Science.gov

Sample records for acid synthesis characterisation

  1. Synthesis and structural characterisation of amides from picolinic acid and pyridine-2,6-dicarboxylic acid

    PubMed Central

    Devi, Prarthana; Barry, Sarah M.; Houlihan, Kate M.; Murphy, Michael J.; Turner, Peter; Jensen, Paul; Rutledge, Peter J.

    2015-01-01

    Coupling picolinic acid (pyridine-2-carboxylic acid) and pyridine-2,6-dicarboxylic acid with N-alkylanilines affords a range of mono- and bis-amides in good to moderate yields. These amides are of interest for potential applications in catalysis, coordination chemistry and molecular devices. The reaction of picolinic acid with thionyl chloride to generate the acid chloride in situ leads not only to the N-alkyl-N-phenylpicolinamides as expected but also the corresponding 4-chloro-N-alkyl-N-phenylpicolinamides in the one pot. The two products are readily separated by column chromatography. Chlorinated products are not observed from the corresponding reactions of pyridine-2,6-dicarboxylic acid. X-Ray crystal structures for six of these compounds are described. These structures reveal a general preference for cis amide geometry in which the aromatic groups (N-phenyl and pyridyl) are cis to each other and the pyridine nitrogen anti to the carbonyl oxygen. Variable temperature 1H NMR experiments provide a window on amide bond isomerisation in solution. PMID:25954918

  2. Structural Characterisation of FabG from Yersinia pestis, a Key Component of Bacterial Fatty Acid Synthesis.

    PubMed

    Nanson, Jeffrey D; Forwood, Jade K

    2015-01-01

    Ketoacyl-acyl carrier protein reductases (FabG) are ubiquitously expressed enzymes that catalyse the reduction of acyl carrier protein (ACP) linked thioesters within the bacterial type II fatty acid synthesis (FASII) pathway. The products of these enzymes, saturated and unsaturated fatty acids, are essential components of the bacterial cell envelope. The FASII reductase enoyl-ACP reductase (FabI) has been the focus of numerous drug discovery efforts, some of which have led to clinical trials, yet few studies have focused on FabG. Like FabI, FabG appears to be essential for survival in many bacteria, similarly indicating the potential of this enzyme as a drug target. FabG enzymes are members of the short-chain alcohol dehydrogenase/reductase (SDR) family, and like other SDRs, exhibit highly conserved secondary and tertiary structures, and contain a number of conserved sequence motifs. Here we describe the crystal structures of FabG from Yersinia pestis (YpFabG), the causative agent of bubonic, pneumonic, and septicaemic plague, and three human pandemics. Y. pestis remains endemic in many parts of North America, South America, Southeast Asia, and Africa, and a threat to human health. YpFabG shares a high degree of structural similarity with bacterial homologues, and the ketoreductase domain of the mammalian fatty acid synthase from both Homo sapiens and Sus scrofa. Structural characterisation of YpFabG, and comparison with other bacterial FabGs and the mammalian fatty acid synthase, provides a strong platform for virtual screening of potential inhibitors, rational drug design, and the development of new antimicrobial agents to combat Y. pestis infections. PMID:26539719

  3. Synthesis and characterisation of manganese oxides from potassium permanganate and citric acid mixtures

    NASA Astrophysics Data System (ADS)

    Burhanuddin, Syazwani; Yarmo, Ambar; Yamin, Bohari M.

    2013-11-01

    Reaction of KMnO4 and citric acid at different stoichiometric ratio found to give black precipitate after calcined at 500 %C. The black precipitate are classified as two type of manganese oxides mineral namely as bixbyite and hollandite. IR and XRD data were in agreement with the literature report.

  4. Synthesis and characterisation of a degradable poly(lactic acid)-poly(ethylene glycol) copolymer with biotinylated end groups.

    PubMed

    Salem, A K; Cannizzaro, S M; Davies, M C; Tendler, S J; Roberts, C J; Williams, P M; Shakesheff, K M

    2001-01-01

    Poly(lactic acid)-poly(ethylene glycol)-biotin (PLA-PEG-biotin) is a degradable polymer with protein resistant properties that can undergo rapid surface engineering in aqueous media to create biomimetic surfaces. Surface engineering of this polymer is dependent on biomolecular interactions between the biotin end group and the protein avidin. Given the vigorous conditions of synthesis, it is essential that the manufacture of the polymer does not alter the biotin structure or its molecular recognition. Equally, it is important that the incorporation of biotin does not adversely affect the physicochemical properties of the polymer. (1)H NMR provides evidence of biotin attachment and structural integrity. (1)H NMR, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC) analysis shows there is no significant effect on bulk properties induced by the biotin end group. Surface plasmon resonance (SPR) and fluorescent spectroscopy studies using the 2-(4'-hydroxyazobenzene) benzoic acid (HABA)/avidin complex show that the biotin moieties binding capabilities are not impaired by the synthesis. PMID:11749223

  5. Synthesis and characterisation of chromium carbides

    NASA Astrophysics Data System (ADS)

    Detroye, M.; Reniers, F.; Buess-Herman, C.; Vereecken, J.

    1997-11-01

    This paper presents the synthesis and the characterisation of various chromium carbide compounds. Thin Cr 23C 6 films were deposited by reactive sputtering while Cr 7C 3 films were formed by the carburisation of chromium films in a CH 4/H 2 atmosphere. Cr xC y powders were synthesised from various precursors (Cr, CrN, Cr 2O 3) by reaction with CH 4/H 2 at high temperature. The samples were characterised by AES, XRD and electron diffraction. The effects of the experimental parameters (gas composition, temperature, reaction time) on the purity, the phase formed and the composition of the product of reaction are examined and discussed.

  6. Synthesis of amino acids

    DOEpatents

    Davis, J.W. Jr.

    1979-09-21

    A method is described for synthesizing amino acids preceding through novel intermediates of the formulas: R/sub 1/R/sub 2/C(OSOC1)CN, R/sub 1/R/sub 2/C(C1)CN and (R/sub 1/R/sub 2/C(CN)O)/sub 2/SO wherein R/sub 1/ and R/sub 2/ are each selected from hydrogen and monovalent hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  7. Synthesis of (+)-Coronafacic Acid

    PubMed Central

    Taber, Douglass F.; Sheth, Ritesh B.; Tian, Weiwei

    2009-01-01

    An enantioselective synthesis of (+)-coronafacic acid has been achieved. Rhodium catalyzed cyclization of an α-diazoester provided the intermediate cyclopentanone in high enantiomeric purity. Subsequent Fe-mediated cyclocarbonylation of a derived alkenyl cyclopropane gave a bicyclic enone, that then was hydrogenated and carried on to the natural product. PMID:19231870

  8. Synthesis, characterisation of polyaniline-Fe3O4 magnetic nanocomposite and its application for removal of an acid violet 19 dye

    NASA Astrophysics Data System (ADS)

    Patil, Manohar R.; Khairnar, Subhash D.; Shrivastava, V. S.

    2016-04-01

    The present work deals with the development of a new method for the removal of dyes from an aqueous solution using polyaniline (PANI)-Fe3O4 magnetic nanocomposite. It is synthesised in situ through self-polymerisation of monomer aniline. Photocatalytic degradation studies were carried out for cationic acid violet 19 (acid fuchsine) dye using PANI-Fe3O4 nanocomposite in aqueous solution. Different parameters like catalyst dose, contact time and pH have been studied to optimise reaction condition. The optimum conditions for the removal of the dye are initial concentration 20 mg/l, adsorbent dose 6 gm/l, pH 7. The EDS technique gives elemental composition of synthesised PANI-Fe3O4. The SEM and XRD studies were carried for morphological feature characteristics of PANI-Fe3O4 nanocomposite. The VSM (vibrating sample magnetometer) gives magnetic property of PANI-Fe3O4 nanocomposite; also FT-IR analysis gives characteristics frequency of synthesised PANI-Fe3O4. Besides the above studies kinetic study has also been carried out.

  9. Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Singaravelan, R.; Bangaru Sudarsan Alwar, S.

    2015-11-01

    This work exemplifies a simple and rapid method for the synthesis of silver nanodendrite with a novel electrochemical technique. The antibacterial activity of these silver nanoparticles (Ag NPs) against pathogenic bacteria was investigated along with the routine study of optical and spectral characterisation. The optical properties of the silver nanoparticles were characterised by diffuse reflectance spectroscopy. The optical band gap energy of the electrodeposited Ag NPs was determined from the diffuse reflectance using Kubelka-Munk formula. X-ray diffraction (XRD) studies were carried out to determine the crystalline nature of the silver nanoparticles which confirmed the formation of silver nanocrystals. The XRD pattern revealed that the electrodeposited Ag NPs were in the cubic geometry with dendrite preponderance. The average particle size and the peak broadening were deliberated using Debye-Scherrer equation and lattice strain due to the peak broadening was studied using Williamson-Hall method. Surface morphology of the Ag NPs was characterised by high-resolution scanning electron microscope and the results showed the high degree of aggregation in the particles. The antibacterial activity of the Ag NPs was evaluated and showed unprecedented level antibacterial activity against multidrug resistant strains such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia and Escherichia coli in combination with Streptomycin.

  10. Synthesis, characterisation and microbial utilisation of amorphous polysugars from lactose.

    PubMed

    Daines, Alison M; Smart, Zlatka; Sims, Ian M; Tannock, Gerald W; Hinkley, Simon F R

    2015-03-01

    The melt polymerisations of glucose, galactose, xylose and fucose with citric acid, and mixtures of sugars therein are reported. Characterisation of the citric-acid catalysed reaction products indicated similar degrees of branched polymerisation but differences in the overall molecular weight of the polymers produced. The dairy by-product lactose could not be polymerised in a similar fashion but was shown to be readily hydrolysed using microwave radiation and a polymer generated from the melt condensation of the resultant glucose and galactose monosaccharides. A preliminary assessment of the bifido-bacterial utilisation of the lactose-derived polymerised products demonstrated a significantly different growth profile compared to commercially utilised galactooligosaccharides (GOS). PMID:25498629

  11. The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate: Functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Δ4 activity and an Elovl5 elongase in striped snakehead (Channa striata).

    PubMed

    Kuah, Meng-Kiat; Jaya-Ram, Annette; Shu-Chien, Alexander Chong

    2015-03-01

    The endogenous production of long-chain polyunsaturated fatty acids (LC-PUFA) in carnivorous teleost species inhabiting freshwater environments is poorly understood. Although a predatory lifestyle could potentially supply sufficient LC-PUFA to satisfy the requirements of these species, the nutrient-poor characteristics of the freshwater food web could impede this advantage. In this study, we report the cloning and functional characterisation of an elongase enzyme in the LC-PUFA biosynthesis pathway from striped snakehead (Channa striata), which is a strict freshwater piscivore that shows high deposition of LC-PUFA in its flesh. We also functionally characterised a previously isolated fatty acyl desaturase cDNA from this species. Results showed that the striped snakehead desaturase is capable of Δ4 and Δ5 desaturation activities, while the elongase showed the characteristics of Elovl5 elongases. Collectively, these findings reveal that striped snakehead exhibits the genetic resources to synthesise docosahexaenoic acid (DHA; 22:6n-3) from eicosapentaenoic acid (EPA; 20:5n-3). Both genes are expressed at considerable levels in the brain and the liver. In liver, both genes were up-regulated by dietary C18 PUFA, although this increase did not correspond to a significant rise in the deposition of muscle LC-PUFA. Brain tissue of fish fed with plant oil diets showed higher expression of fads2 gene compared to fish fed with fish oil-based diet, which could ensure DHA levels remain constant under limited dietary DHA intake. This suggests the importance of DHA production from EPA via the ∆4 desaturation step in order to maintain an optimal reserve of DHA in the neuronal tissues of carnivores. PMID:25542509

  12. Chemical characterisation and application of acid whey in fermented milk.

    PubMed

    Lievore, Paolla; Simões, Deise R S; Silva, Karolline M; Drunkler, Northon L; Barana, Ana C; Nogueira, Alessandro; Demiate, Ivo M

    2015-04-01

    Acid whey is a by-product from cheese processing that can be employed in beverage formulations due to its high nutritional quality. The objective of the present work was to study the physicochemical characterisation of acid whey from Petit Suisse-type cheese production and use this by-product in the formulation of fermented milk, substituting water. In addition, a reduction in the fermentation period was tested. Both the final product and the acid whey were analysed considering physicochemical determinations, and the fermented milk was evaluated by means of sensory analysis, including multiple comparison and acceptance tests, as well as purchase intention. The results of the physicochemical analyses showed that whey which was produced during both winter and summer presented higher values of protein (1.22 and 0.97 %, w/v, respectively), but there were no differences in lactose content. During the autumn, the highest solid extract was found in whey (6.00 %, w/v), with larger amounts of lactose (4.73 %, w/v) and ash (0.83 %, w/v). When analysing the fermented milk produced with added acid whey, the acceptance test resulted in 90 % of acceptance; the purchase intention showed that 54 % of the consumers would 'certainly buy' and 38 % would 'probably buy' the product. Using acid whey in a fermented milk formulation was technically viable, allowing by-product value aggregation, avoiding discharge, lowering water consumption and shortening the fermentation period. PMID:25829588

  13. Synthesis, characterisation and application of silica-magnetite nanocomposites

    NASA Astrophysics Data System (ADS)

    Bruce, Ian J.; Taylor, James; Todd, Michael; Davies, Martin J.; Borioni, Enrico; Sangregorio, Claudio; Sen, Tapas

    2004-12-01

    Silica-magnetite composites were prepared for eventual applications in biomolecular separations (nucleic acids). Their production on large scale has been optimised and they have been extensively characterised in a physical and chemical context. They perform at least as well, if not better than a commercially available equivalent at adsorbing and eluting DNA. Several methods for the preparation of magnetite were compared in order to select one, which produced particles, possessing high magnetic susceptibility, low rate of sedimentation and good chemical stability. Of the main methods studied: (i) oxidative hydrolysis of iron(II) sulphate in alkaline media, (ii) alkaline hydrolysis of iron(II) and iron(III) chloride solutions, and (iii) precipitation from iron(II) and iron(III) chloride solutions by hydrolysis of urea, method (i) produced the 'best' magnetite particles. Silica-magnetite composites were prepared using the 'best' magnetite, and, for comparison, two methods for depositing silica were used to coat the silica onto magnetite nanoparticles, from silicic acid at pH 10 and by acid hydrolysis of tetraethoxysilane (TEOS) at 90 °C. The best method for yielding silica-magnetite composites that worked well in DNA adsorption and elution proved to be that involving silicic acid and this material could be made in 20 g batch sizes. Silica-magnetite composites from the two methods proved to have distinct and different physical and chemical properties. All magnetite and silica-magnetite samples were fully characterised for their relative chemical composition using Fourier-transform infrared, XRF and thermo-gravimetric analysis. Their physical characteristics were determined using scanning electron microscopy and N2 adsorption and Mossbauer spectroscopy was used to confirm the identity of the iron oxides produced. Selected samples were comparatively tested for their ability to adsorb, and subsequently elute, 2-deoxyguanosine-5-monophosphate (GMP) and its non

  14. Hyaluronic acid lipoate: synthesis and physicochemical properties.

    PubMed

    Picotti, Fabrizio; Fabbian, Matteo; Gianni, Rita; Sechi, Alessandra; Stucchi, Luca; Bosco, Marco

    2013-03-01

    The synthesis and physicochemical characterisation of mixed lipoic and formic esters of hyaluronan (Lipohyal) are presented in this paper. The synthesis was conducted by activating lipoic acid with 1,1'-carbonyldiimidazole to obtain lipoyl imidazolide, which reacted with hyaluronan (HA) in formamide under basic conditions. This procedure allows researchers to modulate easily the degree of substitution over a range of 0.05-1.8. Radical scavenger properties were analysed by UV-vis spectroscopy, where improved performance was demonstrated for Lipohyal with respect to the HA row material and lipoic acid. The chemical modification also causes HA to show an improved resistance to hyaluronidase digestion. These findings show that Lipohyal is a highly interesting derivative for applications in the tricological and dermo-cosmetic field and as an anti-aging ingredient. Moreover, Lipohyal can be easily crosslinked by UV irradiation, resulting in an innovative hydrogel with distinctive viscoelastic properties that is suitable as both a dermal-filler and as an intra-articular medical device. PMID:23465930

  15. Isolation and characterisation of lactic acid bacteria from donkey milk.

    PubMed

    Soto Del Rio, Maria de Los Dolores; Andrighetto, Christian; Dalmasso, Alessandra; Lombardi, Angiolella; Civera, Tiziana; Bottero, Maria Teresa

    2016-08-01

    During the last years the interest in donkey milk has increased significantly mainly because of its compelling functional elements. Even if the composition and nutritional properties of donkey milk are known, its microbiota is less studied. This Research Communication aimed to provide a comprehensive characterisation of the lactic acid bacteria in raw donkey milk. RAPD-PCR assay combined with 16S rDNA sequencing analysis were used to describe the microbial diversity of several donkey farms in the North West part of Italy. The more frequently detected species were: Lactobacillus paracasei, Lactococcus lactis and Carnobacterium maltaromaticum. Less abundant genera were Leuconostoc, Enterococcus and Streptococcus. The yeast Kluyveromyces marxianus was also isolated. The bacterial and biotype distribution notably diverged among the farms. Several of the found species, not previously detected in donkey milk, could have an important probiotic activity and biotechnological potential. This study represents an important insight to the ample diversity of the microorganisms present in the highly selective ecosystem of raw donkey milk. PMID:27600975

  16. Abiotic synthesis of fatty acids

    NASA Technical Reports Server (NTRS)

    Leach, W. W.; Nooner, D. W.; Oro, J.

    1978-01-01

    The formation of fatty acids by Fischer-Tropsch-type synthesis was investigated with ferric oxide, ammonium carbonate, potassium carbonate, powdered Pueblito de Allende carbonaceous chondrite, and filings from the Canyon Diablo meteorite used as catalysts. Products were separated and identified by gas chromatography and mass spectrometry. Iron oxide, Pueblito de Allende chondrite, and Canyon Diablo filings in an oxidized catalyst form yielded no fatty acids. Canyon Diablo filings heated overnight at 500 C while undergoing slow purging by deuterium produced fatty acids only when potassium carbonate was admixed; potassium carbonate alone also produced these compounds. The active catalytic combinations gave relatively high yields of aliphatic and aromatic hydrocarbons; substantial amounts of n-alkenes were almost invariably observed when fatty acids were produced; the latter were in the range C6 to C18, with maximum yield in C9 or 10.

  17. Synthesis and Characterisation of Silica-Modified Titania for Photocatalytic Decolouration of Crystal Violet.

    PubMed

    Shahid, Mohammad; El Saliby, Ibrahim; Tijing, Leonard D; McDonagh, Andrew; Park, Se Min; Lee, Kwang Young; Shon, Ho Kyong; Kim, Jong-Ho

    2015-07-01

    In the past few years, silica-modified titania has drawn increasing attention due to their special properties making them ideal candidates for a wide range of applications. In this study, we report a novel method for the synthesis of silica-modified titania by a sol-gel method using sodium silicate solution (1 M). The hydrolysis and condensation reactions of titanium dioxide (TiO2, Degussa Aeroxide® P25) in sodium silicate solution proceeded with citric acid (3 M) as a catalyst. The orbital shaking method was followed for the removal of sodium salt formed during the sol-gel process. Solvent exchange was carried out using methanol and hexane. Finally, chemical modification of the gel was conducted using trimethylchlorosilane followed by ambient pressure drying. The obtained silica-modified titania was characterised for nanostructural analysis using scanning electron microscopy and transmission electron microscopy. The nitrogen adsorption-desorption measurements were employed to investigate the BET surface area, pore structure and pore volume of specimens. Thermal gravimetric analysis showed exothermic peaks at temperature range of 90-190 °C representing the oxidation of organic groups from--Si-R network. The silica-modified titania showed high photocatalytic activity and an easy recovery using crystal violet as model water pollutant. PMID:26373134

  18. Synthesis and characterisation of a mesocyclic tripodal triamine ligand.

    PubMed

    Ure, Andrew D; Lázaro, Isabel Abánades; Cotter, Michelle; McDonald, Aidan R

    2016-01-14

    Meso- and macrocyclic polydentate amine ligands have been widely explored in oxidation catalysis and for the stabilization of unstable metal-superoxide, -peroxide, and -oxo intermediates. Herein we report on the design and synthesis of a novel mesocyclic, tripodal, triamine ligand that we believe will be an excellent addition to this field. We explored a number of synthetic procedures towards the mesocyclic asymmetric tetraalkylated ligand 1. We expect that 1 will bind metals in a facially capping manner, yielding complexes that display pseudo-tetrahedral geometry, potentially providing access to unprecedented late transition metal-oxo complexes (metal = Co, Ni, Cu). We describe the preparation of a library of mesocyclic polyamine synthons (8, 16, 17, 18, 19) that are precursors in the synthesis of 1. These synthons will be used to tailor the electronic properties of metal complexes of 1 and derivatives thereof. The X-ray crystal structures of 19 and mono- and di-protonated forms of 1b show that the triamine crystalises in a boat–chair conformation which is undesirable for metal coordination. However, solution (1)H NMR studies show that in solution both 19 and the tetraalkylated derivative 1b are remarkably flexible. 1b reacted with [CuI(NCCH3)4](OTf) yielding a 1:1 copper(I) complex [CuI(NCCH3)(1b)](+). PMID:26488232

  19. Isotopic characterisation of prebiotic synthesis of organic material

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Chang, S.

    1986-01-01

    Many primitive meteorites contain an insoluble organic material, much like terrestrial kerogen, whose mode of origin is currently unknown. When sujbected to stepwise decomposition, this material, unlike its terrestrial counterpart, reveals characteristic release patterns for the stable isotopes of carbon, hydrogen and nitrogen as a function of fractional release of each element. The purpose of this study is to try to match those release patterns using organic matter synthesised in the laboratory under controlled conditions. If successful, such a study would shed light on the origin of kerogen-like organic matter in the early solar system and, by extension, on prebiotic organic synthesis in general. The range of possible syntheses, starting materials and reaction conditions to be investigated is considerable. Samples analysed to date include: a heavy oil produced by Fischer-Tropsch-type catalysis of CO + H2; a solid residue generated by a plasma discharge in CO + H2 + N2; a solid deposited on the electrodes of a Miller-Urey synthesis operating on CH4 + H2O + N2; and a solid residue formed by polymerization of light hydrocarbons procured by a Miller-Urey discharge acting on CH4. Significant structure is observed in the release patterns for the carbon and hydrogen isotopes from the synthetic samples, though there is little evidence for isotopic fractionation during the analysis itself.

  20. Synthesis and characterisation of the anion-ordered tellurides MGeTe (M = Co, Rh)

    NASA Astrophysics Data System (ADS)

    Vaqueiro, Paz; Sobany, Gerard G.; Guinet, Fabien; Leyva-Bailen, Patricia

    2009-06-01

    The synthesis and structural characterisation, carried out using a combination of single-crystal and powder X-ray diffraction, of the materials MGeTe (M = Co, Rh) are described. These phases adopt an ordered α-NiAs 2 structure, which can be considered intermediate between those of pyrite and marcasite. Electrical resistivity and Seebeck coefficient measurements, carried out over the temperature range 77 ≤ T/K ≤ 325, indicate that these materials are n-type semiconductors.

  1. Genetics Home Reference: congenital bile acid synthesis defect type 1

    MedlinePlus

    ... bile acid synthesis defect type 1 congenital bile acid synthesis defect type 1 Enable Javascript to view ... PDF Open All Close All Description Congenital bile acid synthesis defect type 1 is a disorder characterized ...

  2. Genetics Home Reference: congenital bile acid synthesis defect type 2

    MedlinePlus

    ... bile acid synthesis defect type 2 congenital bile acid synthesis defect type 2 Enable Javascript to view ... PDF Open All Close All Description Congenital bile acid synthesis defect type 2 is a disorder characterized ...

  3. Synthesis and characterisation of chromium lutetium gallium garnet solid solution

    SciTech Connect

    Galindo, R.; Badenes, J.A. . E-mail: jbadenes@qio.uji.es; Llusar, M.; Tena, M.A.; Monros, G.

    2007-03-22

    The chromium lutetium gallium garnet system has been studied. Samples with 2xCaOxCr{sub 2}O{sub 3}(3 - 2x)Lu{sub 2}O{sub 3}5Ga{sub 2}O{sub 3} (x = 0.025, 0.05, 0.075, 0.1, 0.2 and 0.3,) and xCr{sub 2}O{sub 3}(3 - x)Lu{sub 2}O{sub 3}5Ga{sub 2}O{sub 3} (x = 0, 0.05, 0.075 and 0.3) compositions have been prepared in Ca,Cr:LGG and Cr:LGG systems, respectively. Samples were prepared by ceramic method, fired at 1250 deg. C/6 h and characterised by XRD, lattice parameters, UV-vis-NIR spectroscopy, CIE L * a * b * measurements and SEM/EDX. Results indicate that Ca,Cr:LGG and Cr:LGG solid solutions are obtained. In Cr:LGG system only Cr(III) is stabilised in octahedral positions substituting for Lu(III) and Ga(III). Both Cr(III) and Cr(IV) are present in Ca,Cr:LGG. The calcium is a charge compensator to stabilise Cr(IV) and this is the predominant oxidation state up to x = 0.075 composition. From this composition, Cr(III) becomes more stabilised in garnet lattice. Cr(IV) occupies generally tetrahedral and dodecahedral sites substituting for Ga(III) and Lu(III), while Cr(III) is in octahedral site substituting for Ga(III)

  4. Hydroxamic Acids in Asymmetric Synthesis

    PubMed Central

    Li, Zhi; Yamamoto, Hisashi

    2012-01-01

    Metal-catalyzed stereoselective reactions are a central theme in organic chemistry research. In these reactions, the stereoselection is achieved predominantly by introducing chiral ligands at the metal catalyst’s center. For decades, researchers have sought better chiral ligands for asymmetric catalysis and have made great progress. Nevertheless, to achieve optimal stereoselectivity and to catalyze new reactions, new chiral ligands are needed. Due to their high metal affinity, hydroxamic acids play major roles across a broad spectrum of fields from biochemistry to metal extraction. Dr. K. Barry Sharpless first revealed their potential as chiral ligands for asymmetric synthesis in 1977: He published the chiral vanadium-hydroxamic-acid-catalyzed, enantioselective epoxidation of allylic alcohols before his discovery of Sharpless Asymmetric Epoxidation, which uses titanium-tartrate complex as the chiral reagent. However, researchers have reported few highly enantioselective reactions using metal-hydroxamic acid as catalysts since then. This Account summarizes our research on metal-catalyzed asymmetric epoxidation using hydroxamic acids as chiral ligands. We designed and synthesized a series of new hydroxamic acids, most notably the C2-symmetric bis-hydroxamic acid (BHA) family. V-BHA-catalyzed epoxidation of allylic and homoallylic alcohols achieved higher activity and stereoselectivity than Sharpless Asymmetric Epoxidation in many cases. Changing the metal species led to a series of unprecedented asymmetric epoxidation reactions, such as (i) single olefins and sulfides with Mo-BHA, (ii) homoallylic and bishomoallylic alcohols with Zr- and Hf-BHA, and (iii) N-alkenyl sulfonamides and N-sulfonyl imines with Hf-BHA. These reactions produce uniquely functionalized chiral epoxides with good yields and enantioselectivities. PMID:23157425

  5. Hydroxamic acids in asymmetric synthesis.

    PubMed

    Li, Zhi; Yamamoto, Hisashi

    2013-02-19

    Metal-catalyzed stereoselective reactions are a central theme in organic chemistry research. In these reactions, the stereoselection is achieved predominantly by introducing chiral ligands at the metal catalyst's center. For decades, researchers have sought better chiral ligands for asymmetric catalysis and have made great progress. Nevertheless, to achieve optimal stereoselectivity and to catalyze new reactions, new chiral ligands are needed. Because of their high metal affinity, hydroxamic acids play major roles across a broad spectrum of fields from biochemistry to metal extraction. Dr. K. Barry Sharpless first revealed their potential as chiral ligands for asymmetric synthesis in 1977: He published the chiral vanadium-hydroxamic-acid-catalyzed, enantioselective epoxidation of allylic alcohols before his discovery of Sharpless asymmetric epoxidation, which uses the titanium-tartrate complex as the chiral reagent. However, researchers have reported few highly enantioselective reactions using metal-hydroxamic acid as catalysts since then. This Account summarizes our research on metal-catalyzed asymmetric epoxidation using hydroxamic acids as chiral ligands. We designed and synthesized a series of new hydroxamic acids, most notably the C2-symmetric bis-hydroxamic acid (BHA) family. V-BHA-catalyzed epoxidation of allylic and homoallylic alcohols achieved higher activity and stereoselectivity than Sharpless asymmetric epoxidation in many cases. Changing the metal species led to a series of unprecedented asymmetric epoxidation reactions, such as (i) single olefins and sulfides with Mo-BHA, (ii) homoallylic and bishomoallylic alcohols with Zr- and Hf-BHA, and (iii) N-alkenyl sulfonamides and N-sulfonyl imines with Hf-BHA. These reactions produce uniquely functionalized chiral epoxides with good yields and enantioselectivities. PMID:23157425

  6. Phosphatidic Acid Synthesis in Bacteria

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2012-01-01

    Membrane phospholipid synthesis is a vital facet of bacterial physiology. Although the spectrum of phospholipid headgroup structures produced by bacteria is large, the key precursor to all of these molecules is phosphatidic acid (PtdOH). Glycerol-3-phosphate derived from the glycolysis via glycerol-phosphate synthase is the universal source for the glycerol backbone of PtdOH. There are two distinct families of enzymes responsible for the acylation of the 1-position of glycerol-3-phosphate. The PlsB acyltransferase was discovered in Escherichia coli, and homologs are present in many eukaryotes. This protein family primarily uses acyl-acyl carrier protein (ACP) endproducts of fatty acid synthesis as acyl donors, but may also use acyl-CoA derived from exogenous fatty acids. The second protein family, PlsY, is more widely distributed in bacteria and utilizes the unique acyl donor, acyl-phosphate, which is produced from acyl-ACP by the enzyme PlsX. The acylation of the 2-position is carried out by members of the PlsC protein family. All PlsCs use acyl-ACP as the acyl donor, although the PlsCs of the γ-proteobacteria also may use acyl-CoA. Phospholipid headgroups are precursors in the biosynthesis of other membrane-associated molecules and the diacylglycerol product of these reactions is converted to PtdOH by one of two distinct families of lipid kinases. The central importance of the de novo and recycling pathways to PtdOH in cell physiology suggest these enzymes are suitable targets for the development of antibacterial therapeutics in Gram-positive pathogens. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:22981714

  7. Synthesis and characterisation of bismuth(III) vanadate

    NASA Astrophysics Data System (ADS)

    Gotić, M.; Musić, S.; Ivanda, M.; Šoufek, M.; Popović, S.

    2005-06-01

    Modified hydrothermal and 'wet' precipitation routes at room temperature were employed to synthesise pure monoclinic BiVO 4 powders of varying particle morphologies. Monoclinic BiVO 4 powder was also prepared by a solid-state reaction at 700°C. Depending on the synthesis conditions, the colour of BiVO 4 varies from inhomogeneously yellow-brown to homogeneously and intensive lemon yellow. BiVO 4 prepared by solid-state reaction consisted of large compact particles about 15 μm in size and of irregular shape. At higher magnification, the formation of domains with smooth terrace-like surfaces was observed. These domains ended with well-defined walls, and the edges of these walls were relatively very sharp. BiVO 4 synthesised by the hydrothermal and an aqueous process at RT consisted of smaller particles (0.3-1.2 μm) and of much bigger regular crystals with a well-defined crystal habit. A continuous shift of the most intense Raman band to lower wavenumbers reveals that the average short range symmetry of the VO 4 tetrahedra becomes more regular. The values of FWHM for the same Raman band increase from sample prepared by solid-state reaction to sample obtained at RT. The Raman results suggested that a sample prepared at high temperature consisted of less symmetric VO 4 tetrahedra than samples prepared at low temperature and that the high-temperature sample showed better crystallinity with less defects than the samples prepared by an aqueous process under mild conditions. FT-IR spectra showed main features typical of the vanadates of other metal(3+) cations. However, the position of IR bands recorded for BiVO 4 depended on the synthesis route.

  8. Radiation synthesis and characterisation of the network structure of natural/synthetic double-network superabsorbent polymers

    NASA Astrophysics Data System (ADS)

    Şen, Murat; Hayrabolulu, Hande

    2012-09-01

    In this study radiation synthesis and characterisation of the network structure of acrylic acid sodium salt/locust bean gum, (AAcNa/LBG) natural/synthetic double-network super absorbent polymers were investigated. Quartet systems composed of acrylic acid sodium salt/locust bean gum/N,N methylene bis acrylamide/water (AAcNa/LBG/MBAAm/water) were prepared at varying degree of neutralisations (DN) by controlling the DN value of AAc and irradiated with gamma rays at ambient temperature at a very low dose rate. The influences of the DN on the swelling and network properties were examined. It was observed that the DN strongly affected the gelation and super absorption properties of the gels. Molecular weight between crosslinks (M), effective crosslink density (νe) and mesh size (ξ) of SAPs were calculated from swelling and shear modules data obtained from compression and oscillatory frequency sweep tests. M values obtained from the uniaxial deformation experiments were very close to those obtained from the oscillatory shear experiments excluding the completely neutralised gel system. It was concluded that the uniaxial compression technique could be used for the characterisation of the network structure of a hydrogel as along with the rheological analyses; however, a very precise control of the gel size was also needed.

  9. Synthesis, characterisation, electrical and optical properties of copper borate compounds

    SciTech Connect

    Kipcak, Azmi Seyhun; Senberber, Fatma Tugce; Aydin Yuksel, Sureyya; Derun, Emek Moroydor; Piskin, Sabriye

    2015-10-15

    Highlights: • Cu(BO{sub 2}){sub 2} was synthesized at the form of with pdf number of “00-001-0472”. • Particle sizes were found between 162.72 and 56.44 nm and 195.76 and 75.73 nm at CuSNaH. • Reaction yields were 90.4 ± 0.84, 96.9 ± 0.78 and 78.9 ± 0.76% for CuST, CuSB and CuSNaH. • The resistivity of CuST, CuSB and CuSNaH are 1.10 × 10{sup 7}, 7.02 × 10{sup 6} and 8.62 × 10{sup 5} Ωm. • The optical energy gap was 3.76 eV. - Abstract: The hydrothermal synthesis of copper borate compounds [Cu(BO{sub 2}){sub 2}] was studied, and several parameters were found to affect the synthesis. Raw materials, including CuSO{sub 4}·5H{sub 2}O, Na{sub 2}B{sub 4}O{sub 7}·5H{sub 2}O, Na{sub 2}B{sub 4}O{sub 7}·10H{sub 2}O, NaOH and H{sub 3}BO{sub 3}, were used. Reaction temperatures and reaction times between 40 °C and 100 °C and 15 and 240 min, respectively, were used. The as-synthesised copper borate was analysed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The yields of the reactions were also calculated. Single-phase, nanoparticulate copper borate compounds (Cu(BO{sub 2}){sub 2}) possessing high XRD crystal scores were obtained; the reactions used to obtain these materials were highly efficient. Electrical resistivity and optical absorbance measurements were carried out on the compounds obtained from the highest yielding reactions. The results of this study showed that even using a reaction time of 15 min, copper borate formation was successfully achieved.

  10. Abscisic Acid Synthesis and Response

    PubMed Central

    Finkelstein, Ruth

    2013-01-01

    Abscisic acid (ABA) is one of the “classical” plant hormones, i.e. discovered at least 50 years ago, that regulates many aspects of plant growth and development. This chapter reviews our current understanding of ABA synthesis, metabolism, transport, and signal transduction, emphasizing knowledge gained from studies of Arabidopsis. A combination of genetic, molecular and biochemical studies has identified nearly all of the enzymes involved in ABA metabolism, almost 200 loci regulating ABA response, and thousands of genes regulated by ABA in various contexts. Some of these regulators are implicated in cross-talk with other developmental, environmental or hormonal signals. Specific details of the ABA signaling mechanisms vary among tissues or developmental stages; these are discussed in the context of ABA effects on seed maturation, germination, seedling growth, vegetative stress responses, stomatal regulation, pathogen response, flowering, and senescence. PMID:24273463

  11. Synthesis and crystal structure characterisation of sodium neptunate compounds

    NASA Astrophysics Data System (ADS)

    Smith, A. L.; Raison, P. E.; Konings, R. J. M.

    2011-06-01

    The present work reports studies of the chemical reactions between neptunium dioxide and sodium oxide either in the presence of oxygen or inert gas (Ar), leading to compounds with hexavalent, heptavalent or pentavalent/tetravalent neptunium, respectively. Solid state synthesis with different NpO 2/Na 2O ratios led to the following polycrystalline compounds: Na 2Np 2O 7 monoclinic (P12 11), α-Na 2NpO 4 orthorhombic (Pbam), β-Na 2NpO 4 orthorhombic (Pbca), β-Na 4NpO 5 tetragonal (I4/mmm), Na 5NpO 6 monoclinic (C2/m) and a cubic compound (Fm-3m) that could either be Na 3NpO 4 or Na 4NpO 4. The crystal structures of the α-Na 2NpO 4 and Na 2Np 2O 7 compounds were refined by Rietveld analysis. Evolution of the cell parameters of α-Na 2NpO 4 was also followed as a function of temperature up to 1273 K by X-ray diffraction. The corresponding linear thermal expansion coefficients along the different axis were determined: αa = 41.3 × 10 -6 K -1, αb = 35.0 × 10 -6 K -1, αc ˜ 0 K -1. From the high temperature X-ray diffraction experiment it was also possible to evidence formation of diverse phases at different temperatures and to review parts of the Na-Np-O system.

  12. Synthesis and characterisation of magnetic iron sulfide nanocrystals

    SciTech Connect

    Beal, John H.L.; Etchegoin, Pablo G.; Tilley, Richard D.

    2012-05-15

    Fe{sub 1-x}S and Fe{sub 3}S{sub 4} nanocrystals with a variety of morphologies and average sizes were synthesised by the reaction of iron(II) acetylacetonate (Fe(acac){sub 2}) and elemental sulfur in oleylamine. Reaction at 200 Degree-Sign C for 240 min produced extremely thin Fe{sub 3}S{sub 4} sheets, which displayed low coercivities (14 kA m{sup -1}) suggestive of pseudosingle-domain or multidomain particles. Reaction temperatures {>=}300 Degree-Sign C for 30 min produced 70 nm Fe{sub 1-x}S nanocrystals with hexagonal plate and hexagonal prism morphologies, which displayed high magnetic coercivities (110 kA m{sup -1}) characteristic of single magnetic domain particles. Rapid injection of sulfur solution at 280 Degree-Sign C followed by immediate cooling produced a mixture of Fe{sub 1-x}S nanocrystals and spherical, polydisperse {approx}5 nm Fe{sub 3}S{sub 4} nanocrystals, which displayed superparamagnetism above an average blocking temperature of 55 K. - Graphical abstract: Reaction of Fe(acac){sub 2} and sulfur in oleylamine produces Fe{sub 3}S{sub 4} nanocrystals at 200 Degree-Sign C and Fe{sub 1-x}S nanocrystals at 310 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Synthesis of Fe{sub 1-x}S and Fe{sub 3}S{sub 4} nanocrystals from Fe(acac){sub 2} and sulfur. Black-Right-Pointing-Pointer Fe{sub 3}S{sub 4} sheets formed after 4 h at 200 Degree-Sign C. Black-Right-Pointing-Pointer Fe{sub 1-x}S nanocrystals formed above 200 Degree-Sign C. Black-Right-Pointing-Pointer Five nanometre Fe{sub 3}S{sub 4} formed by rapid injection. Black-Right-Pointing-Pointer Five nanometre Fe{sub 3}S{sub 4} nanocrystals superparamagnetic above blocking temperature of 55 K.

  13. Synthesis and characterisation of self-assembled and self-adjuvanting asymmetric multi-epitope lipopeptides of ovalbumin.

    PubMed

    Eskandari, Sharareh; Stephenson, Rachel J; Fuaad, Abdullah Ahmad; Apte, Simon H; Doolan, Denise L; Toth, Istvan

    2015-01-12

    Designing a lipopeptide (LP) vaccine with a specific asymmetric arrangement of epitopes may result in an improved display of antigens, increasing host-cell recognition and immunogenicity. This study aimed to synthesise and characterise the physicochemical properties of a library of asymmetric LP-based vaccine candidates that contained multiple CD4(+) and CD8(+) T-cell epitopes from the model protein antigen, ovalbumin. These fully synthetic vaccine candidates were prepared by microwave-assisted solid phase peptide synthesis. The C12 or C16 lipoamino acids were coupled to the N or C terminus of the OVA CD4 peptide epitope. The OVA CD4 LPs and OVA CD8 peptide constructs were then conjugated using azide-alkyne Huisgen cycloaddition to give multivalent synthetic vaccines. Physiochemical characterisation of these vaccines showed a tendency to self-assemble in aqueous media. Changes in lipid length and position induced self-assembly with significant changes to their morphology and secondary structure as shown by transmission electron microscopy and circular dichroism. PMID:25399845

  14. Synthesis and characterisation of biologically compatible TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Cheyne, Richard W.; Smith, Tim Ad; Trembleau, Laurent; McLaughlin, Abbie C.

    2011-06-01

    We describe for the first time the synthesis of biocompatible TiO2 nanoparticles containing a functional NH2 group which are easily dispersible in water. The synthesis of water dispersible TiO2 nanoparticles coated with mercaptosuccinic acid is also reported. We show that it is possible to exchange the stearic acid from pre-synthesised fatty acid-coated anatase 5-nm nanoparticles with a range of organic ligands with no change in the size or morphology. With further organic functionalisation, these nanoparticles could be used for medical imaging or to carry cytotoxic radionuclides for radioimmunotherapy where ultrasmall nanoparticles will be essential for rapid renal clearance.

  15. Characterisation of humic acid by means of SERS

    NASA Astrophysics Data System (ADS)

    Vogel, E.; Geßner, R.; Hayes, M. H. B.; Kiefer, W.

    1999-05-01

    Humic acid from Oak Forest extracted at pH 7, was investigated by means of surface enhanced Raman spectroscopy (SERS). The substance was deposited on two different SERS substrates: ex-situ roughened silver electrodes and silver island films. A comparison of the SERS spectra excited with the 514 nm and the 647 nm lines shows considerable differences in the relative intensities of the bands. These alterations may be a result of resonance enhancement and/or photochemically induced conformation changes of the molecule. Differences in the SERS spectra of the sample adsorbed on different SERS substrates indicate a strong dependence of the adsorption configuration of the humic acid on the metal surface, on the surface potential, and on the coadsorption of anions.

  16. Synthesis of new polysialic acid derivatives.

    PubMed

    Su, Yi; Kasper, Cornelia; Kirschning, Andreas; Dräger, Gerald; Berski, Silke

    2010-09-01

    In this paper we report the first synthesis of novel polysialic acid derivatives which is initiated by treatment of polysialic acid with EDC-HCl to yield the inter-residual delta-lactone. Subsequent reaction with amines or hydrazine gives the corresponding polysialic acid amides and hydrazide. Alkylation of the tetrabutylammonium salt of polysialic acid yields polysialic acid esters. In contrast a variety of N-derivatives of polysialic acid can be prepared starting from deacetylated polysialic acid. The N-derivatives prepared in this communication can be used for the Cu-catalyzed as well as Cu-free "click" chemistry. PMID:20602419

  17. A derivatisation and liquid chromatography/electrospray ionisation multistage mass spectrometry method for the characterisation of naphthenic acids.

    PubMed

    Smith, B E; Rowland, S J

    2008-12-01

    Naphthenic acids (NAs) are partially uncharacterised complex mixtures of carboxylic acids, resulting from the microbial oxidation of petroleum hydrocarbons. They are associated with the fouling of pipelines and process equipment in oil production and with corrosion in oil refineries. As by-products of the rapidly expanding oil (tar) sands industries, NAs are also pollutants and have proved to be toxic to a range of organisms. They also have important beneficial uses as fungicides, tyre additives and, paradoxically, also in the manufacture of corrosion inhibitors. These features make the characterisation of NAs an important goal for analytical chemists. Here we describe the synthesis of amide derivatives of NAs for characterisation by liquid chromatography/electrospray ionisation multistage mass spectrometry (LC/ESI-MS(n)). The method was applied to commercially available carboxylic acids, novel synthetic NAs, commercial NAs refined from crude oils, crude oil NAs and Athabasca oil sands NAs. In addition to confirming the number of alicyclic rings and length of alkyl side chain substituents (confirming information from existing methods), the MS(n) results provided further structural information. Most important of these was the finding that bi- to polycyclic acids containing ethanoate side chains, in addition to alkyl substituents, were widespread amongst the oil and oil sands NAs. The latter NAs are known end members of the beta-oxidation of NAs with even carbon number alkanoate chains. Since such NA mixtures are toxic, they should be targets for bioremediation. Bioremediation of NAs can also be monitored better by application of the methods described herein. PMID:18988206

  18. Total synthesis of (+)-zaragozic acid C.

    PubMed

    Armstrong, A; Barsanti, P A; Jones, L H; Ahmed, G

    2000-10-20

    A total synthesis of (+)-zaragozic acid C is described. Key features of the synthesis are the use of a double Sharpless asymmetric dihydroxylation reaction of diene 6 to control stereochemistry at four contiguous stereocenters from C3 to C6; the introduction of the C1-side chain by reaction between the anion derived from the dithiane monosulfoxide 27 and the core aldehyde 12; a high yielding, acid-mediated simultaneous acetonide deprotection-dithiane removal-ketalization procedure leading exclusively to the 2, 8-dioxabicyclo[3.2.1]octane core 34; and a novel triple oxidation procedure allowing installation of the tricarboxylic acid. PMID:11031024

  19. Nitrated fatty acids: Synthesis and measurement

    PubMed Central

    Woodcock, Steven R.; Bonacci, Gustavo; Gelhaus, Stacy L.; Schopfer, Francisco J.

    2012-01-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis, sample extraction from complex biological matrices, and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by LC-MS. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed. PMID:23200809

  20. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceeding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 12 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  1. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 12 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  2. Cloning and characterisation of rosmarinic acid synthase from Melissa officinalis L.

    PubMed

    Weitzel, Corinna; Petersen, Maike

    2011-05-01

    Lemon balm (Melissa officinalis L.; Lamiaceae) is a well-known medicinal plant mainly due to two groups of compounds, the essential oil and the phenylpropanoid derivatives. The prominent phenolic compound is rosmarinic acid (RA), an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. RA shows a number of interesting biological activities. Rosmarinic acid synthase (RAS; 4-coumaroyl-CoA:hydroxyphenyllactic acid hydroxycinnamoyltransferase) catalyses the ester formation. Cell cultures of M. officinalis have been established in order to characterise the formation of RA in an important diploid medicinal plant. RAS activity as well as the expression of the RAS gene are closely correlated with the accumulation of RA in suspension cultures of M. officinalis. The RAS cDNA and gene (MoRAS) were isolated. The RAS gene was shown to be intron-free. MoRAS belongs to the BAHD superfamily of acyltransferases. Southern-blot analysis suggests the presence of only one RAS gene copy in the M. officinalis genome. The enzyme was characterised with respect to enzyme properties, substrate preferences and kinetic data in crude plant extracts and as heterologously synthesised protein from Escherichia coli. PMID:21354582

  3. Polyamines in the Synthesis of Bacteriophage Deoxyribonucleic Acid. I. Lack of Dependence of Polyamine Synthesis on Bacteriophage Deoxyribonucleic Acid Synthesis

    PubMed Central

    Dion, Arnold S.; Cohen, Seymour S.

    1972-01-01

    To determine whether polyamine synthesis is dependent on deoxyribonucleic acid (DNA) synthesis, polyamine levels were estimated after infection of bacterial cells with ultraviolet-irradiated T4 or T4 am N 122, a DNA-negative mutant. Although phage DNA accumulation was restricted to various degrees in comparison to cells infected with T4D, nearly commensurate levels of putrescine and spermidine synthesis were observed after infection, regardless of the rate of phage DNA synthesis. We conclude from these data that polyamine synthesis after infection is independent of phage DNA synthesis. PMID:4552549

  4. Enantioselective Total Synthesis of Secalonic Acid E.

    PubMed

    Ganapathy, Dhandapani; Reiner, Johannes R; Löffler, Lorenz E; Ma, Ling; Gnanaprakasam, Boopathy; Niepötter, Benedikt; Koehne, Ingo; Tietze, Lutz F

    2015-11-16

    The first enantioselective synthesis of a secalonic acid containing a dimeric tetrahydroxanthenone skeleton is described, using a Wacker-type cyclization of a methoxyphenolic compound to form a chiral chroman with a quaternary carbon stereogenic center with >99% ee. Further steps are a Sharpless dihydroxylation and a Dieckmann condensation to give a tetrahydroxanthenone. A late-stage one-pot palladium-catalyzed Suzuki-dimerization reaction leads to the 2,2'-biphenol linkage to complete the enantioselective total synthesis of secalonic acid E in 18 steps with 8% overall yield. PMID:26447631

  5. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis. PMID:27349116

  6. Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: milestones, challenges, and future directions.

    PubMed

    Verboekend, D; Nuttens, N; Locus, R; Van Aelst, J; Verolme, P; Groen, J C; Pérez-Ramírez, J; Sels, B F

    2016-06-13

    Faujasite (X, Y, and USY) zeolites represent one of the most widely-applied and abundant catalysts and sorbents in the chemical industry. In the last 5 years substantial progress was made in the synthesis, characterisation, and catalytic exploitation of hierarchically-structured variants of these zeolites. Hererin, we provide an overview of these contributions, highlighting the main advancements regarding the evaluation of the nature and functionality of introduced secondary porosity. The novelty, efficiency, versatility, and sustainability of the reported bottom-up and (predominately) top-down strategies are discussed. The crucial role of the relative stability of faujasites in aqueous media is highlighted. The interplay between the physico-chemical properties of the hierarchical zeolites and their use in petrochemical and biomass-related catalytic processes is assessed. PMID:26313001

  7. Synthesis of (+) and (-)-phaselic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    (2S)-Phaselic acid (2S-O-caffeoylmalate) is a common plant metabolite belonging to the o-diphenol subclass of phenolic secondary metabolites. Our interest in this metabolite stems from previous studies showing that the presence of (2S)-phaselic acid in red clover is crucial to the preservation of ut...

  8. Synthesis of (+)- and (-)-phaselic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    (2S)-Phaselic acid (2S-O-caffeoylmalate) is a common plant metabolite belonging to the o-diphenol subclass of phenolic secondary metabolites. Our interest in this metabolite stems from previous studies showing that the presence of (2S)-phaselic acid in red clover is crucial to the preservation of ut...

  9. Synthesis of pyromellitic acid esters

    NASA Technical Reports Server (NTRS)

    Fedorova, V. A.; Donchak, V. A.; Martynyuk-Lototskaya, A. N.

    1985-01-01

    The ester acids necessary for studyng the thermochemical properties of pyromellitic acid (PMK)-based peroxides were investigated. Obtaining a tetramethyl ester of a PMK was described. The mechanism of an esterification reaction is discussed, as is the complete esterification of PMK with primary alcohol.

  10. Synthesis of higher monocarboxylic acids

    SciTech Connect

    Taikov, B.F.; Novakovskii, E.M.; Zhelkovskaya, V.P.; Shadrova, V.N.; Shcherbik, P.K.

    1981-01-01

    Brown-coal and peat waxes contain higher monocarboxylic acids, alcohols and esters of them as their main components. In view of this, considerable interest is presented by the preparation of individual compounds among those mentioned above, which is particularly important in the study of the composition and development of the optimum variants of the chemical processing of the waxes. In laboratory practice, to obtain higher monocarboxylic acids use is generally made of electrosynthesis according to Kolbe which permits unbranched higher aliphatic acids with given lengths of the hydrocarbon chain to be obtained. The aim of the present work was to synthesize higher monocarboxylic acids: arachidic, behenic, lignoceric, pentacosanoic, erotic, heptacosanoic, montanic, nonacosanoic, melissic, dotriacontanoic and tetratriacontanoic, which are present in waxes. Characteristics of synthesized acids are tabulated. 20 refs.

  11. Synthesis of nucleic acid methylphosphonothioates.

    PubMed Central

    Roelen, H C; de Vroom, E; van der Marel, G A; van Boom, J H

    1988-01-01

    The reagent obtained in situ by treating methylphosphonothioic dichloride with 1-hydroxy-6-trifluoromethylbenzotriazole could be used for the introduction of methylphosphonothioate linkages. The individual diastereomers of the protected dimer d-Tp(S,Me)A were applied in the synthesis of the chiral pure (R or S) hexamers d-[CpCpTp(S,Me)ApGpG]. The reagent showed also to be very effective for the preparation of the 3',5'-cyclic methylphosphonothioate of uridine. PMID:3412896

  12. The synthesis and spectroscopic characterisation of hydrotalcite formed from aluminate solutions.

    PubMed

    Palmer, Sara J; Grand, Laure M; Frost, Ray L

    2011-06-01

    Raman spectroscopy has been used to characterise nine hydrotalcites prepared from aluminate and magnesium solutions (magnesium chloride and seawater). The aluminate hydrotalcites are proposed to have the following formula Mg(6)Al(2)(OH)(16)(CO(3)(2-))·xH(2)O, Mg(6)Al(2)(OH)(16)(CO(3)(2-),SO(4)(2-))·xH(2)O, and Mg(6)Al(2)(OH)(16)(SO(4)(2-))·xH(2)O. The synthesis of these hydrotalcites using seawater results in the intercalation of sulfate anions into the hydrotalcite interlayer. The spectra have been used to assess the molecular assembly of the cations and anions in the hydrotalcite structures. The spectra have been conveniently subdivided into spectral features based upon the carbonate anion, the hydroxyl units and water units. This investigation has shown the ideal conditions to form hydrotalcite from aluminate solutions is at pH 14 using a magnesium chloride solution at a volumetric ratio of 1:1. Changes in synthesis conditions resulted in the formation of impurity products aragonite, thenardite, and gypsum. PMID:21429789

  13. Synthesis of Alkyl Methylphosphonic Acid Esters

    SciTech Connect

    Mong, Gary M.; Harvey, Scott D.; Campbell, James A.

    2005-08-01

    This manuscript describes a simple synthesis and purification of cyclohexyl methylphosphonic and isopropyl methylphosphonic acids that provides high purity (>95% purity) product in gram quantities. Based on needs for improved analytical methods for indirect detection of nerve agent use, there is an increasing demand for these nerve agent hydrolysis products. These products are not commercially available. Synthesis is based on reaction of equimolar amounts of alcohol with methylphosphonic dichloride in toluene followed by the addition of excess water (two mole equivalents). The product was then extracted from the resulting aqueous layer into chloroform. The extraction scheme proved highly effective in removing unreacted starting materials and reaction by-products.

  14. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the snythesis methods of the prior art.

  15. Synthesis of carbon-13-labeled tetradecanoic acids.

    PubMed

    Sparrow, J T; Patel, K M; Morrisett, J D

    1983-07-01

    The synthesis of tetradecanoic acid enriched with 13C at carbons 1, 3, or 6 is described. The label at the carbonyl carbon was introduced by treating 1-bromotridecane with K13CN (90% enriched) to form the 13C-labeled nitrile, which upon hydrolysis yielded the desired acid. The [3-13C]tetradecanoic acid was synthesized by alkylation of diethyl sodio-malonate with [1-13C]1-bromododecane; the acid was obtained upon saponification and decarboxylation. The label at the 6 position was introduced by coupling the appropriately labeled alkylcadmium chloride with the half acid chloride methyl ester of the appropriate dioic acid, giving the corresponding oxo fatty acid ester. Formation of the tosylhydrazone of the oxo-ester followed by reduction with sodium cyanoborohydride gave the labeled methyl tetradecanoate which, upon hydrolysis, yielded the desired tetradecanoic acid. All tetradecanoic acids were identical to unlabeled analogs as evaluated by gas-liquid chromatography and infrared or NMR spectroscopy. These labeled fatty acids were used subsequently to prepare the correspondingly labeled diacyl phosphatidylcholines. PMID:6631228

  16. Synthesis of alpha-amino acids

    DOEpatents

    Davis, J.W. Jr.

    1983-01-25

    A method is described for synthesizing alpha amino acids proceeding through novel intermediates of the formulas: R[sub 1]R[sub 2]C(OSOCl)CN, R[sub 1]R[sub 2]C(Cl)CN and [R[sub 1]R[sub 2]C(CN)O][sub 2]SO wherein R[sub 1] and R[sub 2] are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art. No Drawings

  17. Pectin functionalised by fatty acids: Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic characterisation

    NASA Astrophysics Data System (ADS)

    Kamnev, Alexander A.; Calce, Enrica; Tarantilis, Petros A.; Tugarova, Anna V.; De Luca, Stefania

    2015-01-01

    Chemically modified pectin derivatives obtained by partial esterification of its hydroxyl moieties with fatty acids (FA; oleic, linoleic and palmitic acids), as well as the initial apple peel pectin were comparatively characterised using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Characteristic changes observed in DRIFT spectra in going from pectin to its FA esters are related to the corresponding chemical modifications. Comparing the DRIFT spectra with some reported data on FTIR spectra of the same materials measured in KBr or NaCl matrices has revealed noticeable shifts of several polar functional groups both in pectin and in its FA-esterified products induced by the halide salts. The results obtained have implications for careful structural analyses of biopolymers with hydrophilic functional groups by means of different FTIR spectroscopic methodologies.

  18. Synthesis and characterisation of macroporous poly(methyl methacrylate) with plasma-polymerised hydrophilic coating

    NASA Astrophysics Data System (ADS)

    Serrano Aroca, Angel

    This thesis focuses on the synthesis and characterisation of a new macroporous biomatenal made of poly(methyl methacrylate) and plasma-polymerised poly(hydroxyethyl acrylate). A series of porous and non-porous PMMA networks with different degrees of porosity and cross-linker contents were synthesised by polymerisation in the presence of ethanol and bulk polymerisation. Macroporous PMMA was allowed to adsorb 2-hydroxyethyl acrylate monomer vapour. The absence of thermal or photoinitiators makes difficult the initiation of the polymerisation process of the adsorbed monomer. However, by plasma treatment this problem can be solved. This method of forming a pure hydrophilic coating by plasma polymerisation is very interesting because the porosity of the scaffold hardly changes at the end of the process. The DMS spectrum shows that these materials are a new kind of macroporous hydrogel with a high mechanical modulus at room temperature and able to adsorb water while keeping their mechanical properties. Takayanagi's block model was applied to these results to characterise the biphasic behaviour of these systems. Porosity measurements were performed to determine the volume fraction of pores in the samples before and after the plasma treatment. The structure and morphology of these macroporous systems were observed by Scanning Electron Microscope (SEM). The nature, homogeneity and stability of the hydrophilic coating was studied by DSC, ATR FTIR, TGA and immersion in water. It was found that the plPHEA is very stable and only in very drastic conditions (boiling water) can suffer hydrolytic degradation. The water sorption and diffusion properties of these biomaterials were studied by dynamic desorption, contact angle, equilibrium sorption isotherms and immersion experiments. Thermal analysis of water in the hydrophilic layer was performed by DSC. All these experimental techniques suggested that the plasma-polymerised PHEA is more homogeneously interpenetrated with

  19. Reconstruction of diaminopimelic acid biosynthesis allows characterisation of Mycobacterium tuberculosis N-succinyl-L,L-diaminopimelic acid desuccinylase

    PubMed Central

    Usha, Veeraraghavan; Lloyd, Adrian J.; Roper, David I.; Dowson, Christopher G.; Kozlov, Guennadi; Gehring, Kalle; Chauhan, Smita; Imam, Hasan T.; Blindauer, Claudia A.; Besra, Gurdyal S.

    2016-01-01

    With the increased incidence of tuberculosis (TB) caused by Mycobacterium tuberculosis there is an urgent need for new and better anti-tubercular drugs. N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is a key enzyme in the succinylase pathway for the biosynthesis of meso-diaminopimelic acid (meso-DAP) and L-lysine. DapE is a zinc containing metallohydrolase which hydrolyses N-succinyl L,L diaminopimelic acid (L,L-NSDAP) to L,L-diaminopimelic acid (L,L-DAP) and succinate. M. tuberculosis DapE (MtDapE) was cloned, over-expressed and purified as an N-terminal hexahistidine ((His)6) tagged fusion containing one zinc ion per DapE monomer. We redesigned the DAP synthetic pathway to generate L,L-NSDAP and other L,L-NSDAP derivatives and have characterised MtDapE with these substrates. In contrast to its other Gram negative homologues, the MtDapE was insensitive to inhibition by L-captopril which we show is consistent with novel mycobacterial alterations in the binding site of this drug. PMID:26976706

  20. Synthesis and characterisation of cobalt, nickel and copper complexes with tripodal 4N ligands as novel catalysts for the homogeneous partial oxidation of alkanes

    PubMed Central

    Tordin, Elisa; List, Manuela; Monkowius, Uwe; Schindler, Siegfried; Knör, Günther

    2013-01-01

    Four new compounds of the general formula [M(L)(CH3COO)][PF6], where L is a tetradentate tripodal ligand such as tris[2-(dimethylamino)ethyl]amine (L1) or (2-aminoethyl)bis(2-pyridylmethyl)amine (L2) and M is Co(II), Ni(II) or Cu(II), have been prepared employing a simple two-step synthesis. The compounds have been characterised by elemental analysis, mass spectroscopy, IR spectroscopy and X-ray diffraction. The catalytic properties of the derivatives containing the aliphatic ligand L1 have been investigated in particular toward the oxidation of cyclohexane and adamantane in the presence of the sacrificial oxidant m-CPBA (meta-chloroperbenzoic acid). Good TONs and selectivity have been determined for the cobalt and nickel compounds. PMID:23805005

  1. Sol-gel synthesis and characterisation of nano-scale hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Bilton, M.; Brown, A. P.; Milne, S. J.

    2010-07-01

    Hydroxyapatite (HAp) forms the main mineral component of bone and teeth. This naturally occurring HAp is in the form of nano-metre sized crystallites of Ca10(PO4)6(OH)2 that contain a number of cation and anion impurities, for example CO32-, F-, Na+, Mg2+ and Sr2+. Synthetic nano-sized HAp particles exhibit favourable biocompatibility and bioactivity and in order to better match the composition to natural HAp there is great interest in producing a range of chemically modified powders. In this study, two HAp powders have been synthesised via a water-based low-temperature sol-gel method and a third, commercial powder from Sigma-Aldrich have been analysed. Subsequent powder calcination has been carried out within the temperature range of 500-700 °C and the products characterised by bulk chemical analysis, X-ray diffraction and electron microscopy. Energy dispersive X-ray spectroscopy (EDX) in the TEM has been used to assess the composition of individual HAp particles. In order to do this accurately it is first necessary to account for the sensitivity of the HAp structure and composition to irradiation by the high energy electron beam of the TEM. This was done by monitoring the estimated Ca/P ratio derived from TEM-EDX of stoichiometric HAp under increasing levels of electron fluence. A fluence threshold (at a given beam energy) was established below which the measured Ca/P ratio can be considered to be stable. Subsequent elemental analysis at or below this threshold has enabled the variation in composition between particles both within and between synthesis batches to be accurately assessed. Compositional variability between particles is also evident, even in the commercial powder, but is far greater in the powders prepared by the sol-gel method.

  2. Characterisation of a proposed internet synthesis of N,N-dimethyltryptamine using liquid chromatography/electrospray ionisation tandem mass spectrometry.

    PubMed

    Martins, Cláudia P B; Freeman, Sally; Alder, John F; Brandt, Simon D

    2009-08-14

    The psychoactive properties of N,N-dimethyltryptamine (DMT) are known to induce altered states of consciousness in humans. These properties attract great interest from clinical, neuroscientific, clandestine and forensic communities. The Breath of Hope Synthesis was reported on an internet website as a convenient two-step methodology for the preparation of DMT. The analytical characterisation of the first stage was the subject of previous publications by the authors and involved the thermal decarboxylation of tryptophan and the formation of tryptamine. The present study reports on the characterisation of the second step of this procedure which was based on the methylation of tryptamine. This employed methyl iodide and benzyltriethylammonium chloride/sodium hydroxide as a phase transfer catalyst. The reaction product was characterised by liquid chromatography/electrospray ionisation tandem mass spectrometry and orthogonal acceleration time-of-flight mass spectrometry. Quantitative evaluation was carried out in positive multiple reaction monitoring mode (MRM), which included synthesis of the identified reaction products. MRM screening of the product did not lead to the detection of DMT. Instead, 11.1% tryptamine starting material, 21.0% N,N,N-trimethyltryptammonium iodide (TMT) and 47.4% 1-N-methyl-TMT were detected. A 0.5% trace of the monomethylated N-methyltryptamine was also detected. This study demonstrated the impact on product purity of doubtful synthetic methodologies discussed on the internet. PMID:19592003

  3. Synthesis and structural characterisation using Rietveld and pair distribution function analysis of layered mixed titaniumzirconium phosphates

    SciTech Connect

    Burnell, Victoria A.; Readman, Jennifer E.; Tang, Chiu C; Parker, Julia E.; Thompson, Stephen P.; Hriljac, Joseph A.

    2010-07-24

    Crystalline metal (IV) phosphates with variable zirconium-to-titanium molar ratios of general formula (Ti1-xZrx)(HPO4)2 • H2O have been prepared by precipitation of soluble salts of the metals with phosphoric acid and heating the amorphous solids in 12 M H3PO4 in an autoclave. The new materials are structurally characterised by Rietveld analysis of synchrotron X-ray powder diffraction data and pair distribution function (PDF) analysis of high energy synchrotron X-ray total scattering data. A broad range of zirconium-titanium phosphate solid solutions were formed showing isomorphous substitution of titanium by zirconium in the α-titanium phosphate lattice and vice versa for titanium substitution into the α-zirconium phosphate lattice. In both cases the solubility is partial with the coexistence of two substituted phases observed in samples with nominal compositions between the solubility limits.

  4. Methotrexate-conjugated quantum dots: synthesis, characterisation and cytotoxicity in drug resistant cancer cells.

    PubMed

    Johari-Ahar, Mohammad; Barar, Jaleh; Alizadeh, Ali Mohammad; Davaran, Soodabeh; Omidi, Yadollah; Rashidi, Mohammad-Reza

    2016-01-01

    Methotrexate (MTX), a folic acid derivative, is a potent anticancer used for treatment of different malignancies, but possible initiation of drug resistance to MTX by cancer cells has limited its applications. Nanoconjugates (NCs) of MTX to quantum dots (QDs) may favour the cellular uptake via folate receptors (FRs)-mediated endocytosis that circumvents the efflux functions of cancer cells. We synthesised MTX-conjugated l-cysteine capped CdSe QDs (MTX-QD nanoconjugates) and evaluated their internalisation and cytotoxicity in the KB cells with/without resistancy to MTX. The NCs were fully characterised by high resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and optical spectroscopy. Upon conjugation with MTX, the photoluminescence (PL) properties of QDs altered, while an obvious quenching in PL of QDs was observed after physical mixing. The MTX-QD nanoconjugates efficiently internalised into the cancer cells, and induced markedly high cytotoxicity (IC50, 12.0 µg/mL) in the MTX-resistant KB cells as compared to the free MTX molecules (IC50,105.0 µg/mL), whereas, these values were respectively about 7.0 and 0.6 µg/mL in the MTX-sensitive KB cells. Based on these findings, the MTX-QD nanoconjugates are proposed for the targeted therapy of MTX-resistant cancers, which may provide an improved outcome in the relapsed FR-overexpressing cancers. PMID:26176269

  5. Chemical Synthesis of a Hyaluronic Acid Decasaccharide

    PubMed Central

    Lu, Xiaowei; Kamat, Medha N.; Huang, Lijun; Huang, Xuefei

    2009-01-01

    The chemical synthesis of a hyaluronic acid decasaccharide using the pre-activation based chemoselective glycosylation strategy is described. Assembly of large oligosaccharides is generally challenging due to the increased difficulties in both glycosylation and deprotection. Indeed, the same building blocks previously employed for hyaluronic acid hexasaccharide syntheses failed to yield the desired decasaccharide. After extensive experimentation, the decasaccharide backbone was successfully constructed with an overall yield of 37% from disaccharide building blocks. The trichloroacetyl group was used as the nitrogen protective group for the glucosamine units and the addition of TMSOTf was found to be crucial to suppress the formation of trichloromethyl oxazoline side-product and enable high glycosylation yield. For deprotections, the combination of a mild basic condition and the monitoring methodology using 1H-NMR allowed the removal of all base-labile protective groups, which facilitated the generation of the fully deprotected HA decasaccharide. PMID:19764799

  6. Profiling and characterisation by liquid chromatography/multi-stage mass spectrometry of the chlorogenic acids in Gardeniae Fructus.

    PubMed

    Clifford, Michael N; Wu, Weiguo; Kirkpatrick, Jo; Jaiswal, Rakesh; Kuhnert, Nikolai

    2010-11-15

    The chlorogenic acids of Gardeniae Fructus used traditionally as a Chinese herbal medicine (zhizi) have been investigated qualitatively by liquid chromatography/multi-stage mass spectrometry (LC/MS(4)). Twenty-nine chlorogenic acids were detected and twenty-five characterised to regioisomer level on the basis of their fragmentation, twenty-four for the first time from this source. Assignment to the level of individual regioisomers was possible for three caffeoylquinic acids, three dicaffeoylquinic acids, three sinapoylquinic acids, four caffeoyl-sinapoylquinic acids, two feruloyl-sinapoylquinic acids, one p-coumaroyl-sinapoylquinic acid, three (3-hydroxy, 3-methyl)glutaroylquinic acids, two (3-hydroxy, 3-methyl)glutaroyl-feruloylquinic acids, one (3-hydroxy, 3-methyl)glutaroyl-dicaffeoylquinic acid, and one (3-hydroxy, 3-methyl)glutaroyl-caffeoyl-feruloylquinic acid. Six (3-hydroxy, 3-methyl)glutaroyl-caffeoylquinic acids were detected and two were tentatively assigned as 3-caffeoyl-4-(3-hydroxy, 3-methyl)glutaroylquinic acid and 3-caffeoyl-5-(3-hydroxy, 3-methyl)glutaroylquinic acid. The (3-hydroxy, 3-methyl)glutaroyl residue modifies the mass spectral fragmentation behavior and elution sequence compared with the chlorogenic acids that contain only a cinnamic acid residue(s). Fourteen of these twenty-nine chlorogenic acids have not previously been reported from any source. PMID:20941757

  7. Odiel River, acid mine drainage and current characterisation by means of univariate analysis.

    PubMed

    Sainz, A; Grande, J A; de la Torre, M L

    2003-04-01

    Water pollution caused by sulfide oxidation responds to two geochemical processes: a natural one of temporal patterns, and the 'acid mine drainage', an accelerated process derived from the extractive activity. The Odiel River is located in Southwestern Spain; it flows to the south and into the Atlantic Ocean after joining the Tinto River near its mouth, forming a common estuary. There are three kinds of metallic mining in the Odiel River Basin: manganese, gold and silver, and pyrite mining, the latter being the most important in this basin, which is the object of this study. The main objective of the present study is centred in the characterisation of the sources responsible for the 'acid mine drainage' processes in the Odiel River Basin, through the sampling and subsequent chemical and statistical analyses of water samples collected in three types of sources: mine dumps, active mines and abandoned mines. The main conclusion is that mean pH values in the target area are remarkably lower than those in other active and abandoned mines outside of the study zone. On the contrary, mean values for heavy metal sulfates are much higher. Regarding mine dumps, mean values for pH, sulfates and heavy metals are within a similar range to those data known for areas outside the study zone. PMID:12605937

  8. Characterisation of embroidered 3D electrodes by use of anthraquinone-1,5-disulfonic acid as probe system

    NASA Astrophysics Data System (ADS)

    Aguiló-Aguayo, Noemí; Bechtold, Thomas

    2014-05-01

    New electrode designs are required for electrochemical applications such as batteries or fuel cells. Embroidered 3D Cu porous electrodes with a geometric surface of 100 cm2 are presented and characterised by means of the anthraquinone-1,5-disfulfonic acid (AQDS2-) redox system in alkaline solution. The electrochemical behaviour of the 3D electrode is established by the comparison of cyclic voltammetry responses using a micro cell and a 100 cm2 plane Cu-plate electrode. Dependencies of the peak currents and peak-to-peak potential separation on scan rate and AQDS2- concentration are studied. The AQDS2- characterisation is also performed by means of spectroelectrochemical experiments.

  9. Synthesis of novel acid electrolytes for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Adcock, James L.

    1988-11-01

    A 40 millimole per hour scale aerosol direct fluorination reactor was constructed. F-Methyl F-4-methoxybutanoate and F-4-methoxybutanoyl fluoride were synthesized by aerosol direct fluorination of methyl 4-methoxybutanoate. Basic hydrolysis of the perfluorinated derivatives produce sodium F-4 methoxybutanoate which was pyrolyzed to F-3-methoxy-1-propene. Purification and shipment of 33 grams of F-3-methoxy-1-propene followed. Syntheses by analogous methods allowed production and shipment of 5 grams of F-3-ethoxy 1-propene, 18 grams of F-3-(2-methoxy.ethoxy) 1-propene, and 37 grams of F-3,3-dimethyl 1-butene. Eighteen grams of F-2,2-dimethyl 1-chloropropane was produced directly and shipped. As suggested by other contractors, 5 grams of F-3-methoxy 1-iodopropane, and 5 grams of F-3-(2-methoxy.ethoxy) 1-iodopropane were produced by converting the respective precursor acid sodium salts produced for olefin synthesis to the silver salts and pyrolyzing them with iodine. Each of these compounds was prepared for the first time by the aerosol fluorination process during the course of the contract. These samples were provided to other Gas Research Institute (GRI) contractors for synthesis of perfluorinated sulfur (VI) and phosphorous (V) acids.

  10. Rapid synthesis of the 7-deoxy zaragozic acid core.

    PubMed

    Calter, Michael A; Zhu, Cheng; Lachicotte, Rene J

    2002-01-24

    [reaction: see text] We have developed an efficient synthesis of the 7-deoxy zaragozic acid core. The synthesis begins with a Feist-Bénary reaction that assembles all three carbons of the polycarboxylic acid portion of the core. This reaction is followed by highly diastereoselective aldol and dihydroxylation reactions that set the remaining stereocenters of the core. The synthesis finishes with lactol oxidation and lactone alcoholysis/ketal formation reactions to construct the bicyclic ring system of the core. PMID:11796052

  11. First total synthesis of prasinic acid and its anticancer activity.

    PubMed

    Chakor, Narayan; Patil, Ganesh; Writer, Diana; Periyasamy, Giridharan; Sharma, Rajiv; Roychowdhury, Abhijit; Mishra, Prabhu Dutt

    2012-11-01

    The first total synthesis of prasinic acid is being reported along with its biological evaluation. The ten step synthesis involved readily available and cheap starting materials and can easily be transposed to large scale manufacturing. The crucial steps of the synthesis included the formation of two different aromatic units (7 and 9) and their coupling reaction. The synthetic prasinic acid exhibited moderate antitumor activity (IC(50) 4.3-9.1 μM) in different lines of cancer cells. PMID:23031589

  12. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  13. Selection of enhanced antimicrobial activity posing lactic acid bacteria characterised by (GTG)5-PCR fingerprinting.

    PubMed

    Šalomskienė, Joana; Abraitienė, Asta; Jonkuvienė, Dovilė; Mačionienė, Irena; Repečkienė, Jūratė

    2015-07-01

    The aim of the study was a detail evaluation of genetic diversity among the lactic acid bacteria (LAB) strains having an advantage of a starter culture in order to select genotypically diverse strains with enhanced antimicrobial effect on some harmfull and pathogenic microorganisms. Antimicrobial activity of LAB was performed by the agar well diffusion method and was examined against the reference strains and foodborne isolates of Bacillus cereus, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. Antifungal activity was tested against the foodborne isolates of Candida parapsilosis, Debaromyces hansenii, Kluyveromyces marxianus, Pichia guilliermondii, Yarowia lipolytica, Aspergillus brasiliensis, Aspergillus versicolor, Cladosporium herbarum, Penicillium chrysogenum and Scopulariopsis brevicaulis. A total 40 LAB strains representing Lactobacillus (23 strains), Lactococcus (13 strains) and Streptococcus spp. (4 strains) were characterised by repetitive sequence based polymerase chain reaction fingerprinting which generated highly discriminatory profiles, confirmed the identity and revealed high genotypic heterogeneity among the strains. Many of tested LAB demonstrated strong antimicrobial activity specialised against one or few indicator strains. Twelve LAB strains were superior in suppressing growth of the whole complex of pathogenic bacteria and fungi. These results demonstrated that separate taxonomic units offered different possibilities of selection for novel LAB strains could be used as starter cultures enhancing food preservation. PMID:26139877

  14. Physicochemical characterisation of a novel thermogelling formulation for percutaneous penetration of 5-aminolevulinic acid.

    PubMed

    Grüning, Nadja; Müller-Goymann, Christel Charlotte

    2008-06-01

    The present contribution was dedicated to the development and characterisation of a semisolid formulation of 5-aminolevulinic acid (5-ALA), appropriate for the diagnosis and treatment of actinic keratosis in photodynamic therapy. To achieve sufficiently high concentrations of the polar substance within the living epithelium after topical application, the semisolid base was enriched with penetration enhancers. A semisolid liquid crystalline system for drug delivering was the formulation of choice. It was composed of isopropyl alcohol, dimethyl isosorbide, medium chain triglycerides, water, and Pluronic F 127 as a polyoxyethylene-polyoxypropylene surface-active block copolymer. Rheometrical investigations were performed in the oscillatory mode and showed a thermo reversible gelification behaviour of the formulation, which therefore was denoted Thermogel. Permeation studies through human stratum corneum revealed higher permeation coefficients for 5-ALA from the Thermogel than from different German Pharmacopoeia creams. For example a 7.5-fold increase in comparison with Basiscreme DAC, and a 19.5-fold increase compared to water containing hydrophilic ointment. With respect to Dolgit(R) Mikrogel, the permeation coefficient from the Thermogel was 6.4-fold higher. These results were in accordance with those of differential scanning calorimetry measurements. Thermogel disclosed the strongest interactions with stratum corneum lipids. PMID:17828744

  15. Synthesis, characterisation and photochemistry of Pt(IV) pyridyl azido acetato complexes.

    PubMed

    Mackay, Fiona S; Farrer, Nicola J; Salassa, Luca; Tai, Hui-Chung; Deeth, Robert J; Moggach, Stephen A; Wood, Peter A; Parsons, Simon; Sadler, Peter J

    2009-04-01

    Pt(II) azido complexes [Pt(bpy)(N(3))(2)] (1), [Pt(phen)(N(3))(2)] (2) and trans-[Pt(N(3))(2)(py)(2)] (3) incorporating the bidentate diimine ligands 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) or the monodentate pyridine (py) respectively, have been synthesised from their chlorido precursors and characterised by X-ray crystallography; complex 3 shows significant deviation from square-planar geometry (N(3)-Pt-N(3) angle 146.7 degrees ) as a result of steric congestion at the Pt centre. The novel Pt(IV) complexes trans, cis-[Pt(bpy)(OAc)(2)(N(3))(2)] (), trans, cis-[Pt(phen)(OAc)(2)(N(3))(2)] (), trans, trans, trans-[Pt(OAc)(2)(N(3))(2)(py)(2)] (), were obtained from via oxidation with H(2)O(2) in acetic acid followed by reaction of the intermediate with acetic anhydride. Complexes 4-6 exhibit interesting structural and photochemical properties that were studied by X-ray, NMR and UV-vis spectroscopy and TD-DFT (time-dependent density functional theory). These Pt(IV) complexes exhibit greater absorption at longer wavelengths (epsilon = 9756 M(-1) cm(-1) at 315 nm for 4 ; epsilon = 796 M(-1) cm(-1) at 352 nm for 5 ; epsilon = 16900 M(-1) cm(-1) at 307 nm for 6 , in aqueous solution) than previously reported Pt(IV) azide complexes, due to the presence of aromatic amines, and 4-6 undergo photoactivation with both UVA (365 nm) and visible green light (514 nm). The UV-vis spectra of complexes 4-6 were calculated using TD-DFT; the nature of the transitions contributing to the UV-vis bands provide insight into the mechanism of production of the observed photoproducts. The UV-vis spectra of 1-3 were also simulated by computational methods and comparison between Pt(II) and Pt(IV) electronic and structural properties allowed further elucidation of the photochemistry of 4-6. PMID:19290364

  16. Synthesis of ettringite: a way to deal with the acid wastewaters of aluminium anodising industry.

    PubMed

    Alvarez-Ayuso, E; Nugteren, H W

    2005-01-01

    Synthesis of ettringite from acid wastewaters of the aluminium anodising industry has been studied as a possible route of reducing the emissions to the environment, recovering at the same time resource materials as a useful marketable mineral. Wastewaters of different concentrations have been subjected to the process of synthesis suspending calcium oxide and calcium aluminate powders at different time and pH conditions. High caustic alkalinity (pH approximately 12) and low sulphate concentrations (<0.1 M) are the most suitable conditions to synthesise ettringite. The mineral characterisation has been performed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA), proving the high purity of the pursued solid product when hydrated in the appropriate sodium hydroxide concentrations. In such conditions, around 90% of the aluminium initially present in the wastewater solutions is recovered in the form of ettringite. PMID:15607165

  17. Bismuth coordination networks containing deferiprone: synthesis, characterisation, stability and antibacterial activity.

    PubMed

    Burrows, Andrew D; Jurcic, Monika; Mahon, Mary F; Pierrat, Sandrine; Roffe, Gavin W; Windle, Henry J; Spencer, John

    2015-08-21

    A series of bismuth-dicarboxylate-deferiprone coordination networks have been prepared and structurally characterised. The new compounds have been demonstrated to release the iron overload drug deferiprone on treatment with PBS and have also been shown to have antibacterial activity against H. pylori. PMID:26172618

  18. Energetics of amino acid synthesis in hydrothermal ecosystems

    NASA Technical Reports Server (NTRS)

    Amend, J. P.; Shock, E. L.

    1998-01-01

    Thermodynamic calculations showed that the autotrophic synthesis of all 20 protein-forming amino acids was energetically favored in hot (100 degrees C), moderately reduced, submarine hydrothermal solutions relative to the synthesis in cold (18 degrees C), oxidized, surface seawater. The net synthesis reactions of 11 amino acids were exergonic in the hydrothermal solution, but all were endergonic in surface seawater. The synthesis of the requisite amino acids of nine thermophilic and hyperthermophilic proteins in a 100 degreesC hydrothermal solution yielded between 600 and 8000 kilojoules per mole of protein, which is energy that is available to drive the intracellular synthesis of enzymes and other biopolymers in hyperthermophiles thriving in these ecosystems.

  19. Total synthesis and complete stereostructure of gambieric acid A.

    PubMed

    Fuwa, Haruhiko; Ishigai, Kazuya; Hashizume, Keisuke; Sasaki, Makoto

    2012-07-25

    Total synthesis of gambieric acid A, a potent antifungal polycyclic ether metabolite, has been accomplished for the first time, which firmly established the complete stereostructure of this natural product. PMID:22779404

  20. Synthesis of fatty acids in the perused mouse liver.

    PubMed

    Salmon, D M; Bowen, N L; Hems, D A

    1974-09-01

    1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of (3)H from (3)H(2)O (1-7mumol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-(14)C]lactic acid and [U-(14)C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of (3)H(2)O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12-16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with (3)H(2)O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors. PMID:4464843

  1. Platinum(iv) N-heterocyclic carbene complexes: their synthesis, characterisation and cytotoxic activity.

    PubMed

    Bouché, M; Dahm, G; Wantz, M; Fournel, S; Achard, T; Bellemin-Laponnaz, S

    2016-07-28

    Platinum(ii) N-heterocyclic carbene complexes have been oxidized by bromine or iodobenzene dichloride to provide the fully characterised corresponding platinum(iv) NHC complexes. Antiproliferative activities of Pt(iv) NHC complexes were assayed against several cancer cell lines and the results were correlated with respect to their stability. Mechanistic investigations revealed that mitochondrial dysfunction and ROS production were associated with the cytotoxic process induced by these compounds. PMID:27331604

  2. A symmetry-based formal synthesis of zaragozic acid A.

    PubMed

    Freeman-Cook, K D; Halcomb, R L

    2000-09-22

    A symmetry-based strategy for the synthesis of the zaragozic acids is reported. Two enantioselective dihydroxylations were used to establish the absolute configuration of a C(2) symmetric intermediate. Noteworthy transformations include a group-selective lactonization, which accomplished an end-differentiation of a pseudo-C(2) symmetric intermediate. Late stage protecting group adjustments and oxidations accomplished a formal synthesis of zaragozic acid A. PMID:10987953

  3. Photoorganocatalytic One-Pot Synthesis of Hydroxamic Acids from Aldehydes.

    PubMed

    Papadopoulos, Giorgos N; Kokotos, Christoforos G

    2016-05-10

    An efficient one-pot synthesis of hydroxamic acids from aldehydes and hydroxylamine is described. A fast, visible-light-mediated metal-free hydroacylation of dialkyl azodicarboxylates was used to develop the subsequent addition of hydroxylamine hydrochloride. A range of aliphatic and aromatic aldehydes were employed in this reaction to give hydroxamic acids in high to excellent yields. Application of the current methodology was demonstrated in the synthesis of the anticancer medicine vorinostat. PMID:27038037

  4. Synthesis and characterisation of 5-acyl-6,7-dihydrothieno[3,2-c]pyridine inhibitors of Hedgehog acyltransferase

    PubMed Central

    Lanyon-Hogg, Thomas; Masumoto, Naoko; Bodakh, George; Konitsiotis, Antonio D.; Thinon, Emmanuelle; Rodgers, Ursula R.; Owens, Raymond J.; Magee, Anthony I.; Tate, Edward W.

    2016-01-01

    In this data article we describe synthetic and characterisation data for four members of the 5-acyl-6,7-dihydrothieno[3,2-c]pyridine (termed “RU-SKI”) class of inhibitors of Hedgehog acyltransferase, including associated NMR spectra for final compounds. RU-SKI compounds were selected for synthesis based on their published high potencies against the enzyme target. RU-SKI 41 (9a), RU-SKI 43 (9b), RU-SKI 101 (9c), and RU-SKI 201 (9d) were profiled for activity in the related article “Click chemistry armed enzyme linked immunosorbent assay to measure palmitoylation by Hedgehog acyltransferase” (Lanyon-Hogg et al., 2015) [1]. 1H NMR spectral data indicate different amide conformational ratios between the RU-SKI inhibitors, as has been observed in other 5-acyl-6,7-dihydrothieno[3,2-c]pyridines. The synthetic and characterisation data supplied in the current article provide validated access to the class of RU-SKI inhibitors. PMID:27077078

  5. Synthesis and characterisation of 5-acyl-6,7-dihydrothieno[3,2-c]pyridine inhibitors of Hedgehog acyltransferase.

    PubMed

    Lanyon-Hogg, Thomas; Masumoto, Naoko; Bodakh, George; Konitsiotis, Antonio D; Thinon, Emmanuelle; Rodgers, Ursula R; Owens, Raymond J; Magee, Anthony I; Tate, Edward W

    2016-06-01

    In this data article we describe synthetic and characterisation data for four members of the 5-acyl-6,7-dihydrothieno[3,2-c]pyridine (termed "RU-SKI") class of inhibitors of Hedgehog acyltransferase, including associated NMR spectra for final compounds. RU-SKI compounds were selected for synthesis based on their published high potencies against the enzyme target. RU-SKI 41 (9a), RU-SKI 43 (9b), RU-SKI 101 (9c), and RU-SKI 201 (9d) were profiled for activity in the related article "Click chemistry armed enzyme linked immunosorbent assay to measure palmitoylation by Hedgehog acyltransferase" (Lanyon-Hogg et al., 2015) [1]. (1)H NMR spectral data indicate different amide conformational ratios between the RU-SKI inhibitors, as has been observed in other 5-acyl-6,7-dihydrothieno[3,2-c]pyridines. The synthetic and characterisation data supplied in the current article provide validated access to the class of RU-SKI inhibitors. PMID:27077078

  6. Synthesis and characterisation of a novel mixed donor P,O,P' nixantphos ligand and its metal complex

    NASA Astrophysics Data System (ADS)

    Marimuthu, Thashree; Bala, Muhammad D.; Friedrich, Holger B.

    2016-02-01

    The complex [(NixC8OH)Ir(cod)Cl] 4 has been synthesized and structurally characterized by NMR, IR and single crystal X-ray diffraction. The synthesis and characterisation of the novel ligand NixC8OH is also presented. The coordination around Ir is trigonal bipyramidal with both P groups of the NixC8OH ligand bound in a bis-equatorial mode. The bis-chelating cod (C8H12) ligand occupies the remaining equatorial position and an axial position. This mode of bonding has resulted in a large bite angle (P1-Ir-P2) of 102.92(12)° for the title complex 4. The IR and NMR data further support the elucidated structure. Thermal analyses of 4 indicate that it is thermally stable up to a decomposition temperature of >400 °C.

  7. Synthesis and Characterisation of Porous Titania-Silica Composite Aerogel for NO(x) and Acetaldehyde Removal.

    PubMed

    Lee, Kwang Young; Park, Se Min; Kim, Jong Beom; El Saliby, Ibrahim; Shahid, Mohammad; Kim, Geon-Joong; Shon, Ho Kyong; Kim, Jong-Ho

    2016-05-01

    In this study, the synthesis of porous titania-silica (TiO2-SiO2) composite aerogel at ambient pressure by using non-hazardous chemicals as a source of silica was investigated. TiO2-SiO2 composite aerogels were characterised and their photocatalytic performances were investigated for the removal efficiency of acetaldehyde and NO(x) under UV light. Results showed that porous composite aerogel with aggregated morphology, high surface area and an increased mesoporosity were formed. TiO2-SiO2(1.8) composite, with high Ti/Si ratio, showed the best results in terms of photocatalytic removal of acetaldehyde and nitrogen oxide. PMID:27483782

  8. Synthesis and characterisation of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa.

    PubMed

    Zaka, Mehreen; Abbasi, Bilal Haider; Rahman, Latif-Ur; Shah, Afzal; Zia, Muhammad

    2016-06-01

    The synthesis, characterisation and application of metal nanoparticles have become an important and attractive branch of nanotechnology. In current study, metallic nanoparticles of silver, copper, and gold were synthesised using environment friendly method (polyols process), and applied on medicinally important plant: Eruca sativa. Effects of application of these nanoparticles were evaluated on seed germination frequency and biochemical parameters of plant tissues. Seeds of E. sativa were germinated on Murashige and Skoog (MS) medium incorporated with various combinations of nanoparticles suspension (30 µg/ml). Phytotoxicity study showed that nanoparticles could induce stress in plants by manipulating the endogenous mechanisms. In response to these stresses, plants release various defensive compounds; known as antioxidant secondary metabolites. These plants derived secondary metabolites having a great potential in treating the common human ailments. In the authors study, small-sized nanoparticles showed higher toxicity levels and enhanced secondary metabolites production, total protein content, total flavonoids content and total phenolics content. PMID:27256893

  9. Prebiotic Amino Acid Thioester Synthesis: Thiol-Dependent Amino Acid Synthesis from Formose substrates (Formaldehyde and Glycolaldehyde) and Ammonia

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1998-01-01

    Formaldehyde and glycolaldehyde (substrates of the formose autocatalytic cycle) were shown to react with ammonia yielding alanine and homoserine under mild aqueous conditions in the presence of thiol catalysts. Since similar reactions carried out without ammonia yielded alpha-hydroxy acid thioesters, the thiol-dependent synthesis of alanine and homoserine is presumed to occur via amino acid thioesters-intermediates capable of forming peptides. A pH 5.2 solution of 20 mM formaldehyde, 20 mM glycolaldehyde, 20 mM ammonium chloride, 23 mM 3-mercaptopropionic acid, and 23 mM acetic acid that reacted for 35 days at 40 C yielded (based on initial formaldehyde) 1.8% alanine and 0.08% homoserine. In the absence of thiol catalyst, the synthesis of alanine and homoserine was negligible. Alanine synthesis required both formaldehyde and glycolaldehyde, but homoserine synthesis required only glycolaldehyde. At 25 days the efficiency of alanine synthesis calculated from the ratio of alanine synthesized to formaldehyde reacted was 2.1%, and the yield (based on initial formaldehyde) of triose and tetrose intermediates involved in alanine and homoserine synthesis was 0.3 and 2.1%, respectively. Alanine synthesis was also seen in similar reactions containing only 10 mM each of aldehyde substrates, ammonia, and thiol. The prebiotic significance of these reactions that use the formose reaction to generate sugar intermediates that are converted to reactive amino acid thioesters is discussed.

  10. Synthesis and preliminary characterisation of new esters of the bacterial polysaccharide gellan.

    PubMed

    Crescenzi, V; Dentini, M; Segatori, M; Tiblandi, C; Callegaro, L; Benedetti, L

    1992-07-01

    Under the appropriate experimental conditions, ethyl, propyl, and methylprednisolon-21-yl esters of gellan can be obtained without significant degradation. At low degrees of esterification (de), depending on the ester moiety, the products are water-soluble, which allows the influence of hydrophilicity and charge density on their ability to assume an ordered conformation in dilute aqueous solution to be studied. With high de, the products were soluble only in organic solvents (e.g., methyl sulphoxide) with good film-forming capacity. The methylprednisolon-21-yl esters have been characterised in a preliminary manner in terms of drug-release kinetics. PMID:1394330

  11. Lysophosphatidic acid synthesis and phospholipid metabolism in rat mast cells

    SciTech Connect

    Fagan, D.L.

    1986-01-01

    The role of lysophosphatidic acid in mast cell response to antigen was investigated using an isolated rat serosal mast cell model. The cells were incubated with monoclonal murine immunoglobulin E to the dinitrophenyl hapten and prelabeled with /sup 32/P-orthophosphate or /sup 3/H-fatty acids. Lysophosphatidic acid was isolated form cell extracts by 2-dimensional thin-layer chromatography, and the incorporated radioactivity was assessed by liquid scintillation counting. Lysophosphatidic acid labeling with /sup 32/P was increased 2-4 fold within 5 minutes after the addition of antigen or three other mast cell agonists. Functional group analyses unequivocally showed that the labeled compound was lysophosphatidic acid. Lysophosphatidic acid synthesis was dependent on the activity of diacylglycerol lipase, suggesting formation from monoacylglycerol. In addition, the studies of lysophosphatidic acid synthesis suggest that the addition of antigen to mast cells may initiate more than one route of phospholipid degradation and resynthesis. Whatever the origin of lysophosphatidic acid, the results of this study demonstrated that lysophosphatidic acid synthesis is stimulated by a variety of mast cell agonists. Dose-response, kinetic, and pharmacologic studies showed close concordance between histamine release and lysophosphatidic acid labeling responses. These observations provide strong evidence that lysophosphatidic acid plays an important role in mast cell activation.

  12. Oleochemical synthesis of an acid cleavable hydrophobe for surfactant use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The synthesis of a series of branched hydroxy stearates from commercially available methyl oleate and common organic acids is reported. A variety of different acids, with 3 to 8 carbon atoms, and also varying in their branching and functionality, were used. The kinetics of the ring opening reactio...

  13. Nucleic acid arrays and methods of synthesis

    DOEpatents

    Sabanayagam, Chandran R.; Sano, Takeshi; Misasi, John; Hatch, Anson; Cantor, Charles

    2001-01-01

    The present invention generally relates to high density nucleic acid arrays and methods of synthesizing nucleic acid sequences on a solid surface. Specifically, the present invention contemplates the use of stabilized nucleic acid primer sequences immobilized on solid surfaces, and circular nucleic acid sequence templates combined with the use of isothermal rolling circle amplification to thereby increase nucleic acid sequence concentrations in a sample or on an array of nucleic acid sequences.

  14. Synthesis and analytical characterisation of copper-based nanocoatings for bioactive stone artworks treatment.

    PubMed

    Ditaranto, Nicoletta; Loperfido, Sabrina; van der Werf, Inez; Mangone, Annarosa; Cioffi, Nicola; Sabbatini, Luigia

    2011-01-01

    Biological agents play an important role in the deterioration of cultural heritage causing aesthetic, biogeophysical and biogeochemical damages. Conservation is based on the use of preventive and remedial methods. The former aims at inhibiting biological attack, and the latter aims at eradicating the biological agents responsible for biodeterioration. Here, we propose the preparation and the analytical characterisation of copper-based nanocoating, capable of acting both as a remedy and to prevent microbial proliferation. Core-shell CuNPs are mixed with a silicon-based product, commonly used as a water-repellent/consolidant, to obtain a combined bioactive system to be applied on stone substrates. The resulting coatings exert a marked biological activity over a long period of time due to the continuous and controlled release of copper ions acting as biocides. To the best of our knowledge, this is the first time that a multifunctional material is proposed, combining the antimicrobial properties of nanostructured coatings with those of the formulations applied to the restoration of stone artworks. A complete characterisation based on a multi-technique analytical approach is presented. PMID:20972773

  15. Building, characterising and catalytic activity testing of Co-C-protected amino acid complexes covalently grafted onto chloropropylated silica gel

    NASA Astrophysics Data System (ADS)

    Varga, G.; Timár, Z.; Csendes, Z.; Bajnóczi, É. G.; Carlson, S.; Canton, S. E.; Bagi, L.; Sipos, P.; Pálinkó, I.

    2015-06-01

    Co-C-protected amino acid (C-protected L-histidine, L-tyrosine, L-cysteine and L-cystine) complexes were covalently grafted onto chloropropylated silica gel, and the materials thus obtained were structurally characterised by mid/far IR and X-ray absorption spectroscopies. The superoxide dismutase-like activities of the substances were determined via the Beauchamp-Fridovich test reaction. It was found that covalent grafting and the preparation of the anchored complexes were successful in most cases. The coordinating groups varied upon changing the conditions of the syntheses. All materials displayed catalytic activity, although catalytic activities differed widely.

  16. Concise total synthesis of (±)-actinophyllic acid

    PubMed Central

    Granger, Brett A.; Jewett, Ivan T.; Butler, Jeffrey D.; Martin, Stephen F.

    2014-01-01

    A concise total synthesis of the complex indole alkaloid (±)-actinophyllic acid was accomplished by a sequence of reactions requiring only 10 steps from readily-available, known starting materials. The approach featured a Lewis acid-catalyzed cascade of reactions involving stabilized carbocations that delivered the tetracyclic core of the natural product in a single chemical operation. Optimal conversion of this key intermediate into (±)-actinophyllic acid required judicious selection of a protecting group strategy. PMID:24882888

  17. Solid Phase Synthesis of C-Terminal Boronic Acid Peptides.

    PubMed

    Behnam, Mira A M; Sundermann, Tom R; Klein, Christian D

    2016-05-01

    Peptides and peptidomimetics with a C-terminal boronic acid group have prolific applications in numerous fields of research, but their synthetic accessibility remains problematic. A convenient, high yield synthesis of peptide-boronic acids on a solid support is described here, using commercially available 1-glycerol polystyrene resin. The method is compatible with Fmoc chemistry and offers a versatile approach to aryl and alkyl aminoboronic acids without additional purification steps. PMID:27104613

  18. The synthesis and structural characterisation of [Ru(eta-Cp)(dppf)SnBr3].

    PubMed

    Paim, L A; Moura, E M; Siebald, H G L; de Lima, G M; Doriguetto, A C; Ellena, J

    2004-08-01

    The reaction of [Ru(eta-Cp)(dppf)N(3)] (1) with equimolar amount of SnBr(2) yielded an interesting heterotrimetallic compound [Ru(eta-Cp)(dppf)SnBr(3)] (2) (dppf: 1,1'-bis-diphenylphosphinoferrocene). Compounds 1 and 2 were characterised by IR, NMR (1H, 13C, 31P and 119Sn), and 2, additionally, by 57Fe and 119Sn Mössbauer spectroscopy and X-ray crystallography. The latter results were as follows: monoclinic, C2/c, a = 32.8879(4)A, b = 11.9888(2)A, c = 20.8986(3)A, beta = 92.545(1)degrees, V = 8231.9(2)A(3), Z =8. PMID:15249029

  19. The synthesis and structural characterisation of [Ru(η-Cp)(dppf)SnBr 3

    NASA Astrophysics Data System (ADS)

    Paim, L. A.; Moura, E. M.; Siebald, H. G. L.; de Lima, G. M.; Doriguetto, A. C.; Ellena, J.

    2004-08-01

    The reaction of [Ru(η-Cp)(dppf)N 3] ( 1) with equimolar amount of SnBr 2 yielded an interesting heterotrimetallic compound [Ru(η-Cp)(dppf)SnBr 3] ( 2) (dppf: 1,1'-bis-diphenylphosphinoferrocene). Compounds 1 and 2 were characterised by IR, NMR ( 1H, 13C, 31P and 119Sn), and 2, additionally, by 57Fe and 119Sn Mössbauer spectroscopy and X-ray crystallography. The latter results were as follows: monoclinic, C2/ c, a=32.8879(4) Å, b=11.9888(2) Å, c=20.8986(3) Å, β=92.545(1)°, V=8231.9(2) Å 3, Z=8.

  20. Synthesis and characterisation of potassium polytitanate for photocatalytic degradation of crystal violet.

    PubMed

    Shahid, Mohammad; El Saliby, Ibrahim; McDonagh, Andrew; Tijing, Leonard D; Kim, Jong-Ho; Shon, Ho Kyong

    2014-11-01

    Potassium titanate nanostructures were synthesised by hydrothermal treatment of TiO2 (P25) in KOH and H2O2. As-produced powders were characterised by scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and nitrogen adsorption-desorption methods. Longitudinally-oriented-wire-like structures with a length up to several micrometres and diameters ranging from 10 to 30 nm were obtained. Larger size fibrous nanowires resulting from the hydrothermal treatment showed high affinity in adsorbing crystal violet (CV), which was mainly due to their high surface area. The photocatalytic bleaching of CV solution revealed that the wires are photoactive under ultraviolet light irradiation. Macroporous nanowires are considered as effective adsorbents of CV, capable of photocatalytic degradation, and they can be easily separated from the solution by settling. PMID:25458691

  1. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly

    PubMed Central

    Bates, Philip D.; Johnson, Sean R.; Cao, Xia; Li, Jia; Nam, Jeong-Won; Jaworski, Jan G.; Ohlrogge, John B.; Browse, John

    2014-01-01

    Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [14C]acetate and [3H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [14C]acetate and [14C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl–CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl–CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid. PMID:24398521

  2. Effects of bile acid administration on bile acid synthesis and its circadian rhythm in man

    SciTech Connect

    Pooler, P.A.; Duane, W.C.

    1988-09-01

    In man bile acid synthesis has a distinct circadian rhythm but the relationship of this rhythm to feedback inhibition by bile acid is unknown. We measured bile acid synthesis as release of 14CO2 from (26-14C)cholesterol every 2 hr in three normal volunteers during five separate 24-hr periods. Data were fitted by computer to a cosine curve to estimate amplitude and acrophase of the circadian rhythm. In an additional six volunteers, we measured synthesis every 2 hr from 8:00 a.m. to 4:00 p.m. only. During the control period, amplitude (expressed as percentage of mean synthesis) averaged 52% and acrophase averaged 6:49 a.m. During administration of ursodeoxycholic acid (15 mg per kg per day), synthesis averaged 126% of baseline (p less than 0.1), amplitude averaged 43% and acrophase averaged 6:20 a.m. During administration of chenodeoxycholic acid (15 mg per kg per day), synthesis averaged 43% of baseline (p less than 0.001), amplitude averaged 53% and acrophase averaged 9:04 a.m. Addition of prednisone to this regimen of chenodeoxycholic acid to eliminate release of 14CO2 from corticosteroid hormone synthesis resulted in a mean amplitude of 62% and a mean acrophase of 6:50 a.m., values very similar to those in the baseline period. Administration of prednisone alone also did not significantly alter the baseline amplitude (40%) or acrophase (6:28 a.m.). We conclude that neither chenodeoxycholic acid nor ursodeoxycholic acid significantly alters the circadian rhythm of bile acid synthesis in man.

  3. The synthesis of glutamic acid in the absence of enzymes: Implications for biogenesis

    NASA Technical Reports Server (NTRS)

    Morowitz, Harold; Peterson, Eta; Chang, Sherwood

    1995-01-01

    This paper reports on the non-enzymatic aqueous phase synthesis of amino acids from keto acids, ammonia and reducing agents. The facile synthesis of key metabolic intermediates, particularly in the glycolytic pathway, the citric acid cycle, and the first step of amino acid synthesis, lead to new ways of looking at the problem of biogenesis.

  4. Total synthesis of legionaminic acid as basis for serological studies.

    PubMed

    Matthies, Stefan; Stallforth, Pierre; Seeberger, Peter H

    2015-03-01

    Legionaminic acid is a nine-carbon diamino monosaccharide that is found coating the surface of various bacterial human pathogens. Its unique structure makes it a valuable biological probe, but access via isolation is difficult and no practical synthesis has been reported. We describe a stereoselective synthesis that yields a legionaminic acid building block as well as linker-equipped conjugation-ready legionaminic acid starting from cheap d-threonine. To set the desired amino and hydroxyl group pattern of the target, we designed a concise sequence of stereoselective reactions. The key transformations rely on chelation-controlled organometallic additions and a Petasis multicomponent reaction. The legionaminic acid was synthesized in a form that enables attachment to surfaces. Glycan microarray containing legionaminic acid revealed that human antibodies bind the synthetic glycoside. The synthetic bacterial monosaccharide is a valuable probe to detect an immune response to bacterial pathogens such as Legionella pneumophila, the causative agent of Legionnaire's disease. PMID:25668389

  5. Synthesis of α-aminoboronic acids.

    PubMed

    Andrés, Patricia; Ballano, Gema; Calaza, M Isabel; Cativiela, Carlos

    2016-04-21

    This review describes available methods for the preparation of α-aminoboronic acids in their racemic or in their enantiopure form. Both, highly stereoselective syntheses and asymmetric procedures leading to the stereocontrolled generation of α-aminoboronic acid derivatives are included. The preparation of acyclic, carbocyclic and azacyclic α-aminoboronic acid derivatives is covered. Within each section, the different synthetic approaches have been classified according to the key bond which is formed to complete the α-aminoboronic acid skeleton. PMID:26853637

  6. Synthesis, purification and mass spectrometric characterisation of a fluorescent Au9@BSA nanocluster and its enzymatic digestion by trypsin

    NASA Astrophysics Data System (ADS)

    Fernández-Iglesias, Nerea; Bettmer, Jörg

    2013-12-01

    Nanoclusters of noble metals like Ag and Au have attracted great attention as they form a missing link between isolated metal atoms and nanoparticles. Their particular properties like luminescence in the visible range and nontoxicity make them attractive for bioimaging and biolabelling purposes, especially with use of proteins as stabilising agents. In this context, this study intends the synthesis of a specific Au nanocluster covered by bovine serum albumin (BSA). It is shown that size-exclusion chromatography is feasible for the purification and isolation of the nanocluster. A mass spectrometric characterisation, preferably by ESI-MS, indicates the presence of an Au9@BSA nanocluster. Enzymatic digestion of the nanocluster with trypsin results in a significant increase of the fluorescence intensity at 650 and 710 nm, whereas complementary MALDI-MS studies are presented for the identification of generated peptides and show a distinctive pattern in comparison to the pure protein. It can be concluded that Au9@BSA might be, in future, an interesting candidate for in vitro studies of protease activities.Nanoclusters of noble metals like Ag and Au have attracted great attention as they form a missing link between isolated metal atoms and nanoparticles. Their particular properties like luminescence in the visible range and nontoxicity make them attractive for bioimaging and biolabelling purposes, especially with use of proteins as stabilising agents. In this context, this study intends the synthesis of a specific Au nanocluster covered by bovine serum albumin (BSA). It is shown that size-exclusion chromatography is feasible for the purification and isolation of the nanocluster. A mass spectrometric characterisation, preferably by ESI-MS, indicates the presence of an Au9@BSA nanocluster. Enzymatic digestion of the nanocluster with trypsin results in a significant increase of the fluorescence intensity at 650 and 710 nm, whereas complementary MALDI-MS studies are presented

  7. Synthesis of Triamino Acid Building Blocks with Different Lipophilicities

    PubMed Central

    Maity, Jyotirmoy; Honcharenko, Dmytro; Strömberg, Roger

    2015-01-01

    To obtain different amino acids with varying lipophilicity and that can carry up to three positive charges we have developed a number of new triamino acid building blocks. One set of building blocks was achieved by aminoethyl extension, via reductive amination, of the side chain of ortnithine, diaminopropanoic and diaminobutanoic acid. A second set of triamino acids with the aminoethyl extension having hydrocarbon side chains was synthesized from diaminobutanoic acid. The aldehydes needed for the extension by reductive amination were synthesized from the corresponding Fmoc-L-2-amino fatty acids in two steps. Reductive amination of these compounds with Boc-L-Dab-OH gave the C4-C8 alkyl-branched triamino acids. All triamino acids were subsequently Boc-protected at the formed secondary amine to make the monomers appropriate for the N-terminus position when performing Fmoc-based solid-phase peptide synthesis. PMID:25876040

  8. Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation.

    PubMed

    Killion, John A; Kehoe, Sharon; Geever, Luke M; Devine, Declan M; Sheehan, Eoin; Boyd, Daniel; Higginbotham, Clement L

    2013-10-01

    Due to the deficiencies of current commercially available biological bone grafts, alternative bone graft substitutes have come to the forefront of tissue engineering in recent times. The main challenge for scientists in manufacturing bone graft substitutes is to obtain a scaffold that has sufficient mechanical strength and bioactive properties to promote formation of new tissue. The ability to synthesise hydrogel based composite scaffolds using photopolymerisation has been demonstrated in this study. The prepared hydrogel based composites were characterised using techniques including Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectrometry (EDX), rheological studies and compression testing. In addition, gel fraction, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), porosity and swelling studies of the composites were carried out. It was found that these novel hydrogel bioglass composite formulations did not display the inherent brittleness that is typically associated with bioactive glass based bone graft materials and exhibited enhanced biomechanical properties compared to the polyethylene glycol hydrogel scaffolds along. Together, the combination of enhanced mechanical properties and the deposition of apatite on the surface of these hydrogel based composites make them an ideal candidate as bone graft substitutes in cancellous bone defects or low load bearing applications. PMID:23910334

  9. Synthesis and characterisation of poly(acryalamide) grafted carboxymethyl xanthan gum copolymer.

    PubMed

    Badwaik, Hemant Ramchandra; Sakure, Kalyani; Alexander, Amit; Ajazuddin; Dhongade, Hemant; Tripathi, Dulal Krishna

    2016-04-01

    In the present work, an unreported graft copolymer of carboxymethyl xanthan gum and acrylamide has been synthesised by free radical polymerisation in a nitrogen atmosphere using ammonium persulphate as an initiator. The optimum reaction conditions adopted for affording maximum percentage of grafting including its grafting efficiency were obtained by varying the concentration of carboxymethyl xanthan gum from 4 to 24 g dm(-3); ammonium persulphate from 5×10(-4) to 30×10(-4)mol dm(-3); acrylamide from 0.4 to 1.2 mol dm(-3); reaction temperature from 55 to 75°C and reaction time from 30 to 90 min. The synthesised graft copolymer has been characterised by (1)H NMR, FTIR spectroscopy, X-ray diffraction measurement, thermal analysis, viscosity measurement and scanning electron microscopy. However, grafting of acrylamide onto carboxymethyl xanthan gum backbone enhanced its thermal stability. This graft copolymer might be well exploited globally as a potential carrier for drug delivery system. PMID:26772913

  10. Synthesis and electrochemical characterisation of Molybdenum(VI) complexes of disalicylaldehyde malonoyl-dihydrazone

    NASA Astrophysics Data System (ADS)

    Ahmed, Aziz; Lal, Ram A.

    2013-09-01

    Molybdenum(VI) complexes composition [(μ2-O)2(MoO2)2(H4L)2]ṡ2A (where H4L = H4slmh; A = H2O (1), pyridine (py, 2), 2-picoline (2-pic, 3), 3-picoline (3-pic, 4), 4-picoline (4-pic, 5)) have been isolated in solid state from the reaction of MoO2(acac)2 and disalicylaldehyde malonoyldihydrazone in 1:1 M ratio in ethanol at higher temperature. The complexes have been synthesised and characterised by various physiochemical and spectroscopic studies. The structure of the molybdenum(VI) of all complexes has been established by elemental analyses, electronic, IR, 1H NMR and CV spectral studies. The dihydrazone is coordinated to the metal centres in keto enol form in all the complexes (1)-(5). The electronic spectra of the complexes are dominated by strong charge transfer bands. All of the complexes involve six coordinated molybdenum centre with octahedral arrangement of donor atoms.

  11. Self-assembly of oxamidato bridged ester functionalised dirhenium metallastirrups: synthesis, characterisation and cytotoxicity studies.

    PubMed

    Ramakrishna, Buthanapalli; Nagarajaprakash, R; Veena, V; Sakthivel, N; Manimaran, Bala

    2015-10-28

    A new set of ester functionalised Re(i)-based oxamidato bridged neutral dinuclear metallacycles were synthesised by self-assembly of four components from three building blocks in a facile one-pot reaction via an orthogonal bonding approach. Oxidative addition of oxamide ligands (H2L = N,N'-diphenyloxamide, and N,N'-dibenzyloxamide) to rhenium carbonyl (Re2(CO)10) in the presence of semi-rigid and flexible ditopic pyridyl ligands (L' = o-phenylene diisonicotinate (pdi), ethane diyl di-4-pyridine carboxylate (etdp) and 1,4-butane diyl di-4-pyridine carboxylate (budp)) having ester functionality afforded neutral dirhenium metallacycles of the general formula [(CO)3Re(μ-L)(μ-L')Re(CO)3] (1-5) under solvothermal reaction conditions. The metallacyclic compounds were characterised using elemental analyses, IR, UV-vis and NMR spectroscopic techniques. Structural analyses of 2-5 by single crystal X-ray diffraction methods revealed a stirrup like molecular framework in which two fac-Re(CO)3 units are bridged together by dissymmetrical NO∩ON bis-chelation of oxamide ligands (as a pedestal of stirrups) and further connected by a flexible ditopic tecton (as an arched anchor of stirrups) in an orthogonal fashion. The cytotoxicity activities of dirhenium metallacycles 1-5 were studied in vitro against three different cancer cell lines and normal cells. PMID:26393864

  12. Synthesis and characterisation of thiosemicarbazonato molybdenum(VI) complexes and their in vitro antitumor activity.

    PubMed

    Vrdoljak, Visnja; Dilović, Ivica; Rubcić, Mirta; Kraljević Pavelić, Sandra; Kralj, Marijeta; Matković-Calogović, Dubravka; Piantanida, Ivo; Novak, Predrag; Rozman, Andrea; Cindrić, Marina

    2010-01-01

    New dioxomolybdenum(VI) complexes were obtained by the reaction of [MoO2(acac)2] with thiosemicarbazone ligands derived from 3-thiosemicarbazide and 4-(diethylamino)salicylaldehyde (H2L1), 2-hydroxy-3-methoxybenzaldehyde (H2L2) or 2-hydroxy-1-naphthaldehyde (H2L3). In all complexes thiosemicarbazonato ligands are coordinated to molybdenum as tridentate ONS-donors. Octahedral coordination of each molybdenum atom is completed by methanol molecule (in 1a-3a) or by oxygen atom of Mo=O unit from the neighbouring molecule (in 1-3). All complexes were characterized by means of chemical analyses, IR spectroscopy, TG and NMR measurements. The molecular structures of the ligand H2L2 and complex [MoO2L2(CH3OH)].CH3OH (2a) have been determined by single crystal X-ray crystallography. The characterisation of thiosemicarbazonato molybdenum(VI) complexes (1-4) as well as of the 4-phenylthisemicarbazonato molybdenum(VI) complexes (5-8) in aqueous medium revealed that upon dissolving complexes in water, most likely to some extent dissociation took place, although experimental data didn't allow exact quantification of dissociation. The antiproliferative effects of studied molybdenum(VI) complexes (1-8) on the human cell lines were identical to the activity of their corresponding ligands. PMID:19815314

  13. Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates.

    PubMed

    Chaudhry, Aqif A; Knowles, Jonathan C; Rehman, Ihtesham; Darr, Jawwad A

    2013-09-01

    A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO₃-HA) with ≈5 wt% substituted carbonate content (sample 7.5CO₃-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO₃-HA. For silicate-substituted hydroxyapatite (SiO₄-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ∼1.1 wt% exists for synthesis of SiO₄-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy. PMID:22983020

  14. Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates

    PubMed Central

    Knowles, Jonathan C; Rehman, Ihtesham; Darr, Jawwad A

    2013-01-01

    A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO3-HA) with ≈5 wt% substituted carbonate content (sample 7.5CO3-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO3-HA. For silicate-substituted hydroxyapatite (SiO4-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ∼1.1 wt% exists for synthesis of SiO4-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy. PMID:22983020

  15. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %. PMID:17898456

  16. Development of nanocomposites based on hydroxyapatite/sodium alginate: Synthesis and characterisation

    SciTech Connect

    Rajkumar, M.; Meenakshisundaram, N.; Rajendran, V.

    2011-05-15

    In this study, a novel method was used to produce a nanostructured composite consisting of hydroxyapatite and sodium alginate by varying the composition of sodium alginate. The structure, morphology, simulated body fluid response and mechanical properties of the synthesised nanocomposites were characterised. From X-ray diffraction analysis, an increase in crystallite size and degree of crystallinity with an increase in the composition of sodium alginate up to 1.5 wt.% was observed. Further, it was found to decrease with an increase in the composition of sodium alginate. A notable peak shift from 1635 to 1607 cm{sup -1} and 1456 to 1418 cm{sup -1} in the Fourier transform infrared spectra of the nanocomposite was observed towards the lower wave number side when compared with pure hydroxyapatite. It reveals a strong interaction between the positively charged calcium (Ca{sup 2+}) and the negatively charged carboxyl group (COO{sup -}) in sodium alginate. Transmission electron microscopy images of pure hydroxyapatite showed a short nanorod-like morphology with an average particle size of 13 nm. Bioresorbability of the samples was observed by immersing them in simulated body fluid medium for 14 days to evaluate the changes in pH and Ca{sup 2+} ion strength. Microhardness shows an increasing trend with an increase in the composition of sodium alginate from 1.5 to 3.0 wt.%, which is similar to that in the density. - Research Highlights: {yields} We have prepared nanohydroxyapatite/sodium alginate as a composite. {yields} Effect of sodium alginate on the properties of nanohydrroxyapatite has been studied. {yields} The sodium alginate ranges from 0 to 3.75 wt.% has been used. {yields} Composites show improved biological and mechanical properties.

  17. A novel Schiff base: Synthesis, structural characterisation and comparative sensor studies for metal ion detections.

    PubMed

    Köse, Muhammet; Purtas, Savas; Güngör, Seyit Ali; Ceyhan, Gökhan; Akgün, Eyup; McKee, Vickie

    2015-02-01

    A novel Schiff base ligand was synthesized by the condensation reaction of 2,6-diformylpyridine and 4-aminoantipyrine in MeOH and characterised by its melting point, elemental analysis, FT-IR, (1)H, (13)C NMR and mass spectroscopic studies. Molecular structure of the ligand was determined by single crystal X-ray diffraction technique. The electrochemical properties of the Schiff base ligand were studied in different solvents at various scan rates. Sensor ability of the Schiff base ligand was investigated by colorimetric and fluorometric methods. Visual colour change of the ligand was investigated in MeOH solvent in presence of various metal ions Na(+), Mg(2+), Al(3+), K(+), Cr(3+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Pb(2+). Upon addition of Al(3+) ion into a MeOH solution of the ligand, an orange colour developed which is detectable by naked eye. Fluorescence emission studies showed that the ligand showed single emission band at 630-665nm upon excitation at 560nm. Addition of metal ions Na(+), Mg(2+), K(+), Cr(3+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Pb(2+) (1:1M ratio) cause fluorescence quenching, however addition of Al(+3) resulted in an increase in fluorescence intensity. No significant variation was observed in the fluorescence intensity caused by Al(3+) in presence of other metal ions. Therefore, the Schiff base ligand can be used for selective detection of Al(3+) ions in the presence of the other metal ions studied. PMID:25459697

  18. Comparison of bile acid synthesis determined by isotope dilution versus fecal acidic sterol output in human subjects

    SciTech Connect

    Duane, W.C.; Holloway, D.E.; Hutton, S.W.; Corcoran, P.J.; Haas, N.A.

    1982-05-01

    Fecal acidic sterol output has been found to be much lower than bile acid synthesis determined by isotope dilution. Because of this confusing discrepancy, we compared these 2 measurements done simultaneously on 13 occasions in 5 normal volunteers. In contrast to previous findings, bile acid synthesis by the Lindstedt isotope dilution method averaged 16.3% lower than synthesis simultaneously determined by fecal acidic sterol output (95% confidence limit for the difference - 22.2 to -10.4%). When one-sample determinations of bile acid pools were substituted for Lindstedt pools, bile acid synthesis by isotope dilution averaged 5.6% higher than synthesis by fecal acidic sterol output (95% confidence limits -4.9 to 16.1%). These data indicate that the 2 methods yield values in reasonably close agreement with one another. If anything, fecal acidic sterol outputs are slightly higher than synthesis by isotope dilution.

  19. Synthesis of biobased succinonitrile from glutamic acid and glutamine.

    PubMed

    Lammens, Tijs M; Le Nôtre, Jérôme; Franssen, Maurice C R; Scott, Elinor L; Sanders, Johan P M

    2011-06-20

    Succinonitrile is the precursor of 1,4-diaminobutane, which is used for the industrial production of polyamides. This paper describes the synthesis of biobased succinonitrile from glutamic acid and glutamine, amino acids that are abundantly present in many plant proteins. Synthesis of the intermediate 3-cyanopropanoic amide was achieved from glutamic acid 5-methyl ester in an 86 mol% yield and from glutamine in a 56 mol % yield. 3-Cyanopropanoic acid can be converted into succinonitrile, with a selectivity close to 100% and a 62% conversion, by making use of a palladium(II)-catalyzed equilibrium reaction with acetonitrile. Thus, a new route to produce biobased 1,4-diaminobutane has been discovered. PMID:21557494

  20. Mass spectrometry characterisation of fatty acids from metabolically engineered soybean seeds.

    PubMed

    Murad, André M; Vianna, Giovanni R; Machado, Alex M; da Cunha, Nicolau B; Coelho, Cíntia M; Lacerda, Valquiria A M; Coelho, Marly C; Rech, Elibio L

    2014-05-01

    Improving the quality and performance of soybean oil as biodiesel depends on the chemical composition of its fatty acids and requires an increase in monounsaturated acids and a reduction in polyunsaturated acids. Despite its current use as a source of biofuel, soybean oil contains an average of 25 % oleic acid and 13 % palmitic acid, which negatively impacts its oxidative stability and freezing point, causing a high rate of nitrogen oxide emission. Gas chromatography and ion mobility mass spectrometry were conducted on soybean fatty acids from metabolically engineered seed extracts to determine the nature of the structural oleic and palmitic acids. The soybean genes FAD2-1 and FatB were placed under the control of the 35SCaMV constitutive promoter, introduced to soybean embryonic axes by particle bombardment and down-regulated using RNA interference technology. Results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 94.58 %) and a reduction in palmitic acid (to <3 %) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and non-transgenic oil extracts. PMID:24652150

  1. Synthesis and characterisation of an N-heterocyclic carbene with spatially-defined steric impact.

    PubMed

    Shaw, Paul; Kennedy, Alan R; Nelson, David J

    2016-08-01

    The synthesis and co-ordination chemistry of a new 'bulky yet flexible' N-heterocyclic carbene ("IPaul") is reported. This carbene has spatially-defined steric impact; steric maps show that two quadrants are very bulky while the other two are quite open. The electronic properties of this carbene are very similar to those of other 1,3-diarylimidazol-2-ylidenes. Copper, silver, iridium, and nickel complexes of the new ligand have been prepared. In solution, the ligand adopts two different conformations, while X-ray crystallographic analyses of the transition metal complexes suggest that the syn-conformer is preferred in the solid state due to intermolecular interactions. The copper(i) chloride complex of this new ligand has been shown to be highly-active in the hydrosilylation of carbonyl compounds, when compared to the analogous IPr, IMes, IPr* and IPr*(OMe) complexes. PMID:27335266

  2. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    PubMed

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway. PMID:24845645

  3. Stereoselective synthesis of unsaturated α-amino acids.

    PubMed

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-06-01

    Stereoselective synthesis of unsaturated α-amino acids was performed by asymmetric alkylation. Two methods were investigated and their enantiomeric excess measured and compared. The first route consisted of an enantioselective approach induced by the Corey-Lygo catalyst under chiral phase transfer conditions while the second one involved the hydroxypinanone chiral auxiliary, both implicating Schiff bases as substrate. In all cases, the use of a prochiral Schiff base gave higher enantiomeric excess and yield in the final desired amino acid. PMID:25715756

  4. By-products of electrochemical synthesis of suberic acid

    SciTech Connect

    Shirobokova, O.I.; Adamov, A.A.; Freidlin, G.N.; Antonenko, N.S.; Grudtsyn, Yu.D.

    1988-05-10

    By-products of the electrochemical synthesis of dimethyl suberate from glutaric anhydride were studied. This is isolated by thermal dehydration of a mixture of lower dicarboxylic acids that are wastes from the production of adipic acid. To isolate the by-products, they used the methods of vacuum rectification and preparative gas-liquid chromatography, and for their identification, PMR, IR spectroscopy, gas-liquid chromatography, and other known physicochemical methods of investigation.

  5. Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity

    PubMed Central

    Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  6. The spark discharge synthesis of amino acids from various hydrocarbons

    NASA Technical Reports Server (NTRS)

    Ring, D.; Miller, S. L.

    1984-01-01

    The spark discharge synthesis of amino acids using an atmosphere of CH4+N2+H2O+NH3 has been investigated with variable pNH3. The amino acids produced using higher hydrocarbons (ethane, ethylene, acetylene, propane, butane, and isobutane) instead of CH4 were also investigated. There was considerable range in the absolute yields of amino acids, but the yields relative to glycine (or alpha-amino-n-butyric acid) were more uniform. The relative yields of the C3 to C6 aliphatic alpha-amino acids are nearly the same (with a few exceptions) with all the hydrocarbons. The glycine yields are more variable. The precursors to the C3-C6 aliphatic amino acids seem to be produced in the same process, which is separate from the synthesis of glycine precursors. It may be possible to use these relative yields as a signature for a spark discharge synthesis provided corrections can be made for subsequent decomposition events (e.g. in the Murchison meteorite).

  7. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.

    PubMed

    Mahdavi, Mahnaz; Ahmad, Mansor Bin; Haron, Md Jelas; Namvar, Farideh; Nadi, Behzad; Rahman, Mohamad Zaki Ab; Amin, Jamileh

    2013-01-01

    Superparamagnetic iron oxide nanoparticles (MNPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. These applications required that the MNPs such as iron oxide Fe₃O₄ magnetic nanoparticles (Fe₃O₄ MNPs) having high magnetization values and particle size smaller than 100 nm. This paper reports the experimental detail for preparation of monodisperse oleic acid (OA)-coated Fe₃O₄ MNPs by chemical co-precipitation method to determine the optimum pH, initial temperature and stirring speed in order to obtain the MNPs with small particle size and size distribution that is needed for biomedical applications. The obtained nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence spectrometry (EDXRF), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and vibrating sample magnetometer (VSM). The results show that the particle size as well as the magnetization of the MNPs was very much dependent on pH, initial temperature of Fe²⁺ and Fe³⁺ solutions and steering speed. The monodisperse Fe₃O₄ MNPs coated with oleic acid with size of 7.8 ± 1.9 nm were successfully prepared at optimum pH 11, initial temperature of 45°C and at stirring rate of 800 rpm. FTIR and XRD data reveal that the oleic acid molecules were adsorbed on the magnetic nanoparticles by chemisorption. Analyses of TEM show the oleic acid provided the Fe₃O₄ particles with better dispersibility. The synthesized Fe₃O₄ nanoparticles exhibited superparamagnetic behavior and the saturation magnetization of the Fe₃O₄ nanoparticles increased with the particle size. PMID:23807578

  8. Enantioselective synthesis of isotopically labeled homocitric acid lactone.

    PubMed

    Moore, Jared T; Hanhan, Nadine V; Mahoney, Maximillian E; Cramer, Stephen P; Shaw, Jared T

    2013-11-15

    A concise synthesis of homocitric acid lactone was developed to accommodate systematic placement of carbon isotopes (specifically (13)C) for detailed studies of this cofactor. This new route uses a chiral allylic alcohol, available in multigram quantities from enzymatic resolution, as a starting material, which transposes asymmetry through an Ireland-Claisen rearrangement. PMID:24180620

  9. Synthesis of monomethyl 5,5'-dehydrodiferulic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthesis of the internal reference compound, monomethyl 5,5’-dehydrodiferulic acid, is described. The synthetic scheme relies on a selective monomethylation of the known compound 5,5-dehydrodivanillin, followed by elaboration into the dehydrodiferulic framework through a dual Horner-Emmons-Wadswort...

  10. Amino acid metabolism and protein synthesis in malarial parasites*

    PubMed Central

    Sherman, I. W.

    1977-01-01

    Malaria-infected red cells and free parasites have limited capabilities for the biosynthesis of amino acids. Therefore, the principal amino acid sources for parasite protein synthesis are the plasma free amino acids and host cell haemoglobin. Infected cells and plasmodia incorporate exogenously supplied amino acids into protein. However, the hypothesis that amino acid utilization (from an external source) is related to availability of that amino acid in haemoglobin is without universal support: it is true for isoleucine and for Plasmodium knowlesi and P. falciparum, but not for methionine, cysteine, and other amino acids, and it does not apply to P. lophurae. More by default than by direct evidence, haemoglobin is believed to be the main amino acid reservoir available to the intraerythrocytic plasmodium. Haemoglobin, ingested via the cytostome, is held in food vacuoles where auto-oxidation takes place. As a consequence, haem is released and accumulates in the vacuole as particulate haemozoin (= malaria pigment). Current evidence favours the view that haemozoin is mainly haematin. Acid and alkaline proteases (identified in crude extracts from mammalian and avian malarias) are presumably secreted directly into the food vacuole. They then digest the denatured globin and the resulting amino acids are incorporated into parasite protein. Cell-free protein synthesizing systems have been developed using P. knowlesi and P. lophurae ribosomes. In the main these systems are typically eukaryotic. Studies of amino acid metabolism are exceedingly limited. Arginine, lysine, methionine, and proline are incorporated into protein, whereas glutamic acid is metabolized via an NADP-specific glutamic dehydrogenase. Glutamate oxidation generates NADPH and auxiliary energy (in the form of α-ketoglutarate). The role of red cell glutathione in the economy of the parasite remains obscure. Important goals for future research should be: quantitative assessment of the relative importance of

  11. Amino acid synthesis in Europa's subsurface environment

    NASA Astrophysics Data System (ADS)

    Abbas, Sam H.; Schulze-Makuch, Dirk

    2008-10-01

    It has been suggested that Europa's subsurface environment may provide a haven for prebiotic evolution and the development of exotic biotic systems. The detection of hydrogen peroxide, sulfuric acid, water, hydrates and related species on the surface, coupled with observed mobility of icebergs, suggests the presence of a substantial subsurface liquid reservoir that actively exchanges materials with the surface environment. The atmospheric, surface and subsurface environments are described with their known chemistry. Three synthetic schemes using hydrogen peroxide, sulfuric acid and hydrocyanic acid leading to the production of larger biologically important molecules such as amino acids are described. Metabolic pathways based on properties of the subsurface ocean environment are detailed. Tidal heating, osmotic gradients, chemical cycling, as well as hydrothermal vents, provide energy and materials that may support a course of prebiotic evolution leading to the development or sustenance of simple biotic systems. Putative organisms may employ metabolic pathways based on chemical oxidation reduction cycles occurring in the putative subsurface ocean environment.

  12. Synthesis and characterisation of large chlorapatite single-crystals with controlled morphology and surface roughness

    PubMed Central

    Couceiro, Ramiro; Franco, Jaime; Saiz, Eduardo; Guitián, Francisco

    2013-01-01

    This work describes the synthesis of chlorapatite single crystals using the molten salt method with CaCl2 as a flux. By manipulating the processing conditions (amount of flux, firing time and temperature, and cooling rates) it is possible to manipulate the crystal morphology from microscopic fibres to large crystals (up to few millimetre long and ~100 μm thick). The crystal roughness can be controlled to achieve very flat surfaces by changing the melt composition “in situ” at high temperature. The Young modulus and hardness of the crystals are 110 ± 15 and 6.6 ± 1.5 GPa respectively as measured by nanoindentation. Crystal dissolution in Hanks solution starts around the defects. Several in vitro assays were performed; ClAp crystals with different size and shape are biocompatible. Cell apoptosis was very low at 5, 10, and 15 days (Caspase-3) for all the samples. Proliferation (MTT) showed to be influenced by surface roughness and size of the crystals. PMID:22806077

  13. Synthesis and characterisation of large chlorapatite single-crystals with controlled morphology and surface roughness.

    PubMed

    García-Tuñón, Esther; Couceiro, Ramiro; Franco, Jaime; Saiz, Eduardo; Guitián, Francisco

    2012-10-01

    This work describes the synthesis of chlorapatite single crystals using the molten salt method with CaCl(2) as a flux. By manipulating the processing conditions (amount of flux, firing time and temperature, and cooling rates) it is possible to manipulate the crystal morphology from microscopic fibres to large crystals (up to few millimetre long and ~100 μm thick). The crystal roughness can be controlled to achieve very flat surfaces by changing the melt composition "in situ" at high temperature. The Young modulus and hardness of the crystals are 110 ± 15 and 6.6 ± 1.5 GPa respectively as measured by nanoindentation. Crystal dissolution in Hanks solution starts around the defects. Several in vitro assays were performed; ClAp crystals with different size and shape are biocompatible. Cell apoptosis was very low at 5, 10, and 15 days (Caspase-3) for all the samples. Proliferation (MTT) showed to be influenced by surface roughness and size of the crystals. PMID:22806077

  14. Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films.

    PubMed

    Bryaskova, Rayna; Pencheva, Daniela; Kale, Girish M; Lad, Umesh; Kantardjiev, T

    2010-09-01

    Novel hybrid material thin films based on polyvinyl alcohol (PVA)/tetraethyl orthosilicate (TEOS) with embedded silver nanoparticles (AgNps) were synthesized using sol-gel method. Two different strategies for the synthesis of silver nanoparticles in PVA/TEOS matrix were applied based on reduction of the silver ions by thermal annealing of the films or by preliminary preparation of silver nanoparticles using PVA as a reducing agent. The successful incorporation of silver nanoparticles ranging from 5 to 7nm in PVA/TEOS matrix was confirmed by TEM and EDX analysis, UV-Vis spectroscopy and XRD analysis. The antibacterial activity of the synthesized hybrid materials against etalon strains of three different groups of bacteria -Staphylococcus aureus (gram-positive bacteria), Escherichia coli (gram-negative bacteria), Pseudomonas aeruginosa (non-ferment gram-negative bacteria) has been studied as they are commonly found in hospital environment. The hybrid materials showed a strong bactericidal effect against E. coli, S. aureus and P. aeruginosa and therefore have potential applications in biotechnology and biomedical science. PMID:20557895

  15. Stereoselective synthesis of stable-isotope-labeled amino acids

    SciTech Connect

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III; Lodwig, S.N.

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  16. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    PubMed Central

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-01-01

    Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life’s origin. PMID:19582225

  17. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids.

    PubMed

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu

    2016-01-18

    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues. PMID:26572799

  18. Synthesis and chirality of amino acids under interstellar conditions.

    PubMed

    Giri, Chaitanya; Goesmann, Fred; Meinert, Cornelia; Evans, Amanda C; Meierhenrich, Uwe J

    2013-01-01

    Amino acids are the fundamental building blocks of proteins, the biomolecules that provide cellular structure and function in all living organisms. A majority of amino acids utilized within living systems possess pre-specified orientation geometry (chirality); however the original source for this specific orientation remains uncertain. In order to trace the chemical evolution of life, an appreciation of the synthetic and evolutional origins of the first chiral amino acids must first be gained. Given that the amino acids in our universe are likely to have been synthesized in molecular clouds in interstellar space, it is necessary to understand where and how the first synthesis might have occurred. The asymmetry of the original amino acid synthesis was probably the result of exposure to chiral photons in the form of circularly polarized light (CPL), which has been detected in interstellar molecular clouds. This chirality transfer event, from photons to amino acids, has been successfully recreated experimentally and is likely a combination of both asymmetric synthesis and enantioselective photolysis. A series of innovative studies have reported successful simulation of these environments and afforded production of chiral amino acids under realistic circumstellar and interstellar conditions: irradiation of interstellar ice analogues (CO, CO2, NH3, CH3OH, and H2O) with circularly polarized ultraviolet photons at low temperatures does result in enantiomer enriched amino acid structures (up to 1.3% ee). This topical review summarizes current knowledge and recent discoveries about the simulated interstellar environments within which amino acids were probably formed. A synopsis of the COSAC experiment onboard the ESA cometary mission ROSETTA concludes this review: the ROSETTA mission will soft-land on the nucleus of the comet 67P/Churyumov-Gerasimenko in November 2014, anticipating the first in situ detection of asymmetric organic molecules in cometary ices. PMID:22976459

  19. Glucose and Insulin Induction of Bile Acid Synthesis

    PubMed Central

    Li, Tiangang; Francl, Jessica M.; Boehme, Shannon; Ochoa, Adrian; Zhang, Youcai; Klaassen, Curtis D.; Erickson, Sandra K.; Chiang, John Y. L.

    2012-01-01

    Bile acids facilitate postprandial absorption of nutrients. Bile acids also activate the farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5 and play a major role in regulating lipid, glucose, and energy metabolism. Transgenic expression of cholesterol 7α-hydroxylase (CYP7A1) prevented high fat diet-induced diabetes and obesity in mice. In this study, we investigated the nutrient effects on bile acid synthesis. Refeeding of a chow diet to fasted mice increased CYP7A1 expression, bile acid pool size, and serum bile acids in wild type and humanized CYP7A1-transgenic mice. Chromatin immunoprecipitation assays showed that glucose increased histone acetylation and decreased histone methylation on the CYP7A1 gene promoter. Refeeding also induced CYP7A1 in fxr-deficient mice, indicating that FXR signaling did not play a role in postprandial regulation of bile acid synthesis. In streptozocin-induced type I diabetic mice and genetically obese type II diabetic ob/ob mice, hyperglycemia increased histone acetylation status on the CYP7A1 gene promoter, leading to elevated basal Cyp7a1 expression and an enlarged bile acid pool with altered bile acid composition. However, refeeding did not further increase CYP7A1 expression in diabetic mice. In summary, this study demonstrates that glucose and insulin are major postprandial factors that induce CYP7A1 gene expression and bile acid synthesis. Glucose induces CYP7A1 gene expression mainly by epigenetic mechanisms. In diabetic mice, CYP7A1 chromatin is hyperacetylated, and fasting to refeeding response is impaired and may exacerbate metabolic disorders in diabetes. PMID:22144677

  20. Salicylic Acid Inhibits Synthesis of Proteinase Inhibitors in Tomato Leaves Induced by Systemin and Jasmonic Acid.

    PubMed Central

    Doares, S. H.; Narvaez-Vasquez, J.; Conconi, A.; Ryan, C. A.

    1995-01-01

    Salicylic acid (SA) and acetylsalicylic acid (ASA), previously shown to inhibit proteinase inhibitor synthesis induced by wounding, oligouronides (H.M. Doherty, R.R. Selvendran, D.J. Bowles [1988] Physiol Mol Plant Pathol 33: 377-384), and linolenic acid (H. Pena-Cortes, T. Albrecht, S. Prat, E.W. Weiler, L. Willmitzer [1993] Planta 191: 123-128), are shown here to be potent inhibitors of systemin-induced and jasmonic acid (JA)-induced synthesis of proteinase inhibitor mRNAs and proteins. The inhibition by SA and ASA of proteinase inhibitor synthesis induced by systemin and JA, as well as by wounding and oligosaccharide elicitors, provides further evidence that both oligosaccharide and polypeptide inducer molecules utilize the octadecanoid pathway to signal the activation of proteinase inhibitor genes. Tomato (Lycopersicon esculentum) leaves were pulse labeled with [35S]methionine, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the inhibitory effects of SA are shown to be specific for the synthesis of a small number of JA-inducible proteins that includes the proteinase inhibitors. Previous results have shown that SA inhibits the conversion of 13S-hydroperoxy linolenic acid to 12-oxo-phytodienoic acid, thereby inhibiting the signaling pathway by blocking synthesis of JA. Here we report that the inhibition of synthesis of proteinase inhibitor proteins and mRNAs by SA in both light and darkness also occurs at a step in the signal transduction pathway, after JA synthesis but preceding transcription of the inhibitor genes. PMID:12228577

  1. Amino Acid Synthesis in Photosynthesizing Spinach Cells 1

    PubMed Central

    Larsen, Peder Olesen; Cornwell, Karen L.; Gee, Sherry L.; Bassham, James A.

    1981-01-01

    Isolated cells from leaves of Spinacia oleracea have been maintained in a state capable of high rates of photosynthetic CO2 fixation for more than 60 hours. The incorporation of 14CO2 under saturating CO2 conditions into carbohydrates, carboxylic acids, and amino acids, and the effect of ammonia on this incorporation have been studied. Total incorporation, specific radioactivity, and pool size have been determined as a function of time for most of the protein amino acids and for γ-aminobutyric acid. The measurements of specific radio-activities and of the approaches to 14C “saturation” of some amino acids indicate the presence and relative sizes of metabolically active and passive pools of these amino acids. Added ammonia decreased carbon fixation into carbohydrates and increased fixation into carboxylic acids and amino acids. Different amino acids were, however, affected in different and highly specific ways. Ammonia caused large stimulatory effects in incorporation of 14C into glutamine (a factor of 21), aspartate, asparagine, valine, alanine, arginine, and histidine. No effect or slight decreases were seen in glycine, serine, phenylalanine, and tyrosine labeling. In the case of glutamate, 14C labeling decreased, but specific radioactivity increased. The production of labeled γ-aminobutyric acid was virtually stopped by ammonia. The results indicate that added ammonia stimulates the reactions mediated by pyruvate kinase and phosphoenolpyruvate carboxylase, as seen with other plant systems. The data on the effects of added ammonia on total labeling, pool sizes, and specific radioactivities of several amino acids provides a number of indications about the intracellular sites of principal synthesis from carbon skeletons of these amino acids and the selective nature of effects of increased intracellular ammonia concentration on such synthesis. PMID:16661904

  2. Characterisation of calamansi (Citrus microcarpa). Part I: volatiles, aromatic profiles and phenolic acids in the peel.

    PubMed

    Cheong, Mun Wai; Chong, Zhi Soon; Liu, Shao Quan; Zhou, Weibiao; Curran, Philip; Bin Yu

    2012-09-15

    Volatile compounds in the peel of calamansi (Citrus microcarpa) from Malaysia, the Philippines and Vietnam were extracted with dichloromethane and hexane, and then analysed by gas chromatography-mass spectroscopy/flame ionisation detector. Seventy-nine compounds representing >98% of the volatiles were identified. Across the three geographical sources, a relatively small proportion of potent oxygenated compounds was significantly different, exemplified by the highest amount of methyl N-methylanthranilate in Malaysian calamansi peel. Principal component analysis and canonical discriminant analysis were applied to interpret the complex volatile compounds in the calamansi peel extracts, and to verify the discrimination among the different origins. In addition, four common hydroxycinnamic acids (caffeic, p-coumaric, ferulic and sinapic acids) were determined in the methanolic extracts of calamansi peel using ultra-fast liquid chromatography coupled to photodiode array detector. The Philippines calamansi peel contained the highest amount of total phenolic acids. In addition, p-Coumaric acid was the dominant free phenolic acids, whereas ferulic acid was the main bound phenolic acid. PMID:23107679

  3. Acid-Base Chemistry of White Wine: Analytical Characterisation and Chemical Modelling

    PubMed Central

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic “wine” especially adapted for testing. PMID:22566762

  4. Synthesis and characterisations of SnO2 nanorods via low temperature hydrothermal method

    NASA Astrophysics Data System (ADS)

    Inderan, Vicinisvarri; Lim, Shin Ye; Ong, Teng Sian; Bastien, Samuel; Braidy, Nadi; Lee, Hooi Ling

    2015-12-01

    In the present study, tin oxide (SnO2) nanorods were successfully synthesized through hydrothermal treatment at a relatively low temperature (180 °C) using various concentrations of metal precursor, SnCl4·5H2O (0.04 M-0.16 M) in a mixed solution of ethanol and water before bringing the pH to 13 by adding 6 M NaOH. The effect of concentration on the morphology and structure of SnO2 were comprehensively studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and Fourier Transform Infrared (FTIR). It was found that increasing the concentration of tin precursor from 0.04 M to 0.16 M leads to a complete conversion from nanospheres to nanoplates and finally to nanorods. The SEM results confirmed that SnO2 nanorods are obtained for concentrations up to 0.12 M. At synthesis condition of 0.12 M, SnCl4·5H2O and pH 13, single rutile nanorods with preferential growth in the [002] direction were obtained. It was found that the diameter of nanorods formed at 0.12 M is similar to that of nanoplates formed at 0.08 M (20 nm), which suggests that spear-shaped nanorods might have originated from the primary nanoparticles (the particles grown in lower concentration during hydrothermal treatment). Possible reaction mechanisms are proposed to explain the observed morphologies.

  5. Simple, high-yield synthesis of polyhedral carborane amino acids

    SciTech Connect

    Kahl, S.B.; Kasar, R.A.

    1996-02-07

    Boron neutron capture therapy (BNCT) is a form of binary cancer therapy that offers the potential of delivering spatially selective, high linear energy transfer radiation to the target cells while sparing surrounding normal tissue. We have demonstarted a versatile, general method for the conversion of o- ,m-, and p-carborane to their corresponding Boc-protected amino acids. Heterobifunctional polyhedral carboranes are exceedingly rare in the literature, and the amino acids prepared by this general method may prove to be valuable synthons for use in the synthesis of tumor-seeking compounds for BNCT or PDT. Morever, these conformationally constrained amino acids should be particularly interesting for use in peptide synthesis. The dihedral angle between the carbon atoms of these polyhedra increases in the order 60{degree} (ortho), 110{degree} (meta), and 180{degree} (para), allowing the peptide chemist to select a desired conformation. 11 refs.

  6. Physical and structural characterisation of starch/polyester blends with tartaric acid.

    PubMed

    Olivato, J B; Müller, C M O; Carvalho, G M; Yamashita, F; Grossmann, M V E

    2014-06-01

    Starch/PBAT blends were produced by reactive extrusion with tartaric acid (TA) as an additive. The effects of TA, glycerol and starch+PBAT on the mechanical, optical and structural properties of the films were evaluated, with formulations based in a constrained mixture design. Tartaric acid acts as a compatibiliser and promotes the acid hydrolysis of starch chains. These two functions explain the observed film resistance and opacity. TA reduced the weight loss in water. Scanning electron microscopy (SEM) images showed that TA reduces the interfacial tension between the polymeric phases, resulting in more homogeneous films. Nuclear magnetic resonance ((13)C CPMAS) and Fourier transform infrared spectroscopy (FT-IR) suggest that tartaric acid is able to react with the hydroxyl groups of the starch by esterification/transesterification reactions, confirming its role as a compatibiliser. The addition of TA results in materials with better properties that are suitable for use in food packaging. PMID:24863194

  7. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis.

    PubMed

    van der Bij, Hendrik E; Weckhuysen, Bert M

    2015-10-21

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus-zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus-zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research. PMID:26051875

  8. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis

    PubMed Central

    van der Bij, Hendrik E.

    2015-01-01

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus–zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus–zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research. PMID:26051875

  9. Lactide Synthesis and Chirality Control for Polylactic acid Production.

    PubMed

    Van Wouwe, Pieter; Dusselier, Michiel; Vanleeuw, Evelien; Sels, Bert

    2016-05-10

    Polylactic acid (PLA) is a very promising biodegradable, renewable, and biocompatible polymer. Aside from its production, its application field is also increasing, with use not only in commodity applications but also as durables and in biomedicine. In the current PLA production scheme, the most expensive part is not the polymerization itself but obtaining the building blocks lactic acid (LA) and lactide, the actual cyclic monomer for polymerization. Although the synthesis of LA and the polymerization have been studied systematically, reports of lactide synthesis are scarce. Most lactide synthesis methods are described in patent literature, and current energy-intensive, aselective industrial processes are based on archaic scientific literature. This Review, therefore, highlights new methods with a technical comparison and description of the different approaches. Water-removal methodologies are compared, as this is a crucial factor in PLA production. Apart from the synthesis of lactide, this Review also emphasizes the use of chemically produced racemic lactic acid (esters) as a starting point in the PLA production scheme. Stereochemically tailored PLA can be produced according to such a strategy, giving access to various polymer properties. PMID:27071863

  10. Bile Acid Synthesis in the Isolated, Perfused Rabbit Liver

    PubMed Central

    Mosbach, E. H.; Rothschild, M. A.; Bekersky, I.; Oratz, M.; Mongelli, J.

    1971-01-01

    These experiments were carried out to demonstrate the usefulness of the perfused rabbit liver for studies of bile acid metabolism, and to determine the rate-limiting enzyme of bile acid synthesis. Rabbits were fed a semisynthetic diet, with or without the addition of 1% cholestyramine, under controlled conditions. At the end of 2-5 wk, the livers were removed and perfused for 2.5 hr employing various 14C-labeled precursors to measure de novo cholic acid synthesis. The livers were then analyzed for cholesterol, and the bile collected during the perfusion was analyzed for cholesterol and bile acids. Control bile contained, on the average, 0.34 mg of glycocholate, 7.4 mg of glycodeoxycholate, and 0.06 mg of cholesterol. After cholestyramine treatment of the donor rabbits, the bile contained 3.3 mg of glycocholate, 3.7 mg of glycodeoxycholate, and 0.05 mg of cholesterol. It was assumed that in cholestyramine-treated animals the enterohepatic circulation of the bile acids had been interrupted sufficiently to release the feedback inhibition of the rate-controlling enzyme of bile acid synthesis. Therefore, a given precursor should be incorporated into bile acids at a more rapid rate in livers of cholestyramine-treated animals, provided that the precursor was acted upon by the rate-controlling enzyme. It was found that the incorporation of acetate-14C, mevalonolactone-14C, and cholesterol-14C into cholate was 5-20 times greater in the livers of cholestyramine-treated animals than in the controls. In contrast, there was no difference in the incorporation of 7α-hydroxycholesterol-14C into cholate regardless of dietary pretreatment. It was concluded that given an adequate precursor pool, the 7α-hydroxylation of cholesterol is the rate-limiting step in bile acid formation. PMID:5097576

  11. Investigation of supramolecular synthons and structural characterisation of aminopyridine-carboxylic acid derivatives

    PubMed Central

    2014-01-01

    Background Co-crystal is a structurally homogeneous crystalline material that contains two or more neutral building blocks that are present in definite stoichiometric amounts. The main advantage of co-crystals is their ability to generate a variety of solid forms of a drug that have distinct physicochemical properties from the solid co-crystal components. In the present investigation, five co-crystals containing 2-amino-6-chloropyridine (AMPY) moiety were synthesized and characterized. Results The crystal structure of 2-amino-6-chloropyridine (AMPY) (I), and the robustness of pyridine-acid supramolecular synthon were discussed in four stoichiometry co-crystals of AMPY…BA (II), AMPY…2ABA (III), AMPY…3CLBA (IV) and AMPY…4NBA (V). The abbreviated designations used are benzoic acid (BA), 2-aminobenzoic acid (2ABA), 3-chlorobenzoic acid (3CLBA) and 4-nitrobenzoic acid (4NBA). All the crystalline materials have been characterized by 1HNMR, 13CNMR, IR, photoluminescence, TEM analysis and X-ray diffraction. The supramolecular assembly of each co-crystal is analyzed and discussed. Conclusions Extensive N---H · · · N/N---H · · · O/O---H · · · N hydrogen bonds are found in (I-V), featuring different supramolecular synthons. In the crystal structure, for compound (I), the 2-amino-6-chloropyridine molecules are linked together into centrosymmetric dimers by hydrogen bonds to form homosynthon, whereas for compounds (II-V), the carboxylic group of the respective acids (benzoic acid, 2-aminobenzoic acid, 3-chlorobenzoic acid and 4-nitrobenzoic acid) interacts with pyridine molecule in a linear fashion through a pair of N---H · · · O and O---H · · · N hydrogen bonds, generating cyclic hydrogen-bonded motifs with the graph-set notation R 2 2 8 , to form heterosynthon. In compound (II), another intermolecular N---H · · · O hydrogen bonds further link these heterosynthons into zig-zag chains. Whereas in

  12. Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria.

    PubMed

    Rozenberga, Linda; Skute, Marite; Belkova, Lubova; Sable, Inese; Vikele, Laura; Semjonovs, Pavels; Saka, Madara; Ruklisha, Maija; Paegle, Longina

    2016-06-25

    Bacterial cellulose (BC) samples were obtained using two culture media (glucose and glucose+fructose) and two bacteria (Komagataeibacter rhaeticus and Komagataeibacter hansenii). Nanopaper was obtained from the BC through oxidation and both were studied to determine the impact of culture media and bacteria strain on nanofiber structure and mechanical properties. AFM and SEM were used to investigate fibre dimensions and network morphology; FTIR and XRD to determine cellulose purity and crystallinity; carboxyl content, degree of polymerisation and zeta potential were used to characterise nanofibers. Tensile testing showed that nanopaper has up to 24 times higher Young's modulus (7.39GPa) than BC (0.3GPa). BC displayed high water retention values (86-95%) and a degree of polymerisation up to 2540. Nanofibers obtained were 80-120nm wide and 600-1200nm long with up to 15% higher crystallinity than the original BC. It was concluded that BC is an excellent source for easily obtainable, highly crystalline and strong nanofibers. PMID:27083790

  13. Synthesis and characterisation of Copper Zinc Tin Sulphide (CZTS) compound for absorber material in solar-cells

    NASA Astrophysics Data System (ADS)

    Kheraj, Vipul; Patel, K. K.; Patel, S. J.; Shah, D. V.

    2013-01-01

    The development of thin-film semiconductor compounds, such as Copper Indium Gallium Selenide (CIGS), has caused remarkable progress in the field of thin-film photovoltaics. However, the scarcity and the increasing prices of indium impose the hunt for alternative materials. The Copper Zinc Tin Sulphide (CZTS) is one of the promising emerging materials with Kesterite-type crystal structure and favourable material properties like high absorption co-efficient and direct band-gap. Moreover, all the constituent elements of CZTS are non-toxic and aplenty on the earth-crust, making it a potential candidate for the thin-film photovoltaics. Here we report the synthesis of CZTS powder from its constituent elements, viz. copper, zinc, tin and sulphur, in an evacuated Quartz ampoule at 1030 K temperature. The sulphur content in the raw mixture in the ampoule was varied and optimised in order to attain the desired atomic stoichiometry of the compound. The synthesised powder was characterised by X-Ray diffraction technique (XRD), Raman Scattering Spectroscopy, Energy Dispersive Analysis of X-Ray (EDAX) and UV-Visible Absorption Spectra. The XRD Patterns of the synthesised compound show the preferred orientation of (112), (220) and (312) planes, confirming the Kesterite structure of CZTS. The chemical composition of the powder was analysed by EDAX and shows good atomic stoichiometry of the constituent elements in the CZTS compound. The UV-Vis absorption spectra confirm the direct band-gap of about 1.45 eV, which is quite close to the optimum value for the semiconductor material as an absorber in solar-cells.

  14. Characterisation of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum.

    PubMed

    Fairfax, Keke C; Vermeire, Jon J; Harrison, Lisa M; Bungiro, Richard D; Grant, Wayne; Husain, Sohail Z; Cappello, Michael

    2009-12-01

    Hookworms, bloodfeeding intestinal nematodes, infect nearly one billion people in resource limited countries and are a leading cause of anaemia and malnutrition. Like other nematodes, hookworms lack the capacity to synthesise essential fatty acids de novo and therefore must acquire those from exogenous sources. The cDNA corresponding to a putative Ancylostoma ceylanicum fatty acid and retinol binding protein-1 (AceFAR-1) was amplified from adult hookworm mRNA. Studies using quantitative reverse transcriptase real-time PCR demonstrate that AceFAR-1 transcripts are most abundant in the earliest developmental stages of the parasite, and greater in females than males. Using in vitro assays, the recombinant AceFAR-1 (rAceFAR-1) was shown to bind individual fatty acids with equilibrium dissociation constants in the low micromolar range. The pattern of fatty acid uptake by live adult worms cultured ex vivo was similar to the in vitro binding profile of rAceFAR-1, raising the possibility that the native protein may be involved in acquisition of fatty acids by A. ceylanicum. Animals vaccinated orally with rAceFAR-1 and the mucosal adjuvant cholera toxin exhibited a statistically significant (40-47%) reduction in intestinal worm burden compared with controls immunized with antigen or adjuvant alone. Together, these data suggest a potential role for AceFAR-1 in hookworm biology, making it a potentially valuable target for drug and vaccine development. PMID:19591834

  15. Synthesis, characterisation and evaluation of N-mannich bases of 2-substituted Benzimidazole derivatives

    PubMed Central

    Vinoth Kumar, Sekar; Subramanian, Mohan Raj; Chinnaiyan, Santhosh Kumar

    2013-01-01

    Rationale Benzimidazoles and its derivatives represent one of the mainly biological active classes of literature. Aim In this present study aimed to synthesize N-mannich bases derivatives compounds bearing of 2-substituted benzimidazole moiety, in order to investigate their possible biological activity. Method Benzimidazole compounds were prepared from the condensation reaction between ortho phenylene diamine and various acids. Mannich base of newly synthesized Benzimidazole derivatives were synthesized from 2-substituted Benzimidazoles by reacting with secondary amines. The purity of the compounds was ascertained by melting point (m.p) and thin layer chromatography (TLC). Structures of the synthesized compounds were elucidated by spectral data. Antimicrobial assay was performed by microbroth dilution method. Bacterial genomic DNA cleavage was assessed by Agarose gel electrophoresis. Toxicity of the most effective compounds was studied by Brine-shrimp lethality assay. Result Among the synthesized compounds, compound 5E (a) and (b) was establish to be the most potent against all tested microorganisms. This two compounds exhibited complete bacterial DNA cleavage and non-toxic. Conclusion These results suggest that it an interesting compound compared to the current therapeutic agents and are considered to investigate further for the same. PMID:24563595

  16. Synthesis and characterisation of the complete series of B-N analogues of triptycene.

    PubMed

    Seven, Omer; Popp, Sebastian; Bolte, Michael; Lerner, Hans-Wolfram; Wagner, Matthias

    2014-06-14

    The reaction between the bisborate Li2[o-C6H4(BH3)2] and 2 equivalents of an appropriate pyrazole derivative (Hpz(R)) in the presence of Me3SiCl yields o-phenylene-bridged pyrazaboles HB(μ-pz(R))2(μ-o-C6H4)BH (3a-3e; Hpz(R) = 4-iodopyrazole (3a), 4-(trimethylsilyl)pyrazole (3b), 3,5-dimethylpyrazole (3c), 3,5-di(tert-butyl)pyrazole (3d), 3,5-bis(trifluoromethyl)pyrazole (3e)). The synthesis approach thus provides access to uncharged B-N triptycenes bearing (i) functionalisable groups, (ii) electron-donating or -withdrawing substituents and (iii) pyrazole rings of varying steric demand. Treatment of p-R*C6H4BBr2 with the potassium tris(pyrazol-1-yl)borates K[HBpz3] or K[p-R*C6H4Bpz3] yields cationic pyrazolyl-bridged pyrazaboles [p-BrC6H4B(μ-pz)3BH]Br ([4a]Br) and [p-R*C6H4B(μ-pz)3Bp-C6H4R*]Br (R* = Br ([4b]Br), I ([4c]Br), SiMe3 ([4d]Br)), which can be regarded as full B-N analogues of triptycene. The B-H bonds of 3b and [4a]Br are unreactive towards tBuC[triple bond, length as m-dash]CH even at temperatures of 80 °C, thereby indicating an appreciable thermal stability of the corresponding B-N cage bonds. Most of the cage compounds are sufficiently inert towards water to allow quick aqueous workup. However, NMR spectroscopy in CD3OD solution reveals degradation of 3b or [4a]Br to the corresponding pyrazoles and o-C6H4(B(OCD3)2)2 or p-BrC6H4B(OCD3)2/B(OCD3)3. The diphenylated species [4b]Br is significantly more stable under the same measurement conditions; even after 76 d, most of the material degrades only to the stage of the syn/anti-pyrazaboles p-BrC6H4(CD3O)B(μ-pz)2B(OCD3)p-C6H4Br (11a/11b). A derivatisation of [4c]Br with nBu3SnC≡CtBu through Stille-type coupling reactions furnishes the alkynyl derivative [p-tBuC≡CC6H4B(μ-pz)3Bp-C6H4C≡CtBu]Br ([4e]Br). Larger B-N aggregates are also accessible: treatment of the tetrakisborate Li4[1,2,4,5-C6H2(BH3)4] with 4 equivalents of Hpz(R) in the presence of Me3SiCl leads to the corresponding B

  17. Characterisation of the 1H and 13C NMR spectra of methylcitric acid

    NASA Astrophysics Data System (ADS)

    Krawczyk, Hanna; Martyniuk, Tomasz

    2007-06-01

    Methylcitric acid (MCA) was synthesised in Reformatsky reaction (2 RS, 3 RS stereoisomers) and in the nucleophilic addition (2 RS, 3 SR stereoisomers). The stereoselectivity of these reactions was analysed. 1H and 13C NMR spectra of diastereoisomers of methylcitric acid were recorded and interpreted. The values of 1H chemical shifts and 1H- 1H coupling constants were analysed. Proton-decoupled high-resolution 13C NMR spectra of MCA diastereoisomers were measured in a series of dilute water solutions of various acidities. These data may provide a basis for unequivocal determination of the presence of MCA in the urine samples of patients' suffering from propionic acidemia, methylmalonic aciduria, or holocarboxylase synthetase deficiency. NMR spectroscopy enables determination of MCA diastereoisomers in body fluids and can be a complementary and useful diagnostic tool.

  18. Synthesis and characterisation of coating polyurethane cationomers containing fluorine built-in hard urethane segments.

    PubMed

    Król, Bożena; Król, Piotr; Pikus, Stanisław; Chmielarz, Paweł; Skrzypiec, Krzysztof

    2010-08-01

    Polyurethane cationomers were synthesised in the reaction of 4,4'-methylenebis(phenyl isocyanate) with polyoxyethylene glycol (M = 2,000) or poly(tetrafluoroethyleneoxide-co-difluoromethylene oxide) α,ω-diisocyanate and N-methyl diethanolamine. Amine segments were built-in to the urethane-isocyanate prepolymer in the reaction with 1-bromobutane or formic acid, and then they were converted to alkylammonium cations. The obtained isocyanate prepolymers were then extended in the aqueous medium that yielded stable aqueous dispersions which were applied on the surfaces of test poly(tetrafluoroethylene) plates. After evaporation of water, the dispersions formed thin polymer coatings. (1)H, (13)C NMR and IR spectral methods were employed to confirm chemical structures of synthesised cationomers. Based on (1)H NMR and IR spectra, the factors κ and α were calculated, which represented the polarity level of the obtained cationomers. The DSC, wide angle X-ray scattering and atom force microscopy methods were employed for the microstructural assessment of the obtained materials. Changes were discussed in the surface free energy and its components, as calculated independently according to the method suggested by van Oss-Good, in relation to chemical and physical structures of cationomers as well as morphology of coating surfaces obtained from those cationomers. Fluorine incorporated into cationomers (about 30%) contributed to lower surface free energy values, down to about 15 mJ/m(2). That was caused by gradual weakening of long-range interactions within which the highest share is taken by dispersion interactions. PMID:20927181

  19. Synthesis and characterisation of coating polyurethane cationomers containing fluorine built-in hard urethane segments

    PubMed Central

    Król, Bożena; Pikus, Stanisław; Chmielarz, Paweł; Skrzypiec, Krzysztof

    2010-01-01

    Polyurethane cationomers were synthesised in the reaction of 4,4’-methylenebis(phenyl isocyanate) with polyoxyethylene glycol (M = 2,000) or poly(tetrafluoroethyleneoxide-co-difluoromethylene oxide) α,ω-diisocyanate and N-methyl diethanolamine. Amine segments were built-in to the urethane-isocyanate prepolymer in the reaction with 1-bromobutane or formic acid, and then they were converted to alkylammonium cations. The obtained isocyanate prepolymers were then extended in the aqueous medium that yielded stable aqueous dispersions which were applied on the surfaces of test poly(tetrafluoroethylene) plates. After evaporation of water, the dispersions formed thin polymer coatings. 1H, 13C NMR and IR spectral methods were employed to confirm chemical structures of synthesised cationomers. Based on 1H NMR and IR spectra, the factors κ and α were calculated, which represented the polarity level of the obtained cationomers. The DSC, wide angle X-ray scattering and atom force microscopy methods were employed for the microstructural assessment of the obtained materials. Changes were discussed in the surface free energy and its components, as calculated independently according to the method suggested by van Oss–Good, in relation to chemical and physical structures of cationomers as well as morphology of coating surfaces obtained from those cationomers. Fluorine incorporated into cationomers (about 30%) contributed to lower surface free energy values, down to about 15 mJ/m2. That was caused by gradual weakening of long-range interactions within which the highest share is taken by dispersion interactions. PMID:20927181

  20. Ribosomal Synthesis of Peptides with Multiple β-Amino Acids.

    PubMed

    Fujino, Tomoshige; Goto, Yuki; Suga, Hiroaki; Murakami, Hiroshi

    2016-02-17

    The compatibility of β-amino acids with ribosomal translation was studied for decades, but it has been still unclear whether the ribosome can accept various β-amino acids, and whether the ribosome can introduce multiple β-amino acids in a peptide. In the present study, by using the Escherichia coli reconstituted cell-free translation system with a reprogramed genetic code, we screened β-amino acids that give high single incorporation efficiency and used them to synthesize peptides containing multiple β-amino acids. The experiments of single β-amino acid incorporation into a peptide revealed that 13 β-amino acids are compatible with ribosomal translation. Six of the tested β-amino acids (βhGly, l-βhAla, l-βhGln, l-βhPhg, l-βhMet, and d-βhPhg) showed high incorporation efficiencies, and seven (l-βhLeu, l-βhIle, l-βhAsn, l-βhPhe, l-βhLys, d-βhAla, and d-βhLeu) showed moderate incorporation efficiencies; whereas no full-length peptide was produced using other β-amino acids (l-βhPro, l-βhTrp, and l-βhGlu). Subsequent double-incorporation experiments using β-amino acids with high single incorporation efficiency revealed that elongation of peptides with successive β-amino acids is prohibited. Efficiency of the double-incorporation of the β-amino acids was restored by the insertion of Tyr or Ile between the two β-amino acids. On the basis of these experiments, we also designed mRNA sequences of peptides, and demonstrated the ribosomal synthesis of peptides containing different types of β-amino acids at multiple positions. PMID:26807980

  1. Purification and biochemical characterisation of acid phosphatase-I from seeds of Nelumbo nucifera.

    PubMed

    Khan, Sanaullah; Khan, Shahnaz; Batool, Sajida; Ahmed, Mushtaq

    2016-01-01

    Acid phosphatase-I (Apase-I) from seeds of Nelumbo nucifera was purified to electrophoretic homogeneity by combination of ammonium sulfate precipitation, size-exclusion and ion exchange chromatography. SDS-PAGE of purified Apase-I gave a single band with molecular mass of 80 kDa under reducing and non-reducing conditions, indicating that the enzyme was a monomer. The purified enzyme showed maximum activity at 50°C and at pH 5. The Km, Vmax and Kcat for p-nitrophenyl phosphate were 132 μM, 10 μmol/min/mg and 6.7/sec respectively. Apase-I activity was strongly inhibited by Zn(2+), W(2+); weakly inhibited by Cu(2+), Mo(2+) and Cr(6+) and moderately activated by Mg(2+). The enzyme was shown to be thermolabile as it lost 50% of its activity at 50°C after incubation for 1 hour. The amino acid analysis of enzyme revealed high proportion of acidic amino acids, which is very similar to that of tomato Apase-I and lower than potato Apase. PMID:25887488

  2. Synthesis of Branched Methyl Hydroxy Stearates Including an Ester from Bio-Based Levulinic Acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the synthesis of 5 useful branched methyl alpha-hydroxy oleate esters from commercially available methyl oleate and common organic acids. Of special interest is the synthesis utilizing the natural byproduct, levulinic acid. The other common organic acids used herein were propionic acid, ...

  3. Physio-chemical, microbiological properties of tempoyak and molecular characterisation of lactic acid bacteria isolated from tempoyak.

    PubMed

    Chuah, Li-Oon; Shamila-Syuhada, Ahamed Kamal; Liong, Min Tze; Rosma, Ahmad; Thong, Kwai Lin; Rusul, Gulam

    2016-09-01

    This study aims to determine physio-chemical properties of tempoyak, characterise the various indigenous species of lactic acid bacteria (LAB) present at different stages of fermentation and also to determine the survival of selected foodborne pathogens in tempoyak. The predominant microorganisms present in tempoyak were LAB (8.88-10.42 log CFU/g). Fructobacillus durionis and Lactobacillus plantarum were the dominant members of LAB. Other LAB species detected for the first time in tempoyak were a fructophilic strain of Lactobacillus fructivorans, Leuconostoc dextranicum, Lactobacillus collinoides and Lactobacillus paracasei. Heterofermentative Leuconostoc mesenteroides and F. durionis were predominant in the initial stage of fermentation, and as fermentation proceeded, F. durionis remained predominant, but towards the end of fermentation, homofermentative Lb. plantarum became the predominant species. Lactic, acetic and propionic acids were present in concentrations ranging from 0.30 to 9.65, 0.51 to 7.14 and 3.90 to 7.31 mg/g, respectively. Genotyping showed a high degree of diversity among F. durionis and Lb. plantarum isolates, suggesting different sources of LAB. All tested Lb. plantarum and F. durionis (except for one isolate) isolates were multidrug resistant. Salmonella spp., Listeria monocytogenes and Staphylococcus aureus were not detected. However, survival study showed that these pathogens could survive up to 8-12 days. The results aiming at improving the quality and safety of tempoyak. PMID:27217364

  4. Functionalisation of mesoporous silica gel with 2-[(phosphonomethyl)-amino]acetic acid functional groups. Characterisation and application

    NASA Astrophysics Data System (ADS)

    Caldarola, Dario; Mitev, Dimitar P.; Marlin, Lucile; Nesterenko, Ekaterina P.; Paull, Brett; Onida, Barbara; Bruzzoniti, Maria Concetta; Carlo, Rosa Maria De; Sarzanini, Corrado; Nesterenko, Pavel N.

    2014-01-01

    A new complexing adsorbent was prepared by chemical modification of mesoporous silica Kieselgel 60 (dp = 37-63 μm, average pore size 6 nm, specific surface area 425 m2 g-1) with 3-glycidoxypropyltrimethoxysilane and 2-[(phosphonomethyl)amino]acetic acid (PMA), commonly known as glyphosate. The prepared adsorbent was fully characterised using elemental analysis, thermal gravimetric analysis (TGA), acid-base potentiometric titration, Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption isotherms at 77 K (BET), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The concentration of bonded PMA groups calculated from the nitrogen content was 0.38 mmol per gram. The adsorption of transition metal ions on PMA functionalised silica (HEPMAS) was studied from aqueous solutions having different pH and the following selectivity was established, Zn(II) < Co(II) < Cd(II) < Mn(II) < Ni(II) < Cu(II). The calculated values of distribution coefficients D for the adsorption of ecotoxic metal ions on HEPMAS are 5.0 × 104, 4.9 × 105 and 2.6 × 104 for Zn(II), Pb(II) and Cd(II), respectively.

  5. Microwave-Assisted Rapid Enzymatic Synthesis of Nucleic Acids.

    PubMed

    Hari Das, Rakha; Ahirwar, Rajesh; Kumar, Saroj; Nahar, Pradip

    2016-07-01

    Herein we report microwave-induced enhancement of the reactions catalyzed by Escherichia coli DNA polymerase I and avian myeloblastosis virus-reverse transcriptase. The reactions induced by microwaves result in a highly selective synthesis of nucleic acids in 10-50 seconds. In contrast, same reactions failed to give desired reaction products when carried out in the same time periods, but without microwave irradiation. Each of the reactions was carried out for different duration of microwave exposure time to find the optimum reaction time. The products produced by the respective enzyme upon microwave irradiation of the reaction mixtures were identical to that produced by the conventional procedures. As the microwave-assisted reactions are rapid, microwave could be a useful alternative to the conventional and time consuming procedures of enzymatic synthesis of nucleic acids. PMID:27159147

  6. Oligoglyceric acid synthesis by autocondensation of glyceroyl thioester

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1987-01-01

    The autocondensation of the glyceroyl thioester, S-glyceroyl-ethane-thiol, yielded olioglyceric acid. The rates of autocondensation and hydrolysis of the thioester increased from pH 6.5 to pH 7.5 in 2,6-lutidine and imidazole buffers. Autocondensation and hydrolysis were much more rapid in imidazole buffers as compared to 2,6-lutidine and phosphate buffers. The efficiency of ester bond synthesis was about 20 percent for 40 mM S-glyceroyl-ethane-thiol in 2,6-lutidine and imidazole buffers near neutral pH. The size and yield of the olioglyceric acid products increased when the concentration of the thioester was increased. The relationship of these results to prebiotic polymer synthesis is discussed.

  7. Oligoglyceric acid synthesis by autocondensation of glyceroyl thioester

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1986-01-01

    The autocondensation of the glyceroyl thioester, S-glyceroyl-ethane-thiol, yielded olioglyceric acid. The rates of autocondensation and hydrolysis of the thioester increased from pH 6.5 to pH 7.5 in 2,6-lutidine and imidazole buffers. Autocondensation and hydrolysis were much more rapid in imidazole buffers as compared to 2,6-lutidine and phosphate buffers. The efficiency of ester bond synthesis was about 20% for 40 mM S-glyceroyl-ethane-thiol in 2,6-lutidine and imidazole buffers near neutral pH. The size and yield of the olioglyceric acid products increased when the concentration of the thioester was increased. The relationship of these results to prebiotic polymer synthesis is discussed.

  8. A New Process for Acrylic Acid Synthesis by Fermentative Process

    NASA Astrophysics Data System (ADS)

    Lunelli, B. H.; Duarte, E. R.; de Toledo, E. C. Vasco; Wolf Maciel, M. R.; Maciel Filho, R.

    With the synthesis of chemical products through biotechnological processes, it is possible to discover and to explore innumerable routes that can be used to obtain products of high addes value. Each route may have particular advantages in obtaining a desired product, compared with others, especially in terms of yield, productivity, easiness to separate the product, economy, and environmental impact. The purpose of this work is the development of a deterministic model for the biochemical synthesis of acrylic acid in order to explore an alternative process. The model is built-up with the tubular reactor equations together with the kinetic representation based on the structured model. The proposed process makes possible to obtain acrylic acid continuously from the sugar cane fermentation.

  9. Focal nodular hyperplasia: characterisation at gadoxetic acid-enhanced MRI and diffusion-weighted MRI

    PubMed Central

    An, H S; Kim, Y J; Jung, S I; Jeon, H J

    2013-01-01

    Purpose: The aim of this study was to assess the enhancement patterns of hepatic focal nodular hyperplasia (FNH) on gadoxetic acid-enhanced MRI and diffusion-weighted (DW) MRI. Methods: This retrospective study had institutional review board approval. Gadoxetic acid-enhanced and DW MR images were evaluated in 23 patients with 30 FNHs (26 histologically proven and 4 radiologically diagnosed). The lesion enhancement patterns of the hepatobiliary phase images were classified as heterogeneous or homogeneous signal intensity (SI), and as dominantly high/iso or low SI compared with those of adjacent liver parenchyma. Heterogeneous (any) SI lesions and homogeneous low SI lesions were categorised into the fibrosis group, whereas homogeneous high/iso SI lesions were categorised into the non-fibrosis group. Additionally, lesion SI on T2 weighted images, DW images and apparent diffusion coefficient (ADC) values were compared between the two groups. Results: The lesions showed heterogeneous high/iso SI (n=16), heterogeneous low SI (n=5), homogeneous high/iso SI (n=7) or homogeneous low SI (n=2) at the hepatobiliary phase MR images. The fibrosis group lesions were more likely to show high SI on DW images and T2 weighted images compared with those in the non-fibrosis group (p<0.05). ADC values tended to be lower in the fibrosis group than those in the non-fibrosis group without significance. Conclusion: FNH showed variable enhancement patterns on hepatobiliary phase images during gadoxetic acid-enhanced MRI. SI on DW and T2 weighted images differed according to the fibrosis component contained in the lesion. Advances in knowledge: FNH shows a wide spectrum of imaging findings on gadoxetic acid-enhanced MRI and DW MRI. PMID:23873903

  10. ToF-SIMS characterisation of diterpenoic acids after chromatographic separation

    NASA Astrophysics Data System (ADS)

    Oriňák, Andrej; Oriňáková, Renáta; Arlinghaus, Heinrich F.; Vering, Guido; Hellweg, Sebastian; Cechinel-Filho, Valdir

    2006-07-01

    Microcolumn liquid chromatography (μHPLC) coupled on-line with time of flight secondary ion mass spectrometry (ToF-SIMS) was applied for mixture of diterpenoic acids (abietic, gibberellic and kaurenoic) analysis. Chromatographic effluent, with analytes separated, was carried out directly onto different, ToF-SIMS compatible surface substrates, for further ToF-SIMS analysis. Silica gel Si 60, aluminium backplate modified Si 60, monolithic silica gel and Raman spectroscopy chromatographic thin layers were used as the deposition substrates in this experiment. By ToF-SIMS surface imaging the deposition trace picture has been obtained. Effluent deposition surface area was scanned for diterpenoic acid fragment mass values based on mass spectrometric library. Measured ToF-SIMS dataset of fragment abundance and intensities were used for preliminary fragmentation schemes construction. The lowest substrate background activity has been established for monolithic silica gel thin layer and aluminium backplate modified Si 60 thin layer. In the case of Raman spectroscopy pre-treated thin layer or conventional chromatographic thin layer Si 60, the both, high background signal intensity and impossibility to construct negative ions surface image, were observed. Diterpenoic acids studied serve the similar mass spectrum but ToF-SIMS coupled with liquid chromatographic separation brings new impact to the positive identification of analytes studied.

  11. Tannic acid-mediated green synthesis of antibacterial silver nanoparticles.

    PubMed

    Kim, Tae Yoon; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-04-01

    The search for novel antibacterial agents is necessary to combat microbial resistance to current antibiotics. Silver nanoparticles (AgNPs) have been reported to be effective antibacterial agents. Tannic acid is a polyphenol compound from plants with antioxidant and antibacterial activities. In this report, AgNPs were prepared from silver ions by tannic acid-mediated green synthesis (TA-AgNPs). The reaction process was facile and involved mixing both silver ions and tannic acid. The absorbance at 423 nm in the UV-Visible spectra demonstrated that tannic acid underwent a reduction reaction to produce TA-AgNPs from silver ions. The synthetic yield of TA-AgNPs was 90.5 % based on inductively coupled plasma mass spectrometry analysis. High-resolution transmission electron microscopy and atomic force microscopy images indicated that spherical-shaped TA-AgNPs with a mean particle size of 27.7-46.7 nm were obtained. Powder high-resolution X-ray diffraction analysis indicated that the TA-AgNP structure was face-centered cubic with a zeta potential of -27.56 mV. The hydroxyl functional groups of tannic acid contributed to the synthesis of TA-AgNPs, which was confirmed by Fourier transform infrared spectroscopy. The in vitro antibacterial activity was measured using the minimum inhibitory concentration (MIC) method. The TA-AgNPs were more effective against Gram-negative bacteria than Gram-positive bacteria. The MIC for the TA-AgNPs in all of the tested strains was in a silver concentration range of 6.74-13.48 μg/mL. The tannic acid-mediated synthesis of AgNPs afforded biocompatible nanocomposites for antibacterial applications. PMID:26895244

  12. Synthesis of bosutinib from 3-methoxy-4-hydroxybenzoic acid.

    PubMed

    Yin, Xiao Jia; Xu, Guan Hong; Sun, Xu; Peng, Yan; Ji, Xing; Jiang, Ke; Li, Fei

    2010-06-01

    This paper reports a novel synthesis of bosutinib starting from 3-methoxy-4-hydroxybenzoic acid. The process starts with esterification of the starting material, followed by alkylation, nitration, reduction, cyclization, chlorination and two successive amination reactions. The intermediates and target molecule were characterized by (1)H-NMR, (13)C-NMR, MS and the purities of all the compounds were determined by HPLC. PMID:20657439

  13. Is acetylcarnitine a substrate for fatty acid synthesis in plants

    SciTech Connect

    Roughan, G. ); Post-Beittenmiller, D.; Ohlrogge, J. ); Browse, J. )

    1993-04-01

    Long-chain fatty acid synthesis from [1-[sup 14]C]acetylcarnitine by chloroplasts isolated from spinach (Spinacia oleracea), pea (Pisum sativum), amaranthus (Amaranthus lividus), or maize (Zea mays) occurred at less than 2% of the rate of fatty acid synthesis from [1-[sup 14]C]acetate irrespective of the maturity of the leaves or whether the plastids were purified using sucrose or Percoll medium. [1-[sup 14]C]Acetylcarnitine was not significantly utilized by highly active chloroplasts rapidly prepared from pea and spinach using methods not involving density gradient centrifugation. [1-[sup 14]C]Acetylcarnitine was recovered quantitatively from chloroplast incubations following 10 min in the light. Unlabeled acetyl-L-carnitine (0.4 mM) did not compete with [1-[sup 14]C]acetate (0.2 mM) as a substrate for fatty acid synthesis by any of the more than 70 chloroplast preparations tested in this study. Carnitine acetyltransferase activity was not detected in any chloroplast preparation and was present in whole leaf homogenates at about 0.1% of the level of acetyl-coenzyme A synthetase activity. When supplied to detached pea shoots and detached spinach, amaranthus, and maize leaves via the transpiration stream, 1 to 4% of the [1-[sup 14]C]acetylcarnitine and 47 to 57% of the [1-[sup 14]C]acetate taken up was incorporated into lipids. Most (78--82%) of the [1-[sup 14]C]acetylcarnitine taken up was recovered intact. It is concluded that acetylcarnitine is not a major precursor for fatty acid synthesis in plants. 29 refs., 5 tabs.

  14. Strategies for the Total Synthesis of Clavicipitic Acid.

    PubMed

    Ito, Mamoru; Tahara, Yu-Ki; Shibata, Takanori

    2016-04-11

    Clavicipitic acid is an ergot alkaloid, which was isolated from Claviceps strain and Claviceps fusiformis. Its unique tricyclic azepinoindole skeleton has attracted synthetic chemists, and various strategies have been developed for its total synthesis. These strategies can be generally categorized into two types based on the synthetic intermediates, namely, 4-substituted gramine derivatives and 4-substituted tryptophan derivatives. This Minireview summarizes the reported total syntheses from the point of these two key intermediates. PMID:26822254

  15. Total Synthesis of (−)-Nodulisporic Acid D

    PubMed Central

    Zou, Yike; Melvin, Jason E.; Gonzales, Stephen S.; Spafford, Matthew J.; Smith, Amos B.

    2015-01-01

    A convergent total synthesis of the architecturally complex indole diterpenoid (−)-nodulisporic acid D has been achieved. Key synthetic transformations include vicinal difunctionalization of an advanced α,β-unsaturated aldehyde to form the E,F-transfused 5,6-ring system of the eastern hemisphere and a cascade cross-coupling/indolization protocol leading to the CDE multisubstituted indole core. PMID:26029849

  16. Synthesis of Rosin Acid Starch Catalyzed by Lipase

    PubMed Central

    Lin, Rihui; Li, He; Long, Han; Su, Jiating; Huang, Wenqin

    2014-01-01

    Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435) under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2 : 1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS) reaches 0.098. Product from esterification of cassava starch with rosin acid was confirmed by FTIR spectroscopy and iodine coloration analysis. Scanning electron microscopy and X-ray diffraction analysis showed that the morphology and crystallinity of the cassava starch were largely destroyed. Thermogravimetric analysis indicated that thermal stability of rosin acid starch decreased compared with native starch. PMID:24977156

  17. A new regulatory mechanism for bacterial lipoic acid synthesis

    PubMed Central

    Zhang, Huimin; Luo, Qixia; Gao, Haichun; Feng, Youjun

    2015-01-01

    Lipoic acid, an essential enzyme cofactor, is required in three domains of life. In the past 60 years since its discovery, most of the pathway for lipoic acid synthesis and metabolism has been elucidated. However, genetic control of lipoic acid synthesis remains unclear. Here, we report integrative evidence that bacterial cAMP-dependent signaling is linked to lipoic acid synthesis in Shewanella species, the certain of unique marine-borne bacteria with special ability of metal reduction. Physiological requirement of protein lipoylation in γ-proteobacteria including Shewanella oneidensis was detected using Western blotting with rabbit anti-lipoyl protein primary antibody. The two genes (lipB and lipA) encoding lipoic acid synthesis pathway were proved to be organized into an operon lipBA in Shewanella, and the promoter was mapped. Electrophoretic mobility shift assays confirmed that the putative CRP-recognizable site (AAGTGTGATCTATCTTACATTT) binds to cAMP-CRP protein with origins of both Escherichia coli and Shewanella. The native lipBA promoter of Shewanella was fused to a LacZ reporter gene to create a chromosome lipBA-lacZ transcriptional fusion in E. coli and S. oneidensis, allowing us to directly assay its expression level by β-galactosidase activity. As anticipated, the removal of E. coli crp gene gave above fourfold increment of lipBA promoter-driven β-gal expression. The similar scenario was confirmed by both the real-time quantitative PCR and the LacZ transcriptional fusion in the crp mutant of Shewanella. Furthermore, the glucose effect on the lipBA expression of Shewanella was evaluated in the alternative microorganism E. coli. As anticipated, an addition of glucose into media effectively induces the transcriptional level of Shewanella lipBA in that the lowered cAMP level relieves the repression of lipBA by cAMP-CRP complex. Therefore, our finding might represent a first paradigm mechanism for genetic control of bacterial lipoic acid synthesis. PMID

  18. PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans.

    PubMed

    Cross, Benjamin; Garcia, Ariana; Faustoferri, Roberta; Quivey, Robert G

    2016-04-01

    Streptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans. PMID:26850107

  19. Characterising humic acid fouling of nanofiltration membranes using bisphenol A as a molecular indicator.

    PubMed

    Nghiem, Long D; Vogel, Dirk; Khan, Stuart

    2008-09-01

    Fouling of nanofiltration (NF) membranes by humic acids was investigated using bisphenol A (BPA) as an indicator chemical to differentiate between various mechanisms that may lead to a change in solute rejection. Three commercially available NF membranes were investigated and an accelerated fouling condition was achieved with a foulant mixture containing humic acids in an electrolyte matrix. The effects of membrane fouling on the rejection of BPA were interpreted with respect to the membrane pore sizes and the fouling characteristics. Results reported here indicate that calcium concentration in the feed solution could be a major factor governing the humic acid fouling process. Moreover, a critical concentration of calcium in the feed solution was observed, at which membrane fouling was most severe. Membrane fouling characteristics were observed by their influence on BPA rejection. Such influence could result in either an increase or decrease in rejection of BPA by the three different membranes depending on the rejection mechanisms involved. It is hypothesized that these mechanisms could occur simultaneously and that the effects of each might not be easily distinguished. However, it was observed that their relative contribution was largely dependent upon membrane pore size. Pore blocking, which resulted in a considerable improvement in rejection, was prominent for the more open pore size TFC-SR2 membrane. In contrast, the cake-enhanced concentration polarisation effect was more severe for the tighter NF-270 and NF-90 membranes. For hydrophobic solutes such as BPA, the formation of the fouling layer could also interfere with the solute-membrane interaction, and therefore, exert considerable influence on the separation process. PMID:18678386

  20. A Study on Amino Acids: Synthesis of Alpha-Aminophenylacetic Acid (Phenylglycine) and Determination of its Isoelectric Point.

    ERIC Educational Resources Information Center

    Barrelle, M.; And Others

    1983-01-01

    Background information and procedures are provided for an experimental study on aminophenylacetic acid (phenylglycine). These include physical chemistry (determination of isoelectric point by pH measurement) and organic chemistry (synthesis of an amino acid in racemic form) experiments. (JN)

  1. Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans

    PubMed Central

    Watts, Jennifer L.; Browse, John

    2002-01-01

    Polyunsaturated fatty acids (PUFAs) are important membrane components and precursors of signaling molecules. To investigate the roles of these fatty acids in growth, development, and neurological function in an animal system, we isolated Caenorhabditis elegans mutants deficient in PUFA synthesis by direct analysis of fatty acid composition. C. elegans possesses all the desaturase and elongase activities to synthesize arachidonic acid and eicosapentaenoic acid from saturated fatty acid precursors. In our screen we identified mutants with defects in each fatty acid desaturation and elongation step of the PUFA biosynthetic pathway. The fatty acid compositions of the mutants reveal the substrate preferences of the desaturase and elongase enzymes and clearly demarcate the steps of this pathway. The mutants show that C. elegans does not require n3 or Δ5-unsaturated PUFAs for normal development under laboratory conditions. However, mutants with more severe PUFA deficiencies display growth and neurological defects. The mutants provide tools for investigating the roles of PUFAs in membrane biology and cell function in this animal model. PMID:11972048

  2. In Vitro Fatty Acid Synthesis and Complex Lipid Metabolism in the Cyanobacterium Anabaena variabilis: I. Some Characteristics of Fatty Acid Synthesis.

    PubMed

    Lem, N W; Stumpf, P K

    1984-01-01

    In vitro fatty acid synthesis was examined in crude cell extracts, soluble fractions, and 80% (NH(4))(2)SO(4) fractions from Anabaena variabilis M3. Fatty acid synthesis was absolutely dependent upon acyl carrier protein and required NADPH and NADH. Moreover, fatty acid synthesis and elongation occurred in the cytoplasm of the cell. The major fatty acid products were palmitic acid (16:0) and stearic acid (18:0). Of considerable interest, both stearoyl-acyl carrier protein and stearoyl-coenzyme A desaturases were not detected in any of the fractions from A. variabilis. The similarities and differences in fatty acid synthesis between A. variabilis and higher plant tissues are discussed with respect to the endosymbiotic theory of chloroplast evolution. PMID:16663367

  3. Biotin and Lipoic Acid: Synthesis, Attachment and Regulation

    PubMed Central

    Cronan, John E.

    2014-01-01

    Summary Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as “swinging arms” that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well-described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like “arm” of biotin were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise and the BioH esterase for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl-ACP of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyl transferase followed by sulfur insertion at carbons C6 and C8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized and thus there is no transcriptional control of the synthetic genes. In contrast transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system, exerted through BirA a dual function protein that both represses

  4. Biotin and Lipoic Acid: Synthesis, Attachment, and Regulation.

    PubMed

    Cronan, John E

    2014-05-01

    Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise, and the BioH esterase is responsible for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl acyl carrier protein of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyltransferase followed by sulfur insertion at carbons C-6 and C-8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and, thus, there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system, exerted through BirA, a dual-function protein

  5. Biotin and Lipoic Acid: Synthesis, Attachment, and Regulation.

    PubMed

    Cronan, John E

    2008-09-01

    Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid was discovered 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway, in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin, were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise and the BioH esterase for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl-ACP of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyl transferase, followed by sulfur insertion at carbons C6 and C8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and thus there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system exerted through BirA, a dual-function protein that both represses

  6. Ascorbic acid intake and oxalate synthesis.

    PubMed

    Knight, John; Madduma-Liyanage, Kumudu; Mobley, James A; Assimos, Dean G; Holmes, Ross P

    2016-08-01

    In humans, approximately 60 mg of ascorbic acid (AA) breaks down in the body each day and has to be replaced by a dietary intake of 70 mg in women and 90 mg in men to maintain optimal health and AA homeostasis. The breakdown of AA is non-enzymatic and results in oxalate formation. The exact amount of oxalate formed has been difficult to ascertain primarily due to the limited availability of healthy human tissue for such research and the difficulty in measuring AA and its breakdown products. The breakdown of 60 mg of AA to oxalate could potentially result in the formation of up to 30 mg oxalate per day. This exceeds our estimates of the endogenous production of 10-25 mg oxalate per day, indicating that degradative pathways that do not form oxalate exist. In this review, we examine what is known about the pathways of AA metabolism and how oxalate forms. We further identify how gaps in our knowledge may be filled to more precisely determine the contribution of AA breakdown to oxalate production in humans. The use of stable isotopes of AA to directly assess the conversion of vitamin to oxalate should help fill this void. PMID:27002809

  7. Characterisation of the products from pyrolysis of residues after acid hydrolysis of Miscanthus.

    PubMed

    Melligan, F; Dussan, K; Auccaise, R; Novotny, E H; Leahy, J J; Hayes, M H B; Kwapinski, W

    2012-03-01

    Platform chemicals such as furfural and hydroxymethylfurfural are major products formed during the acid hydrolysis of lignocellulosic biomass in second generation biorefining processes. Solid hydrolysis residues (HR) can amount to 50 wt.% of the starting biomass materials. Pyrolysis of the HRs gives rise to biochar, bio-liquids, and gases. Time and temperature were variables during the pyrolysis of HRs in a fixed bed tubular reactor, and both parameters have major influences on the amounts and properties of the products. Biochar, with potential for carbon sequestration and soil conditioning, composed about half of the HR pyrolysis product. The amounts (11-20 wt.%) and compositions (up to 77% of phenols in organic fraction) of the bio-liquids formed suggest that these have little value as fuels, but could be sources of phenols, and the gas can have application as a fuel. PMID:22281143

  8. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties. PMID:26159785

  9. Synthesis and Characterization of Fatty Acid Conjugates of Niacin and Salicylic Acid.

    PubMed

    Vu, Chi B; Bemis, Jean E; Benson, Ericka; Bista, Pradeep; Carney, David; Fahrner, Richard; Lee, Diana; Liu, Feng; Lonkar, Pallavi; Milne, Jill C; Nichols, Andrew J; Picarella, Dominic; Shoelson, Adam; Smith, Jesse; Ting, Amal; Wensley, Allison; Yeager, Maisy; Zimmer, Michael; Jirousek, Michael R

    2016-02-11

    This report describes the synthesis and preliminary biological characterization of novel fatty acid niacin conjugates and fatty acid salicylate conjugates. These molecular entities were created by covalently linking two bioactive molecules, either niacin or salicylic acid, to an omega-3 fatty acid. This methodology allows the simultaneous intracellular delivery of two bioactives in order to elicit a pharmacological response that could not be replicated by administering the bioactives individually or in combination. The fatty acid niacin conjugate 5 has been shown to be an inhibitor of the sterol regulatory element binding protein (SREBP), a key regulator of cholesterol metabolism proteins such as PCSK9, HMG-CoA reductase, ATP citrate lyase, and NPC1L1. On the other hand, the fatty acid salicylate conjugate 11 has been shown to have a unique anti-inflammatory profile based on its ability to modulate the NF-κB pathway through the intracellular release of the two bioactives. PMID:26784936

  10. Novel fully protected muramic acid: A facile synthesis and structural study

    NASA Astrophysics Data System (ADS)

    Kovačević, Monika; Rapić, Vladimir; Lukač, Iva; Molčanov, Krešimir; Kodrin, Ivan; Barišić, Lidija

    2013-09-01

    Synthesis and structural characterisation of novel fully protected muramic acid 2 (N-Boc-Mur-OMe, Mur = muramic acid) has been reported. N-Ac-Mur-OMe (1) prepared starting from commercially available N-acetylglucosamine, was treated with di-tert-butyl dicarbonate (Boc2O) and N,N-dimethyl-4-aminopyridine (DMAP) in tetrahydrofuran. The intermediate mixed imide N-Ac-N-Boc-Mur-OMe was converted to N-Boc-Mur-OMe (2) upon in situ treatment with hydrazine hydrate in methanol. The structural analysis of 2, performed by IR and NMR spectroscopic methods and X-ray crystallography, was augmented by computational calculations including molecular and density functional theory studies (DFT) using M06/6-31G(d) computational model. The spectroscopic and DFT data obtained for novel Boc-protected 2 were compared with corresponding experimental values of its previously described Ac-protected analogue 1 in order to examine if the replacement of the protecting groups influences the conformational properties.

  11. Ribonucleic Acid Regulation in Permeabilized Cells of Escherichia coli Capable of Ribonucleic Acid and Protein Synthesis1

    PubMed Central

    Atherly, Alan G.

    1974-01-01

    A cell permeabilization procedure is described that reduces viability less than 10% and does not significantly reduce the rates of ribonucleic acid and protein synthesis when appropriately supplemented. Permeabilization abolishes the normal stringent coupling of protein and ribonucleic acid synthesis. PMID:4364330

  12. Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough.

    PubMed

    Galle, Sandra; Schwab, Clarissa; Arendt, Elke K; Gänzle, Michael G

    2011-05-01

    Hydrocolloids improve the volume, texture, and shelf life of bread. Exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) during sourdough fermentation can replace hydrocolloids. It was the aim of this study to determine whether heteropolysaccharides (HePS) synthesized intracellularly from sugar nucleotides by glycosyltransferases are produced in wheat and gluten-free sorghum sourdough at effective levels. The HePS-producing strains Lactobacillus casei FUA3185, L. casei FUA3186, and Lactobacillus buchneri FUA3154 were used; Weissella cibaria 10M producing no EPS in the absence of sucrose served as control strain. Cell suspensions of L. buchneri in MRS showed the highest viscosity at low shear rate. Glycosyltransferase genes responsible of HePS formation in LAB were expressed in sorghum and wheat sourdough. However, only HePS produced by L. buchneri influenced the rheological properties of sorghum sourdoughs but not of wheat sourdoughs. Sorghum sourdough fermented with L. buchneri exhibited a low |G*| compared to the control, indicating a decrease in resistance to deformation. An increase in tan δ indicated decreased elasticity. The use of LAB producing HePS expands the diversity of EPS and increases the variety of cultures for use in baking. PMID:21356463

  13. Genetic and Technological Characterisation of Vineyard- and Winery-Associated Lactic Acid Bacteria

    PubMed Central

    Nisiotou, Aspasia A.; Filippousi, Maria-Evangelia; Fragkoulis, Petros; Tassou, Chryssoula; Banilas, Georgios

    2015-01-01

    Vineyard- and winery-associated lactic acid bacteria (LAB) from two major PDO regions in Greece, Peza and Nemea, were surveyed. LAB were isolated from grapes, fermenting musts, and winery tanks performing spontaneous malolactic fermentations (MLF). Higher population density and species richness were detected in Nemea than in Peza vineyards and on grapes than in fermenting musts. Pediococcus pentosaceus and Lactobacillus graminis were the most abundant LAB on grapes, while Lactobacillus plantarum dominated in fermenting musts from both regions. No particular structure of Lactobacillus plantarum populations according to the region of origin was observed, and strain distribution seems random. LAB species diversity in winery tanks differed significantly from that in vineyard samples, consisting principally of Oenococcus oeni. Different strains were analysed as per their enological characteristics and the ability to produce biogenic amines (BAs). Winery-associated species showed higher resistance to low pH, ethanol, SO2, and CuSO4 than vineyard-associated isolates. The frequency of BA-producing strains was relatively low but not negligible, considering that certain winery-associated Lactobacillus hilgardii strains were able to produce BAs. Present results show the necessity of controlling the MLF by selected starters in order to avoid BA accumulation in wine. PMID:25866789

  14. Characterisation of acid-soluble and pepsin-solubilised collagen from jellyfish (Cyanea nozakii Kishinouye).

    PubMed

    Zhang, Junjie; Duan, Rui; Huang, Lei; Song, Yujie; Regenstein, Joe M

    2014-05-01

    Annual outbreaks of the Jellyfish (Cyanea nozakii Kishinouye) in the waters of the Yellow Sea and the East China Sea are regarded as a nuisance. Thus, utilizing this jellyfish species is of great significance to reduce harm to fisheries and marine environments. The yield of the acid-soluble collagens (ASCs) from the C. nozakii umbrella was 13.0% (dry weight) and that of the pepsin-solubilised collagens (PSCs) was 5.5% (dry weight). The SDS-PAGE patterns of the ASCs and PSCs differed from that of type I collagen, which indicate the presence of (α1)3. The denaturation temperature (Td) of the collagens was approximately 23.8°C. Fourier transform infrared spectroscopy proved that the ASCs and PSCs retained their helical structures and the As, Pb, and Hg content of the collagens, detected by ICP-MS, were considerably lower than the national standards. The results suggest that collagens isolated from C. nozakii can potentially be used as an alternative source of collagen for use in various applications. PMID:24360414

  15. Synthesis and characterization of magnetite nanoparticles coated with lauric acid

    SciTech Connect

    Mamani, J.B.; Costa-Filho, A.J.; Cornejo, D.R.; Vieira, E.D.; Gamarra, L.F.

    2013-07-15

    Understanding the process of synthesis of magnetic nanoparticles is important for its implementation in in vitro and in vivo studies. In this work we report the synthesis of magnetic nanoparticles made from ferrous oxide through coprecipitation chemical process. The nanostructured material was coated with lauric acid and dispersed in aqueous medium containing surfactant that yielded a stable colloidal suspension. The characterization of magnetic nanoparticles with distinct physico-chemical configurations is fundamental for biomedical applications. Therefore magnetic nanoparticles were characterized in terms of their morphology by means of TEM and DLS, which showed a polydispersed set of spherical nanoparticles (average diameter of ca. 9 nm) as a result of the protocol. The structural properties were characterized by using X-ray diffraction (XRD). XRD pattern showed the presence of peaks corresponding to the spinel phase of magnetite (Fe{sub 3}O{sub 4}). The relaxivities r{sub 2} and r{sub 2}* values were determined from the transverse relaxation times T{sub 2} and T{sub 2}* at 3 T. Magnetic characterization was performed using SQUID and FMR, which evidenced the superparamagnetic properties of the nanoparticles. Thermal characterization using DSC showed exothermic events associated with the oxidation of magnetite to maghemite. - Highlights: • Synthesis of magnetic nanoparticles coated with lauric acid • Characterization of magnetic nanoparticles • Morphological, structural, magnetic, calorimetric and relaxometric characterization.

  16. Increased Bile Acid Synthesis and Deconjugation After Biliopancreatic Diversion.

    PubMed

    Ferrannini, Ele; Camastra, Stefania; Astiarraga, Brenno; Nannipieri, Monica; Castro-Perez, Jose; Xie, Dan; Wang, Liangsu; Chakravarthy, Manu; Haeusler, Rebecca A

    2015-10-01

    Biliopancreatic diversion (BPD) improves insulin sensitivity and decreases serum cholesterol out of proportion with weight loss. Mechanisms of these effects are unknown. One set of proposed contributors to metabolic improvements after bariatric surgeries is bile acids (BAs). We investigated the early and late effects of BPD on plasma BA levels, composition, and markers of BA synthesis in 15 patients with type 2 diabetes (T2D). We compared these to the early and late effects of Roux-en-Y gastric bypass (RYGB) in 22 patients with T2D and 16 with normal glucose tolerance. Seven weeks after BPD, insulin sensitivity had doubled and serum cholesterol had halved. At this time, BA synthesis markers and total plasma BAs, particularly unconjugated BAs, had markedly risen; this effect could not be entirely explained by low FGF19. In contrast, after RYGB, insulin sensitivity improved gradually with weight loss and cholesterol levels declined marginally; BA synthesis markers were decreased at an early time point (2 weeks) after surgery and returned to the normal range 1 year later. These findings indicate that BA synthesis contributes to the decreased serum cholesterol after BPD. Moreover, they suggest a potential role for altered enterohepatic circulation of BAs in improving insulin sensitivity and cholesterol metabolism after BPD. PMID:26015549

  17. The characterisation of Bacillus spores occurring in the manufacturing of (low acid) canned products.

    PubMed

    Oomes, S J C M; van Zuijlen, A C M; Hehenkamp, J O; Witsenboer, H; van der Vossen, J M B M; Brul, S

    2007-11-30

    Spore-forming bacteria can be a problem in the food industry, especially in the canning industry. Spores present in ingredients or present in the processing environment severely challenge the preservation process since their thermal resistance may be very high. We therefore asked the question which bacterial spore formers are found in a typical soup manufacturing plant, where they originate from and what the thermal resistance of their spores is. To answer these questions molecular techniques for bacterial species and strain identification were used as well as a protocol for the assessment of spore heat stress resistance based on the Kooiman method. The data indicate the existence and physiological cause of the high thermal resistance of spores of many of the occurring species. In particular it shows that ingredients used in soup manufacturing are a rich source of high thermal resistant spores and that sporulation in the presence of ingredients rich in divalent metal ions exerts a strong influence on spore heat resistance. It was also indicated that Bacillus spores may well be able to germinate and resporulate during manufacturing i.e. through growth and sporulation in line. Both these spores and those originating from the ingredients were able to survive certain thermal processing settings. Species identity was confirmed using fatty acid analysis, 16SrRNA gene sequencing and DNA-DNA hybridisation. Finally, molecular typing experiments using Ribotyping and AFLP analysis show that strains within the various Bacillus species can be clustered according to the thermal resistance properties of their spores. AFLP performed slightly better than Ribotyping. The data proofed to be useful for the generation of strain specific probes. Protocols to validate these probes in routine identification and innovation aimed at tailor made heat processing in soup manufacturing have been formulated. PMID:17644202

  18. The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins.

    PubMed Central

    Foster, J W

    1993-01-01

    Although Salmonella typhimurium prefers neutral-pH environments, it can adapt to survive conditions of severe low-pH stress (pH 3.3). The process, termed the acid tolerance response (ATR), includes two distinct stages. The first stage, called pre-acid shock, is induced at pH 5.8 and involves the production of an inducible pH homeostasis system functional at external pH values below 4.0. The second stage occurs following an acid shock shift to pH 4.5 or below and is called the post-acid shock stage. During this stage of the ATR, 43 acid shock proteins (ASPs) are synthesized. The present data reveal that several ASPs important for pH 3.3 acid tolerance are only transiently produced. Their disappearance after 30 to 40 min of pH 4.4 acid shock coincides with an inability to survive subsequent pH 3.3 acid challenge. Clearly, an essential feature of inducible acid tolerance is an ability to synthesize these key ASPs. The pre-acid shock stage, with its inducible pH homeostasis system, offers the cell an enhanced ability to synthesize ASPs following rapid shifts to conditions below pH 4.0, an external pH that normally prevents ASP synthesis. The data also address possible signals for ASP synthesis. The inducing signal for 22 ASPs appears to be internal acidification, while external pH serves to induce 13 others. Of the 14 transient ASPs, 10 are induced in response to changes in internal pH. Mutations in the fur (ferric uptake regulator) locus that produce an Atr- acid-sensitive phenotype also eliminate induction of six transiently induced ASPs. Images PMID:8458840

  19. Enzymatic synthesis of oligo- and polysaccharide fatty acid esters.

    PubMed

    van den Broek, Lambertus A M; Boeriu, Carmen G

    2013-03-01

    Amphiphilic oligo- and polysaccharides (e.g. polysaccharide alkyl or alkyl-aryl esters) form a new class of polymers with exceptional properties. They function as polymeric surfactants, whilst maintaining most of the properties of the starting polymeric material such as emulsifying, gelling, and film forming properties combined with partial water solubility or permeability. At present carbohydrate fatty acid esters are generally obtained by chemical methods using toxic solvents and organic and inorganic catalysts that leave residual traces in the final products. Enzymatic reactions offer an attractive alternative route for the synthesis of polysaccharide esters. In this review the state of the art of enzymatic synthesis of oligo- and polysaccharides fatty esters has been described. PMID:23465902

  20. Simian Virus 40 Deoxyribonucleic Acid Synthesis: Analysis by Gel Electrophoresis

    PubMed Central

    Tegtmeyer, Peter; Macasaet, Francisco

    1972-01-01

    An agarose-gel electrophoresis technique has been developed to study simian virus 40 deoxyribonucleic acid (DNA) synthesis. Superhelical DNA I, relaxed DNA II, and replicative intermediate (RI) molecules were clearly resolved from one another for analytical purposes. Moreover, the RI molecules could be identified as early or late forms on the basis of their electrophoretic migration in relation to that of DNA II. The technique has been utilized to study the kinetics of simian virus 40 DNA synthesis in pulse and in pulse-chase experiments. The average time required to complete the replication of prelabeled RI molecules and to convert them into DNA I was approximately 10 min under the experimental conditions employed. PMID:4343542

  1. (-)-Hydroxycitric Acid Nourishes Protein Synthesis via Altering Metabolic Directions of Amino Acids in Male Rats.

    PubMed

    Han, Ningning; Li, Longlong; Peng, Mengling; Ma, Haitian

    2016-08-01

    (-)-Hydroxycitric acid (HCA), a major active ingredient of Garcinia Cambogia extracts, had shown to suppress body weight gain and fat accumulation in animals and humans. While, the underlying mechanism of (-)-HCA has not fully understood. Thus, this study was aimed to investigate the effects of long-term supplement with (-)-HCA on body weight gain and variances of amino acid content in rats. Results showed that (-)-HCA treatment reduced body weight gain and increased feed conversion ratio in rats. The content of hepatic glycogen, muscle glycogen, and serum T4 , T3 , insulin, and Leptin were increased in (-)-HCA treatment groups. Protein content in liver and muscle were significantly increased in (-)-HCA treatment groups. Amino acid profile analysis indicated that most of amino acid contents in serum and liver, especially aromatic amino acid and branched amino acid, were higher in (-)-HCA treatment groups. However, most of the amino acid contents in muscle, especially aromatic amino acid and branched amino acid, were reduced in (-)-HCA treatment groups. These results indicated that (-)-HCA treatment could reduce body weight gain through promoting energy expenditure via regulation of thyroid hormone levels. In addition, (-)-HCA treatment could promote protein synthesis by altering the metabolic directions of amino acids. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27145492

  2. Synthesis and evaluation of colletoic acid core derivatives.

    PubMed

    Ling, Taotao; Gautam, Lekh Nath; Griffith, Elizabeth; Das, Sourav; Lang, Walter; Shadrick, William R; Shelat, Anang; Lee, Richard; Rivas, Fatima

    2016-03-01

    Cortisol homeostasis has been linked to the pathogenesis of metabolic syndrome (MetS), since it stimulates hepatic gluconeogenesis and adipogenesis. MetS is classified as a constellation of health conditions that increase the risk of type 2 diabetes and cardiovascular disease. Intracellular cortisol levels are regulated by 11β-hydroxysteroid dehydrogenase (type 1 and type 2) in a tissue dependent manner. The type 1 enzyme (11β-HSD1) is widely expressed in glucocorticoid targeted tissues and is responsible for the conversion of cortisone to the active cortisol. Local reduction of cortisol regeneration presents a potential strategy for MetS treatment. Recently we disclosed the total synthesis of (+)-colletoic acid as a potent 11β-HSD1 inhibitor. Herein, we describe our improved processing chemistry for the synthesis of the colletoic acid core to access a diverse number of derivatives for evaluation against 11β-HSD1. The Evan's chiral auxiliary was utilized to construct the acyclic precursor 12 to afford the acorane core 9 using a modified Heck reaction in excellent chemical yields. The colletoic acid core derivatives showed modest activity against 11β-HSD1 and will serve for further biological evaluation. PMID:26820555

  3. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis

    PubMed Central

    Arendt, Kristin L.; Zhang, Zhenjie; Ganesan, Subhashree; Hintze, Maik; Shin, Maggie M.; Tang, Yitai; Cho, Ahryon; Graef, Isabella A.; Chen, Lu

    2015-01-01

    Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca2+ levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca2+-levels to RA synthesis remains unknown. Here we identify the Ca2+-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca2+-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity. PMID:26443861

  4. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis.

    PubMed

    Arendt, Kristin L; Zhang, Zhenjie; Ganesan, Subhashree; Hintze, Maik; Shin, Maggie M; Tang, Yitai; Cho, Ahryon; Graef, Isabella A; Chen, Lu

    2015-10-20

    Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca(2+) levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca(2+)-levels to RA synthesis remains unknown. Here we identify the Ca(2+)-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca(2+)-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity. PMID:26443861

  5. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  6. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.

    PubMed

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids. PMID:25796392

  7. Synthesis and biological activity of novel deoxycholic acid derivatives.

    PubMed

    Popadyuk, Irina I; Markov, Andrey V; Salomatina, Oksana V; Logashenko, Evgeniya B; Shernyukov, Andrey V; Zenkova, Marina A; Salakhutdinov, Nariman F

    2015-08-01

    We report the synthesis and biological activity of new semi-synthetic derivatives of naturally occurring deoxycholic acid (DCA) bearing 2-cyano-3-oxo-1-ene, 3-oxo-1(2)-ene or 3-oxo-4(5)-ene moieties in ring A and 12-oxo or 12-oxo-9(11)-ene moieties in ring C. Bioassays using murine macrophage-like cells and tumour cells show that the presence of the 9(11)-double bond associated with the increased polarity of ring A or with isoxazole ring joined to ring A, improves the ability of the compounds to inhibit cancer cell growth. PMID:26037611

  8. Design and synthesis of boronic acid inhibitors of endothelial lipase.

    PubMed

    O'Connell, Daniel P; LeBlanc, Daniel F; Cromley, Debra; Billheimer, Jeffrey; Rader, Daniel J; Bachovchin, William W

    2012-02-01

    Endothelial lipase (EL) and lipoprotein lipase (LPL) are homologous lipases that act on plasma lipoproteins. EL is predominantly a phospholipase and appears to be a key regulator of plasma HDL-C. LPL is mainly a triglyceride lipase regulating (V)LDL levels. The existing biological data indicate that inhibitors selective for EL over LPL should have anti-atherogenic activity, mainly through increasing plasma HDL-C levels. We report here the synthesis of alkyl, aryl, or acyl-substituted phenylboronic acids that inhibit EL. Many of the inhibitors evaluated proved to be nearly equally potent against both EL and LPL, but several exhibited moderate to good selectivity for EL. PMID:22225633

  9. Synthesis of Nanoporous Iminodiacetic Acid Sorbents for Binding Transition Metals

    PubMed Central

    Busche, Brad; Wiacek, Robert; Davidson, Joseph; Koonsiripaiboon, View; Yantasee, Wassana; Addleman, R. Shane; Fryxell, Glen E.

    2009-01-01

    Iminodiacetic acid (IDAA) forms strong complexes with a wide variety of metal ions. Using self-assembled monolayers in mesoporous supports (SAMMS) to present the IDAA ligand potentially allows for multiple metal-ligand interactions to enhance the metal binding affinity relative to that of randomly oriented polymer-based supports. This manuscript describes the synthesis of a novel nanostructured sorbent material built using self-assembly of a IDAA ligand inside a nanoporous silica, and demonstrates its use for capturing transition metal cations, and anionic metal complexes, such as PdCl4−2. PMID:22068901

  10. Synthesis of all nineteen appropriately protected chiral alpha-hydroxy acid equivalents of the alpha-amino acids for Boc solid-phase depsi-peptide synthesis.

    PubMed

    Deechongkit, Songpon; You, Shu-Li; Kelly, Jeffery W

    2004-02-19

    [reaction: see text] The preparation of depsi-peptides, amide-to-ester-substituted peptides used to probe the role of hydrogen bonding in protein folding energetics, is accomplished by replacing specific l-alpha-amino acid residues by their alpha-hydroxy acid counterparts in a solid-phase synthesis employing a t-Boc strategy. Herein we describe the efficient stereoselective synthesis of all 19 appropriately protected alpha-hydroxy acid equivalents of the l-alpha-amino acids, employing commercially available materials, expanding the number of available alpha-hydroxy acids from 9 to 19. PMID:14961607

  11. Increased expression of fatty acid binding protein 4 and leptin in resident macrophages characterises atherosclerotic plaque rupture

    PubMed Central

    Lee, K.; Santibanez-Koref, M.; Polvikoski, T.; Birchall, D.; Mendelow, A.D.; Keavney, B.

    2013-01-01

    Objective Resident macrophages play an important role in atheromatous plaque rupture. The macrophage gene expression signature associated with plaque rupture is incompletely defined due to the complex cellular heterogeneity in the plaque. We aimed to characterise differential gene expression in resident plaque macrophages from ruptured and stable human atheromatous lesions. Methods and results We performed genome-wide expression analyses of isolated macrophage-rich regions of stable and ruptured human atherosclerotic plaques. Plaques present in carotid endarterectomy specimens were designated as stable or ruptured using clinical, radiological and histopathological criteria. Macrophage-rich regions were excised from 5 ruptured and 6 stable plaques by laser micro-dissection. Transcriptional profiling was performed using Affymetrix microarrays. The profiles were characteristic of activated macrophages. At a false discovery rate of 10%, 914 genes were differentially expressed between stable and ruptured plaques. The findings were confirmed in fourteen further stable and ruptured samples for a subset of eleven genes with the highest expression differences (p < 0.05). Pathway analysis revealed that components of the PPAR/Adipocytokine signaling pathway were the most significantly upregulated in ruptured compared to stable plaques (p = 5.4 × 10−7). Two key components of the pathway, fatty-acid binding-protein 4 (FABP4) and leptin, showed nine-fold (p = 0.0086) and five-fold (p = 0.0012) greater expression respectively in macrophages from ruptured plaques. Conclusions We found differences in gene expression signatures between macrophages isolated from stable and ruptured human atheromatous plaques. Our findings indicate the involvement of FABP4 and leptin in the progression of atherosclerosis and plaque rupture, and suggest that down-regulation of PPAR/adipocytokine signaling within plaques may have therapeutic potential. PMID:23122912

  12. Development of Novel DNA Cleavage Systems Based on Copper Complexes. Synthesis and Characterisation of Cu(II) Complexes of Hydroxyflavones

    PubMed Central

    el Amrani, F. Ben-Allal; Perelló, L.; Torres, L.

    2000-01-01

    Copper(II) complexes of several hydroxyflavones were prepared and characterised through their physico-chemical properties. The nuclease activity of three synthesised complexes is reported. These copper(II) complexes present more nuclease activity than the ligands and the copper(II) ion. PMID:18475969

  13. Synthesis and characterization of acidic mesoporous borosilicate thin films.

    PubMed

    Xiu, Tongping; Liu, Qian; Wang, Jiacheng

    2009-02-01

    Work on the synthesis and characterization of acidic wormhole-like ordered mesoporous borosilicate thin films (MBSTFs) on silicon wafers is described in this paper. The MBSTFs coated by the dip-coating method were prepared through an evaporation-induced self-assembly (EISA) process using nonionic block copolymers as structure-directing agents. Fourier transform infrared (FT-IR) spectroscopy confirmed the formation of borosiloxane bonds (Si-O-B). High-resolution transmission electron microscopy (HRTEM) and N2 sorption evidenced a wormhole-like mesoporous structure in the MBSTFs obtained. Scanning electron microscopy (SEM) images of the cross sections and surfaces of the samples showed that MBSTFs on silicon wafers were continuous, homogeneous and did not crack. The acidic properties of the MBSTFs were characterized by FT-IR spectra of chemisorbed pyridine. The MBSTFs thus prepared may find their future applications in many fields including chemical sensors, catalysis, optical coating, molecule separation, etc. PMID:19441565

  14. Effect of mitochondrial ascorbic acid synthesis on photosynthesis.

    PubMed

    Senn, M E; Gergoff Grozeff, G E; Alegre, M L; Barrile, F; De Tullio, M C; Bartoli, C G

    2016-07-01

    Ascorbic acid (AA) is synthesized in plant mitochondria through the oxidation of l-galactono-1,4-lactone (l-GalL) and then distributed to different cell compartments. AA-deficient Arabidopsis thaliana mutants (vtc2) and exogenous applications of l-GalL were used to generate plants with different AA content in their leaves. This experimental approach allows determining specific AA-dependent effects on carbon metabolism. No differences in O2 uptake, malic and citric acid and NADH content suggest that AA synthesis or accumulation did not affect mitochondrial activity; however, l-GalL treatment increased CO2 assimilation and photosynthetic electron transport rate in vtc2 (but not wt) leaves demonstrating a stimulation of photosynthesis after l-GalL treatment. Increased CO2 assimilation correlated with increased leaf stomatal conductance observed in l-GalL-treated vtc2 plants. PMID:27010742

  15. Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids

    PubMed Central

    Matthessen, Roman; Fransaer, Jan; Binnemans, Koen

    2014-01-01

    Summary The near-unlimited availability of CO2 has stimulated a growing research effort in creating value-added products from this greenhouse gas. This paper presents the trends on the most important methods used in the electrochemical synthesis of carboxylic acids from carbon dioxide. An overview is given of different substrate groups which form carboxylic acids upon CO2 fixation, including mechanistic considerations. While most work focuses on the electrocarboxylation of substrates with sacrificial anodes, this review considers the possibilities and challenges of implementing other synthetic methodologies. In view of potential industrial application, the choice of reactor setup, electrode type and reaction pathway has a large influence on the sustainability and efficiency of the process. PMID:25383120

  16. Synthesis of 14C-labeled perfluorooctanoic and perfluorodecanoic acids; Purification of perfluorodecanoic acid

    SciTech Connect

    Reich, I.L.; Reich, H.J.; Menahan, L.A.; Peterson, R.E.

    1987-01-01

    Perfluorooctanoic and -decanoic acids are representative of a series of perfluorinated acids that have been used for a variety of industrial purposes primarily due to their surfactant properties. The toxicity of these compounds is being investigated in a number of laboratories. 14C-labeled materials would be useful in these studies but are not commercially available. Johncock prepared unlabeled PFOA in low yield by carbonation of the unstable perfluoroheptyllithium at -90 degrees Centigrade. We anticipated several problems in applying this procedure to the synthesis of the 14C-labeled material. Johncock's procedure was run on a fairly large scale (10 mmol) with excess CO2.

  17. Alternative kynurenic acid synthesis routes studied in the rat cerebellum

    PubMed Central

    Blanco Ayala, Tonali; Lugo Huitrón, Rafael; Carmona Aparicio, Liliana; Ramírez Ortega, Daniela; González Esquivel, Dinora; Pedraza Chaverrí, José; Pérez de la Cruz, Gonzalo; Ríos, Camilo; Schwarcz, Robert; Pérez de la Cruz, Verónica

    2015-01-01

    Kynurenic acid (KYNA), an astrocyte-derived, endogenous antagonist of α7 nicotinic acetylcholine and excitatory amino acid receptors, regulates glutamatergic, GABAergic, cholinergic and dopaminergic neurotransmission in several regions of the rodent brain. Synthesis of KYNA in the brain and elsewhere is generally attributed to the enzymatic conversion of L-kynurenine (L-KYN) by kynurenine aminotransferases (KATs). However, alternative routes, including KYNA formation from D-kynurenine (D-KYN) by D-amino acid oxidase (DAAO) and the direct transformation of kynurenine to KYNA by reactive oxygen species (ROS), have been demonstrated in the rat brain. Using the rat cerebellum, a region of low KAT activity and high DAAO activity, the present experiments were designed to examine KYNA production from L-KYN or D-KYN by KAT and DAAO, respectively, and to investigate the effect of ROS on KYNA synthesis. In chemical combinatorial systems, both L-KYN and D-KYN interacted directly with peroxynitrite (ONOO−) and hydroxyl radicals (OH•), resulting in the formation of KYNA. In tissue homogenates, the non-specific KAT inhibitor aminooxyacetic acid (AOAA; 1 mM) reduced KYNA production from L-KYN and D-KYN by 85.1 ± 1.7% and 27.1 ± 4.5%, respectively. Addition of DAAO inhibitors (benzoic acid, kojic acid or 3-methylpyrazole-5-carboxylic acid; 5 μM each) attenuated KYNA formation from L-KYN and D-KYN by ~35% and ~66%, respectively. ONOO− (25 μM) potentiated KYNA production from both L-KYN and D-KYN, and these effects were reduced by DAAO inhibition. AOAA attenuated KYNA production from L-KYN + ONOO− but not from D-KYN + ONOO−. In vivo, extracellular KYNA levels increased rapidly after perfusion of ONOO− and, more prominently, after subsequent perfusion with L-KYN or D-KYN (100 μM). Taken together, these results suggest that different mechanisms are involved in KYNA production in the rat cerebellum, and that, specifically, DAAO and ROS can function as alternative

  18. AMINO ACIDS AUGMENT MUSCLE PROTEIN SYNTHESIS IN NEONATAL PIGS DURING ENDOTOXEMIA BY MODULATING TRANSLATION INITIATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In adults, sepsis reduces protein synthesis in skeletal muscle by restraining translation. The effect of sepsis on amino acid-stimulated muscle protein synthesis has not been determined in neonates, a population who is highly anabolic and whose muscle protein synthesis rates are uniquely sensitive ...

  19. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  20. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway.

    PubMed

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  1. Synthesis and scavenging role of furan fatty acids

    PubMed Central

    Lemke, Rachelle A. S.; Peterson, Amelia C.; Ziegelhoffer, Eva C.; Westphall, Michael S.; Tjellström, Henrik; Coon, Joshua J.; Donohue, Timothy J.

    2014-01-01

    Fatty acids play important functional and protective roles in living systems. This paper reports on the synthesis of a previously unidentified 19 carbon furan-containing fatty acid, 10,13-epoxy-11-methyl-octadecadienoate (9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid) (19Fu-FA), in phospholipids from Rhodobacter sphaeroides. We show that 19Fu-FA accumulation is increased in cells containing mutations that increase the transcriptional response of this bacterium to singlet oxygen (1O2), a reactive oxygen species generated by energy transfer from one or more light-excited donors to molecular oxygen. We identify a previously undescribed class of S-adenosylmethionine-dependent methylases that convert a phospholipid 18 carbon cis unsaturated fatty acyl chain to a 19 carbon methylated trans unsaturated fatty acyl chain (19M-UFA). We also identify genes required for the O2-dependent conversion of this 19M-UFA to 19Fu-FA. Finally, we show that the presence of 1O2 leads to turnover of 19Fu-Fa in vivo. We propose that furan-containing fatty acids like 19Fu-FA can act as a membrane-bound scavenger of 1O2, which is naturally produced by integral membrane enzymes of the R. sphaeroides photosynthetic apparatus. PMID:25092314

  2. Total synthesis of the squalene synthase inhibitor zaragozic acid C.

    PubMed

    Nakamura, Seiichi

    2005-01-01

    Zaragozic acids and squalestatins were documented by Merck, Glaxo, and Tokyo Noko University/Mitsubishi Kasei Corporation as part of a program aimed at identifying novel inhibitors of squalene synthase, as well as farnesyl transferase. These natural products have attracted considerable attention from numerous synthetic chemists because of their therapeutic potential and novel architecture. This review highlights our total syntheses of zaragozic acid C by two convergent strategies. The key steps in our first-generation synthesis involve 1) simultaneous creation of the C4 and C5 quaternary stereocenters through the Sn(OTf)2-promoted aldol coupling reaction between the alpha-keto ester and silyl ketene thioacetal derived from L- and D-tartaric acids, respectively; and 2) construction of the bicyclic core structure via acid-catalyzed internal ketalization under kinetically controlled conditions. The second-generation strategy relies on a tandem carbonyl ylide formation/1,3-dipolar cycloaddition approach and features elongation of the C1 alkyl side chain through an olefin cross-metathesis as well as high convergency and flexibility. PMID:15635219

  3. The effect of linoleic acid on the whole body synthesis rates of polyunsaturated fatty acids from α-linolenic acid and linoleic acid in free-living rats.

    PubMed

    Domenichiello, Anthony F; Kitson, Alex P; Chen, Chuck T; Trépanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2016-04-01

    Docosahexaenoic acid (DHA) is thought to be important for brain function. The main dietary source of DHA is fish, however, DHA can also be synthesized from precursor omega-3 polyunsaturated fatty acids (n-3 PUFA), the most abundantly consumed being α-linolenic acid (ALA). The enzymes required to synthesize DHA from ALA are also used to synthesize longer chain omega-6 (n-6) PUFA from linoleic acid (LNA). The large increase in LNA consumption that has occurred over the last century has led to concern that LNA and other n-6 PUFA outcompete n-3 PUFA for enzymes involved in DHA synthesis, and therefore, decrease overall DHA synthesis. To assess this, rats were fed diets containing LNA at 53 (high LNA diet), 11 (medium LNA diet) or 1.5% (low LNA diet) of the fatty acids with ALA being constant across all diets (approximately 4% of the fatty acids). Rats were maintained on these diets from weaning for 8 weeks, at which point they were subjected to a steady-state infusion of labeled ALA and LNA to measure DHA and arachidonic acid (ARA) synthesis rates. DHA and ARA synthesis rates were generally highest in rats fed the medium and high LNA diets, while the plasma half-life of DHA was longer in rats fed the low LNA diet. Therefore, increasing dietary LNA, in rats, did not impair DHA synthesis; however, low dietary LNA led to a decrease in DHA synthesis with tissue concentrations of DHA possibly being maintained by a longer DHA half-life. PMID:27012633

  4. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  5. Indole diterpene synthetic studies. Total synthesis of (+)-nodulisporic acid F and construction of the heptacyclic cores of (+)-nodulisporic acids A and B and (-)-nodulisporic acid D.

    PubMed

    Smith, Amos B; Davulcu, Akin H; Cho, Young Shin; Ohmoto, Kazuyuki; Kürti, László; Ishiyama, Haruaki

    2007-06-22

    A first-generation strategy for construction of (+)-nodulisporic acids A (1) and B (2) is described. The strategy entails union of the eastern and western hemisphere subtargets via the indole synthesis protocol developed in our laboratory. Subsequent elaboration of rings E and F, however, revealed the considerable acid instability of the C(24) hydroxyl, thereby preventing further advancement. Nonetheless, preparation of the heptacyclic core of (+)-nodulisporic acids A and B, the total synthesis of (+)-nodulisporic acid F, the simplest member of the nodulisporic acid family, and elaboration of the heptacyclic core of (-)-nodulisporic acid D were achieved. PMID:17511507

  6. Quantification of ethylenediamine-N,N'-bis(hydroxysulfophenylacetic) acid regioisomers and structural characterisation of its related polycondensation products by porous graphitic carbon high-performance liquid chromatography coupled to electrospray tandem mass spectrometry.

    PubMed

    Biasone, Alessandro; Cianci, Giusto; Di Tommaso, Donata; Piaggesi, Alberto; D'Alessandro, Nicola

    2013-10-18

    Among the commercial ethylenediamine-N,N'-bis(2-hydroxy)phenylacetic acid/iron(III) derivatives, ethylenediamine-N,N'-bis(2-hydroxy-5-sulphophenylacetic) acid/iron(III) (EDDHSA/Fe) represents one of the promising chelates for the treatment of chlorotic plants. Industrial synthesis of EDDHSA/Fe leads to relevant amounts of o,o-EDDHSA condensation products (o,o-EDDHSAcps) and other secondary products that might have important relevance from the agronomic point of view. However, their chemical structures have remained unknown to date. Analysis of iron complexes by ion-pair reversed-phase chromatography, coupled with electrospray tandem mass spectrometry revealed the presence of the meso-o,o-EDDHSA/Fe, rac-o,o-EDDHSA/Fe, o,p-EDDHSA/Fe regioisomers, the hydroxyl derivative of o,o-EDDHSA/Fe, and the three main EDDHSA condensation products chelating the iron(III) (EDDHSAcps/nFe). However, the chromatographic peaks of EDDHSAcps/Fe are not well resolved due to the large numbers of stereoisomers and the poor efficiency of the ion-pair reversed-phase separation method. An alternative chromatographic method is based on porous graphitic carbon (PGC) separation after pre-column decomplexation of the chelates with trifluoracetic acid, which was developed to allow detection of EDDHSA stereo/regioisomers, EDDHSAcps, and low-molecular-weight by-products. This extensive PGC-HPLC-ESI-MS/MS investigation provides quantitative determination of meso-o,o-EDDHSA, rac-o,o-EDDHSA and o,p-EDDHSA, in addition to characterisation of EDDHSAcps and the low-molecular-weight by-products. PGC separation coupled to a triple quadrupole ESI-MS detector allowed characterisation of free ligands using collision-induced dissociation experiments in positive and negative ionisation mode, providing comparative evaluation of EDDHSAcps in three commercial samples. For detection, the PGC-HPLC-ESI-MS/MS is the best method according to the limit of quantification and limit of detection (picomolar and sub

  7. Synthesis and characterisation of a new stable organo-mineral hybrid nanomaterial: 4-Chlorobenzenesulfonate in the zinc-aluminium layered double hydroxide

    SciTech Connect

    Lakraimi, Mohamed; Legrouri, Ahmed . E-mail: legrouri@aui.ma; Barroug, Allal; De Roy, Andre; Besse, Jean Pierre

    2006-09-14

    4-Chlorobenzenesulfonate (4-CBS) was intercalated between layers of Zn-Al layered double hydroxides (LDHs). Two methods of incorporation were applied: (1) direct synthesis by coprecipitation of metal nitrates and sodium 4-CBS and (2) ion exchange of the LDH nitrate with the organic ion. The solids were characterized by X-ray diffraction and infrared spectroscopy. The direct method, effected at different pH values, led to a hybrid material with good degree of intercalation. In order to optimise the exchange conditions, particular attention was given to the effect of solution pH, 4-CBS/NO{sub 3} ratio and exchange temperature. The total exchange was successful and a new stable hybrid nanostructured material was obtained at pH 8 and with a 4-CBS concentration of 0.0028 M. This solid was further characterised by chemical and thermal analyses.

  8. Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors

    PubMed Central

    2012-01-01

    Background Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels) based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA) biosynthesis pathway genes have been all cloned and biosynthesis pathway was built up in some higher plants, the molecular mechanism for its regulation in microalgae is far away from elucidation. Results We cloned main key genes for FA biosynthesis in Haematococcus pluvialis, a green microalga as a potential biodiesel feedstock, and investigated the correlations between their expression alternation and FA composition and content detected by GC-MS under different stress treatments, such as nitrogen depletion, salinity, high or low temperature. Our results showed that high temperature, high salinity, and nitrogen depletion treatments played significant roles in promoting microalgal FA synthesis, while FA qualities were not changed much. Correlation analysis showed that acyl carrier protein (ACP), 3-ketoacyl-ACP-synthase (KAS), and acyl-ACP thioesterase (FATA) gene expression had significant correlations with monounsaturated FA (MUFA) synthesis and polyunsaturated FA (PUFA) synthesis. Conclusions We proposed that ACP, KAS, and FATA in H. pluvialis may play an important role in FA synthesis and may be rate limiting genes, which probably could be modified for the further study of metabolic engineering to improve microalgal biofuel quality and production. PMID:22448811

  9. Fructose utilization for nucleic acid synthesis in the fetal pig.

    PubMed

    White, C E; Piper, E L; Noland, P R; Daniels, L B

    1982-07-01

    Eight fetal pigs, in utero, were injected ip with 20 microCi/fetus [U14C]-fructose between d 55 and 65 pregnancy. The isotope was allowed to equilibrate between blood and tissues within injected fetuses for a period of 240 min. Fetal pigs were then sacrificed and nucleic acids were extracted from cold tissue homogenates of skeletal muscle and liver. Nuclide disintegrations per minute recovered in extracted DNA and RNA were used to calculate incorporation of labeled C from fructose. The recovery of labeled C per mmol of nucleic acids from skeletal muscle was greater (P less than .05) than that from liver. Relative incorporation of labeled C into skeletal muscle RNA (395.9 pmol/mmol) was greater (P less than .05) than for DNA (189.5 pmol/mmol). The same trend was observed for liver RNA (78.0 pmol/mmol) and DNA (55.6 pmol/mmol), but differences were nonsignificant. These data suggest that at least part of the high concentration of endogenous fructose measured in fetal pigs in utero is involved in synthesis of nucleic acids, thereby providing substrate for anabolic functions necessary for fetal growth and development. PMID:6181047

  10. A novel ruthenium(II)-cobaloxime supramolecular complex for photocatalytic H2 evolution: Synthesis, characterisation, and mechanistic studies

    PubMed Central

    Cropek, Donald M.; Metz, Anja; Müller, Astrid M.; Gray, Harry B.; Horne, Toyketa; Horton, Dorothy C.; Poluektov, Oleg; Tiede, David M.; Weber, Ralph T.; Jarrett, William L.; Phillips, Joshua D.

    2012-01-01

    We report the synthesis and characterization of novel mixed-metal binuclear ruthenium(II)-cobalt(II) photocatalysts for hydrogen evolution in acidic acetonitrile. First, 2-(2′-pyridyl)benzothiazole (pbt), 1, was reacted with RuCl3·xH2O to produce [Ru(pbt)2Cl2] ·0.25CH3COCH3, 2, which was then reacted with 1,10-phenanthroline-5,6-dione (phendione), 3 in order to produce [Ru(pbt)2(phendione)](PF6)2·4H2O, 4. Compound 4 was then reacted with 4-pyridinecarboxaldehyde in order to produce [Ru(pbt)2(L-pyr)](PF6)2·9.5H2O, 5 (where L-pyr = (4-pyridine)oxazolo[4,5-f]phenanthroline). Compound 5 was then reacted with [Co(dmgBF2)2(H2O)2] (where dmgBF2 = difluorboryldimethylglyoximate) in order to produce the mixed-metal binuclear complex, [Ru(pbt)2(L-pyr)Co(dmgBF2)2(H2O)](PF6)2·11H2O·1.5CH3COCH3, 6. [Ru(Me2bpy)2(L-pyr)Co(dmgBF2)2(OH2)](PF6)2, 7 (where Me2bpy = 1,10-phenanthroline, 4,4′-dimethyl-2,2′-bipyridine) and [Ru(phen)2(L-pyr)Co(dmgBF2)2(OH2)](PF6)2, 8 were also synthesised. All complexes were characterized by elemental analysis, UV-visible absorption, 11B, 19F, and 59Co NMR, ESR spectroscopy, and cyclic voltammetry, where appropriate. Photocatalytic studies carried out in acidified acetonitrile demonstrated constant hydrogen generation longer than a 42 hour period as detected by gas chromatography. Time resolved spectroscopic measurements were performed on compound 6, which proved an intramolecular electron transfer from an excited Ru(II) metal centre to the Co(II) metal centre via the bridging L-pyr ligand. This resulted in the formation of a cobalt(I)-containing species that is essential for the production of H2 gas in the presence of H+ ions. A proposed mechanism for the generation of hydrogen is presented. PMID:23001132

  11. Synthesis of E. faecium wall teichoic acid fragments.

    PubMed

    van der Es, Daan; Groenia, Nadia A; Laverde, Diana; Overkleeft, Herman S; Huebner, Johannes; van der Marel, Gijsbert A; Codée, Jeroen D C

    2016-09-01

    The first synthesis of different Enterococcus faecium wall teichoic acid (WTA) fragments is presented. The structure of these major cell wall components was elucidated recently and it was shown that these glycerolphosphate (GroP) based polymers are built up from -6-(GalNAc-α(1-3)-GalNAc-β(1-2)-GroP)- repeating units. We assembled WTA fragments up to three repeating units in length, in two series that differ in the stereochemistry of the glycerolphosphate moiety. The key GalNAc-GalNAc-GroP synthons, required for the synthesis, were generated from galactosazide building blocks that were employed in highly stereoselective glycosylation reactions to furnish both the α- and β-configured linkages. By comparing the NMR spectra of the synthesized fragments with the isolated material it appears that the hereto undefined stereochemistry of the glycerol phosphate moiety is sn-glycerol-3-phosphate. The generated fragments will be valuable tools to study their immunological activity at the molecular level. PMID:26993744

  12. Indoleacetic Acid and the Synthesis of Glucanases and Pectic Enzymes

    PubMed Central

    Datko, Anne Harmon; Maclachlan, G. A.

    1968-01-01

    Indoleacetic acid (IAA) and/or inhibitors of DNA, RNA or protein synthesis were added to the apex of decapitated seedlings of Pisum sativum L. var. Alaska. At various times up to 4 days, enzymic protein was extracted from a segment of epicotyl immediately below the apex and assayed for its ability to hydrolyse polysaccharides or their derivatives. With the exception of amylase, the total amounts per segment of all of the tested enzymes increased due to IAA treatment. The development of β-1,4-glucanase (cellulase) activity per unit of protein or fresh weight proceeded according to a typical sigmoid induction curve. Pectinase was formed for about 2 days in control segments and IAA treatment resulted in continued synthesis for at least another 2 days provided cell division took place. β-1,3-glucanase and pectinesterase activities were only enhanced by IAA to the extent that total protein levels increased. Reaction mechanisms for these effects and functions for the enzymes during growth are discussed. PMID:16656834

  13. [Effect of gibberellic acid on RNA synthesis in dwarf peas].

    PubMed

    Kilev, S N; Kholodar', A V; Chekurov, V M; Mertvetsov, N P

    1982-04-01

    The effect of gibberellic acid (GA) on total RNA and polysomal poly-[A]+-RNA synthesis in epicotylia and embryos of dwarf pea of two varieties differing in their physiological sensitivity to GA was studied. It was found that incubation with GA increases the accumulation of total RNA in pea epicotylia, var. "Pioner" and "Polzunok". The maximal stimulation of RNA accumulation makes up to 40% for the low sensitivity variety "Polzunok" and 150% for the highly sensitive variety "Pioner". GA increases the synthesis of polysomal poly (A)+-mRNA in 5-year-old pea sprouts and that of newly synthesized poly (A)+-mRNA in epicotylian polysomes of both varieties 5, 24, 48 and 72 hrs after incubation with GA. GA at concentrations of 10(-6) and 10(-5) stimulates the incorporation of [3H]uridine into polysomal mRNA during the first 1--3 hours after treatment and enhances the accumulation of newly synthesized mRNA in pea embryonic polyribosomes. The stimulating effect is directly proportional to the dose of the hormone. The mechanisms of GA effect on the transcription and translation in pea plant cells are discussed. PMID:6177351

  14. Intermediates in the Synthesis of Type 2 Adenovirus Deoxyribonucleic Acid

    PubMed Central

    Horwitz, Marshall S.

    1971-01-01

    Intermediates in the synthesis of adenovirus type 2 deoxyribonucleic acid (DNA) were studied in HeLa cells. Pieces of DNA smaller than the viral genome were demonstrated after labeling with 3H-thymidine for 10 to 240 sec. Intermediates as small as the Okazaki fragments (8 to 10S) do not predominate at any of the above times. No detectable addition of nucleotides to parental genome could be shown, nor was there any breakdown of recently synthesized viral DNA. The DNA intermediates were of viral origin for they hybridized to viral DNA and were made at a stage of the cell cycle (G2) when host DNA is not synthesized. PMID:5132696

  15. The synthesis and characterisation of MDMA derived from a catalytic oxidation of material isolated from black pepper reveals potential route specific impurities.

    PubMed

    Plummer, Christopher M; Breadon, Thomas W; Pearson, James R; Jones, Oliver A H

    2016-05-01

    This work examines the chemical synthesis of 3,4-methylenedioxy-N-methylamphetamine (MDMA) from piperonal prepared via a catalytic ruthenium tetroxide oxidation of piperine extracted from black pepper. A variety of oxidation conditions were experimented with including different solvent systems and co-oxidants. A sample of prepared piperonal was successfully converted into MDMA via 3,4-methylenedioxyphenyl-2-nitropropene (MDP2NP) and 3,4-methylenedioxyphenyl-2-propanone (MDP2P) and the impurities within each product characterised by GC-MS to give a contaminant profile of the synthetic pathway. Interestingly, it was discovered that a chlorinated analogue of piperonal (6-chloropiperonal) was created during the oxidation process by an as yet unknown mechanism. This impurity reacted alongside piperonal to give chlorinated analogues of each precursor, ultimately yielding 2-chloro-4,5-methylenedioxymethamphetamine (6-Cl-MDMA) as an impurity within the MDMA sample. The methodology developed is a simple way to synthesise a substantial amount of precursor material with easy to obtain reagents. The results also show that chlorinated MDMA analogues, previously thought to be deliberately included adulterants, may in fact be route specific impurities with potential application in determining the origin and synthesis method of seized illicit drugs. PMID:27162021

  16. Xylonucleic acid: synthesis, structure, and orthogonal pairing properties

    PubMed Central

    Maiti, Mohitosh; Maiti, Munmun; Knies, Christine; Dumbre, Shrinivas; Lescrinier, Eveline; Rosemeyer, Helmut; Ceulemans, Arnout; Herdewijn, Piet

    2015-01-01

    There is a common interest for studying xeno-nucleic acid systems in the fields of synthetic biology and the origin of life, in particular, those with an engineered backbone and possessing novel properties. Along this line, we have investigated xylonucleic acid (XyloNA) containing a potentially prebiotic xylose sugar (a 3′-epimer of ribose) in its backbone. Herein, we report for the first time the synthesis of four XyloNA nucleotide building blocks and the assembly of XyloNA oligonucleotides containing all the natural nucleobases. A detailed investigation of pairing and structural properties of XyloNAs in comparison to DNA/RNA has been performed by thermal UV-melting, CD, and solution state NMR spectroscopic studies. XyloNA has been shown to be an orthogonal self-pairing system which adopts a slightly right-handed extended helical geometry. Our study on one hand, provides understanding for superior structure-function (-pairing) properties of DNA/RNA over XyloNA for selection as an informational polymer in the prebiotic context, while on the other hand, finds potential of XyloNA as an orthogonal genetic system for application in synthetic biology. PMID:26175047

  17. PMo or PW heteropoly acids supported on MCM-41 silica nanoparticles: Characterisation and FT-IR study of the adsorption of 2-butanol

    SciTech Connect

    Carriazo, Daniel; Domingo, Concepcion; Martin, Cristina; Rives, Vicente

    2008-08-15

    Mesoporous silica, prepared in basic conditions, has been loaded (20% weight) with 12-molybdophosphoric (PMo) or 12-tungstophosphoric (PW) acid and calcined at different temperatures ranging between 250 and 550 deg. C. The samples have been characterised by N{sub 2} adsorption-desorption at -196 deg. C, transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), UV-visible diffuse reflectance, Raman spectroscopy and temperature programmed reduction (TPR). The acidity and catalytic activity have been, respectively, examined by monitoring the adsorption of pyridine and 2-butanol by FT-IR spectroscopy. The results indicate that PW and PMo acids are highly dispersed on mesoporous silica MCM-41 spherical nanoparticles. While PMo retains its Keggin structure up to 550 deg. C, PW decomposes at this temperature into crystalline WO{sub 3} and phosphorous oxides. In both cases, the morphology, hexagonal symmetry and long-range order observed for the support are preserved with calcination up to 450 deg. C. The Broensted-type acid sites found in all samples, whose surface concentration decreases as the calcination temperature increases, are responsible for the selective formation of cis-butene detected upon adsorption of 2-butanol. The sample containing PW calcined at 450 deg. C also shows selectivity to methyl ethyl ketone. - Graphical abstract: Samples based in MCM-41 nanoparticles loaded with tungstophosphoric and molybdophosphoric acids have been synthesised. The uncalcined solids and that derived upon their calcination in the temperature range 250-550 deg. C have been characterised and evaluated in the decomposition of 2-butanol monitored by FT-IR spectroscopy.

  18. An improved synthesis for the (Z)-14-methyl-9-pentadecenoic acid and its topoisomerase I inhibitory activity

    PubMed Central

    Carballeira, Néstor M.; Sanabria, David; Oyola, Delise

    2006-01-01

    An improved synthesis for the (Z)-14-methyl-9-pentadecenoic acid was developed based on the appropriate use of (trimethylsilyl)acetylene as the key reagent in the synthesis. The reported synthesis started with commercially available 8-bromo-1-octanol and furnished the desired acid in seven steps and in a 16% overall yield, a significant improvement over the previous reported synthesis for this fatty acid. The synthesis reported herein afforded sufficient amounts to study the acid topoisomerase I inhibitory potential and it was found that the title acid inhibits the human placenta DNA topoisomerase I enzyme at concentrations of 500 μM. PMID:17680032

  19. Synthesis and characterisation of new MO(OH)2 (M = Zr, Hf) oxyhydroxides and related Li2MO3 salts.

    PubMed

    Baklanova, Yana V; Denisova, Tatyana A; Maksimova, Lidiya G; Tyutyunnik, Alexander P; Baklanova, Inna V; Shein, Igor R; Neder, Reinhard B; Tarakina, Nadezda V

    2014-02-21

    Two new solid MO(OH)2 (M = Zr, Hf) oxyhydroxides have been synthesised by an ion-exchange reaction from Li2MO3 (M = Zr, Hf) precursors obtained by a citrate combustion technique. The crystal structure of the oxyhydroxides has been solved by direct methods and refined using Rietveld full profile fitting based on X-ray powder diffraction data. Both oxyhydroxides crystallize in a P2(1)/c monoclinic unit cell and have a structure resembling that of the related salts. Detailed characterisation of the fine-structure features and chemical bonding in precursors and oxyhydroxide powders has been performed using vibrational spectroscopy, nuclear magnetic resonance spectroscopy, scanning electron microscopy, pair distribution function analysis and quantum-chemical modelling. PMID:24343584

  20. Tailored fatty acid synthesis via dynamic control of fatty acid elongation

    SciTech Connect

    Torella, JP; Ford, TJ; Kim, SN; Chen, AM; Way, JC; Silver, PA

    2013-07-09

    Medium-chain fatty acids (MCFAs, 4-12 carbons) are valuable as precursors to industrial chemicals and biofuels, but are not canonical products of microbial fatty acid synthesis. We engineered microbial production of the full range of even-and odd-chain-length MCFAs and found that MCFA production is limited by rapid, irreversible elongation of their acyl-ACP precursors. To address this limitation, we programmed an essential ketoacyl synthase to degrade in response to a chemical inducer, thereby slowing acyl-ACP elongation and redirecting flux from phospholipid synthesis to MCFA production. Our results show that induced protein degradation can be used to dynamically alter metabolic flux, and thereby increase the yield of a desired compound. The strategy reported herein should be widely useful in a range of metabolic engineering applications in which essential enzymes divert flux away from a desired product, as well as in the production of polyketides, bioplastics, and other recursively synthesized hydrocarbons for which chain-length control is desired.

  1. Synthesis of novel acid electrolytes for phosphoric acid fuel cells. Final report, May 1985-October 1988

    SciTech Connect

    Adcock, J.L.

    1988-11-01

    Construction of a 40-millimole-per-hour-scale aerosol direct-fluorination reactor was completed June 26, 1986. F-Methyl F-4-methoxybutanoate and F-4-methoxybutanoyl fluoride were synthesized by aerosol direct fluorination of methyl 4-methoxybutanoate. Basic hydrolysis of the perfluorinated derivatives produce sodium F-4-methoxybutanoate which was pyrolyzed to F-3-methoxy-1-propene. Purification and shipment of 33 grams of F-3-methoxy-1-propene followed. Syntheses by analogous methods allowed production and shipment of 5 grams of F-3-ethoxy-1-propene, 18 grams of F-3-(2-methoxy.ethoxy)-1-propene, and 37 grams of F-3,3-dimethyl-1-butene. Eighteen grams of F-2,2-dimethyl-1-chloropropane was produced directly and shipped. As suggested by other contractors, 5 grams of F-3-methoxy-1-iodopropane, and 5 grams of F-3-(2-methoxy.ethoxy)-1-iodopropane were produced by converting the respective precursor acid sodium salts produced for olefin synthesis to the silver salts and pyrolyzing them with iodine. Each of these compounds was prepared for the first time by the aerosol fluorination process during the course of the contract. These samples were provided to other GRI contractors for synthesis of perfluorinated sulfur(VI) and phosphorous(V) acids.

  2. Synthesis of hyaluronic acid oligosaccharides and exploration of a fluorous-assisted approach.

    PubMed

    Macchione, Giuseppe; de Paz, José L; Nieto, Pedro M

    2014-07-23

    The synthesis of hyaluronic acid oligomers (tri- and tetrasaccharide) is described. We have followed a pre-glycosylation oxidation strategy. Glucuronic acid units were directly employed in coupling reactions with suitably protected glucosamine derivatives. In order to simplify the purification of synthetic intermediates, a fluorous-assisted strategy has been also explored. Using this approach, a hyaluronic acid trisaccharide was prepared. PMID:24930061

  3. Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis.

    PubMed

    Dacquin, J P; Lee, A F; Pirez, C; Wilson, K

    2012-01-01

    Here we present the first application of pore-expanded SBA-15 in heterogeneous catalysis. Pore expansion over the range 6-14 nm confers a striking activity enhancement towards fatty acid methyl ester (FAME) synthesis from triglycerides (TAG), and free fatty acid (FFA), attributed to improved mass transport and acid site accessibility. PMID:22089025

  4. Selective synthesis of 3-hydroxy acids from Meldrum's acids using SmI2-H2O.

    PubMed

    Szostak, Michal; Spain, Malcolm; Procter, David J

    2012-05-01

    The single-step synthesis of 3-hydroxy carboxylic acids from readily available Meldrum's acids involves a selective monoreduction using a SmI(2)-H(2)O complex to give products in high crude purity, and it represents a considerable advancement over other methods for the synthesis of 3-hydroxy acids. The protocol includes a detailed guide to the preparation of a single electron-reducing SmI(2)-H(2)O complex and describes two representative examples of the methodology: monoreduction of a fully saturated Meldrum's acid (5-(4-bromobenzyl)-2,2-dimethyl-1,3-dioxane-4,6-dione) and tandem conjugate reduction-selective monoreduction of α,β-unsaturated Meldrum's acid (5-(4-methoxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione). The protocol for selective monoreduction of Meldrum's acids takes ∼6 h to complete. PMID:22538848

  5. Dihydrolipoic acid activates oligomycin-sensitive thiol groups and increases ATP synthesis in mitochondria.

    PubMed

    Zimmer, G; Mainka, L; Krüger, E

    1991-08-01

    Investigations with dihydrolipoic acid in rat heart mitochondria and mitoplasts reveal an activation of ATP-synthase up to 45%, whereas ATPase activities decrease by 36%. In parallel with an increase in ATP synthesis oligomycin-sensitive mitochondrial -SH groups are activated at 2-4 nmol dihydrolipoic acid/mg protein. ATPase activation by the uncouplers carbonylcyanide-p-trifluoromethoxyphenylhydrazone and oleate is diminished by dihydrolipoic acid, and ATP synthesis depressed by oleate is partially restored. No such efficiency of dihydrolipoic acid is seen with palmitate-induced ATPase activation or decrease of ATP synthesis. This indicates different interference of oleate and palmitate with mitochondria. In addition to its known coenzymatic properties dihydrolipoic acid may act as a substitute for coenzyme A, thereby diminishing the uncoupling efficiency of oleate. Furthermore, dihydrolipoic acid is a very potent antioxidant, shifting the -SH-S-S- equilibrium in mitochondria to the reduced state and improving the energetic state of cells. PMID:1832845

  6. Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Yang, Fan; Yang, Xiurong

    2015-10-01

    A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by introducing an alkaline aqueous solution of MUA into the GSH-Au+ complexes or AuNC@GSH solution. Subsequently, a reliable AuNC@GSH/MUA-based real-time assay of acid phosphatase (ACP) is established for the first time, inspired by the selective coordination of Fe3+ with surface ligands of AuNCs, the higher binding affinity between the pyrophosphate ion (PPi) and Fe3+, and the hydrolysis of PPi into orthophosphate by ACP. Our fluorescent chemosensor can also be applied to assay ACP in a real biological sample and, furthermore, to screen the inhibitor of ACP. This report paves a new avenue for synthesizing AuNCs based on either the bottom-up reduction or top-down etching method, establishing real-time fluorescence assays for ACP by means of PPi as the substrate, and further exploring the sensing applications of fluorescent AuNCs.A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by

  7. Long-term leucine induced stimulation of muscle protein synthesis is amino acid dependent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infusing leucine for 1 h increases skeletal muscle protein synthesis in the neonate, but this is not sustained for 2 h unless the corresponding fall in amino acids is prevented. This study aimed to determine whether a continuous leucine infusion can stimulate protein synthesis for a prolonged period...

  8. Synthesis and self-assembly of poly(3-hexylthiophene)-block-poly(acrylic acid)

    SciTech Connect

    Li, Zicheng; Ono, Robert J.; Wu, Zong-Quan; Bielawski, Christopher W.

    2011-01-01

    A modular and convenient synthesis of ethynyl end functionalized poly(3-hexylthiophene) in high purity is reported; this material facilitated access to poly(3-hexylthiophene)-block-poly(acrylic acid) which self-assembled into hierarchical structures.

  9. An Alkyne Diboration/6π-Electrocyclization Strategy for the Synthesis of Pyridine Boronic Acid Derivatives.

    PubMed

    Mora-Radó, Helena; Bialy, Laurent; Czechtizky, Werngard; Méndez, María; Harrity, Joseph P A

    2016-05-01

    A new and efficient synthesis of pyridine-based heteroaromatic boronic acid derivatives is reported through a novel diboration/6π-electrocyclization strategy. This method delivers a range of functionalized heterocycles from readily available starting materials. PMID:27059895

  10. The Synthesis of an Amino Acid Derivative and Spectroscopic Monitoring of Dipeptide Formation.

    ERIC Educational Resources Information Center

    Simmonds, Richard J.

    1987-01-01

    Described are experiments to give students experience in the synthesis of peptides from amino acids and to use visible spectroscopy to measure a rate of reaction. The activities were designed for undergraduate courses. (RH)