Sample records for acid sa treatment

  1. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by Salicylic Acid (SA) and Jasmonic Acid (JA).

    PubMed

    Gao, Zhengquan; Li, Yan; Wu, Guanxun; Li, Guoqiang; Sun, Haifeng; Deng, Suzhen; Shen, Yicheng; Chen, Guoqiang; Zhang, Ruihao; Meng, Chunxiao; Zhang, Xiaowen

    2015-01-01

    Haematococcus pluvialis is an astaxanthin-rich microalga that can increase its astaxanthin production by salicylic acid (SA) or jasmonic acid (JA) induction. The genetic transcriptome details of astaxanthin biosynthesis were analyzed by exposing the algal cells to 25 mg/L of SA and JA for 1, 6 and 24 hours, plus to the control (no stress). Based on the RNA-seq analysis, 56,077 unigenes (51.7%) were identified with functions in response to the hormone stress. The top five identified subcategories were cell, cellular process, intracellular, catalytic activity and cytoplasm, which possessed 5600 (~9.99%), 5302 (~9.45%), 5242 (~9.35%), 4407 (~7.86%) and 4195 (~7.48%) unigenes, respectively. Furthermore, 59 unigenes were identified and assigned to 26 putative transcription factors (TFs), including 12 plant-specific TFs. They were likely associated with astaxanthin biosynthesis in Haematococcus upon SA and JA stress. In comparison, the up-regulation of differential expressed genes occurred much earlier, with higher transcript levels in the JA treatment (about 6 h later) than in the SA treatment (beyond 24 h). These results provide valuable information for directing metabolic engineering efforts to improve astaxanthin biosynthesis in H. pluvialis.

  2. Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation.

    PubMed

    Fernández-Crespo, Emma; Navarro, Jose A; Serra-Soriano, Marta; Finiti, Iván; García-Agustín, Pilar; Pallás, Vicente; González-Bosch, Carmen

    2017-01-01

    Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to Melon necrotic spot virus (MNSV) and demonstrated the efficacy of hexanoic acid (Hx) priming, which prevents the virus from systemically spreading. We analysed callose deposition and the hormonal profile and gene expression at the whole plant level. This allowed us to determine hormonal homeostasis in the melon roots, cotyledons, hypocotyls, stems and leaves involved in basal and hexanoic acid-induced resistance (Hx-IR) to MNSV. Our data indicate important roles of salicylic acid (SA), 12-oxo-phytodienoic acid (OPDA), jasmonic-isoleucine, and ferulic acid in both responses to MNSV. The hormonal and metabolites balance, depending on the time and location associated with basal and Hx-IR, demonstrated the reprogramming of plant metabolism in MNSV-inoculated plants. The treatment with both SA and OPDA prior to virus infection significantly reduced MNSV systemic movement by inducing callose deposition. This demonstrates their relevance in Hx-IR against MNSV and a high correlation with callose deposition. Our data also provide valuable evidence to unravel priming mechanisms by natural compounds.

  3. Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation

    PubMed Central

    Fernández-Crespo, Emma; Navarro, Jose A.; Serra-Soriano, Marta; Finiti, Iván; García-Agustín, Pilar; Pallás, Vicente; González-Bosch, Carmen

    2017-01-01

    Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to Melon necrotic spot virus (MNSV) and demonstrated the efficacy of hexanoic acid (Hx) priming, which prevents the virus from systemically spreading. We analysed callose deposition and the hormonal profile and gene expression at the whole plant level. This allowed us to determine hormonal homeostasis in the melon roots, cotyledons, hypocotyls, stems and leaves involved in basal and hexanoic acid-induced resistance (Hx-IR) to MNSV. Our data indicate important roles of salicylic acid (SA), 12-oxo-phytodienoic acid (OPDA), jasmonic-isoleucine, and ferulic acid in both responses to MNSV. The hormonal and metabolites balance, depending on the time and location associated with basal and Hx-IR, demonstrated the reprogramming of plant metabolism in MNSV-inoculated plants. The treatment with both SA and OPDA prior to virus infection significantly reduced MNSV systemic movement by inducing callose deposition. This demonstrates their relevance in Hx-IR against MNSV and a high correlation with callose deposition. Our data also provide valuable evidence to unravel priming mechanisms by natural compounds. PMID:29104580

  4. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry.

    PubMed

    Valero, Daniel; Díaz-Mula, Huertas M; Zapata, Pedro Javier; Castillo, Salvador; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María

    2011-05-25

    Sweet cherry cultivars ('Cristalina' and 'Prime Giant') harvested at commercial ripening stage were treated with salicylic acid (SA), acetylsalicylic acid (ASA) or oxalic acid (OA) at 1 mM and then stored for 20 days under cold temperature. Results showed that all treatments delayed the postharvest ripening process, manifested by lower acidity, color changes and firmness losses, and maintained quality attributes for longer periods than controls. In addition, total phenolics, anthocyanins and antioxidant activity increased in untreated fruit during the first 10 days of storage and then decreased, while in fruits of all treatments, these parameters increased continuously during storage without significant differences among treatments. Thus, postharvest treatments with natural compounds, such as SA, ASA or OA, could be innovative tools to extend the storability of sweet cherry with higher content of bioactive compounds and antioxidant activity as compared with control fruits.

  5. Chlorogenic Acids Biosynthesis in Centella asiatica Cells Is not Stimulated by Salicylic Acid Manipulation.

    PubMed

    Ncube, E N; Steenkamp, P A; Madala, N E; Dubery, I A

    2016-07-01

    Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been reported to induce the production of phenylpropanoids, including cinnamic acid derivatives bound to quinic acid (chlorogenic acids). Centella asiatica is an important medicinal plant with several therapeutic properties owing to its wide spectrum of secondary metabolites. We investigated the effect of SA on C. asiatica cells by monitoring perturbation of chlorogenic acids in particular. Different concentrations of SA were used to treat C. asiatica cells, and extracts from both treated and untreated cells were analysed using an optimised UHPLC-QTOF-MS/MS method. Semi-targeted multivariate data analyses with the aid of principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) revealed a concentration-dependent metabolic response. Surprisingly, a range of chlorogenic acid derivatives were found to be downregulated as a consequence of SA treatment. Moreover, irbic acid (3,5-O-dicaffeoyl-4-O-malonilquinic acid) was found to be a dominant CGA in C. asiatica cells, although the SA treatment also had a negative effect on its concentration. Overall SA treatment was found to be an ineffective elicitor of CGA production in cultured C. asiatica cells.

  6. Cost-effectiveness analysis of 5-fluorouracil 0.5%/salicylic acid 10% in the treatment of actinic keratosis in Spain.

    PubMed

    Nieves, Diana; Puig-Peiró, Ruth; Ferrándiz, Carlos; Plazas, Maria Josep; Brosa, Max

    2015-06-01

    The aim of this study is to conduct a cost-effectiveness analysis of 5-fluorouracil 0.5%/salicylic acid 10% (5-FU/SA) in the treatment of isolated hyperkeratotic actinic keratosis lesions in Spain. An analytical decision-making model was constructed to compare whether 5-FU/SA was a cost-effective option compared with cryotherapy from the perspective of the Spanish National Health System with a time horizon of 6 months. Costs were expressed in 2014 euros. The cost of patients with hyperkeratotic actinic keratosis treated with 5-FU/SA or cryotherapy was €266 and €285, respectively. 5-FU/SA was associated with higher rates of treatment success and, consequently, more quality-adjusted life years, than cryotherapy. Therefore, 5-FU/SA was the dominant treatment, as it was associated with a lower treatment cost and greater effectiveness than cryotherapy. Economically, 5-FU/SA was a dominant option compared with cryotherapy in the treatment of isolated hyperkeratotic actinic keratosis lesions in Spain.

  7. Two Theobroma cacao genotypes with contrasting pathogen tolerance show aberrant transcriptional and ROS responses after salicylic acid treatment

    PubMed Central

    Fister, Andrew S.; O’Neil, Shawn T.; Shi, Zi; Zhang, Yufan; Tyler, Brett M.; Guiltinan, Mark J.; Maximova, Siela N.

    2015-01-01

    Understanding the genetic basis of pathogen susceptibility in various crop plants is crucial to increasing the stability of food, feed, and fuel production. Varietal differences in defence responses provide insights into the mechanisms of resistance and are a key resource for plant breeders. To explore the role of salicylic acid in the regulation of defence in cacao, we demonstrated that SA treatment decreased susceptibility to a pod rot pathogen, Phytophthora tropicalis in two genotypes, Scavina 6 and Imperial College Selection 1, which differ in their resistance to several agriculturally important pathogens. Transient overexpression of TcNPR1, a major transcriptional regulator of the SA-dependent plant immune system, also increased pathogen tolerance in cacao leaves. To explore further the genetic basis of resistance in cacao, we used microarrays to measure gene expression profiles after salicylic acid (SA) treatment in these two cacao genotypes. The two genotypes displayed distinct transcriptional responses to SA. Unexpectedly, the expression profile of the susceptible genotype ICS1 included a larger number of pathogenesis-related genes that were induced by SA at 24h after treatment, whereas genes encoding many chloroplast and mitochondrial proteins implicated in reactive oxygen species production were up-regulated in the resistant genotype, Sca6. Sca6 accumulated significantly more superoxide at 24h after treatment of leaves with SA. These experiments revealed critical insights regarding the molecular differences between cacao varieties, which will allow a better understanding of defence mechanisms to help guide breeding programmes. PMID:26163705

  8. Salicylic acid peeling combined with vitamin C mesotherapy versus salicylic acid peeling alone in the treatment of mixed type melasma: A comparative study.

    PubMed

    Balevi, Ali; Ustuner, Pelin; Özdemir, Mustafa

    2017-10-01

    Melasma is a distressing condition for both dermatologists and patients. We evaluated the effectiveness of salicylic acid (SA) peel and vitamin C mesotherapy in the treatment of melasma. Fifty female patients were divided into two groups. All patients were treated with 30% SA peel every two weeks for two months. In addition, after SA peeling Group A was intradermally administered 10 vitamin C on the melasma lesion at 1-cm intervals. All patients were followed up for 6 months, during which the recurrence rates were evaluated. Digital photographs of the melasma site were taken and patients' Melasma Area and Severity Index (MASI) scores were assessed. After the treatment, the patients were asked to complete the melasma quality of life questionnaire (MelasQoL) to evaluate their satisfaction with the treatment. All the adverse effects were noted. The MelasQoL and MASI scores of patients in both groups significantly decreased after the treatment. Apart from a burning sensation, no adverse event was observed and all patients tolerated the treatment well. SA peel combined with vitamin C mesotherapy is a safe and effective alternative for the treatment of melasma with no significant side effects and minimal downtime.

  9. Biochemical and proteomic analysis of grape berries (Vitis labruscana) during cold storage upon postharvest salicylic acid treatment.

    PubMed

    Cai, Han; Yuan, Xiaozhuan; Pan, Jiaojiao; Li, Huan; Wu, Ziming; Wang, Yun

    2014-10-15

    Salicylic acid (SA) treatment has been widely used to maintain fruit quality during postharvest storage. To elucidate the molecular mechanism related to this treatment, the effect of SA treatment on fruit quality as well as protein expression profiles of grape berries (Vitis labruscana cv. Kyoho) during the subsequent cold storage was evaluated. As expected, SA treatment inhibited postharvest loss and chilling damage by reducing fruit softening and membrane damage and slowing weight loss. A gel-based proteomic approach was designed to screen for differentially expressed proteins in SA-treated and control grape berries. A total of 69 differentially accumulated proteins were successfully identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, which can be functionally classified into eight categories. Among these proteins, antioxidant enzymes including ascorbate peroxidase, oxidoreductase, and glutathione S-transferase were induced, and the abundances of several defense-related proteins, such as heat shock protein (HSP) and temperature-induced lipocalin, were up-regulated by SA treatment. In addition, proteins involved in carbohydrate catabolism and energy production were also induced by SA treatment. Interpretation of the data for differential accumulation of proteins revealed that the effect of SA on reducing postharvest losses and chilling damage of grape berries during cold storage may be due to activated defense responses and carbohydrate metabolism and higher levels of energy status.

  10. Two Theobroma cacao genotypes with contrasting pathogen tolerance show aberrant transcriptional and ROS responses after salicylic acid treatment.

    PubMed

    Fister, Andrew S; O'Neil, Shawn T; Shi, Zi; Zhang, Yufan; Tyler, Brett M; Guiltinan, Mark J; Maximova, Siela N

    2015-10-01

    Understanding the genetic basis of pathogen susceptibility in various crop plants is crucial to increasing the stability of food, feed, and fuel production. Varietal differences in defence responses provide insights into the mechanisms of resistance and are a key resource for plant breeders. To explore the role of salicylic acid in the regulation of defence in cacao, we demonstrated that SA treatment decreased susceptibility to a pod rot pathogen, Phytophthora tropicalis in two genotypes, Scavina 6 and Imperial College Selection 1, which differ in their resistance to several agriculturally important pathogens. Transient overexpression of TcNPR1, a major transcriptional regulator of the SA-dependent plant immune system, also increased pathogen tolerance in cacao leaves. To explore further the genetic basis of resistance in cacao, we used microarrays to measure gene expression profiles after salicylic acid (SA) treatment in these two cacao genotypes. The two genotypes displayed distinct transcriptional responses to SA. Unexpectedly, the expression profile of the susceptible genotype ICS1 included a larger number of pathogenesis-related genes that were induced by SA at 24h after treatment, whereas genes encoding many chloroplast and mitochondrial proteins implicated in reactive oxygen species production were up-regulated in the resistant genotype, Sca6. Sca6 accumulated significantly more superoxide at 24h after treatment of leaves with SA. These experiments revealed critical insights regarding the molecular differences between cacao varieties, which will allow a better understanding of defence mechanisms to help guide breeding programmes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Clinical evidence on the efficacy and safety of an antioxidant optimized 1.5% salicylic acid (SA) cream in the treatment of facial acne: an open, baseline-controlled clinical study.

    PubMed

    Zheng, Yue; Wan, Miaojian; Chen, Haiyan; Ye, Congxiu; Zhao, Yue; Yi, Jinling; Xia, Yue; Lai, Wei

    2013-05-01

    Acne pathogenesis is multifactorial and includes inflammation. Combining active ingredients targeting multiple components of acne pathogenesis may yield optimal outcomes. This study investigates the safety and efficacy of an antioxidant optimized topical salicylic acid (SA) 1.5% cream containing natural skin penetration enhancers in combination with antioxidant activity for treatment of facial acne. A total of 20 patients with facial acne, aged 19-32 years (2 males, 18 females; mean age 26.1 ± 3.2), were enrolled. Patients were treated with topical 1.5% SA cream and instructed to apply the cream as a thin film over the affected area twice daily (in the morning and evening) for 4 weeks. Inflammatory severity, numbers of papules and pustules were evaluated by investigators at day 0 and weekly, and patients ranked their improvement. In all, 95% of patients improved: 20% had complete clearing, 30% had significantly improved, 15% had moderate improvement, 30% had mild improved, and there was no response in 5% of the patients by 4 weeks of treatment. No side effects were observed. This study demonstrates the efficacy and safety of this optimized topical 1.5% SA cream containing natural skin penetration enhancers in combination with antioxidant activity when applied twice daily for the reduction of facial acne; in particular, it is most effective for mild-to-moderate acne. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  12. Bacillus licheniformis SA03 Confers Increased Saline-Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation.

    PubMed

    Zhou, Cheng; Zhu, Lin; Xie, Yue; Li, Feiyue; Xiao, Xin; Ma, Zhongyou; Wang, Jianfei

    2017-01-01

    Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na + ) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline-alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline-alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline-alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na + concentrations under saline-alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline-alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline-alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline-alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na + accumulation.

  13. Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects On Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters.

    PubMed

    Mimouni, Hajer; Wasti, Salma; Manaa, Arafet; Gharbi, Emna; Chalh, Abdellah; Vandoorne, Bertrand; Lutts, Stanley; Ben Ahmed, Hela

    2016-03-01

    Environmental stresses such as salinity directly impact crop growth, and by extension, world food supply and societal prosperity. It is estimated that over 800 million hectares of land throughout the world are salt-affected. In arid and semi-arid regions, salt concentration can be close to that in the seawater. Hence, there are intensive efforts to improve plant tolerance to salinity and other environmental stressors. Salicylic acid (SA) is an important signal molecule for modulating plant responses to stress. In the present study, we examined, on multiple plant growth related endpoints, whether SA applied through the rooting medium could mitigate the adverse effects of salinity on tomato (Solanum lycopersicum) cv. Marmande. The latter is a hitherto understudied tomato plant from the above perspective; it is a classic variety that produces the large ribbed tomatoes in the Mediterranean and consumed worldwide. We found salt stress negatively affected the growth of cv. Marmande tomato plants. However, the SA-treated plants had greater shoot and root dry mass, leaf area compared to untreated plants when exposed to salt stress. Application of SA restores photosynthetic rates and photosynthetic pigment levels under salt (NaCl) exposure. Leaf water, osmotic potential, stomatal conductance transpiration rate, and biochemical parameters were also ameliorated in SA-treated plants under saline stress conditions. Overall, these data illustrate that SA increases cv. Marmande tomato growth by improving photosynthesis, regulation and balance of osmotic potential, induction of compatible osmolyte metabolism, and alleviating membrane damage. We suggest salicylic acid might be considered as a potential growth regulator to improve tomato plant salinity stress resistance, in the current era of global climate change.

  14. Bacillus licheniformis SA03 Confers Increased Saline–Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation

    PubMed Central

    Zhou, Cheng; Zhu, Lin; Xie, Yue; Li, Feiyue; Xiao, Xin; Ma, Zhongyou; Wang, Jianfei

    2017-01-01

    Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na+) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline–alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline–alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline–alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na+ concentrations under saline–alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline–alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline–alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline–alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na+ accumulation. PMID:28706529

  15. Actikerall™ (5-Fluorouracil 0.5% and Salicylic Acid 10%) Topical Solution for Patient-directed Treatment of Actinic Keratoses.

    PubMed

    Nguyen, H P; Rivers, J K

    2016-05-01

    Actinic keratosis (AK), a common cutaneous lesion with the potential to transform into squamous cell carcinoma, has traditionally been treated with ablative and/or surgical procedures. Recently, a topical formulation combining 0.5% 5-fluorouracil with 10% salicylic acid (5-FU-SA) was introduced in Europe under the trade name Actikerall™ for the treatment of grade I/II AKs. In a single randomized phase III trial, 5-FU-SA was shown to be superior to diclofenac 3% gel in hyaluronic acid, as measured by the histological clearance of one defined lesion (72% vs. 59.1%) and by complete clinical clearance (55.4% vs. 32.0%). 5-FU-SA should be applied once daily to a total area of up to 25 cm(2), which may include the lesion(s) and a small area of surrounding skin (rim of healthy skin should not exceed 0.5 cm), for up to 12 weeks. The most common side effects are local inflammation and pruritus at the application site, and no serious adverse effects have been reported to date. Now commercially available in Canada, 5-FU-SA represents a patientapplied therapeutic option for the treatment of both overt and subclinical AKs.

  16. Salicylic acid treatment reduces the rot of postharvest citrus fruit by inducing the accumulation of H2O2, primary metabolites and lipophilic polymethoxylated flavones.

    PubMed

    Zhu, Feng; Chen, Jiajing; Xiao, Xue; Zhang, Mingfei; Yun, Ze; Zeng, Yunliu; Xu, Juan; Cheng, Yunjiang; Deng, Xiuxin

    2016-09-15

    To comprehensively analyze the effects of salicylic acid (SA) on the storability of Satsuma mandarin (Citrus unshiu), fruits were treated with 2mM SA. The disease incidence of control/SA-treated fruit at 50d and 120d after treatment was 23.3%/10% and 67.3%/23.3%, respectively, suggesting that SA treatment can significantly reduce the rot rate of postharvest citrus fruit. Fruit quality assays revealed that the treatment can maintain fruit firmness without affecting the inner quality. Furthermore, the contents of H2O2 and some defense-related metabolites, such as ornithine and threonine, in citrus pericarp, were significantly increased by SA treatment. Moreover, it was lipophilic polymethoxylated flavones, rather than flavanone glycosides, that accumulated in SA-treated fruits and these can directly inhibit pathogen development. These results suggest that the effects of SA on postharvest citrus fruit may be attributed to the accumulation of H2O2 and defense-related metabolites. Copyright © 2016. Published by Elsevier Ltd.

  17. Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway.

    PubMed

    Vivancos, Julien; Labbé, Caroline; Menzies, James G; Bélanger, Richard R

    2015-08-01

    On absorption by plants, silicon (Si) offers protection against many fungal pathogens, including powdery mildews. The mechanisms by which Si exerts its prophylactic role remain enigmatic, although a prevailing hypothesis suggests that Si positively influences priming. Attempts to decipher Si properties have been limited to plants able to absorb Si, which excludes the model plant Arabidopsis because it lacks Si influx transporters. In this work, we were able to engineer Arabidopsis plants with an Si transporter from wheat (TaLsi1) and to exploit mutants (pad4 and sid2) deficient in salicylic acid (SA)-dependent defence responses to study their phenotypic response and changes in defence expression against Golovinomyces cichoracearum (Gc) following Si treatment. Our results showed that TaLsi1 plants contained significantly more Si and were significantly more resistant to Gc infection than control plants when treated with Si, the first such demonstration in a plant transformed with a heterologous Si transporter. The resistant plants accumulated higher levels of SA and expressed higher levels of transcripts encoding defence genes, thus suggesting a role for Si in the process. However, TaLsi1 pad4 and TaLsi1 sid2 plants were also more resistant to Gc than were pad4 and sid2 plants following Si treatment. Analysis of the resistant phenotypes revealed a significantly reduced production of SA and expression of defence genes comparable with susceptible controls. These results indicate that Si contributes to Arabidopsis defence priming following pathogen infection, but highlight that Si will confer protection even when priming is altered. We conclude that Si-mediated protection involves mechanisms other than SA-dependent defence responses. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  18. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways.

    PubMed

    Scalschi, Loredana; Vicedo, Begonya; Camañes, Gemma; Fernandez-Crespo, Emma; Lapeña, Leonor; González-Bosch, Carmen; García-Agustín, Pilar

    2013-05-01

    Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll. © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  19. Transcriptional profile of sweet orange in response to chitosan and salicylic acid.

    PubMed

    Coqueiro, Danila Souza Oliveira; de Souza, Alessandra Alves; Takita, Marco Aurélio; Rodrigues, Carolina Munari; Kishi, Luciano Takeshi; Machado, Marcos Antonio

    2015-04-12

    Resistance inducers have been used in annual crops as an alternative for disease control. Wood perennial fruit trees, such as those of the citrus species, are candidates for treatment with resistance inducers, such as salicylic acid (SA) and chitosan (CHI). However, the involved mechanisms in resistance induced by elicitors in citrus are currently few known. In the present manuscript, we report information regarding the transcriptional changes observed in sweet orange in response to exogenous applications of SA and CHI using RNA-seq technology. More genes were induced by SA treatment than by CHI treatment. In total, 1,425 differentially expressed genes (DEGs) were identified following treatment with SA, including the important genes WRKY50, PR2, and PR9, which are known to participate in the salicylic acid signaling pathway, and genes involved in ethylene/Jasmonic acid biosynthesis (ACS12, AP2 domain-containing transcription factor, and OPR3). In addition, SA treatment promoted the induction of a subset of genes involved in several metabolic processes, such as redox states and secondary metabolism, which are associated with biotic stress. For CHI treatment, there were 640 DEGs, many of them involved in secondary metabolism. For both SA and CHI treatments, the auxin pathway genes were repressed, but SA treatment promoted induction in the ethylene and jasmonate acid pathway genes, in addition to repressing the abscisic acid pathway genes. Chitosan treatment altered some hormone metabolism pathways. The DEGs were validated by quantitative Real-Time PCR (qRT-PCR), and the results were consistent with the RNA-seq data, with a high correlation between the two analyses. We expanded the available information regarding induced defense by elicitors in a species of Citrus that is susceptible to various diseases and identified the molecular mechanisms by which this defense might be mediated.

  20. Clinical comparison of salicylic acid peel and LED-Laser phototherapy for the treatment of Acne vulgaris in teenagers.

    PubMed

    Alba, Monique Narciso; Gerenutti, Marli; Yoshida, Valquíria Miwa Hanai; Grotto, Denise

    2017-02-01

    Acne vulgaris treatments usually cause sensitivity, teratogenicity and bacterial resistance. Investigations of other therapeutic techniques, such as phototherapy, are highly relevant. Thus, we compared the effectiveness of two Acne vulgaris treatments in adolescents: peeling with salicylic acid (SA) and phototherapy. Teens were randomly divided into: group I, treatment with SA peels (10%) and group II, treatment with phototherapy (blue LED and red laser lights). Photographs were taken before and after ten sessions of each treatment, carried out weekly, and compared. To compare the differences between the treatments, the Student t-test was used. P values < 0.05 were considered significant. Both techniques are effective therapies for the treatment of acne in teenagers since the number of comedones, papules and pustules decreased significantly at the end of the session. However, when the two treatments were compared, phototherapy showed a significant difference in reducing the number of pustules. The combined use of red and blue lights due to their anti-inflammatory and wound-healing properties is a more efficient alternative for treating Acne vulgaris in relation to SA and proves more reliable and without side effects, improving the adolescents' skin health.

  1. Salicylic Acid Interferes with Tobacco Mosaic Virus Replication via a Novel Salicylhydroxamic Acid-Sensitive Mechanism.

    PubMed Central

    Chivasa, S.; Murphy, A. M.; Naylor, M.; Carr, J. P.

    1997-01-01

    Salicylic acid (SA) induces resistance to all plant pathogens, including bacteria, fungi, and viruses, but the mechanism by which SA engenders resistance to viruses is not known. Pretreatment of tobacco mosaic virus (TMV)-susceptible (nn genotype) tobacco tissue with SA reduced the levels of viral RNAs and viral coat protein accumulating after inoculation with TMV. Viral RNAs were not affected equally, suggesting that SA treatment interferes with TMV replication. Salicylhydroxamic acid (SHAM), an inhibitor of the mitochondrial alternative oxidase, antagonized both SA-induced resistance to TMV in nn genotype plants and SA-induced acquired resistance in resistant (NN genotype) tobacco. SHAM did not inhibit induction of the PR-1 pathogenesis-related protein or induction of resistance to Erwinia carotovora or Botrytis cinerea by SA. This indicates that SA induces resistance to TMV via a novel SHAM-sensitive signal transduction pathway (potentially involving alternative oxidase), which is distinct from that leading to resistance to bacteria and fungi. PMID:12237364

  2. Microwave enhanced chemical reduction process for nitrite-containing wastewater treatment using sulfaminic acid.

    PubMed

    Li, Nan; Wang, Peng; Liu, Qingsong; Cao, Hailei

    2010-01-01

    High-concentration nitrite-containing wastewater that presents extreme toxicity to human health and organisms is difficult to be treated using traditional biological process. In this study, a novel microwave-enhanced chemical reduction process (MECRP) using sulfaminic acid (SA) was proposed as a new manner to treat such type of wastewater. Based on lab-scale experiments, it was shown that 75%-80% nitrite (NO2-) could be removed within time as short as 4 min under 50 W microwave irradiation in pH range 5-10 when molar ratio of SA to nitrite (SA/NO2-) was 0.8. Pilot-scale investigations demonstrated that MECRP was able to achieve nitrite and chemical oxygen demand (COD) removal with efficiency up to 80% and 20%, respectively under operating conditions of SA concentration 80 kg/m3, SA/NO2- ratio 0.8, microwave power 3.4 kW, and stirring time 3 min. Five-day biological oxygen demand (BOD5)/COD value of treated effluent after MECRP was increased from 0.05 to 0.36 (by 620%), which clearly suggested a considerable improvement of biodegradability for subsequent biological treatment. This study provided a demonstration of using microwave irradiation to enhance reaction between SA and nitrite in a short time, in which nitrite in wastewater was completely converted into nitrogen gas without leaving any sludge and secondary pollutants.

  3. The role of calcium, silicon and salicylic acid treatment in protection of canola plants against boron toxicity stress.

    PubMed

    Metwally, Ashraf M; Radi, Abeer A; El-Shazoly, Rasha M; Hamada, Afaf M

    2018-01-22

    Boron (B) toxicity often limits crop yield and the quality of production in agricultural areas. Here, we investigated the effects of calcium (Ca), silicon (Si) and salicylic acid (SA) on development of B toxicity, B allocation in canola (Brassica napus cultivar Sarw 4) and its role in non-enzymatic antioxidants in relation to yield of this cultivar under B toxicity. Canola seedlings were subjected to four B levels induced by boric acid in the absence or presence of Ca, Si and SA. The results showed that Ca, Si and SA addition ameliorated the inhibition in canola growth, water content (WC), and improved siliqua number, siliqua weight and seed index. The B content in shoots and roots and total B accumulation in the whole plant were increased in control plants under B-toxicity-stress, and these parameters were significantly decreased by addition of Ca, Si and SA. The shoot ascorbate pool (ascorbate, AsA, and dehydroascorbate, DHA), α-tocopherol and phenolics (free and bound) were increased under B toxicity, and were significantly decreased in most cases by addition of Ca, Si and SA, except α-tocopherol, which increased at low B levels (0, 25 and 50 mg kg soil -1 ). The glutathione content did not obviously change by B stress, while added Ca, Si and SA inhibited its accumulation under B stress. In addition, B toxicity reduced the shoot flavonoids content; however, this reduction was not alleviated by the use of Ca, Si and SA treatments. It could be concluded that growth and yield of canola plants grown under high B concentration improved after external application of Ca, Si or SA.

  4. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid.

    PubMed

    Halim, Vincentius A; Altmann, Simone; Ellinger, Dorothea; Eschen-Lippold, Lennart; Miersch, Otto; Scheel, Dierk; Rosahl, Sabine

    2009-01-01

    To elucidate the molecular mechanisms underlying pathogen-associated molecular pattern (PAMP)-induced defense responses in potato (Solanum tuberosum), the role of the signaling compounds salicylic acid (SA) and jasmonic acid (JA) was analyzed. Pep-13, a PAMP from Phytophthora, induces the accumulation of SA, JA and hydrogen peroxide, as well as the activation of defense genes and hypersensitive-like cell death. We have previously shown that SA is required for Pep-13-induced defense responses. To assess the importance of JA, RNA interference constructs targeted at the JA biosynthetic genes, allene oxide cyclase and 12-oxophytodienoic acid reductase, were expressed in transgenic potato plants. In addition, expression of the F-box protein COI1 was reduced by RNA interference. Plants expressing the RNA interference constructs failed to accumulate the respective transcripts in response to wounding or Pep-13 treatment, neither did they contain significant amounts of JA after elicitation. In response to infiltration of Pep-13, the transgenic plants exhibited a highly reduced accumulation of reactive oxygen species as well as reduced hypersensitive cell death. The ability of the JA-deficient plants to accumulate SA suggests that SA accumulation is independent or upstream of JA accumulation. These data show that PAMP responses in potato require both SA and JA and that, in contrast to Arabidopsis, these compounds act in the same signal transduction pathway. Despite their inability to fully respond to PAMP treatment, the transgenic RNA interference plants are not altered in their basal defense against Phytophthora infestans.

  5. Chemical peeling by SA-PEG remodels photo-damaged skin: suppressing p53 expression and normalizing keratinocyte differentiation.

    PubMed

    Dainichi, Teruki; Amano, Satoshi; Matsunaga, Yukiko; Iriyama, Shunsuke; Hirao, Tetsuji; Hariya, Takeshi; Hibino, Toshihiko; Katagiri, Chika; Takahashi, Motoji; Ueda, Setsuko; Furue, Masutaka

    2006-02-01

    Chemical peeling with salicylic acid in polyethylene glycol vehicle (SA-PEG), which specifically acts on the stratum corneum, suppresses the development of skin tumors in UVB-irradiated hairless mice. To elucidate the mechanism through which chemical peeling with SA-PEG suppresses skin tumor development, the effects of chemical peeling on photodamaged keratinocytes and cornified envelopes (CEs) were evaluated in vivo. Among UVB-irradiated hairless mice, the structural atypia and expression of p53 protein in keratinocytes induced by UVB irradiation were intensely suppressed in the SA-PEG-treated mice 28 days after the start of weekly SA-PEG treatments when compared to that in the control UVB-irradiated mice. Incomplete expression of filaggrin and loricrin in keratinocytes from the control mice was also improved in keratinocytes from the SA-PEG-treated mice. In photo-exposed human facial skin, immature CEs were replaced with mature CEs 4 weeks after treatment with SA-PEG. Restoration of photodamaged stratum corneum by treatment with SA-PEG, which may affect remodeling of the structural environment of the keratinocytes, involved the normalization of keratinocyte differentiation and suppression of skin tumor development. These results suggest that the stratum corneum plays a protective role against carcinogenesis, and provide a novel strategy for the prevention of photo-induced skin tumors.

  6. Exogenous treatment with salicylic acid attenuates occurrence of citrus canker in susceptible navel orange (Citrus sinensis Osbeck).

    PubMed

    Wang, Yin; Liu, Ji-Hong

    2012-08-15

    Citrus canker caused by Xanthomonas axonopodis pv. citri (Xac) is a devastating bacterial disease threatening the citrus industry. Salicylic acid (SA) plays a key role in plant defense response to biotic stress, but information is scarce concerning the application of SA to enhancing Xac resistance. In the present research attempts were made to investigate how exogenous application of SA influenced canker disease outbreak in navel orange (Citrus sinensis). Exogenously applied SA at 0.25 mM significantly enhanced the endogenous free and bound SA, particularly the latter. Upon exposure to Xac, lower disease incidence rate and smaller lesion sites were observed in the samples pre-treated with SA, accompanied by repression of bacterial growth at the lesion sites. Concurrent with the augmented disease resistance, SA-treated leaves had higher H₂O₂ level and smaller stomata apertures before or after Xac infection when compared with their counterparts pre-treated with water (control). SA treatment elevated the activities of phenylalanine ammonia-lyase and β-1,3-glucanase, but only the latter was higher in the SA-treated samples after Xac infection. In addition, mRNA levels of two pathogenesis-related genes, CsCHI and CsPR4A, were higher in the SA-treated samples relative to the control. Taken together, our results strongly suggest that the exogenously applied SA has evoked a cascade of physiological and molecular events that function singly or in concert to confer resistance to Xac invasion. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. Enhanced degradation of Herbicide Isoproturon in wheat rhizosphere by salicylic acid.

    PubMed

    Lu, Yi Chen; Zhang, Shuang; Miao, Shan Shan; Jiang, Chen; Huang, Meng Tian; Liu, Ying; Yang, Hong

    2015-01-14

    This study investigated the herbicide isoproturon (IPU) residues in soil, where wheat was cultivated and sprayed with salicylic acid (SA). Provision of SA led to a lower level of IPU residues in rhizosphere soil compared to IPU treatment alone. Root exudation of tartaric acid, malic acid, and oxalic acids was enhanced in rhizosphere soil with SA-treated wheat. We examined the microbial population (e.g., biomass and phospholipid fatty acid), microbial structure, and soil enzyme (catalase, phenol oxidase, and dehydrogenase) activities, all of which are associated with soil activity and were activated in rhizosphere soil of SA-treated wheat roots. We further assessed the correlation matrix and principal component to figure out the association between the IPU degradation and soil activity. Finally, six IPU degraded products (derivatives) in rhizosphere soil were characterized using ultraperformance liquid chromatography with a quadrupole-time-of-flight tandem mass spectrometer (UPLC/Q-TOF-MS/MS). A relatively higher level of IPU derivatives was identified in soil with SA-treated wheat than in soil without SA-treated wheat plants.

  8. Preliminary treatment of bovine mastitis caused by Staphylococcus aureus, with trx-SA1, recombinant endolysin of S. aureus bacteriophage IME-SA1.

    PubMed

    Fan, Jindai; Zeng, Zhiliang; Mai, Kaijie; Yang, Yu; Feng, Jiaqi; Bai, Yang; Sun, Baoli; Xie, Qingmei; Tong, Yigang; Ma, Jingyun

    2016-08-15

    Methicillin-resistant Staphylococcus aureus (MRSA) has become a great threat to human and animal health and there is an urgent need to develop novel antibacterial agents to control this pathogen. The objective of this study was to obtain an active recombinant endolysin from the novel bacteriophage (IME-SA1), and conduct an efficacy trial of its effectiveness against bovine mastitis. We isolated a phage that was virulent and specific for S. aureus with an optimal multiplicity of infection of 0.01. Electron microscopy revealed that IME-SA1 was a member of the family Myoviridae, with an isometric head (98nm) and a long contractile tail (200nm). Experimental lysis experiments indicated the phage had an incubation period of 20min with a burst size of 80. When host bacteria were in early exponential growth stages, a multiplicity of infection of 0.01 resulted in a complete bacterial lysis after 9h. The endolysin gene (804bp) was cloned into the pET-32a bacterial expression vector and recombinant endolysin Trx-SA1 was successfully obtained with molecular size of about 47kDa. Preliminary results of therapeutic trials in cow udders showed that Trx-SA1 could effectively control mild clinical mastitis caused by S. aureus. The endolysin Trx-SA1 might be an alternative treatment strategy for infections caused by S. aureus, including MRSA. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood-brain barrier permeability peptide-B6 peptide for potential use in Alzheimer's disease.

    PubMed

    Yin, Tiantian; Yang, Licong; Liu, Yanan; Zhou, Xianbo; Sun, Jing; Liu, Jie

    2015-10-01

    The blood-brain barrier (BBB) is a formidable gatekeeper toward exogenous substances, playing an important role in brain homeostasis and maintaining a healthy microenvironment for complex neuronal activities. However, it also greatly hinders drug permeability into the brain and limits the management of brain diseases. The development of new drugs that show improved transport across the BBB represents a promising strategy for Alzheimer's disease (AD) intervention. Whereas, previous study of receptor-mediated endogenous BBB transport systems has focused on a strategy of using transferrin to facilitate brain drug delivery system, a system that still suffers from limitations including synthesis procedure, stability and immunological response. In the present study, we synthetised sialic acid (SA)-modified selenium (Se) nanoparticles conjugated with an alternative peptide-B6 peptide (B6-SA-SeNPs, a synthetic selenoprotein analogue), which shows high permeability across the BBB and has the potential to serve as a novel nanomedicine for disease modification in AD. Laser-scanning confocal microscopy, flow cytometry analysis and inductively coupled plasma-atomic emission spectroscopy ICP-AES revealed high cellular uptake of B6-SA-SeNPs by cerebral endothelial cells (bEnd.3). The transport efficiency of B6-SA-SeNPs was evaluated in a Transwell experiment based on in vitro BBB model. It provided direct evidence for B6-SA-SeNPs crossing the BBB and being absorbed by PC12 cells. Moreover, inhibitory effects of B6-SA-SeNPs on amyloid-β peptide (Aβ) fibrillation could be demonstrated in PC12 cells and bEnd3 cells. B6-SA-SeNPs could not only effectively inhibit Aβ aggregation but could disaggregate preformed Aβ fibrils into non-toxic amorphous oligomers. These results suggested that B6-SA-SeNPs may provide a promising platform, particularly for the application of nanoparticles in the treatment of brain diseases. Alzheimer's disease (AD) is the world's most common form of

  10. Altered cultivar resistance of kimchi cabbage seedlings mediated by salicylic Acid, jasmonic Acid and ethylene.

    PubMed

    Lee, Young Hee; Kim, Sang Hee; Yun, Byung-Wook; Hong, Jeum Kyu

    2014-09-01

    Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

  11. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2‐keto‐4‐methylthiobutyric acid production

    PubMed Central

    Xie, Yakun; Rolli, Eleonora; Guerard, Florence; Colcombet, Jean; Benhamed, Moussa; Depaepe, Thomas

    2018-01-01

    Several plant species require microbial associations for survival under different biotic and abiotic stresses. In this study, we show that Enterobacter sp. SA187, a desert plant endophytic bacterium, enhances yield of the crop plant alfalfa under field conditions as well as growth of the model plant Arabidopsis thaliana in vitro, revealing a high potential of SA187 as a biological solution for improving crop production. Studying the SA187 interaction with Arabidopsis, we uncovered a number of mechanisms related to the beneficial association of SA187 with plants. SA187 colonizes both the surface and inner tissues of Arabidopsis roots and shoots. SA187 induces salt stress tolerance by production of bacterial 2-keto-4-methylthiobutyric acid (KMBA), known to be converted into ethylene. By transcriptomic, genetic and pharmacological analyses, we show that the ethylene signaling pathway, but not plant ethylene production, is required for KMBA-induced plant salt stress tolerance. These results reveal a novel molecular communication process during the beneficial microbe-induced plant stress tolerance. PMID:29554117

  12. Benzoylsalicylic acid derivatives as defense activators in tobacco and Arabidopsis.

    PubMed

    Kamatham, Samuel; Pallu, Reddanna; Pasupulati, Anil Kumar; Singh, Surya Satyanarayana; Gudipalli, Padmaja

    2017-11-01

    Systemic acquired resistance (SAR) is a long lasting inducible whole plant immunity often induced by either pathogens or chemical elicitors. Salicylic acid (SA) is a known SAR signal against a broad spectrum of pathogens in plants. In a recent study, we have reported that benzoylsalicylic acid (BzSA) is a SAR inducer in tobacco and Arabidopsis plants. Here, we have synthesized BzSA derivatives using SA and benzoyl chlorides of various moieties as substrates. The chemical structures of BzSA derivatives were elucidated using Infrared spectroscopy (IR), Nuclear magnetic spectroscopy (NMR) and High-resolution mass spectrometer (HRMS) analysis. The bioefficacy of BzSA derivatives in inducing defense response against tobacco mosaic virus (TMV) was investigated in tobacco and SA abolished transgenic NahG Arabidopsis plants. Interestingly, pre-treatment of local leaves of tobacco with BzSA derivatives enhanced the expression of SAR genes such as NPR1 [Non-expressor of pathogenesis-related (PR) genes 1], PR and other defense marker genes (HSR203, SIPK, WIPK) in systemic leaves. Pre-treatment of BzSA derivatives reduced the spread of TMV infection to uninfected areas by restricting lesion number and diameter both in local and systemic leaves of tobacco in a dose-dependent manner. Furthermore, pre-treatment of BzSA derivatives in local leaves of SA deficient Arabidopsis NahG plants induced SAR through AtPR1 and AtPR5 gene expression and reduced leaf necrosis and curling symptoms in systemic leaves as compared to BzSA. These results suggest that BzSA derivatives are potent SAR inducers against TMV in tobacco and Arabidopsis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The role of surface implant treatments on the biological behavior of SaOS-2 osteoblast-like cells. An in vitro comparative study.

    PubMed

    Conserva, Enrico; Menini, Maria; Ravera, Giambattista; Pera, Paolo

    2013-08-01

    The aim of this study was an in vitro comparison of osteoblast adhesion, proliferation and differentiation related to six dental implants with different surface characteristics, and to determine if the interaction between cells and implant is influenced by surface structure and chemical composition. Six types of implants were tested, presenting four different surface treatments: turned, sandblasted, acid-etched, anodized. The implant macro- and microstructure were analyzed using SEM, and the surface chemical composition was investigated using energy-dispersive X-ray analysis. SaOS-2 osteoblasts were used for the evaluation of cell adhesion and proliferation by SEM, and cell viability in contact with the various surfaces was determined using cytotoxicity MTT assays. Alkaline phosphatase (ALP) enzymatic activity in contact with the six surfaces was evaluated. Data relative to MTT assay and ALP activity were statistically analyzed using Kruskal-Wallis not parametric test and Nemenyi-Damico-Wolfe-Dunn post hoc test. All the implants tested supported cell adhesion, proliferation and differentiation, revealing neither organic contaminants nor cytotoxicity effects. The industrial treatments investigated changed the implant surface microscopic aspect and SaOS-2 cell morphology appeared to be influenced by the type of surface treatment at 6, 24, and 72 h of growth. SaOS-2 cells spread more rapidly on sandblasted surfaces. Turned surfaces showed the lowest cell proliferation at SEM observation. Sandblasted surfaces showed the greatest ALP activity values per cell, followed by turned surfaces (P < 0.05). On the base of this in vitro investigation, differently surfaced implants affected osteoblast morphology, adhesion, proliferation, and differentiation. Sandblasted surfaces promoted the most suitable osteoblast behavior. © 2012 John Wiley & Sons A/S.

  14. S5H/DMR6 Encodes a Salicylic Acid 5-Hydroxylase That Fine-Tunes Salicylic Acid Homeostasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanjun; Zhao, Li; Zhao, Jiangzhe

    The phytohormone salicylic acid (SA) plays essential roles in biotic and abiotic responses, plant development, and leaf senescence. 2,5-Dihydroxybenzoic acid (2,5-DHBA or gentisic acid) is one of the most commonly occurring aromatic acids in green plants and is assumed to be generated from SA, but the enzymes involved in its production remain obscure. DMR6 (Downy Mildew Resistant 6, At5g24530) has been proven essential in plant immunity of Arabidopsis, but its biochemical properties are not well understood. Here in this paper, we report the discovery and functional characterization of DMR6 as a SA 5-hydroxylase (S5H) that catalyzes the formation of 2,5-DHBAmore » by hydroxylating SA at the C5 position of its phenyl ring in Arabidopsis. S5H/DMR6 specifically converts SA to 2,5-DHBA in vitro and displays higher catalytic efficiency (K cat/K m=4.96×10 4 M -1s -1) than the previously reported SA 3-hydroxylase (S3H, K cat/K m=6.09 × 10 3 M -1s -1) for SA. Interestingly, S5H/DMR6 displays a substrate inhibition property that may enable automatic control of its enzyme activities. The s5h mutant and s5hs3h double mutant over accumulate SA and display phenotypes such as a smaller growth size, early senescence and a loss of susceptibility to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). S5H/DMR6 is sensitively induced by SA/pathogen treatment and is widely expressed from young seedlings to senescing plants, whereas S3H is more specifically expressed at the mature and senescing stages. Collectively, our results disclose the identity of the enzyme required for 2,5-DHBA formation and reveal a mechanism by which plants fine-tune SA homeostasis by mediating SA 5-hydroxylation.« less

  15. S5H/DMR6 Encodes a Salicylic Acid 5-Hydroxylase That Fine-Tunes Salicylic Acid Homeostasis

    DOE PAGES

    Zhang, Yanjun; Zhao, Li; Zhao, Jiangzhe; ...

    2017-09-12

    The phytohormone salicylic acid (SA) plays essential roles in biotic and abiotic responses, plant development, and leaf senescence. 2,5-Dihydroxybenzoic acid (2,5-DHBA or gentisic acid) is one of the most commonly occurring aromatic acids in green plants and is assumed to be generated from SA, but the enzymes involved in its production remain obscure. DMR6 (Downy Mildew Resistant 6, At5g24530) has been proven essential in plant immunity of Arabidopsis, but its biochemical properties are not well understood. Here in this paper, we report the discovery and functional characterization of DMR6 as a SA 5-hydroxylase (S5H) that catalyzes the formation of 2,5-DHBAmore » by hydroxylating SA at the C5 position of its phenyl ring in Arabidopsis. S5H/DMR6 specifically converts SA to 2,5-DHBA in vitro and displays higher catalytic efficiency (K cat/K m=4.96×10 4 M -1s -1) than the previously reported SA 3-hydroxylase (S3H, K cat/K m=6.09 × 10 3 M -1s -1) for SA. Interestingly, S5H/DMR6 displays a substrate inhibition property that may enable automatic control of its enzyme activities. The s5h mutant and s5hs3h double mutant over accumulate SA and display phenotypes such as a smaller growth size, early senescence and a loss of susceptibility to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). S5H/DMR6 is sensitively induced by SA/pathogen treatment and is widely expressed from young seedlings to senescing plants, whereas S3H is more specifically expressed at the mature and senescing stages. Collectively, our results disclose the identity of the enzyme required for 2,5-DHBA formation and reveal a mechanism by which plants fine-tune SA homeostasis by mediating SA 5-hydroxylation.« less

  16. Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa.

    PubMed

    Trevino, Saul R; Scholtz, J Martin; Pace, C Nick

    2007-02-16

    Poor protein solubility is a common problem in high-resolution structural studies, formulation of protein pharmaceuticals, and biochemical characterization of proteins. One popular strategy to improve protein solubility is to use site-directed mutagenesis to make hydrophobic to hydrophilic mutations on the protein surface. However, a systematic investigation of the relative contributions of all 20 amino acids to protein solubility has not been done. Here, 20 variants at the completely solvent-exposed position 76 of ribonuclease (RNase) Sa are made to compare the contributions of each amino acid. Stability measurements were also made for these variants, which occur at the i+1 position of a type II beta-turn. Solubility measurements in ammonium sulfate solutions were made at high positive net charge, low net charge, and high negative net charge. Surprisingly, there was a wide range of contributions to protein solubility even among the hydrophilic amino acids. The results suggest that aspartic acid, glutamic acid, and serine contribute significantly more favorably than the other hydrophilic amino acids especially at high net charge. Therefore, to increase protein solubility, asparagine, glutamine, or threonine should be replaced with aspartic acid, glutamic acid or serine.

  17. Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa

    PubMed Central

    Trevino, Saul R.; Scholtz, J. Martin; Pace, C. Nick

    2009-01-01

    SUMMARY Poor protein solubility is a common problem in high resolution structural studies, formulation of protein pharmaceuticals, and biochemical characterization of proteins. One popular strategy to improve protein solubility is to use site-directed mutagenesis to make hydrophobic to hydrophilic mutations on the protein surface. However, a systematic investigation of the relative contributions of all twenty amino acids to protein solubility has not been done. Here, twenty variants at the completely solvent-exposed position 76 of Ribonuclease (RNase) Sa are made to compare the contributions of each amino acid. Stability measurements were also made for these variants, which occur at the i+1 position of a type II β-turn. Solubility measurements in ammonium sulfate solutions were made at high positive net charge, low net charge, and high negative net charge. Surprisingly, there was a wide range of contributions to protein solubility even among the hydrophilic amino acids. The results suggest that aspartic acid, glutamic acid, and serine contribute significantly more favorably than the other hydrophilic amino acids especially at high net charge. Therefore, to increase protein solubility, asparagine, glutamine, or threonine should be replaced with aspartic acid, glutamic acid or serine. PMID:17174328

  18. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling.

    PubMed

    Xu, Enjun; Brosché, Mikael

    2014-06-04

    Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.

  19. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling

    PubMed Central

    2014-01-01

    Background Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. Results In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Conclusions Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling. PMID:24898702

  20. Effects of Exogenous Salicylic Acid on Ganoderic Acid Biosynthesis and the Expression of Key Genes in the Ganoderic Acid Biosynthesis Pathway in the Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes).

    PubMed

    Cao, Peng-Fei; Wu, Chen-Gao; Dang, Zhi-Hao; Shi, Liang; Jiang, Ai-Liang; Ren, Ang; Zhao, Ming-Wen

    2017-01-01

    We demonstrate herein that salicylic acid (SA) can enhance ganoderic acid (GA) accumulation in the lingzhi or reishi medicinal mushroom Ganoderma lucidum. Following treatment with different concentrations of SA, the GA content was increased 22.72% to 43.04% compared with the control group. When the fungi were treated with 200 μmol/L SA at different times, the GA content was improved 10.21% to 35.24% compared with the control group. By choosing the optimum point based on response surface methodology, the GA content could be increased up to 229.03 μg/100 mg, which was improved 66.38% compared with the control group. When the fungi were treated with 200 μmol/L SA, the transcription levels of key genes in the GA biosynthesis pathway-squalene (SQ) synthase (sqs), lanosterol (Lano; osc), and hydroxy-3-methylglutaryl-coenzyme A reductase (hmgr)-were improved 119.6-, 3.2-, and 4.2-fold, respectively. In addition, following treatment with 100 μmol/L SA, the levels of Lano and SQ, which are intermediate metabolites of GA biosynthesis, were increased 2.8- and 1.4-fold, respectively. These results indicate that SA can regulate the expression of genes related to GA biosynthesis and increases the metabolic levels of Lano and SQ, thereby resulting in the accumulation of GA.

  1. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA. © 2016 Scandinavian Plant Physiology Society.

  2. Isolation and characterization of isochorismate synthase and cinnamate 4-hydroxylase during salinity stress, wounding, and salicylic acid treatment in Carthamus tinctorius

    PubMed Central

    Sadeghi, Mahnaz; Dehghan, Sara; Fischer, Rainer; Wenzel, Uwe; Vilcinskas, Andreas; Kavousi, Hamid Reza; Rahnamaeian, Mohammad

    2013-01-01

    Salicylic acid (SA) is a prominent signaling molecule during biotic and abiotic stresses in plants biosynthesized via cinnamate and isochorismate pathways. Cinnamate 4-hydroxylase (C4H) and isochorismate synthase (ICS) are the main enzymes in phenylpropanoid and isochorismate pathways, respectively. To investigate the actual roles of these genes in resistance mechanism to environmental stresses, here, the coding sequences of these enzymes in safflower (Carthamus tinctorius), as an oilseed industrial medicinal plant, were partially isolated and their expression profiles during salinity stress, wounding, and salicylic acid treatment were monitored. As a result, safflower ICS (CtICS) and C4H (CtC4H) were induced in early time points after wounding (3–6 h). Upon salinity stress, CtICS and CtC4H were highly expressed for the periods of 6–24 h and 3–6 h after treatment, respectively. It seems evident that ICS expression level is SA concentration dependent as if safflower treatment with 1 mM SA could induce ICS much stronger than that with 0.1 mM, while C4H is less likely to be so. Based on phylogenetic analysis, safflower ICS has maximum similarity to its ortholog in Vitis vinifera up to 69%, while C4H shows the highest similarity to its ortholog in Echinacea angustifolia up to 96%. Overall, the isolated genes of CtICS and CtC4H in safflower could be considered in plant breeding programs for salinity tolerance as well as for pathogen resistance. PMID:24309561

  3. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract1[OPEN

    PubMed Central

    Schmiesing, André; Gouhier-Darimont, Caroline

    2016-01-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. PMID:26884488

  4. Postharvest salicylic acid treatment reduces storage rots in water-stressed but no unstressed sugarbeet roots

    USDA-ARS?s Scientific Manuscript database

    Exogenous application of salicylic acid (SA) reduces storage rots in a number of postharvest crops. SA’s ability to protect sugarbeet (Beta vulgaris L.) taproots from common storage rot pathogens, however, is unknown. To determine the potential of SA to reduce storage losses caused by three common...

  5. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.

    PubMed

    Schmiesing, André; Emonet, Aurélia; Gouhier-Darimont, Caroline; Reymond, Philippe

    2016-04-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. Effect of lauric acid and coconut oil on ruminal fermentation, digestion, ammonia losses from manure, and milk fatty acid composition in lactating cows.

    PubMed

    Hristov, A N; Vander Pol, M; Agle, M; Zaman, S; Schneider, C; Ndegwa, P; Vaddella, V K; Johnson, K; Shingfield, K J; Karnati, S K R

    2009-11-01

    This experiment (replicated 3 x 3 Latin square design) was conducted to investigate the effects of lauric acid (LA) or coconut oil (CO) on ruminal fermentation, nutrient digestibility, ammonia losses from manure, and milk fatty acid (FA) composition in lactating cows. Treatments consisted of intraruminal doses of 240 g of stearic acid/d (SA; control), 240 g of LA/d, or 530 g of CO/d administered once daily, before feeding. Between periods, cows were inoculated with ruminal contents from donor cows and allowed a 7-d recovery period. Treatment did not affect dry matter intake, milk yield, or milk composition. Ruminal pH was slightly increased by CO compared with the other treatments, whereas LA and CO decreased ruminal ammonia concentration compared with SA. Both LA and CO decreased protozoal counts by 80% or more compared with SA. Methane production rate in the rumen was reduced by CO compared with LA and SA, with no differences between LA and SA. Treatments had no effect on total tract apparent dry matter, organic matter, N, and neutral detergent fiber digestibility coefficients or on cumulative (15 d) in vitro ammonia losses from manure. Compared with SA, LA and CO increased milk fat 12:0, cis-9 12:1, and trans-9 12:1 content and decreased 6:0, 8:0, 10:0, cis-9 10:1, 16:0, 18:0, cis 18:1, total 18:2, 18:3 n-3 and total polyunsaturated FA concentrations. Administration of LA and 14:0 (as CO) in the rumen were apparently transferred into milk fat with a mean efficiency of 18 and 15%, respectively. In conclusion, current data confirmed that LA and CO exhibit strong antiprotozoal activity when dosed intraruminally, an effect that is accompanied by decreases in ammonia concentration and, for CO, lowered methane production. Administration of LA and CO in the rumen also altered milk FA composition.

  7. Comparison of tretinoin 0.05% cream and 3% alcohol-based salicylic acid preparation in the treatment of acne vulgaris.

    PubMed

    Babayeva, L; Akarsu, S; Fetil, E; Güneş, A T

    2011-03-01

    No single effective topical treatment is available for treating all pathogenic factors causing acne vulgaris (AV). Salicylic acid (SA), tretinoin (all-TRA) and clindamycin phosphate (CDP) are known to to be effective agents depending on their comedolytic and anti-inflammatory properties. To compare the efficacy and tolerability of SA and CDP combination (SA+CDP) with all-TRA and CDP (all-TRA+CDP) in patients with mild to moderate facial AV. Forty-six patients aged between 18 and 35 years were enrolled in a 12-week prospective, single-blind, randomized and comparative clinical study. Efficacy was assessed by lesion counts, global improvement, quality of life index and measurement of skin barrier functions. Local side effects were also evaluated. Both combinations were effective in reducing total lesion (TL), inflammatory lesion (IL) and non-inflammatory lesion (NIL) counts and showed significant global improvement as evaluated by the investigator. At the end of the study, there was no significant difference between the two groups in terms of all lesion counts. In addition, TL counts decreased faster in the all-TRA+CDP group compared with those in the SA+CDP group, with a significant difference between the two groups occurring as early as 2 weeks. Safety evaluations demonstrated that the incidence of mild to moderate side effects generally peaked at week 2 and declined gradually thereafter. Both combinations did not have an effect on stratum corneum hydration, although skin sebum values decreased with SA+CDP treatment. Combination of SA+CDP and all-TRA+CDP was effective in decreasing lesion counts and well tolerated with minimal local cutaneous reactions in patients with mild to moderate AV. © 2010 The Authors. Journal of the European Academy of Dermatology and Venereology © 2010 European Academy of Dermatology and Venereology.

  8. Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions.

    PubMed

    Bellés, José M; Garro, Rafael; Pallás, Vicente; Fayos, Joaquín; Rodrigo, Ismael; Conejero, Vicente

    2006-02-01

    In the present work we have studied the accumulation of gentisic acid (2,5-dihydroxybenzoic acid, a metabolic derivative of salicylic acid, SA) in the plant-pathogen systems, Cucumis sativus and Gynura aurantiaca, infected with either prunus necrotic ringspot virus (PNRSV) or the exocortis viroid (CEVd), respectively. Both pathogens produced systemic infections and accumulated large amounts of the intermediary signal molecule gentisic acid as ascertained by electrospray ionization mass spectrometry (ESI-MS) coupled on line with high performance liquid chromatography (HPLC). The compound was found mostly in a conjugated (beta-glucoside) form. Gentisic acid has also been found to accumulate (although at lower levels) in cucumber inoculated with low doses of Pseudomonas syringae pv. tomato, producing a nonnecrotic reaction. In contrast, when cucumber was inoculated with high doses of this pathogen, a hypersensitive reaction occurred, but no gentisic-acid signal was induced. This is consistent with our results supporting the idea that gentisic-acid signaling may be restricted to nonnecrotizing reactions of the host plant (Bellés et al. in Mol Plant-Microbe Interact 12:227-235, 1999). In cucumber and Gynura plants, the activity of gentisic acid as inducing signal was different to that of SA, thus confirming the data found for tomato. Exogenously supplied gentisic acid was able to induce peroxidase activity in both Gynura and cucumber plants in a similar way as SA or pathogens. However, gentisic-acid treatments strongly induced polyphenol oxidase activity in cucumber, whereas pathogen infection or SA treatment resulted in a lower induction of this enzyme. Nevertheless, gentisic acid did not induce other defensive proteins which are induced by SA in these plants. This indicates that gentisic acid could act as an additional signal to SA for the activation of plant defenses in cucumber and Gynura plants.

  9. Constitutively elevated salicylic acid levels alter photosynthesis and oxidative state but not growth in transgenic populus.

    PubMed

    Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O; Nyamdari, Batbayar; Wilson, Mark C; Frost, Christopher J; Chen, Han-Yi; Babst, Benjamin A; Harding, Scott A; Tsai, Chung-Jui

    2013-07-01

    Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained.

  10. [The use of essential fatty acids in the treatments of wounds].

    PubMed

    Manhezi, Andreza Cano; Bachion, Maria Márcia; Pereira, Angela Lima

    2008-01-01

    In spite of being widely spread throughout Brazil, the use of essential fatty acids (EFA) for wound healing is controversial. This study aimed at identifying and analyzing the available scientific evidence for EFA to be used in the treatment of wounds. This is a descriptive study, carried out through a systematic literature review, concerning the Biblioteca Virtual de Saúde (Health Online Library) and PubMed data bank, from 1970 to 2006. Initially, we identified 503 references. After the relevance tests I and II, 11 articles were included in the analysis, showing evidence of recommendation- level II and III for EFA to be used in burns, mediastinitis, among others situations. Most studies still refer to its use in animal. Relevant publications are still scarce.

  11. Transcriptional Profiling of Sorghum Induced by Methyl Jasmonate, Salicylic Acid, and Aminocyclopropane Carboxylic Acid Reveals Cooperative Regulation and Novel Gene Responses1[w

    PubMed Central

    Salzman, Ron A.; Brady, Jeff A.; Finlayson, Scott A.; Buchanan, Christina D.; Summer, Elizabeth J.; Sun, Feng; Klein, Patricia E.; Klein, Robert R.; Pratt, Lee H.; Cordonnier-Pratt, Marie-Michèle; Mullet, John E.

    2005-01-01

    We have conducted a large-scale study of gene expression in the C4 monocot sorghum (Sorghum bicolor) L. Moench cv BTx623 in response to the signaling compounds salicylic acid (SA), methyl jasmonate (MeJA), and the ethylene precursor aminocyclopropane carboxylic acid. Expression profiles were generated from seedling root and shoot tissue at 3 and 27 h, using a microarray containing 12,982 nonredundant elements. Data from 102 slides and quantitative reverse transcription-PCR data on mRNA abundance from 171 genes were collected and analyzed and are here made publicly available. Numerous gene clusters were identified in which expression was correlated with particular signaling compound and tissue combinations. Many genes previously implicated in defense responded to the treatments, including numerous pathogenesis-related genes and most members of the phenylpropanoid pathway, and several other genes that may represent novel activities or pathways. Genes of the octadecanoic acid pathway of jasmonic acid (JA) synthesis were induced by SA as well as by MeJA. The resulting hypothesis that increased SA could lead to increased endogenous JA production was confirmed by measurement of JA content. Comparison of responses to SA, MeJA, and combined SA+MeJA revealed patterns of one-way and mutual antagonisms, as well as synergistic effects on regulation of some genes. These experiments thus help further define the transcriptional results of cross talk between the SA and JA pathways and suggest that a subset of genes coregulated by SA and JA may comprise a uniquely evolved sector of plant signaling responsive cascades. PMID:15863699

  12. The effects of surface-applied jasmonic and salicylic acids on caterpillar growth and damage to tomato plants

    Treesearch

    Aaron L. Iverson; Louis R. Iverson; Steve Eshita

    2001-01-01

    We tested the role of salicylic acid (SA) and jasmonic acid (JA) in altering the tomato plant's defense against herbivory by tobacco hornworm. Treatments of SA or JA were topically applied to tomato plants, hornworm consumption was allowed to proceed for 12 days, and harvest analyses were performed Measurements taken included a subjective plant rating (1-10 score...

  13. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings.

    PubMed

    Li, Zhong-Guang; Xie, Lin-Run; Li, Xiao-Juan

    2015-04-01

    Salicylic acid (SA), 2-hydroxy benzoic acid, is a small phenolic compound with multifunction that is involved in plant growth, development, and the acquisition of stress tolerance. In recent years, hydrogen sulfide (H2S) has been found to have similar functions, but cross talk between SA and H2S in the acquisition of heat tolerance is not clear. In this study, pretreatment of maize seedlings with SA improved the survival percentage of seedlings under heat stress, indicating that SA pretreatment could improve the heat tolerance of maize seedlings. In addition, treatment with SA enhanced the activity of L-cysteine desulfhydrase (L-DES), a key enzyme in H2S biosynthesis, which in turn induced accumulation of endogenous H2S. Interestingly, SA-induced heat tolerance was enhanced by addition of NaHS, a H2S donor, but weakened by specific inhibitors of H2S biosynthesis DL-propargylglycine (PAG) and its scavenger hydroxylamine (HT). Furthermore, pretreatment with paclobutrazol (PAC) and 2-aminoindan-2-phosphonic acid (AIP), inhibitors of SA biosynthesis, had no significant effect on NaHS-induced heat tolerance of maize seedlings. Similarly, significant change in the activities of phenylalanine ammonia lyase (PAL) and benzoic-acid-2-hydroxylase (BA2H), the key enzymes in SA biosynthesis, and the content of endogenous SA, was not observed in maize seedlings by NaHS treatment. All of the above-mentioned results suggest that SA pretreatment could improve the heat tolerance of maize seedlings, and H2S might be a novel downstream signal molecule in SA-induced heat tolerance. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Both the Jasmonic Acid and the Salicylic Acid Pathways Contribute to Resistance to the Biotrophic Clubroot Agent Plasmodiophora brassicae in Arabidopsis.

    PubMed

    Lemarié, Séverine; Robert-Seilaniantz, Alexandre; Lariagon, Christine; Lemoine, Jocelyne; Marnet, Nathalie; Jubault, Mélanie; Manzanares-Dauleux, Maria J; Gravot, Antoine

    2015-11-01

    The role of salicylic acid (SA) and jasmonic acid (JA) signaling in resistance to root pathogens has been poorly documented. We assessed the contribution of SA and JA to basal and partial resistance of Arabidopsis to the biotrophic clubroot agent Plasmodiophora brassicae. SA and JA levels as well as the expression of the SA-responsive genes PR2 and PR5 and the JA-responsive genes ARGAH2 and THI2.1 were monitored in infected roots of the accessions Col-0 (susceptible) and Bur-0 (partially resistant). SA signaling was activated in Bur-0 but not in Col-0. The JA pathway was weakly activated in Bur-0 but was strongly induced in Col-0. The contribution of both pathways to clubroot resistance was then assessed using exogenous phytohormone application and mutants affected in SA or JA signaling. Exogenous SA treatment decreased clubroot symptoms in the two Arabidopsis accessions, whereas JA treatment reduced clubroot symptoms only in Col-0. The cpr5-2 mutant, in which SA responses are constitutively induced, was more resistant to clubroot than the corresponding wild type, and the JA signaling-deficient mutant jar1 was more susceptible. Finally, we showed that the JA-mediated induction of NATA1 drove N(δ)-acetylornithine biosynthesis in infected Col-0 roots. The 35S::NATA1 and nata1 lines displayed reduced or enhanced clubroot symptoms, respectively, thus suggesting that in Col-0 this pathway was involved in the JA-mediated basal clubroot resistance. Overall, our data support the idea that, depending on the Arabidopsis accession, both SA and JA signaling can play a role in partial inhibition of clubroot development in compatible interactions with P. brassicae. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Development and psychometric properties of the client's assessment of treatment scale for supported accommodation (CAT-SA).

    PubMed

    Sandhu, Sima; Killaspy, Helen; Krotofil, Joanna; McPherson, Peter; Harrison, Isobel; Dowling, Sarah; Arbuthnott, Maurice; Curtis, Sarah; King, Michael; Leavey, Gerard; Shepherd, Geoff; Priebe, Stefan

    2016-02-25

    Patient-Reported Outcome Measures (PROMs) are important for evaluating mental health services. Yet, no specific PROM exists for the large and diverse mental health supported accommodation sector. We aimed to produce and validate a PROM specifically for supported accommodation services, by adapting the Client's Assessment of Treatment Scale (CAT) and assessing its psychometric properties in a large sample. Focus groups with service users in the three main types of mental health supported accommodation services in the United Kingdom (residential care, supported housing and floating outreach) were conducted to adapt the contents of the original CAT items and assess the acceptability of the modified scale (CAT-SA). The CAT-SA was then administered in a survey to service users across England. Internal consistency was assessed using Cronbach's alpha. Convergent validity was tested through correlations with subjective quality of life and satisfaction with accommodation, as measured by the Manchester Short Assessment of Quality of Life (MANSA). All seven original items of the CAT were regarded as relevant to appraisals of mental health supported accommodation services, with only slight modifications to the wording required. In the survey, data were obtained from 618 clients. The internal consistency of the CAT-SA items was 0.89. Mean CAT-SA scores were correlated with the specific accommodation item on the MANSA (r s  = 0.37, p ˂ .001). The content of the CAT-SA has relevance to service users living in mental health supported accommodation. The findings from our large survey show that the CAT-SA is acceptable across different types of supported accommodation and suggest good psychometric properties. The CAT-SA appears a valid and easy to use PROM for service users in mental health supported accommodation services.

  16. Interactive effects of ambient acidity and salinity on thyroid function during acidic and post-acidic acclimation of air-breathing fish (Anabas testudineus Bloch).

    PubMed

    Peter, M C Subhash; Rejitha, V

    2011-11-01

    The interactive effects of ambient acidity and salinity on thyroid function are less understood in fish particularly in air-breathing fish. We, therefore, examined the thyroid function particularly the osmotic and metabolic competences of freshwater (FW) and salinity-adapted (SA; 20 ppt) air-breathing fish (Anabas testudineus) during acidic and post-acidic acclimation, i.e., during the exposure of fish to either acidified water (pH 4.2 and 5.2) for 48 h or clean water for 96 h after pre-exposure. A substantial rise in plasma T(4) occurred after acidic exposure of both FW and SA fish. Similarly, increased plasma T(3) and T(4) were found in FW fish kept for post-acidic acclimation and these suggest an involvement of THs in short-term acidic and post-acidic acclimation. Water acidification produced significant hyperglycaemia and hyperuremia in FW fish but not in SA fish. The SA fish when kept for post-acclimation, however, produced a significant hypouremia. In both FW and SA fish, gill Na(+), K(+)-ATPase activity decreased but kidney Na(+), K(+)-ATPase activity increased upon acidic acclimation. During post-acidic acclimation, gill Na(+), K(+)-ATPase activity of the FW fish showed a rise while decreasing its activity in the SA fish. Similarly, post-acidic acclimation reduced the Na(+), K(+)-ATPase activity of intestine but elevated its activity in the liver of SA fish. A higher tolerance of the SA fish to water acidification was evident in these fish as they showed tight plasma and tissue mineral status due to the ability of this fish to counteract the ion loss. In contrast, FW fish showed more sensitivity to water acidification as they loose more ions in that medium. The positive correlations of plasma THs with many tested metabolic and hydromineral indices of both FW and SA fish and also with water pH further confirm the involvement of THs in acidic and post-acidic acclimation in these fish. We conclude that thyroid function of this fish is more sensitive to

  17. Jasmonic acid and salicylic acid activate a common defense system in rice.

    PubMed

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-06-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice.

  18. Isolation and Genome Characterization of the Virulent Staphylococcus aureus Bacteriophage SA97

    PubMed Central

    Chang, Yoonjee; Shin, Hakdong; Lee, Ju-Hoon; Park, Chul Jong; Paik, Soon-Young; Ryu, Sangryeol

    2015-01-01

    A novel bacteriophage that infects S. aureus, SA97, was isolated and characterized. The phage SA97 belongs to the Siphoviridae family, and the cell wall teichoic acid (WTA) was found to be a host receptor of the phage SA97. Genome analysis revealed that SA97 contains 40,592 bp of DNA encoding 54 predicted open reading frames (ORFs), and none of these genes were related to virulence or drug resistance. Although a few genes associated with lysogen formation were detected in the phage SA97 genome, the phage SA97 produced neither lysogen nor transductant in S. aureus. These results suggest that the phage SA97 may be a promising candidate for controlling S. aureus. PMID:26437428

  19. The Synthetic Triterpenoid CDDO-Im Inhibits Fatty Acid Synthase Expression and Has Antiproliferative and Proapoptotic Effects in Human Liposarcoma Cells

    PubMed Central

    Hughes, David T.; Martel, Peter M.; Kinlaw, William B.; Eisenberg, Burton L.

    2013-01-01

    Liposarcomas constitute a rare group of tumors of mesenchymal origin that are often poorly responsive to therapy. This study characterizes a novel human liposarcoma cell line (LiSa-2) and defines the mechanism of its response to a synthetic triterpenoid. Fatty acid synthase (FAS) is a key enzyme of de-novo fatty acid synthesis and is highly expressed in both human liposarcoma tissue specimens and LiSa-2 cells. Treatment of the LiSa-2 cell line with the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic imidazolide (CDDO-Im) markedly inhibited FAS mRNA expression, FAS protein production and FAS gene promoter activity. As expected, fatty acid synthesis was down regulated, but there was no effect on cellular fatty acid uptake or glycerol-3-phosphate synthesis suggesting a selective inhibition of endogenous fatty acid synthesis. Importantly, CDDO-Im produced a dose-dependent apoptotic effect in the LiSa-2 cell line, and simultaneous treatment with CDDO-Im and the fatty acid synthase inhibitor Cerulenin produced a synergistic cytotoxic effect. Thus, CDDO-Im and Cerulenin act at different loci to inhibit long chain fatty acid synthesis in liposarcoma cells. This study’s demonstration of CDDO-Im inhibition of FAS and Spot 14 (S14) expression is the first report of triterpenoid compounds affecting the fatty acid synthesis pathway. The observed dependence of liposarcomas on lipogenesis to support their growth and survival provides a novel approach to the treatment of liposarcomas with agents that target fatty acid production. PMID:18259941

  20. Effect of calcium and salicylic acid on quality retention in relation to antioxidative enzymes in radish stored under refrigerated conditions.

    PubMed

    Devi, Jomika; Bhatia, Surekha; Alam, M S; Dhillon, Tarsem Singh

    2018-03-01

    Effect of post harvest treatments with calcium chloride (CaCl 2 ) and salicylic acid (SA) on physiological and biochemical parameters in relation to activities of antioxidative enzymes were investigated in radish. Radish of variety Punjab Safed Mooli 2 was harvested, washed and treated with CaCl 2 (1, 1.5 and 2%) or SA (1, 1.5 and 2 mM). Treated as well as untreated radish were placed in open trays and stored under refrigerated (5 ± 1 °C, 90% RH) conditions for 42 days. Treatment of radish with CaCl 2 and SA slowed down changes in physiological weight, colour, total soluble solids, ascorbic acid, titrable acidity, total phenolics and antioxidant activity. Treated samples exhibited higher enhancement in activities of antioxidant enzymes viz. catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), peroxidase (POD), dehydroascorbate reductase (DHAR) and monodehydro-ascorbate reductase (MDHAR) than untreated samples. However SA was found to be more effective in slowing down the metabolic activities of radish as compared to CaCl 2 treatment. Among all the treatments, 1.5 mM SA maintained the quality parameters to greater extent probably by reducing the oxidative stress to larger extent due to highest activities of antioxidative enzymes and can be used to enhance the shelf life of radish during refrigerated storage.

  1. Parasitism by Cuscuta pentagona sequentially induces JA and SA defence pathways in tomato.

    PubMed

    Runyon, Justin B; Mescher, Mark C; Felton, Gary W; De Moraes, Consuelo M

    2010-02-01

    While plant responses to herbivores and pathogens are well characterized, responses to attack by other plants remain largely unexplored. We measured phytohormones and C(18) fatty acids in tomato attacked by the parasitic plant Cuscuta pentagona, and used transgenic and mutant plants to explore the roles of the defence-related phytohormones salicylic acid (SA) and jasmonic acid (JA). Parasite attachment to 10-day-old tomato plants elicited few biochemical changes, but a second attachment 10 d later elicited a 60-fold increase in JA, a 30-fold increase in SA and a hypersensitive-like response (HLR). Host age also influenced the response: neither Cuscuta seedlings nor established vines elicited a HLR in 10-day-old hosts, but both did in 20-day-old hosts. Parasites grew larger on hosts deficient in SA (NahG) or insensitive to JA [jasmonic acid-insensitive1 (jai1)], suggesting that both phytohormones mediate effective defences. Moreover, amounts of JA peaked 12 h before SA, indicating that defences may be coordinated via sequential induction of these hormones. Parasitism also induced increases in free linolenic and linoleic acids and abscisic acid. These findings provide the first documentation of plant hormonal signalling induced by a parasitic plant and show that tomato responses to C. pentagona display characteristics similar to both herbivore- and pathogen-induced responses.

  2. Constitutively Elevated Salicylic Acid Levels Alter Photosynthesis and Oxidative State but Not Growth in Transgenic Populus[C][W

    PubMed Central

    Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O.; Nyamdari, Batbayar; Wilson, Mark C.; Frost, Christopher J.; Chen, Han-Yi; Babst, Benjamin A.; Harding, Scott A.; Tsai, Chung-Jui

    2013-01-01

    Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained. PMID:23903318

  3. Early membrane events induced by salicylic acid in motor cells of the Mimosa pudica pulvinus.

    PubMed

    Saeedi, Saed; Rocher, Françoise; Bonmort, Janine; Fleurat-Lessard, Pierrette; Roblin, Gabriel

    2013-04-01

    Salicylic acid (o-hydroxy benzoic acid) (SA) induced a rapid dose-dependent membrane hyperpolarization (within seconds) and a modification of the proton secretion (within minutes) of Mimosa pudica pulvinar cells at concentrations higher than 0.1mM. Observations on plasma membrane vesicles isolated from pulvinar tissues showed that SA acted directly at the membrane level through a protonophore action as suggested by the inhibition of the proton gradient and the lack of effect on H(+)-ATPase catalytic activity. Comparative data obtained with protonophores (carbonylcyanide-m-chlorophenylhydrazone and 2,4-dinitrophenol) and inhibitors of ATPases (vanadate, N,N'-dicyclohexylcarbodiimide, and diethylstilbestrol) corroborated this conclusion. Consequently, the collapse of the proton motive force led to an impairment in membrane functioning. This impairment is illustrated by the inhibition of the ion-driven turgor-mediated seismonastic reaction of the pulvinus following SA treatment. SA acted in a specific manner as its biosynthetic precursor benzoic acid induced much milder effects and the m- and p-OH benzoic acid derivatives did not trigger similar characteristic effects. Therefore, SA may be considered both a membrane signal molecule and a metabolic effector following its uptake in the cells.

  4. The physiological and biochemical effects of salicylic acid on sunflowers (Helianthus annuus) exposed to flurochloridone.

    PubMed

    Kaya, Armagan; Yigit, Emel

    2014-08-01

    In this study, we comparatively evaluated the effects of the flurochloridone as well as flurochloridone and exogenously applied salicylic acid (SA) on Helianthus annuus L. to find out herbicide-induced toxicity reducing influence of SA. We examined and compared the physiological and biochemical effects of different concentrations of flurochloridone (11, 32 and 72 mM) in both the SA pre-treated and non-treated plants. The plants treated with flurochloridone exhibited reduced total chlorophyll, carotenoid, and relative water content compared to the control group, whereas the plants that were pre-treated with SA exhibited relatively higher values for the same physiological parameters. In the SA non-treated plants, the superoxide dismutase, glutathione reductase and glutathione S-transferase activities were increased in the treatment groups compared to the control group. In the treatment groups, these enzyme activities were decreased in the SA-pre-treated plants compared to the non-treated plants. Ascorbate peroxidase and catalase activities decreased in the flurochloridone-treated plants compared to the control plants. The ascorbate peroxidase activity increased in the control groups but decreased in the treatment groups in the SA pre-treated plants compared to the non-treated plants. However, SA treatment decreased the activity of catalase in the control and treatment groups compared to the plants that were not treated with SA. Flurochloridone treatment increased the malondialdehyde content in the treated groups compared to the control groups, whereas SA-pretreatment decreased malondialdehyde content compared to plants that were not treated with SA. Flurochloridone treatment increased endogenous SA content compared to the control. Although the residual levels of herbicide in the plants increased proportionately with increasing herbicide concentrations, the SA-pre-treated plants exhibited reduced residual herbicide levels compared to the plants that were not treated

  5. Salicylic acid interferes with GFP fluorescence in vivo

    PubMed Central

    de Jonge, Jennifer; Hofius, Daniel

    2017-01-01

    Abstract Fluorescent proteins have become essential tools for cell biologists. They are routinely used by plant biologists for protein and promoter fusions to infer protein localization, tissue‐specific expression and protein abundance. When studying the effects of biotic stress on chromatin, we unexpectedly observed a decrease in GFP signal intensity upon salicylic acid (SA) treatment in Arabidopsis lines expressing histone H1-GFP fusions. This GFP signal decrease was dependent on SA concentration. The effect was not specific to the linker histone H1-GFP fusion but was also observed for the nucleosomal histone H2A-GFP fusion. This result prompted us to investigate a collection of fusion proteins, which included different promoters, subcellular localizations and fluorophores. In all cases, fluorescence signals declined strongly or disappeared after SA application. No changes were detected in GFP‐fusion protein abundance when fluorescence signals were lost indicating that SA does not interfere with protein stability but GFP fluorescence. In vitro experiments showed that SA caused GFP fluorescence reduction only in vivo but not in vitro, suggesting that SA requires cellular components to cause fluorescence reduction. Together, we conclude that SA can interfere with the fluorescence of various GFP‐derived reporter constructs in vivo. Assays that measure relocation or turnover of GFP‐tagged proteins upon SA treatment should therefore be evaluated with caution. PMID:28369601

  6. Voltammetric study of the boric acid-salicylaldehyde-H-acid ternary system and its application to the voltammetric determination of boron.

    PubMed

    Kajiwara, Mari; Ito, Yoshio N; Miyazaki, Yoshinobu; Fujimori, Takao; Takehara, Kô; Yoshimura, Kazuhisa

    2015-02-14

    The ternary system of boric acid, salicylaldehyde (SA) and H-acid (HA) was voltammetrically studied from kinetic and equilibrium points of view. The effect of the SA substituents was also studied by using two analogs, 5-fluorosalicylaldehyde (F-SA) and 5-methylsalicylaldehyde (Me-SA). The three cathodic peaks of Azomethine H (AzH), Azomethine H-boric acid complex (AzB), and free SA were observed in the solution containing boric acid, SA and HA. The peak potentials of AzH and SA were shifted to negative potentials with increasing pH, while the peak potential of AzB was pH-independent. This difference indicates that a proton participates in the charge-transfer steps of the AzH and SA reductions, but not in that of the AzB reduction. The formation constants for the AzB complexation were similar among all the examined analogs. In the kinetic study, the reaction rate was higher in an acidic condition for the AzH formation, but in a neutral condition for the AzB formation. The rate constants for the AzB complexes were in the order of F-SA > SA ≈ Me-SA, indicating that the fluoro group accelerates the F-AzB complexation. The AzB complexation mechanism is considered to consist of more than three steps, i.e., the pre-equilibrium of the salicylaldehyde-boric acid complex (SA-B) formation, the nucleophilic attack of HA on SA-B, and the remaining some steps to form AzB. Based on these results, the voltammetric determination method of boron using F-SA was optimized, which allowed the boron concentration to be determined within only 5 min with a 0.03 mg B dm(-3) detection limit.

  7. A comparison of a 5% potassium hydroxide solution with a 5-fluorouracil and salicylic acid combination in the treatment of patients with anogenital warts: a randomized, open-label clinical trial.

    PubMed

    Işik, Selda; Koca, Rafet; Sarici, Gülben; Altinyazar, Hilmi Cevdet

    2014-09-01

    Anogenital warts are caused by human papillomavirus (HPV), over 30 types of which are infectious for the anogenital tract. Without treatment, warts may regress spontaneously, remain unchanged, or increase in number and size. This study compared the efficacy of a topical 5% potassium hydroxide (KOH) solution with that of a topical 0.5% 5-fluorouracil (5-FU) and 10% salicylic acid (SA) combination in the treatment of anogenital warts. Sixty patients were randomly assigned to receive topical KOH or 5-FU + SA. Both groups demonstrated a significant decrease in numbers of lesions (P < 0.05), but this difference was not significant at week 12 (P > 0.05). The mean number of lesions decreased from baseline to week 12 from 17.03 ± 12.64 to 3.73 ± 7.30 and from 16.13 ± 12.97 to 3.10 ± 4.90 in the KOH and 5-FU + SA groups, respectively (P < 0.001). Excellent clearance was achieved by 70.0 and 76.7% of patients in the KOH and 5-FU + SA groups, respectively. Marked improvement was seen in 13.3 and 20.0% of patients in the KOH and 5-FU + SA groups, respectively. At week 16, relapse was observed in two patients in the KOH group and three in the 5-FU + SA group (P > 0.05). No serious adverse events were reported. Neither treatment was more efficacious. Safety and ease of application are important goals in treatments for anogenital warts. A 5% KOH solution is a promising alternative treatment because it is effective and inexpensive and causes minimal side effects. © 2014 The International Society of Dermatology.

  8. Induction of salicylic acid-mediated defense response in perennial ryegrass against infection by Magnaporthe oryzae.

    PubMed

    Rahman, Alamgir; Kuldau, Gretchen A; Uddin, Wakar

    2014-06-01

    Incorporation of plant defense activators is an innovative approach to development of an integrated strategy for the management of turfgrass diseases. The effects of salicylic acid (SA), benzothiadiazole (BTH, chemical analog of SA), jasmonic acid (JA), and ethephon (ET, an ethylene-releasing compound) on development of gray leaf spot in perennial ryegrass (Lolium perenne L.) caused by Magnaporthe oryzae were evaluated. Gray leaf spot disease incidence and severity were significantly decreased when plants were treated prior to inoculation with SA, BTH, and partially by ET but not by JA. Accumulation of endogenous SA and elevated expression of pathogenesis-related (PR)-1, PR-3.1, and PR-5 genes were associated with inoculation of plants by M. oryzae. Treatment of plants with SA enhanced expression levels of PR-3.1 and PR-5 but did not affect the PR-1 level, whereas BTH treatment enhanced relative expression levels of all three PR genes. Microscopic observations of leaves inoculated with M. oryzae revealed higher frequencies of callose deposition at the penetration sites in SA- and BTH-treated plants compared with the control plants (treated with water). These results suggest that early and higher induction of these genes by systemic resistance inducers may provide perennial ryegrass with a substantial advantage to defend against infection by M. oryzae.

  9. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... Treatment of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... this page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  10. Transcriptome Analysis of Salicylic Acid Treatment in Rehmannia glutinosa Hairy Roots Using RNA-seq Technique for Identification of Genes Involved in Acteoside Biosynthesis

    PubMed Central

    Wang, Fengqing; Zhi, Jingyu; Zhang, Zhongyi; Wang, Lina; Suo, Yanfei; Xie, Caixia; Li, Mingjie; Zhang, Bao; Du, Jiafang; Gu, Li; Sun, Hongzheng

    2017-01-01

    Rehmannia glutinosa is a common bulk medicinal material that has been widely used in China due to its active ingredients. Acteoside, one of the ingredients, has antioxidant, antinephritic, anti-inflammatory, hepatoprotective, immunomodulatory, and neuroprotective effects, is usually selected as a quality-control component for R. glutinosa herb in the Chinese Pharmacopeia. The acteoside biosynthesis pathway in R. glutinosa has not yet been clearly established. Herein, we describe the establishment of a genetic transformation system for R. glutinosa mediated by Agrobacterium rhizogenes. We screened the optimal elicitors that markedly increased acteoside accumulation in R. glutinosa hairy roots. We found that acteoside accumulation dramatically increased with the addition of salicylic acid (SA); the optimal SA dose was 25 μmol/L for hairy roots. RNA-seq was applied to analyze the transcriptomic changes in hairy roots treated with SA for 24 h in comparison with an untreated control. A total of 3,716, 4,018, and 2,715 differentially expressed transcripts (DETs) were identified in 0 h-vs.-12 h, 0 h-vs.-24 h, and 12 h-vs.-24 h libraries, respectively. KEGG pathway-based analysis revealed that 127 DETs were enriched in “phenylpropanoid biosynthesis.” Of 219 putative unigenes involved in acteoside biosynthesis, 54 were found to be up-regulated at at least one of the time points after SA treatment. Selected candidate genes were analyzed by quantitative real-time PCR (qRT-PCR) in hairy roots with SA, methyl jasmonate (MeJA), AgNO3 (Ag+), and putrescine (Put) treatment. All genes investigated were up-regulated by SA treatment, and most candidate genes were weakly increased by MeJA to some degree. Furthermore, transcription abundance of eight candidate genes in tuberous roots of the high-acteoside-content (HA) cultivar QH were higher than those of the low-acteoside-content (LA) cultivar Wen 85-5. These results will pave the way for understanding the molecular basis of

  11. [Observation of topography and analysis of surface contamination of titanium implant after roughness treatment].

    PubMed

    Cao, Hongdan; Yang, Xiaodong; Wu, Dayi; Zhang, Xingdong

    2007-04-01

    The roughness treatment of dental implant surface could improve the bone bonding and increase the success rate of implant, but the difference of diverse treatments is still unknown. In this study using scanning electron microscopy (SEM), energy disperse spectrometer (EDS) and the test of contact angle, we studied the microstructure, surface contamination and surface energy, and hence conducted a comparative analysis of the following surface roughness treatments: Polished Treatment (PT), Sandblasting with Alumina(SA), Sandblasting with Aluminia and Acid-etched (SAA), Sandblasting with Titanium Acid-etched (STA), Electro-erosion Treatment(ET). The result of SEM showed that the surface displayed irregularities after roughness treatments and that the surface properties of different roughness treatments had some distinctions. SAA and SA had some sharp edges and protrutions; the STA showed a regular pattern like honeycomb, but the ET sample treated by electric erosion exhibited the deeper pores of different sizes and the pores with a perforated secondary structure. The EDS indicated that the surface was contaminated after the treatment with foreign materials; the SA surface had some embedded contaminations even after acid etching. The measurement of water contact angle indicated that the morphology correlated with the surface treatments. These findings suggest that the distinction of surface structure and composition caused by different treatments may result in the disparity in biological behavior of dental implant.

  12. Molecular cloning and characterization of a novel tomato xylosyltransferase specific for gentisic acid.

    PubMed

    Tárraga, Susana; Lisón, Purificación; López-Gresa, María Pilar; Torres, Cristina; Rodrigo, Ismael; Bellés, José María; Conejero, Vicente

    2010-10-01

    The importance of salicylic acid (SA) in the signal transduction pathway of plant disease resistance has been well documented in many incompatible plant-pathogen interactions, but less is known about signalling in compatible interactions. In this type of interaction, tomato plants have been found to accumulate high levels of 2,5-dihydroxybenzoic acid (gentisic acid, GA), a metabolic derivative of SA. Exogenous GA treatments induce in tomato plants a set of PR proteins that differ from those induced by salicylic acid. While SA accumulates in tomato plants mainly as 2-O-β-D-glucoside, GA has only been found as 5-O-β-D-xyloside. To characterize this step of the GA signalling pathway further, the present work focuses on the study of the GA-conjugating activity in tomato plants. A gentisate glycosyltransferase (GAGT) cDNA has been isolated and overexpressed in Pichia pastoris, and GA-conjugating activity was confirmed by detecting the xylosylated GA. The purified plant protein is highly specific for GA, showing no activity toward many other phenolic compounds, including SA. In addition, it shows an outstanding selectivity for UDP-xylose as the sugar donor, which differentiates this enzyme from most glycosyltransferases. Both the GA-conjugating activity and the corresponding mRNA show a strong, rapid, and transient induction upon treatment of tomato plants with GA or SA. Furthermore, its expression is rapidly induced by compatible infections. However, neither the gene nor the activity seems to respond to incompatible infections or wounding. The unique properties of this new glycosyltransferase suggest a specific role in regulating the free GA levels in compatible plant-pathogen interactions.

  13. UV-C-Induced alleviation of transcriptional gene silencing through plant-plant communication: Key roles of jasmonic acid and salicylic acid pathways.

    PubMed

    Xu, Wei; Wang, Ting; Xu, Shaoxin; Li, Fanghua; Deng, Chenguang; Wu, Lijun; Wu, Yuejin; Bian, Po

    2016-08-01

    Plant stress responses at the epigenetic level are expected to allow more permanent changes of gene expression and potentially long-term adaptation. While it has been reported that plants subjected to adverse environments initiate various stress responses in their neighboring plants, little is known regarding epigenetic responses to external stresses mediated by plant-plant communication. In this study, we show that DNA repetitive elements of Arabidopsis thaliana, whose expression is inhibited epigenetically by transcriptional gene silencing (TGS) mechanism, are activated by UV-C irradiation through airborne plant-plant and plant-plant-plant communications, accompanied by DNA demethylation at CHH sites. Moreover, the TGS is alleviated by direct treatments with exogenous methyl jasmonate (MeJA) and methyl salicylate (MeSA). Further, the plant-plant and plant-plant-plant communications are blocked by mutations in the biosynthesis or signaling of jasmonic acid (JA) or salicylic acid (SA), indicating that JA and SA pathways are involved in the interplant communication for epigenetic responses. For the plant-plant-plant communication, stress cues are relayed to the last set of receiver plants by promoting the production of JA and SA signals in relaying plants, which exhibit upregulated expression of genes for JA and SA biosynthesis and enhanced emanation of MeJA and MeSA. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Suppression or knockout of SaF/SaM overcomes the Sa-mediated hybrid male sterility in rice.

    PubMed

    Xie, Yongyao; Niu, Baixiao; Long, Yunming; Li, Gousi; Tang, Jintao; Zhang, Yaling; Ren, Ding; Liu, Yao-Guang; Chen, Letian

    2017-09-01

    Hybrids between the indica and japonica subspecies of rice (Oryza sativa) are usually sterile, which hinders utilization of heterosis in the inter-subspecific hybrid breeding. The complex locus Sa comprises two adjacently located genes, SaF and SaM, which interact to cause abortion of pollen grains carrying the japonica allele in japonica-indica hybrids. Here we showed that silencing of SaF or SaM by RNA interference restored male fertility in indica-japonica hybrids with heterozygous Sa. We further used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based genome editing to knockout the SaF and SaM alleles, respectively, of an indica rice line to create hybrid-compatible lines. The resultant artificial neutral alleles did not affect pollen viability and other agricultural traits, but did break down the reproductive barrier in the hybrids. We found that some rice lines have natural neutral allele Sa-n, which was compatible with the typical japonica or indica Sa alleles in hybrids. Our results demonstrate that SaF and SaM are required for hybrid male sterility, but are not essential for pollen development. This study provides effective approaches for the generation of hybrid-compatible lines by knocking out the Sa locus or using the natural Sa-n allele to overcome hybrid male sterility in rice breeding. © 2017 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc. © 2017 Institute of Botany, Chinese Academy of Sciences.

  15. Salicylic acid interferes with GFP fluorescence in vivo.

    PubMed

    de Jonge, Jennifer; Hofius, Daniel; Hennig, Lars

    2017-03-01

    Fluorescent proteins have become essential tools for cell biologists. They are routinely used by plant biologists for protein and promoter fusions to infer protein localization, tissue-specific expression and protein abundance. When studying the effects of biotic stress on chromatin, we unexpectedly observed a decrease in GFP signal intensity upon salicylic acid (SA) treatment in Arabidopsis lines expressing histone H1-GFP fusions. This GFP signal decrease was dependent on SA concentration. The effect was not specific to the linker histone H1-GFP fusion but was also observed for the nucleosomal histone H2A-GFP fusion. This result prompted us to investigate a collection of fusion proteins, which included different promoters, subcellular localizations and fluorophores. In all cases, fluorescence signals declined strongly or disappeared after SA application. No changes were detected in GFP-fusion protein abundance when fluorescence signals were lost indicating that SA does not interfere with protein stability but GFP fluorescence. In vitro experiments showed that SA caused GFP fluorescence reduction only in vivo but not in vitro, suggesting that SA requires cellular components to cause fluorescence reduction. Together, we conclude that SA can interfere with the fluorescence of various GFP-derived reporter constructs in vivo. Assays that measure relocation or turnover of GFP-tagged proteins upon SA treatment should therefore be evaluated with caution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. The Influence of Stabilized Deconjugated Ursodeoxycholic Acid on Polymer-Hydrogel System of Transplantable NIT-1 Cells.

    PubMed

    Mooranian, Armin; Negrulj, Rebecca; Al-Salami, Hani

    2016-05-01

    The encapsulation of pancreatic β-cells in biocompatible matrix has generated great interest in diabetes treatment. Our work has shown improved microcapsules when incorporating the bile acid ursodeoxycholic acid (UDCA), in terms of morphology and cell viability although cell survival remained low. Thus, the study aimed at incorporating the polyelectrolytes polyallylamine (PAA) and poly-l-ornithine (PLO), with the polymer sodium alginate (SA) and the hydrogel ultrasonic gel (USG) with UDCA and examined cell viability and functionality post microencapsulation. Microcapsules without (control) and with UDCA (test) were produced using 1% PLO, 2.5% PAA, 1.8% SA and 4.5% USG. Pancreatic β-cells were microencapsulated and the microcapsules' morphology, surface components, cellular and bile acid distribution, osmotic and mechanical stability as well as biocompatibilities, insulin production, bioenergetics and the inflammatory response were tested. Incorporation of UDCA at 4% into a PLO-PAA-SA formulation system increased cell survival (p < 0.01), insulin production (p < 0.01), reduced the inflammatory profile (TNF-α, IFN-ϒ, IL-6 and IL-1β; p < 0.01) and improved the microcapsule physical and mechanical strength (p < 0.01). β-cell microencapsulation using 1% PLO, 2.5% PAA, 1.8% SA, 4.5% USG and the bile acid UDCA (4%) has good potential in cell transplantation and diabetes treatment.

  17. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress

    PubMed Central

    Nazar, Rahat; Umar, Shahid; Khan, Nafees A.

    2015-01-01

    Ascorbate (AsA)–glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of ascorbate-glutathione pathway which suggest that SA may participate in the redox balance under salt stress. The increase in leaf sulfur content through higher activity of ATP sulfurylase (ATPS) and serine acetyl transferase (SAT) by SA application was associated with the increased accumulation of glutathione (GSH) and lower levels of oxidative stress. These effects of SA were substantiated by the findings that application of SA-analog, 2,6, dichloro-isonicotinic acid (INA) and 1 mM GSH treatment produced similar results on rubisco, photosynthesis and growth of plants establishing that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the enzyme activity of ascorbate-glutathione pathway and increased GSH production. Thus, SA/GSH could be a promising tool for alleviation of salt stress in mustard plants. PMID:25730495

  18. Highly stretchable HA/SA hydrogels for tissue engineering.

    PubMed

    Zhu, Chengcheng; Yang, Rui; Hua, Xiaobin; Chen, Hong; Xu, Jumei; Wu, Rile; Cen, Lian

    2018-04-01

    A highly stretchable hyaluronic acid (HA)/sodium alginate (SA) hydrogel was developed in this study based on an interpenetrating polymer network. HA/SA hydrogels were prepared by mixing two polysaccharides followed by covalent crosslinking via epoxy groups on HA molecules and ionic crosslinking via divalent ions on SA chains sequentially. The effect of HA/SA ratio on the pore size and distribution, swelling ratio, elongation and rheological properties as well as protein loading and release properties of HA/SA hydrogels was explored. Moreover, a surface modification method, layer-by-layer (LBL) assembly technique, was applied to modify the hydrogel to evaluate the hydrogel's tenability in varying biological performance. It was then shown that the hydrogels had the pore sizes ranging from 100 to 50 μm. With the increase in SA content of the resulting hydrogels, the pore size, swelling ratio, and storage modulus (G') and loss modulus (G″) of the hydrogel all decreased, whereas the in vitro bulk weight loss was fastened. Moreover, elongation at break (EB) value increased first, reached a peak value and then decreased, that is HA8/SA1 (HA:SA = 8:1) had the highest EB value of 417%. This hydrogel could retain 33.2% of the pre-loaded protein even after 72 h, which could be further attenuated when LBL was used to shell the hydrogel. The growth of fibroblasts on HA8/SA1 hydrogel gave preliminary assessment on its suitability as a cellular carrier, while the LBL modified HA8/SA1 hydrogel also favored the anchoring of keratinocytes, further enhancing its cell carrier role for tissue regeneration, especially skin engineering.

  19. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism

    PubMed Central

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-01-01

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence. PMID:23959884

  20. Chemical Inactivation of the Cinnamate 4-Hydroxylase Allows for the Accumulation of Salicylic Acid in Elicited Cells1

    PubMed Central

    Schoch, Guillaume A.; Nikov, Georgi N.; Alworth, William L.; Werck-Reichhart, Danièle

    2002-01-01

    The cinnamate (CA) 4-hydroxylase (C4H) is a cytochrome P450 that catalyzes the second step of the main phenylpropanoid pathway, leading to the synthesis of lignin, pigments, and many defense molecules. Salicylic acid (SA) is an essential trigger of plant disease resistance. Some plant species can synthesize SA from CA by a mechanism not yet understood. A set of specific inhibitors of the C4H, including competitive, tight-binding, mechanism-based irreversible, and quasi-irreversible inhibitors have been developed with the main objective to redirect cinnamic acid to the synthesis of SA. Competitive inhibitors such as 2-hydroxy-1-naphthoic acid and the heme-coordinating compound 3-(4-pyridyl)-acrylic acid allowed strong inhibition of C4H activity in a tobacco (Nicotiana tabacum cv Bright Yellow [BY]) cell suspension culture. This inhibition was however rapidly relieved either because of substrate accumulation or because of inhibitor metabolism. Substrate analogs bearing a methylenedioxo function such as piperonylic acid (PIP) or a terminal acetylene such as 4-propynyloxybenzoic acid (4PB), 3-propynyloxybenzoic acid, and 4-propynyloxymethylbenzoic acid are potent mechanism-based inactivators of the C4H. PIP and 4PB, the best inactivators in vitro, were also efficient inhibitors of the enzyme in BY cells. Inhibition was not reversed 46 h after cell treatment. Cotreatment of BY cells with the fungal elicitor β-megaspermin and PIP or 4PB led to a dramatic increase in SA accumulation. PIP and 4PB do not trigger SA accumulation in nonelicited cells in which the SA biosynthetic pathway is not activated. Mechanism-based C4H inactivators, thus, are promising tools for the elucidation of the CA-derived SA biosynthetic pathway and for the potentiation of plant defense. PMID:12376665

  1. Multifunctional SA-PProDOT Binder for Lithium Ion Batteries.

    PubMed

    Ling, Min; Qiu, Jingxia; Li, Sheng; Yan, Cheng; Kiefel, Milton J; Liu, Gao; Zhang, Shanqing

    2015-07-08

    An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles.

  2. Influence of stearic acid on the structure and rheological behavior of injection-molded ZTA suspensions

    NASA Astrophysics Data System (ADS)

    Lin, Cong; Wang, Bo; Cheng, Yao; Wang, Cao

    2013-01-01

    The zirconia-toughened-alumina (ZTA) composite powder was exposed to a prior ball milling treatment with a small amount of stearic acid (SA) before the traditional blending process. The effect of different amounts of stearic acid on surface properties of the powder, the particle size distribution of the powder, and the rheological properties of the suspension were systematically studied within the design of experiments. Fourier transformation infrared spectroscopy (FTIR) analysis was used to prove the chemical interaction between the stearic acid and the ZTA powder. The effects of SA content on the particle sizes and their distribution were carefully examined. Rheological properties such as viscosity, yield stress, and power law exponent of the suspensions were determined within a temperature range of 140-170 °C. The optimal content of SA to improve the properties of the suspensions was found to be 3 wt.%.

  3. Uptake and metabolic effects of salicylic acid on the pulvinar motor cells of Mimosa pudica L.

    PubMed

    Dédaldéchamp, Fabienne; Saeedi, Saed; Fleurat-Lessard, Pierrette; Roblin, Gabriel

    2014-01-01

    In this paper, the salicylic acid (o-hydroxy benzoic acid) (SA) uptake by the pulvinar tissues of Mimosa pudica L. pulvini was shown to be strongly pH-dependent, increasing with acidity of the assay medium. This uptake was performed according to a unique affinity system (K(m) = 5.9 mM, V(m) = 526 pmol mgDW(-1)) in the concentration range of 0.1-5 mM. The uptake rate increased with increasing temperature (5-35 °C) and was inhibited following treatment with sodium azide (NaN3) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), suggesting the involvement of an active component. Treatment with p-chloromercuribenzenesulfonic acid (PCMBS) did not modify the uptake, indicating that external thiol groups were not necessary. KCl, which induced membrane depolarization had no significant effect, and fusicoccin (FC), which hyperpolarized cell membrane, stimulated the uptake, suggesting that the pH component of the proton motive force was likely a driving force. These data suggest that the SA uptake by the pulvinar tissues may be driven by two components: an ion-trap mechanism playing a pivotal role and a putative carrier-mediated mechanism. Unlike other benzoic acid derivatives acting as classical respiration inhibitors (NaN3 and KCN), SA modified the pulvinar cell metabolism by increasing the respiration rate similar to CCCP and 2,4-dinitrophenol (DNP). Furthermore, SA inhibited the osmoregulated seismonastic reaction in a pH dependent manner and induced characteristic damage to the ultrastructural features of the pulvinar motor cells, particularly at the mitochondrial level. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins

    USDA-ARS?s Scientific Manuscript database

    Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling compon...

  5. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple.

    PubMed

    Zhang, Ying; Shi, Xiangpeng; Li, Baohua; Zhang, Qingming; Liang, Wenxing; Wang, Caixia

    2016-09-01

    Glomerella leaf spot (GLS) caused by Glomerella cingulata is a newly emergent disease that results in severe defoliation and fruit spots in apple. Currently, there are no effective means to control this disease except for the traditional fungicide sprays. Induced resistance by elicitors against pathogens infection is a widely accepted eco-friendly strategy. In the present study, we investigated whether exogenous application of salicylic acid (SA) could improve resistance to GLS in a highly susceptible apple cultivar (Malus domestica Borkh. cv. 'Gala') and the underlying mechanisms. The results showed that pretreatment with SA, at 0.1-1.0 mM, induced strong resistance against GLS in 'Gala' apple leaves, with SA treated leaves showing significant reduction in lesion numbers and disease index. Concurrent with the enhanced disease resistance, SA treatment markedly increased the total antioxidant capacity (T-AOC) and defence-related enzyme activities, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO). As expected, SA treatment also induced the expression levels of five pathogenesis-related (PR) genes including PR1, PR5, PR8, Chitinase and β-1,3-glucanase. Furthermore, the most pronounced and/or rapid increase was observed in leaves treated with SA and subsequently inoculated with G. cingulata compared to the treatment with SA or inoculation with the pathogen. Together, these results suggest that exogenous SA triggered increase in reactive oxygen species levels and the antioxidant system might be responsible for enhanced resistance against G. cingulata in 'Gala' apple leaves. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Recurrence rates and patient assessed outcomes of 0.5% 5-fluorouracil in combination with salicylic acid treating actinic keratoses.

    PubMed

    Stockfleth, Eggert; Zwingers, Thomas; Willers, Christoph

    2012-01-01

    Actinic keratoses (AK) have been classified as early in situ squamous cell carcinomas and should be treated. To evaluate the clinical benefit of 5-fluorouracil 0.5%/salicylic acid 10.0% (5-FU/SA) versus 3% diclofenac/hyaluronic acid (HA) for the treatment of AK and report patients' assessments of efficacy, tolerability and practicability. Randomised, placebo-controlled, double-blind, parallel-group, multicentre trial. Patients received topical 0.5% 5-FU/SA once daily, its vehicle or diclofenac/HA twice daily for maximum of 12 weeks. Lesion recurrence rates were evaluated at 6 and 12 months after end of treatment (EOT). Patients' assessments were evaluated at 6 weeks, EOT, post-treatment (PT) visit, 6 and 12 months. At 12 months 85.8% of lesions did not recur in the 5-FU/SA group compared to 79.8% (p=0.04419) in the vehicle and 81.0% (p=0.02476) in the diclofenac/HA groups. At PT visit 93.2% patients (n=163/175) in the 5-FU/SA group rated clinical improvement as "very good" or "good" compared to vehicle (66.7%, n=62/93, p<0.0001) and diclofenac/HA (81.6%, n=142/174, p<0.0001). Local side effects (inflammation and burning) were more common with 0.5% FU/SA but in general did not lead to discontinuation of therapy. Overall, patients were satisfied with the therapy. At 12 months, there were no differences in practicability and handling between treatments. Topical 0.5% 5-FU/SA demonstrated superior sustained clinical efficacy versus diclofenac/HA with acceptable tolerability. Patient satisfaction was high.

  7. Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78.

    PubMed

    Martínez-Medina, Ainhoa; Appels, Freek V W; van Wees, Saskia C M

    2017-08-03

    We recently found that the beneficial fungus Trichoderma harzianum T-78 primes tomato plants for salicylic acid (SA)- and jasmonic acid (JA)-regulated defenses, resulting in enhanced resistance against the root knot nematode Meloidogyne incognita. By using SA- and JA-impaired mutant lines and exogenous hormonal application, here we investigated whether the SA- and JA-pathways also have a role in T-78 root colonization of Arabidopsis thaliana. Endophytic colonization by T-78 was faster in the SA-impaired mutant sid2 than in the wild type. Moreover, elicitation of SA-dependent defenses by SA application reduced T-78 colonization, indicating that the SA-pathway affects T-78 endophytism. In contrast, elicitation of the JA-pathway, which antagonized SA-dependent defenses, resulted in enhanced endophytic colonization by T-78. These findings are in line with our previous observation that SA-dependent defenses are repressed by T-78, which likely aids colonization by the endophytic fungus.

  8. Exogenous application of salicylic acid to alleviate the toxic effects of insecticides in Vicia faba L.

    PubMed

    Singh, Aradhana; Srivastava, Anjil Kumar; Singh, Ashok Kumar

    2013-12-01

    The present study investigated the possible mediatory role of salicylic acid (SA) in protecting plants from insecticides toxicity. The seeds of Vicia faba var IIVR Selection-1 were treated with different concentrations (1.5, 3.0, and 6.0 ppm) of the insecticides alphamethrin (AM) and endosulfan (ES) for 6 h with and without 12 h conditioning treatment of SA (0.01 mM). Insecticides treatment caused a significant decrease in mitotic index (MI) and induction of different types of chromosomal abnormalities in the meristematic cells of broad bean roots. Pretreatment of seeds with SA resulted in increased MI and significant reduction of chromosomal abnormalities. SA application also regulated proline accumulation and carotenoid content in the leaf tissues. SA resulted in the decrement of insecticides induced increase in proline content and increased the carotenoids content. These results illustrate the ameliorating effect of SA under stress conditions and reveal that SA is more effective in alleviating the toxic effects of insecticides at higher concentrations than that at lower concentrations. Copyright © 2011 Wiley Periodicals, Inc.

  9. Salicylic Acid Alleviates the Cadmium Toxicity in Barley Seedlings1

    PubMed Central

    Metwally, Ashraf; Finkemeier, Iris; Georgi, Manfred; Dietz, Karl-Josef

    2003-01-01

    Salicylic acid (SA) plays a key role in plant disease resistance and hypersensitive cell death but is also implicated in hardening responses to abiotic stressors. Cadmium (Cd) exposure increased the free SA contents of barley (Hordeum vulgare) roots by a factor of about 2. Cultivation of dry barley caryopses presoaked in SA-containing solution for only 6 h or single transient addition of SA at a 0.5 mm concentration to the hydroponics solution partially protected the seedlings from Cd toxicity during the following growth period. Both SA treatments had little effect on growth in the absence of Cd, but increased root and shoot length and fresh and dry weight and inhibited lipid peroxidation in roots, as indicated by malondialdehyde contents, in the presence of Cd. To test whether this protection was due to up-regulation of antioxidant enzymes, activities and transcript levels of the H2O2-metabolizing enzymes such as catalase and ascorbate peroxidase were measured in control and SA-treated seedlings in the presence or absence of 25 μm Cd. Cd stress increased the activity of these enzymes by variable extent. SA treatments strongly or completely suppressed the Cd-induced up-regulation of the antioxidant enzyme activities. Slices from leaves treated with SA for 24 h also showed an increased level of tolerance toward high Cd concentrations as indicated by chlorophyll a fluorescence parameters. The results support the conclusion that SA alleviates Cd toxicity not at the level of antioxidant defense but by affecting other mechanisms of Cd detoxification. PMID:12746532

  10. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grownmore » under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic

  11. Efficacy of the addition of salicylic acid to clindamycin and benzoyl peroxide combination for acne vulgaris.

    PubMed

    Akarsu, Sevgi; Fetil, Emel; Yücel, Filiz; Gül, Eylem; Güneş, Ali T

    2012-05-01

    Clindamycin phosphate (CDP), benzoyl peroxide (BPO) and salicylic acid (SA) are known to be effective acne therapy agents depending on their anti-inflammatory and comedolytic properties. The purpose of this study was to investigate the efficacy and tolerability of the addition of SA treatment to CDP and BPO (SA and CDP + BPO) and compare it with CDP + BPO in patients with mild to moderate facial acne vulgaris. Forty-nine patients were enrolled in a 12 week prospective, single-blind, randomized, comparative clinical study. Efficacy was assessed by lesion counts, global improvement, quality of life index and measurements of skin barrier functions. Local side effects were also evaluated. Both combinations were effective in reducing total lesion (TL), inflammatory lesion (IL) and non-inflammatory lesion (NIL) counts. There were statistically significant differences between treatment groups for reductions in NIL counts beyond 2 weeks, IL counts and TL counts throughout the all study weeks, and global improvement scores evaluated by patients and investigator at the end of the study in favor of SA and CDP + BPO treatment when compared to CDP + BPO treatment. Both combinations significantly decreased stratum corneum hydration, although skin sebum values decreased with SA and CDP + BPO treatment. These combinations were also well tolerated except significantly higher frequency of mild to moderate transient dryness in patients applied SA and CDP + BPO. The addition of SA to CDP + BPO treatment demonstrated significantly better and faster results in terms of reductions in acne lesion counts and well tolerated except for higher frequency of mild to moderate transient dryness. © 2011 Japanese Dermatological Association.

  12. Efficacy of Organic Acids in Hand Cleansers for Prevention of Rhinovirus Infections

    PubMed Central

    Turner, Ronald B.; Biedermann, Kim A.; Morgan, Jeffery M.; Keswick, Bruce; Ertel, Keith D.; Barker, Mark F.

    2004-01-01

    Direct hand-to-hand contact is an important mechanism of transmission of rhinovirus infection. The rhinoviruses are inactivated at a low pH. A survey of organic acids in vitro revealed that these compounds have antirhinoviral activity that persists for at least 3 h after application to the skin. In additional studies of salicylic acid (SA) and pyroglutamic acid (PGA), the hands of volunteers were contaminated with rhinovirus at defined times after application of the acid, and then volunteers attempted to inoculate the nasal mucosa with one hand and quantitative viral cultures were done on the other hand. In one study, 3.5% SA or 1% SA with 3.5% PGA was compared with controls 15 min after application to assess the efficacy of the inactivation of virus and prevention of infection. Virus was recovered from the hands of 28 out of 31 (90%) of the volunteers in the control group compared to 4 out of 27 (15%) and 0 out of 27 in the groups administered 3.5 and 1% SA, respectively (P < 0.05). Rhinovirus infection occurred in 10 out of 31 (32%) of the controls and 2 out of 27 (7%) of volunteers in both treatment groups (P < 0.05 compared with control). In a second study, the efficacy of 4% PGA was evaluated 15 min, 1 h, and 3 h after application. Significantly fewer volunteers had positive hand cultures at all time points compared with the control group, but the proportion that developed rhinovirus infection was not significantly reduced. These results suggest the feasibility of the prevention of rhinovirus transmission by hand treatments that are virucidal on contact and have activity that persists after application. PMID:15215114

  13. SA-Search: a web tool for protein structure mining based on a Structural Alphabet

    PubMed Central

    Guyon, Frédéric; Camproux, Anne-Claude; Hochez, Joëlle; Tufféry, Pierre

    2004-01-01

    SA-Search is a web tool that can be used to mine for protein structures and extract structural similarities. It is based on a hidden Markov model derived Structural Alphabet (SA) that allows the compression of three-dimensional (3D) protein conformations into a one-dimensional (1D) representation using a limited number of prototype conformations. Using such a representation, classical methods developed for amino acid sequences can be employed. Currently, SA-Search permits the performance of fast 3D similarity searches such as the extraction of exact words using a suffix tree approach, and the search for fuzzy words viewed as a simple 1D sequence alignment problem. SA-Search is available at http://bioserv.rpbs.jussieu.fr/cgi-bin/SA-Search. PMID:15215446

  14. SA-Search: a web tool for protein structure mining based on a Structural Alphabet.

    PubMed

    Guyon, Frédéric; Camproux, Anne-Claude; Hochez, Joëlle; Tufféry, Pierre

    2004-07-01

    SA-Search is a web tool that can be used to mine for protein structures and extract structural similarities. It is based on a hidden Markov model derived Structural Alphabet (SA) that allows the compression of three-dimensional (3D) protein conformations into a one-dimensional (1D) representation using a limited number of prototype conformations. Using such a representation, classical methods developed for amino acid sequences can be employed. Currently, SA-Search permits the performance of fast 3D similarity searches such as the extraction of exact words using a suffix tree approach, and the search for fuzzy words viewed as a simple 1D sequence alignment problem. SA-Search is available at http://bioserv.rpbs.jussieu.fr/cgi-bin/SA-Search.

  15. Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation.

    PubMed

    Koch, J R; Creelman, R A; Eshita, S M; Seskar, M; Mullet, J E; Davis, K R

    2000-06-01

    Our earlier studies demonstrated that the ozone-sensitive hybrid poplar clone NE-388 displays an attenuated level of ozone-, wound-, and phytopathogen-induced defense gene expression. To determine if this reduced gene activation involves signal transduction pathways dependent on salicylic acid (SA) and/or jasmonic acid (JA), we compared the responses of NE-388 and an ozone-tolerant clone, NE-245, to these signal molecules. JA levels increased in both clones in response to ozone, but only minimal increases in SA levels were measured for either clone. Treatment with SA and methyl jasmonate induced defense gene expression only in NE-245, indicating that NE-388 is insensitive to these signal molecules. DNA fragmentation, an indicator of programmed cell death (PCD), was detected in NE-245 treated with either ozone or an avirulent phytopathogen, but was not detected in NE-388. We conclude that these clones undergo two distinct mechanisms of ozone-induced lesion formation. In NE-388, lesions appear to be due to toxic cell death resulting from a limited ability to perceive and subsequently activate SA- and/or JA-mediated antioxidant defense responses. In NE-245, SA-dependent PCD precedes lesion formation via a process related to the PCD pathway activated by phytopathogenic bacteria. These results support the hypothesis that ozone triggers a hypersensitive response.

  16. New Topical Treatment Options for Actinic Keratosis: A Systematic Review.

    PubMed

    Stockfleth, Eggert; Sibbring, Gillian C; Alarcon, Ivette

    2016-01-01

    This systematic review compared the relative efficacy of 5-fluorouracil 0.5% in salicylic acid 10% (5-FU/SA), ingenol mebutate (IMB) and imiquimod 2.5%/3.75% (IMI) for actinic keratosis on the face, forehead or scalp. Only 11 publications, relating to 7 randomised controlled trials, met inclusion criteria and it was only possible to compare the effect of all 3 treatments on complete clinical clearance, and the effect of 5-FU/SA and IMB on actinic keratosis recurrence rate. Despite a higher vehicle response rate for 5-FU/SA, complete clinical clearance was higher than IMB and IMI (55.4, 42.2, and 25.0-30.6/34.0-35.6%, [corrected] respectively). 5-FU/SA was also associated with lower actinic keratosis recurrence rate than IMB at 12 months post-treatment (32.7 vs. 53.9%). Although qualitative assessment suggested a numerical advantage of 5-FU/SA over IMB and IMI in terms of complete clinical clearance and sustained clearance, clinical data from longer term trials, with comparable outcome measures, are required to corroborate these findings.

  17. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli.

    PubMed

    Lin, Yuheng; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2014-05-01

    cis,cis-Muconic acid (MA) and salicylic acid (SA) are naturally-occurring organic acids having great commercial value. MA is a potential platform chemical for the manufacture of several widely-used consumer plastics; while SA is mainly used for producing pharmaceuticals (for example, aspirin and lamivudine) and skincare and haircare products. At present, MA and SA are commercially produced by organic chemical synthesis using petro-derived aromatic chemicals, such as benzene, as starting materials, which is not environmentally friendly. Here, we report a novel approach for efficient microbial production of MA via extending shikimate pathway by introducing the hybrid of an SA biosynthetic pathway with its partial degradation pathway. First, we engineered a well-developed phenylalanine producing Escherichia coli strain into an SA overproducer by introducing isochorismate synthase and isochorismate pyruvate lyase. The engineered strain is able to produce 1.2g/L of SA from simple carbon sources, which is the highest titer reported so far. Further, the partial SA degradation pathway involving salicylate 1-monoxygenase and catechol 1,2-dioxygenase is established to achieve the conversion of SA to MA. Finally, a de novo MA biosynthetic pathway is assembled by integrating the established SA biosynthesis and degradation modules. Modular optimization enables the production of up to 1.5g/L MA within 48h in shake flasks. This study not only establishes an efficient microbial platform for the production of SA and MA, but also demonstrates a generalizable pathway design strategy for the de novo biosynthesis of valuable degradation metabolites. Copyright © 2014. Published by Elsevier Inc.

  18. Treatment of menorrhagia during menstruation: randomised controlled trial of ethamsylate, mefenamic acid, and tranexamic acid.

    PubMed Central

    Bonnar, J.; Sheppard, B. L.

    1996-01-01

    OBJECTIVE: To compare the efficacy and acceptability of ethamsylate, mefenamic acid, and tranexamic acid for treating menorrhagia. DESIGN: Randomised controlled trial. SETTING: A university department of obstetrics and gynaecology. SUBJECTS: 76 women with dysfunctional uterine bleeding. INTERVENTIONS: Treatment for five days from day 1 of menses during three consecutive menstrual periods. 27 patients were randomised to take ethamsylate 500 mg six hourly, 23 patients to take mefenamic acid 500 mg eight hourly, and 26 patients to take tranexamic acid 1 g six hourly. MAIN OUTCOMES MEASURES: Menstrual loss measured by the alkaline haematin method in three control menstrual periods and three menstrual periods during treatment; duration of bleeding; patient's estimation of blood loss; sanitary towel usage; the occurrence of dysmenorrhoea; and unwanted events. RESULTS: Ethamsylate did not reduce mean menstrual blood loss whereas mefenamic acid reduced blood loss by 20% (mean blood loss 186 ml before treatment, 148 ml during treatment) and tranexamic acid reduced blood loss by 54% (mean blood loss 164 ml before treatment, 75 ml during treatment). Sanitary towel usage was significantly reduced in patients treated with mefenamic acid and tranexamic acid. CONCLUSIONS: Tranexamic acid given during menstruation is a safe and highly effective treatment for excessive bleeding. Patients with dysfunctional uterine bleeding should be offered medical treatment with tranexamic acid before a decision is made about surgery. PMID:8806245

  19. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa

    PubMed Central

    Shen, Wenbiao

    2012-01-01

    This work examines the involvement of haem oxygenase-1 (HO-1) in salicylic acid (SA)-induced alleviation of oxidative stress as a result of cadmium (Cd) stress in alfalfa (Medicago sativa L.) seedling roots. CdCl2 exposure caused severe growth inhibition and Cd accumulation, which were potentiated by pre-treatment with zinc protoporphyrin (ZnPPIX), a potent HO-1 inhibitor. Pre-treatment of plants with the HO-1 inducer haemin or SA, both of which could induce MsHO1 gene expression, significantly reduced the inhibition of growth and Cd accumulation. The alleviation effects were also evidenced by a decreased content of thiobarbituric acid-reactive substances (TBARS). The antioxidant behaviour was confirmed by histochemical staining for the detection of lipid peroxidation and the loss of plasma membrane integrity. Furthermore, haemin and SA pre-treatment modulated the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), and guaiacol peroxidase (POD), or their corresponding transcripts. Significant enhancement of the ratios of reduced/oxidized homoglutathione (hGSH), ascorbic acid (ASA)/dehydroascorbate (DHA), and NAD(P)H/NAD(P)+, and expression of their metabolism genes was observed, consistent with a decreased reactive oxygen species (ROS) distribution in the root tips. These effects are specific for HO-1, since ZnPPIX blocked the above actions, and the aggravated effects triggered by SA plus ZnPPIX were differentially reversed when carbon monoxide (CO) or bilirubin (BR), two catalytic by-products of HO-1, was added. Together, the results suggest that HO-1 is involved in the SA-induced alleviation of Cd-triggered oxidative stress by re-establishing redox homeostasis. PMID:22915740

  20. Ozone Sensitivity in Hybrid Poplar Correlates with Insensitivity to Both Salicylic Acid and Jasmonic Acid. The Role of Programmed Cell Death in Lesion Formation1

    PubMed Central

    Koch, Jennifer Riehl; Creelman, Robert A.; Eshita, Steven M.; Seskar, Mirjana; Mullet, John E.; Davis, Keith R.

    2000-01-01

    Our earlier studies demonstrated that the ozone-sensitive hybrid poplar clone NE-388 displays an attenuated level of ozone-, wound-, and phytopathogen-induced defense gene expression. To determine if this reduced gene activation involves signal transduction pathways dependent on salicylic acid (SA) and/or jasmonic acid (JA), we compared the responses of NE-388 and an ozone-tolerant clone, NE-245, to these signal molecules. JA levels increased in both clones in response to ozone, but only minimal increases in SA levels were measured for either clone. Treatment with SA and methyl jasmonate induced defense gene expression only in NE-245, indicating that NE-388 is insensitive to these signal molecules. DNA fragmentation, an indicator of programmed cell death (PCD), was detected in NE-245 treated with either ozone or an avirulent phytopathogen, but was not detected in NE-388. We conclude that these clones undergo two distinct mechanisms of ozone-induced lesion formation. In NE-388, lesions appear to be due to toxic cell death resulting from a limited ability to perceive and subsequently activate SA- and/or JA-mediated antioxidant defense responses. In NE-245, SA-dependent PCD precedes lesion formation via a process related to the PCD pathway activated by phytopathogenic bacteria. These results support the hypothesis that ozone triggers a hypersensitive response. PMID:10859179

  1. Quantitative Proteomic Profiling of Early and Late Responses to Salicylic Acid in Cucumber Leaves

    PubMed Central

    Li, Liang; Shang, Qing-Mao

    2016-01-01

    Salicylic acid (SA) is an important phytohormone that plays vital regulatory roles in plant growth, development, and stress responses. However, studies on the molecular mechanism of SA, especially during the early SA responses, are lagging behind. In this study, we initiated a comprehensive isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to explore the early and late SA-responsive proteins in leaves of cucumber (Cucumis sativus L.) seedlings. Upon SA application through the roots, endogenous SA accumulated in cucumber leaves. By assaying the changes in marker gene expression and photosynthetic rate, we collected samples at 12 h and 72 h post treatment (hpt) to profile the early and late SA responsiveness, respectively. The iTRAQ assay followed by tandem mass spectrometry revealed 135 differentially expressed proteins (DEPs) at 12 hpt and 301 DEPs at 72 hpt. The functional categories for these SA-responsive proteins included in a variety of biochemical processes, including photosynthesis, redox homeostasis, carbohydrate and energy metabolism, lipid metabolism, transport, protein folding and modification, proteolysis, cell wall organization, and the secondary phenylpropanoid pathway. Conclusively, based on the abundant changes of these DEPs, together with their putative functions, we proposed a possible SA-responsive protein network. It appears that SA could elicit reactive oxygen species (ROS) production via enhancing the photosynthetic electron transferring, and then confer some growth-promoting and stress-priming effects on cells during the late phase, including enhanced photosynthesis and ROS scavenging, altered carbon metabolic flux for the biosynthesis of amino acids and nucleotides, and cell wall reorganization. Overall, the present iTRAQ assay provides higher proteome coverage and deepened our understanding of the molecular basis of SA-responses. PMID:27551830

  2. Comparative study of buffered 50% glycolic acid (pH 3.0) + 0.5% salicylic acid solution vs Jessner's solution in patients with acne vulgaris.

    PubMed

    In Jae, Jeong; Dong Ju, Hyun; Dong Hyun, Kim; Yoon, Moon Soo; Lee, Hee Jung

    2017-11-21

    Superficial chemical peels are frequently used in acne vulgaris treatment. Although glycolic acid (GA) has been widely used in clinical practice, its pH ranges from 0.08-2.75 and thus should be neutralized after application to avoid burns. To evaluate treatment efficacy and safety of chemical peeling using buffered 50% GA (pH 3.0) + 0.5% salicylic acid (SA) solution that does not need to be neutralized in the treatment of acne vulgaris compared to the conventional peeling using Jessner's solution. We performed a prospective, randomized, evaluator-blind, split-face clinical trial. Twenty patients were randomized by assigning one side of each patient's face to receive a 50% GA (pH 3.0) + 0.5% SA peel (GA side) and the other side to receive the Jessner's solution (Jessner's solution side). All patients underwent 2 sessions of treatment spaced 2 weeks apart. Lesion count, acne severity, subjective efficacy assessment, and side effects were evaluated. The total lesion count was significantly reduced for the GA and Jessner's solution sides (P < .001). However, there was no significant difference in the total lesion count, acne severity, or subjective efficacy assessment between the 2 sides (P > .05). The GA side had fewer side effects than the Jessner's solution side. The results of this study suggest that chemical peeling using the 50% GA (pH 3.0) + 0.5% SA solution can be as effective and convenient as the conventional peeling using Jessner's solution in the treatment of acne vulgaris and may show fewer adverse events than the conventional peeling. © 2017 Wiley Periodicals, Inc.

  3. Protection of ultrastructure in chilling-stressed banana leaves by salicylic acid*

    PubMed Central

    Kang, Guo-zhang; Wang, Zheng-xun; Xia, Kuai-fei; Sun, Gu-chou

    2007-01-01

    Objective: Chilling tolerance of salicylic acid (SA) in banana seedlings (Musa acuminata cv., Williams 8818) was investigated by changes in ultrastructure in this study. Methods: Light and electron microscope observation. Results: Pretreatment with 0.5 mmol/L SA under normal growth conditions (30/22 °C) by foliar spray and root irrigation resulted in many changes in ultrastructure of banana cells, such as cells separation from palisade parenchymas, the appearance of crevices in cell walls, the swelling of grana and stromal thylakoids, and a reduction in the number of starch granules. These results implied that SA treatment at 30/22 °C could be a type of stress. During 3 d of exposure to 7 °C chilling stress under low light, however, cell ultrastructure of SA-pretreated banana seedlings showed less deterioration than those of control seedlings (distilled water-pretreated). Conclusion: SA could provide some protection for cell structure of chilling-stressed banana seedling. PMID:17444604

  4. Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease.

    PubMed

    Lovelock, David A; Šola, Ivana; Marschollek, Sabine; Donald, Caroline E; Rusak, Gordana; van Pée, Karl-Heinz; Ludwig-Müller, Jutta; Cahill, David M

    2016-10-01

    Salicylic acid (SA) biosynthesis, the expression of SA-related genes and the effect of SA on the Arabidopsis-Plasmodiophora brassicae interaction were examined. Biochemical analyses revealed that, in P. brassicae-infected Arabidopsis, the majority of SA is synthesized from chorismate. Real-time monitored expression of a gene for isochorismate synthase was induced on infection. SA can be modified after accumulation, either by methylation, improving its mobility, or by glycosylation, as one possible reaction for inactivation. Quantitative reverse transcription-polymerase chain reaction (qPCR) confirmed the induction of an SA methyltransferase gene, whereas SA glucosyltransferase expression was not changed after infection. Col-0 wild-type (wt) did not provide a visible phenotypic resistance response, whereas the Arabidopsis mutant dnd1, which constitutively activates the immune system, showed reduced gall scores. As dnd1 showed control of the pathogen, exogenous SA was applied to Arabidopsis in order to test whether it could suppress clubroot. In wt, sid2 (SA biosynthesis), NahG (SA-deficient) and npr1 (SA signalling-impaired) mutants, SA treatment did not alter the gall score, but positively affected the shoot weight. This suggests that SA alone is not sufficient for Arabidopsis resistance against P. brassicae. Semi-quantitative PCR revealed that wt, cpr1, dnd1 and sid2 showed elevated PR-1 expression on P. brassicae and SA + P. brassicae inoculation at 2 and 3 weeks post-inoculation (wpi), whereas NahG and npr1 showed no expression. This work contributes to the understanding of SA involvement in the Arabidopsis-P. brassicae interaction. © 2015 BSPP and John Wiley & Sons Ltd.

  5. Down Regulation of Virulence Factors of Pseudomonas aeruginosa by Salicylic Acid Attenuates Its Virulence on Arabidopsis thaliana and Caenorhabditis elegans

    PubMed Central

    Prithiviraj, B.; Bais, H. P.; Weir, T.; Suresh, B.; Najarro, E. H.; Dayakar, B. V.; Schweizer, H. P.; Vivanco, J. M.

    2005-01-01

    Salicylic acid (SA) is a phenolic metabolite produced by plants and is known to play an important role in several physiological processes, such as the induction of plant defense responses against pathogen attack. Here, using the Arabidopsis thaliana-Pseudomonas aeruginosa pathosystem, we provide evidence that SA acts directly on the pathogen, down regulating fitness and virulence factor production of the bacteria. Pseudomonas aeruginosa PA14 showed reduced attachment and biofilm formation on the roots of the Arabidopsis mutants lox2 and cpr5-2, which produce elevated amounts of SA, as well as on wild-type Arabidopsis plants primed with exogenous SA, a treatment known to enhance endogenous SA concentration. Salicylic acid at a concentration that did not inhibit PA14 growth was sufficient to significantly affect the ability of the bacteria to attach and form biofilm communities on abiotic surfaces. Furthermore, SA down regulated three known virulence factors of PA14: pyocyanin, protease, and elastase. Interestingly, P. aeruginosa produced more pyocyanin when infiltrated into leaves of the Arabidopsis transgenic line NahG, which accumulates less SA than wild-type plants. This finding suggests that endogenous SA plays a role in down regulating the synthesis and secretion of pyocyanin in vivo. To further test if SA directly affects the virulence of P. aeruginosa, we used the Caenorhabiditis elegans-P. aeruginosa infection model. The addition of SA to P. aeruginosa lawns significantly diminished the bacterium's ability to kill the worms, without affecting the accumulation of bacteria inside the nematodes' guts, suggesting that SA negatively affects factors that influence the virulence of P. aeruginosa. We employed microarray technology to identify SA target genes. These analyses showed that SA treatment affected expression of 331 genes. It selectively repressed transcription of exoproteins and other virulence factors, while it had no effect on expression of housekeeping

  6. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis

    PubMed Central

    Westfall, Corey S.; Sherp, Ashley M.; Zubieta, Chloe; Alvarez, Sophie; Schraft, Evelyn; Marcellin, Romain; Ramirez, Loren; Jez, Joseph M.

    2016-01-01

    In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenylacetic acid (PAA) and the potential SA precursor benzoic acid (BA). Residues that determine IAA versus BA substrate preference were identified. The dual functionality of AtGH3.5 is unique to this enzyme although multiple IAA-conjugating GH3 proteins share nearly identical acyl acid binding sites. In planta analysis of IAA, PAA, SA, and BA and their respective aspartyl conjugates were determined in wild-type and overexpressing lines of A. thaliana. This study suggests that AtGH3.5 conjugates auxins (i.e., IAA and PAA) and benzoates (i.e., SA and BA) to mediate crosstalk between different metabolic pathways, broadening the potential roles for GH3 acyl acid amido synthetases in plants. PMID:27849615

  7. Hydrolysis of substance P in the presence of the osteosarcoma cell line SaOS-2: release of free amino acids.

    PubMed

    Cavazza, Antonella; Marini, Mario; Roda, L Giorgio; Tarantino, Umberto; Valenti, Angela

    2011-12-01

    The possible hydrolysis of substance P (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met) in presence of the osteoblastic cell line SaOS-2 was measured by capillary electrophoresis coupled to mass detection. The results obtained indicate that a very rapid disappearance of the intact undecapeptide was associated to a slower appearance of seven of its eight component amino acids. These results can be interpreted as indicating that an extremely fast hydrolysis of substance P by endopeptidases, which released peptidic by-products, was followed by a noticeably slower secondary degradation which released free amino acids. In decreasing quantitative importance, these phenomena appear to originate by the hydrolysis of the Pro(4)-Gln(5) bond, followed by C-terminal sequential degradation of the Arg(1)-Pro(4) tetrapeptide; by the hydrolysis of or Phe(7)-Phe(8) bond (or, possibly, of Gln(6)-Phe(7)) leading to release of free Phe and Gln; by hydrolysis of the Gly(9)-Leu(10) bond with subsequent release of Met and Leu. Results obtained appear to be compatible with the expression by SaOS-2 cells of enzymes already known to catalyze substance P hydrolysis, together with an apparent low efficiency of aminopeptidases. Because of the activity of C-terminal fragments on NK1 receptors, the delay between primary hydrolysis of substance P and secondary hydrolysis of its peptidic fragments indicated by the data shown implies a possible persistence of substance P physiological effects even after degradation of the intact peptide.

  8. Simultaneous Determination of Gallic Acid, Ellagic Acid, and Eugenol in Syzygium aromaticum and Verification of Chemical Antagonistic Effect by the Combination with Curcuma aromatica Using Regression Analysis

    PubMed Central

    Seo, Chang-Seob; Kim, Seong-Sil; Ha, Hyekyung

    2013-01-01

    This study was designed to perform simultaneous determination of three reference compounds in Syzygium aromaticum (SA), gallic acid, ellagic acid, and eugenol, and to investigate the chemical antagonistic effect when combining Curcuma aromatica (CA) with SA, based on chromatographic analysis. The values of LODs and LOQs were 0.01–0.11 μg/mL and 0.03–0.36 μg/mL, respectively. The intraday and interday precisions were <3.0 of RSD values, and the recovery was in the range of 92.19–103.24%, with RSD values <3.0%. Repeatability and stability were 0.38–0.73% and 0.49–2.24%, respectively. Compared with the content of reference and relative peaks in SA and SA combined with CA (SAC), the amounts of gallic acid and eugenol were increased, while that of ellagic acid was decreased in SAC (compared with SA), and most of peak areas in SA were reduced in SAC. Regression analysis of the relative peak areas between SA and SAC showed r 2 values >0.87, indicating a linear relationship between SA and SAC. These results demonstrate that the components contained in CA could affect the extraction of components of SA mainly in a decreasing manner. The antagonistic effect of CA on SA was verified by chemical analysis. PMID:23878761

  9. Redox Signaling and CBF-Responsive Pathway Are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon

    PubMed Central

    Cheng, Fei; Lu, Junyang; Gao, Min; Shi, Kai; Kong, Qiusheng; Huang, Yuan; Bie, Zhilong

    2016-01-01

    Salicylic acid (SA) plays an important role in plant response to abiotic stresses. This study investigated the potential role of SA in alleviating the adverse effects of chilling stress on photosynthesis and growth in watermelon (Citrullus lanatus). Chilling stress induced the simultaneous accumulation of free and conjugated SA in watermelon plants, and the chilling-induced SA production was attributed to the phenylalanine ammonia-lyase pathway. Applying SA at moderate concentrations induced chilling tolerance, whereas inhibition of SA biosynthesis by L-α-aminooxy-β-phenylpropionic acid (AOPP) increased the photooxidation of PS II under chilling stress in watermelon, resulting in reduced photosynthesis and growth. Chilling induced a transient increase in the ratios of reduced to oxidized glutathione and reduced ascorbate to dehydroascorbate. Then, the expression of antioxidant genes was upregulated, and the activities of antioxidant enzymes were enhanced. Furthermore, SA-induced chilling tolerance was associated with cellular glutathione and ascorbate homeostasis, which served as redox signals to regulate antioxidant metabolism under chilling stress. AOPP treatment stimulated the chilling-induced expression of cold-responsive genes, particularly via C-repeat binding factors CBF3 and CBF4. These results confirm the synergistic role of SA signaling and the CBF-dependent responsive pathway during chilling stress in watermelon. PMID:27777580

  10. Salicylic Acid Attenuates Gentamicin-Induced Nephrotoxicity in Rats

    PubMed Central

    Randjelovic, Pavle; Veljkovic, Slavimir; Stojiljkovic, Nenad; Jankovic-Velickovic, Ljubinka; Sokolovic, Dusan; Stoiljkovic, Milan; Ilic, Ivan

    2012-01-01

    Gentamicin (GM) is a widely used antibiotic against serious and life-threatening infections, but its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine the protective effect of salicylic acid (SA) in gentamicin-induced nephrotoxicity in rats. Quantitative evaluation of gentamicin-induced structural alterations and degree of functional alterations in the kidneys were performed by histopathological and biochemical analyses in order to determine potential beneficial effects of SA coadministration with gentamicin. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of serum urea and creatinine levels. The significant increases in malondialdehyde (MDA) levels and protein carbonyl groups indicated that GM-induced tissue injury was mediated through oxidative reactions. On the other hand, simultaneous SA administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GM treatment. Exposure to GM caused necrosis of tubular epithelial cells. Necrosis of tubules was found to be prevented by SA pretreatment. The results from our study indicate that SA supplement attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation in gentamicin-treated rats. PMID:22666115

  11. Metabolic engineering of Escherichia coli to enhance shikimic acid production from sorbitol.

    PubMed

    Liu, Xianglei; Lin, Jun; Hu, Haifeng; Zhou, Bin; Zhu, Baoquan

    2014-09-01

    Shikimic acid (SA) is the key synthetic material of Oseltamivir, which is an effective drug for the prevention and treatment of influenza. In this study, to block the downstream metabolic pathway of SA, the shikimate kinase isoenzyme genes aroK and aroL were deleted by Red recombination. Moreover, the key enzyme genes aroG, aroB, tktA and aroE of SA pathway were co-expressed by constructing the recombinant vector pETDuet-GBAE. As a result, SA production of E. coli BW25113 (∆aroL/aroK, DE3)/pETDuet-GBAE reached 1,077.6 mg/l when low amounts of sorbitol (5 g/l) were fed in shake flasks. The yield was 3.7 times that when glucose was used (P < 0.05). The results showed that sorbitol was an optimized carbon source for the high efficient accumulation of SA for the first time, which was applicable to use in the industry for high yields and low consumption.

  12. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana.

    PubMed

    Zhu, Feng; Xi, De-Hui; Yuan, Shu; Xu, Fei; Zhang, Da-Wei; Lin, Hong-Hui

    2014-06-01

    Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato. However, other experiments indicate that jasmonic acid (JA) is a critical mobile signal. Here, we present evidence suggesting both MeSA and methyl jasmonate (MeJA) are essential for systemic resistance against Tobacco mosaic virus (TMV), possibly acting as the initiating signals for systemic resistance. Foliar application of JA followed by SA triggered the strongest systemic resistance against TMV. Furthermore, we use a virus-induced gene-silencing-based genetics approach to investigate the function of JA and SA biosynthesis or signaling genes in systemic response against TMV infection. Silencing of SA or JA biosynthetic and signaling genes in Nicotiana benthamiana plants increased susceptibility to TMV. Genetic experiments also proved the irreplaceable roles of MeSA and MeJA in systemic resistance response. Systemic resistance was compromised when SA methyl transferase or JA carboxyl methyltransferase, which are required for MeSA and MeJA formation, respectively, were silenced. Moreover, high-performance liquid chromatography-mass spectrometry analysis indicated that JA and MeJA accumulated in phloem exudates of leaves at early stages and SA and MeSA accumulated at later stages, after TMV infection. Our data also indicated that JA and MeJA could regulate MeSA and SA production. Taken together, our results demonstrate that (Me)JA and (Me)SA are required for systemic resistance response against TMV.

  13. Metabolic Engineering of Actinobacillus succinogenes Provides Insights into Succinic Acid Biosynthesis

    PubMed Central

    Guarnieri, Michael T.; Chou, Yat-Chen; Salvachúa, Davinia; Mohagheghi, Ali; St. John, Peter C.; Peterson, Darren J.; Bomble, Yannick J.

    2017-01-01

    ABSTRACT Actinobacillus succinogenes, a Gram-negative facultative anaerobe, exhibits the native capacity to convert pentose and hexose sugars to succinic acid (SA) with high yield as a tricarboxylic acid (TCA) cycle intermediate. In addition, A. succinogenes is capnophilic, incorporating CO2 into SA, making this organism an ideal candidate host for conversion of lignocellulosic sugars and CO2 to an emerging commodity bioproduct sourced from renewable feedstocks. In this work, we report the development of facile metabolic engineering capabilities in A. succinogenes, enabling examination of SA flux determinants via knockout of the primary competing pathways—namely, acetate and formate production—and overexpression of the key enzymes in the reductive branch of the TCA cycle leading to SA. Batch fermentation experiments with the wild-type and engineered strains using pentose-rich sugar streams demonstrate that the overexpression of the SA biosynthetic machinery (in particular, the enzyme malate dehydrogenase) enhances flux to SA. Additionally, removal of competitive carbon pathways leads to higher-purity SA but also triggers the generation of by-products not previously described from this organism (e.g., lactic acid). The resultant engineered strains also lend insight into energetic and redox balance and elucidate mechanisms governing organic acid biosynthesis in this important natural SA-producing microbe. IMPORTANCE Succinic acid production from lignocellulosic residues is a potential route for enhancing the economic feasibility of modern biorefineries. Here, we employ facile genetic tools to systematically manipulate competing acid production pathways and overexpress the succinic acid-producing machinery in Actinobacillus succinogenes. Furthermore, the resulting strains are evaluated via fermentation on relevant pentose-rich sugar streams representative of those from corn stover. Overall, this work demonstrates genetic modifications that can lead to succinic

  14. Metabolic Engineering of Actinobacillus succinogenes Provides Insights into Succinic Acid Biosynthesis.

    PubMed

    Guarnieri, Michael T; Chou, Yat-Chen; Salvachúa, Davinia; Mohagheghi, Ali; St John, Peter C; Peterson, Darren J; Bomble, Yannick J; Beckham, Gregg T

    2017-09-01

    Actinobacillus succinogenes , a Gram-negative facultative anaerobe, exhibits the native capacity to convert pentose and hexose sugars to succinic acid (SA) with high yield as a tricarboxylic acid (TCA) cycle intermediate. In addition, A. succinogenes is capnophilic, incorporating CO 2 into SA, making this organism an ideal candidate host for conversion of lignocellulosic sugars and CO 2 to an emerging commodity bioproduct sourced from renewable feedstocks. In this work, we report the development of facile metabolic engineering capabilities in A. succinogenes , enabling examination of SA flux determinants via knockout of the primary competing pathways-namely, acetate and formate production-and overexpression of the key enzymes in the reductive branch of the TCA cycle leading to SA. Batch fermentation experiments with the wild-type and engineered strains using pentose-rich sugar streams demonstrate that the overexpression of the SA biosynthetic machinery (in particular, the enzyme malate dehydrogenase) enhances flux to SA. Additionally, removal of competitive carbon pathways leads to higher-purity SA but also triggers the generation of by-products not previously described from this organism (e.g., lactic acid). The resultant engineered strains also lend insight into energetic and redox balance and elucidate mechanisms governing organic acid biosynthesis in this important natural SA-producing microbe. IMPORTANCE Succinic acid production from lignocellulosic residues is a potential route for enhancing the economic feasibility of modern biorefineries. Here, we employ facile genetic tools to systematically manipulate competing acid production pathways and overexpress the succinic acid-producing machinery in Actinobacillus succinogenes Furthermore, the resulting strains are evaluated via fermentation on relevant pentose-rich sugar streams representative of those from corn stover. Overall, this work demonstrates genetic modifications that can lead to succinic acid

  15. Metabolic Engineering of Actinobacillus succinogenes Provides Insights into Succinic Acid Biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarnieri, Michael T.; Chou, Yat -Chen; Salvachua, Davinia Rodriquez

    Actinobacillus succinogenes, a Gram-negative facultative anaerobe, exhibits the native capacity to convert pentose and hexose sugars to succinic acid (SA) with high yield as a tricarboxylic acid (TCA) cycle intermediate. In addition, A. succinogenes is capnophilic, incorporating CO 2 into SA, making this organism an ideal candidate host for conversion of lignocellulosic sugars and CO 2 to an emerging commodity bioproduct sourced from renewable feedstocks. In this work, we report the development of facile metabolic engineering capabilities in A. succinogenes, enabling examination of SA flux determinants via knockout of the primary competing pathways—namely, acetate and formate production—and overexpression of themore » key enzymes in the reductive branch of the TCA cycle leading to SA. Batch fermentation experiments with the wild-type and engineered strains using pentose-rich sugar streams demonstrate that the overexpression of the SA biosynthetic machinery (in particular, the enzyme malate dehydrogenase) enhances flux to SA. Additionally, removal of competitive carbon pathways leads to higher-purity SA but also triggers the generation of by-products not previously described from this organism (e.g., lactic acid). The resultant engineered strains also lend insight into energetic and redox balance and elucidate mechanisms governing organic acid biosynthesis in this important natural SA-producing microbe. IMPORTANCE Succinic acid production from lignocellulosic residues is a potential route for enhancing the economic feasibility of modern biorefineries. Here, we employ facile genetic tools to systematically manipulate competing acid production pathways and overexpress the succinic acid-producing machinery in Actinobacillus succinogenes. Furthermore, the resulting strains are evaluated via fermentation on relevant pentose-rich sugar streams representative of those from corn stover. Altogether, this work demonstrates genetic modifications that can lead to succinic

  16. Metabolic Engineering of Actinobacillus succinogenes Provides Insights into Succinic Acid Biosynthesis

    DOE PAGES

    Guarnieri, Michael T.; Chou, Yat -Chen; Salvachua, Davinia Rodriquez; ...

    2017-06-16

    Actinobacillus succinogenes, a Gram-negative facultative anaerobe, exhibits the native capacity to convert pentose and hexose sugars to succinic acid (SA) with high yield as a tricarboxylic acid (TCA) cycle intermediate. In addition, A. succinogenes is capnophilic, incorporating CO 2 into SA, making this organism an ideal candidate host for conversion of lignocellulosic sugars and CO 2 to an emerging commodity bioproduct sourced from renewable feedstocks. In this work, we report the development of facile metabolic engineering capabilities in A. succinogenes, enabling examination of SA flux determinants via knockout of the primary competing pathways—namely, acetate and formate production—and overexpression of themore » key enzymes in the reductive branch of the TCA cycle leading to SA. Batch fermentation experiments with the wild-type and engineered strains using pentose-rich sugar streams demonstrate that the overexpression of the SA biosynthetic machinery (in particular, the enzyme malate dehydrogenase) enhances flux to SA. Additionally, removal of competitive carbon pathways leads to higher-purity SA but also triggers the generation of by-products not previously described from this organism (e.g., lactic acid). The resultant engineered strains also lend insight into energetic and redox balance and elucidate mechanisms governing organic acid biosynthesis in this important natural SA-producing microbe. IMPORTANCE Succinic acid production from lignocellulosic residues is a potential route for enhancing the economic feasibility of modern biorefineries. Here, we employ facile genetic tools to systematically manipulate competing acid production pathways and overexpress the succinic acid-producing machinery in Actinobacillus succinogenes. Furthermore, the resulting strains are evaluated via fermentation on relevant pentose-rich sugar streams representative of those from corn stover. Altogether, this work demonstrates genetic modifications that can lead to succinic

  17. Response of tobacco to the Pseudomonas syringae pv. Tomato DC3000 is mainly dependent on salicylic acid signaling pathway.

    PubMed

    Liu, Yang; Wang, Li; Cai, Guohua; Jiang, Shanshan; Sun, Liping; Li, Dequan

    2013-07-01

    Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) was the first pathogen to be demonstrated to infect Arabidopsis and to cause disease symptoms in the laboratory setting. However, the defense response to Pst DC3000 was unclear in tobacco. In this report, the expression profiles of twelve defense response-related genes were analyzed after treatment with salicylic acid (SA), jasmonic acid (JA), and pathogen Pst DC3000 by qRT-PCR. According to our results, it could be presented that the genes primarily induced by SA were also induced to higher levels after Pst DC3000 infection. SA accumulation could be induced to a higher level than that of JA after Pst DC3000 infection. In addition, SA could result in hypersensitive response (HR), which did not completely depend on accumulation of reactive oxygen species. These results indicated that tobacco mainly depended on SA signaling pathway rather than on JA signaling pathway in response to Pst DC3000. Further study demonstrated that JA could significantly inhibit the accumulation of SA and the generation of the HR induced by Pst DC3000. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Low-dose 5-fluorouracil in combination with salicylic acid for the treatment of actinic keratoses on the hands and/or forearms - results of a non-interventional study.

    PubMed

    Reinhold, U; Hadshiew, I; Melzer, A; Prechtl, A

    2017-03-01

    As an in situ carcinoma, actinic keratoses should be treated early. Previous studies on the efficacy of a low-dose 0.5% 5-fluorouracil solution in combination with 10% salicylic acid (low-dose 5-FU/SA) are mostly related to lesions appearing on the head and face. In contrast, actinic keratoses (AK) lesions of the upper extremities are considered to be difficult to treat. The efficacy of low-dose 5-FU/SA in the treatment of actinic keratoses on the hands and/or forearms was studied for the first time in this non-interventional study (NIS) under practical conditions in a large patient population. In addition to the clinical course during therapy and a follow-up period, the length of application and adherence were documented. As part of this NIS, 649 patients with AK were treated at 207 centres with low-dose 5-FU/SA. The data of the study were recorded at baseline, optionally during an intermediate examination, at the end of therapy and during a final assessment. The average number of AK lesions decreased during the entire observation period by 92%. Side-effects were documented only rarely in the form of local skin reactions (2%). The attending physicians assessed the efficacy, tolerability and safety of the therapy as being predominantly very good or good (in each case ≥90%). AK lesions on the hands and/or forearms were effectively treated with low-dose 5-FU/SA under routine conditions in dermatological practice and the treatment was well tolerated. © 2016 European Academy of Dermatology and Venereology.

  19. Control of Basal Stem Rot Disease in Oil Palm by Supplementation of Calcium, Copper, and Salicylic Acid.

    PubMed

    Bivi, M Shahul Hamid Rahamah; Paiko, Adamu Saidu; Khairulmazmi, Ahmad; Akhtar, M S; Idris, Abu Seman

    2016-10-01

    Continuous supplementation of mineral nutrients and salicylic acid (SA) as foliar application could improve efficacy in controlling basal stem rot (BSR) disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3%) was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA]) (5.0%) followed by T1 (5.5%), T5 (5.8%), T3 (8.3%), T6 (8.3%), T4 (13.3%), and T2 (15.8%) treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease.

  20. Control of Basal Stem Rot Disease in Oil Palm by Supplementation of Calcium, Copper, and Salicylic Acid

    PubMed Central

    Bivi, M. Shahul Hamid Rahamah; Paiko, Adamu Saidu; Khairulmazmi, Ahmad; Akhtar, M. S.; Idris, Abu Seman

    2016-01-01

    Continuous supplementation of mineral nutrients and salicylic acid (SA) as foliar application could improve efficacy in controlling basal stem rot (BSR) disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3%) was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA]) (5.0%) followed by T1 (5.5%), T5 (5.8%), T3 (8.3%), T6 (8.3%), T4 (13.3%), and T2 (15.8%) treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease. PMID:27721689

  1. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  2. Hydrogen Peroxide Is a Second Messenger in the Salicylic Acid-Triggered Adventitious Rooting Process in Mung Bean Seedlings

    PubMed Central

    Yang, Wei; Zhu, Changhua; Ma, Xiaoling; Li, Guijun; Gan, Lijun; Ng, Denny; Xia, Kai

    2013-01-01

    In plants, salicylic acid (SA) is a signaling molecule that regulates disease resistance responses, such as systemic acquired resistance (SAR) and hypertensive response (HR). SA has been implicated as participating in various biotic and abiotic stresses. This study was conducted to investigate the role of SA in adventitious root formation (ARF) in mung bean (Phaseolus radiatus L) hypocotyl cuttings. We observed that hypocotyl treatment with SA could significantly promote the adventitious root formation, and its effects were dose and time dependent. Explants treated with SA displayed a 130% increase in adventitious root number compared with control seedlings. The role of SA in mung bean hypocotyl ARF as well as its interaction with hydrogen peroxide (H2O2) were also elucidated. Pretreatment of mung bean explants with N, N’-dimethylthiourea (DMTU), a scavenger for H2O2, resulted in a significant reduction of SA-induced ARF. Diphenyleneiodonium (DPI), a specific inhibitor of membrane-linked NADPH oxidase, also inhibited the effect of adventitious rooting triggered by SA treatment. The determination of the endogenous H2O2 level indicated that the seedlings treated with SA could induce H2O2 accumulation compared with the control treatment. Our results revealed a distinctive role of SA in the promotion of adventitious rooting via the process of H2O2 accumulation. This conclusion was further supported by antioxidant enzyme activity assays. Based on these results, we conclude that the accumulation of free H2O2 might be a downstream event in response to SA-triggered adventitious root formation in mung bean seedlings. PMID:24386397

  3. Milk production and nutrient digestibility responses to increasing levels of stearic acid supplementation of dairy cows.

    PubMed

    Boerman, J P; de Souza, J; Lock, A L

    2017-04-01

    The objective of our study was to evaluate the dose-response effects of a stearic acid (C18:0)-enriched supplement on nutrient digestibility, production responses, and the maximum amount of C18:0 that can be incorporated into the milk fat of dairy cows. Multiparous Holstein cows (n = 32; 145 ± 66 d in milk) with a wide range in milk yield (30 to 70 kg/d) were blocked by milk yield and assigned to replicated 4 × 4 Latin squares. Treatments were diets supplemented with a C18:0-enriched supplement (SA; 93% C18:0) at 0, 0.80, 1.50, or 2.30% of diet dry matter (DM). Periods were 21 d with the final 5 d used for data and sample collection. Dry matter intake increased linearly as SA supplementation increased. Supplementation of SA had no effect on the yield of milk or milk components. Due to the increase in DM intake, SA linearly reduced the ratio of energy-corrected milk to DM intake. Supplementation of SA did not affect body weight. Increasing SA reduced digestibility of 16-carbon, 18-carbon, and total fatty acids (FA), with the reduction in digestibility of 18-carbon FA being approximately 30 percentage units from the 0.0 to 2.30% SA supplemented diets. Supplementation of SA linearly increased concentrations of preformed milk fatty acids (FA) but did not affect the yield of preformed milk FA. Yields of C18:0 plus cis-9 C18:1 were increased by SA supplementation; however, the increase from 0 to 2.3% SA was only 16 g/d. The concentration and yield of de novo and 16-carbon milk FA were unaffected by SA supplementation. In conclusion, increasing doses of SA decreased FA digestibility and had little effect on production parameters. Although SA increased the yield of C18:0 and cis-9 C18:1 in milk fat, it had no overall effect on milk fat yield. The lack of production responses to a C18:0-enriched fat supplement was most likely associated with the marked decrease in FA digestibility. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights

  4. Synergistic efficacy of salicylic acid with a penetration enhancer on human skin monitored by OCT and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Qingliang; Dai, Cuixia; Fan, Shanhui; Lv, Jing; Nie, Liming

    2016-10-01

    Salicylic acid (SA) has been frequently used as a facial chemical peeling agent (FCPA) in various cosmetics for facial rejuvenation and dermatological treatments in the clinic. However, there is a tradeoff between therapeutic effectiveness and possible adverse effects caused by this agent for cosmetologists. To optimize the cosmetic efficacy with minimal concentration, we proposed a chemical permeation enhancer (CPE) azone to synergistically work with SA on human skin in vivo. The optical properties of human skin after being treated with SA alone and SA combined with azone (SA@azone) were successively investigated by diffuse reflectance spectroscopy (DRS) and optical coherence tomography (OCT). Our results revealed that as the SA concentration increased, the light reflectance decreased and the absorption increased. We also found that SA@azone exhibited a synergistic effect on enhancing light penetration and OCT imaging depth. We demonstrated that the combination of DRS and OCT techniques could be used as a noninvasive, rapid and accurate measurement method to monitor the subtle changes of skin tissue after treatment with FCPA and CPE. The approach will greatly benefit the development of clinical cosmetic surgery, dermatosis diagnosis and therapeutic effect inspection in related biomedical studies.

  5. E-selectin-targeted Sialic Acid-PEG-dexamethasone Micelles for Enhanced Anti-Inflammatory Efficacy for Acute Kidney Injury.

    PubMed

    Hu, Jing-Bo; Kang, Xu-Qi; Liang, Jing; Wang, Xiao-Juan; Xu, Xiao-Ling; Yang, Ping; Ying, Xiao-Ying; Jiang, Sai-Ping; Du, Yong-Zhong

    2017-01-01

    The effective treatment for acute kidney injury (AKI) is currently limited, and care is primarily supportive. Sialic acid (SA) is main component of Sialyl Lewis x antigen on the mammalian cell surface, which participates in E-selectin binding. Therefore, dexamethasone(DXM)-loaded E-selectin-targeting sialic acid-polyethylene glycol-dexamethasone (SA-PEG-DXM/DXM) conjugate micelles are designed for ameliorating AKI. The conjugates are synthesized via the esterification reaction between PEG and SA or DXM, and can spontaneously form micelles in an aqueous solution with a 65.6 µg/mL critical micelle concentration. Free DXM is incorporated into the micelles with 6.28 ± 0.21% drug loading content. In vitro DXM release from SA-PEG-DXM/DXM micelles can be prolonged to 48h. Much more SA-PEG-DXM micelles can be internalized by lipopolysaccharide (LPS)-activated human umbilical vein endothelial cells (HUVECs) in comparison to PEG-DXM micelles due to specific interaction between SA and E-selectin expressed on HUVECs, and consequently more SA-PEG-DXM micelles are accumulated in the kidney of AKI murine model. Furthermore, SA in SA-PEG-DXM conjugates can significantly ameliorate LPS-induced production of pro-inflammatory cytokines via suppressing LPS-activated Beclin-1/Atg5-Atg12-mediated autophagy to attenuate toxicity. Compared with free DXM and PEG-DXM/DXM micelles, SA-PEG-DXM/DXM micelles show better therapeutical effects, as reflected by the improved renal function, histopathological changes, pro-inflammatory cytokines, oxidative stress and expression of apoptotic related proteins.

  6. Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius

    PubMed Central

    Dehghan, Sara; Sadeghi, Mahnaz; Pöppel, Anne; Fischer, Rainer; Lakes-Harlan, Reinhard; Kavousi, Hamid Reza; Vilcinskas, Andreas; Rahnamaeian, Mohammad

    2014-01-01

    Safflower (Carthamus tinctorius L.) serves as a reference dicot for investigation of defence mechanisms in Asteraceae due to abundant secondary metabolites and high resistance/tolerance to environmental stresses. In plants, phenylpropanoid and flavonoid pathways are considered as two central defence signalling cascades in stress conditions. Here, we describe the isolation of two major genes in these pathways, CtPAL (phenylalanine ammonia-lyase) and CtCHS (chalcone synthase) in safflower along with monitoring their expression profiles in different stress circumstances. The aa (amino acid) sequence of isolated region of CtPAL possesses the maximum identity up to 96% to its orthologue in Cynara scolymus, while that of CtCHS retains the highest identity to its orthologue in Callistephus chinensis up to 96%. Experiments for gene expression profiling of CtPAL and CtCHS were performed after the treatment of seedlings with 0.1 and 1 mM SA (salicylic acid), wounding and salinity stress. The results of semi-quantitative RT–PCR revealed that both CtPAL and CtCHS genes are further responsive to higher concentration of SA with dissimilar patterns. Regarding wounding stress, CtPAL gets slightly induced upon injury at 3 hat (hours after treatment) (hat), whereas CtCHS gets greatly induced at 3 hat and levels off gradually afterward. Upon salinity stress, CtPAL displays a similar expression pattern by getting slightly induced at 3 hat, but CtCHS exhibits a biphasic expression profile with two prominent peaks at 3 and 24 hat. These results substantiate the involvement of phenylpropanoid and particularly flavonoid pathways in safflower during wounding and especially salinity stress. PMID:24865400

  7. Effects of salicylic acid, Fe(II) and plant growth-promoting bacteria on Cd accumulation and toxicity alleviation of Cd tolerant and sensitive tomato genotypes.

    PubMed

    Wei, Ting; Lv, Xin; Jia, HongLei; Hua, Li; Xu, HuiHui; Zhou, Ran; Zhao, Jin; Ren, XinHao; Guo, JunKang

    2018-05-15

    In this study, we investigated the ameliorative effects of salicylic acid (SA), metal ion (Fe(II)), and plant growth-promoting bacteria Burkholderia sp. D54 (B) on two tomato genotypes with different Cd tolerances under Cd stress, viz. Liger (Cd tolerant) and Tabd (Cd sensitive). The plant biomass, Cd accumulation, antioxidative response, pigment content and photosynthetic performance were determined. According to the results, exogenous application of SA, Fe(II) and Burkholderia sp. D54 or their complex effectively reduced Cd accumulation and increased biomass of root, stem and leaves in both Cd sensitive and Cd tolerant genotypes. Among all treatments, SA+Fe+B exerted the best performance. Burkholderia sp. D54 effectively alleviated Cd-induced oxidative toxicity in both tomato genotypes, while SA ameliorated oxidative stress in Cd sensitive genotype. Photosynthetic pigment content and photosynthetic rate of Cd tolerant genotype was increased by all treatments, but only SA and Burkholderia sp. D54 treatment increased pigment contents and photosynthetic performance in Cd sensitive genotypes. All treatments significantly decreased Cd accumulation in both tomato genotypes. The effect of Cd reduction was Fe+SA+B>SA>Fe>B. Taken together, our results indicated that exogenous application of SA, Fe(II) and Burkholderia sp. D54 could alleviate the Cd toxicity in both Cd sensitive and Cd tolerant genotypes, although the extent varies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Evaluation of salicylic acid fatty ester prodrugs for UV protection.

    PubMed

    Im, Jong Seob; Balakrishnan, Prabagar; Oh, Dong Hoon; Kim, Jung Sun; Jeon, Eun-Mi; Kim, Dae-Duk; Yong, Chul Soon; Choi, Han-Gon

    2011-07-01

    The purpose of this study was to investigate the physicochemical properties and in vitro evaluation of fatty ester prodrugs of salicylic acid for ultraviolet (UV) protection. The physicochemical properties such as lipophilicity, chemical stability and enzymatic hydrolysis were investigated with the following fatty ester prodrugs of salicylic acid: octanoyl (C8SA), nonanoyl (C9SA), decanoyl (C10SA), lauroyl (C12SA), myristoyl (C14SA) and palmitoyl oxysalicylate (C16SA). Furthermore, their skin permeation and accumulation were evaluated using a combination of common permeation enhancing techniques such as the use of a lipophilic receptor solution, removal of stratum corneum and delipidization of skin. Their k' values were proportional to the degree of carbon-carbon saturation in the side chain. All these fatty esters were highly stable in 2-propanol, acetonitrile and glycerin, but unstable in methanol and ethanol. They were relatively unstable in liver and skin homogenates. In particular, C16SA was mostly hydrolyzed to its parent compound in hairless mouse liver and skin homogenates, suggesting that it might be converted to salicylic acid after its topical administration. In the skin permeation and accumulation study, C16SA showed the poorest permeation in all skins, suggesting that it could not be permeated in the skin. Furthermore, C14SA and C16SA were less accumulated in delipidized skin compared with normal skin or stripped skin, suggesting that these esters had relatively strong affinities for lipids compared with the other prodrugs in the skin. C16SA showed significantly higher dermal accumulation in all skins compared with its parent salicylic acid. Thus, the palmitoyl oxysalicylate (C16SA) might be a potential candidate for UV protection due to its absence of skin permeation, smaller uptake in the lipid phase and relatively lower skin accumulation.

  9. A GC-ECD method for estimation of free and bound amino acids, gamma-aminobutyric acid, salicylic acid, and acetyl salicylic acid from Solanum lycopersicum (L.).

    PubMed

    Meher, Hari Charan; Gajbhiye, Vijay T; Singh, Ghanendra

    2011-01-01

    A gas chromatograph with electron capture detection method for estimation of selected metabolites--amino acids (free and bound), gamma-aminobutyric acid (GABA), salicylic acid (SA), and acetyl salicylic acid (ASA) from tomato--is reported. The method is based on nitrophenylation of the metabolites by 1-fluoro-2, 4-dinitrobenzene under aqueous alkaline conditions to form dinitophenyl derivatives. The derivatives were stable under the operating conditions of GC. Analysis of bound amino acids comprised perchloric acid precipitation of protein, alkylation (carboxymethylation) with iodoacetic acid, vapor-phase hydrolysis, and derivatization with 1-fluoro-2,4-dinitrobenzene in that order. The metabolites were resolved in 35 min, using a temperature-programmed run. The method is rapid, sensitive, and precise. It easily measured the typical amino acids (aspartate, asparagine, glutamate, glutamine, alanine, leucine, lysine, and phenylalanine) used for identification and quantification of a protein, resolved amino acids of the same mass (leucine and isoleucine), satisfactorily measured sulfur amino acid (methionine, cystine, and cysteine), and quantified GABA, SA, and ASA, as well. The developed method was validated for specificity, linearity, and precision. It has been applied and recommended for estimation of 25 metabolites from Solanum lycopersicum (L.).

  10. SeSaM-Tv-II generates a protein sequence space that is unobtainable by epPCR.

    PubMed

    Mundhada, Hemanshu; Marienhagen, Jan; Scacioc, Andreea; Schenk, Alexander; Roccatano, Danilo; Schwaneberg, Ulrich

    2011-07-04

    Generating high-quality mutant libraries in which each amino acid is equally targeted and substituted in a chemically diverse manner is crucial to obtain improved variants in small mutant libraries. The sequence saturation mutagenesis method (SeSaM-Tv(+) ) offers the opportunity to generate such high-quality mutant libraries by introducing consecutive mutations and by enriching transversions. In this study, automated gel electrophoresis, real-time quantitative PCR, and a phosphorimager quantification system were developed and employed to optimize each step of previously reported SeSaM-Tv(+) method. Advancements of the SeSaM-Tv(+) protocol and the use of a novel DNA polymerase quadrupled the number of transversions, by doubling the fraction of consecutive mutations (from 16.7 to 37.1 %). About 33 % of all amino acid substitutions observed in a model library are rarely introduced by epPCR methods, and around 10 % of all clones carried amino acid substitutions that are unobtainable by epPCR. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Abscisic acid promotes proteasome-mediated degradation of the transcription coactivator NPR1 in Arabidopsis thaliana.

    PubMed

    Ding, Yezhang; Dommel, Matthew; Mou, Zhonglin

    2016-04-01

    Proteasome-mediated turnover of the transcription coactivator NPR1 is pivotal for efficient activation of the broad-spectrum plant immune responses known as localized acquired resistance (LAR) and systemic acquired resistance (SAR) in adjacent and systemic tissues, respectively, and requires the CUL3-based E3 ligase and its adaptor proteins, NPR3 and NPR4, which are receptors for the signaling molecule salicylic acid (SA). It has been shown that SA prevents NPR1 turnover under non-inducing and LAR/SAR-inducing conditions, but how cellular NPR1 homeostasis is maintained remains unclear. Here, we show that the phytohormone abscisic acid (ABA) and SA antagonistically influence cellular NPR1 protein levels. ABA promotes NPR1 degradation via the CUL3(NPR) (3/) (NPR) (4) complex-mediated proteasome pathway, whereas SA may protect NPR1 from ABA-promoted degradation through phosphorylation. Furthermore, we demonstrate that the timing and strength of SA and ABA signaling are critical in modulating NPR1 accumulation and target gene expression. Perturbing ABA or SA signaling in adjacent tissues alters the temporal dynamic pattern of NPR1 accumulation and target gene transcription. Finally, we show that sequential SA and ABA treatment leads to dynamic changes in NPR1 protein levels and target gene expression. Our results revealed a tight correlation between sequential SA and ABA signaling and dynamic changes in NPR1 protein levels and NPR1-dependent transcription in plant immune responses. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. Stress and salicylic acid induce the expression of PnFT2 in the regulation of the stress-induced flowering of Pharbitis nil.

    PubMed

    Yamada, Mizuki; Takeno, Kiyotoshi

    2014-02-15

    Poor nutrition and low temperature stress treatments induced flowering in the Japanese morning glory Pharbitis nil (synonym Ipomoea nil) cv. Violet. The expression of PnFT2, one of two homologs of the floral pathway integrator gene FLOWERING LOCUS T (FT), was induced by stress, whereas the expression of both PnFT1 and PnFT2 was induced by a short-day treatment. There was no positive correlation between the flowering response and the homolog expression of another floral pathway integrator gene SUPPRESSOR OF OVEREXPRESSION OF CO1 and genes upstream of PnFT, such as CONSTANS. In another cultivar, Tendan, flowering and PnFT2 expression were not induced by poor nutrition stress. Aminooxyacetic acid (AOA), a phenylalanine ammonia-lyase inhibitor, inhibited the flowering and PnFT2 expression induced by poor nutrition stress in Violet. Salicylic acid (SA) eliminated the inhibitory effects of AOA. SA enhanced PnFT2 expression under the poor nutrition stress but not under non-stress conditions. These results suggest that SA induces PnFT2 expression, which in turn induces flowering; SA on its own, however, may not be sufficient for induction. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Reversal of ethanol-induced hepatotoxicity by cinnamic and syringic acids in mice.

    PubMed

    Yan, Sheng-Lei; Wang, Zhi-Hong; Yen, Hsiu-Fang; Lee, Yi-Ju; Yin, Mei-Chin

    2016-12-01

    Ethanol was used to induce acute hepatotoxicity in mice. Effects of cinnamic acid (CA) and syringic acid (SA) post-intake for hepatic recovery from alcoholic injury was investigated. Ethanol treated mice were supplied by CA or SA at 40 or 80 mg/kg BW/day for 5 days. Results showed that ethanol stimulated protein expression of CYP2E1, p47 phox , gp91 phox , cyclooxygenase-2 and nuclear factor kappa B in liver. CA or SA post-intake restricted hepatic expression of these molecules. Ethanol suppressed nuclear factor erythroid 2-related factor (Nrf2) expression, and CA or SA enhanced Nrf2 expression in cytosolic and nuclear fractions. Ethanol increased the release of reactive oxygen species, oxidized glutathione, interleukin-6, tumor necrosis factor-alpha, nitric acid and prostaglandin E 2 . CA or SA lowered hepatic production of these oxidative and inflammatory factors. Histological data revealed that ethanol administration caused obvious foci of inflammatory cell infiltration, and CA or SA post-intake improved hepatic inflammatory infiltration. These findings support that cinnamic acid and syringic acid are potent nutraceutical agents for acute alcoholic liver disease therapy. However, potential additive or synergistic benefits of cinnamic and syringic acids against ethanol-induced hepatotoxicity need to be investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress.

    PubMed

    Sharma, Marisha; Gupta, Sunil K; Majumder, Baisakhi; Maurya, Vivek K; Deeba, Farah; Alam, Afroz; Pandey, Vivek

    2017-06-23

    Salicylic acid (SA) induced drought tolerance can be a key trait for increasing and stabilizing wheat production. These SA induced traits were studied in two Triticum aestivum L. varieties; drought tolerant, Kundan and drought sensitive, Lok1 under two different water deficit regimes: and rehydration at vegetative and flowering stages. SA alleviated the negative effects of water stress on photosynthesis more in Kundan. SA induced defense responses against drought by increasing antioxidative enzymes and osmolytes (proline and total soluble sugars). Differential proteomics revealed major role of carbon metabolism and signal transduction in enhancing drought tolerance in Kundan which was shifted towards defense, energy production and protection in Lok1. Thioredoxins played important role between SA and redox signaling in activating defense responses. SA showed substantial impact on physiology and carbon assimilation in tolerant variety for better growth under drought. Lok1 exhibited SA induced drought tolerance through enhanced defense system and energy metabolism. Plants after rehydration showed complete recovery of physiological functions under SA treatment. SA mediated constitutive defense against water stress did not compromise yield. These results suggest that exogenously applied SA under drought stress confer growth promoting and stress priming effects on wheat plants thus alleviating yield limitation. Studies have shown morphological, physiological and biochemical aspects associated with the SA mediated drought tolerance in wheat while understanding of molecular mechanism is limited. Herein, proteomics approach has identified significantly changed proteins and their potential relevance to SA mediated drought stress responses in drought tolerant and sensitive wheat varieties. SA regulates wide range of processes such as photosynthesis, carbon assimilation, protein metabolism, amino acid and energy metabolism, redox homeostasis and signal transduction under

  15. Glutathione and abscisic acid supplementation influences somatic embryo maturation and hormone endogenous levels during somatic embryogenesis in Podocarpus lambertii Klotzsch ex Endl.

    PubMed

    Fraga, Hugo Pacheco de Freitas; Vieira, Leila do Nascimento; Puttkammer, Catarina Corrêa; Dos Santos, Henrique Pessoa; Garighan, Julio de Andrade; Guerra, Miguel Pedro

    2016-12-01

    Here we propose a protocol for embryogenic cultures induction, proliferation and maturation for the Brazilian conifer Podocarpus lambertii, and investigated the effect of abscisic acid (ABA) and glutathione (GSH) supplementation on the maturation phase. ABA, zeatin (Z) and salicylic acid (SA) endogenous levels were quantified. Number of somatic embryos obtained in ABA-supplemented treatment was significant higher than in ABA-free treatment, showing the relevance of ABA supplementation during somatic embryos maturation. Histological analysis showed the stereotyped sequence of developmental stages in conifer somatic embryos, reaching the late torpedo-staged embryo. GSH supplementation in maturation culture medium improved the somatic embryos number and morphological features. GSH 0mM and GSH 0.1mM treatments correlated with a decreased ABA endogenous level during maturation, while GSH 0.5mM treatment showed constant levels. All treatments resulted in decreased Z endogenous levels, supporting the concept that cytokinins are important during the initial cell division but not for the later stages of embryo development. The lowest SA levels found in GSH 0.5mM treatment were coincident with early embryonic development, and this treatment resulted in the highest development of somatic embryos. Thus, a correlation between lower SA levels and improved somatic embryo formation can be hypothesized. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Characterization of a Gene Encoding Clathrin Heavy Chain in Maize Up-Regulated by Salicylic Acid, Abscisic Acid and High Boron Supply

    PubMed Central

    Zeng, Mu-Heng; Liu, Sheng-Hong; Yang, Miao-Xian; Zhang, Ya-Jun; Liang, Jia-Yong; Wan, Xiao-Rong; Liang, Hong

    2013-01-01

    Clathrin, a three-legged triskelion composed of three clathrin heavy chains (CHCs) and three light chains (CLCs), plays a critical role in clathrin-mediated endocytosis (CME) in eukaryotic cells. In this study, the genes ZmCHC1 and ZmCHC2 encoding clathrin heavy chain in maize were cloned and characterized for the first time in monocots. ZmCHC1 encodes a 1693-amino acid-protein including 29 exons and 28 introns, and ZmCHC2 encodes a 1746-amino acid-protein including 28 exons and 27 introns. The high similarities of gene structure, protein sequences and 3D models among ZmCHC1, and Arabidopsis AtCHC1 and AtCHC2 suggest their similar functions in CME. ZmCHC1 gene is predominantly expressed in maize roots instead of ubiquitous expression of ZmCHC2. Consistent with a typical predicted salicylic acid (SA)-responsive element and four predicted ABA-responsive elements (ABREs) in the promoter sequence of ZmCHC1, the expression of ZmCHC1 instead of ZmCHC2 in maize roots is significantly up-regulated by SA or ABA, suggesting that ZmCHC1 gene may be involved in the SA signaling pathway in maize defense responses. The expressions of ZmCHC1 and ZmCHC2 genes in maize are down-regulated by azide or cold treatment, further revealing the energy requirement of CME and suggesting that CME in plants is sensitive to low temperatures. PMID:23880865

  17. Topical zinc oxide vs. salicylic acid-lactic acid combination in the treatment of warts.

    PubMed

    Khattar, Joe A; Musharrafieh, Umayya M; Tamim, Hala; Hamadeh, Ghassan N

    2007-04-01

    Warts are a common dermatologic problem. Treatment is painful, prolonged, and can cause scarring. To evaluate topical zinc oxide for the treatment of warts. This was a randomized, double-blind controlled trial of 44 patients. Twenty-two patients were given topical zinc oxide 20% ointment, and the other 22 received salicylic acid 15% + lactic acid 15% ointment twice daily. All patients were followed up for 3 months or until cure, whichever occurred first. All patients were observed for side-effects. Sixteen patients in the zinc group and 19 in the salicylic acid-lactic acid group completed the study. In the zinc oxide-treated group, 50% of the patients showed complete cure and 18.7% failed to respond, compared with 42% and 26%, respectively, in the salicylic acid-lactic acid-treated group. No patients developed serious side-effects. Topical zinc oxide is an efficacious, painless, and safe therapeutic option for wart treatment.

  18. Amino acid substitutions in random mutagenesis libraries: lessons from analyzing 3000 mutations.

    PubMed

    Zhao, Jing; Frauenkron-Machedjou, Victorine Josiane; Kardashliev, Tsvetan; Ruff, Anna Joëlle; Zhu, Leilei; Bocola, Marco; Schwaneberg, Ulrich

    2017-04-01

    The quality of amino acid substitution patterns in random mutagenesis libraries is decisive for the success in directed evolution campaigns. In this manuscript, we provide a detailed analysis of the amino acid substitutions by analyzing 3000 mutations of three random mutagenesis libraries (1000 mutations each; epPCR with a low-mutation and a high-mutation frequency and SeSaM-Tv P/P) employing lipase A from Bacillus subtilis (bsla). A comparison of the obtained numbers of beneficial variants in the mentioned three random mutagenesis libraries with a site saturation mutagenesis (SSM) (covering the natural diversity at each amino acid position of BSLA) concludes the diversity analysis. Seventy-six percent of the SeSaM-Tv P/P-generated substitutions yield chemically different amino acid substitutions compared to 64% (epPCR-low) and 69% (epPCR-high). Unique substitutions from one amino acid to others are termed distinct amino acid substitutions. In the SeSaM-Tv P/P library, 35% of all theoretical distinct amino acid substitutions were found in the 1000 mutation library compared to 25% (epPCR-low) and 26% (epPCR-high). Thirty-six percent of distinct amino acid substitutions found in SeSaM-Tv P/P were unobtainable by epPCR-low. Comparison with the SSM library showed that epPCR-low covers 15%, epPCR-high 18%, and SeSaM-Tv P/P 21% of obtainable beneficial amino acid positions. In essence, this study provides first insights on the quality of epPCR and SeSaM-Tv P/P libraries in terms of amino acid substitutions, their chemical differences, and the number of obtainable beneficial amino acid positions.

  19. The DELLA Protein SLR1 Integrates and Amplifies Salicylic Acid- and Jasmonic Acid-Dependent Innate Immunity in Rice1

    PubMed Central

    De Vleesschauwer, David; Seifi, Hamed Soren; Haeck, Ashley; Huu, Son Nguyen; Demeestere, Kristof

    2016-01-01

    Gibberellins are a class of tetracyclic plant hormones that are well known to promote plant growth by inducing the degradation of a class of nuclear growth-repressing proteins, called DELLAs. In recent years, GA and DELLAs are also increasingly implicated in plant responses to pathogen attack, although our understanding of the underlying mechanisms is still limited, especially in monocotyledonous crop plants. Aiming to further decipher the molecular underpinnings of GA- and DELLA-modulated plant immunity, we studied the dynamics and impact of GA and DELLA during infection of the model crop rice (Oryza sativa) with four different pathogens exhibiting distinct lifestyles and infection strategies. Opposite to previous findings in Arabidopsis (Arabidopsis thaliana), our findings reveal a prominent role of the DELLA protein Slender Rice1 (SLR1) in the resistance toward (hemi)biotrophic but not necrotrophic rice pathogens. Moreover, contrary to the differential effect of DELLA on the archetypal defense hormones salicylic acid (SA) and jasmonic acid (JA) in Arabidopsis, we demonstrate that the resistance-promoting effect of SLR1 is due at least in part to its ability to boost both SA- and JA-mediated rice defenses. In a reciprocal manner, we found JA and SA treatment to interfere with GA metabolism and stabilize SLR1. Together, these findings favor a model whereby SLR1 acts as a positive regulator of hemibiotroph resistance in rice by integrating and amplifying SA- and JA-dependent defense signaling. Our results highlight the differences in hormone defense networking between rice and Arabidopsis and underscore the importance of GA and DELLA in molding disease outcomes. PMID:26829979

  20. The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains.

    PubMed

    Wu, Guanxun; Gao, Zhengquan; Du, Huanmin; Lin, Bin; Yan, Yuchen; Li, Guoqiang; Guo, Yanyun; Fu, Shenggui; Wei, Gongxiang; Wang, Miaomiao; Cui, Meng; Meng, Chunxiao

    2018-03-27

    Sustainable renewable energy is being hotly debated globally because the continued use of finite fossil fuels is now widely recognized as being unsustainable. Microalgae potentially offer great opportunities for resolving this challenge. Abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) are involved in regulating many physiological properties and have been widely used in higher plants. To test if phytohormones have an impact on accumulating lipid for microalgae, ABA, JA and SA were used to induce two Chlorella strains in the present study. The results showed 1.0 mg/L ABA, 10 mg/L SA, and 0.5 mg/L JA, led strain C. vulgaris ZF strain to produce a 45%, 42% and 49% lipid content that was 1.8-, 1.7- and 2.0-fold that of controls, respectively. For FACHB 31 (number 31 of the Freshwater Algae Culture Collection at the Institute of Hydrobiology, Chinese Academy of Sciences), the addition of 1.0 mg/L ABA, 10 mg/L SA, and 0.5 mg/L, JA produced 33%, 30% and 38% lipid content, which was 1.8-, 1.6- and 2.1-fold that of controls, respectively. As for lipid productivity, 1.0 mg/L ABA increased the lipid productivity of C. vulgaris ZF strain and FACHB-31 by 123% and 44%; 10 mg/L SA enhanced lipid productivity by 100% and 33%; the best elicitor, 0.5 mg/L JA, augmented lipid productivity by 127% and 75% compared to that of controls, respectively. The results above suggest that the three phytohormones at physiological concentrations play crucial roles in inducing lipid accumulation in Chlorella.

  1. Salicylic Acid-Regulated Antioxidant Mechanisms and Gene Expression Enhance Rosemary Performance under Saline Conditions

    PubMed Central

    El-Esawi, Mohamed A.; Elansary, Hosam O.; El-Shanhorey, Nader A.; Abdel-Hamid, Amal M. E.; Ali, Hayssam M.; Elshikh, Mohamed S.

    2017-01-01

    Salinity stress as a major agricultural limiting factor may influence the chemical composition and bioactivity of Rosmarinus officinallis L. essential oils and leaf extracts. The application of salicylic acid (SA) hormone may alleviate salinity stress by modifying the chemical composition, gene expression and bioactivity of plant secondary metabolites. In this study, SA was applied to enhance salinity tolerance in R. officinallis. R. officinallis plants were subjected to saline water every 2 days (640, 2,000, and 4,000 ppm NaCl) and 4 biweekly sprays of SA at 0, 100, 200, and 300 ppm for 8 weeks. Simulated salinity reduced all vegetative growth parameters such as plant height, plant branches and fresh and dry weights. However, SA treatments significantly enhanced these plant growth and morphological traits under salinity stress. Salinity affected specific major essential oils components causing reductions in α-pinene, β-pinene, and cineole along with sharp increases in linalool, camphor, borneol, and verbenone. SA applications at 100–300 ppm largely reversed the effects of salinity. Interestingly, SA treatments mitigated salinity stress effects by increasing the total phenolic, chlorophyll, carbohydrates, and proline contents of leaves along with decline in sodium and chloride. Importantly, this study also proved that SA may stimulate the antioxidant enzymatic mechanism pathway including catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) as well as increasing the non-enzymatic antioxidants such as free and total ascorbate in plants subjected to salinity. Quantitative real-time PCR analysis revealed that APX and 3 SOD genes showed higher levels in SA-treated rosemary under salinity stress, when compared to non-sprayed plants. Moreover, the expression level of selected genes conferring tolerance to salinity (bZIP62, DREB2, ERF3, and OLPb) were enhanced in SA-treated rosemary under salt stress, indicating that SA treatment resulted in the

  2. The interaction of salicylic acid and Ca(2+) alleviates aluminum toxicity in soybean (Glycine max L.).

    PubMed

    Lan, Tu; You, Jiangfeng; Kong, Lingnan; Yu, Miao; Liu, Minghui; Yang, Zhenming

    2016-01-01

    Both calcium ion (Ca(2+)) and salicylic acid (SA) influence various stress responses in plants. In acidic soils, aluminum (Al) toxicity adversely affects crop yield. In this study, we determined the influences of Ca(2+) and SA on root elongation, Al accumulation, and citrate secretion in soybean plant. We also investigated the activity of antioxidative enzymes in Al-exposed soybean roots. Root elongation was severally inhibited when the roots were exposed to 30 μM Al. The Al-induced inhibition of root elongation was ameliorated by Ca(2+) and SA but aggravated by Ca(2+) channel inhibitor (VP), CaM antagonists (TFP), Ca(2+) chelator (EGTA), and SA biosynthesis inhibitor (PAC). Furthermore, 1.0 mM CaCl2 and 10 μM SA reduced the accumulation of Al in roots, but their inhibitors stimulated the accumulation of Al in roots. Citrate secretion from these roots increased with the addition of either 1.0 mM CaCl2 or 10 μM SA but did not increase significantly when treated with higher Ca(2+) concentration. Enzymatic analysis showed that Ca(2+) and SA stimulated the activities of superoxidase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) in Al-treated roots. In addition, SA restored the inhibition of Ca(2+) inhibitors on root elongation and Al content. Thus, both Ca(2+) and SA contribute to Al tolerance in soybean. Furthermore, Ca(2+) supplements rapidly increased Al-induced accumulation of free-SA or conjugated SA (SAG), while Ca(2+) inhibitors delayed the accumulation of SA for more than 8 h. Within 4 h of treatment, SA increased cytosolic Ca(2+) concentration in Al-treated roots, and upregulated the expression of four genes that possibly encode calmodulin-like (CML) proteins. These findings indicate that SA is involved in Ca(2+)-mediated signal transduction pathways in Al tolerance. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Effects of alkali or acid treatment on the isomerization of amino acids.

    PubMed

    Ohmori, Taketo; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2012-10-01

    The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue. Copyright © 2012. Published by Elsevier B.V.

  4. Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor-induced flavonol glycoside accumulation of Ginkgo biloba cells.

    PubMed

    Xu, Maojun; Dong, Jufang; Wang, Huizhong; Huang, Luqi

    2009-08-01

    The antagonistic action between jasmonic acid (JA) and salicylic acid (SA) in plant defence responses has been well documented. However, their relationship in secondary metabolite production is largely unknown. Here, we report that PB90, a protein elicitor from Phytophthora boehmeriae, triggers JA generation, SA accumulation and flavonol glycoside production of Ginkgo biloba cells. JA inhibitors suppress not only PB90-triggered JA generation, but also the elicitor-induced flavonol glycoside production. However, the elicitor can still enhance flavonol glycoside production even though the JA generation is totally inhibited. Over-expression of SA hydrolase gene NahG not only abolishes SA accumulation, but also suppresses the elicitor-induced flavonol glycoside production when JA signalling is inhibited. Interestingly, expression of NahG does not inhibit the elicitor-induced flavonol glycoside accumulation in the absence of JA inhibitors. Moreover, JA levels are significantly enhanced when SA accumulation is impaired in the transgenic cells. Together, the data suggest that both JA and SA are involved in PB90-induced flavonol glycoside production. Furthermore, we demonstrate that JA signalling might be enhanced to substitute for SA to mediate the elicitor-induced flavonol glycoside accumulation when SA signalling is impaired, which reveals an unusual complementary relationship between JA and SA in mediating plant secondary metabolite production.

  5. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways

    PubMed Central

    Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen

    2016-01-01

    We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. PMID:26672068

  6. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways.

    PubMed

    Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen

    2016-01-01

    We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. © 2016 American Society of Plant Biologists. All rights reserved.

  7. Dynamic Asphaltene-Stearic Acid Competition at the Oil-Water Interface.

    PubMed

    Sauerer, Bastian; Stukan, Mikhail; Buiting, Jan; Abdallah, Wael; Andersen, Simon

    2018-05-15

    Interfacial tension (IFT) is one of the major parameters which govern the fluid flow in oil production and recovery. This paper investigates the interfacial activity of different natural surfactants found in crude oil. The main objective was to better understand the competition between carboxylic acids and asphaltenes on toluene/water interfaces. Dynamic IFT was measured for water-in-oil pendant drops contrary to most studies using oil-in-water drops. Stearic acid (SA) was used as model compound for surface-active carboxylic acids in crude. The influence of concentration of these species on dynamic IFT between model oil and deionized water was examined. The acid concentrations were of realistic values (total acid number 0.1 to 2 mg KOH/g oil) while asphaltene concentrations were low and set between 10 and 100 ppm. In mixtures, the initial surface pressure was entirely determined by the SA content while asphaltenes showed a slow initial diffusion to the interface followed by increased adsorption at longer times. The final surface pressure was higher for asphaltenes compared to SA, but for binaries, the final surface pressure was always lower than the sum of the individuals. At high SA concentration, surface pressures of mixtures were dominated entirely by the SA, although, Langmuir isotherm analysis shows that asphaltenes bind to the interface 200-250 times stronger than SA. The surface area/molecule for both SA and asphaltenes were found to be larger than the values reported in recent literature. Various approaches to dynamic surface adsorption were tested, showing that apparent diffusivity of asphaltenes is very low, in agreement with other works. Hence, the adsorption is apparently under barrier control. A possible hypothesis is that at the initial phase of the experiment and at lower concentration of asphaltenes, the interface is occupied by stearic acid molecules forming a dense layer of hydrocarbon chains that may repel the asphaltenes.

  8. Perception of low red:far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis.

    PubMed

    de Wit, Mieke; Spoel, Steven H; Sanchez-Perez, Gabino F; Gommers, Charlotte M M; Pieterse, Corné M J; Voesenek, Laurentius A C J; Pierik, Ronald

    2013-07-01

    In dense stands of plants, such as agricultural monocultures, plants are exposed simultaneously to competition for light and other stresses such as pathogen infection. Here, we show that both salicylic acid (SA)-dependent and jasmonic acid (JA)-dependent disease resistance is inhibited by a simultaneously reduced red:far-red light ratio (R:FR), the early warning signal for plant competition. Conversely, SA- and JA-dependent induced defences did not affect shade-avoidance responses to low R:FR. Reduced pathogen resistance by low R:FR was accompanied by a strong reduction in the regulation of JA- and SA-responsive genes. The severe inhibition of SA-responsive transcription in low R:FR appeared to be brought about by the repression of SA-inducible kinases. Phosphorylation of the SA-responsive transcription co-activator NPR1, which is required for full induction of SA-responsive transcription, was indeed reduced and may thus play a role in the suppression of SA-mediated defences by low R:FR-mediated phytochrome inactivation. Our results indicate that foraging for light through the shade-avoidance response is prioritised over plant immune responses when plants are simultaneously challenged with competition and pathogen attack. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  9. Alleviation of salt stress in lemongrass by salicylic acid.

    PubMed

    Idrees, Mohd; Naeem, M; Khan, M Nasir; Aftab, Tariq; Khan, M Masroor A; Moinuddin

    2012-07-01

    Soil salinity is one of the key factors adversely affecting the growth, yield, and quality of crops. A pot study was conducted to find out whether exogenous application of salicylic acid could ameliorate the adverse effect of salinity in lemongrass (Cymbopogon flexuosus Steud. Wats.). Two Cymbopogon varieties, Krishna and Neema, were used in the study. Three salinity levels, viz, 50, 100, and 150 mM of NaCl, were applied to 30-day-old plants. Salicylic acid (SA) was applied as foliar spray at 10(-5) M concentration. Totally, six SA-sprays were carried out at 10-day intervals, following the first spray at 30 days after sowing. The growth parameters were progressively reduced with the increase in salinity level; however, growth inhibition was significantly reduced by the foliar application of SA. With the increase in salt stress, a gradual decrease in the activities of carbonic anhydrase and nitrate reductase was observed in both the varieties. SA-treatment not only ameliorated the adverse effects of NaCl but also showed a significant improvement in the activities of these enzymes compared with the untreated stressed-plants. The plants supplemented with NaCl exhibited a significant increase in electrolyte leakage, proline content, and phosphoenol pyruvate carboxylase activity. Content and yield of essential oil was also significantly decreased in plants that received salinity levels; however, SA overcame the unfavorable effects of salinity stress to a considerable extent. Lemongrass variety Krishna was found to be more adapted to salt stress than Neema, as indicated by the overall performance of the two varieties under salt conditions.

  10. A rapid biosensor-based method for quantification of free and glucose-conjugated salicylic acid

    USDA-ARS?s Scientific Manuscript database

    Salicylic acid (SA) is an important signalling molecule in plant defenses against biotrophic pathogens. It is also involved in several other processes such as heat production, flowering, and germination. SA exists in the plant as free SA and as an inert glucose conjugate (salicylic acid 2-O-ß-D-...

  11. Determination of proteins induced in response to jasmonic acid and salicylic acid in resistant and susceptible cultivars of tomato.

    PubMed

    Afroz, Amber; Khan, Muhammad Rashid; Komatsu, Setsuko

    2010-07-01

    Jasmonic acid (JA) and salicylic acid (SA) are signaling molecules that play key roles in the regulation of metabolic processes, reproduction, and defense against pathogens. The proteomics approach was used to identify proteins that are induced by JA and SA in the tomato cultivars Roma and Pant Bahr, which are susceptible and resistant to bacterial wilt, respectively. Threonine deaminase and leucine amino peptidase were upregulated, and ribulose-1,5-bisphosphate carboxylase/oxygenase small chain was downregulated by time-course application of JA. Translationally controlled tumor protein was upregulated by time-course application of SA. Protein disulfide isomerase was upregulated by application of either JA or SA. Proteins related to defense, energy, and protein destination/storage are suspected to be responsible for the susceptibility or resistance of the cultivars. Furthermore, in Roma, iron ABC transporter was upregulated by JA and down-regulated by SA. Iron ABC transporter plays a part in the signal transduction of both JA and SA in cultivars of tomato that are resistant to bacterial wilt.

  12. 1HNMR study of methotrexate serum albumin (MTX SA) binding in rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Maciążek-Jurczyk, M.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2008-11-01

    Rheumatoid arthritis (RA) is an immunologically depended disease. It is characterized by a chronic, progressive inflammatory process. Methotrexate (4-amino-10-methylfolic acid, MTX) is the modifying drug used to treat RA. The aim of the presented studies is to determine the low affinity binding site of MTX in bovine (BSA) and human (HSA) serum albumin with the use of proton nuclear magnetic resonance ( 1HNMR) spectroscopy. The analysis of 1HNMR spectra of MTX in the presence of serum albumin (SA) allows us to observe the interactions between aromatic rings of the drug and the rings of amino acids located in the hydrophobic subdomains of the protein. On the basis of the chemical shifts σ [ppm] and the relaxation times T1 [s] of drug protons the hydrophobic interaction between MTX-SA and the stoichiometric molar ratio of the complex was evaluated. This work is a part of a spectroscopic study on MTX-SA interactions [A. Sułkowska, M. Maciążek, J. Równicka, B. Bojko, D. Pentak, W.W. Sułkowski, J. Mol. Struct. 834-836 (2007) 162-169].

  13. The DELLA Protein SLR1 Integrates and Amplifies Salicylic Acid- and Jasmonic Acid-Dependent Innate Immunity in Rice.

    PubMed

    De Vleesschauwer, David; Seifi, Hamed Soren; Filipe, Osvaldo; Haeck, Ashley; Huu, Son Nguyen; Demeestere, Kristof; Höfte, Monica

    2016-03-01

    Gibberellins are a class of tetracyclic plant hormones that are well known to promote plant growth by inducing the degradation of a class of nuclear growth-repressing proteins, called DELLAs. In recent years, GA and DELLAs are also increasingly implicated in plant responses to pathogen attack, although our understanding of the underlying mechanisms is still limited, especially in monocotyledonous crop plants. Aiming to further decipher the molecular underpinnings of GA- and DELLA-modulated plant immunity, we studied the dynamics and impact of GA and DELLA during infection of the model crop rice (Oryza sativa) with four different pathogens exhibiting distinct lifestyles and infection strategies. Opposite to previous findings in Arabidopsis (Arabidopsis thaliana), our findings reveal a prominent role of the DELLA protein Slender Rice1 (SLR1) in the resistance toward (hemi)biotrophic but not necrotrophic rice pathogens. Moreover, contrary to the differential effect of DELLA on the archetypal defense hormones salicylic acid (SA) and jasmonic acid (JA) in Arabidopsis, we demonstrate that the resistance-promoting effect of SLR1 is due at least in part to its ability to boost both SA- and JA-mediated rice defenses. In a reciprocal manner, we found JA and SA treatment to interfere with GA metabolism and stabilize SLR1. Together, these findings favor a model whereby SLR1 acts as a positive regulator of hemibiotroph resistance in rice by integrating and amplifying SA- and JA-dependent defense signaling. Our results highlight the differences in hormone defense networking between rice and Arabidopsis and underscore the importance of GA and DELLA in molding disease outcomes. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defence signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid, upon Botrytis cinerea infection.

    PubMed

    Ponce De León, Inés; Schmelz, Eric A; Gaggero, Carina; Castro, Alexandra; Álvarez, Alfonso; Montesano, Marcos

    2012-10-01

    The moss Physcomitrella patens is an evolutionarily basal model system suitable for the analysis of plant defence responses activated after pathogen assault. Upon infection with the necrotroph Botrytis cinerea, several defence mechanisms are induced in P. patens, including the fortification of the plant cell wall by the incorporation of phenolic compounds and the induced expression of related genes. Botrytis cinerea infection also activates the accumulation of reactive oxygen species and cell death with hallmarks of programmed cell death in moss tissues. Salicylic acid (SA) levels also increase after fungal infection, and treatment with SA enhances transcript accumulation of the defence gene phenylalanine ammonia-lyase (PAL) in P. patens colonies. The expression levels of the genes involved in 12-oxo-phytodienoic acid (OPDA) synthesis, including lipoxygenase (LOX) and allene oxide synthase (AOS), increase in P. patens gametophytes after pathogen assault, together with a rise in free linolenic acid and OPDA concentrations. However, jasmonic acid (JA) could not be detected in healthy or infected tissues of this plant. Our results suggest that, although conserved defence signals, such as SA and OPDA, are synthesized and are probably involved in the defence response of P. patens against B. cinerea infection, JA production appears to be missing. Interestingly, P. patens responds to OPDA and methyl jasmonate by reducing moss colony growth and rhizoid length, suggesting that jasmonate perception is present in mosses. Thus, P. patens can provide clues with regard to the evolution of different defence pathways in plants, including signalling and perception of OPDA and jasmonates in nonflowering and flowering plants. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  15. Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.)

    PubMed Central

    Singh, Amit P.; Dixit, Garima; Mishra, Seema; Dwivedi, Sanjay; Tiwari, Manish; Mallick, Shekhar; Pandey, Vivek; Trivedi, Prabodh K.; Chakrabarty, Debasis; Tripathi, Rudra D.

    2015-01-01

    Arsenic (As) is posing serious health concerns in South East Asia where rice, an efficient accumulator of As, is prominent crop. Salicylic acid (SA) is an important signaling molecule and plays a crucial role in resistance against biotic and abiotic stress in plants. In present study, ameliorative effect of SA against arsenate (AsV) toxicity has been investigated in rice (Oryza sativa L.). Arsenate stress hampered the plant growth in terms of root, shoots length, and biomass as well as it enhanced the level of H2O2 and MDA in dose dependent manner in shoot. Exogenous application of SA, reverted the growth, and oxidative stress caused by AsV and significantly decreased As translocation to the shoots. Level of As in shoot was positively correlated with the expression of OsLsi2, efflux transporter responsible for root to shoot translocation of As in the form of arsenite (AsIII). SA also overcame AsV induced oxidative stress and modulated the activities of antioxidant enzymes in a differential manner in shoots. As treatment hampered the translocation of Fe in the shoot which was compensated by the SA treatment. The level of Fe in root and shoot was positively correlated with the transcript level of transporters responsible for the accumulation of Fe, OsNRAMP5, and OsFRDL1, in the root and shoot, respectively. Co-application of SA was more effective than pre-treatment for reducing As accumulation as well as imposed toxicity. PMID:26042132

  16. Endogenous factors regulating poor-nutrition stress-induced flowering in pharbitis: The involvement of metabolic pathways regulated by aminooxyacetic acid.

    PubMed

    Koshio, Aya; Hasegawa, Tomomi; Okada, Rieko; Takeno, Kiyotoshi

    2015-01-15

    The short-day plant pharbitis (also called Japanese morning glory), Ipomoea nil (formerly Pharbitis nil), was induced to flower by poor-nutrition stress. This stress-induced flowering was inhibited by aminooxyacetic acid (AOA), which is a known inhibitor of phenylalanine ammonia-lyase (PAL) and the synthesis of indole-3-acetic acid (IAA) and 1-aminocycropropane-1-carboxylic acid (ACC) and thus regulates endogenous levels of salicylic acid (SA), IAA and polyamine (PA). Stress treatment increased PAL activity in cotyledons, and AOA suppressed this increase. The observed PAL activity and flowering response correlate positively, indicating that AOA functions as a PAL inhibitor. The inhibition of stress-induced flowering by AOA was also overcome by IAA. An antiauxin, 4-chlorophenoxy isobutyric acid, inhibited stress-induced flowering. Both SA and IAA promoted flowering induced by stress. PA also promoted flowering, and the effective PA was found to be putrescine (Put). These results suggest that all of the pathways leading to the synthesis of SA, IAA and Put are responsive to the flowering inhibition by AOA and that these endogenous factors may be involved in the regulation of stress-induced flowering. However, as none of them induced flowering under non-stress conditions, they may function cooperatively to promote flowering. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Prototype amperometric biosensor for sialic acid determination.

    PubMed

    Marzouk, Sayed A M; Ashraf, S S; Tayyari, Khawla A Al

    2007-02-15

    This paper describes the first report on the development, characterization, and applications of a prototype amperometric biosensor for free sialic acid (SA). The sensor was constructed by the coimmobilization of two enzymes, i.e., N-acetylneuraminic acid aldolase and pyruvate oxidase, on a polyester microporous membrane, which was then mounted on top of a platinum disk electrode. The SA biosensor operation was based on the sequential action of the two enzymes to ultimately produce hydrogen peroxide, which was then detected by anodic amperometry at the platinum electrode. The surface of the platinum electrode was coated with an electropolymeric layer to enhance the biosensor selectivity in the presence of interfering oxidizable species. Optimization of the enzyme layer composition resulted in a fast and steady current response in phosphate buffer pH 7.2 at 37 degrees C. The limit of detection was 10 microM, and the response was linear to 3.5 mM (r = 0.9987). The prepared SA biosensors retained approximately 85% of their initial sensitivity after 8 days and showed excellent response reproducibility (CV = 2.3%). Utilization of a third enzyme, sialidase, expanded the scope of the present SA biosensor to determine bound sialic acid as well. The merits of the described biosensor allowed its successful application in determining SA in biological and pharmaceutical samples. The obtained results indicated that the presented SA biosensor should be a useful bioanalytical tool in several biological and clinical applications such as screening of SA as a nonspecific tumor marker as well as monitoring of tumor therapy.

  18. Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions.

    PubMed

    Gutjahr, Caroline; Paszkowski, Uta

    2009-07-01

    Work on the interaction of aerial plant parts with pathogens has identified the signaling molecules jasmonic acid (JA) and salicylic acid (SA) as important players in induced defense of the plant against invading organisms. Much less is known about the role of JA and SA signaling in root infection. Recent progress has been made in research on plant interactions with biotrophic mutualists and parasites that exclusively associate with roots, namely arbuscular mycorrhizal and rhizobial symbioses on one hand and nematode and parasitic plant interactions on the other hand. Here, we review these recent advances relating JA and SA signaling to specific stages of root colonization and discuss how both signaling molecules contribute to a balance between compatibility and defense in mutualistic as well as parasitic biotroph-root interactions.

  19. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    PubMed Central

    Marcińska, Izabela; Czyczyło-Mysza, Ilona; Skrzypek, Edyta; Grzesiak, Maciej T.; Janowiak, Franciszek; Filek, Maria; Dziurka, Michał; Dziurka, Kinga; Waligórski, Piotr; Juzoń, Katarzyna; Cyganek, Katarzyna; Grzesiak, Stanisław

    2013-01-01

    The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity

  20. Concurrent release of admixed antimicrobials and salicylic acid from salicylate-based poly(anhydride-esters)

    PubMed Central

    Johnson, Michelle L.; Uhrich, Kathryn E.

    2008-01-01

    A polymer blend consisting of antimicrobials (chlorhexidine, clindamycin, and minocycline) physically admixed at 10% by weight into a salicylic acid-based poly (anhydride-ester) (SA-based PAE) was developed as an adjunct treatment for periodontal disease. The SA-based PAE/antimicrobial blends were characterized by multiple methods, including contact angle measurements and differential scanning calorimetry. Static contact angle measurements showed no significant differences in hydrophobicity between the polymer and antimicrobial matrix surfaces. Notable decreases in the polymer glass transition temperature (Tg) and the antimicrobials' melting points (Tm) were observed indicating that the antimicrobials act as plasticizers within the polymer matrix. In vitro drug release of salicylic acid from the polymer matrix and for each physically admixed antimicrobial was concurrently monitored by high pressure liquid chromatography during the course of polymer degradation and erosion. Although the polymer/antimicrobial blends were immiscible, the initial 24 h of drug release correlated to the erosion profiles. The SA-based PAE/antimicrobial blends are being investigated as an improvement on current localized drug therapies used to treat periodontal disease. PMID:19180627

  1. Amino acid amides of piperic acid (PA) and 4-ethylpiperic acid (EPA) as NorA efflux pump inhibitors of Staphylococcus aureus.

    PubMed

    Wani, Naiem Ahmad; Singh, Samsher; Farooq, Saleem; Shankar, Sudha; Koul, Surrinder; Khan, Inshad Ali; Rai, Rajkishor

    2016-09-01

    A total of eighteen piperic acid (PA) and 4-ethylpiperic acid (EPA) amides (C1-C18) with α-, β- and γ-amino acids were synthesized, characterized and evaluated for their efflux pump inhibitory activity against ciprofloxacin resistant Staphylococcus aureus. The amides were screened against NorA overexpressing S. aureus SA-1199B and wild type S. aureus SA-1199 using ethidium bromide as NorA efflux pump substrate. EPI C6 was found to be most potent and reduced the MIC of ciprofloxacin by 16 fold followed by C18 which showed 4 fold reduction of MIC. Ethidium bromide efflux inhibition and accumulation assay proved these compounds as NorA inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The in vitro protective effect of salicylic acid against paclitaxel and cisplatin-induced neurotoxicity.

    PubMed

    Cetin, Damla; Hacımuftuoglu, Ahmet; Tatar, Abdulgani; Turkez, Hasan; Togar, Basak

    2016-08-01

    Paclitaxel (PAC) and cisplatin (CIS) are two established chemotherapeutic drugs used in combination for the treatment of various solid tumors. However, the usage of PAC and CIS are limited because of the incidence of their moderate or severe neurotoxic side effects. In this study, we aimed to assess the protective role of salicylic acid (SA) against neurotoxicity caused by PAC and CIS. For this purpose, newborn Sprague Dawley rats were decapitated in sterile atmosphere and primary cortex neuron cultures were established. On the 10th day SA was added into culture plates. PAC and CIS were added on the 12th day. The cytotoxicity was determined by using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Oxidative alterations were assessed using total antioxidant capacity and total oxidative stress assays in rat primary neuron cell cultures. It was shown that both concentrations of PAC and CIS treatments caused neurotoxicity. Although SA decreased the neurotoxicity by CIS and PAC, it was more effective against the toxicity caused by CIS rather than the toxicity caused by PAC. In conclusion it was clearly revealed that SA decreased the neurotoxic effect of CIS and PAC in vitro.

  3. Simultaneous determination of acetylsalicylic acid and salicylic acid in human plasma by isocratic high-pressure liquid chromatography with post-column hydrolysis and fluorescence detection.

    PubMed

    Hobl, Eva-Luise; Jilma, Bernd; Ebner, Josef; Schmid, Rainer W

    2013-06-01

    A selective, sensitive and rapid high-performance liquid chromatography method with post-column hydrolysis and fluorescence detection was developed for the simultaneous quantification of acetylsalicylic acid and its metabolite salicylic acid in human plasma. Following the addition of 2-hydroxy-3-methoxybenzoic acid as internal standard and simple protein precipitation with acetonitrile, the analytes were separated on a ProntoSIL 120 C18 ace-EPS column (150 × 2 mm, 3 µm) protected by a C8 guard column (5 µm). The mobile phase, 10 mm formic acid in water (pH 2.9) and acetonitrile (70:30, v/v), was used at a flow rate of 0.35 mL/min. After on-line post-column hydrolysis of acetylsalicylic acid (ASA) to salicylic acid (SA) by addition of alkaline solution, the analytes were measured at 290 nm (λex ) and 400 nm (λem ). The method was linear in the concentration ranges between 0.05 and 20 ng/μL for both ASA and SA with a lower limit of quantification of 25 pg/μL for SA and 50 pg/μL for ASA. The limit of detection was 15 pg/μL for SA and 32.5 pg/μL for ASA. The analysis of ASA and SA can be carried out within 8 min; therefore this method is suitable for measuring plasma concentrations of salicylates in clinical routine. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Biodegradation of the artificial sweetener acesulfame in biological wastewater treatment and sandfilters.

    PubMed

    Castronovo, Sandro; Wick, Arne; Scheurer, Marco; Nödler, Karsten; Schulz, Manoj; Ternes, Thomas A

    2017-03-01

    A considerable removal of the artificial sweetener acesulfame (ACE) was observed during activated sludge processes at 13 wastewater treatment plants (WWTPs) as well as in a full-scale sand filter of a water works. A long-term sampling campaign over a period of almost two years revealed that ACE removal in WWTPs can be highly variable over time. Nitrifying/denitrifying sequencing batch reactors (SBR) as well as aerobic batch experiments with activated sludge and filter sand from a water works confirmed that both activated sludge as well as filter sand can efficiently remove ACE and that the removal can be attributed to biologically mediated degradation processes. The lab results strongly indicated that varying ACE removal in WWTPs is not associated with nitrification processes. Neither an enhancement of the nitrification rate nor the availability of ammonium or the inhibition of ammonium monooxygenase by N-allylthiourea (ATU) affected the degradation. Moreover, ACE was found to be also degradable by activated sludge under denitrifying conditions, while being persistent in the absence of both dissolved oxygen and nitrate. Using ion chromatography coupled with high resolution mass spectrometry, sulfamic acid (SA) was identified as the predominant transformation product (TP). Quantitative analysis of ACE and SA revealed a closed mass balance during the entire test period and confirmed that ACE was quantitatively transformed to SA. Measurements of dissolved organic carbon (DOC) revealed an almost complete removal of the carbon originating from ACE, thereby further confirming that SA is the only relevant final TP in the assumed degradation pathway of ACE. A first analysis of SA in three municipal WWTP revealed similar concentrations in influents and effluents with maximum concentrations of up to 2.3 mg/L. The high concentrations of SA in wastewater are in accordance with the extensive use of SA in acid cleaners, while the degradation of ACE in WWTPs adds only a very

  5. Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish).

    PubMed

    Wang, Zhuo; Jia, Caihong; Li, Jingyang; Huang, Suzhen; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubens (Foc) is the most serious disease that attacks banana plants. Salicylic acid (SA) can play a key role in plant-microbe interactions. Our study is the first to examine the role of SA in conferring resistance to Foc TR4 in banana (Musa acuminata L. AAA group, cv. Cavendish), which is the greatest commercial importance cultivar in Musa. We used quantitative real-time reverse polymerase chain reaction (qRT-PCR) to analyze the expression profiles of 45 genes related to SA biosynthesis and downstream signaling pathways in a susceptible banana cultivar (cv. Cavendish) and a resistant banana cultivar (cv. Nongke No. 1) inoculated with Foc TR4. The expression of genes involved in SA biosynthesis and downstream signaling pathways was suppressed in a susceptible cultivar and activated in a resistant cultivar. The SA levels in each treatment arm were measured using high-performance liquid chromatography. SA levels were decreased in the susceptible cultivar and increased in the resistant cultivar. Finally, we examined the contribution of exogenous SA to Foc TR4 resistance in susceptible banana plants. The expression of genes involved in SA biosynthesis and signal transduction pathways as well as SA levels were significantly increased. The results suggest that one reason for banana susceptibility to Foc TR4 is that expression of genes involved in SA biosynthesis and SA levels are suppressed and that the induced resistance observed in banana against Foc TR4 might be a case of salicylic acid-dependent systemic acquired resistance.

  6. Salicylic Acid Biosynthesis and Metabolism

    PubMed Central

    Dempsey, D'Maris Amick; Vlot, A. Corina; Wildermuth, Mary C.; Klessig, Daniel F.

    2011-01-01

    Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented. PMID:22303280

  7. Cyclic lipopeptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways.

    PubMed

    Kawagoe, Yumi; Shiraishi, Soma; Kondo, Hiroko; Yamamoto, Shoko; Aoki, Yoshinao; Suzuki, Shunji

    2015-05-15

    Iturin A is the most well studied antifungal cyclic lipopeptide produced by Bacillus species that are frequently utilized as biological control agents. Iturin A not only shows strong antifungal activity against phytopathogens but also induces defense response in plants, thereby reducing plant disease severity. Here we report the defense signaling pathways triggered by iturin A in Arabidopsis salicylic acid (SA) or jasmonic acid (JA)-insensitive mutants. Iturin A activated the transcription of defense genes PR1 and PDF1.2 through the SA and JA signaling pathways, respectively. The role of iturin A as an elicitor was dependent on the cyclization of the seven amino acids and/or the β-hydroxy fatty acid chain. The iturin A derivative peptide, NH2-(L-Asn)-(D-Tyr)-(D-Asn)-(L-Gln)-(L-Pro)-(D-Asn)-(L-Ser)-COOH, completely suppressed PR1 and PDF1.2 gene expression in wild Arabidopsis plants. The identification of target molecules binding to iturin A and its derivative peptide is expected to shed new light on defense response in plants through the SA and JA signaling pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. 300 Area waste acid treatment system closure plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to themore » General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.« less

  9. Toxicology of isoproturon to the food crop wheat as affected by salicylic acid.

    PubMed

    Liang, Lu; Lu, Yan Li; Yang, Hong

    2012-07-01

    Isoproturon, a herbicide belonging to the phenylurea family, is widely used to kill weeds in soils. Recent study indicated that isoproturon has become a contaminant in ecosystems due to its intensive use, thus bringing environmental risks to crop production safety. Salicylic acid (SA) is one of the components in plant defense signaling pathways and regulates diverse physiological responses to biotic and environmental stresses. The purpose of the study is to help to understand how SA mediates the biological process in wheat under isoproturon stress. Wheat seeds (Triticum aestivum, cv. Yangmai 13) were surface-sterilized and placed on moist filter paper for germination. After 24 h, the germinating seeds were placed on a plastic pot (1 L) containing 1,120 g soil mixed with isoproturon at 4 mg kg(-1) soil. After 4 days, wheat leaves were sprayed with 5 mg L(-1) SA. The SA treatment was undertaken once a day and lasted for 6 days, when the third true leaf was well developed. For control seedlings, only water was sprayed. Seedlings were grown under a light intensity of 300 µmol m(-2) s(-1) with a light/dark cycle of 12/12 h at 25°C, and watered to keep 70% relative water content in soils. We investigated the role of SA in alleviating isoproturon-induced toxicity in the food crop wheat (T. aestivum). Plants exposed to 4 mg kg(-1) isoproturon showed growth stunt and oxidative damage, but concomitant treatment with 5 mg L(-1) SA was able to attenuate the toxic effect. Isoproturon in soils was readily accumulated by wheat, but such accumulation can be blocked significantly by SA application. Treatment with SA decreased the abundance of O(2) (.-) and H(2)O(2), as well as activities of antioxidant enzymes, and increased activities of catalase in isoproturon-exposed plants. The enzyme activities were confirmed by the native polyacrylamide gel electrophoresis. Further, an RT-PCR-based assay was performed to show that several transcripts coding antioxidant enzymes were

  10. Prolonged dark period modulates the oxidative burst and enzymatic antioxidant systems in the leaves of salicylic acid-treated tomato.

    PubMed

    Poór, Péter; Takács, Zoltán; Bela, Krisztina; Czékus, Zalán; Szalai, Gabriella; Tari, Irma

    2017-06-01

    Salicylic acid (SA) is an important plant growth regulator playing a role in the hypersensitive reaction (HR) and the induction of systemic acquired resistance. Since the SA-mediated signalling pathways and the formation of reactive oxygen species (ROS) are light-dependent, the time- and concentration-specific induction of oxidative stress was investigated in leaves of tomato plants kept under light and dark conditions after treatments with 0.1mM and 1mM SA. The application of exogenous SA induced early superoxide- and H 2 O 2 production in the leaves, which was different in the absence or presence of light and showed time- and concentration-dependent changes. 1mM SA, which induced HR-like cell death resulted in two peaks in the H 2 O 2 production in the light but the first, priming peak was not detected in the dark. Unlike 0.1mM SA, 1mM SA application induced NADPH oxidase activity leading to increased superoxide production in the first hours of SA treatments in the light. Moreover, SA treatments inhibited catalase (CAT) activity and caused a transient decline in ascorbate peroxidase (APX), the two main enzymes responsible for H 2 O 2 degradation, which led to a fast H 2 O 2 burst in the light. Their activity as well as the expression of some isoenzymes of SOD and APX increased only from the 12th h in the illuminated samples. The activity of NADPH oxidase and expression SlRBOH1 gene encoding a NADPH oxidase subunit was much lower in the dark. In spite of low CAT and APX activity after SA treatments in the dark, the activation of guaiacol-dependent peroxidase (POD) could partially substitute H 2 O 2 scavenging activity of these enzymes in the dark, which reduced the ROS burst and development of lesion formation in the leaves. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Syringic Acid Extracted from Herba dendrobii Prevents Diabetic Cataract Pathogenesis by Inhibiting Aldose Reductase Activity

    PubMed Central

    Wei, Xiaoyong; Chen, Dan; Yi, Yanchun; Qi, Hui; Gao, Xinxin; Fang, Hua; Gu, Qiong; Wang, Ling; Gu, Lianquan

    2012-01-01

    Objective. Effects of Syringic acid (SA) extracted from dendrobii on diabetic cataract (DC) pathogenesis were explored. Methods. Both in vitro and in vivo DC lens models were established using D-gal, and proliferation of HLEC exposed to SA was determined by MMT assay. After 60-day treatment with SA, rat lens transparency was observed by anatomical microscopy using a slit lamp. SA protein targets were extracted and isolated using 2-DE and MALDI TOF/TOF. AR gene expression was investigated using qRT-PCR. Interaction sites and binding characteristics were determined by molecule-docking techniques and dynamic models. Results. Targeting AR, SA provided protection from D-gal-induced damage by consistently maintaining lens transparency and delaying lens turbidity development. Inhibition of AR gene expression by SA was confirmed by qRT-PCR. IC50 of SA for inhibition of AR activity was 213.17 μg/mL. AR-SA binding sites were Trp111, His110, Tyr48, Trp20, Trp79, Leu300, and Phe122. The main binding modes involved hydrophobic interactions and hydrogen bonding. The stoichiometric ratio of non-covalent bonding between SA and AR was 1.0 to 13.3. Conclusion. SA acts to prevent DC in rat lenses by inhibiting AR activity and gene expression, which has potential to be developed into a novel drug for therapeutic management of DC. PMID:23365598

  12. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways.

    PubMed

    Mur, Luis A J; Prats, Elena; Pierre, Sandra; Hall, Michael A; Hebelstrup, Kim H

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.

  13. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways

    PubMed Central

    Mur, Luis A. J.; Prats, Elena; Pierre, Sandra; Hall, Michael A.; Hebelstrup, Kim H.

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used. PMID:23818890

  14. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses.

    PubMed

    Zarate, Sonia I; Kempema, Louisa A; Walling, Linda L

    2007-02-01

    The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF.

  15. Comparison the effectiveness of pyruvic acid 50% and salicylic acid 30% in the treatment of acne.

    PubMed

    Jaffary, Fariba; Faghihi, Gita; Saraeian, Sara; Hosseini, Sayed Mohsen

    2016-01-01

    Acne vulgaris is a chronic inflammatory disease of the pilosebaceous follicles and one of the most common skin diseases. The peeling method has been recently found to be effective for acne treatment. This study aimed to compare the efficacy of pyruvic acid 50% and salicylic acid 30% peeling in the treatment of mild to moderate acne. In a prospective single-blinded clinical trial, 86 patients with acne were randomly assigned into two groups. In both groups, the routine treatment of acne (topical solution of erythromycin 4%, triclorocarban soap, and sunscreen) were used twice a day for 8 weeks. In addition, salicylic acid 30% for the control group and pyruvic acid 50% for the case group were used. In both groups, acne severity index (ASI) was calculated before and at week 2, 4, 6, and 8 of the treatment. Patient satisfaction was assessed at the end of the treatment. Side effects were recorded using a checklist. In both groups, the reduction in the number of comedones, papules, and ASI were statistically significant ( P < 0.001) in the course of treatment. However, it was not significant regarding the number of pustules ( P = 0.09). None of the number of comedone, papules, pustules, and ASI was statistically different between study groups. Both treatment groups had similar side effects except for scaling in the fifth session, which was significantly lower in salicylic acid - treated patients ( P = 0.015). Both pyruvic acid 50% and salicylic acid 30% are effective in the improvement of mild to moderate acne with no significant difference in efficacy and side effects.

  16. Calculation of {alpha}/{gamma} equilibria in SA508 grade 3 steels for intercritical heat treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B.J.; Kim, H.D.; Hong, J.H.

    1998-05-01

    An attempt has been made to suggest an optimum temperature for intercritical heat treatment of an SA508 grade 3 steel for nuclear pressure vessels, based on thermodynamic calculation of the {alpha}/{gamma} phase equilibria. A thermodynamic database constructed for the Fe-Mn-Ni-Mo-Cr-Si-V-Al-C-N ten-component system and an empirical criterion that the amount of reformed austenite should be around 40 pct were used for thermodynamic calculation and derivation of the optimum heat-treatment temperature, respectively. The calculated optimum temperature, 720 C, was in good agreement with an experimentally determined temperature of 725 C obtained through an independent experimental investigation of the same steel. The agreementmore » between the calculated and measured fraction of reformed austenite during the intercritical heat treatment was also confirmed. Based on the agreement between calculation and experiment, it could be concluded that thermodynamic calculations can be successfully applied to the materials and/or process design as an additive tool to the already established technology, and that the currently constructed thermodynamic database for steel systems shows an accuracy that makes such applications possible.« less

  17. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling.

    PubMed

    Wang, Zheng; Tan, Xiaoli; Zhang, Zhiyan; Gu, Shoulai; Li, Guanying; Shi, Haifeng

    2012-03-01

    Signaling pathways mediated by salicylic acid (SA) and jasmonic acid (JA) are widely studied in various host-pathogen interactions. For oilseed rape (Brassica napus)-Sclerotinia sclerotiorum interaction, little information of the two signaling molecules has been described in detail. In this study, we showed that the level of SA and JA in B. napus leaves was increased with a distinct temporal profile, respectively, after S. sclerotiorum infection. The application of SA or methyl jasmonate enhanced the resistance to the pathogen. Furthermore, a set of SA and JA signaling marker genes were identified from B. napus and were used to monitor the signaling responses to S. sclerotiorum infection by examining the temporal expression profiles of these marker genes. The SA signaling was activated within 12h post inoculation (hpi) followed by the JA signaling which was activated around 24 hpi. In addition, SA-JA crosstalk genes were activated during this process. These results suggested that defense against S. sclerotiorum in oilseed rape is associated with a sequential activation of SA signaling and JA signaling, which provide important clues for designing strategies to curb diseases caused by S. sclerotioru. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types.

    PubMed

    Schweiger, R; Heise, A-M; Persicke, M; Müller, C

    2014-07-01

    The phytohormones jasmonic acid (JA) and salicylic acid (SA) mediate induced plant defences and the corresponding pathways interact in a complex manner as has been shown on the transcript and proteine level. Downstream, metabolic changes are important for plant-herbivore interactions. This study investigated metabolic changes in leaf tissue and phloem exudates of Plantago lanceolata after single and combined JA and SA applications as well as consequences on chewing-biting (Heliothis virescens) and piercing-sucking (Myzus persicae) herbivores. Targeted metabolite profiling and untargeted metabolic fingerprinting uncovered different categories of plant metabolites, which were influenced in a specific manner, indicating points of divergence, convergence, positive crosstalk and pronounced mutual antagonism between the signaling pathways. Phytohormone-specific decreases of primary metabolite pool sizes in the phloem exudates may indicate shifts in sink-source relations, resource allocation, nutrient uptake or photosynthesis. Survival of both herbivore species was significantly reduced by JA and SA treatments. However, the combined application of JA and SA attenuated the negative effects at least against H. virescens suggesting that mutual antagonism between the JA and SA pathway may be responsible. Pathway interactions provide a great regulatory potential for the plant that allows triggering of appropriate defences when attacked by different antagonist species. © 2013 John Wiley & Sons Ltd.

  19. Comparison the effectiveness of pyruvic acid 50% and salicylic acid 30% in the treatment of acne

    PubMed Central

    Jaffary, Fariba; Faghihi, Gita; Saraeian, Sara; Hosseini, Sayed Mohsen

    2016-01-01

    Background: Acne vulgaris is a chronic inflammatory disease of the pilosebaceous follicles and one of the most common skin diseases. The peeling method has been recently found to be effective for acne treatment. This study aimed to compare the efficacy of pyruvic acid 50% and salicylic acid 30% peeling in the treatment of mild to moderate acne. Materials and Methods: In a prospective single-blinded clinical trial, 86 patients with acne were randomly assigned into two groups. In both groups, the routine treatment of acne (topical solution of erythromycin 4%, triclorocarban soap, and sunscreen) were used twice a day for 8 weeks. In addition, salicylic acid 30% for the control group and pyruvic acid 50% for the case group were used. In both groups, acne severity index (ASI) was calculated before and at week 2, 4, 6, and 8 of the treatment. Patient satisfaction was assessed at the end of the treatment. Side effects were recorded using a checklist. Results: In both groups, the reduction in the number of comedones, papules, and ASI were statistically significant (P < 0.001) in the course of treatment. However, it was not significant regarding the number of pustules (P = 0.09). None of the number of comedone, papules, pustules, and ASI was statistically different between study groups. Both treatment groups had similar side effects except for scaling in the fifth session, which was significantly lower in salicylic acid – treated patients (P = 0.015). Conclusion: Both pyruvic acid 50% and salicylic acid 30% are effective in the improvement of mild to moderate acne with no significant difference in efficacy and side effects. PMID:27904577

  20. Interaction of plant cell signaling molecules, salicylic acid and jasmonic acid, with the mitochondria of Helicoverpa armigera.

    PubMed

    Akbar, S M D; Sharma, H C; Jayalakshmi, S K; Sreeramulu, K

    2012-02-01

    The cotton bollworm, Helicoverpa armigera is a polyphagous pest in Asia, Africa, and the Mediterranean Europe. Salicylic acid (SA) and jasmonic acid (JA) are the cell signaling molecules produced in response to insect attack in plants. The effect of these signaling molecules was investigated on the oxidative phosphorylation and oxidative stress of H. armigera. SA significantly inhibited the state III and state IV respiration, respiratory control index (RCI), respiratory complexes I and II, induced mitochondrial swelling, and cytochrome c release in vitro. Under in vivo conditions, SA induced state IV respiration as well as oxidative stress in time- and dose-dependent manner, and also inhibited the larval growth. In contrast, JA did not affect the mitochondrial respiration and oxidative stress. SA affected the growth and development of H. armigera, in addition to its function as signaling molecules involved in both local defense reactions at feeding sites and the induction of systemic acquired resistance in plants.

  1. Treatment of Irradiated Mice with High-Dose Ascorbic Acid Reduced Lethality

    PubMed Central

    Sato, Tomohito; Kinoshita, Manabu; Yamamoto, Tetsuo; Ito, Masataka; Nishida, Takafumi; Takeuchi, Masaru; Saitoh, Daizoh; Seki, Shuhji; Mukai, Yasuo

    2015-01-01

    Ascorbic acid is an effective antioxidant and free radical scavenger. Therefore, it is expected that ascorbic acid should act as a radioprotectant. We investigated the effects of post-radiation treatment with ascorbic acid on mouse survival. Mice received whole body irradiation (WBI) followed by intraperitoneal administration of ascorbic acid. Administration of 3 g/kg of ascorbic acid immediately after exposure significantly increased mouse survival after WBI at 7 to 8 Gy. However, administration of less than 3 g/kg of ascorbic acid was ineffective, and 4 or more g/kg was harmful to the mice. Post-exposure treatment with 3 g/kg of ascorbic acid reduced radiation-induced apoptosis in bone marrow cells and restored hematopoietic function. Treatment with ascorbic acid (3 g/kg) up to 24 h (1, 6, 12, or 24 h) after WBI at 7.5 Gy effectively improved mouse survival; however, treatments beyond 36 h were ineffective. Two treatments with ascorbic acid (1.5 g/kg × 2, immediately and 24 h after radiation, 3 g/kg in total) also improved mouse survival after WBI at 7.5 Gy, accompanied with suppression of radiation-induced free radical metabolites. In conclusion, administration of high-dose ascorbic acid might reduce radiation lethality in mice even after exposure. PMID:25651298

  2. Hydrothermal-acid treatment for effectual extraction of eicosapentaenoic acid (EPA)-abundant lipids from Nannochloropsis salina.

    PubMed

    Lee, Ilgyu; Han, Jong-In

    2015-09-01

    Hydrothermal acid treatment, was adopted to extract eicosapentaenoic acid (EPA) from wet biomass of Nannochloropsis salina. It was found that sulfuric acid-based treatment increased EPA yield from 11.8 to 58.1 mg/g cell in a way that was nearly proportional to its concentration. Nitric acid exhibited the same pattern at low concentrations, but unlike sulfuric acid its effectiveness unexpectedly dropped from 0.5% to 2.0%. The optimal and minimal conditions for hydrothermal acid pretreatment were determined using a statistical approach; its maximum EPA yield (predicted: 43.69 mg/g cell; experimental: 43.93 mg/g cell) was established at a condition of 1.27% of sulfuric acid, 113.34 °C of temperature, and 36.71 min of reaction time. Our work demonstrated that the acid-catalyzed cell disruption, accompanied by heat, can be one potentially promising option for ω-3 fatty acids extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Molecular cloning and expression analysis of jasmonic acid dependent but salicylic acid independent LeWRKY1.

    PubMed

    Lu, M; Wang, L F; Du, X H; Yu, Y K; Pan, J B; Nan, Z J; Han, J; Wang, W X; Zhang, Q Z; Sun, Q P

    2015-11-30

    Various plant genes can be activated or inhibited by phytohormones under conditions of biotic and abiotic stress, especially in response to jasmonic acid (JA) and salicylic acid (SA). Interactions between JA and SA may be synergistic or antagonistic, depending on the stress condition. In this study, we cloned a full-length cDNA (LeWRKY1, GenBank accession No. FJ654265) from Lycopersicon esculentum by rapid amplification of cDNA ends. Sequence analysis showed that this gene is a group II WRKY transcription factor. Analysis of LeWRKY1 mRNA expression in various tissues by qRT-PCR showed that the highest and lowest expression occurred in the leaves and stems, respectively. In addition, LeWRKY1 expression was induced by JA and Botrytis cinerea Pers., but not by SA.

  4. Positive regulatory role of sound vibration treatment in Arabidopsis thaliana against Botrytis cinerea infection.

    PubMed

    Choi, Bosung; Ghosh, Ritesh; Gururani, Mayank Anand; Shanmugam, Gnanendra; Jeon, Junhyun; Kim, Jonggeun; Park, Soo-Chul; Jeong, Mi-Jeong; Han, Kyung-Hwan; Bae, Dong-Won; Bae, Hanhong

    2017-05-30

    Sound vibration (SV), a mechanical stimulus, can trigger various molecular and physiological changes in plants like gene expression, hormonal modulation, induced antioxidant activity and calcium spiking. It also alters the seed germination and growth of plants. In this study, we investigated the effects of SV on the resistance of Arabidopsis thaliana against Botrytis cinerea infection. The microarray analysis was performed on infected Arabidopsis plants pre-exposed to SV of 1000 Hertz with 100 decibels. Broadly, the transcriptomic analysis revealed up-regulation of several defense and SA-responsive and/or signaling genes. Quantitative real-time PCR (qRT-PCR) analysis of selected genes also validated the induction of SA-mediated response in the infected Arabidopsis plants pre-exposed to SV. Corroboratively, hormonal analysis identified the increased concentration of salicylic acid (SA) in the SV-treated plants after pathogen inoculation. In contrast, jasmonic acid (JA) level in the SV-treated plants remained stable but lower than control plants during the infection. Based on these findings, we propose that SV treatment invigorates the plant defense system by regulating the SA-mediated priming effect, consequently promoting the SV-induced resistance in Arabidopsis against B. cinerea.

  5. Functionalities of chitosan conjugated with stearic acid and gallic acid and application of the modified chitosan in stabilizing labile aroma compounds in an oil-in-water emulsion.

    PubMed

    Yang, Tsung-Shi; Liu, Tai-Ti; Lin, I-Hwa

    2017-08-01

    The aims of this research were to conjugate chitosan (CT) with stearic acid (SA) and gallic acid (GA), and apply the modified chitosan to stabilize labile aroma compounds such as allyl isothiocyanate (AITC) and limonene in oil-in-water emulsions. Generally, the antioxidant activity of CT-SA-GA increased as the GA content in the conjugate increased. In most assays, GA had a lower IC 50 value than that of CT-SA-GA; however, CT-SA-GA exhibited better performance than GA in the Fe 2+ -chelating activity. In accelerated tests (heating or illumination) for evaluating the chemical stability of AITC and limonene during storage, CT-SA and CT-SA-GA were used to prepare AITC and limonene O/W emulsions, respectively. Tween 80 and Span 80 (T-S-80), an emulsifier mixture, were used as a control in both emulsions for comparison. The results show that CT-SA or CT-SA-GA could protect AITC or limonene from degradation or oxidation more effectively than T-S-80. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Characterization of selectively etched halloysite nanotubes by acid treatment

    NASA Astrophysics Data System (ADS)

    Garcia-Garcia, Daniel; Ferri, Jose M.; Ripoll, Laura; Hidalgo, Montserrat; Lopez-Martinez, Juan; Balart, Rafael

    2017-11-01

    Halloysite nanotubes (HNTs) are a type of naturally occurring inorganic nanotubes that are characterized by a different composition between their external and internal walls. The internal walls are mainly composed of alumina whilst external walls are composed of silica. This particular structure offers a dual surface chemistry that allows different selective surface treatments which can be focused on increasing the lumen, increasing porosity, etc. In this work, HNTs were chemically treated with different acids (sulphuric, acetic and acrylic acid), for 72 h at a constant temperature of 50 °C. As per the obtained results, the treatment with sulphuric acid is highly aggressive and the particular shape of HNTs is almost lost, with a remarkable increase in porosity. The BET surface area increases from 52.9 (untreated HNTs) up to 132.4 m2 g-1 with sulphuric acid treatment, thus showing an interesting potential in the field of catalysis. On the other hand, the treatment with acetic acid led to milder effects with a noticeable increase in the lumen diameter that changed from 13.8 nm (untreated HNTs) up to 18.4 nm which the subsequent increase in the loading capacity by 77.8%. The aluminium content was measured by X-ray fluorescence (XRF) and laser induced breakdown spectroscopy (LIBS). The final results using two systems, suggest a good correlation between the acid strength and the aluminium reduction. Consequently, is possible to conclude that new applications for HNTs can be derived from selective etching with acids. Sulphuric acid widens the potential of HNTs in the field of catalysis while weak acids such as acetic and acrylic acids give a controlled and homogeneous lumen increase with the corresponding increase in the loading capacity.

  7. Polydiacetylene liposomes with phenylboronic acid tags: a fluorescence turn-on sensor for sialic acid detection and cell-surface glycan imaging.

    PubMed

    Wang, Dong-En; Yan, Jiahang; Jiang, Jingjing; Liu, Xiang; Tian, Chang; Xu, Juan; Yuan, Mao-Sen; Han, Xiang; Wang, Jinyi

    2018-03-01

    Sialic acid (SA) located at the terminal end of glycans on cell membranes has been shown to play an important yet distinctive role in various biological and pathological processes. Effective methods for the facile, sensitive and in situ analysis of SA on living cell surfaces are of great significance in terms of clinical diagnostics and therapeutics. Here, a new polydiacetylene (PDA) liposome-based sensor system bearing phenylboronic acid (PBA) and 1,8-naphthalimide derived fluorophore moieties was developed as a fluorescence turn-on sensor for the detection of free SA in aqueous solution and the in situ imaging of SA-terminated glycans on living cell surfaces. In the sensor system, three diacetylene monomers, PCDA-pBA, PCDA-Nap and PCDA-EA, were designed and synthesized to construct the composite PDA liposome sensor. The monomer PCDA-pBA modified with PBA molecules was employed as a receptor for SA recognition, while the monomer PCDA-Nap containing a 1,8-naphthalimide derivative fluorophore was used for fluorescence signaling. When the composite PDA liposomes were formed, the energy transfer between the fluorophore and the conjugated backbone could directly quench the fluorescence of the fluorophore. In the presence of additional SA or SA abundant cells, the strong binding of SA with PBA moieties disturbed the pendent side chain conformation, resulting in the fluorescence restoration of the fluorophore. The proposed methods realized the fluorescence turn-on detection of free SA in aqueous solution and the in situ imaging of SA on living MCF-7 cell surfaces. This work provides a new potential tool for simple and selective analysis of SA on living cell membranes.

  8. The plastidial retrograde signal methyl erythritol cyclopyrophosphate is a regulator of salicylic acid and jasmonic acid crosstalk

    PubMed Central

    Lemos, Mark; Xiao, Yanmei; Bjornson, Marta; Wang, Jin-zheng; Hicks, Derrick; de Souza, Amancio; Wang, Chang-Quan; Yang, Panyu; Ma, Shisong; Dinesh-Kumar, Savithramma; Dehesh, Katayoon

    2016-01-01

    The exquisite harmony between hormones and their corresponding signaling pathways is central to prioritizing plant responses to simultaneous and/or successive environmental trepidations. The crosstalk between jasmonic acid (JA) and salicylic acid (SA) is an established effective mechanism that optimizes and tailors plant adaptive responses. However, the underlying regulatory modules of this crosstalk are largely unknown. Global transcriptomic analyses of mutant plants (ceh1) with elevated levels of the stress-induced plastidial retrograde signaling metabolite 2-C-methyl-D-erythritol cyclopyrophosphate (MEcPP) revealed robustly induced JA marker genes, expected to be suppressed by the presence of constitutively high SA levels in the mutant background. Analyses of a range of genotypes with varying SA and MEcPP levels established the selective role of MEcPP-mediated signal(s) in induction of JA-responsive genes in the presence of elevated SA. Metabolic profiling revealed the presence of high levels of the JA precursor 12-oxo-phytodienoic acid (OPDA), but near wild type levels of JA in the ceh1 mutant plants. Analyses of coronatine-insensitive 1 (coi1)/ceh1 double mutant plants confirmed that the MEcPP-mediated induction is JA receptor COI1 dependent, potentially through elevated OPDA. These findings identify MEcPP as a previously unrecognized central regulatory module that induces JA-responsive genes in the presence of high SA, thereby staging a multifaceted plant response within the environmental context. PMID:26733689

  9. Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco

    PubMed Central

    Vogel-Adghough, Drissia; Stahl, Elia; Návarová, Hana; Zeier, Jürgen

    2013-01-01

    Distinct amino acid metabolic pathways constitute integral parts of the plant immune system. We have recently identified pipecolic acid (Pip), a lysine-derived non-protein amino acid, as a critical regulator of systemic acquired resistance (SAR) and basal immunity to bacterial infection in Arabidopsis thaliana. In Arabidopsis, Pip acts as an endogenous mediator of defense amplification and priming. For instance, Pip conditions plants for effective biosynthesis of the phenolic defense signal salicylic acid (SA), accumulation of the phytoalexin camalexin, and expression of defense-related genes. Here, we show that tobacco plants respond to leaf infection by the compatible bacterial pathogen Pseudomonas syringae pv tabaci (Pstb) with a significant accumulation of several amino acids, including Lys, branched-chain, aromatic, and amide group amino acids. Moreover, Pstb strongly triggers, alongside the biosynthesis of SA and increases in the defensive alkaloid nicotine, the production of the Lys catabolites Pip and α-aminoadipic acid. Exogenous application of Pip to tobacco plants provides significant protection to infection by adapted Pstb or by non-adapted, hypersensitive cell death-inducing P. syringae pv maculicola. Pip thereby primes tobacco for rapid and strong accumulation of SA and nicotine following bacterial infection. Thus, our study indicates that the role of Pip as an amplifier of immune responses is conserved between members of the rosid and asterid groups of eudicot plants and suggests a broad practical applicability for Pip as a natural enhancer of plant disease resistance. PMID:24025239

  10. Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling.

    PubMed

    Zhang, Peng-Jun; Li, Wei-Di; Huang, Fang; Zhang, Jin-Ming; Xu, Fang-Cheng; Lu, Yao-Bin

    2013-05-01

    Phloem-feeding whiteflies in the species complex Bemisia tabaci cause extensive crop damage worldwide. One of the reasons for their "success" is their ability to suppress the effectual jasmonic acid (JA) defenses of the host plant. However, little is understood about the mechanisms underlying whitefly suppression of JA-regulated defenses. Here, we showed that the expression of salicylic acid (SA)-responsive genes (EDS1 and PR1) in Arabidopsis thaliana was significantly enhanced during feeding by whitefly nymphs. Whereas upstream JA-responsive genes (LOX2 and OPR3) also were induced, the downstream JA-responsive gene (VSP1) was repressed, i.e., whiteflies only suppressed downstream JA signaling. Gene-expression analyses with various Arabidopsis mutants, including NahG, npr-1, ein2-1, and dde2-2, revealed that SA signaling plays a key role in the suppression of downstream JA defenses by whitefly feeding. Assays confirmed that SA activation enhanced whitefly performance by suppressing downstream JA defenses.

  11. Exogenous salicylic acid alleviates the toxicity of chlorpyrifos in wheat plants (Triticum aestivum).

    PubMed

    Wang, Caixia; Zhang, Qingming

    2017-03-01

    The role of exogenous salicylic acid (SA) in protecting wheat plants (Triticum aestivum) from contamination by the insecticide chlorpyrifos was investigated in this study. The wheat plants were grown in soils with different concentrations (5, 10, 20, and 40mgkg -1 ) of chlorpyrifos. When the third leaf emerged, the wheat leaves were sprayed with 1, 2, 4, 8, and 16mgL -1 of SA once a day for 6 days. The results showed that wheat exposed to higher concentrations of chlorpyrifos (≥20mgkg -1 ) caused declines in growth and chlorophyll content and altered the activities of a series of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). Interestingly, treatments with different concentrations of SA mitigated the stress generated by chlorpyrifos and improved the measured parameters to varying degrees. Furthermore, a reverse transcription and quantitative PCR experiment revealed that the activities of SOD and CAT can be regulated by their target gene in wheat when treated with SA. We also found that SA is able to block the accumulation of chlorpyrifos in wheat. However, the effect of SA was related to its concentration. In this study, the application of 2mgL -1 of SA had the greatest ameliorating effect on chlorpyrifos toxicity in wheat plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Exogenous salicylic acid protects phospholipids against cadmium stress in flax (Linum usitatissimum L.).

    PubMed

    Belkadhi, Aïcha; De Haro, Antonio; Obregon, Sara; Chaïbi, Wided; Djebali, Wahbi

    2015-10-01

    Salicylic acid (SA) promotes plant defense responses against toxic metal stresses. The present study addressed the hypothesis that 8-h SA pretreatment, would alter membrane lipids in a way that would protect against Cd toxicity. Flax seeds were pre-soaked for 8h in SA (0, 250 and 1000µM) and then subjected, at seedling stage, to cadmium (Cd) stress. At 100µM CdCl2, significant decreases in the percentages of phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and monogalactosyldiacylglycerol (MGDG) and changes in their relative fatty acid composition were observed in Cd-treated roots in comparison with controls. However, in roots of 8-h SA pretreated plantlets, results showed that the amounts of PC and PE were significantly higher as compared to non-pretreated plantlets. Additionally, in both lipid classes, the proportion of linolenic acid (18:3) increased upon the pretreatment with SA. This resulted in a significant increase in the fatty acid unsaturation ratio of the root PC and PE classes. As the exogenous application of SA was found to be protective of flax lipid metabolism, the possible mechanisms of protection against Cd stress in flax roots were discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Melorheostosis and its treatment with intravenous zoledronic acid

    PubMed Central

    Hollick, Rosemary Jane; Black, Alison; Reid, David

    2010-01-01

    We report a case of melorheostosis, a rare bone disorder characterised by mesodermal dysplasia, and its successful and prolonged treatment with the intravenous bisphosphonate zoledronic acid. The middle-aged man presented with pain and swelling of his tibia, which was diagnosed by imaging and bone biopsy as being due to melorheostosis. There was early symptom control after a single infusion of intravenous zoledronic acid. Prolonged symptom relief was accompanied by long-term suppression of the bone resorption marker β cross-laps. We suggest that melorheostosis can be treated with intravenous zoledronic acid and that treatment can be monitored by the use of a specific bone resorption marker. PMID:22479293

  14. The effect of temperature on the stability of compounds used as UV-MALDI-MS matrix: 2,5-dihydroxybenzoic acid, 2,4,6-trihydroxyacetophenone, alpha-cyano-4-hydroxycinnamic acid, 3,5-dimethoxy-4-hydroxycinnamic acid, nor-harmane and harmane.

    PubMed

    Tarzi, Olga I; Nonami, Hiroshi; Erra-Balsells, Rosa

    2009-02-01

    The thermal stability of several commonly used crystalline matrix-assisted ultraviolet laser desorption/ionization mass spectrometry (UV-MALDI-MS) matrices, 2,5-dihydroxybenzoic acid (gentisic acid; GA), 2,4,6-trihydroxyacetophenone (THA), alpha-cyano-4-hydroxycinnamic acid (CHC), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid; SA), 9H-pirido[3,4-b]indole (nor-harmane; nor-Ho), 1-methyl-9H-pirido[3,4-b]indole (harmane; Ho), perchlorate of nor-harmanonium ([nor-Ho+H]+) and perchlorate of harmanonium ([Ho+H]+) was studied by heating them at their melting point and characterizing the remaining material by using different MS techniques [electron ionization mass spectrometry (EI-MS), ultraviolet laserdesorption/ionization-time-of-flight-mass spectrometry (UV-LDI-TOF-MS) and electrospray ionization-time-of-flight-mass spectrometry (ESI-TOF-MS)] as well as by thin layer chromatography analysis (TLC), electronic spectroscopy (UV-absorption, fluorescence emission and excitation spectroscopy) and 1H nuclear magnetic resonance spectroscopy (1H-NMR). In general, all compounds, except for CHC and SA, remained unchanged after fusion. CHC showed loss of CO2, yielding the trans-/cis-4-hydroxyphenylacrilonitrile mixture. This mixture was unambiguously characterized by MS and 1H-NMR spectroscopy, and its sublimation capability was demonstrated. These results explain the well-known cluster formation, fading (vanishing) and further recovering of CHC when used as a matrix in UV-MALDI-MS. Commercial SA (SA 98%; trans-SA/cis-SA 5:1) showed mainly cis- to-trans thermal isomerization and, with very poor yield, loss of CO2, yielding (3',5'-dimethoxy-4'-hydroxyphenyl)-1-ethene as the decarboxilated product. These thermal conversions would not drastically affect its behavior as a UV-MALDI matrix as happens in the case of CHC. Complementary studies of the photochemical stability of these matrices in solid state were also conducted. Copyright (c) 2008 John Wiley & Sons, Ltd.

  15. Theobromine Inhibits Uric Acid Crystallization. A Potential Application in the Treatment of Uric Acid Nephrolithiasis

    PubMed Central

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2014-01-01

    Purpose To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine) to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis. Materials and Methods The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM). The ability of theobromine to inhibit uric acid crystal growth on calculi fragments resulting from extracorporeal shock wave lithotripsy (ESWL) was evaluated using a flow system. Results The turbidimetric assay showed that among the studied methylxanthines, theobromine could markedly inhibit uric acid nucleation. SEM images showed that the presence of theobromine resulted in thinner uric acid crystals. Furthermore, in a flow system theobromine blocked the regrowth of post-ESWL uric acid calculi fragments. Conclusions Theobromine, a natural dimethylxanthine present in high amounts in cocoa, acts as an inhibitor of nucleation and crystal growth of uric acid. Therefore, theobromine may be clinically useful in the treatment of uric acid nephrolithiasis. PMID:25333633

  16. Kinetic Reaction Mechanism of Sinapic Acid Scavenging NO2 and OH Radicals: A Theoretical Study

    PubMed Central

    Lu, Yang; Wang, AiHua; Shi, Peng; Zhang, Hui; Li, ZeSheng

    2016-01-01

    The mechanism and kinetics underlying reactions between the naturally-occurring antioxidant sinapic acid (SA) and the very damaging ·NO2 and ·OH were investigated through the density functional theory (DFT). Two most possible reaction mechanisms were studied: hydrogen atom transfer (HAT) and radical adduct formation (RAF). Different reaction channels of neutral and anionic sinapic acid (SA-) scavenging radicals in both atmosphere and water medium were traced independently, and the thermodynamic and kinetic parameters were calculated. We find the most active site of SA/SA- scavenging ·NO2 and ·OH is the –OH group in benzene ring by HAT mechanism, while the RAF mechanism for SA/SA- scavenging ·NO2 seems thermodynamically unfavorable. In water phase, at 298 K, the total rate constants of SA eliminating ·NO2 and ·OH are 1.30×108 and 9.20×109 M-1 S-1 respectively, indicating that sinapic acid is an efficient scavenger for both ·NO2 and ·OH. PMID:27622460

  17. Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes.

    PubMed

    Caarls, Lotte; Van der Does, Dieuwertje; Hickman, Richard; Jansen, Wouter; Verk, Marcel C Van; Proietti, Silvia; Lorenzo, Oscar; Solano, Roberto; Pieterse, Corné M J; Van Wees, Saskia C M

    2017-02-01

    Salicylic acid (SA) and jasmonic acid (JA) cross-communicate in the plant immune signaling network to finely regulate induced defenses. In Arabidopsis, SA antagonizes many JA-responsive genes, partly by targeting the ETHYLENE RESPONSE FACTOR (ERF)-type transcriptional activator ORA59. Members of the ERF transcription factor family typically bind to GCC-box motifs in the promoters of JA- and ethylene-responsive genes, thereby positively or negatively regulating their expression. The GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Here, we investigated whether SA-induced ERF-type transcriptional repressors, which may compete with JA-induced ERF-type activators for binding at the GCC-box, play a role in SA/JA antagonism. We selected ERFs that are transcriptionally induced by SA and/or possess an EAR transcriptional repressor motif. Several of the 16 ERFs tested suppressed JA-dependent gene expression, as revealed by enhanced JA-induced PDF1.2 or VSP2 expression levels in the corresponding erf mutants, while others were involved in activation of these genes. However, SA could antagonize JA-induced PDF1.2 or VSP2 in all erf mutants, suggesting that the tested ERF transcriptional repressors are not required for SA/JA cross-talk. Moreover, a mutant in the co-repressor TOPLESS, that showed reduction in repression of JA signaling, still displayed SA-mediated antagonism of PDF1.2 and VSP2. Collectively, these results suggest that SA-regulated ERF transcriptional repressors are not essential for antagonism of JA-responsive gene expression by SA. We further show that de novo SA-induced protein synthesis is required for suppression of JA-induced PDF1.2, pointing to SA-stimulated production of an as yet unknown protein that suppresses JA-induced transcription. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Salicylic acid regulates basal resistance to Fusarium head blight in wheat.

    PubMed

    Makandar, Ragiba; Nalam, Vamsi J; Lee, Hyeonju; Trick, Harold N; Dong, Yanhong; Shah, Jyoti

    2012-03-01

    Fusarium head blight (FHB) is a destructive disease of cereal crops such as wheat and barley. Previously, expression in wheat of the Arabidopsis NPR1 gene (AtNPR1), which encodes a key regulator of salicylic acid (SA) signaling, was shown to reduce severity of FHB caused by Fusarium graminearum. It was hypothesized that SA signaling contributes to wheat defense against F. graminearum. Here, we show that increased accumulation of SA in fungus-infected spikes correlated with elevated expression of the SA-inducible pathogenesis-related 1 (PR1) gene and FHB resistance. In addition, FHB severity and mycotoxin accumulation were curtailed in wheat plants treated with SA and in AtNPR1 wheat, which is hyper-responsive to SA. In support of a critical role for SA in basal resistance to FHB, disease severity was higher in wheat expressing the NahG-encoded salicylate hydroxylase, which metabolizes SA. The FHB-promoting effect of NahG was overcome by application of benzo (1,2,3), thiadiazole-7 carbothioic acid S-methyl ester, a synthetic functional analog of SA, thus confirming an important role for SA signaling in basal resistance to FHB. We further demonstrate that jasmonate signaling has a dichotomous role in wheat interaction with F. graminearum, constraining activation of SA signaling during early stages of infection and promoting resistance during the later stages of infection.

  19. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic Acid.

    PubMed

    Leon-Reyes, Antonio; Du, Yujuan; Koornneef, Annemart; Proietti, Silvia; Körbes, Ana P; Memelink, Johan; Pieterse, Corné M J; Ritsema, Tita

    2010-02-01

    Cross-talk between jasmonate (JA), ethylene (ET), and Salicylic acid (SA) signaling is thought to operate as a mechanism to fine-tune induced defenses that are activated in response to multiple attackers. Here, 43 Arabidopsis genotypes impaired in hormone signaling or defense-related processes were screened for their ability to express SA-mediated suppression of JA-responsive gene expression. Mutant cev1, which displays constitutive expression of JA and ET responses, appeared to be insensitive to SA-mediated suppression of the JA-responsive marker genes PDF1.2 and VSP2. Accordingly, strong activation of JA and ET responses by the necrotrophic pathogens Botrytis cinerea and Alternaria brassicicola prior to SA treatment counteracted the ability of SA to suppress the JA response. Pharmacological assays, mutant analysis, and studies with the ET-signaling inhibitor 1-methylcyclopropene revealed that ET signaling renders the JA response insensitive to subsequent suppression by SA. The APETALA2/ETHYLENE RESPONSE FACTOR transcription factor ORA59, which regulates JA/ET-responsive genes such as PDF1.2, emerged as a potential mediator in this process. Collectively, our results point to a model in which simultaneous induction of the JA and ET pathway renders the plant insensitive to future SA-mediated suppression of JA-dependent defenses, which may prioritize the JA/ET pathway over the SA pathway during multi-attacker interactions.

  20. Dietary supplementation with arginine and glutamic acid enhances key lipogenic gene expression in growing pigs.

    PubMed

    Hu, C J; Jiang, Q Y; Zhang, T; Yin, Y L; Li, F N; Su, J Y; Wu, G Y; Kong, X F

    2017-12-01

    Our previous study showed dietary supplementation with Arg and Glu increased intramuscular fat deposition and decreased back fat thickness in pigs, suggesting that the genes involved in lipid metabolism might be regulated differently in muscle and s.c. adipose (SA) tissues. Sixty Duroc × Large White × Landrace pigs with an average initial BW of 77.1 ± 1.3 kg were randomly assigned to 1 of 5 treatment groups (castrated male to female ratio = 1:1). Pigs in the control group were fed a basic diet, and those in experimental groups were fed the basic diet supplemented with 2.05% alanine (isonitrogenous group), 1.00% arginine (Arg group), 1.00% glutamic acid + 1.44% alanine (Glu group), or 1.00% arginine + 1.00% glutamic acid (Arg+Glu group). Fatty acid percentages and mRNA expression levels of the genes involved in lipid metabolism in muscle and SA tissues were examined. The percentages of C14:0 and C16:0 in the SA tissue of Glu group pigs and C14:0 in the longissimus dorsi (LD) muscle of Glu and Arg+Glu groups decreased ( < 0.05) compared to the basic diet group. The Arg+Glu group showed the highest ( < 0.05) hormone-sensitive lipase expression level in SA tissue and higher ( < 0.05) mRNA levels of in the LD muscle than the basic diet and isonitrogenous groups. Additionally, the mRNA level of fatty acid synthase in the Arg+Glu group was more upregulated ( < 0.05) than that of the Arg group. An increase in the mRNA level of in the biceps femoris muscle was also observed in the Arg+Glu group ( < 0.05) compared with the basic diet and isonitrogenous groups. Collectively, these findings suggest that dietary supplementation with Arg and Glu upregulates the expression of genes involved in adipogenesis in muscle tissues and lipolysis in SA tissues.

  1. Efficacy and tolerability of a topical gel containing 3% hydrogen peroxide, 1.5% salicylic acid and 4% D-panthenol in the treatment of mild-moderate acne.

    PubMed

    Fabbrocini, Gabriella; Panariello, Luigia

    2016-06-01

    The aim of this paper was to evaluate efficacy and tolerability of a topical gel (ACNAID TM gel medical device) containing 3% hydrogen peroxide (HPO), 1.5% salicylic acid (SA) and 4% D-panthenol (D-p) in the treatment of mild-moderate acne, comparing it with a previous formulation (ACNAID TM gel Cosmetic) containing 4% HPO, 0.5% SA, 4% D-p. Twenty patients of both sex with mild-moderate acne have been selected. The topical gel was applied twice a day for 60 days. Evaluations included: Global Acne Grading System (GAGS); lesions count; photographic assessment; a questionnaire to assess the tolerability. The results have been compared with those obtained in a previous study conducted with the formulation containing 4% HPO, 0.5% SA, 4% D-p. The GAGS score showed a reduction of 43% from T0 to T1 and of 61% from T0 to T2. Count of lesions: comedones reduction of 62% from T0 to T1 and of 95% from T0 to T2; papules reduction of 49% from T0 to T1 and of 68% from T0 to T2; pustules reduction of 75% from T0 to T1 and of 100% from T0 to T2. Digital images showed a significant reduction of acne lesions. At T2 the tolerability of the topical product was excellent according to 83% of patients and good according to 17% of patients. The topical gel has demonstrated to be effective and safe for treatment of mild to moderate acne. No patients reported side effects. These results are superior to those obtained in the previous study.

  2. In-situ Thermal Treatment of Trichloroethene at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Cole, Jason; McElroy, William J.; Glasgow, Jason; Heron, Gorm; Galligan, Jim; Parker, Ken; Davis, E. F.

    2008-01-01

    This viewgraph presentation describes the in-situ thermal treatment of trichloroethene at Marshall space Flight Center. The contents include: 1) Background 1 and 2; 2) Source Area-13; 3) In-situ Thermal Treatment; 4) SA-13 Lithology; 5) SA-13 In-Situ Thermal TS; 6) SA-13 ISTD System Components; 7) ISTD Overview; 8) Heaters; 9) SA-13 ISTD Wellfield Layout; 10) SA-13 Well Field; 11) ISTD Process and Instrumentation; 12) Treatment Zone Temperature; 13) SA-13 System Removals; 14) SA-13 DNAPL (typical photos); 15) Treatment Results 1-5; and 16) SA-13 TCE Removal Summary.

  3. Free and Conjugated Benzoic Acid in Tobacco Plants and Cell Cultures. Induced Accumulation upon Elicitation of Defense Responses and Role as Salicylic Acid Precursors1

    PubMed Central

    Chong, Julie; Pierrel, Marie-Agnès; Atanassova, Rossitza; Werck-Reichhart, Danièle; Fritig, Bernard; Saindrenan, Patrick

    2001-01-01

    Salicylic acid (SA) is a key endogenous component of local and systemic disease resistance in plants. In this study, we investigated the role of benzoic acid (BA) as precursor of SA biosynthesis in tobacco (Nicotiana tabacum cv Samsun NN) plants undergoing a hypersensitive response following infection with tobacco mosaic virus or in tobacco cell suspensions elicited with β-megaspermin, an elicitor from Phytophthora megasperma. We found a small pool of conjugated BA in healthy leaves and untreated cell suspensions of tobacco, whereas free BA levels were barely detectable. Infection of plants with tobacco mosaic virus or elicitation of cells led to a rapid de novo synthesis and accumulation of conjugated BA, whereas free BA was weakly induced. In presence of diphenylene iodonium, an inhibitor of superoxide anion formation, SA accumulation was abolished in elicited cells and much higher BA levels were concomitantly induced, mainly as a conjugated form. Furthermore, piperonylic acid, an inhibitor of cinnamate-4-hydroxylase was used as a powerful tool to redirect the metabolic flow from the main phenylpropanoid pathway into the SA biosynthetic branch. Under these conditions, in vivo labeling and radioisotope dilution experiments with [14C]trans-cinnamic acid as precursor clearly indicated that the free form of BA produced in elicited tobacco cells is not the major precursor of SA biosynthesis. The main conjugated form of BA accumulating after elicitation of tobacco cells was identified for the first time as benzoyl-glucose. Our data point to the likely role of conjugated forms of BA in SA biosynthesis. PMID:11154339

  4. Survival of Amino Acids in Micrometeorites During Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Bada, Jeffrey L.

    2003-01-01

    The delivery of amino acids by micrometeorites to the early Earth during the period of heavy bombardment could have been a significant source of the Earth's prebiotic amino acid inventory provided that these organic compounds survived atmospheric entry heating. To investigate the sublimation of amino acids from a micrometeorite analog at elevated temperature, grains from the CM-type carbonaceous chondrite Murchison were heated to 550 C inside a glass sublimation apparatus (SA) under reduced pressure. The sublimed residue that had collected on the cold finger of the SA after heating was analyzed for amino acids by HPLC. We found that when the temperature of the meteorite reached approx. 150 C, a large fraction of the amino acid glycine had vaporized from the meteorite, recondensed onto the end of the SA cold finger, and survived as the rest of the grains heated to 550 C. alpha-Aminoisobutryic acid and isovaline, which are two of the most abundant non-protein amino acids in Murchison, did not sublime from the meteorite and were completely destroyed during the heating experiment. Our experimental results suggest that sublimation of glycine present in micrometeorite grains may provide a way for this amino acid to survive atmospheric entry heating at temperatures less than 550 C; all other amino acids apparently are destroyed. Key Words: Amino acids-Exogenous delivery-Micrometeorites-Sublimation.

  5. Arachidonic Acid: An Evolutionarily Conserved Signaling Molecule Modulates Plant Stress Signaling Networks[C][W

    PubMed Central

    Savchenko, Tatyana; Walley, Justin W.; Chehab, E. Wassim; Xiao, Yanmei; Kaspi, Roy; Pye, Matthew F.; Mohamed, Maged E.; Lazarus, Colin M.; Bostock, Richard M.; Dehesh, Katayoon

    2010-01-01

    Fatty acid structure affects cellular activities through changes in membrane lipid composition and the generation of a diversity of bioactive derivatives. Eicosapolyenoic acids are released into plants upon infection by oomycete pathogens, suggesting they may elicit plant defenses. We exploited transgenic Arabidopsis thaliana plants (designated EP) producing eicosadienoic, eicosatrienoic, and arachidonic acid (AA), aimed at mimicking pathogen release of these compounds. We also examined their effect on biotic stress resistance by challenging EP plants with fungal, oomycete, and bacterial pathogens and an insect pest. EP plants exhibited enhanced resistance to all biotic challenges, except they were more susceptible to bacteria than the wild type. Levels of jasmonic acid (JA) were elevated and levels of salicylic acid (SA) were reduced in EP plants. Altered expression of JA and SA pathway genes in EP plants shows that eicosapolyenoic acids effectively modulate stress-responsive transcriptional networks. Exogenous application of various fatty acids to wild-type and JA-deficient mutants confirmed AA as the signaling molecule. Moreover, AA treatment elicited heightened expression of general stress-responsive genes. Importantly, tomato (Solanum lycopersicum) leaves treated with AA exhibited reduced susceptibility to Botrytis cinerea infection, confirming AA signaling in other plants. These studies support the role of AA, an ancient metazoan signaling molecule, in eliciting plant stress and defense signaling networks. PMID:20935246

  6. The plastidial retrograde signal methyl erythritol cyclopyrophosphate is a regulator of salicylic acid and jasmonic acid crosstalk.

    PubMed

    Lemos, Mark; Xiao, Yanmei; Bjornson, Marta; Wang, Jin-Zheng; Hicks, Derrick; Souza, Amancio de; Wang, Chang-Quan; Yang, Panyu; Ma, Shisong; Dinesh-Kumar, Savithramma; Dehesh, Katayoon

    2016-03-01

    The exquisite harmony between hormones and their corresponding signaling pathways is central to prioritizing plant responses to simultaneous and/or successive environmental trepidations. The crosstalk between jasmonic acid (JA) and salicylic acid (SA) is an established effective mechanism that optimizes and tailors plant adaptive responses. However, the underlying regulatory modules of this crosstalk are largely unknown. Global transcriptomic analyses of mutant plants (ceh1) with elevated levels of the stress-induced plastidial retrograde signaling metabolite 2-C-methyl-D-erythritol cyclopyrophosphate (MEcPP) revealed robustly induced JA marker genes, expected to be suppressed by the presence of constitutively high SA levels in the mutant background. Analyses of a range of genotypes with varying SA and MEcPP levels established the selective role of MEcPP-mediated signal(s) in induction of JA-responsive genes in the presence of elevated SA. Metabolic profiling revealed the presence of high levels of the JA precursor 12-oxo-phytodienoic acid (OPDA), but near wild type levels of JA in the ceh1 mutant plants. Analyses of coronatine-insensitive 1 (coi1)/ceh1 double mutant plants confirmed that the MEcPP-mediated induction is JA receptor COI1 dependent, potentially through elevated OPDA. These findings identify MEcPP as a previously unrecognized central regulatory module that induces JA-responsive genes in the presence of high SA, thereby staging a multifaceted plant response within the environmental context. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity.

    PubMed

    Liu, Lijing; Sonbol, Fathi-Mohamed; Huot, Bethany; Gu, Yangnan; Withers, John; Mwimba, Musoki; Yao, Jian; He, Sheng Yang; Dong, Xinnian

    2016-10-11

    It is an apparent conundrum how plants evolved effector-triggered immunity (ETI), involving programmed cell death (PCD), as a major defence mechanism against biotrophic pathogens, because ETI-associated PCD could leave them vulnerable to necrotrophic pathogens that thrive on dead host cells. Interestingly, during ETI, the normally antagonistic defence hormones, salicylic acid (SA) and jasmonic acid (JA) associated with defence against biotrophs and necrotrophs respectively, both accumulate to high levels. In this study, we made the surprising finding that JA is a positive regulator of RPS2-mediated ETI. Early induction of JA-responsive genes and de novo JA synthesis following SA accumulation is activated through the SA receptors NPR3 and NPR4, instead of the JA receptor COI1. We provide evidence that NPR3 and NPR4 may mediate this effect by promoting degradation of the JA transcriptional repressor JAZs. This unique interplay between SA and JA offers a possible explanation of how plants can mount defence against a biotrophic pathogen without becoming vulnerable to necrotrophic pathogens.

  8. Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against tobacco mosaic virus in tomato.

    PubMed

    Liao, Yangwenke; Tian, Miaoying; Zhang, Huan; Li, Xin; Wang, Yu; Xia, Xiaojian; Zhou, Jie; Zhou, Yanhong; Yu, Jingquan; Shi, Kai; Klessig, Daniel F

    2015-02-01

    Salicylic acid (SA) plays a critical role in plant defense against pathogen invasion. SA-induced viral defense in plants is distinct from the pathways mediating bacterial and fungal defense and involves a specific pathway mediated by mitochondria; however, the underlying mechanisms remain largely unknown. The SA-binding activity of the recombinant tomato (Solanum lycopersicum) alpha-ketoglutarate dehydrogenase (Slα-kGDH) E2 subunit of the tricarboxylic acid (TCA) cycle was characterized. The biological role of this binding in plant defenses against tobacco mosaic virus (TMV) was further investigated via Slα-kGDH E2 silencing and transient overexpression in plants. Slα-kGDH E2 was found to bind SA in two independent assays. SA treatment, as well as Slα-kGDH E2 silencing, increased resistance to TMV. SA did not further enhance TMV defense in Slα-kGDH E2-silenced tomato plants but did reduce TMV susceptibility in Nicotiana benthamiana plants transiently overexpressing Slα-kGDH E2. Furthermore, Slα-kGDH E2-silencing-induced TMV resistance was fully blocked by bongkrekic acid application and alternative oxidase 1a silencing. These results indicated that binding by Slα-kGDH E2 of SA acts upstream of and affects the mitochondrial electron transport chain, which plays an important role in basal defense against TMV. The findings of this study help to elucidate the mechanisms of SA-induced viral defense. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Anti-steatotic and anti-inflammatory roles of syringic acid in high-fat diet-induced obese mice.

    PubMed

    Ham, Ju Ri; Lee, Hae-In; Choi, Ra-Yeong; Sim, Mi-Ok; Seo, Kwon-Il; Lee, Mi-Kyung

    2016-02-01

    This study examined the effects of syringic acid (SA) on obese diet-induced hepatic dysfunction. Mice were fed high-fat diet (HFD) with or without SA (0.05%, wt/wt) for 16 weeks. SA reduced the body weight, visceral fat mass, serum levels of leptin, TNFα, IFNγ, IL-6 and MCP-1, insulin resistance, hepatic lipid content, droplets and early fibrosis, whereas it elevated the circulation of adiponectin. SA down-regulated lipogenic genes (Cidea, Pparγ, Srebp-1c, Srebp-2, Hmgcr, Fasn) and inflammatory genes (Tlr4, Myd88, NF-κB, Tnfα, Il6), whereas it up-regulated fatty acid oxidation genes (Pparα, Acsl, Cpt1, Cpt2) in the liver. SA also decreased hepatic lipogenic enzyme activities and elevated fatty acid oxidation enzyme activities relative to the HFD group. These findings suggested that dietary SA possesses anti-obesity, anti-inflammatory and anti-steatotic effects via the regulation of lipid metabolic and inflammatory genes. SA is likely to be a new natural therapeutic agent for obesity or non-alcoholic liver disease.

  10. Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses1[W][OA

    PubMed Central

    Zarate, Sonia I.; Kempema, Louisa A.; Walling, Linda L.

    2007-01-01

    The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF. PMID:17189328

  11. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59.

    PubMed

    Van der Does, Dieuwertje; Leon-Reyes, Antonio; Koornneef, Annemart; Van Verk, Marcel C; Rodenburg, Nicole; Pauwels, Laurens; Goossens, Alain; Körbes, Ana P; Memelink, Johan; Ritsema, Tita; Van Wees, Saskia C M; Pieterse, Corné M J

    2013-02-01

    Antagonism between the defense hormones salicylic acid (SA) and jasmonic acid (JA) plays a central role in the modulation of the plant immune signaling network, but the molecular mechanisms underlying this phenomenon are largely unknown. Here, we demonstrate that suppression of the JA pathway by SA functions downstream of the E3 ubiquitin-ligase Skip-Cullin-F-box complex SCF(COI1), which targets JASMONATE ZIM-domain transcriptional repressor proteins (JAZs) for proteasome-mediated degradation. In addition, neither the stability nor the JA-induced degradation of JAZs was affected by SA. In silico promoter analysis of the SA/JA crosstalk transcriptome revealed that the 1-kb promoter regions of JA-responsive genes that are suppressed by SA are significantly enriched in the JA-responsive GCC-box motifs. Using GCC:GUS lines carrying four copies of the GCC-box fused to the β-glucuronidase reporter gene, we showed that the GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Using plants overexpressing the GCC-box binding APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors ERF1 or ORA59, we found that SA strongly reduces the accumulation of ORA59 but not that of ERF1. Collectively, these data indicate that the SA pathway inhibits JA signaling downstream of the SCF(COI1)-JAZ complex by targeting GCC-box motifs in JA-responsive promoters via a negative effect on the transcriptional activator ORA59.

  12. Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid.

    PubMed

    Lu, Qianqian; Zhang, Tingting; Zhang, Wei; Su, Chunlei; Yang, Yaru; Hu, Dan; Xu, Qinsong

    2018-01-01

    Cadmium (Cd) is a significant environmental pollutant in the aquatic environment. Salicylic acid (SA) is a ubiquitous phenolic compound. The goal of this study was to assess the morphological, physiological and biochemical changes in duckweed (L. minor) upon exposure to 10μM CdCl 2 , 10μM CdCl 2 plus 50μM SA, or 50μM SA for 7 days. Reversing the effects of Cd, SA decreased Cd accumulation in plants, improved accumulation of minerals (Ca, Mg, Fe, B, Mo) absorption, increased endogenous SA concentration, and phenylalanine ammonialyase (PAL) activity. Chlorosis-associated symptoms, the reduction in chlorophyll content, and the overproduction of reactive oxygen species induced by Cd exposure were largely reversed by SA. SA significantly decreased the toxic effects of Cd on the activities of the superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and glutathione reductase in the fronds of L. minor. Furthermore, SA reversed the detrimental effects of Cd on total ascorbate, glutathione, the ascorbic acid/oxidized dehydroascorbate and glutathione/glutathione disulphide ratios, lipid peroxidation, malondialdehyde concentration, lipoxygenase activity, and the accumulation of proline. SA induced the up-regulation of heat shock proteins (Hsp70) and attenuated the adverse effects of Cd on cell viability. These results suggest that SA confers tolerance to Cd stress in L. minor through different mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Azelaic acid 15% gel in the treatment of rosacea.

    PubMed

    Gollnick, Harald; Layton, Alison

    2008-10-01

    Rosacea represents a chronic inflammatory dermatosis of uncertain pathophysiology. There are several associated risk factors and the need for long-term treatment is well recognized. This diverse disease is frequently difficult to manage and has a significant impact on quality of life. There are several topical and oral treatments available, of which azelaic acid 15% gel (Finacea) is the first new treatment for rosacea in more than a decade. Azelaic acid per se has multiple modes of action in rosacea, but an anti-inflammatory effect achieved by reducing reactive oxygen species appears to be the main pharmacological action. Clinical studies have shown that azelaic acid 15% gel is an effective and safe first-line topical therapeutic option in patients with mild-to-moderate papulopustular rosacea. Significant continuous improvement in the number of inflammatory lesions and in erythema has been shown over a period of 15 weeks. Adverse effects associated with azelaic acid 15% gel are mostly mild or transient and do not usually necessitate discontinuation of therapy.

  14. Salicylic Acid, an Ambimobile Molecule Exhibiting a High Ability to Accumulate in the Phloem1

    PubMed Central

    Rocher, Françoise; Chollet, Jean-François; Jousse, Cyril; Bonnemain, Jean-Louis

    2006-01-01

    The ability of exogenous salicylic acid (SA) to accumulate in castor bean (Ricinus communis) phloem was evaluated by HPLC and liquid scintillation spectrometry analyses of phloem sap collected from the severed apical part of seedlings. Time-course experiments indicated that SA was transported to the root system via the phloem and redistributed upward in small amounts via the xylem. This helps to explain the peculiarities of SA distribution within the plant in response to biotic stress and exogenous SA application. Phloem loading of SA at 1, 10, or 100 μm was dependent on the pH of the cotyledon incubating solution, and accumulation in the phloem sap was the highest (about 10-fold) at the most acidic pH values tested (pH 4.6 and 5.0). As in animal cells, SA uptake still occurred at pH values close to neutrality (i.e. when SA is only in its dissociated form according to the calculations made by ACD LogD suite software). The analog 3,5-dichlorosalicylic acid, which is predicted to be nonmobile according to the models of Bromilow and Kleier, also moved in the sieve tubes. These discrepancies and other data may give rise to the hypothesis of a possible involvement of a pH-dependent carrier system translocating aromatic monocarboxylic acids in addition to the ion-trap mechanism. PMID:16778012

  15. Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses.

    PubMed

    de Torres Zabala, Marta; Bennett, Mark H; Truman, William H; Grant, Murray R

    2009-08-01

    The importance of phytohormone balance is increasingly recognized as central to the outcome of plant-pathogen interactions. Recently it has been demonstrated that abscisic acid signalling pathways are utilized by the bacterial phytopathogen Pseudomonas syringae to promote pathogenesis. In this study, we examined the dynamics, inter-relationship and impact of three key acidic phytohormones, salicylic acid, abscisic acid and jasmonic acid, and the bacterial virulence factor, coronatine, during progression of P. syringae infection of Arabidopsis thaliana. We show that levels of SA and ABA, but not JA, appear to play important early roles in determining the outcome of the infection process. SA is required in order to mount a full innate immune responses, while bacterial effectors act rapidly to activate ABA biosynthesis. ABA suppresses inducible innate immune responses by down-regulating SA biosynthesis and SA-mediated defences. Mutant analyses indicated that endogenous ABA levels represent an important reservoir that is necessary for effector suppression of plant-inducible innate defence responses and SA synthesis prior to subsequent pathogen-induced increases in ABA. Enhanced susceptibility due to loss of SA-mediated basal resistance is epistatically dominant over acquired resistance due to ABA deficiency, although ABA also contributes to symptom development. We conclude that pathogen-modulated ABA signalling rapidly antagonizes SA-mediated defences. We predict that hormonal perturbations, either induced or as a result of environmental stress, have a marked impact on pathological outcomes, and we provide a mechanistic basis for understanding priming events in plant defence.

  16. Use of jasmonic acid and salicylic acid to inhibit growth of sugarbeet storage rot pathogens

    USDA-ARS?s Scientific Manuscript database

    Jasmonic acid (JA) and salicylic acid (SA) are endogenous plant hormones that induce native plant defense responses and provide protection against a wide range of diseases. Previously, JA, applied after harvest, was shown to protect sugarbeet roots against the storage pathogens, Botrytis cinerea, P...

  17. Salicylic Acid and Ethylene Pathways Are Differentially Activated in Melon Cotyledons by Active or Heat-Denatured Cellulase from Trichoderma longibrachiatum

    PubMed Central

    Martinez, Christelle; Blanc, Frédéric; Le Claire, Emilie; Besnard, Olivier; Nicole, Michel; Baccou, Jean-Claude

    2001-01-01

    Infiltration of cellulase (EC 3.2.1.4) from Trichoderma longibrachiatum into melon (Cucumis melo) cotyledons induced several key defense mechanisms and hypersensitive reaction-like symptoms. An oxidative burst was observed 3 hours after treatment and was followed by activation of ethylene and salicylic acid (SA) signaling pathways leading to marked induction of peroxidase and chitinase activities. The treatment of cotyledons by heat-denatured cellulase also led to some induction of peroxidase and chitinase activities, but the oxidative burst and SA production were not observed. Co-infiltration of aminoethoxyvinil-glycine (an ethylene inhibitor) with the active cellulase did not affect the high increase of peroxidase and chitinase activities. In contrast, co-infiltration of aminoethoxyvinil-glycine with the denatured enzyme blocked peroxidase and chitinase activities. Our data suggest that the SA pathway (induced by the cellulase activity) and ethylene pathway (induced by heat-denatured and active protein) together coordinate the activation of defense mechanisms. We found a partial interaction between both signaling pathways since SA caused an inhibition of the ethylene production and a decrease in peroxidase activity when co-infiltrated with denatured cellulase. Treatments with active or denatured cellulase caused a reduction in powdery mildew (Sphaerotheca fuliginea) disease. PMID:11553761

  18. Comparative transcriptional profiling of Gracilariopsis lemaneiformis in response to salicylic acid- and methyl jasmonate-mediated heat resistance

    PubMed Central

    Wang, Chongbin; Zou, Tonglei; Xu, Nianjun; Sun, Xue

    2017-01-01

    Culturing the economically important macroalga Gracilariopsis lemaneiformis (Rhodophyta) is limited due to the high temperatures in the summertime on the southern Chinese coast. Previous studies have demonstrated that two phytohormones, salicylic acid (SA) and methyl jasmonate (MJ), can alleviate the adverse effects of high-temperature stress on Gp. lemaneiformis. To elucidate the molecular mechanisms underlying SA- and MJ-mediated heat tolerance, we performed comprehensive analyses of transcriptome-wide gene expression profiles using RNA sequencing (RNA-seq) technology. A total of 14,644 unigenes were assembled, and 10,501 unigenes (71.71%) were annotated to the reference databases. In the SA, MJ and SA/MJ treatment groups, 519, 830, and 974 differentially expressed unigenes were detected, respectively. Unigenes related to photosynthesis and glycometabolism were enriched by SA, while unigenes associated with glycometabolism, protein synthesis, heat shock and signal transduction were increased by MJ. A crosstalk analysis revealed that 216 genes were synergistically regulated, while 18 genes were antagonistically regulated by SA and MJ. The results indicated that the two phytohormones could mitigate the adverse effects of heat on multiple pathways, and they predominantly acted synergistically to resist heat stress. These results will provide new insights into how SA and MJ modulate the molecular mechanisms that counteract heat stress in algae. PMID:28464018

  19. Bacterial and protozoal communities and fatty acid profile in the rumen of sheep fed a diet containing added tannins.

    PubMed

    Vasta, Valentina; Yáñez-Ruiz, David R; Mele, Marcello; Serra, Andrea; Luciano, Giuseppe; Lanza, Massimiliano; Biondi, Luisa; Priolo, Alessandro

    2010-04-01

    This study evaluated the effects of tannins on ruminal biohydrogenation (BH) due to shifts in the ruminal microbial environment in sheep. Thirteen lambs (45 days of age) were assigned to two dietary treatments: seven lambs were fed a barley-based concentrate (control group) while the other six lambs received the same concentrate with supplemental quebracho tannins (9.57% of dry matter). At 122 days of age, the lambs were slaughtered, and the ruminal contents were subjected to fatty acid analysis and sampled to quantify populations of Butyrivibrio fibrisolvens, which converts C(18:2) c9-c12 (linoleic acid [LA]) to C(18:2) c9-t11 (rumenic acid [RA]) and then RA to C(18:1) t11 (vaccenic acid [VA]); we also sampled for Butyrivibrio proteoclasticus, which converts VA to C(18:0) (stearic acid [SA]). Tannins increased (P < 0.005) VA in the rumen compared to the tannin-free diet. The concentration of SA was not affected by tannins. The SA/VA ratio was lower (P < 0.005) for the tannin-fed lambs than for the controls, suggesting that the last step of the BH process was inhibited by tannins. The B. proteoclasticus population was lower (-30.6%; P < 0.1), and B. fibrisolvens and protozoan populations were higher (+107% and +56.1%, respectively; P < 0.05) in the rumen of lambs fed the tannin-supplemented diet than in controls. These results suggest that quebracho tannins altered BH by changing ruminal microbial populations.

  20. Trichloroacetic Acid Versus Salicylic Acid in the Treatment of Acne Vulgaris in Dark-Skinned Patients.

    PubMed

    Abdel Meguid, Azza Mahfouz; Elaziz Ahmed Attallah, Dalia Abd; Omar, Howida

    2015-12-01

    Treatment options for acne include chemical peeling. Trichloroacetic acid (TCA) has been used for treating acne. The ability of TCA to diminish corneocyte cohesion and keratinocyte plugging addresses this mode of treatment. Salicylic acid is an excellent keratolytic agent. It is believed to function through solubilization of intercellular cement, thereby reducing corneocyte adhesion. Comparing the therapeutic efficacy of TCA 25% peels with those of salicylic acid 30% in patients with acne vulgaris. Twenty patients, Fitzpatrick skin Types III to V with facial acne, were enrolled. Twenty-five percent of TCA was applied to the right half of the face and 30% salicylic acid to the left half at 2-week interval for 2 months. Total improvement was more frequent with salicylic acid peeling (95%) versus (85%) with TCA. Total comedones improvement was more frequent with TCA peeling (80%) versus (70%) with salicylic acid. Improvement of inflammatory lesions was more frequent among the side treated with salicylic acid (85%) versus (80%) with TCA peeling. However, the results did not reach the statistical significance level. Trichloroacetic acid is more superior in treating comedonal lesions, whereas salicylic is more superior in treating inflammatory lesions, without significant different between their results.

  1. Methyl Jasmonate and Salicylic Acid Enhanced the Production of Ursolic and Oleanolic Acid in Callus Cultures of Lepechinia Caulescens

    PubMed Central

    Vergara Martínez, Víctor M.; Estrada-Soto, Samuel E.; Arellano-García, José de Jesús; Rivera-Leyva, Julio C.; Castillo-España, Patricia; Flores, Angélica Flores; Cardoso-Taketa, Alexandre T.; Perea-Arango, Irene

    2017-01-01

    Background: The production of triterpenes from plants for pharmacological purposes varies in concentration, due to genetic and environmental factors. In vitro culture enables the control and increase of these bioactive molecules. Objective: To evaluate the effect of plant growth regulators and elicitors in the induction of calli and the production of ursolic acid (UA) and oleanolic acid (OA) in Lepechinia caulescens. Materials and Methods: Leaf explants were exposed for the induction of calli at different concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). Methyl jasmonate (MJ) and salicylic acid were used as elicitors. High-performance liquid chromatography method was used to quantify UA and OA content in each treatment. Results: Treatment with 3.0 mg/L of 2,4-D and 0.1 mg/L of BAP produced the best results for calli induction and production of UA (1.57 mg/g dry weight [DW]) and OA (1.13 mg/g DW). Both elicitors facilitated the accumulation of triterpenes. Conclusion: The combination of auxins and cytokinins showed favorable results for the induction of calli. Variation concerning the accumulation of UA and OA was observed between treatments. MJ increased the production of triterpenes five times after 8 h of exposure, compared to control treatment. There is a greater accumulation of UA (16.58 mg/g DW) and OA (1.94 mg/g DW) in leaves of wild plants. SUMMARY Callus cultures of Lepechinia caulescens were obtained from leaf explants treated with 2,4-dichlorophenoxyacetic acid and 6-bencylaminopurineResulting cultures were elicited with methyl jasmonate (MJ) and salicylic acid to increase the production of the triterpenes, ursolic acid (UA), and oleanolic acid (OA)The cultures elicited with MJ increased the production of UA and OA five times, as compared to the control. Abbreviations used: 2,4-D: 2,4-dichlorophenoxyacetic acid, BAP: 6-benzylaminopurine, DW: Dry weight, MJ: Methyl jasmonate, OA: Oleanolic acid, PGRs

  2. Effect of sinapic acid on hair growth promoting in human hair follicle dermal papilla cells via Akt activation.

    PubMed

    Woo, Hyunju; Lee, Seungjun; Kim, Seungbeom; Park, Deokhoon; Jung, Eunsun

    2017-07-01

    Hair loss known as alopecia is caused by abnormal hair follicle cycling including shortening of the anagen (growth) phase and changing of hair follicle morphology with miniaturization. In accordance with the life extension, the quality of life is considered to be a most important thing. The yearning for healthy and beautiful hair and low self esteem due to hair loss had negative influence on the quality of life with psychosocial maladjustment. The objective of this research was to identify new compound that can be used as a drug to promote hair growth. We investigated whether the function of sinapic acid (SA) is able to promote hair growth in human hair follicle dermal papilla cells (hHFDPC). We showed that treatment of SA in hHFDPC could induce proliferation and the activation of Akt signaling in HFDPC. In addition, SA could stimulate the expressions of the several growth factors, insulin-like growth factor 1, and vascular endothelial growth factor for hair growth. We showed that SA led to an increased level of phospho-GSK-3β and β-catenin accumulation in HFDPC. Finally, the promoting effect of SA in hHFDPC cell growth occurred by the induction of cell cycle progression. These results suggest that SA could be one of the potential candidate compounds for the treatment of alopecia by inducing hair growth through triggering the expressions of growth factors via activation of Akt and subsequent inactivation of GSK-3β /β-catenin pathway.

  3. Increase of Chamazulene and α-Bisabolol Contents of the Essential Oil of German Chamomile (Matricaria chamomilla L.) Using Salicylic Acid Treatments under Normal and Heat Stress Conditions.

    PubMed

    Ghasemi, Mojtaba; Babaeian Jelodar, Nadali; Modarresi, Mohammad; Bagheri, Nadali; Jamali, Abbas

    2016-08-27

    The chamazulene and α-(-)-bisabolol contents and quality of the chamomile oil are affected by genetic background and environmental conditions. Salicylic acid (SA), as a signaling molecule, plays a significant role in the plant physiological processes. The aim of this study was to evaluate the chemical profile, quantity, and improve the essential oil quality as a consequence of the increase of chamazulene and α-(-)-bisabol using salicylic acid under normal and heat stress conditions by the gas chromatography-mass spectrometry (GC-MS) technique. The factorial experiments were carried out during the 2011-2012 hot season using a randomized complete block design with three replications. The factors include four salicylic acid concentrations (0 (control), 10, 25 and 100 mg·L -1 ), and three chamomile cultivars (Bushehr, Bona, Bodegold) were sown on two different planting dates under field conditions. Fourteen compounds were identified from the extracted oil of the samples treated with salicylic acid under normal and heat stress conditions. The major identified oil compositions from chamomile cultivars treated with salicylic acid were chamazulene, α-(-)-bisabolol, bisabolone oxide, β-farnesene, en-yn-dicycloether, and bisabolol oxide A and B. Analysis of variance showed that the simple effects (environmental conditions, cultivar and salicylic acid) and their interaction were significant on all identified compounds, but the environmental conditions had no significant effect on bisabolol oxide A. The greatest amount of chamazulene obtained was 6.66% at the concentration of 10 mg·L -1 SA for the Bona cultivar under heat stress conditions, whereas the highest α-(-)-bisabolol amount attained was 3.41% at the concentration of 100 mg·L -1 SA for the Bona cultivar under normal conditions. The results demonstrated that the application of exogenous salicylic acid increases the quantity and essential oil quality as a consequence of the increase of chamazulene and

  4. Induced resistance to Helicoverpa armigera through exogenous application of jasmonic acid and salicylic acid in groundnut, Arachis hypogaea.

    PubMed

    War, Abdul Rashid; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Sharma, Hari Chand

    2015-01-01

    Induced resistance to Helicoverpa armigera through exogenous application of jasmonic acid (JA) and salicylic acid (SA) was studied in groundnut genotypes (ICGV 86699, ICGV 86031, ICG 2271 and ICG 1697) with different levels of resistance to insects and the susceptible check JL 24 under greenhouse conditions. Activities of oxidative enzymes and the amounts of secondary metabolites and proteins were quantified at 6 days after JA and SA application/insect infestation. Data were also recorded on plant damage and H. armigera larval weights and survival. Higher levels of enzymatic activities and amounts of secondary metabolites were observed in the insect-resistant genotypes pretreated with JA and then infested with H. armigera than in JL 24. The insect-resistant genotypes suffered lower insect damage and resulted in poor survival and lower weights of H. armigera larvae than JL 24. In some cases, JA and SA showed similar effects. JA and SA induced the activity of antioxidative enzymes in groundnut plants against H. armigera, and reduced its growth and development. However, induced response to application of JA was greater than to SA, and resulted in reduced plant damage, and larval weights and survival, suggesting that induced resistance can be used as a component of pest management in groundnut. © 2014 Society of Chemical Industry.

  5. Spatio-temporal appearance of α-amylase and limit dextrinase in barley aleurone layer in response to gibberellic acid, abscisic acid and salicylic acid.

    PubMed

    Shahpiri, Azar; Talaei, Nasim; Finnie, Christine

    2015-01-01

    Cereal seed germination involves mobilization of storage reserves in the starchy endosperm to support seedling growth. In response to gibberellin produced by the embryo the aleurone layer synthesizes hydrolases that are secreted to the endosperm for degradation of storage products. In this study analysis of intracellular protein accumulation and release from barley aleurone layers is presented for the important enzymes in starch degradation: α-amylase and limit dextrinase (LD). Proteins were visualized by immunoblotting in aleurone layers and culture supernatants from dissected aleurone layers incubated up to 72 h with either gibberellic acid (GA), abscisic acid (ABA) or salicylic acid (SA). The results show that α-amylase is secreted from aleurone layer treated with GA soon after synthesis but the release of LD to culture supernatants was significantly delayed and coincided with a general loss of proteins from aleurone layers. Release of LD was found to differ from that of amylase and was suggested to depend on programmed cell death (PCD). Despite detection of intracellular amylase in untreated aleurone layers or aleurone layers treated with ABA or SA, α-amylase was not released from these samples. Nevertheless, the release of α-amylase was observed from aleurone layers treated with GA+ABA or GA+SA. © 2014 Society of Chemical Industry.

  6. Bile acid changes after high-dose ursodeoxycholic acid treatment in primary sclerosing cholangitis: relation to disease progression

    PubMed Central

    Sinakos, Emmanouil; Marschall, Hanns-Ulrich; Kowdley, Kris V.; Befeler, Alex; Keach, Jill; Lindor, Keith

    2010-01-01

    High-dose (28-30mg/kg/day) ursodeoxycholic acid (UDCA) treatment improves serum liver tests in patients with primary sclerosing cholangitis (PSC) but does not improve survival and is associated with increased rates of serious adverse events. The mechanism for the latter undesired effect remains unclear. High-dose UDCA could result in the production of hepatotoxic bile acids, such as lithocholic acid (LCA), due to limited small bowel absorption of UDCA and conversion of UDCA by bacteria in the colon. We determined the serum bile acid composition in 56 patients with PSC previously enrolled in a randomized, double-blind controlled trial of high dose UDCA versus placebo. Samples for analysis were obtained at baseline and at the end of treatment. The mean changes in UDCA (16.86 vs 0.05 μmol/L) and total bile acid (17.21 vs −0.55 μmol/L) levels were significantly higher in the UDCA group (n=29) compared to placebo (n=27) when pretreatment levels were compared (p<0.0001). LCA was also markedly increased (0.22 vs 0.01 μmol/L) in the UDCA group compared to placebo (p=0.001). No significant changes were detected for cholic acid (CA), deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA). Patients (n=9) in the UDCA group who reached clinical endpoints of disease progression (development of cirrhosis, varices, liver transplantation or death) tend to have greater increase in their post-treatment total bile acid levels (34.99 vs 9.21 μmol/L) (p<0.08) compared to those who did not. Conclusion High-dose UDCA treatment in PSC patients results in marked UDCA enrichment and significant expansion of the total serum bile acid pool including lithocholic acid. PMID:20564380

  7. Azelaic acid (15% gel) in the treatment of acne rosacea.

    PubMed

    Gupta, Aditya K; Gover, Melissa D

    2007-05-01

    In December of 2002, the FDA approved azelaic acid 15% gel for the topical treatment of inflammatory papules and pustules of mild to moderate rosacea. Azelaic acid is a saturated dicarboxylic acid, which is naturally occurring and has been used in the treatment of rosacea, acne, and melasma. The 15% gel has a high efficacy and is generally well tolerated, with the local irritation (burning, stinging, itching, and scaling) being typically mild and transient. Azelaic acid 15% gel is considered effective and safe as a therapy for inflammatory papulo-pustular rosacea and is suitable for use on all skin types.

  8. Perception of the plant immune signal salicylic acid

    PubMed Central

    Yan, Shunping; Dong, Xinnian

    2014-01-01

    Salicylic acid (SA) plays a central role in plant innate immunity. The diverse functions of this simple phenolic compound suggest that plants may have multiple SA receptors. Several SA-binding proteins have been identified using biochemical approaches. However, genetic evidence supporting that they are the bona fide SA receptors has not been forthcoming. Mutant screens revealed that NPR1 is a master regulator of SA-mediated responses. Although NPR1 cannot bind SA in a conventional ligand-binding assay, its homologs NPR3 and NPR4 bind SA and function as SA receptors. During pathogen challenge, the SA gradient generated at the infection site is sensed by NPR3 and NPR4, which serve as the adaptors for the Cullin 3-based E3 ubiquitin ligase to regulate NPR1 degradation. Consequently, NPR1 is degraded at the infection site to remove its inhibition on effector-triggered cell death and defense, whereas NPR1 accumulates in neighboring cells to promote cell survival and SA-mediated resistance. PMID:24840293

  9. Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens

    DOE PAGES

    Salvachúa, Davinia; Smith, Holly; St. John, Peter C.; ...

    2016-05-09

    The production of chemicals alongside fuels will be essential to enhance the feasibility of lignocellulosic biorefineries. Succinic acid (SA), a naturally occurring C4-diacid, is a primary intermediate of the tricarboxylic acid cycle and a promising building block chemical that has received significant industrial attention. Basfia succiniciproducens is a relatively unexplored SA-producing bacterium with advantageous features such as broad substrate utilization, genetic tractability, and facultative anaerobic metabolism. Here B. succiniciproducens is evaluated in high xylose-content hydrolysates from corn stover and different synthetic media in batch fermentation. SA titers in hydrolysate at an initial sugar concentration of 60 g/L reached up tomore » 30 g/L, with metabolic yields of 0.69 g/g, and an overall productivity of 0.43 g/L/h. These results demonstrate that B. succiniciproducens may be an attractive platform organism for bio-SA production from biomass hydrolysates.« less

  10. Acid Precipitation: Causes and Consequences.

    ERIC Educational Resources Information Center

    Babich, Harvey; And Others

    1980-01-01

    This article is the first of three articles in a series on the acid rain problem in recent years. Discussed are the causes of acid precipitation and its consequences for the abiotic and biotic components of the terrestrial and aquatic ecosystems, and for man-made materials. (Author/SA)

  11. Pharmacokinetics and metabolic rates of acetyl salicylic acid and its metabolites in an Otomi ethnic group of Mexico.

    PubMed

    Lares-Asseff, Ismael; Juárez-Olguín, Hugo; Flores-Pérez, Janett; Guillé-Pérez, Adrian; Vargas, Arturo

    2004-05-01

    The objective of this study was to determine pharmacokinetic differences of acetyl salicylic acid (ASA) and its metabolites: gentisic acid (GA), salicylic acid (SA) and salicyluric acid (SUA) between Otomies and Mesticians healthy subjects. Design. Ten Otomies and 10 Mesticians were included. After a single dose of aspirin given orally (15 mg/kg), blood and urine samples were collected at different times. Results. Pharmacokinetic parameters of salicylates showed significant differences, except distribution volume of SA, and elimination half-life of SUA. Metabolic rates of ASA showed significant differences for all rates between both groups. On the other hand, percentages of dose excreted were more reduced for SA and SUA for the Otomies than for the Mesticians. Conclusion. Results reflect differences in the hydrolysis way i.e. from ASA to SA and aromatic hydroxylation i.e. from SA to GA, which were slower in Otomies subjects, showing a possible pharmacokinetic differences about the capabilities of ASA biotransformation as a consequence of ethnic differences.

  12. Azelaic acid 15% gel: in the treatment of papulopustular rosacea.

    PubMed

    Frampton, James E; Wagstaff, Antona J

    2004-01-01

    Azelaic acid is a naturally occurring, straight-chain dicarboxylic acid which is effective in the treatment of rosacea, presumably on account of its anti-inflammatory properties. In randomized, double-blind, multicenter studies involving patients with moderate papulopustular facial rosacea, twice-daily topical application of azelaic acid 15% gel to the face was significantly more effective than twice-daily administration of either its vehicle (two studies) or metronidazole 0.75% gel (one study) in reducing inflammatory lesion counts and erythema severity. However, neither active treatment had a clinically discernable effect on telangiectasia. In all three studies, azelaic acid 15% gel recipients experienced continuous decreases in lesion counts and erythema throughout the 12- to 15-week treatment periods. However, the effects of metronidazole 0.75% gel plateauxed after 8 weeks. In other efficacy assessments in these studies, azelaic acid 15% gel was superior to its vehicle and metronidazole 0.75% gel in both the investigators' global assessment of rosacea and the investigators' end-of-study evaluation of overall improvement, and superior to its vehicle in the patients' end-of-study evaluation of overall improvement. The most frequent treatment-related cutaneous adverse events during administration of azelaic acid 15% gel include burning/stinging/tingling and pruritus (itching); however, these events are predominantly transient in nature and mild-to-moderate in intensity.

  13. Combined effect of CO(2) enrichment and foliar application of salicylic acid on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from ginger.

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Ze; Karimi, Ehsan; Ibrahim, Mohd Hafiz

    2012-11-23

    The increase in atmospheric CO(2) concentration caused by climate change and agricultural practices is likely to affect biota by producing changes in plant growth, allocation and chemical composition. This study was conducted to evaluate the combined effect of the application of salicylic acid (SA, at two levels: 0 and 10-3 M) and CO(2) enrichment (at two levels: 400 and 800 μmol·mol-1) on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from two Malaysian ginger varieties, namely Halia Bentong and Halia Bara. High-performance liquid chromatography (HPLC) with photodiode array detection and mass spectrometry was employed to identify and quantify the flavonoids and anthocyanins in the ginger extracts. The antioxidant activity of the leaf extracts was determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and thiobarbituric acid (TBA) assays. The substrate specificity of chalcone synthase, the key enzyme for flavonoid biosynthesis, was investigated using the chalcone synthase (CHS) assay. CO(2) levels of 800 μmol·mol-1 significantly increased anthocyanin, rutin, naringenin, myricetin, apigenin, fisetin and morin contents in ginger leaves. Meanwhile, the combined effect of SA and CO(2) enrichment enhanced anthocyanin and flavonoid production compared with single treatment effects. High anthocyanin content was observed in H Bara leaves treated with elevated CO(2) and SA. The highest chalcone synthase (CHS) activity was observed in plants treated with SA and CO(2) enrichment. Plants not treated with SA and kept under ambient CO(2) conditions showed the lowest CHS activity. The highest free radical scavenging activity corresponded to H Bara treated with SA under high CO(2) conditions, while the lowest activity corresponded to H Bentong without SA treatment and under atmospheric CO(2) levels. As the level of CO(2) increased, the DPPH activity increased. Higher TBA activity was also recorded in the extracts of H Bara treated with

  14. Evaluation of the efficacy and safety of combinations of hydroquinone, glycolic acid, and hyaluronic acid in the treatment of melasma.

    PubMed

    Ibrahim, Zeinab A; Gheida, Shereen F; El Maghraby, Gamal M; Farag, Zeinab E

    2015-06-01

    Various treatments are currently available for melasma. However, results are often disappointing. 1 To assess the efficacy and safety of combinations of hydroquinone, glycolic acid, and hyaluronic acid in the treatment of melasma after topical application. 2 To evaluate the dermoscopy as a tool in diagnosis and follow-up of melasma treatment. One hundred patients with mild, moderate-to-severe melasma were divided into five groups. Group I (twenty patients were treated with cream formula containing 4% hydroquinone), group II (twenty patients were treated with cream formula containing 4% hydroquinone + 10% glycolic acid), group III (twenty patients were treated with cream formula containing 4% hydroquinone + 0.01% hyaluronic acid), group IV (twenty patients were treated with cream formula containing 4% hydroquinone + 10% glycolic acid + 0.01% hyaluronic acid), and group V (twenty patients were treated with placebo cream). All patients were subjected to dermoscopic examination and digital photographs before and after treatment. The response and side effects were evaluated. Groups I, III, and IV showed highly significant changes in modified Melasma Area and Severity Index (mMASI) score after using the treatment. Group II showed significant change in mMASI score after using the treatment. The side effects were more reported in group II, followed by group IV, followed by group I, followed by group III. There was highly significant difference between the dermoscopic color findings before and after treatment. Vascularization was another dermoscopic finding. A cream formula containing 4% hydroquinone + 10% glycolic acid + 0.01% hyaluronic acid was very effective in treatment of melasma with tolerable side effects. Dermoscope is a valuable noninvasive tool in the diagnosis and follow-up of melasma treatment. © 2015 Wiley Periodicals, Inc.

  15. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions

    PubMed Central

    Mun, Bong-Gyu; Khan, Abdul Latif; Waqas, Muhammad; Kim, Hyun-Ho; Shahzad, Raheem; Imran, Muhammad

    2018-01-01

    This study investigated the regulatory role of exogenous salicylic acid (SA) in rice and its effects on toxic reactive oxygen and nitrogen species during short-term salinity stress. SA application (0.5 and 1.0 mM) during salinity-induced stress (100 mM NaCl) resulted in significantly longer shoot length and higher chlorophyll and biomass accumulation than with salinity stress alone. NaCl-induced reactive oxygen species production led to increased levels of lipid peroxidation in rice plants, which were significantly reduced following SA application. A similar finding was observed for superoxide dismutase; however, catalase (CAT) and ascorbate peroxidase (APX) were significantly reduced in rice plants treated with SA and NaCl alone and in combination. The relative mRNA expression of OsCATA and OsAPX1 was lower in rice plants during SA stress. Regarding nitrogenous species, S-nitrosothiol (SNO) was significantly reduced initially (one day after treatment [DAT]) but then increased in plants subjected to single or combined stress conditions. Genes related to SNO biosynthesis, S-nitrosoglutathione reductase (GSNOR1), NO synthase-like activity (NOA), and nitrite reductase (NIR) were also assessed. The mRNA expression of GSNOR1 was increased relative to that of the control, whereas OsNOA was expressed at higher levels in plants treated with SA and NaCl alone relative to the control. The mRNA expression of OsNR was decreased in plants subjected to single or combination treatment, except at 2 DAT, compared to the control. In conclusion, the current findings suggest that SA can regulate the generation of NaCl-induced oxygen and nitrogen reactive species in rice plants. PMID:29558477

  16. [Effect of salicylic acid on photosynthesis, physio-biochemistry and quality of Panax ginseng under full sun shine in spring].

    PubMed

    Cao, Wu-lin; Meng, Xiang-cai; Ma, Wei

    2015-09-01

    In order to search for a new pathway to improve the yield of ginseng through growing at the full sun shine accompanied by salicylic acid (SA), the net photosynthetic rate (P(n)), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), malondialdehyde (MDA) in Panax ginseng leaves, and the content of ginsenosides in roots were compared under various concentrations of SA and full sun shine with the traditional shade shed. Under the full sun shine, 0.05, 0.2 mmol x L(-1) SA increased net photosynthetic rate to a great extent. Under the cloudy day, the average net photosynthetic rate increased by 127.8% and 155.0% over the traditional shade shed, 13.9% and 27.5% over the treatment without SA respectively; under the clear day, 23.5% and 30.4% over the traditional shade shed, 8.6% and 14.6% over the treatment without SA, particularly obvious in the morning and late afternoon. With such concentration, SA increased activities of SOD, CAT, POD, and decreased the contents of the MDA. This difference resulted from different light intensity, rise of light saturation point, and fall of compensation point. Full sun shine decreased ginsenosides contents, but with SA, the ginsenosides regained, the content of Rg1 and Re, Rb1, total six types of ginsenosides in SA 0.2 mmol x L(-1) group were higher than those in the control group (P < 0.05) and other groups. The application of 0.2 mmol x L(-1) SA under full sun shine during a short time has little threat to the P. ginseng in spring, and could enhance the resistance to the adversity, which would improve the yield of ginseng heavily.

  17. The effect of net charge on the solubility, activity, and stability of ribonuclease Sa.

    PubMed

    Shaw, K L; Grimsley, G R; Yakovlev, G I; Makarov, A A; Pace, C N

    2001-06-01

    The net charge and isoelectric pH (pI) of a protein depend on the content of ionizable groups and their pK values. Ribonuclease Sa (RNase Sa) is an acidic protein with a pI = 3.5 that contains no Lys residues. By replacing Asp and Glu residues on the surface of RNase Sa with Lys residues, we have created a 3K variant (D1K, D17K, E41K) with a pI = 6.4 and a 5K variant (3K + D25K, E74K) with a pI = 10.2. We show that pI values estimated using pK values based on model compound data can be in error by >1 pH unit, and suggest how the estimation can be improved. For RNase Sa and the 3K and 5K variants, the solubility, activity, and stability have been measured as a function of pH. We find that the pH of minimum solubility varies with the pI of the protein, but that the pH of maximum activity and the pH of maximum stability do not.

  18. Comparative study of hypocholesterolemic and hypolipidemic effects of conjugated linolenic acid isomers against induced biochemical perturbations and aberration in erythrocyte membrane fluidity.

    PubMed

    Saha, Siddhartha S; Chakraborty, Anirban; Ghosh, Santinath; Ghosh, Mahua

    2012-06-01

    The purpose of the study was to evaluate hypolipidemic and hypocholesterolemic activities of conjugated linolenic acid (CLnA) isomers, present in bitter gourd and snake gourd seed, in terms of amelioration of plasma lipid profile, lipoprotein oxidation and erythrocyte membrane fluidity after oral administration. Male albino rats were divided into six groups. Group 1 was control, and others were induced with oxidative stress by oral gavage of sodium arsenite (Sa). Group 2 was kept as treated control, and groups 3-6 were further treated with different oral doses of seed oils to maintaining definite concentration of CLnA isomers (0.5 and 1.0% of total lipid for each CLnA isomer). CLnA isomers normalized cholesterol, LDL-cholesterol, HDL-cholesterol and triglyceride contents in plasma and body weight of experimental rats and decreased cholesterol synthesis by reducing hepatic HMG-CoA reductase activity. Administration of Sa caused alteration in erythrocyte membrane fluidity due to increase in cholesterol and decrease in phospholipid content. Tissue cholesterol and lipid contents were also increased by Sa administration. These altered parameters were reversed by experimental oil administration. Protective effect of CLnA isomers on erythrocyte morphology was observed by atomic force microscopy (AFM). Fatty acid composition of erythrocyte membrane showed decrease in polyunsaturated fatty acid (PUFA) and increase in arachidonic acid content after Sa administration, which was normalized with the treatment of these oils. Supplementation of CLnA isomers restored erythrocyte membrane (EM) lipid peroxidation and lipoprotein oxidation. CLnA isomers, present in vegetable oils, showed potent hypolipidemic and hypocholesterolemic activities against biochemical perturbations.

  19. Sorbic and benzoic acid in non-preservative-added food products in Turkey.

    PubMed

    Cakir, Ruziye; Cagri-Mehmetoglu, Arzu

    2013-01-01

    Sorbic acid (SA) and benzoic acid (BA) were determined in yoghurt, tomato and pepper paste, fruit juices, chocolates, soups and chips in Turkey by using high-pressure liquid chromatography (HPLC). Levels were compared with Turkish Food Codex limits. SA was detected only in 2 of 21 yoghurt samples, contrary to BA, which was found in all yoghurt samples but one, ranging from 10.5 to 159.9 mg/kg. Both SA and BA were detected also in 3 and 6 of 23 paste samples in a range of 18.1-526.4 and 21.7-1933.5 mg/kg, respectively. Only 1 of 23 fruit juices contained BA. SA was not detected in any chips, fruit juice, soup, or chocolate sample. Although 16.51% of the samples was not compliant with the Turkish Food Codex limits, estimated daily intake of BA or SA was below the acceptable daily intake.

  20. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods.

    PubMed

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2016-10-01

    Carob pods are an inexpensive by-product of locust bean gum industry that can be used as renewable feedstock for bio-based succinic acid. Here, for the first time, unprocessed raw carob pods were used to extract a highly enriched sugar solution, afterwards used as substrate to produce succinic acid using Actinobacillus succinogenes. Batch fermentations containing 30g/L sugars resulted in a production rate of 1.67gSA/L.h and a yield of 0.39gSA/g sugars. Taking advantage of A. succinogenes' metabolism, uncoupling cell growth from succinic acid production, a fed-batch mode was implemented to increase succinic acid yield and reduce by-products formation. This strategy resulted in a succinic acid yield of 0.94gSA/g sugars, the highest yield reported in the literature for fed-batch and continuous experiments, while maintaining by-products at residual values. Results demonstrate that raw carob pods are a highly efficient feedstock for bio-based succinic acid production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A novel process for recovery of fermentation-derived succinic acid: process design and economic analysis.

    PubMed

    Orjuela, Alvaro; Orjuela, Andrea; Lira, Carl T; Miller, Dennis J

    2013-07-01

    Recovery and purification of organic acids produced in fermentation constitutes a significant fraction of total production cost. In this paper, the design and economic analysis of a process to recover succinic acid (SA) via dissolution and acidification of succinate salts in ethanol, followed by reactive distillation to form succinate esters, is presented. Process simulation was performed for a range of plant capacities (13-55 million kg/yr SA) and SA fermentation titers (50-100 kg/m(3)). Economics were evaluated for a recovery system installed within an existing fermentation facility producing succinate salts at a cost of $0.66/kg SA. For a SA processing capacity of 54.9 million kg/yr and a titer of 100 kg/m(3) SA, the model predicts a capital investment of $75 million and a net processing cost of $1.85 per kg SA. Required selling price of diethyl succinate for a 30% annual return on investment is $1.57 per kg. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum.

    PubMed

    Di, Xiaotang; Gomila, Jo; Takken, Frank L W

    2017-09-01

    Phytohormones, such as salicylic acid (SA), ethylene (ET) and jasmonic acid (JA), play key roles in plant defence following pathogen attack. The involvement of these hormones in susceptibility following Fusarium oxysporum (Fo) infection has mostly been studied in Arabidopsis thaliana. However, Fo causes vascular wilt disease in a broad range of crops, including tomato (Solanum lycopersicum). Surprisingly little is known about the involvement of these phytohormones in the susceptibility of tomato towards Fo f. sp. lycopersici (Fol). Here, we investigate their involvement by the analysis of the expression of ET, JA and SA marker genes following Fol infection, and by bioassays of tomato mutants affected in either hormone production or perception. Fol inoculation triggered the expression of SA and ET marker genes, showing the activation of these pathways. NahG tomato, in which SA is degraded, became hypersusceptible to Fol infection and showed stronger disease symptoms than wild-type. In contrast, ACD and Never ripe (Nr) mutants, in which ET biosynthesis and perception, respectively, are impaired, showed decreased disease symptoms and reduced fungal colonization on infection. The susceptibility of the def1 tomato mutant, and a prosystemin over-expressing line, in which JA signalling is compromised or constitutively activated, respectively, was unaltered. Our results show that SA is a negative and ET a positive regulator of Fol susceptibility. The SA and ET signalling pathways appear to act synergistically, as an intact ET pathway is required for the induction of an SA marker gene, and vice versa. © 2017 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  3. Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCFCOI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59[C][W][OA

    PubMed Central

    Van der Does, Dieuwertje; Leon-Reyes, Antonio; Koornneef, Annemart; Van Verk, Marcel C.; Rodenburg, Nicole; Pauwels, Laurens; Goossens, Alain; Körbes, Ana P.; Memelink, Johan; Ritsema, Tita; Van Wees, Saskia C.M.; Pieterse, Corné M.J.

    2013-01-01

    Antagonism between the defense hormones salicylic acid (SA) and jasmonic acid (JA) plays a central role in the modulation of the plant immune signaling network, but the molecular mechanisms underlying this phenomenon are largely unknown. Here, we demonstrate that suppression of the JA pathway by SA functions downstream of the E3 ubiquitin-ligase Skip-Cullin-F-box complex SCFCOI1, which targets JASMONATE ZIM-domain transcriptional repressor proteins (JAZs) for proteasome-mediated degradation. In addition, neither the stability nor the JA-induced degradation of JAZs was affected by SA. In silico promoter analysis of the SA/JA crosstalk transcriptome revealed that the 1-kb promoter regions of JA-responsive genes that are suppressed by SA are significantly enriched in the JA-responsive GCC-box motifs. Using GCC:GUS lines carrying four copies of the GCC-box fused to the β-glucuronidase reporter gene, we showed that the GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Using plants overexpressing the GCC-box binding APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors ERF1 or ORA59, we found that SA strongly reduces the accumulation of ORA59 but not that of ERF1. Collectively, these data indicate that the SA pathway inhibits JA signaling downstream of the SCFCOI1-JAZ complex by targeting GCC-box motifs in JA-responsive promoters via a negative effect on the transcriptional activator ORA59. PMID:23435661

  4. The Synergistic Priming Effect of Exogenous Salicylic Acid and H2O2 on Chilling Tolerance Enhancement during Maize (Zea mays L.) Seed Germination

    PubMed Central

    Li, Zhan; Xu, Jungui; Gao, Yue; Wang, Chun; Guo, Genyuan; Luo, Ying; Huang, Yutao; Hu, Weimin; Sheteiwy, Mohamed S.; Guan, Yajing; Hu, Jin

    2017-01-01

    Chilling stress is an important constraint for maize seedling establishment in the field. To examine the role of salicylic acid (SA) and hydrogen peroxide (H2O2) in response to chilling stress, we investigated the effects of seed priming with SA, H2O2, and SA+H2O2 combination on maize resistance under chilling stress (13°C). Priming with SA, H2O2, and especially SA+H2O2 shortened seed germination time and enhanced seed vigor and seedling growth as compared with hydropriming and non-priming treatments under low temperature. Meanwhile, SA+H2O2 priming notably increased the endogenous H2O2 and SA content, antioxidant enzymes activities and their corresponding genes ZmPAL, ZmSOD4, ZmAPX2, ZmCAT2, and ZmGR expression levels. The α-amylase activity was enhanced to mobilize starch to supply metabolites such as soluble sugar and energy for seed germination under chilling stress. In addition, the SA+H2O2 combination positively up-regulated expressions of gibberellic acid (GA) biosynthesis genes ZmGA20ox1 and ZmGA3ox2, and down-regulated GA catabolism gene ZmGA2ox1 expression; while it promoted GA signaling transduction genes expressions of ZmGID1 and ZmGID2 and decreased the level of seed germination inhibitor gene ZmRGL2. The abscisic acid (ABA) catabolism gene ZmCYP707A2 and the expressions of ZmCPK11 and ZmSnRK2.1 encoding response receptors in ABA signaling pathway were all up-regulated. These results strongly suggested that priming with SA and H2O2 synergistically promoted hormones metabolism and signal transduction, and enhanced energy supply and antioxidant enzymes activities under chilling stress, which were closely relevant with chilling injury alleviation and chilling-tolerance improvement in maize seed. Highlights:Seed germination and seedling growth were significantly improved under chilling stress by priming with SA+H2O2 combination, which was closely relevant with the change of reactive oxygen species, metabolites and energy supply, hormones metabolism and

  5. Identification of New Cocrystal Systems with Stoichiometric Diversity of Salicylic Acid Using Thermal Methods.

    PubMed

    Zhou, Zhengzheng; Chan, Hok Man; Sung, Herman H-Y; Tong, Henry H Y; Zheng, Ying

    2016-04-01

    The purpose of this work was to develop thermal methods to identify cocrystal systems with stoichiometric diversity. Differential scanning calorimetry (DSC) and hot stage microscopy (HSM) have been applied to study the stoichiometric diversity phenomenon on cocrystal systems of the model compound salicylic acid (SA) with different coformers (CCFs). The DSC method was particularly useful in the identification of cocrystal re-crystallization, especially to improve the temperature resolution using a slower heating rate. HSM was implemented as a complementary protocol to confirm the DSC results. The crystal structures were elucidated by single-crystal X-ray diffraction (SXRD). Two new cocrystal systems consisting of salicylic acid-benzamide (SA-BZD, 1:1, 1:2) and salicylic acid-isonicotinamide (SA-ISN, 1:1, 2:1) have been identified in the present work. The chemical structures of the newly discovered cocrystals SA-BZD (1:2) and SA-ISN (2:1) have been elucidated using X-ray single crystal and powder diffraction methods. The developed thermal methods could rapidly identify cocrystal systems with stoichiometric diversity, with the potential to discover new pharmaceutical cocrystals in the future.

  6. Risk factors for symptomatic hypocalcaemia complicating treatment with zoledronic acid.

    PubMed

    Chennuru, S; Koduri, J; Baumann, M A

    2008-08-01

    The bisphosphonate zoledronic acid is commonly prescribed to prevent skeletal complications in patients with multiple myeloma or metastatic cancer. Although symptomatic hypocalcaemia is a potential risk of treatment, it has been thought to be uncommon. After seeing several episodes of symptomatic hypocalcaemia following zoledronic acid administration, we undertook a review to determine the incidence of this complication in our population and to attempt to identify risk factors. We reviewed the records of all patients receiving zoledronic acid in two teaching hospitals over a 2-year period. Findings collected included the indication for treatment, whether dosing was adjusted for creatinine clearance, coadministered medications, serum chemistries and clinical course. Of 120 patients who received a total of 546 zoledronic acid infusions, hypocalcaemia developed related to 55 infusions (10%) in 42 patients (35%). Symptomatic hypocalcaemia requiring i.v. supplementation occurred in 10 patients (8%), in spite of appropriate dose adjustment for creatinine clearance and despite prophylactic administration of oral calcium and vitamin D. More patients who became hypocalcaemic developed impairment of creatinine clearance during zoledronic acid treatment than in the group that remained normocalcaemic. Hypomagnesaemia was found in all patients who developed hypocalcaemia who had serum magnesium measured. Hypocalcaemia was common in our patient group following zoledronic acid treatment. Because of the prolonged elimination half-life of this agent (146 h), renal impairment occurring during a number of days after administration may increase risk. Hypomagnesaemia may further increase risk by blunting compensatory increase in parathyroid hormone secretion.

  7. Salicylic Acid Induces Changes in Mango Fruit that Affect Oviposition Behavior and Development of the Oriental Fruit Fly, Bactrocera dorsalis

    PubMed Central

    Roy, Tapas Kumar; Shivashankara, Kodthalu Seetharamaiah; Verghese, Abraham

    2015-01-01

    The Oriental fruit fly, Bactrocera dorsalis (Hendel) is an important quarantine pest around the globe. Although measures for its control are implemented worldwide through IPM and male annihilation, there is little effect on their population. Hence, there is a need for new strategies to control this minacious pest. A strategy that has received negligible attention is the induction of ‘natural plant defenses’ by phytohormones. In this study, we investigated the effect of salicylic acid (SA) treatment of mango fruit (cv. Totapuri) on oviposition and larval development of B. dorsalis. In oviposition choice assays, gravid females laid significantly less eggs in SA treated compared to untreated fruit. Headspace volatiles collected from SA treated fruit were less attractive to gravid females compared to volatiles from untreated fruit. GC-MS analysis of the headspace volatiles from SA treated and untreated fruit showed noticeable changes in their chemical compositions. Cis-ocimene and 3-carene (attractants to B. dorsalis) were reduced in the headspace volatiles of treated fruit. Further, reduced pupae formation and adult emergence was observed in treated fruit compared to control. Increased phenol and flavonoid content was recorded in treated fruit. We also observed differential expression of anti-oxidative enzymes namely catalase (CAT), polyphenoloxidase (PPO) and peroxidase (POD). In summary, the results indicate that SA treatment reduced oviposition, larval development and adult emergence of B. dorsalis and suggest a role of SA in enhancing mango tolerance to B. dorsalis. PMID:26422203

  8. [Quantitative determination of the main metabolites of acetylsalicylic acid/2nd communication: the concentrations of salicylic acid and its metabolites in patients with renal insufficiency (author's transl)].

    PubMed

    Daneels, R; Loew, D; Pütter, J

    1975-07-01

    Quantitative Determination of the Main Metabolites of Acetylsalicylic Acid / 2nd Communication: The concentrations of salicylic acid and its metabolies in patients with renal insufficiency 9 patients suffering from renal insufficiencies of varing degrees and treated regularly by hemodialysis were given 1.5 g Colfarit (microcapsulated acetyl salicylic acid) as a single dose. The concentrations of salicylic acid (SA), salicyluric acid (SU), further salicylic acid conjugates (SAC) and salicyluric acid conjugates (SUC) were determined in the blood plasma. Likewise urea and creatinine were determined. SA concentration decreased continually and, at the end of the trial (72 h after application), had vanished almost completely from the plasma of most patients. SU increased at first and decreased afterwards. With the exception of the dailysis time SAC and SUC increased during the trial. After 3 days the SUC level was more than 50% of total salicylate (SSS) in most patients. SSS (the sum of SA + SU + SAC + SUC) did not change very much before dialysis, but showed a rather high decrease during the first hours of dialysis. tafter dialysis the SSS levels rose again, apparently as a consequence of a redistribution and of the synthesis of conjugates with decreased tissue affinity. It could be shown that SSS in the blood plasma does not parallel SSS in the whole body. The interindividual variation of SA metabolism as well as the variation of the biological blank values was rather high. The results are discussed with regard to salicylate pharmacokinetics in renal insufficiency and to normal salicylate metabolism.

  9. Gibberellic acid promoting phytic acid degradation in germinating soybean under calcium lactate treatment.

    PubMed

    Hui, Qianru; Wang, Mian; Wang, Pei; Ma, Ya; Gu, Zhenxin; Yang, Runqiang

    2018-01-01

    Phytic acid as a phosphorus storage vault provides phosphorus for plant development. It is an anti-nutritional factor for humans and some animals. However, its degradation products lower inositol phosphates have positive effects on human health. In this study, the effect of gibberellic acid (GA) on phytic acid degradation under calcium lactate (Ca) existence was investigated. The results showed that Ca + GA treatment promoted the growth status, hormone metabolism and phytic acid degradation in germinating soybean. At the same time, the availability of phosphorus, the activity of phytic acid degradation-associated enzyme and phosphoinositide-specific phospholipase C (PI-PLC) increased. However, the relative genes expression of phytic acid degradation-associated enzymes did not vary in accordance with their enzymes activity. The results revealed that GA could mediate the transport and function of calcium and a series of physiological and biochemical changes to regulate phytic acid degradation of soybean sprouts. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.)

    PubMed Central

    Ghazijahani, Noushin; Hadavi, Ebrahim; Jeong, Byoung R.

    2014-01-01

    The effect of foliar application of two levels of citric acid (CA; 0 and 7 mM) and two levels of salicylic acid (SA; 0 and 1 mM) combined with two levels of nutrient solution strength (full strength and half strength) on mineral acquisition by sweet basil were investigated. The experiment was conducted in a randomized block design arrangement with three replications. SA alone reduced the plant height and thickened the stem. Plants supplied with a full strength solution had a ticker stem, produced more biomass, and showed higher values of Fv/Fm. Some changes in the uptake pattern of some nutrients, especially boron and sulfur, were noticed. Higher boron concentrations in leaves were in plants sprayed with a combination of 7 mM CA and 1 mM of SA. Applying combination of CA and SA was more effective than using them individually that suggests an effective synergism between them. PMID:25400645

  11. Efficacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits.

    PubMed

    da Rocha Neto, Argus Cezar; Luiz, Caroline; Maraschin, Marcelo; Di Piero, Robson Marcelo

    2016-03-16

    Apples are among the most commonly consumed fruits worldwide. Blue mold (Penicillium expansum) is one of the major diseases in apples postharvest, leading to wide use of fungicides and the search for alternative products to control the pathogen. In this context, this study aimed to evaluate the potential of salicylic acid (SA) as an alternative product to control blue mold and to preserve the physicochemical characteristics of apple fruit postharvest. The antimicrobial effect of SA was determined both in vitro and in situ, by directly exposing conidia to solutions of different concentrations SA or by inoculating the fruit with P. expansum and treating them curatively, eradicatively, or preventively with a 2.5mM SA solution. The physiological effects of SA on fruit were determined by quantifying the weight loss, total soluble solids content, and titratable acidity. In addition, the accumulation of SA in the fruit was determined by HPLC. SA (2.5mM) inhibited 100% of fungal germination in vitro and also controlled blue mold in situ when applied eradicatively. In addition, HPLC analysis demonstrated that SA did not persist in apple fruit. SA also maintained the physicochemical characteristics of fruit of different quality categories. Thus, SA may be an alternative to the commercial fungicides currently used against P. expansum. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Topical formic acid puncture technique for the treatment of common warts.

    PubMed

    Bhat, R M; Vidya, K; Kamath, G

    2001-06-01

    Warts are a common chronic skin disorder that can be cosmetically disfiguring and, depending on the location, cause inhibition of function. The presence of dozens of topical and systemic treatments for warts is a testament to the lack of a rapid, simple, uniformly effective, inexpensive, nonscarring, and painless treatment. The purpose of this study was to determine the efficacy and safety of 85% formic acid application, an inexpensive therapy, for the treatment of warts. A placebo-controlled, nonrandomized, open trial was performed in 100 patients with common warts attending Father Muller's Medical College Hospital, Mangalore. Fifty patients received 85% formic acid application and 50 patients received placebo (water) using a topical application/needle puncture technique every other day. Ninety-two per cent of patients who received formic acid application showed complete disappearance of warts after a 3-4-week treatment period, compared to 6% in the placebo group. The results show that 85% formic acid application is a safe, economical, and effective alternative in the treatment of common warts with few side-effects and good compliance. A multicenter trial is needed to examine the efficacy and safety of this treatment.

  13. Biomimetic Deposition of Hydroxyapatite by Mixed Acid Treatment of Titanium Surfaces.

    PubMed

    Zhao, J M; Park, W U; Hwang, K H; Lee, J K; Yoon, S Y

    2015-03-01

    A simple chemical method was established for inducing bioactivity of Ti metal. In the present study, two kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coatings successfully formed on the Ti surfaces in the simulated body fluid. Strong mixed acid etching was used to increase the roughness of the metal surface, because the porous and rough surfaces allow better adhesion between Ca-P coatings and substrate. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Some specimens were treated with a 5 M NaOH aqueous solution, and then heat treated at 600 °C in order to form an amorphous sodium titanate layer on their surface. This treated titanium metal is believed to form a dense and uniform bone-like apatite layer on its surface in a simulated body fluid (SBF). This study proved that mixed acid treatment is not only important for surface passivation but is also another bioactive treatment for titanium surfaces, an alternative to alkali treatment. In addition, mixed acid treatment uses a lower temperature and shorter time period than alkali treatment.

  14. CuO based catalysts on modified acidic silica supports tested in the de-NOx reduction.

    PubMed

    Bennici, Simona; Gervasini, Antonella; Lazzarin, Marta; Ragaini, Vittorio

    2005-03-01

    A series of dispersed CuO catalysts supported on modified silica supports with Al2O3 (SA), TiO2 (ST), and ZrO2 (SZ) were prepared optimising the adsorption method of copper deposition assisted by ultrasound treatment, already reported in a previous paper (S. Bennici, A. Gervasini, V. Ragaini, Ultrason. Sonochem. 10 (2003) 61). The obtained catalysts were characterized in their bulk (atomic absorption, X-ray diffraction, temperature programmed reduction) and surface (N2 adsorption, X-ray photoelectron spectroscopy, scanning electron microscopy) properties. The morphology of the finished materials was not deeply modified compared with that of the relevant supports. The employed complemented techniques evidenced a well dispersed CuO phase with a copper-support interaction on the most acidic supports (SA and SZ). The catalyst performances were studied in the reaction of selective catalytic reduction of NOx with ethene in oxidizing atmosphere in a flow apparatus under variable times (0.360-0.072 s) and temperatures (200-450 degrees C). The catalysts prepared on the most acidic supports (SA and SZ) were the most active and selective towards N2 formation. They showed a particular interesting activity in the reaction of NO2 reduction besides that of NO reduction.

  15. Effects of salicylic acid on thermotolerance and cardenolide accumulation under high temperature stress in Digitalis trojana Ivanina.

    PubMed

    Cingoz, Gunce Sahin; Gurel, Ekrem

    2016-08-01

    Long periods of high temperature or transitory increased temperature, a widespread agricultural problem, may lead to a drastic reduction in economic yield, affecting plant growth and development in many areas of the world. Heat stress causes many anatomical and physiological changes in plants. Its unfavorable effects can be alleviated by thermotolerance induced by exogenous application of plant growth regulators and osmoprotectants or by gradual application of temperature stress. Digitalis trojana Ivanina is an important medicinal plant species well known mainly for its cardenolides. The production of cardenolides via traditional agriculture is commercially inadequate. In this study, elicitation strategies were employed for improving crop thermotolerance and accumulation of cardenolides. For these purposes, the effects of salicylic acid (SA) and/or high temperature treatments in inducing cardenolide accumulation and thermotolerance were tested in callus cultures of D. trojana. Considerable increases in the production of cardenolides (up to 472.28 μg.g(-1) dry weight, dw) and induction of thermotolerance capacity were observed when callus cultures were exposed to high temperature for 2 h after pretreating with SA. High temperature treatments (2 h and 4 h) caused a marked reduction in superoxide dismutase (SOD; EC 1.15.1.1) and catalase (CAT; EC 1.11.1.6) activities, while SA pretreatment increased their activities. High temperature and/or SA appeared to increase the levels of proline, total phenolic, and flavonoid content. Elevated phenolic accumulation could be associated with increased stress protection. These results indicated that SA treatments induced synthesis of antioxidants and cardenolides, which may play a significant role in resistance to high temperature stress. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Salicylic acid-mediated establishment of the compatibility between Alternaria brassicicola and Brassica juncea is mitigated by abscisic acid in Sinapis alba.

    PubMed

    Mazumder, Mrinmoy; Das, Srirupa; Saha, Upala; Chatterjee, Madhuvanti; Bannerjee, Kaushik; Basu, Debabrata

    2013-09-01

    This work addresses the changes in the phytohormonal signature in the recognition of the necrotrophic fungal pathogen Alternaria brassicicola by susceptible Brassica juncea and resistant Sinapis alba. Although B. juncea, S. alba and Arabidopsis all belong to the same family, Brassicaceae, the phytohormonal response of susceptible B. juncea towards this pathogen is unique because the latter two species express non-host resistance. The differential expression of the PR1 gene and the increased level of salicylic acid (SA) indicated that an SA-mediated biotrophic mode of defence response was triggered in B. juncea upon challenge with the pathogen. Compared to B. juncea, resistant S. alba initiated enhanced abscisic acid (ABA) and jasmonic acid (JA) responses following challenge with this pathogen, as revealed by monitoring the expression of ABA-related genes along with the concentration of ABA and JA. Furthermore, these results were verified by the exogenous application of ABA on B. juncea leaves prior to challenge with A. brassicicola, which resulted in a delayed disease progression, followed by the inhibition of the pathogen-mediated increase in SA response and enhanced JA levels. Therefore, it seems that A. brassicicola is steering the defence response towards a biotrophic mode by mounting an SA response in susceptible B. juncea, whereas the enhanced ABA response of S. alba not only counteracts the SA response but also restores the necrotrophic mode of resistance by enhancing JA biosynthesis. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. DL-β-aminobutyric acid-induced resistance in soybean against Aphis glycines Matsumura (Hemiptera: Aphididae).

    PubMed

    Zhong, Yunpeng; Wang, Biao; Yan, Junhui; Cheng, Linjing; Yao, Luming; Xiao, Liang; Wu, Tianlong

    2014-01-01

    Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA) against Aphis glycines Matsumura, the soybean aphid (SA) was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), chitinase (CHI), and β-1, 3-glucanase (GLU) in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA.

  18. Succinic acid production from glycerol by Actinobacillus succinogenes using dimethylsulfoxide as electron acceptor.

    PubMed

    Carvalho, Margarida; Matos, Mariana; Roca, Christophe; Reis, Maria A M

    2014-01-25

    Glycerol, a highly abundant byproduct of the biodiesel industry, constitutes today a cheap feedstock for biobased succinic acid (SA) production. Actinobacillus succinogenes is one of the best SA producers. However, glycerol consumption by this biocatalyst is limited because of a redox imbalance during cell growth. The use of an external electron acceptor may improve the metabolism of SA synthesis by A. succinogenes in glycerol. In this study, the effect of dimethylsulfoxide (DMSO), an electron acceptor, on glycerol consumption and SA production by A. succinogenes under controlled fermentation conditions was investigated. Concentrations of DMSO between 1 and 4% (v/v) greatly promoted glycerol consumption and SA production by A. succinogenes. During fed-batch cultivation, SA concentration reached 49.62 g/L, with a product yield of 0.87 gSA/gGLR and a maximum production rate of 2.31 gSA/Lh, the highest values so far reported in the literature for A. succinogenes using glycerol as carbon source. These results show that using DMSO as external electron acceptor significantly promotes glycerol consumption and succinic acid production by A. succinogenes and may be used as a co-substrate, opening new perspectives for the use of glycerol by this biocatalyst. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The plant hormone salicylic acid interacts with the mechanism of anti-herbivory conferred by fungal endophytes in grasses.

    PubMed

    Bastías, Daniel A; Alejandra Martínez-Ghersa, M; Newman, Jonathan A; Card, Stuart D; Mace, Wade J; Gundel, Pedro E

    2018-02-01

    The plant hormone salicylic acid (SA) is recognized as an effective defence against biotrophic pathogens, but its role as regulator of beneficial plant symbionts has received little attention. We studied the relationship between the SA hormone and leaf fungal endophytes on herbivore defences in symbiotic grasses. We hypothesize that the SA exposure suppresses the endophyte reducing the fungal-produced alkaloids. Because of the role that alkaloids play in anti-herbivore defences, any reduction in their production should make host plants more susceptible to herbivores. Lolium multiflorum plants symbiotic and nonsymbiotic with the endophyte Epichloë occultans were exposed to SA followed by a challenge with the aphid Rhopalosiphum padi. We measured the level of plant resistance to aphids, and the defences conferred by endophytes and host plants. Symbiotic plants had lower concentrations of SA than did the nonsymbiotic counterparts. Consistent with our prediction, the hormonal treatment reduced the concentration of loline alkaloids (i.e., N-formyllolines and N-acetylnorlolines) and consequently decreased the endophyte-conferred resistance against aphids. Our study highlights the importance of the interaction between the plant immune system and endophytes for the stability of the defensive mutualism. Our results indicate that the SA plays a critical role in regulating the endophyte-conferred resistance against herbivores. © 2017 John Wiley & Sons Ltd.

  20. A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid.

    PubMed

    Shang, Jing; Xi, De-Hui; Xu, Fei; Wang, Shao-Dong; Cao, Sen; Xu, Mo-Yun; Zhao, Ping-Ping; Wang, Jian-Hui; Jia, Shu-Dan; Zhang, Zhong-Wei; Yuan, Shu; Lin, Hong-Hui

    2011-02-01

    Plant viruses cause many diseases that lead to significant economic losses. However, most of the approaches to control plant viruses, including transgenic processes or drugs are plant-species-limited or virus-species-limited, and not very effective. We introduce an application of jasmonic acid (JA) and salicylic acid (SA), a broad-spectrum, efficient and nontransgenic method, to improve plant resistance to RNA viruses. Applying 0.06 mM JA and then 0.1 mM SA 24 h later, enhanced resistance to Cucumber mosaic virus (CMV), Tobacco mosaic virus (TMV) and Turnip crinkle virus (TCV) in Arabidopsis, tobacco, tomato and hot pepper. The inhibition efficiency to virus replication usually achieved up to 80-90%. The putative molecular mechanism was investigated. Some possible factors affecting the synergism of JA and SA have been defined, including WRKY53, WRKY70, PDF1.2, MPK4, MPK2, MPK3, MPK5, MPK12, MPK14, MKK1, MKK2, and MKK6. All genes involving in the synergism of JA and SA were investigated. This approach is safe to human beings and environmentally friendly and shows potential as a strong tool for crop protection against plant viruses.

  1. Lipoxygenase in Caragana jubata responds to low temperature, abscisic acid, methyl jasmonate and salicylic acid.

    PubMed

    Bhardwaj, Pardeep Kumar; Kaur, Jagdeep; Sobti, Ranbir Chander; Ahuja, Paramvir Singh; Kumar, Sanjay

    2011-09-01

    Lipoxygenase (LOX) catalyses oxygenation of free polyunsaturated fatty acids into oxylipins, and is a critical enzyme of the jasmonate signaling pathway. LOX has been shown to be associated with biotic and abiotic stress responses in diverse plant species, though limited data is available with respect to low temperature and the associated cues. Using rapid amplification of cDNA ends, a full-length cDNA (CjLOX) encoding lipoxygenase was cloned from apical buds of Caragana jubata, a temperate plant species that grows under extreme cold. The cDNA obtained was 2952bp long consisting of an open reading frame of 2610bp encoding 869 amino acids protein. Multiple alignment of the deduced amino acid sequence with those of other plants demonstrated putative LH2/ PLAT domain, lipoxygenase iron binding catalytic domain and lipoxygenase_2 signature sequences. CjLOX exhibited up- and down-regulation of gene expression pattern in response to low temperature (LT), abscisic acid (ABA), methyl jasmonate (MJ) and salicylic acid (SA). Among all the treatments, a strong up-regulation was observed in response to MJ. Data suggests an important role of jasmonate signaling pathway in response to LT in C. jubata. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Experimental Study of Fouling Behavior of Main Substances (BSA, HA, SA) of Dissolved Organic Matter (DOM) in Dead-end Membrane Filtration

    NASA Astrophysics Data System (ADS)

    Sun, Yongjun; Zhu, Kexin; Khan, Bushra; Du, Xinpei; Hou, Lei; Zhao, Shuang; Li, Ping; Liu, Songbai; Song, Peng; Zhang, Hong; Jiang, Shuihong; Wang, Zhan; Zha, Shenghua

    2018-01-01

    In this study, the fouling behavior of PES ultrafiltration (UF) membrane with different DOM fractions including bovine serum albumin (BSA), sodium alginate (SA) and humic acid (HA) was systematically investigated. The result showed that the fouling mechanism of HA was cake formation while that of BSA and SA was caused by both pore blocking and cake formation due to the different particle size. Moreover, membrane fouling became more severe with the increase of feed concentration and TMP and it could be accurately described by the cake-complete model. The pore blocking resistance for SA was larger than that for BSA, whereas the cake resistance followed the sequence SA>BSA>HA. This observation offered insight into the differences in fouling behavior of the various DOM components and was further used as guidance for practical application.

  3. Real World of Industrial Chemistry: An Acid Can Be Basic.

    ERIC Educational Resources Information Center

    Fernelius, W. Conard, Ed.; And Others

    1979-01-01

    The uses of sulfuric acid in our technological society are given. The discussion includes sulfuric acid in the petroleum industry, construction industry, textile industry and in steel production. (SA)

  4. Bacterial and Protozoal Communities and Fatty Acid Profile in the Rumen of Sheep Fed a Diet Containing Added Tannins ▿

    PubMed Central

    Vasta, Valentina; Yáñez-Ruiz, David R.; Mele, Marcello; Serra, Andrea; Luciano, Giuseppe; Lanza, Massimiliano; Biondi, Luisa; Priolo, Alessandro

    2010-01-01

    This study evaluated the effects of tannins on ruminal biohydrogenation (BH) due to shifts in the ruminal microbial environment in sheep. Thirteen lambs (45 days of age) were assigned to two dietary treatments: seven lambs were fed a barley-based concentrate (control group) while the other six lambs received the same concentrate with supplemental quebracho tannins (9.57% of dry matter). At 122 days of age, the lambs were slaughtered, and the ruminal contents were subjected to fatty acid analysis and sampled to quantify populations of Butyrivibrio fibrisolvens, which converts C18:2 c9-c12 (linoleic acid [LA]) to C18:2 c9-t11 (rumenic acid [RA]) and then RA to C18:1 t11 (vaccenic acid [VA]); we also sampled for Butyrivibrio proteoclasticus, which converts VA to C18:0 (stearic acid [SA]). Tannins increased (P < 0.005) VA in the rumen compared to the tannin-free diet. The concentration of SA was not affected by tannins. The SA/VA ratio was lower (P < 0.005) for the tannin-fed lambs than for the controls, suggesting that the last step of the BH process was inhibited by tannins. The B. proteoclasticus population was lower (−30.6%; P < 0.1), and B. fibrisolvens and protozoan populations were higher (+107% and +56.1%, respectively; P < 0.05) in the rumen of lambs fed the tannin-supplemented diet than in controls. These results suggest that quebracho tannins altered BH by changing ruminal microbial populations. PMID:20173064

  5. Increase of Chamazulene and α-Bisabolol Contents of the Essential Oil of German Chamomile (Matricaria chamomila L.) Using Salicylic Acid Treatments under Normal and Heat Stress Conditions

    PubMed Central

    Ghasemi, Mojtaba; Babaeian Jelodar, Nadali; Modarresi, Mohammad; Bagheri, Nadali; Jamali, Abbas

    2016-01-01

    The chamazulene and α-(−)-bisabolol contents and quality of the chamomile oil are affected by genetic background and environmental conditions. Salicylic acid (SA), as a signaling molecule, plays a significant role in the plant physiological processes. The aim of this study was to evaluate the chemical profile, quantity, and improve the essential oil quality as a consequence of the increase of chamazulene and α-(−)-bisabol using salicylic acid under normal and heat stress conditions by the gas chromatography-mass spectrometry (GC-MS) technique. The factorial experiments were carried out during the 2011–2012 hot season using a randomized complete block design with three replications. The factors include four salicylic acid concentrations (0 (control), 10, 25 and 100 mg·L−1), and three chamomile cultivars (Bushehr, Bona, Bodegold) were sown on two different planting dates under field conditions. Fourteen compounds were identified from the extracted oil of the samples treated with salicylic acid under normal and heat stress conditions. The major identified oil compositions from chamomile cultivars treated with salicylic acid were chamazulene, α-(−)-bisabolol, bisabolone oxide, β-farnesene, en-yn-dicycloether, and bisabolol oxide A and B. Analysis of variance showed that the simple effects (environmental conditions, cultivar and salicylic acid) and their interaction were significant on all identified compounds, but the environmental conditions had no significant effect on bisabolol oxide A. The greatest amount of chamazulene obtained was 6.66% at the concentration of 10 mg·L−1 SA for the Bona cultivar under heat stress conditions, whereas the highest α-(−)-bisabolol amount attained was 3.41% at the concentration of 100 mg·L−1 SA for the Bona cultivar under normal conditions. The results demonstrated that the application of exogenous salicylic acid increases the quantity and essential oil quality as a consequence of the increase of chamazulene and

  6. Comparative phytotoxicity of usnic acid, salicylic acid, cinnamic acid and benzoic acid on photosynthetic apparatus of Chlamydomonas reinhardtii.

    PubMed

    Gao, Yazhi; Liu, Wei; Wang, Xiaoxiong; Yang, Lihua; Han, Su; Chen, Shiguo; Strasser, Reto Jörg; Valverde, Bernal E; Qiang, Sheng

    2018-07-01

    The effects of four phytotoxins usnic acid (UA), salicylic acid (SA), cinnamic acid (CA) and benzoic acid (BA) on photosynthesis of Chlamydomonas reinhardtii were studied in vivo to identify and localise their initial action sites on two photosystems. Our experimental evidence shows that the four phytotoxins have multiple targets in chloroplasts, which mainly lie in photosystem II (PSII), not photosystem I (PSI). They share an original action site by blocking electron transport beyond Q A (primary plastoquinone acceptor) at PSII acceptor side since a fast increase of the J-step level is the greatest change in chlorophyll a fluorescence induction kinetics OJIP in C. reinhardtii cells treated with the phytotoxins. UA decreases photosynthetic activity by reducing O 2 evolution rate, interrupting PSII electron transport at both the donor and acceptor sides, inactivating the PSII reaction centers (RCs), reducing the content of chlorophylls and carotenoids, destroying the conformation of antenna pigment assemblies, and casuing the degradation of D1/D2 proteins. SA damage to photosynthetic machinery is mainly attributed to inhibition of PSII electron transport beyond Q A at the acceptor side, inactivation of the PSII RCs, reduction of chlorophyll content, digestion of thylakoid ploypeptides and destabilization of thylakoid membranes. Both CA and BA affect the photosynthetic process by decreasing PSII electron transport efficiency at the acceptor side and the amount of active PSII RCs. Besides, the initial cause of BA-inhibiting photosynthesis is also assocaited with the O 2 evolution rate and the disconnection of some antenna molecules from PSII RCs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling

    PubMed Central

    Kloth, Karen J.; Wiegers, Gerrie L.; Busscher-Lange, Jacqueline; van Haarst, Jan C.; Kruijer, Willem; Bouwmeester, Harro J.; Dicke, Marcel; Jongsma, Maarten A.

    2016-01-01

    Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae. The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA–SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences. PMID:27107291

  8. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves.

    PubMed

    Wang, Li-Jun; Fan, Ling; Loescher, Wayne; Duan, Wei; Liu, Guo-Jie; Cheng, Jian-Shan; Luo, Hai-Bo; Li, Shao-Hua

    2010-02-23

    Although the effect of salicylic acid (SA) on photosynthesis of plants including grapevines has been investigated, very little is yet known about the effects of SA on carbon assimilation and several components of PSII electron transport (donor side, reaction center and acceptor side). In this study, the impact of SA pretreatment on photosynthesis was evaluated in the leaves of young grapevines before heat stress (25 degrees C), during heat stress (43 degrees C for 5 h), and through the following recovery period (25 degrees C). Photosynthetic measures included gas exchange parameters, PSII electron transport, energy dissipation, and Rubisco activation state. The levels of heat shock proteins (HSPs) in the chloroplast were also investigated. SA did not significantly (P < 0.05) influence the net photosynthesis rate (Pn) of leaves before heat stress. But, SA did alleviate declines in Pn and Rubisco activation state, and did not alter negative changes in PSII parameters (donor side, acceptor side and reaction center QA) under heat stress. Following heat treatment, the recovery of Pn in SA-treated leaves was accelerated compared with the control (H2O-treated) leaves, and, donor and acceptor parameters of PSII in SA-treated leaves recovered to normal levels more rapidly than in the controls. Rubisco, however, was not significantly (P < 0.05) influenced by SA. Before heat stress, SA did not affect level of HSP 21, but the HSP21 immune signal increased in both SA-treated and control leaves during heat stress. During the recovery period, HSP21 levels remained high through the end of the experiment in the SA-treated leaves, but decreased in controls. SA pretreatment alleviated the heat stress induced decrease in Pn mainly through maintaining higher Rubisco activation state, and it accelerated the recovery of Pn mainly through effects on PSII function. These effects of SA may be related in part to enhanced levels of HSP21.

  9. Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyase and the endogenous content of salicylic acid to induce flowering in pharbitis.

    PubMed

    Wada, Kaede C; Mizuuchi, Kaori; Koshio, Aya; Kaneko, Kentaro; Mitsui, Toshiaki; Takeno, Kiyotoshi

    2014-07-01

    The involvement of salicylic acid (SA) in the regulation of stress-induced flowering in the short-day plant pharbitis (also called Japanese morning glory) Ipomoea nil (formerly Pharbitis nil) was studied. Pharbitis cv. Violet was induced to flower when grown in 1/100-strength mineral nutrient solution under non-inductive long-day conditions. All fully expanded true leaves were removed from seedlings, leaving only the cotyledons, and flowering was induced under poor-nutrition stress conditions. This indicates that cotyledons can play a role in the regulation of poor-nutrition stress-induced flowering. The expression of the pharbitis homolog of PHENYLALANINE AMMONIA-LYASE, the enzyme activity of phenylalanine ammonia-lyase (PAL; E.C. 4.3.1.5) and the content of SA in the cotyledons were all up-regulated by the stress treatment. The Violet was also induced to flower by low-temperature stress, DNA demethylation and short-day treatment. Low-temperature stress enhanced PAL activity, whereas non-stress factors such as DNA demethylation and short-day treatment decreased the activity. The PAL enzyme activity was also examined in another cultivar, Tendan, obtaining similar results to Violet. The exogenously applied SA did not induce flowering under non-stress conditions but did promote flowering under weak stress conditions in both cultivars. These results suggest that stress-induced flowering in pharbitis is induced, at least partly, by SA, and the synthesis of SA is promoted by PAL. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures

    PubMed Central

    Rodas-Junco, Beatriz A; Cab-Guillen, Yahaira; Muñoz-Sanchez, J Armando; Vázquez-Flota, Felipe; Monforte-Gonzalez, Miriam; Hérnandez-Sotomayor, S M Teresa

    2013-01-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.

  11. Acrylic acid removal by acrylic acid utilizing bacteria from acrylonitrile-butadiene-styrene resin manufactured wastewater treatment system.

    PubMed

    Wang, C C; Lee, C M

    2006-01-01

    The aim of this study is to isolate the acrylic acid utilizing bacteria from the ABS resin manufactured wastewater treatment system. The bacteria should have the ability to remove acrylic acid and tolerate the acrylonitrile and acrylamide toxicity. The aim is also to understand the performance of isolated pure strain for treating different initial acrylic acid concentrations from synthetic wastewater. The results are: twenty strains were isolated from the ABS resin manufactured wastewater treatment system and twelve of them could utilize 600 mg/l acrylic acid for growth. Seven of twelve strains could tolerate the acrylonitrile and acrylamide toxicity, when the concentration was below 300 mg/l. Bacillus thuringiensis was one of the seven strains and the optimum growth temperature was 32 degrees C. Bacillus thuringiensis could utilize acrylic acid for growth, when the initial acrylic acid concentration was below 1,690.4 mg/l. Besides this, when the initial acrylic acid concentration was below 606.8 mg/l, the acrylic acid removal efficiency exceeded 96.3%. Bacillus thuringiensis could tolerate 295.7 mg/l acrylamide and 198.4 mg/l acrylonitrile toxicity but could not tolerate 297.3 mg/l epsilon-caprolactam.

  12. Paracetamol and salicylic acid removal from contaminated water by microalgae.

    PubMed

    Escapa, C; Coimbra, R N; Paniagua, S; García, A I; Otero, M

    2017-12-01

    The biomass growth, pharmaceutical removal and light conversion efficiency of Chlorella sorokiniana under the presence of paracetamol (PC) and salicylic acid (SaC) were assessed and compared at two different concentrations of these pharmaceuticals (I: 25 mg l -1 , II: 250 mg l -1 ). Microalgae were resistant to these concentrations and, moreover, their growth was significantly stimulated (p ≤ 0.05) under these drugs (biomass concentration increased above 33% PCI, 35% SaCI, 13% PCII and 45% SaCII, as compared with the respective positive controls). At the steady state of the semicontinuous culture, C. sorokiniana showed removal efficiencies above 41% and 69% for PCI and PCII, respectively; and above 93% and 98% for SaCI and SaCII, respectively. Under an irradiance of 370 μE m -2  s -1 , higher quantum yields were reached by microalgae under the presence of drugs, either at dose I or II, than by the respective positive controls. These results point to C. sorokiniana as a robust strain for the bioremediation of paracetamol and salicylic acid concentrated wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Treatment and prevention systems for acid mine drainage and halogenated contaminants

    DOEpatents

    Jin, Song [Fort Collins, CO; Fallgren, Paul H [Laramie, WY; Morris, Jeffrey M [Laramie, WY

    2012-01-31

    Embodiments include treatments for acid mine drainage generation sources (10 perhaps by injection of at least one substrate (11) and biologically constructing a protective biofilm (13) on acid mine drainage generation source materials (14). Further embodiments include treatments for degradation of contaminated water environments (17) with substrates such as returned milk and the like.

  14. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    PubMed

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  15. Combined effect of CO2 enrichment and foliar application of salicylic acid on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from ginger

    PubMed Central

    2012-01-01

    Background The increase in atmospheric CO2 concentration caused by climate change and agricultural practices is likely to affect biota by producing changes in plant growth, allocation and chemical composition. This study was conducted to evaluate the combined effect of the application of salicylic acid (SA, at two levels: 0 and 10-3 M) and CO2 enrichment (at two levels: 400 and 800 μmol·mol−1) on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from two Malaysian ginger varieties, namely Halia Bentong and Halia Bara. Methods High-performance liquid chromatography (HPLC) with photodiode array detection and mass spectrometry was employed to identify and quantify the flavonoids and anthocyanins in the ginger extracts. The antioxidant activity of the leaf extracts was determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and thiobarbituric acid (TBA) assays. The substrate specificity of chalcone synthase, the key enzyme for flavonoid biosynthesis, was investigated using the chalcone synthase (CHS) assay. Results CO2 levels of 800 μmol·mol−1 significantly increased anthocyanin, rutin, naringenin, myricetin, apigenin, fisetin and morin contents in ginger leaves. Meanwhile, the combined effect of SA and CO2 enrichment enhanced anthocyanin and flavonoid production compared with single treatment effects. High anthocyanin content was observed in H Bara leaves treated with elevated CO2 and SA. The highest chalcone synthase (CHS) activity was observed in plants treated with SA and CO2 enrichment. Plants not treated with SA and kept under ambient CO2 conditions showed the lowest CHS activity. The highest free radical scavenging activity corresponded to H Bara treated with SA under high CO2 conditions, while the lowest activity corresponded to H Bentong without SA treatment and under atmospheric CO2 levels. As the level of CO2 increased, the DPPH activity increased. Higher TBA activity was also recorded in the extracts of H Bara

  16. Zoledronic acid: a review of its use in the treatment of osteoporosis.

    PubMed

    Deeks, Emma D; Perry, Caroline M

    2008-01-01

    Zoledronic acid (Aclasta; Reclast), a third-generation nitrogen-containing bisphosphonate, is the first once-yearly treatment to have been approved for use in patients with postmenopausal osteoporosis or at high risk of fracture. Intravenous zoledronic acid 5 mg once yearly is effective in reducing the risk of several types of fracture in patients with postmenopausal osteoporosis or recent low-trauma hip fracture. Moreover, improvements in bone mineral density (BMD) and reductions in markers of bone turnover are also generally observed. Zoledronic acid is generally well tolerated. Additional comparative data are required to definitively position zoledronic acid with respect to other agents. In the meantime, intravenous zoledronic acid 5 mg once yearly is a convenient and effective treatment option that may have an advantage over some other agents, for which adherence to treatment regimens is a recognized problem.

  17. Functional and structural analysis of the sialic acid-binding domain of rotaviruses.

    PubMed Central

    Isa, P; López, S; Segovia, L; Arias, C F

    1997-01-01

    The infectivity of most animal rotaviruses is dependent on the interaction of the virus spike protein VP4 with a sialic acid (SA)-containing cell receptor, and the SA-binding domain of this protein has been mapped between amino acids 93 and 208 of its trypsin cleavage fragment VP8. To identify which residues in this region are essential for the SA-binding activity, we performed alanine mutagenesis of the rotavirus RRV VP8 expressed in bacteria as a fusion polypeptide with glutathione S-transferase. Tyrosines were primarily targeted since tyrosine has been involved in the interaction of other viral hemagglutinins with SA. Of the 15 substitutions carried out, 10 abolished the SA-dependent hemagglutination activity of the protein, as well as its ability to bind to glycophorin A in a solid-phase assay. However, only alanine substitutions for tyrosines 155 and 188 and for serine 190 did not affect the overall conformation of the protein, as judged by their interaction with a panel of conformationally sensitive neutralizing VP8 monoclonal antibodies (MAbs). These findings suggest that these three amino acids play an essential role in the SA-binding activity of the protein, presumably by interacting directly with the SA molecule. The predicted secondary structure of VP8 suggests that it is organized as 11 beta-strands separated by loops; in this model, Tyr-155 maps to loop 7 while Tyr-188 and Ser-190 map to loop 9. The close proximity of these two loops is also supported by previous results from competition experiments with neutralizing MAbs directed at RRV VP8. PMID:9261399

  18. α-Ketol linolenic acid (KODA) application affects endogenous abscisic acid, jasmonic acid and aromatic volatiles in grapes infected by a pathogen (Glomerella cingulata).

    PubMed

    Wang, Shanshan; Saito, Takanori; Ohkawa, Katsuya; Ohara, Hitoshi; Shishido, Masahiro; Ikeura, Hiromi; Takagi, Kazuteru; Ogawa, Shigeyuki; Yokoyama, Mineyuki; Kondo, Satoru

    2016-03-15

    Effects of α-ketol linolenic acid (KODA) application on endogenous abscisic acid (ABA), jasmonic acid (JA), and aromatic volatiles were investigated in 'Kyoho' grapes (Vitis labrusca×Vitis vinifera) infected by a pathogen (Glomerella cingulata). The expressions of 9-cis-epoxycarotenoid dioxygenase (VvNCED1), ABA 8'-hydroxylase (VvCYP707A1), lipoxygenase (VvLOX), and allene oxide synthase (VvAOS) were also examined. The grape berries were dipped in 0.1mM KODA solution before inoculation with the pathogen and stored at 25°C for 12 days. The development of infection was significantly suppressed upon KODA treatment. Endogenous ABA, JA and phaseic acid (PA) were induced in inoculated berries. KODA application before inoculation increased endogenous ABA, PA and JA through the activation of VvNCED1, VvCYP707A1 and VvAOS genes, respectively. In addition, terpenes, methyl salicylate (Me-SA) and C6-aldehydes such as (E)-2-hexenal and cis-3-hexenal associated with fungal resistance also increased in KODA-treated berries during storage. These results suggest that the synergistic effect of JA, ABA, and some aromatic volatiles induced by KODA application may provide resistance to pathogen infection in grape berries. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. The Mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways.

    PubMed

    Wathugala, Deepthi L; Hemsley, Piers A; Moffat, Caroline S; Cremelie, Pieter; Knight, Marc R; Knight, Heather

    2012-07-01

    • Arabidopsis SENSITIVE TO FREEZING6 (SFR6) controls cold- and drought-inducible gene expression and freezing- and osmotic-stress tolerance. Its identification as a component of the MEDIATOR transcriptional co-activator complex led us to address its involvement in other transcriptional responses. • Gene expression responses to Pseudomonas syringae, ultraviolet-C (UV-C) irradiation, salicylic acid (SA) and jasmonic acid (JA) were investigated in three sfr6 mutant alleles by quantitative real-time PCR and susceptibility to UV-C irradiation and Pseudomonas infection were assessed. • sfr6 mutants were more susceptible to both Pseudomonas syringae infection and UV-C irradiation. They exhibited correspondingly weaker PR (pathogenesis-related) gene expression than wild-type Arabidopsis following these treatments or after direct application of SA, involved in response to both UV-C and Pseudomonas infection. Other genes, however, were induced normally in the mutants by these treatments. sfr6 mutants were severely defective in expression of plant defensin genes in response to JA; ectopic expression of defensin genes was provoked in wild-type but not sfr6 by overexpression of ERF5. • SFR6/MED16 controls both SA- and JA-mediated defence gene expression and is necessary for tolerance of Pseudomonas syringae infection and UV-C irradiation. It is not, however, a universal regulator of stress gene transcription and is likely to mediate transcriptional activation of specific regulons only. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  20. Regulation of water, salinity, and cold stress responses by salicylic acid

    PubMed Central

    Miura, Kenji; Tada, Yasuomi

    2014-01-01

    Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant–pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed. PMID:24478784

  1. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato.

    PubMed

    Rahman, Taha Abd El; Oirdi, Mohamed El; Gonzalez-Lamothe, Rocio; Bouarab, Kamal

    2012-12-01

    Plants use different immune pathways to combat pathogens. The activation of the jasmonic acid (JA)-signaling pathway is required for resistance against necrotrophic pathogens; however, to combat biotrophic pathogens, the plants activate mainly the salicylic acid (SA)-signaling pathway. SA can antagonize JA signaling and vice versa. NPR1 (noninducible pathogenesis-related 1) is considered a master regulator of SA signaling. NPR1 interacts with TGA transcription factors, ultimately leading to the activation of SA-dependent responses. SA has been shown to promote disease development caused by the necrotrophic pathogen Botrytis cinerea through NPR1, by suppressing the expression of two JA-dependent defense genes, proteinase inhibitors I and II. We show here that the transcription factor TGA1.a contributes to disease development caused by B. cinerea in tomato by suppressing the expression of proteinase inhibitors I and II. Finally, we present evidence that the SA-signaling pathway contributes to disease development caused by another necrotrophic pathogen, Alternaria solani, in tomato. Disease development promoted by SA through NPR1 requires the TGA1.a transcription factor. These data highlight how necrotrophs manipulate the SAsignaling pathway to promote their disease in tomato.

  2. Soil microbial community responses to acid exposure and neutralization treatment.

    PubMed

    Shin, Doyun; Lee, Yunho; Park, Jeonghyun; Moon, Hee Sun; Hyun, Sung Pil

    2017-12-15

    Changes in microbial community induced by acid shock were studied in the context of potential release of acids to the environment due to chemical accidents. The responses of microbial communities in three different soils to the exposure to sulfuric or hydrofluoric acid and to the subsequent neutralization treatment were investigated as functions of acid concentration and exposure time by using 16S-rRNA gene based pyrosequencing and DGGE (Denaturing Gradient Gel Electrophoresis). Measurements of soil pH and dissolved ion concentrations revealed that the added acids were neutralized to different degrees, depending on the mineral composition and soil texture. Hydrofluoric acid was more effectively neutralized by the soils, compared with sulfuric acid at the same normality. Gram-negative ß-Proteobacteria were shown to be the most acid-sensitive bacterial strains, while spore-forming Gram-positive Bacilli were the most acid-tolerant. The results of this study suggest that the Gram-positive to Gram-negative bacterial ratio may serve as an effective bio-indicator in assessing the impact of the acid shock on the microbial community. Neutralization treatments helped recover the ratio closer to their original values. The findings of this study show that microbial community changes as well as geochemical changes such as pH and dissolved ion concentrations need to be considered in estimating the impact of an acid spill, in selecting an optimal remediation strategy, and in deciding when to end remedial actions at the acid spill impacted site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Tranexamic acid-associated seizures: Causes and treatment.

    PubMed

    Lecker, Irene; Wang, Dian-Shi; Whissell, Paul D; Avramescu, Sinziana; Mazer, C David; Orser, Beverley A

    2016-01-01

    Antifibrinolytic drugs are routinely used worldwide to reduce the bleeding that results from a wide range of hemorrhagic conditions. The most commonly used antifibrinolytic drug, tranexamic acid, is associated with an increased incidence of postoperative seizures. The reported increase in the frequency of seizures is alarming, as these events are associated with adverse neurological outcomes, longer hospital stays, and increased in-hospital mortality. However, many clinicians are unaware that tranexamic acid causes seizures. The goal of this review is to summarize the incidence, risk factors, and clinical features of these seizures. This review also highlights several clinical and preclinical studies that offer mechanistic insights into the potential causes of and treatments for tranexamic acid-associated seizures. This review will aid the medical community by increasing awareness about tranexamic acid-associated seizures and by translating scientific findings into therapeutic interventions for patients. © 2015 The Authors Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  4. Effectiveness and cost-effectiveness of salicylic acid and cryotherapy for cutaneous warts. An economic decision model.

    PubMed

    Thomas, K S; Keogh-Brown, M R; Chalmers, J R; Fordham, R J; Holland, R C; Armstrong, S J; Bachmann, M O; Howe, A H; Rodgers, S; Avery, A J; Harvey, I; Williams, H C

    2006-08-01

    To estimate the costs of commonly used treatments for cutaneous warts, as well as their health benefits and risk. To create an economic decision model to evaluate the cost-effectiveness of these treatments, and, as a result, assess whether a randomised controlled trial (RCT) would be feasible and cost-effective. Focus groups, structured interviews and observation of practice. Postal survey sent to 723 patients. A recently updated Cochrane systematic review and published cost and prescribing data. Primary and secondary data collection methods were used to inform the development of an economic decision model. Data from the postal survey provided estimates of the effectiveness of wart treatments in a primary care setting. These estimates were compared with outcomes reported in the Cochrane review of wart treatment, which were largely obtained from RCTs conducted in secondary care. A decision model was developed including a variety of over-the-counter (OTC) and GP-prescribed treatments. The model simulated 10,000 patients and adopted a societal perspective. OTC treatments were used by a substantial number of patients (57%) before attending the GP surgery. By far the most commonly used OTC preparation was salicylic acid (SA). The results of the economic model suggested that of the treatments prescribed by a GP, the most cost-effective treatment was SA, with an incremental cost-effectiveness ratio (ICER) of 2.20 pound/% cured. The ICERs for cryotherapy varied widely (from 1.95 to 7.06 pound/% cured) depending on the frequency of applications and the mode of delivery. The most cost-effective mode of delivery was through nurse-led cryotherapy clinics (ICER = 1.95 pound/% cured) and this could be a cost-effective alternative to GP-prescribed SA. Overall, the OTC therapies were the most cost-effective treatment options. ICERs ranged from 0.22 pound/% cured for OTC duct tape and 0.76 pound/% cured for OTC cryotherapy to 1.12 pound/% cured for OTC SA. However, evidence in

  5. Zoledronic Acid for the Treatment and Prevention of Primary and Secondary Osteoporosis

    PubMed Central

    Rizzoli, René

    2010-01-01

    There is increasing interest in therapies that can be administered less frequently and/or avoid gastrointestinal irritation. The efficacy of once-yearly zoledronic acid (5 mg) in the treatment and prevention of osteoporosis has been evaluated in different patient populations. In the 3-year HORIZON-Pivotal Fracture Trial in postmenopausal women with osteoporosis, zoledronic acid reduced the risk of vertebral and hip fracture by 70% and 41%, respectively, versus placebo. The efficacy of zoledronic acid in preventing subsequent fracture in patients with a hip fracture was evaluated in the HORIZON-Recurrent Fracture Trial. New vertebral and nonvertebral fractures were significantly reduced by treatment initiated within 90 days of incident hip fracture, without evidence of delayed fracture healing. Data from a 1-year study show that a single zoledronic acid 5-mg infusion is superior to oral risedronate 5 mg/day for treatment and prevention of glucocorticoid-induced osteoporosis. Increases in bone mineral density and decreases in bone turnover markers were significantly greater with zoledronic acid than with risedronate. Two different treatment regimens of zoledronic acid were found to be more effective than placebo for prevention of bone loss in postmenopausal women and reducing markers of bone turnover after 2 years. In conclusion, zoledronic acid 5 mg once-yearly infusion has demonstrated marked efficacy in the treatment and prevention of primary and secondary osteoporosis, with a combination of fracture risk reduction and prevention of bone loss at key sites. It is the only agent shown to reduce the incidence of fracture and mortality in patients with a previous low-trauma hip fracture. PMID:22870433

  6. Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro

    PubMed Central

    Lee, So Young; Damodaran, Puthanveettil Narayanankutty; Roh, Kwang Soo

    2014-01-01

    The present study was designed to evaluate the influence of salicylic acid (SA) on the growth of salt stress (sodium chloride) induced in tobacco plants. In addition, quantification of rubisco and rubisco activase contents of the plants was also determined in treatments with the control, 10−4 mM SA, 50 mM NaCl, 100 mM NaCl, 150 mM NaCl, SA + 50 mM NaCl, SA + 100 mM NaCl and SA + 150 mM NaCl, respectively after in vitro culture for 5 weeks. The growth of the tobacco plant decreased in 50 mM and 100 mM NaCl when not treated with SA. However, the growth was accelerated by SA, and the growth retardation caused by NaCl was improved by SA. The content of rubisco was improved by SA only in plants treated with 50 mM NaCl, and the activity of rubisco was increased by SA resulting in the decreased effect of NaCl, but only in 50 mM NaCl treated plants. The content of rubisco activase decreased due to NaCl, and SA did not improve the effect caused by NaCl. The activity of rubisco activase was increased by SA resulting in decreased activity caused by NaCl, but increased effect by SA was not recovered to the level of NaCl untreated plants. The activity of rubisco and rubisco activase, which decreased due to denaturing agents, did not demonstrate significant improvement when compared to the control. PMID:25313276

  7. Suicide attempts within 12 months of treatment for substance use disorders.

    PubMed

    Britton, Peter C; Conner, Kenneth R

    2010-02-01

    There are limited prospective data on suicide attempts (SA) during the months following treatment for substance use disorders (SUD), a period of high risk. In an analysis of the Drug Abuse Treatment Outcomes Study, a longitudinal naturalistic multisite study of treated SUDs, variables associated with SA in the 12 months following SUD treatment were examined. Participants included 2,966 patients with one or more SUDs. By 12 months, 77 (2.6%) subjects had attempted suicide. Multivariate logistic regression analyses were used to identify variables associated with SA. Variables collected at baseline that were associated with SA included lifetime histories of SA, suicidal ideation (SI), depression, cocaine as primary substance of use, outpatient methadone treatment, and short-term inpatient treatment. Male sex, older age, and minority race or ethnicity were associated with lower likelihood of SA. After controlling for baseline predictors, variables assessed at 12 months associated with SA included SI during follow-up and daily or more use of cocaine. The data contribute to a small but growing literature of prospective studies of SA among treated SUDs, and suggest that SUDs with cocaine use disorders in particular should be a focus of prevention efforts.

  8. High-Throughput Analysis of Methylmalonic Acid in Serum, Plasma, and Urine by LC-MS/MS. Method for Analyzing Isomers Without Chromatographic Separation.

    PubMed

    Kushnir, Mark M; Nelson, Gordon J; Frank, Elizabeth L; Rockwood, Alan L

    2016-01-01

    Measurement of methylmalonic acid (MMA) plays an important role in the diagnosis of vitamin B12 deficiency. Vitamin B12 is an essential cofactor for the enzymatic carbon rearrangement of methylmalonyl-CoA (MMA-CoA) to succinyl-CoA (SA-CoA), and the lack of vitamin B12 leads to elevated concentrations of MMA. Presence of succinic acid (SA) complicates the analysis because mass spectra of MMA and SA are indistinguishable, when analyzed in negative ion mode and the peaks are difficult to resolve chromatographically. We developed a method for the selective analysis of MMA that exploits the significant difference in fragmentation patterns of di-butyl derivatives of the isomers MMA and SA in a tandem mass spectrometer when analyzed in positive ion mode. Tandem mass spectra of di-butyl derivatives of MMA and SA are very distinct; this allows selective analysis of MMA in the presence of SA. The instrumental analysis is performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in positive ion mode, which is, in combination with selective extraction of acidic compounds, is highly selective for organic acids with multiple carboxyl groups (dicarboxylic, tricarboxylic, etc.). In this method organic acids with a single carboxyl group are virtually undetectable in the mass spectrometer; the only organic acid, other than MMA, that is detected by this method is its isomer, SA. Quantitative measurement of MMA in this method is performed using a deconvolution algorithm, which mathematically resolves the signal corresponding to MMA and does not require chromatographic resolution of the MMA and SA peaks. Because of its high selectivity, the method utilizes isocratic chromatographic separation; reconditioning and re-equilibration of the chromatographic column between injections is unnecessary. The above features of the method allow high-throughput analysis of MMA with analysis cycle time of 1 min.

  9. Cytotoxic Activity of Salicylic Acid-Containing Drug Models with Ionic and Covalent Binding

    PubMed Central

    2015-01-01

    Three different types of drug delivery platforms based on imidazolium ionic liquids (ILs) were synthesized in high preparative yields, namely, the models involving (i) ionic binding of drug and IL; (ii) covalent binding of drug and IL; and (iii) dual binding using both ionic and covalent approaches. Seven ionic liquids containing salicylic acid (SA-ILs) in the cation or/and in the anion were prepared, and their cytotoxicity toward the human cell lines CaCo-2 (colorectal adenocarcinoma) and 3215 LS (normal fibroblasts) was evaluated. Cytotoxicity of SA-ILs was significantly higher than that of conventional imidazolium-based ILs and was comparable to the pure salicylic acid. It is important to note that the obtained SA-ILs dissolved in water more readily than salicylic acid, suggesting benefits of possible usage of traditional nonsoluble active pharmaceutical ingredients in an ionic liquid form. PMID:26617961

  10. Computational studies of H5N1 hemagglutinin binding with SA-{alpha}-2, 3-Gal and SA-{alpha}-2, 6-Gal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Minyong; Wang Binghe

    2006-09-01

    For influenza H5N1 hemagglutinin, a switch from SA-{alpha}-2, 3-Gal to SA-{alpha}-2, 6-Gal receptor specificity is a critical step leading to the conversion from avian-to-human to human-to-human infection. Therefore, the understanding of the binding modes of SA-{alpha}-2, 3-Gal and SA-{alpha}-2, 6-Gal to H5N1 hemagglutinin will be very important for the examination of possible mutations needed for going from an avian to a human flu virus. Based on the available H5N1 hemagglutinin crystal structure, the binding profiles between H5N1 hemagglutinin and two saccharide ligands, SA-{alpha}-2, 3-Gal and SA-{alpha}-2, 6-Gal, were investigated by ab initio quantum mechanics, molecular docking, molecular mechanics, and molecularmore » dynamics simulations. It was found that SA-{alpha}-2, 3-Gal has strong multiple hydrophobic and hydrogen bond interactions in its trans conformation with H5N1 hemagglutinin, whereas the SA-{alpha}-2, 6-Gal only shows weak interactions in a different conformation (cis type)« less

  11. Salicylic acid peels for the treatment of acne vulgaris in Asian patients.

    PubMed

    Lee, Ho-Sup; Kim, Il-Hwan

    2003-12-01

    Salicylic acid peels have been introduced as a useful modality in acne treatment. Few studies have examined its efficacy and safety, especially in darker skin. To assess the efficacy and safety of salicylic acid peels as a treatment for acne vulgaris in Asian patients. Thirty-five Korean patients with facial acne were treated with 30% salicylic acid peels biweekly for 12 weeks. Lesion counts and Dr. Cunliffe's score were assessed by a blinded evaluator. Safety assessments and patient's evaluations were also recorded. Both inflammatory and noninflammatory acne lesion counts were decreased in proportion to the duration of treatment. Dr. Cunliffe's acne grade was statistically significantly decreased after treatment. The side effects were tolerable in most cases, and all patients were pleased with their peel results. Stratum corneum hydration, skin surface lipid, skin pH, and transepidermal water loss were unchanged from baseline levels. Salicylic acid peels are an effective and safe therapy for acne vulgaris in Asian patients.

  12. Effect of gibberellic acid and cold treatments on the germination of bitterbrush seed.

    Treesearch

    Burt R. McConnell

    1960-01-01

    A number of investigations have shown that treatment with gibberellic acid can replace the cold period required to break dormancy in certain seeds. In several instances, acid treatment has also caused significant increases in the root and top growth of seedlings. This combination of abilities suggests that the use of gibberellic acid in reseeding bitterbrush merits...

  13. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling.

    PubMed

    Kloth, Karen J; Wiegers, Gerrie L; Busscher-Lange, Jacqueline; van Haarst, Jan C; Kruijer, Willem; Bouwmeester, Harro J; Dicke, Marcel; Jongsma, Maarten A

    2016-05-01

    Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA-SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Alpha-momorcharin enhances Tobacco mosaic virus resistance in tobaccoNN by manipulating jasmonic acid-salicylic acid crosstalk.

    PubMed

    Yang, Ting; Zhu, Li-Sha; Meng, Yao; Lv, Rui; Zhou, Zhuo; Zhu, Lin; Lin, Hong-Hui; Xi, De-Hui

    2018-04-01

    Alpha-momorcharin (α-MMC) is a type-I ribosome inactivating protein (RIP) with a molecular weight of 29 kDa found in plants. This protein has been shown to be effective against a broad range of human viruses and also has anti-tumor activities. However, the mechanism by which α-MMC induces plant defense responses and regulates the N gene to promote resistance to the Tobacco mosaic virus (TMV) is still not clear. By using pharmacological and infection experiments, we found that α-MMC enhances TMV resistance of tobacco plants containing the N gene (tobacco NN ). Our results showed that plants pretreated with 0.5 mg/ml α-MMC could relieve TMV-induced oxidative damage, had enhanced the expression of the N gene and increased biosynthesis of jasmonic acid (JA) and salicylic acid (SA). Moreover, transcription of JA and SA signaling pathway genes were increased, and their expression persisted for a longer period of time in plants pretreated with α-MMC compared with those pretreated with water. Importantly, exogenous application of 1-Aminobenzotriazole (ABT, SA inhibitor) and ibuprofen (JA inhibitor) reduced α-MMC induced plant resistance under viral infection. Thus, our results revealed that α-MMC enhances TMV resistance of tobacco NN plants by manipulating JA-SA crosstalk. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Salicylic acid alleviates aluminum toxicity in soybean roots through modulation of reactive oxygen species metabolism

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Song, Fengbin; Zhu, Xiancan; You, Jiangfeng; Yang, Zhenming; Li, Xiangnan

    2017-11-01

    As an important signal molecule, salicylic acid (SA) improves plant tolerance to aluminum (Al) stress. The objective of this study was to investigate the effects of exogenous SA application on the dynamics of endogenous SA and reactive oxygen species in soybean (Glycine max L.) exposed to Al stress. The roots of soybean seedlings were exposed to a combination of AlCl3 (30 μM) and SA (10 μM)/PAC (100 μM, paclobutrazol, SA biosynthesis inhibitor) for 3, 6, 9 and 12 h. Al stress induced an increase in endogenous SA concentration in a time-dependent manner, also verified by the up-regulated expression of GmNPR1, an SA-responsive gene. Al stress increased the activities of phenylalanine ammonia-lyase (PAL) and benzoic acid 2-hydroxylase (BA2H), and the contents of SA, O2- and malondialdehyde (MDA) in the root apex. The application of exogenous SA increased PAL and BA2H, and reduced O2- and MDA contents in soybean roots under Al stress. PAC inhibited the SA induced increase in BA2H activity. In addition, the SA application resulted in a rapid increase in hydrogen peroxide (H2O2) concentration under Al stress, followed by a sharp decrease. Compared with the plants exposed to Al alone, Al+SA plants possessed higher activities of superoxide dismutase, peroxidase and ascorbate peroxidase, and lower catalase activity, indicating that SA alleviated Al-induced oxidative damage. These results suggested that PAL and BA2H were involved in Al-induced SA production and showed that SA alleviated the adverse effects of Al toxicity by modulating the cellular H2O2 level and the antioxidant enzyme activities in the soybean root apex.

  16. Thermal Characterization of Lauric-Stearic Acid/Expanded Graphite Eutectic Mixture as Phase Change Materials.

    PubMed

    Zhu, Hua; Zhang, Peng; Meng, Zhaonan; Li, Ming

    2015-04-01

    The eutectic mixture of lauric acid (LA) and stearic acid (SA) is a desirable phase change material (PCM) due to the constant melting temperature and large latent heat. However, its poor thermal conductivity has hampered its broad utilization. In the present study, pure LA, SA and the mixtures with various mass fractions of LA-SA were used as the basic PCMs, and 10 wt% expanded graphite (EG) was added to enhance the thermal conductivities. The phase change behaviors, microstructural analysis, thermal conductivities and thermal stabilities of the mixtures of PCMs were investigated by differential scanning calorimetry (DSC), scanning electronic microscope (SEM), transient plane source (TPS) and thermogravimetric analysis (TGA), respectively. The results show that the LA-SA binary mixture of mixture ratio of 76.3 wt%: 23.7 wt% forms an eutectic mixture, which melts at 38.99 °C and has a latent heat of 159.94 J/g. The melted fatty acids are well absorbed by the porous network of EG and they have a good thermal stability. Furthermore, poor thermal conductivities can be well enhanced by the addition of EG.

  17. Recent Advances in Delivery of Drug-Nucleic Acid Combinations for Cancer Treatment

    PubMed Central

    Li, Jing; Wang, Yan; Zhu, Yu; Oupický, David

    2013-01-01

    Cancer treatment that uses a combination of approaches with the ability to affect multiple disease pathways has been proven highly effective in the treatment of many cancers. Combination therapy can include multiple chemotherapeutics or combinations of chemotherapeutics with other treatment modalities like surgery or radiation. However, despite the widespread clinical use of combination therapies, relatively little attention has been given to the potential of modern nanocarrier delivery methods, like liposomes, micelles, and nanoparticles, to enhance the efficacy of combination treatments. This lack of knowledge is particularly notable in the limited success of vectors for the delivery of combinations of nucleic acids with traditional small molecule drugs. The delivery of drug-nucleic acid combinations is particularly challenging due to differences in the physicochemical properties of the two types of agents. This review discusses recent advances in the development of delivery methods using combinations of small molecule drugs and nucleic acid therapeutics to treat cancer. This review primarily focuses on the rationale used for selecting appropriate drug-nucleic acid combinations as well as progress in the development of nanocarriers suitable for simultaneous delivery of drug-nucleic acid combinations. PMID:23624358

  18. Recent advances in delivery of drug-nucleic acid combinations for cancer treatment.

    PubMed

    Li, Jing; Wang, Yan; Zhu, Yu; Oupický, David

    2013-12-10

    Cancer treatment that uses a combination of approaches with the ability to affect multiple disease pathways has been proven highly effective in the treatment of many cancers. Combination therapy can include multiple chemotherapeutics or combinations of chemotherapeutics with other treatment modalities like surgery or radiation. However, despite the widespread clinical use of combination therapies, relatively little attention has been given to the potential of modern nanocarrier delivery methods, like liposomes, micelles, and nanoparticles, to enhance the efficacy of combination treatments. This lack of knowledge is particularly notable in the limited success of vectors for the delivery of combinations of nucleic acids with traditional small molecule drugs. The delivery of drug-nucleic acid combinations is particularly challenging due to differences in the physicochemical properties of the two types of agents. This review discusses recent advances in the development of delivery methods using combinations of small molecule drugs and nucleic acid therapeutics to treat cancer. This review primarily focuses on the rationale used for selecting appropriate drug-nucleic acid combinations as well as progress in the development of nanocarriers suitable for simultaneous delivery of drug-nucleic acid combinations. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Hepatic structure-pharmacokinetic relationships: the hepatic disposition and metabolite kinetics of a homologous series of O-acyl derivatives of salicylic acid.

    PubMed

    Hung, D Y; Mellick, G D; Anissimov, Y G; Weiss, M; Roberts, M S

    1998-08-01

    1. The hepatic disposition and metabolite kinetics of a homologous series of O-acyl (acetyl, propionyl, butanoyl, pentanoyl, hexanoyl and octanoyl) esters of salicylic acid (C2SA, C3SA, C4SA, C5SA, C6SA and C8SA, respectively) was determined using a single-pass, in-situ rat liver preparation. 2. The hepatic venous outflow profiles for the parent esters and the generated metabolite, salicylic acid (SA) were analysed by HPLC. Non-parametric moments analysis was used to determine the area under the curve (AUC'), mean transit time (MTT) and normalized variance (CV2) for the parent esters and generated SA. 3. Pregenerated SA ([14C]-salicylic acid) was injected into each liver with the parent ester to determine its distribution characteristics. 4. The overall recovery of ester plus metabolite was 89% of the ester dose injected and independent of the ester carbon number, suggesting that ester extraction was due to hepatic metabolism to salicylic acid. 5. The metabolite AUC' value increased directly with the lipophilicity of the parent ester (from 0.12 for C2SA to 0.95 for C8SA). By contrast, the parent AUC' decreased with the lipophilicity (from 0.85 for C2SA to zero for C8SA). The metabolite MTT value also showed a trend to increase with the lipophilicity of the parent ester (from 15.72 s for C3SA to 61.97 s for C8SA). However, the parent MTT value shows no significant change across the series. 6. The two-compartment dispersion model was used to derive the kinetic parameters for parent ester, pregenerated SA and generated SA. Consequently, these parameters were used to estimate the values of AUC', MTT and CV2 for the parent ester and metabolite. The moments values obtained using the two-compartment dispersion model show similar trends to the corresponding moments values obtained from the outflow profiles using a non-parametric approach. 7. The more lipophilic aspirin analogues are more confined to the portal circulation after oral administration than aspirin due to their

  20. Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process.

    PubMed

    Thomas, Paul M; Foster, Gregory D

    2005-01-01

    Pharmaceuticals are a class of emerging contaminants whose fate in the wastewater treatment process has received increasing attention in past years. Acidic pharmaceuticals (ibuprofen, naproxen, mefenamic acid, ketoprofen, and diclofenac), caffeine, and the antibacterial triclosan were quantified at four different steps of wastewater treatment from three urban wastewater treatment plants. The compounds were extracted from wastewater samples on Waters Oasis hydrophilic-lipophilic balance solid-phase extraction columns, silylated, and analyzed by gas chromatography-mass spectrometry. For the chemicals studied, it was found that the majority of the influent load was removed during secondary treatment (51-99%), yielding expected surface water concentrations of 13 to 56 ng/L.

  1. Biosuccinic Acid from Lignocellulosic-Based Hexoses and Pentoses by Actinobacillus succinogenes: Characterization of the Conversion Process.

    PubMed

    Ferone, Mariateresa; Raganati, Francesca; Olivieri, Giuseppe; Salatino, Piero; Marzocchella, Antonio

    2017-12-01

    Succinic acid (SA) is a well-established chemical building block. Actinobacillus succinogenes fermentation is by far the most investigated route due to very promising high SA yield and titer on several sugars. This study contributes to include the SA production within the concept of biorefinery of lignocellulose biomass. The study was focused on the SA production by A. succinogenes DSM 22257 using sugars representative from lignocellulose hydrolysis-glucose, mannose, arabinose, and xylose-as carbon source. Single sugar batch fermentation tests and mixture sugar fermentation tests were carried out. All the sugars investigated were converted in succinic acid by A. succinogenes. The best fermentation performances were measured in tests with glucose as carbon source. The bacterial growth kinetics was characterized by glucose inhibition. No inhibition phenomena were observed with the other sugar investigated. The sugar mixture fermentation tests highlighted the synergic effects of the co-presence of the four sugars. Under the operating conditions tested, the final concentration of succinic acid in the sugar mixture test was larger (27 g/L) than that expected (25.5 g/L) by combining the fermentation of the single sugar. Moreover, the concentration of acetic and formic acid was lower, consequently obtaining an increment in the succinic acid specificity.

  2. A mobile diabetes management and educational system for type-2 diabetics in Saudi Arabia (SAED).

    PubMed

    Alotaibi, Mohammed M; Istepanian, Robert; Philip, Nada

    2016-01-01

    Diabetes is a chronic disease, with high prevalence across many nations, which is characterized by elevated level of blood glucose and risk of acute and chronic complication. The Kingdom of Saudi Arabia (KSA) has one of the highest levels of diabetes prevalence globally. It is well-known that the treatment of diabetes is complex process and requires both lifestyle change and clear pharmacologic treatment plan. To avoid the complication from diabetes, the effective behavioural change and extensive education and self-management is one of the key approaches to alleviate such complications. However, this process is lengthy and expensive. The recent studies on the user of smart phone technologies for diabetes self-management have proven to be an effective tool in controlling hemoglobin (HbA1c) levels especially in type-2 diabetic (T2D) patients. However, to date no reported study addressed the effectiveness of this approach in the in Saudi patients. This study investigates the impact of using mobile health technologies for the self-management of diabetes in Saudi Arabia. In this study, an intelligent mobile diabetes management system (SAED), tailored for T2D patients in KSA was developed. A pilot study of the SAED system was conducted in Saudi Arabia with 20 diabetic patients for 6 months duration. The patients were randomly categorized into a control group who did not use the SAED system and an intervention group whom used the SAED system for their diabetes management during this period. At the end of the follow-up period, the HbA1c levels in the patients in both groups were measure together with a diabetes knowledge test was also conducted to test the diabetes awareness of the patients. The results of SAED pilot study showed that the patients in the intervention group were able to significantly decrease their HbA1c levels compared to the control group. The SAED system also enhanced the diabetes awareness amongst the patients in the intervention group during the trial

  3. Combination photodynamic therapy of human breast cancer using salicylic acid and methylene blue

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Reza; Khorsandi, Khatereh; Jahanshiri, Maryam

    2017-09-01

    The objective of this study was to evaluate the effects of combination therapy with methylene blue (MB) assisted photodynamic therapy (PDT) and salicylic acid (SA) as chemo-therapy anticancer agent. The binding of salicylic acid to methylene blue was studied using spectrophotometric method. The results show the 1:2 complex formation between SA and MB. The binding constants and related Gibbs free energies o are obtained (Kb1 = 183.74, Kb2 = 38.13 and ∆ Gb1° = 12.92 kJ·mol- 1, ∆ Gb2° =9.02 kJ·mol- 1). The spectrophotometric results show the improvement in solubilization and reduction prevention for SA and MB in the complex form. These results are in agreements with cellular experiments. The dark toxicity measurements represent the improve efficacy of chemotherapy using combination of SA and MB. The photodynamic therapy results (using red LED as light source (630 nm; power density: 30 mW cm- 2)) show that the cancer cell killing efficiency of MB increases in the combination with SA due to reduction prevention and stabilization of monomeric form of MB.

  4. Succinic acid production from duckweed (Landoltia punctata) hydrolysate by batch fermentation of Actinobacillus succinogenes GXAS137.

    PubMed

    Shen, Naikun; Wang, Qingyan; Zhu, Jing; Qin, Yan; Liao, Siming; Li, Yi; Zhu, Qixia; Jin, Yanling; Du, Liqin; Huang, Ribo

    2016-07-01

    Duckweed is potentially an ideal succinic acid (SA) feedstock due to its high proportion of starch and low lignin content. Pretreatment methods, substrate content and nitrogen source were investigated to enhance the bioconversion of duckweed to SA and to reduce the costs of production. Results showed that acid hydrolysis was an effective pretreatment method because of its high SA yield. The optimum substrate concentration was 140g/L. The optimum substrate concentration was 140g/L. Corn steep liquor powder could be considered a feasible and inexpensive alternative to yeast extract as a nitrogen source. Approximately 57.85g/L of SA was produced when batch fermentation was conducted in a 1.3L stirred bioreactor. Therefore, inexpensive duckweed can be a promising feedstock for the economical and efficient production of SA through fermentation by Actinobacillus succinogenes GXAS137. Copyright © 2016. Published by Elsevier Ltd.

  5. Leptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2 O2 ) accumulation in Brassica napus.

    PubMed

    Nováková, Miroslava; Šašek, Vladimír; Trdá, Lucie; Krutinová, Hana; Mongin, Thomas; Valentová, Olga; Balesdent, Marie-HelEne; Rouxel, Thierry; Burketová, Lenka

    2016-08-01

    To achieve host colonization, successful pathogens need to overcome plant basal defences. For this, (hemi)biotrophic pathogens secrete effectors that interfere with a range of physiological processes of the host plant. AvrLm4-7 is one of the cloned effectors from the hemibiotrophic fungus Leptosphaeria maculans 'brassicaceae' infecting mainly oilseed rape (Brassica napus). Although its mode of action is still unknown, AvrLm4-7 is strongly involved in L. maculans virulence. Here, we investigated the effect of AvrLm4-7 on plant defence responses in a susceptible cultivar of B. napus. Using two isogenic L. maculans isolates differing in the presence of a functional AvrLm4-7 allele [absence ('a4a7') and presence ('A4A7') of the allele], the plant hormone concentrations, defence-related gene transcription and reactive oxygen species (ROS) accumulation were analysed in infected B. napus cotyledons. Various components of the plant immune system were affected. Infection with the 'A4A7' isolate caused suppression of salicylic acid- and ethylene-dependent signalling, the pathways regulating an effective defence against L. maculans infection. Furthermore, ROS accumulation was decreased in cotyledons infected with the 'A4A7' isolate. Treatment with an antioxidant agent, ascorbic acid, increased the aggressiveness of the 'a4a7' L. maculans isolate, but not that of the 'A4A7' isolate. Together, our results suggest that the increased aggressiveness of the 'A4A7' L. maculans isolate could be caused by defects in ROS-dependent defence and/or linked to suppressed SA and ET signalling. This is the first study to provide insights into the manipulation of B. napus defence responses by an effector of L. maculans. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  6. Genetic determinants restricting the reassortment of heterologous NSP2 genes into the simian rotavirus SA11 genome.

    PubMed

    Mingo, Rebecca; Zhang, Shu; Long, Courtney P; LaConte, Leslie E W; McDonald, Sarah M

    2017-08-24

    Rotaviruses (RVs) can evolve through the process of reassortment, whereby the 11 double-stranded RNA genome segments are exchanged among strains during co-infection. However, reassortment is limited in cases where the genes or encoded proteins of co-infecting strains are functionally incompatible. In this study, we employed a helper virus-based reverse genetics system to identify NSP2 gene regions that correlate with restricted reassortment into simian RV strain SA11. We show that SA11 reassortants with NSP2 genes from human RV strains Wa or DS-1 were efficiently rescued and exhibit no detectable replication defects. However, we could not rescue an SA11 reassortant with a human RV strain AU-1 NSP2 gene, which differs from that of SA11 by 186 nucleotides (36 amino acids). To map restriction determinants, we engineered viruses to contain chimeric NSP2 genes in which specific regions of AU-1 sequence were substituted with SA11 sequence. We show that a region spanning AU-1 NSP2 gene nucleotides 784-820 is critical for the observed restriction; yet additional determinants reside in other gene regions. In silico and in vitro analyses were used to predict how the 784-820 region may impact NSP2 gene/protein function, thereby informing an understanding of the reassortment restriction mechanism.

  7. Preclinical in vitro and in vivo studies to examine the potential use of photodynamic therapy in the treatment of osteomyelitis

    NASA Astrophysics Data System (ADS)

    Bisland, Stuart K.; Chien, Claudia; Wilson, Brian C.; Burch, Shane

    2005-04-01

    Osteomyelitis can lead to severe morbidity and even death resulting from an acute or chronic inflammation of the bone and contiguous structures due to fungal or bacterial infection. Incidence approximates 1 in 1,000 neonates and 1 in 5,000 children in the United States annually and increases up to 0.36% and 16% in adults with diabetes or sickle cell anaemia, respectively. Current regiments of treatment include antibiotics and/or surgery. However, the increasing number of antibiotic resistant pathogens suggests that alternate strategies are required. We are investigating photodynamic therapy (PDT) as one such alternate treatment for osteomyelitis using a bioluminescent strain of biofilm-producing staphylococcus aureus (SA) grown onto kirschner wires (K-wire). SA-coated K-wires were exposed to methylene blue (MB) or 5-aminolevulinic acid (ALA)-mediated PDT either in vitro or following implant into the tibial medullary cavity of Sprague-Dawley rats. The progression of SA biofilm was monitored non-invasively using bioluminescence and expressed as a percentage of the signal for each sample immediately prior to treatment. SA infections were subject to PDT 10 days post inoculation. Treatment comprised administration of ALA (300 mg/Kg) intraperitoneally followed 4 hr later by light (635 +/- 10 nm; 38 or 75 J/cm2) delivered transcutaneously via an optical fiber placed onto the tibia. In vitro, MB and ALA displayed similar cell kill with >= 4log10 cell kill. In vivo, ALA-mediated PDT inhibited biofilm implants in bone. These results confirm that MB or ALA-mediated PDT have potential to treat SA cultures grown in vitro or in vivo using an animal model of osteomyelitis.

  8. SU-E-T-309: Dosimetric Comparison of Simultaneous Integrated Boost Treatment Plan Between Intensity Modulated Radiotherapies (IMRTs), Dual Arc Volumetric Modulated Arc Therapy (DA-VMAT) and Single Arc Volumetric Modulated Arc Therapy (SA-VMAT) for Nasopharyngeal Carcinoma (NPC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivakumar, R; Janardhan, N; Bhavani, P

    Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 inmore » 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA

  9. Jasmonic Acid Signaling Modulates Ozone-Induced Hypersensitive Cell Death

    PubMed Central

    Rao, Mulpuri V.; Lee, Hyung-il; Creelman, Robert A.; Mullet, John E.; Davis, Keith R.

    2000-01-01

    Recent studies suggest that cross-talk between salicylic acid (SA)–, jasmonic acid (JA)–, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O3) exposure activates a hypersensitive response (HR)–like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O3-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O3-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O3-induced H2O2 content and SA concentrations and completely abolished O3-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O3 exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O3 of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O3-induced HR-like cell death. PMID:11006337

  10. Ursodeoxycholic acid treatment of vanishing bile duct syndromes

    PubMed Central

    Pusl, Thomas; Beuers, Ulrich

    2006-01-01

    Vanishing bile duct syndromes (VBDS) are characterized by progressive loss of small intrahepatic ducts caused by a variety of different diseases leading to chronic cholestasis, cirrhosis, and premature death from liver failure. The majority of adult patients with VBDS suffer from primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Ursodeoxycholic acid (UDCA), a hydrophilic dihydroxy bile acid, is the only drug currently approved for the treatment of patients with PBC, and anticholestatic effects have been reported for several other cholestatic syndromes. Several potential mechanisms of action of UDCA have been proposed including stimulation of hepatobiliary secretion, inhibition of apoptosis and protection of cholangiocytes against toxic effects of hydrophobic bile acids. PMID:16773706

  11. Study of the effect of surface treatment of kenaf fibre on mechanical properties of kenaf filled unsaturated polyester composite

    NASA Astrophysics Data System (ADS)

    Salem, I. A. S.; Rozyanty, A. R.; Betar, B. O.; Adam, T.; Mohammed, M.; Mohammed, A. M.

    2017-10-01

    In this research, unsaturated polyester/kenaf fiber (UP/KF) composites was prepared by using hand lay-up process. The effect of surface treatment of kenaf fiber on mechanical properties of kenaf filled unsaturated polyester composites were studied. Different concentrationsof stearic acid (SA) were applied, i.e. 0, 0.4, and 0.8 wt%. Tensile strength of untreated UP/KF composites was found to be higher for 40 wt% loading of kenaf fiber. The highest tensile strength value was obtained after treatment with 0.4 wt% concentration of stearic acid at 56 MPa and tensile modulus was at 2409 MPa. From the flexural strength result obtained, it is clearly seen that 40 wt% loading of kenaf fiber and treatment with 0.4 wt% concentration of stearic acid give the highest value at 72 MPa and flexural modulus at 3929 MPa.

  12. The endocannabinoid hydrolysis inhibitor SA-57: Intrinsic antinociceptive effects, augmented morphine-induced antinociception, and attenuated heroin seeking behavior in mice.

    PubMed

    Wilkerson, Jenny L; Ghosh, Sudeshna; Mustafa, Mohammed; Abdullah, Rehab A; Niphakis, Micah J; Cabrera, Roberto; Maldonado, Rafael L; Cravatt, Benjamin F; Lichtman, Aron H

    2017-03-01

    Although opioids are highly efficacious analgesics, their abuse potential and other untoward side effects diminish their therapeutic utility. The addition of non-opioid analgesics offers a promising strategy to reduce required antinociceptive opioid doses that concomitantly reduce opioid-related side effects. Inhibitors of the primary endocannabinoid catabolic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) show opioid-sparing effects in preclinical models of pain. As simultaneous inhibition of these enzymes elicits enhanced antinociceptive effects compared with single enzyme inhibition, the present study tested whether the dual FAAH-MAGL inhibitor SA-57 [4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester] produces morphine-sparing antinociceptive effects, without major side effects associated with either drug class. SA-57 dose-dependently reversed mechanical allodynia in the constriction injury (CCI) of the sciatic nerve model of neuropathic pain and carrageenan inflammatory pain model. As previously reported, SA-57 was considerably more potent in elevating anandamide (AEA) than 2-arachidonyl glycerol (2-AG) in brain. Its anti-allodynic effects required cannabinoid (CB) 1 and CB 2 receptors; however, only CB 2 receptors were necessary for the anti-edematous effects in the carrageenan assay. Although high doses of SA-57 alone were required to produce antinociception, low doses of this compound, which elevated AEA and did not affect 2-AG brain levels, augmented the antinociceptive effects of morphine, but lacked cannabimimetic side effects. Because of the high abuse liability of opioids and implication of the endocannabinoid system in the reinforcing effects of opioids, the final experiment tested whether SA-57 would alter heroin seeking behavior. Strikingly, SA-57 reduced heroin-reinforced nose poke behavior and the progressive ratio break point for heroin. In conclusion, the results of the present

  13. The Endocannabinoid Hydrolysis Inhibitor SA-57: Intrinsic Antinociceptive Effects, Augmented Morphine-induced Antinociception, and Attenuated Heroin Seeking Behavior in Mice

    PubMed Central

    Wilkerson, Jenny L.; Ghosh, Sudeshna; Mustafa, Mohammed; Abdullah, Rehab A.; Niphakis, Micah J.; Cabrera, Roberto; Maldonado, Rafael L.; Cravatt, Benjamin F.; Lichtman, Aron H.

    2017-01-01

    Although opioids are highly efficacious analgesics, their abuse potential and other untoward side effects diminish their therapeutic utility. The addition of non-opioid analgesics offers a promising strategy to reduce required antinociceptive opioid doses that concomitantly reduce opioid-related side effects. Inhibitors of the primary endocannabinoid catabolic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) show opioid-sparing effects in preclinical models of pain. As simultaneous inhibition of these enzymes elicits enhanced antinociceptive effects compared with single enzyme inhibition, the present study tested whether the dual FAAH-MAGL inhibitor SA-57 [4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester] produces morphine-sparing antinociceptive effects, without major side effects associated with either drug class. SA-57 dose-dependently reversed mechanical allodynia in the constriction injury (CCI) of the sciatic nerve model of neuropathic pain and carrageenan inflammatory pain model. As previously reported, SA-57 was considerably more potent in elevating anandamide (AEA) than 2-arachidonyl glycerol (2-AG) in brain. Its anti-allodynic effects required cannabinoid (CB)1 and CB2 receptors; however, only CB2 receptors were necessary for the anti-edematous effects in the carrageenan assay. Although high doses of SA-57 alone were required to produce antinociception, low doses of this compound, which elevated AEA and did not affect 2-AG brain levels, augmented the antinociceptive effects of morphine, but lacked cannabimimetic side effects. Because of the high abuse liability of opioids and implication of the endocannabinoid system in the reinforcing effects of opioids, the final experiment tested whether SA-57 would alter heroin seeking behavior. Strikingly, SA-57 reduced heroin-reinforced nose poke behavior and the progressive ratio break point for heroin. In conclusion, the results of the present

  14. Bile acid malabsorption in chronic diarrhea: Pathophysiology and treatment

    PubMed Central

    Barkun, Alan; Love, Jonathan; Gould, Michael; Pluta, Henryk; Steinhart, A Hillary

    2013-01-01

    BACKGROUND: Bile acid malabsorption (BAM) is a common but frequently under-recognized cause of chronic diarrhea, with an estimated prevalence of 4% to 5%. METHODS: The published literature for the period 1965 to 2012 was examined for articles regarding the pathophysiology and treatment of BAM to provide an overview of the management of BAM in gastroenterology practice. RESULTS: BAM is classified as type 1 (secondary to ileal dysfunction), type 2 (idiopathic) or type 3 (secondary to gastrointestinal disorders not associated with ileal dysfunction). The estimated prevalence of BAM is >90% in patients with resected Crohn disease (CD) and 11% to 52% of unresected CD patients (type 1); 33% in diarrhea-predominant irritable bowel syndrome (type 2); and is a frequent finding postcholecystectomy or postvagotomy (type 3). Investigations include BAM fecal bile acid assay, 23-seleno-25-homo-tauro-cholic acid (SeHCAT) testing and high-performance liquid chromatography of serum 7-α-OH-4-cholesten-3-one (C4), to determine the level of bile acid synthesis. A less time-consuming and expensive alternative in practice is an empirical trial of the bile acid sequestering agent cholestyramine. An estimated 70% to 96% of chronic diarrhea patients with BAM respond to short-course cholestyramine. Adverse effects include constipation, nausea, borborygmi, flatulence, bloating and abdominal pain. Other bile acid sequestering agents, such as colestipol and colesevelam, are currently being investigated for the treatment of BAM-associated diarrhea. CONCLUSIONS: BAM is a common cause of chronic diarrhea presenting in gastroenterology practice. In accordance with current guidelines, an empirical trial of a bile acid sequestering agent is warranted as part of the clinical workup to rule out BAM. PMID:24199211

  15. Factors Related to Medicaid Payment Acceptance at Outpatient Substance Abuse Treatment Programs

    PubMed Central

    Terry-McElrath, Yvonne M; Chriqui, Jamie F; McBride, Duane C

    2011-01-01

    Objective To examine factors associated with Medicaid acceptance for substance abuse (SA) services by outpatient SA treatment programs. Data Sources Secondary analysis of 2003–2006 National Survey of Substance Abuse Treatment Services data combined with state Medicaid policy and usage measures and other publicly available data. Study Design We used cross-sectional analyses, including state fixed effects, to assess relationships between SA treatment program Medicaid acceptance and (1) program-level factors, (2) county-level sociodemographics and treatment program density, and (3) state-level population characteristics, SA treatment-related factors, and Medicaid policy and usage. Data Extraction Methods State Medicaid policy data were compiled based on reviews of state Medicaid-related statutes/regulations and Medicaid plans. Other data were publicly available. Principal Findings Medicaid acceptance was significantly higher for programs: (a) that were publicly funded and in states with Medicaid policy allowing SA treatment coverage; (b) with accreditation/licensure and nonprofit/government ownership, as well as mental- and general-health focused programs; and (c) in counties with lower household income. Conclusions SA treatment program Medicaid acceptance related to program-, county, and state-level factors. The data suggest the importance of state policy and licensure/accreditation requirements in increasing SA program Medicaid access. PMID:21105870

  16. Biodegradable mixed MPEG-SS-2SA/TPGS micelles for triggered intracellular release of paclitaxel and reversing multidrug resistance

    PubMed Central

    Dong, Kai; Yan, Yan; Wang, Pengchong; Shi, Xianpeng; Zhang, Lu; Wang, Ke; Xing, Jianfeng; Dong, Yalin

    2016-01-01

    In this study, a type of multifunctional mixed micelles were prepared by a novel biodegradable amphiphilic polymer (MPEG-SS-2SA) and a multidrug resistance (MDR) reversal agent (d-α-tocopheryl polyethylene glycol succinate, TPGS). The mixed micelles could achieve rapid intracellular drug release and reversal of MDR. First, the amphiphilic polymer, MPEG-SS-2SA, was synthesized through disulfide bonds between poly (ethylene glycol) monomethyl ether (MPEG) and stearic acid (SA). The structure of the obtained polymer was similar to poly (ethylene glycol)-phosphatidylethanolamine (PEG-PE). Then the mixed micelles, MPEG-SS-2SA/TPGS, were prepared by MPEG-SS-2SA and TPGS through the thin film hydration method and loaded paclitaxel (PTX) as the model drug. The in vitro release study revealed that the mixed micelles could rapidly release PTX within 24 h under a reductive environment because of the breaking of disulfide bonds. In cell experiments, the mixed micelles significantly inhibited the activity of mitochondrial respiratory complex II, also reduced the mitochondrial membrane potential, and the content of adenosine triphosphate, thus effectively inhibiting the efflux of PTX from cells. Moreover, in the confocal laser scanning microscopy, cellular uptake and 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assays, the MPEG-SS-2SA/TPGS micelles achieved faster release and more uptake of PTX in Michigan Cancer Foundation-7/PTX cells and showed better antitumor effects as compared with the insensitive control. In conclusion, the biodegradable mixed micelles, MPEG-SS-2SA/TPGS, could be potential vehicles for delivering hydrophobic chemotherapeutic drugs in MDR cancer therapy. PMID:27785018

  17. Effect of Oxalic Acid Treatment on Sediment Arsenic Concentrations and Lability under Reducing Conditions

    PubMed Central

    Sun, Jing; Bostick, Benjamin C.; Mailloux, Brian J.; Ross, James M.; Chillrud, Steven N.

    2016-01-01

    Oxalic acid enhances arsenic (As) mobilization by dissolving As host minerals and competing for sorption sites. Oxalic acid amendments thus could potentially improve the efficiency of widely used pump-and-treat (P&T) remediation. This study investigates the effectiveness of oxalic acid on As mobilization from contaminated sediments with different As input sources and redox conditions, and examines whether residual sediment As after oxalic acid treatment can still be reductively mobilized. Batch extraction, column, and microcosm experiments were performed in the laboratory using sediments from the Dover Municipal Landfill and the Vineland Chemical Company Superfund sites. Oxalic acid mobilized As from both Dover and Vineland sediments, although the efficiency rates were different. The residual As in both Dover and Vineland sediments after oxalic acid treatment was less vulnerable to microbial reduction than before the treatment. Oxalic acid could thus improve the efficiency of P&T. X-ray absorption spectroscopy analysis indicated that the Vineland sediment samples still contained reactive Fe(III) minerals after oxalic acid treatment, and thus released more As into solution under reducing conditions than the Dover samples. Therefore, the efficacy of P&T must consider sediment Fe mineralogy when evaluating its overall potential for remediating groundwater As. PMID:26970042

  18. Topical acetylsalicylic, salicylic acid and indomethacin suppress pain from experimental tissue acidosis in human skin.

    PubMed

    Steen, K H; Reeh, P W; Kreysel, H W

    1995-09-01

    Topically applied acetylsalicylic acid (ASA), salicylic acid (SA) and indomethacin were tested in an experimental pain model that provides direct nociceptor excitation through cutaneous tissue acidosis. In 30 volunteers, sustained burning pain was produced in the palmar forearm through a continuous intradermal pressure infusion of a phosphate-buffered isotonic solution (pH 5.2). In 5 different, double-blind, randomized cross-over studies with 6 volunteers each, the flow rate of the syringe pump was individually adjusted to result in constant pain ratings of around 20% (50% in study 4) on a visual analog scale (VAS). The painful skin area was then covered with either placebo or the drugs which had been dissolved in diethylether. In the first study on 6 volunteers, ASA (60 mg/ml) or lactose (placebo) in diethylether (10 ml) was applied, using both arms at 3-day intervals. Both treatments resulted in sudden and profound pain relief due to the cooling effect of the evaporating ether. With lactose, however, the mean pain rating was restored close to the baseline within 6-8 min while, with ASA, it remained significantly depressed for the rest of the observation period (another 20 min). This deep analgesia was not accompanied by a loss of tactile sensation. The further studies served to show that indomethacin (4.5 mg/ml) and SA (60 mg/ml) were equally effective as ASA (each 92-96% pain reduction) and that the antinociceptive effects were due to local but not systemic actions, since ASA and SA dis not reach measurable plasma levels up to 3 h after topical applications. With a higher flow rate of acid buffer producing more intense pain (VAS 50%). ASA and SA were still able to significantly reduce the ratings by 90% or 84%, respectively. On the other hand, by increasing the flow rate by a factor of 2 on average, during the period of fully developed drug effect it was possible to overcome the pain suppression, which suggests a competitive mechanism of (acetyl-) salicylic

  19. Salicylic acid beyond defence: its role in plant growth and development.

    PubMed

    Rivas-San Vicente, Mariana; Plasencia, Javier

    2011-06-01

    In recent years salicylic acid (SA) has been the focus of intensive research due to its function as an endogenous signal mediating local and systemic plant defence responses against pathogens. It has also been found that SA plays a role during the plant response to abiotic stresses such as drought, chilling, heavy metal toxicity, heat, and osmotic stress. In this sense, SA appears to be, just like in mammals, an 'effective therapeutic agent' for plants. Besides this function during biotic and abiotic stress, SA plays a crucial role in the regulation of physiological and biochemical processes during the entire lifespan of the plant. The discovery of its targets and the understanding of its molecular modes of action in physiological processes could help in the dissection of the complex SA signalling network, confirming its important role in both plant health and disease. Here, the evidence that supports the role of SA during plant growth and development is reviewed by comparing experiments performed by exogenous application of SA with analysis of genotypes affected by SA levels and/or perception.

  20. Development of Inhibitors of Salicylic Acid Signaling.

    PubMed

    Jiang, Kai; Kurimoto, Tetsuya; Seo, Eun-kyung; Miyazaki, Sho; Nakajima, Masatoshi; Nakamura, Hidemitsu; Asami, Tadao

    2015-08-19

    Salicylic acid (SA) plays important roles in the induction of systemic acquired resistance (SAR) in plants. Determining the mechanism of SAR will extend our understanding of plant defenses against pathogens. We recently reported that PAMD is an inhibitor of SA signaling, which suppresses the expression of the pathogenesis-related PR genes and is expected to facilitate the understanding of SA signaling. However, PAMD strongly inhibits plant growth. To minimize the side effects of PAMD, we synthesized a number of PAMD derivatives, and identified compound 4 that strongly suppresses the expression of the PR genes with fewer adverse effects on plant growth than PAMD. We further showed that the adverse effects on plant growth were partially caused the stabilization of DELLA, which is also related to the pathogen responses. These results indicate that compound 4 would facilitate our understanding of SA signaling and its cross talk with other plant hormones.

  1. Synthesizing Pt nanoparticles in the presence of methylamine: Impact of acetic acid treatment in the electrocatalytic activity of formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Ooi, M. D. Johan; Aziz, A. Abdul

    2017-05-01

    Surfactant removal from the surface of platinum nanoparticles prepared by solution based method is a prerequisite process to accomplish a high catalytic activity for electrochemical reactions. Here, we report a possible approach of combining acid acetic with thermal treatment for improving catalytic performance of formic acid oxidation. This strategy involves conversion of amine to amide in acetic acid followed by surfactant removal via subsequent thermal treatment at 85 °C. This combined activation technique produced monodisperse nanoparticle with the size of 3 to 5 nm with enhanced formic acid oxidation activity, particularly in perchloric acid solution. Pt treated in 1 h of acetic acid and heat treatment of 9 h shows high electrochemical surface area value (27.6 m2/g) compares to Pt without activation (16.6 m2/g). The treated samples also exhibit high current stability of 0.3 mA/cm2 compares to the as-prepared mA/cm2). Shorter duration of acid wash and longer duration of heating process result in high electrocatalytic activity. This work demonstrates a possible technique in improving catalytic activity of platinum nanoparticles synthesized using methylamine as surfactant.

  2. Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control.

    PubMed

    Ra, Chae Hun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2017-03-01

    Optimal hyper-thermal (HT) acid hydrolysis conditions for Gelidium amansii were determined to be 12% (w/v) seaweed slurry content and 144 mM H 2 SO 4 at 150 °C for 10 min. HT acid hydrolysis-treated G. amansii hydrolysates produced low concentrations of inhibitory compounds and adsorption treatment using 3% activated carbon. An adsorption time of 5 min was subsequently used to remove the inhibitory 5-hydroxymethylfurfural from the medium. A final maximum monosaccharide concentration of 44.6 g/L and 79.1% conversion from 56.4 g/L total fermentable monosaccharides with 120 g dw/L G. amansii slurry was obtained from HT acid hydrolysis, enzymatic saccharification, and adsorption treatment. This study demonstrates the potential for butyric acid production from G. amansii hydrolysates under non-pH-controlled as well as pH-controlled fermentation using Clostridium acetobutylicum KCTC 1790. The activated carbon treatment and pH-controlled fermentation showed synergistic effects and produced butyric acid at a concentration of 11.2 g/L after 9 days of fermentation.

  3. Dose-dependent competitive block by topical acetylsalicylic and salicylic acid of low pH-induced cutaneous pain.

    PubMed

    Steen, K H; Reeh, P W; Kreysel, H W

    1996-01-01

    In a human acid pain model, which uses continuous intradermal pressure infusion of a phosphate-buffered solution (pH 5.2) to induce localized non-adapting pain, the flow was adjusted to result in constant pain ratings of about 20% or 50% on a visual analog scale (VAS). Six volunteers in each group participated in 4 different placebo-controlled double-blind cross-over studies to measure rapidly evolving cutaneous analgesia from topically applied new ointment formulations of acetylsalicylic acid (ASA) and salicylic acid (SA) as well as of commercial ibuprofen and benzocain creams. Similar, log-linear dose-response curves were found for both ASA and SA, significant in effect at 3 g/kg and higher drug contents and reaching saturation level at 15 or 30 g/kg, respectively, which, 20 min after application, caused a mean pain suppression of 95% using ASA and 80% using SA. Half-maximal effects were achieved using 3 g/kg ASA or 15 g/kg SA. The SA action was also clearly slower to develop. With an increased flow of the acidic buffer, producing lower effective tissue pH and more intense pain, the effect of ASA and SA decreased to 73% pain suppression. A competitive mechanism of both drug effects was suggested by the fact that, with 15 g/kg ASA and SA, pain reduction could be reversed by increasing the buffer flow by a factor of 1.75, on average. Commercial ibuprofen (50 g/kg) and benzocain creams (100 g/kg) were comparably as effective as ASA and SA, but the local anesthetic caused a loss of all cutaneous sensations while the touch threshold (von Frey) under the specific analgesics was the same as under the placebo ointment. Thus, topical applications of non-steroidal anti-inflammatory drugs (NSAIDS) dissolved in different ointment formulations have proven dose-dependently effective and specific in suppressing experimental acidotic pain by a local and competitive mechanism.

  4. Universal access to HIV treatment versus universal 'test and treat': transmission, drug resistance & treatment costs.

    PubMed

    Wagner, Bradley G; Blower, Sally

    2012-01-01

    In South Africa (SA) universal access to treatment for HIV-infected individuals in need has yet to be achieved. Currently ~1 million receive treatment, but an additional 1.6 million are in need. It is being debated whether to use a universal 'test and treat' (T&T) strategy to try to eliminate HIV in SA; treatment reduces infectivity and hence transmission. Under a T&T strategy all HIV-infected individuals would receive treatment whether in need or not. This would require treating 5 million individuals almost immediately and providing treatment for several decades. We use a validated mathematical model to predict impact and costs of: (i) a universal T&T strategy and (ii) achieving universal access to treatment. Using modeling the WHO has predicted a universal T&T strategy in SA would eliminate HIV within a decade, and (after 40 years) cost ~$10 billion less than achieving universal access. In contrast, we predict a universal T&T strategy in SA could eliminate HIV, but take 40 years and cost ~$12 billion more than achieving universal access. We determine the difference in predictions is because the WHO has under-estimated survival time on treatment and ignored the risk of resistance. We predict, after 20 years, ~2 million individuals would need second-line regimens if a universal T&T strategy is implemented versus ~1.5 million if universal access is achieved. Costs need to be realistically estimated and multiple evaluation criteria used to compare 'treatment as prevention' with other prevention strategies. Before implementing a universal T&T strategy, which may not be sustainable, we recommend striving to achieve universal access to treatment as quickly as possible. We predict achieving universal access to treatment would be a very effective 'treatment as prevention' approach and bring the HIV epidemic in SA close to elimination, preventing ~4 million infections after 20 years and ~11 million after 40 years.

  5. Jasmonic and salicylic acids enhanced phytochemical production and biological activities in cell suspension cultures of spine gourd (Momordica dioica Roxb).

    PubMed

    Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu

    2017-03-01

    In vitro cell suspension culture was established for the production of commercially valuable phytochemicals in Momordica dioica. The influence of elicitors in jasmonic acid (JA) and salicylic acid (SA) increased their effect on phytochemical production and biomass accumulation in M. dioica. The results indicate that compared with non-elicited cultures, JA- and SA-elicited cell suspension cultures had significantly enhanced phenolic, flavonoid, and carotenoid production, as well as antioxidant, antimicrobial, and antiproliferative activities. Furthermore, elicited cultures produced 22 phenolic compounds, such as flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. Greater biomass production, phytochemical accumulation, and biological activity occurred in JA- than in SA-elicited cell cultures. This study is the first to successfully establish M. dioica cell suspension cultures for the production of phenolic compounds and carotenoids, as well as for biomass accumulation.

  6. Effects of Chain Length and Saturability of Fatty Acids on Phospholipids and Proteins in Plasma Membranes of Bovine Mammary Gland.

    PubMed

    Yan, Qiongxian; Tang, Shaoxun; Han, Xuefeng; Bamikole, Musibau Adungbe; Zhou, Chuanshe; Kang, Jinhe; Wang, Min; Tan, Zhiliang

    2016-12-01

    Free fatty acids (FFAs) in plasma are essential substrates for de novo synthesis of milk fat, or directly import into mammary cells. The physico-chemical properties of mammary cells membrane composition affected by FFAs with different chain lengths and saturability are unclear yet. Employing GC, FTIR and fluorescence spectroscopy, the adsorption capacity, phospholipids content, membrane proteins conformation, lipid peroxidation product, and free sulfhydryl of plasma membranes (PMs) interacted with different FFAs were determined. The mammary cells PMs at 38 and 39.5 °C showed different adsorption capacities: acetic acid (Ac) > stearic acid (SA) > β-hydroxybutyric acid (BHBA) > trans10, cis12 CLA. In the FTIR spectrum, the major adsorption peaks appeared at 2920 and 2850 cm -1 for phospholipids, and at 1628 and 1560 cm -1 for membrane proteins. The intensities of PMs-FFAs complexes were varied with the FFAs species and their initial concentrations. The β-sheet and turn structures of membrane proteins were transferred into random coil and α-helix after BHBA, SA and trans10, cis12 CLA treatments compared with Ac treatment. The quenching effects on the fluorescence of endogenous membrane protein, 1, 8-ANS, NBD-PE, and DHPE entrapped in PMs by LCFA were different from those of short chain FFAs. These results indicate that the adsorption of FFAs could change membrane protein conformation and polarity of head group in phospholipids. This variation of the mammary cells PMs was regulated by carbon chain length and saturability of FFAs.

  7. Simultaneous extraction of acetylsalicylic acid and salicylic acid from human plasma and simultaneous estimation by liquid chromatography and atmospheric pressure chemical ionization/tandem mass spectrometry detection. Application to a pharmacokinetic study.

    PubMed

    Nirogi, Ramakrishna; Kandikere, Vishwottam; Mudigonda, Koteshwara; Ajjala, Devender; Suraneni, Ramakrishna; Thoddi, Parthasarathi

    2011-01-01

    A simple analytical method using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in atmospheric chemical ionization mode (APCI) for the simultaneous estimation of acetylsalicylic acid (ASA, CAS 50-78-2) and its active metabolite salicylic acid (SA, CAS 69-72-7) in human plasma has been developed and validated. ASA and SA were analyzed simultaneously despite differences in plasma concentration ranges of ASA and SA after oral administration of ASA. In spite of having different chemical, ionization and chromatographic properties, ASA and SA were extracted simultaneously from the plasma sample using acetonitrile protein precipitation followed by liquid-liquid extraction. The analytes were separated on a reversed phase column with rapid gradient program using mobile phase consisting of ammonium acetate buffer and methanol. The structural analogue diclofenac was used as an internal standard. The multiple reaction monitoring (MRM) transitions m/z 179 --> 137 for ASA, m/z 137 --> 65 for SA and m/z 294 --> 250 for IS were used. The assay exhibited a linear dynamic range of 0.02-10 microg/mL for ASA and 0.1-50 microg/mL for SA. The between-batch precision (%CV) ranged from 2.1 to 7.9% for ASA and from 0.2 to 5.2% for SA. The between-batch accuracy ranged from 95.4 to 96.7% for ASA and from 94.6 to 111.3% for SA. The validated method was successfully applied for the evaluation of pharmacokinetics of ASA after single oral administration of 650 mg test formulation versus two 325 mg reference formulations of ASA in human subjects.

  8. Liquid chromatography-tandem mass spectrometry assay for the quantification of free and total sialic acid in human cerebrospinal fluid.

    PubMed

    van der Ham, Maria; de Koning, Tom J; Lefeber, Dirk; Fleer, André; Prinsen, Berthil H C M T; de Sain-van der Velden, Monique G M

    2010-05-01

    Analysis of sialic acid (SA) metabolites in cerebrospinal fluid (CSF) is important for clinical diagnosis. In the present study, a high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS) method for free sialic acid (FSA) and total sialic acid (TSA) in human CSF was validated. The method utilized a simple sample-preparation procedure of protein precipitation for FSA and acid hydrolysis for TSA. Negative electrospray ionisation was used to monitor the transitions m/z 308.2-->87.0 (SA) and m/z 311.2--> 90.0 ((13)C(3)-SA). Conjugated sialic acid (CSA) was calculated by subtracting FSA from TSA. We established reference intervals for FSA, TSA and CSA in CSF in 217 control subjects. The method has been applied to patients' samples with known differences in SA metabolites like meningitis (n=6), brain tumour (n=2), leukaemia (n=5), and Salla disease (n=1). Limit of detection (LOD) was 0.54 microM for FSA and 0.45 mM for TSA. Intra- and inter-assay variation for FSA (21.8 microM) were 4.8% (n=10) and 10.4% (n=40) respectively. Intra- and inter-assay variation for TSA (35.6 microM) were 9.7% (n=10) and 12.8% (n=40) respectively. Tested patients showed values of TSA above established reference value. The validated method allows sensitive and specific measurement of SA metabolites in CSF and can be applied for clinical diagnoses. 2010 Elsevier B.V. All rights reserved.

  9. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction.

    PubMed

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de Los Santos, Berta; Arroyo, Francisco T; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen.

  10. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction

    PubMed Central

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de los Santos, Berta; Arroyo, Francisco T.; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L.

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen. PMID:27471515

  11. Influence of low concentration acid treatment on lithium disilicate core/veneer ceramic bond strength

    PubMed Central

    Garcia, Rudan P.; Conti, Paulo CR.; Pereira, Jefferson R.; Valle, Accácio Ld.

    2013-01-01

    Objective: This study evaluated the influence of low concentration acid treatment on the shear bond strength between lithium disilicate (LD) infrastructure and veneering porcelain. The surface morphology characteristic after this acid treatment was also examined. Study Design: LD reinforced ceramic cylinders (n=10) (IPS e.max Press, Ivoclar-Vivadent, Schaan, Liechtenstein) were treated (LD-treated) with a low concentration acid solution (Invex Liquid – Ivoclar-Vivadent, Schaan, Liechtenstein) or not treated with the acid solution (LD-untreated). They were veneered with a glass ceramic (IPS e.max Ceram, Ivoclar-Vivadent, Schaan, Liechtenstein). A metal ceramic group (CoCr) was tested as control. Shear bond strength (SBS) was conducted using a universal testing machine at 0.5 mm/min. Surface morphology characteristics after acid treatment were analyzed using scanning electron microscopy. Results: The acid treatment at low concentrations did not influence the SBS of the LD/veneering porcelain interface. The CoCr group showed the significant higher SBS value (35.59 ± 5.97 MPa), followed by LD-untreated group (27.76 ± 3.59 MPa) and LD-treated (27.02 ± 4.79 MPa). The fracture modes were predominantly adhesive for CoCr group and cohesive within the infrastructure for DL groups. Scanning Electron Microscopy (SEM) analysis showed no morphological differences between treated and untreated LD surfaces. Conclusions: Low concentration acid treatment did not improved SBS of veneering ceramic to LD and did not cause morphological changes on the LD surface. Key words:Lithium disilicate, glass ceramics, acid etching, shear bond strength, scanning electron microscopy. PMID:24455073

  12. Overexpression of NtWRKY50 Increases Resistance to Ralstonia solanacearum and Alters Salicylic Acid and Jasmonic Acid Production in Tobacco

    PubMed Central

    Liu, Qiuping; Liu, Ying; Tang, Yuanman; Chen, Juanni; Ding, Wei

    2017-01-01

    WRKY transcription factors (TFs) modulate plant responses to biotic and abiotic stresses. Here, we characterized a WRKY IIc TF, NtWRKY50, isolated from tobacco (Nicotiana tabacum) plants. The results showed that NtWRKY50 is a nuclear-localized protein and that its gene transcript is induced in tobacco when inoculated with the pathogenic bacterium Ralstonia solanacearum. Overexpression of NtWRKY50 enhanced bacterial resistance, which correlated with enhanced SA and JA/ET signaling genes. However, silencing of the NtWRKY50 gene had no obvious effects on plant disease resistance, implying functional redundancy of NtWRKY50 with other TFs. In addition, it was found that NtWRKY50 can be induced by various biotic or abiotic stresses, such as Potato virus Y, Rhizoctonia solani, Phytophthora parasitica, hydrogen peroxide, heat, cold, and wounding as well as the hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). Importantly, additional analysis suggests that NtWRKY50 overexpression markedly promotes SA levels but prevents pathogen-induced JA production. These data indicate that NtWRKY50 overexpression leads to altered SA and JA content, increased expression of defense-related genes and enhanced plant resistance to R. solanacearum. These probably due to increased activity of endogenous NtWRKY50 gene or could be gain-of-function phenotypes by altering the profile of genes affected by NtWRKY50. PMID:29075272

  13. Overexpression of NtWRKY50 Increases Resistance to Ralstonia solanacearum and Alters Salicylic Acid and Jasmonic Acid Production in Tobacco.

    PubMed

    Liu, Qiuping; Liu, Ying; Tang, Yuanman; Chen, Juanni; Ding, Wei

    2017-01-01

    WRKY transcription factors (TFs) modulate plant responses to biotic and abiotic stresses. Here, we characterized a WRKY IIc TF, NtWRKY50, isolated from tobacco ( Nicotiana tabacum ) plants. The results showed that NtWRKY50 is a nuclear-localized protein and that its gene transcript is induced in tobacco when inoculated with the pathogenic bacterium Ralstonia solanacearum . Overexpression of NtWRKY50 enhanced bacterial resistance, which correlated with enhanced SA and JA/ET signaling genes. However, silencing of the NtWRKY50 gene had no obvious effects on plant disease resistance, implying functional redundancy of NtWRKY50 with other TFs. In addition, it was found that NtWRKY50 can be induced by various biotic or abiotic stresses, such as Potato virus Y, Rhizoctonia solani, Phytophthora parasitica , hydrogen peroxide, heat, cold, and wounding as well as the hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). Importantly, additional analysis suggests that NtWRKY50 overexpression markedly promotes SA levels but prevents pathogen-induced JA production. These data indicate that NtWRKY50 overexpression leads to altered SA and JA content, increased expression of defense-related genes and enhanced plant resistance to R. solanacearum. These probably due to increased activity of endogenous NtWRKY50 gene or could be gain-of-function phenotypes by altering the profile of genes affected by NtWRKY50 .

  14. Jessner's solution vs. 30% salicylic acid peels: a comparative study of the efficacy and safety in mild-to-moderate acne vulgaris.

    PubMed

    Dayal, Surabhi; Amrani, Ashish; Sahu, Priyadarshini; Jain, Vijay Kumar

    2017-03-01

    Chemical peeling is a well-identified therapeutic modality for acne vulgaris (AV). Jessner's solution (JS) is a known peeling agent for acne since more than 100 years. Salicylic acid (SA) peel is a well-established peeling agent for acne. There is paucity of literature comparing the current peeling agents of choice, that is, SA with the older peeling agents, that is, JS for acne. To compare the efficacy and safety of 30% SA vs. JS peels in treatment of mild-to-moderate facial acne in Indian patients. A total of 40 patients with mild-to-moderate AV were enrolled for 12 weeks and were randomly divided into two groups: group 1, 30% SA peels and group 2, JS peels were performed 2 weeks apart with total of six peels in 12-week duration. Clinical improvement was assessed objectively using Michaelsson acne scores (MAS) and clinical photographs. Side effects were observed at each visit. At the end of therapy, improvement in MAS and percentage decrease in MAS were significantly higher in group 1 as compared to group 2. Likewise, decrease in mean comedone counts in group 1 was significantly higher as compared to group 2. However, there was no statistically significant difference in the decrease in mean papule and pustule counts between the two groups. Both the groups tolerated the peels well. Thus, 30% SA peels were more effective than JS peels in treatment of noninflammatory lesions, that is, comedones and in overall improvement of mild-to-moderate facial acne vulgaris. © 2016 Wiley Periodicals, Inc.

  15. Capillary electrophoresis coupled with mass spectrometry for the evaluation of substance P enzymatic degradation by SaOS-2 human osteosarcoma.

    PubMed

    Cavazza, Antonella; Corradini, Claudio; Marini, Mario; Roda, Luigi Giorgio; Valenti, Angela

    2011-09-01

    A new analytical method for the detection and the quantitative evaluation of the undecapeptide substance P by capillary electrophoresis coupled with ion trap mass spectrometry (CE-MS) by a co-axial sheath liquid interface has been developed. Conditions of analysis employed an acidic buffer and a 60 cm fused silica capillary installed by overcoming the UV window position, thus allowing to perform the analysis in a brief time. The method has been applied to the evaluation of substance P enzymatic hydrolysis during incubation with the human osteosarcoma SaOS-2 cell line. The analysis of amino acids derived from the cleavage of substance P has been also carried out simultaneously under the same electrophoretic conditions allowing the description of a kinetic of amino acid formation, parallel with substance P disappearance. The amounts of intact substance P and of free amino acids were monitored along 600 s of incubation time. A steady decrease of substance P as function of reaction time was observed. Peptide's half-life was found to be about 4.3s, indicating an extremely fast hydrolysis in the presence of the SaOS-2 cells. Proline, phenilalanine and methionine were the predominant free amino acids recorded. Obtained results lead to hypothesize the occurrence of endopeptidases activity, followed by aminopeptidases responsible for the release of free amino acids originated after primary bond cleavage. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Chromomycin SA analogs from a marine-derived Streptomyces sp.

    PubMed Central

    Hu, Youcai; Espindola, Ana Paula D. M; Stewart, Nathan A.; Wei, Shuguang; Posner, Bruce A.; MacMillan, John B.

    2011-01-01

    Two chromomycin SA analogs, chromomycin SA3 and chromomycin SA2, along with deacetylchromomycin A3 and five previously reported chromomycin analogs were isolated from a marine-derived Streptomyces sp. The structures of the new compounds were determined by spectroscopic methods including 1D and 2D NMR techniques, HRMS and chemical methods. Chromomycin SA3 and chromomycin SA2 are the first naturally occuring chromomycin analogs with truncated side-chains. Biological evaluation of chromomycin analogs for cytotoxicity against two non-small cell lung cancer (NSCLC) cell-lines, A549 and HCC44, demonstrated a decrease in cytotoxicity for the truncated sides chain chromomycin analogs. PMID:21807523

  17. Intercellular salicylic acid accumulation during compatible and incompatible Arabidopsis-Pseudomonas syringae interactions

    PubMed Central

    Wilson, Daniel C; Carella, Philip; Cameron, Robin K

    2014-01-01

    The phytohormone salicylic acid (SA) plays an important role in several disease resistance responses. During the Age-Related Resistance (ARR) response that occurs in mature Arabidopsis responding to Pseudomonas syringae pv tomato (Pst), SA accumulates in the intercellular space where it may act as an antimicrobial agent. Recently we measured intracellular and intercellular SA levels in young, ARR-incompetent plants responding to virulent and avirulent strains of Pst to determine if intercellular SA accumulation is a component of additional defense responses to Pst. In young plants virulent Pst suppressed both intra- and intercellular SA accumulation in a coronatine-dependent manner. In contrast, high levels of intra- and intercellular SA accumulated in response to avirulent Pst. Our results support the idea that SA accumulation in the intercellular space is an important component of multiple defense responses. Future research will include understanding how mature plants counteract the effects of coronatine during the ARR response. PMID:25763618

  18. Comparison of efficacy of products containing azelaic acid in melasma treatment.

    PubMed

    Mazurek, Klaudia; Pierzchała, Ewa

    2016-09-01

    Melasma is one of the most frequently diagnosed hyperpigmentation changes on the skin of women's faces. Nearly 30% of women using oral estrogen therapy struggle with this problem. A common way of reducing melasma is the application of azelaic acid products. Comparison of efficacy of three dermocosmetic products, containing azelaic acid, in the reduction in melasma for women aged 35-55. A group of 60 women diagnosed with melasma were divided into three even, twenty-person subgroups. Each subgroup was assigned one dermocosmetic product containing azelaic acid. For 24 weeks, the patients applied the assigned product twice a day. The level of the colorant within the hyperpigmentation was marked before the treatment, after 1 month, after 3 months, and after 6 months of therapy. The pigmentation was measured using Mexameter(®) (Courage + Khazaka electronic, Germany). In addition, during each inspection, the patients' level of hydration, elasticity, and intensity of erythema was checked using Corneometer(®) , Reviscometer(®) . All dermocosmetics containing azelaic acid that were applied significantly contributed to the reduction in pigment in the pigmentary lesion. The largest decrease in the amount of pigment was observed in the first 3 months of use of the products. A combination containing 20% azelaic acid and mandelic acid, phytic acid, 4N-butyl resorcinol, and ferulic acid proved to be the most effective dermocosmetic III (Sesderma, Valencia, Spain). Dermocosmetics containing azelaic acid significantly contribute to the clearing of melasma. The effect depends on the treatment time, the acid concentration, and addition of other components. © 2016 Wiley Periodicals, Inc.

  19. Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore.

    PubMed

    Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T; Meldau, Stefan

    2014-01-01

    Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding.

  20. Salicylic Acid, a Plant Defense Hormone, Is Specifically Secreted by a Molluscan Herbivore

    PubMed Central

    Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T.; Meldau, Stefan

    2014-01-01

    Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding. PMID:24466122

  1. Influence of long-time stress relief treatments on the dynamic fracture toughness properties of ASME SA508 C1 2a and ASME SA533 GR B C12 pressure vessel steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logsdon, W.A.

    1982-03-01

    Dynamic fracture toughness tests were performed on materials which had been subjected to one of three long-time post weld type stress relief heat treatments: 48 hours at 1000/degree/F (538/degree/C), 24 hours at 1125/degree/F (607/degree/C), and 48 hours at 1125/degree/F (607/degree/C). Linear elastic K/sub Id/ results were obtained at low temperatures while J-integral techniques were utilized to evaluate dynamic fracture toughness over the transition and upper shelf temperature ranges. Tensile, Charpy impact, and drop weight nil-ductility transition tests as well as room temperature, air environment fatigue crack growth rate tests (SA508 Cl 2a only) were also performed. The fracture toughness ofmore » both materials exceeded the ASME specified minimum reference toughness K/sub IR/ curve. 17 refs.« less

  2. Systemic Acquired Resistance and Salicylic Acid: Past, Present and Future.

    PubMed

    Klessig, Daniel F; Choi, Hyong Woo; Dempsey, D'Maris Amick

    2018-05-21

    Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development, as well as the activation of defenses against biotic and abiotic stress. Here we present a historical overview of the progress that has been made to date in elucidating SA's role in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this time-frame, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets/receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself, but rather as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself, as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on identity of the attacking pathogen.

  3. Tranexamic acid for the treatment of heavy menstrual bleeding: efficacy and safety

    PubMed Central

    Leminen, Henri; Hurskainen, Ritva

    2012-01-01

    Tranexamic acid has proven to be an effective treatment for heavy menstrual bleeding (HMB). It reduces menstrual blood loss (MBL) by 26%–60% and is significantly more effective than placebo, nonsteroidal anti-inflammatory drugs, oral cyclical luteal phase progestins, or oral etamsylate, while the levonorgestrel-releasing intrauterine system reduces MBL more than tranexamic acid. Other treatments used for HMB are oral contraceptives, danazol, and surgical interventions (endometrial ablation and hysterectomy). Medical therapy is usually considered a first-line treatment for idiopathic HMB. Tranexamic acid significantly improves the quality of life of women treated for HMB. The recommended oral dosage is 3.9–4 g/day for 4–5 days starting from the first day of the menstrual cycle. Adverse effects are few and mainly mild. No evidence exists of an increase in the incidence of thrombotic events associated with its use. An active thromboembolic disease is a contraindication. In the US, a history of thrombosis or thromboembolism, or an intrinsic risk for thrombosis or thromboembolism are considered contraindications as well. This review focuses on the efficacy and safety of tranexamic acid in the treatment of idiopathic HMB. We searched for medical literature published in English on tranexamic acid from Ovid Medline, PubMed, and Cinahl. Additional references were identified from the reference lists of articles. Ovid Medline, PubMed, and Cinahl search terms were “tranexamic acid” and “menorrhagia” or “heavy menstrual bleeding.” Searches were last updated on March 25, 2012. Studies with women receiving tranexamic acid for HMB were included; randomized controlled studies with a description of appropriate statistical methodology were preferred. Relevant data on the physiology of menstruation and the pharmacodynamics and pharmacokinetics of tranexamic acid are also included. PMID:22956886

  4. Investigation into the Coating and Desensitization Effect on HNIW of Paraffin Wax/Stearic Acid Composite System

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Xu; Chen, Shu-Sen; Jin, Shao-Hua; Shu, Qing-Hai; Jiang, Zhen-Ming; Shang, Feng-Qin; Li, Jin-Xin

    2016-01-01

    2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW) was bonded by fluorine rubber and then desensitized by paraffin wax (PW), stearic acid (SA), and a PW/SA composite system using an aqueous suspension method. The coating and desensitization effects of the composite systems on HNIW and the influence of the addition of SA on the mechanical properties of the coated HNIW samples were studied. In addition, the PW/SA composite solution was simulated using a molecular dynamics method, and the relationship between the desensitization effect on HNIW and the properties of the composite solution was investigated. The results showed that the PW/SA composite system, of which the desensitization effect on HNIW was between those of the two desensitizers, could effectively coat HNIW and that the composite solution had the most stable and well-distributed state when using benzene as solvent with the mass ratio of PW/SA equal to 7/3 or 3/7, thus resulting in the best desensitization effect on HNIW. Moreover, the addition of stearic acid was successful in enhancing the mechanical properties of the coated HNIW samples.

  5. Ectopic expression of Arabidopsis genes encoding salicylic acid- and jasmonic acid-related proteins confers partial resistance to soybean cyst nematode (Heterodera glycines) in transgenic soybean roots

    USDA-ARS?s Scientific Manuscript database

    Background. Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) an...

  6. Efficacy of topical azelaic acid gel in the treatment of mild-moderate acne vulgaris.

    PubMed

    Iraji, Fariba; Sadeghinia, Ali; Shahmoradi, Zabiholahi; Siadat, Amir Hossein; Jooya, Abolfazl

    2007-01-01

    Twenty percent azelaic acid gel is recommended as a topical treatment for acne due to its favorable profile. Our objective in this study was to evaluate the efficacy of 20% azelaic acid gel in the treatment of mild to moderate acne vulgaris. This was a double blind, randomized clinical trial. Sixty patients with mild to moderate acne vulgaris were selected randomly to receive either azelaic acid gel or the vehicle gel alone. Patients were followed up every 15 days for a period of 45 days. The number of lesions and the acne severity index (ASI) were recorded and compared using Student's t-test. Total lesion count was reduced by 60.6% and 19.9% by azelaic acid gel and the placebo respectively (P = 0.002). ASI was reduced by 65.2% and 21.3% by azelaic acid gel and the placebo respectively (P = 0.001), i.e, azelaic acid gel was 3.06 times more effective than the placebo in reducing ASI. Azelaic acid gel can be used as an effective treatment in mild to moderate acne vulgaris.

  7. MimoSA: a system for minimotif annotation

    PubMed Central

    2010-01-01

    Background Minimotifs are short peptide sequences within one protein, which are recognized by other proteins or molecules. While there are now several minimotif databases, they are incomplete. There are reports of many minimotifs in the primary literature, which have yet to be annotated, while entirely novel minimotifs continue to be published on a weekly basis. Our recently proposed function and sequence syntax for minimotifs enables us to build a general tool that will facilitate structured annotation and management of minimotif data from the biomedical literature. Results We have built the MimoSA application for minimotif annotation. The application supports management of the Minimotif Miner database, literature tracking, and annotation of new minimotifs. MimoSA enables the visualization, organization, selection and editing functions of minimotifs and their attributes in the MnM database. For the literature components, Mimosa provides paper status tracking and scoring of papers for annotation through a freely available machine learning approach, which is based on word correlation. The paper scoring algorithm is also available as a separate program, TextMine. Form-driven annotation of minimotif attributes enables entry of new minimotifs into the MnM database. Several supporting features increase the efficiency of annotation. The layered architecture of MimoSA allows for extensibility by separating the functions of paper scoring, minimotif visualization, and database management. MimoSA is readily adaptable to other annotation efforts that manually curate literature into a MySQL database. Conclusions MimoSA is an extensible application that facilitates minimotif annotation and integrates with the Minimotif Miner database. We have built MimoSA as an application that integrates dynamic abstract scoring with a high performance relational model of minimotif syntax. MimoSA's TextMine, an efficient paper-scoring algorithm, can be used to dynamically rank papers with

  8. Surface roughness of flowable resin composites eroded by acidic and alcoholic drinks

    PubMed Central

    Poggio, Claudio; Dagna, Alberto; Chiesa, Marco; Colombo, Marco; Scribante, Andrea

    2012-01-01

    Aim: The aim of this study is to evaluate the surface roughness of four flowable resin composites following exposure to acidic and alcoholic drinks. Materials and Methods: SureFil SDR flow, TetricEvoFlow, Esthet-X Flow and Amaris Flow HT samples were immersed in artificial saliva, Coca Cola and Chivas Regal Whisky. Each specimen was examined using a Leica DCM 3D microscope: Arithmetical mean height of the surface profiles was measured (Sa). Results: Kruskal-Wallis test showed significant differences among various groups (P<0,001). Mann Whitney test was applied and control groups showed significantly lower Sa values than other groups (P=0,008). Coca Cola groups showed highest Sa values (P<0,021). No significant differences (P=0,14) in surface texture were found among the specimens of the different materials. No significant differences were found among TetricEvoFlow, Esthet-X Flow and Amaris Flow under control conditions nor after Coca Cola application. Under control condition and after Coca Cola application SureFil SDR flow showed significantly higher Sa values. Moreover, after whisky application Amaris Flow showed significantly lower Sa values then the other three groups that showed no significant differences among them. Conclusions: Acidic and alcoholic drinks eroded the surface roughness of all evaluated flowable resin composites. PMID:22557811

  9. ImprimatinC1, a novel plant immune-priming compound, functions as a partial agonist of salicylic acid.

    PubMed

    Noutoshi, Yoshiteru; Jikumaru, Yusuke; Kamiya, Yuji; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that protect crops from pathogens. They confer durable resistance to a broad range of diseases by activating intrinsic immune mechanisms in plants. To obtain leads regarding useful compounds, we have screened a chemical library using an established method that allows selective identification of immune-priming compounds. Here, we report the characterisation of one of the isolated chemicals, imprimatinC1, and its structural derivative imprimatinC2. ImprimatinC1 functions as a weak analogue of salicylic acid (SA) and activates the expression of defence-related genes. However, it lacks antagonistic activity toward jasmonic acid. Structure-activity relationship analysis suggests that imprimatinC1 and C2 can be metabolised to 4-chlorobenzoic acid and 3,4-chlorobenzoic acid, respectively, to function in Arabidopsis. We also found that imprimatinC1 and C2 and their potential functional metabolites acted as partial agonists of SA. Thus, imprimatinC compounds could be useful tools for dissecting SA-dependent signal transduction pathways.

  10. ImprimatinC1, a novel plant immune-priming compound, functions as a partial agonist of salicylic acid

    PubMed Central

    Noutoshi, Yoshiteru; Jikumaru, Yusuke; Kamiya, Yuji; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that protect crops from pathogens. They confer durable resistance to a broad range of diseases by activating intrinsic immune mechanisms in plants. To obtain leads regarding useful compounds, we have screened a chemical library using an established method that allows selective identification of immune-priming compounds. Here, we report the characterisation of one of the isolated chemicals, imprimatinC1, and its structural derivative imprimatinC2. ImprimatinC1 functions as a weak analogue of salicylic acid (SA) and activates the expression of defence-related genes. However, it lacks antagonistic activity toward jasmonic acid. Structure-activity relationship analysis suggests that imprimatinC1 and C2 can be metabolised to 4-chlorobenzoic acid and 3,4-chlorobenzoic acid, respectively, to function in Arabidopsis. We also found that imprimatinC1 and C2 and their potential functional metabolites acted as partial agonists of SA. Thus, imprimatinC compounds could be useful tools for dissecting SA-dependent signal transduction pathways. PMID:23050089

  11. Ectopic Expression of JcWRKY Transcription Factor Confers Salinity Tolerance via Salicylic Acid Signaling.

    PubMed

    Agarwal, Parinita; Dabi, Mitali; Sapara, Komal K; Joshi, Priyanka S; Agarwal, Pradeep K

    2016-01-01

    Plants, being sessile, have developed intricate signaling network to specifically respond to the diverse environmental stress. The plant-specific WRKY TFs form one of the largest TF family and are involved in diverse plant processes, involving growth, development and stress signaling through auto and cross regulation with different genes and TFs. Here, we report the functional characterization of a salicylic acid -inducible JcWRKY TF. The JcWRKY overexpression confers salinity tolerance in transgenic tobacco, as was evident by increased chlorophyll content and seed germination potential. The transgenic plants showed increased soluble sugar, membrane stability, reduced electrolyte leakage and generation of reactive oxygen species (H 2 O 2 and [Formula: see text]) as compared to the wild type. Furthermore, the low SA treatment along with salinity improved the tolerance potential of the transgenics by maintaining ROS homeostasis and high K + /Na + ratio. The transcript expression of SA biosynthetic gene ICS1 and antioxidative enzymes ( CAT and SOD ) showed upregulation during stress. Thus, the present study reflects that JcWRKY is working in co-ordination with SA signaling to orchestrate the different biochemical and molecular pathways to maneuvre salt stress tolerance of the transgenic plants.

  12. Effect of postharvest methyl jasmonate treatment on fatty acid composition and phenolic acid content in olive fruits during storage.

    PubMed

    Flores, Gema; Blanch, Gracia Patricia; Del Castillo, María Luisa Ruiz

    2017-07-01

    The nutritional effects of both table olives and olive oil are attributed not only to their fatty acids but also to antioxidant phenolics such as phenolic acids. Delays in oil processing usually result in undesirable oxidation and hydrolysis processes leading to formation of free fatty acids. These alterations create the need to process oil immediately after olive harvest. However, phenolic content decreases drastically during olive storage resulting in lower quality oil. In the present study we propose postharvest methyl jasmonate treatment as a mean to avoid changes in fatty acid composition and losses of phenolic acids during olive storage. Contents of fatty acids and phenolic acids were estimated in methyl jasmonate treated olives throughout 30-day storage, as compared with those of untreated olives. Significant decreases of saturated fatty acids were observed in treated samples whereas increases of oleic, linoleic and linolenic acids were respectively measured (i.e. from 50.8% to 64.5%, from 7.2% to 9.1% and from 1.5% to 9.3%). Also, phenolic acid contents increased significantly in treated olives. Particularly, increases of gallic acid from 1.35 to 6.29 mg kg -1 , chlorogenic acid from 9.18 to 16.21 mg kg -1 , vanillic acid from 9.61 to 16.99 mg kg -1 , caffeic acid from 5.12 to 12.55 mg kg -1 , p-coumaric acid from 0.96 to 5.31 mg kg -1 and ferulic acid from 4.05 to 10.43 mg kg -1 were obtained. Methyl jasmonate treatment is proposed as an alternative postharvest technique to traditional methods to guarantee olive oil quality when oil processing is delayed and olive fruits have to necessarily to be stored. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Beyond SaGMRotI: Conversion to SaArb, SaSN, and SaMaxRot

    USGS Publications Warehouse

    Watson-Lamprey, J. A.; Boore, D.M.

    2007-01-01

    In the seismic design of structures, estimates of design forces are usually provided to the engineer in the form of elastic response spectra. Predictive equations for elastic response spectra are derived from empirical recordings of ground motion. The geometric mean of the two orthogonal horizontal components of motion is often used as the response value in these predictive equations, although it is not necessarily the most relevant estimate of forces within the structure. For some applications it is desirable to estimate the response value on a randomly chosen single component of ground motion, and in other applications the maximum response in a single direction is required. We give adjustment factors that allow converting the predictions of geometric-mean ground-motion predictions into either of these other two measures of seismic ground-motion intensity. In addition, we investigate the relation of the strike-normal component of ground motion to the maximum response values. We show that the strike-normal component of ground motion seldom corresponds to the maximum horizontal-component response value (in particular, at distances greater than about 3 km from faults), and that focusing on this case in exclusion of others can result in the underestimation of the maximum component. This research provides estimates of the maximum response value of a single component for all cases, not just near-fault strike-normal components. We provide modification factors that can be used to convert predictions of ground motions in terms of the geometric mean to the maximum spectral acceleration (SaMaxRot) and the random component of spectral acceleration (SaArb). Included are modification factors for both the mean and the aleatory standard deviation of the logarithm of the motions.

  14. Emerging Technology Summary. ACID EXTRACTION TREATMENT SYSTEM FOR TREATMENT OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    The Acid Extraction Treatment System (AETS) is intended to reduce the concentrations and/or teachability of heavy metals in contaminated soils so the soil can be returned to the site from which it originated. The objective of the project was to determine the effectiveness and com...

  15. Endophytic bacterium Sphingomonas SaMR12 promotes cadmium accumulation by increasing glutathione biosynthesis in Sedum alfredii Hance.

    PubMed

    Pan, Fengshan; Meng, Qian; Wang, Qiong; Luo, Sha; Chen, Bao; Khan, Kiran Yasmin; Yang, Xiaoe; Feng, Ying

    2016-07-01

    A hydroponic experiment was conducted to verify the effects of inoculation with endophytic bacteria Sphingomonas SaMR12 on root growth, cadmium (Cd) uptake, reactive oxygen species (ROS), antioxidases, glutathione (GSH) and the related gene expression of Sedum alfredii Hance under different levels of Cd such as 0, 10, 25, 100 and 400 μM. The results showed that inoculation of SaMR12 improved Cd accumulation and upregulated glutathione synthase (GS) expression, but slightly reduced malondialdehyde (MDA) concentration and alleviated Cd-induced damage in roots. However it didn't alter the activities of antioxidant enzymes. When Cd concentration exceeded 25 μM, SaMR12 increased the concentration of GSH and the expression level of GSH1. At high Cd treatment levels (100 and 400 μM), SaMR12 significantly reduced H2O2 concentration and enhanced expression level of 1-Cys peroxiredoxin PER1 and ATPS genes. These results indicate that although SaMR12 has no significant effects on antioxidases activities, it reduces H2O2 concentration by enhancing GSH concentration and relevant genes expression, and subsequently improves Cd tolerance and accumulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Combination of cathodic reduction with adsorption for accelerated removal of Cr(VI) through reticulated vitreous carbon electrodes modified with sulfuric acid-glycine co-doped polyaniline.

    PubMed

    Mo, Xi; Yang, Zhao-hui; Xu, Hai-yin; Zeng, Guang-ming; Huang, Jing; Yang, Xia; Song, Pei-pei; Wang, Li-ke

    2015-04-09

    Improving the reduction kinetics is crucial in the electroreduction process of Cr(VI). In this study, we developed a novel adsorption-electroreduction system for accelerated removal of Cr(VI) by employing reticulated vitreous carbon electrode modified with sulfuric acid-glycine co-doped polyaniline (RVC/PANI-SA-GLY). Firstly, response surface methodology confirmed the optimum polymerization condition of co-doped polyaniline for modifying electrodes (Aniline, sulfuric acid and glycine, respectively, of 0.2 mol/L, 0.85 mol/L, 0.93 mol/L) when untraditional dopant glycine was added. Subsequently, RVC/PANI-SA-GLY showed higher Cr(VI) removal percentages in electroreduction experiments over RVC electrode modified with sulfuric acid doped polyaniline (RVC/PANI-SA) and bare RVC electrode. In contrast to RVC/PANI-SA, the improvement by RVC/PANI-SA-GLY was more significant and especially obvious at more negative potential, lower initial Cr(VI) concentration, relatively less acidic solution and higher current densities, best achieving 7.84% higher removal efficiency with entire Cr(VI) eliminated after 900 s. Current efficiencies were likewise enhanced by RVC/PANI-SA-GLY under quite negative potentials. Fourier transform infrared (FTIR) and energy dispersive spectrometer (EDS) analysis revealed a possible adsorption-reduction mechanism of RVC/PANI-SA-GLY, which greatly contributed to the faster reduction kinetics and was probably relative to the absorption between protonated amine groups of glycine and HCrO4(-). Eventually, the stability of RVC/PANI-SA-GLY was proven relatively satisfactory. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Azelaic acid in the treatment of papulopustular rosacea: a systematic review of randomized controlled trials.

    PubMed

    Liu, Rosemarie H; Smith, Molly K; Basta, Sameh A; Farmer, Evan R

    2006-08-01

    To evaluate the clinical efficacy of topical 20% azelaic acid cream and 15% azelaic acid gel compared with their respective vehicles and metronidazole gel in the treatment of papulopustular rosacea. Electronic searches of MEDLINE, EMBASE, BIOSIS, and SciSearch through July or August 2004 and the Cochrane Central Register of Controlled Trials through 2004 (issue 3). We performed hand searches of reference lists, conference proceedings, and clinical trial databases. Experts in rosacea and azelaic acid were contacted. Randomized controlled trials involving topical azelaic acid (cream or gel) for the treatment of rosacea compared with placebo or other topical treatments. Two authors independently examined the studies identified by the searches. Ten studies were identified, of which 5 were included (873 patients). Two authors independently extracted data from the included studies, then jointly assessed methodological quality using a quality assessment scale. Because standard deviation data were not available for 4 of the 5 studies, a meta-analysis could not be conducted. Four of the 5 studies demonstrated significant decreases in mean inflammatory lesion count and erythema severity after treatment with azelaic acid compared with vehicle. None of the studies showed any significant decrease in telangiectasia severity. Azelaic acid in 20% cream and 15% gel formulations appears to be effective in the treatment of papulopustular rosacea, particularly in regard to decreases in mean inflammatory lesion count and erythema severity. Compared with metronidazole, azelaic acid appears to be an equally effective, if not better, treatment option.

  18. Effect of ursodeoxycholic acid treatment on ileal absorption of bile acids in man as determined by the SeHCAT test.

    PubMed

    Eusufzai, S; Ericsson, S; Cederlund, T; Einarsson, K; Angelin, B

    1991-09-01

    The effects of urodeoxycholic acid on ileal absorption of bile acids and on serum bile acid and lipoprotein concentrations were studied. Eight healthy subjects were investigated. The gamma emitting bile acid analogue, SeHCAT, was given orally and its fractional catabolic rate and seven day retention were assessed by repeated external counting over the upper abdomen during the next seven days. Ursodeoxycholic acid was then given orally at a dose of 15 mg/kg/day for three weeks and the study was repeated during treatment. The fractional catabolic rate increased by 64% (mean (SD), 0.333 (0.159) v 0.203 (0.061)/day; p less than 0.05) and seven day retention decreased by 44% (15(10) v 27(10)%, p less than 0.001), indicating bile acid malabsorption. Total serum cholesterol fell from 5.79 (1.22) to 5.50 (1.18) mmol/l (p = 0.05), while serum ursodeoxycholic acid increased 22 fold (7.87 (2.67) v 0.34 (0.24) mumol/l, p less than 0.001). Five of the subjects continued taking 30 mg/kg/day of ursodeoxycholic acid for one week and showed an increase in fractional catabolic rate of 81% (0.300 (0.091) v 0.166 (0.037)/day; p less than 0.05) and a fall in seven day retention of 50% (16 (12) v 32 (8)%, p less than 0.01). There were significant reductions in total cholesterol (5.36 (1.71) v 6.08 (1.47) mmol/l; p less than 0.05) and low density lipoprotein cholesterol (3.70 (1.33) v 4.58 (1.16) mmol/l; p less than 0.05). The results support the concept tht ursodeoxycholic acid treatment interferes with the absorption of endogenous bile acids, and emphasise the beneficial effects of this treatment of lipoprotein concentrations in man.

  19. Effect of ursodeoxycholic acid treatment on ileal absorption of bile acids in man as determined by the SeHCAT test.

    PubMed Central

    Eusufzai, S; Ericsson, S; Cederlund, T; Einarsson, K; Angelin, B

    1991-01-01

    The effects of urodeoxycholic acid on ileal absorption of bile acids and on serum bile acid and lipoprotein concentrations were studied. Eight healthy subjects were investigated. The gamma emitting bile acid analogue, SeHCAT, was given orally and its fractional catabolic rate and seven day retention were assessed by repeated external counting over the upper abdomen during the next seven days. Ursodeoxycholic acid was then given orally at a dose of 15 mg/kg/day for three weeks and the study was repeated during treatment. The fractional catabolic rate increased by 64% (mean (SD), 0.333 (0.159) v 0.203 (0.061)/day; p less than 0.05) and seven day retention decreased by 44% (15(10) v 27(10)%, p less than 0.001), indicating bile acid malabsorption. Total serum cholesterol fell from 5.79 (1.22) to 5.50 (1.18) mmol/l (p = 0.05), while serum ursodeoxycholic acid increased 22 fold (7.87 (2.67) v 0.34 (0.24) mumol/l, p less than 0.001). Five of the subjects continued taking 30 mg/kg/day of ursodeoxycholic acid for one week and showed an increase in fractional catabolic rate of 81% (0.300 (0.091) v 0.166 (0.037)/day; p less than 0.05) and a fall in seven day retention of 50% (16 (12) v 32 (8)%, p less than 0.01). There were significant reductions in total cholesterol (5.36 (1.71) v 6.08 (1.47) mmol/l; p less than 0.05) and low density lipoprotein cholesterol (3.70 (1.33) v 4.58 (1.16) mmol/l; p less than 0.05). The results support the concept tht ursodeoxycholic acid treatment interferes with the absorption of endogenous bile acids, and emphasise the beneficial effects of this treatment of lipoprotein concentrations in man. PMID:1916489

  20. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel

    PubMed Central

    Jayakannan, Maheswari; Bose, Jayakumar; Babourina, Olga; Rengel, Zed; Shabala, Sergey

    2013-01-01

    Despite numerous reports implicating salicylic acid (SA) in plant salinity responses, the specific ionic mechanisms of SA-mediated adaptation to salt stress remain elusive. To address this issue, a non-invasive microelectrode ion flux estimation technique was used to study kinetics of NaCl-induced net ion fluxes in Arabidopsis thaliana in response to various SA concentrations and incubation times. NaCl-induced K+ efflux and H+ influx from the mature root zone were both significantly decreased in roots pretreated with 10–500 μM SA, with strongest effect being observed in the 10–50 μM SA range. Considering temporal dynamics (0–8-h SA pretreatment), the 1-h pretreatment was most effective in enhancing K+ retention in the cytosol. The pharmacological, membrane potential, and shoot K+ and Na+ accumulation data were all consistent with the model in which the SA pretreatment enhanced activity of H+-ATPase, decreased NaCl-induced membrane depolarization, and minimized NaCl-induced K+ leakage from the cell within the first hour of salt stress. In long-term treatments, SA increased shoot K+ and decreased shoot Na+ accumulation. The short-term NaCl-induced K+ efflux was smallest in the gork1-1 mutant, followed by the rbohD mutant, and was highest in the wild type. Most significantly, the SA pretreatment decreased the NaCl-induced K+ efflux from rbohD and the wild type to the level of gork1-1, whereas no effect was observed in gork1-1. These data provide the first direct evidence that the SA pretreatment ameliorates salinity stress by counteracting NaCl-induced membrane depolarization and by decreasing K+ efflux via GORK channels. PMID:23580750

  1. Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit.

    PubMed

    Sheng, Ling; Shen, Dandan; Luo, Yi; Sun, Xiaohua; Wang, Jinqiu; Luo, Tao; Zeng, Yunliu; Xu, Juan; Deng, Xiuxin; Cheng, Yunjiang

    2017-02-01

    The loss of organic acids during postharvest storage is one of the major factors that reduces the fruit quality and economic value of citrus. Citrate is the most important organic acid in citrus fruits. Molecular evidence has proved that γ-aminobutyric acid (GABA) shunt plays a key role in citrate metabolism. Here, we investigated the effects of exogenous GABA treatment on citrate metabolism and storage quality of postharvest citrus fruit. The content of citrate was significantly increased, which was primarily attributed to the inhibition of the expression of glutamate decarboxylase (GAD). Amino acids, including glutamate, alanine, serine, aspartate and proline, were also increased. Moreover, GABA treatment decreased the fruit rot rate. The activities of antioxidant enzymes and the content of energy source ATP were affected by the treatment. Our results indicate that GABA treatment is a very effective approach for postharvest quality maintenance and improvement of storage performance in citrus production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. [A comparison of medical versus surgical treatment in Barrett's esophagus acid control].

    PubMed

    Fernández Fernández, Nereida; Domínguez Carbajo, Ana B; João Matias, Diana; Rodríguez-Martín, Laura; Aparicio Cabezudo, Marta; Monteserín Ron, Luz; Jiménez Palacios, Marcos; Vivas, Santiago

    2016-05-01

    Barrett's oesophagus (BE) is an oesophageal injury caused by gastroesophageal acid reflux. One of the main aims of treatment in BE is to achieve adequate acid reflux control. To assess acid reflux control in patients with BE based on the therapy employed: medical or surgical. A retrospective study was performed in patients with an endoscopic and histological diagnosis of BE. Medical therapy with proton pump inhibitors (PPI) was compared with surgical treatment (Nissen fundoplication). Epidemiological data and the results of pH monitoring (pH time <4, prolonged reflux >5min, DeMeester score) were evaluated in each group. Treatment failure was defined as a pH lower than 4 for more than 5% of the recording time. A total of 128 patients with BE were included (75 PPI-treated and 53 surgically-treated patients). Patients included in the two comparison groups were homogeneous in terms of demographic characteristics. DeMeester scores, fraction of time pH<4 and the number of prolonged refluxes were significantly lower in patients with fundoplication versus those receiving PPIs (P<.001). Treatment failure occurred in 29% of patients and was significantly higher in those receiving medical therapy (40% vs 13%; P<.001). Treatment results were significantly worse with medical treatment than with anti-reflux surgery and should be optimized to improve acid reflux control in BE. Additional evidence is needed to fully elucidate the utility of PPI in this disease. Copyright © 2015 Elsevier España, S.L.U. and AEEH y AEG. All rights reserved.

  3. Effects of postharvest salicylic acid dipping on Alternaria rot and disease resistance of jujube fruit during storage.

    PubMed

    Cao, Jiankang; Yan, Jiaqi; Zhao, Yumei; Jiang, Weibo

    2013-10-01

    Considerable postharvest losses caused by Alternaria alternata often occur in Chinese jujube fruit, and synthetic fungicides have been widely used to protect the fruit from Alternaria rot. However, the potential harmfulness of fungicide residues to human health and the environment cannot be ignored. This study was conducted to develop an alternative approach for controlling postharvest disease by inducing fruit resistance with salicylic acid (SA) dipping. Disease incidence and lesion area in the jujube fruit inoculated with A. alternata were significantly inhibited by 2 and 2.5 mmol L(-1) SA dipping. Naturally infected decay rate and index in jujubes were also significantly reduced by SA dipping during long-term storage at 0°C. SA enhanced activities of the main defense-related enzymes including phenylalanine ammonia-lyase, peroxidase, chitinase and β-1,3-glucanase in the fruit during storage. SA strongly decreased catalase activity but increased superoxide dismutase activity and ascorbic acid content in jujubes. The beneficial effects of SA on fruit protection may be due to its ability to activate several highly coordinated defence-related systems in jujubes, instead of its fungicidal activity. The findings indicated that application of SA would offer an alternative approach that helps to control postharvest disease and maintain storage quality in fruits. © 2013 Society of Chemical Industry.

  4. AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling.

    PubMed

    Shim, Jae Sung; Jung, Choonkyun; Lee, Sangjoon; Min, Kyunghun; Lee, Yin-Won; Choi, Yeonhee; Lee, Jong Seob; Song, Jong Tae; Kim, Ju-Kon; Choi, Yang Do

    2013-02-01

    The role of AtMYB44, an R2R3 MYB transcription factor, in signaling mediated by jasmonic acid (JA) and salicylic acid (SA) is examined. AtMYB44 is induced by JA through CORONATINE INSENSITIVE 1 (COI1). AtMYB44 over-expression down-regulated defense responses against the necrotrophic pathogen Alternaria brassicicola, but up-regulated WRKY70 and PR genes, leading to enhanced resistance to the biotrophic pathogen Pseudomonas syringae pv. tomato DC3000. The knockout mutant atmyb44 shows opposite effects. Induction of WRKY70 by SA is reduced in atmyb44 and npr1-1 mutants, and is totally abolished in atmyb44 npr1-1 double mutants, showing that WRKY70 is regulated independently through both NPR1 and AtMYB44. AtMYB44 over-expression does not change SA content, but AtMYB44 over-expression phenotypes, such as retarded growth, up-regulated PR1 and down-regulated PDF1.2 are reversed by SA depletion. The wrky70 mutation suppressed AtMYB44 over-expression phenotypes, including up-regulation of PR1 expression and down-regulation of PDF1.2 expression. β-estradiol-induced expression of AtMYB44 led to WRKY70 activation and thus PR1 activation. AtMYB44 binds to the WRKY70 promoter region, indicating that AtMYB44 acts as a transcriptional activator of WRKY70 by directly binding to a conserved sequence element in the WRKY70 promoter. These results demonstrate that AtMYB44 modulates antagonistic interaction by activating SA-mediated defenses and repressing JA-mediated defenses through direct control of WRKY70. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  5. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate

    USDA-ARS?s Scientific Manuscript database

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-met...

  6. Possible Evidence of Amide Bond Formation Between Sinapinic Acid and Lysine-Containing Bacterial Proteins by Matrix-Assisted Laser Desorption/Ionization (MALDI) at 355 nm

    NASA Astrophysics Data System (ADS)

    Fagerquist, Clifton K.; Sultan, Omar; Carter, Michelle Q.

    2012-12-01

    We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, Hde, and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight-time-of-flight tandem mass spectrometry (TOF-TOF-MS/MS) and post-source decay (PSD). We also reported the absence of adduct formation when using α-cyano-4-hydroxycinnamic acid (CHCA) matrix. Further mass spectrometric analysis of disulfide-intact and disulfide-reduced over-expressed HdeA and HdeB proteins from lysates of gene-inserted E. coli plasmids suggests covalent attachment of SA occurs not at cysteine residues but at lysine residues. In this revised hypothesis, the attachment of SA is preceded by formation of a solid phase ammonium carboxylate salt between SA and accessible lysine residues of the protein during sample preparation under acidic conditions. Laser irradiation at 355 nm of the dried sample spot results in equilibrium retrogradation followed by nucleophilic attack by the amine group of lysine at the carbonyl group of SA and subsequent amide bond formation and loss of water. The absence of CHCA adducts suggests that the electron-withdrawing effect of the α-cyano group of this matrix may inhibit salt formation and/or amide bond formation. This revised hypothesis is supported by dissociative loss of SA (-224 Da) and the amide-bound SA (-206 Da) from SA-adducted HdeA and HdeB ions by MS/MS (PSD). It is proposed that cleavage of the amide-bound SA from the lysine side-chain occurs via rearrangement involving a pentacyclic transition state followed by hydrogen abstraction/migration and loss of 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-ynal (-206 Da).

  7. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection.

    PubMed

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-02-16

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland, and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physicochemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m 3 was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal of heterotrophic bacteria by applying 6 and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 and 2.10 kWh/m 3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physicochemical treatment of raw wastewater followed by UV irradiation and/or peracetic acid disinfection showed the potential for treatment of arctic wastewater.

  8. High-temperature elastic-plastic and creep properties for SA533 Grade B Class I and SA508 materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, G.B.; Ayres, D.J.

    1982-12-01

    High temperature elastic-plastic and creep properties are presented for SA533 Grade B Class I and SA508 Class II materials. These properties are derived from tests conducted at Combustion Engineering Material and Metallurgical Laboratories and cover the temperature range of 70/sup 0/F to 1200/sup 0/F.

  9. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation.

    PubMed

    Król, P; Igielski, R; Pollmann, S; Kępczyńska, E

    2015-05-01

    Methyl jasmonate (MeJA) was tested by seed treatment for its ability to protect tomato seedlings against fusarium wilt caused by the soil-borne fungal pathogen Fusarium oxysporum f.sp. lycopersici. Isolated from Solanum lycopersicon L. seeds, cv. Beta fungus was identified as F. oxysporum f.sp. lycopersici Race 3 fungus by using phytopathological and molecular methods. MeJA applied at 0.01, 0.1 and 1 mM reduced spore germination and mycelial growth in vitro. Soaking of tomato seeds in MeJA solution at 0.1 mM for 1 h significantly enhanced the resistance level against the tested fungus in tomato seedlings 4 weeks after inoculation. The extracts from leaves of 15-day-old seedlings obtained from previously MeJA soaked seeds had the ability to inhibit in vitro spore germination of tested fungus. In these seedlings a significant increase in the levels phenolic compounds such as salicylic acid (SA), kaempferol and quercetin was observed. Up-regulation of phenylalanine ammonia-lyase (PAL5) and benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) genes and down-regulation of the isochorysmate synthase (ICS) gene in response to exogenous MeJA application indicate that the phenylalanine ammonia-lyase (PAL), not the isochorismate (IC) pathway, is the primary route for SA production in tomato. Moreover, the increased accumulation of the flavonols quercetin and kaempferol appears closely related to the increase of PAL5, chalcone synthase (CHS) and flavonol synthase/flavanone 3-hydroxylase-like (FLS) genes. Elevated levels of salicylic acid in seedlings raised from MeJA-soaked seeds were simultaneously accompanied by a decrease of jasmonic acid, the precursor of MeJA, and an increase of 12-oxo-phytodienoic acid (OPDA), the precursor of jasmonic acid. The present results indicate that the priming of tomato seeds with 0.1mM MeJA before sowing enables the seedlings grown from these seeds to reduce the attack of the soil-borne fungal pathogen F. oxysporum f.sp. lycopersici

  10. Aspirin’s Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses

    PubMed Central

    Choi, Hyong Woo; Tian, Miaoying; Song, Fei; Venereau, Emilie; Preti, Alessandro; Park, Sang-Wook; Hamilton, Keith; Swapna, G V T; Manohar, Murli; Moreau, Magali; Agresti, Alessandra; Gorzanelli, Andrea; De Marchis, Francesco; Wang, Huang; Antonyak, Marc; Micikas, Robert J; Gentile, Daniel R; Cerione, Richard A; Schroeder, Frank C; Montelione, Gaetano T; Bianchi, Marco E; Klessig, Daniel F

    2015-01-01

    Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin’s bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world’s longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage. PMID:26101955

  11. Stability of antimicrobial activity of peracetic acid solutions used in the final disinfection process.

    PubMed

    Costa, Solange Alves da Silva; Paula, Olívia Ferreira Pereira de; Silva, Célia Regina Gonçalves E; Leão, Mariella Vieira Pereira; Santos, Silvana Soléo Ferreira dos

    2015-01-01

    The instruments and materials used in health establishments are frequently exposed to microorganism contamination, and chemical products are used before sterilization to reduce occupational infection. We evaluated the antimicrobial effectiveness, physical stability, and corrosiveness of two commercial formulations of peracetic acid on experimentally contaminated specimens. Stainless steel specimens were contaminated with Staphylococcus aureus, Escherichia coli, Candida albicans, blood, and saliva and then immersed in a ready peracetic acid solution: 2% Sekusept Aktiv (SA) or 0.25% Proxitane Alpha (PA), for different times. Then, washes of these instruments were plated in culture medium and colony-forming units counted. This procedure was repeated six times per day over 24 non-consecutive days. The corrosion capacity was assessed with the mass loss test, and the concentration of peracetic acid and pH of the solutions were measured with indicator tapes. Both SA and PA significantly eliminated microorganisms; however, the SA solution was stable for only 4 days, whereas PA remained stable throughout the experiment. The concentration of peracetic acid in the SA solutions decreased over time until the chemical was undetectable, although the pH remained at 5. The PA solution had a concentration of 500-400 mg/L and a pH of 2-3. Neither formulation induced corrosion and both reduced the number of microorganisms (p = 0.0001). However, the differences observed in the performance of each product highlight the necessity of establishing a protocol for optimizing the use of each one.

  12. Efficacy of combination of glycolic acid peeling with topical regimen in treatment of melasma.

    PubMed

    Chaudhary, Savita; Dayal, Surabhi

    2013-10-01

    Various treatment modalities are available for management of melasma, ranging from topical and oral to chemical peeling, but none is promising alone. Very few studies are available regarding efficacy of combination of topical treatment with chemical peeling. Combination of chemical peeling and topical regimen can be a good treatment modality in the management of this recalcitrant disorder. To assess the efficacy of combination of topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling in the treatment of melasma in Indian patients. Forty Indian patients of moderate to severe epidermal variety melasma were divided into two groups of 20 each. One Group i.e. peel group received topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling and other group i.e. control group received topical regimen (2% hydroquinone, 1% hydrocortisone, 0.05% tretinoin). There was an overall decrease in MASI from baseline in 24 weeks of therapy in both the groups (P value < 0.05). The group receiving the glycolic acid peel with topical regimen showed early and greater improvement than the group which was receiving topical regimen only. This study concluded that combining topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling significantly enhances the therapeutic efficacy of glycolic acid peeling. The combination of glycolic acid peeling with the topical regimen is a highly effective, safe and promising therapeutic option in treatment of melasma.

  13. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita.

    PubMed

    Martínez-Medina, Ainhoa; Fernandez, Ivan; Lok, Gerrit B; Pozo, María J; Pieterse, Corné M J; Van Wees, Saskia C M

    2017-02-01

    Beneficial root endophytes such as Trichoderma spp. can reduce infections by parasitic nematodes through triggering host defences. Little is currently known about the complex hormone signalling underlying the induction of resistance. In this study, we investigated whether Trichoderma modulates the hormone signalling network in the host to induce resistance to nematodes. We investigated the role and the timing of the jasmonic acid (JA)- and salicylic acid (SA)-regulated defensive pathways in Trichoderma-induced resistance to the root knot nematode Meloidogyne incognita. A split-root system of tomato (Solanum lycopersicum) was used to study local and systemic induced defences by analysing nematode performance, defence gene expression, responsiveness to exogenous hormone application, and dependence on SA and JA signalling of Trichoderma-induced resistance. Root colonization by Trichoderma impeded nematode performance both locally and systemically at multiple stages of the parasitism, that is, invasion, galling and reproduction. First, Trichoderma primed SA-regulated defences, which limited nematode root invasion. Then, Trichoderma enhanced JA-regulated defences, thereby antagonizing the deregulation of JA-dependent immunity by the nematodes, which compromised galling and fecundity. Our results show that Trichoderma primes SA- and JA-dependent defences in roots, and that the priming of responsiveness to these hormones upon nematode attack is plastic and adaptive to the parasitism stage. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. The use of hyaluronic and aminocaproic acid in the treatment of alveolar osteitis.

    PubMed

    Dubovina, Dejan; Mihailović, Branko; Bukumirić, Zoran; Vlahović, Zoran; Miladinović, Milan; Miković, Nikola; Lazić, Zoran

    2016-11-01

    Alveolar osteitis (AO), also known as “dry socket”, is relatively common post-extraction complication. It probably occurs due to excessive fibrinolytic activity in the coagulum and is characterized by intense pain sensations. The aim of this clinical study was to examine the role of hyaluronic acid and aminocaproic acid in the treatment of AO. The study included 60 patients with the clinical diagnosis of AO. All the patients were divided into two groups of 30 patients each according to the applied non-pharmacological measure: irrigation – irrigation of dry socket with sterile saline; curettage – careful curettage. Both of these groups were further divided into three subgroups regarding the applied treatment (hyaluronic acid; hyaluronic acid + aminocaproic acid; Alvogyl ®, an anesthetic and antiseptic paste), each with 10 patients, according to the following protocol: 0.2 mL of hyaluronic acid in the form of a 0.8% gel; 2 mL of aminocaproic acid and hyaluronic acid; Alvogyl®. During each visit, scheduled for every two days until complete absence of painful sensations, the patients had the therapeutic method repeated as at the first examination. At each control visit the number of present symptoms and signs of AO was recorded, as well as the level of pain (measured with a visual analogue scale). With the use of hyaluronic acid, with or without aminocaproic one, a statistically significantly faster reduction in pain sensations was achieved, along with the reduction in the number of symptoms and signs of AO compared to the use of Alvogyl®. Hyaluronic acid, applied alone or in combination with aminocaproic acid significantly reduces pain sensation, thus it can be successfully used in the treatment of AO.

  15. Implant decontamination with phosphoric acid during surgical peri-implantitis treatment: a RCT.

    PubMed

    Hentenaar, Diederik F M; De Waal, Yvonne C M; Strooker, Hans; Meijer, Henny J A; Van Winkelhoff, Arie-Jan; Raghoebar, Gerry M

    2017-12-01

    Peri-implantitis is known as an infectious disease that affects the peri-implant soft and hard tissue. Today, scientific literature provides very little evidence for an effective intervention protocol for treatment of peri-implantitis. The aim of the present randomized controlled trial is to evaluate the microbiological and clinical effectiveness of phosphoric acid as a decontaminating agent of the implant surface during surgical peri-implantitis treatment. Peri-implantitis lesions were treated with resective surgical treatment aimed at peri-implant granulation tissue removal, bone recontouring, and pocket elimination. Fifty-three implant surfaces in 28 patients were mechanically cleaned and treated with either 35% phosphoric etching gel (test group) or sterile saline (control group). Microbiological samples were obtained during surgery; clinical parameters were recorded at baseline and at 3 months after treatment. Data were analyzed using multi-variable linear regression analysis and multilevel statistics. Significant immediate reductions in total anaerobic bacterial counts on the implant surface were found in both groups. Immediate reduction was greater when phosphoric acid was used. The difference in log-transformed mean anaerobic counts between both procedures was not statistical significant (p = 0.108), but there were significantly less culture-positive implants after the decontamination procedure in the phosphoric acid group (p = 0.042). At 3 months post-surgery, 75% of the implants in the control group and 63.3% of the implants in the test group showed disease resolution. However, no significant differences in clinical and microbiological outcomes between both groups were found. The application of 35% phosphoric acid after mechanical debridement is superior to mechanical debridement combined with sterile saline rinsing for decontamination of the implant surface during surgical peri-implantitis treatment. However, phosphoric acid as implant surface

  16. Feasibility of the partial-single arc technique in RapidArc planning for prostate cancer treatment

    PubMed Central

    Rana, Suresh; Cheng, ChihYao

    2013-01-01

    The volumetric modulated arc therapy (VMAT) technique, in the form of RapidArc, is widely used to treat prostate cancer. The full-single arc (f-SA) technique in RapidArc planning for prostate cancer treatment provides efficient treatment, but it also delivers a higher radiation dose to the rectum. This study aimed to compare the dosimetric results from the new partial-single arc (p-SA) technique with those from the f-SA technique in RapidArc planning for prostate cancer treatment. In this study, 10 patients with low-risk prostate cancer were selected. For each patient, two sets of RapidArc plans (f-SA and p-SA) were created in the Eclipse treatment planning system. The f-SA plan was created using one full arc, and the p-SA plan was created using planning parameters identical to those of the f-SA plan but with anterior and posterior avoidance sectors. Various dosimetric parameters of the f-SA and p-SA plans were evaluated and compared for the same target coverage and identical plan optimization parameters. The f-SA and p-SA plans showed an average difference of ±1% for the doses to the planning target volume (PTV), and there were no clear differences in dose homogeneity or plan conformity. In comparison to the f-SA technique, the p-SA technique reduced the doses to the rectum by approximately 6.1% to 21.2%, to the bladder by approximately 10.3% to 29.5%, and to the penile bulb by approximately 2.2%. In contrast, the dose to the femoral heads, the integral dose, and the number of monitor units were higher in the p-SA plans by approximately 34.4%, 7.7%, and 9.2%, respectively. In conclusion, it is feasible to use the p-SA technique for RapidArc planning for prostate cancer treatment. For the same PTV coverage and identical plan optimization parameters, the p-SA technique is better in sparing the rectum and bladder without compromising plan conformity or target homogeneity when compared to the f-SA technique. PMID:23845140

  17. Cost-effectiveness analysis of once-yearly injection of zoledronic acid for the treatment of osteoporosis in Japan.

    PubMed

    Moriwaki, K; Mouri, M; Hagino, H

    2017-06-01

    Model-based economic evaluation was performed to assess the cost-effectiveness of zoledronic acid. Although zoledronic acid was dominated by alendronate, the incremental quality-adjusted life year (QALY) was quite small in extent. Considering the advantage of once-yearly injection of zoledronic acid in persistence, zoledronic acid might be a cost-effective treatment option compared to once-weekly oral alendronate. The purpose of this study was to estimate the cost-effectiveness of once-yearly injection of zoledronic acid for the treatment of osteoporosis in Japan. A patient-level state-transition model was developed to predict the outcome of patients with osteoporosis who have experienced a previous vertebral fracture. The efficacy of zoledronic acid was derived from a published network meta-analysis. Lifetime cost and QALYs were estimated for patients who had received zoledronic acid, alendronate, or basic treatment alone. The incremental cost-effectiveness ratio (ICER) of zoledronic acid was estimated. For patients 70 years of age, zoledronic acid was dominated by alendronate with incremental QALY of -0.004 to -0.000 and incremental cost of 430 USD to 493 USD. Deterministic sensitivity analysis indicated that the relative risk of hip fracture and drug cost strongly affected the cost-effectiveness of zoledronic acid compared to alendronate. Scenario analysis considering treatment persistence showed that the ICER of zoledronic acid compared to alendronate was estimated to be 47,435 USD, 27,018 USD, and 10,749 USD per QALY gained for patients with a T-score of -2.0, -2.5, or -3.0, respectively. Although zoledronic acid is dominated by alendronate, the incremental QALY is quite small in extent. Considering the advantage of annual zoledronic acid treatment in compliance and persistence, zoledronic acid may be a cost-effective treatment option compared to alendronate.

  18. High Dose and Delayed Treatment with Bile Acids Ineffective in RML Prion-Infected Mice.

    PubMed

    Norman, Grant; Campeau, Jody; Sim, Valerie L

    2018-05-21

    Prion diseases are a group of neurodegenerative diseases associated with the misfolding of the cellular prion protein (PrP C ) into the infectious form (PrP Sc ). There are currently no treatments for prion disease. Bile acids have the ability to protect hepatocytes from apoptosis and are neuroprotective in animal models of other protein folding neurodegenerative diseases including Huntington's, Parkinson's, and Alzheimer's disease. Importantly, bile acids are approved for clinical use in patients with cirrhosis, and have recently been shown to be safe and possibly effective in pilot trials of patients with amyotrophic lateral sclerosis (ALS). We previously reported that the bile acid, ursodeoxycholic acid (UDCA), given early in disease, prolonged incubation periods in male RML-infected mice. Here we expand on this result to include tauro-ursodeoxycholic acid (TUDCA) treatment trials and delayed UDCA treatment. We demonstrate that, despite a high dose of TUDCA given early in disease, there was no significant difference in incubation periods between treated and untreated cohorts, regardless of sex. In addition, delayed treatment with a high dose of UDCA resulted in a significant shortening of the average survival time for both male and female mice when compared to their sex-matched controls, with evidence of increased BiP, a marker of apoptosis, in treated female mice. Our findings suggest that treatment with high dose TUDCA provides no therapeutic benefit and that delayed treatment with high dose UDCA is ineffective and could potentially worsen outcomes. Copyright © 2018 American Society for Microbiology.

  19. Recent progress of the JT-60SA project

    NASA Astrophysics Data System (ADS)

    Shirai, H.; Barabaschi, P.; Kamada, Y.; the JT-60SA Team

    2017-10-01

    The JT-60SA project has been implemented for the purpose of an early realization of fusion energy. With a powerful and versatile NBI and ECRF system, a flexible plasma-shaping capability, and various kinds of in-vessel coils to suppress MHD instabilities, JT-60SA plays an essential role in addressing the key physics and engineering issues of ITER and DEMO. It aims to achieve the long sustainment of high integrated performance plasmas under the high β N condition required in DEMO. The fabrication and installation of components and systems of JT-60SA procured by the EU and Japan are steadily progressing. The installation of toroidal field (TF) coils around the vacuum vessel started in December 2016. The commissioning of the cryogenic system and power supply system has been implemented in the Naka site, and JT-60SA will start operation in 2019. The JT-60SA research plan covers a wide area of issues in ITER and DEMO relevant operation regimes, and has been regularly updated on the basis of intensive discussion among European and Japanese researchers.

  20. Activation mechanism of melB tyrosinase from Aspergillus oryzae by acidic treatment.

    PubMed

    Fujieda, Nobutaka; Murata, Michiaki; Yabuta, Shintaro; Ikeda, Takuya; Shimokawa, Chizu; Nakamura, Yukihiro; Hata, Yoji; Itoh, Shinobu

    2013-01-01

    The pro form of recombinant tyrosinase from Aspergillus oryzae (melB) shows no catalytic activity, but acid treatment (around pH 3.5) of protyrosinase activates it to induce tyrosinase activity. Circular dichroism spectra, gel filtration analysis, and colorimetric assay have indicated that acid treatment around pH 3.5 induced the disruption of the conformation of the C-terminal domain covering the enzyme active site. These structural changes induced by the acid treatment may open the entrance to the enzyme active site for substrate incorporation. To compare the mechanism of hydroxylation by the acid-treated tyrosinase with that by trypsin-treated tyrosinase, a detailed steady-state kinetic analysis of the phenolase activity was performed by monitoring the O(2)-consumption rate using a Clark-type oxygen electrode. The results clearly show that the phenolase activity (phenol hydroxylation) of the activated tyrosinase involves an electrophilic aromatic substitution mechanism as in the case of mushroom tyrosinase (Yamazaki and Itoh in J. Am. Chem. Soc. 125:13034-13035, 2003) and activated hemocyanin with urea (Morioka et al. in J. Am. Chem. Soc. 128:6788-6789, 2006).

  1. [Use of alpha-lipoic acid and omega-3 in postpartum pain treatment].

    PubMed

    Costantino, D; Guaraldi, C; Costantino, M; Bounous, V E

    2015-10-01

    Postpartum pain is a frequent condition that negatively affects women's quality of life, interferring with everyday life. Analgesic drugs and surgery are often contraindicated in pregnancy and during breast feeding. This review of the literature aims to evaluate the rational of the association of lipoic acid and omega-3 employ in the management of postpartum pain. Lipoic acid is a cofactor essential in mitochondrial metabolism with antioxidant and anti-inflammatory activity. Lipoic acid has been shown to be effective in neuropatic pain treatment in patients with sciatica, carpal tunnel syndrome and diabetic neuropathy. Omega-3 are known for their anti-inflammatory and neurotrophic activity. The peripheral and central activity of both substances allows to act on neuroinflammation mechanisms thus reducing cronicization of pain and also determining a potential improvement of women's emotional status. The preliminary data here presented confirm the positive effect of this association on the treatment of postpartum perineal pain. The supplementation of lipoic acid in association with omega-3 seems effective and safe for the treatment of chronic postpartum pain, allowing a pathogenetic approach to neuroinflammation, thus reducing the consumption of analgesic drugs, often contraindicated during breast-feeding.

  2. Decision-making authority and substance abuse treatment for adolescents: a survey of state laws.

    PubMed

    Lallemont, Tori; Mastroianni, Anna; Wickizer, Thomas M

    2009-04-01

    State laws concerning decision-making authority for voluntary inpatient substance abuse (SA) treatment of minors may be a potential barrier to appropriate treatment. We sought to identify and classify relevant laws related to the provision of voluntary inpatient SA treatment to adolescents 12 to 17 years (minors) as an exploratory assessment to improve understanding of how these laws might affect treatment decisions. In summer 2006, we conducted a survey of statutes, regulations, and legal cases in the 50 states and the District of Columbia regarding the authority of parents (or guardians) and minors to make treatment decisions for voluntary inpatient SA treatment. All 50 states have laws applicable to voluntary inpatient SA treatment for adolescents, and the laws vary significantly throughout the nation. If a minor and parent disagree about SA treatment, some states defer to the decision-making authority of the minor, whereas other states defer to the parent. Most significantly, the majority of states fail to specify whether the minor's or the parent's decision will control in the event of a conflict. The lack of clarity in state laws regarding decision-making authority for voluntary inpatient SA treatment of minors may create a potential barrier to treatment for adolescents, especially those with more serious SA problems. This lack of clarity could lead to confusion among parents, adolescents, healthcare professionals, and treatment facilities, and ultimately could result in a failure to treat adolescents in need of medical attention. Policymakers should ensure that state laws clearly specify procedures to enable treatment if a conflict arises between adolescents and parents, including procedures to ensure that the due process rights of adolescents are protected.

  3. Continuous and batch cultures of Escherichia coli KJ134 for succinic acid fermentation: metabolic flux distributions and production characteristics.

    PubMed

    van Heerden, Carel D; Nicol, Willie

    2013-09-17

    Succinic acid (SA) has become a prominent biobased platform chemical with global production quantities increasing annually. Numerous genetically modified E. coli strains have been developed with the main aim of increasing the SA yield of the organic carbon source. In this study, a promising SA-producing strain, E. coli KJ134 [Biotechnol. Bioeng. 101:881-893, 2008], from the Department of Microbiology and Cell Science of the University of Florida was evaluated under continuous and batch conditions using D-glucose and CO2 in a mineral salt medium. Production characteristics entailing growth and maintenance rates, growth termination points and metabolic flux distributions under growth and non-growth conditions were determined. The culture remained stable for weeks under continuous conditions. Under growth conditions the redox requirements of the reductive tricarboxylic acid (TCA) cycle was solely balanced by acetic acid (AcA) production via the pyruvate dehydrogenase route resulting in a molar ratio of SA:AcA of two. A maximum growth rate of 0.22 h(-1) was obtained, while complete growth inhibition occurred at a SA concentration of 18 g L(-1). Batch culture revealed that high-yield succinate production (via oxidative TCA or glyoxylate redox balancing) occurred under non-growth conditions where a SA:AcA molar ratio of up to five was attained, with a final SA yield of 0.94 g g(-1). Growth termination of the batch culture was in agreement with that of the continuous culture. The maximum maintenance production rate of SA under batch conditions was found to be 0.6 g g(-1) h(-1). This is twice the maintenance rate observed in the continuous runs. The study revealed that the metabolic flux of E. coli KJ134 differs significantly for growth and non-growth conditions, with non-growth conditions resulting in higher SA:AcA ratios and SA yields. Bioreaction characteristics entailing growth and maintenance rates, as well as growth termination markers will guide future fermentor

  4. Solution of Azelaic Acid (20%), Resorcinol (10%) and Phytic Acid (6%) Versus Glycolic Acid (50%) Peeling Agent in the Treatment of Female Patients with Facial Melasma.

    PubMed

    Faghihi, Gita; Taheri, Azam; Shahmoradi, Zabihollah; Nilforoushzadeh, Mohammad Ali

    2017-01-01

    Melasma, a common acquired disorder of hyperpigmentation, especially in women, is often resistant to therapy. This study was aimed to evaluate the efficacy and safety of azelaic acid, resorcinol and phytic acid solution in chemical peeling of melasma in comparison to 50% glycolic acid. This clinical trial was performed, on 42 female patients with bilateral melasma. Severity of melasma was assessed by melasma area and severity index (MASI). Combination of (20% azelaic acid + 10% resorcinol + 6% phytic acid) was used as a new peeling agent on the right side of the face and 50% glycolic acid on the left side every 2 weeks for 6 times. Follow-up was carried out for 3 months after the last session. Any decrease in MASI score and unwanted complications following peeling were evaluated and compared during the trial. Patients showed marked improvement as calculated with MASI score before and after treatment in both sides of the face. The efficacy of combination formula (azelaic acid, resorcinol and phytic acid) was similar to glycolic acid, but with fewer complications. There was no statistically difference in improvement between two groups ( P > 0.05). However, the patient's discomfort following procedures was significantly lower with azelaic acid, resorcinol and phytic compared with the glycolic acid peels ( P < 0.05) and there was the same duration in the beginning of the therapeutic response in both groups. Results showed that triple-combination was found to be an effective and safe peeling agent in the treatment of melasma and it was as effective as 50% glycolic acid peel.

  5. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage.

    PubMed

    Li, Chuanchang; Fu, Liangjie; Ouyang, Jing; Yang, Huaming

    2013-01-01

    A novel mineral-based composite phase change materials (PCMs) was prepared via vacuum impregnation method assisted with microwave-acid treatment of the graphite (G) and bentonite (B) mixture. Graphite and microwave-acid treated bentonite mixture (GBm) had more loading capacity and higher crystallinity of stearic acid (SA) in the SA/GBm composite. The SA/GBm composite showed an enhanced thermal storage capacity, latent heats for melting and freezing (84.64 and 84.14 J/g) was higher than those of SA/B sample (48.43 and 47.13 J/g, respectively). Addition of graphite was beneficial to the enhancement in thermal conductivity of the SA/GBm composite, which could reach 0.77 W/m K, 31% higher than SA/B and 196% than pure SA. Furthermore, atomic-level interfaces between SA and support surfaces were depicted, and the mechanism of enhanced thermal storage properties was in detail investigated.

  6. Substance Abuse-Specific Knowledge Transfer or Loss? Treatment Program Turnover versus Professional Turnover among Substance Abuse Clinicians

    PubMed Central

    Eby, Lillian T.; Curtis, Sara L.

    2014-01-01

    This longitudinal study investigated the extent to which substance abuse (SA) clinician turnover is associated with SA-specific knowledge loss due to change in professions (professional turnover) versus SA-specific knowledge transfer due to movement from one SA clinical setting to another (treatment program turnover). For this study, clinicians had to voluntarily leave their current treatment program. Eligible clinicians completed a quantitative survey while employed and a qualitative post-employment exit interview 1 year later. Compared to those that exited the SA profession (N = 99), clinicians who changed treatment programs (N = 120) had greater SA-specific formal knowledge and were more likely to be personally in recovery. No differences were found between the two groups in terms of SA-specific practical knowledge. PMID:25115318

  7. Novel fabrication of a robust superhydrophobic PU@ZnO@Fe3O4@SA sponge and its application in oil-water separations.

    PubMed

    Tran, Viet-Ha Thi; Lee, Byeong-Kyu

    2017-12-13

    We report a novel superhydrophobic material based on commercially available polyurethane (PU) sponge with high porosity, low density and good elasticity. The fabrication of a superhydrophobic sponge capable of efficiently separating oil from water was achieved by imitating or mimicking nature's designs. The original PU sponge was coated with zinc oxide (ZnO), stearic acid (SA) and iron oxide particles (Fe 3 O 4 ) via a facile and environmentally friendly method. After each treatment, the properties of the modified sponge were characterized, and the changes in wettability were examined. Water contact angle (WCA) measurements confirmed the excellent superhydrophobicity of the material withhigh static WCA of 161° andlow dynamic WCA (sliding WCA of 7° and shedding WCA of 8°). The fabricated sponge showed high efficiency in separation (over 99%) of different oils from water. Additionally, the fabricated PU@ZnO@Fe 3 O 4 @SA sponge could be magnetically guided to quickly absorb oil floating on the water surface. Moreover, the fabricated sponge showed excellent stability and reusability in terms of superhydrophobicity and oil absorption capacity. The durable, magnetic and superhydrophobic properties of the fabricated sponge render it applicable to the cleanup of marine oil spills and other oil-water separation issues, with eco-friendly recovery of the oil by simple squeezing process.

  8. DEVELOPMENT OF SRB TREATMENT SYSTEMS FOR ACID MINE DRAINAGE

    EPA Science Inventory

    Over the past decade, significant advances have been made in the development of sulfate- reducing bacteria (SRB) technology to treat acid mine drainage (AMD), Bench-scale testing, field demonstrations, and engineered applications of SRBs for the treatment of AMD will be presented...

  9. Ionizing radiation induced degradation of salicylic acid in aqueous solution

    NASA Astrophysics Data System (ADS)

    Albarrán, Guadalupe; Mendoza, Edith

    2018-06-01

    The radiation-induced degradation of salicylic acid (SA-) in aqueous solutions (1.0 and 0.1 mmol dm-3) saturated with N2O or air or without oxygen were studied. Irradiation was carried out using a cobalt-60 source. With a 1 mmol dm-3 solution saturated with N2O a seemingly total degradation occurred at about 18 kGy, although small quantities of 2,3-dihydroxybenzoic acid, catechol and 2,5-dihydroxybenzoic acid were present at that dose at concentrations of 67, 22 and 6 μmol dm-3 respectively. Under air and when free oxygen, the three radiolytic products were present at 18.54 kGy while SA- was destroyed only to 90% and 62%, respectively. In the case of 0.1 mmol dm-3 SA- solutions, the acid was degraded at 3.5 kGy if the solution contained N2O, at 5.8 kGy in air and at 7 kGy without oxygen. The concentration of the radiolytic products increased with increasing dose and after a maximum they decreased. The oxidation was followed by measuring the chemical oxygen demand; the slopes were 0.48 and 0.11, 0.21 and 0.07, 0.15 and 0.03 mmol dm-3 kGy-1 for 1.0 and 0.10 mmol dm-3 solutions saturated with N2O or air or without oxygen, respectively.

  10. Mobile Clinical Decision Support System for Acid-base Balance Diagnosis and Treatment Recommendation.

    PubMed

    Mandzuka, Mensur; Begic, Edin; Boskovic, Dusanka; Begic, Zijo; Masic, Izet

    2017-06-01

    This paper presents mobile application implementing a decision support system for acid-base disorder diagnosis and treatment recommendation. The application was developed using the official integrated development environment for the Android platform (to maximize availability and minimize investments in specialized hardware) called Android Studio. The application identifies disorder, based on the blood gas analysis, evaluates whether the disorder has been compensated, and based on additional input related to electrolyte imbalance, provides recommendations for treatment. The application is a tool in the hands of the user, which provides assistance during acid-base disorders treatment. The application will assist the physician in clinical practice and is focused on the treatment in intensive care.

  11. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms.

    PubMed

    Shirasu, K; Nakajima, H; Rajasekhar, V K; Dixon, R A; Lamb, C

    1997-02-01

    The phenylpropanoid-derived natural product salicylic acid (SA) plays a key role in disease resistance. However, SA administered in the absence of a pathogen is a paradoxically weak inductive signal, often requiring concentrations of 0.5 to 5 mM to induce acquired resistance or related defense mechanisms or to precondition signal systems. In contrast, endogenous SA accumulates to concentrations of < 70 microM at the site of attempted infection. Here, we show that although 10 to 100 microM SA had negligible effects when administered to soybean cell suspensions in the absence of a pathogen, physiological concentrations of SA markedly enhanced the induction of defense gene transcripts, H2O2 accumulation, and hypersensitive cell death by an avirulent strain of Pseudomonas syringae pv glycinea, with optimal effects being at approximately 50 microM. SA also synergistically enhanced H2O2 accumulation in response to the protein phosphatase type 2A inhibitor cantharidin in the absence of a pathogen. The synergistic effect of SA was potent, rapid, and insensitive to the protein synthesis inhibitor cycloheximide, and we conclude that SA stimulates an agonist-dependent gain control operating at an early step in the signal pathway for induction of the hypersensitive response. This fine control mechanism differs from previously described time-dependent, inductive coarse control mechanisms for SA action in the absence of a pathogen. Induction of H2O2 accumulation and hypersensitive cell death by avirulent P. s. glycinea was blocked by the phenylpropanoid synthesis inhibitor alpha-aminooxy-beta-phenylpropionic acid, and these responses could be rescued by exogenous SA. Because the agonist-dependent gain control operates at physiological levels of SA, we propose that rapid fine control signal amplification makes an important contribution to SA function in the induction of disease resistance mechanisms.

  12. Towards energy positive wastewater treatment by sludge treatment using free nitrous acid.

    PubMed

    Wang, Qilin; Hao, Xiaodi; Yuan, Zhiguo

    2016-02-01

    Free nitrous acid (FNA i.e. HNO2) was revealed to be effective in enhancing biodegradability of secondary sludge. Also, nitrite-oxidizing bacteria were found to be more susceptible to FNA than ammonium-oxidizing bacteria. Based on these findings, a novel FNA-based sludge treatment technology is proposed to enhance energy recovery from wastewater/sludge. Energy analysis indicated that the FNA-based technology would make wastewater treatment become an energy generating process (yielding energy at 4 kWh/PE/y; kWh/PE/y: kilowatt hours per population equivalent per year), rather than being a large energy consumer that it is today (consuming energy at 24 kWh/PE/y). Importantly, FNA required for the sludge treatment could be produced as a by-product of wastewater treatment. This proposed FNA-based technology is economically and environmentally attractive, and can be easily implemented in any wastewater treatment plants. It only involves the installation of a simple sludge mixing tank. This article presents the concept of the FNA-based technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. R4SA for Controlling Robots

    NASA Technical Reports Server (NTRS)

    Aghazarian, Hrand

    2009-01-01

    The R4SA GUI mentioned in the immediately preceding article is a userfriendly interface for controlling one or more robot(s). This GUI makes it possible to perform meaningful real-time field experiments and research in robotics at an unmatched level of fidelity, within minutes of setup. It provides such powerful graphing modes as that of a digitizing oscilloscope that displays up to 250 variables at rates between 1 and 200 Hz. This GUI can be configured as multiple intuitive interfaces for acquisition of data, command, and control to enable rapid testing of subsystems or an entire robot system while simultaneously performing analysis of data. The R4SA software establishes an intuitive component-based design environment that can be easily reconfigured for any robotic platform by creating or editing setup configuration files. The R4SA GUI enables event-driven and conditional sequencing similar to those of Mars Exploration Rover (MER) operations. It has been certified as part of the MER ground support equipment and, therefore, is allowed to be utilized in conjunction with MER flight hardware. The R4SA GUI could also be adapted to use in embedded computing systems, other than that of the MER, for commanding and real-time analysis of data.

  14. Impact of Sulfuric Acid Treatment of Halloysite on Physico-Chemic Property Modification

    PubMed Central

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H.; Nassir, Mohamed H.; Al-Amiery, Ahmed A.

    2016-01-01

    Halloysite (HNT) is treated with sulfuric acid and the physico-chemical properties of its morphology, surface activity, physical and chemical properties have been investigated when HNT is exposed to sulfuric acid with treatment periods of 1 h (H1), 3 h (H3), 8 h (H8), and 21 h (H21). The significance of this and similar work lies in the importance of using HNT as a functional material in nanocomposites. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR). The spectrum demonstrates that the hydroxyl groups were active for grafting modification using sulfuric acid, promoting a promising potential use for halloysite in ceramic applications as filler for novel clay-polymer nanocomposites. From the X-ray diffraction (XRD) spectrum, it can be seen that the sulfuric acid breaks down the HNT crystal structure and alters it into amorphous silica. In addition, the FESEM images reveal that the sulfuric acid treatment dissolves the AlO6 octahedral layers and induces the disintegration of SiO4 tetrahedral layers, resulting in porous nanorods. The Bruncher-Emmett-Teller (BET) surface area and total pore volume of HNTs showed an increase. The reaction of the acid with both the outer and inner surfaces of the nanotubes causes the AlO6 octahedral layers to dissolve, which leads to the breakdown and collapse of the tetrahedral layers of SiO4. The multi-fold results presented in this paper serve as a guide for further HNT functional treatment for producing new and advanced nanocomposites. PMID:28773741

  15. Impact of Sulfuric Acid Treatment of Halloysite on Physico-Chemic Property Modification.

    PubMed

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H; Nassir, Mohamed H; Al-Amiery, Ahmed A

    2016-07-26

    Halloysite (HNT) is treated with sulfuric acid and the physico-chemical properties of its morphology, surface activity, physical and chemical properties have been investigated when HNT is exposed to sulfuric acid with treatment periods of 1 h (H1), 3 h (H3), 8 h (H8), and 21 h (H21). The significance of this and similar work lies in the importance of using HNT as a functional material in nanocomposites. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR). The spectrum demonstrates that the hydroxyl groups were active for grafting modification using sulfuric acid, promoting a promising potential use for halloysite in ceramic applications as filler for novel clay-polymer nanocomposites. From the X-ray diffraction (XRD) spectrum, it can be seen that the sulfuric acid breaks down the HNT crystal structure and alters it into amorphous silica. In addition, the FESEM images reveal that the sulfuric acid treatment dissolves the AlO₆ octahedral layers and induces the disintegration of SiO₄ tetrahedral layers, resulting in porous nanorods. The Bruncher-Emmett-Teller (BET) surface area and total pore volume of HNTs showed an increase. The reaction of the acid with both the outer and inner surfaces of the nanotubes causes the AlO₆ octahedral layers to dissolve, which leads to the breakdown and collapse of the tetrahedral layers of SiO₄. The multi-fold results presented in this paper serve as a guide for further HNT functional treatment for producing new and advanced nanocomposites.

  16. Salicylic Acid Regulates Pollen Tip Growth through an NPR3/NPR4-Independent Pathway.

    PubMed

    Rong, Duoyan; Luo, Nan; Mollet, Jean Claude; Liu, Xuanming; Yang, Zhenbiao

    2016-11-07

    Tip growth is a common strategy for the rapid elongation of cells to forage the environment and/or to target to long-distance destinations. In the model tip growth system of Arabidopsis pollen tubes, several small-molecule hormones regulate their elongation, but how these rapidly diffusing molecules control extremely localized growth remains mysterious. Here we show that the interconvertible salicylic acid (SA) and methylated SA (MeSA), well characterized for their roles in plant defense, oppositely regulate Arabidopsis pollen tip growth with SA being inhibitory and MeSA stimulatory. The effect of SA and MeSA was independent of known NPR3/NPR4 SA receptor-mediated signaling pathways. SA inhibited clathrin-mediated endocytosis in pollen tubes associated with an increased accumulation of less stretchable demethylated pectin in the apical wall, whereas MeSA did the opposite. Furthermore, SA and MeSA alter the apical activation of ROP1 GTPase, a key regulator of tip growth in pollen tubes, in an opposite manner. Interestingly, both MeSA methylesterase and SA methyltransferase, which catalyze the interconversion between SA and MeSA, are localized at the apical region of pollen tubes, indicating of the tip-localized production of SA and MeSA and consistent with their effects on the apical cellular activities. These findings suggest that local generation of a highly diffusible signal can regulate polarized cell growth, providing a novel mechanism of cell polarity control apart from the one involving protein and mRNA polarization. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  17. The effects of long-term treatment with eicosapentaenoic acid and docosahexaenoic acid on hypoxia/rexoygenation injury of isolated cardiac cells in adult rats.

    PubMed

    Hayashi, M; Nasa, Y; Tanonaka, K; Sasaki, H; Miyake, R; Hayashi, J; Takeo, S

    1995-09-01

    N-3 polyunsaturated fatty acids have been epidemiologically demonstrated to decrease the incidence of ischaemic heart disease. The present study was undertaken to examine the effects of long-term treatment with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on hypoxia/reoxygenation injury of isolated adult rat cardiomyocytes. Rats, fed with standard rat chow, were treated with 100 to 1000 mg/kg/day EPA or 1000 mg/kg/day DHA for 4 weeks and their cardiomyocytes were isolated by collagenase treatment. The cardiomyocytes, approximately 90% of which were rod-shaped, were subjected to 150-min hypoxia/15-min reoxygenation, and their survivals at the ends of hypoxia and reoxygenation were determined. Treatment with either 1000 mg/kg/day of EPA or DHA resulted in a significant increase in the survival of the cardiomyocytes (39.9 +/- 1.1 and 38.3 +/- 3.0%, n = 14 and 8, respectively v 26.7 +/- 1.6%, n = 8, for untreated group). Treatment with EPA increased eicosapentaenoic (377% increase), oleic (25% increase) and linoleic acid (37% increase) contents in the myocardial total phospholipids without changes in the total phospholipid content, whereas treatment with DHA did not increase DHA incorporation into the myocardial phospholipids. The results suggest that EPA and DHA protect the myocardial cells against hypoxia-reoxygenation-induced injury. Although alterations in myocardial phospholipid composition were observed by treatment with EPA or DHA, the primary mechanism underlying the benefit of EPA or DHA intake is unlikely to be related to increased incorporation of their own fatty acids into the myocardial phospholipids, or the mechanism may be different in each n-3 unsaturated fatty acid employed.

  18. SaRNA-mediated activation of TRPV5 reduces renal calcium oxalate deposition in rat via decreasing urinary calcium excretion.

    PubMed

    Zeng, Tao; Duan, Xiaolu; Zhu, Wei; Liu, Yang; Wu, Wenqi; Zeng, Guohua

    2018-06-01

    Hypercalciuria is a main risk factor for kidney stone  formation. TRPV5 is the gatekeeper protein for mediating calcium transport and reabsorption in the kidney. In the present study, we tested the effect of TRPV5 activation with small activating RNA (saRNA), which could induce gene expression by targeting the promoter of the gene, on ethylene glycol (EG)-induced calcium oxalate (CaOx) crystals formation in rat kidney. Five pairs of RNA activation sequences targeting the promoter of rat TRPV5 were designed and synthesized. The synthesized saRNA with the strongest activating effect was selected, and transcellular calcium transportation was tested by Fura-2 analysis. Subsequently, Sprague-Dawley rats were equally divided into three groups and fed with water, 1% EG for 28 days after injecting the negative control saRNA, 1% EG for 28 days after injecting the selected TRPV5-saRNA, respectively. The CaOx crystal formation and the 24-h urine components were assessed. In vitro study, saRNA ds-320 could significantly activate the expression of TRPV5 and transcellular calcium transportation. In vivo study, after 28 days treatment of EG, rats pre-infected with saRNA ds-320 had lower urinary calcium excretion and renal CaOx crystals formation as compared to that pre-infected with negative control saRNA. Activation of TRVP5 with saRNA ds-320 could inhibit EG-induced calcium oxalate crystals formation via promoting urine calcium reabsorption and decreasing urine calcium excretion in rats.

  19. Closed-loop control of SaO2 in the neonate.

    PubMed

    Morozoff, P E; Evans, R W

    1992-01-01

    A microprocessor-based device has been designed to control oxygen saturation (SaO2) in neonates by adjusting the inspired air-oxygen mixture (FiO2) delivered by a mechanical blender. The user sets a target SaO2, which the controller attempts to maintain. Alarms are actuated if the neonate's SaO2 is outside predefined limits. SaO2 levels are extracted from a commercial pulse oximeter and analyzed by an eight-bit microprocessing unit (MPU). Delivered percentages of FiO2 are adjusted by a motorized air-oxygen blender. The controller has a menu-driven user interface and can graphically present four-hour trends of the SaO2, FiO2, or blender setting. Sixteen hours of collected data can be stored and later downloaded to a personal computer. A real-time multitasking operating system forms the nucleus of the controller's software. Major tasks that share MPU time are control, filtering, user display, data collection, data archiving, alarm monitoring, and user input. Analog SaO2 levels are read and converted to digital values, which are then filtered to extract noise. A differential control algorithm is used to determine the required FiO2 blender setting. The blender is then adjusted to the new setting, after which the controller waits to repeat the process of sampling SaO2 and adjusting FiO2. System response time and blender increments are adjustable to allow a user to tune the controller to the patient's needs. Alarm conditions of concern within the device are SaO2 and FiO2 sensor disconnection, blender disconnection, and SaO2 limiting errors. In preliminary trials, for a target of 92.0% SaO2, a prototype controller maintained an average of 91.6% with a standard deviation of 5.0% over a one-hour period.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. In vivo effects of naproxen, salicylic acid, and valproic acid on the pharmacokinetics of trichloroethylene and metabolites in rats.

    PubMed

    Rouhou, Mouna Cheikh; Charest-Tardif, Ginette; Haddad, Sami

    2015-01-01

    It was recently demonstrated that some drugs modulate in vitro metabolism of trichloroethylene (TCE) in humans and rats. The objective was to assess in vivo interactions between TCE and three drugs: naproxen (NA), valproic acid (VA), and salicylic acid (SA). Animals were exposed to TCE by inhalation (50 ppm for 6 h) and administered a bolus dose of drug by gavage, equivalent to 10-fold greater than the recommended daily dose. Samples of blood, urine, and collected tissues were analyzed by headspace gas chromatography coupled to an electron capture detector for TCE and metabolites (trichloroethanol [TCOH] and trichloroacetate [TCA]) levels. Coexposure to NA and TCE significantly increased (up to 50%) total and free TCOH (TCOHtotal and TCOHfree, respectively) in blood. This modulation may be explained by an inhibition of glucuronidation. VA significantly elevated TCE levels in blood (up to 50%) with a marked effect on TCOHtotal excretion in urine but not in blood. In contrast, SA produced an increase in TCOHtotal levels in blood at 30, 60, and 90 min and urine after coexposure. Data confirm in vitro observations that NA, VA, and SA affect in vivo TCE kinetics. Future efforts need to be directed to evaluate whether populations chronically medicated with the considered drugs display greater health risks related to TCE exposure.

  1. Aceneuramic Acid Extended Release Administration Maintains Upper Limb Muscle Strength in a 48-week Study of Subjects with GNE Myopathy: Results from a Phase 2, Randomized, Controlled Study.

    PubMed

    Argov, Zohar; Caraco, Yoseph; Lau, Heather; Pestronk, Alan; Shieh, Perry B; Skrinar, Alison; Koutsoukos, Tony; Ahmed, Ruhi; Martinisi, Julia; Kakkis, Emil

    2016-03-03

    GNE Myopathy (GNEM) is a progressive adult-onset myopathy likely caused by deficiency of sialic acid (SA) biosynthesis. Evaluate the safety and efficacy of SA (delivered by aceneuramic acid extended-release [Ace-ER]) as treatment for GNEM. A Phase 2, randomized, double-blind, placebo-controlled study evaluating Ace-ER 3 g/day or 6 g/day versus placebo was conducted in GNEM subjects (n = 47). After the first 24 weeks, placebo subjects crossed over to 3 g/day or 6 g/day for 24 additional weeks (dose pre-assigned during initial randomization). Assessments included serum SA, muscle strength by dynamometry, functional assessments, clinician- and patient-reported outcomes, and safety. Dose-dependent increases in serum SA levels were observed. Supplementation with Ace-ER resulted in maintenance of muscle strength in an upper extremity composite (UEC) score at 6 g/day compared with placebo at Week 24 (LS mean difference +2.33 kg, p = 0.040), and larger in a pre-specified subgroup able to walk ≥200 m at Screening (+3.10 kg, p = 0.040). After cross-over, a combined 6 g/day group showed significantly better UEC strength than a combined 3 g/day group (+3.46 kg, p = 0.0031). A similar dose-dependent response was demonstrated within the lower extremity composite score, but was not significant (+1.06 kg, p = 0.61). The GNEM-Functional Activity Scale demonstrated a trend improvement in UE function and mobility in a combined 6 g/day group compared with a combined 3 g/day group. Patients receiving Ace-ER tablets had predominantly mild-to-moderate AEs and no serious adverse events. This is the first clinical study to provide evidence that supplementation with SA delivered by Ace-ER may stabilize muscle strength in individuals with GNEM and initiating treatment earlier in the disease course may lead to better outcomes.

  2. Aceneuramic Acid Extended Release Administration Maintains Upper Limb Muscle Strength in a 48-week Study of Subjects with GNE Myopathy: Results from a Phase 2, Randomized, Controlled Study

    PubMed Central

    Argov, Zohar; Caraco, Yoseph; Lau, Heather; Pestronk, Alan; Shieh, Perry B.; Skrinar, Alison; Koutsoukos, Tony; Ahmed, Ruhi; Martinisi, Julia; Kakkis, Emil

    2016-01-01

    Background: GNE Myopathy (GNEM) is a progressive adult-onset myopathy likely caused by deficiency of sialic acid (SA) biosynthesis. Objective: Evaluate the safety and efficacy of SA (delivered by aceneuramic acid extended-release [Ace-ER]) as treatment for GNEM. Methods: A Phase 2, randomized, double-blind, placebo-controlled study evaluating Ace-ER 3 g/day or 6 g/day versus placebo was conducted in GNEM subjects (n = 47). After the first 24 weeks, placebo subjects crossed over to 3 g/day or 6 g/day for 24 additional weeks (dose pre-assigned during initial randomization). Assessments included serum SA, muscle strength by dynamometry, functional assessments, clinician- and patient-reported outcomes, and safety. Results: Dose-dependent increases in serum SA levels were observed. Supplementation with Ace-ER resulted in maintenance of muscle strength in an upper extremity composite (UEC) score at 6 g/day compared with placebo at Week 24 (LS mean difference +2.33 kg, p = 0.040), and larger in a pre-specified subgroup able to walk ≥200 m at Screening (+3.10 kg, p = 0.040). After cross-over, a combined 6 g/day group showed significantly better UEC strength than a combined 3 g/day group (+3.46 kg, p = 0.0031). A similar dose-dependent response was demonstrated within the lower extremity composite score, but was not significant (+1.06 kg, p = 0.61). The GNEM-Functional Activity Scale demonstrated a trend improvement in UE function and mobility in a combined 6 g/day group compared with a combined 3 g/day group. Patients receiving Ace-ER tablets had predominantly mild-to-moderate AEs and no serious adverse events. Conclusions: This is the first clinical study to provide evidence that supplementation with SA delivered by Ace-ER may stabilize muscle strength in individuals with GNEM and initiating treatment earlier in the disease course may lead to better outcomes. PMID:27854209

  3. Novel extracellular PHB depolymerase from Streptomyces ascomycinicus: PHB copolymers degradation in acidic conditions.

    PubMed

    García-Hidalgo, Javier; Hormigo, Daniel; Arroyo, Miguel; de la Mata, Isabel

    2013-01-01

    The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZ Sa ), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZ Sa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZ Sa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser(131)-Asp(209)-His(269), were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZ Sa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZ Sa make it an interesting candidate for industrial applications involving PHB degradation.

  4. Solution of Azelaic Acid (20%), Resorcinol (10%) and Phytic Acid (6%) Versus Glycolic Acid (50%) Peeling Agent in the Treatment of Female Patients with Facial Melasma

    PubMed Central

    Faghihi, Gita; Taheri, Azam; Shahmoradi, Zabihollah; Nilforoushzadeh, Mohammad Ali

    2017-01-01

    Background: Melasma, a common acquired disorder of hyperpigmentation, especially in women, is often resistant to therapy. This study was aimed to evaluate the efficacy and safety of azelaic acid, resorcinol and phytic acid solution in chemical peeling of melasma in comparison to 50% glycolic acid. Materials and Methods: This clinical trial was performed, on 42 female patients with bilateral melasma. Severity of melasma was assessed by melasma area and severity index (MASI). Combination of (20% azelaic acid + 10% resorcinol + 6% phytic acid) was used as a new peeling agent on the right side of the face and 50% glycolic acid on the left side every 2 weeks for 6 times. Follow-up was carried out for 3 months after the last session. Any decrease in MASI score and unwanted complications following peeling were evaluated and compared during the trial. Results: Patients showed marked improvement as calculated with MASI score before and after treatment in both sides of the face. The efficacy of combination formula (azelaic acid, resorcinol and phytic acid) was similar to glycolic acid, but with fewer complications. There was no statistically difference in improvement between two groups (P > 0.05). However, the patient's discomfort following procedures was significantly lower with azelaic acid, resorcinol and phytic compared with the glycolic acid peels (P < 0.05) and there was the same duration in the beginning of the therapeutic response in both groups. Conclusion: Results showed that triple-combination was found to be an effective and safe peeling agent in the treatment of melasma and it was as effective as 50% glycolic acid peel. PMID:28299301

  5. Role of salicylic acid in resistance to cadmium stress in plants.

    PubMed

    Liu, Zhouping; Ding, Yanfei; Wang, Feijuan; Ye, Yaoyao; Zhu, Cheng

    2016-04-01

    We review and introduce the importance of salicylic acid in plants under cadmium stress, and provide insights into potential regulatory mechanisms for alleviating cadmium toxicity. Cadmium (Cd) is a widespread and potentially toxic environmental pollutant, originating mainly from rapid industrial processes, the application of fertilizers, manures and sewage sludge, and urban activities. It is easily taken up by plants, resulting in obvious toxicity symptoms, including growth retardation, leaf chlorosis, leaf and root necrosis, altered structures and ultrastructures, inhibition of photosynthesis, and cell death. Therefore, alleviating Cd toxicity in plants is a major aim of plant research. Salicylic acid (SA) is a ubiquitous plant phenolic compound that has been used in many plant species to alleviate Cd toxicity by regulating plant growth, reducing Cd uptake and distribution in plants, protecting membrane integrity and stability, scavenging reactive oxygen species and enhancing antioxidant defense system, improving photosynthetic capacity. Furthermore, SA functions as a signaling molecule involved in the expression of several important genes. Significant amounts of research have focused on understanding SA functions and signaling in plants under Cd stress, but several questions still remain unanswered. In this article, the influence of SA on Cd-induced stress in plants and the potential regulation mechanism for alleviating Cd toxicity are reviewed.

  6. Edaravone ameliorates the adverse effects of valproic acid toxicity in small intestine.

    PubMed

    Oktay, S; Alev, B; Tunali, S; Emekli-Alturfan, E; Tunali-Akbay, T; Koc-Ozturk, L; Yanardag, R; Yarat, A

    2015-06-01

    Valproic acid (VPA) is a drug used for the treatment of epilepsy, bipolar psychiatric disorders, and migraine. Previous studies have reported an increased generation of reactive oxygen species and oxidative stress in the toxic mechanism of VPA. Edaravone, a free radical scavenger for clinical use, can quench free radical reaction by trapping a variety of free radical species. In this study, effect of edaravone on some small intestine biochemical parameters in VPA-induced toxicity was investigated. Thirty seven Sprague Dawley female rats were randomly divided into four groups. The groups include control group, edaravone (30 mg(-1) kg(-1) day(-1)) given group, VPA (0.5 g(-1) kg(-1) day(-1)) given group, VPA + edaravone (in same dose) given group. Edaravone and VPA were given intraperitoneally for 7 days. Biochemical parameters such as malondialdehyde, as an index of lipid peroxidation(LPO), sialic acid (SA), glutathione levels and glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, catalase, myeloperoxidase, alkaline phosphatase (ALP), and tissue factor (TF) activities were determined in small intestine samples by colorimetric methods. Decreased small intestine antioxidant enzyme activities, increased LPO and SA levels, and increased activities of ALP and TF were detected in the VPA group. Based on our results edaravone may be suggested to reverse the oxidative stress and inflammation due to VPA-induced small intestine toxicity. © The Author(s) 2014.

  7. 300 Area waste acid treatment system closure plan. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  8. Succinic acid-producing biofilms of Actinobacillus succinogenes: reproducibility, stability and productivity.

    PubMed

    Maharaj, K; Bradfield, M F A; Nicol, W

    2014-09-01

    Continuous anaerobic fermentations were performed in a biofilm reactor packed with Poraver® beads. Dilution rates (D) varied between 0.054 and 0.72 h(-1), and D-glucose and CO2 gas were used as carbon substrates. Steady-state conditions were shown to be repeatable and independent of the operational history. Production stability was achieved over periods exceeding 80 h at values of D below 0.32 h(-1). In these situations, steady-state variation (expressed as fluctuations in NaOH neutralisation flow rates) exhibited a standard deviation of less than 5 % while no indication of biofilm deactivation was detected. The total biomass amount was found to be independent of the dilution rate with an average dry concentration of 23.8 ± 2.9 g L(-1) obtained for all runs. This suggests that the attachment area controls the extent of biofilm accumulation. Specific succinic acid (SA) productivities, based on the total biomass amount, exhibited a substantial decrease with decreasing D. An SA volumetric productivity of 10.8 g L(-1) h(-1) was obtained at D = 0.7 h(-1)-the highest value reported to date in Actinobacillus succinogenes fermentations. SA yields on glucose increased with decreasing D, with a yield of 0.90 ± 0.01 g g(-1) obtained at a D of 0.054 h(-1). Production of formic acid approached zero with decreasing D, while the succinic to acetic acid ratio increased with decreasing D, resulting in an increasing SA yield on glucose.

  9. Responses of soil buffering capacity to acid treatment in three typical subtropical forests.

    PubMed

    Jiang, Jun; Wang, Ying-Ping; Yu, Mengxiao; Li, Kun; Shao, Yijing; Yan, Junhua

    2016-09-01

    Elevated anthropogenic acid deposition can significantly affect forest ecosystem functioning by changing soil pH, nutrient balance, and chemical leaching and so on. These effects generally differ among different forests, and the dominant mechanisms for those observed responses often vary, depending on climate, soil conditions and vegetation types. Using soil monoliths (0-40cm) from pine forest (pioneer), coniferous and broadleaved mixed forest (transitional) and broadleaved forest (mature) in southern China, we conducted a leaching experiment with acid treatments at different pH levels (control: pH≈4.5; pH=3.5; pH=2.5). We found that pH3.5 treatment significantly reduced dissolved organic carbon (DOC) concentrations in leachate from the pioneer forest soil. pH2.5 treatment significantly increased concentrations of NO3(-), SO4(2-), Ca(2+), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the pioneer forest soil, and also concentrations of NO3(-), SO4(2-), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the transitional forest soil. All acid treatments had no significant effects on concentrations of these chemicals in leachate from the mature forest soil. The responses can be explained by the changes in soil pH, acid neutralizing capacity (ANC) and concentrations of Al and Fe. Our results showed that acid buffering capacity of the pioneer or transitional forest soil was lower than that of the mature forest soil. Therefore preserving mature forests in southern China is important for reducing the adverse impacts of high acid deposition on stream water quality at present and into the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Kinetics of salivary pH after acidic beverage intake by patients undergoing orthodontic treatment.

    PubMed

    Turssi, Cecilia P; Silva, Carolina S; Bridi, Enrico C; Amaral, Flavia Lb; Franca, Fabiana Mg; Basting, Roberta T

    2015-01-01

    The saliva of patients undergoing orthodontic treatment with fixed appliances can potentially present a delay in the diluting, clearing, and buffering of dietary acids due to an increased number of retention areas. The aim of this clinical trial was to compare salivary pH kinetics of patients with and without orthodontic treatment, following the intake of an acidic beverage. Twenty participants undergoing orthodontic treatment and 20 control counterparts had their saliva assessed for flow rate, pH, and buffering capacity. There was no significant difference between salivary parameters in participants with or without an orthodontic appliance. Salivary pH recovery following acidic beverage intake was slower in the orthodontic subjects compared to controls. Patients with fixed orthodontic appliances, therefore, seem to be at higher risk of dental erosion, suggesting that dietary advice and preventive care need to be implemented during orthodontic treatment.

  11. The world after SA : benefits to GPS integrity.

    DOT National Transportation Integrated Search

    2000-03-01

    The Presidential Decision Directive (PDD) on the Global Positioning System (GPS) recommends that selective availability (SA) be removed by 2006. The question remains: if SA were to be turned off, how significant are the benefits to the GPS community?...

  12. Cooperative functioning between phenylalanine ammonia lyase and isochorishmate synthase activities contributes to salicylic acid biosynthesis in soybean

    USDA-ARS?s Scientific Manuscript database

    Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL), or the isochorishmate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We...

  13. Cu Nanoparticles Improved Thermal Property of Form-Stable Phase Change Materials Made with Carbon Nanofibers and LA-MA-SA Eutectic Mixture.

    PubMed

    Song, Xiaofei; Cai, Yibing; Huang, Cong; Gu, Ying; Zhang, Junhao; Qiao, Hui; Wei, Qufu

    2018-04-01

    A novel form-stable phase change materials (FSPCMs) was fabricated by incorporating fatty acid eutectics with electrospun carbon nanofibers (CNFs) surface-attached with copper (Cu) nanoparticles. Three different Cu/CNFs mats were made through combining the technique and principle of electrospinning, pre-oxidation/carbonization and in-situ reduction, while lauric-myristic-stearic acid (LA-MA-SA) ternary eutectic mixture was prepared as the model PCM. The morphology and crystal structure of Cu/CNFs were characterized by Fourier transfer infrared (FT-IR) spectra, Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray energy dispersive spectroscopy (EDS), respectively. The results showed that Cu nanoparticles dispersed uniformly on the surface of CNFs mats without agglomeration, and Cu/CNFs mats could provide the mechanical support for FSPCMs and effectively prevent the flow/leakage of molten fatty acid. Morphological structures, as well as the properties of thermal energy storage and thermal energy storage/retrieval rates, of the resulting FSPCMs were investigated by SEM, Differential scanning calorimetry (DSC), and measurement of melting/freezing times, respectively. The results indicated that the fabricated FSPCMs exhibited desired structural morphology, and LA-MA-SA well dispersed in three-dimensional porous structure of Cu/CNFs mats. The melting and crystallization enthalpies of the fabricated FSPCMs were in the range of 117.1-140.7 kJ/kg and 117.2-142.4 kJ/kg, respectively. In comparison with melting/freezing times of LA-MA-SA ternary eutectic mixture, the melting/freezing times of fabricated FSPCMs were respectively decreased ~27.0-49.2% and ~44.1-63.0%. The fabricated FSPCMs possessed good thermal energy storage/retrieval property, and might have great potential for renewable energy storage applications.

  14. Mobile Clinical Decision Support System for Acid-base Balance Diagnosis and Treatment Recommendation

    PubMed Central

    Mandzuka, Mensur; Begic, Edin; Boskovic, Dusanka; Begic, Zijo; Masic, Izet

    2017-01-01

    Introduction: This paper presents mobile application implementing a decision support system for acid-base disorder diagnosis and treatment recommendation. Material and methods: The application was developed using the official integrated development environment for the Android platform (to maximize availability and minimize investments in specialized hardware) called Android Studio. Results: The application identifies disorder, based on the blood gas analysis, evaluates whether the disorder has been compensated, and based on additional input related to electrolyte imbalance, provides recommendations for treatment. Conclusion: The application is a tool in the hands of the user, which provides assistance during acid-base disorders treatment. The application will assist the physician in clinical practice and is focused on the treatment in intensive care. PMID:28883678

  15. Toxic corneal epitheliopathy after intravitreal methotrexate and its treatment with oral folic acid.

    PubMed

    Gorovoy, Ian; Prechanond, Tidarat; Abia, Maravillas; Afshar, Armin R; Stewart, Jay M

    2013-08-01

    To determine whether oral folic acid can ameliorate an iatrogenic, visually significant corneal epitheliopathy, which commonly occurs with intravitreal injections of methotrexate for the treatment of intraocular lymphoma. We report 2 cases of visually significant corneal epitheliopathy occurring after intravitreal injections of methotrexate for intraocular lymphoma. The first patient did not receive any treatment for the corneal disease, and the second patient with bilateral intraocular lymphoma received 1 mg of oral folic acid daily, a commonly used dosage for patients on systemic methotrexate. In the first patient without treatment, there was a complete regression of the corneal epithelial disease only when the frequency of intravitreal methotrexate was reduced from weekly to monthly as per a commonly used dosage regimen for methotrexate. In the second patient, the corneal disease improved 80% within 1 week of initiating oral folic acid for her eye already experiencing severe epitheliopathy during her weekly dosing regimen of methotrexate and also had significantly decreased epithelial disease in her second eye that started weekly intravitreal methotrexate several weeks after beginning oral folic acid. Currently, oral folic acid supplements are recommended for patients using systemic methotrexate to minimize drug toxicity. We suggest a similar use in patients undergoing intravitreal methotrexate injections to decrease toxic effects on the corneal epithelium.

  16. Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution.

    PubMed

    Sekiya, S; Ohmori, K; Harii, K

    1997-01-01

    A chronic ulcer with an infection such as methicillin-resistant Staphylococcus aureus is hard to heal. Plastic and reconstructive surgeons often encounter such chronic ulcers that are resistant to surgical or various conservative treatments. We applied conservative treatment using an electrolyzed strong acid aqueous solution and obtained satisfactory results. The lesion was washed with the solution or soaked in a bowl of the solution for approximately 20 min twice a day. Fresh electrolyzed strong acid aqueous solution is unstable and should be stored in a cool, dark site in a sealed bottle. It should be used within a week after it has been produced. Here we report on 15 cases of infectious ulcers that were treated by electrolyzed strong acid aqueous solution. Of these cases, 7 patients were healed, 3 were granulated, and in 5, infection subsided. In most cases the lesion became less reddish and less edematous. Discharge or foul odor from the lesion was decreased. Electrolyzed strong acid aqueous solution was especially effective for treating a chronic refractory ulcer combined with diabetes melitus or peripheral circulatory insufficiency. This clinically applied therapy of electrolyzed strong acid aqueous solution was found to be effective so that this new therapeutic technique for ulcer treatment can now be conveniently utilized.

  17. Acid and nonacid gastroesophageal reflux after single anastomosis gastric bypass. An objective assessment using 24-hour multichannel intraluminal impedance-pH metry.

    PubMed

    Doulami, Georgia; Triantafyllou, Stamatina; Albanopoulos, Konstantinos; Natoudi, Maria; Zografos, Georgios; Theodorou, Dimitrios

    2018-04-01

    Single anastomosis gastric bypass (SaGB) was introduced in 2001 as an alternative to "loop" gastric bypass. It was considered as a procedure that would eliminate alkaline reflux and associated esophagitis. Existing evidence about the postoperative incidence of gastroesophageal reflux (GERD) after SaGB is based on studies using symptom questionnaires. The aim of our study was to evaluate GERD 12 months after SaGB by using 24-hour multichannel intraluminal impedance pH metry (24-h MIIpH). Surgical department of a university hospital METHODS: Morbidly obese candidates for SaGB underwent 24-hour MIIpH prior and 12 months after their bariatric procedure. There were 11 patients included in this prospective study. Results of 24-hour MIIpH revealed that DeMeester score (40.48 versus 24.16, P = .339) had an increasing trend 12 months after SaGB. Acid reflux episodes decreased, whereas nonacid reflux episodes increased postoperatively, both in proximal and distal esophagus. Total median bolus clearance time and acid clearance time increased. De novo GERD developed in 2 patients (28.6%) and worsening of already existing GERD developed in all patients with preoperative evidence of GERD. The use of symptom questionnaires to assess postoperative GERD after SaGB may not accurately depict the real image. Twenty-four-hour MIIpH in 12 months after SaGB revealed an increase of total number of nonacid reflux episodes and a decrease of total number of acid reflux episodes, with longer duration of each acid reflux episode. Close postoperative follow-up with reflux testing and possibly endoscopy could eliminate the risk of complicated GERD. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  18. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage

    PubMed Central

    Li, Chuanchang; Fu, Liangjie; Ouyang, Jing; Yang, Huaming

    2013-01-01

    A novel mineral-based composite phase change materials (PCMs) was prepared via vacuum impregnation method assisted with microwave-acid treatment of the graphite (G) and bentonite (B) mixture. Graphite and microwave-acid treated bentonite mixture (GBm) had more loading capacity and higher crystallinity of stearic acid (SA) in the SA/GBm composite. The SA/GBm composite showed an enhanced thermal storage capacity, latent heats for melting and freezing (84.64 and 84.14 J/g) was higher than those of SA/B sample (48.43 and 47.13 J/g, respectively). Addition of graphite was beneficial to the enhancement in thermal conductivity of the SA/GBm composite, which could reach 0.77 W/m K, 31% higher than SA/B and 196% than pure SA. Furthermore, atomic-level interfaces between SA and support surfaces were depicted, and the mechanism of enhanced thermal storage properties was in detail investigated. PMID:23712069

  19. Comparison of alpha- and beta-hydroxy acid chemical peels in the treatment of mild to moderately severe facial acne vulgaris.

    PubMed

    Kessler, Edward; Flanagan, Katherine; Chia, Christina; Rogers, Cynthia; Glaser, Dee Anna

    2008-01-01

    Chemical peels are used as adjuvants for treatment of facial acne. No well-controlled studies have compared alpha- and beta-hydroxy acid peels in the treatment of mild to moderately severe facial acne. To compare the efficacy of alpha- and beta-hydroxy acid chemical peels in the treatment of mild to moderately severe facial acne vulgaris. Twenty patients were recruited in this split-face, double-blind, randomized, controlled study. An alpha-hydroxy acid (30% glycolic acid) was applied to one-half of the face and a beta-hydroxy acid peel (30% salicylic acid) was applied contralaterally every 2 weeks for a total of six treatments. A blinded evaluator performed quantitative assessment of papules and pustules. Both chemical peels were significantly effective by the second treatment (p<.05) and there were no significant differences in effectiveness between the two peels. At 2 months posttreatment, the salicylic acid peel had sustained effectiveness. More adverse events were reported with the glycolic acid peel after the initial treatment. The glycolic acid and salicylic acid peels were similarly effective. The salicylic acid peel had sustained effectiveness and fewer side effects. Alpha- and beta-hydroxy acid peels both offer successful adjunctive treatment of facial acne vulgaris.

  20. Constitutively Elevated Salicylic Acid Signals Glutathione-Mediated Nickel Tolerance in Thlaspi Nickel Hyperaccumulators1

    PubMed Central

    Freeman, John L.; Garcia, Daniel; Kim, Donggiun; Hopf, Amber; Salt, David E.

    2005-01-01

    Progress is being made in understanding the biochemical and molecular basis of nickel (Ni)/zinc (Zn) hyperaccumulation in Thlaspi; however, the molecular signaling pathways that control these mechanisms are not understood. We observed that elevated concentrations of salicylic acid (SA), a molecule known to be involved in signaling induced pathogen defense responses in plants, is a strong predictor of Ni hyperaccumulation in the six diverse Thlaspi species investigated, including the hyperaccumulators Thlaspi goesingense, Thlaspi rosulare, Thlaspi oxyceras, and Thlaspi caerulescens and the nonaccumulators Thlaspi arvense and Thlaspi perfoliatum. Furthermore, the SA metabolites phenylalanine, cinnamic acid, salicyloyl-glucose, and catechol are also elevated in the hyperaccumulator T. goesingense when compared to the nonaccumulators Arabidopsis (Arabidopsis thaliana) and T. arvense. Elevation of free SA levels in Arabidopsis, both genetically and by exogenous feeding, enhances the specific activity of serine acetyltransferase, leading to elevated glutathione and increased Ni resistance. Such SA-mediated Ni resistance in Arabidopsis phenocopies the glutathione-based Ni tolerance previously observed in Thlaspi, suggesting a biochemical linkage between SA and Ni tolerance in this genus. Intriguingly, the hyperaccumulator T. goesingense also shows enhanced sensitivity to the pathogen powdery mildew (Erysiphe cruciferarum) and fails to induce SA biosynthesis after infection. Nickel hyperaccumulation reverses this pathogen hypersensitivity, suggesting that the interaction between pathogen resistance and Ni tolerance and hyperaccumulation may have played a critical role in the evolution of metal hyperaccumulation in the Thlaspi genus. PMID:15734913

  1. Influence of pH-control in phosphoric acid treatment of titanium oxide and their powder properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onoda, Hiroaki, E-mail: onoda@kpu.ac.jp; Matsukura, Aki

    Highlights: • The photocatalytic activity was suppressed by phosphoric acid treatment. • The obtained pigment had small particles with sub-micrometer size. • By phosphoric acid treatment, the smoothness of samples improved. - Abstract: Titanium oxide that has the photocatalytic activity is used as a white pigment for cosmetics. A certain degree of sebum on the skin is decomposed by the ultraviolet radiation in sunlight. In this work, titanium oxide was shaken with phosphoric acid at various pH to synthesize a novel white pigment for cosmetics. Their chemical composition, powder properties, photocatalytic activity, color phase, and smoothness were studied. The obtainedmore » materials indicated XRD peaks of titanium oxide, however, these peak intensity became weak by phosphoric acid treatment. These samples without heating and heated at 100 °C included the small particles with sub-micrometer size. The photocatalytic activity of the obtained powders became weak by phosphoric acid treatment at pH 4 and 5 to protect the sebum on the skin.« less

  2. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation.

    PubMed

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.

  3. Exogenous salicylic acid enhances the resistance of wheat seedlings to hessian fly (Diptera: Cecidomyiidae) infestation under heat stress

    USDA-ARS?s Scientific Manuscript database

    Heat stress exerts significant impact on plant-parasite interactions. Phytohormones, such as salicylic acid (SA) play important roles in plant defense against parasite attacks. Here we studied the impact of a combination of heat stress and exogenous SA on wheat (Triticum aestivum L.) plant resistanc...

  4. VIEW LOOKING EAST, SA WETSIDE (DISTILLATION BUILDING) ON THE RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING EAST, SA WETSIDE (DISTILLATION BUILDING) ON THE RIGHT, STD (SODA TOWER DRYERS?), SA DRYSIDE ON RIGHT. BEHIND STD BUILDING IS SHD BUILDING (SODA HORIZONTAL DRYERS?) THE ENTIRE DRYING COMPLEX WAS KNOWN AS THE DRYSIDE. - Solvay Process Company, SA Wetside Building, Between Willis & Milton Avenue, Solvay, Onondaga County, NY

  5. Cloning, Characterization and Expression Pattern Analysis of a Cytosolic Copper/Zinc Superoxide Dismutase (SaCSD1) in a Highly Salt Tolerant Mangrove (Sonneratia alba)

    PubMed Central

    Yang, Enze; Yi, Shanze; Bai, Fang; Niu, Dewei; Zhong, Junjie; Wu, Qiuhong; Chen, Shufang; Zhou, Renchao; Wang, Feng

    2015-01-01

    Mangroves are critical marine resources for their remarkable ability to tolerate seawater. Antioxidant enzymes play an especially significant role in eliminating reactive oxygen species and conferring abiotic stress tolerance. In this study, a cytosolic copper/zinc superoxide dismutase (SaCSD1) cDNA of Sonneratia alba, a mangrove species with high salt tolerance, was successfully cloned and then expressed in Escherichia coli Rosetta-gami (designated as SaCSD1). SaCSD1 comprised a complete open reading frame (ORF) of 459 bp which encoded a protein of 152 amino acids. Its mature protein is predicted to be 15.32 kDa and the deduced isoelectric point is 5.78. SaCSD1 has high sequence similarity (85%–90%) with the superoxide dismutase (CSD) of some other plant species. SaCSD1 was expressed with 30.6% yield regarding total protein content after being introduced into the pET-15b (Sma I) vector for expression in Rosetta-gami and being induced with IPTG. After affinity chromatography on Ni-NTA, recombinant SaCSD1 was obtained with 3.2-fold purification and a specific activity of 2200 U/mg. SaCSD1 showed good activity as well as stability in the ranges of pH between 3 and 7 and temperature between 25 and 55 °C. The activity of recombinant SaCSD1 was stable in 0.25 M NaCl, Dimethyl Sulphoxide (DMSO), glycerol, and chloroform, and was reduced to a great extent in β-mercaptoethanol, sodium dodecyl sulfate (SDS), H2O2, and phenol. Moreover, the SaCSD1 protein was very susceptive to pepsin digestion. Real-time Quantitative Polymerase Chain Reaction (PCR) assay demonstrated that SaCSD1 was expressed in leaf, stem, flower, and fruit organs, with the highest expression in fruits. Under 0.25 M and 0.5 M salt stress, the expression of SaCSD1 was down-regulated in roots, but up-regulated in leaves. PMID:26703583

  6. Zosteric acid and salicylic acid bound to a low density polyethylene surface successfully control bacterial biofilm formation.

    PubMed

    Cattò, C; James, G; Villa, F; Villa, S; Cappitelli, F

    2018-05-04

    The active moieties of the anti-biofilm natural compounds zosteric (ZA) and salicylic (SA) acids have been covalently immobilized on a low density polyethylene (LDPE) surface. The grafting procedure provided new non-toxic eco-friendly materials (LDPE-CA and LDPE-SA) with anti-biofilm properties superior to the conventional biocide-based approaches and with features suitable for applications in challenging fields where the use of antimicrobial agents is limited. Microbiological investigation proved that LDPE-CA and LDPE-SA: (1) reduced Escherichia coli biofilm biomass by up to 61% with a mechanism that did not affect bacterial viability; (2) significantly affected biofilm morphology, decreasing biofilm thickness, roughness, substratum coverage, cell and matrix polysaccharide bio-volumes by >80% and increasing the surface to bio-volume ratio; (3) made the biofilm more susceptible to ampicillin and ethanol. Since no molecules were leached from the surface, they remained constantly effective and below the lethal level; therefore, the risk of inducing resistance was minimized.

  7. Evaluation of Oxalic Acid Treatments against the Mite Varroa destructor and Secondary Effects on Honey Bees Apis mellifera

    PubMed Central

    Adjlane, Noureddine; Tarek, El-Ounass; Haddad, Nizar

    2016-01-01

    Background: The Varroa destructor varroasis is a very serious parasite of honeybee Apis mellifera. The objective of this study was to evaluate the effectiveness of Varroa treatment using organic acid (oxalic acid) in Algeria identifying its side effects on bee colonies. Methods: Treatment was conducted in one apiary consisting 30 colonies kept in Langstroth hives kind. Oxalic acid dripped directly on bees 5ml of this solution of oxalic acid per lane occupied by a syringe. Three doses were tested: 4.2, 3.2 and 2.1% oxalic acid is 100, 75 and 50 g of oxalic acid dehydrate in one litter of sugar syrup (1water to1 surge) concentration. Results: The percentage of average efficiency obtained for the first dose was 81%, 72.19% for the second dose, and 65% for third one, while the dose of 100 g oxalic acid causes a weakening of honey bee colonies. Conclusion: The experiments revealed that clear variation in the treatment efficiency among colonies that this might be related to brood presence therefore in order to assure the treatment efficiency oxalic acid should be part of a bigger strategy of Varroa treatment. PMID:28032102

  8. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments.

    PubMed

    Hung, Pham Van; Vien, Ngo Lam; Lan Phi, Nguyen Thi

    2016-01-15

    The effects of a combination of acid and heat-moisture treatment on formation of resistant starch (RS) and characteristics of high-amylose, normal and waxy rice starches were investigated in this study. The degrees of polymerization of the rice starches treated with citric acid, lactic acid or acetic acid were significantly reduced as compared to the native starches. The RS contents of acid and heat-moisture treated rice starches were in a range of 30.1-39.0%, significantly higher than those of native rice starches (6.3-10.2%) and those of heat-moisture treated rice starches (18.5-23.9%). The acid and heat-moisture treatments reduced swelling power and viscosity, but increased solubility of the starches, while the crystalline structure did not change. Among the organic acids used, citric acid had the most impact on starch characteristics and RS formation, followed by lactic acid and acetic acid. The results are useful in production of RS for functional food application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Pasireotide for the treatment of acromegaly.

    PubMed

    Wildemberg, Luiz Eduardo; Gadelha, Mônica R

    2016-01-01

    Acromegaly is a chronic disease with high morbidity and enhanced mortality if left untreated. Treatment options include surgery, medical therapy (somatostatin analogues (SA), dopamine agonists (DA) and growth hormone receptor antagonists) and radiotherapy. Despite these treatment options, "real-life" studies have shown that approximately 50% of patients are not controlled. In this scenario, a next-generation SA, pasireotide, has recently been approved for the treatment of acromegaly. 1) pasireotide's pharmacokinetics and pharmacodynamics; 2) pasireotide's anti-secretory and anti-proliferative effects, from preclinical studies up to phase III clinical trials; and 3) the adverse effects of pasireotide, focusing on hyperglycemia; 4) biomarkers of response to SA treatment. surgery is the primary treatment for most patients with acromegaly; however, approximately half of them will need adjuvant therapy. At present, the decision of this adjuvant treatment is made on a "trial-and-error" fashion. Nevertheless, in recent years, efforts have been made to establish biomarkers for the response to drugs involved in the treatment of acromegaly, which will change the treatment of acromegaly towards a more personalized therapeutic decision-making process. In the near future, the establishment of pasireotide response biomarkers will allow us to identify good candidates for first-line medical monotherapy with pasireotide.

  10. Salicylic acid inhibits enzymatic browning of fresh-cut Chinese chestnut (Castanea mollissima) by competitively inhibiting polyphenol oxidase.

    PubMed

    Zhou, Dan; Li, Lin; Wu, Yanwen; Fan, Junfeng; Ouyang, Jie

    2015-03-15

    The inhibitory effect and associated mechanisms of salicylic acid (SA) on the browning of fresh-cut Chinese chestnut were investigated. Shelled and sliced chestnuts were immersed in different concentrations of an SA solution, and the browning of the chestnut surface and interior were inhibited. The activities of polyphenol oxidase (PPO) and peroxidase (POD) extracted from chestnuts were measured in the presence and absence of SA. SA at concentrations higher than 0.3g/L delayed chestnut browning by significantly inhibiting the PPO activity (P<0.01), and the POD activity was not significantly affected (P>0.05). The binding and inhibition modes of SA with PPO and POD, determined by AUTODOCK 4.2 and Lineweaver-Burk plots, respectively, established SA as a competitive inhibitor of PPO. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Comparison of trichostatin A and valproic acid treatment regimens in a mouse model of kidney fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Beneden, Katrien, E-mail: kvbenede@vub.ac.be; Geers, Caroline; Pauwels, Marina

    Histone deacetylase (HDAC) inhibitors are promising new compounds for the therapy of fibrotic diseases. In this study we compared the effect of two HDAC inhibitors, trichostatin A and valproic acid, in an experimental model of kidney fibrosis. In mice, doxorubicin (adriamycin) can cause nephropathy characterized by chronic proteinuria, glomerular damage and interstitial inflammation and fibrosis, as seen in human focal segmental glomerulosclerosis. Two treatment regimens were applied, treatment was either started prior to the doxorubicin insult or delayed until a significant degree of proteinuria and fibrosis was present. Pre-treatment of trichostatin A significantly hampered glomerulosclerosis and tubulointerstitial fibrosis, as didmore » the pre-treatment with valproic acid. In contrast, the development of proteinuria was only completely inhibited in the pre-treated valproic acid group, and not in the pre-treated trichostatin A animals. In the postponed treatment with valproic acid, a complete resolution of established doxorubicin-induced proteinuria was achieved within three days, whereas trichostatin A could not correct proteinuria in such a treatment regimen. However, both postponed regimens have comparable efficacy in maintaining the kidney fibrosis to the level reached at the start of the treatments. Moreover, not only the process of fibrosis, but also renal inflammation was attenuated by both HDAC inhibitors. Our data confirm a role for HDACs in renal fibrogenesis and point towards a therapeutic potential for HDAC inhibitors. The effect on renal disease progression and manifestation can however be different for individual HDAC inhibitors. - Highlights: • Valproic acid is a potent antiproteinuric drug, whereas trichostatin A is not. • Trichostatin A and valproic acid reduce kidney fibrosis in doxorubicin nephropathy. • Both valproic acid and trichostatin A attenuate renal inflammation.« less

  12. Interactions between canola meal and flaxseed oil in the diets of White Lohmann hens on fatty acid profile and sensory characteristics of table eggs.

    PubMed

    Goldberg, Erin M; Ryland, Donna; Aliani, Michel; House, James D

    2016-08-01

    The current study was designed to assess the fatty acid composition and sensory attributes of eggs procured from hens consuming diets containing canola meal (CM) and/or flax oil (FO). A total of 96 group-caged White Lohmann hens received 1 of 4 isonitrogenous and isoenergetic diets for a period of 4 weeks. Diets were arranged in a 2 × 2 factorial design, containing 24% canola meal, 7.5% flax oil, both, or neither (control). All yolk fatty acids were affected by flax oil inclusion, with the exception of stearic acid (SA) and docosapentaenoic acid (DPA). Only SA was affected by CM inclusion. Additionally, significant interactions between CM and FO were observed for linoleic acid (LA) and total omega-6 polyunsaturated fatty acids (PUFA), with DPA approaching significance (P = 0.069). Trained panelists (n = 8) evaluated 7 aroma ('egg', 'creamy', 'buttery', 'salty', 'sweet', 'barny', and 'oceanic') and 6 flavor ('egg', 'creamy', 'buttery', 'salty', 'brothy', and 'oceanic') attributes of cooked egg product. No significant differences (P > 0.05) in aroma attributes were found between eggs from different dietary treatments. However, egg, creamy, buttery, and oceanic flavors were significantly different between the dietary treatments (P < 0.05). While oceanic flavor significantly increased with inclusion of FO, egg and creamy flavors showed a significant decrease (P < 0.05). Although CM addition alone did not result in significant sensory changes, the pairing of CM and FO resulted in even greater sensory changes than using FO alone, specifically with regard to egg flavor. Results from partial least squares analyses showed a strong association between oceanic flavor and omega-3 PUFA. Oppositely, egg, creamy, and buttery flavors were more correlated with the presence of omega-6 PUFA and palmitic acid. This experiment provides evidence that the interaction between CM and FO in the White Lohmann hen diet results in sensory changes of cooked eggs associated in

  13. Evaluation of the efficacy, tolerability, and safety of an over-the-counter acne regimen containing benzoyl peroxide and salicylic acid in subjects with acne.

    PubMed

    Kircik, Leon H; Gwazdauskas, Jennifer; Butners, Victoria; Eastern, Joseph; Green, Lawrence J

    2013-03-01

    Benzoyl peroxide (BPO) is a widely used over-the-counter (OTC) topical acne treatment often used in combination with salicylic acid (SA) to achieve better comedone control than that achieved with BPO alone. MaxClarity™ is an OTC acne treatment system comprising BPO and SA in an aqueous foam delivery vehicle, VersaFoam AF™. This paper describes 2 open-label, single-arm studies conducted to assess the efficacy, safety, tolerability, and patient preference of MaxClarity in the treatment of mild, moderate, and severe acne. Subjects applied MaxClarity twice daily for 8 weeks in study 402 and for 12 weeks in study 405. Reductions in all lesion types were seen throughout both studies. At week 8 (study 402), there was a mean reduction from baseline of -56.9 ± 32.7% in total lesions in subjects with mild, moderate, or severe acne. At week 12 (study 405), there was a reduction from baseline of -61.6 ± 22.0% in total lesions in subjects with moderate or severe acne. Overall, both studies demonstrated that MaxClarity is a generally well tolerated and effective treatment for mild, moderate, and severe acne.

  14. Antimicrobial activity of syringic acid against Cronobacter sakazakii and its effect on cell membrane.

    PubMed

    Shi, Chao; Sun, Yi; Zheng, Zhiwei; Zhang, Xiaorong; Song, Kaikuo; Jia, Zhenyu; Chen, Yifei; Yang, Miaochun; Liu, Xin; Dong, Rui; Xia, Xiaodong

    2016-04-15

    Syringic acid (SA) has been reported to exhibit antibacterial ability against various microorganisms, but little work has been done on its effect on Cronobacter sakazakii. In this study, minimum inhibitory concentrations (MICs) of SA against various C. sakazakii strains were determined. Moreover, changes in intracellular ATP concentration, intracellular pH (pHin), membrane potential and membrane integrity were measured to evaluate the influence of SA on cell membrane. Finally, field emission scanning electron microscope (FESEM) was used to assess the morphological changes of bacterial cells caused by SA. It was shown that the MICs of SA against all tested C. sakazakii strains were 5mg/mL. SA retarded bacterial growth, and caused cell membrane dysfunction, which was evidenced by intracellular ATP concentration decrease, pHin reduction, cell membrane hyperpolarization and changes in cellular morphology. These findings indicated that SA has potential to be developed as a natural preservative to control C. sakazakii in foods associated with this pathogen and prevent related infections. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Chloroethene dechlorination in acidic groundwater: Implications for combining fenton's treatment with natural attenuation

    USGS Publications Warehouse

    Bradley, Paul M.; Singletary , Michael A.; Chapelle, Francis H.

    2007-01-01

    A sulfuric acid leak in 1988 at a chloroethene-contaminated groundwater site at the Naval Air Station Pensacola has resulted in a long-term record of the behavior of chloroethene contaminants at low pH and a unique opportunity to assess the potential impact of source area treatment technologies, which involve acidification of the groundwater environment (e.g., Fenton's-based in situ chemical oxidation), on downgradient natural attenuation processes. The greater than 75 percent decrease in trichloroethene (TCE) concentrations and the shift in contaminant composition toward predominantly reduced daughter products (dichloroethene [DCE] and vinyl chloride [VC]) that were observed along a 30-m groundwater flow path characterized by highly acidic conditions (pH = 3.5 ± 0.4) demonstrated that chloroethene reductive dechlorination can continue to be efficient under persistent acidic conditions. The detection of Dehalococcoides-type bacteria within the sulfuric acid/chloroethene co-contaminant plume was consistent with biotic chloroethene reductive dechlorination. Microcosm studies conducted with 14C-TCE and 14C-VC confirmed biotic reductive dechlorination in sediment collected from within the sulfuric acid/chloroethene co-contaminant plume. Microcosms prepared with sediment from two other locations within the acid plume, however, demonstrated only a limited mineralization to 14CO2 and 14CO, which was attributed to abiotic degradation because no significant differences were observed between experimental and autoclaved control treatments. These results indicated that biotic and abiotic mechanisms contributed to chloroethene attenuation in the acid plume at NAS Pensacola and that remediation techniques involving acidification of the groundwater environment (e.g., Fenton's-based source area treatment) do not necessarily preclude efficient chloroethene degradation.

  16. Antioxidant capacity and amino acid profile of millet bran wine and the synergistic interaction between major polyphenols.

    PubMed

    Guo, XiaoXuan; Sha, XiaoHong; Rahman, Ebeydulla; Wang, Yong; Ji, BaoPing; Wu, Wei; Zhou, Feng

    2018-03-01

    Millet bran, the by-product of millet processing industry, contains an abundance of phytochemicals, especially polyphenols. The main objective of this study was brewing antioxidant wine from millet bran, as well as the nutritional evaluation. The total polyphenol content of wine samples was determined by Folin-Ciocalteu colorimetric method, and the antioxidant capacity was evaluated by DPPH radical-scavenging capacity, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP). Results showed that millet bran wine (MBW) contained as much as six times of total polyphenols compared with millet wine (MW), and performed considerably stronger antioxidant activity in DPPH, TEAC and FRAP assays. More than sixfold of total amino acids (AA) were found in MBW than in MW. Moreover, the indispensable AA and functional AA were also abundant in MBW. The major polyphenol compounds in MBW were identified using HPLC, including vanillic acid, syringic acid (SA), p -coumaric acid (CA) and ferulic acid (FA). They exhibited synergism in the antioxidant assays, especially the combinations of SA and CA, SA and FA. This study not only provides evidence for MBW as a nutraceutical with antioxidant activity, but also opens new avenues in the area of making comprehensive utilization of agricultural by-products.

  17. How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans?

    PubMed

    Dempsey, D'Maris Amick; Klessig, Daniel F

    2017-03-23

    Salicylic acid (SA) is an important plant hormone that regulates many aspects of plant growth and development, as well as resistance to (a)biotic stress. Efforts to identify SA effector proteins have revealed that SA binds to and alters the activity of multiple plant proteins-this represents a shift from the paradigm that hormones mediate their functions via one or a few receptors. SA and its derivatives also have multiple targets in animals; some of these proteins, like their plant counterparts, are associated with pathological processes. Together, these findings suggest that SA exerts its defense-associated effects in both kingdoms via a large number of targets.

  18. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum)

    PubMed Central

    Li, Yunzhou; Qin, Lei; Zhao, Jingjing; Muhammad, Tayeb; Cao, Hehe; Li, Hailiang; Zhang, Yan; Liang, Yan

    2017-01-01

    Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3) in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L.) infected with tomato yellow leaf curl virus (TYLCV). There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA) and jasmonic acid (JA) defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA) both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II) and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways. PMID:28222174

  19. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum).

    PubMed

    Li, Yunzhou; Qin, Lei; Zhao, Jingjing; Muhammad, Tayeb; Cao, Hehe; Li, Hailiang; Zhang, Yan; Liang, Yan

    2017-01-01

    Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3) in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L.) infected with tomato yellow leaf curl virus (TYLCV). There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA) and jasmonic acid (JA) defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA) both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II) and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways.

  20. The Efficacy and Safety of Azelaic Acid 15% Foam in the Treatment of Facial Acne Vulgaris.

    PubMed

    Hashim, Peter W; Chen, Tinley; Harper, Julie C; Kircik, Leon H

    2018-06-01

    Azelaic acid demonstrates anti-inflammatory, anti-oxidative, anti-comedogenic, and anti-microbial effects. Azelaic acid 20% cream is currently approved for the treatment of acne vulgaris, and azelaic acid 15% foam has recently been approved for rosacea. Given the favorable tolerability profile of foam preparations, it is reasonable to assume that azelaic acid 15% foam could serve as a viable treatment option for facial acne. To examine the efficacy and safety of azelaic acid 15% foam in the treatment of moderate-to-severe facial acne Methods: Twenty subjects with moderate-to-severe facial acne vulgaris were enrolled in this two-center, open-label pilot study. All study subjects were treated with azelaic acid 15% foam for 16 weeks. Efficacy analyses were based on the change in facial investigator global assessment (FIGA) and changes in total, inflammatory, non-inflammatory lesion counts between baseline and week 16. There was a significant reduction in FIGA scores from baseline to week 16 (p = .0004), with 84% of subjects experiencing at least a 1 grade improvement, and 63% of subjects achieving a final grade of Clear or Almost Clear. All subjects experienced reductions in inflammatory and total lesion counts by week 16, and 89% of subjects experienced reductions in non-inflammatory lesions. Azelaic acid 15% foam was well tolerated, with almost all instances of erythema, dryness, peeling, oiliness, pruritus, and burning being of mild or trace degree, and most adverse effects resolving by the end of the study. Azelaic acid 15% foam is effective and safe in the treatment of facial acne vulgaris. Given the convenience of foam vehicles, azelaic acid 15% foam should be considered as a viable treatment option for this condition. J Drugs Dermatol. 2018;17(6):641-645.

  1. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    PubMed Central

    Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738

  2. Intellectual Property and Strategic Agreements (IP/SA) | FNLCR Staging

    Cancer.gov

    IP/SA handles all invention issues including patents and copyrights. All employee inventionreports are filed through the IP/SA office for all activities under the OTS contract.Additionally,request for assignment ofcopyri

  3. Reduction of circulating FABP4 level by treatment with omega-3 fatty acid ethyl esters.

    PubMed

    Furuhashi, Masato; Hiramitsu, Shinya; Mita, Tomohiro; Omori, Akina; Fuseya, Takahiro; Ishimura, Shutaro; Watanabe, Yuki; Hoshina, Kyoko; Matsumoto, Megumi; Tanaka, Marenao; Moniwa, Norihito; Yoshida, Hideaki; Ishii, Junnichi; Miura, Tetsuji

    2016-01-12

    Fatty acid-binding protein 4 (FABP4/A-FABP/aP2) mainly expressed in adipocytes is secreted and acts as an adipokine. Increased circulating FABP4 level is associated with obesity, insulin resistance and atherosclerosis. However, little is known about the modulation of serum FABP4 level by drugs including anti-dyslipidemic agents. Patients with dyslipidemia were treated with omega-3 fatty acid ethyl esters (4 g/day; n = 14) containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for 4 weeks. Serum FABP4 level was measured before and after treatment. Expression and secretion of FABP4 were also examined in mouse 3T3-L1 adipocytes treated with EPA or DHA. Treatment with omega-3 fatty acid ethyl esters significantly decreased triglycerides and serum FABP4 level (13.5 ± 1.5 vs. 11.5 ± 1.1 ng/ml, P = 0.017). Change in FABP4 level by omega-3 fatty acids was negatively correlated with change in levels of EPA + DHA (r = -0.643, P = 0.013), EPA (r = -0.540, P = 0.046) and DHA (r = -0.650, P = 0.011) but not change in the level of triglycerides or other fatty acid composition. Treatment of 3T3-L1 adipocytes with EPA or DHA had no effect on short-term (2 h) secretion of FABP4. However, gene expression and long-term (24 h) secretion of FABP4 were significantly reduced by treatment with EPA or DHA. Omega-3 fatty acids decrease circulating FABP4 level, possibly by reducing expression and consecutive secretion of FABP4 in adipocytes. Reducing FABP4 level might be involved in suppression of cardiovascular events by omega-3 fatty acids.

  4. Production of succinic acid by metabolically engineered microorganisms.

    PubMed

    Ahn, Jung Ho; Jang, Yu-Sin; Lee, Sang Yup

    2016-12-01

    Succinic acid (SA) has been recognized as one of the most important bio-based building block chemicals due to its numerous potential applications. For the economical bio-based production of SA, extensive research works have been performed on developing microbial strains by metabolic engineering as well as fermentation and downstream processes. Here we review metabolic engineering strategies applied for bio-based production of SA using representative microorganisms, including Saccharomyces cerevisiae, Pichia kudriavzevii, Escherichia coli, Mannheimia succiniciproducens, Basfia succiniciproducens, Actinobacillus succinogenes, and Corynebacterium glutamicum. In particular, strategies employed for developing engineered strains of these microorganisms leading to the best performance indices (titer, yield, and productivity) are showcased based on the published papers as well as patents. Those processes currently under commercialization are also analyzed and future perspectives are provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways.

    PubMed

    Jogaiah, Sudisha; Abdelrahman, Mostafa; Tran, Lam-Son Phan; Ito, Shin-Ichi

    2018-04-01

    In the present study, we investigated the role of Trichoderma virens (TriV_JSB100) spores or cell-free culture filtrate in the regulation of growth and activation of the defence responses of tomato (Solanum lycopersicum) plants against Fusarium oxysporum f. sp. lycopersici by the development of a biocontrol-plant-pathogen interaction system. Two-week-old tomato seedlings primed with TriV_JSB100 spores cultured on barley grains (BGS) or with cell-free culture filtrate (CF) were inoculated with Fusarium pathogen under glasshouse conditions; this resulted in significantly lower disease incidence in tomato Oogata-Fukuju plants treated with BGS than in those treated with CF. To dissect the pathways associated with this response, jasmonic acid (JA) and salicylic acid (SA) signalling in BGS- and CF-induced resistance was evaluated using JA- and SA-impaired tomato lines. We observed that JA-deficient mutant def1 plants were susceptible to Fusarium pathogen when they were treated with BGS. However, wild-type (WT) BGS-treated tomato plants showed a higher JA level and significantly lower disease incidence. SA-deficient mutant NahG plants treated with CF were also found to be susceptible to Fusarium pathogen and displayed low SA levels, whereas WT CF-treated tomato plants exhibited moderately lower disease levels and substantially higher SA levels. Expression of the JA-responsive defensin gene PDF1 was induced in WT tomato plants treated with BGS, whereas the SA-inducible pathogenesis-related protein 1 acidic (PR1a) gene was up-regulated in WT tomato plants treated with CF. These results suggest that TriV_JSB100 BGS and CF differentially induce JA and SA signalling cascades for the elicitation of Fusarium oxysporum resistance in tomato. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  6. The efficacy and safety of epsilon-aminocaproic acid treatment in patients with cirrhosis and hyperfibrinolysis.

    PubMed

    Gunawan, B; Runyon, B

    2006-01-01

    Patients with decompensated cirrhosis are at risk for hyperfibrinolysis; this is potentially fatal. epsilon-aminocaproic acid has been used to treat patients with hyperfibrinolysis; however, the data about its benefit in the setting of cirrhosis are minimal. To analyse the efficacy of epsilon-aminocaproic acid and its safety in cirrhotic patients with hyperfibrinolysis. All patients with an abnormal euglobin lysis time who were admitted to Rancho Los Amigos Medical Center from 1 January 2001 to 31 December 2002 were included in the study. Their medical records were reviewed and analysed. There were 60 cirrhotic patients with shortened euglobin lysis time. Fifty-two patients received epsilon-aminocaproic acid. Of the 52 patients, seven had one or more bleeding episodes with the subcutaneous or soft tissue bleeding as the most common indication for epsilon-aminocaproic acid use. Of the 37 patients, 34 (92%) had improvement or resolution of their bleeding. Only two (3%) patients had epsilon-aminocaproic acid treatment discontinued because of minor side effects, rash and lightheadedness. There were no thromboembolic complications of treatment. epsilon-aminocaproic acid was found to be effective and safe for treatment of hyperfibrinolysis in patients with cirrhosis.

  7. Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense.

    PubMed

    Fukami, Josiane; Ollero, Francisco Javier; de la Osa, Clara; Valderrama-Fernández, Rocio; Nogueira, Marco Antonio; Megías, Manuel; Hungria, Mariangela

    2018-06-07

    We investigated the effects of Azospirillum brasilense strains Ab-V5 and Ab-V6 in the induction of mechanisms of systemic acquired resistance (SAR) and induced system resistance (ISR) on maize (Zea mays L.) plants. Under normal growth conditions, the treatments consisted of the standard inoculation of cells at sowing, and leaf spray of cells or their metabolites at the V2.5 growth stage; under saline stress (170 mM NaCl), the treatment consisted of standard single and co-inoculation of A. brasilense and Rhizobium tropici. The main compounds in the Azospirillum metabolites were identified as indole-3-acetic acid (IAA) and salicylic acid (SA). Under normal conditions, A. brasilense cells applied at sowing or by leaf spray increased the activities of catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) in leaves, and of ascorbate peroxidase (APX) in roots; however, interestingly, in general the highest activities were observed by leaf spray of metabolites. Under normal conditions, the highest levels of salicylic acid (SA) and jasmonic acid (JA) were achieved in leaves by leaf spray of metabolites, of SA in roots by leaf spray of cells, and of JA in roots by standard inoculation and leaf spray of metabolites. Under saline stress, plant protection occurred via SA and abscisic acid (ABA), but not JA. In general, inoculation resulted in further increases in SA in leaves and roots, and ABA in leaves. We hypothesize that A. brasilense confers protection to maize plants by simultaneous induction of JA and SA pathways, and, under saline stressing conditions, by SA and ABA pathways.

  8. Biochemical changes in grape rootstocks resulted from humic acid treatments in relation to nematode infection.

    PubMed

    Kesba, Hosny H; El-Beltagi, Hossam S

    2012-04-01

    To investigate the effect of humic acid on nematode infected, resistant and susceptible grapes in relation to lipid peroxidation and antioxidant mechanisms on selected biochemical parameters known as proactive substances. The grape rootstocks, superior, superior/freedom and freedom were reacted differently to Meloidogyne incognita and Rotylenchulus reniformis according to rootstock progenitor. Two weeks after inoculation, two commercial products of humic acid were applied at the rate of (2, 4 mL or grams/plant) as soil drench. After 4 months, nematode soil populations were extracted and counted. A subsample of roots from each plant was stained and gall numbers, embedded stages per root were calculated, final population, nematode build up (Pf/Pi), average of eggs/eggmass were estimated. Subsamples of fresh root of each treatment were chemically analyzed. Freedom reduced significantly the nematode criteria and build up. Humic acid granules appeared to be more suppressive to nematode build up on superior and the higher dose on superior/freedom than liquid treatments. On freedom, all treatments reduced significantly the nematode build up regardless to the material nature. The higher dose was more effective than the lower one. As a result of humic acid applications, the malondialdehyde (MDA) and H2O2 contents were significantly reduced after humic acid treatments while the antioxidant compounds glutathione (GSH), ascorbic acid (ASA) and total phenol contents were significantly increased when compared with check. Antioxidant defense enzymes ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and polyphenol oxidase (PPO)showed significant increase in their specific activities in treated plants compared with nematode treated check. Humic acid treatments improve the yield of grape by increasing the contents of antioxidant compounds and the specific activities of antioxidant enzymes.

  9. Biochemical changes in grape rootstocks resulted from humic acid treatments in relation to nematode infection

    PubMed Central

    Kesba, Hosny H; El-Beltagi, Hossam S

    2012-01-01

    Objective To investigate the effect of humic acid on nematode infected, resistant and susceptible grapes in relation to lipid peroxidation and antioxidant mechanisms on selected biochemical parameters known as proactive substances. Methods The grape rootstocks, superior, superior/freedom and freedom were reacted differently to Meloidogyne incognita and Rotylenchulus reniformis according to rootstock progenitor. Two weeks after inoculation, two commercial products of humic acid were applied at the rate of (2, 4 mL or grams/plant) as soil drench. After 4 months, nematode soil populations were extracted and counted. A subsample of roots from each plant was stained and gall numbers, embedded stages per root were calculated, final population, nematode build up (Pf/Pi), average of eggs/eggmass were estimated. Subsamples of fresh root of each treatment were chemically analyzed. Results Freedom reduced significantly the nematode criteria and build up. Humic acid granules appeared to be more suppressive to nematode build up on superior and the higher dose on superior/freedom than liquid treatments. On freedom, all treatments reduced significantly the nematode build up regardless to the material nature. The higher dose was more effective than the lower one. As a result of humic acid applications, the malondialdehyde (MDA) and H2O2 contents were significantly reduced after humic acid treatments while the antioxidant compounds glutathione (GSH), ascorbic acid (ASA) and total phenol contents were significantly increased when compared with check. Antioxidant defense enzymes ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and polyphenol oxidase (PPO)showed significant increase in their specific activities in treated plants compared with nematode treated check. Conclusions Humic acid treatments improve the yield of grape by increasing the contents of antioxidant compounds and the specific activities of antioxidant enzymes. PMID:23569915

  10. Effects of acid etching and adhesive treatments on host-derived cysteine cathepsin activity in dentin.

    PubMed

    Zhang, Wenhao; Yang, Weixiang; Wu, Shuyi; Zheng, Kaibin; Liao, Weili; Chen, Boli; Yao, Ke; Liang, Guobin; Li, Yan

    2014-10-01

    To analyze the effects of different processes during bonding on endogenous cysteine cathepsin activity in dentin. Dentin powder, prepared from extracted human third molars, was divided into 10 groups. Two lots of dentin powder were used to detect the effects of the procedure of protein extraction on endogenous cathepsin activity. The others were used to study effects of different acid-etching or adhesive treatments on enzyme activity. Concentrations of 37% phosphoric acid or 10% phosphoric acid, two etch-and-rinse adhesive systems, and two self-etching adhesive systems were used as dentin powder treatments. The untreated mineralized dentin powder was set as the control. After treatment, the proteins of each group were extracted. The total cathepsin activity in the extracts of each group was monitored with a fluorescence reader. In the control group, there were no significant differences in cathepsin activity between the protein extract before EDTA treatment and the protein extract after EDTA treatment (p > 0.05). The cathepsin activities of the three different extracts in the 37% phosphoric acid-treated group were different from each other (p < 0.05). The two acid-etching groups and two etch-and-rinse groups showed significant enzyme activity reduction vs the control group (p < 0.05). There were no significant differences between those four groups (p > 0.05). Treating the dentin powder with any of the two self-etching adhesives resulted in an increase in cathepsin activity (p < 0.05). The activity of cysteine cathepsins can be detected in dentin powder. Treatment with EDTA during protein extraction exerted an influence on cathepsin activity. Acid etching or etch-and-rinse adhesive systems may reduce the activity of endogenous cathepsins in dentin. Self-etching adhesive systems may increase the enzyme activity.

  11. Diagnosis and treatment of simple acid-base disorders.

    PubMed

    Ayers, Phil; Warrington, Laurie

    2008-01-01

    The ability to diagnose and treat acid-base disorders is an important component in the practice of the nutrition support clinician. A complete understanding of the basic principles of metabolic and respiratory disorders allows the practitioner to formulate educated decisions regarding fluids, parenteral nutrition salts, and the management of electrolytes. This review will discuss the diagnosis and treatment of common metabolic and respiratory disorders encountered in nutrition support practice.

  12. 76 FR 13063 - Airworthiness Directives; EUROCOPTER FRANCE Model SA330F, SA330G, and SA330J Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... beyond the end limit (``tall pilot'' position). This resulted in the separation of the pedal adjustment... the ``tall pilot'' stop nut was damaged, most likely due to aging of the adhesive. The nut came loose... the pedal unit on a SA 330 helicopter, the copilot set the position beyond the end limit (``tall pilot...

  13. Z-sinapinic acid: the change of the stereochemistry of cinnamic acids as rational synthesis of a new matrix for carbohydrate MALDI-MS analysis.

    PubMed

    Salum, María L; Itovich, Lucia M; Erra-Balsells, Rosa

    2013-11-01

    Successful application of matrix-assisted laser desorption/ionization (MALDI) MS started with the introduction of efficient matrices such as cinnamic acid derivatives (i.e. 3,5-dimethoxy-4-hydroxycinnamic acid, SA; α-cyano-4-hydroxycinnamic acid). Since the empirical founding of these matrices, other commercial available cinnamic acids with different nature and location of substituents at benzene ring were attempted. Rational design and synthesis of new cinnamic acids have been recently described too. Because the presence of a rigid double bond in its molecule structure, cinnamic acids can exist as two different geometric isomers, the E-form and Z-form. Commercial available cinnamic acids currently used as matrices are the geometric isomers trans or E (E-cinnamic and trans-cinnamic acids). As a new rational design of MALDI matrices, Z-cinnamic acids were synthesized, and their properties as matrices were studied. Their performance was compared with that of the corresponding E-isomer and classical crystalline matrices (3,5-dihydroxybenzoic acid; norharmane) in the analysis of neutral/sulfated carbohydrates. Herein, we demonstrate the outstanding performance for Z-SA. Sulfated oligosaccharides were detected in negative ion mode, and the dissociation of sulfate groups was almost suppressed. Additionally, to better understand the quite different performance of each geometric isomer as matrix, the physical and morphological properties as well as the photochemical stability in solid state were studied. The influence of the E/Z photoisomerization of the matrix during MALDI was evaluated. Finally, molecular modeling (density functional theory study) of the optimized geometry and stereochemistry of E-cinnamic and Z-cinnamic acids revealed some factors governing the analyte-matrix interaction. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Implications of terminal oxidase function in regulation of salicylic acid on soybean seedling photosynthetic performance under water stress.

    PubMed

    Tang, Yanping; Sun, Xin; Wen, Tao; Liu, Mingjie; Yang, Mingyan; Chen, Xuefei

    2017-03-01

    The aim of this study is to investigate whether exogenous application of salicylic acid (SA) could modulate the photosynthetic capacity of soybean seedlings in water stress tolerance, and to clarify the potential functions of terminal oxidase (plastid terminal oxidase (PTOX) and alternative oxidase (AOX)) in SA' s regulation on photosynthesis. The effects of SA and water stress on gas exchange, pigment contents, chlorophyll fluorescence, enzymes (guaiacol peroxidase (POD; EC 1.11.1.7), superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and NADP-malate dehydrogenase (NADP-MDH; EC1.1.1.82)) activity and transcript levels of PTOX, AOX1, AOX2a, AOX2b were examined in a hydroponic cultivation system. Results indicate that water stress significantly decreased the photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (E), pigment contents (Chla + b, Chla/b, Car), maximum quantum yield of PSⅡphotochemistry (Fv/Fm), efficiency of excitation capture of open PSⅡcenter (Fv'/Fm'), quantum efficiency of PSⅡphotochemistry (ΦPSⅡ), photochemical quenching (qP), and increased malondialdehyde (MDA) content and the activity of all the enzymes. SA pretreatment led to significant decreases in Ci and MDA content, and increases in Pn, Gs, E, pigment contents, Fv/Fm, Fv'/Fm', ΦPSⅡ, qP, and the activity of all the enzymes. SA treatment and water stress alone significantly up-regulated the expression of PTOX, AOX1 and AOX2b. SA pretreatment further increased the transcript levels of PTOX and AOX2b of soybean seedling under water stress. These results indicate that SA application alleviates the water stress-induced decrease in photosynthesis may mainly through maintaining a lower reactive oxygen species (ROS) level, a greater PSⅡefficiency, and an enhanced alternative respiration and chlororespiration. PTOX and AOX may play important roles in SA-mediated resistance to water stress. Copyright © 2016

  15. Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/Botrytis Pathosystem.

    PubMed

    Zhang, Wei; Corwin, Jason A; Copeland, Daniel; Feusier, Julie; Eshbaugh, Robert; Chen, Fang; Atwell, Susana; Kliebenstein, Daniel J

    2017-11-01

    To respond to pathogen attack, selection and associated evolution has led to the creation of plant immune system that are a highly effective and inducible defense system. Central to this system are the plant defense hormones jasmonic acid (JA) and salicylic acid (SA) and crosstalk between the two, which may play an important role in defense responses to specific pathogens or even genotypes. Here, we used the Arabidopsis thaliana - Botrytis cinerea pathosystem to test how the host's defense system functions against genetic variation in a pathogen. We measured defense-related phenotypes and transcriptomic responses in Arabidopsis wild-type Col-0 and JA- and SA-signaling mutants, coi1-1 and npr1-1 , individually challenged with 96 diverse B. cinerea isolates. Those data showed genetic variation in the pathogen influences on all components within the plant defense system at the transcriptional level. We identified four gene coexpression networks and two vectors of defense variation triggered by genetic variation in B. cinerea This showed that the JA and SA signaling pathways functioned to constrain/canalize the range of virulence in the pathogen population, but the underlying transcriptomic response was highly plastic. These data showed that plants utilize major defense hormone pathways to buffer disease resistance, but not the metabolic or transcriptional responses to genetic variation within a pathogen. © 2017 American Society of Plant Biologists. All rights reserved.

  16. Treatment of purified terephthalic acid wastewater using a bio-waste-adsorbent bagasse fly ash (BFA).

    PubMed

    Verma, Shilpi; Prasad, Basheshwar; Mishra, Indra Mani

    2017-01-01

    Purified terephthalic acid (PTA) plant of a petrochemical unit generates wastewater having high pollution load. Acid treatment of this wastewater reduces the chemical oxygen demand (COD) load by more than 50%, still leaving substantial COD load (>1500 mg/L) which should be removed. The present study reports on the use of a bio-waste-adsorbent bagasse fly ash (BFA) for the reduction of COD and other recalcitrant acids from this wastewater. The BFA showed basic character and was mesoporous with a BET specific surface area of 82.4 m 2 /g. Optimum conditions for the adsorptive treatment of acid-pretreated PTA wastewater were found to be as follows: initial pH (pH i ) = 4, BFA dosage = 15 g/L, and contact time = 3 h. Adsorption treatment resulted in 58.2% removal of COD, 96.3% removal of terephthalic acid (TA), and 99.9% removal of benzoic acid (BA). TA and BA were removed from the pretreated PTA wastewater through precipitation and sedimentation of un-dissociated acid molecules inside the mesopores of the BFA. The results showed that the COD removed by the BFA followed pseudo-second-order kinetics. Equilibrium sorption data were best correlated by the Freundlich isotherm. The process of adsorptive removal of COD was found to be exothermic. The change in the Gibbs free energy was found to be negative, suggesting that the adsorption process is spontaneous and feasible for the treatment of PTA wastewater.

  17. Enhanced antiamyloidal activity of hydroxy cinnamic acids by enzymatic esterification with alkyl alcohols.

    PubMed

    Kondo, Hazuki; Sugiyama, Haruka; Katayama, Shigeru; Nakamura, Soichiro

    2014-01-01

    Lipophilic derivatives of hydroxyl cinnamic acids (HCAs) including caffeic acid (CA), ferulic acid, sinapic acid (SA), and chlorogenic acid were synthesized by esterification with butanol, octanol, or hexadecanol catalyzed by the lipase from Candida antarctica to investigate the effect of lipophilicity on their antiamyloidal activity assessed by the inhibitory activities toward fibrillization of amyloid β (Aβ) peptide. Among them, CA showed the highest activity at 50 μM, reducing the amyloid fibril formation of Aβ to 34.4 ± 6.8%. The antiamyloidal effects of HCAs were enhanced by esterification with alkyl alcohols, and the longer alkyl chain tended to be more effective except for SA. Aβ fibril formation was suppressed by the hexadecyl ester of CA, which was reduced to 8.8 ± 2.3%. In contrast, those of octyl and butyl esters were 19.3 ± 2.3% and 41.6 ± 6.1%, respectively. These results show that lipophilicity plays an important role in the antiamyloidal activities of esterified phenolic compounds. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  18. Salicylic-Acid-Induced Chilling- and Oxidative-Stress Tolerance in Relation to Gibberellin Homeostasis, C-Repeat/Dehydration-Responsive Element Binding Factor Pathway, and Antioxidant Enzyme Systems in Cold-Stored Tomato Fruit.

    PubMed

    Ding, Yang; Zhao, Jinhong; Nie, Ying; Fan, Bei; Wu, Shujuan; Zhang, Yu; Sheng, Jiping; Shen, Lin; Zhao, Ruirui; Tang, Xuanming

    2016-11-02

    Effects of salicylic acid (SA) on gibberellin (GA) homeostasis, C-repeat/dehydration-responsive element binding factor (CBF) pathway, and antioxidant enzyme systems linked to chilling- and oxidative-stress tolerance in tomato fruit were investigated. Mature green tomatoes (Solanum lycopersicum L. cv. Moneymaker) were treated with 0, 0.5, and 1 mM SA solution for 15 min before storage at 4 °C for 28 days. In comparison to 0 or 0.5 mM SA, 1 mM SA significantly decreased the chilling injury (CI) index in tomato fruit. In the SA-treated fruit, the upregulation of GA biosynthetic gene (GA3ox1) expression was followed by gibberellic acid (GA 3 ) surge and DELLA protein degradation. CBF1 participated in the SA-modulated tolerance and stimulated the expression of GA catabolic gene (GA2ox1). Furthermore, 1 mM SA enhanced activities of antioxidant enzymes and, thus, reduced reactive oxygen species accumulation. Our findings suggest that SA might protect tomato fruit from CI and oxidative damage through regulating GA metabolism, CBF1 gene expression, and antioxidant enzyme activities.

  19. Jasmonic and salicylic acid response in the fern Azolla filiculoides and its cyanobiont.

    PubMed

    de Vries, Sophie; de Vries, Jan; Teschke, Hendrik; von Dahlen, Janina K; Rose, Laura E; Gould, Sven B

    2018-01-03

    Plants sense and respond to microbes utilizing a multilayered signalling cascade. In seed plants, the phytohormones jasmonic and salicylic acid (JA and SA) are key denominators of how plants respond to certain microbes. Their interplay is especially well-known for tipping the scales in plants' strategies of dealing with phytopathogens. In non-angiosperm lineages, the interplay is less well understood, but current data indicate that it is intertwined to a lesser extent and the canonical JA/SA antagonism appears to be absent. Here, we used the water fern Azolla filiculoides to gain insights into the fern's JA/SA signalling and the molecular communication with its unique nitrogen fixing cyanobiont Nostoc azollae, which the fern inherits both during sexual and vegetative reproduction. By mining large-scale sequencing data, we demonstrate that Azolla has most of the genetic repertoire to produce and sense JA and SA. Using qRT-PCR on the identified biosynthesis and signalling marker genes, we show that Azolla is responsive to exogenously applied SA. Furthermore, exogenous SA application influenced the abundance and gene expression of Azolla's cyanobiont. Our data provide a framework for JA/SA signalling in ferns and suggest that SA might be involved in Azolla's communication with its vertically inherited cyanobiont. © 2018 John Wiley & Sons Ltd.

  20. Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity.

    PubMed

    Ji, Yingbin; Liu, Jian; Xing, Da

    2016-09-01

    In plants, extensive efforts have been devoted to understanding the crosstalk between salicylic acid (SA) and jasmonic acid (JA) signaling in pathogen defenses, but this crosstalk has scarcely been addressed during senescence. In this study, the effect of SA application on methyl jasmonate (MeJA)-induced leaf senescence was assessed. We found that low concentrations of SA (1-50 μM) played a delayed role against the senescence promoted by MeJA. Furthermore, low concentrations of SA enhanced plant antioxidant defenses and restricted reactive oxygen species (ROS) accumulation in MeJA-treated leaves. When applied simultaneously with MeJA, low concentrations of SA triggered a nitric oxide (NO) burst, and the elevated NO levels were linked to the nitric oxide associated 1 (NOA1)-dependent pathway via nitric oxide synthase (NOS) activity. The ability of SA to up-regulate plant antioxidant defenses, reduce ROS accumulation, and suppress leaf senescence was lost in NO-deficient Atnoa1 plants. In a converse manner, exogenous addition of NO donors increased the plant antioxidant capacity and lowered the ROS levels in MeJA-treated leaves. Taken together, the results indicate that SA at low concentrations counteracts MeJA-induced leaf senescence through NOA1-dependent NO signaling and strengthening of the antioxidant defense. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Avian and human influenza virus compatible sialic acid receptors in little brown bats.

    PubMed

    Chothe, Shubhada K; Bhushan, Gitanjali; Nissly, Ruth H; Yeh, Yin-Ting; Brown, Justin; Turner, Gregory; Fisher, Jenny; Sewall, Brent J; Reeder, DeeAnn M; Terrones, Mauricio; Jayarao, Bhushan M; Kuchipudi, Suresh V

    2017-04-06

    Influenza A viruses (IAVs) continue to threaten animal and human health globally. Bats are asymptomatic reservoirs for many zoonotic viruses. Recent reports of two novel IAVs in fruit bats and serological evidence of avian influenza virus (AIV) H9 infection in frugivorous bats raise questions about the role of bats in IAV epidemiology. IAVs bind to sialic acid (SA) receptors on host cells, and it is widely believed that hosts expressing both SA α2,3-Gal and SA α2,6-Gal receptors could facilitate genetic reassortment of avian and human IAVs. We found abundant co-expression of both avian (SA α2,3-Gal) and human (SA α2,6-Gal) type SA receptors in little brown bats (LBBs) that were compatible with avian and human IAV binding. This first ever study of IAV receptors in a bat species suggest that LBBs, a widely-distributed bat species in North America, could potentially be co-infected with avian and human IAVs, facilitating the emergence of zoonotic strains.

  2. [Efficacy of hyaluronic acid in the treatment of chronic gingivitis in children].

    PubMed

    Igić, Marija; Mihailović, Dragan; Kesić, Ljiljana; Apostolović, Mirjana; Kostadinović, Ljiljana; Janjić, Olivera Tricković; Milasin, Jelena

    2011-12-01

    Gingivitis is a common occurrence in children and may well be thought as a risk factor for the appearance and progression of the diseases of parodontal tissues. It is thus necessary to react in a timely and adequate fashion to prevent the disease to become serious and produce parodontopathy. The aim of the study was to establish the efficacy of hyaluronic acid in the treatment of chronic gingivitis in children. The study enrolled 130 children with permanent dentition. All of the examinees were divided into three groups: group I--50 patients with chronic gingivitis in which only the basic treatment was applied; group II--50 patients with chronic gingivitis in which hyaluronic acid was applied in addition to basic treatment; group III--30 examinees with healthy gingiva (control group). Assessment of oral hygiene and status of the gingiva and parodontium was done using the appropriate indexes before and after the treatment. Inflammation of the gingiva was monitored by way of cytomorphometric studies. The pretreatment values of the plaque index (PI) were high: in the group I PI was 1.94; in the group II PI was 1.68. After the treatment, the PI value was reduced to null in both groups (PI = 0). In the group III PI was 0.17. The bleeding index (B1) in the group I was 2.02 before and 0.32 after the treatment; the BI value in the group II was 1.74 before and 0.16 after the treatment. In the group III BI was 0. In the group I, the Community Periodontal Index of Treatment Needs (CPITN) was 1.66 before and 0.32 after the treatment; in the group II, the CPITN value was 1.5 before and 0.24 after the treatment. In the group III, the CPITN value was 0. In the group I, the size of the nuclei of the stratified squamous epithelium of the gingiva was reduced, although not so much as the nuclear size in the group II of examinees. CONCLUSION. Basic treatment is able to successfully treat chronic gingivitis in children. The use of hyaluronic acid together with the basic treatment can

  3. Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants.

    PubMed

    Subramanian, Gokulakrishnan; Madras, Giridhar

    2016-11-01

    The identification of iron chelates that can enhance photo-Fenton degradation is of great interest in the field of advanced oxidation process. Saccharic acid (SA) is a polyhydroxy carboxylic acid and completely non-toxic. Importantly, it can effectively bind Fe(III) as well as induce photoreduction of Fe(III). Despite having these interesting properties, the effect of SA on photo-Fenton degradation has not been studied. Herein, we demonstrate the first assessment of SA as an iron chelate in photo-Fenton process using methylene blue (MB) as a model organic contaminant. Our results demonstrate that SA has the ability to (i) enhance the photo-Fenton degradation of MB by about 11 times at pH 4.5 (ii) intensify photochemical reduction of Fe(III) to Fe(II) by about 17 times and (iii) accelerate the rate of consumption of H 2 O 2 in photo-Fenton process by about 5 times (iv) increase the TOC reduction by about 2 times and (v) improve the photo-Fenton degradation of MB in the presence of a variety of common inorganic ions and organic matter. The influential properties of SA on photo-Fenton degradation is attributed to the efficient photochemical reduction of Fe(III) via LMCT (ligand to metal charge transfer reaction) to Fe(II), which then activated H 2 O 2 to generate OH and accelerated photo-Fenton degradation efficiency. Moreover, the effect of operational parameters such as oxidant: contaminant (H 2 O 2 : MB) ratio, catalyst: contaminant (Fe(III)SA: MB) ratio, Fe(III): SA stoichiometry and pH on the degradation of MB by photo-Fenton in the presence of SA is demonstrated. Importantly, SA assisted photo-Fenton caused effective degradation of MB and 4-Chlorophenol under natural sunlight irradiation in natural water matrix. The findings strongly support SA as a deserving iron chelate to enhance photo-Fenton degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of ursodeoxycholic acid treatment on the altered progesterone and bile acid homeostasis in the mother-placenta-foetus trio during cholestasis of pregnancy

    PubMed Central

    Estiú, Maria C; Monte, Maria J; Rivas, Laura; Moirón, Maria; Gomez-Rodriguez, Laura; Rodriguez-Bravo, Tomas; Marin, Jose JG; Macias, Rocio IR

    2015-01-01

    Aim Intrahepatic cholestasis of pregnancy (ICP) is characterized by pruritus and elevated bile acid concentrations in maternal serum. This is accompanied by an enhanced risk of intra-uterine and perinatal complications. High concentrations of sulphated progesterone metabolites (PMS) have been suggested to be involved in the multifactorial aetiopathogenesis of ICP. The aim of this study was to investigate further the mechanism accounting for the beneficial effect of oral administration of ursodeoxycholic acid (UDCA), which is the standard treatment, regarding bile acid and PMS homeostasis in the mother-placenta-foetus trio. Method Using HPLC-MS/MS bile acids and PMS were determined in maternal and foetal serum and placenta. The expression of ABC proteins in placenta was determined by real time quantitative PCR (RT-QPCR) and immunofluorescence. Results In ICP, markedly increased concentrations of bile acids (tauroconjugates > glycoconjugates >> unconjugated), progesterone and PMS in placenta and maternal serum were accompanied by enhanced concentrations in foetal serum of bile acids, but not of PMS. UDCA treatment reduced bile acid accumulation in the mother-placenta-foetus trio, but had no significant effect on progesterone and PMS concentrations. ABCG2 mRNA abundance was increased in placentas from ICP patients vs. controls and remained stable following UDCA treatment, despite an apparent further increase in ABCG2. Conclusion UDCA administration partially reduces ICP-induced bile acid accumulation in mothers and foetuses despite the lack of effect on concentrations of progesterone and PMS in maternal serum. Up-regulation of placental ABCG2 may play an important role in protecting the foetus from high concentrations of bile acids and PMS during ICP. PMID:25099365

  5. Effect of ursodeoxycholic acid treatment on the altered progesterone and bile acid homeostasis in the mother-placenta-foetus trio during cholestasis of pregnancy.

    PubMed

    Estiú, Maria C; Monte, Maria J; Rivas, Laura; Moirón, Maria; Gomez-Rodriguez, Laura; Rodriguez-Bravo, Tomas; Marin, Jose J G; Macias, Rocio I R

    2015-02-01

    Intrahepatic cholestasis of pregnancy (ICP) is characterized by pruritus and elevated bile acid concentrations in maternal serum. This is accompanied by an enhanced risk of intra-uterine and perinatal complications. High concentrations of sulphated progesterone metabolites (PMS) have been suggested to be involved in the multifactorial aetiopathogenesis of ICP. The aim of this study was to investigate further the mechanism accounting for the beneficial effect of oral administration of ursodeoxycholic acid (UDCA), which is the standard treatment, regarding bile acid and PMS homeostasis in the mother-placenta-foetus trio. Using HPLC-MS/MS bile acids and PMS were determined in maternal and foetal serum and placenta. The expression of ABC proteins in placenta was determined by real time quantitative PCR (RT-QPCR) and immunofluorescence. In ICP, markedly increased concentrations of bile acids (tauroconjugates > glycoconjugates > unconjugated), progesterone and PMS in placenta and maternal serum were accompanied by enhanced concentrations in foetal serum of bile acids, but not of PMS. UDCA treatment reduced bile acid accumulation in the mother-placenta-foetus trio, but had no significant effect on progesterone and PMS concentrations. ABCG2 mRNA abundance was increased in placentas from ICP patients vs. controls and remained stable following UDCA treatment, despite an apparent further increase in ABCG2. UDCA administration partially reduces ICP-induced bile acid accumulation in mothers and foetuses despite the lack of effect on concentrations of progesterone and PMS in maternal serum. Up-regulation of placental ABCG2 may play an important role in protecting the foetus from high concentrations of bile acids and PMS during ICP. © 2014 The British Pharmacological Society.

  6. Pb-induced responses in Zygophyllum fabago plants are organ-dependent and modulated by salicylic acid.

    PubMed

    López-Orenes, Antonio; Martínez-Pérez, Ascensión; Calderón, Antonio A; Ferrer, María A

    2014-11-01

    Zygophyllum fabago is a promising species for restoring heavy metal (HM) polluted soils, although the mechanisms involved in HM tolerance in this non-model plant remain largely unknown. This paper analyses the extent to which redox-active compounds and enzymatic antioxidants in roots, stems and leaves are responsible for Pb tolerance in a metallicolous ecotype of Z. fabago and the possible influence of salicylic acid (SA) pretreatment (24 h, 0.5 mM SA) in the response to Pb stress. SA pretreatment reduced both the accumulation of Pb in roots and even more so the concentration of Pb in aerial parts of the plants, although a similar drop in the content of chlorophylls and in the maximum quantum yield of photosystem II was observed in both Pb- and SA-Pb-treated plants. Pb increased the endogenous free SA levels in all organs and this response was enhanced in root tissues upon SA pretreatment. Generally, Pb induced a reduction in catalase, ascorbate peroxidase and glutathione reductase specific activities, whereas dehydroascorbate reductase was increased in all organs of control plants. SA pretreatment enhanced the Pb-induced H2O2 accumulation in roots by up-regulating Fe-superoxide dismutase isoenzymes. Under Pb stress, the GSH redox ratio remained highly reduced in all organs while the ascorbic acid redox ratio dropped in leaf tissues where a rise in lipid peroxidation products and electrolyte leakage was observed. Finally, an organ-dependent accumulation of proline and β-carboline alkaloids was found, suggesting these nitrogen-redox-active compounds could play a role in the adaptation strategies of this species to Pb stress. Copyright © 2014. Published by Elsevier Masson SAS.

  7. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice.

    PubMed

    Jiang, Chang-Jie; Shimono, Masaki; Maeda, Satoru; Inoue, Haruhiko; Mori, Masaki; Hasegawa, Morifumi; Sugano, Shoji; Takatsuji, Hiroshi

    2009-07-01

    Fatty acids and their derivatives play important signaling roles in plant defense responses. It has been shown that suppressing a gene for stearoyl acyl carrier protein fatty-acid desaturase (SACPD) enhances the resistance of Arabidopsis (SSI2) and soybean to multiple pathogens. In this study, we present functional analyses of a rice homolog of SSI2 (OsSSI2) in disease resistance of rice plants. A transposon insertion mutation (Osssi2-Tos17) and RNAi-mediated knockdown of OsSSI2 (OsSSI2-kd) reduced the oleic acid (18:1) level and increased that of stearic acid (18:0), indicating that OsSSI2 is responsible for fatty-acid desaturase activity. These plants displayed spontaneous lesion formation in leaf blades, retarded growth, slight increase in endogenous free salicylic acid (SA) levels, and SA/benzothiadiazole (BTH)-specific inducible genes, including WRKY45, a key regulator of SA/BTH-induced resistance, in rice. Moreover, the OsSSI2-kd plants showed markedly enhanced resistance to the blast fungus Magnaporthe grisea and leaf-blight bacteria Xanthomonas oryzae pv. oryzae. These results suggest that OsSSI2 is involved in the negative regulation of defense responses in rice, as are its Arabidopsis and soybean counterparts. Microarray analyses identified 406 genes that were differentially expressed (>or=2-fold) in OsSSI2-kd rice plants compared with wild-type rice and, of these, approximately 39% were BTH responsive. Taken together, our results suggest that induction of SA-responsive genes, including WRKY45, is likely responsible for enhanced disease resistance in OsSSI2-kd rice plants.

  8. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments

    PubMed Central

    Yamaguchi, Seiji; Hashimoto, Hideki; Nakai, Ryusuke; Takadama, Hiroaki

    2017-01-01

    Titanium metal (Ti) and its alloys are widely used in orthopedic and dental fields. We have previously shown that acid and heat treatment was effective to introduce bone bonding, osteoconduction and osteoinduction on pure Ti. In the present study, acid and heat treatment with or without initial NaOH treatment was performed on typical Ti-based alloys used in orthopedic and dental fields. Dynamic movements of alloying elements were developed, which depended on the kind of treatment and type of alloy. It was found that the simple acid and heat treatment enriched/remained the alloying elements on Ti–6Al–4V, Ti–15Mo–5Zr–3Al and Ti–15Zr–4Nb–4Ta, resulting in neutral surface charges. Thus, the treated alloys did not form apatite in a simulated body fluid (SBF) within 3 days. In contrast, when the alloys were subjected to a NaOH treatment prior to an acid and heat treatment, alloying elements were selectively removed from the alloy surfaces. As a result, the treated alloys became positively charged, and formed apatite in SBF within 3 days. Thus, the treated alloys would be useful in orthopedic and dental fields since they form apatite even in a living body and bond to bone. PMID:28946646

  9. Case Report: Valproic Acid and Risperidone Treatment Leading to Development of Hyperammonemia and Mania

    ERIC Educational Resources Information Center

    Carlson, Teri; Reynolds, Charles A.; Caplan, Rochelle

    2007-01-01

    This case report describes two children who developed hyperammonemia together with frank manic behavior during treatment with a combination of valproic acid and risperidone. One child had been maintained on valproic acid for years and risperidone was added. In the second case, valproic acid was introduced to a child who had been treated with…

  10. A liquid chromatography/electrospray ionisation tandem mass spectrometry method for the simultaneous quantification of salicylic, jasmonic and abscisic acids in Coffea arabica leaves.

    PubMed

    de Sá, Marta; Ferreira, João P; Queiroz, Vagner T; Vilas-Boas, Luís; Silva, Maria C; Almeida, Maria H; Guerra-Guimarães, Leonor; Bronze, Maria R

    2014-02-01

    Plants have developed an efficient system of recognition that induces a complex network of signalling molecules such as salicylic acid (SA), jasmonic acid (JA) and abscisic acid (ABA) in case of a pathogenic infection. The use of specific and sensitive methods is mandatory for the analysis of compounds in these complex samples. In this study a liquid chromatography/electrospray ionisation tandem mass spectrometry method was developed and validated for the simultaneous quantification of SA, JA and ABA in Coffea arabica (L.) leaves in order to understand the role of these phytohormones in the signalling network involved in the coffee defence response against Hemileia vastatrix. The results showed that the method was specific, linear (r ≥ 0.99) in the range 0.125-1.00 µg mL⁻¹ for JA and ABA and 0.125-5.00 µg mL⁻¹ for SA, and precise (relative standard deviation ≤11%), and the limit of detection (0.010 µg g⁻¹ fresh weight) was adequate for quantifying these phytohormones in this type of matrix. In comparison with healthy leaves, those infected with H. vastatrix (resistance reaction) displayed an increase in SA level 24 h after inoculation, suggesting the involvement of an SA-dependent pathway in coffee resistance. © 2013 Society of Chemical Industry.

  11. Realtime mitigation of GPS SA errors using Loran-C

    NASA Technical Reports Server (NTRS)

    Braasch, Soo Y.

    1994-01-01

    The hybrid use of Loran-C with the Global Positioning System (GPS) was shown capable of providing a sole-means of enroute air radionavigation. By allowing pilots to fly direct to their destinations, use of this system is resulting in significant time savings and therefore fuel savings as well. However, a major error source limiting the accuracy of GPS is the intentional degradation of the GPS signal known as Selective Availability (SA). SA-induced position errors are highly correlated and far exceed all other error sources (horizontal position error: 100 meters, 95 percent). Realtime mitigation of SA errors from the position solution is highly desirable. How that can be achieved is discussed. The stability of Loran-C signals is exploited to reduce SA errors. The theory behind this technique is discussed and results using bench and flight data are given.

  12. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE - TECHNOLOGY CAPSULE

    EPA Science Inventory

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  13. Enhancement of Anti-Inflammatory Activity of Aloe vera Adventitious Root Extracts through the Alteration of Primary and Secondary Metabolites via Salicylic Acid Elicitation

    PubMed Central

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10–11 and 5–13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment. PMID:24358188

  14. Substance abuse interface with intimate partner violence: what treatment programs need to know.

    PubMed

    Brackley, Margaret H; Williams, Gail B; Wei, Christina C

    2010-12-01

    This article provides suggestions for skill development for substance abuse (SA) treatment agencies and providers for implementing Treatment Improvement Protocol number 25: Substance Abuse Treatment and Domestic Violence. Methods for detecting, screening, intervening, and referring victims and perpetrators of intimate partner violence enrolled in SA treatment are presented. Evidence-based brief intervention is presented. A 2-minute screen for domestic violence as well as danger assessment for lethality of abuse and the Conflict Tactics Scales 2 are reviewed. A survey of interventions aimed at establishing trust, brief intervention from best practice, guidelines for safety planning, compliance strategies for SA treatment, and community resource development are presented. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling.

    PubMed

    Trusov, Yuri; Sewelam, Nasser; Rookes, James Edward; Kunkel, Matt; Nowak, Ekaterina; Schenk, Peer Martin; Botella, José Ramón

    2009-04-01

    Heterotrimeric G proteins are involved in the defense response against necrotrophic fungi in Arabidopsis. In order to elucidate the resistance mechanisms involving heterotrimeric G proteins, we analyzed the effects of the Gβ (subunit deficiency in the mutant agb1-2 on pathogenesis-related gene expression, as well as the genetic interaction between agb1-2 and a number of mutants of established defense pathways. Gβ-mediated signaling suppresses the induction of salicylic acid (SA)-, jasmonic acid (JA)-, ethylene (ET)- and abscisic acid (ABA)-dependent genes during the initial phase of the infection with Fusarium oxysporum (up to 48 h after inoculation). However, at a later phase it enhances JA/ET-dependent genes such as PDF1.2 and PR4. Quantification of the Fusarium wilt symptoms revealed that Gβ- and SA-deficient mutants were more susceptible than wild-type plants, whereas JA- and ET-insensitive and ABA-deficient mutants demonstrated various levels of resistance. Analysis of the double mutants showed that the Gβ-mediated resistance to F. oxysporum and Alternaria brassicicola was mostly independent of all of the previously mentioned pathways. However, the progressive decay of agb1-2 mutants was compensated by coi1-21 and jin1-9 mutations, suggesting that at this stage of F. oxysporum infection Gβ acts upstream of COI1 and ATMYC2 in JA signaling. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.

  16. Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/Botrytis Pathosystem[OPEN

    PubMed Central

    Eshbaugh, Robert; Chen, Fang; Atwell, Susana

    2017-01-01

    To respond to pathogen attack, selection and associated evolution has led to the creation of plant immune system that are a highly effective and inducible defense system. Central to this system are the plant defense hormones jasmonic acid (JA) and salicylic acid (SA) and crosstalk between the two, which may play an important role in defense responses to specific pathogens or even genotypes. Here, we used the Arabidopsis thaliana-Botrytis cinerea pathosystem to test how the host’s defense system functions against genetic variation in a pathogen. We measured defense-related phenotypes and transcriptomic responses in Arabidopsis wild-type Col-0 and JA- and SA-signaling mutants, coi1-1 and npr1-1, individually challenged with 96 diverse B. cinerea isolates. Those data showed genetic variation in the pathogen influences on all components within the plant defense system at the transcriptional level. We identified four gene coexpression networks and two vectors of defense variation triggered by genetic variation in B. cinerea. This showed that the JA and SA signaling pathways functioned to constrain/canalize the range of virulence in the pathogen population, but the underlying transcriptomic response was highly plastic. These data showed that plants utilize major defense hormone pathways to buffer disease resistance, but not the metabolic or transcriptional responses to genetic variation within a pathogen. PMID:29042403

  17. PROTEASOME INHIBITOR TREATMENT REDUCED FATTY ACID, TRIACYLGLYCEROL AND CHOLESTEROL SYNTHESIS

    PubMed Central

    Oliva, Joan; French, Samuel W.; Li, Jun; Bardag-Gorce, Fawzia

    2014-01-01

    In the present study, the beneficial effects of proteasome inhibitor treatment in reducing ethanol-induced steatosis were investigated. A microarray analysis was performed on the liver of rats injected with PS-341 (Bortezomib, Velcade®), and the results showed that proteasome inhibitor treatment significantly reduced the mRNA expression of SREBP-1c, and the downstream lipogenic enzymes, such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in fatty acid synthesis. ELOVL6, which is responsible for fatty acids long chain elongation, was also significantly down regulated by proteasome inhibitor treatment. Moreover, PS-341 administration significantly reduced the expression of acyl-glycerol-3-phosphate acyltransferase (AGPAT), and diacylglycerol acyltransferase (DGAT), enzyme involved in triacylglycerol (TAG) synthesis. Finally, PS-341 was found to down regulate the enzymes 3-hydroxy-3-methylglutaryl-CoenzymeA synthase (HMG-CoA synthase) that is responsible for cholesterol synthesis. Proteasome inhibitor was also found to play a role in intestinal lipid adsorption because apolipoproteins A (apoA-I, apoAII, apoA-IV and ApoCIII) were down regulated by proteasome inhibitor treatment, especially ApoA-II that is known to be a marker of alcohol consumption. Proteasome inhibitor treatment also decreased apobec-1 complementation factor (ACF) leading to lower level of editing and production of ApoB protein. Moreover apolipoprotein C-III, a major component of chylomicrons was significantly down regulated. However, lipoprotein lipase (Lpl) and High density lipoprotein binding protein (Hdlbp) mRNA levels were increased by proteasome inhibitor treatment. These results suggested that proteasome inhibitor treatment could be used to reduce the alcohol-enhanced lipogenesis and alcohol-induced liver steatosis. A morphologic analysis, performed on the liver of rats fed ethanol for one

  18. The effect of dilute acid pre-treatment process in bioethanol production from durian (Durio zibethinus) seeds waste

    NASA Astrophysics Data System (ADS)

    Ghazali, K. A.; Salleh, S. F.; Riayatsyah, T. M. I.; Aditiya, H. B.; Mahlia, T. M. I.

    2016-03-01

    Lignocellulosic biomass is one of the promising feedstocks for bioethanol production. The process starts from pre-treatment, hydrolysis, fermentation, distillation and finally obtaining the final product, ethanol. The efficiency of enzymatic hydrolysis of cellulosic biomass depends heavily on the effectiveness of the pre-treatment step which main function is to break the lignin structure of the biomass. This work aims to investigate the effects of dilute acid pre-treatment on the enzymatic hydrolysis of durian seeds waste to glucose and the subsequent bioethanol fermentation process. The yield of glucose from dilute acid pre-treated sample using 0.6% H2SO4 and 5% substrate concentration shows significant value of 23.4951 g/L. Combination of dilute acid pre-treatment and enzymatic hydrolysis using 150U of enzyme able to yield 50.0944 g/L of glucose content higher compared to normal pre-treated sample of 8.1093 g/L. Dilute acid pre-treatment sample also shows stable and efficient yeast activity during fermentation process with lowest glucose content at 2.9636 g/L compared to 14.7583g/L for normal pre-treated sample. Based on the result, it can be concluded that dilute acid pre-treatment increase the yield of ethanol from bioethanol production process.

  19. Evaluation of salicylic acid peeling in comparison with topical tretinoin in the treatment of postinflammatory hyperpigmentation.

    PubMed

    Mohamed Ali, Basma Morad; Gheida, Shereen Farouk; El Mahdy, Nageh Ahmed; Sadek, Shery Nashaat

    2017-03-01

    Postinflammatory hyperpigmentation (PIH) is an acquired hyperpigmentation that involves areas of prior cutaneous inflammation. In addition to prevention, there are a variety of medications and procedures used to treat PIH. The aim of this work was to evaluate the efficacy, tolerability, and safety of salicylic acid peeling in comparison with topical tretinoin in the treatment of PIH. This study included forty-five patients with PIH lesions. The patients were divided into three groups, group I was treated with salicylic acid peeling 20-30%, group II was treated with topical tretinoin 0.1%, and group III was treated with combination of salicylic acid peel and topical tretinoin. The patients were assessed clinically to evaluate the efficacy, tolerability, and safety of the treatment. Dermoscopy was carried out to the recurrent or nonimproved cases only. Combination of salicylic acid peel and topical tretinoin treatment showed significant clinical improvement of PIH than each treatment alone with no complications. There was no significant difference in the recurrence rate between the three groups. There was nonsignificant difference between the efficacy of the treatment and the PIH type in the studied groups. There was nonsignificant difference between the efficacy of the treatment and the duration of the PIH except for group III. Combination treatment modality is believed to be preferred in the treatment of PIH due to its higher efficacy than single treatment alone, with well tolerability, less side effects, and low recurrence rate. © 2016 Wiley Periodicals, Inc.

  20. Stress Marker Signatures in Lesion Mimic Single and Double Mutants Identify a Crucial Leaf Age-Dependent Salicylic Acid Related Defense Signal.

    PubMed

    Kaurilind, Eve; Brosché, Mikael

    2017-01-01

    Plants are exposed to abiotic and biotic stress conditions throughout their lifespans that activates various defense programs. Programmed cell death (PCD) is an extreme defense strategy the plant uses to manage unfavorable environments as well as during developmentally induced senescence. Here we investigated the role of leaf age on the regulation of defense gene expression in Arabidopsis thaliana. Two lesion mimic mutants with misregulated cell death, catalase2 (cat2) and defense no death1 (dnd1) were used together with several double mutants to dissect signaling pathways regulating defense gene expression associated with cell death and leaf age. PCD marker genes showed leaf age dependent expression, with the highest expression in old leaves. The salicylic acid (SA) biosynthesis mutant salicylic acid induction deficient2 (sid2) had reduced expression of PCD marker genes in the cat2 sid2 double mutant demonstrating the importance of SA biosynthesis in regulation of defense gene expression. While the auxin- and jasmonic acid (JA)- insensitive auxin resistant1 (axr1) double mutant cat2 axr1 also led to decreased expression of PCD markers; the expression of several marker genes for SA signaling (ISOCHORISMATE SYNTHASE 1, PR1 and PR2) were additionally decreased in cat2 axr1 compared to cat2. The reduced expression of these SA markers genes in cat2 axr1 implicates AXR1 as a regulator of SA signaling in addition to its known role in auxin and JA signaling. Overall, the current study reinforces the important role of SA signaling in regulation of leaf age-related transcript signatures.

  1. Citric acid treatment of chronic nonhealing ulcerated tophaceous gout with bursitis.

    PubMed

    Nagoba, Basavaraj S; Punpale, Ajay; Poddar, Ashok; Suryawanshi, Namdev M; Swami, Ganesh A; Selkar, Sohan P

    2013-12-01

    The ulceration associated with gout tophi is very difficult to treat because of impaired and halted local inflammatory response resulting from the gout treatment regimen. We report chronic nonhealing tophaceous gout with bursitis in an 80-year-old male, not responding to conventional treatment modality for months together. This nonhealing ulcer was treated successfully with local application of 3% citric acid ointment for 22 days.

  2. The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling.

    PubMed

    Rossi, Franco Rubén; Gárriz, Andrés; Marina, María; Romero, Fernando Matías; Gonzalez, María Elisa; Collado, Isidro González; Pieckenstain, Fernando Luis

    2011-08-01

    Botrytis cinerea, as a necrotrophic fungus, kills host tissues and feeds on the remains. This fungus is able to induce the hypersensitive response (HR) on its hosts, thus taking advantage on the host's defense machinery for generating necrotic tissues. However, the identity of HR effectors produced by B. cinerea is not clear. The aim of this work was to determine whether botrydial, a phytotoxic sesquiterpene produced by B. cinerea, is able to induce the HR on plant hosts, using Arabidopsis thaliana as a model. Botrydial induced the expression of the HR marker HSR3, callose deposition, and the accumulation of reactive oxygen species and phenolic compounds. Botrydial also induced the expression of PR1 and PDF1.2, two pathogenesis-related proteins involved in defense responses regulated by salicylic acid (SA) and jasmonic acid (JA), respectively. A. thaliana and tobacco plants defective in SA signaling were more resistant to botrydial than wild-type plants, as opposed to A. thaliana plants defective in JA signaling, which were more sensitive. It can be concluded that botrydial induces the HR on its hosts and its effects are modulated by host signaling pathways mediated by SA and JA.

  3. Editing Citrus Genome via SaCas9/sgRNA System

    PubMed Central

    Jia, Hongge; Xu, Jin; Orbović, Vladimir; Zhang, Yunzeng; Wang, Nian

    2017-01-01

    SaCas9/sgRNA, derived from Staphylococcus aureus, is an alternative system for genome editing to Streptococcus pyogenes SpCas9/sgRNA. The smaller SaCas9 recognizes a different protospacer adjacent motif (PAM) sequence from SpCas9. SaCas9/sgRNA has been employed to edit the genomes of Arabidopsis, tobacco and rice. In this study, we aimed to test its potential in genome editing of citrus. Transient expression of SaCas9/sgRNA in Duncan grapefruit via Xcc-facilitated agroinfiltration showed it can successfully modify CsPDS and Cs2g12470. Subsequently, binary vector GFP-p1380N-SaCas9/35S-sgRNA1:AtU6-sgRNA2 was developed to edit two target sites of Cs7g03360 in transgenic Carrizo citrange. Twelve GFP-positive Carrizo transformants were successfully established, designated as #Cz1 to #Cz12. Based on targeted next generation sequencing results, the mutation rates for the two targets ranged from 15.55 to 39.13% for sgRNA1 and 49.01 to 79.67% for sgRNA2. Therefore, SaCas9/sgRNA can be used as an alternative tool to SpCas9/sgRNA for citrus genome editing. PMID:29312390

  4. Folinic acid treatment for schizophrenia associated with folate receptor autoantibodies.

    PubMed

    Ramaekers, V T; Thöny, B; Sequeira, J M; Ansseau, M; Philippe, P; Boemer, F; Bours, V; Quadros, E V

    2014-12-01

    Auto-antibodies against folate receptor alpha (FRα) at the choroid plexus that block N(5)-methyltetrahydrofolate (MTHF) transfer to the brain were identified in catatonic schizophrenia. Acoustic hallucinations disappeared following folinic acid treatment. Folate transport to the CNS prevents homocysteine accumulation and delivers one-carbon units for methyl-transfer reactions and synthesis of purines. The guanosine derivative tetrahydrobiopterin acts as common co-factor for the enzymes producing dopamine, serotonin and nitric oxide. Our study selected patients with schizophrenia unresponsive to conventional treatment. Serum from these patients with normal plasma homocysteine, folate and vitamin B12 was tested for FR autoantibodies of the blocking type on serial samples each week. Spinal fluid was analyzed for MTHF and the metabolites of pterins, dopamine and serotonin. The clinical response to folinic acid treatment was evaluated. Fifteen of 18 patients (83.3%) had positive serum FR auto-antibodies compared to only 1 in 30 controls (3.3%) (χ(2)=21.6; p<0.0001). FRα antibody titers in patients fluctuated over time varying between negative and high titers, modulating folate flux to the CNS, which explained low CSF folate values in 6 and normal values in 7 patients. The mean±SD for CSF MTHF was diminished compared to previously established controls (t-test: 3.90; p=0.0002). A positive linear correlation existed between CSF MTHF and biopterin levels. CSF dopamine and serotonin metabolites were low or in the lower normal range. Administration of folinic acid (0.3-1mg/kg/day) to 7 participating patients during at least six months resulted in clinical improvement. Assessment of FR auto-antibodies in serum is recommended for schizophrenic patients. Clinical negative or positive symptoms are speculated to be influenced by the level and evolution of FRα antibody titers which determine folate flux to the brain with up- or down-regulation of brain folate intermediates

  5. Cloning and characterization of unusual fatty acid desaturases from Anemone leveillei: identification of an acyl-coenzyme A C20 Delta5-desaturase responsible for the synthesis of sciadonic acid.

    PubMed

    Sayanova, Olga; Haslam, Richard; Venegas Caleron, Monica; Napier, Johnathan A

    2007-05-01

    The seed oil of Anemone leveillei contains significant amounts of sciadonic acid (20:3Delta(5,11,14); SA), an unusual non-methylene-interrupted fatty acid with pharmaceutical potential similar to arachidonic acid. Two candidate cDNAs (AL10 and AL21) for the C(20) Delta(5cis)-desaturase from developing seeds of A. leveillei were functionally characterized in transgenic Arabidopsis (Arabidopsis thaliana) plants. The open reading frames of both Delta(5)-desaturases showed some similarity to presumptive acyl-coenzyme A (CoA) desaturases found in animals and plants. When expressed in transgenic Arabidopsis, AL21 showed a broad range of substrate specificity, utilizing both saturated (16:0 and 18:0) and unsaturated (18:2, n-6 and 18:3, n-3) substrates. In contrast, AL10 did not show any activity in wild-type Arabidopsis. Coexpression of AL10 or AL21 with a C(18) Delta(9)-elongase in transgenic Arabidopsis plants resulted in the production of SA and juniperonic fatty acid (20:4Delta(5,11,14,17)). Thus, AL10 acted only on C(20) polyunsaturated fatty acids in a manner analogous to "front-end" desaturases. However, neither AL10 nor AL21 contain the cytochrome b(5) domain normally present in this class of enzymes. Acyl-CoA profiling of transgenic Arabidopsis plants and developing A. leveillei seeds revealed significant accumulation of Delta(5)-unsaturated fatty acids as acyl-CoAs compared to the accumulation of these fatty acids in total lipids. Positional analysis of triacylglycerols of A. leveillei seeds showed that Delta(5)-desaturated fatty acids were present in both sn-2 and sn-1 + sn-3 positions, although the majority of 16:1Delta(5), 18:1Delta(5), and SA was present at the sn-2 position. Our data provide biochemical evidence for the A. leveillei Delta(5)-desaturases using acyl-CoA substrates.

  6. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana.

    PubMed

    Duan, Yanjiao; Jiang, Yuanzhong; Ye, Shenglong; Karim, Abdul; Ling, Zhengyi; He, Yunqiu; Yang, Siqi; Luo, Keming

    2015-05-01

    A salicylic acid-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa , was isolated and characterized. Overexpression of PtrWRKY73 in Arabidopsis thaliana increased resistance to biotrophic pathogens but reduced resistance against necrotrophic pathogens. WRKY transcription factors are commonly involved in plant defense responses. However, limited information is available about the roles of the WRKY genes in poplar defense. In this study, we isolated a salicylic acid (SA)-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa, belonging to group I family and containing two WRKY domains, a D domain and an SP cluster. PtrWRKY73 was expressed predominantly in roots, old leaves, sprouts and stems, especially in phloem and its expression was induced in response to treatment with exogenous SA. PtrWRKY73 was localized to the nucleus of plant cells and exhibited transcriptional activation. Overexpression of PtrWRKY73 in Arabidopsis thaliana resulted in increased resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae (PstDC3000), but more sensitivity to the necrotrophic fungal pathogen Botrytis cinerea. The SA-mediated defense-associated genes, such as PR1, PR2 and PAD4, were markedly up-regulated in transgenic plants overexpressing PtrWRKY73. Arabidopsis non-expressor of PR1 (NPR1) was not affected, whereas a defense-related gene PAL4 had reduced in PtrWRKY73 overexpressor plants. Together, these results indicated that PtrWRKY73 plays a positive role in plant resistance to biotrophic pathogens but a negative effect on resistance against necrotrophic pathogens.

  7. Suicide Attempts within 12 Months of Treatment for Substance Use Disorders

    ERIC Educational Resources Information Center

    Britton, Peter C.; Conner, Kenneth R.

    2010-01-01

    There are limited prospective data on suicide attempts (SA) during the months following treatment for substance use disorders (SUD), a period of high risk. In an analysis of the Drug Abuse Treatment Outcomes Study, a longitudinal naturalistic multisite study of treated SUDs, variables associated with SA in the 12 months following SUD treatment…

  8. The Mixture of Salvianolic Acids from Salvia miltiorrhiza and Total Flavonoids from Anemarrhena asphodeloides Attenuate Sulfur Mustard-Induced Injury

    PubMed Central

    Li, Jianzhong; Chen, Linlin; Wu, Hongyuan; Lu, Yiming; Hu, Zhenlin; Lu, Bin; Zhang, Liming; Chai, Yifeng; Zhang, Junping

    2015-01-01

    Sulfur mustard (SM) is a vesicating chemical warfare agent used in numerous military conflicts and remains a potential chemical threat to the present day. Exposure to SM causes the depletion of cellular antioxidant thiols, mainly glutathione (GSH), which may lead to a series of SM-associated toxic responses. MSTF is the mixture of salvianolic acids (SA) of Salvia miltiorrhiza and total flavonoids (TFA) of Anemarrhena asphodeloides. SA is the main water-soluble phenolic compound in Salvia miltiorrhiza. TFA mainly includes mangiferin, isomangiferin and neomangiferin. SA and TFA possess diverse activities, including antioxidant and anti-inflammation activities. In this study, we mainly investigated the therapeutic effects of MSTF on SM toxicity in Sprague Dawley rats. Treatment with MSTF 1 h after subcutaneous injection with 3.5 mg/kg (equivalent to 0.7 LD50) SM significantly increased the survival levels of rats and attenuated the SM-induced morphological changes in the testis, small intestine and liver tissues. Treatment with MSTF at doses of 60 and 120 mg/kg caused a significant (p < 0.05) reversal in SM-induced GSH depletion. Gene expression profiles revealed that treatment with MSTF had a dramatic effect on gene expression changes caused by SM. Treatment with MSTF prevented SM-induced differential expression of 93.8% (973 genes) of 1037 genes. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 36 pathways, such as the MAPK signaling pathway, pathways in cancer, antigen processing and presentation. These data suggest that MSTF attenuates SM-induced injury by increasing GSH and targeting multiple pathways, including the MAPK signaling pathway, as well as antigen processing and presentation. These results suggest that MSTF has the potential to be used as a potential therapeutic agent against SM injuries. PMID:26501264

  9. Continuous succinic acid fermentation by Actinobacillus succinogenes in a packed-bed biofilm reactor.

    PubMed

    Ferone, Mariateresa; Raganati, Francesca; Ercole, Alessia; Olivieri, Giuseppe; Salatino, Piero; Marzocchella, Antonio

    2018-01-01

    Succinic acid is one of the most interesting platform chemicals that can be produced in a biorefinery approach. In this study, continuous succinic acid production by Actinobacillus succinogenes fermentation in a packed-bed biofilm reactor (PBBR) was investigated. The effects of the operating conditions tested, dilution rate (D), and medium composition (mixture of glucose, xylose, and arabinose-that simulate the composition of a lignocellulosic hydrolysate)-on the PBBR performances were investigated. The maximum succinic acid productivity of 35.0 g L -1  h -1 and the maximum SA concentration were achieved at a D  = 1.9 h -1 . The effect of HMF and furfural on succinic acid production was also investigated. HMF resulted to reduce succinic acid production by 22.6%, while furfural caused a reduction of 16% in SA production at the same dilution rate. Succinic acid production by A. succinogenes fermentation in a packed-bed reactor (PBBR) was successfully carried out for more than 5 months. The optimal results were obtained at the dilution rate 0.5 h -1 : 43.0 g L -1 of succinic acid were produced, glucose conversion was 88%; and the volumetric productivity was 22 g L -1  h -1 .

  10. Ethanol addition enhances acid treatment to eliminate Lactobacillus fermentum from the fermentation process for fuel ethanol production.

    PubMed

    Costa, M A S; Cerri, B C; Ceccato-Antonini, S R

    2018-01-01

    Fermentation is one of the most critical steps of the fuel ethanol production and it is directly influenced by the fermentation system, selected yeast, and bacterial contamination, especially from the genus Lactobacillus. To control the contamination, the industry applies antibiotics and biocides; however, these substances can result in an increased cost and environmental problems. The use of the acid treatment of cells (water-diluted sulphuric acid, adjusted to pH 2·0-2·5) between the fermentation cycles is not always effective to combat the bacterial contamination. In this context, this study aimed to evaluate the effect of ethanol addition to the acid treatment to control the bacterial growth in a fed-batch system with cell recycling, using the industrial yeast strain Saccharomyces cerevisiae PE-2. When only the acid treatment was used, the population of Lactobacillus fermentum had a 3-log reduction at the end of the sixth fermentation cycle; however, when 5% of ethanol was added to the acid solution, the viability of the bacterium was completely lost even after the first round of cell treatment. The acid treatment +5% ethanol was able to kill L. fermentum cells without affecting the ethanol yield and with a low residual sugar concentration in the fermented must. In Brazilian ethanol-producing industry, water-diluted sulphuric acid is used to treat the cell mass at low pH (2·0) between the fermentative cycles. This procedure reduces the number of Lactobacillus fermentum from 10 7 to 10 4  CFU per ml. However, the addition of 5% ethanol to the acid treatment causes the complete loss of bacterial cell viability in fed-batch fermentation with six cell recycles. The ethanol yield and yeast cell viability are not affected. These data indicate the feasibility of adding ethanol to the acid solution replacing the antibiotic use, offering a low cost and a low amount of residue in the biomass. © 2017 The Society for Applied Microbiology.

  11. Operational Lessons Leaned During bioreactor Demonstrations for Acid Rock Drainage Treatment

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Mine Waste Technology Program (MWTP) has emphasized the development of biologically-based treatment technologies for acid rock drainage (ARD). Progressively evolving technology demonstrations have resulted in significant advances in sulf...

  12. Bensulfuron-Methyl Treatment of Soil Affects the Infestation of Whitefly, Aphid, and Tobacco Mosaic Virus on Nicotiana tabacum

    PubMed Central

    Li, Renyi; Islam, Saif Ul; Wu, Zujian; Ye, Xiujuan

    2016-01-01

    Bensulfuron-methyl (BSM) is widely used in paddy soil for weed control. BSM residue in the soil has been known to inhibit the growth of sensitive crop plants. However, it is unknown whether BSM residue can affect the agrosystem in general. In this study, we have found significant effects of BSM on the infestation of Bemisia tabaci, Myzus persicae, and Tobacco mosaic virus (TMV) in Nicotiana tabacum. The soil was treated with BSM before the pest inoculation. The herbicide-treated tobaccos showed resistance to B. tabaci, but this resistance could not be detected until 15-day post-infestation when smaller number of adults B. tabaci appeared. In M. persicae assay, the longevity of all development stages of insects, and the fecundity of insects were not significantly affected when feeding on BSM-treated plants. In TMV assay, the BSM treatment also reduced virus-induced lesions in early infection time. However, the titer of TMV in BSM treated plants increased greatly over time and was over 40-fold higher than the mock-infected control plants after 20 days. Further studies showed that BSM treatment increased both jasmonic acid (JA) and salicylic acid (SA) levels in tobacco, as well as the expression of target genes in the JA and SA signaling pathways, such as NtWIPK, NtPR1a, and NtPAL. NtPR1a and NtPAL were initially suppressed after virus-inoculation, while NtRDR1 and NtRDR6, which play a key role in fighting virus infection, only showed up- or were down-regulated 20 days post virus-inoculation. Taken together, our results suggested that BSM residue in the soil may affect the metabolism of important phytohormones such as JA and SA in sensitive plants and consequently affect the plant immune response against infections such as whitefly, aphids, and viruses. PMID:28083007

  13. Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cements.

    PubMed

    Sproesser, Oliver; Schmidlin, Patrick R; Uhrenbacher, Julia; Roos, Malgorzata; Gernet, Wolfgang; Stawarczyk, Bogna

    2014-10-01

    To examine the influence of etching duration on the bond strength of PEEK substrate in combination with different resin composite cements. In total, 448 PEEK specimens were fabricated, etched with sulfuric acid for 5, 15, 30, 60, 90, 120, and 300 s and then luted with two conventional resin cements (RelyX ARC and Variolink II) and one self-adhesive resin cement (Clearfil SA Cement) (n = 18/subgroup). Non-etched specimens served as the control group. Specimens were stored in distilled water for 28 days at 37°C and shear bond strengths were measured. Data were analyzed nonparametrically using Kruskal-Wallis-H (p < 0.05). Non-etched PEEK demonstrated no bond strength to resin composite cements. The optimal etching duration varied with the type of resin composite: 60 s for RelyX ARC (15.3 ± 7.2 MPa), 90 s for Variolink II (15.2 ± 7.2 MPa), and 120 s for Clearfil SA Cement (6.4 ± 5.9 MPa). Regardless of etching duration, however, the self-etching resin composite cement showed significantly lower shear bond strength values when compared to groups luted with the conventional resin composites. Although sulfuric acid seems to be suitable and effective for PEEK surface pre-treatment, further investigations are required to examine the effect of other adhesive systems and cements.

  14. Diclofenac in hyaluronic acid gel: an alternative treatment for actinic cheilitis

    PubMed Central

    LIMA, Giana da Silveira; da SILVA, Gabriela Ferrari; GOMES, Ana Paula Neutzling; de ARAÚJO, Lenita Maria Aver; SALUM, Fernanda Gonçalves

    2010-01-01

    Objective Actinic cheilitis (AC) is a precancerous lesion of the lip vermillion caused by prolonged exposure to ultraviolet light. The aim of this study was to evaluate the effect of 3% diclofenac in 2.5% hyaluronic acid gel in the treatment of AC. Methods Thirty-four patients with chronic AC were treated twice a day with topical diclofenac during a period of 30 to 180 days. The individuals were followed up every 15 days by means of clinical examination and digital photographic documentation. Results Of the 27 patients that completed the study, 12 (44%) showed complete remission of the whitish plaques and exfoliative areas, and 15 (56%) had partial remission of the clinical picture of cheilitis. The latter group was submitted to excision of the leukoplakic areas which diagnosis varied from mild to moderate epithelial dysplasia. Conclusion The results suggest a promising role for diclofenac in hyaluronic acid gel in the treatment of AC. This treatment has the advantages of not being invasive and showing few side effects. PMID:21085813

  15. Operational Lessons Learned During Bioreactor Demonstrations for Acid Rock Drainage Treatment

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s Mine Waste Technology Program (MWTP) has emphasized the development of biologically-based treatment technologies for acid rock drainage (ARD). Progressively evolving technology demonstrations have resulted in significant advances in sul...

  16. The effect of tranexamic acid for treatment irregular uterine bleeding secondary to DMPA use.

    PubMed

    Senthong, A-Jaree; Taneepanichskul, Surasak

    2009-04-01

    Evaluate the efficacy of tranexamic acid and placebo for controlling irregular uterine bleeding in depot-medroxyprogesterone acetate (DMPA) users. A double-blind, placebo-controlled study was conducted on 100 DMPA users attending the Family Planning Clinic King Chulalongkorn Memorial Hospital. All users had abnormal bleeding. They were randomly divided in two groups; a group of 50 received tranexamic acid, 250 mg four times a day for 5 days and another group of 49 received placebo in the same manner. One subject dropped out from the study. Total day of bleeding/spotting and percentage of women in whom bleeding was stopped were analyzed at the end of weeks 1 and 4. The percentage of subjects in whom bleeding was stopped during the first week after initial treatment was significantly higher in the tranexamic acid group than the placebo group (88% vs. 8.2%, p < 0.001). During the follow-up period (4 weeks after initial treatment), a bleeding-free interval of > 20 days was found in 68% of subjects treated with tranexamic acid and 0% treated with placebo(p < 0.001). The mean number of bleeding/spotting days were also significantly different between the groups (5.7 +/- 2.5 vs. 17.5 +/- 7.2 days, p < 0.05). Tranexamic acid was more effective than placebo in short-term treatment of irregular uterine bleeding/spotting associated with DMPA use.

  17. Novel one-pot synthesis of dicarboxylic acids mediated alginate-zirconium biopolymeric complex for defluoridation of water.

    PubMed

    Prabhu, Subbaiah Muthu; Meenakshi, Sankaran

    2015-04-20

    The present investigation explains the fluoride removal from aqueous solution using alginate-zirconium complex prepared with respective dicarboxylic acids like oxalic acid (Ox), malonic acid (MA) and succinic acid (SA) as a medium. The complexes viz., alginate-oxalic acid-zirconium (Alg-Ox-Zr), alginate-malonic acid-zirconium (Alg-MA-Zr) and alginate-succinic acid-zirconium (Alg-SA-Zr) were synthesized and studied for fluoride removal. The synthesized complexes were characterized by FTIR, XRD, SEM with EDAX and mapping images. The effects of various operating parameters were optimized. The result showed that the maximum removal of fluoride 9653mgF(-)/kg was achieved by Alg-Ox-Zr complex at acidic pH in an ambient atmospheric condition. Equilibrium data of Alg-Ox-Zr complex was fitted well with Freundlich isotherm. The calculated values of thermodynamic parameters indicated that the fluoride adsorption is spontaneous and endothermic in nature. The mechanism of fluoride removal behind Alg-Ox-Zr complex has been proposed in detail. The suitability of the Alg-Ox-Zr complex has been tested with the field sample collected in a nearby fluoride endemic area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation

    DOE PAGES

    Salvachua, Davinia; Mohagheghi, Ali; Smith, Holly; ...

    2016-02-02

    Co-production of chemicals from lignocellulosic biomass alongside fuels holds promise for improving the economic outlook of integrated biorefineries. In current biochemical conversion processes that use thermochemical pretreatment and enzymatic hydrolysis, fractionation of hemicellulose-derived and cellulose-derived sugar streams is possible using hydrothermal or dilute acid pretreatment (DAP), which then offers a route to parallel trains for fuel and chemical production from xylose- and glucose-enriched streams. Succinic acid (SA) is a co-product of particular interest in biorefineries because it could potentially displace petroleum-derived chemicals and polymer precursors for myriad applications. Furthermore, SA production from biomass-derived hydrolysates has not yet been fully exploredmore » or developed.« less

  19. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    PubMed Central

    Lin, Yun-Jian; Le, Guo-Wei; Wang, Jie-Yun; Li, Ya-Xin; Shi, Yong-Hui; Sun, Jin

    2010-01-01

    This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid). The highest degree of hydrolysis (DH) was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain), with an optimum condition of: (1) ratio of enzyme and substrate, 4760 U/g; (2) concentration of substrate, 4%; (3) reaction temperature, 55 °C and (4) pH 7.0. At 4 h, DH increased significantly (P < 0.01) under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen. PMID:21151439

  20. Effect of barrier perturbation on cutaneous penetration of salicylic acid in hairless rats: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function.

    PubMed

    Benfeldt, E; Serup, J

    1999-09-01

    The penetration of topically applied drugs is altered in diseased or barrier-damaged skin. We used microdialysis in the dermis to measure salicylic acid (SA) penetration in hairless rats following application to normal (unmodified) skin (n = 11) or skin with perturbed barrier function from (1) tape-stripping (n = 5), (2) sodium lauryl sulphate (SLS) 2% for 24 h (n = 3) or (3) delipidization by acetone (n = 4). Prior to the experiment, transepidermal water loss (TEWL) and erythema were measured. Two microdialysis probes were inserted into the dermis on the side of the trunk and 5% SA in ethanol was applied in a chamber overlying the probes. Microdialysis sampling was continued for 4 h, followed by measurements of probe depth by ultrasound scanning. SA was detectable in all samples and rapidly increasing up to 130 min. Microdialysates collected between 80 and 200 min showed mean SA concentrations of 3 microg/ml in unmodified and acetone-treated skin, whereas mean SA concentrations were 280 microg/ml in SLS-pretreated skin and 530 microg/ml in tape-stripped skin (P < 0.001). The penetration of SA correlated with barrier perturbation measured by TEWL (P < 0.001) and erythema (P < 0.001). A correlation between dermal probe depth and SA concentration was found in unmodified skin (P = 0.04). Microdialysis sampling in anatomical regions remote from the dosed site excluded the possibility that SA levels measured were due to systemic absorption. Microdialysis sampling of cutaneous penetration was highly reproducible. Impaired barrier function, caused by irritant dermatitis or tape stripping, resulted in an 80- to 170-fold increase in the drug level in the dermis. This dramatic increase in drug penetration could be relevant to humans, in particular to topical treatment of skin diseases and to occupational toxicology.