    The generation of free radicals has been implicated in the causation of cataract, and compounds that can scavenge free radicals ameliorate the disease process. This study investigated the possible free radical scavenging potential of curcumin at a dose of 75 mg/kg body wt on selenium-induced cataract in rat pups. Intraperitoneal injection of sodium selenite (15 micromol/kg body wt) into 8- to 10-day-old rat pups led to severe oxidative stress in the eye lens as evidenced by increased nitric oxide, superoxide anion, and hydroxyl radical generation and inducible nitric oxide synthase expression that probably led to cataract formation. Selenium exposure also caused an increase in total calcium in the eye lens and significantly inhibited the activity of Ca(2+) ATPase but not Na(+)/K(+) ATPase or Mg(2+) ATPase. On the other hand, pretreatment with curcumin, but not simultaneous or posttreatment, led to a decrease in oxidative stress and also rescued the selenium-mediated increase in lens Ca(2+) and inhibition of Ca(2+) ATPase activity in the eye lens. The results of this study demonstrate that an increase in free radical generation triggered by selenium could cause inactivation of lens Ca(2+) ATPase leading to Ca(2+) accumulation. This enhanced Ca(2+) can cause activation of calpain-mediated proteolysis in the lens, resulting in lens opacification. Curcumin in this study was able to prevent selenium-induced oxidative stress leading to activation of Ca(2+) ATPase and inhibition of lens opacification. Thus, curcumin has the potential to function as an anticataractogenic agent, possibly by preventing free radical-mediated accumulation of Ca(2+) in the eye lens. PMID:19932168

  19. Preparation of volatile fatty acid (VFA) calcium salts by anaerobic digestion of glucose.

    PubMed

    Li, Xiaofen; Swan, Janis E; Nair, Giridhar R; Langdon, Alan G

    2015-01-01

    Many potentially useful intermediates such as hydrogen and volatile fatty acids (VFAs) are formed during the complex anaerobic digestion processes that produce methane from biomass. This study recovers VFAs from an anaerobic digester by a combination of gas stripping and absorption with calcium carbonate slurry. Glucose was used as the model substrate because it is readily available, inexpensive, and easily digested. Sludge from a meatworks anaerobic digester produced methane and carbon dioxide (and sometimes a small amount of hydrogen) when batch-fed with glucose. Conditioning the neutral anaerobic sludge to an acidic pH (below 4.8) was achieved using repeated 1 g L(-1) doses of glucose. After conditioning, mainly VFAs and hydrogen were produced. The intermediate VFAs could be stripped using headspace gas. In subsequent fed-batch digestion/stripping cycles, the pH decreased when glucose was added and then increased when the VFA was gas stripped. The predominant acids formed at low pH values were lactic, butyric, and acetic acids. Lactic acid was converted to VFAs during stripping. The VFA calcium salts recovered were 80% butyrate and 20% acetate with minor quantities of propionate and valerate. PMID:25274086

  20. Arachidonic acid induces brain endothelial cell apoptosis via p38-MAPK and intracellular calcium signaling.

    PubMed

    Evans, Justin; Ko, YooSeung; Mata, Wilmer; Saquib, Muhammad; Eldridge, Joel; Cohen-Gadol, Aaron; Leaver, H Anne; Wang, Shukun; Rizzo, Maria Teresa

    2015-03-01

    Arachidonic acid (AA), a bioactive fatty acid whose levels increase during neuroinflammation, contributes to cerebral vascular damage and dysfunction. However, the mode of injury and underlying signaling mechanisms remain unknown. Challenge of primary human brain endothelial cells (HBECs) with AA activated a stress response resulting in caspase-3 activation, poly(ADP-ribose) polymerase cleavage, and disruption of monolayer integrity. AA also induced loss of mitochondrial membrane potential and cytochrome c release consistent with activation of intrinsic apoptosis. HBEC stimulation with AA resulted in sustained p38-MAPK activation and subsequent phosphorylation of mitogen-activated protein kinase activated protein-2 (MAPKAP-2) kinase and heat shock protein-27 (Hsp27). Conversely, other unsaturated and saturated fatty acids had no effect. Pharmacological and RNA interference-mediated p38? or p38? suppression abrogated AA signaling to caspase-3 and Hsp27, suggesting involvement of both p38 isoforms in AA-induced HBEC apoptosis. Hsp27 silencing also blocked caspase-3 activation. AA stimulated intracellular calcium release, which was attenuated by inositol 1,4,5-trisphosphate (IP3) receptor antagonists. Blockade of intracellular calcium release decreased caspase-3 activation, but had no effect on AA-induced p38-MAPK activation. However, inhibition of p38-MAPK or blockade of intracellular calcium mobilization abrogated AA-induced cytochrome c release. AA-induced caspase-3 activation was abrogated by pharmacological inhibition of lipooxygenases. These findings support a previously unrecognized signaling cooperation between p38-MAPK/MAPKAP-2/Hsp27 and intracellular calcium release in AA-induced HBEC apoptosis and suggest its relevance to neurological disorders associated with vascular inflammation. PMID:24802256

  1. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium...

  2. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium...

  3. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium...

  4. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium...

  5. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium...

  6. Heat stability and acid gelation properties of calcium-enriched reconstituted skim milk affected by ultrasonication.

    PubMed

    Chandrapala, Jayani; Bui, Don; Kentish, Sandra; Ashokkumar, Muthupandian

    2014-05-01

    The aggregation of proteins after heating of calcium-fortified milks has been an ongoing problem in the dairy industry. This undesirable effect restricts the manufacture of calcium rich dairy products. To overcome this problem, a completely new approach in controlling the heat stability of dairy protein solutions, developed in our lab, has been employed. In this approach, high intensity, low frequency ultrasound is applied for a very short duration after a pre-heating step at ⩾70 °C. The ultrasound breaks apart whey/whey and whey/casein aggregates through the process of acoustic cavitation. Protein aggregates do not reform on subsequent post-heating, thereby making the systems heat stable. In this paper, the acid gelation properties of ultrasonicated calcium-enriched skim milks have also been investigated. It is shown that ultrasonication alone does not change the gelation properties significantly whereas a sequence of preheating (72 °C/1 min) followed by ultrasonication leads to decreased gelation times, decreased gel syneresis and increased skim milk viscosity in comparison to heating alone. Overall, ultrasonication has the potential to provide calcium-fortified dairy products with increased heat stability. However, enhanced gelation properties can only be achieved when ultrasonication is completed in conjunction with heating. PMID:24698480

  7. Analysis of calcium-lipid complexes in faeces.

    PubMed

    Owen, R W; Weisgerber, U M; Carr, J; Harrison, M H

    1995-06-01

    Calcium is purported to prevent colorectal cancer by forming insoluble complexes with bile acids and long-chain fatty acids in the large bowel. Therefore, a method for analysing calcium-lipid complexes in faeces has been developed to investigate this. The calcium soaps of a long-chain fatty acid (calcium palmitate) and bile acids (calcium deoxycholate, chenodeoxycholate, cholate and lithocholate) were obtained by organic synthesis. Studies with the authentic soaps reveal that they exist in an empirical ratio of calcium-to-lipid of 1:2. On addition to lipid-free faeces, approximately 30% of calcium palmitate could be recovered and quantified in the authentic state by extraction with 72% ethanol and overnight precipitation at 0 degree C. In contrast, the calcium soaps of the bile acids could not be recovered in the authentic state but were quantified entirely as the free acids. The method was applied to the analyses of calcium-lipid complexes in the faeces of adenoma patients partaking in a placebo-controlled calcium-intervention study. The results show that human faeces contain appreciable amounts of calcium long-chain fatty acid soaps predominantly in the form of calcium palmitate and stearate. The faecal concentration of long-chain fatty acid soaps was increased significantly (P = 0.005) during calcium intervention but this did not have a statistically significant effect on the excretion of free long-chain fatty acids (P = 0.4). Calcium long-chain fatty acid soap formation was found by multiple regression to be equally dependent on stool long-chain fatty acid and calcium concentration. Calcium soaps of the bile acids were not detected by this method.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7647693

  8. On the coating of precipitated calcium carbonate with stearic acid in aqueous medium.

    PubMed

    Shi, Xuetao; Rosa, Roberto; Lazzeri, Andrea

    2010-06-01

    A series of experimental precipitated calcium carbonates (PCCs) coated with commercial stearic acid (stearin), with the coating amount of stearin added to the PCC particles ranging from 3 to 13.5 wt %, were prepared in aqueous medium and characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). FTIR and TGA results indicated that only calcium stearate is present without any free stearic acid left on the surface of the produced PCCs. It was also found that the calcium stearate formed on the coated surface is partially chemisorbed and partially physisorbed. Interestingly, the surface coverage of the chemisorbed stearate, determined by the DSC technique in about 3.25 wt %, was much lower than the theoretical full monolayer coverage (4.17 wt %) for the same set of particles. This result was confirmed by determining the amount necessary to cover the filler with a full monolayer of surfactant by means of a dissolution method where the amount of dissolved surface agent, after the coating reaction, was measured by gas chromatography (GC). In other words, a complete chemisorbed monolayer on the surface cannot be reached, even in the presence of an amount of stearate ions far in excess compared to those required by the stoichiometry. This can be explained by considering that the coating in aqueous medium is quite different from solvent or dry coating, since the process is controlled by micelle adsorption, followed by the collapse of micelles into double or multiple layers during the drying stage. PMID:20334413

  9. In-Situ Cold Temperature XRD of Calcium Phosphate Produced From Organic Phosphoric Acid

    NASA Astrophysics Data System (ADS)

    Yusoff, M. S. Meor; Paulus, Wilfred; Muslimin, Masliana

    2010-01-01

    In this study, we synthesized calcium phosphate from an organic phosphoric acid, diethylhexyl phosphoric acid (DEHPA) and calcium hydroxide solution. The reaction involves a sol-gel process with a whitish gel formed. In-situ XRD analysis was then performed on the sample from room temperature to -140° C. At room the XRD diffractogram shows the sample as an amorphous material and as the temperature was further lowered sharp peaks begins to form indicating that the material had becomes crystalline. The peaks were identified to be that calcium hydrogen phosphate (Ca(H2PO4)2) and this indicates that there is no hydroxyl group removal during the cooling process. The relative crystallinity values obtained for the different cooling temperatures show a slow exponential increase on the initial cooling of 0 to -100° C and at further cooling temperatures resulted fast and linear process. Also unlike the in-situ XRD analysis performs at high temperature no phase transformation occurred at this low temperature.

  10. Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids.

    PubMed

    Bentov, Shmuel; Weil, Simy; Glazer, Lilah; Sagi, Amir; Berman, Amir

    2010-08-01

    Stable amorphous calcium carbonate (ACC) is a unique material produced naturally exclusively as a biomineral. It was demonstrated that proteins extracted from biogenic stable ACC induce and stabilize synthetic ACC in vitro. Polyphosphate molecules were similarly shown to induce amorphous calcium carbonate formation in vitro. Accordingly, we tested the hypothesis that biogenic ACC induction and stabilization is mediated by the phosphorylated residues of phosphoproteins. We show that extracellular organic matrix extracted from gastroliths of the red claw crayfish Cherax quadricarinatus induce stable ACC formation in vitro. The proteinaceous fraction of this organic matrix is highly phosphorylated and is incorporated into the ACC mineral phase during precipitation. We have identified the major phosphoproteins of the organic matrix and showed that they have high calcium binding capacity. Based on the above, in vitro precipitation experiments with single phosphoamino acids were performed, indicating that phosphoserine or phosphothreonine alone can induce the formation of highly stable ACC. The results indicate that phosphoproteins may play a major role in the control of ACC formation and stabilization and that their phosphoamino acid moieties are key components in this process. PMID:20416381

  11. Folic Acid for the Prevention of Infant Neural Tube Defects: U.S. Preventive Services Task Force Recommendation

    MedlinePlus

    ... Infant Neural Tube Defects: U.S. Preventive Services Task Force Recommendation Summaries for Patients are a service provided ... of Neural Tube Defects: U.S. Preventive Services Task Force Recommen- dation Statement” and “Folic Acid Supplementation for ...

  12. Yeast adaptation to weak acids prevents futile energy expenditure

    PubMed Central

    Ullah, Azmat; Chandrasekaran, Gayathri; Brul, Stanley; Smits, Gertien J.

    2013-01-01

    Weak organic acids (WOAs) are widely used preservatives to prevent fungal spoilage of foods and beverages. Exposure of baker's yeast Saccharomyces cerevisiae to WOA leads to cellular acidification and anion accumulation. Pre-adaptation of cultures reduced the rate of acidification caused by weak acid exposure, most likely as a result of changes in plasma membrane or cell wall composition. In order to adapt to sublethal concentrations of the acids and grow, yeast cells activate ATP consuming membrane transporters to remove protons and anions. We explored to what extent ATP depletion contributes to growth inhibition in sorbic or acetic acid treated cells. Therefore, we analyzed the effect of the reduction of proton and anion pumping activity on intracellular pH (pHi), growth, and energy status upon exposure to the hydrophilic acetic acid (HA) and the lipophilic sorbic acid (HS). ATP concentrations were dependent on the severity of the stress. Unexpectedly, we observed a stronger reduction of ATP with growth reducing than with growth inhibitory concentrations of both acids. We deduce that the not the ATP reduction caused by proton pumping, but rather the cost of sorbate anion pumping contributes to growth inhibition. A reduction of proton pumping activity may reduce ATP consumption, but the resulting decrease of pHi affects growth more. ATP utilization was differentially regulated during moderate and severe stress conditions. We propose that the energy depletion alone is not the cause of growth inhibition during HA or HS stress. Rather, the cells appear to reduce ATP consumption in high stress conditions, likely to prevent futile cycling and maintain energy reserves for growth resumption in more favorable conditions. The mechanism for such decision making remains to be established. PMID:23781215

  13. Habit modification of calcium carbonate in the presence of malic acid

    SciTech Connect

    Mao Zhaofeng; Huang Jianhua

    2007-02-15

    The ability of malic acid to control calcium carbonate morphology has been investigated by aging calcium chloride solution in the presence of urea in a 90 deg. C bath. Malic acid favors the formation of calcite. A transition from single block to aggregate with special morphology occurs upon increasing malic acid concentration. The morphological development of CaCO{sub 3} crystal obviously depends on the starting pH. CaCO{sub 3} crystal grows from spindle seed to dumbbell in the pH regime from 7 to 11; while it evolves from spindle seed, through peanut, to sphere at pH=11.5. Both dumbbell and sphere consist of rods that are elongated along c-axis and capped with three smooth, well-defined rhombic {l_brace}1 0 4{r_brace} faces. A tentative growth mechanism is proposed based on the fractal model suggested by R. Kniep and S. Busch [Angew. Chem. Int. Ed. Engl. 35 (1996) 2624]. - Graphical abstract: Dumbbell-like CaCO{sub 3} particles obtained in the presence of malic acid.

  14. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions.

    PubMed

    Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla

    2016-03-15

    The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes. PMID:26575708

  15. Composite scaffolds of nano calcium deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration.

    PubMed

    Li, Hong; Yang, Lili; Dong, Xieping; Gu, Yifei; Lv, Guoyu; Yan, Yonggang

    2014-05-01

    In this study, nano calcium deficient hydroxyapatite (n-DA)/multi-(amino acid) copolymer composite scaffolds were prepared by injection molding foaming method using calcium sulphate dihydrate as a foaming agent. The composite scaffolds showed well interconnected macropores with the pore size of ranging from 100 to 600 μm, porosity of 81 % and compressive strength of 12 MPa, and the compressive strength obviously affected by the porosity. The composite scaffolds could be slowly degraded in phosphate buffered solution (PBS), which lost its initial weight of 61 w % after immersion into PBS for 12 weeks, and the porosity significantly affected the degradability of the scaffolds. Moreover, it was found that the composite scaffolds could promote the MG-63 cells growth and proliferation, and enhance its alkaline phosphatase activity. The implantation of the scaffolds into the femoral bone of rabbits confirmed that the composite scaffolds were biocompatibitive, degradable, and osteoconductive in vivo. PMID:24488438

  16. Strong and Biostable Hyaluronic Acid-Calcium Phosphate Nanocomposite Hydrogel via in Situ Precipitation Process.

    PubMed

    Jeong, Seol-Ha; Koh, Young-Hag; Kim, Suk-Wha; Park, Ji-Ung; Kim, Hyoun-Ee; Song, Juha

    2016-03-14

    Hyaluronic acid (HAc) hydrogel exhibits excellent biocompatibility, but it has limited biomedical application due to its poor biomechanical properties as well as too-fast enzymatic degradation. In this study, we have developed an in situ precipitation process for the fabrication of a HAc-calcium phosphate nanocomposite hydrogel, after the formation of the glycidyl methacrylate-conjugated HAc (GMHA) hydrogels via photo-cross-linking, to improve the mechanical and biological properties under physiological conditions. In particular, our process facilitates the rapid incorporation of calcium phosphate (CaP) nanoparticles of uniform size and with minimal agglomeration into a polymer matrix, homogeneously. Compared with pure HAc, the nanocomposite hydrogels exhibit improved mechanical behavior. Specifically, the shear modulus is improved by a factor of 4. The biostability of the nanocomposite hydrogel was also significantly improved compared with that of pure HAc hydrogels under both in vitro and in vivo conditions. PMID:26878437

  17. [Folic acid: Primary prevention of neural tube defects. Literature Review].

    PubMed

    Llamas Centeno, M J; Miguélez Lago, C

    2016-03-01

    Neural tube defects (NTD) are the most common congenital malformations of the nervous system, they have a multifactorial etiology, are caused by exposure to chemical, physical or biological toxic agents, factors deficiency, diabetes, obesity, hyperthermia, genetic alterations and unknown causes. Some of these factors are associated with malnutrition by interfering with the folic acid metabolic pathway, the vitamin responsible for neural tube closure. Its deficit produce anomalies that can cause abortions, stillbirths or newborn serious injuries that cause disability, impaired quality of life and require expensive treatments to try to alleviate in some way the alterations produced in the embryo. Folic acid deficiency is considered the ultimate cause of the production of neural tube defects, it is clear the reduction in the incidence of Espina Bifida after administration of folic acid before conception, this leads us to want to further study the action of folic acid and its application in the primary prevention of neural tube defects. More than 40 countries have made the fortification of flour with folate, achieving encouraging data of decrease in the prevalence of neural tube defects. This paper attempts to make a literature review, which clarify the current situation and future of the prevention of neural tube defects. PMID:26959966

  18. Calcium supplementation for the prevention of colorectal adenomas: A systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Bonovas, Stefanos; Fiorino, Gionata; Lytras, Theodore; Malesci, Alberto; Danese, Silvio

    2016-01-01

    AIM: To determine the efficacy of calcium supplementation in reducing the recurrence of colorectal adenomas. METHODS: We conducted a systematic review and meta-analysis of published studies. We searched PubMed, Scopus, the Cochrane Library, the WHO International Clinical Trials Registry Platform, and the ClinicalTrials.gov website, through December 2015. Randomized, placebo-controlled trials assessing supplemental calcium intake for the prevention of recurrence of adenomas were eligible for inclusion. Two reviewers independently selected studies based on predefined criteria, extracted data and outcomes (recurrence of colorectal adenomas, and advanced or “high-risk” adenomas), and rated each trial’s risk-of-bias. Between-study heterogeneity was assessed, and pooled risk ratio (RR) estimates with their 95% confidence intervals (95%CI) were calculated using fixed- and random-effects models. To express the treatment effect in clinical terms, we calculated the number needed to treat (NNT) to prevent one adenoma recurrence. We also assessed the quality of evidence using GRADE. RESULTS: Four randomized, placebo-controlled trials met the eligibility criteria and were included. Daily doses of elemental calcium ranged from 1200 to 2000 mg, while the duration of treatment and follow-up of participants ranged from 36 to 60 mo. Synthesis of intention-to-treat data, for participants who had undergone follow-up colonoscopies, indicated a modest protective effect of calcium in prevention of adenomas (fixed-effects, RR = 0.89, 95%CI: 0.82-0.96; random-effects, RR = 0.87, 95%CI: 0.77-0.98; high quality of evidence). The NNT was 20 (95%CI: 12-61) to prevent one colorectal adenoma recurrence within a period of 3 to 5 years. On the other hand, the association between calcium treatment and advanced adenomas did not reach statistical significance (fixed-effects, RR = 0.92, 95%CI: 0.75-1.13; random-effects, RR = 0.92, 95%CI: 0.71-1.18; moderate quality of evidence). CONCLUSION: Our results suggest a modest chemopreventive effect of calcium supplements against recurrent colorectal adenomas over a period of 36 to 60 mo. Further research is warranted. PMID:27182169

  19. Ascorbic acid in the prevention and treatment of cancer.

    PubMed

    Head, K A

    1998-06-01

    Proposed mechanisms of action for ascorbic acid (ascorbate, vitamin C) in the prevention and treatment of cancer include enhancement of the immune system, stimulation of collagen formation necessary for "walling off" tumors, inhibition of hyaluronidase which keeps the ground substance around the tumor intact and prevents metastasis, prevention of oncogenic viruses, correction of an ascorbate deficiency often seen in cancer patients, expedition of wound healing after cancer surgery, enhancement of the effect of certain chemotherapy drugs, reduction of the toxicity of other chemotherapeutic agents such as Adriamycin, prevention of free radical damage, and neutralization of carcinogenic substances. Scottish as well as Japanese studies have pointed to the potential benefit of high dose vitamin C for the treatment of "terminal" cancer. Mayo Clinic studies, however, have contradicted the Scottish and Japanese findings, resulting in accusations of methodological flaws from both sides. Numerous epidemiological studies have pointed to the importance of dietary and supplemental ascorbate in the prevention of various types of cancer including bladder, breast, cervical, colorectal, esophageal, lung, pancreatic, prostate, salivary gland, stomach, leukemia, and non-Hodgkin's lymphoma. PMID:9630735

  20. Modification of fatty acid profile of cow milk by calcium salts of fatty acids and its use in ice cream.

    PubMed

    Nadeem, Muhammad; Abdullah, Muhammad; Hussain, Imtiaz; Inayat, Saima

    2015-02-01

    This study was conducted to determine the effect of calcium salts of fatty acids (CSFA) on fatty acid profile of milk of "Sahiwal" cows and suitability of milk with modified fatty acids in the formulation of ice cream. Fatty acid profile of cow milk was modified by feeding CSFA to eighteen randomly stratified "Sahiwal" cows of first and early lactation divided into three groups. CSFA were offered at two different levels i.e. T1 (150 g per cow per day) T2 (300 g per cow per day) both treatments were compared with a control (T0) without any addition of calcium salts of fatty acids. Iso caloric and iso nitrogenous feeds were given to both experimental groups and control. Concentrations of short chain fatty acids in T0, T1 and T2 were 9.85 ± 0.48a, 8.8 ± 0.24b and 7.1 ± 0.37c %, respectively and the concentrations of C18:1 and C18:2 increased (P < 0.05) from 27.6 ± 1.32b % to 31.7 ± 1.68a % and 2.15 ± 0.09b % to 2.79 ± 0.05a %, respectively, at T2 level. Incorporation of milk fat of T1 and T2 (modified fatty acids profile) in ice cream did not have any adverse effect on pH, acidity and compositional attributes of ice cream. Viscosity of T1 was 67.94 ± 3.77a as compared to (T0) control 68.75 ± 2.46a (CP). Firmness of experimental samples and control were almost similar (P > 0.05) overall acceptability score of T2 was 7.1 ± 0.28b out of 9 (total score) which was more than 78 ± 2.92 %. It was concluded that CSFA may be successfully incorporated up to T2 level (300 g per cow per day) into the feed of "Sahiwal" cows to produce milk with higher content of unsaturated fatty acids and it may be used in the formulation of ice cream with acceptable sensory characteristics and increased health benefits. PMID:25694719

  1. Preparation and characterization of uniform particles of flufenamic acid and its calcium and barium salts.

    PubMed

    Mohamed, Amr Ali; Matijević, Egon

    2012-09-01

    Uniform fully dispersed particles of flufenamic acid, a widely used anti-inflammatory drug, were prepared by two different methods. In the first one, the drug solution in organic solvents was added to a non-solvent (water or aqueous solutions of stabilizers); while in the second procedure the drug was precipitated by acidifying its basic aqueous solutions. In addition calcium and barium salts of uniform spherical particles were obtained by precipitation in aqueous basic solutions of the drug. These salts are supposed to improve the drug reactivity. The prepared dispersions of the drug and its salts were examined by scanning electron microscopy, X-ray diffractometry and electrophoresis. PMID:22703985

  2. In vitro biocompatibility of chitosan/hyaluronic acid-containing calcium phosphate bone cements.

    PubMed

    Hesaraki, Saeed; Nezafati, Nader

    2014-08-01

    The need for bone repair has increased as the population ages. In this research, calcium phosphate cements, with and without chitosan (CS) and hyaluronic acid (HA), were synthesized. The composition and morphological properties of cements were evaluated by X-ray diffraction and scanning electron microscopy. The acellular in vitro bioactivity revealed that different apatite morphologies were formed on the surfaces of cements after soaking in simulated body fluid. The in vitro osteoblastic cell biocompatibility of in situ forming cements was evaluated and compared with those of conventional calcium phosphate cements (CPCs). The viability and growth rate of the cells were similar for all CPCs, but better alkaline phosphatase activity was observed for CPC with CS and HA. Calcium phosphate cements supported attachment of osteoblastic cells on their surfaces. Spindle-shaped osteoblasts with developed cytoplasmic membrane were found on the surfaces of cement samples after 7 days of culture. These results reveal the potential of the CPC-CS/HA composites to be used in bone tissue engineering. PMID:24399509

  3. Application of acidic calcium sulfate and e-polylysine to pre-rigor beef rounds for reduction of pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne illness continues to be a serious public health problem and is a major concern for the United States food industry. This study evaluated the effectiveness of warm solutions of acidic calcium sulfate (ACS), lactic acid (LA), episolon-polylysine (EPL), ACS plus EPL, and sterile distilled wa...

  4. Nucleic acid detection in the diagnosis and prevention of schistosomiasis.

    PubMed

    He, Ping; Song, Lan-Gui; Xie, Hui; Liang, Jin-Yi; Yuan, Dong-Ya; Wu, Zhong-Dao; Lv, Zhi-Yue

    2016-01-01

    Schistosomiasis is an important zoonotic parasitic disease that causes serious harms to humans and animals. Surveillance and diagnosis play key roles in schistosomiasis control, however, current techniques for surveillance and diagnosis of the disease have limitations. As genome data for parasites are increasing, novel techniques for detection incorporating nucleotide sequences are receiving widespread attention. These sensitive, specific, and rapid detection methods are particularly important in the diagnosis of low-grade and early infections, and may prove to have clinical significance. This paper reviews the progress of nucleic acid detection in the diagnosis and prevention of schistosomiasis, including such aspects as the selection of target genes, and development and application of nucleic acid detection methods. PMID:27025210

  5. Formation of calcium carbonate films on chitosan substrates in the presence of polyacrylic acid

    SciTech Connect

    He, Linghao; Xue, Rui; Song, Rui

    2009-05-15

    In this investigation, chitosan membranes with different surface average degrees of deacetylation (DA) are prepared and then are employed as the support matrix to culture calcium carbonate (CaCO{sub 3}). In the presence of high concentration of polyacrylic acid (PAA), the CaCO{sub 3} films obtained on the surface of all chitosan films mainly consisted of vaterite, which suggests the presence of bulk PAA plays an overwhelming part in stabilizing the vaterite. As a comparison, the influences of active groups indicate that only in case of low concentration PAA the thin CaCO{sub 3} films grown on chitosan with 8% DA mainly consisted of vaterite owing to the strong nucleation ability of -NH{sub 2} group, whereas, for those grown on chitosan with 80% DA the CaCO{sub 3} films mainly consisted of aragonite. A more complex scenario revealed that in the case of intermediate concentration of PAA the formed polymorphs behave as mixtures of vaterite and aragonite. - Graphical abstract: Chitosan membranes with different degrees of deacetylation (DA) are employed as support to culture calcium carbonate (CaCO{sub 3}). In high concentration of polyacrylic acid (PAA), the CaCO{sub 3} films obtained consisted of vaterite. However, the CaCO{sub 3} film grown on chitosan with 8% DA mainly consisted of vaterite as opposed to aragonite for chitosan with 8% DA. The schematic presentation of the formation of calcium carbonate on chitosan films with different degrees of acetylation in the presence of PAA with low-, mid- and high concentrations.

  6. Dissolution mechanism of calcium apatites in acids: A review of literature

    PubMed Central

    Dorozhkin, Sergey V

    2012-01-01

    Eight dissolution models of calcium apatites (both fluorapatite and hydroxyapatite) in acids were drawn from the published literature, analyzed and discussed. Major limitations and drawbacks of the models were conversed in details. The models were shown to deal with different aspects of apatite dissolution phenomenon and none of them was able to describe the dissolution process in general. Therefore, an attempt to combine the findings obtained by different researchers was performed which resulted in creation of the general description of apatite dissolution in acids. For this purpose, eight dissolution models were assumed to complement each other and provide the correct description of the specific aspects of apatite dissolution. The general description considers all possible dissolution stages involved and points out to some missing and unclear phenomena to be experimentally studied and verified in future. This creates a new methodological approach to investigate reaction mechanisms based on sets of affine data, obtained by various research groups under dissimilar experimental conditions. PMID:25237611

  7. Dissolution mechanism of calcium apatites in acids: A review of literature.

    PubMed

    Dorozhkin, Sergey V

    2012-02-26

    Eight dissolution models of calcium apatites (both fluorapatite and hydroxyapatite) in acids were drawn from the published literature, analyzed and discussed. Major limitations and drawbacks of the models were conversed in details. The models were shown to deal with different aspects of apatite dissolution phenomenon and none of them was able to describe the dissolution process in general. Therefore, an attempt to combine the findings obtained by different researchers was performed which resulted in creation of the general description of apatite dissolution in acids. For this purpose, eight dissolution models were assumed to complement each other and provide the correct description of the specific aspects of apatite dissolution. The general description considers all possible dissolution stages involved and points out to some missing and unclear phenomena to be experimentally studied and verified in future. This creates a new methodological approach to investigate reaction mechanisms based on sets of affine data, obtained by various research groups under dissimilar experimental conditions. PMID:25237611

  8. Biomediated Precipitation of Calcium Carbonate and Sulfur in a Faintly Acidic Hot Spring

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Peng, X.; Qiao, H.

    2014-12-01

    A faintly acidic hot spring named "female Tower" (T=73.5 ℃, pH=6.64 ) is located in the Jifei Geothermal Field,Yunnan province, Southwest China. The precipitates in the hot spring are composed of large amounts of calcite and sulfur, as reveals by XRD analysis. Scanning electron microscopy (SEM) analysis show the microbial mats are formed of various coccoid, rod and filamentous microbes. Transmission electron microscopy (TEM) analysis show that intracellular sulfur granules are commonly associated with these microbes. Energy dispersive X-ray spectrometer (EDS) analysis shows that the surface of microbes are mainly composed of Ca, C, O and S. A culture-independent molecular phylogenetic analysis demonstrates the majority of bacteria in the spring are sulfur-oxidizing bacteria. In the spring water, H2S concentration was up to 60 ppm, while SO42- concentration was only about 10 ppm. We suggest that H2S might be utilized by sulfur-oxidizing bacteria in this hot spring water, leading to the formation of sulfur granules intracellularly and extracellularly. In the meantime, this reaction increases the pH in ambient environments, which fosters the precipitation of calcium carbonate precipitation in the microbial mats. This study suggests that the sulfur-oxidizing bacteria could play an important role in calcium carbonate precipitation in faintly acidic hot spring environments.

  9. Dietary magnesium, not calcium, prevents vascular calcification in a mouse model for pseudoxanthoma elasticum

    PubMed Central

    Waarsing, Jan H.; de Wolf, Anneke; ten Brink, Jacoline B.; Loves, Willem J. P.; Bergen, Arthur A. B.

    2010-01-01

    Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by ectopic calcification of connective tissue in skin, Bruch’s membrane of the eye, and walls of blood vessels. PXE is caused by mutations in the ABCC6 gene, but the exact etiology is still unknown. While observations on patients suggest that high calcium intake worsens the clinical symptoms, the patient organization PXE International has published the dietary advice to increase calcium intake in combination with increased magnesium intake. To obtain more data on this controversial issue, we examined the effect of dietary calcium and magnesium in the Abcc6−/− mouse, a PXE mouse model which mimics the clinical features of PXE. Abcc6−/− mice were placed on specific diets for 3, 7, and 12 months. Disease severity was measured by quantifying calcification of blood vessels in the kidney. Raising the calcium content in the diet from 0.5% to 2% did not change disease severity. In contrast, simultaneous increase of both calcium (from 0.5% to 2.0%) and magnesium (from 0.05% to 0.2%) slowed down the calcification significantly. Our present findings that increase in dietary magnesium reduces vascular calcification in a mouse model for PXE should stimulate further studies to establish a dietary intervention for PXE. PMID:20177653

  10. Lipoic acid prevents steroid-induced osteonecrosis in rabbits.

    PubMed

    Lu, Bang-Bao; Li, Kang-Hua

    2012-06-01

    The objective of this study was to investigate in vivo effects of lipoic acid (LA) in preventing steroid-induced osteonecrosis and the possible pathway in a rabbit model. Sixty rabbits were divided into 2 groups: rabbits were intraperitoneally injected with LA aqueous solution at 36 mg/kg of body weight per day for 4 weeks in Group A and rabbits were injected with physiologic saline (PS) as a control in Group B. At 2 weeks after starting treatment, they were intramuscularly injected once with 20 mg/kg of methylprednisolone acetate (MPSL). The femora were histopathologically examined for the presence of osteonecrosis. The plasma levels of total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), glutathione (GSH), endothelin (ET) and malondialdehyde (MDA) were assayed at 2 weeks after the injection of MPSL. The incidence of osteonecrosis was significantly higher in Group B (73.1%) than in Group A (20.8%). The GSH level was higher in Group A than in Group B after the LA injection. The plasma MDA and ET levels were lower in Group A than in Group B at 2 weeks after the MPSL administration. Lipoic acid can prevent the development of steroid-induced osteonecrosis in rabbits. Inhibited oxidative stress and amendment of vascular endothelial dysfunction is a possible mechanism for this effect. PMID:21431293

  11. Supplementing a Low-Protein Diet with Dibasic Amino Acids Increases Urinary Calcium Excretion in Young Women12

    PubMed Central

    Bihuniak, Jessica D.; Sullivan, Rebecca R.; Simpson, Christine A.; Caseria, Donna M.; Huedo-Medina, Tania B.; O’Brien, Kimberly O.; Kerstetter, Jane E.; Insogna, Karl L.

    2014-01-01

    Increasing dietary protein within a physiologic range stimulates intestinal calcium absorption, but it is not known if specific amino acids or dietary protein as a whole are responsible for this effect. Therefore, we selectively supplemented a low-protein (0.7 g/kg) diet with either the calcium-sensing receptor-activating amino acids (CaSR-AAAs) L-tryptophan, L-phenylalanine, and L-histidine, or the dibasic amino acids (DAAs) L-arginine and L-lysine, to achieve intakes comparable to the content of a high-protein diet (2.1 g/kg) and measured intestinal calcium absorption. Fourteen young women took part in a placebo-controlled, double-blind, crossover feeding trial in which each participant ingested a 6-d low-protein diet supplemented with CaSR-AAAs, DAAs, or methylcellulose capsules (control) after an 11-d adjustment period. All participants ingested all 3 diets in random order. Intestinal calcium absorption was measured between days 5 and 6 using dual-stable calcium isotopes (42Ca, 43Ca, and 44Ca). There was no difference in calcium absorption between the diet supplemented with CaSR-AAAs (22.9 ± 2.0%) and the control diet (22.3 ± 1.4%) (P = 0.64). However, calcium absorption tended to be greater during the DAA supplementation period (25.2 ± 1.4%) compared with the control diet period (22.3 ± 1.4%) (P < 0.10). Larger and longer clinical trials are needed to clarify the possible benefit of arginine and lysine on calcium absorption. PMID:24431325

  12. Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections.

    PubMed

    Howlin, R P; Brayford, M J; Webb, J S; Cooper, J J; Aiken, S S; Stoodley, P

    2015-01-01

    Periprosthetic infection (PI) causes significant morbidity and mortality after fixation and joint arthroplasty and has been extensively linked to the formation of bacterial biofilms. Poly(methyl methacrylate) (PMMA), as a cement or as beads, is commonly used for antibiotic release to the site of infection but displays variable elution kinetics and also represents a potential nidus for infection, therefore requiring surgical removal once antibiotics have eluted. Absorbable cements have shown improved elution of a wider range of antibiotics and, crucially, complete biodegradation, but limited data exist as to their antimicrobial and antibiofilm efficacy. Synthetic calcium sulfate beads loaded with tobramycin, vancomycin, or vancomycin-tobramycin dual treatment (in a 1:0.24 [wt/wt] ratio) were assessed for their abilities to eradicate planktonic methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis relative to that of PMMA beads. The ability of the calcium sulfate beads to prevent biofilm formation over multiple days and to eradicate preformed biofilms was studied using a combination of viable cell counts, confocal microscopy, and scanning electron microscopy of the bead surface. Biofilm bacteria displayed a greater tolerance to the antibiotics than their planktonic counterparts. Antibiotic-loaded beads were able to kill planktonic cultures of 10(6) CFU/ml, prevent bacterial colonization, and significantly reduce biofilm formation over multiple days. However, established biofilms were harder to eradicate. These data further demonstrate the difficulty in clearing established biofilms; therefore, early preventive measures are key to reducing the risk of PI. Synthetic calcium sulfate loaded with antibiotics has the potential to reduce or eliminate biofilm formation on adjacent periprosthetic tissue and prosthesis material and, thus, to reduce the rates of periprosthetic infection. PMID:25313221

  13. Antibiotic-Loaded Synthetic Calcium Sulfate Beads for Prevention of Bacterial Colonization and Biofilm Formation in Periprosthetic Infections

    PubMed Central

    Howlin, R. P.; Brayford, M. J.; Webb, J. S.; Cooper, J. J.; Aiken, S. S.

    2014-01-01

    Periprosthetic infection (PI) causes significant morbidity and mortality after fixation and joint arthroplasty and has been extensively linked to the formation of bacterial biofilms. Poly(methyl methacrylate) (PMMA), as a cement or as beads, is commonly used for antibiotic release to the site of infection but displays variable elution kinetics and also represents a potential nidus for infection, therefore requiring surgical removal once antibiotics have eluted. Absorbable cements have shown improved elution of a wider range of antibiotics and, crucially, complete biodegradation, but limited data exist as to their antimicrobial and antibiofilm efficacy. Synthetic calcium sulfate beads loaded with tobramycin, vancomycin, or vancomycin-tobramycin dual treatment (in a 1:0.24 [wt/wt] ratio) were assessed for their abilities to eradicate planktonic methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis relative to that of PMMA beads. The ability of the calcium sulfate beads to prevent biofilm formation over multiple days and to eradicate preformed biofilms was studied using a combination of viable cell counts, confocal microscopy, and scanning electron microscopy of the bead surface. Biofilm bacteria displayed a greater tolerance to the antibiotics than their planktonic counterparts. Antibiotic-loaded beads were able to kill planktonic cultures of 106 CFU/ml, prevent bacterial colonization, and significantly reduce biofilm formation over multiple days. However, established biofilms were harder to eradicate. These data further demonstrate the difficulty in clearing established biofilms; therefore, early preventive measures are key to reducing the risk of PI. Synthetic calcium sulfate loaded with antibiotics has the potential to reduce or eliminate biofilm formation on adjacent periprosthetic tissue and prosthesis material and, thus, to reduce the rates of periprosthetic infection. PMID:25313221

  14. Supramolecular arrangement of 3,5-bis[methylene(dihydroxyphosphoryl)]benzoic acid and its complex with calcium

    NASA Astrophysics Data System (ADS)

    Przybył, Bartosz; Zoń, Jerzy; Janczak, Jan

    2013-09-01

    3,5-Bis[methylene(dihydroxyphosphoryl)]benzoic acid and its complex with calcium in the crystalline form were obtained. The 3,5-bis[methylene(dihydroxyphosphoryl)]benzoic acid crystallises as acetone monosolvate (1a) while its calcium complex as methanol disolvate (1b). The solvent molecules in the crystals are disordered. The 3,5-bis[methylene(dihydroxy-phosphoryl)]benzoic acid molecules in crystal 1a are interconnected via OH⋯O hydrogen bonds forming two-dimensional layers parallel to (1 0 0) plane. Within the layers there are present holes that occupied disordered acetone molecules. In 1b the calcium cation is surrounded by six singly deprotonated 3,5-bis[methylene(dihydroxyphosphoryl)]benzoic acid forming distorted octahedral environment. Each singly deprotonated 3,5-bis[methylene(dihydroxyphosphoryl)]benzoic acid links three calcium cations forming two-dimensional coordinating polymers parallel to (0 1 0) plane. The OH···O hydrogen bonds between the singly deprotonated 3,5-bis[methylene(dihydroxyphosphoryl)]benzoic acid ligands stabilize the two-dimensional polymers. Statistically disordered methanol molecules are located in the holes between the two-dimensional coordinating polymers and interact with them via OH···O hydrogen bonds.

  15. Purification and characterisation of a glutamic acid-containing peptide with calcium-binding capacity from whey protein hydrolysate.

    PubMed

    Huang, Shun-Li; Zhao, Li-Na; Cai, Xixi; Wang, Shao-Yun; Huang, Yi-Fan; Hong, Jing; Rao, Ping-Fan

    2015-02-01

    The bioavailability of dietary ionised calcium is affected by intestinal basic environment. Calcium-binding peptides can form complexes with calcium to improve its absorption and bioavailability. The aim of this study was focused on isolation and characterisation of a calcium-binding peptide from whey protein hydrolysates. Whey protein was hydrolysed using Flavourzyme and Protamex with substrate to enzyme ratio of 25:1 (w/w) at 49 °C for 7 h. The calcium-binding peptide was isolated by DEAE anion-exchange chromatography, Sephadex G-25 gel filtration and reversed phase high-performance liquid chromatography (RP-HPLC). A purified peptide of molecular mass 204 Da with strong calcium binding ability was identified on chromatography/electrospray ionisation (LC/ESI) tandem mass spectrum to be Glu-Gly (EG) after analysis and alignment in database. The calcium binding capacity of EG reached 67·81 μg/mg, and the amount increased by 95% compared with whey protein hydrolysate complex. The UV and infrared spectrometer analysis demonstrated that the principal sites of calcium-binding corresponded to the carboxyl groups and carbonyl groups of glutamic acid. In addition, the amino group and peptide amino are also the related groups in the interaction between EG and calcium ion. Meanwhile, the sequestered calcium percentage experiment has proved that EG-Ca is significantly more stable than CaCl2 in human gastrointestinal tract in vitro. The findings suggest that the purified dipeptide has the potential to be used as ion-binding ingredient in dietary supplements. PMID:25592629

  16. Acid Neutralization Capacity of a Tricalcium Silicate-Containing Calcium Phosphate Cement as an Endodontic Material

    PubMed Central

    Cherng, A. Maria; Takagi, Shozo; Chow, Laurence C.

    2010-01-01

    A calcium phosphate cement (CPC) was shown to have the necessary attributes for endodontic materials except adequate basicity needed for antimicrobial properties. To enhance its basicity, tricalcium silicate (Ca3SiO5), a highly alkaline compound, was added to CPC at a mass fraction of 0.25, 0.5 or 0.75. The basicity, acid neutralization and physical properties of the CPC-Ca3SiO5 composites were investigated. Mineral trioxide aggregate (MTA) was used as the control. The acid neutralizing capacity of the CPC-Ca3SiO5 composites and MTA were measured by titrating the suspensions of ground set samples with a 0.2 mol / L HCl at predetermined pH levels, i.e., 11, 9.0, and 7.4. The setting time of CPC-Ca3SiO5 composites determined by the Gilmore needle method was 40 ± 10 min. Acid neutralizing capacity of CPC depended (p < 0.05) on Ca3SiO5 content. CPC containing 75 % Ca3SiO5 could neutralize slightly less acid than MTA (p < 0.05), but it had a shorter setting time than that of MTA (> 4 h) and excellent handling properties.

  17. Atherosclerosis and hypertension induction by lead and cadmium ions: an effect prevented by calcium ion

    SciTech Connect

    Revis, N.W.; Zinsmeistery, A.R.; Bull, R.

    1981-10-01

    In epidemiological studies, both positive and negative correlations have been found between cardiovascular disease and mortality and the presence of several inorganic ions in the drinking water. In an attempt to resolve this apparent disagreement, we exposed White Carneau pigeons to drinking water containing calcium (100 ppm), magnesium (30 ppm), lead (0.8 ppm), or cadmium (0.6 ppm) and used a 2/sup 4/-factorial design to measure the effects of these elements in atherosclerosis and hypertension. The results indicate that (i) lead and cadmium induced aortic atherosclerosis and hypertension, and (ii) calcium protects against the cardiovascular effects of cadmium. Furthermore, the effects were indications that magnesium antagonized the atherosclerotic protective effect of calcium. We suggest that, if these results with the pigeon can be applied to humans, the incidence of aortic atherosclerosis and hypertension should be significantly higher in areas where the drinking water contains magnesium, lead, and cadmium with a relatively low calcium concentration. Furthermore, if hard and soft water produce similar levels of lead and cadmium uptakes, the level of magnesium may be an additional factor in aortic atherosclerosis.

  18. The crystallinity of calcium phosphate powders influenced by the conditions of neutralized procedure with citric acid additions

    SciTech Connect

    Li Chengfeng

    2009-05-06

    Calcium phosphate powders with nano-sized crystallinity were synthesized by neutralization using calcium hydroxide and orthophosphoric acid with the assistance of citric acid. The influence of processing parameters, such as free or additive citric acid, synthetic temperature and ripening time, on the crystallinity of hydroxyapatite were investigated. The results of X-ray diffraction and microstructure observations showed that the crystallinity and morphology of nano-sized hydroxyapatite particles were influenced by the presence or absence of citric acid. It was found that the crystallinities and crystallite sizes of hydroxyapatite powders prepared with the additive citric acid increased with increasing synthetic temperature and ripening time. Especially, the crystallinities of (h k 0) planes were raised and more homogeneously grown particles were obtained with increasing synthetic temperature.

  19. Body fat loss induced by calcium in co-supplementation with conjugated linoleic acid is associated with increased expression of bone formation genes in adult mice.

    PubMed

    Chaplin, Alice; Palou, Andreu; Serra, Francisca

    2015-12-01

    The potential of conjugated linoleic acids (CLA) and calcium in weight management in animal models and human studies has been outlined, as well as their use to prevent bone loss at critical stages. In addition, it has been suggested that bone remodeling and energy metabolism are regulated by shared pathways and involve common hormones such as leptin. We have previously shown that supplementation with CLA and calcium in adult obese mice decreases body weight and body fat. The aim of the present study was to assess the effects of these two compounds on bone and energy metabolism markers on bone. Mice (C57BL/6J) were divided into five groups according to diet and treatment (up to 56 days): control (C), high-fat diet (HF), HF+CLA (CLA), HF+calcium (Ca) and HF with both compounds (CLA+Ca). At the end of treatment, bone formation markers were determined in plasma and expression of selected bone and energy markers was determined in tibia by quantitative polymerase chain reaction. Results show that CLA was associated with decreased tibia weight and minor impact on bone markers, whereas calcium, either alone or co-supplemented with CLA, maintained bone weight and promoted the expression of bone formation genes such as bone gamma-carboxyglutamate protein 2 (Bglap2) and collagen Iα1 (Col1a1). Furthermore, it had a significant effect on key players in energy metabolism, in particular leptin and adiponectin tibia receptors. Overall, in addition to the weight loss promoting properties of calcium, on its own or co-supplemented with CLA, our results support beneficial effects on bone metabolism in mice. PMID:26454511

  20. Prevention of falls and fractures in old people by administration of calcium and vitamin d. randomized clinical trial

    PubMed Central

    2011-01-01

    Background There are many studies that associate vitamin D serum levels in older persons with muscle strength, physical performance and risk of fractures and falls. However, current evidence is insufficient to make a general recommendation for administrating calcium and vitamin D to older persons. The objective of this study is to determine the effectiveness of calcium and vitamin D supplementation in improving musculoskeletal function and decreasing the number of falls in person aged over 65 years. Methods/Design Phase III, randomized, double blind, placebo-controlled trial to evaluate the efficacy of already marketed drugs in a new indication. It will be performed at Primary Care doctor visits at several Healthcare Centers in different Spanish Health Areas. A total of 704 non-institutionalized subjects aged 65 years or older will be studied (sample size calculated for a statistical power of 80%, alpha error 0.05, annual incidence of falls 30% and expected reduction of 30% to 20% and expected loss to follow up of 20%). The test drug containing 800 IU of vitamin D and 1000 mg of calcium will be administered daily. The control group will receive a placebo. The subjects will be followed up over two years. The primary variable will be the incidence of spontaneous falls. The secondary variables will include: consequences of the falls (fractures, need for hospitalization), change in calcidiol plasma levels and other analytical determinations (transaminases, PTH, calcium/phosphorous, albumin, creatinine, etc.), change in bone mass by densitometry, change in muscle strength in the dominant hand and change in musculoskeletal strength, risk factors for falls, treatment compliance, adverse effects and socio-demographic data. Discussion The following principles have been considered in the development of this Project: the product data are sufficient to ensure that the risks assumed by the study participants are acceptable, the study objectives will probably provide further knowledge on the problem studied and the available information justifies the performance of the study and its possible risk for the participants. If calcium and vitamin D supplementation is effective in the prevention of falls and fractures in the elderly population, a recommendation may be issued with the aim of preventing some of the consequences of falls that affect quality of life and the ensuing personal, health and social costs. Trial Registration ClinicalTrials.gov: NCT01452243 Clinical trial authorized by the Spanish Medicines Agency: EudraCT number 2006-001643-63. PMID:22151975

  1. [Regulation function of calcium on photosynthesis of Dimocarpus longana Lour. cv. wulongling under simulated acid rain stress].

    PubMed

    Qiu, Dongliang; Liu, Xinghui; Guo, Suzhi

    2002-09-01

    Studies on the regulation function of calcium on photosynthesis of Dimocarpus longana under simulated acid rain stress showed that the photoreduction activity of chloroplasts was activated when the concentration of calcium ion in reaction medium ranged from 0 to 5 mmol.L-1, and peaked at the 3.5 mmol.L-1, which was 41.90% higher than that of control. Conversely, the activity of chloroplasts reduced 26.06% in the reaction medium with a concentration of 2 mmol.L-1 EGTA, as compared with the control. Both Mn2+ and Mg2+ could inhibit photoreduction activity. The photophosphorylation activity increased when the concentration of calcium ion in reaction medium ranged from 0 to 6 mmol.L-1, and peaked at the 4.5 mmol.L-1, while superoxidase dismutase (SOD) activity rose from 0 to 6 mmol.L-1 and peaked at 6 mmol.L-1. Calcium ion with the concentration of both 10 mmol.L-1 and 15 mmol.L-1 could increase the content of chlorophyll(Chl), stabilize the membrane structure of leaf discs, and reduce the membrane permeability under simulated acid rain with pH value of 3.0. The effect in 15 mmol.L-1 were better than in 10 mmol.L-1. However, the injury of acid rain to leaves was strengthened when the concentration of calcium was higher than 20 mmol.L-1. Net photosynthesis rate (Pn) rose when leaves sprayed with 15 mmol.L-1 Ca(NO3)2 before treatment of acid rain stress of pH 2.5. All of the results represented the excellent protection function of calcium on D. longana leaves under simulated acid rain. PMID:12561164

  2. A comparison of calcium to zoledronic acid for improvement of cortical bone in an animal model of CKD

    PubMed Central

    Moe, Sharon M.; Chen, Neal X.; Newman, Christopher L.; Gattone, Vincent H.; Organ, Jason M.; Chen, Xianming; Allen, Matthew R.

    2013-01-01

    Patients with chronic kidney disease (CKD) have increased risk of fractures, yet the optimal treatment is unknown. In secondary analyses of large randomized trials, bisphosphonates have been shown to improve bone mineral density and reduce fractures. However, bisphosphonates are currently not recommended in patients with advanced kidney disease due to concern about over-suppressing bone remodeling, which may increase the risk of developing arterial calcification. In the present study we used a naturally occurring rat model of CKD with secondary hyperparathyroidism, the Cy/+ rat, and compared the efficacy of treatment with zoledronic acid, calcium given in water to simulate a phosphate binder, and the combination of calcium and zoledronic acid. Animals were treated beginning at 25 weeks of age (approximately 30% of normal renal function) and followed for ten weeks. The results demonstrate that both zoledronic acid and calcium improved bone volume by microCT and both equally suppressed mineral apposition rate, bone formation rate, and mineralizing surface of trabecular bone. In contrast, only calcium treatment with or without zoledronic acid improved cortical porosity and cortical biomechanical properties (ultimate load and stiffness) and lowered parathyroid hormone (PTH). However, only calcium treatment led to the adverse effects of increased arterial calcification and fibroblast growth factor 23 (FGF23). These results suggest zoledronic acid may improve trabecular bone volume in CKD in the presence of secondary hyperparathyroidism, but does not benefit extraskeletal calcification or cortical biomechanical properties. Calcium effectively reduces PTH and benefits both cortical and trabecular bone yet increases the degree of extra skeletal calcification. PMID:24038306

  3. Mammary cancer prevention by conjugated dienoic derivative of linoleic acid.

    PubMed

    Ip, C; Chin, S F; Scimeca, J A; Pariza, M W

    1991-11-15

    Conjugated dienoic derivative of linoleic acid (CLA) is a collective term which refers to a mixture of positional and geometric isomers of linoleic acid. It is a naturally occurring substance in food and is present at higher concentrations in products from animal sources. The present study reports that synthetically prepared CLA is an effective agent in inhibiting the development of mammary tumors induced by dimethylbenz(a)anthracene. Rats were fed either the AIN-76A basal diet or the same diet supplemented with 0.5, 1, or 1.5% CLA by weight. These diets were started 2 weeks before carcinogen administration and continued until the end of the experiment. The total number of mammary adenocarcinomas in the 0.5, 1, and 1.5% CLA groups was reduced by 32, 56, and 60%, respectively. The final tumor incidence and cumulative tumor weight were similarly diminished in rats fed the CLA-containing diets. In general, there appeared to be a dose-dependent protection at levels of 1% CLA and below, but no further beneficial effect was evident at levels above 1%. Chronic feeding of up to 1.5% CLA produced no adverse consequences in the animals. Analysis of the phospholipid fraction from liver and mammary tumor extracts showed that only the c9,t11 isomer of CLA was incorporated and that the level of incorporation increased with dietary intake. An interesting property of CLA is its ability to suppress peroxide formation from unsaturated fatty acid in a test-tube model (Cancer Res., Ha et al. 50: 1097-1101, 1990). In view of this information, the amount of thiobarbituric acid-reactive substances (lipid peroxidation products) present endogenously in liver and mammary gland was quantitated. The feeding of CLA (for either 1 or 6 months) resulted in a decrease in the extent of lipid peroxidation in the mammary gland, but such a suppressive effect was not detected in the liver. It should be noted that maximal antioxidant activity was observed with only 0.25% CLA in the diet, whereas maximal tumor inhibition was achieved at about 1% CLA. Hence there is a discrepancy between the antioxidant efficacy of CLA and its anticarcinogenic potency, suggesting that some other mechanisms might be involved in cancer protection. Unlike the stimulatory effect of linoleic acid in carcinogenesis (Cancer Res., Ip et al., 45: 1997-2001, 1985), the reaction of CLA in cancer prevention is specific, and CLA is more powerful than any other fatty acid in modulating tumor development. PMID:1933874

  4. Monolithic calcium phosphate/poly(lactic acid) composite versus calcium phosphate-coated poly(lactic acid) for support of osteogenic differentiation of human mesenchymal stromal cells.

    PubMed

    Tahmasebi Birgani, Zeinab; van Blitterswijk, Clemens A; Habibovic, Pamela

    2016-03-01

    Calcium phosphates (CaPs), extensively used synthetic bone graft substitutes, are often combined with other materials with the aim to overcome issues related to poor mechanical properties of most CaP ceramics. Thin ceramic coatings on metallic implants and polymer-ceramic composites are examples of such hybrid materials. Both the properties of the CaP used and the method of incorporation into a hybrid structure are determinant for the bioactivity of the final construct. In the present study, a monolithic composite comprising nano-sized CaP and poly(lactic acid) (PLA) and a CaP-coated PLA were comparatively investigated for their ability to support proliferation and osteogenic differentiation of bone marrow-derived human mesenchymal stromal cells (hMSCs). Both, the PLA/CaP composite, produced using physical mixing and extrusion and CaP-coated PLA, resulting from a biomimetic coating process at near-physiological conditions, supported proliferation of hMSCs with highest rates at PLA/CaP composite. Enzymatic alkaline phosphatase activity as well as the mRNA expression of bone morphogenetic protein-2, osteopontin and osteocalcin were higher on the composite and coated polymer as compared to the PLA control, while no significant differences were observed between the two methods of combining CaP and PLA. The results of this study confirmed the importance of CaP in osteogenic differentiation while the exact properties and the method of incorporation into the hybrid material played a less prominent role. PMID:26787486

  5. The Use of Oxalic Acid as a Chelating Agent in the Dissolution Reaction of Calcium Molybdate

    NASA Astrophysics Data System (ADS)

    Ilhan, Sedat; Kalpakli, Ahmet Orkun; Kahruman, Cem; Yusufoglu, Ibrahim

    2013-06-01

    In this study, the dissolution behavior of calcium molybdate (CaMoO4) was investigated in oxalic acid (H2C2O4) solution. The effects of stirring speed, temperature, H2C2O4 concentration, and particle size on the dissolution reaction of CaMoO4 were determined. The dissolved quantities of molybdenum and calcium were analyzed quantitatively by ICP-OES. Fractional conversion of CaMoO4 vs time and concentration of calcium vs time diagrams were plotted. It was observed that at constant temperatures and lower H2C2O4 concentrations, the dissolution increased by increasing H2C2O4 concentration, but at higher H2C2O4 concentrations, the effect of H2C2O4 concentrations was negligible. The dissolution reaction of CaMoO4 in H2C2O4 solution was performed in two steps as series-parallel type reaction. In the first step, CaMoO4 reacted with H2C2O4 to form the water-soluble calcium aqua oxalato molybdate (Ca[MoO3(C2O4)(H2O)]) intermediate chelate product. In the second step, the intermediate chelate, Ca[MoO3(C2O4)(H2O)], reacted with the reactant, H2C2O4, to yield water-soluble hydrogen oxalato dimolybdate chelate (H2[(MoO3)2(C2O4)]) and insoluble CaC2O4H2O as final products. It was found that 500 rpm was enough to eliminate the resistance of liquid film layer that surrounds the solid particles. It was concluded that the optimum temperature was 313 K (40 °C) and the optimum concentration of H2C2O4 was 1 kmol m-3 to obtain high conversion during the dissolution of CaMoO4.

  6. Poly(γ-glutamic acid)/Silica Hybrids with Calcium Incorporated in the Silica Network by Use of a Calcium Alkoxide Precursor

    PubMed Central

    Poologasundarampillai, Gowsihan; Yu, Bobo; Tsigkou, Olga; Wang, Daming; Romer, Frederik; Bhakhri, Vineet; Giuliani, Finn; Stevens, Molly M; McPhail, David S; Smith, Mark E; Hanna, John V; Jones, Julian R

    2014-01-01

    Current materials used for bone regeneration are usually bioactive ceramics or glasses. Although they bond to bone, they are brittle. There is a need for new materials that can combine bioactivity with toughness and controlled biodegradation. Sol-gel hybrids have the potential to do this through their nanoscale interpenetrating networks (IPN) of inorganic and organic components. Poly(γ-glutamic acid) (γ-PGA) was introduced into the sol-gel process to produce a hybrid of γ-PGA and bioactive silica. Calcium is an important element for bone regeneration but calcium sources that are used traditionally in the sol-gel process, such as Ca salts, do not allow Ca incorporation into the silicate network during low-temperature processing. The hypothesis for this study was that using calcium methoxyethoxide (CME) as the Ca source would allow Ca incorporation into the silicate component of the hybrid at room temperature. The produced hybrids would have improved mechanical properties and controlled degradation compared with hybrids of calcium chloride (CaCl2), in which the Ca is not incorporated into the silicate network. Class II hybrids, with covalent bonds between the inorganic and organic species, were synthesised by using organosilane. Calcium incorporation in both the organic and inorganic IPNs of the hybrid was improved when CME was used. This was clearly observed by using FTIR and solid-state NMR spectroscopy, which showed ionic cross-linking of γ-PGA by Ca and a lower degree of condensation of the Si species compared with the hybrids made with CaCl2 as the Ca source. The ionic cross-linking of γ-PGA by Ca resulted in excellent compressive strength and reduced elastic modulus as measured by compressive testing and nanoindentation, respectively. All hybrids showed bioactivity as hydroxyapatite (HA) was formed after immersion in simulated body fluid (SBF). PMID:24838668

  7. All-trans retinoic acid and arsenic trioxide induce apoptosis and modulate intracellular concentrations of calcium in hepatocellular carcinoma cells.

    PubMed

    Wei, Jianfeng; Ye, Chaoping; Liu, Fengsheng; Wang, Wenqing

    2014-12-01

    We investigated the effects of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), alone and in combination, on apoptosis and intracellular calcium concentration in hepatocellular carcinoma (HepG2) cells. We used HepG2 cells to test the effects of ATRA and ATO, individually and in combination, on cell proliferation, apoptosis, and intracellular-free calcium concentration. The results indicate that each drug decreased cell proliferation, increased apoptosis, and increased intracellular-free calcium in a time- and dose-dependent manner. We also calculated the coefficients of drug interaction for sub-threshold administration of both drugs in combination (1 ?mol/L each). ATRA and ATO acted synergistically in inhibition of cell proliferation and additively in the promotion of apoptosis. All-trans retinoic acid and ATO interacted synergistically to reduce cell proliferation in HepG2 cells. PMID:25068185

  8. Rosmarinic acid prevents against memory deficits in ischemic mice.

    PubMed

    Fonteles, Analu Aragão; de Souza, Carolina Melo; de Sousa Neves, Julliana Catharina; Menezes, Ana Paula Fontenele; Santos do Carmo, Marta Regina; Fernandes, Francisco Diego Pinheiro; de Araújo, Patrícia Rodrigues; de Andrade, Geanne Matos

    2016-01-15

    Polyphenols have neuroprotective effects after brain ischemia. It has been demonstrated that rosmarinic acid (RA), a natural phenolic compound, possesses antioxidant and anti-inflammatory properties. To evaluate the effectiveness of RA against memory deficits induced by permanent middle cerebral artery occlusion (pMCAO) mice were treated with RA (0.1, 1, and 20mg/kg/day, i.p. before ischemia and during 5 days). Animals were evaluated for locomotor activity and working memory 72 h after pMCAO, and spatial and recognition memories 96 h after pMCAO. In addition, in another set of experiments brain infarction, neurological deficit score and myeloperoxidase (MPO) activity were evaluates 24h after the pMCAO. Finally, immunohistochemistry, and western blot, and ELISA assay were used to analyze glial fibrillary acidic protein (GFAP), and synaptophysin (SYP) expression, and BDNF level, respectively. The working, spatial, and recognition memory deficits were significantly improved with RA treatment (20mg/kg). RA reduced infarct size and neurological deficits caused by acute ischemia. The mechanism for RA neuroprotection involved, neuronal loss suppression, and increase of synaptophysin expression, and increase of BDNF. Furthermore, the increase of MPO activity and GFAP immunireactivity were prevented in MCAO group treated with RA. These results suggest that RA exerts memory protective effects probably due to synaptogenic activity and anti-inflammatory action. PMID:26456521

  9. Protection of human umbilical vein endothelial cells by glycine and structurally similar amino acids against calcium and hydrogen peroxide-induced lethal cell injury.

    PubMed Central

    Weinberg, J. M.; Varani, J.; Johnson, K. J.; Roeser, N. F.; Dame, M. K.; Davis, J. A.; Venkatachalam, M. A.

    1992-01-01

    Cultured human umbilical vein endothelial cells treated with either the calcium ionophore, ionomycin, or ionomycin plus cyanide-m-chlorophenylhydrazone had immediate severe depletion of adenosine triphosphate, (ATP) and increases of cytosolic free calcium (Caf) and then sustained lethal cell injury as manifested by release of lactate dehydrogenase and failure to exclude vital dyes within 15 minutes. Inclusion of glycine in the experimental medium prevented the enzyme leakage for at least 60 minutes without altering the ATP depletion or increases of Caf. The physiologic glycine concentration of 0.25 mmol/l gave 50% protection, and protection was complete at 1 mmol/l. Several other small neutral amino acids, L- and D-alanine, beta-alanine, 1-aminocyclopropane-1-carboxylate, alpha-aminoisobutyrate, and L-serine, had effects similar to glycine, but other amino acids and metabolic substrates did not. The endothelial cells were relatively resistant to damage from hydrogen peroxide, but sensitivity could be increased by preloading with Fe2+. In both non-loaded and Fe(2+)-loaded cells, hydrogen-peroxide-induced lactate dehydrogenase (LDH) release developing over 180 minutes was prevented by glycine in a fashion analogous to that seen with ionomycin damage. Mn2+ also partially protected against hydrogen peroxide injury but was not required for glycine's effects. These data demonstrate that striking modulatory effects of glycine and structurally similar amino acids that have previously been characterized in most detail using kidney tubule cells are strongly expressed in human umbilical vein endothelial cells and are involved in their response to Ca2+ and oxidant-mediated damage. These amino acid effects must be considered in the design of in vitro studies of endothelial cell injury and may contribute to endothelial cell pathophysiology in vivo. Images Figure 3 Figure 4 PMID:1739136

  10. Dietary acid load is associated with lower bone mineral density in men with low intake of dietary calcium.

    PubMed

    Mangano, Kelsey M; Walsh, Stephen J; Kenny, Anne M; Insogna, Karl L; Kerstetter, Jane E

    2014-02-01

    High dietary acid load (DAL) may be detrimental to bone mineral density (BMD). The objectives of the study were to: (1) evaluate the cross-sectional relation between DAL and BMD; and (2) determine whether calcium intake modifies this association. Men (n = 1218) and women (n = 907) aged ≥60 years were included from the National Health and Nutrition Examination Survey 2005-2008. Nutrient intake from 2, 24-hour recalls was used to calculate net endogenous acid production (NEAP) and potential renal acid load (PRAL) (mEq/d). PRAL was calculated from dietary calcium (PRALdiet ) and diet + supplemental calcium (PRALtotal ). Tests for linear trend in adjusted mean BMD of the hip and lumbar spine were performed across energy-adjusted NEAP and PRAL quartiles. Modification by calcium intake (dietary or total) above or below 800 mg/d was assessed by interaction terms. Overall, mean age was 69 ± 0.3 years. Among women, there was no association between NEAP and BMD. PRALdiet was positively associated with proximal femur BMD (p trend = 0.04). No associations were observed with PRALtotal at any BMD site (p range, 0.38-0.82). Among men, no significant associations were observed between BMD and NEAP or PRAL. However, an interaction between PRALdiet and calcium intake was observed with proximal femur BMD (p = 0.08). An inverse association between PRALdiet and proximal femur BMD was detected among men with <800 mg/d dietary calcium (p = 0.02); no associations were found among men with ≥800 mg/d (p = 0.98). A significant interaction with PRALtotal was not observed. In conclusion, when supplemental calcium is considered, there is no association between DAL and BMD among adults. Men with low dietary calcium showed an inverse relation with PRAL at the proximal femur; in women no interaction was observed. This study highlights the importance of calcium intake in counteracting the adverse effect of DAL on bone health. Further research should determine the relation between DAL and change in BMD with very low calcium intake. PMID:23873776

  11. Proteins, dietary acid load, and calcium and risk of postmenopausal fractures in the E3N French women prospective study.

    PubMed

    Dargent-Molina, Patricia; Sabia, Sèverine; Touvier, Mathilde; Kesse, Emmanuelle; Bréart, Gérard; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine

    2008-12-01

    Excess dietary proteins and "acid ash" diets have been suspected to increase the risk of osteoporosis, but experimental and epidemiological evidence is mixed. We aimed to determine whether the association between protein intake and the overall acid-base equilibrium of the diet (as renal net acid excretion [RNAE] estimate) and fracture risk vary according to calcium intake. During an average of 8.37 +/- 1.73 yr of follow-up, 2408 women reported a fracture (excluding high-impact trauma) among 36,217 postmenopausal women from the E3N prospective study. We used Cox regression models to study the interaction between calcium and, respectively, proteins and RNAE, from the 1993 dietary questionnaire for fracture risk determination, adjusting for potential confounders. There was no overall association between fracture risk and total protein or RNAE. However, in the lowest quartile of calcium (<400 mg/1000 kcal), high protein intake was associated with a significant increased fracture risk (RR = 1.51 for highest versus lowest quartile; 95% CI, 1.17-1.94). An increasing fracture risk with increasing animal protein intake was also observed (trend, p < 0.0001). A similar pattern of interaction for fracture risk was observed between RNAE and calcium. In this Western population of postmenopausal women with normal to high protein intake and fairly high calcium intake, there was no overall association between total protein or RNAE and fracture risk. However, there was some evidence that high protein-high acid ash diets were associated with an increased risk of fracture when calcium intake was low (<400 mg/1000 kcal). PMID:18665794

  12. Analysis of carbon functional groups in mobile humic acid and recalcitrant calcium humate extracted from eight US soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid state 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to study the structure of soil humic fractions; however, knowledge regarding carbon structural relationships in humic fractions is limited. In this study, mobile humic acid (MHA) and recalcitrant calcium humate (CaHA) fr...

  13. Calcium mobilization in salicylic acid-induced Salvia miltiorrhiza cell cultures and its effect on the accumulation of rosmarinic acid.

    PubMed

    Guo, Hongbo; Zhu, Nan; Deyholos, Michael K; Liu, Jun; Zhang, Xiaoru; Dong, Juane

    2015-03-01

    Ca(2+) serves as a second messenger in plant responses to different signals, and salicylic acid (SA) has been recognized as a signal mediating plant responses to many stresses. We recently found that SA treatment led to the cytoplasmic acidification of Salvia miltiorrhiza cells and alkalinization of extracellular medium. Here, we demonstrate that SA can rapidly induce Ca(2+) mobilization in protoplasts, but the induction can be blocked with a channel blocker of either plasma or organellar membranes. Following SA, A 23187, or 10 mmol/L Ca(2+) treatment, rosmarinic acid (RA) accumulation reached the highest level at 16 h, whereas the peak was found at 10 h if plasma membrane channel blockers were used. By contrast, the highest accumulation of RA occurred at 16 h when organellar channels were blocked, exhibiting the same tendency with SA-induced cells. In agreement with these observations, both phenylalanine ammonia-lyase (PAL) activity and its gene expression detected by real-time PCR also showed the same patterns. These results indicate that SA treatment firstly results in calcium release from internal stores, which in turn leads to PAL activity increase, RA accumulation, and a large amount of Ca(2+) influx from apoplast after 10 h of SA induction. PMID:25561058

  14. Effects of sn-2 palmitic acid-fortified vegetable oil and fructooligosaccharide on calcium metabolism in growing rats fed casein based diet

    PubMed Central

    Lee, Yeon-Sook; Kang, Eun-Young; Park, Mi-Na; Choi, You-Young; Jeon, Jeong-Wook

    2008-01-01

    This study was carried out to investigate the efficacy of sn-2 palmitic acid-fortified vegetable oil (Sn2PA) on calcium absorption and to confirm the synergistic effects of fructooligosaccharide on calcium absorption. Male SD rats were fed 6 kinds of casein based diets containing vegetable oil (control), sn-2 palmitic acid-fortified vegetable oil (Sn2PA) and Sn2PA with fructooligosaccharide(Sn2PAFO) in two levels of calcium (normal 0.5% and high 1.0%) for 3 weeks. Total lipids, cholesterol, triglyceride and calcium in blood were measured. Feces were collected using cages for 4 days. Serum concentrations of total lipids and calcium were not significantly different among groups. However, serum triglyceride was significantly decreased by fructooligosaccharide supplementation regardless of dietary calcium level. The lipid absorption was not significantly different among experimental groups. Calcium absorption was significantly higher in Sn2PAFO group than other groups. Calcium solubility of intestine was increased by sn-2 palmitic acid supplementation. These results suggest that sn-2 palmitic acid and fructooligosaccharide supplementation could be beneficial for baby foods including infant formula, with regard to increasing absorption of calcium by more soluble calcium in the small intestinal content. PMID:20126357

  15. Effect of gossypol-acetic acid on calcium transport and ATPase activity in plasma membranes from ram and bull spermatozoa.

    PubMed

    Breitbart, H; Rubinstein, S; Nass-Arden, L

    1984-10-01

    The effects of gossypol acetic acid on the activity of Mg-ATPase and Ca-Mg-ATPase and on calcium uptake by plasma membranes from ram and bull spermatozoa were examined. The three parameters were almost completely inhibited by 10 microM gossypol for both ram and bull sperm. In order to assess the effects of higher gossypol concentrations isolated membrane vesicles were loaded with calcium by operating the ATP-dependent calcium pump after which gossypol was added and calcium uptake followed. At 10 microM gossypol, additional calcium uptake was 85% inhibited while at 40 microM a release of the accumulated calcium was observed. The inhibitory effect of 10 microM gossypol was almost completely reversible by simple dilution of gossypol-treated membranes, whilst at 40 microM the effect was only 50% reversible. The data show a high degree of similarity between bull and ram, suggesting minimal differences between the two species as far as the structure and function of the sperm plasma membrane is concerned. PMID:6151940

  16. Dairy Products, Dietary Calcium and Bone Health: Possibility of Prevention of Osteoporosis in Women: The Polish Experience

    PubMed Central

    Wadolowska, Lidia; Sobas, Kamila; Szczepanska, Justyna W.; Slowinska, Malgorzata A.; Czlapka-Matyasik, Magdalena; Niedzwiedzka, Ewa

    2013-01-01

    The objective of the study was to analyze the consumption of dairy products and dietary calcium by women in the context of bone mineral density and to assess opportunities to prevent osteoporosis in a dietary manner. The study was carried out with 712 Polish women. In 170 women aged 32 to 59 bone mineral density (BMD) was measured. The data on the consumption of dairy products and dietary calcium and some other osteoporosis risk factors was collected from 712 women. The average calcium intake from a diet was 507 mg/day. Only 2% of the women met Polish calcium intake recommendations. During adulthood, dairy product consumption or dietary calcium intake did not differ significantly between women with low BMD (below −1 SD) and women with regular BMD (≥−1 SD) (47.4 vs. 44.3 servings/week and 459 vs. 510 mg/day, respectively, p > 0.05). The odds ratios adjusted for age, menstruation and BMI in women with upper BMD tercile in comparison to the reference group (bottom tercile) was 2.73 (95% CI: 1.14, 6.55; p < 0.05) for the daily consumption of dairy products during the pre-school period and 2.40 (95% CI: 1.01, 5.70; p < 0.05) for the daily consumption of dairy products during the school period. Two clusters of women were established. In the S1 cluster, low BMD (below −1 SD) was associated with older age (≥50 years), lack of menstrual cycle. In the S2 cluster, regular BMD (≥−1 SD) was related to younger aged women (<50 years), presence of menstrual cycle, consumption of higher level of dairy products (≥28 servings/week) during adulthood and daily intake of dairy products during childhood and adolescence. The results indicate that good bone health to the large extent depended upon the combined impact of dietary factors and some non-modifiable risk factors of osteoporosis such as age and the presence of menstruation. Consumption of dairy products in childhood and adolescence may improve bone mineral density and reduce the risk of osteoporosis in adult women. PMID:23863825

  17. Dairy products, dietary calcium and bone health: possibility of prevention of osteoporosis in women: the Polish experience.

    PubMed

    Wadolowska, Lidia; Sobas, Kamila; Szczepanska, Justyna W; Slowinska, Malgorzata A; Czlapka-Matyasik, Magdalena; Niedzwiedzka, Ewa

    2013-07-01

    The objective of the study was to analyze the consumption of dairy products and dietary calcium by women in the context of bone mineral density and to assess opportunities to prevent osteoporosis in a dietary manner. The study was carried out with 712 Polish women. In 170 women aged 32 to 59 bone mineral density (BMD) was measured. The data on the consumption of dairy products and dietary calcium and some other osteoporosis risk factors was collected from 712 women. The average calcium intake from a diet was 507 mg/day. Only 2% of the women met Polish calcium intake recommendations. During adulthood, dairy product consumption or dietary calcium intake did not differ significantly between women with low BMD (below -1 SD) and women with regular BMD (≥-1 SD) (47.4 vs. 44.3 servings/week and 459 vs. 510 mg/day, respectively, p > 0.05). The odds ratios adjusted for age, menstruation and BMI in women with upper BMD tercile in comparison to the reference group (bottom tercile) was 2.73 (95% CI: 1.14, 6.55; p < 0.05) for the daily consumption of dairy products during the pre-school period and 2.40 (95% CI: 1.01, 5.70; p < 0.05) for the daily consumption of dairy products during the school period. Two clusters of women were established. In the S1 cluster, low BMD (below -1 SD) was associated with older age (≥ 50 years), lack of menstrual cycle. In the S2 cluster, regular BMD (≥-1 SD) was related to younger aged women (<50 years), presence of menstrual cycle, consumption of higher level of dairy products (≥28 servings/week) during adulthood and daily intake of dairy products during childhood and adolescence. The results indicate that good bone health to the larg e extent depended upon the combined impact of dietary factors and some non-modifiable risk factors of osteoporosis such as age and the presence of menstruation. Consumption of dairy products in childhood and adolescence may improve bone mineral density and reduce the risk of osteoporosis in adult women. PMID:23863825

  18. Role of Postoperative Vitamin D and/or Calcium Routine Supplementation in Preventing Hypocalcemia After Thyroidectomy: A Systematic Review and Meta-Analysis

    PubMed Central

    Alhefdhi, Amal; Mazeh, Haggi

    2013-01-01

    Background. Transient hypocalcemia is a frequent complication after total thyroidectomy. Routine postoperative administration of vitamin D and calcium can reduce the incidence of symptomatic postoperative hypocalcemia. We performed a systematic review to assess the effectiveness of this intervention. The primary aim was to evaluate the efficacy of routine postoperative oral calcium and vitamin D supplementation in preventing symptomatic post-thyroidectomy hypocalcemia. The second aim was to draw clear guidelines regarding prophylactic calcium and/or vitamin D therapy for patients after thyroidectomy. Methods. We identified randomized controlled trials comparing the administration of vitamin D or its metabolites to calcium or no treatment in adult patients after thyroidectomy. The search was performed in PubMed, Cochrane Library, Cumulative Index to Nursing and Allied Health Literature, Google Scholar, and Web of Knowledge databases. Patients with a history of previous neck surgery, calcium supplementation, or renal impairment were excluded. Results. Nine studies with 2,285 patients were included: 22 in the vitamin D group, 580 in the calcium group, 792 in the vitamin D and calcium group, and 891 in the no intervention group, with symptomatic hypocalcemia incidences of 4.6%, 14%, 14%, and 20.5%, respectively. Subcomparisons demonstrated that the incidences of postoperative hypocalcemia were 10.1% versus 18.8% for calcium versus no intervention and 6.8% versus 25.9% for vitamin D and calcium versus no intervention. The studies showed a significant range of variability in patients' characteristics. Conclusions. A significant decrease in postoperative hypocalcemia was identified in patients who received routine supplementation of oral calcium or vitamin D. The incidence decreased even more with the combined administration of both supplements. Based on this analysis, we recommend oral calcium for all patients following thyroidectomy, with the addition of vitamin D for high-risk individuals. PMID:23635556

  19. Effects of arachidonic acid on unitary calcium currents in rat sympathetic neurons

    PubMed Central

    Liu, Liwang; Rittenhouse, Ann R

    2000-01-01

    We have characterized the actions of arachidonic acid (AA) on whole cell and unitary calcium (Ca2+) currents in rat neonatal superior cervical ganglion (SCG) neurons using barium (Ba2+) as the charge carrier. Whole cell currents were elicited by stepping the membrane potential from −90 mV to +10 mV. Arachidonic acid (5 μm) was introduced into the bath in the continued presence of 1 μm (+)-202-791, an L-type Ca2+ channel agonist. Under these conditions, the peak current, comprised mainly of N-type current, and a slow, (+)-202-791-induced component of the tail current were inhibited by 67 ± 6 and 60 ± 10%, respectively, indicating that AA inhibits both N- and L-type currents. At a test potential of +30 mV, AA (5 μm) decreased unitary L- and N-type Ca2+ channel open probability (Po) in cell-attached patches that contained a single channel. For both channels, the underlying causes of the decrease in Po were similar. Arachidonic acid caused an increase in the percentage of null sweeps and in the number of null sweeps that clustered together. In sweeps with activity, the average number of openings per sweep decreased, while first latency and mean closed time increased. Arachidonic acid had no significant effect on unitary current amplitude or mean open time. Our findings are the first description of the inhibition of unitary L- and N-type Ca2+ channel activity by AA and are consistent with both channels spending more time in their null mode and with increased dwell time in one or more closed states. PMID:10835042

  20. The calcium-sensing receptor: A promising target for prevention of colorectal cancer☆

    PubMed Central

    Aggarwal, Abhishek; Prinz-Wohlgenannt, Maximilian; Tennakoon, Samawansha; Höbaus, Julia; Boudot, Cedric; Mentaverri, Romuald; Brown, Edward M.; Baumgartner-Parzer, Sabina; Kállay, Enikö

    2015-01-01

    The inverse correlation between dietary calcium intake and the risk of colorectal cancer (CRC) is well known, but poorly understood. Expression of the calcium-sensing receptor (CaSR), a calcium-binding G protein-coupled receptor is downregulated in CRC leading us to hypothesize that the CaSR has tumor suppressive roles in the colon. The aim of this study was to understand whether restoration of CaSR expression could reduce the malignant phenotype in CRC. In human colorectal tumors, expression of the CaSR negatively correlated with proliferation markers whereas loss of CaSR correlated with poor tumor differentiation and reduced apoptotic potential. In vivo, dearth of CaSR significantly increased expression of proliferation markers and decreased levels of differentiation and apoptotic markers in the colons of CaSR/PTH double knock-out mice confirming the tumor suppressive functions of CaSR. In vitro CRC cells stably overexpressing wild-type CaSR showed significant reduction in proliferation, as well as increased differentiation and apoptotic potential. The positive allosteric modulator of CaSR, NPS R-568 further enhanced these effects, whereas treatment with the negative allosteric modulator, NPS 2143 inhibited these functions. Interestingly, the dominant-negative mutant (R185Q) was able to abrogate these effects. Our results demonstrate a critical tumor suppressive role of CaSR in the colon. Restoration of CaSR expression and function is linked to regulation of the balance between proliferation, differentiation, and apoptosis and provides a rationale for novel strategies in CRC therapy. PMID:25701758

  1. Effect of L (+) ascorbic acid and monosodium glutamate concentration on the morphology of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Saraya, Mohamed El-shahte Ismaiel

    2015-11-01

    In this study, monosodium glutamate and ascorbic acid were used as crystal and growth modifiers to control the crystallization of CaCO3. Calcium carbonate prepared by reacting a mixed solution of Na2CO3 with CaCl2 at ambient temperature, (25 °C), constant Ca++CO3-- molar ratio and pH with stirring. The polymorph and morphology of the crystals were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results indicate that rhombohedral calcite was only formed in water without organic additives, and both calcite and spherical vaterite with various morphologies were produced in the presence of monosodium glutamate. The content of vaterite increased as the monosodium glutamate increased. In addition, spherical vaterite was obtained in the presence of different concentrations of ascorbic acid. The spherical vaterite posses an aggregate shape composed of nano-particles, ranging from 30 to 50 nm as demonstrated by the SEM and TEM analyses. Therefore, the ascorbic stabilizes vaterite and result in nano-particles compared to monosodium glutamate.

  2. Hippuric Acid as a Significant Regulator of Supersaturation in Calcium Oxalate Lithiasis: The Physiological Evidence

    PubMed Central

    Atanassova, Stoyanka S.; Gutzow, Ivan S.

    2013-01-01

    At present, the clinical significance of existing physicochemical and biological evidence and especially the results we have obtained from our previous in vitro experiments have been analyzed, and we have come to the conclusion that hippuric acid (C6H5CONHCH2COOH) is a very active solvent of Calcium Oxalate (CaOX) in physiological solutions. Two types of experiments have been discussed: clinical laboratory analysis on the urine excretion of hippuric acid (HA) in patients with CaOX lithiasis and detailed measurements of the kinetics of the dissolution of CaOX calculi in artificial urine, containing various concentrations of HA. It turns out that the most probable value of the HA concentration in the control group is approximately ten times higher than the corresponding value in the group of the stone-formers. Our in vitro analytical measurements demonstrate even a possibility to dissolve CaOX stones in human urine, in which increased concentration of HA have been established. A conclusion can be that drowning out HA is a significant regulator of CaOX supersaturation and thus a regulation of CaOX stone formation in human urine. Discussions have arisen to use increased concentration of HA in urine both as a solubilizator of CaOX stones in the urinary tract and on the purpose of a prolonged metaphylactic treatment. PMID:24307993

  3. Cadmium toxicity in tadpoles of Rhinella arenarum in relation to calcium and humic acids.

    PubMed

    Mastrángelo, Martina; Afonso, María Dos Santos; Ferrari, Lucrecia

    2011-08-01

    Bioassays were carried out to study the differences in cadmium (Cd) toxicity to premetamorphic tadpoles of Rhinella arenarum, in aqueous solutions with variable contents of calcium in the presence and absence of humic acids, and to analyze the relationship between the free Cd(2+) ion concentrations calculated by chemical modeling and the biological results. The correlation analysis of the free Cd(2+) concentration calculated by chemical speciation and the analytical Cd yielded a direct relationship between the degree of toxicity and the slope value. The lowest slope was obtained from the treatments with lowest free Cd(2+) ion concentration and lowest toxicity, whereas the highest slope was obtained from the most toxic treatment. At comparable concentrations of free Cd(2+), intralarval Cd increased as the Ca in the solution decreased. At equal contents of Ca, in the presence of humic acids, the content of Cd in larvae was higher and the toxicity values lower. The results obtained in this study show that waterborne Ca could offer some protection from metal uptake and accumulation by competitive inhibition in the uptake mechanism that involves active transport via cell membrane. In the systems with humic materials, a certain proportion of the Cd present in the solution was associated to them and thus became less bioavailable. PMID:21465180

  4. Effects of feeding fatty acid calcium and the interaction of forage quality on production performance and biochemical indexes in early lactation cow.

    PubMed

    Hu, Z Y; Yin, Z Y; Lin, X Y; Yan, Z G; Wang, Z H

    2015-10-01

    Multiparous early lactation Holstein cows (n = 16) were used in a randomized complete block design to determine the effects of feeding fatty acid calcium and the interaction of forage quality on production performance and biochemical indexes in early lactation cow. Treatments were as follows: (i) feeding low-quality forage without supplying fatty acid calcium (Diet A), (ii) feeding low-quality forage with supplying 400 g fatty acid calcium (Diet B), (iii) feeding high-quality forage without supplying fatty acid calcium (Diet C) and (iv) feeding high-quality forage with supplying 400 g fatty acid calcium. This experiment consisted 30 days. The milk and blood samples were collected in the last day of the trail. Intakes were recorded in the last 2 days of the trail. Supplementation of fatty acid calcium decreased significantly dry matter intake (DMI) (p < 0.01). Addition fatty acid calcium decreased milk protein percentage (p < 0.01) and milk SNF percentage (p < 0.01), but increased MUN (p < 0.05). Supplemented fatty acid decreased concentration of blood BHBA (p < 0.05), but increased TG, NEFA, glucagon, GLP-1, CCK, leptin, ApoA-IV, serotonin and MSH concentration in blood, the CCK concentration and feed intake showed a significant negative correlation (p < 0.05). PMID:25816839

  5. Blockage of mitochondrial calcium uniporter prevents iron accumulation in a model of experimental subarachnoid hemorrhage.

    PubMed

    Yan, Huiying; Hao, Shuangying; Sun, Xiaoyan; Zhang, Dingding; Gao, Xin; Yu, Zhuang; Li, Kuanyu; Hang, Chun-Hua

    2015-01-24

    Previous studies have shown that iron accumulation is involved in the pathogenesis of brain injury following subarachnoid hemorrhage (SAH) and chelation of iron reduced mortality and oxidative DNA damage. We previously reported that blockage of mitochondrial calcium uniporter (MCU) provided benefit in the early brain injury after experimental SAH. This study was undertaken to identify whether blockage of MCU could ameliorate iron accumulation-associated brain injury following SAH. Therefore, we used two reagents ruthenium red (RR) and spermine (Sper) to inhibit MCU. Sprague-Dawley (SD) rats were randomly divided into four groups including sham, SAH, SAH+RR, and SAH+Sper. Biochemical analysis and histological assays were performed. The results confirmed the iron accumulation in temporal lobe after SAH. Interestingly, blockage of MCU dramatically reduced the iron accumulation in this area. The mechanism was revealed that inhibition of MCU reversed the down-regulation of iron regulatory protein (IRP) 1/2 and increase of ferritin. Iron-sulfur cluster dependent-aconitase activity was partially conserved when MCU was blocked. In consistence with this and previous report, ROS levels were notably reduced and ATP supply was rescued; levels of cleaved caspase-3 dropped; and integrity of neurons in temporal lobe was protected. Taken together, our results indicated that blockage of MCU could alleviate iron accumulation and the associated injury following SAH. These findings suggest that the alteration of calcium and iron homeostasis be coupled and MCU be considered to be a therapeutic target for patients suffering from SAH. PMID:25529443

  6. Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization

    PubMed Central

    Bates, Ryan C.; Fees, Colby P.; Holland, William L.; Winger, Courtney C.; Batbayar, Khulan; Ancar, Rachel; Bergren, Todd; Petcoff, Douglas; Stith, Bradley J.

    2014-01-01

    We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC- γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca]i). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 minute after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca]i and other fertilization events. As compared to 14 other lipids, PA strongly bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca]i, PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca]i release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca]i release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization. PMID:24269904

  7. Modulation of the mitochondrial large-conductance calcium-regulated potassium channel by polyunsaturated fatty acids.

    PubMed

    Olszewska, Anna; Bednarczyk, Piotr; Siemen, Detlef; Szewczyk, Adam

    2014-10-01

    Polyunsaturated fatty acids (PUFAs) and their metabolites can modulate several biochemical processes in the cell and thus prevent various diseases. PUFAs have a number of cellular targets, including membrane proteins. They can interact with plasma membrane and intracellular potassium channels. The goal of this work was to verify the interaction between PUFAs and the most common and intensively studied mitochondrial large conductance Ca(2+)-regulated potassium channel (mitoBKCa). For this purpose human astrocytoma U87 MG cell lines were investigated using a patch-clamp technique. We analyzed the effects of arachidonic acid (AA); eicosatetraynoic acid (ETYA), which is a non-metabolizable analog of AA; docosahexaenoic acid (DHA); and eicosapentaenoic acid (EPA). The open probability (Po) of the channel did not change significantly after application of 10μM ETYA. Po increased, however, after adding 10μM AA. The application of 30μM DHA or 10μM EPA also increased the Po of the channel. Additionally, the number of open channels in the patch increased in the presence of 30μM EPA. Collectively, our results indicate that PUFAs regulate the BKCa channel from the inner mitochondrial membrane. PMID:25046142

  8. Prevention of Polyglycolic Acid-Induced Peritoneal Adhesions Using Alginate in a Rat Model

    PubMed Central

    Matoba, Mari; Hashimoto, Ayumi; Tanzawa, Ayumi; Orikasa, Taichi; Ikeda, Junki; Iwame, Yoshizumi; Ozamoto, Yuki; Miyamoto, Hiroe; Yoshida, Chiko; Hashimoto, Toru; Torii, Hiroko; Takamori, Hideki; Morita, Shinichiro; Tsujimoto, Hiroyuki; Hagiwara, Akeo

    2015-01-01

    Postoperative intra-abdominal or intrathoracic adhesions sometimes cause significant morbidity. We have designed three types of alginate-based treatments using strongly cross-linked (SL), weakly cross-linked (WL), and non-cross-linked (NL) alginate with calcium gluconate. In rat experiments, we compared the antiadhesive effects of the three types of alginate-based treatments, fibrin glue treatment (a standard treatment), and no treatment against adhesions caused by polyglycolic acid (PGA) mesh (PGA-induced adhesions). The antiadhesive materials were set on the PGA sheet fixed on the parietal peritoneum of the abdomen. Fifty-six days later, the adhesions were evaluated macroscopically by the adhesion scores and microscopically by hematoxylin-eosin staining and immunostaining. We also tested the fibroblast growth on the surface of the antiadhesive materials in vitro. The antiadhesive effects of WL and NL were superior to the no treatment and fibrin glue treatment. A microscopic evaluation confirmed that the PGA sheet was covered by a peritoneal layer constructed of well-differentiated mesothelial cells, and the inflammation was most improved in the NL and WL. The fibroblast growth was inhibited most on the surfaces of the NL and WL. These results suggest that either the WL or NL treatments are suitable for preventing PGA-induced adhesions compared to SL or the conventional treatment. PMID:26078949

  9. The actual role of hyaluronic acid-based and calcium hydroxylapatite soft tissue fillers: a guide for a practicing dermatologist.

    PubMed

    Pavlović, M; Adamič, M; Schuller Petrović, S

    2012-06-01

    Soft tissue fillers (STFs) together with botulinum toxin have profoundly improved our possibilities to rejuvenate the face and other parts of human body. Among many types of STFs currently used for esthetic and medical indications in routine clinical practice dominate hyaluronic acid-based STFs and calcium hydroxylapatite. Collagen fillers (bovine, porcine and human) are gradually leaving the market replaced mostly by hyaluronic acid-based STFs. This review presents an overview of the physicochemical properties, mechanisms of action and techniques used for the correct placement of hyaluronic acid-based STFs and calcium hydroxylapatite and the most common esthetic indications for these fillers. Finally, we present the recent data on their efficacy and most common complications encountered. PMID:22648331

  10. Acute oral calcium-sodium citrate load in healthy males. Effects on acid-base and mineral metabolism, oxalate and other risk factors of stone formation in urine.

    PubMed

    Schwille, P O; Schmiedl, A; Herrmann, U; Schwille, R; Fink, E; Manoharan, M

    1997-01-01

    The currently preferred calcium preparations for supplementation of food vary widely with respect to calcium availability, effects on systemic mineral metabolism, acid-base status, and the calciuria-induced risk of urinary tract stone formation. In eight healthy males we studied the response to an acute load with alkali(sodium)-containing soluble calcium citrate (CSC) (molar ratio calcium/sodium/citrate approx. = 1/1/1), when taken in three different doses (10, 20, 30 mmol calcium) together with a continental breakfast. Intestinal calcium absorption, serum calcium, calcitonin, parathyroid hormone (PTH) other markers of bone metabolism, net acid excretion and calcium oxalate crystallization in urine were evaluated. CSC evoked a dose-dependent increase in calcium absorption, calcium in serum and urine, but no overt hypercalcemia, and calciuria was low relative to the excess calcium ingested; PTH fell and calcitonin rose (p < 0.05 vs. breakfast alone), but the diet-independent markers of bone resorption declined only insignificantly, while the markers of bone formation and turnover remained unchanged. There was a significant "once-daily" effect (= cumulative 24 h postload response) of CSC: a decrease in urinary cyclic AMP, phosphorus, and ammonium, and an increase in urinary bicarbonate. Soon after CSC intake, urinary calcium oxalate and hydroxyapatite supersaturation increased dose-dependently, the calcium oxalate crystal diameter was increased, but crystal aggregation time, which is crucial for stone formation, remained statistically unchanged. Thus, CSC provides calcium in a bioavailable form, creates mild systemic alkalinisation and inhibition of bone resorption, but leaves the risk of developing urinary stones unchanged. Comparative long-term studies on bone growth and the maintenance of bone health, using alkali-containing versus alkali-free calcium citrate, appear worthwhile. PMID:9385591

  11. Hydrogen production from steam reforming of acetic acid over Cu-Zn supported calcium aluminate.

    PubMed

    Mohanty, Pravakar; Patel, Madhumita; Pant, Kamal K

    2012-11-01

    Hydrogen can be produced by catalytic steam reforming (CSR) of biomass-derived oil. Typically bio oil contains 12-14% acetic acid; therefore, this acid was chosen as model compound for reforming of biooil with the help of a Cu-Zn/Ca-Al catalyst for high yield of H(2) with low CH(4) and CO content. Calcium aluminate support was prepared by solid-solid reaction at 1350°C. X-ray diffraction indicates 12CaO·7Al(2)O(3) as major, CaA(l4)O(7) and Ca(5)A(l6)O(14) as minor phases. Cu and Zn were loaded onto the support by wet-impregnation at 10 and 1wt.%, respectively. The catalysts were characterized by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy TEM and the surface area for both support and Cu-Zn were 10.5 and 5.8m(2)/g, respectively. CSR was carried out in a tubular fixed bed reactor (I.D.=19mm) at temperatures between 600 and 800°C with 3-g loadings and (H(2)O/acetic acid) wt. ratio of 9:1. Significantly high (80%) yield of hydrogen was obtained over Cu-Zn/Ca-Al catalyst, as incorporation of Zn enhanced the H(2) yield by reducing deactivation of the catalyst. The coke formation on the support (Ca-12/Al-7) surface was negligible due to the presence of excess oxygen in the 12CaO·7Al(2)O(3) phase. PMID:22944490

  12. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite

    PubMed Central

    Moreau, Jennifer L.; Sun, Limin; Chow, Laurence C.; Xu, Hockin H. K.

    2012-01-01

    Dental composites do not hinder bacteria colonization and plaque formation. Caries at the restoration margins is a frequent reason for replacement of existing restorations, which accounts for 50 to 70% of all restorations. The objectives of this study were to examine the filler level effect on nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) and investigate the load-bearing and acid-neutralizing properties and bacteria inhibition. NACP with 116-nm particle size were synthesized via a spray-drying technique and incorporated into a resin. Flexural strength of nanocomposite with 10 to 30% NACP fillers matched the strength of a commercial hybrid composite (p > 0.1). Nanocomposite with 40% NACP matched the strength of a microfill composite, which was 2-fold that of a resin-modified glass ionomer. Nanocomposite with 40% NACP neutralized a lactic acid solution of pH 4 by rapidly increasing the pH to 5.69 in 10 min. In contrast, the commercial controls had pH staying at near 4. Using Streptoccocus mutans, an agar disk-diffusion test showed no inhibition zone for commercial controls. In contrast, the inhibition zone was (2.5 ± 0.7) mm for nanocomposite with 40% NACP. Crystal violet staining showed that S. mutans coverage on nanocomposite was 1/4 that on commercial composite. In conclusion, novel calcium–phosphate nanocomposite matched the mechanical properties of commercial composite and rapidly neutralized lactic acid of pH 4. The nanocomposite appeared to moderately reduce the S. mutans growth, and further study is needed to obtain strong antimicrobial properties. The new nanocomposite may have potential to reduce secondary caries and restoration fracture, two main challenges facing tooth cavity restorations. PMID:21504057

  13. Discordance between Risk Factors and Coronary Artery Calcium: Implications for Guiding Treatment Strategies in Primary Prevention Settings.

    PubMed

    Joshi, Parag H; Nasir, Khurram

    2015-01-01

    Preventive efforts including smoking cessation campaigns, increased awareness of healthy lifestyle habits, risk factor modification, and the appropriate use of statins have been successful in reducing cardiovascular mortality over the last decade. The coronary artery calcium (CAC) scan has reliably been an additive predictor to traditional risk estimation methods, partly because of the heterogeneity between risk factor burden and atherosclerotic burden. The focus of this review is to highlight this heterogeneity by focusing on groups in which risk factor burden and subclinical atherosclerosis burden, as measured by CAC, are discordant. In high-risk groups with 0 CAC, the event rates are consistently low; in low-risk groups with elevated CAC (CAC>100), the event rates are consistently high. We conclude with our clinical perspective of the considerable heterogeneity between risk factors and atherosclerotic burden in the context of the 2013 ACC/AHA cholesterol treatment and risk assessment guidelines. PMID:25982215

  14. Blockage of mitochondrial calcium uniporter prevents iron accumulation in a model of experimental subarachnoid hemorrhage

    SciTech Connect

    Yan, Huiying; Hao, Shuangying; Sun, Xiaoyan; Zhang, Dingding; Gao, Xin; Yu, Zhuang; Li, Kuanyu; Hang, Chun-Hua

    2015-01-24

    Highlights: • Iron accumulation was involved in the acute phase following SAH. • Blockage of MCU could attenuate cellular iron accumulation following SAH. • Blockage of MCU could decrease ROS generation and improve cell energy supply following SAH. • Blockage of MCU could alleviate apoptosis and brain injury following SAH. - Abstract: Previous studies have shown that iron accumulation is involved in the pathogenesis of brain injury following subarachnoid hemorrhage (SAH) and chelation of iron reduced mortality and oxidative DNA damage. We previously reported that blockage of mitochondrial calcium uniporter (MCU) provided benefit in the early brain injury after experimental SAH. This study was undertaken to identify whether blockage of MCU could ameliorate iron accumulation-associated brain injury following SAH. Therefore, we used two reagents ruthenium red (RR) and spermine (Sper) to inhibit MCU. Sprague–Dawley (SD) rats were randomly divided into four groups including sham, SAH, SAH + RR, and SAH + Sper. Biochemical analysis and histological assays were performed. The results confirmed the iron accumulation in temporal lobe after SAH. Interestingly, blockage of MCU dramatically reduced the iron accumulation in this area. The mechanism was revealed that inhibition of MCU reversed the down-regulation of iron regulatory protein (IRP) 1/2 and increase of ferritin. Iron–sulfur cluster dependent-aconitase activity was partially conserved when MCU was blocked. In consistence with this and previous report, ROS levels were notably reduced and ATP supply was rescued; levels of cleaved caspase-3 dropped; and integrity of neurons in temporal lobe was protected. Taken together, our results indicated that blockage of MCU could alleviate iron accumulation and the associated injury following SAH. These findings suggest that the alteration of calcium and iron homeostasis be coupled and MCU be considered to be a therapeutic target for patients suffering from SAH.

  15. Preventive effect of a high fluoride toothpaste and arginine-carbonate toothpaste on dentinal tubules exposure followed by acid challenge: a dentine permeability evaluation

    PubMed Central

    2014-01-01

    Background Considering the current high use of high fluoride toothpastes, the aim of the study was to quantify alterations in the root dentine permeability submitted to treatment with a high fluoride toothpaste and 8% arginine, calcium carbonate, sodium monofluorophosphate toothpaste as a preventive treatment for dentinal tubules exposure followed by acid challenge. Methods Thirty-third molars were sectioned below the cementoenamel. The root segments were connected to a hydraulic pressure apparatus to measure dentine permeability after the following sequential steps (n = 10 per group): I) Baseline; II) treatment with phosphoric acid for 30 s (maximum permeability); III) Toothbrushing (1 min) according to the experimental groups (G1- control; G2- 5000 ppm fluoride toothpaste; G3- 8% arginine-calcium carbonate toothpaste); IV) acid challenge for 5 min (orange juice). The data were converted into percentage, considering stage II as 100%. Results The results have shown a statistically significant decreasing on dentine permeability after treatment with toothpaste (Friedman test and Dunn’s post hoc test). Comparison among groups demonstrated a high increasing on dentine permeability when acid challenge was performed after toothbrushing with distilled water (control group) (Kruskal-Wallis and Dunn’s post hoc test). Conclusion The toothpaste treatment may provide sufficient resistance on dentine surface, preventing dentinal tubules exposure after acid challenge. PMID:24958423

  16. Folic acid for the prevention of neural tube defects. American Academy of Pediatrics. Committee on Genetics.

    PubMed

    1999-08-01

    The American Academy of Pediatrics endorses the US Public Health Service (USPHS) recommendation that all women capable of becoming pregnant consume 400 microgram of folic acid daily to prevent neural tube defects (NTDs). Studies have demonstrated that periconceptional folic acid supplementation can prevent 50% or more of NTDs such as spina bifida and anencephaly. For women who have previously had an NTD-affected pregnancy, the Centers for Disease Control and Prevention (CDC) recommends increasing the intake of folic acid to 4000 microgram per day beginning at least 1 month before conception and continuing through the first trimester. Implementation of these recommendations is essential for the primary prevention of these serious and disabling birth defects. Because fewer than 1 in 3 women consume the amount of folic acid recommended by the USPHS, the Academy notes that the prevention of NTDs depends on an urgent and effective campaign to close this prevention gap. PMID:10429019

  17. Resveratrol inhibits the intracellular calcium increase and angiotensin/endothelin system activation induced by soluble uric acid in mesangial cells

    PubMed Central

    Albertoni, G.; Schor, N.

    2014-01-01

    Resveratrol (Resv) is natural polyphenol found in grapes. This study evaluated the protective effect of Resv against the effects of uric acid (UA) in immortalized human mesangial cells (ihMCs). ihMCs were preincubated with Resv (12.5 µM) for 1 h and treated with UA (10 mg/dL) for 6 or 12 h. The intracellular calcium concentration [Ca2+]i was quantified by fluorescence using flow cytometry. Angiotensinogen (AGT) and pre-pro endothelin-1 (ppET-1) mRNA were assayed by quantitative real-time RT-PCR. Angiotensin II (AII) and endothelin-1 (ET-1) were assayed by ELISA. UA significantly increased [Ca2+]i. Pre-incubation with Resv significantly reduced the change in [Ca2+]i induced by UA. Incubation with UA for 6 or 12 h also increased AGT mRNA expression and AII protein synthesis. Resv blunted these increases in AGT mRNA expression and AII protein. Incubation with UA in the ihMCs increased ppET-1 expression and ET-1 protein synthesis at 6 and 12 h. When ihMCs were pre-incubated with Resv, UA had a significantly diminished effect on ppET-1 mRNA expression and ET-1 protein synthesis at 6 and 12 h, respectively. Our results suggested that UA triggers reactions including AII and ET-1 production in mesangial cells. The renin-angiotensin system may contribute to the pathogenesis of renal function and chronic kidney disease. Resv can minimize the impact of UA on AII, ET-1 and the increase of [Ca2+]i in mesangial cells, suggesting that, at least in part, Resv can prevent the effects of soluble UA in mesangial cells. PMID:25493383

  18. Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process.

    PubMed

    Sánchez-Romera, Beatriz; Ruiz-Lozano, Juan Manuel; Li, Guowei; Luu, Doan-Trung; Martínez-Ballesta, Maria del Carmen; Carvajal, Micaela; Zamarreño, Angel María; García-Mina, Jose María; Maurel, Christophe; Aroca, Ricardo

    2014-04-01

    The role of jasmonic acid in the induction of stomatal closure is well known. However, its role in regulating root hydraulic conductivity (L) has not yet been explored. The objectives of the present research were to evaluate how JA regulates L and how calcium and abscisic acid (ABA) could be involved in such regulation. We found that exogenous methyl jasmonate (MeJA) increased L of Phaseolus vulgaris, Solanum lycopersicum and Arabidopsis thaliana roots. Tomato plants defective in JA biosynthesis had lower values of L than wild-type plants, and that L was restored by addition of MeJA. The increase of L by MeJA was accompanied by an increase of the phosphorylation state of the aquaporin PIP2. We observed that MeJA addition increased the concentration of cytosolic calcium and that calcium channel blockers inhibited the rise of L caused by MeJA. Treatment with fluoridone, an inhibitor of ABA biosynthesis, partially inhibited the increase of L caused by MeJA, and tomato plants defective in ABA biosynthesis increased their L after application of MeJA. It is concluded that JA enhances L and that this enhancement is linked to calcium and ABA dependent and independent signalling pathways. PMID:24131347

  19. Dual nutraceutical nanohybrids of folic acid and calcium containing layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hyun; Oh, Jae-Min

    2016-01-01

    Dual nutraceutical nanohybrids consisting of organic nutrient, folic acid (FA), and mineral nutrient, calcium, were prepared based on layered double hydroxide (LDH) structure. Among various hybridization methods such as coprecipitation, ion exchange, solid phase reaction and exfoliation-reassembly, it was found that exfoliation-reassembly was the most effective in terms of intercalation of FA moiety between Ca-containing LDH layers. X-ray diffraction patterns and infrared spectra indicated that FA molecules were well stabilized in the interlayer space of LDHs through electrostatic interaction. From the atomic force and scanning electron microscopic studies, particle thickness of LDH was determined to be varied with tens, a few and again tens of nanometers in pristine, exfoliated and reassembled state, respectively, while preserving particle diameter. The result confirmed layer-by-layer hybrid structure of FA and LDHs was obtained by exfoliation-reassembly. Solid UV-vis spectra showed 2-dimensional molecular arrangement of FA moiety in hybrid, exhibiting slight red shift in n→π* and π→π* transition. The chemical formulae of FA intercalated Ca-containing LDH were determined to Ca1.30Al(OH)4.6FA0.74·3.33H2O and Ca1.53Fe(OH)5.06FA2.24·9.94H2O by inductively coupled plasma-atomic emission spectroscopy, high performance liquid chromatography and thermogravimetry, showing high nutraceutical content of FA and Ca.

  20. Salicylic acid and calcium-induced protection of wheat against salinity.

    PubMed

    Al-Whaibi, Mohamed H; Siddiqui, Manzer H; Basalah, Mohammed O

    2012-07-01

    Soil salinity is one of the important environmental factors that produce serious agricultural problems. The objective of the present study was to determine the interactive effect of salicylic acid (SA) and calcium (Ca) on plant growth, photosynthetic pigments, proline (Pro) concentration, carbonic anhydrase (CA) activity and activities of antioxidant enzymes of Triticum aestivum L. (cv. Samma) under salt stress. Application of 90 mM of NaCl reduced plant growth (plant height, fresh weight (FW) and dry weight (DW), chlorophyll (Chl) a, Chl b, CA activity) and enhanced malondialdehyde (MDA) and Pro concentration. However, the application of SA or Ca alone as well as in combination markedly improved plant growth, photosynthetic pigments, Pro concentration, CA activity and activities of antioxidant enzymes peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) under salt stress. It was, therefore, concluded that application of SA and Ca alone as well as in combination ameliorated the adverse effect of salinity, while combined application proved more effective to reduce the oxidative stress generated by NaCl through reduced MDA accumulation, Chl a/b ratio and Chls degradation and enhanced activities of antioxidant enzymes. PMID:21979309

  1. Leaching of lead from zinc leach residue in acidic calcium chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Le; Mu, Wen-ning; Shen, Hong-tao; Liu, Shao-ming; Zhai, Yu-chun

    2015-05-01

    A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaCl2 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were investigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaCl2 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching temperature of 80°C, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.

  2. Molecular Modeling of Ammonium, Calcium, Sulfur, and Sodium Lignosulphonates in Acid and Basic Aqueous Environments

    NASA Astrophysics Data System (ADS)

    Salazar Valencia, P. J.; Bolívar Marinez, L. E.; Pérez Merchancano, S. T.

    2015-12-01

    Lignosulphonates (LS), also known as lignin sulfonates or sulfite lignin, are lignins in sulfonated forms, obtained from the "sulfite liquors," a residue of the wood pulp extraction process. Their main utility lies in its wide range of properties, they can be used as additives, dispersants, binders, fluxing, binder agents, etc. in fields ranging from food to fertilizer manufacture and even as agents in the preparation of ion exchange membranes. Since they can be manufactured relatively easy and quickly, and that its molecular size can be manipulated to obtain fragments of very low molecular weight, they are used as transport agents in the food industry, cosmetics, pharmaceutical and drug development, and as molecular elements for the treatment of health problems. In this paper, we study the electronic structural and optical characteristics of LS incorporating ammonium, sulfur, calcium, and sodium ions in acidic and basic aqueous media in order to gain a better understanding of their behavior and the very interesting properties exhibit. The studies were performed using the molecular modeling program HyperChem 5 using the semiempirical method PM3 of the NDO Family (neglect of differential overlap), to calculate the structural properties. We calculated the electronic and optical properties using the semiempirical method ZINDO / CI.

  3. Novel 5-substituted benzyloxy-2-arylbenzofuran-3-carboxylic acids as calcium activated chloride channel inhibitors

    PubMed Central

    Kumar, Satish; Namkung, Wan; Verkman, A. S.; Sharma, Pawan K.

    2013-01-01

    Transmembrane protein 16A (TMEM16A) channels are recently discovered membrane proteins that functions as a calcium activated chloride channel (CaCC). CaCCs are major regulators of various physiological processes, such as sensory transduction, epithelial secretion, smooth muscle contraction and oocyte fertilization. Thirty novel 5-substituted benzyloxy-2-arylbenzofuran-3-carboxylic acids (B01–B30) were synthesized and evaluated for their TMEM16A inhibitory activity by using short circuit current measurements in Fischer rat thyroid (FRT) cells expressing human TMEM16A. IC50 values were calculated using YFP fluorescence plate reader assay. Final compounds, having free carboxylic group displayed significant inhibition. Eight of the novel compounds B02, B13, B21, B23, B25, B27, B28, B29 exhibit excellent CaCCs inhibition with IC50 value <6 μM, with compound B25 exhibiting the lowest IC50 value of 2.8 ± 1.3 μM. None of the tested ester analogs of final benzofuran derivatives displayed TMEM16A/CaCCs inhibition. PMID:22739085

  4. Phorbol ester plus calcium ionophore induces release of arachidonic acid from membrane phospholipids of a human B cell line.

    PubMed

    Gilliam, E B; Schulam, P G; Whelan, J P; Rosenblatt, H M; Shearer, W T

    1991-08-01

    Binding of LA350, a lymphoblastoid human B cell line, by phorbol myristate acetate (PMA) plus a calcium ionophore, either ionomycin or A23187, produced unique alterations in the release of arachidonic acid (AA) from cellular phospholipids. After equilibrium labeling of cells with radioactive fatty acids, [14C]AA demonstrated a selective enhanced release from the cells in response to the binding of PMA plus calcium ionophore as compared to the release of [14C]stearic acid (STE), [3H]oleic acid (OLE) and [3H]palmitic acid (PAL). The major phospholipid sources of the released [14C]AA were shown to be phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. The participation of protein kinase C (PKC) in the enhanced synergistic release of [14C]AA was demonstrated by the inhibition of the release by the PKC inhibitor, staurosporine. Approximately 2-6% of the labeled AA liberated was converted to 5-hydroxyeicosatetraenoic acid by an endogenous 5-lipoxygenase. Therefore during cell activation the B cell is capable of liberating AA via a PKC-dependent mechanism, implicating AA and/or its metabolites in signal transduction. PMID:1905589

  5. Effects of calcium salts of fatty acids and calcium salt of methionine hydroxy analogue on plasma prostaglandin F2alpha metabolite and milk fatty acid profiles in late lactation Holstein-Friesian cows.

    PubMed

    Fahey, J; Mee, J F; Murphy, J J; O'Callaghan, D

    2002-11-01

    Effects of a dietary lipid supplement containing calcium salts of fatty acids and methionine hydroxy analogue on plasma prostaglandin F2alpha (PGF2alpha) metabolite (PGFM) and milk fatty acid profiles were examined in 40 late lactation, nonpregnant, Holstein-Friesian cows for a period of 70 days. Effects on milk production, milk composition, and blood metabolites were also examined. Cows were paired on the basis of lactation number (first lactation, n = 8; second lactation, n = 32) and randomly assigned from within pairs to one of two dietary treatments: unsupplemented control (C) or 400 g per cow per day of the lipid supplement (S). Cows receiving the supplement had higher (P < 0.05) total milk production, total fat production (kg), and total lactose production (kg). Plasma cholesterol was significantly higher (P < 0.01) after 30 days of treatment in cows receiving the supplement. Cows receiving the supplement had lower (P < 0.01) concentrations of short chain milk fatty acids (C4:0 to C14:1) and higher concentrations of long chain fatty acids (C18:1 and C18:2; P < 0.01) than control animals. Oxytocin-induced prostaglandin release on Day 16 postovulation was increased (P < 0.01) in cows receiving the supplement. In conclusion, supplementation with calcium salts of fatty acids and methionine hydroxy analogue significantly increased milk yield and plasma PGFM. PMID:12374118

  6. ISOLATED MEDICAGO TRUNCATULA MUTANTS WITH INCREASED CALCIUM OXALATE CRYSTAL ACCUMULATION HAVE DECREASED ASCORBIC ACID LEVELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms controlling oxalate biosynthesis and calcium oxalate formation in plants remains largely unknown. As an initial step toward gaining insight into these regulatory mechanisms we initiated a mutant screen to identify plants that over-accumulate crystals of calcium oxalate. Four new mut...

  7. Carotid artery evaluation and coronary calcium score: which is better for the diagnosis and prevention of atherosclerotic cardiovascular disease?

    PubMed Central

    Kim, Gee-Hee; Youn, Ho-Joong; Choi, Yun-Seok; Jung, Hae-Ok; Chung, Wook-Sung; Kim, Chul-Min

    2015-01-01

    In recent clinical practice guidelines for risk assessment for a first atherosclerotic cardiovascular disease (ASCVD) event, it is not routinely recommended to measure carotid intima-media thickness (CIMT) or the coronary calcium score (CACS). The aim of this study was to elucidate the effect of combining carotid artery evaluation and CACS as surrogate markers or predictive values. A total of 938 patients (562 male (59.9%), mean age 61.5±11.6 years) with ASCVD (n=690) or without (n=248) were enrolled in this study. The diagnosis of ASCVD was established with CT angiography. These patients had undergone carotid scanning (HP Sonos-5500; Philips, Bothell, WA, USA) at St. Mary’s Hospital between September 2003 and March 2009. ASCVD outcomes were evaluated with a median follow-up of 1451 days. Thirty participants experienced initial ASCVD events during this study. Another 118 patients suffered secondary ASCVD events. After propensity score matching, multivariate analysis revealed that CACS was associated with ASCVD [Odds ratio 1.002, 95% confidence interval (CI) 1.002-1.003, P<0.001]. For primary prevention in patients without ASCVD, we found that carotid plaques [Hazard ratio (HR) 2.409, 95% CI 1.093-5.309, P=0.029] are also associated with ASCVD events. Carotid plaques are also associated with ASCVD events with regard to secondary prevention [HR 1.723, 95% CI 1.188-2.499, P=0.004] in patients with ASCVD. We propose that CACS assessment is useful in the diagnosis of, and as a surrogate marker of ASCVD in patients with risk factors. Our results also suggest that carotid artery evaluation may have a valuable predictive method in primary and secondary ASCVD prevention and risk assessment. Therefore, although there are no synergic effects of combining carotid artery evaluation and CACS, carotid ultrasound seems to be a better predictive method for assessing ASCVD events than CACS. PMID:26770472

  8. Regulation of the synthesis of barley aleurone. cap alpha. -amylase by gibberellic acid and calcium ions

    SciTech Connect

    Jones, R.L.; Carbonell, J.

    1984-09-01

    The effects of gibberellic acid (GA/sub 3/) and calcium ions on the production of ..cap alpha..-amylase and acid phosphatase by isolated aleurone layers of barley (Hordeum vulgare L. cv Himalaya) were studied. Aleurone layers not previously exposed to GA/sub 3/ or CA/sup 2 +/ show qualitative and quantitative changes in hydrolase production following incubation in either GA/sub 3/ or CA/sup 2 +/ or both. In cubation in H/sub 2/O or CA/sup 2 +/ results in the production of low levels of ..cap alpha..-amylase or acid phosphatase. The addition of GA/sub 3/ to the incubation medium causes 10- to 20-fold increase in the amounts of these enzymes released from the tissue, and addition of CA/sup 2 +/ at 10 millimolar causes a further 8- to 9-fold increase in ..cap alpha..-amylase release and a 75% increase in phosphatase release. Production of ..cap alpha..-amylase isoenzymes is also modified by the levels of GA/sub 3/ and CA/sup 2 +/ in the incubation medium. ..cap alpha..-amylase 2 is produced under all conditions of incubation, while ..cap alpha..-amylase 1 appears only when layers are incubated in GA/sub 3/ or GA/sub 3/ plus CA/sup 2 +/. The synthesis of ..cap alpha..-amylases 3 and 4 requires the presence of both GA/sub 3/ and CA/sup 2 +/ in the incubation medium. Laurell rocket immunoelectrophoresis shows that two distinct groups of ..cap alpha..-amylase antigens are present in incubation media of aleurone layers incubated with both GA/sub 3/ and CA/sup 2 +/, while only one group of antigens is found in media of layers incubated in GA/sub 3/ alone. Strontium ions can be substituted for CA/sup 2 +/ in increasing hydrolase production, although higher concentrations of Sr/sup 2 +/ are requried for maximal response. We conclude that GA/sub 3/ is required for the production of ..cap alpha..-amylase 1 and that both GA/sub 3/ and either CA/sup 2 +/ or Sr/sup 2 +/ are required for the production of isoenzymes 3 and 4 of barley aleurone ..cap alpha..-amylase. 22 references, 8 figures, 1 tables.

  9. Detection and detoxification of aflatoxins: prevention of aflatoxicosis and aflatoxin residues with hydrated sodium calcium aluminosilicate.

    PubMed

    Phillips, T D; Clement, B A; Kubena, L F; Harvey, R B

    1990-01-01

    Our recent findings demonstrate that HSCAS can prevent aflatoxicosis in chickens and swine and significantly decreases the level of aflatoxin M1 residues in the milk of lactating dairy cattle. The basic mechanism for this action appears to involve sequestration of aflatoxin in the gastrointestinal tract and chemisorption (i.e., tight binding) to HSCAS which results in a reduction in aflatoxin bioavailability. Research is in progress to elucidate the specificity of HSCAS action and to construct a series of selective chemisorbents for mycotoxin control in livestock and poultry. PMID:1965459

  10. Development and characterization of an injectable cement of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer/calcium sulfate hemihydrate for bone repair

    PubMed Central

    Qi, Xiaotong; Li, Hong; Qiao, Bo; Li, Weichao; Hao, Xinyan; Wu, Jun; Su, Bao; Jiang, Dianming

    2013-01-01

    A novel injectable bone cement was developed by integration of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer (n-CDHA/MAC) and calcium sulfate hemihydrate (CSH; CaSO4 · 1/2H2O). The structure, setting time, and compressive strength of the cement were investigated. The results showed that the cement with a liquid to powder ratio of 0.8 mL/g exhibited good injectability and appropriate setting time and mechanical properties. In vitro cell studies indicated that MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite spread well and showed a good proliferation state. The alkaline phosphatase activity of the MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite was significantly higher than that of the cells on pure CSH at 4 and 7 days of culture. The n-CDHA/MAC/CSH cement was implanted into critical size defects of the femoral condyle in rabbits to evaluate its biocompatibility and osteogenesis in vivo. Radiological and histological results indicated that introduction of the n-CDHA/MAC into CSH enhanced new bone formation, and the n-CDHA/MAC/CSH cement exhibited good biocompatibility and degradability. In conclusion, the injectable n-CDHA/MAC/CSH composite cement has a significant clinical advantage over pure CSH cement, and may be a promising bone graft substitute for the treatment of bone defects. PMID:24293996

  11. Development and characterization of an injectable cement of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer/calcium sulfate hemihydrate for bone repair.

    PubMed

    Qi, Xiaotong; Li, Hong; Qiao, Bo; Li, Weichao; Hao, Xinyan; Wu, Jun; Su, Bao; Jiang, Dianming

    2013-01-01

    A novel injectable bone cement was developed by integration of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer (n-CDHA/MAC) and calcium sulfate hemihydrate (CSH; CaSO4 · 1/2H2O). The structure, setting time, and compressive strength of the cement were investigated. The results showed that the cement with a liquid to powder ratio of 0.8 mL/g exhibited good injectability and appropriate setting time and mechanical properties. In vitro cell studies indicated that MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite spread well and showed a good proliferation state. The alkaline phosphatase activity of the MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite was significantly higher than that of the cells on pure CSH at 4 and 7 days of culture. The n-CDHA/MAC/CSH cement was implanted into critical size defects of the femoral condyle in rabbits to evaluate its biocompatibility and osteogenesis in vivo. Radiological and histological results indicated that introduction of the n-CDHA/MAC into CSH enhanced new bone formation, and the n-CDHA/MAC/CSH cement exhibited good biocompatibility and degradability. In conclusion, the injectable n-CDHA/MAC/CSH composite cement has a significant clinical advantage over pure CSH cement, and may be a promising bone graft substitute for the treatment of bone defects. PMID:24293996

  12. [Treatment of hydrofluoric acid burns].

    PubMed

    Thiele, B; Winter, U J; Mahrle, G; Steigleder, G K

    1986-01-31

    A chemical-plant worker sustained hydrofluoric acid burns during cleaning procedures. Intra-arterial perfusion and intralesional injections of calcium gluconate solution prevented progression of the burns into deeper tissue layers. PMID:3943470

  13. Coordination of biologically important alpha-amino acids to calcium(II) at high pH: insights from crystal structures of calcium alpha-aminocarboxylates.

    PubMed

    Fox, Stefan; Büsching, Insa; Barklage, Walter; Strasdeit, Henry

    2007-02-01

    A series of calcium alpha-aminocarboxylates was prepared by refluxing aqueous solutions/suspensions of calcium hydroxide and the respective alpha-amino acid. The colorless, crystalline hydrates Ca(gly)2.H2O (1), Ca(ala)2.3H2O (2), Ca(val)2.H2O (3), Ca(leu)2.3H2O (4), Ca(met)2.nH2O (5, n approximately 2), and Ca(pro)2.H2O (6) have been isolated in yields between 29 and 67% (gly- = glycinate, ala- = rac-alaninate, val- = rac-valinate, leu- = rac-leucinate, met- = rac-methioninate, pro- = rac-prolinate). The compounds 1-6 are readily soluble in water. The 0.10 M solutions have ca. pH 10-11 which is consistent with a noticeable degree of dissociation. The 13C NMR spectra of 1-6 in D2O were measured, and their comparison with those of the corresponding tetramethylammonium alpha-aminocarboxylates point to carboxylate coordination in solution, but no indication of nitrogen coordination was found. Infrared spectra of 1-6 gave similar results for the solid state. Complete single-crystal X-ray structure analyses of 1-4 and preliminary ones of 5 and 6, however, revealed that all aminocarboxylate ligands are N,O-chelating. Crystals of 2 consist of mononuclear complexes, while the other five compounds form three different types of one-dimensional coordination polymers. Structural diversity is also observed with the binding modes of the aminocarboxylate ligands and the calcium environment. Besides terminal aminocarboxylate coordination, there are three different types of aminocarboxylate bridges. The calcium ions are seven- or eight-coordinate in N2O5 and N2O6 coordination environments, respectively; one or three water molecules are part of the first ligand sphere of each metal ion. The crystal structures support conjectures about the existence of the yet undetected solution species [Cax(aa)2x(H2O)n] (aa- = alpha-aminocarboxylate). For example, x = 1 is realized in crystalline [Ca(ala)2(H2O)3] (2), and in 4 [Ca2(leu)4(H2O)4] complexes (x = 2) are linked to infinite chains by bridging aqua ligands. PMID:17257025

  14. Impact of citric acid and calcium ions on acid solubilization of mechanically separated turkey meat: effect on lipid and pigment content.

    PubMed

    Hrynets, Y; Omana, D A; Xu, Y; Betti, M

    2011-02-01

    Increased demand for poultry products has resulted in an increased availability of by-products, such as the neck, back, and frame, that can be processed into mechanically separated poultry meat. The major problems with mechanically separated poultry meat are its high lipid content, color instability, and high susceptibility to lipid oxidation. The present work was undertaken to determine the effect of different concentrations of citric acid and calcium ions on protein yield, color characteristics, and lipid removal from protein isolates prepared using an acid-aided extraction process. Six levels of citric acid (0, 2, 4, 6, 8, and 10 mmol/L) and 2 levels of calcium chloride (0 and 8 mmol/L) were examined. The entire experiment was replicated 3 times, resulting in 36 extractions (3 × 6 × 2). The highest (P < 0.05) protein yield was found for the treatment with 6 mmol/L of citric acid. In general, all the combinations removed an average of 90.8% of the total lipids from mechanically separated turkey meat, ranging from 86.2 to 94.7%. The lowest amount (1.14%) of total lipids obtained was for samples treated with 4 mmol/L of citric acid. Maximum removal of neutral lipids (96.5%) and polar lipids (96.4%) was attained with the addition of 6 and 2 mmol/L of citric acid, respectively. Polar lipid content was found to be significantly (P = 0.0045) affected by the presence of calcium chloride. The isolated proteins were less (P < 0.05) susceptible to lipid oxidation compared with raw mechanically separated turkey meat. The most efficient removal of total heme pigment was obtained with the addition of 6 or 8 mmol/L of citric acid. Addition of calcium chloride had a negative effect on total pigment content. The study revealed that acid extractions with the addition of citric acid resulted in substantial removal of lipids and pigments from mechanically separated turkey meat, improved stability of the recovered proteins against lipid oxidation, and appreciable protein recovery yields. PMID:21248344

  15. Inhibition of Aldose Reductase Prevents Endotoxin-Induced Inflammation by Regulating Arachidonic Acid Pathway in Murine Macrophages

    PubMed Central

    Shoeb, Mohammad; Yadav, Umesh CS; Srivastava, Satish K; Ramana, Kota V

    2011-01-01

    Bacterial endotoxin, lipopolysaccharide (LPS) is known to induce release of arachidonic acid (AA) and its metabolic products which play important role in inflammatory process. We have shown earlier that LPS-induced signals in macrophages are mediated by aldose reductase (AR). Here we have investigated the role of AR in LPS-induced release of AA metabolites and their modulation using a potent pharmacological inhibitor fidarestat and AR-siRNA ablation in RAW 264.7 macrophages, and AR-knockout mice peritoneal macrophages and heart tissue. Inhibition or genetic ablation of AR prevented the LPS-induced synthesis and release of AA metabolites such as PGE2, TXB, PGI2 and LTBs in macrophages. LPS-induced activation of cPLA2 was also prevented by AR inhibition. Similarly, AR inhibition also prevented the calcium ionophore A23187 –induced cPLA2 and LTB4 in macrophages. Further, AR inhibition with fidarestat prevented the expression of AA metabolizing enzymes such as COX-2 and LOX-5 in RAW 264.7 cells and AR-knockout mice derived peritoneal macrophages. LPS-induced expression of AA metabolizing enzymes and their catalyzed metabolic products were significantly lower in peritoneal macrophages and heart tissue from AR-knockout mice. LPS-induced activation of redox-sensitive signaling intermediates such as MAPKs, transcription factor NF-kB as well as Egr-1, a transcription regulator of mPGES-1, which in collaboration with COX-2 leads to the production of PGE2, were also significantly prevented by AR inhibition. Taken together, our results indicate that AR mediates LPS-induced inflammation by regulating AA metabolic pathway and thus provide novel role of AR inhibition in preventing inflammatory complications such as sepsis. PMID:21856412

  16. Calcitriol prevents in vitro vascular smooth muscle cell mineralization by regulating calcium-sensing receptor expression.

    PubMed

    Mary, Aurélien; Hénaut, Lucie; Boudot, Cédric; Six, Isabelle; Brazier, Michel; Massy, Ziad A; Drüeke, Tilman B; Kamel, Saïd; Mentaverri, Romuald

    2015-06-01

    Vascular calcification (VC) is a degenerative disease that contributes to cardiovascular morbidity and mortality. A negative relationship has been demonstrated between VC and calcium sensing receptor (CaSR) expression in the vasculature. Of interest, vitamin D response elements, which allow responsiveness to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], are present in the promoters of the CaSR gene. We hypothesized that 1,25(OH)2D3, by modulating CaSR expression in vascular smooth muscle cells (VSMCs), might protect against VC. Human VSMCs were exposed to increasing concentrations of 1,25(OH)2D3 (0.01-10 nmol/L) in noncalcifying (1.8 mmol/L) or procalcifying Ca(2+)0 condition (5.0 mmol/L). Using quantitative RT-PCR and Western blotting we observed a significant increase in both CaSR mRNA and protein levels after exposure to 1.0 nmol/L 1,25(OH)2D3. This effect was associated with a maximal increase in CaSR expression at the cell surface after 48 hours of 1,25(OH)2D3 treatment, as assessed by flow cytometry. Down-regulation of the vitamin D receptor by small interfering RNA abolished these effects. In the procalcifying condition, 1.0 nmol/L 1,25(OH)2D3 blocked the Ca(2+)0-induced decrease in total and surface CaSR expression and protected against mineralization. Down-regulation of CaSR expression by CaSR small interfering RNA abolished this protective effect. 1,25(OH)2D3 concentrations of 0.5 and 5.0 nmol/L were also effective, but other (0.01, 0.1, and 10 nmol/L) concentrations did not modify CaSR expression and human VSMC mineralization. In conclusion, these findings suggest that nanomolar concentrations of 1,25(OH)2D3 induce a CaSR-dependent protection against VC. Both lower and higher concentrations are either ineffective or may even promote VC. Whether this also holds true in the clinical setting requires further study. PMID:25763635

  17. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process.

    PubMed

    Tong, Hua; Ma, Wentao; Wang, Leilei; Wan, Peng; Hu, Jiming; Cao, Lianxin

    2004-08-01

    The acidic amino acid, such as aspartic acid (l-Asp), and glutamic acid are the primary active molecules of the glycoprotein on the organic/inorganic interface of biomineralized tissue. In this study, aspartic acid was used as the organic template in inducing the nucleation and growth of calcium carbonate. With the analysis of X-ray diffraction we investigated the relationship between the l-Asp concentration and the precipitation phase crystal structure of calcium carbonate. SEM and TEM were employed in the analysis of the morphological characteristic of the precipitation and the aggregation of the nanoscale porous phase. In order to get the direct evidence of the interaction between Ca2+ and l-Asp, the technique of QCM was used in the investigation of the coordinate interaction of Ca2+/l-Asp. As the results have shown, l-Asp alone is adequate to switch the transformation between calcite and vaterite, and neither soluble organic additions nor metal ions are needed. Meanwhile, the morphology, size and aggregative way of the deposition are also mediated with change of l-Asp concentration. To interpret the cause of the hierarchic structure range from nanoscale to micron-scale and the formation of the porous spheres of vaterite, an assumption of limited-fusion was proposed from the view of the small biomolecules polarity that can control over the growth of the crystals and the aggregation of the micro crystals. The conclusion also provide a new material synthesize strategy. PMID:15020169

  18. Net calcium and acid release at fertilization in eggs of sea urchins and ascidians.

    PubMed

    Kühtreiber, W M; Gillot, I; Sardet, C; Jaffe, L F

    1993-01-01

    Sea urchin eggs lose about 10-30% of their total calcium content upon fertilization. We have investigated the mechanism of this calcium-loss with an ion-selective vibrating probe system. Upon fertilization of Arbacia punctulata and Lytechinus pictus eggs we could measure a calcium efflux signal with an average duration of 204 +/- 26 s and 146 +/- 46 s, respectively. Measurements of hydrogen ion signals in normal and in low sodium media showed that the release of cortical vesicle material from these eggs lasts for about 30 and 50 s, respectively. The data indicate that most of the calcium that is lost from sea urchin eggs originates from the cytosol in which it is released during fertilization and then pumped out through the plasma membrane. Calcium loss due to cortical granule release accounts for less than 14% of the total loss measured. We also measured a substantial post-fertilization calcium efflux in eggs of Phallusia mammilata, with an average duration of 265 +/- 18 s followed by smaller periodic effluxes that corresponded to oscillations in the [Ca2+]i during contractile waves in these eggs. These data, together with the lack of cortical granules in ascidian eggs, indicate that Phallusia eggs also pump out a substantial amount of calcium through the plasma membrane after fertilization. PMID:8382565

  19. Will mandatory folic acid fortification prevent or promote cancer?

    PubMed

    Kim, Young-In

    2004-11-01

    An overwhelming body of evidence for a protective effect of periconceptional folic acid supplementation against neural tube defects (NTDs) led to mandatory folic acid fortification in the United States. The effectiveness of folic acid fortification in improving folate status has already been shown to be quite striking, with a dramatic increase in blood measurements of folate in the United States. Preliminary reports also suggest a significant reduction ( approximately 15-50%) in NTDs in the United States. The success of folic acid fortification in improving folate status and in reducing NTD rates is truly a public health triumph and provides a paradigm of collaboration between science and public health policy. Although folic acid is generally regarded as safe, there continues to be concern that folic acid fortification may have adverse effects in subpopulation groups not originally targeted for fortification. In this regard, an emerging body of evidence suggests that folic acid supplementation may enhance the development and progression of already existing, undiagnosed premalignant and malignant lesions. Over the past few years, the US population has been exposed to a significant increase in folate intake, for which essentially no data on safety exist. The potential cancer-promoting effect of folic acid supplementation needs to be considered in carefully monitoring the long-term effect of folic acid fortification on the vast majority of the US population, who are not at risk of NTDs. PMID:15531657

  20. Bioefficacy of a novel calcium-potassium salt of (-)-hydroxycitric acid.

    PubMed

    Downs, Bernard W; Bagchi, Manashi; Subbaraju, Gottumukkala V; Shara, Michael A; Preuss, Harry G; Bagchi, Debasis

    2005-11-11

    Obesity is associated with cardiovascular disease, diabetes and certain forms of cancer. Popular strategies on weight loss often fail to address many key factors such as fat mass, muscle density, bone density, water mass, their inter-relationships and impact on energy production, body composition, and overall health and well-being. (-)-Hydroxycitric acid (HCA), a natural plant extract from the dried fruit rind of Garcinia cambogia, has been reported to promote body fat loss in humans without stimulating the central nervous system. The level of effectiveness of G. cambogia extract is typically attributed solely to HCA. However, other components by their presence or absence may significantly contribute to its therapeutic effectiveness. Typically, HCA used in dietary weight loss supplement is bound to calcium, which results in a poorly soluble (<50%) and less bioavailable form. Conversely, the structural characteristics of a novel Ca2+/K+ bound (-)-HCA salt (HCA-SX or Super CitriMax) make it completely water soluble as well as bioavailable. An efficacious dosage of HCA-SX (4500 mg/day t.i.d.) provides a good source of Ca2+ (495 mg, 49.5% of RDI) and K+ (720 mg, 15% of RDI). Ca2+ ions are involved in weight management by increasing lipid metabolism, enhancing thermogenesis, and increasing bone density. K+, on the other hand, increases energy, reduces hypertension, increases muscle strength and regulates arrhythmias. Both Ca and K act as buffers in pH homeostasis. HCA-SX has been shown to increase serotonin availability, reduce appetite, increase fat oxidation, improve blood lipid levels, reduce body weight, and modulate a number of obesity regulatory genes without affecting the mitochondrial and nuclear proteins required for normal biochemical and physiological functions. PMID:16055158

  1. Preparation of poly(lactic acid)/siloxane/calcium carbonate composite membranes with antibacterial activity.

    PubMed

    Tokuda, Shingo; Obata, Akiko; Kasuga, Toshihiro

    2009-05-01

    A poly(lactic acid) (PLA)/siloxane/calcium carbonate composite membrane containing mercapto groups (PSC-SH) with antibacterial ability and excellent bone-forming ability was prepared using 3-mercaptopropyltrimethoxysilane for application in guided bone regeneration. Mercapto groups were reported to adsorb silver ions, which are well known to show antibacterial activity. Ionic silicon species were reported to stimulate the proliferation of osteoblasts. A PSC-SH membrane with a thickness of about 10 microm shows high flexibility. The PLA in PSC-SH was converted from the crystalline phase to the amorphous phase due to dispersion of condensed siloxane clusters. The amount of mercapto group on PSC-SH surface was estimated to be about 55 nmol mm(-2) by quantitative analysis using the thiol-disulfide exchange reaction. PSC-SH adsorbed silver ions on its surface after being soaked in 6 microM silver acetate aqueous solution for 1 min. The adsorbed silver ions were seen by X-ray photoelectron spectroscopy to form SAg and SO3Ag bonds. A trace amount of ionic silicon species was released from the membrane after soaking in culture medium. PSC-SH with adsorbed silver ions showed good antibacterial activity and cellular compatibility in tests conducted with Staphylococcus aureus and mouse osteoblast-like cells, respectively. Antibacterial activity is expected to occur during the implantation operation by the silver ions but not to remain in the body for a long period, as the ions were present on the surface of the membrane but not inside the structure. The membrane should be useful as a biodegradable material with antibacterial activity and bone-forming ability. PMID:18996778

  2. AtCNGC2 is involved in jasmonic acid-induced calcium mobilization.

    PubMed

    Lu, Min; Zhang, Yanyan; Tang, Shikun; Pan, Jinbao; Yu, Yongkun; Han, Jun; Li, Yangyang; Du, Xihua; Nan, Zhangjie; Sun, Qingpeng

    2016-02-01

    Calcium (Ca(2+)) mobilization is a central theme in various plant signal transduction pathways. We demonstrate that Arabidopsis thaliana cyclic nucleotide-gated channel 2 (AtCNGC2) is involved in jasmonic acid (JA)-induced apoplastic Ca(2+) influx in Arabidopsis epidermal cells. Ca(2+) imaging results showed that JA can induce an elevation in the cytosolic cAMP concentration ([cAMP]cyt), reaching a maximum within 3min. Dibutyryl cAMP (db-cAMP), a cell membrane-permeable analogue of cAMP, induced an increase in the cytosolic Ca(2+) concentration ([Ca(2+)]cyt), with a peak at 4min. This [Ca(2+)]cyt increase was triggered by the JA-induced increase in [cAMP]cyt. W-7[N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide], an antagonist of calmodulin, positively modulated the JA-induced increase in [Ca(2+)]cyt, while W-5[N-(6-aminohexyl)-1-naphthalenesulfonamide], an inactive antagonist of calmodulin, had no apparent effect. db-cAMP and JA positively induced the expression of primary (i.e. JAZ1 and MYC2) and secondary (i.e. VSP1) response genes in the JA signalling pathway in wild-type Arabidopsis thaliana, whereas they had no significant effect in the AtCNGC2 mutant 'defense, no death (dnd1) plants. These data provide evidence that JA first induces the elevation of cAMP, and cAMP, as an activating ligand, activates the AtCNGC2 channel, resulting in apoplastic Ca(2+) influx through AtCNGC2. PMID:26608645

  3. The role of calcium in growth induced by indole-3-acetic acid and gravity in the leaf-sheath pulvinus of oat (Avena sativa)

    NASA Technical Reports Server (NTRS)

    Brock, T. G.; Burg, J.; Ghosheh, N. S.; Kaufman, P. B.

    1992-01-01

    Leaf-sheath pulvini of excised segments from oat (Avena sativa L.) were induced to grow by treatment with 10 micromoles indole-3-acetic acid (IAA), gravistimulation, or both, and the effects of calcium, EGTA, and calcium channel blockers on growth were evaluated. Unilaterally applied calcium (10 mM CaCl2) significantly inhibited IAA-induced growth in upright pulvini but had no effect on growth induced by either gravity or gravity plus IAA. Calcium alone had no effect on upright pulvini. The calcium chelator EGTA alone (10 mM) stimulated growth in upright pulvini. However, EGTA had no effect on either IAA- or gravity-induced growth but slightly diminished growth in IAA-treated gravistimulated pulvini. The calcium channel blockers lanthanum chloride (25 mM), verapamil (2.5 mM), and nifedipine (2.5 mM) greatly inhibited growth as induced by IAA (> or = 50% inhibition) or IAA plus gravity (20% inhibition) but had no effect on gravistimulated pulvini. Combinations of channel blockers were similar in effect on IAA action as individual blockers. Since neither calcium ions nor EGTA significantly affected the graviresponse of pulvini, we conclude that apoplastic calcium is unimportant in leaf-sheath pulvinus gravitropism. The observation that calcium ions and calcium channel blockers inhibit IAA-induced growth, but have no effect on gravistimulated pulvini, further supports previous observations that gravistimulation alters the responsiveness of pulvini to IAA.

  4. Effect of processing conditions on phytic acid, calcium, iron, and zinc contents of lime-cooked maize.

    PubMed

    Bressani, Ricardo; Turcios, Juan Carlos; Colmenares de Ruiz, Ana Silvia; de Palomo, Patricia Palocios

    2004-03-10

    Tortillas are made by cooking maize in a lime solution during variable times and temperatures, steeping the grain for up to 12 h, washing and grinding it to a fine dough, and cooking portions as flat cakes for up to 6 min. The effects of the main processing steps on the chemical composition, nutritive value, and functional and physicochemical characteristics have been areas of research. The present work evaluates the effect of lime concentration (0, 1.2, 2.4, and 3.6%) and cooking times (45, 60, and 75 min) on phytic acid retention of whole maize, its endosperm, and germ, as well as on the content of calcium, iron, and zinc on the same samples. The effects of steeping time and temperature and steeping medium on the phytic acid of lime-cooked maize were also studied. Finally, phytic acid changes from raw maize to tortilla were also measured. The results indicated that lime concentration and cooking time reduce phytic acid content in whole grain (17.4%), in endosperm (45.8%), and in germ (17.0%). Statistical analyses suggested higher phytic acid loss with 1.2% lime and 75 min of cooking. Cooking with the lime solution is more effective in reducing phytic acid than cooking with water. Steeping maize in lime solution at 50 degrees C during 8 h reduced phytic acid an additional 8%. The total loss of phytic acid from maize to tortilla was 22%. Calcium content increased in whole maize, endosperm, and germ with lime concentration and cooking and steeping times. The increase was higher in the germ than in the endosperm. The level, however, can be controlled if steeping of the cooked grain is conducted in water. Iron and zinc contents were not affected by nixtamalization processing variables but were affected in steeping. PMID:14995114

  5. Effect of organic acids on calcium phosphate nucleation and osteogenic differentiation of human mesenchymal stem cells on peptide functionalized nanofibers.

    PubMed

    Barati, Danial; Walters, Joshua D; Shariati, Seyed Ramin Pajoum; Moeinzadeh, Seyedsina; Jabbari, Esmaiel

    2015-05-12

    Carboxylate-rich organic acids play an important role in controlling the growth of apatite crystals and the extent of mineralization in the natural bone. The objective of this work was to investigate the effect of organic acids on calcium phosphate (CaP) nucleation on nanofiber microsheets functionalized with a glutamic acid peptide and osteogenic differentiation of human mesenchymal stem cells (hMSCs) seeded on the CaP-nucleated microsheets. High molecular weight poly(dl-lactide) (DL-PLA) was mixed with low molecular weight L-PLA conjugated with Glu-Glu-Gly-Gly-Cys peptide, and the mixture was electrospun to generate aligned nanofiber microsheets. The nanofiber microsheets were incubated in a modified simulated body fluid (mSBF) supplemented with different organic acids for nucleation and growth of CaP crystals on the nanofibers. Organic acids included citric acid (CA), hydroxycitric acid (HCA), tartaric acid (TART), malic acid (MA), ascorbic acid (AsA), and salicylic acid (SalA). HCA microsheets had the highest CaP content at 240 ± 10% followed by TART and CA with 225 ± 8% and 225 ± 10%, respectively. The Ca/P ratio and percent crystallinity of the nucleated CaP in TART microsheets was closest to that of stoichiometric hydroxyapatite. The extent of CaP nucleation and growth on the nanofiber microsheets depended on the acidic strength and number of hydrogen-bonding hydroxyl groups of the organic acids. Compressive modulus and degradation of the CaP nucleated microsheets were related to percent crystallinity and CaP content. Osteogenic differentiation of hMSCs seeded on the microsheets and cultured in osteogenic medium increased only for those microsheets nucleated with CaP by incubation in CA or AsA-supplemented mSBF. Further, only CA microsheets stimulated bone nodule formation by the seeded hMSCs. PMID:25879768

  6. Medical treatment to prevent recurrent calcium urolithiasis. A guide to critical appraisal.

    PubMed

    Churchill, D N

    1987-01-01

    Among patients with urolithiasis, the recurrence rate is 10-23% per year. We have applied guidelines for critical appraisal to 46 publications addressing the efficacy of thiazides, orthophosphates, cellulose phosphate, allopurinol, magnesium and citrate as prophylaxis against recurrent urolithiasis. The 34 studies which do not have a randomly allocated control group are subject to methodologic deficiencies such as co-intervention, variable outcome measures, variable natural history, statistical regression to the mean, selection bias and incomplete follow-up of patients. These deficiencies make conclusions regarding the efficacy of an intervention suspect. Among the 12 randomized clinical trials are 5 thiazide, 2 orthophosphate, 4 allopurinol and 1 magnesium intervention. The methodologic and statistical questions addressed were: adequacy of randomization, clinical relevance of outcomes, description of patients, clinical and statistical significance, and completeness of follow-up. Based on these methodologic considerations, one could not conclude that orthophosphates, cellulose phosphate, magnesium or citrate were efficacious in preventing recurrent urolithiasis. Two of the 5 thiazide and 1 of the 4 allopurinol randomized clinical trials demonstrate convincing evidence for efficacy of these interventions. With the exception of pilot studies of new interventions, conclusions about efficacy of interventions claimed to decrease the urolithiasis recurrence rate should be based on methodologically sound randomized clinical trials. PMID:3627054

  7. Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system.

    PubMed

    Cordiglieri, Chiara; Odoardi, Francesca; Zhang, Bo; Nebel, Merle; Kawakami, Naoto; Klinkert, Wolfgang E F; Lodygin, Dimtri; Lühder, Fred; Breunig, Esther; Schild, Detlev; Ulaganathan, Vijay Kumar; Dornmair, Klaus; Dammermann, Werner; Potter, Barry V L; Guse, Andreas H; Flügel, Alexander

    2010-07-01

    Nicotinic acid adenine dinucleotide phosphate represents a newly identified second messenger in T cells involved in antigen receptor-mediated calcium signalling. Its function in vivo is, however, unknown due to the lack of biocompatible inhibitors. Using a recently developed inhibitor, we explored the role of nicotinic acid adenine dinucleotide phosphate in autoreactive effector T cells during experimental autoimmune encephalomyelitis, the animal model for multiple sclerosis. We provide in vitro and in vivo evidence that calcium signalling controlled by nicotinic acid adenine dinucleotide phosphate is relevant for the pathogenic potential of autoimmune effector T cells. Live two photon imaging and molecular analyses revealed that nicotinic acid adenine dinucleotide phosphate signalling regulates T cell motility and re-activation upon arrival in the nervous tissues. Treatment with the nicotinic acid adenine dinucleotide phosphate inhibitor significantly reduced both the number of stable arrests of effector T cells and their invasive capacity. The levels of pro-inflammatory cytokines interferon-gamma and interleukin-17 were strongly diminished. Consecutively, the clinical symptoms of experimental autoimmune encephalomyelitis were ameliorated. In vitro, antigen-triggered T cell proliferation and cytokine production were evenly suppressed. These inhibitory effects were reversible: after wash-out of the nicotinic acid adenine dinucleotide phosphate antagonist, the effector T cells fully regained their functions. The nicotinic acid derivative BZ194 induced this transient state of non-responsiveness specifically in post-activated effector T cells. Naïve and long-lived memory T cells, which express lower levels of the putative nicotinic acid adenine dinucleotide phosphate receptor, type 1 ryanodine receptor, were not targeted. T cell priming and recall responses in vivo were not reduced. These data indicate that the nicotinic acid adenine dinucleotide phosphate/calcium signalling pathway is essential for the recruitment and the activation of autoaggressive effector T cells within their target organ. Interference with this signalling pathway suppresses the formation of autoimmune inflammatory lesions and thus might qualify as a novel strategy for the treatment of T cell mediated autoimmune diseases. PMID:20519328

  8. Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system

    PubMed Central

    Cordiglieri, Chiara; Odoardi, Francesca; Zhang, Bo; Nebel, Merle; Kawakami, Naoto; Klinkert, Wolfgang E. F.; Lodygin, Dimtri; Lühder, Fred; Breunig, Esther; Schild, Detlev; Ulaganathan, Vijay Kumar; Dornmair, Klaus; Dammermann, Werner; Potter, Barry V. L.; Guse, Andreas H.

    2010-01-01

    Nicotinic acid adenine dinucleotide phosphate represents a newly identified second messenger in T cells involved in antigen receptor-mediated calcium signalling. Its function in vivo is, however, unknown due to the lack of biocompatible inhibitors. Using a recently developed inhibitor, we explored the role of nicotinic acid adenine dinucleotide phosphate in autoreactive effector T cells during experimental autoimmune encephalomyelitis, the animal model for multiple sclerosis. We provide in vitro and in vivo evidence that calcium signalling controlled by nicotinic acid adenine dinucleotide phosphate is relevant for the pathogenic potential of autoimmune effector T cells. Live two photon imaging and molecular analyses revealed that nicotinic acid adenine dinucleotide phosphate signalling regulates T cell motility and re-activation upon arrival in the nervous tissues. Treatment with the nicotinic acid adenine dinucleotide phosphate inhibitor significantly reduced both the number of stable arrests of effector T cells and their invasive capacity. The levels of pro-inflammatory cytokines interferon-gamma and interleukin-17 were strongly diminished. Consecutively, the clinical symptoms of experimental autoimmune encephalomyelitis were ameliorated. In vitro, antigen-triggered T cell proliferation and cytokine production were evenly suppressed. These inhibitory effects were reversible: after wash-out of the nicotinic acid adenine dinucleotide phosphate antagonist, the effector T cells fully regained their functions. The nicotinic acid derivative BZ194 induced this transient state of non-responsiveness specifically in post-activated effector T cells. Naïve and long-lived memory T cells, which express lower levels of the putative nicotinic acid adenine dinucleotide phosphate receptor, type 1 ryanodine receptor, were not targeted. T cell priming and recall responses in vivo were not reduced. These data indicate that the nicotinic acid adenine dinucleotide phosphate/calcium signalling pathway is essential for the recruitment and the activation of autoaggressive effector T cells within their target organ. Interference with this signalling pathway suppresses the formation of autoimmune inflammatory lesions and thus might qualify as a novel strategy for the treatment of T cell mediated autoimmune diseases. PMID:20519328

  9. Isolation and prevention of calcium oxalate-induced apoptotic death and oxidative stress in MDCK cells by diosgenin.

    PubMed

    Saha, Sarmistha; Goswami, Gagan; Pandrangi, Anupama

    2014-10-16

    Calcium oxalate monohydrate (COM) has been shown to be the most frequent constituent of kidney stones. The interactions of cells with COM crystals produce a variety of physiological and pathological changes including the development of oxidative stress, cellular injury and apoptosis. On the other hand, diosgenin, a steroidal sapogenin, is well known for its antioxidant activity. Therefore, the aim of this study was to evaluate whether diosgenin protects MDCK renal epithelial cells from COM-induced apoptotic death. Diosgenin was isolated from fruits of Solanum xanthocarpum by silica gel column chromatography. It was obtained in high yields (1.23%) and the purity was ascertained by HPTLC analysis. Characterization of diosgenin was done by mp, UV-visible spectrophotometry, elemental analysis, FT-IR, (1)H NMR and (13)C NMR analysis. Cells were co-incubated with COM (80?g/cm(2)) and diosgenin (2.5, 5, 7.5 and 10?g/mL) for 24h. It was found that diosgenin attenuated the apoptotic death induced by COM as measured in terms of cell viability, caspase -9/3 activities and DNA fragmentation percent. The inhibitory role of diosgenin on caspase -9/3 activities was also analyzed using molecular docking experiments, which showed interactions to their active sites by H-bonds. Diosgenin also attenuated the increase in lipid peroxidation and glutathione depletion induced by COM crystals. In conclusion, the preventive effect of diosgenin is associated to the inhibition of oxidative stress and caspases. PMID:25446497

  10. Identifying the rejection mechanism for nanofiltration membranes fouled by humic acid and calcium ions exemplified by acetaminophen, sulfamethoxazole, and triclosan.

    PubMed

    Chang, E-E; Chang, Yu-Chen; Liang, Chung-Huei; Huang, Chin-Pao; Chiang, Pen-Chi

    2012-06-30

    This research investigated the fouling effect of humic acid and humic acid/calcium ions on the rejection of three target compounds, i.e., acetaminophen, sulfamethoxazole, and triclosan, by two nanofiltration (NF) membranes. A modified Hermia fouling model was used to describe the fouling process. The effects of solute and membrane characteristics on the rejection and flux decline at various pH levels and with various foulants were also investigated. Results show that fouling mechanisms include complete blocking and gel layer formation. The presence of humic acid and humic acid/calcium ions may positively influence the rejection of hydrophilic compounds and neutral compounds rejected only by size exclusion. The experimental rejections of solute by the NF270 membrane correlate well with the theoretical rejection model in which only size exclusion was considered. For NF membranes with pore sizes larger than the solutes (e.g., the NTR7450 membrane), the rejection could be determined from the model combining both size exclusion and electrostatic exclusion. PMID:22554383

  11. Alterations in cytosol free calcium in horseradish roots simultaneously exposed to lanthanum(III) and acid rain.

    PubMed

    Zhang, Xuanbo; Wang, Lihong; Zhou, Anhua; Zhou, Qing; Huang, Xiaohua

    2016-04-01

    The extensive use of rare earth elements (REEs) has increased their environmental levels. REE pollution concomitant with acid rain in many agricultural regions can affect crop growth. Cytosol free calcium ions (Ca(2+)) play an important role in almost all cellular activities. However, no data have been reported regarding the role of cytosol free Ca(2+) in plant roots simultaneously exposed to REE and acid rain. In this study, the effects of exposures to lanthanum(III) and acid rain, independently and in combination, on cytosol free Ca(2+) levels, root activity, metal contents, biomass, cytosol pH and La contents in horseradish roots were investigated. The simultaneous exposures to La(III) and acid rain increased or decreased the cytosol free Ca(2+) levels, depending on the concentration of La(III), and these effects were more evident than independent exposure to La(III) or acid rain. In combined exposures, cytosol free Ca(2+) played an important role in the regulation of root activity, metal contents and biomass. These roles were closely related to La(III) dose, acid rain strength and treatment mode (independent exposure or simultaneous exposure). A low concentration of La(III) (20mgL(-1)) could alleviate the adverse effects on the roots caused by acid rain, and the combined exposures at higher concentrations of La(III) and acid rain had synergic effects on the roots. PMID:26720810

  12. Comparison of inhibitory activity on calcium phosphate precipitation by acidic proline-rich proteins, statherin, and histatin-1.

    PubMed

    Tamaki, N; Tada, T; Morita, M; Watanabe, T

    2002-07-01

    This study quantitatively compares the inhibition of calcium phosphate (CaP) precipitation by the salivary acidic proline-rich proteins (PRPs) statherin and histatin-1. Saliva and CaCl2 in 125 mM imidazole buffer (pH 7.0) were incubated with potassium phosphate and a hydroxyapatite (HAP) suspension, for 30 min at 25 degrees C, then filtered through nitrocellulose. The calcium (Ca) concentration in the filtrate was measured by atomic absorption spectrophotometry, then deducted from that in the initial solution to determine the amount of CaP precipitation after 30 min. The values of the inhibitory activities on CaP precipitation relative to crude parotid saliva were 4.7, 4.9, 6.9, and 65.8 for histatin-1, large PRPs, small PRPs, and statherin, respectively. PMID:12060866

  13. Effect of Fluoride on the Morphology of Calcium Phosphate Crystals Grown on Acid-Etched Human Enamel

    PubMed Central

    Fan, Y.; Sun, Z.; Moradian-Oldak, J.

    2009-01-01

    The aim of this study was to examine the effect of fluoride ion concentration on the morphology of calcium phosphate crystals grown on acid-etched enamel as a model for tooth enamel erosion. Samples were immersed in calcification solution for 16 h and changes in crystal morphology were monitored by field emission scanning electron microscopy. Without fluoride, plate-like octacalcium phosphate crystals (20 nm thick, 2–10 μm wide) were formed. With 1–10 mg/l fluoride, arrays of denser needle-like nanocrystals (20–30 nm wide, >500 nm in length) were formed. We conclude that there is a minimal fluoride concentration (1 mg/l) that dramatically affects the morphology of calcium phosphate crystals grown on etched enamel in vitro. PMID:19321991

  14. MINE WASTE TECHNOLOGY PROGRAM PREVENTION OF ACID MINE DRAINAGE GENERATION FROM OPEN-PIT HIGHWALLS

    EPA Science Inventory

    This document summarizes the results of Mine Waste Technology Program Activity III, Project 26, Prevention of Acid Mine Drainage Generation from Open-Pit Highwalls. The intent of this project was to obtain performance data on the ability of four technologies to prevent the gener...

  15. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials

    PubMed Central

    Dai, Zhenyu; Li, Yue; Lu, Weizhong; Jiang, Dianming; Li, Hong; Yan, Yonggang; Lv, Guoyu; Yang, Aiping

    2015-01-01

    Objective To evaluate the compatibility of novel nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA) complex biomaterials with muscle and bone tissue in an in vivo model. Methods Thirty-two New Zealand white rabbits were used in this study. Biomaterials were surgically implanted into each rabbit in the back erector spinae and in tibia with induced defect. Polyethylene was implanted into rabbits in the control group and n-CDHA/PAA into those of the experimental group. Animals were examined at four different points in time: 2 weeks, 4 weeks, 12 weeks, and 24 weeks after surgery. They were euthanized after embolization. Back erector spinae muscles with the surgical implants were examined after hematoxylin and eosin (HE) staining at these points in time. Tibia bones with the surgical implants were examined by X-ray and scanning electron microscopy (SEM) at these points in time to evaluate the interface of the bone with the implanted biomaterials. Bone tissues were sectioned and subjected to HE, Masson, and toluidine blue staining. Results HE staining of back erector spinae muscles at 4 weeks, 12 weeks, and 24 weeks after implantation of either n-CDHA/PAA or polyethylene showed disappearance of inflammation and normal arrangement in the peripheral tissue of implant biomaterials; no abnormal staining was observed. At 2 weeks after implantation, X-ray imaging of bone tissue samples in both experimental and control groups showed that the peripheral tissues of the implanted biomaterials were continuous and lacked bone osteolysis, absorption, necrosis, or osteomyelitis. The connection between implanted biomaterials and bone tissue was tight. The results of HE, Masson, toluidine blue staining and SEM confirmed that the implanted biomaterials were closely connected to the bone defect and that no rejection had taken place. The n-CDHA/PAA biomaterials induced differentiation of a large number of chondrocytes. New bone trabecula began to form at 4 weeks after implanting n-CDHA/PAA biomaterials, and lamellar bone gradually formed at 12 weeks and 24 weeks after implantation. Routine blood and kidney function tests showed no significant changes at 2 weeks and 24 weeks after implantation of both biomaterials. Conclusion n-CDHA/PAA composites showed good compatibility in in vivo model. In this study, n-CDHA/PAA were found to be safe, nontoxic, and biologically active in bone repair. PMID:26504382

  16. Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement.

    PubMed

    Leroux, L; Hatim, Z; Frèche, M; Lacout, J L

    1999-08-01

    Calcium phosphate cements are well-known orthopedic materials for filling bone. Various formulations are proposed. The current challenge is to place the material in the surgical site by methods as least invasive as possible. One approach consists of making the cement injectable by incorporation of various adjuvants. However, the requirement properties of the cement must be preserved: setting times suited to a convenient delay with surgical intervention, limited disintegration in aqueous medium, and sufficient mechanical resistance. Various additives were studied: in particular, lactic acid, glycerol, chitosan, and sodium glycerophosphate. Injectability, setting time, disintegration, and toughness after 10 days were followed in vitro. Glycerol greatly improved injectability and increased setting time, but decreased mechanical properties. Lactic acid reduced setting time, increased toughness of the material, but limited the dissolution rate. After injection, the cement did not present any disintegration. The effects lactic acid were correlated with the formation of calcium complex. Its association with sodium glycerophosphate is particularly interesting. Chitosan alone improved injectability, increased setting time, and limited the evolution of the cement by maintaining the OCP phase. Only slight disintegration was observed. These first results show that is possible to transform the cement into an injectable paste by addition of adjuvants without fundamentally modifying the chemical reactions occurring during setting and hardening. PMID:10458271

  17. [Effectiveness of tolfenamic acid in the prevention of migraine].

    PubMed

    Vaitkus, Antanas; Pauza, Valius

    2002-01-01

    The migraine prophylactic effect of tolfenamic acid 300 mg versus pizotifen 1.5 was evaluated in a prospective, randomized, double-blind, parallel group study. 192 patients were included with a frequency of 4-8 moderate to severe migraine attacks monthly, with or without aura, fulfilling the diagnostic criteria for migraine as defined by the International Headache Society. A four-week baseline period without medication was followed by 12 weeks of treatment with tolfenamic acid 300 mg or pizotifen 1.5 mg. In both periods patients were allowed to take escape medication (paracetamol and codeine) if the treatment was inefficient. All the patients had a headache diary before and during treatment. The primary criterion of efficacy was reduction in attack frequency per 4 weeks. Also reduction in intensity or duration of migraine attacks in hours at the end of 12 weeks treatment compared to the baseline period was measured. Both groups exhibited significant reduction in attack frequency (p < 0.001). Tolfenamic acid significantly reduced severity compared to the run-in period (p = 0.009). Patients treated with pizotifen needed more escape medication when compared to the run-in period (p < 0.01). Tolerance, especially weight gain, was a major drawback with pizotifen. Because of its high efficacy, excellent tolerability and low cost, tolfenamic acid is an interesting option for migraine prophylaxis. PMID:12474702

  18. [Neural tube defects and folic acid: a historical overview of a highly successful preventive intervention].

    PubMed

    Vásquez, Adriana Ordoñez; Suarez-Obando, Fernando

    2015-12-01

    This article gives a broad overview of part of the historical evolution of medical knowledge about neural tube defects (NTD) and the discovery of vitamin B9 or folic acid, as well as some relevant research events that, over the course of several centuries, defined the relationships between the understanding of central nervous system embryology, the discovery of the vitamin, the correlation between folic acid and cell proliferation and lastly the development of preventive measures for this type of defects. This narrative allows us to examine historically relevant concepts underlying clinical actions with a populational impact that prevent NTDs via folic acid consumption prior to conception. PMID:25650704

  19. [The role of omega-3 fatty acids from fish in prevention of cardiovascular diseases].

    PubMed

    Reiner, Eljko; Tedeschi-Reiner, Eugenia; Stajminger, Gordana

    2007-01-01

    Fish and fish oil are rich sources of omega-3 fatty acids--essential polyunsaturated fatty acids. These acids in doses of 1 g per day have been shown to significantly reduce the all-cause mortality in post myocardial infarction (MI) patients and the risk for sudden death caused by cardiac arrhythmias. One of the recently most studied mechanisms that may contribute to this benefits of omega-3 fatty acids is their anti-arrhythmic effect. Namely, these acids influence membrane ion channels, increase ventricular fibrillation threshold and increase heart rate variability. Although the data concerning primary prevention is less straightforward than the data relating secondary prevention, it seems that the use of omega-3 fatty acids in primary prevention might be justified as well. In higher doses (2 to 4 g per day) they are used to treat hypertriglyceridemia. Potential mechanisms by which omega-3 fatty acids may reduce risk for cardiovascular disease include also antithrombotic (they decrease platelet aggregation/reactivity, reduce plasma viscosity, enhance fibrinolysis) and anti-inflammatory effects (e.g. they decrease IL-6, MCP-1, TNF), improving vascular endothelial cell function (e.g. they increase availability of nitric oxide), reducing expression of endothelial cells adhesion molecules, inhibiting smooth muscle cells migration and proliferation, and reducing blood pressure. Based upon clinical studies the use of omega-3 fatty acids should be considered today at least as a part of comprehensive secondary prevention strategy in post-MI patients. It has been also shown that adding highly concentrated omega-3 fatty acids to standard treatment in the secondary prevention of MI is cost effective versus standard treatment alone. Particularly important is that there are no significant drug interactions with omega-3 fatty acids. PMID:18257336

  20. The Ability of PAS, Acetylsalicylic Acid and Calcium Disodium EDTA to Protect Against the Toxic Effects of Manganese on Mitochondrial Respiration in Gill of Crassostrea virginica

    PubMed Central

    Crawford, Sherine; Davis, Kiyya; Saddler, Claudette; Joseph, Jevaun; Catapane, Edward J.; Carroll, Margaret A.

    2011-01-01

    Manganese (Mn) is an essential metal that at excessive levels in brain causes Manganism, a condition similar to Parkinson's disease. Previously we showed that Mn had a neurotoxic effect on the dopaminergic, but not serotonergic, innervation of the lateral ciliated cells in the gill of the Eastern Oyster, Crassostrea virginica. While the mechanism of action of Mn toxicity is not completely understood, studies suggest that Mn toxicity may involve mitochondrial damage and resulting neural dysfunction in the brain’s dopaminergic system. In this study we utilized micro-batch chambers and oxygen probes to measure oyster gill mitochondrial respiration in the presence of Mn and potential Mn blockers. The addition of Mn to respiring mitochondria caused a dose dependent decrease in mitochondrial O2 consumption. Pretreating mitochondria with calcium disodium EDTA (caEDTA), p aminosalicylic acid (PAS) or acetylsalicylic acid (ASA) before Mn additions, provided full protection against the toxic effects of Mn. While mitochondrial pretreatment with any of the 3 drugs effectively blocked Mn toxicity, none of the drugs tested was able to reverse the decrease in mitochondrial O2 consumption seen in Mn treated mitochondria. The study found that high levels of Mn had a toxic effect on gill mitochondrial O2 consumption and that this effect could be blocked by the drugs caEDTA, PAS and ASA. C. virginica continues to be a good model with which to investigate the mechanism that underlies manganese neurotoxcity and in the pharmacological study of drugs to treat or prevent Manganism. PMID:21977482

  1. Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer

    PubMed Central

    Getino, María; Sanabria-Ríos, David J.; Fernández-López, Raúl; Campos-Gómez, Javier; Sánchez-López, José M.; Fernández, Antonio; Carballeira, Néstor M.

    2015-01-01

    ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. PMID:26330514

  2. Prevention of spina bifida: folic acid intake during pregnancy in Gulu district, northern Uganda

    PubMed Central

    Bannink, Femke; Larok, Rita; Kirabira, Peter; Bauwens, Lieven; van Hove, Geert

    2015-01-01

    Introduction The intake of folic acid before conception and during the first trimester of pregnancy can prevent spina bifida. This paper describes folic acid intake in women in Gulu district in northern Uganda. Methods Structured interviews were held with 394 women attending antenatal care (ANC), 15 mothers of children with spina bifida, and 35 health workers in 2012 and 2013. SPSS16 was used for data analysis. Results 1/4 mothers of children with spina bifida took folic acid during late pregnancy, none preconception. None had knowledge about folic acid and spina bifida prevention. 33.5% of women attending ANC had ever heard about spina bifida, 1% knew folic acid intake can prevent spina bifida. 42.4% took folic acid supplements in late pregnancy, 8.1% during the first trimester, none preconception. All women said to have eaten food rich in folic acid. None were aware about fortified foods. 7% of health workers understood the importance of early folic acid intake. All health workers recommended folic acid intake to women attending ANC. 20% of the health workers and 25% of the women said folic acid supplements are not always available. Conclusion Folic acid intake is limited in northern Uganda. This is attributed to limited education and understanding of women and health workers about the importance of early folic acid intake, late presentation of women at ANC, poor supply chain and dilapidated health services caused by war and poverty. A combination of food fortification, sensitization of health workers, women, and improving folic acid supply is recommended. PMID:26090048

  3. Hyaluronic acid stimulates the formation of calcium phosphate on CoCrMo alloy in simulated physiological solution.

    PubMed

    Milošev, Ingrid; Hmeljak, Julija; Cör, Andrej

    2013-03-01

    The behaviour of CoCrMo alloy has been studied in two simulated physiological solutions-NaCl and Hanks' solutions-each containing the sodium salt of hyaluronic acid. Hyaluronic acid is a component of synovial joint fluid, so the behaviour of orthopaedic alloys in its presence needs to be assessed. Electrochemical methods, X-ray photoelectron spectroscopy and scanning electron microscopy have been used to analyse the composition, thickness and morphology of any layers formed on the alloy. The addition of hyaluronic acid shifts the corrosion potential and increases the value of polarization resistance. The presence of hyaluronic acid in simulated Hanks' physiological solution stimulates the formation of a calcium phosphate layer, opening up the possibility for tailoring the surface properties of CoCrMo alloy. The viability of human osteoblast-like was determined using the Alamar(®) Blue Assay, while the osteogenic activity was evaluated by alkaline phosphatase activity. The presence of hyaluronic acid affects the alkaline phosphatase activity. PMID:23250579

  4. Bile acids stimulate chloride secretion through CFTR and calcium-activated Cl- channels in Calu-3 airway epithelial cells.

    PubMed

    Hendrick, Siobhán M; Mroz, Magdalena S; Greene, Catherine M; Keely, Stephen J; Harvey, Brian J

    2014-09-01

    Bile acids resulting from the aspiration of gastroesophageal refluxate are often present in the lower airways of people with cystic fibrosis and other respiratory distress diseases. Surprisingly, there is little or no information on the modulation of airway epithelial ion transport by bile acids. The secretory effect of a variety of conjugated and unconjugated secondary bile acids was investigated in Calu-3 airway epithelial cells grown under an air-liquid interface and mounted in Ussing chambers. Electrogenic transepithelial ion transport was measured as short-circuit current (Isc). The taurine-conjugated secondary bile acid, taurodeoxycholic acid (TDCA), was found to be the most potent modulator of basal ion transport. Acute treatment (5 min) of Calu-3 cells with TDCA (25 μM) on the basolateral side caused a stimulation of Isc, and removal of extracellular Cl(-) abolished this response. TDCA produced an increase in the cystic fibrosis transmembrane conductance regulator (CFTR)-dependent current that was abolished by pretreatment with the CFTR inhibitor CFTRinh172. TDCA treatment also increased Cl(-) secretion through calcium-activated chloride (CaCC) channels and increased the Na(+)/K(+) pump current. Acute treatment with TDCA resulted in a rapid cellular influx of Ca(2+) and increased cAMP levels in Calu-3 cells. Bile acid receptor-selective activation with INT-777 revealed TGR5 localized at the basolateral membrane as the receptor involved in TDCA-induced Cl(-) secretion. In summary, we demonstrate for the first time that low concentrations of bile acids can modulate Cl(-) secretion in airway epithelial cells, and this effect is dependent on both the duration and sidedness of exposure to the bile acid. PMID:24993131

  5. THE ROLE OF GASTRIC ACID IN PREVENTING FOOD BORNE DISEASE AND BACTERIA OVERCOME ACID CONDITIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secretion of hydrochloric acid by the stomach plays an important role in protecting the body against pathogens ingested with food or water. The gastric fluid pH of 1 to 2 is deleterious to many microbial pathogens; however, the neutralization of gastric acid by antacids or the inhibition of acid se...

  6. Alpha-lipoic acid protects against cadmium-induced hepatotoxicity via calcium signalling and gap junctional intercellular communication in rat hepatocytes.

    PubMed

    Zou, Hui; Liu, Xuezhong; Han, Tao; Hu, Di; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Liu, Zongping

    2015-08-01

    This study investigated the protective effect of alpha-lipoic acid (LA) on cadmium (Cd)-induced hepatotoxicity in BRL 3A rat liver cells. We demonstrated that LA ameliorated Cd-induced cellular injury in cell viability and nuclear fragmentation in BRL 3A cells. Furthermore, LA markedly ameliorated Cd-induced gap junctional intercellular communication (GJIC) inhibition and Cx43 mRNA expression decrease, as well as disassembly of gap junctions. The gap junction blocker carbenoxolone disodium (CBX) as well as LA protected healthy cells from Cd-exposed cells in Transwell co-culture system. LA also protected BRL 3A cells against Cd-induced elevation of the intracellular concentration of free calcium ([Ca(2+)]i). Pretreatment with a chelater of intracellular Ca(2+) BAPTA-AM or chelater of extracellular Ca(2+) EGTA attenuated Cd-induced cytotoxicity and GJIC inhibition. CBX exacerbated the decrease in cell viability and further elevated the increase in [Ca(2+)]i induced by Cd, whereas BAPTA-AM partly attenuated these phenomena, while EGTA had little effects. These results suggested that Cd-induced hepatotoxicity via GJIC inhibition and [Ca(2+)]i elevation, which originates mainly from intracellular stores. GJIC inhibition has dual effects: (i) it restricts release of Ca(2+) from the cell, which exacerbates the [Ca(2+)]i elevation and cytotoxicity induced by Cd; and (ii) it protects healthy cells from their dangerous neighbors by blocking intercellular communication. Above all, our results indicated that LA partly prevented Cd-induced cytotoxicity via GJIC and calcium signaling in BRL 3A rat liver cells. PMID:26165643

  7. Comparative transcriptome analysis reveals different molecular mechanisms of Bacillus coagulans 2-6 response to sodium lactate and calcium lactate during lactic acid production.

    PubMed

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that 'ATP-binding cassette transporters' were significantly affected by calcium lactate stress, and 'amino sugar and nucleotide sugar metabolism' was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of 'glycolysis/gluconeogenesis' genes but positive effect on the expression of 'citrate cycle (TCA cycle)' genes. However, calcium lactate stress had positive influence on the expression of 'glycolysis/gluconeogenesis' genes and had minor influence on 'citrate cycle (TCA cycle)' genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans. PMID:25875592

  8. Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells.

    PubMed

    Karaman, Ozan; Kumar, Ankur; Moeinzadeh, Seyedsina; He, Xuezhong; Cui, Tong; Jabbari, Esmaiel

    2016-02-01

    Biomineralization is mediated by extracellular matrix (ECM) proteins with amino acid sequences rich in glutamic acid. The objective of this study was to investigate the effect of calcium phosphate deposition on aligned nanofibres surface-modified with a glutamic acid peptide on osteogenic differentiation of rat marrow stromal cells. Blend of EEGGC peptide (GLU) conjugated low molecular weight polylactide (PLA) and high molecular weight poly(lactide-co-glycolide) (PLGA) was electrospun to form aligned nanofibres (GLU-NF). The GLU-NF microsheets were incubated in a modified simulated body fluid for nucleation of calcium phosphate crystals on the fibre surface. To achieve a high calcium phosphate to fibre ratio, a layer-by-layer approach was used to improve diffusion of calcium and phosphate ions inside the microsheets. Based on dissipative particle dynamics simulation of PLGA/PLA-GLU fibres, > 80% of GLU peptide was localized to the fibre surface. Calcium phosphate to fibre ratios as high as 200%, between those of cancellous (160%) and cortical (310%) bone, was obtained with the layer-by-layer approach. The extent of osteogenic differentiation and mineralization of marrow stromal cells seeded on GLU-NF microsheets was directly related to the amount of calcium phosphate deposition on the fibres prior to cell seeding. Expression of osteogenic markers osteopontin, alkaline phosphatase (ALP), osteocalcin and type 1 collagen increased gradually with calcium phosphate deposition on GLU-NF microsheets. Results demonstrate that surface modification of aligned synthetic nanofibres with EEGGC peptide dramatically affects nucleation and growth of calcium phosphate crystals on the fibres leading to increased osteogenic differentiation of marrow stromal cells and mineralization. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23897753

  9. Comparative Transcriptome Analysis Reveals Different Molecular Mechanisms of Bacillus coagulans 2-6 Response to Sodium Lactate and Calcium Lactate during Lactic Acid Production

    PubMed Central

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that ‘ATP-binding cassette transporters’ were significantly affected by calcium lactate stress, and ‘amino sugar and nucleotide sugar metabolism’ was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of ‘glycolysis/gluconeogenesis’ genes but positive effect on the expression of ‘citrate cycle (TCA cycle)’ genes. However, calcium lactate stress had positive influence on the expression of ‘glycolysis/gluconeogenesis’ genes and had minor influence on ‘citrate cycle (TCA cycle)’ genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans. PMID:25875592

  10. Improving amino acid nutrition to prevent intrauterine growth restriction in mammals.

    PubMed

    Lin, Gang; Wang, Xiaoqiu; Wu, Guoyao; Feng, Cuiping; Zhou, Huaijun; Li, Defa; Wang, Junjun

    2014-07-01

    Intrauterine growth restriction (IUGR) is one of the most common concerns in human obstetrics and domestic animal production. It is usually caused by placental insufficiency, which decreases fetal uptake of nutrients (especially amino acids) from the placenta. Amino acids are not only building blocks for protein but also key regulators of metabolic pathways in fetoplacental development. The enhanced demands of amino acids by the developing conceptus must be met via active transport systems across the placenta as normal pregnancy advances. Growing evidence indicates that IUGR is associated with a reduction in placental amino acid transport capacity and metabolic pathways within the embryonic/fetal development. The positive relationships between amino acid concentrations in circulating maternal blood and placental amino acid transport into fetus encourage designing new therapies to prevent or treat IUGR by enhancing amino acid availability in maternal diets or maternal circulation. Despite the positive effects of available dietary interventions, nutritional therapy for IUGR is still in its infancy. Based on understanding of the underlying mechanisms whereby amino acids promote fetal growth and of their dietary requirements by IUGR, supplementation with functional amino acids (e.g., arginine and glutamine) hold great promise for preventing fetal growth restriction and improving health and growth of IUGR offspring. PMID:24658999

  11. [Occlusion of central venous port catheters after simultaneous 24 h infusions of 5-FU and calcium-folinic acid in patients with gastrointestinal cancer].

    PubMed

    Fackler-Schwalbe, I; Schwalbe, B; Epple, M; Becker, A; Prgl, L; Gassel, W D; Stoffels, D; Sdhoff, T

    2004-05-01

    Folinic acid-modulated 5-FU regimens are standard elements in several chemotherapy combinations like FOLFIRI, FOLFOX or AIO-regimen in the palliative treatment of patients with gastrointestinal cancer. When the simultaneous mixed infusion of 5-FU and calcium-folinic acid (Leucovorin) was authorized by the BfArM in 2002, we introduced this application regimen in the treatment of our cancer patients. 19 patients (AIO-regimen [5], FOLFIRI [12] and FOLFOX [2]) received a simultaneously mixed infusion of calcium-folinic acid and 5-FU over 24 hours with a total of 110 applications. 5-FU doses varied between 2000 and 2600 mg/m2, calcium-folinic acid was given with 500 mg/m2, infusion rate was 10 ml/hour using a 24 h pump. Central venous catheters employed included single Barth-Port in 18 cases, 1 patient had a Viggon-Port. In 3 out of the 19 patients catheter occlusion was noticed after 8-10 weekly applications of the mixed infusion. Heparine and subsequently urokinase were not successful in reversing the obstruction. All three catheters had to be explanted. Catheter tips in all cases showed a yellow cristalline precipitation. The crystallographic analysis exhibited calcium carbonate (CaCO3) in its polymorphic form (calcite). Thus, we confirmed calcite formation causing catheter occlusion as a frequent complication during a continuous 24 h-infusion of mixed high dose 5-FU and calcium-folinic acid. This reaction could not be avoided by increasing infusion volume and the application flow rate. As a result of our findings, recommending using calcium-folinic acid mixed with 5-FU has been withdrawn in the meantime. PMID:15244042

  12. Superiority of zinc complex of acetylsalicylic acid to acetylsalicylic acid in preventing postischemic myocardial dysfunction.

    PubMed

    Korkmaz, Sevil; Atmanli, Ayhan; Li, Shiliang; Radovits, Tamás; Hegedűs, Peter; Barnucz, Enikő; Hirschberg, Kristóf; Loganathan, Sivakkanan; Yoshikawa, Yutaka; Yasui, Hiroyuki; Karck, Matthias; Szabó, Gábor

    2015-09-01

    The pathophysiology of ischemic myocardial injury involves cellular events, reactive oxygen species, and an inflammatory reaction cascade. The zinc complex of acetylsalicylic acid (Zn(ASA)2) has been found to possess higher anti-inflammatory and lower ulcerogenic activities than acetylsalicylic acid (ASA). Herein, we studied the effects of both ASA and Zn(ASA)2 against acute myocardial ischemia. Rats were pretreated with ASA (75 mg/kg) or Zn(ASA)2 (100 mg/kg) orally for five consecutive days. Isoproterenol (85 mg/kg, subcutaneously [s.c.]) was applied to produce myocardial infarction. After 17-22 h, animals were anesthetized with sodium pentobarbital (60 mg/kg, intraperitoneally [i.p.]) and both electrical and mechanical parameters of cardiac function were evaluated in vivo. Myocardial histological and gene expression analyses were performed. In isoproterenol-treated rats, Zn(ASA)2 treatment normalized significantly impaired left-ventricular contractility index (Emax 2.6 ± 0.7 mmHg/µL vs. 4.6 ± 0.5 mmHg/µL, P < 0.05), increased stroke volume (30 ± 3 µL vs. 50 ± 6 µL, P < 0.05), decreased systemic vascular resistance (7.2 ± 0.7 mmHg/min/mL vs. 4.2 ± 0.5 mmHg/min/mL, P < 0.05) and reduced inflammatory infiltrate into the myocardial tissues. ECG revealed a restoration of elevated ST-segment (0.21 ± 0.03 mV vs. 0.09 ± 0.02 mV, P < 0.05) and prolonged QT-interval (79.2 ± 3.2 ms vs. 69.5 ± 2.5 ms, P < 0.05) by Zn(ASA)2. ASA treatment did not result in an improvement of these parameters. Additionally, Zn(ASA)2 significantly increased the mRNA-expression of superoxide dismutase 1 (+73 ± 15%), glutathione peroxidase 4 (+44 ± 12%), and transforming growth factor (TGF)-β1 (+102 ± 22%). In conclusion, our data demonstrate that oral administration of zinc and ASA in the form of bis(aspirinato)zinc(II) complex is superior to ASA in preventing electrical, mechanical, and histological changes after acute myocardial ischemia. The induction of antioxidant enzymes and the anti-inflammatory cytokine TGF-β1 may play a pivotal role in the mechanism of action of Zn(ASA)2. PMID:25670850

  13. PRESENILIN-NULL CELLS HAVE ALTERED TWO-PORE CALCIUM CHANNEL EXPRESSION AND LYSOSOMAL CALCIUM; IMPLICATIONS FOR LYSOSOMAL FUNCTION

    PubMed Central

    Kayala, Kara M Neely; Dickinson, George D; Minassian, Anet; Walls, Ken C; Green, Kim N; LaFerla, Frank M

    2012-01-01

    Presenilins are necessary for calcium homeostasis and also for efficient proteolysis through the autophagy/lysosome system. Presenilin regulates both endoplasmic reticulum calcium stores and autophagic proteolysis in a γ-secretase independent fashion. The endo-lysosome system can also act as a calcium store, with calcium efflux channels being recently identified as two-pore channels 1 and 2. Here we investigated lysosomal calcium content and the channels that mediate calcium release from these acidic stores in presenilin knockout cells. We report that presenilin loss leads to a lower total lysosomal calcium store despite the buildup of lysosomes found in these cells. Additionally, we find alterations in two-pore calcium channel protein expression, with loss of presenilin preventing the formation of a high molecular weight species of TPC1 and TPC2. Finally, we find that treatments that disturb lysosomal calcium release lead to a reduction in autophagy function yet lysosomal inhibitors do not alter two-pore calcium channel expression. These data indicate that alterations in lysosomal calcium in the absence of presenilins might be leading to disruptions in autophagy. PMID:23103503

  14. Therapy for urolithiasis with hydroxamic acids. IV. Prevention of infected urinary stone formation with N-(pivaloyl)glycinohydroxamic acid.

    PubMed

    Satoh, M; Munakata, K; Kitoh, K; Seto, N; Kanazawa, T; Takeuchi, H; Yoshida, O

    1981-07-01

    With the aim of finding a prospective therapeutic compound with a promising potential for the treatment of urolithiasis, we evaluated the effectiveness of a new potent inhibitor of urease, N-(pivaloyl)glycinohydroxamic acid. The present study revealed that N-(pivaloyl)glycinohydroxamic acid effectively inhibited the alkalinization of urine and the stone formation in vitro and in vivo, due to its strong inhibitory potency against the ureolytic activity of intact Proteus mirabilis. The possibility of the clinical application of this compound in the prevention of struvite stone formation caused by infection of urea-splitting bacteria awaits evaluation of the safety of this compound. PMID:7028944

  15. Rate of calcium difluoride dissolution in phosphoric acid solutions in presence of silicon dioxide

    SciTech Connect

    Astrelin, I.M.; Tolstopalova, N.M.; Gladushko, V.I.; Chernobrov, O.V.; Bogachev, V.G.; Mishin, N.I.

    1988-03-20

    The authors have developed and tested a process for phosphoric-acid decomposition of sludges in presence of silicon dioxide, yielding concentrated phosphate fertilizers and fluorine-containing acids. In order to clarify the decomposition mechanism, they studied the solubility of the sludge components in sulfuric acid solutions. Since the main components of sludges are CaF/sub 2/, Ca/sub 3/(PO/sub 4/)/sub 2/, SiO/sub 2/, CaSO/sub 4/, they consider in this paper the interaction of CaF/sub 2/ with phosphoric acid and the influence of the amount and kind of silicon dioxide added on it.

  16. Effect of Poly(γ-glutamic acid) on the Physiological Responses and Calcium Signaling of Rape Seedlings (Brassica napus L.) under Cold Stress.

    PubMed

    Lei, Peng; Xu, Zongqi; Ding, Yan; Tang, Bao; Zhang, Yunxia; Li, Huashan; Feng, Xiaohai; Xu, Hong

    2015-12-01

    Cold stress adversely affects plant growth and development. Poly(γ-glutamic acid) (γ-PGA) is a potential plant growth regulator that may be an effective cryoprotectant that prevents crops from damage during cold weather. In this study, the effects of γ-PGA on the physiological responses of rape seedlings subject to cold stress were investigated using hydroponic experiments. We determined that the malondialdehyde content was decreased by 33.4% and the proline content was increased by 62.5% by γ-PGA after 144 h under cold stress. Antioxidant enzymes activities were also evidently enhanced after treatment with γ-PGA. These responses counteracted increases in the fresh weight and chlorophyll content of rape seedlings, which increased by 24.5 and 50.9%, respectively, after 144 h, which meant that growth inhibition caused by cold was mitigated by γ-PGA. Our results also showed that γ-PGA also regulated Ca(2+) concentrations in the cytoplasm and calcium-dependent protein kinases, which are associated with cold resistance. In conclusion, we suggest that the Ca(2+)/CPKs signal pathway is involved in the γ-PGA-mediated enhancement of cold resistance in rape seedlings. PMID:26585291

  17. Separation of calcium-48 isotope by crown ether chromatography using ethanol/hydrochloric acid mixed solvent.

    PubMed

    Okumura, Shin; Umehara, Saori; Fujii, Yasuhiko; Nomura, Masao; Kaneshiki, Toshitaka; Ozawa, Masaki; Kishimoto, Tadafumi

    2015-10-01

    Benzo-18-crown-6 ether resin embedded in porous silica beads was synthesized and used as the packing material for chromatographic separation of (48)Ca isotope. The aim of the present work is to develop efficient isotope enrichment process for double β decay nuclide (48)Ca. To this end, ethanol/HCl mixed solvent was selected as the medium for the chromatographic separation. Adsorption of calcium on the resin was studied at different HCl concentrations and different ethanol mixing ratios in batch-wise experiments. A very interesting phenomenon was observed; Ca adsorption is controlled not by the overall HCl concentration of the mixed solvent, but by the initial concentration of added HCl solution. Calcium break-through chromatography experiments were conducted by using 75v/v% ethanol/25v/v% 8M HCl mixed solvent at different flow rates. The isotope separation coefficient between (48)Ca and (40)Ca was determined as 3.8×10(-3), which is larger than that of pure HCl solution system. Discussion is extended to the chromatographic HETP, height equivalent to a theoretical plate. PMID:26358563

  18. Calcium sulfate crystallization along citrus root channels in a Florida soil exhibiting acid sulfate properties

    SciTech Connect

    Syslo, S.K.; Myhre, D.L.; Harris, W.G.

    1988-02-01

    The authors observed euhedral crystals in Manatee soil in a citrus grove in St. Lucie County, Florida. The material was identified as gypsum (CaSO/sub 4/ /times/ 2H/sub 2/O) using x-ray diffraction and infrared spectra. Photomicrography and scanning electron microscopy revealed that gypsum accumulated both in old root channels and within citrus root tissue of the Btg horizon. The subsurface horizons had elevated sulfate levels, a low initial pH, a drop (0.5 unit) in pH upon air-drying. Electrical conductivity paralleled the concentration of water-soluble sulfate. High levels of calcium and sulfate occurred for horizons above the water table. This accumulation is attributed to groundwater bearing these ions and subsequently discharging them to the overlying soil. Dead citrus roots appear to act as wicks to aid water transfer from lower to higher horizons. The roots and their empty channels provide spaces in which the gypsum can precipitate if the concentrations of calcium and sulfate in the evaporating groundwater exceed the solubility product of gypsum.

  19. Calcium- and polyphosphate-containing acidic granules of sea urchin eggs are similar to acidocalcisomes, but are not the targets for NAADP

    PubMed Central

    Ramos, Isabela B.; Miranda, Kildare; Pace, Douglas A.; Verbist, Katherine C.; Lin, Fu-Yang; Zhang, Yonghui; Oldfield, Eric; Machado, Ednildo A.; De Souza, Wanderley; Docampo, Roberto

    2010-01-01

    Acidocalcisomes are acidic calcium-storage compartments described from bacteria to humans and characterized by their high content in poly P (polyphosphate), a linear polymer of many tens to hundreds of Pi residues linked by high-energy phosphoanhydride bonds. In the present paper we report that millimolar levels of short-chain poly P (in terms of Pi residues) and inorganic PPi are present in sea urchin extracts as detected using 31P-NMR, enzymatic determinations and agarose gel electrophoresis. Poly P was localized to granules randomly distributed in the sea urchin eggs, as shown by labelling with the poly-P-binding domain of Escherichia coli exopolyphosphatase. These granules were enriched using iodixanol centrifugation and shown to be acidic and to contain poly P, as determined by Acridine Orange and DAPI (4′,6′-diamidino-2-phenylindole) staining respectively. These granules also contained large amounts of calcium, sodium, magnesium, potassium and zinc, as detected by X-ray microanalysis, and bafilomycin A1-sensitive ATPase, pyrophosphatase and exopolyphosphatase activities, as well as Ca2+/H+ and Na+/H+ exchange activities, being therefore similar to acidocalcisomes described in other organisms. Calcium release from these granules induced by nigericin was associated with poly P hydrolysis. Although NAADP (nicotinic acid–adenine dinucleotide phosphate) released calcium from the granule fraction, this activity was not significantly enriched as compared with the NAADP-stimulated calcium release from homogenates and was not accompanied by poly P hydrolysis. GPN (glycyl-L-phenylalanine-naphthylamide) released calcium when added to sea urchin homogenates, but was unable to release calcium from acidocalcisome-enriched fractions, suggesting that these acidic stores are not the targets for NAADP. PMID:20497125

  20. Preventive Effects of Folic Acid Supplementation on Adverse Maternal and Fetal Outcomes

    PubMed Central

    Kim, Min Woo; Ahn, Ki Hoon; Ryu, Ki-Jin; Hong, Soon-Cheol; Lee, Ji Sung; Nava-Ocampo, Alejandro A.; Oh, Min-Jeong; Kim, Hai-Joong

    2014-01-01

    Although there is accumulating evidence regarding the additional protective effect of folic acid against adverse pregnancy outcomes other than neural tube defects, these effects have not been elucidated in detail. We evaluated whether folic acid supplementation is associated with favorable maternal and fetal outcomes. This was a secondary analysis of 215 pregnant women who were enrolled in our prior study. With additional data from telephone interviews regarding prenatal folic acid supplementation, existing demographic, maternal and fetal data were statistically analyzed. The concentration of folic acid in maternal blood was significantly higher following folic acid supplementation (24.6 ng/mL vs.11.8 ng/mL). In contrast, homocysteine level in maternal blood decreased with folic acid supplementation (5.5 µmol/mL vs. 6.8 µmol/mL). The rates of both preeclampsia (odds ratio [OR], 0.27; 95% confidence interval [CI], 0.09–0.76) and small for gestational age (SGA; 9.2% vs. 20.0%; OR, 0.42; 95% CI, 0.18–0.99) were lower in the folic acid supplementation group than those in the control group. Other pregnancy outcomes had no association with folic acid supplementation. The findings indicate that folic acid supplementation may help to prevent preeclampsia and SGA. Further studies are warranted to elucidate the favorable effects of folic acid supplementation on pregnancy outcomes. PMID:24842467

  1. Probenecid prevents acute tubular necrosis in a mouse model of aristolochic acid nephropathy.

    PubMed

    Baudoux, Thomas E R; Pozdzik, Agnieszka A; Arlt, Volker M; De Prez, Eric G; Antoine, Marie-Hélène; Quellard, Nathalie; Goujon, Jean-Michel; Nortier, Joëlle L

    2012-11-01

    Experimental aristolochic acid nephropathy is characterized by early tubulointerstitial injury followed by fibrosis, reproducing chronic lesions seen in humans. In vitro, probenecid inhibits aristolochic acid entry through organic anion transporters, reduces specific aristolochic acid-DNA adduct formation, and preserves cellular viability. To test this in vivo, we used a mouse model of aristolochic acid nephropathy displaying severe tubulointerstitial injuries consisting of proximal tubular epithelial cell necrosis associated to transient acute kidney injury followed by mononuclear cell infiltration, tubular atrophy, and interstitial fibrosis. Treatment with probenecid prevented increased plasma creatinine and tubulointerstitial injuries, and reduced both the extent and the severity of ultrastructural lesions induced by aristolochic acid, such as the loss of brush border, mitochondrial edema, and the disappearance of mitochondrial crests. Further, the number of proliferating cell nuclear antigen-positive cells and total aristolochic acid-DNA adducts were significantly reduced in mice receiving aristolochic acid plus probenecid compared with mice treated with aristolochic acid alone. Thus, we establish the nephroprotective effect of probenecid, an inhibitor of organic acid transporters, in vivo toward acute proximal tubular epithelial cell toxicity in a mouse model of aristolochic acid nephropathy. PMID:22854641

  2. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival.

    PubMed

    Umka Welbat, Jariya; Sirichoat, Apiwat; Chaijaroonkhanarak, Wunnee; Prachaney, Parichat; Pannangrong, Wanassanun; Pakdeechote, Poungrat; Sripanidkulchai, Bungorn; Wigmore, Peter

    2016-01-01

    Valproic acid (VPA) is commonly prescribed as an anticonvulsant and mood stabilizer used in the treatment of epilepsy and bipolar disorder. A recent study has demonstrated that VPA reduces histone deacetylase (HDAC) activity, an action which is believed to contribute to the effects of VPA on neural stem cell proliferation and differentiation which may explain the cognitive impairments produced in rodents and patients. Asiatic acid is a triterpenoid derived from the medicinal plant Centella asiatica. Our previous study has shown that Asiatic acid improves working spatial memory and increases cell proliferation in the sub granular zone of the hippocampal dentate gyrus. In the present study we investigate the effects of Asiatic acid in preventing the memory and cellular effects of VPA. Male Spraque-Dawley rats were orally administered Asiatic acid (30 mg/kg/day) for 28 days, while VPA-treated animals received injections of VPA (300 mg/kg) twice a day from Day 15 to Day 28 for 14 days. Spatial memory was determined using the novel object location (NOL) test and hippocampal cell proliferation and survival was quantified by immuostaining for Ki-67 and Bromodeoxyuridine (BrdU), respectively. The results showed that VPA-treated animals were unable to discriminate between objects in familiar and novel locations. Moreover, VPA significantly reduced numbers of Ki-67 and BrdU positive cells. These results indicate that VPA treatment caused impairments of spatial working memory, cell proliferation and survival in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). However, these abnormalities were restored to control levels by co-treatment with Asiatic acid. These data demonstrate that Asiatic acid could prevent the spatial memory and neurogenesis impairments caused by VPA. PMID:27213437

  3. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival

    PubMed Central

    Umka Welbat, Jariya; Sirichoat, Apiwat; Chaijaroonkhanarak, Wunnee; Prachaney, Parichat; Pannangrong, Wanassanun; Pakdeechote, Poungrat; Sripanidkulchai, Bungorn; Wigmore, Peter

    2016-01-01

    Valproic acid (VPA) is commonly prescribed as an anticonvulsant and mood stabilizer used in the treatment of epilepsy and bipolar disorder. A recent study has demonstrated that VPA reduces histone deacetylase (HDAC) activity, an action which is believed to contribute to the effects of VPA on neural stem cell proliferation and differentiation which may explain the cognitive impairments produced in rodents and patients. Asiatic acid is a triterpenoid derived from the medicinal plant Centella asiatica. Our previous study has shown that Asiatic acid improves working spatial memory and increases cell proliferation in the sub granular zone of the hippocampal dentate gyrus. In the present study we investigate the effects of Asiatic acid in preventing the memory and cellular effects of VPA. Male Spraque-Dawley rats were orally administered Asiatic acid (30 mg/kg/day) for 28 days, while VPA-treated animals received injections of VPA (300 mg/kg) twice a day from Day 15 to Day 28 for 14 days. Spatial memory was determined using the novel object location (NOL) test and hippocampal cell proliferation and survival was quantified by immuostaining for Ki-67 and Bromodeoxyuridine (BrdU), respectively. The results showed that VPA-treated animals were unable to discriminate between objects in familiar and novel locations. Moreover, VPA significantly reduced numbers of Ki-67 and BrdU positive cells. These results indicate that VPA treatment caused impairments of spatial working memory, cell proliferation and survival in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). However, these abnormalities were restored to control levels by co-treatment with Asiatic acid. These data demonstrate that Asiatic acid could prevent the spatial memory and neurogenesis impairments caused by VPA. PMID:27213437

  4. Periconceptional supplementation with folic acid. Does it prevent neural tube defects?

    PubMed

    Murphy, P A

    1992-01-01

    There has been considerable controversy in recent years concerning the benefit of periconceptional vitamin supplementation in the prevention of neural tube defects. Recent reports of a successful randomized clinical trial have prompted official recommendations for folic acid supplementation in women with a history of an affected pregnancy. Periconceptional supplementation of low-risk women remains controversial. PMID:1538265

  5. Structural and dynamical studies of acid-mediated conversion in amorphous-calcium-phosphate based dental composites

    PubMed Central

    Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; Vaudin, Mark D.; Skrtic, Drago; Antonucci, Joseph M.; Hoffman, Kathleen M.; Giuseppetti, Anthony A.; Ilavsky, Jan

    2014-01-01

    Objective To investigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP) -to-apatite transition in ACP based dental composite materials. Methods Composite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed an investigation of the solution-mediated ACP-to-apatite conversion mechanism in controlled acidic aqueous environment with in situ ultra-small angle X-ray scattering based coherent X-ray photon correlation spectroscopy and ex situ X-ray diffraction, as well as other complementary techniques. Results We established that the ACP-to-apatite conversion in ACP composites is a two-step process, owing to the sensitivity to local structural changes provided by coherent X-rays. Initially, ACP undergoes a local microstructural rearrangement without losing its amorphous character. We established the catalytic role of the acid and found the time scale of this rearrangement strongly depends on the pH of the solution, which agrees with previous findings about ACP without the polymer matrix being present. In the second step, ACP is converted to an apatitic form with the crystallinity of the formed crystallites being poor. Separately, we also confirmed that in the regular Zr-modified ACP the rate of ACP conversion to hydroxyapatite is slowed significantly compared to unmodified ACP, which is beneficial for targeted slow release of functional calcium and phosphate ions from dental composite materials. Significance For the first time, we were able to follow the complete solution-mediated transition process from ACP to apatite in this class of dental composites in a controlled aqueous environment. A two-step process, suggested previously, was conclusively identified. PMID:25082155

  6. Npas4 Transcription Factor Expression Is Regulated by Calcium Signaling Pathways and Prevents Tacrolimus-induced Cytotoxicity in Pancreatic Beta Cells.

    PubMed

    Speckmann, Thilo; Sabatini, Paul V; Nian, Cuilan; Smith, Riley G; Lynn, Francis C

    2016-02-01

    Cytosolic calcium influx activates signaling pathways known to support pancreatic beta cell function and survival by modulating gene expression. Impaired calcium signaling leads to decreased beta cell mass and diabetes. To appreciate the causes of these cytotoxic perturbations, a more detailed understanding of the relevant signaling pathways and their respective gene targets is required. In this study, we examined the calcium-induced expression of the cytoprotective beta cell transcription factor Npas4. Pharmacological inhibition implicated the calcineurin, Akt/protein kinase B, and Ca(2+)/calmodulin-dependent protein kinase signaling pathways in the regulation of Npas4 transcription and translation. Both Npas4 mRNA and protein had high turnover rates, and, at the protein level, degradation was mediated via the ubiquitin-proteasome pathway. Finally, beta cell cytotoxicity of the calcineurin inhibitor and immunosuppressant tacrolimus (FK-506) was prevented by Npas4 overexpression. These results delineate the pathways regulating Npas4 expression and stability and demonstrate its importance in clinical settings such as islet transplantation. PMID:26663079

  7. Nucleotide precursors prevent folic acid-resistant neural tube defects in the mouse.

    PubMed

    Leung, Kit-Yi; De Castro, Sandra C P; Savery, Dawn; Copp, Andrew J; Greene, Nicholas D E

    2013-09-01

    Closure of the neural tube during embryogenesis is a crucial step in development of the central nervous system. Failure of this process results in neural tube defects, including spina bifida and anencephaly, which are among the most common birth defects worldwide. Maternal use of folic acid supplements reduces risk of neural tube defects but a proportion of cases are not preventable. Folic acid is thought to act through folate one-carbon metabolism, which transfers one-carbon units for methylation reactions and nucleotide biosynthesis. Hence suboptimal performance of the intervening reactions could limit the efficacy of folic acid. We hypothesized that direct supplementation with nucleotides, downstream of folate metabolism, has the potential to support neural tube closure. Therefore, in a mouse model that exhibits folic acid-resistant neural tube defects, we tested the effect of specific combinations of pyrimidine and purine nucleotide precursors and observed a significant protective effect. Labelling in whole embryo culture showed that nucleotides are taken up by the neurulating embryo and incorporated into genomic DNA. Furthermore, the mitotic index was elevated in neural folds and hindgut of treated embryos, consistent with a proposed mechanism of neural tube defect prevention through stimulation of cellular proliferation. These findings may provide an impetus for future investigations of supplemental nucleotides as a means to prevent a greater proportion of human neural tube defects than can be achieved by folic acid alone. PMID:23935126

  8. Cancer Preventive Potential of Kimchi Lactic Acid Bacteria (Weissella cibaria, Lactobacillus plantarum)

    PubMed Central

    Kwak, Shin-Hye; Cho, Young-Mi; Noh, Geon-Min; Om, Ae-Son

    2014-01-01

    The number of death due to cancer has been increasing in Korea. Chemotherapy is known to cause side effects because it damages not only cancerous cells but healthy cells. Recently, attention has focused on food-derived chemopreventive and anti-tumor agents or formulations with fewer side effects. Kimchi, most popular and widely consumed in Korea, contains high levels of lactic acid bacteria and has been shown to possess chemopreventive effects. This review focuses on Weissella cibaria and Lactobacillus plantarum, the representatives of kimchi lactic acid bacteria, in terms of their abilities to prevent cancer. Further studies are needed to understand the mechanisms by which lactic acid bacteria in kimchi prevent carcinogenic processes and improve immune functions. PMID:25574459

  9. Method of repressing the precipitation of calcium fluozirconate

    DOEpatents

    Newby, B.J.; Rhodes, D.W.

    1973-12-25

    Boric acid or a borate salt is added to aqueous solutions of fluoride containing radioactive wastes generated during the reprocessing of zirconium alloy nuclear fuels which are to be converted to solid form by calcining in a fluidized bed. The addition of calcium nitrate to the aqueous waste solutions to prevent fluoride volatility during calcination, causes the precipitation of calcium fluozirconate, which tends to form a gel at fluoride concentrations of 3.0 M or greater. The boron containing species introduced into the solution by the addition of the boric acid or borate salt retard the formation of the calcium fluozirconate precipitate and prevent formation of the gel. These boron containing species can be introduced into the solution by the addition of a borate salt but preferably are introduced by the addition of an aqueous solution of boric acid. (Official Gazette)

  10. Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions

    PubMed Central

    Kim, Young Kyung; Gu, Li-sha; Bryan, Thomas E.; Kim, Jong Ryul; Chen, Liang; Liu, Yan; Yoon, James C.; Breschi, Lorenzo; Pashley, David H.; Tay, Franklin R.

    2010-01-01

    The complex morphologies of mineralised collagen fibrils are regulated through interactions between the collagen matrix and non-collagenous extracellular proteins. In the present study, polyvinylphosphonic acid, a biomimetic analogue of matrix phosphoproteins, was synthesised and confirmed with FTIR and NMR. Biomimetic mineralisation of reconstituted collagen fibrils devoid of natural non-collagenous proteins was demonstrated with TEM using a Portland cement-containing resin composite and a phosphate-containing fluid in the presence of polyacrylic acid as sequestration, and polyvinylphosphonic acid as templating matrix protein analogues. In the presence of these dual biomimetic analogues in the mineralisation medium, intrafibrillar and extrafibrillar mineralisation via bottom-up nanoparticle assembly based on the nonclassical crystallisation pathway could be identified. Conversely, only large mineral spheres with no preferred association with collagen fibrils were observed in the absence of biomimetic analogues in the medium. Mineral phases were evident within the collagen fibrils as early as 4 hours after the initially-formed amorphous calcium phosphate nanoprecursors were transformed into apatite nanocrystals. Selected area electron diffraction patterns of highly mineralised collagen fibrils were nearly identical to those of natural bone, with apatite crystallites preferentially aligned along the collagen fibril axes. PMID:20621767

  11. [The importance of γ-linolenic acid in the prevention and treatment].

    PubMed

    Białek, Małgorzata; Rutkowska, Jarosława

    2015-01-01

    The etiology of diet-related disorders is closely associated with dietary factors. A special role is attributed to intake of fat and fatty acid profile, both quantitative and qualitative. For prevention and treatment of the abovementioned diseases a proper supply of unsaturated fatty acids plays a significant role, because of their particular importance to health. γ-Linolenic acid (GLA), with three double bonds in the carbon chain, also known as all-cis 6,9,12-octadecatrienoic acid, belongs to the n-6 family of fatty acids. It plays biologically important functions in the human body, such as being a substrate for eicosanoids synthesis, involvement in the transport and oxidation of cholesterol, and being one of the components of lipid membrane. Its inadequate dietary intake or impaired formation is the cause of many inflammatory and degenerative diseases. A rich source of this fatty acid is vegetable oils, until recently used mainly in folk medicine. Nowadays, studies conducted both in animal models and in humans suggest its health-promoting properties in the prevention and treatment of atopic dermatitis, cardiovascular diseases, diabetes, cancers and rheumatoid arthritis. PMID:26270516

  12. Coral calcium hydride prevents hepatic steatosis in high fat diet-induced obese rats: A potent mitochondrial nutrient and phase II enzyme inducer.

    PubMed

    Hou, Chen; Wang, Yongyao; Zhu, Erkang; Yan, Chunhong; Zhao, Lin; Wang, Xiaojie; Qiu, Yingfeng; Shen, Hui; Sun, Xuejun; Feng, Zhihui; Liu, Jiankang; Long, Jiangang

    2016-03-01

    Diet-induced nonalcoholic fatty liver disease (NAFLD) is characterized by profound lipid accumulation and associated with an inflammatory response, oxidative stress and hepatic mitochondrial dysfunction. We previously demonstrated that some mitochondrial nutrients effectively ameliorated high fat diet (HFD)-induced hepatic steatosis and metabolic disorders. Molecular hydrogen in hydrogen-rich liquid or inhaling gas, which has been confirmed in scavenging reactive oxygen species and preventing mitochondrial decay, improved metabolic syndrome in patients and animal models. Coral calcium hydride (CCH) is a new solid molecular hydrogen carrier made of coral calcium. However, whether and how CCH impacts HFD-induced hepatic steatosis remains uninvestigated. In the present study, we applied CCH to a HFD-induced NAFLD rat model for 13weeks. We found that CCH durably generated hydrogen in vivo and in vitro. CCH treatment significantly reduced body weight gain, improved glucose and lipid metabolism and attenuated hepatic steatosis in HFD-induced obese rats with no influence on food and water intake. Moreover, CCH effectively improved HFD-induced hepatic mitochondrial dysfunction, reduced oxidative stress, and activated phase II enzymes. Our results suggest that CCH is an efficient hydrogen-rich agent, which could prevent HFD-induced NAFLD via activating phase II enzymes and improving mitochondrial function. PMID:26774456

  13. Folic acid for the prevention of neural tube defects: the Danish experience.

    PubMed

    Olsen, Sjurdur F; Knudsen, Vibeke Kildegaard

    2008-06-01

    Evidence from controlled trials suggests that ingestion of 0.4 mg of folic acid per day in the periconceptional period is effective in preventing neural tube defects (NTD). For this reason, most countries recommend that women planning pregnancy take folic acid supplements in the periconceptional period, and some countries even fortify stable foods with folic acid. Denmark exemplifies a country with a relatively conservative attitude with respect to taking action in these matters. In 1999, a national information campaign was launched that recommended women planning pregnancy take 0.4 mg of folic acid periconceptionally, but with the moderation that women who eat a healthy diet do not need to take folic acid supplement. The campaign was repeated during 2001. The results of the latter campaign were evaluated by using data from a national survey among pregnant women conducted simultaneously with the campaign by the Danish National Birth Cohort. An increase in the proportion of folic acid users took place concomitantly with the launching of the information events, but the increase was limited. Among women who did not plan their pregnancy, a small proportion had taken folic acid supplements periconceptionally, and this proportion did not change concomitantly with the campaign. Young age and low education were factors associated with low likelihood of taking folic acid. It seems that different and more efficient actions are needed if a more substantial proportion of Danish women and their fetuses are going to benefit from the knowledge that folic acid supplementation in the periconceptional period can prevent NTD. PMID:18709894

  14. Effects of Benzoic Acid and Dietary Calcium:Phosphorus Ratio on Performance and Mineral Metabolism of Weanling Pigs

    PubMed Central

    Gutzwiller, A.; Schlegel, P.; Guggisberg, D.; Stoll, P.

    2014-01-01

    In a 2×2 factorial experiment the hypotheses tested were that the metabolic acid load caused by benzoic acid (BA) added to the feed affects bone mineralization of weanling pigs, and that a wide dietary calcium (Ca) to phosphorus (P) ratio in phytase-supplemented feeds with a marginal P concentration has a positive effect on bone mineralization. The four experimental diets, which contained 0.4% P and were supplemented with 1,000 FTU phytase/kg, contained either 5 g BA/kg or no BA and either 0.77% Ca or 0.57% Ca. The 68 four-week-old Large White pigs were fed the experimental diets ad libitum for six weeks and were then slaughtered. Benzoic acid increased feed intake (p = 0.009) and growth rate (p = 0.051), but did not influence the feed conversion ratio (p>0.10). Benzoic acid decreased the pH of the urine (p = 0.031), but did not affect breaking strength and mineralization of the tibia (p>0.10). The wide Ca:P ratio decreased feed intake (p = 0.034) and growth rate (p = 0.007) and impaired feed the conversion ratio (p = 0.027), but increased the mineral concentration in the fat-free DM of the tibia (p = 0.013) without influencing its breaking strength (p>0.10). The observed positive effect of the wide Ca:P ratio on bone mineralization may be attributed, at least in part, to the impaired feed conversion ratio, i.e. to the higher feed intake and consequently to the higher mineral intake per kg BW gain. The negative impact on animal performance of the wide dietary Ca:P ratio outweighs its potentially positive effect on bone mineralization, precluding its implementation under practical feeding conditions. PMID:25049984

  15. Effect of Acidic Environment on the Push-Out Bond Strength of Calcium-Enriched Mixture Cement

    PubMed Central

    Sobhnamayan, Fereshte; Sahebi, Safoora; Naderi, Misagh; Shojaee, Nooshin Sadat; Shanbezadeh, Najmeh

    2014-01-01

    Introduction: This laboratory study was performed to evaluate the effect of different acidic pH values on the push-out bond strength of calcium-enriched mixture (CEM) cement. Methods and Materials: Forty-eight root dentin slices were obtained from freshly extracted single rooted human teeth and their lumen were instrumented to achieve a diameter of 1.3 mm. Then, CEM cement was mixed according to manufacturers’ instruction and placed in the lumens with minimal pressure. The specimens were randomly divided into four groups (n=12) which were wrapped in pieces of gauze soaked in either synthetic tissue fluid (STF) (pH=7.4) or butyric acid which was buffered at pH values of 4.4, 5.4 and 6.4. They were then incubated for 4 days at 37°C. The push-out test was performed by means of the universal testing machine. Specimens were then examined under a digital light microscope at 20× magnification to determine the nature of the bond failure. The data were analyzed using the Kruskal-Wallis test followed by Dunn’s test for pairwise comparisons. Results: The highest push-out bond strength (10.19±4.39) was seen in the pH level of 6.4, which was significantly different from the other groups (P<0.05). The values decreased to 2.42±2.25 MPa after exposure to pH value of 4.4. Conclusion: Lower pH value of highly acidic environments (pH=4.4), adversely affects the force needed for displacement of CEM cement; while in higher pH values (pH=6.4) the bond-strength was not affected. CEM cement is recommended in clinical situations where exposure to acidic environment is unavoidable. PMID:25386207

  16. Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain.

    PubMed

    Liu, Ting-Wu; Wu, Fei-Hua; Wang, Wen-Hua; Chen, Juan; Li, Zhen-Ji; Dong, Xue-Jun; Patton, Janet; Pei, Zhen-Ming; Zheng, Hai-Lei

    2011-04-01

    We selected six tree species, Pinus massoniana Lamb., Cryptomeria fortunei Hooibr. ex Otto et Dietr., Cunninghamia lanceolata (Lamb.) Hook., Liquidambar formosana Hance, Pinus armandii Franch. and Castanopsis chinensis Hance, which are widely distributed as dominant species in the forest of southern China where acid deposition is becoming more and more serious in recent years. We investigated the effects and potential interactions between simulated acid rain (SiAR) and three calcium (Ca) levels on seed germination, radicle length, seedling growth, chlorophyll content, photosynthesis and Ca content in leaves of these six species. We found that the six species showed different responses to SiAR and different Ca levels. Pinus armandii and C. chinensis were very tolerant to SiAR, whereas the others were more sensitive. The results of significant SiAR??Ca interactions on different physiological parameters of the six species demonstrate that additional Ca had a dramatic rescue effect on the seed germination and seedling growth for the sensitive species under SiAR. Altogether, we conclude that the negative effects of SiAR on seed germination, seedling growth and photosynthesis of the four sensitive species could be ameliorated by Ca addition. In contrast, the physiological processes of the two tolerant species were much less affected by both SiAR and Ca treatments. This conclusion implies that the degree of forest decline caused by long-term acid deposition may be attributed not only to the sensitivity of tree species to acid deposition, but also to the Ca level in the soil. PMID:21470980

  17. Eicosapentaenoic Acid Versus Docosahexaenoic Acid as Options for Vascular Risk Prevention: A Fish Story.

    PubMed

    Singh, Sarabjeet; Arora, Rohit R; Singh, Mukesh; Khosla, Sandeep

    2016-01-01

    Vascular inflammation is a key component involved in the process of arthrosclerosis, which in turn increases the risk for cardiovascular injury. In the last 10 years, there have been many trials that looked at omega-3 fatty acids as a way to reduce cardiovascular risk. These trials observed the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the traditional lipid panel and found that both EPA and DHA reduce triglyceride (TG) level and increase high-density lipoprotein cholesterol (HDL-C) levels but also increase the low-density lipoprotein cholesterol (LDL-C) levels. In the 2 more recent trials, the MARINE and ANCHOR, EPA was given as an adjunct therapy to high-risk patients and not only was the traditional lipids measured but also examined the vascular inflammatory biomarkers. The results of these 2 trials not only showed reduction in cardiovascular risk because of reduction in vascular inflammation and reduction in the lipid panel but also showed that one of the MARINE-derived omega-3 fatty acid is superior to the other. Data search for omega-3 fatty acids and cardiovascular risk was performed, and articles were selected for review from 2006 to date. The research studies were all double-blind randomized trials except for one, which was a single-blind and focused on the effects of omega-3 fatty acids on the entire lipid panel. The participants received DHA/EPA and compared with a placebo group on the effect seen in the lipid panel. The first 7 studies looked at the effects of omega-3 fatty acids on TG, LDL-C, and HDL-C; of the 7, 1 directly compared DHA and EPA, 2 focused on EPA, and 4 were directed towards DHA alone. The MARINE and ANCHOR trials were more recent and also looked at the same parameter but also monitored vascular inflammatory biomarkers and how they were affected by omega-3 fatty acids. A second data search was performed for vascular biomarkers and cardiovascular risk, and articles that focused on high-sensitivity C-reactive protein and oxidized low-density lipoprotein were selected for review. Omega-3 fatty acids have shown to decrease TG level in multiple trials, but they have also shown to increase LDL and HDL levels, likely because omega-3 fatty acids promote TG conversion into HDL/LDL. The older data suggested that the benefits of omega-3 fatty acids are nullified by their effects on LDL levels. The data from the MARINE and ANCHOR trials have shown that EPA alone at 4 g per day has shown to decrease TG and total cholesterol without affecting the LDL levels. The earlier data showed that both EPA and DHA decreased TG level and increased levels of HDL-C, but that the DHA alone and direct comparison of DHA/EPA showed that DHA has more undesirable effects on LDL. Furthermore, the MARINE and ANCHOR trials have both shown that not only does EPA improve the lipid panel but also helps to decrease the levels of the vascular inflammatory biomarkers, thus further helping to decrease cardiovascular risk. The use of EPA as an adjunct therapy for high-risk patient has shown to help decrease cardiovascular risk. The reduction in risk is performed not only by decreasing TG but also by reducing vascular inflammation. Although because there are no randomized double-blind study looking at this, the research is inconclusive and requires further investigation. PMID:25828517

  18. The molecular characteristics of a human pancreatic acidic phosphoprotein that inhibits calcium carbonate crystal growth.

    PubMed Central

    De Caro, A; Multigner, L; Lafont, H; Lombardo, D; Sarles, H

    1984-01-01

    A CaCO3-crystal-growth inhibitor was isolated from human pancreatic stones by using EDTA demineralization, followed by DEAE-Trisacryl chromatography. The isolated inhibitor was found to be a phosphoglycoprotein with Mr 14017 and having an unusual chemical composition. It is characterized by a high (42%) acidic amino acid content, but lacks methionine and gamma-carboxyglutamic acid. The protein contains 2.65 mol of P/mol of protein, as phosphoserine (2 mol) and phosphothreonine (0.5 mol). Isoelectric focusing of the protein yields one major band corresponding to an isoelectric point of 4.2. Immunochemical quantification of the crystal-growth inhibitor in pure pancreatic juice reveals that it constitutes 14% of the normal exocrine secretion. Our findings demonstrate that this is a novel secretory protein, which has no enzymic activity and which maintains pancreatic juice in a supersaturated state with respect to CaCO3. Images Fig. 3. Fig. 4. PMID:6487269

  19. The effects of acid treatment and calcium ions on the solubility of concanavalin A

    NASA Technical Reports Server (NTRS)

    Cacioppo, Elizabeth; Pusey, Marc L.

    1992-01-01

    The effects of acid treatment (which removes Mn and Ca ions) and Ca(2+) ions on the solubility of jack-bean-meal concanavalin A were investigated using two techniques: the sitting drop technique and the microcolumn technique. It was found that the solubility of concanavalin A varied with the protein preparation procedures and with measurement techniques. Addition of Ca(2+) resulted in greatly lowered solubilities compared with the acid treated protein. The sitting drop solubilities for the recalcified protein agreed better with those reported by Mikol and Giege (1989) than with solubilities determined from column data.

  20. Role of intracellular calcium and NADPH oxidase NOX5-S in acid-induced DNA damage in Barrett's cells and Barrett's esophageal adenocarcinoma cells

    PubMed Central

    Li, Dan

    2014-01-01

    Mechanisms whereby acid reflux may accelerate the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. Acid and reactive oxygen species (ROS) have been reported to cause DNA damage in Barrett's cells. We have previously shown that NADPH oxidase NOX5-S is responsible for acid-induced H2O2 production in Barrett's cells and in EA cells. In this study we examined the role of intracellular calcium and NADPH oxidase NOX5-S in acid-induced DNA damage in a Barrett's EA cell line FLO and a Barrett's cell line CP-A. We found that pulsed acid treatment significantly increased tail moment in FLO and CP-A cells and histone H2AX phosphorylation in FLO cells. In addition, acid treatment significantly increased intracellular Ca2+ in FLO cells, an increase that is blocked by Ca2+-free medium with EGTA and thapsigargin. Acid-induced increase in tail moment was significantly decreased by NADPH oxidase inhibitor diphenylene iodonium in FLO cells, and by blockade of intracellular Ca2+ increase or knockdown of NOX5-S with NOX5 small-interfering RNA (siRNA) in FLO and CP-A cells. Acid-induced increase in histone H2AX phosphorylation was significantly decreased by NOX5 siRNA in FLO cells. Conversely, overexpression of NOX5-S significantly increased tail moment and histone H2AX phosphorylation in FLO cells. We conclude that pulsed acid treatment causes DNA damage via increase of intracellular calcium and activation of NOX5-S. It is possible that in BE acid reflux increases intracellular calcium, activates NOX5-S, and increases ROS production, which causes DNA damage, thereby contributing to the progression from BE to EA. PMID:24699332

  1. Folic Acid Supplementation and Pregnancy: More Than Just Neural Tube Defect Prevention

    PubMed Central

    Greenberg, James A; Bell, Stacey J; Guan, Yong; Yu, Yan-hong

    2011-01-01

    Folate (vitamin B9) is an essential nutrient that is required for DNA replication and as a substrate for a range of enzymatic reactions involved in amino acid synthesis and vitamin metabolism. Demands for folate increase during pregnancy because it is also required for growth and development of the fetus. Folate deficiency has been associated with abnormalities in both mothers (anemia, peripheral neuropathy) and fetuses (congenital abnormalities). This article reviews the metabolism of folic acid, the appropriate use of folic acid supplementation in pregnancy, and the potential benefits of folic acid, as well as the possible supplementation of l-methylfolate for the prevention of pregnancy-related complications other than neural tube defects. PMID:22102928

  2. Prevention of recurrent nephrolithiasis.

    PubMed

    Goldfarb, D S; Coe, F L

    1999-11-15

    The first episode of nephrolithiasis provides an opportunity to advise patients about measures for preventing future stones. Low fluid intake and excessive intake of protein, salt and oxalate are important modifiable risk factors for kidney stones. Calcium restriction is not useful and may potentiate osteoporosis. Diseases such as hyperparathyroidism, sarcoidosis and renal tubular acidosis should be considered in patients with nephrolithiasis. A 24-hour urine collection with measurement of the important analytes is usually reserved for use in patients with recurrent stone formation. In these patients, the major urinary risk factors include hypercalciuria, hyperoxaluria, hypocitraturia and hyperuricosuria. Effective preventive and treatment measures include thiazide therapy to lower the urinary calcium level, citrate supplementation to increase the urinary citrate level and, sometimes, allopurinol therapy to lower uric acid excretion. Uric acid stones are most often treated with citrate supplementation. Data now support the cost-effectiveness of evaluation and treatment of patients with recurrent stones. PMID:10593318

  3. Analysis of fish otoliths by electrothermal vaporization inductively coupled plasma mass spectrometry: aspects of precipitating otolith calcium with hydrofluoric acid for trace element determination.

    PubMed

    Arslan, Zikri

    2005-03-15

    A method is developed for determination of trace elements, including Ag, As, Cd, Co, Cr, Cu, Mn, Ni, Se, Tl and Zn, in fish otoliths by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). Hydrofluoric acid was used to precipitate calcium resulting from acid dissolution of otolith calcium carbonate. Initial acidity of the sample solution influenced the precipitation efficiency of calcium fluoride. Up to 99.5% of Ca was precipitated in solutions that contained less than 2% (v/v) HNO(3). Recoveries of the elements obtained from spiked artificial otolith solutions were between 90 and 103%. Stabilization of the elements within the ETV cell was achieved with 0.3mug Pd/0.2mug Rh chemical modifier that also afforded optimum sensitivity for multielement determination. The method was validated by the analysis of a fish otolith reference material (CRM) of emperor snapper, and then applied to the determination of the trace elements in otoliths of several fish species captured in Raritan Bay, New Jersey. Results indicated that fish physiology and biological processes could influence the levels of Cu, Mn, Se and Zn in the otoliths of fish inhabiting a similar aqueous environment. Otolith concentrations of Cr and Ni did not show any significant differences among different species. Concentrations for Ag, As, Cd, Co and Tl were also not significantly different, but were very low indicating low affinity of otolith calcium carbonate to these elements. PMID:18969949

  4. ALUMINUM SOLUBILITY, CALCIUM-ALUMINUM EXCHANGE, AND PH IN ACID FOREST SOILS

    EPA Science Inventory

    Important components in several models designed to describe the effects of acid deposition on soils and surface waters are the pH-A1 and Ca-A1 exchange relationships. f A1 solubility is controlled by A1 trihydroxide minerals, the theoretical pH-A1 relationship can be described by...

  5. Clinical and biochemical profile of patients with "pure" uric acid nephrolithiasis compared with "pure" calcium oxalate stone formers.

    PubMed

    Negri, Armando Luis; Spivacow, Rodolfo; Del Valle, Elisa; Pinduli, Irene; Marino, Alicia; Fradinger, Erich; Zanchetta, Jose Ruben

    2007-10-01

    The purpose of the present study was to compare the clinical characteristics of "pure" uric acid (UA) stone formers with that of "pure" calcium oxalate (CaOx) stone formers and to determine whether renal handling of UA, urinary pH, and urinary excretion of promoters and inhibitors of stone formation were different between the two groups. Study subjects comprised 59 patients identified by records of stone analysis: 30 of them had "pure" UA stones and 29 had "pure" CaOx nephrolithiasis. Both groups underwent full outpatient evaluation of stone risk analysis that included renal handling of UA and urinary pH. Compared to CaOx stone formers, UA stone formers were older (53.3 +/- 11.8 years vs. 44.5 +/- 10.0 years; P = 0.003); they had higher mean weight (88.6 +/- 12.5 kg vs. 78.0 +/- 11.0 kg; P = 0.001) and body mass index (29.5 +/- 4.2 kg/m(2) vs. 26.3 +/- 3.5 kg/m(2); P = 0.002) with a greater proportion of obese subjects (43.3% vs. 16.1%; P = 0.01). Patients with "pure" UA lithiasis had significantly lower UA clearance, UA fractional excretion, and UA/creatinine ratio, with significantly higher serum UA. The mean urinary pH was significantly lower in UA stone formers compared to CaOx stone formers (5.17 +/- 0.20 vs. 5.93 +/- 0.42; P < 0.0001). Patients with CaOx stones were a decade younger, having higher 24-h urinary calcium excretion (218.5 +/- 56.3 mg/24 h vs. 181.3 +/- 57.1 mg/24 h; P = 0.01) and a higher activity product index for CaOx [AP (CaOx) index]. Overweight/obesity and older age associated with low urine pH were the principal characteristic of "pure" UA stone formers. Impairment in urate excretion associated with increased serum UA was also another characteristic of UA stone formers that resembles patients with primary gout. Patients with pure CaOx stones were younger; they had a low proportion of obese subjects, a higher urinary calcium excretion, and a higher AP index for CaOx. PMID:17786420

  6. Soil calcium status and the response of stream chemistry to changing acidic deposition rates

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.; Lovett, G.M.; Murdoch, P.S.; Burns, D.A.; Stoddard, J.L.; Baldigo, B.P.; Porter, J.H.; Thompson, A.W.

    1999-01-01

    Despite a decreasing trend in acidic deposition rates over the past two to three decades, acidified surface waters in the northeastern United States have shown minimal changes. Depletion of soil Ca pools has been suggested as a cause, although changes in soil Ca pools have not been directly related to long-term records of stream chemistry. To investigate this problem, a comprehensive watershed study was conducted in the Neversink River Basin, in the Catskill Mountains of New York, during 1991-1996. Spatial variations of atmospheric deposition, soil chemistry, and stream chemistry were evaluated over an elevation range of 817-1234 m to determine whether these factors exhibited elevational patterns. An increase in atmospheric deposition of SO4 with increasing elevation corresponded with upslope decreases of exchangeable soil base concentrations and acid-neutralizing capacity of stream water. Exchangeable base concentrations in homogeneous soil incubated within the soil profile for one year also decreased with increasing elevation. An elevational gradient in precipitation was not observed, and effects of a temperature gradient on soil properties were not detected. Laboratory leaching experiments with soils from this watershed showed that (1) concentrations of Ca in leachate increased as the concentrations of acid anions in added solution increased, and (2) the slope of this relationship was positively correlated with base saturation. Field and laboratory soil analyses are consistent with the interpretation that decreasing trends in acid-neutralizing capacity in stream water in the Neversink Basin, dating back to 1984, are the result of decreases in soil base saturation caused by acidic deposition.

  7. Are conjugated linolenic acid isomers an alternative to conjugated linoleic acid isomers in obesity prevention?

    PubMed

    Miranda, Jonatan; Arias, Noemi; Fernández-Quintela, Alfredo; del Puy Portillo, María

    2014-04-01

    Despite its benefits, conjugated linoleic acid (CLA) may cause side effects after long-term administration. Because of this and the controversial efficacy of CLA in humans, alternative biomolecules that may be used as functional ingredients have been studied in recent years. Thus, conjugated linolenic acid (CLNA) has been reported to be a potential anti-obesity molecule which may have additional positive effects related to obesity. According to the results reported in obesity, CLNA needs to be given at higher doses than CLA to be effective. However, because of the few studies conducted so far, it is still difficult to reach clear conclusions about the potential use of these CLNAs in obesity and its related changes (insulin resistance, dyslipidemia, or inflammation). PMID:24029409

  8. Pretreatment of solid carbonaceous material with dicarboxylic aromatic acids to prevent scale formation

    DOEpatents

    Brunson, Roy J.

    1982-01-01

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by pretreatment with a pretreating agent selected from the group consisting of phthalic acid, phthalic anhydride, pyromellitic acid and pyromellitic anhydride. The pretreatment is believed to convert the scale-forming components to the corresponding phthalate and/or pyromellitate prior to liquefaction. The pretreatment is accomplished at a total pressure within the range from about 1 to about 2 atmospheres. Temperature during pretreatment will generally be within the range from about 5.degree. to about 80.degree. C.

  9. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Calcium alginate is prepared...

  10. Influence of citric acid as chemical modifier for lead determination in dietary calcium supplement samples by graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Cezar Paz de Mattos, Julio; Medeiros Nunes, Adriane; Figueiredo Martins, Ayrton; Luiz Dressler, Valderi; Marlon de Moraes Flores, Érico

    2005-06-01

    Citric acid was used as a chemical modifier for Pb determination by graphite furnace atomic absorption spectrometry in dietary supplement samples (calcium carbonate, dolomite and oyster shell samples) and its efficiency was compared to the use of palladium. Pyrolysis and atomization curves were established without use of chemical modifier, with the addition of 20, 100 and 200 μg of citric acid, and with 3 μg of palladium. The citric acid modifier made possible the interference-free Pb determination in the presence of high concentrations of Ca and Mg nitrates. Acid sample digestion involving closed vessels (microwave-assisted and conventional heating) and acid attack using polypropylene vessels at room temperature were compared. All digestion procedures presented similar results for calcium carbonate and dolomite samples. However, for oyster shell samples accurate results were obtained only with the use of closed vessel systems. Analyte addition and matrix-matched standards were used for calibration. The characteristic mass for Pb using citric acid and palladium were 16 and 25 pg, respectively. The relative standard deviation (RSD) was always less than 5% when citric acid was used. The relative and absolute limits of detection were 0.02 μg g - 1 and 8 pg with citric acid and 0.1 μg g - 1 and 44 pg with the Pd modifier, respectively ( n = 10, 3σ). The recovery of Pb in spiked calcium supplement samples (10 μg l - 1 ) was between 98% and 105%. With the use of 100 μg of citric acid as chemical modifier, problems such as high background absorption and high RSD values were minimized in comparison to the addition of 3 μg of palladium.

  11. Combined inhalational and oral supplementation of ascorbic acid may prevent influenza pandemic emergency: a hypothesis.

    PubMed

    Banerjee, Dibyajyoti; Kaul, Deepak

    2010-01-01

    Occurrence of influenza pandemics is a worldwide phenomenon and a significant cause of mortality and morbidity throughout the globe. It is due to mutations in the influenza virus genetic material creating antigenic drift of pathogenic viral proteins resulting in emergence of new influenza virus strains. Therefore, the vaccines available for prevention of influenza offer no protection against influenza pandemics caused by new virus strains. Moreover, the existing drugs used to combat influenza may be ineffective to treat influenza pandemics due to the emergence of drug resistance in the pandemic virus strain. Therefore, a working strategy must be developed to combat influenza pandemics. In this review we have addressed this problem and reviewed the published studies on ascorbic acid in the common cold and influenza and laboratory studies on the effect of ascorbic acid on influenza virus. We have also correlated the clinical and laboratory studies and developed a hypothesis to prevent influenza pandemics. PMID:20005468

  12. Regulation of nerve terminal calcium channel selectivity by a weak acid site.

    PubMed

    Nachshen, D A; Blaustein, M P

    1979-05-01

    The effects of low pH, and of alkaline earth cations, were examined on calcium uptake by pinched-off nerve terminals (synaptosomes). This uptake appears to be mediated by voltage-sensitive Ca channels (J. Physiol. 247:617, 1975). Ca uptake was measured in low (5 mM) or high (77 mM) potassium media. The extra uptake promoted by depolarizing (K-rich) media was almost maximal at pH 7.5, and decreased as the pH was lowered. Data relating depolarization-induced 45Ca uptake to pH fit a titration curve with a pKa approximately 6. Experiments in which Ca concentration and pH were both varied indicated that Ca2+ and H+ compete for a common binding site. Inhibition of depolarization-induced 45Ca uptake by the alkaline earth cations was studied to determine the apparent binding sequence for these cations in the Ca channels: Ca greater than Sr greater than Ba greater than Mg. This sequence resembles that observed for block of Ca channels in other preparations. The apparent binding sequence of the alkaline earth cations and the apparent pKa (approximately 6) of the Ca-binding site indicate that the Ca channel is a "high field strength" system. Protonation of a Ca channel binding site could explain the inhibitory effect of low pH on Ca-dependent neurotransmitter release (cf. Del Castillo et al., J. Cell. Comp. Physiol. 59:35, 1962). PMID:45400

  13. The Effect of Treatment of Acidosis on Calcium Balance in Patients with Chronic Azotemic Renal Disease*

    PubMed Central

    Litzow, John R.; Lemann, Jacob; Lennon, Edward J.

    1967-01-01

    Small but statistically significant negative calcium balances were found in each of eight studies in seven patients with chronic azotemic renal disease when stable metabolic acidosis was present. Only small quantities of calcium were excreted in the urine, but fecal calcium excretion equaled or exceeded dietary intake. Complete and continuous correction of acidosis by NaHCO3 therapy reduced both urinary and fecal calcium excretion and produced a daily calcium balance indistinguishable from zero. Apparent acid retention was found throughout the studies during acidosis, despite no further reduction of the serum bicarbonate concentration. The negative calcium balances that accompanied acid retention support the suggestion that slow titration of alkaline bone salts provides an additional buffer reservoir in chronic metabolic acidosis. The treatment of metabolic acidosis prevented further calcium losses but did not induce net calcium retention. It is suggested that the normal homeostatic responses of the body to the alterations in ionized calcium and calcium distribution produced by raising the serum bicarbonate might paradoxically retard the repair of skeletal calcium deficits. PMID:6018764

  14. Media calcification, low erythrocyte magnesium, altered plasma magnesium, and calcium homeostasis following grafting of the thoracic aorta to the infrarenal aorta in the rat--differential preventive effects of long-term oral magnesium supplementation alone and in combination with alkali.

    PubMed

    Schwille, P O; Schmiedl, A; Schwille, R; Brunner, P; Kissler, H; Cesnjevar, R; Gepp, H

    2003-03-01

    Calcifications in arterial media are clinically well documented, but the role played by magnesium in pathophysiology and therapy is uncertain. To clarify this, an animal model in which the juxtacardial aorta was grafted to the infrarenal aorta, and the subsequent calcifications in the media of the graft and their response to oral supplementation with three magnesium-containing and alkalinizing preparations was investigated. Groups of highly inbred rats were formed as follows: sham-operation (Sham, n = 12), aorta transplantation (ATx, n = 12), ATx + magnesium citrate (MgC, n = 12), ATx + MgC + potassium citrate (MgCPC, n = 12), ATx + MgC + MgCPC (MgCPCSB, n = 12). At 84 (+/-2) days after ATx with or without treatment the following observations were made: (1) weight gain and general status were normal; (2) ATx rats developed massive media calcification, mineral accumulation in the graft, decreased erythrocyte magnesium and plasma parathyroid hormone, and increased plasma ionized magnesium and calcium, and uric acid; (3) Mg-treated rats developed variable degrees of metabolic alkalosis, but only MgCPCSB supplementation prevented calcifications. Additional findings after ATx alone were: imbalance in endothelin and nitric oxide production, the mineral deposited in media was poorly crystallized calcium phosphate, calcium exchange between plasma and graft, and bone resorption were unchanged. The superior anti-calcification effect of MgCPCSB was characterized by complete restoration of normal extracellular mineral homeostasis and uric acid, but sub-optimal normalization of erythrocyte magnesium. It was concluded that in the rat: (1) ATx causes loss of cellular magnesium, excess of extracellular magnesium and calcium in the presence of apparently unchanged bone resorption, and increased uricemia; (2) ATx facilitates enhanced influx of calcium into vascular tissue, leading to calcium phosphate deposition in the media; (3) ATx-induced calcification is prevented by dietary supplementation with a combination of magnesium, alkali citrate and bases. Although the described circulatory model of media calcification in the rat requires further investigation, the data allow ascribing a fundamental role to magnesium and acid-base metabolism. PMID:12842494

  15. Removal of toxic metals from leachates from hazardous solid wastes and reduction of toxicity to microtox by the use of calcium alginate beads containing humic acid.

    PubMed

    Pandey, Ashok K; Pandey, Shri Dhar; Misra, Virendra

    2002-06-01

    Improper disposal of hazardous wastes can lead to release of potentially harmful substances through leaching such as heavy metals, which ultimately contaminate soil, sediment surface water, and groundwater through runoff. To remove these toxic metals and avoid any adverse effect on the ecosystem, a novel approach involving calcium alginate (CA) beads containing humic acid (HA) was used. For this, 10% leachates of the waste obtained from two major industrial units with electroplating processess were prepared at neutral pH and analyzed by atomic absorption spectrophotometry (AAS). Both leachates contained Cd, Cu, Cr, Ni, Mn, Fe, and Zn. The concentrations of Ni, Mn, Fe, and Zn in the waste were found to be significant. The leachates analyzed were passed through columns packed with calcium alginate beads with or without humic acid. The concentrations of various metals in beads and in different fractions collected after adsorption were measured. Data recorded indicate that calcium alginate beads containing humic acids are more efficient in removal of all metals in substantial amounts from the two leachates. Along with removal of metals, this process led to considerable detoxification of the leachates as tested by Microtox assay, indicated by earlier protection and higher EC(50). The significance of the results in relation to removal of toxic metals by beads containing humic acid is discussed. PMID:12061824

  16. Stimulated Efflux of Amino Acids and Glutathione from Cultured Hippocampal Slices by Omission of Extracellular Calcium

    PubMed Central

    Stridh, Malin H.; Tranberg, Mattias; Weber, Stephen G.; Blomstrand, Fredrik; Sandberg, Mats

    2008-01-01

    Omission of extracellular Ca2+ for 15 min from the incubation medium of cultured hippocampal slices stimulated the efflux of glutathione, phosphoethanolamine, hypotaurine, and taurine. The efflux was reduced by several blockers of gap junctions, i.e. carbenoxolone, flufenamic acid, and endothelin-1, and by the connexin43 hemichannel blocking peptide Gap26 but was unchanged by the P2X7 receptor inhibitor oxidized ATP, a pannexin1 hemichannel blocking peptide and an inactive analogue of carbenoxolone. Pretreatment of the slices with the neurotoxin N-methyl-d -aspartate left the efflux by Ca2+ omission unchanged, indicating that the stimulated efflux primarily originated from glia. Elevated glutamate efflux was detected when Ca2+ omission was combined with the glutamate uptake blocker l-trans-pyrrolidine-2,4-dicarboxylate and when both Ca2+ and Mg2+ were omitted from the medium. Omission of Ca2+ for 15 min alone did not induce delayed toxicity, but in combination with blocked glutamate uptake, significant cell death was observed 24 h later. Our results indicate that omission of extracellular Ca2+ stimulates efflux of glutathione and specific amino acids including glutamate via opening of glial hemichannels. This type of efflux may have protective functions via glutathione efflux but can aggravate toxicity in situations when glutamate reuptake is impaired, such as following a stroke. PMID:18272524

  17. [Alpha-tocopherol and alpha-lipoic acid. An antioxidant synergy with potential for preventive medicine].

    TOXLINE Toxicology Bibliographic Information

    González-Pérez O; Moy-López NA; Guzmán-Muñiz J

    2008-01-01

    Reactive oxygen species (ROS) have been involved in the induction and progression of damage of many human disorders, such as: heart infarction, cerebral ischemia, diabetic neuropathy, Alzheimer's disease, etc. In several studies, the synergism between alpha-lipoic acid and vitamin E has been described and potent antioxidant effects can be obtained when both antioxidants are simultaneously used. This review highlights recent findings showing that the combination of alpha-lipoic acid plus vitamin E effectively reduces oxidative damage in brain and cardiac ischemia as well as in other pathological events related to ROS increasing. These antioxidants are present in a broad variety of foods, are also available in several dietary supplements and their side effects are very rare. Therefore, alpha-lipoic acid and vitamin E may play an important role in clinical preventive medicine and human nutrition.

  18. Nanouric acid or nanocalcium phosphate as central nidus to induce calcium oxalate stone formation: a high-resolution transmission electron microscopy study on urinary nanocrystallites

    PubMed Central

    Gao, Jie; Xue, Jun-Fa; Xu, Meng; Gui, Bao-Song; Wang, Feng-Xin; Ouyang, Jian-Ming

    2014-01-01

    Purpose This study aimed to accurately analyze the relationship between calcium oxalate (CaOx) stone formation and the components of urinary nanocrystallites. Method High-resolution transmission electron microscopy (HRTEM), selected area electron diffraction, fast Fourier transformation of HRTEM, and energy dispersive X-ray spectroscopy were performed to analyze the components of these nanocrystallites. Results The main components of CaOx stones are calcium oxalate monohydrate and a small amount of dehydrate, while those of urinary nanocrystallites are calcium oxalate monohydrate, uric acid, and calcium phosphate. The mechanism of formation of CaOx stones was discussed based on the components of urinary nanocrystallites. Conclusion The formation of CaOx stones is closely related both to the properties of urinary nanocrystallites and to the urinary components. The combination of HRTEM, fast Fourier transformation, selected area electron diffraction, and energy dispersive X-ray spectroscopy could be accurately performed to analyze the components of single urinary nanocrystallites. This result provides evidence for nanouric acid and/or nanocalcium phosphate crystallites as the central nidus to induce CaOx stone formation. PMID:25258530

  19. Probiotic lactic acid bacteria and their potential in the prevention and treatment of allergic diseases

    PubMed Central

    Wróblewska, Paula; Adamczuk, Piotr; Silny, Wojciech

    2014-01-01

    Allergy is one of the most important and very common health problems worldwide. To reduce the proportion of people suffering from allergy, alternative methods of prevention and treatment are sought. The aim of this paper is to present the possibilities of probiotics in the prevention and treatment of allergic diseases. Probiotics are live microorganisms belonging mainly to the lactic acid bacteria. They modify the microflora of the human digestive system, especially the intestinal microflora. Prophylactic administration of probiotics in the early stages of life (naturally in breast milk or milk substitute synthetic compounds) is very important because intestinal microflora plays a huge role in the development of the immune system. Prevention of allergies as early as in the prenatal and postnatal periods provides huge opportunities for inhibiting the growing problem of allergy in emerging and highly developed societies. Effects of probiotic therapy depend on many factors such as the species of the microorganism used, the dose size and characteristics of the bacteria such as viability and capacity of adhesion to the intestinal walls. Authors of several studies showed beneficial effects of probiotics in the perinatal period, infancy, and also in adults in the prevention of atopic dermatitis or allergic rhinitis. Probiotics, due to their immunomodulatory properties and safety of use are a good, natural alternative for the prevention and treatment of many diseases including allergies. It is therefore important to explore the knowledge about their use and to carry out further clinical trials. PMID:26155109

  20. Probiotic lactic acid bacteria and their potential in the prevention and treatment of allergic diseases.

    PubMed

    ?ukiewicz-Sobczak, Wioletta; Wrblewska, Paula; Adamczuk, Piotr; Silny, Wojciech

    2014-01-01

    Allergy is one of the most important and very common health problems worldwide. To reduce the proportion of people suffering from allergy, alternative methods of prevention and treatment are sought. The aim of this paper is to present the possibilities of probiotics in the prevention and treatment of allergic diseases. Probiotics are live microorganisms belonging mainly to the lactic acid bacteria. They modify the microflora of the human digestive system, especially the intestinal microflora. Prophylactic administration of probiotics in the early stages of life (naturally in breast milk or milk substitute synthetic compounds) is very important because intestinal microflora plays a huge role in the development of the immune system. Prevention of allergies as early as in the prenatal and postnatal periods provides huge opportunities for inhibiting the growing problem of allergy in emerging and highly developed societies. Effects of probiotic therapy depend on many factors such as the species of the microorganism used, the dose size and characteristics of the bacteria such as viability and capacity of adhesion to the intestinal walls. Authors of several studies showed beneficial effects of probiotics in the perinatal period, infancy, and also in adults in the prevention of atopic dermatitis or allergic rhinitis. Probiotics, due to their immunomodulatory properties and safety of use are a good, natural alternative for the prevention and treatment of many diseases including allergies. It is therefore important to explore the knowledge about their use and to carry out further clinical trials. PMID:26155109

  1. Prevention of neural tube defects with folic acid: The Chinese experience

    PubMed Central

    Ren, Ai-Guo

    2015-01-01

    Neural tube defects (NTDs) are a group of congenital malformations of the central nervous system that are caused by the closure failure of the embryonic neural tube by the 28th day of conception. Anencephaly and spina bifida are the two major subtypes. Fetuses with anencephaly are often stillborn or electively aborted due to prenatal diagnosis, or they die shortly after birth. Most infants with spina bifida are live-born and, with proper surgical treatment, can survive into adulthood. However, these children often have life-long physical disabilities. China has one of the highest prevalence of NTDs in the world. Inadequate dietary folate intake is believed to be the main cause of the cluster. Unlike many other countries that use staple fortification with folic acid as the public health strategy to prevent NTDs, the Chinese government provides all women who have a rural household registration and who plan to become pregnant with folic acid supplements, free of charge, through a nation-wide program started in 2009. Two to three years after the initiation of the program, the folic acid supplementation rate increased to 85% in the areas of the highest NTD prevalence. The mean plasma folate level of women during early and mid-pregnancy doubled the level before the program was introduced. However, most women began taking folic acid supplements when they knew that they were pregnant. This is too late for the protection of the embryonic neural tube. In a post-program survey of the women who reported folic acid supplementation, less than a quarter of the women began taking supplements prior to pregnancy, indicating that the remaining three quarters of the fetuses remained unprotected during the time of neural tube formation. Therefore, staple food fortification with folic acid should be considered as a priority in the prevention of NTDs. PMID:26261765

  2. Prevention of neural tube defects with folic acid: The Chinese experience.

    PubMed

    Ren, Ai-Guo

    2015-08-01

    Neural tube defects (NTDs) are a group of congenital malformations of the central nervous system that are caused by the closure failure of the embryonic neural tube by the 28(th) day of conception. Anencephaly and spina bifida are the two major subtypes. Fetuses with anencephaly are often stillborn or electively aborted due to prenatal diagnosis, or they die shortly after birth. Most infants with spina bifida are live-born and, with proper surgical treatment, can survive into adulthood. However, these children often have life-long physical disabilities. China has one of the highest prevalence of NTDs in the world. Inadequate dietary folate intake is believed to be the main cause of the cluster. Unlike many other countries that use staple fortification with folic acid as the public health strategy to prevent NTDs, the Chinese government provides all women who have a rural household registration and who plan to become pregnant with folic acid supplements, free of charge, through a nation-wide program started in 2009. Two to three years after the initiation of the program, the folic acid supplementation rate increased to 85% in the areas of the highest NTD prevalence. The mean plasma folate level of women during early and mid-pregnancy doubled the level before the program was introduced. However, most women began taking folic acid supplements when they knew that they were pregnant. This is too late for the protection of the embryonic neural tube. In a post-program survey of the women who reported folic acid supplementation, less than a quarter of the women began taking supplements prior to pregnancy, indicating that the remaining three quarters of the fetuses remained unprotected during the time of neural tube formation. Therefore, staple food fortification with folic acid should be considered as a priority in the prevention of NTDs. PMID:26261765

  3. Calcium Oscillations

    PubMed Central

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlying mechanism of calcium oscillations through the power of mathematical modeling. We also summarize recent findings on the role of calcium entry through store-operated channels in sustaining calcium oscillations and in the mechanism by which calcium oscillations couple to downstream effectors. PMID:21421924

  4. Vasodilation by in vivo activation of astrocyte endfeet via two-photon calcium uncaging as a strategy to prevent brain ischemia

    NASA Astrophysics Data System (ADS)

    Chen, Yuanxin; Mancuso, James; Zhao, Zhen; Li, Xuping; Cheng, Jie; Roman, Gustavo; Wong, Stephen T. C.

    2013-12-01

    Decreased cerebral blood flow causes brain ischemia and plays an important role in the pathophysiology of many neurodegenerative diseases, including Alzheimer's disease and vascular dementia. In this study, we photomodulated astrocytes in the live animal by a combination of two-photon calcium uncaging in the astrocyte endfoot and in vivo imaging of neurovasculature and astrocytes by intravital two-photon microscopy after labeling with cell type specific fluorescent dyes. Our study demonstrates that photomodulation at the endfoot of a single astrocyte led to a 25% increase in the diameter of a neighboring arteriole, which is a crucial factor regulating cerebral microcirculation in downstream capillaries. Two-photon uncaging in the astrocyte soma or endfoot near veins does not show the same effect on microcirculation. These experimental results suggest that infrared photomodulation on astrocyte endfeet may be a strategy to increase cerebral local microcirculation and thus prevent brain ischemia.

  5. Comparative Proteomic Analysis Reveals the Effects of Exogenous Calcium against Acid Rain Stress in Liquidambar formosana Hance Leaves.

    PubMed

    Hu, Wen-Jun; Wu, Qian; Liu, Xiang; Shen, Zhi-Jun; Chen, Juan; Liu, Ting-Wu; Chen, Juan; Zhu, Chun-Quan; Wu, Fei-Hua; Chen, Lin; Wei, Jia; Qiu, Xiao-Yun; Shen, Guo-Xin; Zheng, Hai-Lei

    2016-01-01

    Acid rain (AR) impacts forest health by leaching calcium (Ca) away from soils and plants. Ca is an essential element and participates in various plant physiological responses. In the present study, the protective role of exogenous Ca in alleviating AR stress in Liquidambar formosana Hance at the physiological and proteomic levels was examined. Our results showed that low Ca condition resulted in the chlorophyll content and photosynthesis decreasing significantly in L. formosana leaves; however, these effects could be reversed by high Ca supplementation. Further proteomic analyses successfully identified 81 differentially expressed proteins in AR-treated L. formosana under different Ca levels. In particular, some of the proteins are involved in primary metabolism, photosynthesis, energy production, antioxidant defense, transcription, and translation. Moreover, quantitative real time polymerase chain reaction (qRT-PCR) results indicated that low Ca significantly increased the expression level of the investigated Ca-related genes, which can be reversed by high Ca supplementation under AR stress. Further, Western blotting analysis revealed that exogenous Ca supply reduced AR damage by elevating the expression of proteins involved in the Calvin cycle, reactive oxygen species (ROS) scavenging system. These findings allowed us to better understand how woody plants respond to AR stress at various Ca levels and the protective role of exogenous Ca against AR stress in forest tree species. PMID:26616104

  6. A Combination of Biphasic Calcium Phosphate Scaffold with Hyaluronic Acid-Gelatin Hydrogel as a New Tool for Bone Regeneration

    PubMed Central

    Nguyen, Thuy Ba Linh

    2014-01-01

    A novel bone substitute was fabricated to enhance bone healing by combining ceramic and polymer materials. In this study, Hyaluronic acid (HyA)–Gelatin (Gel) hydrogel was loaded into a biphasic calcium phosphate (BCP) ceramic, and the resulting scaffold, with unique micro- and macroporous orientation, was evaluated for bone regeneration applications. The fabricated scaffold showed high interconnected porosity, with an average compressive strength of 2.8±0.15 MPa, which is usually recommended for cancellous bone substitution. In vitro cytocompatibility studies were conducted using bone marrow mesenchymal stem cells. The HyA-Gel–loaded BCP scaffold resulted in a significant increase in cell proliferation at 3 (p<0.05) and 7 days (p<0.001) and high alkaline phosphatase activities at 14 and 21 days. Furthermore, the in vivo studies showed that the implanted HyA-Gel–loaded BCP scaffold begins to degrade within 3 months after implantation. Histological sections also confirmed a rapid new bone formation and a high rate of collagen mineralization. A bone matrix formation was confirmed by positive immunohistochemistry staining of osteopontin, osteocalcin, and collagen type I. In vivo expression of extracellular matrix proteins demonstrated that this novel bone substitute holds great promise for use in stimulating new bone regeneration. PMID:24517159

  7. Surface modification of superparamagnetic iron nanoparticles with calcium salt of poly({gamma}-glutamic acid) as coating material

    SciTech Connect

    Kumar, Ramesh; Inbaraj, B. Stephen; Chen, B.H.

    2010-11-15

    Surface-modified magnetite nanoparticles (MNPs) were synthesized by co-precipitation of aqueous solution of ferrous and ferric salts (molar ratio 1:2) upon adding a base followed by calcium salt of poly({gamma}-glutamic acid) (Ca-{gamma}-PGA) for uniform coating on the surface of MNPs. Both uncoated and Ca-{gamma}-PGA-coated MNPs were characterized using various techniques including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and vibrating sample magnetometric (VSM) studies. Compared with bare MNPs, the IR spectra of coated MNPs showed characteristic peaks of {gamma}-PGA, implying the {gamma}-PGA coating on MNPs did occur. The TEM images depicted an average size of 8-10 nm for bare MNPs and 14 nm for coated MNPs, with their shape being spherical in nature. In the presence of applied magnetic field, a superparamagnetic behavior was observed at room temperature for both bare and Ca-{gamma}-PGA-coated MNPs, with no magnetism left upon magnetic-field removal.

  8. Calcium-dependent protein kinases, CDPK4 and CDPK5, affect early steps of jasmonic acid biosynthesis in Nicotiana attenuata.

    PubMed

    Hettenhausen, Christian; Yang, Da-Hai; Baldwin, Ian T; Wu, Jianqiang

    2013-01-01

    Calcium-dependent protein kinases (CDPKs) modulate plant development and growth and are important regulators of biotic and abiotic stress responses. Recently it was found that simultaneously silencing Nicotiana attenuata NaCDPK4 and NaCDPK5 (IRcdpk4/5 plants) results in accumulation of exceptionally high JA levels after wounding or simulated herbivory treatments, which in turn induced high levels of defense metabolites that slowed the growth of Manduca sexta, a specialist insect herbivore. To investigate the mechanism by which NaCDPK4 and NaCDPK5 regulate JA accumulation, we analyzed the transcript levels of all important enzymes involved in JA biosynthesis, but these genes showed no differences between wild-type and IRcdpk4/5 plants. Moreover, the dynamics of JA were similar between these plants, excluding the possibility of decreased degradation rates in IRcdpk4/5 plants. To gain insight into the mechanism by which NaCDPK4 and NaCDPK5 regulate JA biosynthesis, free fatty acids, including C18:3, and (9S,13S)-12-oxo-phytodienoic acid (OPDA), two important precursors of JA were quantified at different times before and after wounding and simulated herbivore feeding treatments. We show that after these treatments, IRcdpk4/5 plants have decreased levels of C18:3, but have enhanced OPDA and JA levels, suggesting that NaCDPK4 and NaCDPK5 have a role in the early steps of JA biosynthesis. The possible role of NaCDPK4 and NaCDPK5 regulating AOS and AOC enzymatic activity is discussed. PMID:23221744

  9. An acidic peptide sequence of nucleolin-related protein can mediate the attachment of calcium oxalate to renal tubule cells.

    PubMed

    Sorokina, Elena A; Wesson, Jeffrey A; Kleinman, Jack G

    2004-08-01

    Crystals that form in tubular fluid must be retained in the kidney to become stones. Nucleolin-related protein (NRP) is found on the surface of inner medullary collecting duct (IMCD) cells in culture (cIMCD) and selectively adsorbs to calcium oxalate (CaOx). We proposed that NRP mediates attachment to the renal tubular epithelium of Ca stone crystals through an electrostatic interaction with a highly acidic region (acidic fragment [AF]) similar to those of other proteins that have been reported to affect urinary crystal formation. The current studies demonstrate that nucleolin is expressed on both apical and basolateral cell surfaces of cIMCD, reaching a peak in the late stages of mitosis and gradually declining to undetectable levels with maturation of the polarized epithelium. Scraping areas of mature monolayers stimulated the cells surrounding the defects to migrate and proliferate so as to repair them, and these areas demonstrate surface NRP expression and enhanced attachment of CaOx monohydrate crystals. Surface expression of the NRP AF was produced by cloning the NRP AF into a display vector. Transfected cIMCD demonstrating copious surface expression of AF enhanced CaOx attachment 6.7-fold compared with control cIMCD, whereas cells transfected with a vector without the AF did not differ from control. AF was also cloned into a replication-deficient adenovirus and expressed in 293 cells, resulting in AF secretion into the nutrient medium. This medium inhibited CaOx attachment to cIMCD, compared with conditioned medium from cells infected with wild-type virus. These results demonstrate that surface-bound AF can mediate CaOx attachment and that secreted AF can inhibit attachment. These results support the notion that surface-associated NRP could mediate attachment of CaOx to the renal tubule epithelium, thereby causing retention of crystals that might eventually become kidney stones. PMID:15284292

  10. Effects of calcium hydroxide and calcium chloride addition to bentonite in iron ore pelletization.

    TOXLINE Toxicology Bibliographic Information

    Tugrul N; Derun EM; Pi?kin M

    2006-10-01

    Pyrite ash is created as waste from the roasting of pyrite ores during the production of sulphuric acid. These processes generate great amounts of pyrite ash waste that is generally land filled. This creates serious environmental pollution due to the release of acids and toxic substances. Pyrite ash waste can be utilized in the iron production industry as a blast furnace feed to process this waste and prevent environmental pollution. The essential parameters affecting the pelletization process of pyrite ash were studied using bentonite as a binder. Experiments were then carried out using bentonite and a mixture of bentonite with calcium hydroxide and calcium chloride in order to make the bentonite more effective. The metallurgical properties of pyrite ash, bentonite, calcium hydroxide, calcium chloride, a mixture of these and sintered pellets were studied using X-ray analysis. The crushing strength tests were carried out to investigate the strength of pyrite ash waste pellets. The results of these analyses showed that pyrite ash can be agglomerated to pellets and used in the iron production industry as a blast furnace feed. The crushing strength of the pellets containing calcium hydroxide and calcium chloride in addition to bentonite was better than the strength of pellets prepared using only bentonite binder.

  11. Effects of calcium hydroxide and calcium chloride addition to bentonite in iron ore pelletization.

    PubMed

    Tugrul, Nurcan; Derun, Emek Moroydor; Pişkin, Mehmet

    2006-10-01

    Pyrite ash is created as waste from the roasting of pyrite ores during the production of sulphuric acid. These processes generate great amounts of pyrite ash waste that is generally land filled. This creates serious environmental pollution due to the release of acids and toxic substances. Pyrite ash waste can be utilized in the iron production industry as a blast furnace feed to process this waste and prevent environmental pollution. The essential parameters affecting the pelletization process of pyrite ash were studied using bentonite as a binder. Experiments were then carried out using bentonite and a mixture of bentonite with calcium hydroxide and calcium chloride in order to make the bentonite more effective. The metallurgical properties of pyrite ash, bentonite, calcium hydroxide, calcium chloride, a mixture of these and sintered pellets were studied using X-ray analysis. The crushing strength tests were carried out to investigate the strength of pyrite ash waste pellets. The results of these analyses showed that pyrite ash can be agglomerated to pellets and used in the iron production industry as a blast furnace feed. The crushing strength of the pellets containing calcium hydroxide and calcium chloride in addition to bentonite was better than the strength of pellets prepared using only bentonite binder. PMID:17121116

  12. Vascular composition data supporting the role of N-3 polyunsaturated fatty acids in the prevention of cardiovascular disease events

    PubMed Central

    Ohwada, Takayuki; Yokokawa, Tetsuro; Kanno, Yuki; Hotsuki, Yu; Sakamoto, Takayuki; Watanabe, Kenichi; Nakazato, Kazuhiko; Takeishi, Yasuchika

    2016-01-01

    N-3 polyunsaturated fatty acids (PUFAs) are thought to have protective effects against cardiovascular disease. Here, we report the relationship between serum PUFA concentrations and plaque composition, as evaluated by virtual histology-intravascular ultrasound (VH-IVUS). Consecutive patients (n=61) who underwent percutaneous coronary intervention (PCI) were pre-operatively examined using VH-IVUS to assess the composition of culprit plaques. Gray-scale IVUS and VH-IVUS data of fibrous, fibro-fatty, necrotic core, and dense calcium regions of plaques were estimated at the minimal luminal area sites of culprit lesions. Serum levels of high-sensitivity C-reactive protein (hsCRP) and PUFAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA), were compared between patients with (ACS, n=27) and without acute coronary syndrome (non-ACS, n=34) before PCI. Multiple logistic regression analysis of the data showed that EPA/AA under the median was more highly associated with ACS than hsCRP over the median. In addition, EPA/AA was negatively correlated with the percentage of fibrous plaque regions and EPA/AA and DHA/AA were positively correlated with the percentage of dense calcium regions in plaques. Furthermore, the correlation index of EPA/AA was the most highly (R=0.513) correlated with the percentage of dense calcium regions in plaques. PMID:27222841

  13. Vascular composition data supporting the role of N-3 polyunsaturated fatty acids in the prevention of cardiovascular disease events.

    PubMed

    Ohwada, Takayuki; Yokokawa, Tetsuro; Kanno, Yuki; Hotsuki, Yu; Sakamoto, Takayuki; Watanabe, Kenichi; Nakazato, Kazuhiko; Takeishi, Yasuchika

    2016-06-01

    N-3 polyunsaturated fatty acids (PUFAs) are thought to have protective effects against cardiovascular disease. Here, we report the relationship between serum PUFA concentrations and plaque composition, as evaluated by virtual histology-intravascular ultrasound (VH-IVUS). Consecutive patients (n=61) who underwent percutaneous coronary intervention (PCI) were pre-operatively examined using VH-IVUS to assess the composition of culprit plaques. Gray-scale IVUS and VH-IVUS data of fibrous, fibro-fatty, necrotic core, and dense calcium regions of plaques were estimated at the minimal luminal area sites of culprit lesions. Serum levels of high-sensitivity C-reactive protein (hsCRP) and PUFAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA), were compared between patients with (ACS, n=27) and without acute coronary syndrome (non-ACS, n=34) before PCI. Multiple logistic regression analysis of the data showed that EPA/AA under the median was more highly associated with ACS than hsCRP over the median. In addition, EPA/AA was negatively correlated with the percentage of fibrous plaque regions and EPA/AA and DHA/AA were positively correlated with the percentage of dense calcium regions in plaques. Furthermore, the correlation index of EPA/AA was the most highly (R=0.513) correlated with the percentage of dense calcium regions in plaques. PMID:27222841

  14. Crystal growth of calcium carbonate on the cellulose acetate/pyrrolidon blend films in the presence of L-aspartic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuzhen; Xie, Anjian; Huang, Fangzhi; Shen, Yuhua

    2014-03-01

    The morphogenesis and growth process of calcium carbonate on the cellulose acetate/polyvinyl pyrrolidone (CA/PVP) blend films in the presence of L-aspartic acid was carefully investigated. The results showed that the concentration of L-aspartic acid, the initial pH value of reaction solution and temperature turned out to be important factors for the control of morphologies and polymorphs of calcium carbonate. Complex morphologies of CaCO3 particles, such as cubes, rose-like spheres, twinborn-spheres, cone-like, bouquet-like, etc. could be obtained under the different experimental conditions. The dynamic process of formation of rose-like sphere crystals was analyzed by monitoring the continuous morphological and structural evolution and components of crystals in different crystal stages. This research may provide a promising method to prepare other inorganic materials with complex morphologies.

  15. Gentamicin-loaded poly(lactic-co-glycolic acid) microparticles for the prevention of maxillofacial and orthopedic implant infections.

    PubMed

    Flores, Claudia; Degoutin, Stephanie; Chai, Feng; Raoul, Gwenael; Hornez, Jean-Chritophe; Martel, Bernard; Siepmann, Juergen; Ferri, Joel; Blanchemain, Nicolas

    2016-07-01

    Trauma and orthopedic surgery can cause infections as any open surgical procedures. Such complications occur in only1 to 5% of the cases, but the treatment is rather complicated due to bacterial biofilm formation and limited drug access to the site of infection upon systemic administration. An interesting strategy to overcome this type of complications is to prevent bacterial proliferation and biofilm formation via the local and controlled release of antibiotic drugs from the implant itself. Obviously, the incorporation of the drug into the implant should not affect the latter's biological and mechanical properties. In this context, we optimized the preparation process for gentamicin-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles, which can be incorporated in the macropores of calcium phosphate-based bone substitutes. Microparticles were prepared using a double emulsion solvent extraction/evaporation technique. The processing parameters were optimized in order to provide an average microparticle size of about 60μm, allowing for incorporation inside the macropores (100μm) of the hydroxyapatite scaffold. Gentamicin-loaded PLGA microparticles showed a sustained release for 25-30days and a rapid antibacterial activity due to a burst effect, the extent of which was controlled by the initial loading of the microparticles. SEM pictures revealed a highly porous microparticle structure, which can help to reduce the micro environmental pH drop and autocatalytic effects. The biological evaluation showed the cytocompatibility and non-hemolytic property of the microparticles, and the antibacterial activity against Staphylococcus aureus under the given conditions. PMID:27127034

  16. EE-drospirenone-levomefolate calcium versus EE-drospirenone + folic acid: folate status during 24 weeks of treatment and over 20 weeks following treatment cessation

    PubMed Central

    Diefenbach, Konstanze; Trummer, Dietmar; Ebert, Frank; Lissy, Michael; Koch, Manuela; Rohde, Beate; Blode, Hartmut

    2013-01-01

    Background Adequate folate supplementation in the periconceptional phase is recommended to reduce the risk of neural tube defects. Oral contraceptives may provide a reasonable delivery vehicle for folate supplementation before conception in women of childbearing potential. This study aimed to demonstrate that a fixed-dose combination of an oral contraceptive and levomefolate calcium leads to sustainable improvements in folate status compared with an oral contraceptive + folic acid. Methods This was a double-blind, randomized, parallel-group study in which 172 healthy women aged 1840 years received ethinylestradiol (EE)-drospirenone-levomefolate calcium or EE-drospirenone + folic acid for 24 weeks (invasion phase), and EE-drospirenone for an additional 20 weeks (folate elimination phase). The main objective of the invasion phase was to examine the area under the folate concentration time-curve for plasma and red blood cell (RBC) folate, while the main objective of the elimination phase was to determine the duration of time for which RBC folate concentration remained ? 906 nmol/L after cessation of EE-drospirenone-levomefolate calcium. Results Mean concentration-time curves for plasma folate, RBC folate, and homocysteine were comparable between treatment groups during both study phases. During the invasion phase, plasma and RBC folate concentrations increased and approached steady-state after about 8 weeks (plasma) or 24 weeks (RBC). After cessation of treatment with levomefolate calcium, folate concentrations decreased slowly. The median time to RBC folate concentrations falling below 906 nmol/L was 10 weeks (95% confidence interval 812 weeks) after cessation of EE-drospirenone-levomefolate calcium treatment. Plasma and RBC folate levels remained above baseline values in 41.3% and 89.3% of women, respectively, at the end of the 20-week elimination phase. Conclusion Improvements in folate status were comparable between EE-drospirenone-levomefolate calcium and EE-drospirenone + folic acid. Plasma and RBC folate levels remained elevated for several months following cessation of treatment with EE-drospirenone-levomefolate calcium. PMID:23610531

  17. Calcium affecting protein expression in longan under simulated acid rain stress.

    PubMed

    Pan, Tengfei; Li, Yongyu; Ma, Cuilan; Qiu, Dongliang

    2015-08-01

    Longan (Dimocarpus longana Lour. cv. Wulongling) of uniform one-aged seedlings grown in pots were selected to study specific proteins expressed in leaves under simulated acid rain (SiAR) stress and exogenous Ca(2+) regulation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that there was a protein band specifically expressed under SiAR of pH 2.5 stress for 15 days with its molecular weight of about 23 kD. A 17 kD protein band specifically expressed after SiAR stress 5 days. Compared with pH 2.5, the pH 3.5 of SiAR made a less influence to protein expression. Two-dimensional electrophoresis (2-DE) results showed that six new specific proteins including C4 (20.2 kD pI 6.0), F (24 kD pI 6.35), B3 (22.3 kD pI 6.35), B4 (23.5 kD pI 6.5), C5 (21.8 kD pI 5.6), and C6 (20.2 kD pI 5.6) specifically expressed. C4 always expressed during SiAR stress. F expressed under the stress of pH 2.5 for 15 days and expressed in all pH SiAR stress for 20 days. The expression of proteins including B3, C5, and C6 was related to pH value and stress intensity of SiAR. The expression of B4 resulted from synergistic effects of SiAR and Ca. The expression of G1 (Mr 19.3 kD, pI 4.5), G2 (Mr 17.8 kD, pI 4.65), G3 (Mr 16.6 kD, pI 4.6), and G4 (Mr 14.7 kD, pI 4.4) enhanced under the treatment of 5 mM ethylene glycol tetraacetic acid (EGTA) and 2 mM chlorpromazine (CPZ). These proteins showed antagonistic effects and might be relative to the Ca-calmodulin (Ca-CaM) system of longan in response to SiAR stress. PMID:25893616

  18. ShineDalgarno interaction prevents incorporation of noncognate amino acids at the codon following the AUG

    PubMed Central

    Di Giacco, Viviana; Mrquez, Viter; Qin, Yan; Pech, Markus; Triana-Alonso, Francisco J.; Wilson, Daniel N.; Nierhaus, Knud H.

    2008-01-01

    During translation, usually only one in ?400 misincorporations affects the function of a nascent protein, because only chemically similar near-cognate amino acids are misincorporated in place of the cognate one. The deleterious misincorporation of a chemically dissimilar noncognate amino acid during the selection process is precluded by the presence of a tRNA at the ribosomal E-site. However, the selection of first aminoacyl-tRNA, directly after initiation, occurs without an occupied E-site, i.e., when only the P-site is filled with the initiator tRNA and thus should be highly error-prone. Here, we show how bacterial ribosomes have solved this accuracy problem: In the absence of a ShineDalgarno (SD) sequence, the first decoding step at the A-site after initiation is extremely error-prone, even resulting in the significant incorporation of noncognate amino acids. In contrast, when a SD sequence is present, the incorporation of noncognate amino acids is not observed. This is precisely the effect that the presence of a cognate tRNA at the E-site has during the elongation phase. These findings suggest that during the initiation phase, the SD interaction functionally compensates for the lack of codonanticodon interaction at the E-site by reducing the misincorporation of near-cognate amino acids and prevents noncognate misincorporation. PMID:18667704

  19. The Role of n-3 Polyunsaturated Fatty Acids in the Prevention and Treatment of Breast Cancer

    PubMed Central

    Liu, Jiajie; Ma, David W. L.

    2014-01-01

    Breast cancer (BC) is the most common cancer among women worldwide. Dietary fatty acids, especially n-3 polyunsaturated fatty acids (PUFA), are believed to play a role in reducing BC risk. Evidence has shown that fish consumption or intake of long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for inhibiting mammary carcinogenesis. The evidence regarding α-linolenic acid (ALA), however, remains equivocal. It is essential to clarify the relation between ALA and cancer since ALA is the principal source of n-3 PUFA in the Western diet and the conversion of ALA to EPA and DHA is not efficient in humans. In addition, the specific anticancer roles of individual n-3 PUFA, alone, have not yet been identified. Therefore, the present review evaluates ALA, EPA and DHA consumed individually as well as in n-3 PUFA mixtures. Also, their role in the prevention of BC and potential anticancer mechanisms of action are examined. Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research. PMID:25412153

  20. Production of sulfuric acid using thermo-acidophilic microorganisms for use in scale prevention

    SciTech Connect

    Hirowatari, K.; Kusaba, S.; Takeuchi, K.; Fujioka, Y.

    1997-12-31

    Silica scale deposition often causes serious problems in geothermal power stations. It has already been known that silica scale deposition is prevented by keeping the pH of the brine acidic. On the other hand, several countries make regulation for mitigation of H{sub 2}S emission from geothermal power stations. From these backgrounds, the H{sub 2}SO{sub 4} production process using the H{sub 2}S in the gas exhausted from geothermal power station are proposed. Therefore, applicability of the thermo-acidophilic bacteria (Sulfolobus sp. Strain 7) for the H{sub 2}SO{sub 4} production process for scale prevention are investigated. From the bench scale and pilot scale experiment results, it is confirmed that bioreactor, in which Sulfolobus sp. Strain 7 are cultured, can produce the acidic solution containing the H{sub 2}SO{sub 4} continuously and the H{sub 2}SO{sub 4} production rate of the bioreactor is 0.06 kg/m{sup 3}/h. In the case of the application for Otake geothermal power station that discharges 350 in 3/h of the total waste geothermal brine and 290 Nm{sup 3}/h of the total exhausted gas, it is clarified to be needed the 36 m{sup 3} of the bioreactor and the 146 m{sup 3}/h of the exhausted gas to be keeping the pH of the waste brine acidic.

  1. Ketogenic Essential Amino Acids Modulate Lipid Synthetic Pathways and Prevent Hepatic Steatosis in Mice

    PubMed Central

    Kimura, Yoshiko; Aleman, Jose O.; Young, Jamey D.; Koyama, Naoto; Kelleher, Joanne K.; Takahashi, Michio; Stephanopoulos, Gregory

    2010-01-01

    Background Although dietary ketogenic essential amino acid (KAA) content modifies accumulation of hepatic lipids, the molecular interactions between KAAs and lipid metabolism are yet to be fully elucidated. Methodology/Principal Findings We designed a diet with a high ratio (E/N) of essential amino acids (EAAs) to non-EAAs by partially replacing dietary protein with 5 major free KAAs (Leu, Ile, Val, Lys and Thr) without altering carbohydrate and fat content. This high-KAA diet was assessed for its preventive effects on diet-induced hepatic steatosis and whole-animal insulin resistance. C57B6 mice were fed with a high-fat diet, and hyperinsulinemic ob/ob mice were fed with a high-fat or high-sucrose diet. The high-KAA diet improved hepatic steatosis with decreased de novo lipogensis (DNL) fluxes as well as reduced expressions of lipogenic genes. In C57B6 mice, the high-KAA diet lowered postprandial insulin secretion and improved glucose tolerance, in association with restored expression of muscle insulin signaling proteins repressed by the high-fat diet. Lipotoxic metabolites and their synthetic fluxes were also evaluated with reference to insulin resistance. The high-KAA diet lowered muscle and liver ceramides, both by reducing dietary lipid incorporation into muscular ceramides and preventing incorporation of DNL-derived fatty acids into hepatic ceramides. Conclusion Our results indicate that dietary KAA intake improves hepatic steatosis and insulin resistance by modulating lipid synthetic pathways. PMID:20706589

  2. Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer's Disease

    PubMed Central

    Thomas, J.; Thomas, C. J.; Radcliffe, J.; Itsiopoulos, C.

    2015-01-01

    Alzheimer's disease (AD) is the leading cause of dementia and the most common neurodegenerative disease in the elderly. Furthermore, AD has provided the most positive indication to support the fact that inflammation contributes to neurodegenerative disease. The exact etiology of AD is unknown, but environmental and genetic factors are thought to contribute, such as advancing age, family history, presence of chronic diseases such as cardiovascular disease (CVD) and diabetes, and poor diet and lifestyle. It is hypothesised that early prevention or management of inflammation could delay the onset or reduce the symptoms of AD. Normal physiological changes to the brain with ageing include depletion of long chain omega-3 fatty acids and brains of AD patients have lower docosahexaenoic acid (DHA) levels. DHA supplementation can reduce markers of inflammation. This review specifically focusses on the evidence in humans from epidemiological, dietary intervention, and supplementation studies, which supports the role of long chain omega-3 fatty acids in the prevention or delay of cognitive decline in AD in its early stages. Longer term trials with long chain omega-3 supplementation in early stage AD are warranted. We also highlight the importance of overall quality and composition of the diet to protect against AD and dementia. PMID:26301243

  3. Prevention of bone mineral changes induced by bed rest: Modification by static compression simulating weight bearing, combined supplementation of oral calcium and phosphate, calcitonin injections, oscillating compression, the oral diophosphonatedisodium etidronate, and lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Schneider, V. S.; Hulley, S. B.; Donaldson, C. L.; Vogel, J. M.; Rosen, S. N.; Hantman, D. A.; Lockwood, D. R.; Seid, D.; Hyatt, K. H.; Jacobson, L. B.

    1974-01-01

    The phenomenon of calcium loss during bed rest was found to be analogous to the loss of bone material which occurs in the hypogravic environment of space flight. Ways of preventing this occurrence are investigated. A group of healthy adult males underwent 24-30 weeks of continuous bed rest. Some of them were given an exercise program designed to resemble normal ambulatory activity; another subgroup was fed supplemental potassium phosphate. The results from a 12-week period of treatment were compared with those untreated bed rest periods. The potassium phosphate supplements prevented the hypercalciuria of bed rest, but fecal calcium tended to increase. The exercise program did not diminish the negative calcium balance. Neither treatment affected the heavy loss of mineral from the calcaneus. Several additional studies are developed to examine the problem further.

  4. Effect of supplementation with calcium salts of fish oil on n-3 fatty acids in milk fat.

    PubMed

    Castañeda-Gutiérrez, E; de Veth, M J; Lock, A L; Dwyer, D A; Murphy, K D; Bauman, D E

    2007-09-01

    Enrichment of milk fat with n-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may be advantageous because of their beneficial effects on human health. In addition, these fatty acids play an important role in reproductive processes in dairy cows. Our objective was to evaluate the protection of EPA and DHA against rumen biohydrogenation provided by Ca salts of fish oil. Four Holstein cows were assigned in a Latin square design to the following treatments: 1) ruminal infusion of Ca salts of fish oil and palm fatty acid distillate low dose (CaFO-1), 2) ruminal infusion of Ca salts of fish oil and palm fatty acid distillate high dose (CaFO-2), 3) ruminal infusion of fish oil high dose (RFO), and 4) abomasal infusion of fish oil high dose (AFO). The high dose of fish oil provided approximately 16 and approximately 21 g/d of EPA and DHA, respectively, whereas the low dose (CaFO-1) provided 50% of these amounts. A 10-d pretreatment period was used as a baseline, followed by 9-d treatment periods with interceding intervals of 10 d. Supplements were infused every 6 h, milk samples were taken the last 3 d, and plasma samples were collected the last day of baseline and treatment periods. Milk fat content of EPA and DHA were 5 to 6 times greater with AFO, but did not differ among other treatments. Milk and milk protein yield were unaffected by treatment, but milk fat yield and DM intake were reduced by 20 and 15%, respectively, by RFO. Overall, results indicate rumen biohydrogenation of long chain n-3 fatty acids was extensive, averaging >85% for EPA and >75% for DHA for the Ca salts and unprotected fish oil supplements. Thus, Ca salts of fish oil offered no protection against the biohydrogenation of EPA and DHA beyond that observed with unprotected fish oil; however, the Ca salts did provide rumen inertness by preventing the negative effects on DM intake and milk fat yield observed with unprotected fish oil. PMID:17699033

  5. Betulinic Acid Increases eNOS Phosphorylation and NO Synthesis via the Calcium-Signaling Pathway.

    PubMed

    Jin, Sun Woo; Choi, Chul Yung; Hwang, Yong Pil; Kim, Hyung Gyun; Kim, Se Jong; Chung, Young Chul; Lee, Kyung Jin; Jeong, Tae Cheon; Jeong, Hye Gwang

    2016-02-01

    Betulinic acid (BA) is a naturally occurring pentacyclic triterpene that attenuates vascular diseases and atherosclerosis, but the mechanism by which it stimulates endothelial nitric oxide synthase (eNOS) is unclear. eNOS is the key regulatory enzyme in the vascular endothelium. This study examined the intracellular pathways underlying the effects of BA on eNOS activity and endothelial nitric oxide (NO) production in endothelial cells. BA treatment induced both eNOS phosphorylation at Ser1177 and NO production. It also increased the level of intracellular Ca(2+) and phosphorylation of Ca(2+)/calmodulin-dependent kinase IIα (CaMKIIα) and Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ). Inhibition of the L-type Ca(2+) channel (LTCC) and the ryanodine receptor (RyR) abolished BA-induced intracellular levels of Ca(2+) and eNOS phosphorylation. Treatment with W7 (a CaM antagonist), KN-93 (a selective inhibitor of CaMKII), and STO 609 (a selective inhibitor of CaMKK) suppressed eNOS phosphorylation and NO production. Moreover, AMP-activated protein kinase (AMPK) was induced by BA, and BA-induced eNOS phosphorylation was inhibited by compound C, an AMPK inhibitor. Taken together, these results indicate that BA activates eNOS phosphorylation and NO synthesis via the Ca(2+)/CaMKII and Ca(2+)/CaMKK/AMPK pathways. These findings provide further insight into the eNOS signaling pathways involved in the antiatherosclerosis effects of BA. PMID:26750873

  6. Water, acid, and calcium carbonate pretreatment of fly ash: The effect on setting of cement-fly ash mixtures

    SciTech Connect

    Lupu, C.; Jackson, K.L.; Bard, S.; Barron, A.R.

    2007-11-15

    The treatment of class C, I, and F fly ash (FA) with water, HNO{sub 3}, and aqueous CaCO{sub 3} has been investigated to develop a simple chemical route to change the morphology and surface chemistry of fly ash particles to enhance the setting properties of a cement/fly ash (C/FA) composite. The treatment of C-FA with an aqueous CaCO{sub 3} solution results in a dramatic improvement in the setting time and the setting profile on C-class FA; in contrast, the treatment has no effect on the set time for F-FA and reduces the set time and appears to result in an even more nonideal induction setting curve as compared to the untreated C/I-FA. The enhancement observed for the treatment of C-FA with aqueous CaCO{sub 3} solution is not a consequence of the water solution since simply washing with water (i.e., C-FA(H{sub 2}O)) results in the extraction of Na and Ca with a concomitant increase in surface area and a performance similar to those observed for untreated I-FA and F-FA despite a much higher surface area. The acid (HNO{sub 3}) treatment of I-FA and F-FA results in the formation of an inert filler-like material, while acid treatment of C-FA results in a material with completely undesirable setting properties. Clearly, the enhancements observed for the aqueous CaCO{sub 3} treatment are not as a result of simply either the aqueous or acidic nature of the HCO{sub 3} containing CaCO{sub 3} solution. Based upon the forgoing, we propose that the efficacy of the aqueous CaCO{sub 3} treatment on C-FA is associated with the availability of 'reactive calcium'. Exposure of C-FA to dry CO{sub 2} does not affect the set time or set profile for C/C-FA mixture, but the retarding effect of the aqueous CaCO{sub 3} treatment on C-FA can be replicated by the exposure of the C-FA to a stepwise reaction with water and CO{sub 2}. Exposure of C-FA to wet CO{sub 2} results in the improvement of the setting induction profile without significantly affecting the set time.

  7. Omega-3 Polyunsaturated Fatty Acids in Prevention of Mood and Anxiety Disorders

    PubMed Central

    Su, Kuan-Pin; Matsuoka, Yutaka; Pae, Chi-Un

    2015-01-01

    Psychiatric disorders in general, and major depression and anxiety disorders in particular, account for a large burden of disability, morbidity and premature mortality worldwide. Omega-3 polyunsaturated fatty acids (PUFAs) have a range of neurobiological activities in modulation of neurotransmitters, anti-inflammation, anti-oxidation and neuroplasticity, which could contribute to psychotropic effects. Here we reviewed recent research on the benefits of omega-3 PUFA supplements in prevention against major depression, bipolar disorders, interferon-α-induced depression patients with chronic hepatitis C viral infection, and posttraumatic stress disorder. The biological mechanisms underlying omega-3 PUFAs’ psychotropic effects are proposed and reviewed. Nutrition is a modifiable environmental factor that might be important in prevention medicine, which have been applied for many years in the secondary prevention of heart disease with omega-3 PUFAs. This review extends the notion that nutrition in psychiatry is a modifiable environmental factor and calls for more researches on prospective clinical studies to justify the preventive application of omega-3 PUFAs in daily practice. PMID:26243838

  8. Hyaluronic acid prevents immunosuppressive drug-induced ovarian damage via up-regulating PGRMC1 expression

    PubMed Central

    Zhao, Guangfeng; Yan, Guijun; Cheng, Jie; Zhou, Xue; Fang, Ting; Sun, Haixiang; Hou, Yayi; Hu, Yali

    2015-01-01

    Chemotherapy treatment in women can frequently cause damage to the ovaries, which may lead to primary ovarian insufficiency (POI). In this study, we assessed the preventative effects of hyaluronic acid (HA) in immunosuppressive drug-induced POI-like rat models and investigated the possible mechanisms. We found that HA, which was reduced in primary and immunosuppressant-induced POI patients, could protect the immunosuppressant-induced damage to granulosa cells (GCs) in vitro. Then we found that HA blocked the tripterygium glycosides (TG) induced POI-like presentations in rats, including delayed or irregular estrous cycles, reduced 17 beta-estradiol(E2) concentration, decreased number of follicles, destruction of follicle structure, and damage of reproductive ability. Furthermore, we investigated the mechanisms of HA prevention effects on POI, which was associated with promotion of GC proliferation and PGRMC1 expression. In conclusion, HA prevents chemotherapy-induced ovarian damage by promoting PGRMC1 in GCs. This study may provide a new strategy for prevention and treatment of POI. PMID:25558795

  9. Ellagic acid inhibits non-enzymatic glycation and prevents proteinuria in diabetic rats.

    PubMed

    Raghu, G; Jakhotia, Sneha; Yadagiri Reddy, P; Anil Kumar, P; Bhanuprakash Reddy, G

    2016-03-16

    The formation of advanced glycation end products (AGEs) is a characteristic feature of diabetic tissues and accumulation of these products has been implicated in the pathogenesis of micro- and macrovascular complications of diabetes including diabetic nephropathy (DN). Compelling evidence suggests that AGEs mediate progressive alteration in the renal architecture and loss of renal function whereas inhibitors of AGEs prevent the progression of experimental DN. We have investigated the potential of ellagic acid (EA), a polyphenol present abundantly in fruits and vegetables, to prevent in vivo accumulation of AGE and to ameliorate renal changes in diabetic rats. Streptozotocin-induced diabetic rats were fed with either 0.2% or 2% of EA in the diet for 12 weeks. Dietary supplementation of EA to diabetic rats prevented the glycation mediated RBC-IgG-cross-links and HbA1c accumulation. EA inhibited the accumulation of N-carboxymethyl lysine (CML), a predominant AGE in the diabetic kidney. Further, EA also prevented the AGE-mediated loss of expression of podocyte slit diaphragm proteins: nephrin and podocin. By inhibiting CML formation, EA improved renal function in rats as evidenced by urinary albumin and creatinine levels. In conclusion, EA inhibited AGE accumulation in the diabetic rat kidney and ameliorated AGE-mediated pathogenesis of DN. PMID:26902315

  10. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 4, A laboratory study conducted in fulfillment of Phase 2, Objective 1 titled. Inhibition of acid production in coal refuse amended with calcium sulfite and calcium sulfate - containing FGD solids

    SciTech Connect

    Hao, Y. L.; Dick, W. A.; Stehouwer, R. C.; Bigham, J. M.

    1998-06-30

    Control of S02 emission from coal combustion requires desulfurization of coal before its combustion to produce coal refuse. Alternatively, gaseous emissions from coal combustion may be scrubbed to yield flue gas desulfurization (FGD) by-products that include calcium sulfite (CaSO3∙0.5H2O or simply CaS03). Acid production in coal refuse due to pyrite oxidation and disposal of large amounts of FGD can cause environmental degradation. Addition of CaS03 and CaS03-containing FGD to coal refuse may reduce the amounts of oxygen and ferric ion available to oxidize pyrite because the sulfite moiety in CaS03 is a strong reductant and thus may mitigate acid production in coal refuse. In Chapter 1, it was shown that CaS03 efficiently scavenged dissolved oxygen and ferric ion in water under the conditions commonly encountered in a coal refuse disposal environment. In the presence ofCaS03, the concentration of dissolved oxygen in water exposed to the atmosphere declined to below 0.01 mg L"1 at pH <8.0. In Chapter 2, it was demonstrated that CaS03 prevented a pH drop in coal refuse slurry when 0.2 gCaS03 was added to a 2% fresh coal refuse slurry every three days. Calcium sulfite also inhibited acid leaching from fresh coal refuse in bench-scale columns under controlled conditions. During the initial 13 weeks of leaching, the total amounts of titratable acidity, soluble H\\ Fe, and Al from CaS03-treated refuse (6.4 gin 50 g fresh coal refuse) were only 26%,10%, 32%, and 39% of those of the control columns, respectively. A combination of CaS03 with CaC03 or fly ash enhanced the inhibitory effect of CaS03 on acid leaching. Calcium sulfite-containing FGD which combined CaS03, CaC03, fly ash, and gypsum showed a much stronger inhibitory effect on acid leaching than CaS03 alone. This combination effect was partially due to the positive interaction of CaS03 with CaC03 and fly ash on inhibition of acid leaching. In Chapter 3, CaS03-containing FGD was found to inhibit acid leaching from both fresh and aged coal refuse in large scale columns under simulated field conditions. During 39 weeks of leaching, the reduction of leachate acidity and Fe concentration and the increase ofleachate pH were significant (p <0.05) for the 22% FGD treatment with a linear response to increasing FGD rates (0%, 5.5%, 11%, and 22%). I conclude that CaS03 and CaS03-containing FGD have the ability to inhibit acid production in coal refuse and the inhibitory effect shown in this experiment is likely to occur under field conditions. Thus, the research results present a potential new method for mitigation of acid production in coal refuse and another beneficial utilization of FGD by-products.

  11. Calcium and magnesium physiology and nutrition in relation to the prevention of milk fever and tetany (dietary management of macrominerals in preventing disease).

    PubMed

    Martín-Tereso, Javier; Martens, Holger

    2014-11-01

    Dairy cows may suffer events of hypocalcemia and hypomagnesemia, commonly known as milk fever and tetany. Milk fever is characterized by hypocalcemia at parturition as a consequence of a sudden increase in Ca demand and an unavoidable delay in Ca metabolism adaptation. Tetany is due to impaired Mg absorption from the rumen that cannot be compensated by absorptive or excretory adaptation, resulting in a net nutritional shortage of Mg and culminating in hypomagnesemia. Prevention strategies require triggering the activation of Ca gastrointestinal absorption and avoiding factors limiting ruminal Mg absorption. PMID:25245611

  12. Marine-derived omega-3 fatty acids: fishing for clues for cancer prevention.

    PubMed

    Fabian, Carol J; Kimler, Bruce F

    2013-01-01

    Omega-3 fatty acids (FA) are polyunsaturated essential FA with anti-inflammatory properties. The most potent are the marine-derived eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which counteract the pro-inflammatory omega-6 FA. Americans take in an average of only 100 mg of EPA plus DHA per day resulting in a low omega-3:omega-6 intake ratio of 1:10 favoring inflammation. Cohort and/or case control studies suggest EPA and DHA are promising for breast, colon, and prostate cancer risk reduction. Mechanistic studies largely in preclinical models suggest EPA and DHA reduce synthesis of prostaglandin E2 and other inflammatory cytokines, decrease aromatase activity and proliferation, promote differentiation and apoptosis, and enhance insulin sensitivity. Animal models using 7% to 20% omega-3 added to chow are promising; however, this amount of omega-3 in a diet is unlikely to be acceptable to humans. The optimal EPA:DHA ratio or the lowest effective dose of EPA and DHA for cancer prevention is unclear, but it is likely to be more than 600 mg/day, which is six times the average American intake. Most phase II prevention trials use 1 to 3.3 g of EPA and DHA, which is safe and well tolerated. Two grams of EPA was associated with fewer polyps in individuals with familial adenomatous polyposis in a randomized, placebo-controlled trial. Identification of serum risk biomarkers modulated by EPA and DHA in healthy humans has remained elusive, but phase II prevention trials with tissue obtained for risk and response biomarkers are ongoing. PMID:23714467

  13. Folic acid supplementation for the prevention of neural tube defects. Should it be a priority for developing countries?

    PubMed

    Perez-escamilla, R

    1997-12-01

    Folic acid supplementation during pregnancy has been widely advocated for the prevention of neural tube defects in developing countries. The author of this letter, however, argues that such a strategy is unwarranted and a misuse of scarce resources. Folic acid deficiency is not the primary cause of neural tube defects and the incidence of this defect is similar in developed and developing countries. It has been estimated that folic acid fortification of cereal-based products--an exceedingly difficult, expensive intervention--would prevent only about 1000 neural tube defect cases per year. Moreover, additional folic acid can prevent neural tube defects only if consumed during the periconceptional period. Although women at risk of neural tube defect recurrence are advised to take 4 mg of folic acid per day when they plan to become pregnant, the recommendation for the vast majority of women in developing countries is increased consumption of beans, oranges, and green leafy vegetables. PMID:12293181

  14. Efficacy of casein phosphopeptide-amorphous calcium phosphate to prevent stain absorption on freshly bleached enamel: An in vitro study

    PubMed Central

    Singh, Raghuwar D; Ram, Sabita M; Shetty, Omkar; Chand, Pooran; Yadav, Rakesh

    2010-01-01

    Background: Teeth when subjected to bleaching bring about the desiccation of the enamel, making it more susceptible to stain absorption. While subjecting the freshly bleached enamel surface to various surface treatments of Fluoride and Casein Phosphopeptide - Amorphous Calcium phosphate (CPP-ACP) brought about the reduction in stain absorption, which is assessed in this study. Aims: The study aims to evaluate the tea stain absorption on freshly bleached enamel surface of extracted human teeth with varied surface treatment. The stain absorption was evaluated at the end of one hour and 24 hours post bleaching. Materials and Methods: Forty extracted human permanent maxillary central incisors were subjected to bleaching with 10% carbamide peroxide for eight days. They were divided into four groups of 10 each. Group I was control group. Group II was immersed in tea solution without surface treatment, while Group III and IV were immersed in tea solution with surface treatment of topical Fluoride and CPP-ACP respectively. Spectrophotometer was used for color analysis. Results: Surface treatment with CPP-ACP and topical fluoride on freshly beached enamel surface, significantly reduced the stain absorption. Conclusion: Remineralizing agents reduce stain absorption after tooth bleaching. PMID:20859479

  15. Blockade of T-type calcium channels prevents tonic-clonic seizures in a maximal electroshock seizure model.

    PubMed

    Sakkaki, Sophie; Gangarossa, Giuseppe; Lerat, Benoit; Françon, Dominique; Forichon, Luc; Chemin, Jean; Valjent, Emmanuel; Lerner-Natoli, Mireille; Lory, Philippe

    2016-02-01

    T-type (Cav3) calcium channels play important roles in neuronal excitability, both in normal and pathological activities of the brain. In particular, they contribute to hyper-excitability disorders such as epilepsy. Here we have characterized the anticonvulsant properties of TTA-A2, a selective T-type channel blocker, in mouse. Using the maximal electroshock seizure (MES) as a model of tonic-clonic generalized seizures, we report that mice treated with TTA-A2 (0.3 mg/kg and higher doses) were significantly protected against tonic seizures. Although no major change in Local Field Potential (LFP) pattern was observed during the MES seizure, analysis of the late post-ictal period revealed a significant increase in the delta frequency power in animals treated with TTA-A2. Similar results were obtained for Cav3.1-/- mice, which were less prone to develop tonic seizures in the MES test, but not for Cav3.2-/- mice. Analysis of extracellular signal-regulated kinase 1/2 (ERK) phosphorylation and c-Fos expression revealed a rapid and elevated neuronal activation in the hippocampus following MES clonic seizures, which was unchanged in TTA-A2 treated animals. Overall, our data indicate that TTA-A2 is a potent anticonvulsant and that the Cav3.1 isoform plays a prominent role in mediating TTA-A2 tonic seizure protection. PMID:26456350

  16. Effect of Potassium Citrate on Calcium Phosphate Stones in a Model of Hypercalciuria.

    PubMed

    Krieger, Nancy S; Asplin, John R; Frick, Kevin K; Granja, Ignacio; Culbertson, Christopher D; Ng, Adeline; Grynpas, Marc D; Bushinsky, David A

    2015-12-01

    Potassium citrate is prescribed to decrease stone recurrence in patients with calcium nephrolithiasis. Citrate binds intestinal and urine calcium and increases urine pH. Citrate, metabolized to bicarbonate, should decrease calcium excretion by reducing bone resorption and increasing renal calcium reabsorption. However, citrate binding to intestinal calcium may increase absorption and renal excretion of both phosphate and oxalate. Thus, the effect of potassium citrate on urine calcium oxalate and calcium phosphate supersaturation and stone formation is complex and difficult to predict. To study the effects of potassium citrate on urine supersaturation and stone formation, we utilized 95th-generation inbred genetic hypercalciuric stone-forming rats. Rats were fed a fixed amount of a normal calcium (1.2%) diet supplemented with potassium citrate or potassium chloride (each 4 mmol/d) for 18 weeks. Urine was collected at 6, 12, and 18 weeks. At 18 weeks, stone formation was visualized by radiography. Urine citrate, phosphate, oxalate, and pH levels were higher and urine calcium level was lower in rats fed potassium citrate. Furthermore, calcium oxalate and calcium phosphate supersaturation were higher with potassium citrate; however, uric acid supersaturation was lower. Both groups had similar numbers of exclusively calcium phosphate stones. Thus, potassium citrate effectively raises urine citrate levels and lowers urine calcium levels; however, the increases in urine pH, oxalate, and phosphate levels lead to increased calcium oxalate and calcium phosphate supersaturation. Potassium citrate induces complex changes in urine chemistries and resultant supersaturation, which may not be beneficial in preventing calcium phosphate stone formation. PMID:25855777

  17. Probiotic Lactobacillus casei strain Shirota prevents indomethacin-induced small intestinal injury: involvement of lactic acid.

    PubMed

    Watanabe, Toshio; Nishio, Hikaru; Tanigawa, Tetsuya; Yamagami, Hirokazu; Okazaki, Hirotoshi; Watanabe, Kenji; Tominaga, Kazunari; Fujiwara, Yasuhiro; Oshitani, Nobuhide; Asahara, Takashi; Nomoto, Koji; Higuchi, Kazuhide; Takeuchi, Koji; Arakawa, Tetsuo

    2009-09-01

    Inflammatory responses triggered by activation of the lipopolysaccharide (LPS)/Toll-like receptor (TLR) 4 signaling pathway are a key mechanism in nonsteroidal anti-inflammatory drug-induced enteropathy. The aim of this study was to investigate the probiotic effect of Lactobacillus casei strain Shirota (LcS) on indomethacin-induced small intestinal injury. Rats pretreated with viable LcS or heat-killed LcS once or once daily for a week were administered indomethacin by gavage to induce injury. Anti-inflammatory effects of L-lactic acid (1-15 mM) were evaluated in vitro by use of THP-1 cells. One-week treatment with viable LcS prevented indomethacin-induced intestinal injury with increase in the concentration of lactic acid in small intestinal content and inhibited increases in myeloperoxidase activity and expression of mRNA for tumor necrosis factor-alpha (TNF-alpha) while affecting neither TLR4 expression nor the number of gram-negative bacteria in intestinal content, whereas neither heat-killed LcS nor a single dose of viable LcS inhibited intestinal injury. Prevention of this injury was also observed in rats given l-lactic acid in drinking water. Both L-lactic acid and LcS culture supernatant containing 10 mM lactic acid inhibited NF-kappaB activation and increases in TNF-alpha mRNA expression and TNF-alpha protein secretion in THP-1 cells treated with LPS. Western blot analyses showed that both L-lactic acid and LcS culture supernatants suppressed phosphorylation and degradation of I-kappaB-alpha induced by LPS without affecting expression of TLR4. These findings suggest that LcS exhibits a prophylactic effect on indomethacin-induced enteropathy by suppressing the LPS/TLR4 signaling pathway and that this probiotic effect of LcS may be mediated by L-lactic acid. PMID:19589943

  18. Efficacy of organic acids in hand cleansers for prevention of rhinovirus infections.

    PubMed

    Turner, Ronald B; Biedermann, Kim A; Morgan, Jeffery M; Keswick, Bruce; Ertel, Keith D; Barker, Mark F

    2004-07-01

    Direct hand-to-hand contact is an important mechanism of transmission of rhinovirus infection. The rhinoviruses are inactivated at a low pH. A survey of organic acids in vitro revealed that these compounds have antirhinoviral activity that persists for at least 3 h after application to the skin. In additional studies of salicylic acid (SA) and pyroglutamic acid (PGA), the hands of volunteers were contaminated with rhinovirus at defined times after application of the acid, and then volunteers attempted to inoculate the nasal mucosa with one hand and quantitative viral cultures were done on the other hand. In one study, 3.5% SA or 1% SA with 3.5% PGA was compared with controls 15 min after application to assess the efficacy of the inactivation of virus and prevention of infection. Virus was recovered from the hands of 28 out of 31 (90%) of the volunteers in the control group compared to 4 out of 27 (15%) and 0 out of 27 in the groups administered 3.5 and 1% SA, respectively (P < 0.05). Rhinovirus infection occurred in 10 out of 31 (32%) of the controls and 2 out of 27 (7%) of volunteers in both treatment groups (P < 0.05 compared with control). In a second study, the efficacy of 4% PGA was evaluated 15 min, 1 h, and 3 h after application. Significantly fewer volunteers had positive hand cultures at all time points compared with the control group, but the proportion that developed rhinovirus infection was not significantly reduced. These results suggest the feasibility of the prevention of rhinovirus transmission by hand treatments that are virucidal on contact and have activity that persists after application. PMID:15215114

  19. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration.

    PubMed

    Subramaniam, Sadhasivam; Fang, Yen-Hsin; Sivasubramanian, Savitha; Lin, Feng-Huei; Lin, Chun-pin

    2016-01-01

    Periodontitis is a very severe inflammatory condition of the periodontium that progressively damages the soft tissue and destroys the alveolar bone that supports the teeth. The bone loss is naturally irreversible because of limited reparability of the teeth. Advancement in tissue engineering provides an effective regeneration of osseous defects with suitable dental implants or tissue-engineered constructs. This study reports a hydroxyapatite, calcium sulfate hemihydrate and hyaluronic acid laden collagenase (HAP/CS/HA-Col) as a bone substitute for the alveolar bone regeneration. The composite material was mechanically tested and the biocompatibility was evaluated by WST-1 assay. The in vivo bone formation was assessed in rat with alveolar bone defects and the bone augmentation by the HAP/CS/HA-Col composite was confirmed by micro-CT images and histological examination. The mechanical strength of 6.69 MPa with excellent biocompatibility was obtained for the HAP/CS/HA-Col composite. The collagenase release profile had facilitated the acceleration of bone remodeling process and it was confirmed by the findings of micro-CT and H&E staining. The bone defects implanted with HAP/CS/HA composite containing 2 mg/mL type I collagenase have shown improved new bone formation with matured bone morphology in comparison with the HAP/CS/HA composite that lacks the collagenase and the porous hydroxyapatite (p-HAP) granules. The said findings demonstrated that the collagenase inclusion in HAP/CS/HA composite is a feasible approach for the alveolar bone regeneration and the same design can also be applied to other defective tissues. PMID:26454048

  20. [Effects of calcium on synthesis of rosmarinic acid and related enzymes in suspension cultures of Salvia miltiorrhiza].

    PubMed

    Liu, Liancheng; Dong, Juan'e; Zhang, Jingyi; Dang, Xiaolin; Xing, Bingyu; Yang, Xiling

    2012-11-01

    We studied the influence of the concentration of Ca2+ (0-50 mmol/L) in culture medium on the synthesis of rosmarinic acid (RA) and related enzymes in Salvia miltiorrhiza suspension cultures. Using verpamil (VP, a calcium channel antagonist) and ionophore A23187, we studied the mechanism of secondary metabolites of Salvia miltiorrhiza suspension cultures influenced by the concentration of Ca2+ in the culture medium. The synthesis of intracellular RA in 6-day incubation was significantly dependent on the medium Ca2+ concentration. At the optimal Ca2+ concentration of 10 mmol/L, a maximal RA content of 20.149 mg/g biomass dry weight was reached, which was about 37.3% and 20.4% higher than that at Ca2+ concentrations of 1 and 3 mmol/L, respectively. The variation of the activity of PAL and TAT, two key enzymes of the two branches of RA, could be affected by the concentration of Ca2+ in culture medium. The change of their activity occurred prior to the accumulation of RA, which suggested both of the key enzymes be involved in the synthesis of RA. Meanwhile, the enzymatic action of PAL was more distinct than TAT. The treatment of VP and A23187, respectively, indicated that the influence of RA affected by the concentration of Ca2+ in the culture medium was accomplished by the intracellular Ca2+, and the flow of Ca2+ from the extracellular to the intracellular environment could also participate in this process. PMID:23457788

  1. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone.

    PubMed

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus

    2016-01-01

    In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm(3)) as compared to rhBMP-2 alone (10.9 ± 2.1 mm(3)) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone. PMID:27189411

  2. Comparison and preparation of multilayered polylactic acid fabric strengthen calcium phosphate-based bone substitutes for orthopedic applications.

    PubMed

    Chen, Wen-Cheng; Ko, Chia-Ling; Yang, Jia-Kai; Wu, Hui-Yu; Lin, Jia-Horng

    2016-03-01

    An attempt to maintain the three-dimensional space into restorative sites through the conveniently pack porous fillers are general used strategy. Advancement in the manufacturing protective shells in the scaffolds, which would be filled with brittle ceramic grafts for the development of highly connective pores provides the approach to solve crack problem for generating the tissues. Therefore, multilayered braided and alkalized poly(lactic acid) (PLA) composites with calcium phosphate bone cement (CPC) were synthesized and compared. The PLA/CPC composites were divided into various groups according to a series of heat-treatment temperatures (100-190 °C) and periods (1-3 h) and then characterized. The effects of 24-h immersion on the strength decay resistance of the samples were compared. Results showed that the residual oil capped on the surfaces of alkalized PLA braid was removed, and the structure was unaltered. However, the reduced tensile stress of alkalized PLA braids was due to ester-group formation by hydrolysis. Mechanical test results of PLA/CPC composites showed that the strength significantly increased after heat treatment, except when the heating temperature was higher than the PLA melting point at approximately 160-170 °C. The degree of PLA after recrystallization became higher than that of unheated composites, thereby leading to reduced strength and toughness of the specimen. Braiding fibers of biodegradable PLA reinforced and toughened the structure particularly of the extra-brittle material of thin-sheet CPC after implantation. PMID:26280316

  3. Sulfur mustard-induced increase in intracellular free calcium level and arachidonic acid release from cell membrane

    SciTech Connect

    Ray, R.; Legere, R.H.; Majerus, B.J.; Petrali, J.P.

    1995-12-31

    The mechanism of action of the alkylating agent bis-(2-chloroethyl)sulfide (sulfur mustard, SM) was studied using the in thai vitro mouse neuroblastoma-rat glioma hybrid NG 108-1 S clonal p cell line model. Following 0.3 mM SM exposure, cell viability remained high (>80% of untreated control) up to 9 hr and then declined steadily to about 40% of control after 20-24 hr. During the early period of SM exposure, when there was no significant cell viability loss, the following effects were observed. The cellular glutathione level decreased 20% after 1 hr and 34% after 6 hr. Between 2 and 6 hr, there was a time-dependent increase (about 10 to 30%) in intracellular free calcium (Ca2+), which was localized to the limiting membrane of swollen endoplasmic reticula and mitochondria, to euchromatin areas of the nucleus, and to areas of the cytosol and plasma membrane. Moreover,there was also a time-dependent increase in the release of isotopically labeled arachidonic acid ((3H)AA) from cellular membranes. Increase in (3H)AA release was 28% at 3 hr and about 60-80% between 6 and 9 hr. This increase in I3HIAA release was inhibited by quinacrine (20 uM), which is a phospholipase (PLA2) inhibitor. At 16 hr after SM exposure, there was a large increase (about 200% of control) in I3HIAA release, which was coincident with a 50% loss of cell viability. These results suggest a Ca2+-mediated toxic mechanism of SM via PLA2 activation and arachidonate release.

  4. The potential role of boswellic acids in cancer prevention and treatment.

    PubMed

    Roy, Nand Kishor; Deka, Anindita; Bordoloi, Devivasha; Mishra, Srishti; Kumar, Alan Prem; Sethi, Gautam; Kunnumakkara, Ajaikumar B

    2016-07-10

    Despite the extensive research carried out in the field of cancer therapeutics, cancer is one of the most dreadful diseases in the world with no definitive treatment to date. The key attributes responsible for this are the various limiting factors associated with conventional chemotherapeutics that primarily include adverse side-effects and development of chemoresistance. Hence, there is an utter need to find compounds that are highly safe and efficacious for the prevention and treatment of cancer. Boswellic acid, a group of pentacyclic compounds, seems to be promising enough due to its inherent anti-cancerous properties. Considering this perspective, the present review highlights the established studies related to the anti-cancer potential of boswellic acid against different cancer types. The molecular mechanisms underlying the targets of boswellic acid that are accountable for its potent anti-cancer effect are also discussed. Overall, this review projects the pieces of evidence that reveal the potential of boswellic acid as a suitable candidate that can be appropriately developed and designed into a promising anti-cancer drug. PMID:27091399

  5. Increased tissue levels of omega-3 polyunsaturated fatty acids prevents pathological preterm birth

    PubMed Central

    Yamashita, Aki; Kawana, Kei; Tomio, Kensuke; Taguchi, Ayumi; Isobe, Yosuke; Iwamoto, Ryo; Masuda, Koji; Furuya, Hitomi; Nagamatsu, Takeshi; Nagasaka, Kazunori; Arimoto, Takahide; Oda, Katsutoshi; Wada-Hiraike, Osamu; Yamashita, Takahiro; Taketani, Yuji; Kang, Jing X.; Kozuma, Shiro; Arai, Hiroyuki; Arita, Makoto; Osuga, Yutaka; Fujii, Tomoyuki

    2013-01-01

    Omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) have anti-inflammatory effects. Preterm birth is an important problem in modern obstetrics and one of the main causes is an inflammation. We here showed that abundance of omega-3 fatty acids reduced the incidence of preterm birth induced by LPS with fat-1 mice, capable of converting omega-6 to omega-3 fatty acids. We also indicated that the gene expression of IL-6 and IL-1β in uteruses and the number of cervical infiltrating macrophages were reduced in fat-1 mice. The analyses of lipid metabolomics showed the high level of 18-hydroxyeicosapentaenoate in fat-1 mice, which was derived from EPA and was metabolized to anti-inflammatory product named resolvin E3 (RvE3). We finally showed that the administration of RvE3 to LPS-exposed pregnant wild type mice lowered the incidence of preterm birth. Our data suggest that RvE3 could be a potential new therapeutic for the prevention of preterm birth. PMID:24177907

  6. Antimicrobial activity of transition metal acid MoO(3) prevents microbial growth on material surfaces.

    PubMed

    Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter

    2012-01-01

    Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H(2)MoO(4)), which is based on molybdenum trioxide (MoO(3)). The modification of various materials (e.g. polymers, metals) with MoO(3) particles or sol-gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. PMID:23177771

  7. Calcium - urine

    MedlinePlus

    ... best treatment for the most common type of kidney stone , which is made of calcium. This type of ... the kidneys into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production ...

  8. Ascorbic acid prevents VEGF-induced increases in endothelial barrier permeability.

    PubMed

    Ulker, Esad; Parker, William H; Raj, Amita; Qu, Zhi-Chao; May, James M

    2016-01-01

    Vascular endothelial growth factor (VEGF) increases endothelial barrier permeability, an effect that may contribute to macular edema in diabetic retinopathy. Since vitamin C, or ascorbic acid, can tighten the endothelial permeability barrier, we examined whether it could prevent the increase in permeability due to VEGF in human umbilical vein endothelial cells (HUVECs). As previously observed, VEGF increased HUVEC permeability to radiolabeled inulin within 60 min in a concentration-dependent manner. Loading the cells with increasing concentrations of ascorbate progressively prevented the leakage caused by 100 ng/ml VEGF, with a significant inhibition at 13 µM and complete inhibition at 50 µM. Loading cells with 100 µM ascorbate also decreased the basal generation of reactive oxygen species and prevented the increase caused by both 100 ng/ml VEGF. VEGF treatment decreased intracellular ascorbate by 25 %, thus linking ascorbate oxidation to its prevention of VEGF-induced barrier leakage. The latter was blocked by treating the cells with 60 µM L-NAME (but not D-NAME) as well as by 30 µM sepiapterin, a precursor of tetrahydrobiopterin that is required for proper function of endothelial nitric oxide synthase (eNOS). These findings suggest that VEGF-induced barrier leakage uncouples eNOS. Ascorbate inhibition of the VEGF effect could thus be due either to scavenging superoxide or to peroxynitrite generated by the uncoupled eNOS, or more likely to its ability to recycle tetrahydrobiopterin, thus avoiding enzyme uncoupling in the first place. Ascorbate prevention of VEGF-induced increases in endothelial permeability opens the possibility that its repletion could benefit diabetic macular edema. PMID:26590088

  9. Assessment of student pharmacists' knowledge concerning folic acid and prevention of birth defects demonstrates a need for further education.

    PubMed

    Lynch, Sean M

    2002-03-01

    Adequate periconceptional consumption of folic acid can prevent neural tube birth defects, and all women capable of becoming pregnant are recommended to consume 400 microg/d. Most women, however, are unaware of this recommendation and do not consume adequate amounts of folic acid. It is important, therefore, that healthcare professionals, such as pharmacists, be capable of educating women regarding folic acid. The aim of this study was to assess knowledge regarding prevention of birth defects by folic acid among student (future) pharmacists in the final year of a professional degree program. Over a 3-y period (1998-2000), students (n = 98) enrolled in a PharmD program completed a survey consisting of five multiple-choice questions concerning folic acid and birth defects. Almost all students (93.9%) correctly identified folic acid as preventing birth defects. Of these students, many also knew that supplementation should begin before pregnancy (73.9%). Fewer, however, were able to correctly identify either the recommended level of intake (55.4%) or good sources of folic acid (57.6-65.2%). These results show that although student (future) pharmacists are aware of folic acid's ability to prevent birth defects, many lack the specific knowledge needed to effectively counsel women in future clinical practice. PMID:11880568

  10. Acetylsalicylic Acid and Eflornithine in Treating Patients at High Risk for Colorectal Cancer | Division of Cancer Prevention

    Cancer.gov

    This phase II trial is studying how well giving acetylsalicylic acid together with eflornithine works in treating patients at high risk for colorectal cancer. Chemoprevention is the use of certain drugs to keep cancer from forming. The use of acetylsalicylic acid and eflornithine may prevent colorectal cancer. |

  11. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors.

    PubMed

    Lee, J S; Mulkey, T J; Evans, M L

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature. PMID:11540830

  12. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.

  13. Effects of seawater alkalinity on calcium and acid-base regulation in juvenile European lobster (Homarus gammarus) during a moult cycle.

    PubMed

    Middlemiss, Karen L; Urbina, Mauricio A; Wilson, Rod W

    2016-03-01

    Fluxes of NH4(+) (acid) and HCO3(-) (base), and whole body calcium content were measured in European lobster (Homarus gammarus) during intermoult (megalopae stage), and during the first 24h for postmoult juveniles under control (~2000μeq/L) and low seawater alkalinity (~830μeq/L). Immediately after moulting, animals lost 45% of the total body calcium via the shed exoskeleton (exuvia), and only 11% was retained in the uncalcified body. At 24h postmoult, exoskeleton calcium increased to ~46% of the intermoult stage. Ammonia excretion was not affected by seawater alkalinity. After moulting, bicarbonate excretion was immediately reversed from excretion to uptake (~4-6 fold higher rates than intermoult) over the whole 24h postmoult period, peaking at 3-6h. These data suggest that exoskeleton calcification is not completed by 24h postmoult. Low seawater alkalinity reduced postmoult bicarbonate uptake by 29% on average. Net acid-base flux (equivalent to net base uptake) followed the same pattern as HCO3(-) fluxes, and was 22% lower in low alkalinity seawater over the whole 24h postmoult period. The common occurrence of low alkalinity in intensive aquaculture systems may slow postmoult calcification in juvenile H. gammarus, increasing the risk of mortalities through cannibalism. PMID:26691956

  14. Docosahexaenoic Acid Supplementation Early in Pregnancy May Prevent Deep Placentation Disorders

    PubMed Central

    Carvajal, Jorge A.

    2014-01-01

    Uteroplacental ischemia may cause preterm birth, either due to preterm labor, preterm premature rupture of membranes, or medical indication (in the presence of preeclampsia or fetal growth restriction). Uteroplacental ischemia is the product of defective deep placentation, a failure of invasion, and transformation of the spiral arteries by the trophoblast. The failure of normal placentation generates a series of clinical abnormalities nowadays called “deep placentation disorders”; they include preeclampsia, fetal growth restriction, preterm labor, preterm premature rupture of membranes, in utero fetal death, and placental abruption. Early reports suggested that a LC-PUFAs (long chain polyunsaturated fatty acids) rich diet reduces the incidence of deep placentation disorders. Recent randomized controlled trials are inconsistent to show the benefit of docosahexaenoic acid (DHA) supplementation during pregnancy to prevent deep placentation disorders, but most of them showed that DHA supplementation was associated with lower risk of early preterm birth. We postulate that DHA supplementation, early in pregnancy, may reduce the incidence of deep placentation disorders. If our hypothesis is correct, DHA supplementation, early in pregnancy, will become a safe and effective strategy for primary prevention of highly relevant pregnancy diseases, such as preterm birth, preeclampsia, and fetal growth restriction. PMID:25019084

  15. Calcium and Vitamin D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adequate intakes of vitamin D and calcium are essential preventative measures and essential components of any therapeutic regimen for osteoporosis. Vitamin D is also important for the prevention of falls. Current evidence suggests that a 25-hydroxyvitamin D level of 75 nmol/L (30 ng/ml) or higher ...

  16. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid.

    PubMed

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E; Redhi, Godfrey H; Panlilio, Leigh V; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R

    2013-11-01

    In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  17. Valproic Acid Prevents Renal Dysfunction and Inflammation in the Ischemia-Reperfusion Injury Model

    PubMed Central

    Costalonga, Elerson C.; Silva, Filipe M. O.; Noronha, Irene L.

    2016-01-01

    Ischemia-reperfusion injury (IRI) is a major contributor to acute kidney injury (AKI). At present, there are no effective therapies to prevent AKI. The aim of this study was to analyse whether valproic acid (VPA), a histone deacetylase inhibitor with anti-inflammatory properties, prevents renal IRI. Male Wistar rats were divided into three groups: SHAM rats were subjected to a SHAM surgery, IRI rats underwent bilateral renal ischemia for 45 min, and IRI + VPA rats were treated with VPA at 300 mg/kg twice daily 2 days before bilateral IRI. Animals were euthanized at 48 hours after IRI. VPA attenuated renal dysfunction after ischemia, which was characterized by a decrease in BUN (mg/dL), serum creatinine (mg/dL), and FENa (%) in the IRI + VPA group (39 ± 11, 0.5 ± 0.05, and 0.5 ± 0.06, resp.) compared with the IRI group (145 ± 35, 2.7 ± 0.05, and 4.9 ± 1, resp.; p < 0.001). Additionally, significantly lower acute tubular necrosis grade and number of apoptotic cells were found in the IRI + VPA group compared to the IRI group (p < 0.001). Furthermore, VPA treatment reduced inflammatory cellular infiltration and expression of proinflammatory cytokines. These data suggest that VPA prevents the renal dysfunction and inflammation that is associated with renal IRI. PMID:27195290

  18. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid

    PubMed Central

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E.; Redhi, Godfrey H.; Panlilio, Leigh V.; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D.; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R.

    2013-01-01

    In the reward circuitry of the brain, alpha-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of delta-9-tetrahydrocannabinol (THC), marijuana’s main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by re-exposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are currently no medications approved for treatment of marijuana dependence. Modulation of KYNA provides a novel pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  19. Nebulised amphotericin B-polymethacrylic acid nanoparticle prophylaxis prevents invasive aspergillosis

    PubMed Central

    Shirkhani, Khojasteh; Teo, Ian; Armstrong-James, Darius; Shaunak, Sunil

    2015-01-01

    Aspergillus species are the major life threatening fungal pathogens in transplant patients. Germination of inhaled fungal spores initiates infection, causes severe pneumonia, and has a mortality of > 50%. This is leading to the consideration of pre-exposure prophylaxis to prevent infection. We made a very low MWt amphotericin B-polymethacrylic acid nanoparticle. It was not toxic to lung epithelial cells or monocyte-derived-macrophages in-vitro, or in an in-vivo transplant immuno-suppression mouse model of life threatening invasive aspergillosis. Three days of nebuliser based prophylaxis delivered the nanoparticle effectively to lung and prevented both fungal growth and lung inflammation. Protection from disease was associated with > 99% killing of the Aspergillus and a 90% reduction in lung TNF-α; the primary driver of tissue destructive immuno-pathology. This study provides in-vivo proof-of-principle that very small and cost-effective nanoparticles can be made simply, and delivered safely and effectively to lung by the aerosol route to prevent fungal infections. From the Clinical Editor Aspergillus is an opportunistic pathogen, which affects immunocompromised patients. One novel way to help fight against this infection is pre-exposure prophylaxis. The authors here made PMA based anionic hydrogels carrying amphotericin B, with mucoadhesive behavior. They showed that aerosol route of the drug was very effective in protecting against the disease in an in-vivo model and should provide a stepping-stone towards clinical trials in the future. PMID:25791815

  20. Nutritional interventions to prevent and treat osteoarthritis. Part I: focus on fatty acids and macronutrients.

    PubMed

    Lopez, Hector L

    2012-05-01

    Osteoarthritis (OA) is the most common cause of musculoskeletal disability in elderly individuals, and it places an enormous economic burden on society. Management of OA is primarily focused on palliative relief by using agents such as nonsteroidal anti-inflammatory drugs and analgesics. However, such an approach is limited by a narrow therapeutic focus that fails to address the progressive and multimodal nature of OA. Given the favorable safety profile of most nutritional interventions, identifying disease-modifying nutritional agents capable of improving symptoms and also preventing, slowing, or even reversing the degenerative process in OA should remain an important paradigm in translational and clinical research. Applying advances in nutritional science to musculoskeletal medicine remains challenging, given the fluid and dynamic nature of the field, along with a rapidly developing regulatory climate over manufacturing and commerce requirements. The aim of this article is to review the available literature on effectiveness and potential mechanism of macronutrients for OA, with a focus on the following: long-chain ω-3 essential fatty acids eicosapentaenoic acid and docosahexaenoic acid, functional ω-6 fatty acid γ-linolenic acid, and macronutrient composition of background diet. There also is a discussion about the concept of rational polysupplementation via the strategic integration of multiple nutraceuticals with potential complementary mechanisms for improving outcomes in OA. As applied nutritional science evolves, it will be important to stay on the forefront of proteomics, metabolomics, epigenetics, and nutrigenomics, because they hold enormous potential for developing novel therapeutic and prognostic breakthroughs in many areas of medicine, including OA. PMID:22632694

  1. RapA2 Is a Calcium-binding Lectin Composed of Two Highly Conserved Cadherin-like Domains That Specifically Recognize Rhizobium leguminosarum Acidic Exopolysaccharides*

    PubMed Central

    Abdian, Patricia L.; Caramelo, Julio J.; Ausmees, Nora; Zorreguieta, Angeles

    2013-01-01

    In silico analyses have revealed a conserved protein domain (CHDL) widely present in bacteria that has significant structural similarity to eukaryotic cadherins. A CHDL domain was shown to be present in RapA, a protein that is involved in autoaggregation of Rhizobium cells, biofilm formation, and adhesion to plant roots as shown by us and others. Structural similarity to cadherins suggested calcium-dependent oligomerization of CHDL domains as a mechanistic basis for RapA action. Here we show by circular dichroism spectroscopy, light scattering, isothermal titration calorimetry, and other methods that RapA2 from Rhizobium leguminosarum indeed exhibits a cadherin-like β-sheet conformation and that its proper folding and stability are dependent on the binding of one calcium ion per protein molecule. By further in silico analysis we also reveal that RapA2 consists of two CHDL domains and expand the range of CHDL-containing proteins in bacteria and archaea. However, light scattering assays at various concentrations of added calcium revealed that RapA2 formed neither homo-oligomers nor hetero-oligomers with RapB (a distinct CHDL protein), indicating that RapA2 does not mediate cellular interactions through a cadherin-like mechanism. Instead, we demonstrate that RapA2 interacts specifically with the acidic exopolysaccharides (EPSs) produced by R. leguminosarum in a calcium-dependent manner, sustaining a role of these proteins in the development of the biofilm matrix made of EPS. Because EPS binding by RapA2 can only be attributed to its two CHDL domains, we propose that RapA2 is a calcium-dependent lectin and that CHDL domains in various bacterial and archaeal proteins confer carbohydrate binding activity to these proteins. PMID:23235153

  2. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis.

    PubMed

    Jiang, Shanshan; Zhang, Dan; Wang, Li; Pan, Jiaowen; Liu, Yang; Kong, Xiangpei; Zhou, Yan; Li, Dequan

    2013-10-01

    Calcium-dependent protein kinases (CDPKs) play essential roles in calcium-mediated signal transductions in plant response to abiotic stress. Several members have been identified to be regulators for plants response to abscisic acid (ABA) signaling. Here, we isolated a subgroup I CDPK gene, ZmCPK4, from maize. Quantitative real time PCR (qRT-PCR) analysis revealed that the ZmCPK4 transcripts were induced by various stresses and signal molecules. Transient and stable expression of the ZmCPK4-GFP fusion proteins revealed ZmCPK4 localized to the membrane. Moreover, overexpression of ZmCPK4 in the transgenic Arabidopsis enhanced ABA sensitivity in seed germination, seedling growth and stomatal movement. The transgenic plants also enhanced drought stress tolerance. Taken together, the results suggest that ZmCPK4 might be involved in ABA-mediated regulation of stomatal closure in response to drought stress. PMID:23911729

  3. Long term higher urinary calcium excretion within the normal physiologic range predicts impaired bone status of the proximal radius in healthy children with higher potential renal acid load.

    PubMed

    Shi, Lijie; Libuda, Lars; Schönau, Eckhard; Frassetto, Lynda; Remer, Thomas

    2012-05-01

    Reduced bone mineral density (BMD) and bone mass have been observed in children with idiopathic hypercalciuria. Whether urinary calcium excretion at the higher end of the normal physiologic range can influence bone health in healthy children independent of dietary intake is unknown. Urinary calcium was quantified in 603 24-h urine samples from 154 healthy children and adolescents who had ≥3 urine collections and parallel 3-day weighed dietary records during the 4years preceding proximal forearm bone analyses by peripheral quantitative computed tomography (pQCT). Urinary potential renal acid load (uPRAL) was determined according to urine ionogram by subtracting measured quantitatively important mineral cations from nonbicarbonate anions. Urinary calcium excretion was significantly associated with volumetric (v)BMD (P=0.04), almost significantly with cortical bone mineral content (BMC) (P=0.05), but not with cortical cross-sectional area (CSA) (P=0.09), total CSA (P=0.3), or Strength-Strain Index (P=0.8) in the total population sample. Stratified analyses based on the median split of uPRAL showed that calcium excretion was negatively associated with vBMD (P=0.007), cortical BMC (P=0.001), and cortical CSA (P=0.004) in those children with higher uPRALs, but not in those with low uPRALs (P>0.3). In conclusion, long-term higher calciuria within the physiological range predicts reduced diaphyseal bone mass and bone density particularly in healthy children and adolescents with long-term unfavorable higher dietary acid load, i.e., with lower fruit and vegetable intake. PMID:22342797

  4. Calcium absorption and calcium bioavailability.

    PubMed

    Charles, P

    1992-02-01

    Calcium is important for bone health. It has been customary to focus on dietary calcium intake, but of central importance for the body needs in the individual patient is the actual calcium absorption. This absorption consists of an active vitamin D-mediated component and a passive diffusional component. A number of different methods are available for the evaluation of calcium absorption. At present the calcium absorption tests using calcium isotopes (radioactive or stable) appear to be the most reproducible way of determining calcium absorption. The major nutrient sources for calcium are milk and milk products, whereas some of the green vegetables have a low bioavailability of calcium. When deciding whether an increased calcium intake is advisable, the following questions must be answered. What is the calcium absorptive status of the patient? How should the calcium supplement be dispensed? What calcium salt should be used? When should calcium supplements be taken? What is the compliance of the patient? When should the treatment be evaluated? The calcium supplement might be taken as milk (or milk products) or, in patients with lactose intolerance, as calcium supplements. Quite a number of calcium supplements are available on the market, and many of them are marketed without proper knowledge of the bioavailability of the actual preparation. For the benefit of our patients it is now reasonable to demand such investigations before marketing calcium supplements. PMID:1541940

  5. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    PubMed Central

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-01-01

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6ω-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-κB (NF-κB). A4/J4-neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH.. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH4), which concurrently abrogated A4/J4-NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1)by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A4/J4NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5ω-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2)and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A4/J4-NPs as mediators of omega-3 fatty acid-mediated protection against the endothelial toxicity of coplanar PCBs. PMID:21130106

  6. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    SciTech Connect

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-02-15

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6{omega}-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-{kappa}B (NF-{kappa}B). A{sub 4}/J{sub 4}-neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH{sub 4}), which concurrently abrogated A{sub 4}/J{sub 4}-NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A{sub 4}/J{sub 4} NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5{omega}-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A{sub 4}/J{sub 4}-NPs as mediators of omega-3 fatty acid-mediated protection against the endothelial toxicity of coplanar PCBs.

  7. Resveratrol prevents insulin resistance caused by short-term elevation of free fatty acids in vivo.

    PubMed

    Pereira, Sandra; Park, Edward; Moore, Jessy; Faubert, Brandon; Breen, Danna M; Oprescu, Andrei I; Nahle, Ashraf; Kwan, Denise; Giacca, Adria; Tsiani, Evangelia

    2015-11-01

    Elevated levels of plasma free fatty acids (FFA), which are commonly found in obesity, induce insulin resistance. FFA activate protein kinases including the proinflammatory IκBα kinase β (IKKβ), leading to serine phosphorylation of insulin receptor substrate 1 (IRS-1) and impaired insulin signaling. To test whether resveratrol, a polyphenol found in red wine, prevents FFA-induced insulin resistance, we used a hyperinsulinemic-euglycemic clamp with a tracer to assess hepatic and peripheral insulin sensitivity in overnight-fasted Wistar rats infused for 7 h with saline, Intralipid plus 20 U·mL(-1) heparin (IH; triglyceride emulsion that elevates FFA levels in vivo; 5.5 μL·min(-1)) with or without resveratrol (3 mg·kg(-1)·h(-1)), or resveratrol alone. Infusion of IH significantly decreased glucose infusion rate (GIR; P < 0.05) and peripheral glucose utilization (P < 0.05) and increased endogenous glucose production (EGP; P < 0.05) during the clamp compared with saline infusion. Resveratrol co-infusion, however, completely prevented the effects induced by IH infusion: it prevented the decreases in GIR (P < 0.05 vs. IH), peripheral glucose utilization (P < 0.05 vs. IH), and insulin-induced suppression of EGP (P < 0.05 vs. IH). Resveratrol alone had no effect. Furthermore, IH infusion increased serine (307) phosphorylation of IRS-1 in soleus muscle (∼30-fold, P < 0.001), decreased total IRS-1 levels, and decreased IκBα content, consistent with activation of IKKβ. Importantly, all of these effects were abolished by resveratrol (P < 0.05 vs. IH). These results suggest that resveratrol prevents FFA-induced hepatic and peripheral insulin resistance and, therefore, may help mitigate the health consequences of obesity. PMID:26455923

  8. Vitamin E supplementation does not prevent ethanol-reduced hepatic retinoic acid levels in rats

    PubMed Central

    Chung, Jayong; Veeramachaneni, Sudipta; Liu, Chun; Mernitz, Heather; Russell, Robert M.; Wang, Xiang-Dong

    2009-01-01

    Chronic, excessive ethanol intake can increase retinoic acid (RA) catabolism by inducing cytochrome P450 2E1 (CYP2E1). Vitamin E (VE) is an antioxidant implicated in CYP2E1 inhibition. In the current study, we hypothesized that VE supplementation inhibits CYP2E1 and decreases RA catabolism, thereby preventing ethanol-induced hepatocyte hyperproliferation. For 1 month, four groups of Sprague-Dawley rats were fed a Lieber-DeCarli liquid ethanol (36% of the total calories) diet as follows: either ethanol alone (Alc group) or ethanol in combination with 0.1 mg/kg body wt of all-trans RA (Alc+RA group), 2 mg/kg body wt of VE (Alc+VE group), or both together (Alc+RA+VE group). Control rats were pair-fed a liquid diet with an isocaloric amount of maltodextrin instead of ethanol. The ethanol-fed groups had three-fold higher hepatic CYP2E1 levels, 50% lower hepatic RA levels, and significantly increased hepatocyte proliferation when compared with the controls. The ethanol-fed rats given VE had more than four-fold higher hepatic VE concentrations than did ethanol-fed rats without VE, but this did not prevent ethanol induction of CYP2E1, lower hepatic retinoid levels, or hepatocellular hyperproliferation. Further, VE supplementation could not prevent RA catabolism in liver microsomal fractions of the ethanol-fed rats in vitro. These results show that VE supplementation can neither inhibit ethanol-induced changes in RA catabolism nor prevent ethanol-induced hepatocyte hyperproliferation in the rat liver. PMID:19854382

  9. Highly Conductive and Reliable Copper-Filled Isotropically Conductive Adhesives Using Organic Acids for Oxidation Prevention

    NASA Astrophysics Data System (ADS)

    Chen, Wenjun; Deng, Dunying; Cheng, Yuanrong; Xiao, Fei

    2015-07-01

    The easy oxidation of copper is one critical obstacle to high-performance copper-filled isotropically conductive adhesives (ICAs). In this paper, a facile method to prepare highly reliable, highly conductive, and low-cost ICAs is reported. The copper fillers were treated by organic acids for oxidation prevention. Compared with ICA filled with untreated copper flakes, the ICA filled with copper flakes treated by different organic acids exhibited much lower bulk resistivity. The lowest bulk resistivity achieved was 4.5 × 10-5 Ω cm, which is comparable to that of commercially available Ag-filled ICA. After 500 h of 85°C/85% relative humidity (RH) aging, the treated ICAs showed quite stable bulk resistivity and relatively stable contact resistance. Through analyzing the results of x-ray diffraction, x-ray photoelectron spectroscopy, and thermogravimetric analysis, we found that, with the assistance of organic acids, the treated copper flakes exhibited resistance to oxidation, thus guaranteeing good performance.

  10. Complex cardiac defects after ethanol exposure during discrete cardiogenic events in zebrafish: Prevention with folic acid

    PubMed Central

    Sarmah, Swapnalee; Marrs, James A.

    2014-01-01

    BACKGROUND Fetal alcohol spectrum disorder (FASD) describes a range of birth defects including various congenital heart defects (CHDs). Mechanisms of FASD-associated CHDs are not understood. Whether alcohol interferes with a single critical event or with multiple events in heart formation is not known. RESULTS Our zebrafish embryo experiments showed that ethanol interrupts different cardiac regulatory networks and perturbed multiple steps of cardiogenesis (specification, myocardial migration, looping, chamber morphogenesis and endocardial cushion formation). Ethanol exposure during gastrulation until cardiac specification or during myocardial midline migration did not produce severe or persistent heart development defects. However, exposure comprising gastrulation until myocardial precursor midline fusion or during heart patterning stages produced aberrant heart looping and defective endocardial cushions. Continuous exposure during entire cardiogenesis produced complex cardiac defects leading to severely defective myocardium, endocardium, and endocardial cushions. Supplementation of retinoic acid with ethanol partially rescued early heart developmental defects, but the endocardial cushions did not form correctly. In contrast, supplementation of folic acid rescued normal heart development, including the endocardial cushions. CONCLUSIONS Our results indicate that ethanol exposure interrupted divergent cardiac morphogenesis events causing heart defects. Folic acid supplementation was effective in preventing a wide spectrum of ethanol-induced heart developmental defects. PMID:23832875

  11. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown...

  12. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown...

  13. Prevention of the photodamage in the hairless mouse dorsal skin by kojic acid as an iron chelator.

    PubMed

    Mitani, H; Koshiishi, I; Sumita, T; Imanari, T

    2001-01-01

    Kojic acid, a fungal metabolic product, has been used as a skin-depigmenting agent in skin care products marketed in Japan. Iron in the skin is known to be involved in wrinkling as a result of chronic photodamage. Kojic acid was expected to have anti-wrinkling activity, since it possesses iron-chelating activity. We now evaluated the anti-wrinkling activity of kojic acid by using hairless mice exposed to chronic solar-simulating ultraviolet (UV) irradiation as model animal. At the end of a 20-week irradiation period, topical application of kojic acid before UV irradiation was observed to dramatically prevent: (1) the wrinkling, (2) hyperplasia of the epidermis, (3) fibrosis of the lower dermis, and (4) the increase of extracellular matrix components in the upper dermis. These findings indicate that kojic acid is a typical agent preventing wrinkling of the skin due to chronic photodamage. PMID:11137872

  14. Effect of addition of citric acid and casein phosphopeptide-amorphous calcium phosphate to a sugar-free chewing gum on enamel remineralization in situ.

    PubMed

    Cai, F; Manton, D J; Shen, P; Walker, G D; Cross, K J; Yuan, Y; Reynolds, C; Reynolds, E C

    2007-01-01

    Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) has been shown to remineralize enamel subsurface lesions in situ. The aim of this study was to investigate the effects of CPP-ACP in a fruit-flavoured sugar-free chewing gum containing citric acid on enamel remineralization, and acid resistance of the remineralized enamel, using an in situ remineralization model. The study utilized a double-blind, randomized, crossover design with three treatments: (i) sugar-free gum (2 pellets) containing 20 mg citric acid and 18.8 mg CPP-ACP, (ii) sugar-free gum containing 20 mg citric acid alone, (iii) sugar-free gum not containing CPP-ACP or citric acid. Ten subjects were instructed to wear removable palatal appliances, with 4 half-slab insets of human enamel containing demineralized subsurface lesions and to chew gum (2 pellets) for 20 min 4 times per day for 14 days. At the completion of each treatment the enamel half-slabs were removed and half of the remineralized lesion treated with demineralization buffer for 16 h in vitro. The enamel slabs (remineralized, acid-challenged and control) were then embedded, sectioned and subjected to microradiography to determine the level of remineralization. Chewing with gum containing citric acid and CPP-ACP resulted in significantly higher remineralization (13.0 +/- 2.2%) than chewing with either gum containing no CPP-ACP or citric acid (9.4 +/- 1.2%) or gum containing citric acid alone (2.6 +/- 1.3%). The acid challenge of the remineralized lesions showed that the level of mineral after acid challenge was significantly greater for the lesions exposed to the gum containing CPP-ACP. PMID:17713338

  15. Assessment of high performance concrete containing fly ash and calcium nitrite based corrosion inhibitor as a mean to prevent the corrosion of reinforcing steel

    NASA Astrophysics Data System (ADS)

    Montes-García, P.; Jiménez-Quero, V.; López-Calvo, H.

    2015-01-01

    This research analyses the effectiveness of the water-to-cement ratio (w/c), fly ash and a calcium nitrite based corrosion inhibitor to prevent the corrosion of reinforcing steel embedded in high performance concrete. The interactive effect between the inhibitor and fly ash was evaluated because the occurrence of a negative effect when both ingredients are added together in a concrete mixture has been reported. All the concrete mixtures studied in this investigation had 8.2% of silica fume. Twenty seven prismatic concrete specimens were fabricated with dimensions of 55 × 230 × 300 mm each containing two steel rods embedded for the purpose of corrosion monitoring. The specimens were exposed to a simulated marine environment with two daily cycles of wetting and drying for one year. To evaluate the deterioration of the specimens corrosion potentials and linear polarization resistance tests were carried out. The results indicate that the use of a low w/c, the addition of fly ash and the addition of the corrosion inhibitor contributed to the reduction of the corrosion of steel in the concrete specimens. The results further suggest that the combination of fly ash and corrosion inhibitor does not promote the deterioration of the concrete matrix.

  16. Citrate-mediated release of aurintricarboxylic acid from a calcium alginate complex: implications for intravaginal HIV chemoprophylaxis and related applications.

    PubMed

    Fong, Krystin; Smith, Timothy J

    2009-01-01

    Factors associated with the intravaginal release of an anti-HIV agent from an alginate complex were considered. Among these is citrate associated with prostatic fluid. This study demonstrates that citrate, at a physiologically appropriate concentration, facilitates the release of an anti-HIV polymer from a calcium alginate complex. The release of the agent can be modified by the concentration of the calcium and alginate in the complex. These results suggest that seminal and prostatic fluid can be considered in the design of an intravaginal system for HIV chemoprophylaxis. PMID:19235046

  17. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells.

    PubMed

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of -22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  18. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells

    PubMed Central

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of −22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  19. Phase development and structural characterization of calcium phosphate ceramics-polyacrylic acid nanocomposites at room temperature in water-methanol mixtures.

    PubMed

    Liou, Sz-Chian; Chen, San-Yuan; Liu, Dean-Mo

    2004-12-01

    Calcium phosphate ceramics (CPCs) were prepared via an in-situ formation in the presence of polyacrylic acid (PAA) polymer under water-methanol (WM) mixture at room temperature. The PAA polymer was employed as both structure-directing agent and crystallization retardant to manipulate the development of resulting CPCs nano-crystallites which are observed to show a core-shell configuration with a thin layer of PAA molecules. A resulting phase evolution map with respect to the developing phases of calcium-deficient hydroxyapatite (CDHA), beta-tricalcium phosphate (beta-TCP), and an intermediate amorphous calcium phoshate (ACP) that were structurally and spectroscopically identified, was constructed in terms of fractions of water-to-methanol proportions and concentration of PAA. It is found that for the solutions in both water-rich and methanol-rich regions, pure CDHA and beta-TCP instead of intermediate ACP phase can be developed irrespective of the concentration of PAA, respectively. For conditions in between, i.e., with methanol fractions of 15%-90%, ACP appeared only when the PAA fell in a limited concentration range. PMID:15747177

  20. Lysophosphatidic Acid Prevents Renal Ischemia-Reperfusion Injury by Inhibition of Apoptosis and Complement Activation

    PubMed Central

    de Vries, Bart; Matthijsen, Robert A.; van Bijnen, Annemarie A. J. H. M.; Wolfs, Tim G. A. M.; Buurman, Wim A.

    2003-01-01

    Renal ischemia-reperfusion (I/R) injury is an important cause of acute renal failure as observed after renal transplantation, major surgery, trauma, and septic as well as hemorrhagic shock. We previously showed that the inhibition of apoptosis is protective against renal I/R injury, indicating that apoptotic cell-death is an important feature of I/R injury. Lysophosphatidic acid (LPA) is an endogenous phospholipid growth factor with anti-apoptotic properties. This tempted us to investigate the effects of exogenous LPA in a murine model of renal I/R injury. LPA administered at the time of reperfusion dose dependently inhibited renal apoptosis as evaluated by the presence of internucleosomal DNA cleavage. I/R-induced renal apoptosis was only present in tubular epithelial cells with evident disruption of brush border as assessed by immunohistochemistry for active caspase-7 and filamentous actin, respectively. LPA treatment specifically prevented tubular epithelial cell apoptosis but also reduced the I/R-induced loss of brush-border integrity. Besides, LPA showed strong anti-inflammatory effects, inhibiting the renal expression of tumor necrosis factor-α and abrogating the influx of neutrophils. Next, LPA dose dependently inhibited activation of the complement system. Moreover, treatment with LPA abrogated the loss of renal function in the course of renal I/R. This study is the first to show that administration of the phospholipid LPA prevents I/R injury, abrogating apoptosis and inflammation. Moreover, exogenous LPA is capable of preventing organ failure because of an ischemic insult and thus may provide new means to treat clinical conditions associated with I/R injury in the kidney and potentially also in other organs. PMID:12819010

  1. Omega-3 polyunsaturated fatty acid supplementation in the prevention of cardiovascular disease

    PubMed Central

    Walz, Courtney P.; Barry, Arden R.; Koshman, Sheri L.

    2016-01-01

    Introduction: Omega-3 polyunsaturated fatty acids (PUFAs) have purported protective cardiovascular (CV) effects. We sought to assess the evidence available for the use of omega-3 PUFAs for the prevention of cardiovascular disease (CVD). Methods: A systematic literature search was conducted using MEDLINE and EMBASE from 1999 to 2015. Placebo-controlled, randomized controlled trials (RCTs) that enrolled over 1000 patients with follow-up greater than 1 year and meta-analyses of RCTs were included. Results: Eight RCTs and 2 meta-analyses were included. In patients with preexisting CVD, only 1 of 5 included RCTs demonstrated a reduction in CV events with omega-3 PUFAs; however, the effect size was minimal, and the study was limited by an open-label design and lack of placebo control. Two meta-analyses concluded omega-3 PUFAs do not reduce CV events in addition to standard, evidence-based therapy in patients after myocardial infarction. Of the 3 predominantly primary prevention RCTs, only 1 demonstrated a minor reduction in major coronary events; however, it was also an open-label study. Furthermore, the safety of omega-3 PUFAs should be considered. While data from RCTs have not demonstrated serious safety concerns, omega-3 PUFAs can increase the risk of bleeding and may interact with other medications that affect hemostasis, such as antiplatelet agents and warfarin. Discussion and Conclusion: There is currently a lack of evidence to support the routine use of omega-3 PUFAs in the primary and secondary prevention of CVD. Pharmacists are ideally situated to engage patients in the discussion of the lack of benefit and possible risk of omega-3 PUFA supplements.

  2. Oral administration of acidic xylooligosaccharides prevents the development of atopic dermatitis-like skin lesions in NC/Nga mice.

    PubMed

    Ohbuchi, Takayuki; Sakaino, Makoto; Takahashi, Tetsunari; Azumi, Naoya; Ishikawa, Kotaro; Kawazoe, Sadahiro; Kobayashi, Yukiko; Kido, Yasuhiro

    2010-01-01

    We examined whether two types of xylooligosaccharides (neutral or acidic xylooligosaccharides) derived from hardwood kraft pulp ameliorate the development of atopic dermatitis (AD)-like skin lesions induced by repeated application of picryl chloride (PiCl) in NC/Nga mice. Oral administration of acidic xylooligosaccharides at a daily dose of 100 mg/kg significantly prevented the development of AD-like skin lesions. Serum histamine level was significantly suppressed, but serum total IgE level was not significantly suppressed. Moreover, the secretion of inflammatory cytokine IL-12 from splenic lymphocytes was significantly suppressed. On the other hand, neutral xylooligosaccharides showed no significant preventive effect on the development of AD-like symptoms. These results suggest that oral administration of acidic xylooligosaccharides may be effective in preventing the development of AD-like skin disease and one of the mechanisms is the suppressive effect on IL-12. PMID:20354347

  3. 21 CFR 172.720 - Calcium lactobionate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.720 Calcium lactobionate. The food additive calcium lactobionate... additive is the calcium salt of lactobionic acid (4-(β,D-galactosido)-D-gluconic acid) produced by...

  4. 21 CFR 172.720 - Calcium lactobionate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.720 Calcium lactobionate. The food additive calcium lactobionate... additive is the calcium salt of lactobionic acid (4-(β,D-galactosido)-D-gluconic acid) produced by...

  5. Characterization of calcium carbonate/chitosan composites

    SciTech Connect

    Gonsalves, K.E.; Zhang, S.

    1995-12-31

    The crystal growth of calcium carbonate on a chitosan substrate was achieved using a supersaturated calcium carbonate solution, by using various additives, polyacrylic acid (PAA). Polyacrylic acid modified the chitosan-film surface and promoted the nucleation of calcium carbonate crystals.

  6. Ferulic acid prevents liver injury and increases the anti-tumor effect of diosbulbin B in vivo *

    PubMed Central

    Wang, Jun-ming; Sheng, Yu-chen; Ji, Li-li; Wang, Zheng-tao

    2014-01-01

    The present study is designed to investigate the protection by ferulic acid against the hepatotoxicity induced by diosbulbin B and its possible mechanism, and further observe whether ferulic acid augments diosbulbin B-induced anti-tumor activity. The results show that ferulic acid decreases diosbulbin B-increased serum alanine transaminase/aspartate transaminase (ALT/AST) levels. Ferulic acid also decreases lipid peroxide (LPO) levels which are elevated in diosbulbin B-treated mice. Histological evaluation of the liver demonstrates hydropic degeneration in diosbulbin B-treated mice, while ferulic acid reverses this injury. Moreover, the activities of copper- and zinc-containing superoxide dismutase (CuZn-SOD) and catalase (CAT) are decreased in the livers of diosbulbin B-treated mice, while ferulic acid reverses these decreases. Further results demonstrate that the mRNA expressions of CuZn-SOD and CAT in diosbulbin B-treated mouse liver are significantly decreased, while ferulic acid prevents this decrease. In addition, ferulic acid also augments diosbulbin B-induced tumor growth inhibition compared with diosbulbin B alone. Taken together, the present study shows that ferulic acid prevents diosbulbin B-induced liver injury via ameliorating diosbulbin B-induced liver oxidative stress injury and augments diosbulbin B-induced anti-tumor activity. PMID:24903991

  7. Caffeic acid phenethyl ester prevents ovary ischemia/reperfusion injury in rabbits.

    PubMed

    Kart, A; Cigremis, Y; Ozen, H; Dogan, O

    2009-08-01

    Protective effect of caffeic acid phenethyl ester (CAPE) on ovary ischemia/reperfusion (IR) injury was investigated in this study. Twenty four New Zealand rabbits were divided into 4 groups as follows: group S served as sham. Group C was intraperitoneally injected with CAPE (8.5mg/kg). In groups E+IR and C+IR, 1% ethanol and CAPE was given intraperitoneally before torsion, respectively. Then, the ovaries were subjected to IR in both groups. Ovary reduced glutathione (GSH) level and glutathione peroxidase (GSH-Px) activity in group E+IR were significantly reduced compared to that of group S. GSH level and GSH-Px activity was significantly increased in group C+I/R. Thiobarbituric acid reactive substances (TBARS) and catalase (CAT) activity in group E+I/R was significantly higher than in group S. CAT activity was decreased to normal levels by CAPE treatment in group C+I/R, while TBARS in group C+IR was significantly reduced compared to that of E+IR. According to histopathological examination, severe congestion, hemorrhage, edema and leukocyte infiltration were observed in E+I/R group. CAPE prominently reduced degenerative effects of IR injury thus it alleviates free radical damage. In conclusion, CAPE which is able to prevent IR-induced injury in the ovaries may be of therapeutic value before the surgical correction. PMID:19457442

  8. Tauroursodeoxycholic acid prevents hearing loss and hair cell death in Cdh23(erl/erl) mice.

    PubMed

    Hu, J; Xu, M; Yuan, J; Li, B; Entenman, S; Yu, H; Zheng, Q Y

    2016-03-01

    Sensorineural hearing loss has long been the subject of experimental and clinical research for many years. The recently identified novel mutation of the Cadherin23 (Cdh23) gene, Cdh23(erl/erl), was proven to be a mouse model of human autosomal recessive nonsyndromic deafness (DFNB12). Tauroursodeoxycholic acid (TUDCA), a taurine-conjugated bile acid, has been used in experimental research and clinical applications related to liver disease, diabetes, neurodegenerative diseases, and other diseases associated with apoptosis. Because hair cell apoptosis was implied to be the cellular mechanism leading to hearing loss in Cdh23(erl/erl) mice (erl mice), this study investigated TUDCA's otoprotective effects in erl mice: preventing hearing impairment and protecting against hair cell death. Our results showed that systemic treatment with TUDCA significantly alleviated hearing loss and suppressed hair cell death in erl mice. Additionally, TUDCA inhibited apoptotic genes and caspase-3 activation in erl mouse cochleae. The data suggest that TUDCA could be a potential therapeutic agent for human DFNB12. PMID:26748055

  9. Prevention of mammary cancer with conjugated linoleic acid: role of the stroma and the epithelium.

    TOXLINE Toxicology Bibliographic Information

    Ip MM; Masso-Welch PA; Ip C

    2003-01-01

    Conjugated linoleic acid (CLA), found naturally in dairy products and ruminant meats, refers to isomers of octadecadienoic acid with conjugated double bonds. CLA inhibits both DMBA- and NMU-induced rat mammary carcinogenesis, and its antitumor efficacy is similar whether it is fed only during puberty, or continuously during promotion. Pubertal feeding is associated with a reduced proliferation of the epithelial cells within the terminal end buds (TEBs) and lobular epithelium, and results in a decrease in the epithelial density, suggesting a reduction in the carcinogen-sensitive target population. During promotion, CLA feeding induces apoptosis of preneoplastic lesions. The effects of CLA are mediated by a direct action on the epithelium, as well as by an indirect effect through the stroma. CLA is incorporated into the neutral lipids of mammary adipocytes, where it can serve as a local reservoir of CLA. Additionally, CLA induces the adipogenic differentiation of multipotent mammary stromal cells in vitro, and inhibits their development into three-dimensional capillary networks. This suggested that CLA might inhibit angiogenesis in vivo, a hypothesis that was subsequently confirmed. The antiangiogenic effect is mediated, in part, through a CLA-induced decrease in serum VEGF (vascular endothelial growth factor) and mammary gland VEGF and flk-1. Together, the data suggest that CLA may be an excellent candidate for prevention of breast cancer.

  10. Prevention of mammary cancer with conjugated linoleic acid: role of the stroma and the epithelium.

    PubMed

    Ip, Margot M; Masso-Welch, Patricia A; Ip, Clement

    2003-01-01

    Conjugated linoleic acid (CLA), found naturally in dairy products and ruminant meats, refers to isomers of octadecadienoic acid with conjugated double bonds. CLA inhibits both DMBA- and NMU-induced rat mammary carcinogenesis, and its antitumor efficacy is similar whether it is fed only during puberty, or continuously during promotion. Pubertal feeding is associated with a reduced proliferation of the epithelial cells within the terminal end buds (TEBs) and lobular epithelium, and results in a decrease in the epithelial density, suggesting a reduction in the carcinogen-sensitive target population. During promotion, CLA feeding induces apoptosis of preneoplastic lesions. The effects of CLA are mediated by a direct action on the epithelium, as well as by an indirect effect through the stroma. CLA is incorporated into the neutral lipids of mammary adipocytes, where it can serve as a local reservoir of CLA. Additionally, CLA induces the adipogenic differentiation of multipotent mammary stromal cells in vitro, and inhibits their development into three-dimensional capillary networks. This suggested that CLA might inhibit angiogenesis in vivo, a hypothesis that was subsequently confirmed. The antiangiogenic effect is mediated, in part, through a CLA-induced decrease in serum VEGF (vascular endothelial growth factor) and mammary gland VEGF and flk-1. Together, the data suggest that CLA may be an excellent candidate for prevention of breast cancer. PMID:14587866

  11. Efficacy of etidronic acid, BioPure MTAD and SmearClear in removing calcium ions from the root canal: An in vitro study

    PubMed Central

    Yadav, Hemant Kumar; Tikku, A. P.; Chandra, Anil; Yadav, Rakesh Kumar; Patel, Devendra Kumar

    2015-01-01

    Objective: The purpose of this study was to quantify the amount of calcium ions removed from the root canal by etidronic acid (HEBP), BioPure MTAD, and SmearClear using atomic absorption spectrophotometer. Materials and Methods: Fifty (n = 50) freshly extracted human mandibular premolar teeth were collected and decoronated at the cementoenamel junction. The canals were prepared in a crown down fashion using the rotary system and copiously irrigated with 1.0% sodium hypochlorite. All specimens were rinsed with the deionized water. Based on the type of chelating agent used, the samples (n = 10) were randomly divided into five (four test and one negative control) groups. Accordingly, Group I - 9% HEBP, Group II - 18% HEBP, Group III - SmearClear, Group IV - BioPure MTAD, and Group V - normal Saline. Subsequent to irrigation, the solution was collected in a test tube and subjected to atomic absorption spectrophotometer for the quantification of calcium ions removed from the root canal. Results: The mean concentration of calcium ions removed from the root canal (mean ± standard deviation) in all groups (I–V) were 13.32 ± 0.54 μg/ml, 16.36 ± 0.27 μg/ml, 20.04 ± 0.24 μg/ml, 18.15 ± 0.39 μg/ml, and 8.74 ± 0.49 μg/ml, respectively. Conclusions: SmearClear was the most effective agent for the removal of calcium ions from the root canal. Hence, its combined use with an organic solvent can be recommended for efficient smear layer removal. PMID:26929691

  12. Lead in calcium supplements.

    PubMed Central

    Scelfo, G M; Flegal, A R

    2000-01-01

    Intercalibrated measurements of lead in calcium supplements indicate the importance of rigorous analytical techniques to accurately quantify contaminant exposures in complex matrices. Without such techniques, measurements of lead concentrations in calcium supplements may be either erroneously low, by as much as 50%, or below the detection limit needed for new public health criteria. In this study, we determined the lead content of 136 brands of supplements that were purchased in 1996. The calcium in the products was derived from natural sources (bonemeal, dolomite, or oyster shell) or was synthesized and/or refined (chelated and nonchelated calcium). The dried products were acid digested and analyzed for lead by high resolution-inductively coupled plasma-mass spectrometry. The method's limit of quantitation averaged 0.06 microg/g, with a coefficient of variation of 1.7% and a 90-100% lead recovery of a bonemeal standard reference material. Two-thirds of those calcium supplements failed to meet the 1999 California criteria for acceptable lead levels (1.5 microg/daily dose of calcium) in consumer products. The nonchelated synthesized and/or refined calcium products, specifically antacids and infant formulas, had the lowest lead concentrations, ranging from nondetectable to 2.9 microg Pb/g calcium, and had the largest proportion of brands meeting the new criteria (85% of the antacids and 100% of the infant formulas). Images Figure 1 Figure 2 PMID:10753088

  13. Influence of calcium and phosphorus, lactose, and salt-to-moisture ratio on Cheddar cheese quality: changes in residual sugars and water-soluble organic acids during ripening.

    PubMed

    Upreti, P; McKay, L L; Metzger, L E

    2006-02-01

    Cheddar cheese ripening involves the conversion of lactose to glucose and galactose or galactose-6-phosphate by starter and nonstarter lactic acid bacteria. Under ideal conditions (i.e., where bacteria grow under no stress of pH, water activity, and salt), these sugars are mainly converted to lactic acid. However, during ripening of cheese, survival and growth of bacteria occurs under the stressed condition of low pH, low water activity, and high salt content. This forces bacteria to use alternate biochemical pathways resulting in production of other organic acids. The objective of this study was to determine if the level and type of organic acids produced during ripening was influenced by calcium (Ca) and phosphorus (P), residual lactose, and salt-to-moisture ratio (S/M) of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), lactose at pressing (2.4 vs. 0.78%), and S/M (6.4 vs. 4.8%) were manufactured. The cheeses were analyzed for organic acids (citric, orotic, pyruvic, lactic, formic, uric, acetic, propanoic, and butyric acids) and residual sugars (lactose, galactose) during 48 wk of ripening using an HPLC-based method. Different factors influenced changes in concentration of residual sugars and organic acids during ripening and are discussed in detail. Our results indicated that the largest decrease in lactose and the largest increase in lactic acid occurred between salting and d 1 of ripening. It was interesting to observe that although the lactose content in cheese was influenced by several factors (Ca and P, residual lactose, and S/M), the concentration of lactic acid was influenced only by S/M. More lactic acid was produced in low S/M treatments compared with high S/M treatments. Although surprising for Cheddar cheese, a substantial amount (0.2 to 0.4%) of galactose was observed throughout ripening in all treatments. Minor changes in the levels of citric, uric, butyric, and propanoic acids were observed during early ripening, whereas during later ripening, a substantial increase was observed. A gradual decrease in orotic acid and a gradual increase in pyruvic acid content of the cheeses were observed during 12 mo of ripening. In contrast, acetic acid did not show a particular trend, indicating its role as an intermediate in a biochemical pathway, rather than a final product. PMID:16428613

  14. Dibromoacetic Acid Induces Thymocyte Apoptosis by Blocking Cell Cycle Progression, Increasing Intracellular Calcium, and the Fas/FasL Pathway in Vitro.

    PubMed

    Gao, Shu-Ying; Zhou, Xiao-Rong; Gong, Ting-Ting; Jia, Li-Ming; Li, Bai-Xiang

    2016-01-01

    Dibromoacetic acid (DBAA), a haloacetic acid found in drinking water as a disinfection by-product, can cause many adverse effects, including immunotoxicity. In a previous study, we confirmed that DBAA can induce obvious immunotoxicity in mice but that the underlying mechanisms are not clearly understood. In our current study, we confirmed that DBAA induced cytotoxicity and apoptosis in thymocytes isolated from mice by a range of DBAA concentrations (0, 5, 10, 20, or 40 μM). The data showed that DBAA exposure led to a significant decrease in proliferative responses to T-cell mitogens and obvious inhibition in the production of cytokines interleukin-2 and interleukin-4. We found obvious morphological changes of apoptosis in thymocytes and observed the percentage of apoptotic thymocytes to increase significantly as the DBAA concentration increased. Further investigation showed that DBAA can cause G0/G1 arrest in cell cycle analysis, increase intracellular calcium ([Ca(2+)]i) levels, increase the expression of Fas/FasL proteins, and decrease the expression of Bcl-2 protein. It is concluded that in vitro exposure to DBAA can lead to marked cytotoxicity and apoptosis among thymocytes, and the mechanism involved is strongly related to blocking cell cycle progression, increasing intracellular calcium, and increasing Fas/FasL expressions. PMID:26704929

  15. Melatonin prevents abnormal mitochondrial dynamics resulting from the neurotoxicity of cadmium by blocking calcium-dependent translocation of Drp1 to the mitochondria.

    PubMed

    Xu, Shangcheng; Pi, Huifeng; Zhang, Lei; Zhang, Nixian; Li, YuMing; Zhang, Huiliang; Tang, Ju; Li, Huijuan; Feng, Min; Deng, Ping; Guo, Pan; Tian, Li; Xie, Jia; He, Mindi; Lu, Yonghui; Zhong, Min; Zhang, Yanwen; Wang, Wang; Reiter, Russel J; Yu, Zhengping; Zhou, Zhou

    2016-04-01

    Cadmium (Cd) is a persistent environmental toxin and occupational pollutant that is considered to be a potential risk factor in the development of neurodegenerative diseases. Abnormal mitochondrial dynamics are increasingly implicated in mitochondrial damage in various neurological pathologies. The aim of this study was to investigate whether the disturbance of mitochondrial dynamics contributed to Cd-induced neurotoxicity and whether melatonin has any neuroprotective properties. After cortical neurons were exposed to 10 μM cadmium chloride (CdCl2 ) for various periods (0, 3, 6, 12, and 24 hr), the morphology of their mitochondria significantly changed from the normal tubular networks into punctuated structures within 3 hr. Following this pronounced mitochondrial fragmentation, Cd treatment led to signs of mitochondrial dysfunction, including excess reactive oxygen species (ROS) production, decreased ATP content, and mitochondrial membrane potential (▵Ψm) loss. However, 1 mM melatonin pretreatment efficiently attenuated the Cd-induced mitochondrial fragmentation, which improved the turnover of mitochondrial function. In the brain tissues of rats that were intraperitoneally given 1 mg/kg CdCl2 for 7 days, melatonin also ameliorated excessive mitochondrial fragmentation and mitochondrial damage in vivo. Melatonin's protective effects were attributed to its roles in preventing cytosolic calcium ([Ca(2+) ]i ) overload, which blocked the recruitment of Drp1 from the cytoplasm to the mitochondria. Taken together, our results are the first to demonstrate that abnormal mitochondrial dynamics is involved in cadmium-induced neurotoxicity. Melatonin has significant pharmacological potential in protecting against the neurotoxicity of Cd by blocking the disbalance of mitochondrial fusion and fission. PMID:26732476

  16. New Findings on the Effects of Tannic Acid: Inhibition of L-Type Calcium Channels, Calcium Transient and Contractility in Rat Ventricular Myocytes.

    PubMed

    Zhu, Fengli; Chu, Xi; Wang, Hua; Zhang, Xuan; Zhang, Yuanyuan; Liu, Zhenyi; Guo, Hui; Liu, Hongying; Liu, Yang; Chu, Li; Zhang, Jianping

    2016-03-01

    Tannic acid (TA) is a group of water-soluble polyphenolic compounds that occur mainly in plant-derived feeds, food grains and fruits. Many studies have explored its biomedical properties, such as anticancer, antibacterial, antimutagenic, antioxidant, antidiabetic, antiinflammatory and antihypertensive activities. However, the effects of TA on the L-type Ca(2+) current (ICa-L ) of cardiomyocytes remain undefined. The present study examined the effects of TA on ICa-L using the whole-cell patch-clamp technique and on intracellular Ca(2+) handling and cell contractility in rat ventricular myocytes with the aid of a video-based edge detection system. Exposure to TA resulted in a concentration- and voltage-dependent blockade of ICa-L , with the half maximal inhibitory concentration of 1.69 μM and the maximal inhibitory effect of 46.15%. Moreover, TA significantly inhibited the amplitude of myocyte shortening and peak value of Ca(2+) transient and increased the time to 10% of the peak. These findings provide new experimental evidence for the cellular mechanism of action of TA and may help to expand clinical treatments for cardiovascular disease. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26762248

  17. Calcium - ionized

    MedlinePlus

    ... All cells need calcium in order to work. Calcium helps build strong bones and teeth. It is important for heart function. It also helps with muscle contraction, nerve signaling, and blood clotting. This article discusses ...

  18. Role of sulfur containing amino acids as an adjuvant therapy in the prevention of diabetes and its associated complications.

    PubMed

    Manna, Prasenjit; Das, Joydeep; Sil, Parames C

    2013-05-01

    Amino acid supplementation is gaining acceptance as an important adjuvant therapy in the treatment of diabetes and its associated complications. Numerous studies in the literature report the impaired amino acid metabolism in diabetes and the beneficial effects of amino acids are positively correlated with the increase in plasma levels of those amino acids. Oxidative stress is known to play a major role in diabetic pathophysiology. Sulfur containing compounds are well known in the treatment of oxidative stress induced pathological disorders. Methionine, cysteine, and homocysteine are the three common sulfur containing amino acids. In addition, taurine, a sulfonic acid containing an amino group (amino sulfonic acid), is found in substantial amounts in mammalian tissues. Both experimental and clinical studies reported the modulatory effects of cysteine, N-acetyl cysteine, or compounds having cysteine moiety in the regulation of insulin secretion and plasma glucose levels. Taurine supplementation has been found to prevent the onset of diabetes mellitus in experimental models of both insulin dependent and insulin independent pathways. Recent reports suggest that the beneficial role of cysteine or taurine is mediated via their ability in reducing glycooxidation and preventing the generation of intracellular reactive intermediates. Studies with methionine or S-adinosyl methionine has been shown to increase mitochondrial DNA density in skeletal muscle, improve insulin sensitivity and prevent body weight gain. Homocysteine, on the other hand, is an emerging risk factor for cardiovascular disease and diabetic patients have higher levels of this sulfur containing amino acid. Supplementation with cysteine or taurine, however, was found to be effective in reducing plasma homocysteine levels. This review will discuss the role of sulfur containing amino acids in the regulation of hyperglycemia and in the development of its associated pathological dysfunctions. PMID:23547683

  19. Docosahexaenoic acid prevents trans-10, cis-12 conjugated linoleic acid-induced non-alcoholic fatty liver disease in mice by altering expression of hepatic genes regulating fatty acid synthesis and oxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Concomitant supplementation with docosahexaenoic acid (22:6 n-3; DHA) prevented t10, c12- conjugated linoleic acid (CLA)-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance. Effective dose of DHA and mechanisms involved are poorly understood. Methods: We examined abi...

  20. Eicosapentaenoic acid prevents high fat diet-induced metabolic disorders: Genomic and metabolomic analyses of underlying mechanism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously our lab demonstrated eicosapenaenoic acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity by decreasing insulin resistance, glucose intolerance and inflammation. In the current study, we used genomic and metabolomic approaches to further investigate the molecular basis for t...

  1. [Calcium and health].

    PubMed

    Ortega Anta, Rosa M; Jiménez Ortega, Ana I; López-Sobaler, Ana M

    2015-01-01

    An adequate intake of calcium is only not limited to avoid the risk of osteoporosis and its benefits in longterm bone health, but also it has been linked to protection against various major diseases, such as hypertension, cancer, kidney stones, insulin resistance, diabetes... and several investigations suggest its importance in preventing and controlling obesity. Studies conducted in Spanish representative samples show that a high percentage of adults and children (> 75%) don't achieve the recommended intake of calcium. Moreover, are growing trends among the population suggesting that calcium intake and dairy consumption (main food source of the mineral) are high, and even excessive, in many individuals. This misconception results in that the calcium intake is increasingly far from the recommended one. The maximum tolerable intake of the mineral is fixed at 2.500 mg/day, but this intake is unusual, and it's more disturbing and frequent, to find intakes below the recommended calcium intakes (1.000 and 1.200 mg/day in adults, men and women, respectively). Data from different studies highlight the risk of an inadequate calcium intake and the damages that may affect the health in a long term. It is not about transmitting indiscriminate guidelines in order to increase the intake of calcium / dairy, but the recommended intakes must be met to achieve both the nutritional and health benefits. Also activities for demystification of misconceptions are need, increasingly frequent, that may impair health population. PMID:25862324

  2. Nitroarachidonic acid prevents NADPH oxidase assembly and superoxide radical production in activated macrophages

    PubMed Central

    González-Perilli, Lucía; Álvarez, María Noel; Prolo, Carolina; Radi, Rafael; Rubbo, Homero; Trostchansky, Andrés

    2013-01-01

    Nitration of arachidonic acid (AA) to nitroarachidonic acid (AANO2) leads to anti-inflammatory intracellular activities during macrophage activation. However, less is known about the capacity of AANO2 to regulate the production of reactive oxygen species (ROS) under pro-inflammatory conditions. One of the immediate responses upon macrophage activation involves the production of superoxide radical (O2·−), due to the NADPH dependent univalent reduction of oxygen to O2·− by the phagocytic NADPH-oxidase isoform (NOX2), being the activity of NOX2 the main source of O2·− in monocytes/macrophages. Since NOX2 and AA pathways are connected, we propose that AANO2can modulate macrophage activation by inhibiting O2·− formation by NOX2. When macrophages were activated in the presence of AANO2, a significant inhibition of NOX2 activity was observed as evaluated by cytochrome c reduction, luminol chemiluminescence, Amplex Red fluorescence and flow cytometry; this process also occurs in physiological mimic conditions within the phagosomes. AANO2 decreased O2·− production in a dose-(IC50= 4.1 ± 1.8 μM AANO2) and time-dependent manner. The observed inhibition was not due to a decreased phosphorylation of the cytosolic subunits (e.g. p40phox and p47phox), as analyzed by immunoprecipitation and western blot. However, a reduction of the migration to the membrane of p47phox was obtained suggesting that the protective actions involve the prevention of the correct assembly of the active enzyme in the membrane. Finally, the observed in vitro effects were confirmed in an in vivo inflammatory model, where subcutaneous injection of AANO2 was able to decrease NOX2 activity in macrophages from thioglycolate treated mice. PMID:23318789

  3. Association between Serum Phospholipid Fatty Acids and Intraprostatic Inflammation in the Placebo Arm of the Prostate Cancer Prevention Trial.

    PubMed

    Nash, Sarah H; Schenk, Jeannette M; Kristal, Alan R; Goodman, Phillis J; Lucia, M Scott; Parnes, Howard L; Thompson, Ian M; Lippman, Scott M; Song, Xiaoling; Gurel, Bora; De Marzo, Angelo; Platz, Elizabeth A

    2015-07-01

    Inflammation may play an etiologic role in prostate cancer. Several dietary factors influence inflammation; studies have shown that long-chain n-3 polyunsaturated fatty acids are anti-inflammatory, whereas n-6 and trans fatty acids are proinflammatory. We evaluated whether serum phospholipid n-3, n-6, and trans fatty acids were associated with intraprostatic inflammation, separately in 191 prostate cancer cases and 247 controls from the placebo arm of the Prostate Cancer Prevention Trial (PCPT). Men without a prostate cancer diagnosis underwent prostate biopsy at trial end, and benign prostate tissue inflammation was evaluated in approximately three biopsy cores per man; this was expressed as no, some, or all cores with inflammation. In controls, serum eicosapentaenoic acid [OR of all cores with inflammation versus none (95% CI), 0.35 (0.14-0.89)] and docosahexaenoic acid [OR (95% CI), 0.42 (0.17-1.02)] were inversely associated with, whereas linoleic acid [OR (95% CI), 3.85 (1.41-10.55)] was positively associated with intraprostatic inflammation. Serum trans fatty acids were not associated with intraprostatic inflammation. No significant associations were observed in cases; however, we could not rule out a positive association with linoleic acid and an inverse association with arachidonic acid. Thus, in the PCPT, we found that serum n-3 fatty acids were inversely, n-6 fatty acids were positively, and trans fatty acids were not associated with intraprostatic inflammation in controls. Although, in theory, inflammation could mediate associations of serum fatty acids with prostate cancer risk, our findings cannot explain the epidemiologic associations observed with n-3 and n-6 fatty acids. PMID:25926387

  4. Overexpression of a Calcium-Dependent Protein Kinase Confers Salt and Drought Tolerance in Rice by Preventing Membrane Lipid Peroxidation1[C][W

    PubMed Central

    Campo, Sonia; Baldrich, Patricia; Messeguer, Joaquima; Lalanne, Eric; Coca, María; San Segundo, Blanca

    2014-01-01

    The OsCPK4 gene is a member of the complex gene family of calcium-dependent protein kinases in rice (Oryza sativa). Here, we report that OsCPK4 expression is induced by high salinity, drought, and the phytohormone abscisic acid. Moreover, a plasma membrane localization of OsCPK4 was observed by transient expression assays of green fluorescent protein-tagged OsCPK4 in onion (Allium cepa) epidermal cells. Overexpression of OsCPK4 in rice plants significantly enhances tolerance to salt and drought stress. Knockdown rice plants, however, are severely impaired in growth and development. Compared with control plants, OsCPK4 overexpressor plants exhibit stronger water-holding capability and reduced levels of membrane lipid peroxidation and electrolyte leakage under drought or salt stress conditions. Also, salt-treated OsCPK4 seedlings accumulate less Na+ in their roots. We carried out microarray analysis of transgenic rice overexpressing OsCPK4 and found that overexpression of OsCPK4 has a low impact on the rice transcriptome. Moreover, no genes were found to be commonly regulated by OsCPK4 in roots and leaves of rice plants. A significant number of genes involved in lipid metabolism and protection against oxidative stress appear to be up-regulated by OsCPK4 in roots of overexpressor plants. Meanwhile, OsCPK4 overexpression has no effect on the expression of well-characterized abiotic stress-associated transcriptional regulatory networks (i.e. ORYZA SATIVA DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN1 and ORYZA SATIVA No Apical Meristem, Arabidopsis Transcription Activation Factor1-2, Cup-Shaped Cotyledon6 genes) and LATE EMBRYOGENESIS ABUNDANT genes in their roots. Taken together, our data show that OsCPK4 functions as a positive regulator of the salt and drought stress responses in rice via the protection of cellular membranes from stress-induced oxidative damage. PMID:24784760

  5. [Calcium--essential for everybody].

    PubMed

    Cichosz, Grazyna; Czeczot, Hanna

    2014-06-01

    Calcium regulates majority of metabolic processes within human organism and its optimal intake decreases risk of metabolic illnesses conditioned by diet. Deficiency of calcium results in higher body max index, increase risk of insulin resistance, diabetes type 2 and osteoporosis. Diet delivering full calcium load diminished impendency of hypertension; calcium regulates tension of smooth muscles of blood vessels, limits neurotransmitters activity and also diminish hazardous activity of sodium chloride. Anticancerogenic activity of calcium results from formation insoluble bile acids and fat acids salts, and most of all, from inhibition of intestine mucosa cells hyper proliferation. Due to presence of vitamin D3, CLA, proteins and bioactive peptides emerging from them, milk is more efficient in prophylaxis of diet conditioned illnesses than calcium supplements. Efficiency of milk and dairy products in treatment of obesity, sclerosis and hypertension has been proved by DASH diet. PMID:25095643

  6. Omega-3 fatty acids for the prevention of breast cancer: an update and state of the science.

    PubMed

    Iyengar, Neil M; Hudis, Clifford A; Gucalp, Ayca

    2013-09-01

    The quantity and makeup of dietary fat intake are known to impact human health. Use of Omega-3 (?-3) polyunsaturated fatty acid (PUFA) supplements has gained increasing attention for a variety of purported health benefits, including cancer prevention. Preclinical evidence has been encouraging and recent studies have expanded our understanding of the mechanisms by which ?-3 PUFAs may protect against breast cancer. However, epidemiologic studies have yielded mixed results. Recent population studies have attempted to delineate factors that may influence the effects of ?-3 PUFAs such as total fat intake and the ratio of ?-3 to ?-6 PUFA intake. Several clinical trials, including some currently ongoing, are investigating novel strategies that favorably alter endogenous fatty acid profiles in an effort to develop clinically feasible prevention methods. Identification of well-defined subpopulations that are most likely to benefit from a targeted prevention approach will likely be crucial in this effort. PMID:24073296

  7. Orphenadrine prevents 3-nitropropionic acid-induced neurotoxicity in vitro and in vivo

    PubMed Central

    Pubill, David; Verdaguer, Ester; Canudas, Anna Ma; Sureda, Francesc Xavier; Escubedo, Elena; Camarasa, Jordi; Palls, Merce; Camins, Antoni

    2001-01-01

    Previous studies indicate that 3-nitropropionic acid (3-NPA) neurotoxicity involves the excitotoxic activation of N-methyl-D-aspartate (NMDA) receptors. Thus, we examined the effect of orphenadrine (an anticholinergic drug with NMDA receptor antagonist properties) on 3-NPA neurotoxicity in both cultured rat cerebellar granule cells (CGCs) and in rats. Orphenadrine protected CGCs from 3-NPA-induced mortality, as assessed by both the neutral red viability assay and laser scanning cytometry, using propidium iodide staining. For rats, two indirect markers of neuronal damage were used: the binding of [3H]-PK 11195 to the peripheral-type benzodiazepine receptor (PBR), a microglial marker, and expression of the 27?kD heat-shock protein (HSP27), a marker of activated astroglia. Systemic administration of 3-NPA (30?mg?kg?1 per day for 3 days) induced a 170% increase in [3H]-PK 11195 binding, and expression of HSP27. Both the increase in [3H]-PK 11195 and HSP 27 expression were prevented by previous administration of 30?mg?kg?1 per day of orphenadrine for 3 days. Lower doses (10 and 20?mg?kg?1) had no protective effect. Orphenadrine also reduced 3-NPA-induced mortality in a dose-dependent manner. We propose that orphenadrine or orphenadrine-like drugs could be used to treat neurodegenerative disorders mediated by overactivation of NMDA receptors. PMID:11159722

  8. {alpha}-Lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice

    SciTech Connect

    Lee, Young; Naseem, R. Haris; Park, Byung-Hyun; Garry, Daniel J.; Richardson, James A.; Schaffer, Jean E.; Unger, Roger H. . E-mail: roger.unger@utsouthwestern.edu

    2006-05-26

    {alpha}-Lipoic acid ({alpha}-LA) mimics the hypothalamic actions of leptin on food intake, energy expenditure, and activation of AMP-activated protein kinase (AMPK). To determine if, like leptin, {alpha}-LA protects against cardiac lipotoxicity, {alpha}-LA was fed to transgenic mice with cardiomyocyte-specific overexpression of the acyl CoA synthase (ACS) gene. Untreated ACS-transgenic mice died prematurely with increased triacylglycerol content and dilated cardiomyopathy, impaired systolic function and myofiber disorganization, apoptosis, and interstitial fibrosis on microscopy. In {alpha}-LA-treated ACS-transgenic mice heart size, echocardiogram and TG content were normal. Plasma TG fell 50%, hepatic-activated phospho-AMPK rose 6-fold, sterol regulatory element-binding protein-1c declined 50%, and peroxisome proliferator-activated receptor-{gamma} cofactor-1{alpha} mRNA rose 4-fold. Since food restriction did not prevent lipotoxicity, we conclude that {alpha}-LA treatment, like hyperleptinemia, protects the heart of ACS-transgenic mice from lipotoxicity.

  9. Flufenamic acid prevents behavioral manifestations of salicylate-induced tinnitus in the rat

    PubMed Central

    Ustundag, Yasemin; Bulut, Funda; Demir, Caner Feyzi; Bal, Ali

    2016-01-01

    Introduction Tinnitus is defined as a phantom auditory sensation, the perception of sound in the absence of external acoustic stimulation. Given that flufenamic acid (FFA) blocks TRPM2 cation channels, resulting in reduced neuronal excitability, we aimed to investigate whether FFA suppresses the behavioral manifestation of sodium salicylate (SSA)-induced tinnitus in rats. Material and methods Tinnitus was evaluated using a conditioned lick suppression model of behavioral testing. Thirty-one Wistar rats, randomly divided into four treatment groups, were trained and tested in the behavioral experiment: (1) control group: DMSO + saline (n = 6), (2) SSA group: DMSO + SSA (n = 6), (3) FFA group: FFA (66 mg/kg bw) + saline (n = 9), (4) FFA + SSA group: FFA (66 mg/kg bw) + SSA (400 mg/kg bw) (n = 10). Localization of TRPM2 to the plasma membrane of cochlear nucleus neurons was demonstrated by confocal microscopy. Results Pavlovian training resulted in strong suppression of licking, having a mean value of 0.05 ±0.03 on extinction day 1, which is below the suppression training criterion level of 0.20 in control tinnitus animals. The suppression rate for rats having both FFA (66 mg/kg bw) and SSA (400 mg/kg bw) injections was significantly lower than that for the rats having SSA injections (p < 0.01). Conclusions We suggest that SSA-induced tinnitus could possibly be prevented by administration of a TRPM2 ion channel antagonist, FFA at 66 mg/kg bw. PMID:26925138

  10. Syringic Acid Extracted from Herba dendrobii Prevents Diabetic Cataract Pathogenesis by Inhibiting Aldose Reductase Activity

    PubMed Central

    Wei, Xiaoyong; Chen, Dan; Yi, Yanchun; Qi, Hui; Gao, Xinxin; Fang, Hua; Gu, Qiong; Wang, Ling; Gu, Lianquan

    2012-01-01

    Objective. Effects of Syringic acid (SA) extracted from dendrobii on diabetic cataract (DC) pathogenesis were explored. Methods. Both in vitro and in vivo DC lens models were established using D-gal, and proliferation of HLEC exposed to SA was determined by MMT assay. After 60-day treatment with SA, rat lens transparency was observed by anatomical microscopy using a slit lamp. SA protein targets were extracted and isolated using 2-DE and MALDI TOF/TOF. AR gene expression was investigated using qRT-PCR. Interaction sites and binding characteristics were determined by molecule-docking techniques and dynamic models. Results. Targeting AR, SA provided protection from D-gal-induced damage by consistently maintaining lens transparency and delaying lens turbidity development. Inhibition of AR gene expression by SA was confirmed by qRT-PCR. IC50 of SA for inhibition of AR activity was 213.17??g/mL. AR-SA binding sites were Trp111, His110, Tyr48, Trp20, Trp79, Leu300, and Phe122. The main binding modes involved hydrophobic interactions and hydrogen bonding. The stoichiometric ratio of non-covalent bonding between SA and AR was 1.0 to 13.3. Conclusion. SA acts to prevent DC in rat lenses by inhibiting AR activity and gene expression, which has potential to be developed into a novel drug for therapeutic management of DC. PMID:23365598

  11. Extraction and sorption of acetic acid at pH above pK{sub a} to form calcium magnesium acetate

    SciTech Connect

    Reisinger, H.; King, C.J.

    1995-03-01

    The use of rock salt for deicing roads has many negative effects on automobiles, highway systems, and the environment. Calcium magnesium acetate, hence-forth denoted CMA, has been identified as a more desirable, environmentally benign solid deicer for high-ways, airport runaways, and similar applications. CMA is also of interest as an additive for scavenging sulfur in combustion processes so as to reduce emissions of sulfur oxides and as a catalyst for coal gasification. Different extractants (trioctylphosphine oxide and secondary, tertiary, and quaternary amines) and solid sorbents (tertiary and quaternary amines) were investigated as agents for recovery of acetic acid as part of a process for production of CMA from fermentation acetic acid. The pH and temperature dependencies for uptake of acetic acid by these extractants and sorbents were measured, along with the degrees of regeneration by aqueous suspensions of slaked dolomitic lime. These results enable identification of agents having optimal basicity. Among the extractants, the secondary amine Amberlite LA-2 gave the best combined performance for extraction and regeneration. Among the sorbents, a tertiary amine, Amberlite IRA-35, gave the best performance. Trioctylphosphine oxide does not maintain capacity in the pH range (about 6) most attractive for acetic acid fermentation. Slurred crushed dolomite is not sufficiently basic to accomplish regeneration.

  12. Inhibition of NAADP signalling on reperfusion protects the heart by preventing lethal calcium oscillations via two-pore channel 1 and opening of the mitochondrial permeability transition pore

    PubMed Central

    Davidson, Sean M.; Foote, Kirsty; Kunuthur, Suma; Gosain, Raj; Tan, Noah; Tyser, Richard; Zhao, Yong Juan; Graeff, Richard; Ganesan, A.; Duchen, Michael R.; Patel, Sandip; Yellon, Derek M.

    2015-01-01

    Aims In the heart, a period of ischaemia followed by reperfusion evokes powerful cytosolic Ca2+ oscillations that can cause lethal cell injury. These signals represent attractive cardioprotective targets, but the underlying mechanisms of genesis are ill-defined. Here, we investigated the role of the second messenger nicotinic acid adenine dinucleotide phosphate (NAADP), which is known in several cell types to induce Ca2+ oscillations that initiate from acidic stores such as lysosomes, likely via two-pore channels (TPCs, TPC1 and 2). Methods and results An NAADP antagonist called Ned-K was developed by rational design based on a previously existing scaffold. Ned-K suppressed Ca2+ oscillations and dramatically protected cardiomyocytes from cell death in vitro after ischaemia and reoxygenation, preventing opening of the mitochondrial permeability transition pore. Ned-K profoundly decreased infarct size in mice in vivo. Transgenic mice lacking the endo-lysosomal TPC1 were also protected from injury. Conclusion NAADP signalling plays a major role in reperfusion-induced cell death and represents a potent pathway for protection against reperfusion injury. PMID:26395965

  13. Calcium Channels

    NASA Astrophysics Data System (ADS)

    Corry, Ben; Hool, Livia

    Ion channels underlie the electrical activity of cells. Calcium channels have a unique functional role, because not only do they participate in this activity, they form the means bywhich electrical signals are converted to responses within the cell. Calcium concentrations in the cytoplasm of cells are maintained at a low level, and calcium channels activate quickly such that the opening of ion channels can rapidly change the cytoplasmic environment. Once inside the cell, calcium acts as a "second messenger" prompting responses by binding to a variety of calcium sensitive proteins. Calcium channels are known to play an important role in stimulating muscle contraction, in neurotransmitter secretion, gene regulation, activating other ion channels, controlling the shape and duration of action potentials and many other processes. Since calcium plays an integral role in cell function, and since excessive quantities can be toxic, its movement is tightly regulated and controlled through a large variety of mechanisms.

  14. The molecular cloning of the complementary deoxyribonucleic acid for bovine vitamin D-dependent calcium-binding protein: structure of the full-length protein and evidence for homologies with other calcium-binding proteins of the troponin-C superfamily of proteins.

    PubMed

    Kumar, R; Wieben, E; Beecher, S J

    1989-02-01

    We have cloned the cDNA for bovine intestinal vitamin D-dependent calcium-binding protein and, based on the sequence of the DNA, have deduced the structure of the full-length protein. The sequence of the cDNA clone predicts a protein comprised of 78 amino acids with a mol wt of 8788. The mRNA for the protein in bovine duodenum is about 500-600 bases in length. The protein sequence of bovine intestinal calcium-binding protein is 87% homologous with the sequence of porcine intestinal vitamin D-dependent calcium-binding protein and 81% homologous with the sequence of rat intestinal vitamin D-dependent calcium-binding protein. Hydrophilicity plots of the proteins noted above show that despite differences in amino acid sequence the proteins have similar patterns. In addition, the predicted secondary structure of the proteins is similar. Bovine intestinal calcium-binding protein shows 48.6% homology with the alpha-chain and 38.2% homology with the beta-chain of bovine S-100 protein and a similar high degree of homology with the beta-chain of human S-100 protein. The protein also demonstrates 36-43% homology with parvalbumin alpha and beta from various species and with troponin-C. There is some homology with the 28K vitamin D-dependent calcium-binding proteins. Vitamin D-dependent bovine intestinal calcium-binding protein is closely related to other mammalian intestinal calcium-binding proteins and to the S-100 proteins, parvalbumins, and troponin-C. PMID:2710141

  15. Platelet-activating factor induces phospholipid turnover, calcium flux, arachidonic acid liberation, eicosanoid generation, and oncogene expression in a human B cell line

    SciTech Connect

    Schulam, P.G.; Kuruvilla, A.; Putcha, G.; Mangus, L.; Franklin-Johnson, J.; Shearer, W.T. )

    1991-03-01

    Platelet-activating factor is a potent mediator of the inflammatory response. Studies of the actions of platelet-activating factor have centered mainly around neutrophils, monocytes, and platelets. In this report we begin to uncover the influence of platelet-activating factor on B lymphocytes. Employing the EBV-transformed human B cell line SKW6.4, we demonstrate that platelet-activating factor significantly alters membrane phospholipid metabolism indicated by the incorporation of 32P into phosphatidylcholine, phosphatidylinositol, and phosphatidic acid but not significantly into phosphatidylethanolamine at concentrations ranging from 10(-9) to 10(-6) M. The inactive precursor, lyso-platelet-activating factor, at a concentration as high as 10(-7) M had no effect on any of the membrane phospholipids. We also show that platelet-activating factor from 10(-12) to 10(-6) M induced rapid and significant elevation in intracellular calcium levels, whereas lyso-platelet-activating factor was again ineffective. We further demonstrate the impact of platelet-activating factor binding to B cells by measuring platelet-activating factor induced arachidonic acid release and 5-hydroxyeicosatetraenoic acid production. Moreover, platelet-activating factor was capable of inducing transcription of the nuclear proto-oncogenes c-fos and c-jun. Finally we explored the possible role of 5-hydroxyeicosatetraenoic acid as a regulator of arachidonic acid liberation demonstrating that endogenous 5-lipoxygenase activity modulates platelet-activating factor induced arachidonic acid release perhaps acting at the level of phospholipase A2. In summary, platelet-activating factor is shown here to have a direct and profound effect on a pure B cell line.

  16. Population pharmacokinetics and exposure-uric acid analyses after single and multiple doses of ABT-639, a calcium channel blocker, in healthy volunteers.

    PubMed

    An, Guohua; Liu, Wei; Duan, W Rachel; Nothaft, Wolfram; Awni, Walid; Dutta, Sandeep

    2015-03-01

    ABT-639 is a selective T-type calcium channel blocker with efficacy in a wide range of preclinical models of nociceptive and neuropathic pain. In the current first-in-human (FIH) study, the pharmacokinetics, tolerability, and safety of ABT-639 after single- (up to 170 mg) and multiple doses (up to 160 mg BID) were evaluated in healthy volunteers in a randomized, double-blinded, placebo-controlled manner. ABT-639 demonstrated acceptable safety and pharmacokinetic profiles in human. Results from assessment of the routine laboratory variables showed an unexpected statistically significant and clinically relevant decrease in blood uric acid with the increase in ABT-639 dose, which is possibly due to inhibition in URAT1 transporter. Pharmacokinetic/pharmacodynamic models were constructed to characterize the relationship between ABT-639 exposure and uric acid response. The final model was a mechanism-based indirect response pharmacodynamic model with the stimulation of uric acid elimination by ABT-639. The model estimated K in values in males and females were 10.2 and 7.13 μmol/h, respectively. The model estimated K out was 0.033 1/h. ABT-639 concentration that can produce 50% stimulation in uric acid elimination was estimated to be 8,070 ng/mL. Based on the final model, further simulations were conducted to predict the effect of ABT-639 on uric acid in gout patients. The simulation results indicated that, if the urate-lowering response to ABT-639 in gout patients is similar to that in healthy subjects, ABT-639 BID doses of 140 mg or higher would be expected to provide clinically meaningful lowering of blood uric acid levels below the 380 μmol/L solubility limit of monosodium urate. PMID:25567367

  17. Effect of Calcium Soap of Fatty Acids Supplementation on Serum Biochemical Parameters and Ovarian Activity during Out-of-the-Breeding Season in Crossbred Ewes

    PubMed Central

    El-Nour, Hayat H. M.; Nasr, Soad M.; Hassan, Walid R.

    2012-01-01

    This experiment aimed to evaluate the effect of calcium soap of fatty acid (CSFA) supplementation on serum biochemical and hormones and ovarian activity during out-of-the-breeding season in ewes. Twelve crossbred ewes, 2-3 years of age and weighting 45–55 kg, were allocated into two equal groups. The first group was control and the other was treated with 50 g/head of CSFA. All ewes were fed basal diet and treated with 60 mg of medroxy progesterone acetate intravaginal sponge for 12 day. At the third day of sponge removal, the CSFA-treated group was given 50 g/head of CSFA daily for two estrous cycles. During the estrus phase, ovarian activity was detected using ultrasonography in both groups. All ewes were then subjected to natural breeding and conception rate. Blood samples were collected from all ewes during treatment period. Results revealed significant (P < 0.05) increases in serum cholesterol, triglycerides, low-density lipoprotein cholesterol, glucose, and progesterone levels with decrease in calcium and phosphorous levels in treated group. In treated group, normal-size ovaries and more than one follicle on the ovaries were detected and pregnancy rate increased. In conclusion, CSFA supplementation was effective to maintain the reproductive performance when ewes were out of the breeding season. PMID:22629155

  18. Further improvement in ganoderic acid production in static liquid culture of Ganoderma lucidum by integrating nitrogen limitation and calcium ion addition.

    PubMed

    Li, Huan-Jun; Zhang, De-Huai; Han, Li-Liang; Yu, Xuya; Zhao, Peng; Li, Tao; Zhong, Jian-Jiang; Xu, Jun-Wei

    2016-01-01

    To further improve the ganoderic acid (GA) production, a novel integrated strategy by combining nitrogen limitation and calcium ion addition was developed. The effects of the integrated combination on the content of GA-T (one powerful anticancer compound), their intermediates (squalene and lanosterol) and on the transcription levels of GA biosynthetic genes in G. lucidum fermentation were investigated. The maximum GA-T content with the integrated strategy were 1.87 mg/ 100 mg dry cell weight, which was 2.1-4.2 fold higher than that obtained with either calcium ion addition or nitrogen limitation alone, and it is also the highest record as ever reported in submerged fermentation of G. lucidum. The squalene content was increased by 3.9- and 2.2-fold in this case compared with either individual strategy alone. Moreover, the transcription levels of the GA biosynthetic genes encoding 3-hydroxy-3-methyglutaryl coenzyme A reductase and lanosterol synthase were also up-regulated by 3.3-7.5 and 1.3-2.3 fold, respectively. PMID:26508324

  19. Combinatorial chemopreventive effect of butyric acid, nicotinamide and calcium glucarate against the 7,12-dimethylbenz(a)anthracene induced mouse skin tumorigenesis attained by enhancing the induction of intrinsic apoptotic events.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2015-01-25

    We explored the basis of the combinatorial chemopreventive effect of butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) on mouse skin exposed to 7,12-dimethylbenz(a)anthracene (DMBA). We studied the effects of topical application of DMBA in the presence or absence of BA, NA and CAG on the regulators of apoptosis. DMBA treatment suppressed Bax, Bax/Bcl-2 ratio, release of cyt c, Apaf1, caspase-9, -3 mediated apoptosis. Downregulation of p21 and upregulation of Bcl-2, mut p53 were also observed in only DMBA treated mice. Simultaneous application of BA, NA and CAG induced a mitochondria-mediated apoptosis, characterized by a rise in the Bax, Bax/Bcl-2 ratio, release of cyt c, upregulation of Apaf1 with down-stream activation of caspase-9, -3. Furthermore treatment with BA, NA and CAG demonstrated an upregulation of p21 and downregulation of Bcl-2, mut p53. But this effect was enhanced in the presence of all the three compounds together in combination. Chemoprevention by a combination of BA, NA and CAG by inducing the apoptosis, the natural cell death, suggest the importance of the potential combinational strategies capable of preventing skin tumor development. PMID:25478867

  20. Calcium alloy as active material in secondary electrochemical cell

    DOEpatents

    Roche, Michael F.; Preto, Sandra K.; Martin, Allan E.

    1976-01-01

    Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.

  1. Conjugation of Hyaluronic Acid onto Surfaces via the Interfacial Polymerization of Dopamine to Prevent Protein Adsorption.

    PubMed

    Huang, Renliang; Liu, Xia; Ye, Huijun; Su, Rongxin; Qi, Wei; Wang, Libing; He, Zhimin

    2015-11-10

    A versatile, convenient, and cost-effective method that can be used for grafting antifouling materials onto different surfaces is highly desirable in many applications. Here, we report the one-step fabrication of antifouling surfaces via the polymerization of dopamine and the simultaneous deposition of anionic hyaluronic acid (HA) on Au substrates. The water contact angle of the Au surfaces decreased from 84.9° to 24.8° after the attachment of a highly uniform polydopamine (PDA)/HA hybrid film. The results of surface plasmon resonance analysis showed that the Au-PDA/HA surfaces adsorbed proteins from solutions of bovine serum albumin, lysozyme, β-lactoglobulin, fibrinogen, and soybean milk in ultralow or low amounts (4.8-31.7 ng/cm(2)). The hydrophilicity and good antifouling performance of the PDA/HA surfaces is attributable to the HA chains that probably attached onto their upper surface via hydrogen bonding between PDA and HA. At the same time, the electrostatic repulsion between PDA and HA probably prevents the aggregation of PDA, resulting in the formation of a highly uniform PDA/HA hybrid film with the HA chains (with a stretched structure) on the upper surface. We also developed a simple method for removing this PDA/HA film and recycling the Au substrates by using an aqueous solution of NaOH as the hydrolyzing agent. The Au surface remained undamaged, and a PDA/HA film could be redeposited on the surface, with the surface exhibiting good antifouling performance even after 10 such cycles. Finally, it was found that this grafting method is applicable to other substrates, including epoxy resins, polystyrene, glass, and steel, owing to the strong adhesion of PDA with these substrates. PMID:26488547

  2. Structured triacylglycerol containing behenic and oleic acids suppresses triacylglycerol absorption and prevents obesity in rats

    PubMed Central

    2010-01-01

    Background Dietary 1(3)-behenoyl-2,3(1)-dioleoyl-rac-glycerol (BOO) has been reported to inhibit pancreatic lipase activity in vitro and suppress postprandial hypertriacylglycerolemia in humans. In the present study, the anti-obesity activities of BOO and its inhibitory effects on lymphatic triacylglycerol (TAG) absorption were investigated in rats. Methods In Experiment 1, rats were fed either BOO or soybean oil (SO) diet for 6 weeks. In the BOO diet, 20% of SO was replaced with an experimental oil rich in BOO. In Experiments 2 and 3, rats cannulated in the thoracic duct were administered an emulsions containing trioleoylglycerol (OOO) or an oil mixture (OOO:BOO, 9:1). Tri[1-14C]oleoylglycerol (14C-OOO) was added to the emulsions administered in Experiment 3. Results No observable differences were detected in food intake or body weight gain between the BOO and SO groups in Experiment 1. Plasma and liver TAG concentrations and visceral fat weights were significantly lower in the BOO group than in the SO group. The apparent absorption rate of fat was significantly lower in the BOO group than in the SO group. In Experiment 2, the lymphatic recovery of oleic and behenic acids was significantly lower at 5 and 6 h after BOO administration than after OOO administration. In Experiment 3, the lymphatic recovery of 14C-OOO was significantly lower at 5 and 6 h after BOO administration than after OOO administration. Conclusions These results suggest that BOO prevents deposition of visceral fat and hepatic TAG by lowering and delaying intestinal absorption of TAG. PMID:20653972

  3. Tryptamine-Gallic Acid Hybrid Prevents Non-steroidal Anti-inflammatory Drug-induced Gastropathy

    PubMed Central

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd. Shameel; Sarkar, Souvik; Kumar, Rahul; Halder, Kamal Krishna; Debnath, Mita Chatterjee; Adhikari, Susanta; Bandyopadhyay, Uday

    2012-01-01

    We have investigated the gastroprotective effect of SEGA (3a), a newly synthesized tryptamine-gallic acid hybrid molecule against non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy with mechanistic details. SEGA (3a) prevents indomethacin (NSAID)-induced mitochondrial oxidative stress (MOS) and dysfunctions in gastric mucosal cells, which play a pathogenic role in inducing gastropathy. SEGA (3a) offers this mitoprotective effect by scavenging of mitochondrial superoxide anion (O2˙̄) and intramitochondrial free iron released as a result of MOS. SEGA (3a) in vivo blocks indomethacin-mediated MOS, as is evident from the inhibition of indomethacin-induced mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. SEGA (3a) corrects indomethacin-mediated mitochondrial dysfunction in vivo by restoring defective electron transport chain function, collapse of transmembrane potential, and loss of dehydrogenase activity. SEGA (3a) not only corrects mitochondrial dysfunction but also inhibits the activation of the mitochondrial pathway of apoptosis by indomethacin. SEGA (3a) inhibits indomethacin-induced down-regulation of bcl-2 and up-regulation of bax genes in gastric mucosa. SEGA (3a) also inhibits indometacin-induced activation of caspase-9 and caspase-3 in gastric mucosa. Besides the gastroprotective effect against NSAID, SEGA (3a) also expedites the healing of already damaged gastric mucosa. Radiolabeled (99mTc-labeled SEGA (3a)) tracer studies confirm that SEGA (3a) enters into mitochondria of gastric mucosal cell in vivo, and it is quite stable in serum. Thus, SEGA (3a) bears an immense potential to be a novel gastroprotective agent against NSAID-induced gastropathy. PMID:22157011

  4. Treatment and prevention of ARD using silica micro encapsulation[Acid Rock Drainage

    SciTech Connect

    Mitchell, P.; Rybock, J.; Wheaton, A.

    1999-07-01

    In response to the known drawbacks of liming and the ever-increasing regulatory demands on the mining industry, KEECO has developed a silica micro encapsulation (SME) process. SME is a cost-effective, high performance reagent that is utilized in conjunction with simple chemical delivery systems. By encapsulating metals in a silica matrix formation and rapidly precipitating them into a sand-like sludge, it offers all the advantages of liming without the negative drawbacks. Utilizing an injection technique via a high shear mixing device, a slurry form of the SME product called KB-1{trademark} was applied to ARD at the Bunker Hill Mine in Idaho and to ARD pumped from collection ponds at a remote mine site in the Sierra Nevada Mountains. Flow rates at both sites ranged form 500 to 800 gallons per minute. Treated water from the Bunker Hill Mine operation achieved the site's NPDES criteria for all evaluated metals and US Drinking Water quality for arsenic, cadmium, chromium, lead and zinc with a dosage rate of 1.34 grams KB-1{trademark} per liter. Treated water from the Sierra Nevada project focused on the control of aluminum, arsenic, copper, iron and nickel. All water samples displayed a >99.5% reduction in these metals, as well as an 84%--87% reduction in the concentration of sulfate. Testing on sludge generated form both operations achieved TCLP Action Limits. The SME process is currently under evaluation as a means to coat the pyrite surfaces of newly generated mine tailings to prevent oxidation and future acid generation.

  5. Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy.

    PubMed

    Cao, Ai-Li; Wang, Li; Chen, Xia; Wang, Yun-Man; Guo, Heng-Jiang; Chu, Shuang; Liu, Cheng; Zhang, Xue-Mei; Peng, Wen

    2016-06-01

    Endoplasmic reticulum (ER) stress, resulting from the accumulation of misfolded and/or unfolded proteins in ER membranes, is involved in the pathogenesis of diabetic nephropathy (DN). The aim of this study was to investigate the role of ER stress inhibitors ursodeoxycholic acid (UDCA) and 4-phenylbutyrate (4-PBA) in the treatment of DN in db/db mice. Findings have revealed that diabetic db/db mice were more hyperglycemic than their non-diabetic controls, and exhibited a marked increase in body weight, water intake, urine volume, fasting plasma glucose, systolic blood pressure, glucose and insulin tolerance. UDCA (40 mg/kg/day) or 4-PBA (100 mg/kg/day) treatment for 12 weeks resulted in an improvement in these biochemical and physical parameters. Moreover, UDCA or 4-PBA intervention markedly decreased urinary albuminuria and attenuated mesangial expansion in diabetic db/db mice, compared with db/db mice treated with vehicle. These beneficial effects of UDCA or 4-PBA on DN were associated with the inhibition of ER stress, as evidenced by the decreased expression of BiP, phospho-IRE1α, phospho-eIF2α, CHOP, ATF-6 and spliced X-box binding protein-1 in vitro and in vivo. UDCA or 4-PBA prevented hyperglycemia-induced or high glucose (HG)-induced apoptosis in podocytes in vivo and in vitro via the inhibition of caspase-3 and caspase-12 activation. Autophagy deficiency was also seen in glomeruli in diabetic mice and HG-incubated podocytes, exhibiting decreased expression of LC3B and Beclin-1, which could be restored by UDCA or 4-PBA treatment. Taken together, our results have revealed an important role of ER stress in the development of DN, and UDCA or 4-PBA treatment may be a potential novel therapeutic approach for the treatment of DN. PMID:26999661

  6. Improvement of the healing of a rat tibia defect by means of a Calcium Carbonate based biopolymer mixed with Epidermal Growth Factor and Ascorbic Acid

    NASA Astrophysics Data System (ADS)

    Mendoza-Barrera, C.; Meléndez-Lira, M.; Hernández-Flores, C.; Lecona-Butrón, H.; García-López, E. S.

    2000-10-01

    At the present bone reparation is commonly solved by means of different graft types. Biomaterials such as hidroxyapatite, coraline, octacalcium phosphate and tricalcium phosphate are used. By other side there are factors like Epidermal Growth Factor (EGF), Fibroblast Growth Factor (TGF), Laminine, Ascorbic Acid (AA), etc. that stimulate the osteogenesis in fracture or bony defect. The goal of this work is to evaluate the effect of the addition of EGF and ascorbic acid to a Ca2CO3 based biopolymer in the healing of a rat tibia model to improve the consolidation with adequate bony quality. No implant rejection or inflammatory reaction was observed during a 5 weeks period in our in vivo studies. The evolution of the osteointegration has been followed employing scanning electronic microscopy (SEM), energy dispersive x-ray analysis (EDX), and biochemistry activity for calcium, phosphor and alkaline phosphatase. We conclude that the combined use of the based Ca2CO3 biopolymer with Ascorbic Acid and Epidermal Growth Factor (group B&AA&EGF) in vivo accelerates the process of bony repair, as compared with the other groups. The mixture B&AA&EGF provide a bridge in the lesion, helping in the cellular migration and increasing the collagen synthesis.

  7. Acid precipitation and food quality: Inhibition of growth and survival in black ducks and mallards by dietary aluminum, calcium and phosphorus

    USGS Publications Warehouse

    Robbins, C.S.

    1990-01-01

    In areas impacted by acid precipitation, water chemistry of acidic ponds and streams often changes, resulting in increased mobilization of aluminum and decreased concentration of calcium carbonate. Aluminum binds with phosphorus and inhibits its uptake by organisms. Thus, invertebrate food organisms used by waterfowl may have inadequate Ca and P or elevated Al for normal growth and development. Acid rain and its effects may be one of the factors negatively impacting American black ducks (Anas rubripes) in eastern North America. One-day old mallards (A. platyrhynchos) and black ducks were placed on one of three Ca:P regimens: low:low (LL), normal:normal (NN), and low:high (LH) with each regimen divided further into three or four Al levels for 10 weeks. Forty-five % of the black ducks died on nine different diets whereas only 28% of the mallards died on three different diets. Mortality was significantly related to diet in both species. Growth rates for body weight, culmens, wings, and tarsi of both species on control diets exceeded those on many treatment diets but the differences were less apparent for mallards than for black ducks. Differences among treatments were due to both Ca:P and Al levels.

  8. Calcification prevention tablets

    NASA Technical Reports Server (NTRS)

    Lindsay, Geoffrey A.; Hasting, Michael A.; Gustavson, Michael A.

    1991-01-01

    Citric acid tablets, which slowly release citric acid when flushed with water, are under development by the Navy for calcification prevention. The citric acid dissolves calcium carbonate deposits and chelates the calcium. For use in urinals, a dispenser is not required because the tablets are non-toxic and safe to handle. The tablets are placed in the bottom of the urinal, and are consumed in several hundred flushes (the release rate can be tailored by adjusting the formulation). All of the ingredients are environmentally biodegradable. Mass production of the tablets on commercial tableting machines was demonstrated. The tablets are inexpensive (about 75 cents apiece). Incidences of clogged pipes and urinals were greatly decreased in long term shipboard tests. The corrosion rate of sewage collection pipe (90/10 Cu/Ni) in citric acid solution in the laboratory is several mils per year at conditions typically found in traps under the urinals. The only shipboard corrosion seen to date is of the yellow brass urinal tail pieces. While this is acceptable, the search for a nontoxic corrosion inhibitor is underway. The shelf life of the tablets is at least one year if stored at 50 percent relative humidity, and longer if stored in sealed plastic buckets.

  9. Increasing the intestinal resistance of rats to the invasive pathogen Salmonella enteritidis: additive effects of dietary lactulose and calcium.

    PubMed Central

    Bovee-Oudenhoven, I M; Termont, D S; Heidt, P J; Van der Meer, R

    1997-01-01

    BACKGROUND AND AIMS: Lactulose fermentation by the intestinal microflora acidifies the gut contents, resulting in an increased resistance to colonisation by acid sensitive pathogens. The extent of fermentation should be controlled to prevent acid induced epithelial cell damage. Considering the buffering capacity of calcium phosphate and its intestinal cytoprotective effects, whether supplemental calcium phosphate adds to the increased resistance to intestinal infections by lactulose fermentations was studied. METHODS: In a strictly controlled experiment, rats were fed a purified low calcium control diet, a low calcium/lactulose diet, or a high calcium/lactulose diet, and subsequently infected orally with Salmonella enteritidis. RESULTS: Lactulose fermentation lowered the pH and increased the lactic acid concentration of the intestinal contents, which significantly reduced excretion of this pathogen in faeces; thus it improved the resistance to colonisation. This agreed with the high sensitivity of S enteritidis to lactic acid (main metabolite of lactulose fermentation) in vitro. Calcium phosphate decreased translocation of S enteritidis to the systemic circulation, an effect independent of lactulose. The unfavourable increased cytotoxicity of faecal water caused by lactulose fermentation was more than counteracted by supplemental calcium phosphate. Moreover, calcium phosphate stimulated lactulose fermentation, as judged by the reduced lactulose excretion in faeces and increased lactic acid, ammonia, and faecal nitrogen excretion. CONCLUSION: Extra calcium phosphate added to a lactulose diet improves the resistance to colonisation and translocation of S enteritidis. This is probably mediated by a calcium induced stimulation of lactulose fermentation by the intestinal microflora and reversion of the lactulose mediated increased luminal cytotoxicity, which reduces damage inflicted on the intestinal mucosa. PMID:9176078

  10. Updated estimates of neural tube defects prevented by mandatory folic Acid fortification - United States, 1995-2011.

    PubMed

    Williams, Jennifer; Mai, Cara T; Mulinare, Joe; Isenburg, Jennifer; Flood, Timothy J; Ethen, Mary; Frohnert, Barbara; Kirby, Russell S

    2015-01-16

    In 1992, the U.S. Public Health Service recommended that all women capable of becoming pregnant consume 400 µg of folic acid daily to prevent neural tube defects (NTDs). NTDs are major birth defects of the brain and spine that occur early in pregnancy as a result of improper closure of the embryonic neural tube, which can lead to death or varying degrees of disability. The two most common NTDs are anencephaly and spina bifida. Beginning in 1998, the United States mandated fortification of enriched cereal grain products with 140 µg of folic acid per 100 g. Immediately after mandatory fortification, the birth prevalence of NTD cases declined. Fortification was estimated to avert approximately 1,000 NTD-affected pregnancies annually. To provide updated estimates of the birth prevalence of NTDs in the period after introduction of mandatory folic acid fortification (i.e., the post-fortification period), data from 19 population-based birth defects surveillance programs in the United States, covering the years 1999-2011, were examined. After the initial decrease, NTD birth prevalence during the post-fortification period has remained relatively stable. The number of births occurring annually without NTDs that would otherwise have been affected is approximately 1,326 (95% confidence interval = 1,122-1,531). Mandatory folic acid fortification remains an effective public health intervention. There remain opportunities for prevention among women with lower folic acid intakes, especially among Hispanic women, to further reduce the prevalence of NTDs in the United States. PMID:25590678

  11. Periparturient effects of feeding a low dietary cation-anion difference diet on acid-base, calcium, and phosphorus homeostasis and on intravenous glucose tolerance test in high-producing dairy cows.

    PubMed

    Grünberg, W; Donkin, S S; Constable, P D

    2011-02-01

    Feeding rations with low dietary cation-anion difference (DCAD) to dairy cows during late gestation is a common strategy to prevent periparturient hypocalcemia. Although the efficacy of low-DCAD rations in reducing the incidence of clinical hypocalcemia is well documented, potentially deleterious effects have not been explored in detail. The objective of the study presented here was to determine the effect of fully compensated metabolic acidosis on calcium and phosphorus homeostasis, insulin responsiveness, and insulin sensitivity as well as on protein metabolism. Twenty multiparous Holstein-Friesian dairy cows were assigned to 1 of 2 treatment groups and fed a low-DCAD ration (DCAD = -9 mEq/100g, group L) or a control ration (DCAD = +11 mEq/100g, group C) for the last 3 wk before the expected calving date. Blood and urine samples were obtained periodically between 14 d before to 14 d after calving. Intravenous glucose tolerance tests and 24-h volumetric urine collection were conducted before calving as well as 7 and 14 d postpartum. Cows fed the low-DCAD ration had lower urine pH and higher net acid excretion, but unchanged blood pH and bicarbonate concentration before calving. Protein-corrected plasma Ca concentration 1 d postpartum was higher in cows on the low-DCAD diet when compared with control animals. Urinary Ca and P excretion was positively associated with urine net acid excretion and negatively associated with urine pH. Whereas metabolic acidosis resulted in a 6-fold increase in urinary Ca excretion, the effect on renal P excretion was negligible. A more pronounced decline of plasma protein and globulin concentration in the periparturient period was observed in cows on the low-DCAD diets resulting in significantly lower total protein and globulin concentrations after calving in cows on low-DCAD diets. Intravenous glucose tolerance tests conducted before and after calving did not reveal group differences in insulin response or insulin sensitivity. Our results indicate that fully compensated metabolic acidosis increased the Ca flux resulting in increased urinary calcium excretion before calving and increased plasma Ca concentration on the day after calving, whereas the effect on P homeostasis was unlikely to be clinically relevant. The clinical relevance of the effect of metabolic acidosis on the plasma protein and globulin concentration is unclear but warrants further investigation. PMID:21257041

  12. The role of a conserved acidic residue in calcium-dependent protein folding for a low density lipoprotein (LDL)-A module: implications in structure and function for the LDL receptor superfamily.

    PubMed

    Guo, Ying; Yu, Xuemei; Rihani, Kayla; Wang, Qing-Yin; Rong, Lijun

    2004-04-16

    One common feature of the more than 1,000 complement-type repeats (or low density lipoprotein (LDL)-A modules) found in LDL receptor and the other members of the LDL receptor superfamily is a cluster of five highly conserved acidic residues in the C-terminal region, DXXXDXXDXXDE. However, the role of the third conserved aspartate of these LDL-A modules in protein folding and ligand recognition has not been elucidated. In this report, using a model LDL-A module and several experimental approaches, we demonstrate that this acidic residue, like the other four conserved acidic residues, is involved in calcium-dependent protein folding. These results suggest an alternative calcium coordination conformation for the LDL-A modules. The proposed model provides a plausible explanation for the conservation of this acidic residue among the LDL-A modules. Furthermore, the model can explain why mutations of this residue in human LDL receptor cause familial hypercholesterolemia. PMID:14749324

  13. Palmitoleic acid prevents palmitic acid-induced macrophage activation and consequent p38 MAPK-mediated skeletal muscle insulin resistance

    PubMed Central

    Talbot, Nicola A.; Wheeler-Jones, Caroline P.; Cleasby, Mark E.

    2014-01-01

    Obesity and saturated fatty acid (SFA) treatment are both associated with skeletal muscle insulin resistance (IR) and increased macrophage infiltration. However, the relative effects of SFA and unsaturated fatty acid (UFA)-activated macrophages on muscle are unknown. Here, macrophages were treated with palmitic acid, palmitoleic acid or both and the effects of the conditioned medium (CM) on C2C12 myotubes investigated. CM from palmitic acid-treated J774s (palm-mac-CM) impaired insulin signalling and insulin-stimulated glycogen synthesis, reduced Inhibitor κBα and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase in myotubes. p38 MAPK inhibition or siRNA partially ameliorated these defects, as did addition of tumour necrosis factor-α blocking antibody to the CM. Macrophages incubated with both FAs generated CM that did not induce IR, while palmitoleic acid-mac-CM alone was insulin sensitising. Thus UFAs may improve muscle insulin sensitivity and counteract SFA-mediated IR through an effect on macrophage activation. PMID:24973767

  14. Awareness of folic acid for prevention of neural tube defects in a community with high prevalence of consanguineous marriages.

    PubMed

    Jaber, Lutfi; Karim, Igbaria A; Jawdat, Abu Moch; Fausi, Mawasi; Merlob, Paul

    2004-01-01

    Neural tube defects (NTDs) are severe congenital malformations and can be fatal. Intake of 0.4 mg folic in the periconceptional period reduces the risk of NTD by 50-70%. Consanguinity in the Arab population in Israel is a prevalent custom. The aim of this study was to assess the level of awareness regarding folic acid and its effect in the prevention of NTD among Arab Israeli women of childbearing age. We conducted a cross-sectional study. Of the 653 women (18-45 years) who were randomly selected for interview while visiting their family physician or well-baby clinic, 624 women completed the questionnaire. Fifty-three percent (n = 333) of the respondents had heard of folic acid; 14% (n = 89) were familiar with the protective effect of NTD and 3% (n = 18) had taken folic acid in the first months of pregnancy whereas none of them had used it in the preconception period. Highly educated women, women with one or two children, paramedics, and women of high socioeconomic status were more knowledgeable about the protective effects of folic acid (P < 0.001). Age and religion had no significant effect. An urgent need exists to improve the awareness of this population to the protective effect of folic acid. Daily supplementation and fertification of food with folic acid should be considered as the best way to improve the balance of folic acid in women of childbearing age of this special population (high prevalence of consanguinity). PMID:15050876

  15. Effect of processing on folic acid fortified Baladi bread and its possible effect on the prevention of colon cancer.

    PubMed

    Omar, Rasha M; Ismail, Hanaa M; El-Lateef, Bothyna M Abd; Yousef, Mokhtar I; Gomaa, Naglaa F; Sheta, Manal

    2009-07-01

    This paper studied the possible effect of folic acid in fortified Baladi bread on the prevention of colon cancer development in rats. Wheat flour samples (82% extraction rate) and soy bean flour were analyzed to determine their folic acid contents using the High Performance Liquid Chromatography (HPLC). Unfortified and folic acid fortified Baladi breads were prepared. Samples from each step of bread preparation were analyzed for folic acid concentration. Protein, fat, ash, fibers and carbohydrates percentages were also determined. Rats were divided into five groups, four of them were injected subcutaneously with dimethylhydrazine (DMH). After 15 weeks, the rats were sacrificed for pathological examination. Results showed that the folic acid content in wheat flour (82% extraction rate) was found to be highly significantly lower than that in soybean flour. After baking, folic acid content in all breads was found to decrease significantly. The highest protein and fat contents were found in soybean flour fortified Baladi bread. The colons of rats of groups 3 (fed 5% soy flour fortified Baladi bread) and 5 (fed Baladi bread fortified with 5% soy flour+8 mg folic acid/kg wheat flour) were the mostly affected by DMH injection as premalignant changes were observed. PMID:19389458

  16. The marine sponge-derived polyketide endoperoxide plakortide F acid mediates its antifungal activity by interfering with calcium homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plakortide F acid (PFA) is a marine-derived polyketide endoperoxide exhibiting strong inhibitory activity against several clinically important fungal pathogens. In the present study, transcriptional profiling coupled with mutant and biochemical analyses were conducted using the model organism Sacch...

  17. The role of dietary n-6 fatty acids in the prevention of cardiovascular disease.

    PubMed

    Willett, Walter C

    2007-09-01

    n-6 Fatty acids, like n-3 fatty acids, play essential roles in many biological functions. Because n-6 fatty acids are the precursors of proinflammatory eicosanoids, higher intakes have been suggested to be detrimental, and the ratio of n-6 to n-3 fatty acids has been suggested by some to be particularly important. However, this hypothesis is based on minimal evidence, and in humans higher intakes of n-6 fatty acids have not been associated with elevated levels of inflammatory markers. n-6 Fatty acids have long been known to reduce serum total and low-density lipoprotein cholesterol, and increases in polyunsaturated fat intake, mostly as n-6 fatty acids, were a cornerstone of dietary advice during the 1960s and 1970s. In the United States, for example, intake of n-6 fatty acids doubled and coronary heart disease (CHD) mortality fell by 50% over a period of several decades. In a series of relatively small, older randomized trials, in which intakes of polyunsaturated fat were increased (even up to 20% of calories), rates of CHD were generally reduced. In a more recent detailed examination of fatty acid intake within the Nurses' Health Study, greater intake of linoleic acid, up to about 8% of energy, has been strongly related to lower incidence of myocardial infarction or CHD death. Because n-3 fatty acids were also related inversely to risk of CHD, the ratio was unrelated to risk. n-6 Fatty acids reduce insulin resistance, probably by acting as a ligand for peroxisome proliferator-activated receptors-gamma, and intakes have been inversely related to risk of type 2 diabetes. Adequate intakes of both n-6 and n-3 fatty acids are essential for good health and low rates of cardiovascular disease and type 2 diabetes, but the ratio of these fatty acids is not useful. Reductions of linoleic acid to "improve" this ratio would likely increase rates of cardiovascular disease and diabetes. PMID:17876199

  18. Ellagic Acid and Resveratrol Prevent the Development of Cisplatin Resistance in the Epithelial Ovarian Cancer Cell Line A2780.

    PubMed

    Engelke, Laura H; Hamacher, Alexandra; Proksch, Peter; Kassack, Matthias U

    2016-01-01

    Purpose. Several studies have shown that natural compounds like resveratrol or ellagic acid have anticancer and antioxidant properties and can stimulate apoptosis in many cancer cell lines. The aim of this study was to elucidate if resveratrol or ellagic acid, respectively, could improve the efficacy of cisplatin in ovarian cancer. Methods. As a cellular resistance model, the epithelial ovarian cancer cell line A2780 and its cisplatin-resistant subclone A2780CisR were used. A2780CisR was obtained by intermittent treatment of A2780 with cisplatin for 26 weekly cycles and showed a 4-6-fold increased resistance towards cisplatin compared to A2780. Results. Pretreatment with resveratrol or ellagic acid 48 h prior to treatment with cisplatin showed a moderate enhancement of cisplatin cytotoxicity in A2780CisR cells (shift factors were 1.6 for ellagic acid and 2.5 for resveratrol). However, intermittent treatment of A2780 with cisplatin for 26 weekly cycles in permanent presence of resveratrol or ellagic acid, respectively, completely prevented the development of cisplatin resistance. The generated cell lines named A2780Resv and A2780Ellag displayed functional characteristics (migration, proliferation, apoptosis, activation of ErbB3, ROS generation) similar to the parental cell line A2780. Conclusion. In conclusion, weekly intermittent treatment cycles of cisplatin-sensitive ovarian cancer cells with cisplatin retain cisplatin chemosensitivity in permanent presence of ellagic acid or resveratrol, respectively, whereas clinically relevant cisplatin chemoresistance develops in the absence of ellagic acid or resveratrol. Use of natural phenolic compounds may thus be a promising approach to prevent cisplatin resistance in ovarian cancer. PMID:26918049

  19. Ellagic Acid and Resveratrol Prevent the Development of Cisplatin Resistance in the Epithelial Ovarian Cancer Cell Line A2780

    PubMed Central

    Engelke, Laura H.; Hamacher, Alexandra; Proksch, Peter; Kassack, Matthias U.

    2016-01-01

    Purpose. Several studies have shown that natural compounds like resveratrol or ellagic acid have anticancer and antioxidant properties and can stimulate apoptosis in many cancer cell lines. The aim of this study was to elucidate if resveratrol or ellagic acid, respectively, could improve the efficacy of cisplatin in ovarian cancer. Methods. As a cellular resistance model, the epithelial ovarian cancer cell line A2780 and its cisplatin-resistant subclone A2780CisR were used. A2780CisR was obtained by intermittent treatment of A2780 with cisplatin for 26 weekly cycles and showed a 4-6-fold increased resistance towards cisplatin compared to A2780. Results. Pretreatment with resveratrol or ellagic acid 48 h prior to treatment with cisplatin showed a moderate enhancement of cisplatin cytotoxicity in A2780CisR cells (shift factors were 1.6 for ellagic acid and 2.5 for resveratrol). However, intermittent treatment of A2780 with cisplatin for 26 weekly cycles in permanent presence of resveratrol or ellagic acid, respectively, completely prevented the development of cisplatin resistance. The generated cell lines named A2780Resv and A2780Ellag displayed functional characteristics (migration, proliferation, apoptosis, activation of ErbB3, ROS generation) similar to the parental cell line A2780. Conclusion. In conclusion, weekly intermittent treatment cycles of cisplatin-sensitive ovarian cancer cells with cisplatin retain cisplatin chemosensitivity in permanent presence of ellagic acid or resveratrol, respectively, whereas clinically relevant cisplatin chemoresistance develops in the absence of ellagic acid or resveratrol. Use of natural phenolic compounds may thus be a promising approach to prevent cisplatin resistance in ovarian cancer. PMID:26918049

  20. Tuning the degradation rate of calcium phosphate cements by incorporating mixtures of polylactic-co-glycolic acid microspheres and glucono-delta-lactone microparticles.

    PubMed

    Sariibrahimoglu, Kemal; An, Jie; van Oirschot, Bart A J A; Nijhuis, Arnold W G; Eman, Rhandy M; Alblas, Jacqueline; Wolke, Joop G C; van den Beucken, Jeroen J J P; Leeuwenburgh, Sander C G; Jansen, John A

    2014-11-01

    Calcium phosphate cements (CPCs) are frequently used as synthetic bone graft materials in view of their excellent osteocompatibility and clinical handling behavior. Hydroxyapatite-forming CPCs, however, degrade at very low rates, thereby limiting complete bone regeneration. The current study has investigated whether degradation of apatite-forming cements can be tuned by incorporating acid-producing slow-resorbing poly(D,L-lactic-co-glycolic) acid (PLGA) porogens, fast-resorbing glucono-delta-lactone (GDL) porogens, or mixtures thereof. The physicochemical, mechanical, and degradation characteristics of these CPC formulations were systematically analyzed upon soaking in phosphate-buffered saline (PBS). In parallel, various CPC formulations were implanted intramuscularly and orthotopically on top of the transverse process of goats followed by analysis of the soft tissue response and bone ingrowth after 12 weeks. In vitro degradation of GDL was almost completed after 2 weeks, as evidenced by characterization of the release of gluconic acid, while PLGA-containing CPCs released glycolic acid throughout the entire study (12 weeks), resulting in a decrease in compression strength of CPC. Extensive in vitro degradation of the CPC matrix was observed upon simultaneous incorporation of 30% PLGA-10% GDL. Histomorphometrical evaluation of the intramuscularly implanted samples revealed that all CPCs exhibited degradation, accompanied by an increase in capsule thickness. In the in vivo goat transverse process model, incorporation of 43% PLGA, 30% PLGA-5% GDL, and 30% PLGA-10% GDL in CPC significantly increased bone formation and resulted in higher bone height compared with both 10% GDL and 20% GDL-containing CPC samples. PMID:24819744

  1. Potential preventive role of lactic acid bacteria against aflatoxin M₁ immunotoxicity and genotoxicity in mice.

    PubMed

    Ben Salah-Abbès, Jalila; Abbès, Samir; Jebali, Rania; Haous, Zohra; Oueslati, Ridha

    2015-01-01

    Aflatoxin M1 (AFM1) is a mycotoxin produced by numerous Aspergillus species in pre- or post-harvest cereals and milk. Exposure to AFM1 imparts potent economic losses in the livestock industry. Toxicologically, it also causes severe immune system problems. The aims of this study were to evaluate a new AFM1-binding/degrading microorganism for biologic detoxification, to examine its ability to degrade AFM1 in liquid medium, and to evaluate its potential for in vivo preventative effects against AFM1-induced immunotoxicity and genotoxicity in mice. Lactobacillus plantarum MON03 (LP) isolated from Tunisian artisanal butter was found to display significant binding ability to AFM1 in PBS (93%) within 24 h of incubation. Further, the LP was able to tolerate gastric acidity, bile salts, and adhere efficiently to Caco-3 cells in vitro. The in vivo study used Balb/c mice that received either vehicle (control), LP only (at 1 × 10(9)CFU/L, ∼1 mg/kg bw), AFM1 (100 mg/kg bw), or AFM1 + LP daily for 15 days (by gavage); two other groups received a single dose of colchicine (4 mg/kg) or mitomycin C (1 mg/kg) as positive controls for induction of micronuclei and chromosomal aberrations, respectively. The results showed that, compared to in control mice, AFM1 treatment led to significantly decreased body weight gains, and caused cytotoxic/genotoxic effects as indicated by increases in frequencies of polychromatic erythrocytes, as well as those with micronucleation (PCEMN) and chromosomal aberrations, among bone marrow cells. The concurrent administration of LP with AFM1 strongly reduced the adverse effects of AFM1 on each parameter. Mice receiving AFM1 + LP co-treatment displayed no significant differences in the assayed parameters as compared to the control mice. By itself, the bacteria caused no adverse effects. Based on the data, it is concluded that the test bacteria could potentially be beneficial in the detoxification of AFM1-contaminated foods and feeds for humans and animals. PMID:24738739

  2. A randomised trial of low dose folic acid to prevent neural tube defects. The Irish Vitamin Study Group.

    PubMed

    Kirke, P N; Daly, L E; Elwood, J H

    1992-12-01

    A randomised trial was initiated in Ireland in 1981 to determine if periconceptional supplementation with either folic acid alone or a multivitamin preparation alone could reduce the recurrence risk of neural tube defects (NTDs) in women with a previously affected pregnancy from 5.0% to 1.0% or less. The trial was concluded before the initial target number of study subjects was reached and without a clear treatment effect being observed. A total of 354 women were randomised to receive one of three treatments: folic acid, multivitamins without folic acid, and folic acid plus multivitamins. At the end of the trial 257 women had had a first trial pregnancy outcome (261 infants/fetuses) where the presence or absence of NTDs was ascertainable. There was one NTD recurrence in the 89 infants/fetuses of women in the multivitamin group and no recurrence in the 172 infants/fetuses of women in the folic acid groups, a non-significant difference. Otherwise eligible women who were pregnant when first contacted constituted a non-randomised control group; there were three recurrences among the 103 infants in this group. The difference in the recurrence rate between the folic acid groups and the non-randomised controls was statistically significant but we have reservations about the validity of this comparison. Although our findings do not provide clear evidence of a protective effect of folic acid supplementation they are consistent with those of the Medical Research Council (MRC) trial which demonstrated the efficacy of folic acid in preventing recurrence of NTDs and they raise the possibility that folic acid may be protective at a much lower dosage than that used in the MRC trial. PMID:1489222

  3. Proteomic Approaches to Predict Bioavailability of Fatty Acids and Their Influence on Cancer and Chronic Disease Prevention123

    PubMed Central

    de Roos, Baukje; Romagnolo, Donato F.

    2012-01-01

    A low intake of fish and PUFA and high dietary trans- and SFA are considered to be among the main preventable causes of death. Unfortunately, epidemiological and preclinical studies have yet to identify biomarkers that accurately predict the influence of fatty acid intake on risk of chronic diseases, including cancer. Changes in protein profile and post-translational modifications in tissue and biofluids may offer important clues about the impact of fatty acids on the etiology of chronic diseases. However, conventional protein methodologies are not adequate for assessing the impact of fatty acids on protein expression patterns and modifications and the discovery of protein biomarkers that predict changes in disease risk and progression in response to fatty acid intake. Although fluctuations in protein structure and abundance and inter-individual variability often mask subtle effects caused by dietary intervention, modern proteomic platforms offer tremendous opportunities to increase the sensitivity of protein analysis in tissues and biofluids (plasma, urine) and elucidate the effects of fatty acids on regulation of protein networks. Unfortunately, the number of studies that adopted proteomic tools to investigate the impact of fatty acids on disease risk and progression is quite small. The future success of proteomics in the discovery of biomarkers of fatty acid nutrition requires improved accessibility and standardization of proteomic methodologies, validation of quantitative and qualitative protein changes (e.g., expression levels, post-translational modifications) induced by fatty acids, and application of bioinformatic tools that can inform about the cause-effect relationships between fatty acid intake and health response. PMID:22649259

  4. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... Specific Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid....

  5. On the role of calcium in indole-3-acetic acid movement and graviresponse in etiolated pea epicotyls

    NASA Technical Reports Server (NTRS)

    Migliaccio, F.; Galston, A. W.

    1989-01-01

    To determine whether Ca2+ plays a special role in the early graviresponse of shoots, as has been reported for roots, we treated etiolated pea epicotyls with substances known to antagonize Ca2+ (La3+), to remove Ca2+ from the wall (spermidine, EGTA), to inhibit calmodulin mediated reactions (chlorpromazine), or to inhibit IAA transport (TIBA). We studied the effect of these substances on IAA and Ca2+ uptake into 7 mm long subapical 3rd internode etiolated pea epicotyl sections and pea leaf protoplasts, on pea epicotyl growth, and graviresponse and on lateral IAA redistribution during gravistimulation. Our results support the view that adequate Ca2+ in the apoplast is required for normal IAA uptake, transport and graviresponse. Experiments with protoplasts indicate that Ca2+ may be controlling a labile membrane porter, possibly located on the external surface of cell membrane, while inhibitor experiments suggest that calmodulin is also implicated in both the movement of IAA and graviresponse. Since a major transfer of Ca2+ through free space during graviresponse has not yet been demonstrated, and since inhibition of calcium channels does not affect IAA redistribution (Migliaccio and Galston, 1987, Plant Physiology 85:542), we conclude that no clear evidence links prior Ca2+ movement with IAA redistribution during graviresponse in stems.

  6. Evaporation Behavior of Phosphorus from Metallurgical Grade Silicon via Calcium-Based Slag Treatment and Hydrochloric Acid Leaching

    NASA Astrophysics Data System (ADS)

    Huang, Liuqing; Lai, Huixian; Lu, Chenghao; Fang, Ming; Ma, Wenhui; Xing, Pengfei; Luo, Xuetao; Li, Jintang

    2016-01-01

    Phosphorus removal from metallurgical grade silicon by CaO-SiO2-CaCl2 slag treatment, HCl leaching, and vacuum refining was investigated. The effect of different compositions of slag was evaluated. The calcium concentration in slag-treated silicon increased with increasing CaO/SiO2 mass ratio of slag, decreasing the evaporation efficiency of phosphorus in molten silicon. The total phosphorus removal efficiency changed from 93.0% to 98.3% when the slag-treated silicon was treated with HCl before vacuum refining. The final concentration of phosphorus in silicon was 0.43 ppmw. This is because phosphorus was removed from metallurgical-grade silicon as follows: Phosphorus reacts with slag at the silicon/slag interface and forms Ca3(PO4)2 and Ca3P2, most of which diffuse from the interface to the slag phase. The remaining Ca3(PO4)2 and Ca3P2 reduce the phosphorus removal efficiency by altering the activity coefficient of phosphorus in molten silicon. HCl leaching enhanced the phosphorus removal efficiency by removing the remaining Ca3(PO4)2 and Ca3P2. Therefore, the mass transfer of phosphorus from metallurgical-grade silicon was accelerated.

  7. [Conjugated linoleic acid as a potential protective factor in prevention of breast cancer].

    PubMed

    Białek, Agnieszka; Tokarz, Andrzej

    2013-01-01

    Cancers are the second leading cause of deaths in Poland, among both women and men. Breast cancer is the malignancy most frequently diagnosed in women. In 2008 mammary cancer was diagnosed in up to 14 500 patients. It is also the second most common cause of cancer deaths among women in our country. Although the etiology of most cases of this disease is not known, risk factors include a variety of nutritional factors. The amount of fat consumed in the diet and the quantity and quality of fatty acids are especially crucial. Among fatty acids to which great importance in modification of cancer risk is attributed are conjugated linoleic acid. Conjugated linoleic acids (CLA) are a group of positional and geometric isomers of linoleic acid, with a conjugated double bond system in the carbon chain. The main natural source of them is milk and dairy products and meat of different species of ruminants, in which cis-9, trans-11 octadecadienoic acid (rumenic acid) occurs in the largest quantities, constituting over 90% of the total pool of CLA. Another important isomer is trans-10, cis-12 octadecadienoic acid, which occurs with rumenic acid in dietary supplements, usually in the ratio 1:1. Surveys conducted show their possible health promoting effects in obesity, atherosclerosis, cardiovascular diseases, osteoporosis, diabetes, insulin resistance, inflammation, and various types of cancer, especially breast cancer.  PMID:23475478

  8. Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose.

    PubMed

    Ismail, Ku Syahidah Ku; Sakamoto, Takatoshi; Hasunuma, Tomohisa; Zhao, Xin-Qing; Kondo, Akihiko

    2014-12-01

    Lignocellulosic biomass is a potential substrate for ethanol production. However, pretreatment of lignocellulosic materials produces inhibitory compounds such as acetic acid, which negatively affect ethanol production by Saccharomyces cerevisiae. Supplementation of the medium with three metal ions (Zn(2+) , Mg(2+) , and Ca(2+) ) increased the tolerance of S. cerevisiae toward acetic acid compared to the absence of the ions. Ethanol production from xylose was most improved (by 34%) when the medium was supplemented with 2 mM Ca(2+) , followed by supplementation with 3.5 mM Mg(2+) (29% improvement), and 180 μM Zn(2+) (26% improvement). Higher ethanol production was linked to high cell viability in the presence of metal ions. Comparative transcriptomics between the supplemented cultures and the control suggested that improved cell viability resulted from the induction of genes controlling the cell wall and membrane. Only one gene, FIT2, was found to be up-regulated in common between the three metal ions. Also up-regulation of HXT1 and TKL1 might enhance xylose consumption in the presence of acetic acid. Thus, the addition of ionic nutrients is a simple and cost-effective method to improve the acetic acid tolerance of S. cerevisiae. PMID:24924214

  9. Involvement of Nitric Oxide on Calcium Mobilization and Arachidonic Acid Pathway Activation during Platelet Aggregation with different aggregating agonists

    PubMed Central

    Banerjee, Debipriya; Mazumder, Sahana; Kumar Sinha, Asru

    2016-01-01

    Platelet aggregation by different aggregating agonists is essential in the normal blood coagulation process, the excess of which caused acute coronary syndrome (ACS). In all cases, the activation of arachidonic acid by cycloxygenase was needed for the synthesis of thromboxane A2 (TXA2) but the mechanism of arachidonic acid release in platelets remains obscure. Studies were conducted to determine the role of nitric oxide (NO), if any, on the release of arachidonic acid in platelets. The cytosolic Ca2+ was visualized and quantitated by fluorescent spectroscopy by using QUIN-2. NO was measured by methemoglobin method. Arachidonic acid was determined by HPLC. TXA2 was measured as ThromboxaneB2 (TXB2) by ELISA. Treatment of platelets in platelet-rich plasma (PRP) with different aggregating agents resulted in the inhibition of nitric oxide synthase (NOS) which inhibited the production of NO synthesis and increased TXA2 synthesis. Furthermore, the treatment of washed PRP with different platelet aggregating agents resulted in the increase of [Ca2+] in nM ranges. In contrast, the pre-treatment of washed PRP with aspirin increased platelet NO level and inhibited the Ca2+ mobilization and TXA2 synthesis. These results indicated that the aggregation of platelets by different aggregating agonists was caused by the cytosolic Ca2+ mobilization due to the inhibition of NOS.

  10. Hydrolytic and oxidate stability of L-(+) -ascorbic acid supported in pectin films: Influence of the macromolecular structure and calcium presence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hydrolytic and oxidative stability of L-(+)-ascorbic acid (AA) into plasticized pectin films were separately studied in view of preserving vitamin C activity and/or to achieve localized antioxidant activity at pharmaceutical and food interfaces. Films were made with each one of the enzymatically...

  11. Calcium phosphate deposition rate, structure and osteoconductivity on electrospun poly(l-lactic acid) matrix using electrodeposition or simulated body fluid incubation

    PubMed Central

    He, Chuanglong; Jin, Xiaobing; Ma, Peter X.

    2013-01-01

    Mineralized nanofibrous scaffolds have been proposed as promising scaffolds for bone regeneration due to their ability to mimic both nanoscale architecture and chemical composition of natural bone extracellular matrix (ECM). In this study, a novel electrodeposition method was compared with an extensively explored simulated body fluid (SBF) incubation method in terms of the deposition rate, chemical composition, and morphology of calcium phosphate formed on electrospun fibrous thin matrices with a fiber diameter in the range from about 200 nm to about 1400 nm prepared using 6, 8, 10 and 12 wt% poly(l-lactic acid) (PLLA) solutions in a mixture of dichloromethane and acetone (2:1 in volume). The effects of the surface modification using the two mineralization techniques on osteoblastic cell (MC3T3-E1) proliferation and differentiation were also examined. It was found that electrodeposition was two to three orders of magnitude faster than the SBF method in mineralizing the fibrous matrices, reducing the mineralization time from about two weeks to an hour to achieve the same amounts of mineralization. The mineralization rate also varied with the fiber diameter but in opposite directions between the two mineralization methods. As a general trend, the increase of fiber diameter resulted in a faster mineralization rate for the electrodeposition method but a slower mineralization rate for the SBF incubation method. Using the electrodeposition method, one can control the chemical composition and morphology of the calcium phosphate by varying the electric deposition potential and electrolyte temperature to tune the mixture of dicalcium phosphate dihydrate (DCPD) and hydroxy apatite (HAp). Using the SBF method, one can only obtain a low crystallinity HAp. The mineralized electrospun PLLA fibrous matrices from either method similarly facilitate the proliferation and osteogenic differentiation of preosteoblastic MC3T3-E1 cells as compared to neat PLLA matrices. Therefore, the electrodeposition method can be utilized as a fast and versatile technique to fabricate mineralized nanofibrous scaffolds for bone tissue engineering. PMID:24012605

  12. Arabidopsis Calcium-Dependent Protein Kinase CPK10 Functions in Abscisic Acid- and Ca2+-Mediated Stomatal Regulation in Response to Drought Stress1[W][OA

    PubMed Central

    Zou, Jun-Jie; Wei, Feng-Ju; Wang, Cun; Wu, Juan-Juan; Ratnasekera, Disna; Liu, Wen-Xin; Wu, Wei-Hua

    2010-01-01

    Plant calcium-dependent protein kinases (CDPKs) may function as calcium sensors and play important roles in the regulation of plant growth and development and in plant responses to biotic and abiotic stresses. The Arabidopsis (Arabidopsis thaliana) genome encodes 34 CDPKs, and most of them have not been functionally characterized. Here, we report the functional characterization of CPK10 in Arabidopsis response to drought stress. The cpk10 mutant, a T-DNA insertion mutant for the Arabidopsis CPK10 gene, showed a much more sensitive phenotype to drought stress compared with wild-type plants, while the CPK10 overexpression lines displayed enhanced tolerance to drought stress. Induction of stomatal closure and inhibition of stomatal opening by abscisic acid (ABA) and Ca2+ were impaired in the cpk10 mutants. Using yeast two-hybrid methods, a heat shock protein, HSP1, was identified as a CPK10-interacting protein. The interaction between CPK10 and HSP1 was further confirmed by pull-down and bimolecular fluorescence complementation assays. The HSP1 knockout mutant (hsp1) plants showed a similar sensitive phenotype under drought stress as the cpk10 mutant plants and were similarly less sensitive to ABA and Ca2+ in regulation of stomatal movements. Electrophysiological experiments showed that ABA and Ca2+ inhibition of the inward K+ currents in stomatal guard cells were impaired in the cpk10 and hsp1 mutants. All presented data demonstrate that CPK10, possibly by interacting with HSP1, plays important roles in ABA- and Ca2+-mediated regulation of stomatal movements. PMID:20805328

  13. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress.

    PubMed

    Zou, Jun-Jie; Wei, Feng-Ju; Wang, Cun; Wu, Juan-Juan; Ratnasekera, Disna; Liu, Wen-Xin; Wu, Wei-Hua

    2010-11-01

    Plant calcium-dependent protein kinases (CDPKs) may function as calcium sensors and play important roles in the regulation of plant growth and development and in plant responses to biotic and abiotic stresses. The Arabidopsis (Arabidopsis thaliana) genome encodes 34 CDPKs, and most of them have not been functionally characterized. Here, we report the functional characterization of CPK10 in Arabidopsis response to drought stress. The cpk10 mutant, a T-DNA insertion mutant for the Arabidopsis CPK10 gene, showed a much more sensitive phenotype to drought stress compared with wild-type plants, while the CPK10 overexpression lines displayed enhanced tolerance to drought stress. Induction of stomatal closure and inhibition of stomatal opening by abscisic acid (ABA) and Ca(2+) were impaired in the cpk10 mutants. Using yeast two-hybrid methods, a heat shock protein, HSP1, was identified as a CPK10-interacting protein. The interaction between CPK10 and HSP1 was further confirmed by pull-down and bimolecular fluorescence complementation assays. The HSP1 knockout mutant (hsp1) plants showed a similar sensitive phenotype under drought stress as the cpk10 mutant plants and were similarly less sensitive to ABA and Ca(2+) in regulation of stomatal movements. Electrophysiological experiments showed that ABA and Ca(2+) inhibition of the inward K(+) currents in stomatal guard cells were impaired in the cpk10 and hsp1 mutants. All presented data demonstrate that CPK10, possibly by interacting with HSP1, plays important roles in ABA- and Ca(2+)-mediated regulation of stomatal movements. PMID:20805328

  14. Effects of whole flaxseed, raw soybeans, and calcium salts of fatty acids on measures of cellular immune function of transition dairy cows.

    PubMed

    Gandra, J R; Barletta, R V; Mingoti, R D; Verdurico, L C; Freitas, J E; Oliveira, L J; Takiya, C S; Kfoury, J R; Wiltbank, M C; Renno, F P

    2016-06-01

    The objective of the current study was to evaluate the effects of supplemental n-3 and n-6 fatty acid (FA) sources on cellular immune function of transition dairy cows. Animals were randomly assigned to receive 1 of 4 diets: control (n=11); whole flaxseed (n-3 FA source; n=11), 60 and 80g/kg of whole flaxseed [diet dry matter (DM) basis] during pre- and postpartum, respectively; whole raw soybeans (n-6 FA source; n=10), 120 and 160g/kg of whole raw soybeans (diet DM basis) during pre- and postpartum, respectively; and calcium salts of unsaturated FA (Megalac-E, n-6 FA source; n=10), 24 and 32g/kg of calcium salts of unsaturated FA (diet DM basis) during pre- and postpartum, respectively. Supplemental FA did not alter DM intake and milk yield but increased energy balance during the postpartum period. Diets containing n-3 and n-6 FA sources increased phagocytosis capacity of leukocytes and monocytes and phagocytosis activity of monocytes. Furthermore, n-3 FA source increased phagocytic capacity of leukocytes and neutrophils and increased phagocytic activity in monocytes and neutrophils when compared with n-6 FA sources. Supplemental FA effects on adaptive immune system included increased percentage of T-helper cells, T-cytotoxic cells, cells that expressed IL-2 receptors, and CD62 adhesion molecules. The results of this study suggest that unsaturated FA can modulate innate and adaptive cellular immunity and trigger a proinflammatory response. The n-3 FA seems to have a greater effect on phagocytic capacity and activity of leukocytes when compared with n-6 FA. PMID:27060809

  15. Anti-Neoplastic and Calcium Modulatory Action of Caffeic Acid Phenethyl Ester and Dasatinib in C6 Glial Cells: A Therapeutic Perspective.

    PubMed

    Balkhi, Henah M; Gul, Taseen; Haq, Ehtishamul

    2016-01-01

    Gliomas are often recognized as highly heterogeneous cancerous phenotype. They are perpetually recurrent, obstinately resistant to treatment and hence almost incurable. Drug development studies to date have revealed only modest effect in attenuating growth of these tumors. The present study was aimed at elucidating the potential of targeting glioma through a novel combination of drugs in comparison to single agent. Here, we show that the combined administration of Caffeic acid phenethyl ester [CAPE] and Dasatinib exerts a strong antitumor action on C6 glioma cells. Combinational treatment inhibits proliferation, induces apoptosis, modulates astrocytic phenotype and decreases cell density. Results suggest that combinational therapy inhibits migration and invasiveness, decreases cell survival fraction and hence clonogenic property of C6 cells. The Nitric oxide [NO] levels were significantly reduced by combination treatment at all time points and effect was persistent over the time in comparison to single drug treatment. Atomic Absorption Spectroscopy [AAS] analysis of intracellular and extracellular calcium revealed that the treatment with CAPE and Dasatinib strongly modulates the calcium [Ca(2+)] levels. Herein, we demonstrate that treatment of C6 glioma cells with CAPE and Dasatinib significantly decrease the activity of catalase [CAT]. The results in totality suggest that the combinational therapy remarkably reduces the proliferation of glioma cells possibly through different mechanisms, targeting multiple pathways involved in tumor growth, proliferation and development implicating the relevance of using these drugs in combination therapy for effective treatment of glioma. In vitro results suggest that CAPE and Dasatinib cotreatment could be therapeutically exploited for the management of gliomas. PMID:26553160

  16. A diet high in meat protein and potential renal acid load increases fractional calcium absorption and urinary calcium excretion without affecting markers of bone resorption or formation in postmenopausal women.

    PubMed

    Cao, Jay J; Johnson, LuAnn K; Hunt, Janet R

    2011-03-01

    Our objective in this study was to determine the effects of a high-protein and high-potential renal acid load (PRAL) diet on calcium (Ca) absorption and retention and markers of bone metabolism. In a randomized crossover design, 16 postmenopausal women consumed 2 diets: 1 with low protein and low PRAL (LPLP; total protein: 61 g/d; PRAL: -48 mEq/d) and 1 with high protein and high PRAL (HPHP; total protein: 118 g/d; PRAL: 33 mEq/d) for 7 wk each separated by a 1-wk break. Ca absorption was measured by whole body scintillation counting of radio-labeled (47)Ca. Compared with the LPLP diet, the HPHP diet increased participants' serum IGF-I concentrations (P < 0.0001), decreased serum intact PTH concentrations (P < 0.001), and increased fractional (47)Ca absorption (mean ± pooled SD: 22.3 vs. 26.5 ± 5.4%; P < 0.05) and urinary Ca excretion (156 vs. 203 ± 63 mg/d; P = 0.005). The net difference between the amount of Ca absorbed and excreted in urine did not differ between 2 diet periods (55 vs. 28 ± 51 mg/d). The dietary treatments did not affect other markers of bone metabolism. In summary, a diet high in protein and PRAL increases the fractional absorption of dietary Ca, which partially compensates for increased urinary Ca, in postmenopausal women. The increased IGF-I and decreased PTH concentrations in serum, with no change in biomarkers of bone resorption or formation, indicate a high-protein diet has no adverse effects on bone health. PMID:21248199

  17. The role of extracellular free-calcium gradients in gravitropic signalling in maize roots

    NASA Technical Reports Server (NTRS)

    Bjorkman, T.; Cleland, R. E.

    1991-01-01

    Gravitropism in roots has been proposed to depend on a downward redistribution of calcium across the root cap. However, because of the many calcium-binding sites in the apoplast, redistribution might not result in a physiologically effective change in the apoplasmic calcium activity. To test whether there is such a change, we measured the effect of gravistimulation on the calcium activity of statocyte cell walls with calcium-specific microelectrodes. Such a measurement must be made on a tissue with gravity sensing cells at the surface. To obtain such a tissue, decapped maize roots (Zea mays L. cv. Golden Cross Bantam) were grown for 31 h to regenerate gravitropic sensitivity, but not root caps. The calcium activity in the apoplasm surrounding the gravity-sensing cells could then be measured. The initial pCa was 2.60 +/- 0.28 (approx 2.5 mM). The calcium activity on the upper side of the root tip remained constant for 10 min after gravistimulation, then decreased 1.7-fold. On the lower side, after a similar lag the calcium activity increased 1.6-fold. Control roots, which were decapped but measured before recovering gravisensitivity (19 h), showed no change in calcium activity. To test whether this gradient is necessary for gravitropic curvature, we eliminated the calcium activity gradient during gravitropism by applying a mobile calcium-binding site (dinitro-BAPTA; 1,2-bis(2-amino-5-nitro-phenoxy)ethane-N,N,N',N'-tetraacetic acid) to the root cap; this treatment eliminated gravicurvature. A calcium gradient may be formed by proton-induced calcium desorption if there is a proton gradient. Preventing the formation of apoplastic pH gradients, using 10 and 50 mM 2-(N-morpholino)ethanesulfonic acid (Mes) buffer or 10 mM fusicoccin to stimulate proton excretion maximally, did not inhibit curvature; therefore the calcium gradient is not a secondary effect of a proton gradient. We have found a distinct and rapid differential in the apoplasmic calcium activity between the upper and lower sides of gravistimulated maize root tips which is necessary for gravitropism.

  18. Sodium 4-phenylbutyrate prevents murine dietary steatohepatitis caused by trans-fatty acid plus fructose

    PubMed Central

    Morinaga, Maki; Kon, Kazuyoshi; Saito, Hiroaki; Arai, Kumiko; Kusama, Hiromi; Uchiyama, Akira; Yamashina, Shunhei; Ikejima, Kenichi; Watanabe, Sumio

    2015-01-01

    Excess consumption of trans-fatty acid could increase the risk of non-alcoholic steatohepatitis (NASH); however, treatment targeting trans-fatty acid-induced NASH has not been examined. Here we focused on the influence of trans-fatty acid intake on endoplasmic reticulum (ER) stress in hepatocytes, so we investigated the effect of the chemical chaperone 4-phenylbutyric acid (PBA), on trans-fatty acid-caused steatohepatitis using diabetic KK-Ay mice. Elaidic acid (EA, trans-fatty acid) alone did not cause definitive liver injury. In contrast, EA plus low-dose fructose induced extensive apoptosis in hepatocytes with severe fat accumulation. EA plus fructose significantly increased ER stress markers such as glucose-regulated protein 78 (GRP78), eukaryotic initiation factor 2α (eIF2α) and phosphorylated c-jun N-terminal kinase (JNK), while PBA significantly reduced this response. In vitro, EA promoted expression of GRP78 and phosphorylation of eIF2α in primary-cultured hepatocytes. EA also increased hepatocellular susceptibility to low-dose tert-butyl hydroperoxide. Treatment with PBA significantly reduced these responses. In conclusion, EA potentiates susceptibly to non-hazardous dose of fructose, and increases ER and oxidative stress. PBA improved steatohepatitis induced by EA plus fructose through amelioration of ER stress. Therefore, ER stress-targeted therapy using a chemical chaperone is a promising novel strategy for trans-fatty acid-induced steatohepatitis. PMID:26566303

  19. Sodium 4-phenylbutyrate prevents murine dietary steatohepatitis caused by trans-fatty acid plus fructose.

    PubMed

    Morinaga, Maki; Kon, Kazuyoshi; Saito, Hiroaki; Arai, Kumiko; Kusama, Hiromi; Uchiyama, Akira; Yamashina, Shunhei; Ikejima, Kenichi; Watanabe, Sumio

    2015-11-01

    Excess consumption of trans-fatty acid could increase the risk of non-alcoholic steatohepatitis (NASH); however, treatment targeting trans-fatty acid-induced NASH has not been examined. Here we focused on the influence of trans-fatty acid intake on endoplasmic reticulum (ER) stress in hepatocytes, so we investigated the effect of the chemical chaperone 4-phenylbutyric acid (PBA), on trans-fatty acid-caused steatohepatitis using diabetic KK-A(y) mice. Elaidic acid (EA, trans-fatty acid) alone did not cause definitive liver injury. In contrast, EA plus low-dose fructose induced extensive apoptosis in hepatocytes with severe fat accumulation. EA plus fructose significantly increased ER stress markers such as glucose-regulated protein 78 (GRP78), eukaryotic initiation factor 2α (eIF2α) and phosphorylated c-jun N-terminal kinase (JNK), while PBA significantly reduced this response. In vitro, EA promoted expression of GRP78 and phosphorylation of eIF2α in primary-cultured hepatocytes. EA also increased hepatocellular susceptibility to low-dose tert-butyl hydroperoxide. Treatment with PBA significantly reduced these responses. In conclusion, EA potentiates susceptibly to non-hazardous dose of fructose, and increases ER and oxidative stress. PBA improved steatohepatitis induced by EA plus fructose through amelioration of ER stress. Therefore, ER stress-targeted therapy using a chemical chaperone is a promising novel strategy for trans-fatty acid-induced steatohepatitis. PMID:26566303

  20. Treatment and prevention systems for acid mine drainage and halogenated contaminants

    DOEpatents

    Jin, Song; Fallgren, Paul H.; Morris, Jeffrey M.

    2012-01-31

    Embodiments include treatments for acid mine drainage generation sources (10 perhaps by injection of at least one substrate (11) and biologically constructing a protective biofilm (13) on acid mine drainage generation source materials (14). Further embodiments include treatments for degradation of contaminated water environments (17) with substrates such as returned milk and the like.

  1. Sensitivity analyses of MAGIC modelled predictions of future impacts of whole-tree harvest on soil calcium supply and stream acid neutralizing capacity.

    PubMed

    Zetterberg, Therese; Köhler, Stephan J; Löfgren, Stefan

    2014-10-01

    Forest biofuel is a main provider of energy in Sweden and the market is expected to grow even further in the future. Removal of logging residues via harvest can lead to short-term acidification but the long-term effects are largely unknown. The objectives of this study were to 1) model the long-term effect of whole-tree harvest (WTH) on soil and stream water acidity and 2) perform sensitivity analyses by varying the amounts of logging residues, calcium (Ca(2+)) concentrations in tree biomass and site productivity in nine alternate scenarios. Data from three Swedish forested catchments and the Model of Acidification of Groundwater in Catchments (MAGIC) were used to simulate changes in forest soil exchangeable Ca(2+) pools and stream water acid neutralizing capacity (ANC) at Gammtratten, Kindla and Aneboda. Large depletions in soil Ca(2+) supply and a reversal of the positive trend in stream ANC were predicted for all three sites after WTH. However, the magnitude of impact on stream ANC varied depending on site and the concentration of mobile strong acid anions. Contrary to common beliefs, the largest decrease in modelled ANC was observed at the well-buffered site Gammtratten. The effects at Kindla and Aneboda were much more limited and not large enough to offset the general recovery from acidification. Varying the tree biomass Ca(2+) concentrations exerted the largest impact on modelled outcome. Site productivity was the second most important variable whereas changing biomass amounts left on site only marginally affected the results. The outcome from the sensitivity analyses pointed in the same direction of change as in the base scenario, except for Kindla where soil Ca(2+) pools were predicted to be replenished under a given set of input data. The reliability of modelled outcome would increase by using site-specific Ca(2+) concentrations in tree biomass and field determined identification of site productivity. PMID:25046610

  2. Effects of different sources of fat (calcium soap of palm oil vs. extruded linseed) in lactating ewes' diet on the fatty acid profile of their suckling lambs.

    PubMed

    Gómez-Cortés, P; Gallardo, B; Mantecón, A R; Juárez, M; de la Fuente, M A; Manso, T

    2014-03-01

    The main objective of this study was to evaluate the effects of supplementing lactating ewe diets with extruded linseed on the fatty acid (FA) composition of intramuscular and subcutaneous fat depots of suckling lambs. Twenty-four pregnant Churra ewes were divided into two groups based on the milk production, age, body weight and parity, and assigned to one of two treatments. Each ewe of the Control treatment was supplemented with 70 g/day of FAs from a calcium soap of palm oil, while the other treatment group (Lin) was supplemented with 128 g/day of extruded linseed. All lambs were reared exclusively on milk and were slaughtered when they reached 11 kg live weight. FA profiles of ewe milk, lamb meat and subcutaneous adipose tissue were determined by GC. Lamb performance was not affected by the treatments. Muscle fat and adipose tissue from the Lin treatment showed higher proportions of polyunsaturated fatty acids (PUFA). The percentages of α-linolenic (C18:3 n-3), docosahexaenoic (C22:6 n-3), vaccenic (trans-11 C18:1) and rumenic (cis-9, trans-11 C18:2) acids in both fat depots were higher in Lin than in Control suckling lambs. Furthermore, meat fat from Lin carcasses displayed a lower n-6/n-3 ratio than Control samples. Intramuscular depots clearly showed a greater content of PUFA, including cis-9, trans-11 C18:2, and a lower n-6/n-3 ratio than subcutaneous fat. The results from this study demonstrate that dietary extruded linseed supplementation of lactating ewes enhances the nutritional quality of suckling lamb fat depots such as intramuscular and subcutaneous fats. PMID:24334053

  3. Silencing Nicotiana attenuata Calcium-Dependent Protein Kinases, CDPK4 and CDPK5, Strongly Up-Regulates Wound- and Herbivory-Induced Jasmonic Acid Accumulations1[W

    PubMed Central

    Yang, Da-Hai; Hettenhausen, Christian; Baldwin, Ian T.; Wu, Jianqiang

    2012-01-01

    The plant hormone jasmonic acid (JA) plays a pivotal role in plant-insect interactions. Herbivore attack usually elicits dramatic increases in JA concentrations, which in turn activate the accumulation of metabolites that function as defenses against herbivores. Although almost all enzymes involved in the biosynthesis pathway of JA have been identified and characterized, the mechanism by which plants regulate JA biosynthesis remains unclear. Calcium-dependent protein kinases (CDPKs) are plant-specific proteins that sense changes in [Ca2+] to activate downstream responses. We created transgenic Nicotiana attenuata plants, in which two CDPKs, NaCDPK4 and NaCDPK5, were simultaneously silenced (IRcdpk4/5 plants). IRcdpk4/5 plants were stunted and aborted most of their flower primordia. Importantly, after wounding or simulated herbivory, IRcdpk4/5 plants accumulated exceptionally high JA levels. When NaCDPK4 and NaCDPK5 were silenced individually, neither stunted growth nor high JA levels were observed, suggesting that NaCDPK4 and NaCDPK5 have redundant roles. Attack from Manduca sexta larvae on IRcdpk4/5 plants induced high levels of defense metabolites that slowed M. sexta growth. We found that NaCDPK4 and NaCDPK5 affect plant resistance against insects in a JA- and JA-signaling-dependent manner. Furthermore, IRcdpk4/5 plants showed overactivation of salicylic-acid-induced protein kinase, a mitogen-activated protein kinase involved in various stress responses, and genetic analysis indicated that the increased salicylic-acid-induced protein kinase activity in IRcdpk4/5 plants was a consequence of the exceptionally high JA levels and was dependent on CORONATINE INSENSITIVE1. This work reveals the critical roles of CDPKs in modulating JA homeostasis and highlights the complex duet between JA and mitogen-activated protein kinase signaling. PMID:22715110

  4. Combination of lactate calcium salt with 5-indanesulfonamide and α-cyano-4-hydroxycinnamic acid to enhance the antitumor effect on HCT116 cells via intracellular acidification

    PubMed Central

    JEONG, KEUN-YEONG; MANDER, POONAM; SIM, JAE JUN; KIM, HWAN MOOK

    2016-01-01

    Maintenance of a neutral intracellular pH (pHi) is favorable for the survival of tumors, and maintenance of highly acidic extracellular pH (pHe) facilitates tumor invasiveness. The aim of the present study was to investigate the antitumor effects of lactate calcium salt (CaLa), 5-indanesulfonamide (IS) and α-cyano-4-hydroxycinnamic acid (CA) via pH regulation in colon cancer cells. HCT116 cells were treated with CaLa, IS, CA and combinations of the three. Subsequently, the concentration of intracellular lactate was determined. pHi and pHe were measured using cell lysates and culture media. Colony formation assay, cell viability assay and western blot analysis were additionally performed to analyze the consequences of the pH changes. CaLa, IS, CA and combination treatments induced an increase in the concentration of intracellular lactate. Lactate influx into the tumor microenvironment produced an acidic pHi in colon cancer cells. Consequently, colony formation and cell viability were significantly decreased, as well as poly(adenosine diphosphate-ribose) polymerase degradation. The tumor microenvironment may be exploited therapeutically by disrupting the mechanism that regulates pHi, leading to cell apoptosis. The present study indicated that treatment with CaLa, IS and CA induced intracellular acidification via lactate influx, causing apoptosis of colon cancer cells. Additionally, the findings suggested that the combination of CaLa with IS and CA may enhance antitumor activity, and may provide a potential therapeutic approach for the treatment of colon cancer. PMID:26998091

  5. False-positive results and contamination in nucleic acid amplification assays: suggestions for a prevent and destroy strategy.

    PubMed

    Borst, A; Box, A T A; Fluit, A C

    2004-04-01

    Contamination of samples with DNA is still a major problem in microbiology laboratories, despite the wide acceptance of PCR and other amplification techniques for the detection of frequently low amounts of target DNA. This review focuses on the implications of contamination in the diagnosis and research of infectious diseases, possible sources of contaminants, strategies for prevention and destruction, and quality control. Contamination of samples in diagnostic PCR can have far-reaching consequences for patients, as illustrated by several examples in this review. Furthermore, it appears that the (sometimes very unexpected) sources of contaminants are diverse (including water, reagents, disposables, sample carry over, and amplicon), and contaminants can also be introduced by unrelated activities in neighboring laboratories. Therefore, lack of communication between researchers using the same laboratory space can be considered a risk factor. Only a very limited number of multicenter quality control studies have been published so far, but these showed false-positive rates of 9-57%. The overall conclusion is that although nucleic acid amplification assays are basically useful both in research and in the clinic, their accuracy depends on awareness of risk factors and the proper use of procedures for the prevention of nucleic acid contamination. The discussion of prevention and destruction strategies included in this review may serve as a guide to help improve laboratory practices and reduce the number of false-positive amplification results. PMID:15015033

  6. Nutrition in calcium nephrolithiasis

    PubMed Central

    2013-01-01

    Idiopathic calcium nephrolithiasis is a multifactorial disease with a complex pathogenesis due to genetic and environmental factors. The importance of social and health effects of nephrolithiasis is further highlighted by the strong tendency to relapse of the disease. Long-term prospective studies show a peak of disease recurrence within 2–3 years since onset, 40-50% of patients have a recurrence after 5 years and more than 50-60% after 10 years. International nutritional studies demonstrated that nutritional habits are relevant in therapy and prevention approaches of nephrolithiasis. Water, right intake of calcium, low intake of sodium, high levels of urinary citrate are certainly important for the primary and secondary prevention of nephrolithiasis. In this review is discussed how the correction of nutritional mistakes can reduce the incidence of recurrent nephrolithiasis. PMID:23634702

  7. Change in inhibitory potential in urine of hyperuricosuric calcium oxalate stone formers effected by allopurinol and orthophosphates.

    PubMed

    Goldwasser, B; Sarig, S; Azoury, R; Wax, Y; Hirsch, D; Perlberg, S; Many, M

    1984-11-01

    Allopurinol and orthophosphates were used in the treatment of 25 hyperuricosuric