Science.gov

Sample records for acid resin tulsion

  1. Evaluation of anion exchange resins Tulsion A-30 and Indion-930A by application of radioanalytical technique

    NASA Astrophysics Data System (ADS)

    Singare, P. U.

    2014-07-01

    Radioanalytical technique using 131I and 82Br was employed to evaluate organic based anion exchange resins Tulsion A-30 and Indion-930A. The evaluation was based on performance of these resins during iodide and bromide ion-isotopic exchange reactions. It was observed that for iodide ion-isotopic exchange reaction by using Tulsion A-30 resin, the values of specific reaction rate (min-1), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were 0.238, 0.477, 0.114, and 11.0, respectively, which was higher than 0.155, 0.360, 0.056, and 7.3, respectively as that obtained by using Indion-930A resins under identical experimental conditions of 40.0°C, 1.000 g of ion exchange resins and 0.003 M labeled iodide ion solution. Also at a constant temperature of 40.0°C, as the concentration of labeled iodide ion solution increases 0.001 to 0.004 M, for Tulsion A-30 resins the percentage of iodide ions exchanged increases from 59.0 to 65.1%, and from 46.4 to 48.8% for Indion-930A resins under identical experimental conditions. The identical trend was observed for both the resins during bromide ion-isotopic exchange reactions. The overall results indicate that under identical experimental conditions, Tulsion A-30 show superior performance over Indion-930A resins. The results of present experimental work have demonstrated that the radioanalytical technique used here can be successfully applied for characterization of different ion exchange resins so as to evaluate their performance under various process parameters.

  2. Development and Evaluation of Sustained Release Tablet of Betahistine Hydrochloride Using Ion Exchange Resin Tulsion T344

    PubMed Central

    Wagh, Vijay D.; Pawar, Nilesh

    2012-01-01

    An attempt was made to sustain the release of Betahistine hydrochloride by complexation technique using strong cation-exchange resin, Tulsion T344. The drug loading onto ion-exchange resin was optimized for mixing time, activation, effect of pH, swelling time, ratio of drug : resin, and temperature. The resinate was evaluated for micromeritic properties and characterized using XRPD and IR. For resinate sustained release tablets were formulated using hydoxypropyl methylcellulose K100M. The tablets were evaluated for hardness, thickness, friability, drug content, weight variation, and in vitro drug release. Tablets thus formulated (Batch T-3) provided sustained release of drug over a period of 12 h. The release of Betahistine HCl from resinate controls the diffusion of drug molecules through the polymeric material into aqueous medium. Results showed that Betahistine HCl was formulated into a sustained dosage form as an alternative to the conventional tablet. PMID:22779010

  3. Development and evaluation of sustained release tablet of betahistine hydrochloride using ion exchange resin tulsion t344.

    PubMed

    Wagh, Vijay D; Pawar, Nilesh

    2012-01-01

    An attempt was made to sustain the release of Betahistine hydrochloride by complexation technique using strong cation-exchange resin, Tulsion T344. The drug loading onto ion-exchange resin was optimized for mixing time, activation, effect of pH, swelling time, ratio of drug : resin, and temperature. The resinate was evaluated for micromeritic properties and characterized using XRPD and IR. For resinate sustained release tablets were formulated using hydoxypropyl methylcellulose K100M. The tablets were evaluated for hardness, thickness, friability, drug content, weight variation, and in vitro drug release. Tablets thus formulated (Batch T-3) provided sustained release of drug over a period of 12 h. The release of Betahistine HCl from resinate controls the diffusion of drug molecules through the polymeric material into aqueous medium. Results showed that Betahistine HCl was formulated into a sustained dosage form as an alternative to the conventional tablet. PMID:22779010

  4. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  5. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  6. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  7. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  8. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  9. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  10. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be...) Acrylamide-acrylic acid resins are produced by the polymerization of acrylamide with partial hydrolysis or...

  11. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  12. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  13. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  14. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  15. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  16. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylamide-acrylic acid resins. 176.110 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  17. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  18. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  19. Recovery of uranium from acid media by macroporous bifunctional phosphinic acid resin

    SciTech Connect

    Sabharwal, K.N.; Srinivasan, T.G.; Rao, P.R.V.; Nandy, K.K.

    1996-11-01

    The extraction of uranium from various acid media such as nitric acid, sulphuric acid, hydrochloric acid, phosphoric acid and perchloric acid by a macroporous bifunctional phosphinic acid resin (MPBPA) has been studied. The distribution coefficients for the extraction of uranium by the MPBPA resin are compared with the corresponding values reported in literature for the conventional sulphonic acid resin. The results clearly indicate the suitability of the MPBPA resin to recover uranium from different types of acid solutions of widely ranging acidities. 17 refs., 6 figs., 5 tabs.

  20. Reactivity of Resorcinol Formaldehyde Resin with Nitric Acid

    SciTech Connect

    King, William D.; Fondeur, Fernando F.; Wilmarth, William R.; Pettis, Myra E.

    2005-10-25

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. The threshold conditions promoting reaction have been identified. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material.

  1. REACTIVITY OF RESORCINOL FORMALDEHYDE RESIN WITH NITRIC ACID

    SciTech Connect

    King, W; Fernando Fondeur, F; Bill Wilmarth, B; Myra Pettis, M; Shirley Mccollum, S

    2006-06-14

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material.

  2. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Partial phosphoric acid esters of polyester resins... of polyester resins. Partial phosphoric acid esters of polyester resins identified in this section... prescribed conditions: (a) For the purpose of this section, partial phosphoric acid esters of...

  3. Polymer resins with amino acid containing pendants for sorption of bilirubin. II. Polyamide resins with various basic amino acids.

    PubMed

    Henning, D S; Brown, G R; St-Pierre, L E

    1986-01-01

    Short peptides, three to eight amino acids in length, containing various combinations of alanine, arginine, lysine, histidine and tyrosine have been synthesized onto water-swellable polyamide resin by the solid phase peptide synthesis method. The amount of bilirubin adsorbed from aqueous buffer solution (pH = 7.8) by the resins increases with increasing basicity of the amino acids in the pendant. As the number of basic amino acids on the pendant is increased from one to five a 4.7 fold enhancement in the adsorption capacity is seen for arginine while a 9.3 fold enhancement is obtained for lysine. A corresponding increase in length for the non-basic histidine results in a 6 fold enhancement. With alanine the adsorption capacity is uneffected by an increase in pendant length. PMID:3957453

  4. Fatty and resinic acids extractions from crude tall oil

    SciTech Connect

    Nogueira, J.M.F.

    1996-11-01

    The separation of fatty and resinic acidic fractions from crude tall-oil soap solutions with n-heptane by the technique of dissociation extraction is discussed. The theory of the overall process is supported by a systematic study developed to cover the high selectivity demonstrated in the differential solubility and the aptness between fatty and diterpenic acids to both liquids phases. To study the main factors affecting those liquid-liquid extraction systems and the amphiphilic behavior of such molecules involved, sodium salts aqueous solutions of crude tall oil and synthetic mixtures as molecular acidic models were used.

  5. Comparison of XAD macroporous resins for the concentration of fulvic acid from aqueous solution

    USGS Publications Warehouse

    Aiken, G.R.

    1979-01-01

    Five macroreticular, nonlonlc AmberlHe XAD resins were evaluated for concentration and Isolation of fulvlc acid from aqueous solution. The capacity of each resin for fulvlc acid was measured by both batch and column techniques. Elution efficiencies were determined by desorptlon with 0.1 N NaOH. Highest recoveries were obtained with the acrylic ester resins which proved to be most efficient for both adsorption and elution of fulvlc acid. Compared to the acrylic ester resins, usefulness of the styrene dvlnybenzene resins to remove fulvlc acid is limited because of slow diffusion-controlled adsorption and formation of charge-transfer complexes, which hinders elution. ?? 1979 American Chemical Society.

  6. Polystyrene sulphonic acid resins with enhanced acid strength via macromolecular self-assembly within confined nanospace

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomin; Zhao, Yaopeng; Xu, Shutao; Yang, Yan; Liu, Jia; Wei, Yingxu; Yang, Qihua

    2014-01-01

    Tightening environmental legislation is driving the chemical industries to develop efficient solid acid catalysts to replace conventional mineral acids. Polystyrene sulphonic acid resins, as some of the most important solid acid catalysts, have been widely studied. However, the influence of the morphology on their acid strength—closely related to the catalytic activity—has seldom been reported. Herein, we demonstrate that the acid strength of polystyrene sulphonic acid resins can be adjusted through their reversible morphology transformation from aggregated to swelling state, mainly driven by the formation and breakage of hydrogen bond interactions among adjacent sulphonic acid groups within the confined nanospace of hollow silica nanospheres. The hybrid solid acid catalyst demonstrates high activity and selectivity in a series of important acid-catalysed reactions. This may offer an efficient strategy to fabricate hybrid solid acid catalysts for green chemical processes.

  7. Semisynthesis of the antiviral abietane diterpenoid jiadifenoic acid C from callitrisic acid (4-epidehydroabietic acid) isolated from sandarac resin.

    PubMed

    González, Miguel A; Zaragozá, Ramón J

    2014-09-26

    The semisynthesis of the antiviral abietane diterpenoid (+)-jiadifenoic acid C starting from the available methyl ester of callitrisic acid (4-epidehydroabietic acid) isolated from sandarac resin is reported. A protocol for the isolation of methyl callitrisate (methyl 4-epidehydroabietate) in gram quantities from sandarac resin is also described. Allylic C-17 oxygenation was introduced by regioselective dehydrogenation of the isopropyl group of methyl callitrisate with DDQ followed by selenium-catalyzed allylic oxidation. Ester hydrolysis afforded (+)-jiadifenoic acid C in 22% overall yield from methyl callitrisate. This semisynthetic route provides a convenient source of this anti-Coxsackie virus B natural product for further biological studies. PMID:25166492

  8. Surface and line-edge roughness in acid-breakable resin-based positive resist

    NASA Astrophysics Data System (ADS)

    Sakamizu, Toshio; Shiraishi, Hiroshi

    2003-06-01

    A positive chemical amplification resist based on acid-catalyzed fragmentation of acetal groups in its main-chain has been developed as a means for reducing line-edge roughness. The resist consists of an acid-generator, an acid-diffusion controller and an acid-breakable (AB) resin that is synthesized through a co-condensation reaction between polyphenol and aromatic multi-functional vinylether compound. The effects of the fractionation of AB resins on resin properties and line-edge roughness (LER) are evaluated. Although AB resins have wide molecular-weight distributions, the density of acetal groups in this AB resin is found to be almost constant except in the lower molecular-weight components. The resist with a fractionated resin from which such components removed provides the high resolution of 60-nm line-and-space (L/S) patterns with fairly low LER. AFM analysis shows the surface roughness (SR) for the resist with the fractionated resin is smaller than that for a resist using non-fractionated AB resin, and that the SR value is not altered throughout the range of exposure doses up to just below the beginning of dissolution. By using the fractionated AB resin, the AB resin-based resist (ABR) is capable of forming sub-100 nm L/S patterns with less than 5 nm of LER (3σ).

  9. Protection of live bacteria from bile acid toxicity using bile acid adsorbing resins.

    PubMed

    Edwards, Alexander D; Slater, Nigel K H

    2009-06-12

    We previously demonstrated that a dry, room temperature stable formulation of a live bacterial vaccine was highly susceptible to bile, and suggested that this will lead to significant loss of viability of any live bacterial formulation released into the intestine using an enteric coating or capsule. We found that bile and acid tolerance is very rapidly recovered after rehydration with buffer or water, raising the possibility that rehydration in the absence of bile prior to release into the intestine might solve the problem of bile toxicity to dried cells. We describe here a novel formulation that combines extensively studied bile acid adsorbent resins with the dried bacteria, to temporarily adsorb bile acids and allow rehydration and recovery of bile resistance of bacteria in the intestine before release. Tablets containing the bile acid adsorbent cholestyramine release 250-fold more live bacteria when dissolved in a bile solution, compared to control tablets without cholestyramine or with a control resin that does not bind bile acids. We propose that a simple enteric coated oral dosage form containing bile acid adsorbent resins will allow improved live bacterial delivery to the intestine via the oral route, a major step towards room temperature stable, easily administered and distributed vaccine pills and other bacterial therapeutics. PMID:19490986

  10. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  11. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato

    2001-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  12. Radiation curing of polyester resin modified with acrylic acid and its salts

    NASA Astrophysics Data System (ADS)

    Szalińska, H.; Pietrzak, M.; Janowska, G.

    Polyester resin containing acrylic acid or its salts was cured with γ 60Co radiation. The course of curing was examined, the gel content and polymerization shrinkage were measured and also thermographic and IR absorption analyses were carried out. It was found that manganese, iron and copper acrylates inhibited the curing of resin while the remaining additives showed a slightly stimulating action. All the additives decreased the polymerization shrinkage by a factor of 2-3 and iron acrylate by as much as 8 times (up to 1%). They also increased the activation energy of the thermal decomposition of resin, and calcium, barium and copper acrylates increased the thermal stability of resin by 20 K. IR absorption spectra showed that acrylic acid and its salts reacted mainly with the monomeric component of the resin (styrene) whereas iron and copper acrylates first attacked the unsaturated bonds of the oligoester.

  13. Microbiology and biodegradation of resin acids in pulp mill effluents: a minireview.

    PubMed

    Liss, S N; Bicho, P A; Saddler, J N

    1997-07-01

    Resin acids, a group of diterpenoid carboxylic acids present mainly in softwood species, are present in many pulp mill effluents and toxic to fish in recipient waters. They are considered to be readily biodegradable. However, their removal across biological treatment systems has been shown to vary. Recent studies indicate that natural resin acids and transformation products may accumulate in sediments and pose acute and chronic toxicity to fish. Several resin acid biotransformation compounds have also been shown to bioaccumulate and to be more resistant to biodegradation than the original material. Until recently, the microbiology of resin-acid degradation has received only scant attention. Although wood-inhabiting fungi have been shown to decrease the level of resin present in wood, there is no conclusive evidence that fungi can completely degrade these compounds. In contrast, a number of bacterial isolates have recently been described which are able to utilize dehydroabietic or isopimaric acids as their sole carbon source. There appears to be an unusually high degree of substrate specificity with respect of the utilization of abietane congeners and the presence of substituents. Pimaranes do not appear to be attacked to the same extent as the abietanes. This paper reviews the occurrence, chemistry, toxicity, and biodegradation of resin acids in relation to the biological treatment of pulp and paper mill effluents. PMID:9246738

  14. 2-Chlorotrityl chloride resin. Studies on anchoring of Fmoc-amino acids and peptide cleavage.

    PubMed

    Barlos, K; Chatzi, O; Gatos, D; Stavropoulos, G

    1991-06-01

    The esterification of 2-chlorotrityl chloride resin with Fmoc-amino acids in the presence of DIEA is studied under various conditions. High esterification yields are obtained using 0.6 equiv. Fmoc-amino acid/mmol resin in DCM or DCE, in 25 min, at room temperature. The reaction proceeds without by product formation even in the case of Fmoc-Asn and Fmoc-Gln. The quantitative and easy cleavage of amino acids and peptides from 2-chlorotrityl resin, by using AcOH/TFE/DCM mixtures, is accomplished within 15-60 min at room temperature, while t-butyl type protecting groups remain unaffected. Under these exceptionally mild conditions 2-chlorotrityl cations generated during the cleavage of amino acids and peptides from resin do not attack the nucleophilic side chains of Trp, Met, and Tyr. PMID:1917309

  15. Separation of salvianic acid A from the fermentation broth of engineered Escherichia coli using macroporous resins.

    PubMed

    Bai, Chen-Long; Zhao, Guang-Rong

    2015-08-01

    Salvianic acid A (also known as danshensu) is a plant-derived polyphenolic acid, and has a variety of physiological and pharmacological activities. Our laboratory previously constructed an unprecedented artificial biosynthetic pathway in Escherichia coli and established the fermentation process to produce salvianic acid A. Here, we developed an efficient method for separating salvianic acid A from the fermentation broth of engineered Escherichia coli by macroporous resins. Among ten tested macroporous resins, the static and dynamic adsorption/desorption experiments demonstrated that X5 resin was the best to separate salvianic acid A from fermentation broth. Other parameters during static and dynamic procedures were also investigated. Under the optimum separation conditions, the average adsorption capacity of SAA were 10.66±0.54 mg/g dry resin and the desorption ratio was 85.6±4.1%. The purity and recovery yield of salvianic acid A in the final dry product were 90.2±1.5 and 81.5±2.3%, respectively. The results show that adsorption separation with macroporous resin X5 was an efficient method to prepare salvianic acid A from fermentation broth. This work will benefit the development and application of plant-derived salvianic acid A and its derivatives. PMID:26097085

  16. Elution profiles of lanthanides with α-hydroxyisobutyric acid by ion exchange chromatography using fine resin.

    PubMed

    Trikha, Rahul; Sharma, Bal Krishan; Sabharwal, Kanwal Nain; Prabhu, Krishan

    2015-11-01

    Experiments were carried out using a strong acid cation exchange resin with a particle size of 75-150 μm, termed as "fine resin" in hydrogen ion form for the elution of individual lanthanides Sm, Eu, Gd, Tb, and Dy that are produced as fission products in the spent nuclear fuel and generated in the effluent during reprocessing of spent nuclear fuel. Batch experiments were carried out to study the effect of concentration of nitric acid on distribution coefficient. The distribution coefficient values for these individual lanthanides were determined in nitric acid medium in the concentration range of 0.01-4.0 N. Uptake of each individual lanthanide by resin was increased with increased nitric acid concentration from 0.01 to 0.5 N and remained similar from 0.5 to 1.0 N and decreased thereafter up to 4.0 N. Column experiments were also carried out using the same resin to study the parameters like pH of the eluent, flow rate, and resin bed height under isocratic elution conditions for eluting lanthanide elements using α-hydroxyisobutyric acid as eluent. The results of this study have indicated the possibility for the elution of individual lanthanides. PMID:26333182

  17. Isolation of hydrophilic organic acids from water using nonionic macroporous resins

    USGS Publications Warehouse

    Aiken, G.R.; McKnight, Diane M.; Thorn, K.A.; Thurman, E.M.

    1992-01-01

    A method has been developed for the isolation of hydrophilic organic acids from aquatic environments using Amberlite* * Use of trade names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. XAD-4 resin. The method uses a two column array of XAD-8 and XAD-4 resins in series. The hydrophobic organic acids, composed primarily of aquatic fulvic acid, are removed from the sample on XAD-8, followed by the isolation of the more hydrophilic organic acids on XAD-4. For samples from a number of diverse environments, more of the dissolved organic carbon was isolated on the XAD-8 resin (23-58%) than on the XAD-4 resin (7-25%). For these samples, the hydrophilic acids have lower carbon and hydrogen contents, higher oxygen and nitrogen contents, and are lower in molecular weight than the corresponding fulvic acids. 13C NMR analyses indicate that the hydrophilic acids have a lower concentration of aromatic carbon and greater heteroaliphatic, ketone and carboxyl content than the fulvic acid. ?? 1992.

  18. Large scale purification of puerarin from Puerariae Lobatae Radix through resins adsorption and acid hydrolysis.

    PubMed

    Guo, Hai-Dong; Zhang, Qing-Feng; Chen, Ji-Guang; Shangguang, Xin-Cheng; Guo, Yu-Xian

    2015-02-01

    Puerarin is the major isoflavone of Puerariae Lobatae Radix. A method for large scale purification of puerarin was developed through resins adsorption and acid hydrolysis. The adsorption properties of six macroporous resins (D101, S-8, H103, X-5, HPD600, AB-8) were compared through the adsorption kinetics and equilibrium adsorption isotherms. Results showed that H103 resin had the best adsorption rate and capacity. The mass transfer zone motion model was further used for analyzing the fixed bed adsorption of H103 resin. Its length of mass transfer zone with 2mg/ml of puerarin in water and 10% ethanol at flow rate of 10ml/min were 41.6 and 47.5cm, while the equilibrium adsorption capacity was 165.03 and 102.88mg/g, respectively. By using 75% ethanol, puerarin could be well desorbed from the resin with recovery of 97.4%. Subsequently, H103 resin was successfully used for puerarin purification from Puerariae Lobatae Radix. The content of total isoflavones and puerarin in the resin adsorption product were 69.25% and 41.78%, respectively, which were about three times increased compared to the crude extract. Then, the product was hydrolyzed by 2.5M HCl at 90°C for 1h. Puerarin with purity of 90% and a byproduct daidzein with purity of 78% were obtained. PMID:25553536

  19. Adsorptive Membranes vs. Resins for Acetic Acid Removal from Biomass Hydrolysates

    SciTech Connect

    Han, B.; Carvalho, W.; Canilha, L.; da Silva, S. S.; e Silva, J. B. A.; McMillan, J. D.; Wickramasinghe, S. R.

    2006-01-01

    Acetic acid is a compound commonly found in hemicellulosic hydrolysates. This weak acid strongly influences the bioconversion of sugar containing hydrolysates. Previous investigators have used anion exchange resins for acetic acid removal from different hemicellulosic hydrolysates. In this study, the efficiency of an anion exchange membrane was compared to that of an anion exchange resin, for acetic acid removal from a DI water solution and an acidic hemicellulose hydrolysate pretreated using two different methods. Ion exchange membranes and resins have very different geometries. Here the performance of membranes and resins is compared using two dimensionless parameters, the relative mass throughput and chromatographic bed number. The relative mass throughput arises naturally from the Thomas solution for ion exchange. The results show that the membrane exhibit better performance in terms of capacity, and loss of the desired sugars. In addition acetic acid may be eluted at a higher concentration from the membrane thus leading to the possibility of recovery and re-use of the acetic acid.

  20. Diterpene resin acids: Major active principles in tall oil against Variegated cutworm,Peridroma saucia (Lepidoptera: Noctuidae).

    PubMed

    Xie, Y; Isman, M B; Feng, Y; Wong, A

    1993-06-01

    Tall oil, a by-product of the kraft process for pulping softwood, has been shown to have insecticidal properties. In the present study, the active principles in tall oil against the variegated cutworm,Peridroma saucia Hübner, were investigated. GC-MS analysis showed that abietic, dehydroabietic, and isopimaric acids were major resin acid components of crude tall oil and depitched tall oil. When crude tall oil samples of differing resin acid composition were incorporated into artificial diet at a concentration of 2.0% fresh weight, they suppressed larval growth by 45-60% compared to controls. This suppression was significantly (P≤0.05) correlated with the equivalent contents of abietic, dehydroabietic, isopimaric, and total resin acids. These results were also evident from a diet choice test, showing that the second-instar larvae obviously selected diets with low levels of resin acids when different diets were randomly arranged in a Petri dish. Bioassays with pure resin acids (abietic, dehydroabietic, and isopimaric acids) demonstrated that all individual chemicals have similar bioactivity against this insect. Comparison of the bioactivities of depitched tall oil and an equivalent mixture of pure resin acids in thePeridroma chronic growth bioassay indicated that pure resin acids and depitched tall oil share a common mode of action to this insect. This study confirms that resin acids are major active principles in tall oil against the variegated cutworm, but other chemicals likely also contribute to the bioactivity of tall oil. PMID:24249127

  1. Methylene crosslinked calix[6]arene hexacaarboxylic acid resin: a highly efficient solid phase extractant for decontamination of lead bearing effluents.

    PubMed

    Adhikari, Birendra Babu; Gurung, Manju; Kawakita, Hidetaka; Jumina; Ohto, Keisuke

    2011-10-15

    Calixarene-based cation exchange resin has been developed by methylene crosslinking of calix[6]arene hexacarboxylic acid derivative and the resin has been exploited for solid phase extraction of some toxic heavy metal ions. The selectivity order of the resin towards some metal ions follows the order Pb(II) > Cu(II)> Zn(II), Ni(II), Co(II). The maximum lead ion binding capacity of the resin was found to be 1.30 mmol g(-1) resin. The loaded lead was quantitatively eluted with dilute acid solution regenerating the resin. Mutual separation of Pb(II), Cu(II) and Zn(II) was achieved by using the column packed with the resin. PMID:21835544

  2. Dental resins based on dimer acid dimethacrylates: a route to high conversion with low polymerization shrinkage.

    PubMed

    Lu, Hui; Trujillo-Lemon, Marianela; Ge, Junhao; Stansbury, Jeffrey W

    2010-05-01

    Incomplete polymerization, volumetric shrinkage, and shrinkage stress are among the primary disadvantages of current resin-based dental composites. Generally, any attempt to increase final double bond conversion only exacerbates polymerization shrinkage and stress. The use of dimer acid-derived dimethacrylate (DADMA) monomers in novel dental resin formulations is examined in this article as a potential means to address these disparate goals. A series of high molecular weight DADMA monomers with different functional groups used to connect the C36 dimer acid core and the methacrylates were formulated with urethane dimethacrylate (UDMA) and/or ethoxylated bisphenol A dimethacrylate (Bis-EMA) at various compositions to manipulate comonomer compatibility and polymeric mechanical properties. Along with reaction kinetics, dynamic polymerization shrinkage and shrinkage stress were assessed. Specific DADMA monomers demonstrated limited miscibility with either Bis-EMA or UDMA. Appropriate ternary resin formulations produced homogeneous monomeric mixtures capable of controlled polymerization-induced phase separation (PIPS) to yield heterogeneous final polymers. Reduced polymerization shrinkage and stress along with higher conversion was observed for DADMA ternary systems compared with a bisphenol A glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) resin control. The PIPS process resulted in a modest volume recovery and stress relaxation in the later stages of polymerization. These results indicate that certain dimer acid-derived dimethacrylates possess the potential to replace TEGDMA as a reactive diluent in dental resins that display a favorable and unique combination of properties. PMID:20521567

  3. Single-crystalline ceramic whisker-reinforced carboxylic acid-resin composites with fluoride release.

    PubMed

    Xu, H H; Eichmiller, F C; Antonucci, J M; Flaim, G M

    2000-01-01

    Currently available glass-ionomer, resin-modified glass-ionomer, and compomer materials have relatively low strength and toughness and, therefore, are inadequate for use in large stress-bearing posterior restorations. In the present study, ceramic single-crystalline whiskers were mixed with fluorosilicate glass particles and used as fillers to reinforce experimental carboxylic acid-resin composites. The carboxylic acid was a monofunctional methacryloxyethyl phthalate (MEP). Five mass fractions of whisker/(whisker + fluorosilicate glass), and corresponding resin (resin + MEP), were evaluated. Four control materials were also tested for comparison: a glass ionomer, a resin-modified glass ionomer, a compomer, and a hybrid composite resin. Flexural specimens were fabricated to measure the flexural strength, elastic modulus, and work-of-fracture (an indication of toughness). Fluoride release was measured by using a fluoride ion selective electrode. The properties of whisker composites depended on the whisker/(whisker + fluorosilicate glass) mass fraction. At a mass fraction of 0.8, the whisker composite had a flexural strength in MPa (mean +/- sd; n = 6) of 150 +/- 16, significantly higher than that of a glass ionomer (15 +/- 7) or a compomer control (89 +/- 18) (Tukey's multiple comparison test; family confidence coefficient = 0.95). Depending on the ratio of whisker:fluorosilicate glass, the whisker composites had a cumulative fluoride release up to 60% of that of a traditional glass ionomer. To conclude, combining ceramic whiskers and fluorosilicate glass in a carboxylic acid-resin matrix can result in fluoride-releasing composites with significantly improved mechanical properties. PMID:11203805

  4. Acid-Breakable Resin-Based Chemical Amplification Positive Resist for Electron-Beam Mastering: Design and Lithographic Performance

    NASA Astrophysics Data System (ADS)

    Sakamizu, Toshio; Shiraishi, Hiroshi

    2004-07-01

    A positive chemical amplification resist based on acid-catalyzed fragmentation of acetal groups in its main chain has been developed as a means of reducing line-edge roughness. The resist consists of an acid generator, an acid-diffusion controller and an acid-breakable (AB) resin that is synthesized through a co-condensation reaction between polyphenol and aromatic multifunctional vinylether compound. The effects of the fractionation of AB resins on resin properties and line-edge roughness (LER) are evaluated. Although AB resins have wide molecular weight distributions, the density of acetal groups in this AB resin is found to be almost constant except in the lower molecular weight components. The resist with a fractionated resin from which such components are removed provides high-resolution patterns (70-nm-wide pit) with fairly low LER. AFM analysis shows that the surface roughness (SR) of the resist with the fractionated resin is smaller than that of a resist using nonfractionated AB resin, and that the SR value is not altered throughout the range of exposure doses up to just below the start of dissolution. By using the fractionated AB resin, the AB resin-based resist (ABR) is capable of forming sub-100 nm L/S patterns with less than 5 nm of LER (3σ).

  5. Chemically modified polymeric resins for separation of cations, organic acids, and small polar moleculea by high performance liquid chromatography

    SciTech Connect

    Morris, J.B.

    1993-07-01

    This thesis is divided into 4 parts: a review, ion chromatography of metal cations on carboxylic resins, separation of hydrophilic organic acids and small polar compounds on macroporous resin columns, and use of eluent modifiers for liquid chromatographic separation of carboxylic acids using conductivity detection.

  6. SURFACE DEGRADATION OF COMPOSITE RESINS BY ACIDIC MEDICINES AND pH-CYCLING

    PubMed Central

    Valinoti, Ana Carolina; Neves, Beatriz Gonçalves; da Silva, Eduardo Moreira; Maia, Lucianne Cople

    2008-01-01

    This study evaluated the effects of acidic medicines (Dimetapp® and Claritin®), under pH-cycling conditions, on the surface degradation of four composite resins (microhybrid: TPH, Concept, Opallis and Nanofilled: Supreme). Thirty disc-shaped specimens (Ø = 5.0 mm / thickness = 2.0 mm) of each composite were randomly assigned to 3 groups (n = 10): a control and two experimental groups, according to the acidic medicines evaluated. The specimens were finished and polished with aluminum oxide discs, and the surface roughness was measured by using a profilometer. After the specimens were submitted to a pH-cycling regimen and immersion in acidic medicines for 12 days, the surface roughness was measured again. Two specimens for each material and group were analyzed by scanning electron microscopy (SEM) before and after pH-cycling. Data were analyzed by the Student's-t test, ANOVA, Duncan's multiple range test and paired t-test (α=0.05). Significant increase in roughness was found only for TPH in the control group and TPH and Supreme immersed in Claritin® (p<0.05). SEM analyses showed that the 4 composite resins underwent erosion and surface degradation after being subjected to the experimental conditions. In conclusion, although the roughness was slightly affected, the pH-cycling and acidic medicines caused surface degradation of the composite resins evaluated. Titratable acidity seemed to play a more crucial role on surface degradation of composite resins than pH. PMID:19089257

  7. Some investigations on the radiation stability of a strongly acidic cation exchange resin

    NASA Astrophysics Data System (ADS)

    Dessouki, A. M.; Zahran, A. H.; Rabie, A. M.; Amer, S. I.

    The radiation-chemical stability of Merck Cation Exchanger I, a strongly acidic sulphonated cation exchanger of the polymerization type based on styrene-divinylbenze (DVB) copolymers was investigated. The radiation stability of the resin was assessed from the change in exchange capacity, loss in weight, change in swelling behaviour and formation of new exchange groups. The loss in capacity was 44 and 32% for resin specimens in the H +-form irradiated to 1000 Mrad in air and in vacuum, respectively. The Na +-form of the exchanger showed high resistance to radiation and the loss in capacity did not exceed 7% at a dose of 1000 Mrad. The loss in capacity was accompanied by a loss in weight and a decrease in the degree of swelling of the irradiated resin. The formation of new functional groups of the carboxylic and phenolic types was confirmed. The amount of these group increases with the increase in the integral dose. The amount of sulphuric acid formed as a result of irradiating the resin in the dry and moist states was determined. An increase in the moisture content of the resin resulted in a marked decrease in its radiation stability.

  8. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Partial phosphoric acid esters of polyester resins. 175.260 Section 175.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use as Components of Coatings § 175.260...

  9. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Partial phosphoric acid esters of polyester resins. 175.260 Section 175.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use...

  10. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Partial phosphoric acid esters of polyester resins. 175.260 Section 175.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use...

  11. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Partial phosphoric acid esters of polyester resins. 175.260 Section 175.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use...

  12. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  13. Simultaneous separation and detection of actinides in acidic solutions using an extractive scintillating resin.

    PubMed

    Roane, J E; DeVol, T A

    2002-11-01

    An extractive scintillating resin was evaluated for the simultaneous separation and detection of actinides in acidic solutions. The transuranic extractive scintillating (TRU-ES) resin is composed of an inert macroporous polystyrene core impregnated with organic fluors (diphenyloxazole and 1,4-bis-(4-methyl-5-phenyl-2-oxazolyl)benzene) and an extractant (octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide in tributyl phosphate). The TRU-ES resin was packed into FEP Teflon tubing to produce a flow cell (0.2-mL free column volume), which is placed into a scintillation detection system to obtain pulse height spectra and time series data during loading and elution of actinides onto/from the resin. The alpha-particle absolute detection efficiencies ranged from 77% to 96.5%, depending on the alpha energy and quench. In addition to the on-line analyses, off-line analyses of the effluent can be conducted using conventional detection methods. The TRU-ES resin was applied to the quantification of a mixed radionuclide solution and two actual waste samples. The on-line characterization of the mixed radionuclide solution was within 10% of the reported activities whereas the agreement with the waste samples was not as good due to sorption onto the sample container walls and the oxidation state of plutonium. Agreement between the on-line and off-line analyses was within 35% of one another for both waste samples. PMID:12433098

  14. Acute effects of chlorinated resin acid exposure on juvenile rainbow trout, Oncorhynchus mykiss

    SciTech Connect

    Kennedy, C.J.; Sweeting, R.M.; Farrell, A.P.; McKeown, B.A.; Johansen, J.A.

    1995-06-01

    The effects of an acute exposure to either 14-monochlorodehydroabietic acid (MCDHAA) or 12,14-dichlorodehydroabietic acid (DCDHAA) were examined in juvenile rainbow trout, Oncorhynchus mykiss. The experimentally determined 96-h LC50 values (and their 95% confidence limits) were 1.03 (0.72, 1.48) and 0.91 (0.70, 1.21) mg/L, for MCDHAA and DCDHAA, respectively. To measure effects on several biochemical parameters, swimming performance, and disease resistance, juvenile trout were exposed for 24 h to sublethal concentrations of one or the other resin acid in an intermittent-flow respirometer. Hematocrit, plasma lactate, and liver protein were significantly affected by exposure to the highest dose (80% of the 96-h LC50 value) of either of the resin acids. Plasma cortisol levels were 14- and 3-fold higher than were controls. Resistance to infection by Aeromonas salmonicida was significantly reduced; the cumulative percent mortalities due to furunculosis in fish exposed to MCDHAA or DCDHAA reached 20 and 26%, respectively. Swimming performance, measured as critical swimming speed (mean values 6.32 {+-} 0.20 and 5.93 {+-} 0.15 body lengths per second for MCDHAA and DCDHAA, respectively), was not significantly affected by resin acid exposure.

  15. Effect of acidic solutions on the surface degradation of a micro-hybrid composite resin.

    PubMed

    Münchow, Eliseu A; Ferreira, Ana Cláudia A; Machado, Raissa M M; Ramos, Tatiana S; Rodrigues-Junior, Sinval A; Zanchi, Cesar H

    2014-01-01

    Composite resins may undergo wear by the action of chemical substances (e.g., saliva, alcohol, bacterial acids) of the oral environment, which may affect the material's structure and surface properties. This study evaluated the effect of acidic substances on the surface properties of a micro-hybrid composite resin (Filtek Z-250). Eighty specimens were prepared, and baseline hardness and surface roughness (KMN0 and Ra0, respectively) were measured. The specimens were subjected to sorption (SO) and solubility (SL) tests according to ISO 4049:2009, but using different storage solutions: deionized water; 75/25 vol% ethanol/water solution; lactic acid; propionic acid; and acetic acid. The acids were used in two concentrations: PA and 0.02 N. pH was measured for all solutions and final hardness (KMN1) and surface roughness (Ra1) were measured. Data were analyzed with paired t-tests and one-way ANOVA and Tukey's test (a=5%). All solutions decreased hardness and increased the Ra values, except for the specimens stored in water and 0.02 N lactic acid, which maintained the hardness. All solutions produced similar SO and SL phenomena, except for the 0.02 N lactic acid, which caused lower solubility than the other solutions. Ethanol showed the highest pH (6.6) and the 0.02 N lactic acid the lowest one (2.5). The solutions affected negatively the surface properties of the composite resin; in addition, an acidic pH did not seem to be a significant factor that intensifies the surface degradation phenomena. PMID:25250496

  16. Synthesis and properties of a cation exchange resin prepared by the pyrolysis of starch in the presence of phytic acid

    SciTech Connect

    Lehrfeld, J.

    1995-12-01

    A material having cation exchange and adsorption properties was prepared by the controlled pyrolysis of starch in the presence of a commercial phytic acid solution. Resins can be prepared with binding capacities of 0.7-5.7 meq/g. These resins also have the ability to remove atrazine from aqueous solutions.

  17. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  18. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  19. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  20. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  1. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  2. Purification of organic acids by chromatography with strong anionic resins: Investigation of uptake mechanisms.

    PubMed

    Lemaire, Julien; Blanc, Claire-Line; Lutin, Florence; Théoleyre, Marc-André; Stambouli, Moncef; Pareau, Dominique

    2016-08-01

    Bio-based organic acids are promising renewable carbon sources for the chemical industry. However energy-consuming purification processes are used, like distillation or crystallization, to reach high purities required in some applications. That is why preparative chromatography was studied as an alternative separation technique. In a previous work dealing with the purification of lactic, succinic and citric acids, the Langmuir model was insufficient to explain the elution profiles obtained with a strong anionic resin. Consequently the Langmuir model was coupled with a usual ion-exchange model to take into account the retention of their conjugate bases (<2%), which are commonly neglected at low pH (<1.5). Elution simulations with both uptake mechanisms fitted very well with experimental pulse tests. Only two parameters were optimized (equilibrium constant of acid uptake and ion-exchange selectivity coefficient of conjugate base) and their value were coherent with experimental and resin suppliers' data. These results confirmed that the singular tailing and apparent delay observed with succinic and citric acids can be explained by the high affinity of succinate and citrate for resin cationic sites. The model was implemented in a preparative chromatography simulation program in order to optimize operating parameters of our pilot-scale ISMB unit (Improved Simulated Moving Bed). The comparison with experimental ISMB profiles was conclusive. PMID:27373374

  3. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 2: Effect of ultrasonic and acid cleaning.

    PubMed

    Kawaguchi, Asuka; Matsumoto, Mariko; Higashi, Mami; Miura, Jiro; Minamino, Takuya; Kabetani, Tomoshige; Takeshige, Fumio; Mine, Atsushi; Yatani, Hirofumi

    2016-01-01

    The present study assessed the effect of ultrasonic and acid cleaning on resin cement bonding to CAD/CAM resin blocks. One of two resin cements, PANAVIA V5 (PV5) or PANAVIA SA CEMENT HANDMIX (PSA), were bonded to one of 24 CAD/CAM blocks (KATANA AVENCIA BLOCK). Each cement group was divided into four subgroups: no cleaning (Ctl), ultrasonic cleaning (Uc), acid cleaning (Ac) and Uc+Ac. Micro-tensile bond strengths (µTBSs) were measured immediately and 1, 3, and 6 months after water storage. Block surfaces after each treatment were analyzed by scanning electron microscopy. Analysis of variance revealed a statistically significant effect for the parameters 'surface treatment' (p<0.001, F=40), 'resin cement' (p<0.001, F=696) and 'water aging' (p<0.001, F=71). The PV5 group exhibited higher µTBS values than the PSA group. Although cleaning after sandblasting was effective in removing residual alumina particles, it did not affect the long-term bonding durability with non-contaminated CAD/CAM resin blocks. PMID:26830822

  4. Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Cheng, Jiade; Jin, Jing; Zhou, Qing; Ma, Yan; Zhao, Qingqing; Li, Aimin

    2016-07-01

    Background organic matter significantly influences the removal of emerging contaminants in natural water. In this work, the adsorption of ciprofloxacin (CPX) onto a series of magnetic multifunctional resins (GMA10-GMA90) in the presence and absence of humic acid (HA) was conducted to demonstrate the effect of HA. Both hydrophobic and ion exchange interactions contributed to CPX adsorption. Negative charge-assisted hydrogen bonds also participated in the adsorption process, resulting in the high adsorption amount of anionic CPX onto the negatively charged GMA30 under basic solutions. HA could impact CPX adsorption not only as a competitive adsorbate but also as an additional adsorbent. At pH 5.6, the additional adsorption sites provided by adsorbed HA molecules on the resins dominated and thus facilitated the adsorption process. While at pH 10, HA inhibited the adsorption of CPX by directly competing for ion exchange sites and coexisting with CPX in the solution. The ratio of the amount of CPX adsorbed by dissolved HA to that by the resin reached as high as 1.61 for GMA90. The adsorbed HA molecules onto the resins could provide additional adsorption sites for CPX as proven by the enhanced CPX adsorption in HA-preloading systems at pH 5.6.

  5. Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins

    PubMed Central

    Wang, Wei; Cheng, Jiade; Jin, Jing; Zhou, Qing; Ma, Yan; Zhao, Qingqing; Li, Aimin

    2016-01-01

    Background organic matter significantly influences the removal of emerging contaminants in natural water. In this work, the adsorption of ciprofloxacin (CPX) onto a series of magnetic multifunctional resins (GMA10-GMA90) in the presence and absence of humic acid (HA) was conducted to demonstrate the effect of HA. Both hydrophobic and ion exchange interactions contributed to CPX adsorption. Negative charge-assisted hydrogen bonds also participated in the adsorption process, resulting in the high adsorption amount of anionic CPX onto the negatively charged GMA30 under basic solutions. HA could impact CPX adsorption not only as a competitive adsorbate but also as an additional adsorbent. At pH 5.6, the additional adsorption sites provided by adsorbed HA molecules on the resins dominated and thus facilitated the adsorption process. While at pH 10, HA inhibited the adsorption of CPX by directly competing for ion exchange sites and coexisting with CPX in the solution. The ratio of the amount of CPX adsorbed by dissolved HA to that by the resin reached as high as 1.61 for GMA90. The adsorbed HA molecules onto the resins could provide additional adsorption sites for CPX as proven by the enhanced CPX adsorption in HA-preloading systems at pH 5.6. PMID:27464502

  6. Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins.

    PubMed

    Wang, Wei; Cheng, Jiade; Jin, Jing; Zhou, Qing; Ma, Yan; Zhao, Qingqing; Li, Aimin

    2016-01-01

    Background organic matter significantly influences the removal of emerging contaminants in natural water. In this work, the adsorption of ciprofloxacin (CPX) onto a series of magnetic multifunctional resins (GMA10-GMA90) in the presence and absence of humic acid (HA) was conducted to demonstrate the effect of HA. Both hydrophobic and ion exchange interactions contributed to CPX adsorption. Negative charge-assisted hydrogen bonds also participated in the adsorption process, resulting in the high adsorption amount of anionic CPX onto the negatively charged GMA30 under basic solutions. HA could impact CPX adsorption not only as a competitive adsorbate but also as an additional adsorbent. At pH 5.6, the additional adsorption sites provided by adsorbed HA molecules on the resins dominated and thus facilitated the adsorption process. While at pH 10, HA inhibited the adsorption of CPX by directly competing for ion exchange sites and coexisting with CPX in the solution. The ratio of the amount of CPX adsorbed by dissolved HA to that by the resin reached as high as 1.61 for GMA90. The adsorbed HA molecules onto the resins could provide additional adsorption sites for CPX as proven by the enhanced CPX adsorption in HA-preloading systems at pH 5.6. PMID:27464502

  7. EVALUATION OF POTENTIAL ELUANTS FOR NON-ACID ELUTION OF CESIUM FROM RESORCINOL-FORMALDEHYDE RESIN

    SciTech Connect

    Adu-Wusu, K.; Pennebaker, F.

    2010-12-22

    Small-column ion exchange (SCIX) units installed in high-level waste tanks to remove Cs-137 from highly alkaline salt solutions are among the waste treatment plans in the DOE-complex. Spherical Resorcinol-Formaldehyde (sRF) is the ion exchange resin selected for use in the Hanford Waste Treatment and Immobilization Plant (WTP). It is also the primary ion exchange material under consideration for SCIX at the Hanford site. The elution step of the multi-step ion exchange process is typically done with 0.5 M nitric acid. An acid eluant is a potential hazard in the event of a spill, leak, etc. because the high-level waste tanks are made of carbon steel. Corrosion and associated structural damage may ensue. A study has been conducted to explore non-acid elution as an alternative. Batch contact sorption equilibrium screening tests have been conducted with 36 potential non-acid eluants. The sorption tests involve equilibrating each cesium-containing eluant solution with the sRF resin for 48 hours at 25 C in a shaker oven. In the sorption tests, an eluant is deemed to have a high cesium elution potential if it minimizes cesium sorption onto the sRF resin. The top candidates (based on lowest cesium sorption distribution coefficients) include ammonium carbonate, ammonium carbonate/ammonium hydroxide, ammonium bicarbonate, rubidium carbonate, ammonium acetate, ammonium acetate/ammonium hydroxide, ammonium bicarbonate/ammonium hydroxide, calcium chloride, and magnesium chloride. A select few of the top candidate eluants from the screening tests were subjected to actual sorption (loading) and elution tests to confirm their elution ability. The actual sorption (loading) and elution tests mimicked the typical sRF-cesium ion exchange process (i.e., sorption or loading, caustic wash, water rinse, and elution) via batch contact sorption and quasi column caustic wash/water rinse/elution. The eluants tested included ammonium carbonate, ammonium acetate, calcium acetate, magnesium

  8. Shear bond strength of resin cement to an acid etched and a laser irradiated ceramic surface

    PubMed Central

    Motro, Pelin Fatma Karagoz; Yurdaguven, Haktan

    2013-01-01

    PURPOSE To evaluate the effects of hydrofluoric acid etching and Er,Cr:YSGG laser irradiation on the shear bond strength of resin cement to lithium disilicate ceramic. MATERIALS AND METHODS Fifty-five ceramic blocks (5 mm × 5 mm × 2 mm) were fabricated and embedded in acrylic resin. Their surfaces were finished with 1000-grit silicon carbide paper. The blocks were assigned to five groups: 1) 9.5% hydrofluoric-acid etching for 60 s; 2-4), 1.5-, 2.5-, and 6-W Er,Cr:YSGG laser applications for 60 seconds, respectively; and 5) no treatment (control). One specimen from each group was examined using scanning electron microscopy. Ceramic primer (Rely X ceramic primer) and adhesive (Adper Single Bond) were applied to the ceramic surfaces, followed by resin cement to bond the composite cylinders, and light curing. Bonded specimens were stored in distilled water at 37℃ for 24 hours. Shear bond strengths were determined by a universal testing machine at 1 mm/min crosshead speed. Data were analyzed using Kruskal-Wallis and Mann-Whitney U-tests (α=0.05). RESULTS Adhesion was significantly stronger in Group 2 (3.88 ± 1.94 MPa) and Group 3 (3.65 ± 1.87 MPa) than in Control group (1.95 ± 1.06 MPa), in which bonding values were lowest (P<.01). No significant difference was observed between Group 4 (3.59 ± 1.19 MPa) and Control group. Shear bond strength was highest in Group 1 (8.42 ± 1.86 MPa; P<.01). CONCLUSION Er,Cr:YSGG laser irradiation at 1.5 and 2.5 W increased shear bond strengths between ceramic and resin cement compared with untreated ceramic surfaces. Irradiation at 6 W may not be an efficient ceramic surface treatment technique. PMID:23755333

  9. Phosphoric acid esters cannot replace polyvinylphosphonic acid as phosphoprotein analogs in biomimetic remineralization of resin-bonded dentin.

    PubMed

    Mai, Sui; Kim, Young Kyung; Toledano, Manuel; Breschi, Lorenzo; Ling, Jun Qi; Pashley, David H; Tay, Franklin R

    2009-10-01

    Polyvinylphosphonic acid (PVPA), a biomimetic analog of phosphoproteins, is crucial for recruiting polyacrylic acid (PAA)-stabilized amorphous calcium phosphate nanoprecursors during biomimetic remineralization of dentin collagen matrices. This study tested the null hypothesis that phosphoric acid esters of methacrylates in dentin adhesives cannot replace PVPA during bimimetic remineralization of resin-dentin interfaces. Human dentin specimens were bonded with: (I) XP Bond, an etch-and-rinse adhesive using moist bonding; (II) XP Bond using dry bonding; (III) Adper Prompt L-Pop, a self-etching adhesive. The control medium contained only set Portland cement and a simulated body fluid (SBF) without any biomimetic analog. Two experimental Portland cement/SBF remineralization media were evaluated: the first contained PAA as the sole biomimetic analog, the second contained PAA and PVPA as dual biomimetic analogs. No remineralization of the resin-dentin interfaces could be identified from specimens immersed in the control medium. After 2-4 months in the first experimental medium, specimens exhibited either no remineralization or large crystal formation within hybrid layers. Only specimens immersed in the second remineralization medium produced nanocrystals that accounted for intrafibrillar remineralization within hybrid layers. The null hypothesis could not be rejected; phosphoric acid esters in dentin adhesives cannot replace PVPA during biomimetic remineralization of adhesive-bonded dentin. PMID:19481792

  10. Thermal and Mechanical Characteristics of Polymer Composites Based on Epoxy Resin, Aluminium Nanopowders and Boric Acid

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The epoxy polymers are characterized by low thermal stability and high flammability. Nanoparticles are considered to be effective fillers of polymer composites for improving their thermal and functional properties. In this work, the epoxy composites were prepared using epoxy resin ED-20, polyethylene polyamine as a hardener, aluminum nanopowder and boric acid fine powder as flame-retardant filler. The thermal characteristics of the obtained samples were studied using thermogravimetric analysis and differential scanning calorimetry. The mechanical characteristics of epoxy composites were also studied. It was found that an addition of all fillers enhances the thermal stability and mechanical characteristics of the epoxy composites. The best thermal stability showed the epoxy composite filled with boric acid. The highest flexural properties showed the epoxy composite based on the combination of boric acid and aluminum nanopowder.

  11. Radioluminescence of polyester resin modified with acrylic acid and its salts

    NASA Astrophysics Data System (ADS)

    Szalińska, H.; Wypych, M.; Pietrzak, M.; Szadkowska-Nicze, M.

    Polimal-109 polyester resin and its compounds containing acrylic acid and its salts such as: sodium, potassium, magnesium, calcium, barium, iron, cobalt, copper and manganese acrylates were studied by the radioluminescence method, including isothermal luminescence (ITL) at a radiation temperature of 77 K, thermoluminescence (RTL) and spectral distributions of isothermal luminescence. Measurements of optical absorption at 77 K before and after irradiation of the investigated samples were also carried out. The results obtained have shown that metal ions play a significant part in the processes taking place in the polyester matrix under the influence of γ 60Co radiation.

  12. Surface roughness of flowable resin composites eroded by acidic and alcoholic drinks

    PubMed Central

    Poggio, Claudio; Dagna, Alberto; Chiesa, Marco; Colombo, Marco; Scribante, Andrea

    2012-01-01

    Aim: The aim of this study is to evaluate the surface roughness of four flowable resin composites following exposure to acidic and alcoholic drinks. Materials and Methods: SureFil SDR flow, TetricEvoFlow, Esthet-X Flow and Amaris Flow HT samples were immersed in artificial saliva, Coca Cola and Chivas Regal Whisky. Each specimen was examined using a Leica DCM 3D microscope: Arithmetical mean height of the surface profiles was measured (Sa). Results: Kruskal-Wallis test showed significant differences among various groups (P<0,001). Mann Whitney test was applied and control groups showed significantly lower Sa values than other groups (P=0,008). Coca Cola groups showed highest Sa values (P<0,021). No significant differences (P=0,14) in surface texture were found among the specimens of the different materials. No significant differences were found among TetricEvoFlow, Esthet-X Flow and Amaris Flow under control conditions nor after Coca Cola application. Under control condition and after Coca Cola application SureFil SDR flow showed significantly higher Sa values. Moreover, after whisky application Amaris Flow showed significantly lower Sa values then the other three groups that showed no significant differences among them. Conclusions: Acidic and alcoholic drinks eroded the surface roughness of all evaluated flowable resin composites. PMID:22557811

  13. Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin

    NASA Astrophysics Data System (ADS)

    Ling, Chen; Liu, Fuqiang; Pei, Zhiguo; Zhang, Xiaopeng; Wei, Mengmeng; Zhang, Yanhong; Zheng, Lirong; Zhang, Jing; Li, Aimin; Xing, Baoshan

    2015-05-01

    Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu2+ and CuHL0) coordinated with neutral amine sites and anionic complex species (CuL- and Cu2L22-) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids.

  14. Self-assembly of resins and asphaltenes facilitates asphaltene dissolution by an organic acid.

    PubMed

    Hashmi, Sara M; Firoozabadi, Abbas

    2013-03-15

    Asphaltene precipitation occurs in petroleum fluids under certain unfavorable conditions, but can be controlled by tuning composition. Aromatic solvents in large quantities can prevent precipitation entirely and can dissolve already precipitated asphaltenes. Some polymeric surfactants can dissolve asphaltenes when added at much lower concentrations than required by aromatic solvents. Other dispersants can truncate asphaltene precipitation at the sub-micron length scale, creating stable colloidal asphaltene dispersants. One particular asphaltene dispersant, dodecylbenzene sulfonic acid (DBSA), can do both, namely: (1) stabilize asphaltene colloids and (2) dissolve asphaltenes to the molecular scale. Acid-base interactions are responsible for the efficiency of DBSA in dissolving asphaltenes compared to aromatic solvents. However, many details remain to be quantified regarding the action of DBSA on asphaltenes, including the effect of petroleum fluid composition. For instance, resins, naturally amphiphilic components of petroleum fluids, can associate with asphaltenes, but it is unknown whether they cooperate or compete with DBSA. Similarly, the presence of metals is known to hinder asphaltene dissolution by DBSA, but its effect on colloidal asphaltene stabilization has yet to be considered. We introduce the concepts of cooperativity and competition between petroleum fluid components and DBSA in stabilizing and dissolving asphaltenes. Notably, we find that resins cooperatively interact with DBSA in dissolving asphaltenes. We use UV-vis spectroscopy to investigate the interactions responsible for the phase transitions between unstable suspensions, stable suspensions, and molecular solutions of asphaltenes. PMID:23351475

  15. Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin

    PubMed Central

    Ling, Chen; Liu, Fuqiang; Pei, Zhiguo; Zhang, Xiaopeng; Wei, Mengmeng; Zhang, Yanhong; Zheng, Lirong; Zhang, Jing; Li, Aimin; Xing, Baoshan

    2015-01-01

    Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu2+ and CuHL0) coordinated with neutral amine sites and anionic complex species (CuL− and Cu2L22−) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids. PMID:25962970

  16. Application of electrolyzed acid water to sterilization of denture base part 1. Examination of sterilization effects on resin plate.

    PubMed

    Nagamatsu, Y; Tajima, K; Kakigawa, H; Kozono, Y

    2001-06-01

    Bactericidal activities of electrolyzed strong and weak acid waters for acrylic denture base resin were evaluated in order to discuss the applicability of these waters for sterilization of denture base. Only 1-minute immersion in the electrolyzed strong or weak acid water could completely eliminate the attached bacteria, Staphylococcus aureus 209P, on the resin plate. When the resin was relined with tissue conditioner, 5-minute immersion or 1- to 2-minute ultrasonic cleaning reduced the number of the bacteria from 10(5)/cm2 level to 10(1)/cm2 and no surviving bacteria could be detected after 10-minute treatment. These findings suggest that both the electrolyzed strong and weak acid waters are well applicable to the disinfectant for acrylic denture base showing excellent bactericidal activities in a significantly shorter treatment as compared with the conventional denture cleaning. PMID:11523978

  17. Direct injection analysis of fatty and resin acids in papermaking process waters by HPLC/MS.

    PubMed

    Valto, Piia; Knuutinen, Juha; Alén, Raimo

    2011-04-01

    A novel HPLC-atmospheric pressure chemical ionization/MS (HPLC-APCI/MS) method was developed for the rapid analysis of selected fatty and resin acids typically present in papermaking process waters. A mixture of palmitic, stearic, oleic, linolenic, and dehydroabietic acids was separated by a commercial HPLC column (a modified stationary C(18) phase) using gradient elution with methanol/0.15% formic acid (pH 2.5) as a mobile phase. The internal standard (myristic acid) method was used to calculate the correlation coefficients and in the quantitation of the results. In the thorough quality parameters measurement, a mixture of these model acids in aqueous media as well as in six different paper machine process waters was quantitatively determined. The measured quality parameters, such as selectivity, linearity, precision, and accuracy, clearly indicated that, compared with traditional gas chromatographic techniques, the simple method developed provided a faster chromatographic analysis with almost real-time monitoring of these acids. PMID:21360668

  18. Identification of dehydroabietc acid from Boswellia thurifera resin as a positive GABAA receptor modulator.

    PubMed

    Rueda, Diana C; Raith, Melanie; De Mieri, Maria; Schöffmann, Angela; Hering, Steffen; Hamburger, Matthias

    2014-12-01

    In a two-microelectrode voltage clamp assay with Xenopus laevis oocytes, a petroleum ether extract (100 μg/mL) of the resin of Boswellia thurifera (Burseraceae) potentiated GABA-induced chloride currents (IGABA) through receptors of the subtype α₁β₂γ₂s by 319.8% ± 79.8%. With the aid of HPLC-based activity profiling, three known terpenoids, dehydroabietic acid (1), incensole (2), and AKBA (3), were identified in the active fractions of the extract. Structure elucidation was achieved by means of HR-MS and microprobe 1D/2D NMR spectroscopy. Compound 1 induced significant receptor modulation in the oocyte assay, with a maximal potentiation of IGABA of 397.5% ± 34.0%, and EC₅₀ of 8.7 μM ± 1.3 μM. This is the first report of dehydroabietic acid as a positive GABAA receptor modulator. PMID:25200370

  19. Antibacterial and Biofilm-Disrupting Coatings from Resin Acid-Derived Materials.

    PubMed

    Ganewatta, Mitra S; Miller, Kristen P; Singleton, S Parker; Mehrpouya-Bahrami, Pegah; Chen, Yung P; Yan, Yi; Nagarkatti, Mitzi; Nagarkatti, Prakash; Decho, Alan W; Tang, Chuanbing

    2015-10-12

    We report antibacterial, antibiofilm, and biocompatible properties of surface-immobilized, quaternary ammonium-containing, resin acid-derived compounds and polycations that are known to be efficient antimicrobial agents with minimum toxicities to mammalian cells. Surface immobilization was carried out by the employment of two robust, efficient chemical methods: Copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition click reaction, and surface-initiated atom transfer radical polymerization. Antibacterial and antibiofilm activities against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli were strong. Hemolysis assays and the growth of human dermal fibroblasts on the modified surfaces evidenced their biocompatibility. We demonstrate that the grafting of quaternary ammonium-decorated abietic acid compounds and polymers from surfaces enables the incorporation of renewable biomass in an effective manner to combat bacteria and biofilm formation in biomedical applications. PMID:26324023

  20. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin.

    PubMed

    Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R

    2003-05-16

    In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression. PMID:12830884

  1. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid

    SciTech Connect

    James, W.M.; Emerick, M.C.; Agnew, W.S. )

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including {alpha}-(2{yields}8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis {alpha}-(2{yields}8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated binding and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3,200 pmol of ({sup 3}H)TTX-binding sites/mg of protein and a single polypeptide of {approximately}285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. The authors describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.

  2. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin

    PubMed Central

    2016-01-01

    PURPOSE The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. MATERIALS AND METHODS One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. RESULTS Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. CONCLUSION The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials. PMID:27555898

  3. Low pressure process for continuous fiber reinforced polyamic acid resin matrix composite laminates

    NASA Technical Reports Server (NTRS)

    Druyun, Darleen A. (Inventor); Hou, Tan-Hung (Inventor); Kidder, Paul W. (Inventor); Reddy, Rakasi M. (Inventor); Baucom, Robert M. (Inventor)

    1994-01-01

    A low pressure processor was developed for preparing a well-consolidated polyimide composite laminate. Prepreg plies were formed from unidirectional fibers and a polyamic acid resin solution. Molding stops were placed at the sides of a matched metal die mold. The prepreg plies were cut shorter than the length of the mold in the in-plane lateral direction and were stacked between the molding stops to a height which was higher than the molding stops. The plies were then compressed to the height of the stops and heated to allow the volatiles to escape and to start the imidization reaction. After removing the stops from the mold, the heat was increased and 0 - 500 psi was applied to complete the imidization reaction. The heat and pressure were further increased to form a consolidated polyimide composite laminate.

  4. Fixed bed adsorption of 2-naphthalenesulfonic acid from aqueous solution by composite resin.

    PubMed

    Jia, Dong M; Li, Ya P; Li, Yue J; Li, Yong G; Li, Chang H

    2014-02-01

    Adsorption behavior of the iron impregnated, weakly basic resin D301 (Fe-D301) for removal of 2-naphthalenesulfonic acid (2-NSA) from aqueous solution was studied by using a fixed-bed column. The effects of process variables such as bed height, flow rate, and coexisting ions were investigated. The results indicated that the breakpoint and exhaustion point increased with increasing bed height and decreased with increasing 2-NSA flowrate. Experimental data showed a strong fit to the Bed Depth Service Time model. The coexisting ions in the 2-NSA solution had a clear effect on the breakthrough volume. The high extent of recovery of 2-NSA with good reproducibility provided an effective method for the separation of 2-NSA by the adsorbent Fe-D301. PMID:24645539

  5. Recovery of nickel and cobalt from organic acid complexes: adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin.

    PubMed

    Deepatana, A; Valix, M

    2006-09-21

    This study examined the recovery of nickel and cobalt from organic acid complexes using a chelating aminophosphonate Purolite S950 resin. These metal complexes are generated by bioleaching nickel laterite ores, a commercial nickel and cobalt mineral oxide, with heterotrophic organism and their metabolites or organic acid products. Equilibrium adsorption tests were conducted as a function of Ni and Co concentrations (15-2000 mg/L), solution pH (0.01 and 0.1 M acids) and three metabolic complexing agents (citrate, malate and lactate). It was shown that the adsorption of the various Ni- and Co-complexes on Purolite were quite low, 16-18 and 5.4-9 mg/g of resin, respectively, in comparison to the smaller nickel ions and nickel sulfate. This was attributed to the bulky organic ligands which promoted crowding effect or steric hindrance. The adsorption of these complexes was further hampered by the strong affinity of the resin to H+ ions under acidic conditions. Mechanisms of adsorption, as inferred from the fitted empirical Langmuir and Freundlich models, were correlated to the proposed steric hindrance and competitive adsorption effects. Nickel and cobalt elution from the resin were found be effective and were independent of the type of metal complexes and metal concentrations. This study demonstrated the relative challenges involved in recovering nickel and cobalt from bioleaching solutions. PMID:16698178

  6. Rapid removal of copper with magnetic poly-acrylic weak acid resin: quantitative role of bead radius on ion exchange.

    PubMed

    Fu, Lichun; Shuang, Chendong; Liu, Fuqiang; Li, Aimin; Li, Yan; Zhou, Yang; Song, Haiou

    2014-05-15

    A novel magnetic weak acid resin NDMC was self-synthesized for the removal of Cu(2+) from aqueous solutions. NDMC showed superior properties on the removal of Cu(2+) compared to commercial resins C106 and IRC-748, which was deeply investigated by adsorption isotherms and kinetic tests. The equilibrium adsorption amount of Cu(2+) onto NDMC (267.2mg/g) was almost twice as large as that onto IRC-748 (120.0mg/g). The adsorption kinetics of Cu(2+) onto the three resins fitted well with the pseudo-second-order equation. The initial adsorption rate h of NDMC was about 4 times that of C106 and nearly 8 times that of IRC-748 at the initial concentration of 500mg/L. External surface area was determined to be the key factor in rate-controlling by further analyzing the adsorption thermodynamics, kinetics parameters and physicochemical properties of the resins. NDMC resin with the smallest bead radius possessed the largest external surface and therefore exhibited the fastest kinetics. The adsorption amount of Cu(2+) onto NDMC was not influenced as the concentration of Na(+) increased from 1.0 to 10.0mM/L. Dilute HCl solution could effectively desorb Cu(2+). NDMC demonstrated high stability during 10 adsorption/desorption cycles, showing great potential in the rapid removal of Cu(2+) from wastewater. PMID:24681592

  7. Isolation and separation of transplutonium elements from other actinides on ion exchange resins from aqueous and aqueous ethanol solutions of sulfuric acid

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1987-11-01

    The behavior of Am, Cm, Bk, Cf, Es, and other actinides, as well as Zr, on an anion exchange resin and a cation exchange resin in aqueous and aqueous alcohol solutions of sulfuric acid was investigated as a function of the concentration of various components of the solution. It was found that the presence of alcohol in sulfuric acid solutions leads to an increase in the distribution coefficients both on cation exchange resins and on anion exchange resins. The possibility of using ion exchange resins for the concentration and separation of transplutonium elements from U, Np, Pu, Zr, and other elements that form strong complexes with sulfate ions in a wide range of sulfuric acid concentrations was demonstrated.

  8. Separation of Technetium in Nitric Acid Solution With an Extractant Impregnated Resin

    SciTech Connect

    Jei Kwon Moon; Eil Hee Lee; Chong-Hun Jung; Byung Chul Lee

    2006-07-01

    An extractant impregnated resin (EIR) was prepared by impregnation of Aliquat 336 into Amberlite XAD-4 for separation of technetium from rhodium in nitric acid solution. The prepared EIR showed high preference for rhenium (chemical analogue of technetium) over rhodium. The adsorption isotherms for rhenium were described well by Langmuir equation in both the single and multi-component systems. Maximum adsorption capacities obtained by modelling the isotherms of rhenium were 2.01 meq g{sup -1} and 1.97 meq g{sup -1} for the single and the multi-component systems, respectively. Column tests were also performed to confirm the separation efficiency of rhenium using a jacketed glass column (diam. 11 x L 150). The EIR column showed successful separation of rhenium with the breakthrough volume of about 122 BV for the breakthrough concentration of 0.08. Also the breakthrough data were modelled successfully by assuming a homogeneous diffusion model in the particle phase. The diffusivities obtained from the modelling were in the order of 10{sup -7} cm{sup 2} min{sup -1} for a rhenium. The rhenium adsorbed on the bed could be eluted with a high purity by using a nitric acid solution. (authors)

  9. Novel bioactive polyester scaffolds prepared from unsaturated resins based on isosorbide and succinic acid.

    PubMed

    Smiga-Matuszowicz, Monika; Janicki, Bartosz; Jaszcz, Katarzyna; Łukaszczyk, Jan; Kaczmarek, Marcin; Lesiak, Marta; Sieroń, Aleksander L; Simka, Wojciech; Mierzwiński, Maciej; Kusz, Damian

    2014-12-01

    In this study new biodegradable materials obtained by crosslinking poly(3-allyloxy-1,2-propylene succinate) (PSAGE) with oligo(isosorbide maleate) (OMIS) and small amount of methyl methacrylate were investigated. The porous scaffolds were obtained in the presence of a foaming system consisted of calcium carbonate/carboxylic acid mixture, creating in situ porous structure during crosslinking of liquid formulations. The maximum crosslinking temperature and setting time, the cured porous materials morphology as well as the effect of their porosity on mechanical properties and hydrolytic degradation process were evaluated. It was found that the kind of carboxylic acid used in the foaming system influenced compressive strength and compressive modulus of porous scaffolds. The MTS cytotoxicity assay was carried out for OMIS using hFOB1.19 cell line. OMIS resin was found to be non-toxic in wide range of concentrations. On the ground of scanning electron microscopy (SEM) observations and energy X-ray dispersive analysis (EDX) it was found that hydroxyapatite (HA) formation at the scaffolds surfaces within short period of soaking in phosphate buffer solution occurs. After 3h immersion a compact layer of HA was observed at the surface of the samples. The obtained results suggest potential applicability of resulted new porous crosslinked polymeric materials as temporary bone void fillers. PMID:25491802

  10. Relative sensitivity of five benthic invertebrate species to reference toxicants and resin-acid contaminated sediments

    SciTech Connect

    Hickey, C.W.; Martin, M.L.

    1995-08-01

    Five sediment-dwelling native New Zealand freshwater invertebrate species (amphipod, Chaetocorophium c.f. lucasi; clam, Sphaerium novaezelandiae; oligochaete, Lumbriculus variegatus; tanaid, Tanais standfordi; and the burrowing mayfly, Ichthybotus hudsoni) were assessed for their suitability for sediment toxicity testing by comparison of sensitivity to reference toxicants [phenol and pentachlorophenol (PCP)] and contaminated sediments. The 96-h EC50 values at 20 C showed a greater range in test sensitivity for phenol (30-fold range) from the most sensitive test, amphipod (8.1 mg/L), to the least sensitive one, clam (243 mg/L), compared with PCP (14-fold range), with amphipod the most sensitive test species (0.13 mg/L) and tanaid the least sensitive (1.8 mg/L). Clam reburial was a more sensitive end point than was lethality for phenol (by 20-fold) and PCP (by 2.4-fold). Four of the test species, excluding the tanaid, showed good 10-d survival in reference muds ({ge}87%) but lower survival in sand sediments ({ge}79%). Bleached kraft mill sediment containing high resin-acid concentrations (total 1,900 mg/kg dry weight) showed significant reductions in amphipod survival (15%), clam reburial (30%), and oligochaete survival (17%), and reproduction (49%). Amphipods, clams, and oligochaetes were the most promising species for sublethal test development.

  11. Solid-Phase Synthesis with Attachment of Peptide to Resin through an Amino Acid Side Chain: [8-Lysine]-Vasopressin

    PubMed Central

    Meienhofer, Johannes; Trzeciak, Arnold

    1971-01-01

    It is proposed that the scope of solid-phase peptide synthesis could be considerably broadened by attaching peptides to the solid-phase through functional side-chain groups rather than through the commonly used α-carboxyl groups. Side-chain attachment offers the use of a large variety of chemical linkages to solid supports. Attachment through the ε-amino group of the lysine residue to a polystyrene resin has been applied to a solid-phase synthesis of lysine-vasopressin. Nα-tert-butyl-oxycarbonyl-L-lysyl-glycinamide was condensed with chloroformoxymethyl polystyrene-2% divinylbenzene resin. After removal of the Nα-protecting tert-butyloxycarbonyl group, the peptide chain was elongated by standard Merrifield procedures to give Tos-Cys(Bzl)-Tyr-Phe-Glu-(NH2) - Asp(NH2) - Cys(Bzl) - Pro - Lys(Z - resin) - Gly-NH2. Cleavage from the resin with HBr in dioxane or trifluoroacetic acid gave a partially protected nonapeptide hydrobromide. For purification, it was converted into a fully protected peptide by treatment with benzyl p-nitro-phenyl carbonate and crystallized. Deprotection by sodium in liquid ammonia, oxidative cyclization, IRC-50 desalting, and ion-exchange chromatography gave lysinevasopressin with high potency in a rat-pressor assay. PMID:5280519

  12. Use of potassium-form cation-exchange resin as a conductimetric enhancer in ion-exclusion chromatography of aliphatic carboxylic acids.

    PubMed

    Iwata, Tomotaka; Mori, Masanobu; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2009-09-15

    In this study, a cation-exchange resin (CEX) of the K(+)-form, i.e., an enhancer resin, is used as a postcolumn conductimetric enhancer in the ion-exclusion chromatography of aliphatic carboxylic acids. The enhancer resin is filled in the switching valve of an ion chromatograph; this valve is usually used as a suppressor valve in ion-exchange chromatography. An aliphatic carboxylic acid (e.g., CH(3)COOH) separated by a weakly acidic CEX column of the H(+)-form converts into that of the K(+)-form (e.g., CH(3)COOK) by passing through the enhancer resin. In contrast, the background conductivity decreases because a strong acid (e.g., HNO(3)) with a higher conductimetric response in an eluent converts into a salt (e.g., KNO(3)) with a lower conductimetric response. Since the pH of the eluent containing the resin enhancer increases from 3.27 to 5.85, the enhancer accelerates the dissociations of analyte acids. Consequently, peak heights and peak areas of aliphatic carboxylic acids (e.g., acetic acid, propionic acid, butyric acid, and valeric acid) with the enhancer resin are 6.3-8.0 times higher and 7.2-9.2 times larger, respectively, than those without the enhancer resin. Calibrations of peak areas for injected analytes are linear in the concentration range of 0.01-1.0mM. The detection limits (signal-to-noise ratio=3) range from 0.10 microM to 0.39 microM in this system, as opposed to those in the range of 0.24-7.1 microM in the separation column alone. The developed system is successfully applied to the determination of aliphatic carboxylic acids in a chicken droppings sample. PMID:19615503

  13. Synthesis and evaluation of different thio-modified cellulose resins for the removal of mercury (II) ion from highly acidic aqueous solutions.

    PubMed

    Takagai, Yoshitaka; Shibata, Atsushi; Kiyokawa, Shigemi; Takase, Tsugiko

    2011-01-15

    Seven different types of thio- and/or amine-modified cellulose resin materials were synthesized and their mercury (II) ion adsorption properties determined. All seven resins showed good mercury (II) adsorption capability in the more neutral pH regions. However, the o-benzenedithiol- and o-aminothiophenol-modified cellulosic resins were found to be very effective in removing mercury (II) ions from strongly acidic media. For example, 93.5-100% mercury (II) ion recoveries from very acid aqueous solutions (nitric acid concentration ranged from 0.1 to 2.0 mol/L) were obtained using the o-benzenedithiol-modified resin while recoveries ranged from ca. 50% to 60% for the o-aminothiophenol-modified resin. An adsorption capacity of 23 mg (as Hg atoms) per gram of resin was observed for the o-benzenedithiol-modified cellulose in the presence of 1.0 mol/L nitric acid. This same resin shows very good selectivity for mercury (II) as only ruthenium (II) also somewhat adsorbed onto it out of 14 other metal ions studied (Ag(+), Al(3+), As(3+), Co(2+), Cd(2+), Cr(3+), Cu(2+), Fe(3+), Mn(2+), Ni(2+), Pt(2+), Pb(2+), Ru(2+), and Zn(2+)). PMID:20974469

  14. The erosion kinetics of conventional and resin-modified glass-ionomer luting cements in acidic buffer solutions.

    PubMed

    Hazar-Yoruc, Binnaz; Bavbek, Andac Barkin; Özcan, Mutlu

    2012-01-01

    This study investigated the erosion kinetics of conventional and resin-modified glass-ionomer luting cements in acidic buffer solutions as a function of time. Disc shaped specimens were prepared from conventional (Ketac-Cem: KTC) and resin-modified glass ionomer cements (Fuji Plus: FP) and immersed in three acidic buffer solutions (0.01 M) namely, acetic acid/sodium acetate (AA(B)), lactic acid/sodium lactate (LA(B)) and citric acid/sodium citrate (CA(B)) with a constant pH of 4.1 and stored for 1, 8, 24, 48, 80, 120 and 168 h. F concentration was determined using ion-specific electrode. Si, Ca and Al concentrations were determined by atomic absorption spectroscopy. Ca, Al, Si and F solubility rates in both FP and KTC were the highest in CA(B) solution. The erosion rates of both FP and KTC in all buffer solutions increased as a function of immersion time. The amount of F eluted from FP was more than that of KTC. The total amount of elements released from FP was less than KTC in all solutions. PMID:23207217

  15. Adsorption and removal of clofibric acid and diclofenac from water with MIEX resin.

    PubMed

    Lu, Xian; Shao, Yisheng; Gao, Naiyun; Chen, Juxiang; Zhang, Yansen; Wang, Qiongfang; Lu, Yuqi

    2016-10-01

    This study demonstrates the use of MIEX resin as an efficient adsorbent for the removal of clofibric acid (CA) and diclofenac (DCF). The adsorption performance of CA and DCF are investigated by a batch mode in single-component or bi-component adsorption system. Various factors influencing the adsorption of CA and DCF, including initial concentration, contact time, adsorbent dosage, initial solution pH, agitation speed, natural organic matter and coexistent anions are studied. The Langmuir model can well describe CA adsorption in single-component system, while the Freundlich model gives better fitting in bi-component system. The DCF adsorption can be well fitted by the Freundlich model in both systems. Thermodynamic analyses show that the adsorption of CA and DCF is an endothermic (ΔH(o) > 0), entropy driven (ΔS(o) > 0) process and more randomness exists in the DCF adsorption process. The values of Gibbs free energy (ΔG(o) < 0) indicate the adsorption of DCF is spontaneous but nonspontaneous (ΔG(o) > 0) for CA adsorption. The kinetic data suggest the adsorption of CA and DCF follow the pseudo-first-order model in both systems and the intra-particle is not the unique rate-limiting step. The adsorption process is controlled simultaneously by external mass transfer and surface diffusion according to the surface diffusion modified Biot number (Bis) ranging from 1.06 to 26.15. Moreover, the possible removal mechanism for CA and DCF is respectively proposed based on the ion exchange stoichiometry. PMID:27448753

  16. Inhibition of Streptococcus mutans biofilm formation on composite resins containing ursolic acid

    PubMed Central

    Kim, Soohyeon; Song, Minju; Roh, Byoung-Duck; Park, Sung-Ho

    2013-01-01

    Objectives To evaluate the inhibitory effect of ursolic acid (UA)-containing composites on Streptococcus mutans (S. mutans) biofilm. Materials and Methods Composite resins with five different concentrations (0.04, 0.1, 0.2, 0.5, and 1.0 wt%) of UA (U6753, Sigma Aldrich) were prepared, and their flexural strengths were measured according to ISO 4049. To evaluate the effect of carbohydrate source on biofilm formation, either glucose or sucrose was used as a nutrient source, and to investigate the effect of saliva treatment, the specimen were treated with either unstimulated whole saliva or phosphate-buffered saline (PBS). For biofilm assay, composite disks were transferred to S. mutans suspension and incubated for 24 hr. Afterwards, the specimens were rinsed with PBS and sonicated. The colony forming units (CFU) of the disrupted biofilm cultures were enumerated. For growth inhibition test, the composites were placed on a polystyrene well cluster, and S. mutans suspension was inoculated. The optical density at 600 nm (OD600) was recorded by Infinite F200 pro apparatus (TECAN). One-way ANOVA and two-way ANOVA followed by Bonferroni correction were used for the data analyses. Results The flexural strength values did not show significant difference at any concentration (p > 0.01). In biofilm assay, the CFU score decreased as the concentration of UA increased. The influence of saliva pretreatment was conflicting. The sucrose groups exhibited higher CFU score than glucose group (p < 0.05). In bacterial growth inhibition test, all experimental groups containing UA resulted in complete inhibition. Conclusions Within the limitations of the experiments, UA included in the composite showed inhibitory effect on S. mutans biofilm formation and growth. PMID:23741708

  17. Selected resin acids in effluent and receiving waters derived from a bleached and unbleached kraft pulp and paper mill

    USGS Publications Warehouse

    Quinn, B.P.; Booth, M.M.; Delfino, J.J.; Holm, S.E.; Gross, T.S.

    2003-01-01

    Water samples were collected on three dates at 24 sites influenced by effluent from Georgia-Pacific's Palatka Pulp and Paper Mill Operation, a bleached and unbleached kraft mill near Palatka, Florida, USA. The sampling sites were located within the mill retention ponds, Rice Creek, and the St. John's River. Samples were analyzed by gas chromatography-mass spectrometry for abietic, dehydroabietic, and isopimaric acids, all of which are potentially toxic by-products of pulp production. Isopimaric acid concentrations greater than 12 mg/L were measured at the mill's effluent outfall but were less than 20 ??g/L at the end of Rice Creek. This result indicates that the waters of Rice Creek provide dilution or conditions conducive for degradation or sorption of these compounds. Large differences in resin acid concentrations were observed between sampling events. In two sampling events, the maximum observed concentrations were less than 2 mg/L for each analyte. In a third sampling event, all of the compounds were detected at concentrations greater than 10 mg/L. Data from the three sample dates showed that resin acid concentrations were below 20 ??g/L before the confluence of Rice Creek and the St. John's River in all cases.

  18. Preparation of molecularly imprinted cross-linked chitosan/glutaraldehyde resin for enantioselective separation of L-glutamic acid.

    PubMed

    Monier, M; El-Sokkary, A M A

    2010-08-01

    In the present study, separation of L-glutamic acid from dilute aqueous solution by solid-phase extraction based on molecular imprinting technique using cross-linked chitosan/glutaraldehyde resin was investigated. L-Glutamic acid imprinted cross-linked chitosan (LGIC) was prepared by cross-linking of chitosan by glutaraldehyde cross-linker, in the presence of L-glutamic acid. Non-imprinted cross-linked chitosan (NIC) as control was also prepared by the same procedure in the absence of template molecules. The morphological structures of both LGIC and NIC were examined by scanning electron microscope (SEM). LGIC particles were applied to determine the optimum operational condition for l-glutamic acid separation from dilute aqueous solution. In adsorption step, optimum pH and retention time were 5.5 and 100 min, while corresponding values in extraction step were 2.5 and 60 min, respectively. The adsorption isotherms indicated that the maximum adsorption capacities of L- and D-glutamic acid on LGIC were 42+/-0.8 and 26+/-1.2mg/g, respectively, while in case of NIC, both L- and D-glutamic acid present the same maximum adsorption capacity 7+/-0.6 mg/g, which confirm that the molecular imprinting technique creates an enantioselectivity of LGIC toward L-glutamic acid. In addition, chiral resolution of l-, d-glutamic acid racemic mixture was carried out using column of LGIC. PMID:20441776

  19. Vapor-phase esterification of acetic acid with ethanol catalyzed by a macroporous sulfonated styrene-divinylbenzene (20%) resin

    SciTech Connect

    Gimenez, J.; Costa, J.; Cervera, S.

    1987-02-01

    The kinetics of the vapor-phase (85-120/sup 0/C) esterification of acetic acid with ethyl alcohol, at atmospheric pressure, catalyzed by a macroporous sulfonated styrene-divinylbenzene (DVB;20%) resin, has been studied. A simple first-order model (r = kp/sub 1/) fits experimental kinetic data properly for a constant reactants ratio. Discussion by means of L-H-H-W models shows that the rate-controlling step is the surface reaction with a single-site mechanism. The apparent activation energy is 4000 cal/mol.

  20. An Efficient Protocol for Preparation of Gallic Acid from Terminalia bellirica (Gaertn.) Roxb by Combination of Macroporous Resin and Preparative High-Performance Liquid Chromatography.

    PubMed

    Zou, Denglang; Chen, Tao; Chen, Chen; Li, Hongmei; Liu, Yongling; Li, Yulin

    2016-08-01

    In this article, macroporous resin column chromatography and preparative high-performance liquid chromatography were applied for preparation of gallic acid from Terminalia bellirica (Gaertn.) Roxb. In the first step, six kinds of resins were investigated by adsorption and desorption tests and AB-8 macroporous resin was selected for the enrichment of gallic acid. As a result, 20 g of gallic acid at a purity of 71% could be separated from 100 g of crude extract in which the content of gallic acid was 16.7% and the recovery of gallic acid reached 85.0%. In the second step, preparative high-performance liquid chromatography was selected to purify gallic acid. As a result, 640 mg of gallic acid at a purity of 99.1% was obtained from 1 g of sample in 35 min. The results demonstrated that macroporous resin coupled with preparative high-performance liquid chromatography was suitable for preparation of gallic acid from T. bellirica (Gaertn.) Roxb. PMID:27076561

  1. Determination of some aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography with conductimetric detection on a weakly acidic cation-exchange resin column.

    PubMed

    Ito, Kazuaki; Takayama, Yohichi; Ikedo, Mikaru; Mori, Masanobu; Taoda, Hiroshi; Xu, Qun; Hu, Wenzhi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2004-06-11

    The determination of seven aliphatic carboxylic acids, formic, acetic, propionic, isobutyric, n-butyric, isovaleric and n-valeric acids in anaerobic digestion process waters was examined using ion-exclusion chromatography with conductimetric detection. The analysis of these biologically important carboxylic acids is necessary as a measure for evaluating and controlling the process. The ion-exclusion chromatography system employed consisted of polymethacrylate-based weakly acidic cation-exchange resin columns (TSKgel OApak-A or TSKgel Super IC-A/C). weakly acidic eluent (benzoic acid), and conductimetric detection. Particle size and cation-exchange capacity were 5 microm and 0.1 meq./ml for TSKgel OApak-A and 3 microm and 0.2 meq./ml for TSKgel Super IC-A/C, respectively. A dilute eluent (1.0-2.0 mM) of benzoic acid was effective for the high resolution and highly conductimetric detection of the carboxylic acids. The good separation of isobutyric and n-butyric acids was performed using the TSKgel Super IC-A/C column (150 mm x 6.0 mm i.d. x 2). The simple and good chromatograms were obtained by the optimized ion-exclusion chromatography conditions for real samples from mesophilic anaerobic digestors, thus the aliphatic carboxylic acids were successfully determined without any interferences. PMID:15250416

  2. PRELIMINARY REPORT ON EVALUATION OF POTENTIAL ELUANTS FOR NON-ACID ELUTION OF CESIUM FROM RESORCINOL-FORMALDEHYDE RESIN

    SciTech Connect

    Adu-Wusu, K.; Pennebaker, F.

    2010-09-01

    Small-column ion exchange (SCIX) units installed in high-level waste tanks to remove Cs-137 from highly alkaline salt solutions are among the waste treatment plans in the DOE-complex. Spherical Resorcinol-Formaldehyde (sRF) is the ion exchange resin selected for use in the Hanford Waste Treatment and Immobilization Plant (WTP). It is also the primary ion exchange material under consideration for SCIX at the Hanford site. The elution step of the multi-step ion exchange process is typically done with 0.5 M nitric acid. An acid eluant is a potential hazard in the event of a spill, leak, etc. because the high-level waste tanks are made of carbon steel. Corrosion and associated structural damage may ensue. Studies are ongoing to explore non-acid elution as an alternative. Batch contact sorption equilibrium screening tests have been conducted with 36 potential non-acid eluants. The sorption tests involve equilibrating each cesium-containing eluant solution with the sRF resin for 48 hours at 25 C in a shaker oven. In the sorption tests, an eluant is deemed to have a high cesium elution potential if it minimizes cesium sorption onto the sRF resin. The top candidates (based on lowest cesium sorption distribution coefficients) include ammonium carbonate, ammonium carbonate/ammonium hydroxide, ammonium bicarbonate, rubidium carbonate, ammonium acetate, ammonium acetate/ammonium hydroxide, ammonium bicarbonate/ammonium hydroxide, calcium chloride, and magnesium chloride. The next phase of testing for this work will focus on the following down selected eluants: Ammonium carbonate, ammonium acetate, calcium acetate, magnesium acetate, nitric acid, and ammonium hydroxide. The next testing phase is a confirmation of the elution ability of the selected eluants. It will mimic a typical sRF cesium ion exchange process i.e., sorption or loading, caustic wash, water rinse, and elution via batch contact sorption and quasi column caustic wash/water rinse/elution. Due to corrosion

  3. A Robust Epoxy Resins @ Stearic Acid-Mg(OH)2 Micronanosheet Superhydrophobic Omnipotent Protective Coating for Real-Life Applications.

    PubMed

    Si, Yifan; Guo, Zhiguang; Liu, Weimin

    2016-06-29

    Superhydrophobic coating has extremely high application value and practicability. However, some difficult problems such as weak mechanical strength, the need for expensive toxic reagents, and a complex preparation process are all hard to avoid, and these problems have impeded the superhydrophobic coating's real-life application for a long time. Here, we demonstrate one kind of omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating via a simple antideposition route and one-step superhydrophobization process. The whole preparation process is facile, and expensive toxic reagents needed. This omnipotent coating can be applied on any solid substrate with great waterproof ability, excellent mechanical stability, and chemical durability, which can be stored in a realistic environment for more than 1 month. More significantly, this superhydrophobic coating also has four protective abilities, antifouling, anticorrosion, anti-icing, and flame-retardancy, to cope with a variety of possible extreme natural environments. Therefore, this omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating not only satisfies real-life need but also has great application potential in many respects. PMID:27265834

  4. Separation of Bk(IV) and Ce(IV) from trivalent transplutonium and rare earth elements on ion exchange resins in solutions of sulfuric acid

    SciTech Connect

    Guseva, L.I.; Stepushkina, V.V.

    1987-11-01

    Th behavior of Am, Cm, Bk, Cf, Es, Ce, Eu, and Pr on an anion exchange resin and a cation exchange resin in a mixture with PbO/sub 2/ was investigated in sulfuric acid solutions. A substantial difference was detected in the distribution coefficients of Bk and Ce, on the one hand, and the remaining transplutonium and rare earth elements, on the other, associated with oxidation of the first two elements to the tetravalent state. Methods are proposed for the concentration and separation of Bk(IV) and Ce(IV) from the other transplutonium and rare earth elements on an anion exchange resin in solution of 0.01-0.25 M H/sub 2/SO/sub 4/ and a cation exchange resin in 0.75-1.0 M H/sub 2/SO/sub 4/.

  5. EVALUATION OF POTENTIAL ELUANTS FOR NON-ACID ELUTION OF CESIUM FROM SPHERICAL RESORCINOL-FORMALDEHYDE RESIN

    SciTech Connect

    Adu-Wusu, K.; Nash, C.; Pennebaker, F.

    2011-10-23

    Ion Exchange column loading and elution of cesium from spherical resorcinol-formaldehyde resin have been conducted for two potential non-acid eluants -(NH{sub 4}){sub 2}CO{sub 3} and CH{sub 3}COONH{sub 4}. The results revealed encouraging cesium elution performance. 100% elution was achieved in at most 22 hours ({approx}28 bed volumes) of elution. Elution performance was fairly high at 6 hours ({approx}8 bed volumes) of elution for some of the eluants and also practically comparable to the benchmark acid eluant (HNO{sub 3}). Hence, it is quite possible 100% percent elution will be closer to the 6th hour than the 22nd hour. Elution is generally enhanced by increasing the concentration and pH of the eluants, and combining the eluants.

  6. Effect of adhesive hydrophilicity and curing-time on the permeability of resins bonded to water vs. ethanol-saturated acid-etched dentin

    PubMed Central

    Cadenaro, Milena; Breschi, Lorenzo; Rueggeberg, Frederick A.; Agee, Kelli; Di Lenarda, Roberto; Carrilho, Marcela; Tay, Franklin R.; Pashley, David H.

    2009-01-01

    Objective This study examined the ability of five comonomer blends (R1-R5) of methacrylate-based experimental dental adhesives solvated with 10 mass% ethanol, at reducing the permeability of acid-etched dentin. The resins were light-cured for 20, 40 or 60 s. The acid-etched dentin was saturated with water or 100% ethanol. Method Human unerupted third molars were converted into crown segments by removing the occlusal enamel and roots. The resulting crown segments were attached to plastic plates connected to a fluid-filled system for quantifying fluid flow across smear layer-covered dentin, acid-etched dentin and resin-bonded dentin. The degree of conversion of the resins was measured using Fourier transform infrared spectroscopy. Result Application of the most hydrophobic comonomer blend (R1) to water-saturated dentin produced the smallest reductions in dentin permeability (31.9, 44.1 and 61.1% after light-curing for 20, 40 or 60 s respectively). Application of the same blend to ethanol-saturated dentin reduced permeability of 74.1, 78.4 and 81.2%, respectively (p<0.05). Although more hydrophilic resins produced larger reductions in permeability, the same trend of significantly greater reductions in ethanol-saturated dentin over that of water-saturated dentin remained. This result can be explained by the higher solubility of resins in ethanol vs. water. Significance The largest reductions in permeability produced by resins were equivalent but not superior, to those produced by smear layers. Resin sealing of dentin remains a technique-sensitive step in bonding etch-and-rinse adhesives to dentin. PMID:18571228

  7. Effect of ascorbic acid, ethanol and acetone on adhesion between the treated fiber posts and composite resin cores

    PubMed Central

    Zahra, Khamverdi

    2012-01-01

    PURPOSE The aim of the present study was to assess the effect of ascorbic acid, ethanol and acetone on microtensile bond strength between fiber posts pre-treated with hydrogen peroxide and composite resin cores. MATERIALS AND METHODS Twenty four fiber posts were pre-treated with 24% hydrogen peroxide and divided into 4 groups as follows: G1: no treatment, as control group; G2: treatment with 10% ascorbic acid solution for 5 minutes; G3: treatment with 70% ethanol solution for 5 minutes; and G4: treatment with 70% acetone solution for 5 minutes. Each fiber post was surrounded by a cylinder-shaped polyglass matrix which was subsequently filled with composite resin. Two sections from each sample were selected for microtensile test at a crosshead with speed of 0.5 mm/min. Statistical analyses were performed using one-way ANOVA and a post hoc Tukey HSD test. Fractured surfaces were observed under a stereomicroscope at ×20 magnification. The fractured surfaces of the specimens were observed and evaluated under a SEM. RESULTS Means of microtensile bond strength values (MPa) and standard deviations in the groups were as follows: G1: 9.70±0.81; G2: 12.62±1.80; G3: 16.60±1.93; and G4: 21.24±1.95. G4 and G1 had the highest and the lowest bond strength values, respectively. A greater bond strength value was seen in G3 compared to G2. There were significant differences between all the groups (P<.001). All the failures were of the adhesive mode. CONCLUSION Application of antioxidant agents may increase microtensile bond strength between fiber posts treated with hydrogen peroxide and composite cores. Acetone increased bond strength more than ascorbic acid and ethanol. PMID:23236569

  8. Synergic Catalysis of PdCu Alloy Nanoparticles within a Macroreticular Basic Resin for Hydrogen Production from Formic Acid.

    PubMed

    Mori, Kohsuke; Tanaka, Hiromasa; Dojo, Masahiro; Yoshizawa, Kazunari; Yamashita, Hiromi

    2015-08-17

    Highly dispersed PdCu alloy nanoparticles have been successfully prepared within a macroreticular basic resin bearing N(CH3 )2 functional groups. This previously unappreciated combination of alloy is first proven to be responsible for the efficient production of high-purity H2 from formic acid (HCOOH) dehydrogenation for chemical hydrogen storage. By the addition of Cu, the electronically promoted Pd sites show significantly higher catalytic activity as well as a better tolerance towards CO poisoning as compared to their monometallic Pd counterparts. Experimental and DFT calculation studies revealed not only the synergic alloying effect but also cooperative action by the N(CH3 )2 groups within the resin play crucial roles in achieving exceptional catalytic performances. In addition to the advantages such as, facile preparation method, free of additives, recyclable without leaching of active component, and suppression of unfavorable CO formation less than 3 ppm, the present catalytic system is cost-effective because of the superior catalytic activity compared with that of well-established precious PdAg or PdAu catalysts. The present catalytic system is particularly desirable for an ideal hydrogen vector in terms of potential industrial application for fuel cells. PMID:26178687

  9. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples.

    PubMed

    Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2011-01-01

    We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method. PMID:21558657

  10. Polar modified post-cross-linked resin and its adsorption toward salicylic acid from aqueous solution: Equilibrium, kinetics and breakthrough studies.

    PubMed

    Fu, Zhenyu; He, Chunlian; Huang, Jianhan; Liu, You-Nian

    2015-08-01

    A novel polar modified post-cross-linked resin PDMPA was synthesized, characterized and evaluated for adsorption of salicylic acid from aqueous solution. PDMPA was prepared by a suspension polymerization of methyl acrylate (MA) and divinylbenzene (DVB), a Friedel-Crafts reaction and an amination reaction. After characterization of the chemical and pore structure of PDMPA, the adsorption behaviors of salicylic acid on PDMPA were determined in comparison with the precursor resins. The equilibrium adsorption capacity of salicylic acid on PDMPA was much larger than the precursor resins and the equilibrium data were correlated by both of the Langmuir and Freundlich models. The pseudo-second-order rate equation fitted the kinetic data better than the pseudo-first-order rate equation, and the micropore diffusion model could characterize the kinetic data very well. The dynamic experimental results showed that the breakthrough point and saturated point of salicylic acid on PDMPA were 40.3 and 92.4BV (1BV=10mL) at a feed concentration of 995.8mg/L and a flow rate of 1.4mL/min, and the resin column could be regenerated by 16.0BV of a mixture desorption solvent containing 0.01mol/L of NaOH (w/v) and 50% of ethanol (v/v). PMID:25863446

  11. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    SciTech Connect

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  12. Separation and conductimetric detection of C1-C7 aliphatic monocarboxylic acids and C1-C7 aliphatic monoamines on unfunctionized polymethacrylate resin columns.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi; Takeuchi, Toyohide

    2004-06-11

    The application of unfunctionized polymethacrylate resin (TSKgel G3000PWXL) as a stationary phase in liquid chromatography with conductimetric detection for C1-C7 aliphatic monocarboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, 3,3-dimethylbutyric acid, 4-methylvaleric acid, hexanoic acid, 2-methylhexanoic acid, 5-methylhexanoic acid and heptanoic acid) and C1-C7 aliphatic monoamines (methylamine, ethylamine, propylamine, isobutylamine, butylamine, isoamylamine, amylamine, 1,3-dimethylbutylamine, hexylamine, 2-heptylamine and heptylamine) was attempted with C8 aliphatic monocarboxylic acids (2-propylvaleric acid, 2-ethylhexanoic acid, 2-methylheptanoic acid and octanoic acid) and C8 aliphatic monoamines (1,5-dimethylhexylamine, 2-ethylhexylamine, 1-methylheptylamine and octylamine) as eluents, respectively. Using 1 mM 2-methylheptanoic acid at pH 4.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 carboxylic acids were achieved on a TSKgel G3000PWXL column (150 mm x 6 mm i.d.) in 60 min. Using 2 mM octylamine at pH 11.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 amines were also achieved on the TSKgel G3000PWXL column in 60 min. PMID:15250420

  13. Improvement of enamel bond strengths for conventional and resin-modified glass ionomers: acid-etching vs. conditioning*

    PubMed Central

    Zhang, Ling; Tang, Tian; Zhang, Zhen-liang; Liang, Bing; Wang, Xiao-miao; Fu, Bai-ping

    2013-01-01

    Objective: This study deals with the effect of phosphoric acid etching and conditioning on enamel micro-tensile bond strengths (μTBSs) of conventional and resin-modified glass ionomer cements (GICs/RMGICs). Methods: Forty-eight bovine incisors were prepared into rectangular blocks. Highly-polished labial enamel surfaces were either acid-etched, conditioned with liquids of cements, or not further treated (control). Subsequently, two matching pre-treated enamel surfaces were cemented together with one of four cements [two GICs: Fuji I (GC), Ketac Cem Easymix (3M ESPE); two RMGICs: Fuji Plus (GC), RelyX Luting (3M ESPE)] in preparation for μTBS tests. Pre-treated enamel surfaces and cement-enamel interfaces were analyzed by scanning electron microscopy (SEM). Results: Phosphoric acid etching significantly increased the enamel μTBS of GICs/RMGICs. Conditioning with the liquids of the cements produced significantly weaker or equivalent enamel μTBS compared to the control. Regardless of etching, RMGICs yielded stronger enamel μTBS than GICs. A visible hybrid layer was found at certain enamel-cement interfaces of the etched enamels. Conclusions: Phosphoric acid etching significantly increased the enamel μTBSs of GICs/RMGICs. Phosphoric acid etching should be recommended to etch the enamel margins before the cementation of the prostheses such as inlays and onlays, using GICs/RMGICs to improve the bond strengths. RMGICs provided stronger enamel bond strength than GICs and conditioning did not increase enamel bond strength. PMID:24190447

  14. Preparation and characterization of anion exchange resin decorated with magnetite nanoparticles for removal of p-toluic acid from aqueous solution

    NASA Astrophysics Data System (ADS)

    Davarpanah, Morteza; Ahmadpour, Ali; Rohani Bastami, Tahereh

    2015-02-01

    Polystyrene resin was covalently functionalized with diethanolamine and then decorated with magnetite nanoparticles by a novel and simple co-precipitation method using iron(II) sulfate as precursor. The products were characterized by Fourier transform infrared spectroscopy, elemental analysis, X-ray diffraction, Mössbauer spectroscopy, field-emission scanning electron microscopy and vibrating sample magnetometer. Adsorption of p-toluic acid (p-TA) onto magnetite-decorated polystyrene (MAG-PS) was studied and compared with that of diethanolamine-functionalized polystyrene and a commercial anion exchange resin. Results showed that the magnetite nanoparticles with an average size of 20.4 nm were successfully formed on the surface of polystyrene resin, and MAG-PS was exhibited high affinity for the removal of p-TA.

  15. Utilization of cation exchange resins for the isolation and separation of transplutonium elements from others in aqueous and non aqueous-alcohol solutions of hydrochloric and nitric acids

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.

    1985-07-01

    The authors study the sorption of several transplutonium and fission elements on cation exchange resins in relation to the acid concentration and content of alcohol in solution. They observe a significant increase in sorption of the TPE on the cation exchanges from nitric acid solutions containing more than 50% of alcohol. On the basis of the experimental results they determine the optimum conditions for the concentration of TPE on cation exchangers with their subsequent separation from certain fission and other elements by means of hydrochloric acid and nitric acid solutions.

  16. Flow injection online spectrophotometric determination of uranium after preconcentration on XAD-4 resin impregnated with nalidixic acid.

    PubMed

    Shahida, Shabnam; Ali, Akbar; Khan, Muhammad Haleem; Saeed, Muhammad Mufazzal

    2013-02-01

    In this work, spectrophotometer was used as a detector for the determination of uranium from water, biological, and ore samples with a flow injection system coupled with solid phase extraction. In order to promote the online preconcentration of uranium, a minicolumn packed with XAD-4 resin impregnated with nalidixic acid was utilized. The system operation was based on U(VI) ion retention at pH 6 in the minicolumn at flow rate of 15.2 mL min(-1). The uranium complex was removed from the resin by 0.1 mol dm(-3) HCl at flow rate of 3.2 mL min(-1) and was mixed with arsenazo III solution (0.05 % solution in 0.1 mol dm(-3) HCl, 3.2 mL min(-1)) and driven to flow through cell of spectrophotometer where its absorbance was measured at 651 nm. The influence of chemical (pH and HCl (as eluent and reagent medium) concentration) and flow (sample and eluent flow rate and preconcentration time) parameters that could affect the performance of the system as well as the possible interferents was investigated. At the optimum conditions for 60 s preconcentration time (15.2 mL of sample volume), the method presented a detection limit of 1.1 μg L(-1), a relative standard deviation (RSD) of 0.8 % at 100 μg L(-1), enrichment factor of 30, and a sample throughput of 42 h(-1), whereas for 300 s of the preconcentration time (76 mL of sample volume), a detection limit of 0.22 μg L(-1), a RSD of 1.32 % at 10 μg L(-1), enrichment factor of 150, and a sampling frequency of 11 h(-1) were reported. PMID:22580790

  17. The use of modified divinylbenzene-polystyrene resins in the separation of fermentation products. A case study utilizing amino acids and a dipeptide.

    PubMed

    Casillas, J L; Addo-Yobo, F; Kenney, C N; Aracil, J; Martínez, M

    1992-01-01

    The adsorption of phenylalanine, aspartic acid, asparagine and aspartame from phosphate-buffered aqueous solutions with modified divinyl-benzene-polystyrene resins has been investigated using high pressure liquid chromatography (HPLC). The pH studied was 2.8, the temperature range was 293-313 K and the ionic strength was maintained at 1.0 mol dm-3. Over the range of variables investigated, the adsorption isotherms are linear and may be characterized by temperature and pH-dependent apparent adsorption equilibrium constants, characteristic of the resin-adsorbate system. By studying the dependence on temperature of this adsorption constant, heats of adsorption and entropy of adsorption have been estimated. In terms of the heat liberated on adsorption, the amino acids and a dipeptide can be ranked thus: aspartame > phenylalanine > aspartic acid > asparagine. PMID:1368901

  18. Determination of resin acids during production of wood pellets--a comparison of HPLC/ESI-MS with the GC/FID MDHS 83/2 method.

    PubMed

    Axelsson, Sara; Eriksson, Kåre; Nilsson, Ulrika

    2011-10-01

    Resin acids are constituents of natural and technical products of widespread use. Exposure is known to cause health effects in the airways and on the skin. Liquid chromatography/positive ion electrospray-mass spectrometry (HPLC/pos ESI-MS) was investigated for determination of 7-oxodehydroabietic (7-OXO), dehydroabietic (DHAA) and abietic acid (AA) in wood dust-containing air samples as a derivatisation-free alternative to the GC/FID HSE method 83/2, developed by the Health and Safety Executive UK. The resin acid 7-OXO was measured as a marker for oxidised resin acids, which are known to be the main contact allergens in colophonium. The found detection limits were 0.42 ng m(-3) for 7-OXO, 5.2 ng m(-3) for DHAA and 9.4 ng m(-3) for AA, respectively, which are considerably lower than with the GC/FID method (24, 115 and 89 ng m(-3)). The two methods correlated well, although consistently and significantly lower concentrations of 7-OXO were detected with LC/MS. The higher concentration of this compound with MDHS 83/2 is suggested to be an artefact from the derivatisation step in the presence of soluble wood dust remains. PMID:21874165

  19. Ion-exclusion chromatographic behavior of aliphatic carboxylic acids and benzenecarboxylic acids on a sulfonated styrene--divinylbenzene co-polymer resin column with sulfuric acid containing various alcohols as eluent.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The addition of C1-C7 alcohols (methanol, ethanol, propanol, butanol, heptanol, hexanol and heptanol) to dilute sulfuric acid as eluent in ion-exclusion chromatography using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as the stationary phase was carried out for the simultaneous separations of both (a) C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, 2-methylvaleric, isocaproic, caproic, 2,2-dimethyl-n-valeric, 2-methylhexanoic, 5-methylhexanoic and heptanoic acids) and (b) benzenecarboxylic acids (pyromellitic, hemimellitic, trimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic and salicylic acids and phenol). Heptanol was the most effective modifier in ion-exclusion chromatography for the improvement of peak shapes and a reduction in retention volumes for higher aliphatic carboxylic acids and benzenecarboxylic acids. Excellent simultaneous separation and relatively highly sensitive conductimetric detection for these C1-C7 aliphatic carboxylic acids were achieved on the TSKgel SCX column (150 x 6 mm I.D.) in 30 min using 0.5 mM sulfuric acid containing 0.025% heptanol as eluent. Excellent simultaneous separation and highly sensitive UV detection at 200 nm for these benzenecarboxylic acids were also achieved on the TSKgel SCX column in 30 min using 5 mM sulfuric acid containing 0.075% heptanol as eluent. PMID:12830881

  20. Characterization of Group V Dubnium Homologs on DGA Extraction Chromatography Resin from Nitric and Hydrofluoric Acid Matrices

    SciTech Connect

    Despotopulos, J D; Sudowe, R

    2012-02-21

    somewhere between Nb and Pa. Much more recent studies have examined the properties of Db from HNO{sub 3}/HF matrices, and suggest Db forms complexes similar to those of Pa. Very little experimental work into the behavior of element 114 has been performed. Thermochromatography experiments of three atoms of element 114 indicate that the element 114 is at least as volatile as Hg, At, and element 112. Lead was shown to deposit on gold at temperatures about 1000 C higher than the atoms of element 114. Results indicate a substantially increased stability of element 114. No liquid phase studies of element 114 or its homologs (Pb, Sn, Ge) or pseudo-homologs (Hg, Cd) have been performed. Theoretical predictions indicate that element 114 is should have a much more stable +2 oxidation state and neutral state than Pb, which would result in element 114 being less reactive and less metallic than Pb. The relativistic effects on the 7p{sub 1/2} electrons are predicted to cause a diagonal relationship to be introduced into the periodic table. Therefore, 114{sup 2+} is expected to behave as if it were somewhere between Hg{sup 2+}, Cd{sup 2+}, and Pb{sup 2+}. In this work two commercially available extraction chromatography resins are evaluated, one for the separation of Db homologs and pseudo?homologs from each other as well as from potential interfering elements such as Group IV Rf homologs and actinides, and the other for separation of element 114 homologs. One resin, Eichrom's DGA resin, contains a N,N,N',N'-tetra-n-octyldiglycolamide extractant, which separates analytes based on both size and charge characteristics of the solvated metal species, coated on an inert support. The DGA resin was examined for Db chemical systems, and shows a high degree of selectivity for tri-, tetra-, and hexavalent metal ions in multiple acid matrices with fast kinetics. The other resin, Eichrom's Pb resin, contains a di-t-butylcyclohexano 18-crown-6 extractant with isodecanol solvent, which separates

  1. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2015-03-01

    The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on the surface of Mn-Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz-1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite.

  2. Preparation of molecularly imprinted resin based on chitosan for chiral recognition of S-mandelic acid.

    PubMed

    Monier, M; El-Mekabaty, A

    2013-04-01

    An enantioselective S-mandelic acid (S-MA) imprinted chitosan (SMIC) was prepared by cross-linking of chitosan using formaldehyde cross-linker, in the presence of S-MA as an imprint template molecule and 0.5% acetic acid solution as a solvent. Non-imprinted cross-linked chitosan (NIC) as control was also prepared by the same procedure in absence of template molecules. The surface morphology of both SMIC and NIC were examined by scanning electron microscope (SEM). SMIC particles were applied to determine the optimum operational condition for S-MA separation from dilute aqueous solution. In adsorption step, optimum pH and retention time were 3.5 and 60 min, while corresponding values in extraction step were 1 and 40 min, respectively. Also, the adsorption isotherms indicated that the maximum adsorption capacities of S- and R-MA on SMIC were 100 ± 0.5 and 64 ± 0.8 mg/g, respectively, while in the case of NIC, both R- and S-MA present the same maximum adsorption. PMID:23357795

  3. Effect of the Acidic Dental Resin Monomer 10-methacryloyloxydecyl Dihydrogen Phosphate on Odontoblastic Differentiation of Human Dental Pulp Cells.

    PubMed

    Kim, Eun-Cheol; Park, Haejin; Lee, Sang-Im; Kim, Sun-Young

    2015-11-01

    Although 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) is frequently used as an acidic resin monomer in dental adhesives, its effect on dental pulp cells (DPCs) has been rarely reported. The purpose of this study was to examine the effects of 10-MDP on the inflammatory response and odontoblastic differentiation of DPCs at minimally toxic concentrations. We found that 10-MDP caused the release of inflammatory cytokines including NO, PGE2, iNOS, COX-2, TNF-α, IL-1β, IL-6 and IL-8 in a concentration-dependent manner. In addition, 10-MDP reduced alkaline phosphatase activity, mineralization nodule formation and mRNA expression of odontoblastic differentiation markers such as dentin sialophosphoprotein, dentin matrix protein-1, osterix and Runx2 in a concentration-dependent manner with low toxicity. In addition, 10-MDP induced activation of nuclear factor-E2-related factor 2 (Nrf2) and its target gene, haeme oxygenase-1 (HO-1). We evaluated whether the effect of 10-MDP was related to the induction of HO-1 and found that treatment with a selective inhibitor of HO-1 reversed the production of 10-MDP-mediated pro-inflammatory cytokines and the inhibition of differentiation markers. Pre-treatment with either a GSH synthesis inhibitor or antioxidants blocked 10-MDP-induced mitogen-activated protein kinases (MAPKs), Nrf2 and NF-κB pathways. Taken together, the results of this study showed that minimally toxic concentrations of 10-MDP promoted an inflammatory response and suppressed odontoblastic differentiation of DPCs by activating Nrf2-mediated HO-1 induction through MAPK and NF-κB signalling. PMID:25847254

  4. Phosphorus-containing bisimide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1981-01-01

    The production of fire-resistant resins particularly useful for making laminates with inorganic fibers such as graphite fibers is discussed. The resins are by (1) condensation of an ethylenically unsaturated cyclic anhydride with a bis(diaminophenyl) phosphine oxide, and (2) by addition polymerization of the bisimide so obtained. Up to about 50%, on a molar basis, of benzophenonetetracarboxylic acid anhydride can be substituted for some of the cyclic anhydride to alter the properties of the products. Graphite cloth laminates made with these resins show 800 C char yields greater than 70% by weight in nitrogen. Limiting oxygen indexes of more than 100% are determined for these resins.

  5. Advanced thermoplastic resins, phase 1

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.

    1991-01-01

    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.

  6. Enrichment and low-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water after cleanup by cation exchange resin.

    PubMed

    Küsters, Markus; Gerhartz, Michael

    2010-04-01

    For the determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water, different procedures of enrichment and cleanup were examined using anion exchange or SPE. In many cases interactions of, e.g. alkaline earth metal ions especially calcium could be observed during enrichment and cleanup resulting in loss of analytes. For that reason, a novel cleanup and enrichment procedure for the determination of these phosphonic acid herbicides has been developed in drinking water using cation-exchange resin. In summary, the cleanup procedure with cation-exchange resin developed in this study avoids interactions as described above and is applicable to calcium-rich drinking water samples. After derivatization with 9-fluorenylmethylchloroformate followed by LC with fluorescence detection, LOD of 12, 14 and 12 ng/L and mean recoveries from real-world drinking water samples of 98+/-9, 100+/-16 and 101+/-11% were obtained for glyphosate, aminomethylphosphonic acid and glufosinate, respectively. The low LODs and the high precision permit the analysis of these phosphonic acid herbicides according to the guidelines of the European Commission. PMID:20183819

  7. Five year evaluation of class III composite resin restorations in cavities pre-treated with an oxalic- or a phosphoric acid conditioner.

    PubMed

    van Dijken, J W; Olofsson, A L; Holm, C

    1999-05-01

    An oxalic acid solution has been proposed as a conditioning agent for resin composite restorations in two commercial adhesive systems. The durability of 163 class III restorations, including 12 class IV restorations, in cavities pre-treated with an oxalic acid total etch technique or an enamel etch with phosphoric acid was studied. Each of 52 patients received at least one of each of three experimental restorations. The restorations were evaluated yearly with slightly modified United States Public Health Service (USPHS) criteria. After 5 years 95% of the restorations were evaluated as acceptable. Reasons for failure were the fracture of four fillings, including three class IV, secondary caries contiguous to two fillings and a non-acceptable colour match for one restoration. For eight class III restorations a fracture of the incisal tooth structure was registered. No differences were seen between the three experimental restorations. PMID:10373082

  8. Ion-exclusion chromatographic separations of C1-C6 aliphatic carboxylic acids on a sulfonated styrene-divinylbenzene co-polymer resin column with 5-methylhexanoic acid as eluent.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The application of C7 aliphatic carboxylic acids (heptanoic, 2-methylhexanoic, 5-methylhexanoic and 2,2-dimethyl-n-valeric acids) as eluents in ion-exclusion chromatography with conductimetric detection for C1-C6 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, isocaproic and caproic acids) was carried out using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as a stationary phase. When using 0.05 mM sulfuric acid at pH 4.0 as the eluent, peak shapes of hydrophobic carboxylic acids (isovaleric, valeric, isocaproic and caproic acids) were tailed strongly. In contrast, when using 1 mM these C7 carboxylic acids at pH ca. 4 as the eluents, although system peaks (vacant peaks) corresponding to these C7 carboxylic acids appeared, peak shapes of these hydrophobic acids were improved drastically. Excellent simultaneous separation and relatively high sensitive conductimetric detection for these C1-C6 aliphatic carboxylic acids were achieved in 25 min on the TSKgel SCX column (150 x 6 mm I.D.) using 1 mM 5-methylhexanoic acid at pH 4.0 as the eluent. PMID:12830882

  9. Multilayer Hydrophilic Poly(phenol-formaldehyde resin)-Coated Magnetic Graphene for Boronic Acid Immobilization as a Novel Matrix for Glycoproteome Analysis.

    PubMed

    Wang, Jiaxi; Wang, Yanan; Gao, Mingxia; Zhang, Xiangmin; Yang, Pengyuan

    2015-07-29

    Capturing glycopeptides selectively and efficiently from mixed biological samples has always been critical for comprehensive and in-depth glycoproteomics analysis, but the lack of materials with superior capture capacity and high specificity still makes it a challenge. In this work, we introduce a way first to synthesize a novel boronic-acid-functionalized magnetic graphene@phenolic-formaldehyde resin multilayer composites via a facile process. The as-prepared composites gathered excellent characters of large specific surface area and strong magnetic responsiveness of magnetic graphene, biocompatibility of resin, and enhanced affinity properties of boronic acid. Furthermore, the functional graphene composites were shown to have low detection limit (1 fmol) and good selectivity, even when the background nonglycopeptides has a concentration 100 fold higher. Additionally, enrichment efficiency of the composites was still retained after being used repeatedly (at least three times). Better yet, the practical applicability of this approach was evaluated by the enrichment of human serum with a low sample volume of 1 μL. All the results have illustrated that the magG@PF@APB has a great potential in glycoproteome analysis of complex biological samples. PMID:26161682

  10. Di-D-fructose dianhydride-enriched products by acid ion-exchange resin-promoted caramelization of D-fructose: chemical analyses.

    PubMed

    Suárez-Pereira, Elena; Rubio, Enrique M; Pilard, Serge; Ortiz Mellet, Carmen; García Fernández, José M

    2010-02-10

    Caramelization commonly occurs when sugars, or products containing a high proportion of sugars, are heated either dry or in concentrated aqueous solutions, alone or in the presence of certain additives. Upon thermal treatment of sugars, dehydration and self-condensation reactions occur, giving rise to volatiles (principally 2-hydroxymethylfurfural, HMF), pigments (melanoidines) and oligosaccharidic material, among which di-D-fructose dianhydrides (DFAs) and glycosylated DFA derivatives of different degree of polymerization (DP) have been identified. This study reports a methodology to produce caramel-like products with a high content of DFAs and oligosaccharides thereof from commercial D-fructose based on the use of acid ion-exchange resins as caramelization promotors. The rate of formation of these compounds as a function of D-fructose concentration, catalyst proportion, temperature, catalyst nature and particle size has been investigated. The use of sulfonic acid resins allows conducting caramelization at remarkable low temperatures (70-90 degrees C) to reach conversions into DFA derivatives up to 70-80% in 1-2 h, with relative proportions of HMF < 2%.The relative abundance of individual DFA structures can be modulated by acting on the catalyst nature and reaction conditions, which offers a unique opportunity for nutritional studies of DFA-enriched products with well-defined compositions. PMID:20039676

  11. Adsorption of o-cresol and benzoic acid in an adsorber packed with an ion-exchange resin: A comparative study of diffusional models

    SciTech Connect

    Run-Tun Huang; Teh-Liang Chen; Hung-Shan Weng

    1994-10-01

    Both solid- and pore-diffusion models were employed to simulate the adsorption of o-cresol and benzoic acid in a fixed-bed adsorber packed with an anion-exchange resin. The equilibrium adsorption data were modeled by a Langmuir isotherm. When the shape of the adsorption isotherm was approximately linear (as in the case of o-cresol), both models agreed well with the experimental break-through data, and they could be effectively applied to predict the breakthrough curve of longer columns. For a favorable adsorption isotherm (say, benzoic acid), however, better results were obtained by using the solid-diffusion model. In addition to the shape of the adsorption isotherm, several factors, such as the type of adsorbent, modeling of equilibrium data, computation efficiency, and concentration dependence of the intraparticle diffusivity, should also be taken into account for selecting a suitable diffusion model.

  12. Evolution of Diterpene Metabolism: Sitka Spruce CYP720B4 Catalyzes Multiple Oxidations in Resin Acid Biosynthesis of Conifer Defense against Insects1[C][W][OA

    PubMed Central

    Hamberger, Björn; Ohnishi, Toshiyuki; Hamberger, Britta; Séguin, Armand; Bohlmann, Jörg

    2011-01-01

    Diterpene resin acids (DRAs) are specialized (secondary) metabolites of the oleoresin defense of conifers produced by diterpene synthases and cytochrome P450s of the CYP720B family. The evolution of DRA metabolism shares common origins with the biosynthesis of ent-kaurenoic acid, which is highly conserved in general (primary) metabolism of gibberellin biosynthesis. Transcriptome mining in species of spruce (Picea) and pine (Pinus) revealed CYP720Bs of four distinct clades. We cloned a comprehensive set of 12 different Sitka spruce (Picea sitchensis) CYP720Bs as full-length cDNAs. Spatial expression profiles, methyl jasmonate induction, and transcript enrichment in terpenoid-producing resin ducts suggested a role of CYP720B4 in DRA biosynthesis. CYP720B4 was characterized as a multisubstrate, multifunctional enzyme by the formation of oxygenated diterpenoids in metabolically engineered yeast, yeast in vivo transformation of diterpene substrates, in vitro assays with CYP720B4 protein produced in Escherichia coli, and alteration of DRA profiles in RNA interference-suppressed spruce seedlings. CYP720B4 was active with 24 different diterpenoid substrates, catalyzing consecutive C-18 oxidations in the biosynthesis of an array of diterpene alcohols, aldehydes, and acids. CYP720B4 was most active in the formation of dehydroabietic acid, a compound associated with insect resistance of Sitka spruce. We identified patterns of convergent evolution of CYP720B4 in DRA metabolism and ent-kaurene oxidase CYP701 in gibberellin metabolism and revealed differences in the evolution of specialized and general diterpene metabolism in a gymnosperm. The genomic and functional characterization of the gymnosperm CYP720B family highlights that the evolution of specialized metabolism involves substantial diversification relative to conserved, general metabolism. PMID:21994349

  13. Comparison of shear bond strength of composite resin to enamel surface with laser etching versus acid etching: An in vitro evaluation

    PubMed Central

    Hoshing, Upendra A; Patil, Suvarna; Medha, Ashish; Bandekar, Siddhesh Dattatray

    2014-01-01

    Introduction: The aim of the study is in vitro evaluation of the shear bond strength of composite resin bonded to enamel which is pretreated using acid etchant and Er,Cr:Ysgg. Materials and Methods: 40 extracted human teeth were divided in two groups of 20 each (Groups A and B). In Group A, prepared surface of enamel was etched using 37% phosphoric acid (Scotchbond, 3M). In Group B, enamel was surface treated by a an Er, Cr: YSGG laser system (Waterlase MD, Biolase Technology Inc., San Clemente, CA, USA) operating at a wavelength of 2,780 nm and having a pulse duration of 140-200 microsecond with a repetition rate of 20 Hz and 40 Hz. Bonding agent ((Scotchbond Multipurpose, 3M) was applied over the test areas on 20 samples of Groups A and B each, and light cured. Composite resin (Ceram X duo Nanoceramic restorative, Densply) was applied onto the test areas as a 3 × 3 mm diameter bid, and light cured. The samples were tested for shear bond strength. Results: Mean shear bond strength for acid-etched enamel (26.41 ± 0.66MPa, range 25.155 to 27.150 MPa) was significantly higher (P < 0.01) than for laser-etched enamel (16.23 ± 0.71MPa, range 15.233 to 17.334 MPa). Conclusions: For enamel surface, mean shear bond strength of bonded composite obtained after laser etching were significantly lower than those obtained after acid etching. PMID:25125842

  14. Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products1[OPEN

    PubMed Central

    Yuen, Macaire M.S.; Bohlmann, Jörg

    2016-01-01

    Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I–IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes. PMID:26936895

  15. Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products.

    PubMed

    Geisler, Katrin; Jensen, Niels Berg; Yuen, Macaire M S; Madilao, Lina; Bohlmann, Jörg

    2016-05-01

    Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I-IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes. PMID:26936895

  16. Effect of sodium hypochlorite and peracetic acid on the surface roughness of acrylic resin polymerized by heated water for short and long cycles

    PubMed Central

    Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil

    2014-01-01

    Objective: To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). Materials and Methods: The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. Results: There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. Conclusion: It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness. PMID:25512737

  17. Exposure of Atlantic salmon parr (Salmo salar) to a combination of resin acids and a water soluble fraction of diesel fuel oil: A model to investigate the chemical causes of pigmented salmon syndrome

    SciTech Connect

    Croce, B. |; Stagg, R.M.

    1997-09-01

    Pigmented salmon syndrome is a pollutant-induced hemolytic anemia and hyperbilirubinemia. As part of an investigation of this condition, S2 Atlantic salmon parr (Salmo salar) were exposed to a diesel fuel oil, water soluble fraction (WSF) in combination with a mixture of three resin acids (isopimaric, dehydroabietic, and abietic acids) in a continuous-flow freshwater system. The total nominal concentrations of resin acids in the exposure tanks were 10, 50, and 100 {micro}g/L; the diesel WSF was generated in situ and provided a mean hydrocarbon concentration of 2.0 {+-} 0.1 mg/L (n = 12) during the 9-d exposure period. Exposure to the diesel WSF alone depressed liver bilirubin UDP-glucuronosyl transferase (UDPGT) activity and induced phenol UDPGT activity. Exposure to the diesel WSF in the absence or presence of resin acids induced liver cytochrome P4501A and increased the concentrations in the plasma of the enzymes lactate dehydrogenase, alkaline phosphatase, and glutamic oxaloacetic transaminase. The combined exposure to diesel WSF with either 50 or 100 {micro}g/L total resin acid caused significant elevations in the concentrations of bilirubin in the plasma and many of these fish had yellow pigmentation on the ventral surface and around the gill arches. The results demonstrate that exposure to combinations of two groups of contaminants can result in the manifestation of toxic effects not apparent from exposure to either of these chemicals in isolation.

  18. High-temperature resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.

  19. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass.

    PubMed

    Hesaraki, S

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO2-CaO-P2O5 glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. PMID:27040248

  20. Modeling of breakthrough curves of single and quaternary mixtures of ethanol, glucose, glycerol and acetic acid adsorption onto a microporous hyper-cross-linked resin.

    PubMed

    Zhou, Jingwei; Wu, Jinglan; Liu, Yanan; Zou, Fengxia; Wu, Jian; Li, Kechun; Chen, Yong; Xie, Jingjing; Ying, Hanjie

    2013-09-01

    The adsorption of quaternary mixtures of ethanol/glycerol/glucose/acetic acid onto a microporous hyper-cross-linked resin HD-01 was studied in fixed beds. A mass transport model based on film solid linear driving force and the competitive Langmuir isotherm equation for the equilibrium relationship was used to develop theoretical fixed bed breakthrough curves. It was observed that the outlet concentration of glucose and glycerol exceeded the inlet concentration (c/c0>1), which is an evidence of competitive adsorption. This phenomenon can be explained by the displacement of glucose and glycerol by ethanol molecules, owing to more intensive interactions with the resin surface. The model proposed was validated using experimental data and can be capable of foresee reasonably the breakthrough curve of specific component under different operating conditions. The results show that HD-01 is a promising adsorbent for recovery of ethanol from the fermentation broth due to its large capacity, high selectivity, and rapid adsorption rate. PMID:23819972

  1. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid.

    PubMed

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-04-01

    In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid-liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions. PMID:25576783

  2. Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion

    SciTech Connect

    Simoneit, B.R.T. ); Rogge, W.F.; Cass, G.R. ); Mazurek, M.A. ); Standley, L.J. ); Hildemann, L.M. )

    1993-11-01

    Biomass smoke aerosols contain thermally unaltered and partially altered biomarker compounds from major vegetation taxa. These compounds range from C[sub 8] to C[sub 31] and include phytosterols, lignans, phenolic products from lignin, and diterpenoids from resins. Certain of the higher molecular weight biomarkers are vaporized from the parent plant material and subsequently condense unaltered into the particle phase. Other compounds undergo pyrolytic alteration and possibly dimerization. In both cases it is possible to assign many of these compounds to the plant taxa of the unburned fuel. The diterpenoids are good indicators for smoke from burning of gymnosperm wood. The relative distribution of the OH/OCH[sub 3] substituent patterns on the phenolic products indicates the plant class of the biomass that was burned. Application of these relationships to the interpretation of ambient smoke aerosols may permit further evaluation of the sources that contribute to regional biomass burning. 80 refs., 5 figs., 1 tab.

  3. Abietadiene synthase from grand fir (Abies grandis). cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis.

    PubMed

    Vogel, B S; Wildung, M R; Vogel, G; Croteau, R

    1996-09-20

    (-)-Abietic acid, the principal diterpenoid resin acid of the wound-induced oleoresin secreted by grand fir (Abies grandis), is synthesized by the cyclization of geranylgeranyl diphosphate to (-)-abieta-7(8),13(14)-diene, followed by sequential three-step oxidation of the C-18 methyl group of the olefin to a carboxyl function. The enzyme catalyzing the cyclization reaction, abietadiene synthase, was purified from stems of wounded grand fir saplings and was digested with trypsin. Amino acid sequence information from the resulting peptides allowed construction of degenerate oligonucleotide primers, which amplified a 551-base pair fragment from a wound-induced stem cDNA library. This hybridization probe was then utilized to screen the wound-induced stem cDNA library, from which three cDNA clones were isolated that were functionally expressed in Escherichia coli, thereby confirming that a single protein catalyzes the complex, multistep cyclization of geranylgeranyl diphosphate to abietadiene. cDNA isolate Ac22.1, which yielded the highest expressed level of cyclase activity, was 2861 base pairs in length and encoded an 868-amino acid open reading frame that included a putative plastidial transit peptide. Deduced amino acid sequence comparison to other terpene cyclases revealed an amino-terminal region of the abietadiene synthase, which resembles those of enzymes that employ substrate double bond protonation to initiate the carbocationic reaction cascade, and a carboxyl-terminal region of the synthase, which resembles those of enzymes that employ ionization of the substrate allylic diphosphate ester function to initiate the cyclization reaction. This apparent fusion of segments of the two distinct terpenoid cyclase types is consistent with the novel mechanism of the bifunctional abietadiene synthase in catalyzing both protonation-initiated and ionization-initiated cyclization steps. PMID:8798524

  4. The Effect of Hydrofluoric Acid Concentration on the Bond Strength and Morphology of the Surface and Interface of Glass Ceramics to a Resin Cement.

    PubMed

    Sundfeld Neto, D; Naves, L Z; Costa, A R; Correr, A B; Consani, S; Borges, G A; Correr-Sobrinho, L

    2015-01-01

    The purpose of this study was to evaluate the influence of various concentrations of hydrofluoric acid (HF) on the surface/interface morphology and μ-shear bond strength (μSBS) between IPS Empress Esthetic (EST) (Ivoclar Vivadent) and IPS e.max Press (EMX) (Ivoclar Vivadent) ceramics and resin cement. Ceramic blocks were divided into 12 groups for each kind of ceramic. Six different HF concentrations were evaluated: 1%, 2.5%, 5%, 7.5%, 10%, and 15%. All groups were silanated after etching, and half of the specimens within each group received a thin layer of unfilled resin (UR). Three resin cement cylinders were prepared on each ceramic block for μSBS testing. The specimens were stored in distilled water at 37°C for 24 hours. The μSBS test was carried out in a universal testing machine at a crosshead speed of 0.5 mm/min until fracture. The data were submitted to three-way analysis of variance and multiple comparisons were performed using the Tukey post hoc test (p<0.05). The etched surfaces and bonded interfaces were evaluated using scanning electron microscopy. μSBS means (MPa) for 1%, 2.5%, 5%, 7.5%, 10%, and 15% HF concentrations were, respectively, 25.2, 27.2, 30.1, 31.4, 33.3, and 31.8. μSBS means with or without UR application measured 32.24 and 27.4, respectively; EST and EMX measured 29.8 and 29.9, respectively. For the HF concentrations, 10% and 15% showed higher μSBS means than did 1% and 2.5% (p<0.05); 7.5% was higher than 1% (p<0.05); and no statistical differences were found among the other concentrations (p>0.05). When evaluating UR, μSBS mean was significantly higher and better infiltration was observed on the etched surfaces. No statistical difference was found between the ceramics. The HF concentration and UR influenced the bond strength and surface/interface morphology. PMID:25764043

  5. Preparation and cured properties of novel cycloaliphatic epoxy resins

    SciTech Connect

    Tokizawa, Makoto; Okada, Hiroyoshi; Wakabayashi, Nobukatsu; Kimura, Tomiaki . Research Center)

    1993-10-20

    Preparation and characterization of novel cycloaliphatic epoxy resins, which are derived from octadienyl compounds, were studied. From a model peracetic acid epoxidation reaction using 2,7-octadienyl acetate-1, the structure of the liquid resins is estimated to be mainly terminal epoxides and some amount of inner epoxide depending on the epoxide content. The epoxy resins offer lower toxicity and lower vapor pressure. The reactivity of the resin with acid anhydrides is moderate but faster than that of traditional cyclohexane epoxide-type resins and slower than that of the glycidyl ester-type resins. This reactivity was also examined using model compounds. The heat deflection temperature of the hexahydro-phthalic anhydride-cured resins is shown to be directly proportional to the number of epoxy groups in the molecules. The flexural strength of the cured resins is nearly equivalent to that of the commercial resins, although the flexural elongation of the resins is larger than that of the rigid cyclohexane epoxide-type resins. The thermal stability of the cured resins is compared to typical rigid cycloaliphatic resins; furthermore, high water resistance of the cured resins is suggested to be attributed to the hydrophobic character of the C[sub 8] chain by cross-linking.

  6. A novel polar-modified post-cross-linked resin and its enhanced adsorption to salicylic acid: Equilibrium, kinetics and breakthrough studies.

    PubMed

    Wang, Xiaomei; Li, Guoqiang; Guo, Deping; Zhang, Yaling; Huang, Jianhan

    2016-05-15

    Improving the surface polarity is of significance for the post-cross-linked resins to enhance their adsorption to polar aromatic compounds. In the present study, we prepared a novel polar-modified post-cross-linked PDEpc_D by the Friedel-Crafts alkylation reaction and the amination reaction, the Brunauer-Emmett-Teller (BET) surface area and pore volume increased significantly after the Friedel-Crafts alkylation reaction and the surface polarity improved greatly after the amination reaction. Batch adsorption showed that PDEpc_D possessed a much enhanced adsorption to salicylic acid as compared the precursors PDE and PDEpc as well as the non-polar post-cross-linked PDVBpc. The equilibrium data was characterized by the Freundlich model, π-π stacking, hydrogen bonding and static interaction were the possible driving forces. The adsorption was a fast process and the kinetic data obeyed the micropore diffusion model. Column adsorption-desorption experiments suggested that PDEpc_D was a potential candidate for adsorptive removal of salicylic acid from aqueous solution. PMID:26928058

  7. Novel silica-based ion exchange resin

    SciTech Connect

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  8. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  9. ELUTION OF URANIUM VALUES FROM ION EXCHANGE RESINS

    DOEpatents

    Kennedy, R.H.

    1959-11-24

    A process is described for eluting complex uranium ions absorbed on ion exchange resins. The resin is subjected to the action of an aqueous eluting solution contuining sulfuric acid and an alkali metal, ammonium, or magnesium chloride or nitrate, the elution being carried out until the desired amount of the uranium is removed from the resin.

  10. Photosensitive filler minimizes internal stresses in epoxy resins

    NASA Technical Reports Server (NTRS)

    Dillon, J. N.

    1967-01-01

    Photosensitive filler is added to curable epoxy resins to minimize stress from internal shrinkage during curing or polymerization. Cinnamic acid resins and cinnamal ketones may be added in the amount of 1 to 3 percent by weight of the resin mixture.

  11. Stability Of A Carbon-Dioxide-Removing Resin

    NASA Technical Reports Server (NTRS)

    Wydeven, Theodore; Wood, Peter

    1990-01-01

    Report describes experiments determing long-term chemical stability of IRA-45, commerical ion-exchange resin candidate for use in removing CO2 from atmosphere of Space Station. In proposed system, cabin air passes through resin, and acidic CO2 absorbed by weakly-basic hydrated diethylenetriamine bonded to porous resin substrate. When resin absorbs all CO2, disconnects from airstream and heated with steam to desorb CO2. Resin reuseable. Removed by post-treating process air with phosphoric acid on charcoal. Other chemicals removed by trace-contaminant-control subsystem of Space Station.

  12. Determining resin/fiber content of laminates

    NASA Technical Reports Server (NTRS)

    Garrard, G. G.; Houston, D. W.

    1979-01-01

    Article discusses procedure where hydrazine is used to extract graphite fibers from cured polyimide resin. Method does not attack graphite fibers and is faster than hot-concentrated-acid digestion process.

  13. Antimicrobial Assessment of Resins from Calophyllum Antillanum and Calophyllum Inophyllum.

    PubMed

    Cuesta-Rubio, Osmany; Oubada, Ahmad; Bello, Adonis; Maes, Louis; Cos, Paul; Monzote, Lianet

    2015-12-01

    The Calophyllum genus is well-known for its antimicrobial and cytotoxic activities, and therefore, we analyzed these biological activities for resins of Calophyllum antillanum and Calophyllum inophyllum growing in Cuba. C. antillanum resins showed a potent activity against Plasmodium falciparum (IC50  = 0.3 ± 0.1 µg/mL), while its cytotoxicity against MRC-5 cells was much lower (IC50  = 21.6 ± 1.1 µg/mL). In contrary, the resin of C. inophyllum showed an unspecific activity. The presence of apetalic acid, isoapetalic acid, calolongic acid, pinetoric acid I, pinetoric acid II, isocalolongic acid, pinetoric acid III, and isopinetoric acid III in C. antillanum resins was also confirmed. These results demonstrated for the first time the potential activity of C. antillanum resins against P. falciparum. PMID:26514875

  14. A novel star-shaped poly(carboxylic acid) for resin-modified glass-ionomer restoratives.

    PubMed

    Weng, Y; Howard, L; Xie, D

    2014-07-01

    We have developed a novel glass-ionomer cement (GIC) system composed of photo-curable star-shaped poly(acrylic acid-co-itaconic acid)s. These polyacids were synthesized via a chain-transfer radical polymerization using a newly synthesized multi-arm chain-transfer agent. The star-shaped polyacids showed significantly lower viscosities in water as compared to the linear polyacids. Due to the lower viscosities, the molecular weight (MW) of the polyacids can be significantly increased for enhancing the mechanical strengths while keeping the ease of mixing and handling. The effects of MW, GM-tethering ratio, P/L ratio, and aging on the compressive properties of the experimental cements were significant. The light-cured experimental cements showed significantly improved mechanical strengths i.e. 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS, and 36% in FS, higher than commercial Fuji II LC. After aging in water for 1 month, the compressive strength of the novel light-cured experimental cement reached 343 MPa, which was 34% and 42% higher than Fuji II and Fuji II LC, respectively. This one-month aged experimental cement was also 23% higher than itself after one day aging, indicating that aging in water can significantly enhance salt-bridge formation for this novel star-shaped polyacid-comprised GIC. PMID:24865692

  15. K Basin Sludge Conditioning Process Testing Project Results from Test 4, ''Acid Digestion of Mixed-Bed Ion Exchange Resin''

    SciTech Connect

    Pool, K.H.; Delegard, C.H.; Schmidt, A.J.; Thornton, B.M.; Silvers, K.L.

    1999-04-02

    Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). The Hanford Spent Nuclear Fuel (HSNF) project has conducted a number of evaluations to examine technology and processing alternatives to pretreat K Basin sludge to meet storage and disposal requirements. From these evaluations, chemical pretreatment has been selected to address criticality issues, reactivity, and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Chemical pretreatment, referred to as the K Basin sludge conditioning process, includes nitric acid dissolution of the sludge (with removal of acid insoluble solids), neutrons absorber addition, neutralization, and reprecipitation. Laboratory testing is being conducted by the Pacific Northwest National Laboratory (PNNL) to provide data necessary to develop the sludge conditioning process.

  16. Hydrolyzable polyester resins, varnishes and coating compositions containing the same

    SciTech Connect

    Yamamori, Naoki; Yokoi, Junji; Yoshikawa, Motoyoshi

    1984-01-01

    Preparation of hydrolyzable polyester resin comprising reacting polycarboxylic acid and polyhydric alcohol components, which is characterized by using, as at least part of said polyhydric alcohol component, a metallic salt of hydroxy carboxylic acid of the formula defined and effecting the polycondensation at a temperature which is no more than the decomposition temperature of said metallic salt. The polyester resins are useful as resinous vehicle of varnishes and antifouling paints.

  17. Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases1[W][OA

    PubMed Central

    Hall, Dawn E.; Zerbe, Philipp; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet; Madilao, Lina L.; Yuen, Macaire; Bohlmann, Jörg

    2013-01-01

    Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs. PMID:23370714

  18. Sorption of organics from aqueous solution onto polymeric resins

    SciTech Connect

    Gusler, G.M.; Browne, T.E.; Cohen, Y. . Dept. of Chemical Engineering)

    1993-11-01

    The uptake of phenol, toluene, chlorobenzene, and benzoic acid by several polymeric resins and activated carbon was investigated experimentally. Presentation of the sorption data in terms of the number of sorbed monolayers and fractional pore volume filled indicated that, for the polymeric resins, solute uptake cannot be viewed as only a surface adsorption phenomenon. It is suggested that the aqueous phase uptake of phenol, toluene, chlorobenzene, and benzoic acid by the polymeric resins is attributable, in part, to solute absorption. The present study also suggests that solute uptake is affected by the swelling of some of the polymeric resins in water.

  19. ELUTION OF URANIUM FROM RESIN

    DOEpatents

    McLEan, D.C.

    1959-03-10

    A method is described for eluting uranium from anion exchange resins so as to decrease vanadium and iron contamination and permit recycle of the major portion of the eluats after recovery of the uranium. Diminution of vanadium and iron contamination of the major portion of the uranium is accomplished by treating the anion exchange resin, which is saturated with uranium complex by adsorption from a sulfuric acid leach liquor from an ore bearing uranium, vanadium and iron, with one column volume of eluant prepared by passing chlorine into ammonium hydroxide until the chloride content is about 1 N and the pH is about 1. The resin is then eluted with 8 to 9 column volumes of 0.9 N ammonium chloride--0.1 N hydrochloric acid solution. The eluants are collected separately and treated with ammonia to precipitate ammonium diuranate which is filtered therefrom. The uranium salt from the first eluant is contaminated with the major portion of ths vanadium and iron and is reworked, while the uranium recovered from the second eluant is relatively free of the undesirable vanadium and irons. The filtrate from the first eluant portion is discarded. The filtrate from the second eluant portion may be recycled after adding hydrochloric acid to increase the chloride ion concentration and adjust the pH to about 1.

  20. A mechanism for enhancing ionic accessibility into selective ion exchange resins

    SciTech Connect

    Alexandratos, S.D.; Shelley, C.A.; Horwitz, E.P.; Chiarizia, R.

    1998-07-01

    A bifunctional monophosphonic/sulfonic acid ion exchange resin with high capacity has been synthesized. Metal ion studies have been carried out with europium, americium, and ferric nitrate in solutions of varying acidity, with and without sodium nitrate added. The bifunctional resin complexes far higher levels of Eu(III) from 0.5 and 1 N nitric acid than the monofunctional phosphonic acid resin. It is postulated that the sulfonic acid ligand provides an access mechanism for the metal ions into the polymer matrix by hydrating the matrix and preventing its collapse in high ionic strength solutions thus allowing for rapid ionic complexation by the selective phosphonic acid ligands. The bifunctional monophosphonic/sulfonic acid resin has both ligands bound to a polystyrene support. It complexes higher levels of metal ions than a comparable resin differing only by having the monophosphonic acid ligand directly bound to the C-C backbone. Results are compared to a diphosphonic/sulfonic acid resin.

  1. Commercial Ion Exchange Resin Vitrification in Borosilicate Glass

    SciTech Connect

    Cicero-Herman, C.A.; Workman, P.; Poole, K.; Erich, D.; Harden, J.

    1998-05-01

    Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification process utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper.

  2. Epoxy resin

    DOEpatents

    Wilson, Glenn R.; Salyer, Ival O.; Ball, III, George L.

    1976-07-13

    By mixing one part of a prepolymer containing a polyamine partially polymerized with an organic epoxide and subsequently reacted with a fatty acid containing from 8 to 32 carbon atoms, and then reacting this prepolymer mixture with 3 parts of an organic epoxide, a composition was obtained which made a gas frothable, shear-stable, room temperature curing, low density foam. A particularly advantageous prepolymer was prepared using a polyamine selected from the group consisting of diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, partially polymerized with an organic epoxide having an average molecular weight of about 350 and having an epoxide equivalent of 185 to 192, and reacted with 2-10 weight percent linoleic acid. When one part of this prepolymer was reacted with about three parts of epoxy, and frothed by whipping in air or nitrogen an epoxy foam was produced which could be troweled onto surfaces and into corners or crevices, and subsequently cured, at near ambient temperature, to a strong dimensionally stable foam product.

  3. Extraction chromatography of neodymium by an organophosphorous extractant supported on various polymeric resins

    SciTech Connect

    Takigawa, D.Y.

    1993-04-01

    Fifteen resins coated with dihexyl-N,N-diethylcarbamoylmethyl phosphonate (CMP) were studied for their extraction of neodymium (Nd) in 4.0 and 7.0 M nitric acid. Resin properties, such as chemical composition and physical morphology, which can influence Nd extraction as well as subsequent resin regeneration (Nd stripping), were identified. Hydrophilic or polar resins coated with CMP efficiently extracted the Nd. Resins initially washed free of residual monomer and solvent before CMP coating outperformed their untreated counterparts. The macroporous styrene-divinylbenzene hydrophobic resins that were high in surface area were less effective supports compared with hydrophilic microporous Aurorez, polybenzimidazole (PBI) and macroporous Amberlite polyacrylic resins. Only one resin, Duolite C-467, showed no measurable improvement in Nd extraction with CMP coating. CMP-coated Aurorez PBI, a microporous and hydrophilic polymeric resin with an average surface area, showed the best overall efficiency for Nd removal and resin regeneration.

  4. High Temperature Transfer Molding Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  5. Advanced thermoplastic resins, phase 2

    NASA Technical Reports Server (NTRS)

    Brown, A. M.; Hill, S. G.; Falcone, A.

    1991-01-01

    High temperature structural resins are required for use on advanced aerospace vehicles as adhesives and composite matrices. NASA-Langley developed polyimide resins were evaluated as high temperature structural adhesives for metal to metal bonding and as composite matrices. Adhesive tapes were prepared on glass scrim fabric from solutions of polyamide acids of the semicrystalline polyimide LARC-CPI, developed at the NASA-Langley Research Center. Using 6Al-4V titanium adherends, high lap shear bond strengths were obtained at ambient temperature (45.2 MPa, 6550 psi) and acceptable strengths were obtained at elevated temperature (14.0 MPa, 2030 psi) using the Pasa-Jell 107 conversion coating on the titanium and a bonding pressure of 1.38 MPa (200 psi). Average zero degree composite tensile and compressive strengths of 1290 MPa (187 ksi) and 883 MPa (128 ksi) respectively were obtained at ambient temperature with unsized AS-4 carbon fiber reinforcement.

  6. Evaluation of Elution Parameters for Cesium Ion Exchange Resins

    SciTech Connect

    Burgeson, Ingrid E.; Deschane, Jaquetta R.; Cook, Bryan J.; Blanchard, David L.; Weier, Dennis R.

    2006-08-28

    Cesium ion exchange is one of the planned processes for treating and disposing of waste at the U.S. Department of Energy Hanford Site. Radioactive supernatant liquids from the waste tanks will undergo ultrafiltration, followed by cesium ion exchange using a regenerable organic ion exchange resin. Two resins, SuperLig?644 and a Resorcinol-formaldehyde resin are being evaluated for cesium removal and cesium elution characteristics. The main purpose of this study is to optimize the cesium elution to provide a resin which after undergoing elution would meet the U.S. Department of Energy/Office of River Protection Project-Waste Treatment Plant processing and resin disposal criteria. Columns of each resin type were loaded to greater or equal to 90% breakthrough with a Hanford waste stimulant and eluted with nitric acid. The temperature, flow rate and nitric acid concentration were varied to determine the optimal elution conditions. Temperature and eluant flow rate were the most important elution parameters. As would be predicted based upon kinetic consideration alone, decreasing the eluant flow rate and increasing the temperature provided the optimal elution conditions. Varying the nitric acid concentration did not have a significant effect on the elution; however, elutions performed using both high acid concentration (1M) and elevated temperature (45 C) resulted in resin degradation, causing gas generation and resin bed disruption.

  7. Cleanup of TMI-2 demineralizer resins

    SciTech Connect

    Bond, W.D.; King, L.J.; Knauer, J.B.; Hofstetter, K.J.; Thompson, J.D.

    1985-01-01

    Radiocesium is being removed from Demineralizers A and B (DA and DB by a process that was developed from laboratory tests on small samples of resin from the demineralizers. The process was designed to elute the radiocesium from the demineralizer resins and then to resorb it onto the zeolite ion exchangers contained in the Submerged Demineralizer System (SDS). The process was also required to limit the maximum cesium activities in the resin eluates (SDS feeds) so that the radiation field surrounding the pipelines would not be excessive. The process consists of 17 stages of batch elution. In the initial stage, the resin is contacted with 0.18 M boric acid. Subsequent stages subject the resin to increasing concentrations of sodium in NaH/sub 2/BO/sub 3/-H/sub 3/BO/sub 3/ solution (total B = 0.35 M) and then 1 M sodium hydroxide in the final stages. Results on the performance of the process in the cleanup of the demineralizers at TMI-2 are compared to those obtained from laboratory tests with small samples of the DA and DB resins. To date, 15 stages of batch elution have been completed on the demineralizers at TMI-2 which resulted in the removal of about 750 Ci of radiocesium from DA and about 3300 Ci from DB.

  8. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  9. Delayed cure bismaleimide resins

    DOEpatents

    Not Available

    1982-08-12

    Prior art polybismaleimides begin to polymerize at or just above the melting point of the monomer. This patent describes new bismaleimide resins which have an increased pot life and provide longer time periods in which the monomer remains fluid. The resins can be polymerized into molded articles with a high uniformity of properties. (DLC)

  10. Synthesis of improved polyester resins

    NASA Technical Reports Server (NTRS)

    Mcleod, A. H.; Delano, C. B.

    1979-01-01

    Eighteen aromatic unsaturated polyester prepolymers prepared by a modified interfacial condensation technique were investigated for their solubility in vinyl monomers and ability to provide high char yield forming unsaturated polyester resins. The best resin system contained a polyester prepolymer of phthalic, fumaric and diphenic acids reacted with 2,7-naphthalene diol and 9,9-bis(4-hydroxyphenyl)fluorene. This prepolymer is very soluble in styrene, divinyl benzene, triallyl cyanurate, diallyl isophthalate and methylvinylpyridine. It provided anaerobic char yields as high as 41 percent at 800 C. The combination of good solubility and char yield represents a significant improvement over state-of-the-art unsaturated polyester resins. The majority of the other prepolymers had only low or no solubility in vinyl monomers. Graphite composites from this prepolymer with styrene were investigated. The cause for the observed low shear strengths of the composites was not determined, however 12-week aging of the composites at 82 C showed that essentially no changes in the composites had occurred.

  11. Preparation and characterization of chitosan-grafted-poly(2-amino-4,5-pentamethylene-thiophene-3-carboxylic acid N'-acryloyl-hydrazide) chelating resin for removal of Cu(II), Co(II) and Ni(II) metal ions from aqueous solutions.

    PubMed

    Bekheit, M M; Nawar, N; Addison, A W; Abdel-Latif, D A; Monier, M

    2011-05-01

    The graft copolymerization of ethylacrylate (EA) onto chitosan initiated by potassium persulphate and Mohr's salt combined redox initiator system in limited aqueous medium was carried out in heterogeneous media. Moreover, modification of the grafted chitosan was carried out by reaction of the ester group (-COOEt) with 2-amino-4,5-pentamethylene-thiophene-3-carboxylic acid hydrazide which eventually produce chitosan-grafted-poly(2-amino-4,5-pentamethylene-thiophene-3-carboxylic acid N'-acryloyl-hydrazide) (chitosan-g-ATAH) chelating resin. The application of the modified resin for metal ion uptake was studied using Cu(2+), Co(2+) and Ni(2+) ions. The modified chelating resins were characterized using FTIR spectroscopy, SEM and X-ray diffraction. PMID:21277322

  12. Maleimide Functionalized Siloxane Resins

    SciTech Connect

    Loy, D.A.; Shaltout, R.M.

    1999-04-01

    Polyorganosiloxanes are a commercially important class of compounds. They exhibit many important properties, including very low glass transition temperatures, making them useful over a wide temperature range. In practice, the polysiloxane polymer is often mixed with a filler material to help improve its mechanical properties. An alternative method for increasing polymer mechanical strength is through the incorporation of certain substituents on the polymer backbone. Hard substituents such as carbonates and imides generally result in improved mechanical properties of polysiloxanes. In this paper, we present the preparation of novel polysiloxane resins modified with hard maleimide substituents. Protected ethoxysilyl-substituted propyl-maleimides were prepared. The maleimide substituent was protected with a furanyl group and the monomer polymerized under aqueous acidic conditions. At elevated temperatures (>120 C), the polymer undergoes retro Diels-Alder reaction with release of foran (Equation 1). The deprotected polymer can then be selectively crosslinked by a forward Diels-Alder reaction (in the presence of a co-reactant having two or more dime functionalities).

  13. Radiation testing of organic ion exchange resins

    SciTech Connect

    Carlson, C.D.; Bray, L.A.; Bryan, S.A.

    1995-09-01

    A number of ion exchange materials are being evaluated as part of the Tank Waste Remediation System (TWRS) Pacific Northwest Laboratory (PNL) Pretreatment Project for the removal of {sup 137}Cs from aqueous tank wastes. Two of these materials are organic resins; a phenol-formaldehyde resin (Duolite CS-100) produced by Rohm and Haas Co. (Philadelphia, Pennsylvania) and a resorcinol-formaldehyde (RF) resin produced by Boulder Scientific Co. (Mead, Colorado). One of the key parameters in the assessment of the organic based ion exchange materials is its useful lifetime in the radioactive and chemical environment that will be encountered during waste processing. The focus of the work presented in this report is the radiation stability of the CS-100 and the RF resins. The scope of the testing included one test with a sample of the CS-100 resin and testing of two batches of the RF resin (BSC-187 and BSC-210). Samples of the exchangers were irradiated with a {sup 60}Co source to a total absorbed dose of 10{sup 9} R over a period of 5 months in a static (no flow) and a flowing configuration with neutralized current acid waste (NCAW) simulant as a feed. Based on a maximum concentration of {sup 137}Cs on the resin that would result from processing NCAW, this dose represents an operational period of at least 150 days for the RF resin and at least 1260 days for the CS-100 resin. Gas generation in the static experiment was continuously monitored and G values (molecules of gas per 100 eV) were determined for each species. Resin samples were obtained periodically and the equilibrium behavior of the resins was assessed by determining the distribution coefficients (K{sub d}s). Structural information was also obtained by {sup 13}C cross polarization magic angle (CPMAS) nuclear magnetic resonance (NMR) spectrometry and Fourier Transform Infrared (FTIR) spectroscopy so that changes to the chemical structure could be correlated with changes in K{sub d}.

  14. Resin catalysts and method of preparation

    DOEpatents

    Smith, Jr., Lawrence A.

    1986-01-01

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  15. Resin catalysts and method of preparation

    DOEpatents

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  16. Evaluation of a new, macroporous polyvinylpyridine resin for processing plutonium using nitrate anion exchange

    SciTech Connect

    Marsh, S.F.

    1989-04-01

    Anion exchange in nitric acid is the major aqueous process used to recover and purify plutonium from impure scrap materials. Most strong-base anion exchange resins incorporate a styrene-divinylbenzene copolymer. A newly available, macroporous anion exchange resin based on a copolymer of 1-methyl-4-vinylpyridine and divinylbenzene has been evaluated. Comparative data for Pu(IV) sorption kinetics and capacity are presented for this new resin and two other commonly used anion exchange resins. The new resin offers high capacity and rapid sorption kinetics for Pu(IV) from nitric acid, as well as greatly stability to chemical and radiolytic degradation. 8 refs., 14 figs.

  17. Development of resins for composites by resin transfer molding

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Puckett, Paul M.; Maynard, Shawn J.

    1991-01-01

    Designed to cover a wide range of resin technology and to meet the near-term and long-term needs of the aircraft industry, this research has three objectives: to produce resin transfer molding (RES) resins with improved processability, to produce prepreg systems with high toughness and service temperature, and to produce new resin systems. Progress on reaching the objectives is reported.

  18. Separation of organic ion exchange resins from sludge -- engineering study

    SciTech Connect

    Duncan, J.B.

    1998-08-25

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.

  19. Biocompatibility of composite resins

    PubMed Central

    Mousavinasab, Sayed Mostafa

    2011-01-01

    Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity. PMID:23372592

  20. Biocidal quaternary ammonium resin

    NASA Technical Reports Server (NTRS)

    Janauer, G. E.

    1983-01-01

    Activated carbon (charcoal) and polymeric resin sorbents are widely used in the filtration and treatment of drinking water, mainly to remove dissolved organic and inorganic impurities and to improve the taste. Earlier hopes that activated carbon might "disinfect' water proved to be unfounded. The feasibility of protecting against microbial infestation in charcoal and resin beds such as those to be incorporated into total water reuse systems in spacecraft was investigated. The biocidal effect of IPCD (insoluable polymeric contact disinfectants) in combination with a representative charcoal was assessed. The ion exchange resins (IPCD) were shown to adequately protect charcoal and ion exchange beds.

  1. Benzonorbornadiene end caps for PMR resins

    NASA Technical Reports Server (NTRS)

    Panigot, Michael J.; Waters, John F.; Varde, Uday; Sutter, James K.; Sukenik, Chaim N.

    1992-01-01

    Several ortho-disubstituted benzonorbornadiene derivatives are described. These molecules contain acid, ester, or anhydride functionality permitting their use as end caps in PMR (polymerization of monomer reactants) polyimide systems. The replacement of the currently used norbornenyl end caps with benzonorbornadienyl end caps affords resins of increased aromatic content. It also allows evaluation of some mechanistic aspects of PMR cross-linking. Initial testing of N-phenylimide model compounds and of actual resin formulations using the benzonorbornadienyl end cap reveals that they undergo efficient thermal crosslinking to give oligomers with physical properties and thermal stability comparable to commercial norbornene-end-capped PMR systems.

  2. Branched polymeric media: boron-chelating resins from hyperbranched polyethylenimine.

    PubMed

    Mishra, Himanshu; Yu, Changjun; Chen, Dennis P; Goddard, William A; Dalleska, Nathan F; Hoffmann, Michael R; Diallo, Mamadou S

    2012-08-21

    Extraction of boron from aqueous solutions using selective resins is important in a variety of applications including desalination, ultrapure water production, and nuclear power generation. Today's commercial boron-selective resins are exclusively prepared by functionalization of styrene-divinylbenzene (STY-DVB) beads with N-methylglucamine to produce resins with boron-chelating groups. However, such boron-selective resins have a limited binding capacity with a maximum free base content of 0.7 eq/L, which corresponds to a sorption capacity of 1.16 ± 0.03 mMol/g in aqueous solutions with equilibrium boron concentration of ∼70 mM. In this article, we describe the synthesis and characterization of a new resin that can selectively extract boron from aqueous solutions. We show that branched polyethylenimine (PEI) beads obtained from an inverse suspension process can be reacted with glucono-1,5-D-lactone to afford a resin consisting of spherical beads with high density of boron-chelating groups. This resin has a sorption capacity of 1.93 ± 0.04 mMol/g in aqueous solution with equilibrium boron concentration of ∼70 mM, which is 66% percent larger than that of standard commercial STY-DVB resins. Our new boron-selective resin also shows excellent regeneration efficiency using a standard acid wash with a 1.0 M HCl solution followed by neutralization with a 0.1 M NaOH solution. PMID:22827255

  3. CHARACTERIZATION OF CYCLED SPHERICAL RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN

    SciTech Connect

    Nash, C.; Duignan, M.

    2010-02-23

    This report presents characterization data for two spherical resorcinol-formaldehyde (sRF) resin beds that had processed cesium in non-radioactive and radioactive cycles. All column cycle operations for the resin beds including loading, displacements, elution, regeneration, breakthroughs, and solution analyses are reported in Nash and Duignan, 2009a. That report covered four ion exchange (IX) campaigns using the two {approx}11 mL beds in columns in a lead-lag arrangement. The first two campaigns used Savannah River Site (SRS) Tank 2F nonradioactive simulant while the latter two were fed with actual dissolved salt in the Savannah River National Laboratory (SRNL) Shielded Cells. Both radioactive cycles ran to cesium breakthrough of the lead column. The resin beds saw in excess of 400 bed volumes of feed in each cycle. Resin disposal plans in tank farm processing depend on characterizations of resin used with actual tank feed. Following a final 30 bed volume (BV) elution with nitric acid, the resin beds were found to contain detectable chromium, barium, boron, aluminum, iron, sodium, sulfur, plutonium, cesium, and mercury. Resin affinity for plutonium is important in criticality safety considerations. Cesium-137 was found to be less than 10E+7 dpm/g of resin, similar to past work with sRF resin. Sulfur levels are reasonably consistent with other work and are expected to represent sulfur chemistry used in the resin manufacture. There were low but detectable levels of technetium, americium, and curium. Toxicity Characteristic Leaching Procedure (TCLP) work on the used (eluted) resin samples showed significant contents of mercury, barium, and chromium. One resin sample exceeded the TCLP level for mercury while the other metals were below TCLP levels. TCLP organics measurements indicated measurable benzene in one case, though the source was unknown. Results of this work were compared with other work on similar sRF resin characterizations in this report. This is the first

  4. Thermally stable laminating resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Vaughan, R. W.; Burns, E. A.

    1972-01-01

    Improved thermally stable laminating resins were developed based on the addition-type pyrolytic polymerization. Detailed monomer and polymer synthesis and characterization studies identified formulations which facilitate press molding processing and autoclave fabrication of glass and graphite fiber reinforced composites. A specific resin formulation, termed P10P was utilized to prepare a Courtaulds HMS reinforced simulated airfoil demonstration part by an autoclave molding process.

  5. Use of Cation Exchange Resins for Production of U{sub 3}O{sub 8} Suitable for the Al-U{sub 3}O{sub 8} Powder Metallurgy Process

    SciTech Connect

    Mosley, W.C.

    2001-09-17

    This report describes the production of U{sub 3}O{sub 8} powders from three types of cation exchange resins: Dowex 50W, a strong acid, sulfonate resin; AG MP-50, a macroporous form of sulfonate resin; and Bio-Rex 70, a weak acid, carboxylic resin.

  6. Acetylene terminated matrix resins

    NASA Technical Reports Server (NTRS)

    Goldfarb, I. J.; Lee, Y. C.; Arnold, F. E.; Helminiak, T. E.

    1985-01-01

    The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications.

  7. Effects of aging on repair bond strengths of a polyacid-modified composite resin.

    PubMed

    Yap, A U; Sau, C W; Lye, K W

    1999-01-01

    The effect of age of a poly-acid-modified composite resin on repair bond strength after different methods of surface conditioning was studied. Surface conditioning methods included the following: maleic acid with resin application; polyacrylic acid with resin application; sand-blasting with resin application. Shear bond testing between the aged and new material was carried out with an Instron Universal Testing Machine. Although repair bonds strengths after all surface conditioning methods were significantly higher than the control group at 1 week, no statistically significant differences in bond strengths were noted after aging the material for 6 months. After all aging periods, surface conditioning with sand-blasting and resin application resulted in the highest repair bond for poly-acid-modified composite resins. Specimens with cohesive failure in the material gave significantly higher repair bond strengths than specimens with adhesive failure at the repaired interface. PMID:10823087

  8. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1975-01-01

    Mechanical properties of neat resin samples and graphite fiber reinforced samples of thermoplastic resins were characterized with particular emphasis directed to the effects of environmental exposure (humidity, temperature and ultraviolet radiation). Tensile, flexural, interlaminar shear, creep and impact strengths were measured for polysulfone, polyarylsulfone and a state-of-the-art epoxy resin samples. In general, the thermoplastic resins exhibited environmental degradation resistance equal to or superior to the reference epoxy resin. Demonstration of the utility and quality of a graphite/thermoplastic resin system was accomplished by successfully thermoforming a simulated compressor blade and a fan exit guide vane.

  9. [Study of purity tests for silicone resins].

    PubMed

    Sato, Kyoko; Otsuki, Noriko; Ohori, Akio; Chinda, Mitsuru; Furusho, Noriko; Osako, Tsutomu; Akiyama, Hiroshi; Kawamura, Yoko

    2012-01-01

    In the 8th edition of Japan's Specifications and Standards for Food Additives, the purity test for silicone resins requires the determination of the refractive index and kinetic viscosity of the extracted silicone oil, and allows for only a limited amount of silicon dioxide. In the purity test, carbon tetrachloride is used to separate the silicone oil and silicon dioxide. To exclude carbon tetrachloride, methods were developed for separating the silicone oil and silicon dioxide from silicone resin, which use hexane and 10% n-dodecylbenzenesulfonic acid in hexane. For silicone oil, the measured refractive index and kinetic viscosity of the silicone oil obtained from the hexane extract were shown to be equivalent to those of the intact silicone oil. In regard to silicon dioxide, it was confirmed that, following the separation with 10% n-dodecylbenzenesulfonic acid in hexane, the level of silicon dioxide in silicone resin can be accurately determined. Therefore, in this study, we developed a method for testing the purity of silicone resins without the use of carbon tetrachloride, which is a harmful reagent. PMID:23243991

  10. Fiber reinforced thermoplastic resin matrix composites

    NASA Technical Reports Server (NTRS)

    Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)

    1989-01-01

    Polyimide polymer composites having a combination of enhanced thermal and mechanical properties even when subjected to service temperatures as high as 700.degree. F. are described. They comprise (a) from 10 to 50 parts by weight of a thermoplastic polyimide resin prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and (b) from 90 to 50 parts by weight of continuous reinforcing fibers, the total of (a) and (b) being 100 parts by weight. Composites based on polyimide resin formed from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and pyromellitic dianhydride and continuous carbon fibers retained at least about 50% of their room temperature shear strength after exposure to 700.degree. F. for a period of 16 hours in flowing air. Preferably, the thermoplastic polyimide resin is formed in situ in the composite material by thermal imidization of a corresponding amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. It is also preferred to initially size the continuous reinforcing fibers with up to about one percent by weight of an amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. In this way imidization at a suitable elevated temperature results in the in-situ formation of a substantially homogeneous thermoplastic matrix of the polyimide resin tightly and intimately bonded to the continuous fibers. The resultant composites tend to have optimum thermo-mechanical properties.

  11. Study on dehydrochlorination of waste poly (vinyl chloride) resins by microwave irradiation

    NASA Astrophysics Data System (ADS)

    Moriwaki, Saburo; Qian, Qingrong; Sunohara, Satoshi; Machida, Motoi; Tatsumoto, Hideki

    Waste poly (vinyl chloride: PVC) resins are experimentally dehydrochlorinated by microwave irradiation. The following unique results are obtained: (1) plasticizer in PVC resin absorbs microwave power more effectively than PVC polymer. The higher the plasticizer content in PVC resin, the higher is the dehydrochlorination reaction (2) low PVC polymer content materials such as cushion floor require high microwave irradiation power to secure a high dehydrochlorination yield, (3) calcium carbonate in PVC resin reacts with released hydrochloric acid gas and results calcium chloride during microwave irradiation, (4) additives in PVC resin strongly influence dehydrochlorination yield, (5) it is evidenced that the PVC copolymer is also dehydrochlorinated by microwave irradiation.

  12. Carboxymethylated polyethylenimine-polymethylenepolyphenylene isocyanate chelating ion exchange resin preconcentration for inductively coupled plasma spectrometry

    SciTech Connect

    Horvath, A.; Barnes, R.M.

    1986-06-01

    A carboxymethylated polyethylenimine-polylmethylenepolyphenylene isocyanate chelating ion exchange resin was prepared, characterized, and used for metals preconcentration for inductively coupled plasma spectrometry. The uptake of copper, cadmium, lead, and zinc by the resin was quantitative in the presence of high concentrations of ammonium, calcium, magnesium, potassium, sodium, and acetate and citrate salts. These metals could be collected from artificial seawater, Dead Sea water, and dissolved bone with a recovery of nearly 100%. The resin also chelates heavy metals and rare earths. Complexed metals can be eluted from the resin column with strong acids. The resin does not change volume with ionic form changes and can be regenerated for repeated use.

  13. Ion Exchange Temperature Testing with SRF Resin - 12088

    SciTech Connect

    Russell, R.L.; Rinehart, D.E.; Brown, G.N.; Peterson, R.A.

    2012-07-01

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy's Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing Cs-137. Recent proposed changes to the WTP ion exchange process baseline indicate that higher temperatures (50 deg. C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns may be required. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of elevated temperature on resin loading and resin degradation during extended solution flow at elevated temperature (45 deg., 50 deg., 55 deg., 60 deg., 65 deg., 75 deg. C). Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45 deg. C. Above 60 deg. C the resin appears to not load at all. It was observed that the resin disintegrated at 75 deg. C until not much was left and partially disintegrated at 65 deg. C, which caused the column to plug in both tests after ∼336 hours. The results indicate that WTP will lose resin loading capacity if the ion exchange process is performed above 25 deg. C, and the resin will disintegrate above 65 deg. C. Therefore, WTP will have a restricted operating range of temperatures to perform the ion exchange process with this resin. PNNL and WTP are currently evaluating the operating limits of the resin in further detail. Aging in 0.5 M HNO{sub 3} also caused the resin to lose capacity above 25 deg. C and to completely dissolve at 55 deg. C. Again, WTP will have a restricted operating range of temperatures when eluting the resin with nitric acid in order to maintain resin loading capacity and avoid disintegration of the resin

  14. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Techniques were developed that provided thermo-oxidatively stable A-type polyimide/graphite fiber composites using the approach of in situ polymerization of monomeric reactants directly on reinforcing fibers, rather than employing separately prepared prepolymer varnish. This was accomplished by simply mixing methylene dianiline and two ester-acids and applying this solution to the fibers for subsequent molding. Five different formulated molecular weight resins were examined, and an optimized die molding procedure established for the 1500 formulated molecular weight system. Extensive ultrasonic inspection of composites was successfully utilized as a technique for monitoring laminate quality. Composite mechanical property studies were conducted with this polyimide resin at room temperature and after various time exposures in a thermo-oxidative environment at 561 K (550 F), 589 K (600 F) and 617 K (650 F). It was determined that such composites have a long term life in the temperature range of 561 K to 589 K. The final phase involved the fabrication and evaluation of a series of demonstration airfoil specimens.

  15. VALIDATION FOR THE PERMANGANATE DIGESTION OF REILLEX HPQ ANION RESIN

    SciTech Connect

    Kyser, E.

    2009-09-23

    The flowsheet for the digestion of Reillex{trademark} HPQ was validated both under the traditional alkaline conditions and under strongly acidic conditions. Due to difficulty in performing a pH adjustment in the large tank where this flowsheet must be performed, the recommended digestion conditions were changed from pH 8-10 to 8 M HNO{sub 3}. Thus, no pH adjustment of the solution is required prior to performing the permanganate addition and digestion and the need to sample the digestion tank to confirm appropriate pH range for digestion may be avoided. Neutralization of the acidic digestion solution will be performed after completion of the resin digestion cycle. The amount of permanganate required for this type of resin (Reillex{trademark} HPQ) was increased from 1 kg/L resin to 4 kg/L resin to reduce the amount of residual resin solids to a minimal amount (<5%). The length of digestion time at 70 C remains unchanged at 15 hours. These parameters are not optimized but are expected to be adequate for the conditions. The flowsheet generates a significant amount of fine manganese dioxide (MnO{sub 2}) solids (1.71 kg/L resin) and involves the generation of a significant liquid volume due to the low solubility of permanganate. However, since only two batches of resin (40 L each) are expected to be digested, the total waste generated is limited.

  16. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  17. Effect of surface pretreatments on resin composite bonding to PEEK.

    PubMed

    Silthampitag, Patcharawan; Chaijareenont, Pisaisit; Tattakorn, Kittipong; Banjongprasert, Chaiyasit; Takahashi, Hidekazu; Arksornnukit, Mansuang

    2016-01-01

    This study evaluated the effect of surface pretreatments on resin composite bonding to polyetheretherketone (PEEK). Four groups of surface pretreatment (no pretreatment, etched with 98% sulfuric acid, etched with piranha solution and sandblasting with 50 µm alumina) were performed on PEEK. Surface roughness, Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis were examined. Shear bond strength (SBS) and interface characteristics were also evaluated after the specimens were bonded with resin materials. Two-way ANOVA analysis revealed significance on two main effects and interactions. Tukey's multiple comparisons test showed that the SBS of resin composite on PEEK were the highest in the group etched with 98% sulfuric acid and bonded with Heliobond(®) (p<0.05). All pretreatments produced similar spectra of FTIR patterns. SEM demonstrated porosities and pitting from chemical etching, which suggested a significant influence on the adhesion between PEEK and resin materials. PMID:27477234

  18. The effects of ionizing radiation on Reillex trademark HPQ, a new macroporous polyvinylpyridine resin, and on four conventional polystyrene anion exchange resins

    SciTech Connect

    Marsh, S.F.

    1990-11-01

    This study compares the effects of ionizing radiation on Reillex{trademark} HPQ, a recently available macroporous copolymer of 1-methyl-4-vinylpyridine/divinylbenzene, and on four conventional strong-base polystyrene anion exchange resins. The polystyrene resins investigated included one gel type, Dowex{trademark} 1 {times} 4, and three macroporous resins: Dow{trademark} MSA-1, Amberlite{trademark} IRA-900, and Lewatit{trademark} MP-500-FK. Each resin, in 7 M nitric acid, was subjected to seven different levels of {sup 60}Co gamma radiation ranging from 100 to 1000 megarads. Irradiated resins were measured for changes in dry weight, wet volume, chloride and Pu(IV) exchange capacities, and thermal stability. In separate experiments, each resin was subjected to approximately 340 megarads of in situ alpha particles from sorbed plutonium. Resin damage from alpha particles was less than half that caused by gamma rays, which may be a consequence of different production rates of radiolytic nitrite and nitro radicals in the two systems. Reillex{trademark} HPQ resin provided the greatest radiation stability, whereas Lewatit{trademark} MP-500-FK was the least stable of the resins tested. Thermogravimetric analyses of dry, nitrate-form resin revealed that dry Reillex{trademark} HPQ resin offered the best thermal stability for absorbed gamma doses to 370 megarads, but the worst thermal stability after exposures of 550 megarads or more. 25 refs., 11 figs., 13 tabs.

  19. Epoxy resin holograms

    NASA Astrophysics Data System (ADS)

    Ruiz-Limón, B.; Wetzel, G. B. J.; Olivares Pérez, A.; Ponce-Lee, E. L.; Ramos-Garcia, R.; Toxqui López, S.; Hernández-Garay, M. P.; Fuentes-Tapia, I.

    2006-02-01

    We observed that a commercial epoxy resin (Comex (R) is enable to record images by means of lithography techniques. We can generate a hologram using a digital image and a computer simulation program and transferred it on our resin by microlithography techniques to get a phase hologram and increase its efficiency. The exposition to the heat produce temperature gradients and the information in the mask is transferred to the material by the refraction index changes, thus the film is recorded. At the same time the hologram is cured.

  20. ANALYSIS OF VENTING OF A RESIN SLURRY

    SciTech Connect

    Laurinat, J.; Hensel, S.

    2012-03-27

    A resin slurry venting analysis was conducted to address safety issues associated with overpressurization of ion exchange columns used in the Purex process at the Savannah River Site (SRS). If flow to these columns were inadvertently interrupted, an exothermic runaway reaction could occur between the ion exchange resin and the nitric acid used in the feed stream. The nitric acid-resin reaction generates significant quantities of noncondensable gases, which would pressurize the column. To prevent the column from rupturing during such events, rupture disks are installed on the column vent lines. The venting analysis models accelerating rate calorimeter (ARC) tests and data from tests that were performed in a vented test vessel with a rupture disk. The tests showed that the pressure inside the test vessel continued to increase after the rupture disk opened, though at a slower rate than prior to the rupture. Calculated maximum discharge rates for the resin venting tests exceeded the measured rates of gas generation, so the vent size was sufficient to relieve the pressure in the test vessel if the vent flow rate was constant. The increase in the vessel pressure is modeled as a transient phenomenon associated with expansion of the resin slurry/gas mixture upon rupture of the disk. It is postulated that the maximum pressure at the end of this expansion is limited by energy minimization to approximately 1.5 times the rupture disk burst pressure. The magnitude of this pressure increase is consistent with the measured pressure transients. The results of this analysis demonstrate the need to allow for a margin between the design pressure and the rupture disk burst pressure in similar applications.

  1. A NEW EXTRACTION CHROMATOGRAPHY RESIN CONTAINING KLÄUI LIGANDS FOR APPLICATION IN ACTINIDE SEPARATIONS

    SciTech Connect

    Lumetta, Gregg J.; Wester, Dennis W.; McNamara, Bruce K.; Hubler, Timothy L.; Latesky, Stanley L.; Martyr, Cuthbert C.; Richards, Kia N.

    2004-11-01

    An extraction chromatography resin containing the anionic ligand (η5-pentamethylcyclopentadienyl)tris-(diethylphosphito-P)cobalt(III), (L) has been prepared. The resin consists of 1 wt% L on Amberlite® XAD-7. This resin strongly sorbs Am(III) and Pu(IV). The sorption of these ions decreases with increasing nitric acid concentration, but this effect is more pronounced for Am(III). This allows for convenient separation of Am(III) from Pu(IV) by simple adjustments in the nitric acid concentration. The tripodal geometry of L disfavors the complexation of uranyl ion, so sorption of U(VI) by the L-containing resin is weak.

  2. Resin impregnation process for producing a resin-fiber composite

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  3. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  4. Assessment of Microleakage of Class V Composite Resin Restoration Following Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) Laser Conditioning and Acid Etching with Two Different Bonding Systems

    PubMed Central

    Arbabzadeh Zavareh, Farahnaz; Samimi, Pouran; Birang, Reza; Eskini, Massoumeh; Bouraima, Stephane Ayoub

    2013-01-01

    Introduction: The use of laser for cavity preparation or conditioning of dentin and enamelsurfaces as an alternative for dental tissue acid-etch have increased in recent years. Theaim of this in vitro study was to compare microleakage at enamel-composite and dentincompositeinterfaces following Erbium-Doped Yttrium Aluminum Garnet(Er:YAG) laserconditioning or acid-etching of enamel and dentin, hybridized with different bonding systems. Methods: Class V cavities were prepared on the lingual and buccal surfaces of 50 recentlyextracted intact human posterior teeth with occlusal margin in the enamel and gingival marginin the dentin. The cavities were randomly assigned to five groups: group1:conditioned withlaser (Energy=120mJ, Frequency=10Hz, Pulse duration=100μs for Enamel and Energy=80mJ,Frequency=10Hz, Pulse duration=100μs for Dentin) + Optibond FL, group2:conditioned withlaser + etching with 35% phosphoric acid + Optibond FL, group3:conditioned with laser+ Clearfil SE Bond, group 4 (control):acid etched with 35% phosphoric acid + OptibondFL, group 5 (control): Clearfil SE Bond. All cavities were restored using Point 4 compositeresin. All samples were stored in distilled water at 37°c for 24 h, then were thermocycled for500 cycles and immersed in 50% silver nitrate solution for 24 h. The teeth were sectionedbucco-lingually to evaluate the dye penetration. Kruskal-Wallis & Mann-Whitney testswere used for statistical analysis. Results: In occlusal margins, the least microleakage showed in groups 2, 4 and 5. Themaximum microleakage was observed in group 3 (P=0.009). In gingival margins, the leastmicroleakage was recorded in group2, while the most microleakage was found in group5 (P=0.001). Differences between 5 study groups were statistically significant (P<0.05).The microleakage scores were higher at the gingival margins. Conclusion: The use of the Er:YAG laser for conditioning with different dentin adhesivesystems influenced the marginal sealing of composite resin

  5. Flame Atomic Absorption Spectrometric Determination of Trace Metal Ions in Environmental and Biological Samples After Preconcentration on a Newly Developed Amberlite XAD-16 Chelating Resin Containing p-Aminobenzene Sulfonic Acid.

    PubMed

    Islam, Aminul; Ahmad, Akil; Laskar, Mohammad Asaduddin

    2015-01-01

    Amberlite® XAD-16 was functionalized with p-aminobenzene sulfonic acid via an azo spacer in order to prepare a new chelating resin, which was then characterized by water regain value, hydrogen ion capacity, elemental analyses, and IR spectral and thermal studies. The maximum uptake of Cu(II), Ni(II), Zn(II), Co(II), Cr(III), Fe(III), and Pb(II) ions was observed in the pH range 4.0-6.0 with the corresponding half-loading times of 6.5, 7.0, 8.0, 9.0, 11.0, 8.5, and 16.5 min. The sorption data followed Langmuir isotherms and a pseudo-second-order model. Thermodynamic quantities, ΔH and ΔS, based on the variation of the distribution coefficient with temperature were also evaluated. High preconcentration factors of 60-100 up to a low preconcentration limit of 4.0-6.6 μg/L have been achieved for the metal ions. The validity of the method was checked by analyzing standard reference materials and recoveries of trace metals after spiking. The analytical applications of the method were explored by analyzing natural water, mango pulp, mint leaves, and fish. PMID:25857893

  6. Nontoxic Resins Advance Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 2008 NASA Commercial Invention of the Year, PETI-330, is a polyimide matrix resin that performs well at high temperatures and is easily processed into composites in a simple, short curing cycle. Invented by scientists at Langley Research Center, PETI-330 is now licensed to Ube Industries, based in Japan with its American headquarters in New York. In addition to being durable and lightweight, the resin is also nontoxic, which makes it safe for workers to handle. PETI-330 was created specifically for heat-resistant composites formed with resin transfer molding and resin infusion, which formerly could only be used with low temperature resin systems.

  7. Method for digesting spent ion exchange resins and recovering actinides therefrom using microwave radiation

    DOEpatents

    Maxwell, III, Sherrod L.; Nichols, Sheldon T.

    1999-01-01

    The present invention relates to methods for digesting diphosphonic acid substituted cation exchange resins that have become loaded with actinides, rare earth metals, or heavy metals, in a way that allows for downstream chromatographic analysis of the adsorbed species without damage to or inadequate elution from the downstream chromatographic resins. The methods of the present invention involve contacting the loaded diphosphonic acid resin with concentrated oxidizing acid in a closed vessel, and irradiating this mixture with microwave radiation. This efficiently increases the temperature of the mixture to a level suitable for digestion of the resin without the use of dehydrating acids that can damage downstream analytical resins. In order to ensure more complete digestion, the irradiated mixture can be mixed with hydrogen peroxide or other oxidant, and reirradiated with microwave radiation.

  8. Resin-salve from Norway spruce--a potential method to treat infected chronic skin ulcers?

    PubMed

    Sipponen, Arno; Rautio, Merja; Jokinen, Janne J; Laakso, Tapio; Saranpää, Pekka; Lohi, Jouni

    2007-04-01

    The home-made resin salve from Norway spruce is traditionally and widely used in folk medicine to heal various skin infections and wounds in Northern Finland. We have performed laboratory studies to solve the mechanism of resin salve. The resin salve exhibited a bacteriostatic effect against all tested Gram-positive bacteria important in human medicine including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE), but was not effective against Gram-negative bacteria. An exception among the Gram-negative bacteria was Proteus vulgaris against which resin salve was effective. High amounts of lipophilic extractives, like resin acids were dissolved into water from the resin salve. Also, a large proportion of lignans and cinnamic acid were found in the water extract. PMID:19356034

  9. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    SciTech Connect

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  10. Management of Spent Organic Ion-Exchange Resins by Photochemical Oxidation

    SciTech Connect

    Srinivas, C.; Sugilal, S.; Wattal, P. K.

    2003-02-26

    Management of spent ion-exchange resin waste arising from nuclear reactor operations by traditional practice of encapsulation in cement is associated with problems such as swelling and disintegration. Complete oxidation (mineralization) is an attractive alternative option. This paper reports the development of photochemical mineralization process for organic ion-exchange resins of poly (styrene-divinyl benzene) type with sulfonic acid and quaternary ammonium functional groups. It is a two-step process consisting of dissolution (conversion of solid resin into water-soluble reaction products) and photo-Fenton mineralization of the dissolved resin. Cation and anion resin dissolution was effected by reaction of the resin with H2O2 at 50-60 C in the presence of ferrous/copper sulphate catalyst. Direct dissolution of mixed resin was not efficient. However, the cation resin portion in the mixed resin could be selectively dissolved without affecting the anion portion. The solid anion resin after separation from the cation resin solution could be dissolved. About 0.5 liters of 50% H2O2 was required for dissolution of one kg of wet resin. The reaction time was 4-5 hours. Dissolution experiments were conducted on up to 8 liters of wet resin. The second step, viz., photo-Fenton mineralization of the dissolved resin was effected at ambient temperature(25-35 C). Kinetic results of laboratory scale experiments in immersion type photo-reactor and pilot scale experiments in tubular flow photo-reactor were presented. These results clearly demonstrated the photo-Fenton mineralization of dissolved resin at ambient temperature with stoichiometric quantity of H2O2 as against 70-200% excess H2O2 requirement in chemical mineralization experiments under Fenton oxidation conditions at 90-95 C. Based on these studies, a treatment scheme was developed and presented in this paper.

  11. Decomposition of Rare Earth Loaded Resin Particles

    SciTech Connect

    Voit, Stewart L; Rawn, Claudia J

    2010-09-01

    resin is made of sulfonic acid functional groups attached to a styrene divinylbenzene copolymer lattice (long chained hydrocarbon). The metal cation binds to the sulfur group, then during thermal decomposition in air the hydrocarbons will form gaseous species leaving behind a spherical metal-oxide particle. Process development for resin applications with radioactive materials is typically performed using surrogates. For americium and curium, a trivalent metal like neodymium can be used. Thermal decomposition of Nd-loaded resin in air has been studied by Hale. Process conditions were established for resin decomposition and the formation of Nd{sub 2}O{sub 3} particles. The intermediate product compounds were described using x-ray diffraction (XRD) and wet chemistry. Leskela and Niinisto studied the decomposition of rare earth (RE) elements and found results consistent with Hale. Picart et al. demonstrated the viability of using a resin loading process for the fabrication of uranium-actinide mixed oxide microspheres for transmutation of minor actinides in a fast reactor. For effective transmutation of actinides, it will be desirable to extend the in-reactor burnup and minimize the number of recycles of used actinide materials. Longer burn times increases the chance of Fuel Clad Chemical or Mechanical Interaction (FCCI, FCMI). Sulfur is suspected of contributing to Irradiation Assisted Stress Corrosion Cracking (IASCC) thus it is necessary to maximize the removal of sulfur during decomposition of the resin. The present effort extends the previous work by quantifying the removal of sulfur during the decomposition process. Neodymium was selected as a surrogate for trivalent actinide metal cations. As described above Nd was dissolved in nitric acid solution then contacted with the AG-50W resin column. After washing the column, the Nd-resin particles are removed and dried. The Nd-resin, seen in Figure 1 prior to decomposition, is ready to be converted to Nd oxide microspheres.

  12. Removal of CdTe in acidic media by magnetic ion-exchange resin: a potential recycling methodology for cadmium telluride photovoltaic waste.

    PubMed

    Zhang, Teng; Dong, Zebin; Qu, Fei; Ding, Fazhu; Peng, Xingyu; Wang, Hongyan; Gu, Hongwei

    2014-08-30

    Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste. PMID:25128764

  13. Quantitative analysis of PMR-15 polyimide resin by HPLC

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Lauver, Richard W.

    1987-01-01

    The concentration of individual components and of total solids of 50 wt pct PMR-15 resin solutions was determined using reverse-phase HPLC to within + or - 8 percent accuracy. Acid impurities, the major source of impurities in 3,3', 4,4'-benzophenonetetracarboxylic acid (BTDE), were eliminated by recrystallizing the BTDE prior to esterification. Triester formation was not a problem because of the high rate of esterification of the anhydride relative to that of the carboxylic acid. Aging of PMR-15 resin solutions resulted in gradual formation of the mononadimide and bisnadimide of 4,4'-methylenedianiline, with the BTDE concentration remaining constant. Similar chemical reactions occurred at a reduced rate in dried films of PMR-15 resin.

  14. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  15. Bismaleimide Copolymer Matrix Resins

    NASA Technical Reports Server (NTRS)

    Parker, John A.; Heimbuch, Alvin H.; Hsu, Ming-Ta S.; Chen, Timothy S.

    1987-01-01

    Graphite composites, prepared from 1:1 copolymer of two new bismaleimides based on N,N'-m-phenylene-bis(m-amino-benzamide) structure have mechanical properties superior to those prepared from other bismaleimide-type resins. New heat-resistant composites replace metal in some structural applications. Monomers used to form copolymers with superior mechanical properties prepared by reaction of MMAB with maleic or citraconic anhydride.

  16. Morphological characterization of furfuraldehyde resins adsorbents

    SciTech Connect

    Sanchez, R.; Monteiro, S.N.; D`Almeida, J.R.

    1996-12-31

    Sugar cane is one of the most traditional plantation cultivated crops in large areas in Brazil. The State University of the North of Rio de Janeiro, UENF, is currently engaged in a program aimed to exploit the potentialities of sugar cane industry as a self sustained non-polluting enterprise. One of the projects being carried out at the UENF is the transformation of sugar cane bagasse in precursor materials for the industry of furan derivatives such as the furfuraldehyde resins obtained by acid catalysis. The possibility of employing acid catalyzed furfuraldehyde resins as selective adsorbents has arisen during a comprehensive study of physical-chemical adsorption properties of these materials. The morphology of these resins depend on the synthesis method. Scanning Electron Microscopic studies of these materials which were synthesized, in bulk (FH-M) and solution (FH-D), showed differences in surface density and particle size. Using mercury porosimeter techniques and BET adsorption methods, it was found different pore size distributions and a decrement in surface area when solvent was employed in the synthesis process. By thermogravimetric analysis it was found similar weight losses (6%) of water adsorption and a small differences in thermal stabilities.

  17. System for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  18. A mass transfer model for the fixed-bed adsorption of ferulic acid onto a polymeric resin: axial dispersion and intraparticle diffusion.

    PubMed

    Davila-Guzman, Nancy E; Cerino-Córdova, Felipe J; Soto-Regalado, Eduardo; Loredo-Cancino, Margarita; Loredo-Medrano, José A; García-Reyes, Refugio B

    2016-08-01

    In this study, amberlite XAD-16 (XAD-16) bed column system was used to remove ferulic acid (FA) from aqueous solutions. Laboratory-scale column experiments were conducted in downflow fixed bed at initial FA concentration of 1 g/L, initial pH 3, and 25°C. The performance of the adsorbent bed under different flow rates (1.3-7.7 mL/min) was studied. The bed utilization efficiency was in the range of 64.64-72.21% at the studied flow rates. A mass transfer model considering both axial dispersion and intraparticle diffusion was developed to predict the breakthrough curves of FA adsorption on XAD-16. This model predicted the experimental data better than Bohart-Adams model and Thomas model, based on the low deviation between predicted and experimental data. The axial dispersion coefficient value varied from 6.45 × 10(-6) to 1.10 × 10(-6) m(2)/s at flow rate from 1.3 to 7.7 mL/min, whereas the intraparticle diffusion coefficient was 1.04 × 10(-10) m(2)/s, being this last resistance the rate-limiting step. In conclusion, axial dispersion and intraparticle diffusion phenomena play the major role in predicting the adsorption of FA onto XAD-16 in fixed-bed columns. PMID:26789835

  19. On-resin synthesis of an acylated and fluorescence-labeled cyclic integrin ligand for modification of poly(lactic-co-glycolic acid).

    PubMed

    Hassert, Rayk; Hoffmeister, Peter-Georg; Pagel, Mareen; Hacker, Michael; Schulz-Siegmund, Michaela; Beck-Sickinger, Annette G

    2012-11-01

    Cyclic Arg-Gly-Asp (RGD) peptides show remarkable affinity and specificity to integrin receptors and mediate important physiological effects in tumor angiogenesis. Additionally, they are one of the keyplayers in improving the biocompatibility of biomaterials. The fully biodegradable polymer poly(lactic-co-glycolic acid) (PLGA) is frequently used for biomedical implants and can be applied as nanoparticles for drug delivery. The aim of this work was the generation of a lipidated c[RGDfK] peptide including a second functionality for coating of hydrophobic PLGA. Therefore, we established a general and straightforward strategy for the introduction of two different modifications into the same c[RGDfK] peptide. This allowed the generation of a palmitoylated integrin-binding lipopeptide that shows high affinity to PLGA. Additionally, we coupled 5(6)-carboxyfluorescein to the second site for modification to enable sensitive quantification of the immobilized lipopeptide on PLGA. In conclusion, we present a synthesis protocol that enables the preparation of c[RGDfK] lipopeptides with a strong affinity to PLGA and an additional site for modifications. This will provide the opportunity to introduce a variety of effector molecules site-specifically to the c[RGDfK] lipopeptide, which will enable the introduction of multifunctionality into c[RGDfK]-coated PLGA devices or nanoparticles. PMID:23161641

  20. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  1. A new polyimide laminatine resin

    NASA Technical Reports Server (NTRS)

    Barrick, J. D. W.; Jewell, R. A.; Stclair, T. L.

    1977-01-01

    Addition polyimide for composite materials is based on liquid monomers and has significant advantages over most existing high-temperature resins. Essentially solventless prepreg has improved drape, tack.

  2. Environment and Genotype Affect Sweetpotato Storage Root Periderm Resin Glycoside Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resin glycosides are complex compounds composed primarily of fatty acids and sugars that contribute to allelopathic potential and pest resistance in sweetpotato. Total periderm resin glycoside (PRG) contents of 10 sweetpotato (Ipomoea batatas L.) clones grown in three different field trials was det...

  3. Uranium removal from contaminated groundwater by synthetic resins.

    PubMed

    Phillips, D H; Gu, B; Watson, D B; Parmele, C S

    2008-01-01

    Synthetic resins are shown to be effective in removing uranium from contaminated groundwater. Batch and field column tests showed that strong-base anion-exchange resins were more effective in removing uranium from both near-neutral-pH (6.5)- and high-pH (8)-low-nitrate-containing groundwaters, than metal-chelating resins, which removed more uranium from acidic-pH (5)-high-nitrate-containing groundwater from the Oak Ridge Reservation (ORR) Y-12 S-3 Ponds area in Tennessee, USA. Dowex 1-X8 and Purolite A-520E anion-exchange resins removed more uranium from high-pH (8)-low-nitrate-containing synthetic groundwater in batch tests than metal-chelating resins. The Dowex 21K anion-exchange resin achieved a cumulative loading capacity of 49.8 mg g(-1) before breakthrough in a field column test using near-neutral-pH (6.5)-low-nitrate-containing groundwater. However, in an acidic-pH (5)-high-nitrate-containing groundwater, metal-chelating resins Diphonix and Chelex-100 removed more uranium than anion-exchange resins. In 15 m L of acidic-pH (5)-high-nitrate-containing groundwater spiked with 20 mg L(-1) uranium, the uranium concentrations ranged from 0.95 mg L(-1) at 1-h equilibrium to 0.08 mg L(-1) at 24-h equilibrium for Diphonix and 0.17 mg L(-1) at 1-h equilibrium to 0.03 mg L(-1) at 24-h equilibrium for Chelex-100. Chelex-100 removed more uranium in the first 10 min in the 100mL of acidic-(pH 5)-high-nitrate-containing groundwater ( approximately 5 mg L(-1) uranium); however, after 10 min, Diphonix equaled or out-performed Chelex-100. This study presents an improved understanding of the selectivity and sorption kenetics of a range of ion-exchange resins that remove uranium from both low- and high-nitrate-containing groundwaters with varying pHs. PMID:17697694

  4. Uranium Removal from Contaminated Groundwater by Synthetic Resins

    SciTech Connect

    Phillips, Debra H.; Gu, Baohua; Watson, David B; Parmele, C. S.

    2008-01-01

    Synthetic resins are shown to be effective in removing uranium from contaminated groundwater. Batch and field column tests showed that strong-base anion-exchange resins were more effective in removing uranium from both near-neutral-pH (6.5)- and high-pH (8)-low-nitrate-containing ground waters, than metal-chelating resins, which removed more uranium from acidic-pH (5)-high-nitrate-containing groundwater from the Oak Ridge Reservation (ORR) Y-12 S-3 Ponds area in Tennessee, USA. Dowex 1-X8 and Purolite A-520E anion-exchange resins removed more uranium from high-pH (8)-low-nitrate-containing synthetic groundwater in batch tests than metal-chelating resins. The Dowex{trademark} 21K anion-exchange resin achieved a cumulative loading capacity of 49.8 mg g{sup -1} before breakthrough in a field column test using near-neutral-pH (6.5)-low-nitrate-containing groundwater. However, in an acidic-pH (5)-high-nitrate-containing groundwater, metal-chelating resins Diphonix and Chelex-100 removed more uranium than anion-exchange resins. In 15 mL of acidic-pH (5)-high-nitrate-containing groundwater spiked with 20 mg L{sup -1} uranium, the uranium concentrations ranged from 0.95 mg L{sup -1} at 1-h equilibrium to 0.08 mg L{sup -1} at 24-h equilibrium for Diphonix and 0.17 mg L{sup -1} at 1-h equilibrium to 0.03 mg L{sup -1} at 24-h equilibrium for Chelex-100. Chelex-100 removed more uranium in the first 10 min in the 100 mL of acidic-(pH 5)-high-nitrate-containing groundwater (5 mg L{sup -1} uranium); however, after 10 min, Diphonix equaled or out-performed Chelex-100. This study presents an improved understanding of the selectivity and sorption kinetics of a range of ion-exchange resins that remove uranium from both low- and high-nitrate-containing groundwaters with varying pHs.

  5. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.; Pater, R. H.

    1981-01-01

    High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F.

  6. Methyl Jasmonate Induces Traumatic Resin Ducts, Terpenoid Resin Biosynthesis, and Terpenoid Accumulation in Developing Xylem of Norway Spruce Stems1

    PubMed Central

    Martin, Diane; Tholl, Dorothea; Gershenzon, Jonathan; Bohlmann, Jörg

    2002-01-01

    Norway spruce (Picea abies L. Karst) produces an oleoresin characterized by a diverse array of terpenoids, monoterpenoids, sesquiterpenoids, and diterpene resin acids that can protect conifers against potential herbivores and pathogens. Oleoresin accumulates constitutively in resin ducts in the cortex and phloem (bark) of Norway spruce stems. De novo formation of traumatic resin ducts (TDs) is observed in the developing secondary xylem (wood) after insect attack, fungal elicitation, and mechanical wounding. Here, we characterize the methyl jasmonate-induced formation of TDs in Norway spruce by microscopy, chemical analyses of resin composition, and assays of terpenoid biosynthetic enzymes. The response involves tissue-specific differentiation of TDs, terpenoid accumulation, and induction of enzyme activities of both prenyltransferases and terpene synthases in the developing xylem, a tissue that constitutively lacks axial resin ducts in spruce. The induction of a complex defense response in Norway spruce by methyl jasmonate application provides new avenues to evaluate the role of resin defenses for protection of conifers against destructive pests such as white pine weevils (Pissodes strobi), bark beetles (Coleoptera, Scolytidae), and insect-associated tree pathogens. PMID:12114556

  7. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1984-01-01

    The results of a program designed to develop tough imide modified epoxy resins cured by bisimide amine (BIA) hardeners are described. State-of-the-art epoxides MY720 and DER383 were used, and four bismide amines were evaluated. These were the BIA's derived from the 6F anhydride (4,4'-(hexafluoroisopropylidene) bis(phthalic anhydride) and the diamines 3,3'-diaminodiphynyl sulfone, 4,4'-oxygianiline, 4,4'-methylene dianiline, and 1,12-dodecane diamine. A key intermediate, designated 6F anhydride, is required for the synthesis of the bisimide amines. Reaction parameters to synthesize a precursor to the 6F anhydride (6FHC) in high yields were investigated. The catalyst trifluoromethane sulfonic acid was studied. Although small scale runs yielded the 6FHC in 50 percent yield, efforts to ranslate these results to a larger scale synthesis gave the 6FHC in only 9 percent yield. Results show that the concept of using bisimide amine as curing agents to improve the toughness properties of epoxies is valid.

  8. An Engineering Evaluation of Spherical Resorcinol Formaldehyde Resin

    SciTech Connect

    Birdwell Jr, Joseph F; Lee, Denise L; Taylor, Paul Allen; Collins, Robert T; Hunt, Rodney Dale

    2010-09-01

    , quantification of cesium adsorption performance as a function of operating temperature and pH, and evaluation of sodium uptake (titration) as function of pH and counteranion concentration. The results of these efforts are presented in this report. Hydraulic performance of the resin and the use of eluant alternatives to nitric acid have also been evaluated and have been reported elsewhere (Taylor 2009, Taylor and Johnson 2009).

  9. Detoxification of lignocellulose hydrolysates with ion-exchange resins.

    PubMed

    Nilvebrant, N O; Reimann, A; Larsson, S; Jönsson, L J

    2001-01-01

    Lignocellulose hydrolysates contain fermentation inhibitors causing decreased ethanol production. The inhibitors include phenolic compounds, furan aldehydes, and aliphatic acids. One of the most efficient methods for removing inhibiting compounds prior to fermentation is treatment of the hydrolysate with ion-exchange resins. The performance and detoxification mechanism of three different resins were examined: an anion exchanger, a cation exchanger, and a resin without charged groups (XAD-8). A dilute acid hydrolysate of spruce was treated with the resins at pH 5.5 and 10.0 prior to ethanolic fermentation with Saccharomyces cerevisiae. In addition to the experiments with hydrolysate, the effect of the resins on selected model compounds, three phenolics (vanillin, guaiacol, and coniferyl aldehyde) and two furan aldehydes (furfural and hydroxymethyl furfural), was determined. The cation exchanger increased ethanol production, but to a lesser extent than XAD-8, which in turn was less effective than the anion exchanger. Treatment at pH 10.0 was more effective than at pH 5.5. At pH 10.0, the anion exchanger efficiently removed both anionic and uncharged inhibitors, the latter by hydrophobic interactions. The importance of hydrophobic interactions was further indicated by a substantial decrease in the concentration of model compounds, such as guaiacol and furfural, after treatment with XAD-8. PMID:11963864

  10. Furfural resin-based bio-nanocomposites reinforced by reactive nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Wang, C.; Sun, S.; Zhao, G.; He, B.; Xiao, H.

    2009-07-01

    The work presented herein has been focused on reinforcing the furfural resins (FA) by reactive-modified nanocrystalline cellulose (NCC) in an attempt to create a bio-nanocomposite completely based on natural resources. FA prepolymers were synthesized with an acid catalyst, and NCC was rendered reactive via the grafting of maleic anhydride (MAH). The resulting NCC and nanocomposites were characterized using TEM, SEM and FT-IR. It was found that NCC appeared to be spherical in shape with diameters under 100 nm. FT-IR confirmed that there were hydrogen and esterification bonding between MAH and NCC or FA prepolymer. After solidified with paratoluenesulfonic acid, NCC-reinforced FA resin composites showed granular cross-section while FA resin with layered structures. Mechanical property tests indicated that NCC-reinforced FA resin composites possessed the improved tensile and flexural strengths, in comparison with FA resin.

  11. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  12. 21 CFR 177.2260 - Filters, resin-bonded.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of this section. (a) Resin-bonded filters are prepared from natural or synthetic fibers to which have... contain at least 70 weight percent of polymer units derived from ethyl acrylate, no more than 2 weight percent of total polymer units derived from acrylic acid, no more than 10 weight percent of total...

  13. 21 CFR 177.2260 - Filters, resin-bonded.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of this section. (a) Resin-bonded filters are prepared from natural or synthetic fibers to which have... contain at least 70 weight percent of polymer units derived from ethyl acrylate, no more than 2 weight percent of total polymer units derived from acrylic acid, no more than 10 weight percent of total...

  14. 21 CFR 177.2260 - Filters, resin-bonded.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of this section. (a) Resin-bonded filters are prepared from natural or synthetic fibers to which have... contain at least 70 weight percent of polymer units derived from ethyl acrylate, no more than 2 weight percent of total polymer units derived from acrylic acid, no more than 10 weight percent of total...

  15. 21 CFR 175.300 - Resinous and polymeric coatings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...)(v)(a) of this section, for use only as reactants in oil-based or fatty acid-based alkyd resins. (c... chemically treated with one or more of the following substances: Allyl ether of mono-, di-, or... more of the following substances: Allyl ether of mono-, di-, or trimethylol phenol....

  16. 21 CFR 175.300 - Resinous and polymeric coatings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Rosins listed in paragraph (b)(3)(v)(a) of this section, for use only as reactants in oil-based or fatty acid-based alkyd resins. (c) Polyhydric alcohols: Butylene glycol. Diethylene glycol. 2,2-Dimethyl-1,3... chemically treated with one or more of the following substances: Allyl ether of mono-, di-,...

  17. 21 CFR 175.300 - Resinous and polymeric coatings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Rosins listed in paragraph (b)(3)(v)(a) of this section, for use only as reactants in oil-based or fatty acid-based alkyd resins. (c) Polyhydric alcohols: Butylene glycol. Diethylene glycol. 2,2-Dimethyl-1,3... chemically treated with one or more of the following substances: Allyl ether of mono-, di-,...

  18. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments

    PubMed Central

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. Results: BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Conclusions: Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention. PMID:25713491

  19. Four new triterpenoids isolated from the resin of Garcinia hanburyi.

    PubMed

    Wang, Hong-Min; Liu, Qun-Fang; Zhao, Yi-Wu; Liu, Shuang-Zhu; Chen, Zhen-Hua; Zhang, Ru-Jun; Wang, Zhen-Zhong; Xiao, Wei; Zhao, Wei-Min

    2014-01-01

    Four new triterpenoids, 2-O-acetyl-3-O-(4'-O-acetyl)-α-l-arabinopyranosylmaslinic acid (1), 2-O-acetyl-3-O-(3'-O-acetyl)-α-l-arabinopyranosylmaslinic acid (2), 2-O-acetyl-3-O-(3',4'-O-diacetyl)-α-l-arabinopyranosylmaslinic acid (3), and 3-O-(3'-O-acetyl)-α-l-arabinopyranosyloleanolic acid (4), together with six known triterpenoids, 3-O-(4'-O-acetyl)-α-l-arabinopyranosyloleanolic acid (5), maslinic acid (6), 2-O-acetylmaslinic acid (7), 3-O-acetylmaslinic acid (8), betulinic acid (9), and 2α-hydroxy-3β-O-acetylbetulinic acid (10), were isolated from the EtOAc extract of Garcinia hanburyi resin. Their structures were elucidated by analysis of the spectroscopic data and chemical methods. PMID:24392659

  20. Eichrom`s Diphonix{reg_sign} resin: Production-scale applications in radioactive waste treatment and iron control in copper electrowinning

    SciTech Connect

    Gula, M.J.; Chang, F.; Dreisinger, D.B.; Horwitz, E.P.

    1997-12-31

    Eichrom`s Diphonix{reg_sign} resin has been phased through synthetic scale-up, pilot testing, and production installation in radioactive waste treatment and hydrometallurgical applications. The geminal diphosphonic acid groups of Diphonix resin allow selective retention by cation-exchange and/or chelation. The resin is effective at low pH where sulfonic and carboxylic acid resins are ineffective. Diphonix resin has been used in nuclear facilities to reduce actinide concentrations in radioactive waste effluents and to reduce waste volumes. The high retention of iron(III) by Diphonix resin in acidic sulfate media has led to an installation capable of removing one ton of iron per day from a copper electrowinning stream. This iron control process diminishes cobalt losses in the electrowinning circuit and significantly reduces operating costs. The authors will discuss the development of these Diphonix resin applications.

  1. Microshear bond strength of composite resins to enamel and porcelain substrates utilizing unfilled versus filled resins

    PubMed Central

    Najafi-Abrandabadi, Ahmad; Najafi-Abrandabadi, Siamak; Ghasemi, Amir; Kotick, Philip G.

    2014-01-01

    Background: Failures such as marginal discoloration and composite chipping are still the problems of tooth-colored restorations on the substrate of enamel and porcelain, which some of these problems are consequently as a result of failures in the bonding layer. Using filled resin has been recently introduced to increase the bond strength of this layer. The aim of this study was to compare the microshear bond strength (μ-SBS) of composite resins to enamel incubated in periods of 24 h and 9 months and porcelain with unfilled resin and flowable composites (filled resin). Materials and Methods: In this in vitro study, two groups of 75 enamel samples with different storage times (24 h and 9 months) and a group of 75 porcelain samples were used. They were divided into 5 experimental groups of 15 samples in each. Composite cylinders in tygon tubes were bonded on the surface of acid-etched enamel and pretreated porcelain. Wave, Wave MV, Wave HV, Grandioflow and Margin Bond were used as bonding agents. The μ-SBS was measured at the speed of 1.0 mm/min. The bond strengths were analyzed with one-way analysis of variance (ANOVA) test followed by Tukey test. P < 0.05 was selected as the level of statistical significance in this study. Results: The results showed that for enamel (24 h), the μ-SBS of the Wave MV and Wave HV groups were significantly lower than the Margin Bond group. Tukey test indicated the absence of a significant difference between the μ-SBS of the Wave group and the Margin Bond group. However, the μ-SBS of the Grandioflow group was significantly higher than the one for the Margin Bond as a bonding agent. In enamel (9 months), there was a significant difference between the Grandioflow and Margin Bond groups. Regarding bonding to the porcelain the one-way ANOVA test did not show a significant difference among the groups. Conclusion: This study revealed that flowable composites (filled resins) can be used instead of unfilled resins in bonding composite

  2. Chromatography resin support

    DOEpatents

    Dobos, James G.

    2002-01-01

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  3. Indirect resin composites

    PubMed Central

    Nandini, Suresh

    2010-01-01

    Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search which we limited to peer-reviewed articles in English that were published between 1990 and 2010 in dental journals. The key words used were ‘indirect resin composites,’ composite inlays,’ and ‘fiber-reinforced composites.’ PMID:21217945

  4. Reactive Additives for Phenylethynyl-Containing Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Smith, Joseph G., Jr.; Hergenrother, Paul M.; Rommel, Monica L.

    2005-01-01

    Phenylethynyl-containing reactive additive (PERA) compounds and mixtures have been found to be useful for improving the processability of oligomers, polymers, co-oligomers, and copolymers that contain phenylethynyl groups. The additives can be incorporated in different forms: A solution of an amide acid or an imide of a PERA can be added to a solution of phenylethynyl-containing oligomer, polymer, co-oligomer, or copolymer; or An imide powder of a PERA can be mixed with a dry powder of a phenylethynyl-containing oligomer, polymer, co-oligomer, or copolymer. The effect of a given PERA on the processability and other properties of the resin system depends on whether the PERA is used in the amide acid or an imide form. With proper formulation, the PERA reduces the melt viscosity of the resin and thereby reduces the processing pressures needed to form the adhesive bonds, consolidate filled or unfilled moldings, or fabricate fiber-reinforced composite laminates. During thermal cure, a PERA reacts with itself as well as with the phenylethynyl-containing host resin and thereby becomes chemically incorporated into the resin system. The effects of the PERA on mechanical properties, relative to those of the host resin, depend on the amount of PERA used. Typically, the incorporation of the PERA results in (1) increases in the glass-transition temperature (Tg), modulus of elasticity, and parameters that characterize behavior under compression, and (2) greater retention of the aforementioned mechanical properties at elevated temperatures without (3) significant reduction of toughness or damage tolerance. Of the formulations tested thus far, the ones found to yield the best overall results were those for which the host resin was the amide acid form of a phenylethynyl-terminated imide (PETI) co-oligomer having a molecular weight of 5,000 g/mole [hence, designated PETI-5] and a PERA denoted as PERA-1. PETI-5 was made from 3,3',4'4'-biphenyltetracarboxylic dianhydride, 3

  5. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  6. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  7. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  8. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  9. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... Terpene resins. The terpene resins identified in paragraph (a) of this section may be safely used as components of polypropylene film intended for use in contact with food, and the terpene resins identified...

  10. Resin polymerization problems--are they caused by resin curing lights, resin formulations, or both?

    PubMed

    Christensen, R P; Palmer, T M; Ploeger, B J; Yost, M P

    1999-01-01

    Negative effects of rapid, high-intensity resin curing have been predicted for both argon lasers and plasma-arc curing lights. To address these questions, six different resin restorative materials were cured with 14 different resin curing lights representing differences in intensities ranging from 400 mW/cm2 to 1,900 mW/cm2; delivery modes using constant, ramped, and stepped methods; cure times ranging from 1 second to 40 seconds; and spot sizes of 6.7 mm to 10.9 mm. Two lasers, five plasma-arc lights, and seven halogen lights were used. Shrinkage, modulus, heat generation, strain, and physical changes on the teeth and resins during strain testing were documented. Results showed effects associated with lights were not statistically significant, but resin formulation was highly significant. Microfill resins had the least shrinkage and the lowest modulus. An autocure resin had shrinkage and modulus as high as or higher than the light-cured hybrid resins. Lasers and plasma-arc lights produced the highest heat increases on the surface (up to 21 degrees C) and within the resin restorations (up to 14 degrees C), and the halogen lights produced the most heat within the pulp chamber (up to 2 degrees C). Strain within the tooth was least with Heliomolar and greatest with Z100 Restorative and BISFIL II autocure resin. Clinical effects of strain relief were evident as white lines at the tooth-resin interface and cracks in enamel adjacent to the margins. This work implicates resin formulation, rather than light type or curing mode, as the important factor in polymerization problems. Lower light intensity and use of ramped and stepped curing modes did not provide significant lowering of shrinkage, modulus, or strain, and did not prevent enamel cracking adjacent to margins and formation of "white line" defects at the margins. Until materials with lower shrinkage and modulus are available, use of low-viscosity surface sealants as a final step in resin placement is suggested to