Sample records for acid total protein

  1. LC-MS display of the total modified amino acids in cataract lens proteins and in lens proteins glycated by ascorbic acid in vitro.

    PubMed

    Cheng, Rongzhu; Feng, Qi; Ortwerth, Beryl J

    2006-05-01

    We previously reported chromatographic evidence supporting the similarity of yellow chromophores isolated from aged human lens proteins, early brunescent cataract lens proteins and calf lens proteins ascorbylated in vitro [Cheng, R. et al. Biochimica et Biophysica Acta 1537, 14-26, 2001]. In this paper, new evidence supporting the chemical identity of the modified amino acids in these protein populations were collected by using a newly developed two-dimensional LC-MS mapping technique supported by tandem mass analysis of the major species. The pooled water-insoluble proteins from aged normal human lenses, early stage brunescent cataract lenses and calf lens proteins reacted with or without 20 mM ascorbic acid in air for 4 weeks were digested with a battery of proteolytic enzymes under argon to release the modified amino acids. Aliquots equivalent to 2.0 g of digested protein were subjected to size-exclusion chromatography on a Bio-Gel P-2 column and four major A330nm-absorbing peaks were collected. Peaks 1, 2 and 3, which contained most of the modified amino acids were concentrated and subjected to RP-HPLC/ESI-MS, and the mass elution maps were determined. The samples were again analyzed and those peaks with a 10(4) - 10(6) response factor were subjected to MS/MS analysis to identify the daughter ions of each modification. Mass spectrometric maps of peaks 1, 2 and 3 from cataract lenses showed 58, 40 and 55 mass values, respectively, ranging from 150 to 600 Da. Similar analyses of the peaks from digests of the ascorbylated calf lens proteins gave 81, 70 and 67 mass values, respectively, of which 100 were identical to the peaks in the cataract lens proteins. A total of 40 of the major species from each digest were analyzed by LC-MS/MS and 36 were shown to be identical. Calf lens proteins incubated without ascorbic acid showed several similar mass values, but the response factors were 100 to 1000-fold less for every modification. Based upon these data, we conclude

  2. Quantitation of total protein deposits on contact lenses by means of amino acid analysis.

    PubMed

    Yan, G; Nyquist, G; Caldwell, K D; Payor, R; McCraw, E C

    1993-04-01

    This study was done to characterize and quantify the protein deposits on worn contact lenses and to measure the residual deposits after extraction in 2% sodium dodecyl sulfate and the total protein deposits on worn vifilcon, atlafilcon, and tefilcon lenses (Food and Drug Administration Types IV, II, and I, respectively). Contact lens extracts were separated with gel electrophoresis, and the amount of protein was estimated after silver staining and densitometry. To determine the residual deposits, the contact lenses were hydrolyzed, and amino acid analysis was carried out by reverse-phase high-performance liquid chromatography after precolumn derivatization with phenylisothiocyanate. Refinement of the hydrolysis conditions was undertaken to minimize interference by the lens polymers. The extraction removed only approximately 25% of the protein deposits. Mild hydrolytic conditions, 20 hr in 6 N HCl at 105 degrees C, were found to cause minimal polymer interference. Of the 350, 10, and 20 micrograms of protein typically determined on whole vifilcon, atlafilcon, and tefilcon lenses, the polymers were estimated to account for 4, 0.5, and less than 0.4 micrograms, respectively. Hydrolysis of worn contact lenses with subsequent amino acid separation can be applied to determine the total protein deposits without the uncertainty inherent in extraction of the deposits.

  3. Seasonal changes in amino acids, protein and total nitrogen in needles of fertilized Scots pine trees.

    PubMed

    Näsholm, T; Ericsson, A

    1990-09-01

    Seasonal changes in amino acids, protein and total nitrogen in needles of 30-year-old, fertilized Scots pine (Pinus sylvestris L.) trees growing in Northern Sweden were investigated over two years in field experiments. The studied plots had been fertilized annually for 17 years with (i) a high level of N, (ii) a medium level of N, or (iii) a medium level of N, P and K. Trees growing on unfertilized plots served as controls. In control trees, glutamine, glutamic acid, gamma-aminobutyric acid, aspartic acid and proline represented 50-70% of the total free amino acids determined. Arginine was present only in low concentrations in control trees throughout the year, but it was usually the most abundant amino acid in fertilized trees. Glutamine concentrations were high during the spring and summer in both years of study, whereas proline concentrations were high in the spring but otherwise low throughout the year. In the first year of study, glutamic acid concentrations were high during the spring and summer, whereas gamma-aminobutyric acid was present in high concentrations during the winter months. This pattern was less pronounced in the second year of investigation. The concentrations of most amino acids, except glutamic acid, increased in response to fertilization. Nitrogen fertilization increased the foliar concentration of arginine from < 1 micromol g(dw) (-1) in control trees to a maximum of 110 micromol g(dw) (-1). Trees fertilized with nitrogen, phosphorus and potassium had significantly lower arginine concentrations than trees fertilized with the same amount of nitrogen only. Protein concentrations were similar in all fertilized trees but higher than those in control trees. For all treatments, protein concentrations were high in winter and at a minimum in early spring. In summer, the protein concentration remained almost constant except for a temporary decrease which coincided with the expansion of new shoots. Apart from arginine, the amino acid composition of

  4. Total amino acid stabilization during cell-free protein synthesis reactions.

    PubMed

    Calhoun, Kara A; Swartz, James R

    2006-05-17

    Limitations in amino acid supply have been recognized as a substantial problem in cell-free protein synthesis reactions. Although enzymatic inhibitors and fed-batch techniques have been beneficial, the most robust way to stabilize amino acids is to remove the responsible enzymatic activities by genetically modifying the source strain used for cell extract preparation. Previous work showed this was possible for arginine, serine, and tryptophan, but cysteine degradation remained a major limitation in obtaining high protein synthesis yields. Through radiolabel techniques, we confirmed that cysteine degradation was caused by the activity of glutamate-cysteine ligase (gene gshA) in the cell extract. Next, we created Escherichia coli strain KC6 that combines a gshA deletion with previously described deletions for arginine, serine, and tryptophan stabilization. Strain KC6 grows well, and active cell extract can be produced from it for cell-free protein synthesis reactions. The extract from strain KC6 maintains stable amino acid concentrations of all 20 amino acids in a 3-h batch reaction. Yields for three different proteins improved 75-250% relative to cell-free expression using the control extract.

  5. Total leaf crude protein, amino acid composition and elemental content in the USDA-ARS bamboo germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Bamboo shoots and leaves are valuable food sources for both humans and livestock. The USDA-ARS National Plant Germplasm System (NPGS) collections hold 93 bamboo species in 20 genera. Total leaf protein, amino acid composition and elemental content for these important genetic resources had never bee...

  6. Total protein

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  7. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae).

    PubMed

    Chia, Mathias Ahii; Lombardi, Ana Teresa; da Graça Gama Melão, Maria; Parrish, Christopher C

    2015-03-01

    Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10(-7) and 2.0×10(-8)molL(-1) Cd) under varying nitrogen (2.9×10(-6), 1.1×10(-5) and 1.1×10(-3)molL(-1)N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Gender-specific association between dietary acid load and total lean body mass and its dependency on protein intake in seniors.

    PubMed

    Faure, A M; Fischer, K; Dawson-Hughes, B; Egli, A; Bischoff-Ferrari, H A

    2017-12-01

    Diet-related mild metabolic acidosis may play a role in the development of sarcopenia. We investigated the relationship between dietary acid load and total lean body mass in male and female seniors age ≥ 60 years. We found that a more alkaline diet was associated with a higher %TLM only among senior women. The aim of this study was to determine if dietary acid load is associated with total lean body mass in male and female seniors age ≥ 60 years. We investigated 243 seniors (mean age 70.3 ± 6.3; 53% women) age ≥ 60 years who participated in the baseline assessment of a clinical trial on vitamin D treatment and rehabilitation after unilateral knee replacement due to severe knee osteoarthritis. The potential renal acid load (PRAL) was assessed based on individual nutrient intakes derived from a food frequency questionnaire. Body composition including percentage of total lean body mass (%TLM) was determined using dual-energy X-ray absorptiometry. Cross-sectional analyses were performed for men and women separately using multivariable regression models controlling for age, physical activity, smoking status, protein intake (g/kg BW per day), energy intake (kcal), and serum 25-hydroxyvitamin D concentration. We included a pre-defined subgroup analysis by protein intake (< 1 g/kg BW day, > 1 g/kg BW day) and by age group (< 70 years, ≥ 70 years). Adjusted %TLM decreased significantly across PRAL quartiles only among women (P trend  = 0.004). Moreover, in subgroup analysis, the negative association between the PRAL and %TLM was most pronounced among women with low protein intake (< 1 g/kg BW per day) and age below 70 years (P = 0.002). Among men, there was no association between the PRAL and %TLM. The association between dietary acid load and %TLM seems to be gender-specific, with a negative impact on total lean mass only among senior women. Therefore, an alkaline diet may be beneficial for preserving total lean mass in senior women

  9. A nine-country study of the protein content and amino acid composition of mature human milk

    PubMed Central

    Feng, Ping; Gao, Ming; Burgher, Anita; Zhou, Tian Hui; Pramuk, Kathryn

    2016-01-01

    Background Numerous studies have evaluated protein and amino acid levels in human milk. However, research in this area has been limited by small sample sizes and study populations with little ethnic or racial diversity. Objective Evaluate the protein and amino acid composition of mature (≥30 days) human milk samples collected from a large, multinational study using highly standardized methods for sample collection, storage, and analysis. Design Using a single, centralized laboratory, human milk samples from 220 women (30–188 days postpartum) from nine countries were analyzed for amino acid composition using Waters AccQ-Tag high-performance liquid chromatography and total nitrogen content using the LECO FP-528 nitrogen analyzer. Total protein was calculated as total nitrogen×6.25. True protein, which includes protein, free amino acids, and peptides, was calculated from the total amino acids. Results Mean total protein from individual countries (standard deviation [SD]) ranged from 1,133 (125.5) to 1,366 (341.4) mg/dL; the mean across all countries (SD) was 1,192 (200.9) mg/dL. Total protein, true protein, and amino acid composition were not significantly different across countries except Chile, which had higher total and true protein. Amino acid profiles (percent of total amino acids) did not differ across countries. Total and true protein concentrations and 16 of 18 amino acid concentrations declined with the stage of lactation. Conclusions Total protein, true protein, and individual amino acid concentrations in human milk steadily decline from 30 to 151 days of lactation, and are significantly higher in the second month of lactation compared with the following 4 months. There is a high level of consistency in the protein content and amino acid composition of human milk across geographic locations. The size and diversity of the study population and highly standardized procedures for the collection, storage, and analysis of human milk support the validity and

  10. CSF total protein

    MedlinePlus

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 milligrams per deciliter (mg/dL) ...

  11. Uric acid contributes greatly to hepatic antioxidant capacity besides protein.

    PubMed

    Mikami, T; Sorimachi, M

    2017-12-20

    Uric acid is the end-product of purine nucleotide metabolism and an increase in uric acid concentration in the body results in hyperuricemia, ultimately leading to gout. However, uric acid is a potent antioxidant and interacts with reactive oxygen species (ROS) to be non-enzymatically converted to allantoin. Uric acid accounts for approximately 60 % of antioxidant capacity in the plasma; however, its contribution to tissue antioxidant capacity is unknown. In this study, the contribution of uric acid to tissue antioxidant capacity and its conversion to allantoin by scavenging ROS in tissue were examined. The results showed that a decrease in hepatic uric acid content via allopurinol administration significantly reduced hepatic total-radical trapping antioxidant parameter (TRAP) content in protein-free cytosol. Additionally, treating protein-free cytosol with uricase led to a further reduction of hepatic TRAP content. Allantoin was also detected in the solution containing protein-free cytosol that reacted with ROS. These findings suggest that in the absence of protein, uric acid contributes greatly to antioxidant capacity in the liver, where uric acid is converted to allantoin by scavenging ROS.

  12. Comparison of five methods for determination of total plasma protein concentration.

    PubMed

    Okutucu, Burcu; Dinçer, Ayşşe; Habib, Omer; Zihnioglu, Figen

    2007-08-01

    Quantitation of exact total protein content is often a key step and is common to many applications in general biochemistry research and routine clinical laboratory practice. Before embarking on any type of protein analysis, particularly comparative techniques, it is important to accurately quantitate the amount of protein in the sample. In order to assess the quality of total protein estimation results, five methods were tested and were applied to the same pooled plasma sample. For this aim, Bradford (Coomassie Brilliant Blue), Lowry (Folin-Ciocalteau), Biüret, Pesce and Strande (Ponceau-S/TCA), and modified method of Schaffner-Weismann (Amido Black 10B) were used. The last two methods employ simultaneous precipitation of proteins with the acid containing dye solutions followed by dissolution of precipitate in a NaOH solution. It is shown that each assay has advantages and disadvantages relative to sensitivity, ease of performance, acceptance in literature, accuracy and reproducibility/coefficient of variation. All of the methods tested show a CV %<6. Besides pooled plasma, a known concentration of human serum albumin was also analyzed and discussed by means of standardization of plasma total protein content.

  13. Human Protein and Amino Acid Requirements.

    PubMed

    Hoffer, L John

    2016-05-01

    Human protein and amino acid nutrition encompasses a wide, complex, frequently misunderstood, and often contentious area of clinical research and practice. This tutorial explains the basic biochemical and physiologic principles that underlie our current understanding of protein and amino acid nutrition. The following topics are discussed: (1) the identity, measurement, and essentiality of nutritional proteins; (2) the definition and determination of minimum requirements; (3) nutrition adaptation; (4) obligatory nitrogen excretion and the minimum protein requirement; (5) minimum versus optimum protein intakes; (6) metabolic responses to surfeit and deficient protein intakes; (7) body composition and protein requirements; (8) labile protein; (9) N balance; (10) the principles of protein and amino acid turnover, including an analysis of the controversial indicator amino acid oxidation technique; (11) general guidelines for evaluating protein turnover articles; (12) amino acid turnover versus clearance; (13) the protein content of hydrated amino acid solutions; (14) protein requirements in special situations, including protein-catabolic critical illness; (15) amino acid supplements and additives, including monosodium glutamate and glutamine; and (16) a perspective on the future of protein and amino acid nutrition research. In addition to providing practical information, this tutorial aims to demonstrate the importance of rigorous physiologic reasoning, stimulate intellectual curiosity, and encourage fresh ideas in this dynamic area of human nutrition. In general, references are provided only for topics that are not well covered in modern textbooks. © 2016 American Society for Parenteral and Enteral Nutrition.

  14. [Analysis of total proteins in the seed of almond (Prunus dulcis) by two-dimensional electrophoresis].

    PubMed

    Li, Dong-dong; He, Shao-heng

    2004-07-01

    To analyse the total proteins in the seeds of almond (Prunus dulcis), one of the popular ingestent allergens in China, by two-dimensional electrophoresis. The total proteins of the seeds were extracted by trichloracetic acid (TCA) method, and then separated by isoelectric focusing as first dimension and SDS-PAGE as the second dimension. The spots of proteins were visualized by staining with Coomassie Brilliant Blue R-250. After analysis with software (ImageMaster 2D), 188 different proteins were detected. The isoelectric points (pI) for approximately 28% of total proteins were between 4.5-5.5, and the relative molecular mass (M(r)) of approximately 62% total proteins were between (20-25)x10(3). This was the first high-resolution, two-dimensional protein map of the seed of almond (Prunus dulcis) in China. Our finding has laid a solid foundation for further identification, characterization, gene cloning and standardization of allergenic proteins in the seed of almond (Prunus dulcis).

  15. Impact of Tranexamic Acid in Total Knee and Total Hip Replacement.

    PubMed

    Boyle, Jaclyn A; Soric, Mate M

    2017-02-01

    To evaluate the net clinical benefit of tranexamic acid use in patients undergoing total knee or total hip replacement. This is a retrospective study of patients undergoing total knee or total hip replacement. The primary outcome was the net clinical benefit of tranexamic acid use. Secondary outcomes included length of stay, incidence of venous thromboembolism, change in hemoglobin, and number of units of blood transfused. Four hundred and six patients were screened for inclusion and 327 patients met inclusion criteria; 174 patients received tranexamic acid versus 153 patients who received usual care. Tranexamic acid demonstrated a positive net clinical benefit versus usual care (40.8% vs 13.7%, P < .01) but did not affect length of stay (3.39 vs 3.37 days, respectively, P = .76). Venous thromboembolism was comparable between groups (2.3% vs 0.7%, P = .38). Average change in hemoglobin and need for transfusion were lower in the treatment group versus the usual care group, respectively (3.46 vs 4.26 mg/dL, P < .01). Tranexamic acid demonstrated a significant benefit in decreasing change in hemoglobin as well as the need for blood transfusion with no increase in the risk of venous thromboembolism in patients undergoing total knee or total hip replacement.

  16. NUCLEIC ACID AND PROTEIN METABOLISM DURING THE MITOTIC CYCLE IN VICIA FABA

    PubMed Central

    Woodard, John; Rasch, Ellen; Swift, Hewson

    1961-01-01

    In order to investigate some of the cytochemical processes involved in interphase growth and culminating in cell division, a combined autoradiographic and microphotometric study of nucleic acids and proteins was undertaken on statistically seriated cells of Vicia faba root meristems. Adenine-8-C14 and uridine-H3 were used as ribonucleic acid (RNA) precursors, thymidine-H3 as a deoxyribonucleic acid (DNA) precursor, and phenylalanine-3-C14 as a protein precursor. Stains used in microphotometry were Feulgen (DNA), azure B (RNA), pH 2.0 fast green (total protein), and pH 8.1 fast green (histone). The autoradiographic data (representing rate of incorporation per organelle) and the microphotometric data (representing changes in amounts of the various components) indicate that the mitotic cycle may be divided into several metabolic phases, three predominantly anabolic (net increase), and a fourth phase predominantly catabolic (net decrease). The anabolic periods are: 1. Telophase to post-telophase during which there are high rates of accumulation of cytoplasmic and nucleolar RNA and nucleolar and chromosomal total protein. 2. Post-telophase to preprophase characterized by histone synthesis and a diphasic synthesis of DNA with the peak of synthesis at mid-interphase and a minor peak just preceding prophase. The minor peak is coincident with a relatively localized DNA synthesis in several chromosomal regions. This period is also characterized by minimal accumulations of cytoplasmic RNA and chromosomal and nucleolar total protein and RNA. 3. Preprophase to prophase in which there are again high rates of accumulation of cytoplasmic RNA, and nucleolar and chromosomal total protein and RNA. The catabolic phase is: 4. The mitotic division during which there are marked losses of cytoplasmic RNA and chromosomal and nucleolar total protein and RNA. PMID:13786522

  17. [Chromosomal proteins: histones and acid proteins].

    PubMed

    Salvini, M; Gabrielli, F

    1976-01-01

    Experimental data about the chemistry and the biology of chromosomal proteins are reviewed. Paragraphs include: aminoacid sequential data and post-translational covalent modications of histones, histone chemical differences in different tissues of the same species and in homologous organs of different species, histone synthesis subcellular localization and its association with DNA synthesis, histone synthesis transcriptional and translational control, histone synthesis during meiosis, oogenesis and early embryogenesis. The possible role of histones as controllers of gene expression is discussed and a model of primary structure of chromatine is proposed. The "acidic proteins" data concern the high tissue eterogenity of these proteins and their role in the steroid-hormon-controlled gene expression. The possible role of acidic proteins as general controllers of gene expression in eucariotic cells is discussed.

  18. Fast and selective determination of total protein in milk powder via titration of moving reaction boundary electrophoresis.

    PubMed

    Guo, Cheng-ye; Wang, Hou-yu; Liu, Xiao-ping; Fan, Liu-yin; Zhang, Lei; Cao, Cheng-xi

    2013-05-01

    In this paper, moving reaction boundary titration (MRBT) was developed for rapid and accurate quantification of total protein in infant milk powder, from the concept of moving reaction boundary (MRB) electrophoresis. In the method, the MRB was formed by the hydroxide ions and the acidic residues of milk proteins immobilized via cross-linked polyacrylamide gel (PAG), an acid-base indicator was used to denote the boundary motion. As a proof of concept, we chose five brands of infant milk powders to study the feasibility of MRBT method. The calibration curve of MRB velocity versus logarithmic total protein content of infant milk powder sample was established based on the visual signal of MRB motion as a function of logarithmic milk protein content. Weak influence of nonprotein nitrogen (NPN) reagents (e.g., melamine and urea) on MRBT method was observed, due to the fact that MRB was formed with hydroxide ions and the acidic residues of captured milk proteins, rather than the alkaline residues or the NPN reagents added. The total protein contents in infant milk powder samples detected via the MRBT method were in good agreement with those achieved by the classic Kjeldahl method. In addition, the developed method had much faster measuring speed compared with the Kjeldahl method. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Detection of non-protein amino acids in the presence of protein amino acids. II.

    NASA Technical Reports Server (NTRS)

    Shapshak, P.; Okaji, M.

    1972-01-01

    Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.

  20. Phthalic acid chemical probes synthesized for protein-protein interaction analysis.

    PubMed

    Liang, Shih-Shin; Liao, Wei-Ting; Kuo, Chao-Jen; Chou, Chi-Hsien; Wu, Chin-Jen; Wang, Hui-Min

    2013-06-24

    Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid) is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP). According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES) was deposited on silicon dioxides (SiO2) particles and phthalate chemical probes were manufactured from phthalic acid and APTES-SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells) to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA) software showed that these chemical probes were a practical technique for protein-protein interaction analysis.

  1. Protein and Amino Acid Requirements during Pregnancy.

    PubMed

    Elango, Rajavel; Ball, Ronald O

    2016-07-01

    Protein forms an essential component of a healthy diet in humans to support both growth and maintenance. During pregnancy, an exceptional stage of life defined by rapid growth and development, adequate dietary protein is crucial to ensure a healthy outcome. Protein deposition in maternal and fetal tissues increases throughout pregnancy, with most occurring during the third trimester. Dietary protein intake recommendations are based on factorial estimates because the traditional method of determining protein requirements, nitrogen balance, is invasive and undesirable during pregnancy. The current Estimated Average Requirement and RDA recommendations of 0.88 and 1.1 g · kg(-1) · d(-1), respectively, are for all stages of pregnancy. The single recommendation does not take into account the changing needs during different stages of pregnancy. Recently, with the use of the minimally invasive indicator amino acid oxidation method, we defined the requirements to be, on average, 1.2 and 1.52 g · kg(-1) · d(-1) during early (∼16 wk) and late (∼36 wk) stages of pregnancy, respectively. Although the requirements are substantially higher than current recommendations, our values are ∼14-18% of total energy and fit within the Acceptable Macronutrient Distribution Range. Using swine as an animal model we showed that the requirements for several indispensable amino acids increase dramatically during late gestation compared with early gestation. Additional studies should be conducted during pregnancy to confirm the newly determined protein requirements and to determine the indispensable amino acid requirements during pregnancy in humans. © 2016 American Society for Nutrition.

  2. Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle.

    PubMed

    Borgenvik, Marcus; Apró, William; Blomstrand, Eva

    2012-03-01

    Resistance exercise and amino acids are two major factors that influence muscle protein turnover. Here, we examined the effects of resistance exercise and branched-chain amino acids (BCAA), individually and in combination, on the expression of anabolic and catabolic genes in human skeletal muscle. Seven subjects performed two sessions of unilateral leg press exercise with randomized supplementation with BCAA or flavored water. Biopsies were collected from the vastus lateralis muscle of both the resting and exercising legs before and repeatedly after exercise to determine levels of mRNA, protein phosphorylation, and amino acid concentrations. Intake of BCAA reduced (P < 0.05) MAFbx mRNA by 30 and 50% in the resting and exercising legs, respectively. The level of MuRF-1 mRNA was elevated (P < 0.05) in the exercising leg two- and threefold under the placebo and BCAA conditions, respectively, whereas MuRF-1 total protein increased by 20% (P < 0.05) only in the placebo condition. Phosphorylation of p70(S6k) increased to a larger extent (∼2-fold; P < 0.05) in the early recovery period with BCAA supplementation, whereas the expression of genes regulating mTOR activity was not influenced by BCAA. Muscle levels of phenylalanine and tyrosine were reduced (13-17%) throughout recovery (P < 0.05) in the placebo condition and to a greater extent (32-43%; P < 0.05) following BCAA supplementation in both resting and exercising muscle. In conclusion, BCAA ingestion reduced MAFbx mRNA and prevented the exercise-induced increase in MuRF-1 total protein in both resting and exercising leg. Further-more, resistance exercise differently influenced MAFbx and MuRF-1 mRNA expression, suggesting both common and divergent regulation of these two ubiquitin ligases.

  3. Nitrogen effects on proteins, chlorophylls and fatty acids during the growth of Arthrospira platensis.

    PubMed

    Ayachi, Samah; El Abed, Amor; Dhifi, Wissal; Marzouk, Brahim

    2007-06-01

    Spirulina platensis (=Arthrospira platensis) is a tunisian strain which has been isolated for the first time in Oued Essed (Sousse, Sidi Bou Ali). Biomass evolution, proteins, chlorophylls and fatty acids composition of this alga were monitored by varying nitrogen concentrations in the culture medium. Nitrogen stress was provoked by adding sodium nitrate (NaNO3) in the culture medium with concentrations varying from 0 to 5 g/l. Results obtained showed that nitrogen depletion increased total proteins and total chlorophylls. The addition of NaNO3 (5g/l) led to an increase of total fatty acids amounts and modify fatty acids composition. Optimal quantities of palmitic, gamma -linolenic and oleic acids were obtained with NaNO3 free-cultures. Thus, the tunisian strain has valuable biological substances, worthy to determine the optimal conditions for its propagation.

  4. Proximate composition and fatty acid analysis of Lablab purpureus (L.) legume seed: implicates to both protein and essential fatty acid supplementation.

    PubMed

    Hossain, Shahdat; Ahmed, Rashed; Bhowmick, Sujan; Mamun, Abdullah Al; Hashimoto, Michio

    2016-01-01

    The high mortality rate in Bangladesh is related to poverty, which results in protein malnutrition, essential fatty acid deficiency and lacks in adequate vitamins, minerals and calorie. Exploring new food items with improved dietary nutrition factors may, therefore, help to decrease the mortality rate in the poor countries like Bangladesh. Accordingly, the present study was a proximate composition and fatty acid analysis of L. purpureus seed-a legume seed which is given no careful attention locally, though it might be a good source of valuable nutrition factors for both animals and humans. The purpose of the study was, therefore, to generate awareness that L. purpureus could also act as a good source of food components essential for good health. Proximate analysis revealed that the seed powder contained 8.47 ± 0.52% moisture; 3.50 ± 0.0.07% ash; 1.02 ± 0.06% total fat; 23.95 ± 0.15% total protein; 1.21 ± 0.16% total dietary fiber; 61.86 ± 0.70% total carbohydrate and 352.4 ± 2.66 kcal/100 g energy. Phytic acid content (%) was 1.014 ± 0.048. Major fatty acid composition (%): the essential fatty acid linoleic acid (C18:2, ω-6) was 9.50 ± 0.68, while the linolenic acid (C18:3, ω-3) was 1.95 ± 0.18. Palmitic acid (C16:0), stearic acid (C18:0) and oleic acid (C18:1) were, respectively, 2.96 ± 0.19, 0.77 ± 0.04 and 1.10 ± 0.06. Lignoceric acid (C24:0) was 0.11 ± 0.007%. Monounsaturated palmitoleic acid (0.006 ± 0.0), docosapentaenoic acid (DPA, C22:5, ω-3) and nervonic acid (0.002 ± 0.0) were present in trace amounts. Arachidonic acid (AA, C20:4, ω-6), eicosapentaenoic acid (C20:5, ω-3), and docosahexaenoic acid (C22:6, ω-3) were not detected. The fatty acid profile, thus, suggests that essential omega-6 fatty acid linoleic acid (C18:3, ω-6) and omega-3 linolenic acid (C18:3, ω-3) were the major polyunsaturated fatty acids (PUFA) present in L. purpureus seed. In addition, the seed contained high amount of proteins

  5. Total chemical synthesis of human matrix Gla protein

    PubMed Central

    Hackeng, Tilman M.; Rosing, Jan; Spronk, Henri M.H.; Vermeer, Cees

    2001-01-01

    Human matrix Gla protein (MGP) is a vitamin K–dependent extracellular matrix protein that binds Ca2+ ions and that is involved in the prevention of vascular calcification. MGP is a 10.6-kD protein (84 amino acids) containing five γ-carboxyglutamic acid (Gla) residues and one disulfide bond. Studies of the mechanism by which MGP prevents calcification of the arterial media are hampered by the low solubility of the protein (<10 μg/mL). Because of solubility problems, processing of a recombinantly expressed MGP-fusion protein chimera to obtain MGP was unsuccessful. Here we describe the total chemical synthesis of MGP by tBoc solid-phase peptide synthesis (SPPS) and native chemical ligation. Peptide Tyr1-Ala53 was synthesized on a derivatized resin yielding a C-terminal thioester group. Peptide Cys54-Lys84 was synthesized on Lys-PAM resin yielding a C-terminal carboxylic acid. Subsequent native chemical ligation of the two peptides resulted in the formation of a native peptide bond between Ala53 and Cys54. Folding of the 1–84-polypeptide chain in 3 M guanidine (pH 8) resulted in a decrease of molecular mass from 10,605 to 10,603 (ESI-MS), representing the loss of two protons because of the formation of the Cys54-Cys60 internal disulfide bond. Like native MGP, synthetic MGP had the same low solubility when brought into aqueous buffer solutions with physiological salt concentrations, confirming its native like structure. However, the solubility of MGP markedly increased in borate buffer at pH 7.4 in the absence of sodium chloride. Ca2+-binding to MGP was confirmed by analytical HPLC, on which the retention time of MGP was reduced in the presence of CaCl2. Circular dichroism studies revealed a sharp increase in α-helicity at 0.2 mM CaCl2 that may explain the Ca2+-dependent shift in high-pressure liquid chromatography (HPLC)-retention time of MGP. In conclusion, facile and efficient chemical synthesis in combination with native chemical ligation yielded MGP

  6. Serum levels of albumin, triglycerides, total protein and glucose in rats are altered after oral treatment with low doses of 13-cis-retinoic acid or all-trans-retinoic acid.

    PubMed

    Cisneros, F J; Gough, B J; Patton, R E; Ferguson, S A

    2005-01-01

    Currently used to treat severe acne, 13-cis-retinoic acid (13-cis-RA) is under investigation for its anticancer effects as is the isomer, all-trans-retinoic acid (all-trans-RA). Here, the effects of oral 13-cis-RA or all-trans-RA treatment on serum chemistry, leptin and adiponectin levels were evaluated. Adult Sprague-Dawley rats were gavaged once daily for 7 consecutive days with 13-cis-RA (7.5 or 15 mg kg(-1)), all-trans-RA (10 or 15 mg kg(-1)) (n=24/sex/dose), or soy oil (n=16/sex) and blood was sampled 30-480 min after the last gavage. The body weight was unaffected; however, the liver/body weight ratios were increased by both doses of all-trans-RA. Sex differences were noted for levels of cholesterol, creatine, triglycerides, albumin, alanine aminotransferase and total protein. Both doses of all-trans-RA reduced albumin levels to approximately 90% of the control and total protein levels to approximately 93% of the control while substantially elevating triglyceride levels to approximately 66%-99% above the control. Additionally, triglyceride levels of the 15 mg kg(-1) 13-cis RA group were approximately 62% higher than the controls and total protein levels were approximately 5% less. Glucose levels were affected by sex and RA treatment in that males treated with 15 mg kg(-1) of 13-cis-RA or 10 mg kg(-1) all-trans-RA had lower (13%-19%) levels than the same-sex controls; however, females were not similarly affected. Neither 13-cis-RA nor all-trans-RA treatment had significant effects on the levels of blood urea nitrogen, aspartate amino transferase, leptin or adiponectin. On a mg kg(-1) basis, all-trans-RA was more potent than 13-cis-RA. These results replicate previous findings of RA-induced increased triglyceride levels. Additionally, several new findings indicate there may be sex-specific effects of RA treatment. Finally, neither treatment appeared to alter the typical diurnal cycles of these endpoints. Copyright (c) 2005 John Wiley & Sons, Ltd.

  7. Fatty acid transfer between multilamellar liposomes and fatty acid-binding proteins.

    PubMed

    Brecher, P; Saouaf, R; Sugarman, J M; Eisenberg, D; LaRosa, K

    1984-11-10

    A simple experimental system was developed for studying the movement of long-chain fatty acids between multilamellar liposomes and soluble proteins capable of binding fatty acids. Oleic acid was incorporated into multilamellar liposomes containing cholesterol and egg yolk lecithin and incubated with albumin or hepatic fatty acid-binding protein. It was found that the fatty acid transferred from the liposomes to either protein rapidly and selectively under conditions where phospholipid and cholesterol transfer did not occur. More than 50% of the fatty acid contained within liposomes could become protein bound, suggesting that the fatty acid moved readily between and across phospholipid bilayers. Transfer was reduced at low pH, and this reduction appeared to result from decreased dissociation of the protonated fatty acid from the bilayer. Liposomes made with dimyristoyl or dipalmitoyl lecithin and containing 1 mol per cent palmitic acid were used to show the effect of temperature on fatty acid transfer. Transfer to either protein did not occur at temperatures where the liposomes were in a gel state but occurred rapidly at temperatures at or above the transition temperatures of the phospholipid used.

  8. Protein and amino acid nutrition

    USDA-ARS?s Scientific Manuscript database

    Dairy cow protein and amino acid nutrition have a significant role in sustainable dairying. Protein, amino acids, and nitrogen are inextricably linked through effects in the rumen, metabolism of the cow, and environmental nutrient management. Feeding systems have been making progress toward emphasiz...

  9. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    PubMed

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Protein and Amino Acid Requirements during Pregnancy123

    PubMed Central

    Elango, Rajavel; Ball, Ronald O

    2016-01-01

    Protein forms an essential component of a healthy diet in humans to support both growth and maintenance. During pregnancy, an exceptional stage of life defined by rapid growth and development, adequate dietary protein is crucial to ensure a healthy outcome. Protein deposition in maternal and fetal tissues increases throughout pregnancy, with most occurring during the third trimester. Dietary protein intake recommendations are based on factorial estimates because the traditional method of determining protein requirements, nitrogen balance, is invasive and undesirable during pregnancy. The current Estimated Average Requirement and RDA recommendations of 0.88 and 1.1 g · kg−1 · d−1, respectively, are for all stages of pregnancy. The single recommendation does not take into account the changing needs during different stages of pregnancy. Recently, with the use of the minimally invasive indicator amino acid oxidation method, we defined the requirements to be, on average, 1.2 and 1.52 g · kg−1 · d−1 during early (∼16 wk) and late (∼36 wk) stages of pregnancy, respectively. Although the requirements are substantially higher than current recommendations, our values are ∼14–18% of total energy and fit within the Acceptable Macronutrient Distribution Range. Using swine as an animal model we showed that the requirements for several indispensable amino acids increase dramatically during late gestation compared with early gestation. Additional studies should be conducted during pregnancy to confirm the newly determined protein requirements and to determine the indispensable amino acid requirements during pregnancy in humans. PMID:27422521

  11. PLASMA PROTEIN PRODUCTION INFLUENCED BY AMINO ACID MIXTURES AND LACK OF ESSENTIAL AMINO ACIDS

    PubMed Central

    Madden, S. C.; Anderson, F. W.; Donovan, J. C.; Whipple, G. H.

    1945-01-01

    When blood plasma proteins are depleted by bleeding with return of red cells suspended in saline (plasmapheresis) it is possible to bring dogs to a steady state of hypoproteinemia and a constant level of plasma protein production if the diet nitrogen intake is controlled and limited. Such dogs are outwardly normal but have a lowered resistance to infection and intoxication and probably to vitamin deficiency. When the diet nitrogen is provided by certain mixtures of the ten growth essential amino acids plus glycine, given intravenously at a rapid rate, plasma protein production is good. The same mixture absorbed subcutaneously at a slower rate may be slightly better utilized. Fed orally the same mixture is better utilized and associated with a lower urinary nitrogen excretion. An ample amino acid mixture for the daily intake of a 10 kilo dog may contain in grams dl-threonine 1.4, dl-valine 3, dl-leucine 3, dl-isoleucine 2, l(+)-lysine·HCl·H2O 2.2, dl-tryptophane 0.3, dl-phenylalanine 2, dl-methionine 1.2, l(+)-histidine·HCl·H2O 1, l(+)-arginine·HCl 1, and glycine 2. Half this quantity is inadequate and not improved by addition of a mixture of alanine, serine, norleucine, proline, hydroxyproline, and tyrosine totalling 1.4 gm. Aspartic acid appears to induce vomiting when added to a mixture of amino acids. The same response has been reported for glutamic acid (8). Omission from the intake of leucine or of leucine and isoleucine results in negative nitrogen balance and rapid weight loss but plasma protein production may be temporarily maintained. It is possible that leucine may be captured from red blood cell destruction. Tryptophane deficiency causes an abrupt decline in plasma protein production. No decline occurred during 2 weeks of histidine deficiency but the urinary nitrogen increased to negative balance. Plasma protein production may be impaired during conditions of dietary deficiency not related to the protein or amino acid intake. Skin lesions and liver

  12. Refractometric total protein concentrations in icteric serum from dogs.

    PubMed

    Gupta, Aradhana; Stockham, Steven L

    2014-01-01

    To determine whether high serum bilirubin concentrations interfere with the measurement of serum total protein concentration by refractometry and to assess potential biases among refractometer measurements. Evaluation study. Sera from 2 healthy Greyhounds. Bilirubin was dissolved in 0.1M NaOH, and the resulting solution was mixed with sera from 2 dogs from which food had been withheld to achieve various bilirubin concentrations up to 40 mg/dL. Refractometric total protein concentrations were estimated with 3 clinical refractometers. A biochemical analyzer was used to measure biuret assay-based total protein and bilirubin concentrations with spectrophotometric assays. No interference with refractometric measurement of total protein concentrations was detected with bilirubin concentrations up to 41.5 mg/dL. Biases in refractometric total protein concentrations were detected and were related to the conversion of refractive index values to total protein concentrations. Hyperbilirubinemia did not interfere with the refractometric estimation of serum total protein concentration. The agreement among total protein concentrations estimated by 3 refractometers was dependent on the method of conversion of refractive index to total protein concentration and was independent of hyperbilirubinemia.

  13. The interaction of albumin and fatty-acid-binding protein with membranes: oleic acid dissociation.

    PubMed

    Catalá, A

    1984-10-01

    Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.

  14. Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions.

    PubMed

    Blatti, Jillian L; Beld, Joris; Behnke, Craig A; Mendez, Michael; Mayfield, Stephen P; Burkart, Michael D

    2012-01-01

    Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes.

  15. Manipulating Fatty Acid Biosynthesis in Microalgae for Biofuel through Protein-Protein Interactions

    PubMed Central

    Blatti, Jillian L.; Beld, Joris; Behnke, Craig A.; Mendez, Michael; Mayfield, Stephen P.; Burkart, Michael D.

    2012-01-01

    Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes. PMID:23028438

  16. 21 CFR 862.1635 - Total protein test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 862.9. [52 FR 16122, May 1, 1987, as amended at 63 FR 59225, Nov. 3, 1998] ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Total protein test system. 862.1635 Section 862....1635 Total protein test system. (a) Identification. A total protein test system is a device intended to...

  17. 21 CFR 862.1635 - Total protein test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... § 862.9. [52 FR 16122, May 1, 1987, as amended at 63 FR 59225, Nov. 3, 1998] ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Total protein test system. 862.1635 Section 862....1635 Total protein test system. (a) Identification. A total protein test system is a device intended to...

  18. 21 CFR 862.1635 - Total protein test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... § 862.9. [52 FR 16122, May 1, 1987, as amended at 63 FR 59225, Nov. 3, 1998] ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Total protein test system. 862.1635 Section 862....1635 Total protein test system. (a) Identification. A total protein test system is a device intended to...

  19. 21 CFR 862.1635 - Total protein test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... § 862.9. [52 FR 16122, May 1, 1987, as amended at 63 FR 59225, Nov. 3, 1998] ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Total protein test system. 862.1635 Section 862....1635 Total protein test system. (a) Identification. A total protein test system is a device intended to...

  20. 21 CFR 862.1635 - Total protein test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 862.9. [52 FR 16122, May 1, 1987, as amended at 63 FR 59225, Nov. 3, 1998] ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Total protein test system. 862.1635 Section 862....1635 Total protein test system. (a) Identification. A total protein test system is a device intended to...

  1. Trends of amino acid usage in the proteins from the unicellular parasite Giardia lamblia.

    PubMed

    Garat, B; Musto, H

    2000-12-29

    Correspondence analysis of amino acid frequencies was applied to 75 complete coding sequences from the unicellular parasite Giardia lamblia, and it was found that three major factors influence the variability of amino acidic composition of proteins. The first trend strongly correlated with (a) the cysteine content and (b) the mean weight of the amino acids used in each protein. The second trend correlated with the global levels of hydropathy and aromaticity of each protein. Both axes might be related with the defense of the parasite to oxygen free radicals. Finally, the third trend correlated with the expressivity of each gene, indicating that in G. lamblia highly expressed sequences display a tendency to preferentially use a subset of the total amino acids.

  2. Protein Design Using Unnatural Amino Acids

    NASA Astrophysics Data System (ADS)

    Bilgiçer, Basar; Kumar, Krishna

    2003-11-01

    With the increasing availability of whole organism genome sequences, understanding protein structure and function is of capital importance. Recent developments in the methodology of incorporation of unnatural amino acids into proteins allow the exploration of proteins at a very detailed level. Furthermore, de novo design of novel protein structures and function is feasible with unprecedented sophistication. Using examples from the literature, this article describes the available methods for unnatural amino acid incorporation and highlights some recent applications including the design of hyperstable protein folds.

  3. Oleic acid transfer from microsomes to egg lecithin liposomes: participation of fatty acid binding protein.

    PubMed

    Catalá, A; Avanzati, B

    1983-11-01

    Oleic acid transfer from microsomes or mitochondria to egg lecithin liposomes was stimulated by fatty acid binding protein. By gel filtration, it could be demonstrated that this protein incorporates oleic acid into liposomes. Fatty acid binding protein transfer activity was higher using microsomes rather than mitochondria, which suggests a selective interaction with different kinds of membranes. Transfer of oleic acid by this soluble protein is greater than that of stearic acid. The results indicate that fatty acid binding protein may participate in the intracellular transport of fatty acids.

  4. Amino acid composition and biological effects of supplementing broad bean and corn proteins with Nigella sativa (black cumin) cake protein.

    PubMed

    al-Gaby, A M

    1998-10-01

    The biological effects of supplementing broad bean (Vicia faba) or corn (Zea maize) meal protein with black cumin (Nigella sativa) cake protein as well as their amino acid composition were investigated. The percentage of total protein content of Nigella cake was 22.7%. Lysine is existent in abundant amounts in faba meal protein, while leucine is the most abundant in corn meal protein (chemical score = 156) and valine is higher in Nagella cake protein. compared with rats fed sole corn or faba meal protein, substitution of 25% of corn or faba meal protein with Nigella cake protein in the diet remarkably raised the growth rate of rats and resulted in significant higher levels of rat total serum lipids and triglycerides. Also, the supplemented diet caused significant increases in serum total protein and its two fractions albumin and globulin and insignificantly increase the activity of serum phosphatases and transaminases within normal ranges. The supplementation did not have any adverse nutritional effects in the levels of lipid fractions in the serum.

  5. A double stain for total and oxidized proteins from two-dimensional fingerprints.

    PubMed

    Talent, J M; Kong, Y; Gracy, R W

    1998-10-01

    Oxidative modification of proteins plays a major role in the etiology of aging and age-related diseases. For example, in Alzheimer's disease, although evidence points to oxidation of proteins as a causative factor in loss of cognitive abilities, it is not known which specific proteins of the brain are most susceptible to these modifications. Thus, it is of interest to identify the specific proteins which are susceptible to oxidation in vivo. Two-dimensional protein fingerprint methods offer the analytical potential for resolution of thousands of individual proteins from tissues, and the oxidized proteins can be visualized with immunological probes. Sensitive methods permit recovery and sufficient amino acid sequencing to identify these proteins. However, for such analyses it is essential to simultaneously analyze both protein content and level of oxidation. We have evaluated several approaches, identified the sources of artifacts and interferences, and developed a double-staining procedure that allows visualization and quantitation of total protein patterns as well as the specific oxidized proteins from two-dimensional protein fingerprints. The method has been applied to cells grown in culture and to tissue extracts from young and old animals. Copyright 1998 Academic Press.

  6. Protein-bound D-amino acids, and to a lesser extent lysinoalanine, decrease true ileal protein digestibility in minipigs as determined with (15)N-labeling.

    PubMed

    de Vrese, M; Frik, R; Roos, N; Hagemeister, H

    2000-08-01

    Heat and alkali treatment of food may increase the concentrations of protein-bound D-amino acids and cross-links such as lysinoalanine (LAL). To examine how protein treatment affects digestibility, purified test meals [total protein 150 g/kg dry matter (DM), 0.44 MJ/(kg BW(0.75). d)] were prepared, containing (g/kg DM) casein, 75; beta-lactoglobulin, 50; or wheat protein, 40. Each was (15)N-labeled. Test proteins were used either in their native form or after treatment for 6 or 24 h at 65 degrees C, pH 10.5-11.5. Each meal was fed to nine adult miniature pigs (twofold complete cross-classification). Chyme was collected continuously over 33 h postprandially via T-fistulas in the terminal ileum, and digestibilities of test proteins and individual L- and D-amino acids were calculated on the basis of recovery of (15)N and the respective amino acids in the chyme. Treatment of casein, beta-lactoglobulin or wheat protein for 24 h increased levels of D-amino acid residues. L-Asparagine and aspartate (L-Asx) were particularly susceptible; 14. 7 +/- 0.4, 11.7 +/- 0.2 and 11.0 +/- 0.9%, respectively, underwent racemization. LAL levels increased in parallel; 11.7 +/- 0.3, 13.6 +/- 0 and 14.8 +/- 0.0%, respectively, of total lysine was converted to LAL. At the same time, prececal protein digestibility was decreased by 13.4 +/- 2.3, 15.3 +/- 1.4 and 17.8 +/- 1.2% units, respectively (P < 0.05; mean +/- SEM, n = 9). Digestibility of individual L-amino acids decreased by 10-15%, but L-amino acids prone to peptic cleavage, such as L-phenylalanine and L-tyrosine, were not affected. Digestibilities of D-amino acids and LAL were approximately 35%. It seems that mainly D-amino acids, and to a lesser extent LAL, were responsible for lower digestibility by interfering with peptic cleavage.

  7. Values for digestible indispensable amino acid scores (DIAAS) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores (PDCAAS).

    PubMed

    Mathai, John K; Liu, Yanhong; Stein, Hans H

    2017-02-01

    An experiment was conducted to compare values for digestible indispensable amino acid scores (DIAAS) for four animal proteins and four plant proteins with values calculated as recommended for protein digestibility-corrected amino acid scores (PDCAAS), but determined in pigs instead of in rats. Values for standardised total tract digestibility (STTD) of crude protein (CP) and standardised ileal digestibility (SID) of amino acids (AA) were calculated for whey protein isolate (WPI), whey protein concentrate (WPC), milk protein concentrate (MPC), skimmed milk powder (SMP), pea protein concentrate (PPC), soya protein isolate (SPI), soya flour and whole-grain wheat. The PDCAAS-like values were calculated using the STTD of CP to estimate AA digestibility and values for DIAAS were calculated from values for SID of AA. Results indicated that values for SID of most indispensable AA in WPI, WPC and MPC were greater (P<0·05) than for SMP, PPC, SPI, soya flour and wheat. With the exception of arginine and tryptophan, the SID of all indispensable AA in SPI was greater (P<0·05) than in soya flour, and with the exception of threonine, the SID of all indispensable AA in wheat was less (P<0·05) than in all other ingredients. If the same scoring pattern for children between 6 and 36 months was used to calculate PDCAAS-like values and DIAAS, PDCAAS-like values were greater (P<0·05) than DIAAS values for SMP, PPC, SPI, soya flour and wheat indicating that PDCAAS-like values estimated in pigs may overestimate the quality of these proteins.

  8. Photocrosslinking and Photodamage in Protein-Nucleic Acid Systems Resulting from UV and IR Radiation.

    NASA Astrophysics Data System (ADS)

    Kozub, John Andrew

    1995-01-01

    Photocrosslinking of protein-nucleic acid complexes with low intensity UV has frequently been used to study biological systems. We have investigated the photochemistry of protein-nucleic acid systems using nanosecond UV pulses from a Nd:YAG-pumped dye laser system, low-intensity continuous UV from a typical germicidal lamp, and high-intensity mid -IR pulses from the Vanderbilt Free Electron Laser. Quantum yields for UV-induced nucleic acid damage from laser pulses and the germicidal lamp were found to be nearly equivalent. We have demonstrated the general applicability of the laser to this technique by successfully crosslinking hnRNP protein to RNA, yeast TATA-binding protein to dsDNA, and gene 32 protein to ssDNA with UV laser pulses. Our results indicate that UV-crosslinking has an intrinsic specificity for nucleic acid sites containing thymidine (or uridine), forcing a distinction between preferred binding sites and favorable crosslinking sites. We have found in each system that protein and nucleic acid photodamage competes with crosslinking, limits the yield, and may interfere with subsequent analysis. The distribution of photoproducts in the gene 32 protein-ssDNA system was investigated as a function of the total dose of UV radiation and the intensity of UV laser pulses. It was found that laser pulses providing up to 50 photons per nucleic acid base induce a linear response from the system; the absolute and relative yields of photoproducts depend only on the total dose of UV and not on the rate of delivery. At higher intensities, the yield of crosslinks per incident photon was reduced. A single pulse at the optimum intensity (about 100-200 photons per nucleic acid base) induced roughly 80% of the maximum attainable yield of crosslinks in this system. The early results of our search for photochemistry induced by Free Electron Laser pulses indicate the potential to induce a unique photoreaction in the gene 32 protein -ssDNA system. The yield is apparently

  9. Regulation of intestinal protein metabolism by amino acids.

    PubMed

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  10. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  11. Protein and Essential Amino Acids to Protect Musculoskeletal Health during Spaceflight: Evidence of a Paradox?

    PubMed Central

    Hackney, Kyle J.; English, Kirk L.

    2014-01-01

    Long-duration spaceflight results in muscle atrophy and a loss of bone mineral density. In skeletal muscle tissue, acute exercise and protein (e.g., essential amino acids) stimulate anabolic pathways (e.g., muscle protein synthesis) both independently and synergistically to maintain neutral or positive net muscle protein balance. Protein intake in space is recommended to be 12%–15% of total energy intake (≤1.4 g∙kg−1∙day−1) and spaceflight is associated with reduced energy intake (~20%), which enhances muscle catabolism. Increasing protein intake to 1.5–2.0 g∙kg−1∙day−1 may be beneficial for skeletal muscle tissue and could be accomplished with essential amino acid supplementation. However, increased consumption of sulfur-containing amino acids is associated with increased bone resorption, which creates a dilemma for musculoskeletal countermeasures, whereby optimizing skeletal muscle parameters via essential amino acid supplementation may worsen bone outcomes. To protect both muscle and bone health, future unloading studies should evaluate increased protein intake via non-sulfur containing essential amino acids or leucine in combination with exercise countermeasures and the concomitant influence of reduced energy intake. PMID:25370374

  12. [Effect of citric acid stimulation on salivary alpha-amylase, total protein, salivary flow rate and pH value in Pi deficiency children].

    PubMed

    Yang, Ze-min; Chen, Long-hui; Lin, Jing; Zhang, Min; Yang, Xiao-rong; Chen, Wei-wen

    2015-02-01

    To compare the effect of citric acid stimulation on salivary alpha-amylase (sAA), total protein (TP), salivary flow rate, and pH value between Pi deficiency (PD) children and healthy children, thereby providing evidence for Pi controlling saliva theory. Twenty PD children were recruited, and 29 healthy children were also recruited at the same time. Saliva samples from all subjects were collected before and after citric acid stimulation. The sAA activity and amount, TP contents, salivary flow rate, and pH value were determined and compared. (1) Citric acid stimulation was able to significantly increase salivary flow rate, pH value, sAA activities, sAA specific activity and sAA amount (including glycosylated and non-glycosylated sAA amount) in healthy children (P<0.05), while it could markedly increase salivary flow rate, pH value, and glycosylated sAA levels in PD children (P<0.05); (2) Although there was no statistical difference in determined salivary indices between the two groups (P>0.05), salivary indices except salivary flow rate and glycosylated sAA levels decreased more in PD children. There was statistical difference in sAA activity ratio, sAA specific activity ratio, and the ratio of glycosylated sAA levels between PD children and healthy children (P<0.05). PD children had decreased response to citric acid stimulation.

  13. Higher membrane fluidity mediates the increased subcutaneous fatty acid content in pigs fed reduced protein diets.

    PubMed

    Lopes, P A; Martins, A P; Martins, S V; Madeira, M S; Santos, N C; Moura, T F; Prates, J A M; Soveral, G

    2017-04-01

    The production of pork with moderate amounts of intramuscular fat (IMF) without an increase in subcutaneous fat is highly desirable for the meat industry. Several studies indicate that dietary protein reduction during the growing-finishing period of pigs enhances IMF content, but its consequence on carcass fat deposition is still contradictory. In this study, we hypothesized that the effects of reduced protein diets (RPD), corrected or not with the limiting amino acid lysine, on subcutaneous fat deposition from pigs with distinct genotypes are mediated by adipose membranes biophysical properties. In total, 36 crossbred (Large White×Landrace×Pietrain - a lean genotype) and purebred (Alentejana breed - a fatty genotype) male pigs were randomly assigned to the control group, the RPD group or the reduced protein diet equilibrated for lysine (RPDL) group, allowing a 2×3 factorial arrangement (n=6). Backfat thickness and total fatty acid content were higher in Alentejana relative to crossbred pigs. Although dietary treatments did not change backfat thickness, RPD and RPDL increased total fatty acids content of subcutaneous fat. In order to understand this effect, adipose tissue membranes isolated from pig's subcutaneous fat were assayed for glycerol permeability and fluidity, using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-(trimethylamino)-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) probes. The glycerol transport across adipose membranes was not mediated by aquaglyceroporins and remained unchanged across dietary groups. Regardless of lysine correction, RPD increased membrane fluidity at the hydrocarbon region (lower DPH fluorescence anisotropy) in both genotypes of pigs. This result was associated with a lower ratio between oleic acid and linoleic acid on membrane's fatty acid composition. Adipose membrane's cholesterol content was independent from genotype and diet. Taken together, the present study shows that dietary protein reduction is successful in maintaining

  14. Structures and functions of proteins and nucleic acids in protein biosynthesis

    NASA Astrophysics Data System (ADS)

    Miyazawa, Tatsuo; Yokoyama, Shigeyuki

    Infrared and Raman spectroscopy is useful for studying helical conformations of polypeptides, which are determined by molecular structure parameters. Nuclear magnetic resonance spectroscopy, as well as X-ray analysis, is now established to be important for conformation studies of proteins and nucleic acids in solution. This article is mainly concerned with the conformational aspect and function regulation in protein biosynthesis. The strict recognition of transfer ribonucleic acid (tRNA) by aminoacyl-tRNA synthetase (ARS) is achieved by multi-step mutual adaptation. The conformations of ARS-bound amino acids have been elucidated by transferred nuclear Overhauser effect analysis. Aminoacyl-tRNA takes the 3‧-isomeric form in the polypeptide chain elongation cycle. The regulation of codon recognition by post-transcriptional modification is achieved by conversion of the conformational characteristic of the anticodon of tRNA. The cytidine → lysidine modification of the anticodon of minor isoleucine tRNA concurrently converts the amino acid specificity and the codon specificity. As novel protein engineering, a basic strategy has been established for in vivo biosynthesis of proteins that are substituted with unnatural amino acids (alloproteins).

  15. Amino Acid Composition of an Organic Brown Rice Protein Concentrate and Isolate Compared to Soy and Whey Concentrates and Isolates.

    PubMed

    Kalman, Douglas S

    2014-06-30

    A protein concentrate (Oryzatein-80™) and a protein isolate (Oryzatein-90™) from organic whole-grain brown rice were analyzed for their amino acid composition. Two samples from different batches of Oryzatein-90™ and one sample of Oryzatein-80™ were provided by Axiom Foods (Los Angeles, CA, USA). Preparation and analysis was carried out by Covance Laboratories (Madison, WI, USA). After hydrolysis in 6-N hydrochloric acid for 24 h at approximately 110 °C and further chemical stabilization, samples were analyzed by HPLC after pre-injection derivitization. Total amino acid content of both the isolate and the concentrate was approximately 78% by weight with 36% essential amino acids and 18% branched-chain amino acids. These results are similar to the profiles of raw and cooked brown rice except in the case of glutamic acid which was 3% lower in the isolate and concentrate. The amino acid content and profile of the Oryzatein-90™ isolate was similar to published values for soy protein isolate but the total, essential, and branched-chain amino acid content of whey protein isolate was 20%, 39% and 33% greater, respectively, than that of Oryzatein-90™. These results provide a valuable addition to the nutrient database of protein isolates and concentrates from cereal grains.

  16. Amino Acid Composition of an Organic Brown Rice Protein Concentrate and Isolate Compared to Soy and Whey Concentrates and Isolates

    PubMed Central

    Kalman, Douglas S.

    2014-01-01

    A protein concentrate (Oryzatein-80™) and a protein isolate (Oryzatein-90™) from organic whole-grain brown rice were analyzed for their amino acid composition. Two samples from different batches of Oryzatein-90™ and one sample of Oryzatein-80™ were provided by Axiom Foods (Los Angeles, CA, USA). Preparation and analysis was carried out by Covance Laboratories (Madison, WI, USA). After hydrolysis in 6-N hydrochloric acid for 24 h at approximately 110 °C and further chemical stabilization, samples were analyzed by HPLC after pre-injection derivitization. Total amino acid content of both the isolate and the concentrate was approximately 78% by weight with 36% essential amino acids and 18% branched-chain amino acids. These results are similar to the profiles of raw and cooked brown rice except in the case of glutamic acid which was 3% lower in the isolate and concentrate. The amino acid content and profile of the Oryzatein-90™ isolate was similar to published values for soy protein isolate but the total, essential, and branched-chain amino acid content of whey protein isolate was 20%, 39% and 33% greater, respectively, than that of Oryzatein-90™. These results provide a valuable addition to the nutrient database of protein isolates and concentrates from cereal grains. PMID:28234326

  17. Interactions between Therapeutic Proteins and Acrylic Acid Leachable.

    PubMed

    Liu, Dengfeng; Nashed-Samuel, Yasser; Bondarenko, Pavel V; Brems, David N; Ren, Da

    2012-01-01

    Leachables are chemical compounds that migrate from manufacturing equipment, primary containers and closure systems, and packaging components into biopharmaceutical and pharmaceutical products. Acrylic acid (at concentration around 5 μg/mL) was detected as leachable in syringes from one of the potential vendors (X syringes). In order to evaluate the potential impact of acrylic acid on therapeutic proteins, an IgG 2 molecule was filled into a sterilized X syringe and then incubated at 45 °C for 45 days in a pH 5 acetate buffer. We discovered that acrylic acid can interact with proteins at three different sites: (1) the lysine side chain, (2) the N-terminus, and (3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed. Even thought a small amount (from 0.02% to 0.3%) of protein was found to be modified by acrylic acid, the modified protein can potentially be harmful due to the toxicity of acrylic acid. After being modified by acrylic acid, the properties of the therapeutic protein may change due to charge and hydrophobicity variations. Acrylic acid was detected to migrate from syringes (Vendor X) into a therapeutic protein solution (at a concentration around 5 μg/mL). In this study, we discovered that acrylic acid can modify proteins at three different sites: (1) the lysine side chain, 2) the N-terminus, and 3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed.

  18. Real-time Measurements of Amino Acid and Protein Hydroperoxides Using Coumarin Boronic Acid*

    PubMed Central

    Michalski, Radoslaw; Zielonka, Jacek; Gapys, Ewa; Marcinek, Andrzej; Joseph, Joy; Kalyanaraman, Balaraman

    2014-01-01

    Hydroperoxides of amino acid and amino acid residues (tyrosine, cysteine, tryptophan, and histidine) in proteins are formed during oxidative modification induced by reactive oxygen species. Amino acid hydroperoxides are unstable intermediates that can further propagate oxidative damage in proteins. The existing assays (oxidation of ferrous cation and iodometric assays) cannot be used in real-time measurements. In this study, we show that the profluorescent coumarin boronic acid (CBA) probe reacts with amino acid and protein hydroperoxides to form the corresponding fluorescent product, 7-hydroxycoumarin. 7-Hydroxycoumarin formation was catalase-independent. Based on this observation, we have developed a fluorometric, real-time assay that is adapted to a multiwell plate format. This is the first report showing real-time monitoring of amino acid and protein hydroperoxides using the CBA-based assay. This approach was used to detect protein hydroperoxides in cell lysates obtained from macrophages exposed to visible light and photosensitizer (rose bengal). We also measured the rate constants for the reaction between amino acid hydroperoxides (tyrosyl, tryptophan, and histidine hydroperoxides) and CBA, and these values (7–23 m−1 s−1) were significantly higher than that measured for H2O2 (1.5 m−1 s−1). Using the CBA-based competition kinetics approach, the rate constants for amino acid hydroperoxides with ebselen, a glutathione peroxidase mimic, were also determined, and the values were within the range of 1.1–1.5 × 103 m−1 s−1. Both ebselen and boronates may be used as small molecule scavengers of amino acid and protein hydroperoxides. Here we also show formation of tryptophan hydroperoxide from tryptophan exposed to co-generated fluxes of nitric oxide and superoxide. This observation reveals a new mechanism for amino acid and protein hydroperoxide formation in biological systems. PMID:24928516

  19. Measurement of the incorporation rates of four amino acids into proteins for estimating bacterial production.

    PubMed

    Servais, P

    1995-03-01

    In aquatic ecosystems, [(3)H]thymidine incorporation into bacterial DNA and [(3)H]leucine incorporation into proteins are usually used to estimate bacterial production. The incorporation rates of four amino acids (leucine, tyrosine, lysine, alanine) into proteins of bacteria were measured in parallel on natural freshwater samples from the basin of the river Meuse (Belgium). Comparison of the incorporation into proteins and into the total macromolecular fraction showed that these different amino acids were incorporated at more than 90% into proteins. From incorporation measurements at four subsaturated concentrations (range, 2-77 nm), the maximum incorporation rates were determined. Strong correlations (r > 0.91 for all the calculated correlations) were found between the maximum incorporation rates of the different tested amino acids over a range of two orders of magnitude of bacterial activity. Bacterial production estimates were calculated using theoretical and experimental conversion factors. The productions calculated from the incorporation rates of the four amino acids were in good concordance, especially when the experimental conversion factors were used (slope range, 0.91-1.11, and r > 0.91). This study suggests that the incorporation of various amino acids into proteins can be used to estimate bacterial production.

  20. Effects of preparation methods on protein and amino acid contents of various eggs available in Malaysian local markets.

    PubMed

    Ismail, Maznah; Mariod, Abdalbasit; Pin, Sia Soh

    2013-01-01

    The effect of preparation methods (raw, half-boiled and hard-boiled) on protein and amino acid contents, as well as the protein quality (amino acid score) of regular, kampung and nutrient enriched Malaysian eggs was investigated. The protein content was determined using a semi-micro Kjeldahl method whereas the amino acid composition was determined using HPLC. The protein content of raw regular, kampung and nutrient enriched eggs were 49.9 ±0.2%, 55.8 ±0.2% and 56.5 ±0.5%, respectively. The protein content of hard-boiled eggs of regular, kampung and nutrient enriched eggs was 56.8 ±0.1%, 54.7 ±0.1%, and 53.7 ±0.5%, while that for half-boiled eggs of regular, kampung and nutrient enriched eggs was 54.7 ±0.6%, 53.4 ±0.4%, and 55.1 ±0.7%, respectively. There were significant differences (p < 0.05) in protein and amino acid contents of half-boiled, hard-boiled as compared with raw samples, and valine was found as the limiting amino acid. It was found that there were significant differences (p < 0.05) of total amino score in regular, kampung and nutrient enriched eggs after heat treatments.Furthermore, hard-boiling (100°C) for 10 minutes and half-boiling (100°C) for 5 minutes affects the total amino score, which in turn alter the protein quality of the egg.

  1. Determination of the X-ray structure of the snake venom protein omwaprin by total chemical synthesis and racemic protein crystallography.

    PubMed

    Banigan, James R; Mandal, Kalyaneswar; Sawaya, Michael R; Thammavongsa, Vilasak; Hendrickx, Antoni P A; Schneewind, Olaf; Yeates, Todd O; Kent, Stephen B H

    2010-10-01

    The 50-residue snake venom protein L-omwaprin and its enantiomer D-omwaprin were prepared by total chemical synthesis. Radial diffusion assays were performed against Bacillus megaterium and Bacillus anthracis; both L- and D-omwaprin showed antibacterial activity against B. megaterium. The native protein enantiomer, made of L-amino acids, failed to crystallize readily. However, when a racemic mixture containing equal amounts of L- and D-omwaprin was used, diffraction quality crystals were obtained. The racemic protein sample crystallized in the centrosymmetric space group P2(1)/c and its structure was determined at atomic resolution (1.33 A) by a combination of Patterson and direct methods based on the strong scattering from the sulfur atoms in the eight cysteine residues per protein. Racemic crystallography once again proved to be a valuable method for obtaining crystals of recalcitrant proteins and for determining high-resolution X-ray structures by direct methods.

  2. NPIDB: Nucleic acid-Protein Interaction DataBase.

    PubMed

    Kirsanov, Dmitry D; Zanegina, Olga N; Aksianov, Evgeniy A; Spirin, Sergei A; Karyagina, Anna S; Alexeevski, Andrei V

    2013-01-01

    The Nucleic acid-Protein Interaction DataBase (http://npidb.belozersky.msu.ru/) contains information derived from structures of DNA-protein and RNA-protein complexes extracted from the Protein Data Bank (3846 complexes in October 2012). It provides a web interface and a set of tools for extracting biologically meaningful characteristics of nucleoprotein complexes. The content of the database is updated weekly. The current version of the Nucleic acid-Protein Interaction DataBase is an upgrade of the version published in 2007. The improvements include a new web interface, new tools for calculation of intermolecular interactions, a classification of SCOP families that contains DNA-binding protein domains and data on conserved water molecules on the DNA-protein interface.

  3. Contribution of acidic components to the total acid number (TAN) of bio-oil

    DOE PAGES

    Park, Lydia K-E.; Liu, Jiaojun; Yiacoumi, Sotira; ...

    2017-03-28

    Bio-oil or pyrolysis oil — a product of thermochemical decomposition of biomass under oxygen-limited conditions — holds great potential to be a substitute for nonrenewable fossil fuels. But, its high acidity, which is primarily due to the degradation of hemicelluloses, limits its applications. For the evaluation of bio-oil production and treatment, it is essential to accurately measure the acidity of bio-oil. The total acid number (TAN), which is defined as the amount of potassium hydroxide needed to titrate one gram of a sample and has been established as an ASTM method to measure the acidity of petroleum products, has beenmore » employed to investigate the acidity of bio-oil. The TAN values of different concentrations of bio-oil components such as standard solutions of acetic acid, propionic acid, vanillic acid, hydroxybenzoic acid, syringic acid, hydroxymethylfurfural, and phenol were analyzed according to the ASTM D664 standard method. Our method showed the same linear relationship between the TAN values and the molar concentrations of acetic, propionic, and hydroxybenzoic acids. A different linear relationship was found for vanillic acid, due to the presence of multiple functional groups that can contribute to the TAN value. Furthermore, the influence of the titration solvent on the TAN values has been determined by comparing the TAN values and titration curves obtained from the standard method with results from the TAN analysis in aqueous environment and with equilibrium modeling results. Aqueous bio-oil samples with a known amount of acetic acid added were also analyzed. The additional acetic acid in bio-oil samples caused a proportional increase in the TAN values. These results of this research indicate that the TAN value of a sample with acids acting as monoprotic acids in the titration solvent can be converted to the molar concentration of total acids. For a sample containing acids that act as diprotic and polyprotic acids, however, its TAN value

  4. Contribution of acidic components to the total acid number (TAN) of bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Lydia K-E.; Liu, Jiaojun; Yiacoumi, Sotira

    Bio-oil or pyrolysis oil — a product of thermochemical decomposition of biomass under oxygen-limited conditions — holds great potential to be a substitute for nonrenewable fossil fuels. But, its high acidity, which is primarily due to the degradation of hemicelluloses, limits its applications. For the evaluation of bio-oil production and treatment, it is essential to accurately measure the acidity of bio-oil. The total acid number (TAN), which is defined as the amount of potassium hydroxide needed to titrate one gram of a sample and has been established as an ASTM method to measure the acidity of petroleum products, has beenmore » employed to investigate the acidity of bio-oil. The TAN values of different concentrations of bio-oil components such as standard solutions of acetic acid, propionic acid, vanillic acid, hydroxybenzoic acid, syringic acid, hydroxymethylfurfural, and phenol were analyzed according to the ASTM D664 standard method. Our method showed the same linear relationship between the TAN values and the molar concentrations of acetic, propionic, and hydroxybenzoic acids. A different linear relationship was found for vanillic acid, due to the presence of multiple functional groups that can contribute to the TAN value. Furthermore, the influence of the titration solvent on the TAN values has been determined by comparing the TAN values and titration curves obtained from the standard method with results from the TAN analysis in aqueous environment and with equilibrium modeling results. Aqueous bio-oil samples with a known amount of acetic acid added were also analyzed. The additional acetic acid in bio-oil samples caused a proportional increase in the TAN values. These results of this research indicate that the TAN value of a sample with acids acting as monoprotic acids in the titration solvent can be converted to the molar concentration of total acids. For a sample containing acids that act as diprotic and polyprotic acids, however, its TAN value

  5. Glutamic Acid as a Precursor to N-Terminal Pyroglutamic Acid in Mouse Plasmacytoma Protein

    PubMed Central

    Twardzik, Daniel R.; Peterkofsky, Alan

    1972-01-01

    Cell suspensions derived from a mouse plasmacytoma (RPC-20) that secretes an immunoglobulin light chain containing N-terminal pyroglutamic acid can synthesize protein in vitro. Chromatographic examination of an enzymatic digest of protein labeled with glutamic acid shows only labeled glutamic acid and pyroglutamic acid; hydrolysis of protein from cells labeled with glutamine, however, yields substantial amounts of glutamic acid in addition to glutamine and pyroglutamic acid. The absence of glutamine synthetase and presence of glutaminase in plasmacytoma homogenates is consistent with these findings. These data indicate that N-terminal pyroglutamic acid can be derived from glutamic acid without prior conversion of glutamic acid to glutamine. Since free or bound forms of glutamine cyclize nonezymatically to pyroglutamate with ease, while glutamic acid does not, the data suggest that N-terminal pyroglutamic acid formation from glutamic acid is enzymatic rather than spontaneous. Images PMID:4400295

  6. Automated protein hydrolysis delivering sample to a solid acid catalyst for amino acid analysis.

    PubMed

    Masuda, Akiko; Dohmae, Naoshi

    2010-11-01

    In this study, we developed an automatic protein hydrolysis system using strong cation-exchange resins as solid acid catalysts. Examining several kinds of inorganic solid acids and cation-exchange resins, we found that a few cation-exchange resins worked as acid catalysts for protein hydrolysis when heated in the presence of water. The most efficient resin yielded amounts of amino acids that were over 70% of those recovered after conventional hydrolysis with hydrochloric acid and resulted in amino acid compositions matching the theoretical values. The solid-acid hydrolysis was automated by packing the resin into columns, combining the columns with a high-performance liquid chromatography system, and heating them. The amino acids that constitute a protein can thereby be determined, minimizing contamination from the environment.

  7. Dietary acid load and chronic kidney disease in elderly adults: Protein and potassium intake.

    PubMed

    Ko, Byung-Joon; Chang, Yoosoo; Ryu, Seungho; Kim, Eun Mi; Lee, Mi Yeon; Hyun, Young Youl; Lee, Kyu-Beck

    2017-01-01

    Dietary net endogenous acid production (NEAP), which represents total dietary load of nonvolatile acid, may affect kidney function. Estimated NEAP (eNEAP) is calculated indirectly by the ratio of protein and potassium intake. A few studies are available assessing the association between eNEAP and chronic kidney disease (CKD), and its relation to dietary protein and potassium intake in the elderly. A total 1,369 community-dwelling elderly Koreans in the Kangbuk Samsung Cohort Study (KSCS) were evaluated using a food frequency questionnaire (FFQ) and comprehensive health examination. We evaluated the association between eNEAP and the CKD. We also examined their relation to protein and potassium intake. eNEAP was correlated with potassium intake (r = -0.410, P < 0.001), but was not correlated with protein intake (r = -0.004, P = 0.879). In a full multivariate adjustment for sociodemographic factors, dietary factors, and comorbidities, the participants with higher eNEAP quartiles (Q2, Q3, Q4) had higher odds of CKD compared to the lowest eNEAP quartile (Q1); OR (95% CI) were 1.47 (0.78-2.72), 1.66 (0.85-3.23), and 2.30 (1.16-4.60) respectively (P for trend = 0.019). The odds of CKD decreased for participants with higher potassium intake quartiles (Q2, Q3, Q4) compared to the lowest potassium intake quartile (Q1); OR (95% CI) were 0.52 (0.28-0.95), 0.50 (0.26-0.96), and 0.50 (0.21-0.99) respectively (P for trend = 0.050). Protein intake was not associated with CKD. The association between eNEAP and CKD was similar in subgroup analysis. Dietary acid load was associated with CKD. Among the nutrients related to dietary acid load, potassium intake was negatively associated with CKD, but protein intake was not associated with CKD in elderly adults.

  8. A method for analysing small samples of floral pollen for free and protein-bound amino acids.

    PubMed

    Stabler, Daniel; Power, Eileen F; Borland, Anne M; Barnes, Jeremy D; Wright, Geraldine A

    2018-02-01

    Pollen provides floral visitors with essential nutrients including proteins, lipids, vitamins and minerals. As an important nutrient resource for pollinators, including honeybees and bumblebees, pollen quality is of growing interest in assessing available nutrition to foraging bees. To date, quantifying the protein-bound amino acids in pollen has been difficult and methods rely on large amounts of pollen, typically more than 1 g. More usual is to estimate a crude protein value based on the nitrogen content of pollen, however, such methods provide no information on the distribution of essential and non-essential amino acids constituting the proteins.Here, we describe a method of microwave-assisted acid hydrolysis using low amounts of pollen that allows exploration of amino acid composition, quantified using ultra high performance liquid chromatography (UHPLC), and a back calculation to estimate the crude protein content of pollen.Reliable analysis of protein-bound and free amino acids as well as an estimation of crude protein concentration was obtained from pollen samples as low as 1 mg. Greater variation in both protein-bound and free amino acids was found in pollen sample sizes <1 mg. Due to the variability in recovery of amino acids in smaller sample sizes, we suggest a correction factor to apply to specific sample sizes of pollen in order to estimate total crude protein content.The method described in this paper will allow researchers to explore the composition of amino acids in pollen and will aid research assessing the available nutrition to pollinating animals. This method will be particularly useful in assaying the pollen of wild plants, from which it is difficult to obtain large sample weights.

  9. NMR studies of protein-nucleic acid interactions.

    PubMed

    Varani, Gabriele; Chen, Yu; Leeper, Thomas C

    2004-01-01

    Protein-DNA and protein-RNA complexes play key functional roles in every living organism. Therefore, the elucidation of their structure and dynamics is an important goal of structural and molecular biology. Nuclear magnetic resonance (NMR) studies of protein and nucleic acid complexes have common features with studies of protein-protein complexes: the interaction surfaces between the molecules must be carefully delineated, the relative orientation of the two species needs to be accurately and precisely determined, and close intermolecular contacts defined by nuclear Overhauser effects (NOEs) must be obtained. However, differences in NMR properties (e.g., chemical shifts) and biosynthetic pathways for sample productions generate important differences. Chemical shift differences between the protein and nucleic acid resonances can aid the NMR structure determination process; however, the relatively limited dispersion of the RNA ribose resonances makes the process of assigning intermolecular NOEs more difficult. The analysis of the resulting structures requires computational tools unique to nucleic acid interactions. This chapter summarizes the most important elements of the structure determination by NMR of protein-nucleic acid complexes and their analysis. The main emphasis is on recent developments (e.g., residual dipolar couplings and new Web-based analysis tools) that have facilitated NMR studies of these complexes and expanded the type of biological problems to which NMR techniques of structural elucidation can now be applied.

  10. Changes in human parotid salivary protein and sialic acid levels during pregnancy.

    PubMed

    D'Alessandro, S; Curbelo, H M; Tumilasci, O R; Tessler, J A; Houssay, A B

    1989-01-01

    Saliva was collected with a Carlson-Crittenden device, under citric acid stimulation, in 107 pregnant women, 9 puerperal and 7 non-pregnant controls. No significant changes were found in salivary flow rate, pH and amylase levels. The total protein levels were decreased during pregnancy and the puerperium. The sialic acid levels decreased gradually but markedly during pregnancy, returning to normal levels in the puerperium. These changes in parotid saliva may be related to the hormonal changes of pregnancy.

  11. Use of conserved key amino acid positions to morph protein folds.

    PubMed

    Reddy, Boojala V B; Li, Wilfred W; Bourne, Philip E

    2002-07-15

    By using three-dimensional (3D) structure alignments and a previously published method to determine Conserved Key Amino Acid Positions (CKAAPs) we propose a theoretical method to design mutations that can be used to morph the protein folds. The original Paracelsus challenge, met by several groups, called for the engineering of a stable but different structure by modifying less than 50% of the amino acid residues. We have used the sequences from the Protein Data Bank (PDB) identifiers 1ROP, and 2CRO, which were previously used in the Paracelsus challenge by those groups, and suggest mutation to CKAAPs to morph the protein fold. The total number of mutations suggested is less than 40% of the starting sequence theoretically improving the challenge results. From secondary structure prediction experiments of the proposed mutant sequence structures, we observe that each of the suggested mutant protein sequences likely folds to a different, non-native potentially stable target structure. These results are an early indicator that analyses using structure alignments leading to CKAAPs of a given structure are of value in protein engineering experiments. Copyright 2002 Wiley Periodicals, Inc.

  12. Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process.

    PubMed

    Falomir-Lockhart, Lisandro J; Laborde, Lisandro; Kahn, Peter C; Storch, Judith; Córsico, Betina

    2006-05-19

    Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.

  13. Arginine supplementation modulates pig plasma lipids, but not hepatic fatty acids, depending on dietary protein level with or without leucine.

    PubMed

    Madeira, Marta Sofia Morgado Dos Santos; Rolo, Eva Sofia Alves; Pires, Virgínia Maria Rico; Alfaia, Cristina Maria Riscado Pereira Mateus; Coelho, Diogo Francisco Maurício; Lopes, Paula Alexandra Antunes Brás; Martins, Susana Isabel Vargas; Pinto, Rui Manuel Amaro; Prates, José António Mestre

    2017-05-30

    In the present study, the effect of arginine and leucine supplementation, and dietary protein level, were investigated in commercial crossbred pigs to clarify their individual or combined impact on plasma metabolites, hepatic fatty acid composition and mRNA levels of lipid sensitive factors. The experiment was conducted on fifty-four entire male pigs (Duroc × Pietrain × Large White × Landrace crossbred) from 59 to 92 kg of live weight. Each pig was randomly assigned to one of six experimental treatments (n = 9). The treatments followed a 2 × 3 factorial arrangement, providing two levels of arginine supplementation (0 vs. 1%) and three levels of basal diet (normal protein diet, NPD; reduced protein diet, RPD; reduced protein diet with 2% of leucine, RPDL). Significant interactions between arginine supplementation and protein level were observed across plasma lipids. While dietary arginine increased total lipids, total cholesterol, HDL-cholesterol, LDL-cholesterol, VLDL-cholesterol and triacylglycerols in NPD, the inverse effect was observed in RPD. Overall, dietary treatments had a minor impact on hepatic fatty acid composition. RPD increased 18:1c9 fatty acid while the combination of leucine and RPD reduced 18:0 fatty acid. Arginine supplementation increased the gene expression of FABP1, which contributes for triacylglycerols synthesis without affecting hepatic fatty acids content. RPD, with or without leucine addition, upregulated the lipogenic gene CEBPA but downregulated the fat oxidation gene LPIN1. Arginine supplementation was responsible for a modulated effect on plasma lipids, which is dependent on dietary protein level. It consistently increased lipaemia in NPD, while reducing the correspondent metabolites in RPD. In contrast, arginine had no major impact, neither on hepatic fatty acids content nor on fatty acid composition. Likewise, leucine supplementation of RPD, regardless the presence of arginine, promoted no changes on total fatty acids in

  14. Studies on fatty acid-binding proteins. The detection and quantification of the protein from rat liver by using a fluorescent fatty acid analogue.

    PubMed Central

    Wilkinson, T C; Wilton, D C

    1986-01-01

    Fatty acid-binding protein from rat liver is shown to bind the fluorescent fatty acid probe dansyl undecanoic acid. Binding is accompanied by a shift in the fluorescence emission maximum from 550 nm to 500 nm and a 60-fold fluorescence enhancement at 500 nm. These spectral properties have allowed the use of this probe to detect and quantify microgram amounts of liver fatty acid-binding protein during purification procedures. In conjunction with h.p.l.c. the method allows the rapid estimation of liver fatty acid-binding protein in biological samples. The validity of the method is demonstrated by measuring the concentration of fatty acid-binding protein in livers from control and hypolipidaemic-drug-treated rats. The dramatic diurnal rhythm previously reported for this protein [Dempsey (1984) Curr. Top. Cell. Regul. 24, 63-86] was not observed with this method. Images Fig. 1. PMID:3800946

  15. Suppression of muscle protein turnover and amino acid degradation by dietary protein deficiency

    NASA Technical Reports Server (NTRS)

    Tawa, N. E. Jr; Goldberg, A. L.

    1992-01-01

    To define the adaptations that conserve amino acids and muscle protein when dietary protein intake is inadequate, rats (60-70 g final wt) were fed a normal or protein-deficient (PD) diet (18 or 1% lactalbumin), and their muscles were studied in vitro. After 7 days on the PD diet, both protein degradation and synthesis fell 30-40% in skeletal muscles and atria. This fall in proteolysis did not result from reduced amino acid supply to the muscle and preceded any clear decrease in plasma amino acids. Oxidation of branched-chain amino acids, glutamine and alanine synthesis, and uptake of alpha-aminoisobutyrate also fell by 30-50% in muscles and adipose tissue of PD rats. After 1 day on the PD diet, muscle protein synthesis and amino acid uptake decreased by 25-40%, and after 3 days proteolysis and leucine oxidation fell 30-45%. Upon refeeding with the normal diet, protein synthesis also rose more rapidly (+30% by 1 day) than proteolysis, which increased significantly after 3 days (+60%). These different time courses suggest distinct endocrine signals for these responses. The high rate of protein synthesis and low rate of proteolysis during the first 3 days of refeeding a normal diet to PD rats contributes to the rapid weight gain ("catch-up growth") of such animals.

  16. Exploiting Amino Acid Composition for Predicting Protein-Protein Interactions

    PubMed Central

    Roy, Sushmita; Martinez, Diego; Platero, Harriett; Lane, Terran; Werner-Washburne, Margaret

    2009-01-01

    Background Computational prediction of protein interactions typically use protein domains as classifier features because they capture conserved information of interaction surfaces. However, approaches relying on domains as features cannot be applied to proteins without any domain information. In this paper, we explore the contribution of pure amino acid composition (AAC) for protein interaction prediction. This simple feature, which is based on normalized counts of single or pairs of amino acids, is applicable to proteins from any sequenced organism and can be used to compensate for the lack of domain information. Results AAC performed at par with protein interaction prediction based on domains on three yeast protein interaction datasets. Similar behavior was obtained using different classifiers, indicating that our results are a function of features and not of classifiers. In addition to yeast datasets, AAC performed comparably on worm and fly datasets. Prediction of interactions for the entire yeast proteome identified a large number of novel interactions, the majority of which co-localized or participated in the same processes. Our high confidence interaction network included both well-studied and uncharacterized proteins. Proteins with known function were involved in actin assembly and cell budding. Uncharacterized proteins interacted with proteins involved in reproduction and cell budding, thus providing putative biological roles for the uncharacterized proteins. Conclusion AAC is a simple, yet powerful feature for predicting protein interactions, and can be used alone or in conjunction with protein domains to predict new and validate existing interactions. More importantly, AAC alone performs at par with existing, but more complex, features indicating the presence of sequence-level information that is predictive of interaction, but which is not necessarily restricted to domains. PMID:19936254

  17. Changes of synovial fluid protein concentrations in supra-patellar bursitis patients after the injection of different molecular weights of hyaluronic acid.

    PubMed

    Chen, Carl P C; Hsu, Chih Chin; Pei, Yu-Cheng; Chen, Ruo Li; Zhou, Shaobo; Shen, Hsuan-Chen; Lin, Shih-Cherng; Tsai, Wen Chung

    2014-04-01

    Knee pain is commonly seen in orthopedic and rehabilitation outpatient clinical settings, and in the aging population. Bursitis of the knee joint, especially when the volume of the synovial fluid is large enough, can compress and distend the nearby soft tissues, causing pain in the knee joint. Out of all the bursae surrounding the knee joint, supra-patellar bursitis is most often associated with knee pain. Treatment strategies in managing supra-patellar bursitis include the aspiration of joint synovial fluid and then followed by steroid injection into the bursa. When supra-patellar bursitis is caused by degenerative disorders, the concept of viscosupplementation treatment may be effective by injecting hyaluronic acid into the bursa. However, the rheology or the changes in the concentrations of proteins (biomarkers) that are related to the development of bursitis in the synovial fluid is virtually unexplored. Therefore, this study aimed to identify the concentration changes in the synovial fluid total protein amount and individual proteins associated with supra-patellar bursitis using the Bradford protein assay and western immunoglobulin methods. A total of 20 patients were divided into two groups with 10 patients in each group. One group received the high molecular weight hyaluronic acid product of Synvisc Hylan G-F 20 and the other group received the low molecular weight hyaluronic acid product of Hya-Joint Synovial Fluid Supplement once per week injection into the bursa for a total of 3 weeks. Significant decreases in the synovial fluid total protein concentrations were observed after the second dosage of high molecular weight hyaluronic acid injections. Apolipoprotein A-I, interleukin 1 beta, alpha 1 antitrypsin, and matrix metalloproteinase 1 proteins revealed a trend of decreasing western immunoblotting band densities after hyaluronic acid injections. The decreases in apolipoprotein A-I and interleukin 1 beta protein band densities were significant in the high

  18. Multiple Amino Acid Supplementations to Reduce Dietary Protein in Plant-Based Rainbow Trout, Oncorhynchus mykiss, Feeds

    USDA-ARS?s Scientific Manuscript database

    Reducing dietary protein in trout feeds will reduce production costs if growth performance can be maintained. A study was conducted to determine if balancing plant-based diets on an available amino acid basis would result in a reduction in total protein level. The diets were formulated to contain ...

  19. Chronic administration of docosahexaenoic acid or eicosapentaenoic acid, but not arachidonic acid, alone or in combination with uridine, increases brain phosphatide and synaptic protein levels in gerbils.

    PubMed

    Cansev, M; Wurtman, R J

    2007-08-24

    Synthesis of phosphatidylcholine, the most abundant brain membrane phosphatide, requires three circulating precursors: choline; a pyrimidine (e.g. uridine); and a polyunsaturated fatty acid. Supplementing a choline-containing diet with the uridine source uridine-5'-monophosphate (UMP) or, especially, with UMP plus the omega-3 fatty acid docosahexaenoic acid (given by gavage), produces substantial increases in membrane phosphatide and synaptic protein levels within gerbil brain. We now compare the effects of various polyunsaturated fatty acids, given alone or with UMP, on these synaptic membrane constituents. Gerbils received, daily for 4 weeks, a diet containing choline chloride with or without UMP and/or, by gavage, an omega-3 (docosahexaenoic or eicosapentaenoic acid) or omega-6 (arachidonic acid) fatty acid. Both of the omega-3 fatty acids elevated major brain phosphatide levels (by 18-28%, and 21-27%) and giving UMP along with them enhanced their effects significantly. Arachidonic acid, given alone or with UMP, was without effect. After UMP plus docosahexaenoic acid treatment, total brain phospholipid levels and those of each individual phosphatide increased significantly in all brain regions examined (cortex, striatum, hippocampus, brain stem, and cerebellum). The increases in brain phosphatides in gerbils receiving an omega-3 (but not omega-6) fatty acid, with or without UMP, were accompanied by parallel elevations in levels of pre- and post-synaptic proteins (syntaxin-3, PSD-95 and synapsin-1) but not in those of a ubiquitous structural protein, beta-tubulin. Hence administering omega-3 polyunsaturated fatty acids can enhance synaptic membrane levels in gerbils, and may do so in patients with neurodegenerative diseases, especially when given with a uridine source, while the omega-6 polyunsaturated fatty acid arachidonic acid is ineffective.

  20. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Elevated tropospheric ozone increased grain protein and amino acid content of a hybrid rice without manipulation by planting density.

    PubMed

    Zhou, Xiaodong; Zhou, Juan; Wang, Yunxia; Peng, Bin; Zhu, Jianguo; Yang, Lianxin; Wang, Yulong

    2015-01-01

    Rising tropospheric ozone affects crop yield and quality. Rice protein concentration, which is closely associated with eating/cooking quality, is of critical importance to nutritional quality. The ozone effect on amino acids of rice grains was little known, especially grown under different cultivation conditions. A hybrid rice cultivar Shanyou 63 was grown in 2010 and 2011 to investigate the interactive effect of ozone exposure and planting density on rice protein quality in a free-air ozone enrichment system. The content of protein, total amino acids (TAA), total essential (TEAA) and non-essential amino acids (TNEAA) in rice grain was increased by 12-14% with elevated ozone. A similar significant response to ozone was observed for concentrations of the seven essential and eight non-essential amino acids. In contrast, elevated ozone caused a small but significant decrease in percentage of TEAA to TAA. The year effect was significant for all measured traits; however, interactions of ozone with year or planting density were not detected. The study suggested that season-long elevation of ozone concentration to projected 2050 levels will increase protein and amino acids of Shanyou 63, and crop management such as changing planting density might not alter the impact. © 2014 Society of Chemical Industry.

  2. Sugars, ascorbic acid, total phenolic content and total antioxidant activity in passion fruit (Passiflora) cultivars.

    PubMed

    Devi Ramaiya, Shiamala; Bujang, Japar Sidik; Zakaria, Muta Harah; King, Wong Sing; Shaffiq Sahrir, Muhd Arif

    2013-03-30

    The levels of sugars, ascorbic acid, total phenolic content (TPC) and total antioxidant activity (TAA) were determined in fruit juices from seven passion fruit (Passiflora spp.) cultivars: P. edulis cultivars Purple, Frederick, Yellow, Pink, P. edulis f. flavicarpa, P. maliformis and P. quadrangularis (we also tested this cultivar's mesocarp). Purple and Yellow P. edulis had significantly higher total sugar, 142.85 ± 0.17 g kg⁻¹ and 139.69 ± 0.12 g kg⁻¹, respectively, than other cultivars. Glucose and fructose content were higher in juice from vine-ripened fruits of Purple, Frederick and Yellow P. edulis, P. quadrangularis and P. maliformis. Sucrose content was significantly higher in juice of non-vine-ripened fruits of P. edulis (Pink) and P. edulis f. flavicarpa. Ascorbic acid, TPC and TAA were significantly higher in vine-ripened Purple and Yellow P. edulis; ranges were 0.22-0.33 g kg⁻¹, 342.80-382.00 mg gallic acid equivalent L⁻¹ and 409.13-586.70 µmol Trolox L⁻¹, respectively. Based on principal component analysis (PCA) and cluster analysis, the main variables - °Brix, total sugar, glucose, fructose, ascorbic acid, TPC and TAA - formed the characteristics for the group comprising Purple and Yellow P. edulis. Glucose, fructose, sucrose, ascorbic acid, TAA and TPC were quantified in passion fruit juices. Variation of the above variables in juices of Passiflora depends on the cultivar and ripeness. © 2012 Society of Chemical Industry.

  3. Effect of short-term low-protein diet supplemented with keto acids on hyperphosphatemia in maintenance hemodialysis patients.

    PubMed

    Li, Haiming; Long, Quan; Shao, Chunhai; Fan, Hong; Yuan, Li; Huang, Bihong; Gu, Yong; Lin, Shanyan; Hao, Chuanming; Chen, Jing

    2011-01-01

    To evaluate the effects of short-term restriction of dietary protein intake (DPI) supplemented with keto acids on hyperphosphatemia in maintenance hemodialysis (MHD) patients. Forty MHD patients with uncontrolled hyperphosphatemia were randomized to either low DPI with keto acid-supplemented (sLP) or normal DPI (NP) group for 8 weeks. After 8 weeks, the sLP group was shifted to NP for another 8 weeks. Low-protein diet (LPD) was individualized with total caloric intake 30-35 kcal/kg/day, protein intake of 0.8 g/kg/day and phosphate intake of 500 mg/day. Keto acids were supplied in a dosage of 12 pills per day. Calcium phosphorous metabolism index and nutritional index (serum albumin, total protein, somatometric measurements, 3-day diaries and Mini-Nutritional Assessment score) were recorded. C-reactive protein, CO(2) combining power and Kt/V were measured to evaluate the inflammation, metabolic acidosis and dialysis adequacy, respectively. Serum phosphorus level and calcium-phosphate product were significantly decreased at the end of the first 8 weeks in the sLP group compared to the basal value and the NP group (p < 0.001). No difference was observed in C-reactive protein, Kt/V and nutritional index, while CO(2) combining power was significantly higher at week 8 in the sLP group (p < 0.001). Short-term restriction of DPI supplemented with keto acids could decrease hyperphosphatemia and calcium-phosphate product, while keeping stable nutritional status among MHD patients. Copyright © 2010 S. Karger AG, Basel.

  4. High Dietary Protein Intake and Protein-Related Acid Load on Bone Health.

    PubMed

    Cao, Jay J

    2017-12-01

    Consumption of high-protein diets is increasingly popular due to the benefits of protein on preserving lean mass and controlling appetite and satiety. The paper is to review recent clinical research assessing dietary protein on calcium metabolism and bone health. Epidemiological studies show that long-term, high-protein intake is positively associated with bone mineral density and reduced risk of bone fracture incidence. Short-term interventional studies demonstrate that a high-protein diet does not negatively affect calcium homeostasis. Existing evidence supports that the negative effects of the acid load of protein on urinary calcium excretion are offset by the beneficial skeletal effects of high-protein intake. Future research should focus on the role and the degree of contribution of other dietary and physiological factors, such as intake of fruits and vegetables, in reducing the acid load and further enhancing the anabolic effects of protein on the musculoskeletal system.

  5. Chronic administration of docosahexaenoic acid or eicosapentaenoic acid, but not arachidonic acid, alone or in combination with uridine, increases brain phosphatide and synaptic protein levels in gerbils

    PubMed Central

    Cansev, M.; Wurtman, R. J.

    2007-01-01

    Synthesis of phosphatidylcholine, the most abundant brain membrane phosphatide, requires three circulating precursors: choline; a pyrimidine (e.g., uridine); and a polyunsaturated fatty acid. Supplementing a choline-containing diet with the uridine source uridine-5′-monophosphate (UMP) or, especially, with UMP plus the omega-3 fatty acid docosahexaenoic acid (given by gavage), produces substantial increases in membrane phosphatide and synaptic protein levels within gerbil brain. We now compare the effects of various polyunsaturated fatty acids, given alone or with UMP, on these synaptic membrane constituents. Gerbils received, daily for 4 weeks, a diet containing choline chloride with or without UMP and/or, by gavage, an omega-3 (docosahexaenoic or eicosapentaenoic acid) or omega-6 (arachidonic acid) fatty acid. Both of the omega-3 fatty acids elevated major brain phosphatide levels (by 18-28%, and 21-27%) and giving UMP along with them enhanced their effects significantly. Arachidonic acid, given alone or with UMP, was without effect. After UMP plus docosahexaenoic acid treatment, total brain phospholipids levels and those of each individual phosphatide increased significantly in all brain regions examined (cortex, striatum, hippocampus, brain stem, and cerebellum). The increases in brain phosphatides in gerbils receiving an omega-3 (but not omega-6) fatty acid, with or without UMP, were accompanied by parallel elevations in levels of pre- and post-synaptic proteins (syntaxin-3, PSD-95 and Synapsin-1) but not in those of a ubiquitous structural protein, β-tubulin. Hence administering omega-3 polyunsaturated fatty acids can enhance synaptic membrane levels in gerbils, and may do so in patients with neurodegenerative diseases, especially when given with a uridine source, while the omega-6 polyunsaturated fatty acid arachidonic acid is ineffective. PMID:17683870

  6. [Renal excretion of total porphyrins and hippuric acid in rats].

    PubMed

    Gartzke, J; Burck, D

    1986-09-01

    The amounts of total porphyrins, hippuric acid and creatinine, excreted in urine by adult male Wistar rats, exhibited normal distributions for hippuric acid and creatinine, but a bimodal distribution for total porphyrins. This typical distribution of total porphyrins was still observed when creatinine was used as reference parameter. In biochemical and toxicological experiments in rats, the tested parameters should be therefore be investigated for homogeneity.

  7. Changes of Protein and Lipid Contents, Amino Acid and Fatty Acid Compositions in Eggs and Yolk-Sac Larvae of American Shad ( Alosa sapidissima)

    NASA Astrophysics Data System (ADS)

    Liu, Zhifeng; Gao, Xiaoqiang; Yu, Jiuxiang; Wang, Yaohui; Guo, Zhenglong; Huang, Bin; Liu, Baoliang; Hong, Lei

    2018-04-01

    To investigate the changes of the biochemical composition of American shad ( Alosa sapidissima) eggs and larvae at embryonic and early larval stages, samples were collected at different development stages from artificial fertilization to the end of yolk absorption including 2 h, 12 h and 30 h after fertilization and newly hatched larvae including 1 and 3 days after hatching. The composition of lipid, fatty acids, protein and amino acids were analyzed. The content of total protein exhibited a decreasing trend during embryogenesis and larval development, and a significant reduction was detected after hatching ( P < 0.05). The total lipid content remained relative stable. A significant reduction was detected in almost all amino acids after hatching except for glycine ( P < 0.05), while a significant decrease was found in the content of cysteine, proline, tyrosine, valine, isoleucine, leucine and phenylalanine during the yolk-sac phase ( P < 0.05). On the other hand, all the groups of fatty acids remained stable during the period of embryogenesis. But after hatching, a significant decrease was found in the content of C18:2n-6, C18:3n-6, SFA and ratio of EPA/ARA ( P < 0.05), while a significant increase was found in the content of C18:3n-3, C20:4n-6, C22:6n-3 and ratio of n-3/n-6 ( P < 0.05). In conclusion, the combined data suggested that American shad utilizes the protein content as preferential energy substrates during embryonic and early larval developments with some specificity in the consumption of different amino acids.

  8. A Dominant Conformational Role for Amino Acid Diversity in Minimalist Protein-Protein Interfaces

    PubMed Central

    Gilbreth, Ryan N.; Esaki, Kaori; Koide, Akiko; Sidhu, Sachdev S.; Koide, Shohei

    2008-01-01

    Recent studies have shown that highly simplified interaction surfaces consisting of combinations of just two amino acids, Tyr and Ser, exhibit high affinity and specificity. The high functional levels of such minimalist interfaces might thus indicate small contributions of greater amino acid diversity seen in natural interfaces. Toward addressing this issue, we have produced a pair of binding proteins built on the fibronectin type III scaffold, termed “monobodies”. One monobody contains the Tyr/Ser binary-code interface (termed YS) and the other contains an expanded amino acid diversity interface (YSX), but both bind to an identical target, maltose binding protein (MBP). The YSX monobody bound with higher affinity, a slower off rate and a more favorable enthalpic contribution than the YS monobody. High-resolution x-ray crystal structures revealed that both proteins bound to an essentially identical epitope, providing a unique opportunity to directly investigate the role of amino acid diversity in a protein interaction interface. Surprisingly, Tyr still dominates the YSX paratope and the additional amino acid types are primarily used to conformationally optimize contacts made by tyrosines. Scanning mutagenesis showed that while all contacting Tyr side-chains are essential in the YS monobody, the YSX interface was more tolerant to mutations. These results suggest that the conformational, not chemical, diversity of additional types of amino acids provided higher functionality and evolutionary robustness, supporting the dominant role of Tyr and the importance of conformational diversity in forming protein interaction interfaces. PMID:18602117

  9. A dye binding method for measurement of total protein in microalgae.

    PubMed

    Servaites, Jerome C; Faeth, Julia L; Sidhu, Sukh S

    2012-02-01

    Protein is a large component of the standing biomass of algae. The total protein content of algae is difficult to measure because of the problems encountered in extracting all of the protein from the cells. Here we modified an existing protein assay to measure total protein in microalgae cells that involves little or no extraction of protein from the cells. Aliquots of fresh or pretreated cells were spotted onto filter paper strips. After drying, the strips were stained in a 0.1% (w/v) solution of the protein stain Coomassie Brilliant Blue R-250 for 16 to 24 h and then destained. The stained protein spots were cut out from the paper, and dye was eluted in 1% (w/v) sodium dodecyl sulfate (SDS). Absorbance at 600 nm was directly proportional to protein concentration. Cells that were recalcitrant to taking up the dye could be either heated at 80°C for 10 min in 1% SDS or briefly sonicated for 3 min to facilitate penetration of the dye into the cells. Total protein measured in Chlorella vulgaris using this method compared closely with that measured using the total N method. Total protein concentrations were measured successfully in 12 algal species using this dye binding method. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score of three Mediterranean cephalopods.

    PubMed

    Zlatanos, Spiros; Laskaridis, Kostas; Feist, Christian; Sagredos, Angelos

    2006-10-01

    Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score (PDCAAS) in three commercially important cephalopods of the Mediterranean sea (cuttlefish, octopus and squid) were determined. The results of the proximate analysis showed that these species had very high protein:fat ratios similar to lean beef. Docosahexaenoic, palmitic and eicosipentaenoic acid were the most abundant fatty acids among analyzed species. The amount of n-3 fatty acids was higher than that of saturated, monounsaturated and n-6 fatty acids. Despite the fact that cephalopods contain small amounts of fat they were found quite rich in n-3 fatty acids. Finally, PDCAAS indicated that these organisms had a very good protein quality.

  11. Dietary influence on the m. longissimus dorsi fatty acid composition of lambs in relation to protein source.

    PubMed

    Turner, T D; Karlsson, L; Mapiye, C; Rolland, D C; Martinsson, K; Dugan, M E R

    2012-08-01

    Dietary lipid effect, as a consequence of protein supplement, on lamb m. longissimus dorsi fatty acid composition was investigated, with emphasis on biohydrogenation intermediates. Crossbred lambs (White Swedish Landrace × Texel) were fed a barley-based diet without (CON) or with protein supplements including peas (PEA), rapeseed cake (RC) or hempseed cake (HC). The HC diet resulted in the highest muscle 22:6n-3 proportion, with the RC diet being similar (P<0.05). Protein supplement did not affect the c9,t11 conjugated linoleic acid (CLA) proportion, however the HC diet increased some minor CLA isomers, including t10,c12 CLA (P<0.05). The t10-18:1 and total trans-18:1 were lowest for the RC diet (P<0.05), likely relating to rumen conditions and precursor availability. The saturated, monounsaturated and branched-chain fatty acids were largely unaffected by protein supplement. In conclusion, feeding the RC diet lowered the t10-18:1 and total trans-18:1 in meat, and modestly increased 22:6n-3 content. The direction of these changes would be beneficial, making the RC diet the preferred protein supplement; however the magnitude of the changes in the present experiment may not be sufficient to have an impact on human health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  13. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  14. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  15. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  16. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  17. Amino acid repletion does not decrease muscle protein catabolism during hemodialysis.

    PubMed

    Raj, Dominic S C; Adeniyi, Oladipo; Dominic, Elizabeth A; Boivin, Michel A; McClelland, Sandra; Tzamaloukas, Antonios H; Morgan, Nancy; Gonzales, Lawrence; Wolfe, Robert; Ferrando, Arny

    2007-06-01

    Intradialytic protein catabolism is attributed to loss of amino acids in the dialysate. We investigated the effect of amino acid infusion during hemodialysis (HD) on muscle protein turnover and amino acid transport kinetics by using stable isotopes of phenylalanine, leucine, and lysine in eight patients with end-stage renal disease (ESRD). Subjects were studied at baseline (pre-HD), 2 h of HD without amino acid infusion (HD-O), and 2 h of HD with amino acid infusion (HD+AA). Amino acid depletion during HD-O augmented the outward transport of amino acids from muscle into the vein. Increased delivery of amino acids to the leg during HD+AA facilitated the transport of amino acids from the artery into the intracellular compartment. Increase in muscle protein breakdown was more than the increase in synthesis during HD-O (46.7 vs. 22.3%, P < 0.001). Net balance (nmol.min(-1).100 ml (-1)) was more negative during HD-O compared with pre-HD (-33.7 +/- 1.5 vs. -6.0 +/- 2.3, P < 0.001). Despite an abundant supply of amino acids, the net balance (-16.9 +/- 1.8) did not switch from net release to net uptake. HD+AA induced a proportional increase in muscle protein synthesis and catabolism. Branched chain amino acid catabolism increased significantly from baseline during HD-O and did not decrease during HD+AA. Protein synthesis efficiency, the fraction of amino acid in the intracellular pool that is utilized for muscle protein synthesis decreased from 42.1% pre-HD to 33.7 and 32.6% during HD-O and HD+AA, respectively (P < 0.01). Thus amino acid repletion during HD increased muscle protein synthesis but did not decrease muscle protein breakdown.

  18. The pathogen-related yeast protein Pry1, a member of the CAP protein superfamily, is a fatty acid-binding protein

    PubMed Central

    Darwiche, Rabih; Mène-Saffrané, Laurent; Gfeller, David; Asojo, Oluwatoyin A.; Schneiter, Roger

    2017-01-01

    Members of the CAP superfamily (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins), also known as SCP superfamily (sperm-coating proteins), have been implicated in many physiological processes, including immune defenses, venom toxicity, and sperm maturation. Their mode of action, however, remains poorly understood. Three proteins of the CAP superfamily, Pry1, -2, and -3 (pathogen related in yeast), are encoded in the Saccharomyces cerevisiae genome. We have shown previously that Pry1 binds cholesterol in vitro and that Pry function is required for sterol secretion in yeast cells, indicating that members of this superfamily may generally bind sterols or related small hydrophobic compounds. On the other hand, tablysin-15, a CAP protein from the horsefly Tabanus yao, has been shown to bind leukotrienes and free fatty acids in vitro. Therefore, here we assessed whether the yeast Pry1 protein binds fatty acids. Computational modeling and site-directed mutagenesis indicated that the mode of fatty acid binding is conserved between tablysin-15 and Pry1. Pry1 bound fatty acids with micromolar affinity in vitro, and its function was essential for fatty acid export in cells lacking the acyl-CoA synthetases Faa1 and Faa4. Fatty acid binding of Pry1 is independent of its capacity to bind sterols, and the two sterol- and fatty acid-binding sites are nonoverlapping. These results indicate that some CAP family members, such as Pry1, can bind different lipids, particularly sterols and fatty acids, at distinct binding sites, suggesting that the CAP domain may serve as a stable, secreted protein domain that can accommodate multiple ligand-binding sites. PMID:28365570

  19. Water and Temperature Stresses Impact Canola (Brassica napus L.) Fatty Acid, Protein, and Yield over Nitrogen and Sulfur.

    PubMed

    Hammac, W Ashley; Maaz, Tai M; Koenig, Richard T; Burke, Ian C; Pan, William L

    2017-12-06

    Interactive effects of weather and soil nutrient status often control crop productivity. An experiment was conducted to determine effects of nitrogen (N) and sulfur (S) fertilizer rate, soil water, and atmospheric temperature on canola (Brassica napus L.) fatty acid (FA), total oil, protein, and grain yield. Nitrogen and sulfur were assessed in a 4-yr study with two locations, five N rates (0, 45, 90, 135, and 180 kg ha -1 ), and two S rates (0 and 17 kg ha -1 ). Water and temperature were assessed using variability across 12 site-years of dryland canola production. Effects of N and S were inconsistent. Unsaturated FA, oleic acid, grain oil, protein, and theoretical maximum grain yield were highly related to water and temperature variability across the site-years. A nonlinear model identified water and temperature conditions that enabled production of maximum unsaturated FA content, oleic acid content, total oil, protein, and theoretical maximum grain yield. Water and temperature variability played a larger role than soil nutrient status on canola grain constituents and yield.

  20. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads

    PubMed Central

    Baruah, Anupaul; Rani, Pooja; Biswas, Parbati

    2015-01-01

    This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory’s isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method. PMID:26138206

  1. Rewiring protein synthesis: From natural to synthetic amino acids.

    PubMed

    Fan, Yongqiang; Evans, Christopher R; Ling, Jiqiang

    2017-11-01

    The protein synthesis machinery uses 22 natural amino acids as building blocks that faithfully decode the genetic information. Such fidelity is controlled at multiple steps and can be compromised in nature and in the laboratory to rewire protein synthesis with natural and synthetic amino acids. This review summarizes the major quality control mechanisms during protein synthesis, including aminoacyl-tRNA synthetases, elongation factors, and the ribosome. We will discuss evolution and engineering of such components that allow incorporation of natural and synthetic amino acids at positions that deviate from the standard genetic code. The protein synthesis machinery is highly selective, yet not fixed, for the correct amino acids that match the mRNA codons. Ambiguous translation of a codon with multiple amino acids or complete reassignment of a codon with a synthetic amino acid diversifies the proteome. Expanding the genetic code with synthetic amino acids through rewiring protein synthesis has broad applications in synthetic biology and chemical biology. Biochemical, structural, and genetic studies of the translational quality control mechanisms are not only crucial to understand the physiological role of translational fidelity and evolution of the genetic code, but also enable us to better design biological parts to expand the proteomes of synthetic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Regulation of protein synthesis by amino acids in muscle of neonates

    PubMed Central

    Suryawan, Agus; Davis, Teresa A.

    2011-01-01

    The marked increase in skeletal muscle mass during the neonatal period is largely due to a high rate of postprandial protein synthesis that is modulated by an enhanced sensitivity to insulin and amino acids. The amino acid signaling pathway leading to the stimulation of protein synthesis has not been fully elucidated. Among the amino acids, leucine is considered to be a principal anabolic agent that regulates protein synthesis. mTORC1, which controls protein synthesis, has been implicated as a target for leucine. Until recently, there have been few studies exploring the role of amino acids in enhancing muscle protein synthesis in vivo. In this review, we discuss amino acid-induced protein synthesis in muscle in the neonate, focusing on current knowledge of the role of amino acids in the activation of mTORC1 leading to mRNA translation. The role of the amino acid transporters, SNAT2, LAT1, and PAT, in the modulation of mTORC1 activation and the role of amino acids in the activation of putative regulators of mTORC1, i.e., raptor, Rheb, MAP4K3, Vps34, and Rag GTPases, are discussed. PMID:21196241

  3. Increasing the fidelity of noncanonical amino acid incorporation in cell-free protein synthesis.

    PubMed

    Gan, Qinglei; Fan, Chenguang

    2017-11-01

    Cell-free protein synthesis provides a robust platform for co-translational incorporation of noncanonical amino acid (ncAA) into proteins to facilitate biological studies and biotechnological applications. Recently, eliminating the activity of release factor 1 has been shown to increase ncAA incorporation in response to amber codons. However, this approach could promote mis-incorporation of canonical amino acids by near cognate suppression. We performed a facile protocol to remove near cognate tRNA isoacceptors of the amber codon from total tRNAs, and used the phosphoserine (Sep) incorporation system as validation. By manipulating codon usage of target genes and tRNA species introduced into the cell-free protein synthesis system, we increased the fidelity of Sep incorporation at a specific position. By removing three near cognate tRNA isoacceptors of the amber stop codon [tRNA Lys , tRNA Tyr , and tRNA Gln (CUG)] from the total tRNA, the near cognate suppression decreased by 5-fold without impairing normal protein synthesis in the cell-free protein synthesis system. Mass spectrometry analyses indicated that the fidelity of ncAA incorporation was improved. Removal of near cognate tRNA isoacceptors of the amber codon could increase ncAA incorporation fidelity towards the amber stop codon in release factor deficiency systems. We provide a general strategy to improve fidelity of ncAA incorporation towards stop, quadruplet and sense codons in cell-free protein synthesis systems. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Topology of RNA–protein nucleobase–amino acid π–π interactions and comparison to analogous DNA–protein π–π contacts

    PubMed Central

    Wilson, Katie A.; Holland, Devany J.; Wetmore, Stacey D.

    2016-01-01

    The present work analyzed 120 high-resolution X-ray crystal structures and identified 335 RNA–protein π-interactions (154 nonredundant) between a nucleobase and aromatic (W, H, F, or Y) or acyclic (R, E, or D) π-containing amino acid. Each contact was critically analyzed (including using a visual inspection protocol) to determine the most prevalent composition, structure, and strength of π-interactions at RNA–protein interfaces. These contacts most commonly involve F and U, with U:F interactions comprising one-fifth of the total number of contacts found. Furthermore, the RNA and protein π-systems adopt many different relative orientations, although there is a preference for more parallel (stacked) arrangements. Due to the variation in structure, the strength of the intermolecular forces between the RNA and protein components (as determined from accurate quantum chemical calculations) exhibits a significant range, with most of the contacts providing significant stability to the associated RNA–protein complex (up to −65 kJ mol−1). Comparison to the analogous DNA–protein π-interactions emphasizes differences in RNA– and DNA–protein π-interactions at the molecular level, including the greater abundance of RNA contacts and the involvement of different nucleobase/amino acid residues. Overall, our results provide a clearer picture of the molecular basis of nucleic acid–protein binding and underscore the important role of these contacts in biology, including the significant contribution of π–π interactions to the stability of nucleic acid–protein complexes. Nevertheless, more work is still needed in this area in order to further appreciate the properties and roles of RNA nucleobase–amino acid π-interactions in nature. PMID:26979279

  5. Comparative proteomic analysis of differentially expressed proteins in β-aminobutyric acid enhanced Arabidopsis thaliana tolerance to simulated acid rain.

    PubMed

    Liu, Tingwu; Jiang, Xinwu; Shi, Wuliang; Chen, Juan; Pei, Zhenming; Zheng, Hailei

    2011-05-01

    Acid rain is a worldwide environmental issue that has seriously destroyed forest ecosystems. As a highly effective and broad-spectrum plant resistance-inducing agent, β-aminobutyric acid could elevate the tolerance of Arabidopsis when subjected to simulated acid rain. Using comparative proteomic strategies, we analyzed 203 significantly varied proteins of which 175 proteins were identified responding to β-aminobutyric acid in the absence and presence of simulated acid rain. They could be divided into ten groups according to their biological functions. Among them, the majority was cell rescue, development and defense-related proteins, followed by transcription, protein synthesis, folding, modification and destination-associated proteins. Our conclusion is β-aminobutyric acid can lead to a large-scale primary metabolism change and simultaneously activate antioxidant system and salicylic acid, jasmonic acid, abscisic acid signaling pathways. In addition, β-aminobutyric acid can reinforce physical barriers to defend simulated acid rain stress. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dietary fatty acids and membrane protein function.

    PubMed

    Murphy, M G

    1990-02-01

    In recent years, there has been growing public awareness of the potential health benefits of dietary fatty acids, and of the distinction between the effects of the omega6 and omega3 polyunsaturated fatty acids that are concentrated in vegetable and fish oils, respectively. A part of the biologic effectiveness of the two families of polyunsaturated fatty acids resides in their relative roles as precursors of the eicosanoids. However, we are also beginning to appreciate that as the major components of the hydrophobic core of the membrane bilayer, they can interact with and directly influence the functioning of select integral membrane proteins. Among the most important of these are the enzymes, receptors, and ion channels that are situated in the plasma membrane of the cell, since they carry out the communication and homeostatic processes that are necessary for normal cell function. This review examines current information regarding the effects of diet-induced changes in plasma membrane fatty acid composition on several specific enzymes (adenylate cyclase, 5'-nucleotidase, Na(+)/K(+)-ATPase) and cell-surface receptors (opiate, adrenergic, insulin). Dietary manipulation studies have demonstrated a sensitivity of each to a fatty acid environment that is variably dependent on the nature of the fatty acid(s) and/or source of the membrane. The molecular mechanisms appear to involve fatty acid-dependent effects on protein conformation, on the "fluidity" and/or thickness of the membrane, or on protein synthesis. Together, the results of these studies reinforce the concept that dietary fats have the potential to regulate physiologic function and to further our understanding of how this occurs at a membrane level.

  7. Cy5 total protein normalization in Western blot analysis.

    PubMed

    Hagner-McWhirter, Åsa; Laurin, Ylva; Larsson, Anita; Bjerneld, Erik J; Rönn, Ola

    2015-10-01

    Western blotting is a widely used method for analyzing specific target proteins in complex protein samples. Housekeeping proteins are often used for normalization to correct for uneven sample loads, but these require careful validation since expression levels may vary with cell type and treatment. We present a new, more reliable method for normalization using Cy5-prelabeled total protein as a loading control. We used a prelabeling protocol based on Cy5 N-hydroxysuccinimide ester labeling that produces a linear signal response. We obtained a low coefficient of variation (CV) of 7% between the ratio of extracellular signal-regulated kinase (ERK1/2) target to Cy5 total protein control signals over the whole loading range from 2.5 to 20.0μg of Chinese hamster ovary cell lysate protein. Corresponding experiments using actin or tubulin as controls for normalization resulted in CVs of 13 and 18%, respectively. Glyceraldehyde-3-phosphate dehydrogenase did not produce a proportional signal and was not suitable for normalization in these cells. A comparison of ERK1/2 signals from labeled and unlabeled samples showed that Cy5 prelabeling did not affect antibody binding. By using total protein normalization we analyzed PP2A and Smad2/3 levels with high confidence. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Coagulant properties of Moringa oleifera protein preparations: application to humic acid removal.

    PubMed

    Santos, Andréa F S; Paiva, Patrícia M G; Teixeira, José A C; Brito, António G; Coelho, Luana C B B; Nogueira, Regina

    2012-01-01

    This work aimed to characterize the coagulant properties of protein preparations from Moringa oleifera seeds in the removal of humic acids from water. Three distinct preparations were assayed, namely extract (seeds homogenized with 0.15 M NaCl), fraction (extract precipitated with 60% w/v ammonium sulphate) and cMoL (protein purified with guar gel column chromatography). The extract showed the highest coagulant activity in a protein concentration between 1 mg/L and 180 mg/L at pH 7.0. The zeta potential of the extract (-10 mV to -15 mV) was less negative than that of the humic acid (-41 mV to -42 mV) in a pH range between 5.0 and 8.0; thus, the mechanism that might be involved in this coagulation activity is adsorption and neutralization of charges. Reduction of total organic carbon (TOC) and dissolved organic carbon (DOC) was observed in water samples containing 9 mg/L carbon as humic acid when treated with 1 mg/L of the extract. A decrease in colour and in the aromatic content of the treated water was also observed. These results suggested that the extract from M. oleifera seeds in a low concentration (1 mg/L) can be an interesting natural alternative for removing humic acid from water in developing countries. The extract dose determined in the present study does not impart odour or colour to the treated water.

  9. Proteomic Analysis of Responsive Proteins Induced in Japanese Birch Plantlet Treated with Salicylic Acid

    PubMed Central

    Suzuki, Hiromu; Takashima, Yuya; Ishiguri, Futoshi; Yoshizawa, Nobuo; Yokota, Shinso

    2014-01-01

    The present study was performed to unravel the mechanisms of systemic acquired resistance (SAR) establishment and resistance signaling pathways against the canker-rot fungus (Inonotus obliquus strain IO-U1) infection in Japanese birch plantlet No.8. Modulation of protein-profile induced by salicylic acid (SA)-administration was analyzed, and SA-responsive proteins were identified. In total, 5 specifically expressed, 3 significantly increased, and 3 significantly decreased protein spots were identified using liquid chromatography/tandem mass spectrometry (LC/MS/MS) and the sequence tag method. These proteins were malate dehydrogenase, succinate dehydrogenase, phosphoglycerate kinase, diaminopimalate decarboxylase, arginase, chorismate mutase, cyclophilin, aminopeptidase, and unknown function proteins. These proteins are considered to be involved in SAR-establishment mechanisms in the Japanese birch plantlet No 8. PMID:28250384

  10. Modulating protein adsorption onto hydroxyapatite particles using different amino acid treatments

    PubMed Central

    Lee, Wing-Hin; Loo, Ching-Yee; Van, Kim Linh; Zavgorodniy, Alexander V.; Rohanizadeh, Ramin

    2012-01-01

    Hydroxyapatite (HA) is a material of choice for bone grafts owing to its chemical and structural similarities to the mineral phase of hard tissues. The combination of osteogenic proteins with HA materials that carry and deliver the proteins to the bone-defective areas will accelerate bone regeneration. The study investigated the treatment of HA particles with different amino acids such as serine (Ser), asparagine (Asn), aspartic acid (Asp) and arginine (Arg) to enhance the adsorption ability of HA carrier for delivering therapeutic proteins to the body. The crystallinity of HA reduced when amino acids were added during HA preparation. Depending on the types of amino acid, the specific surface area of the amino acid-functionalized HA particles varied from 105 to 149 m2 g–1. Bovine serum albumin (BSA) and lysozyme were used as model proteins for adsorption study. The protein adsorption onto the surface of amino acid-functionalized HA depended on the polarities of HA particles, whereby, compared with lysozyme, BSA demonstrated higher affinity towards positively charged Arg-HA. Alternatively, the binding affinity of lysozyme onto the negatively charged Asp-HA was higher when compared with BSA. The BSA and lysozyme adsorptions onto the amino acid-functionalized HA fitted better into the Freundlich than Langmuir model. The amino acid-functionalized HA particles that had higher protein adsorption demonstrated a lower protein-release rate. PMID:21957116

  11. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality.

    PubMed

    Sarwar Gilani, G; Wu Xiao, Chao; Cockell, Kevin A

    2012-08-01

    Dietary antinutritional factors have been reported to adversely affect the digestibility of protein, bioavailability of amino acids and protein quality of foods. Published data on these negative effects of major dietary antinutritional factors are summarized in this manuscript. Digestibility and the quality of mixed diets in developing countries are considerably lower than of those in developed regions. For example, the digestibility of protein in traditional diets from developing countries such as India, Guatemala and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94 %). Poor digestibility of protein in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, is due to the presence of less digestible protein fractions, high levels of insoluble fibre, and/or high concentrations of antinutritional factors present endogenously or formed during processing. Examples of naturally occurring antinutritional factors include glucosinolates in mustard and canola protein products, trypsin inhibitors and haemagglutinins in legumes, tannins in legumes and cereals, gossypol in cottonseed protein products, and uricogenic nucleobases in yeast protein products. Heat/alkaline treatments of protein products may yield Maillard reaction compounds, oxidized forms of sulphur amino acids, D-amino acids and lysinoalanine (LAL, an unnatural nephrotoxic amino acid derivative). Among common food and feed protein products, soyabeans are the most concentrated source of trypsin inhibitors. The presence of high levels of dietary trypsin inhibitors from soyabeans, kidney beans or other grain legumes have been reported to cause substantial reductions in protein and amino acid digestibility (up to 50 %) and protein quality (up to 100 %) in rats and/or pigs. Similarly, the presence of high levels of tannins in sorghum and other cereals, fababean and other grain legumes can cause

  12. Protein and metabolic engineering for the production of organic acids.

    PubMed

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2017-09-01

    Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future. Copyright © 2017. Published by Elsevier Ltd.

  13. Utilizing knowledge base of amino acids structural neighborhoods to predict protein-protein interaction sites.

    PubMed

    Jelínek, Jan; Škoda, Petr; Hoksza, David

    2017-12-06

    Protein-protein interactions (PPI) play a key role in an investigation of various biochemical processes, and their identification is thus of great importance. Although computational prediction of which amino acids take part in a PPI has been an active field of research for some time, the quality of in-silico methods is still far from perfect. We have developed a novel prediction method called INSPiRE which benefits from a knowledge base built from data available in Protein Data Bank. All proteins involved in PPIs were converted into labeled graphs with nodes corresponding to amino acids and edges to pairs of neighboring amino acids. A structural neighborhood of each node was then encoded into a bit string and stored in the knowledge base. When predicting PPIs, INSPiRE labels amino acids of unknown proteins as interface or non-interface based on how often their structural neighborhood appears as interface or non-interface in the knowledge base. We evaluated INSPiRE's behavior with respect to different types and sizes of the structural neighborhood. Furthermore, we examined the suitability of several different features for labeling the nodes. Our evaluations showed that INSPiRE clearly outperforms existing methods with respect to Matthews correlation coefficient. In this paper we introduce a new knowledge-based method for identification of protein-protein interaction sites called INSPiRE. Its knowledge base utilizes structural patterns of known interaction sites in the Protein Data Bank which are then used for PPI prediction. Extensive experiments on several well-established datasets show that INSPiRE significantly surpasses existing PPI approaches.

  14. Carbonyl-based blue autofluorescence of proteins and amino acids

    PubMed Central

    Niyangoda, Chamani; Miti, Tatiana; Breydo, Leonid; Uversky, Vladimir

    2017-01-01

    Intrinsic protein fluorescence is inextricably linked to the near-UV autofluorescence of aromatic amino acids. Here we show that a novel deep-blue autofluorescence (dbAF), previously thought to emerge as a result of protein aggregation, is present at the level of monomeric proteins and even poly- and single amino acids. Just as its aggregation-related counterpart, this autofluorescence does not depend on aromatic residues, can be excited at the long wavelength edge of the UV and emits in the deep blue. Differences in dbAF excitation and emission peaks and intensities from proteins and single amino acids upon changes in solution conditions suggest dbAF’s sensitivity to both the chemical identity and solution environment of amino acids. Autofluorescence comparable to dbAF is emitted by carbonyl-containing organic solvents, but not those lacking the carbonyl group. This implicates the carbonyl double bonds as the likely source for the autofluorescence in all these compounds. Using beta-lactoglobulin and proline, we have measured the molar extinction coefficients and quantum yields for dbAF in the monomeric state. To establish its potential utility in monitoring protein biophysics, we show that dbAF emission undergoes a red-shift comparable in magnitude to tryptophan upon thermal denaturation of lysozyme, and that it is sensitive to quenching by acrylamide. Carbonyl dbAF therefore provides a previously neglected intrinsic optical probe for investigating the structure and dynamics of amino acids, proteins and, by extension, DNA and RNA. PMID:28542206

  15. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation.

    PubMed

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-Anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96-63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of N(ɛ)-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications.

  16. Cinnamic Acid and Its Derivatives Inhibit Fructose-Mediated Protein Glycation

    PubMed Central

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96–63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of Nɛ-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications. PMID:22408423

  17. Sensitivity of whole body protein synthesis to amino acid administration during short-term bed rest.

    PubMed

    Biolo, Gianni; Ciocchi, Beniamino; Lebenstedt, Marion; Heer, Martina; Guarnieri, Gianfranco

    2002-07-01

    We tested the hypothesis that a reduced stimulation of whole-body protein synthesis by amino acid administration represents a major mechanism for the bed rest-induced loss of lean body mass. Healthy young subjects and matched controls were studied on the last day of a 14-day bed rest or ambulatory period, as part of the overall protocol "Short-term Bed Rest - Integrated Physiology" set up by the German Aerospace Centre (DLR) in co-operation with the European Space Agency. A balanced mixture of essential and non-essential amino acids was intravenously infused in the postabsorptive state for 3 hours at the rate of 0.1 g/kg/hour. The oxidative and non-oxidative (i.e., to protein synthesis) disposal of the infused leucine was determined by stable isotope and mass spectrometry techniques. The clearance of total infused amino acids tended to be greater (P=0.07) in the ambulatory group than in the bed rest group. When leucine clearance was partitioned between its oxidative and non-oxidative (i.e., to protein synthesis) components, the results indicated that the oxidative disposal was not statistically different in the bed rest and in the ambulatory groups. In contrast, the non-oxidative leucine disposal (i.e., to protein synthesis) was about 20% greater (P<0.01) in the ambulatory group than in the bed rest group. In conclusion, these preliminary data suggest that 14-day bed rest impairs the ability to utilise exogenous amino acids for protein synthesis.

  18. [Determination of total protein content in soya-bean milk via visual moving reaction boundary titration].

    PubMed

    Guo, Chengye; Wang, Houyu; Zhang, Lei; Fan, Liuyin; Cao, Chengxi

    2013-11-01

    A visual, rapid and accurate moving reaction boundary titration (MRBT) method was used for the determination of the total protein in soya-bean milk. During the process, moving reaction boundary (MRB) was formed by hydroxyl ions in the catholyte and soya-bean milk proteins immobilized in polyacrylamide gel (PAG), and an acid-base indicator was used to denote the boundary motion. The velocity of MRB has a relationship with protein concentration, which was used to obtain a standard curve. By paired t-test, there was no significant difference of the protein content between MRBT and Kjeldahl method at 95% confidence interval. The procedure of MRBT method required about 10 min, and it had linearity in the range of 2.0-14.0 g/L, low limit of detection (0.05 g/L), good precision (RSD of intra-day < 1.90% and inter-day < 4.39%), and high recoveries (97.41%-99.91%). In addition, non-protein nitrogen (NPN) such as melamine added into the soya-bean milk had weak influence on MRBT results.

  19. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    PubMed Central

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-01-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control. PMID:24495932

  20. Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type.

    PubMed

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-05

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  1. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    NASA Astrophysics Data System (ADS)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  2. Parsing the life-shortening effects of dietary protein: effects of individual amino acids

    PubMed Central

    Bouchebti, Sofia; Bazazi, Sepideh; Le Hesran, Sophie; Puga, Camille; Latil, Gérard; Simpson, Stephen J.

    2017-01-01

    High-protein diets shorten lifespan in many organisms. Is it because protein digestion is energetically costly or because the final products (the amino acids) are harmful? To answer this question while circumventing the life-history trade-off between reproduction and longevity, we fed sterile ant workers on diets based on whole proteins or free amino acids. We found that (i) free amino acids shortened lifespan even more than proteins; (ii) the higher the amino acid-to-carbohydrate ratio, the shorter ants lived and the lower their lipid reserves; (iii) for the same amino acid-to-carbohydrate ratio, ants eating free amino acids had more lipid reserves than those eating whole proteins; and (iv) on whole protein diets, ants seem to regulate food intake by prioritizing sugar, while on free amino acid diets, they seem to prioritize amino acids. To test the effect of the amino acid profile, we tested diets containing proportions of each amino acid that matched the ant's exome; surprisingly, longevity was unaffected by this change. We further tested diets with all amino acids under-represented except one, finding that methionine, serine, threonine and phenylalanine are especially harmful. All together, our results show certain amino acids are key elements behind the high-protein diet reduction in lifespan. PMID:28053059

  3. Parsing the life-shortening effects of dietary protein: effects of individual amino acids.

    PubMed

    Arganda, Sara; Bouchebti, Sofia; Bazazi, Sepideh; Le Hesran, Sophie; Puga, Camille; Latil, Gérard; Simpson, Stephen J; Dussutour, Audrey

    2017-01-11

    High-protein diets shorten lifespan in many organisms. Is it because protein digestion is energetically costly or because the final products (the amino acids) are harmful? To answer this question while circumventing the life-history trade-off between reproduction and longevity, we fed sterile ant workers on diets based on whole proteins or free amino acids. We found that (i) free amino acids shortened lifespan even more than proteins; (ii) the higher the amino acid-to-carbohydrate ratio, the shorter ants lived and the lower their lipid reserves; (iii) for the same amino acid-to-carbohydrate ratio, ants eating free amino acids had more lipid reserves than those eating whole proteins; and (iv) on whole protein diets, ants seem to regulate food intake by prioritizing sugar, while on free amino acid diets, they seem to prioritize amino acids. To test the effect of the amino acid profile, we tested diets containing proportions of each amino acid that matched the ant's exome; surprisingly, longevity was unaffected by this change. We further tested diets with all amino acids under-represented except one, finding that methionine, serine, threonine and phenylalanine are especially harmful. All together, our results show certain amino acids are key elements behind the high-protein diet reduction in lifespan. © 2017 The Author(s).

  4. Measuring protein-protein and protein-nucleic Acid interactions by biolayer interferometry.

    PubMed

    Sultana, Azmiri; Lee, Jeffrey E

    2015-02-02

    Biolayer interferometry (BLI) is a simple, optical dip-and-read system useful for measuring interactions between proteins, peptides, nucleic acids, small molecules, and/or lipids in real time. In BLI, a biomolecular bait is immobilized on a matrix at the tip of a fiber-optic sensor. The binding between the immobilized ligand and another molecule in an analyte solution produces a change in optical thickness at the tip and results in a wavelength shift proportional to binding. BLI provides direct binding affinities and rates of association and dissociation. This unit describes an efficient approach using streptavidin-based BLI to analyze DNA-protein and protein-protein interactions. A quantitative set of equilibrium binding affinities (K(d)) and rates of association and dissociation (k(a)/k(d)) can be measured in minutes using nanomole quantities of sample. Copyright © 2015 John Wiley & Sons, Inc.

  5. Weak acid-concentration Atot and dissociation constant Ka of plasma proteins in racehorses.

    PubMed

    Stampfli, H R; Misiaszek, S; Lumsden, J H; Carlson, G P; Heigenhauser, G J

    1999-07-01

    The plasma proteins are a significant contributor to the total weak acid concentration as a net anionic charge. Due to potential species difference, species-specific values must be confirmed for the weak acid anionic concentrations of proteins (Atot) and the effective dissociation constant for plasma weak acids (Ka). We studied the net anion load Atot of equine plasma protein in 10 clinically healthy mature Standardbred horses. A multi-step titration procedure, using a tonometer covering a titration range of PCO2 from 25 to 145 mmHg at 37 degrees C, was applied on the plasma of these 10 horses. Blood gases (pH, PCO2) and electrolytes required to calculate the strong ion difference ([SID] = [(Na(+) + K(+) + Ca(2+) + Mg(2+))-(Cl(-) + Lac(-) + PO4(2-))]) were simultaneously measured over a physiological pH range from 6.90-7.55. A nonlinear regression iteration to determine Atot and Ka was performed using polygonal regression curve fitting applied to the electrical neutrality equation of the physico-chemical system. The average anion-load Atot for plasma protein of 10 Standardbred horses was 14.89 +/- 0.8 mEq/l plasma and Ka was 2.11 +/- 0.50 x 10(-7) Eq/l (pKa = 6.67). The derived conversion factor (iterated Atot concentration/average plasma protein concentration) for calculation of Atot in plasma is 0.21 mEq/g protein (protein-unit: g/l). This value compares closely with the 0.24 mEq/g protein determined by titration of Van Slyke et al. (1928) and 0.22 mEq/g protein recently published by Constable (1997) for horse plasma. The Ka value compares closely with the value experimentally determined by Constable in 1997 (2.22 x 10(7) Eq/l). Linear regression of a set of experimental data from 5 Thoroughbred horses on a treadmill exercise test, showed excellent correlation with the regression lines not different from identity for the calculated and measured variables pH, HCO3 and SID. Knowledge of Atot and Ka for the horse is useful especially in exercise studies and in

  6. Chlorophylls, proteins and fatty acids amounts of arthrospira platensis growing under saline conditions.

    PubMed

    Ayachi, Samah; El Abed, Amor; Dhifi, Wissal; Marzouk, Brahim

    2007-07-15

    Spirulina platensis (Arthrospira platensis) is a Tunisian strain isolated for the first time, in Tunisia, in Oued Essed (Sidi Bou Ali, in Sousse region). Evolution of biomass, proteins, chlorophylls and fatty acids (FA) has been followed during Spirulina growth. Experiments were carried out by varying sodium chloride concentrations in the culture medium in a range from 1 g L(-1) (natural environment) to 60 g L(-1). Results analysis showed an increase in chlorophyll amounts at 15 g L(-1) NaCl in 10 days old cultures but a decrease at high NaCl concentrations. Optimal proteins amounts was observed at 15 g L(-1) NaCl in young cultures (5 and 10 days). FA composition was modified by NaCl and depended on culture age. Cultures exposed to high salinity concentrations showed not only a decrease in growth rate but also a loss in total fatty acids TFA quantities. Samples cultured over 15 days at 30 g L(-1) NaCl rendered optimal quantities of lipids and gamma-linolenic acid.

  7. Dephosphorylation of microtubule-binding sites at the neurofilament-H tail domain by alkaline, acid, and protein phosphatases.

    PubMed

    Hisanaga, S; Yasugawa, S; Yamakawa, T; Miyamoto, E; Ikebe, M; Uchiyama, M; Kishimoto, T

    1993-06-01

    The dephosphorylation-induced interaction of neurofilaments (NFs) with microtubules (MTs) was investigated by using several phosphatases. Escherichia coli alkaline and wheat germ acid phosphatases increased the electrophoretic mobility of NF-H and NF-M by dephosphorylation, and induced the binding of NF-H to MTs. The binding of NFs to MTs was observed only after the electrophoretic mobility of NF-H approached the exhaustively dephosphorylated level when alkaline phosphatase was used. The number of phosphate remaining when NF-H began to bind to MTs was estimated by measuring phosphate bound to NF-H. NF-H did not bind to MTs even when about 40 phosphates from the total of 51 had been removed by alkaline phosphatase. The removal of 6 further phosphates finally resulted in the association of NF-H with MTs. A similar finding, that the restricted phosphorylation sites in the NF-H tail domain, but not the total amount of phosphates, were important for binding to MTs, was also obtained with acid phosphatases. In contrast to alkaline and acid phosphatases, four classes of protein phosphatases (protein phosphatases 1, 2A, 2B, and 2C) were ineffective for shifting the electrophoretic mobility of NF proteins and for inducing the association of NFs to MTs.

  8. Alkali-catalyzed low temperature wet crosslinking of plant proteins using carboxylic acids.

    PubMed

    Reddy, Narendra; Li, Ying; Yang, Yiqi

    2009-01-01

    We report the development of a new method of alkali-catalyzed low temperature wet crosslinking of plant proteins to improve their breaking tenacity without using high temperatures or phosphorus-containing catalysts used in conventional poly(carboxylic acid) crosslinking of cellulose and proteins. Carboxylic acids are preferred over aldehyde-containing crosslinkers for crosslinking proteins and cellulose because of their low toxicity and cost and ability to improve the desired properties of the materials. However, current knowledge in carboxylic acid crosslinking of proteins and cellulose requires the use of carboxylic acids with at least three carboxylic groups, toxic phosphorous-containing catalysts and curing at high temperatures (150-185 degrees C). The use of high temperatures and low pH in conventional carboxylic acid crosslinking has been reported to cause substantial strength loss and/or undesired changes in the properties of the crosslinked materials. In this research, gliadin, soy protein, and zein fibers have been crosslinked with malic acid, citric acid, and butanetetracarboxylic acid to improve the tenacity of the fibers without using high temperatures and phosphorus-containing catalysts. The new method of wet crosslinking using carboxylic acids containing two or more carboxylic groups will be useful to crosslink proteins for various industrial applications.

  9. Comparison between topical and intravenous administration of tranexamic acid in primary total hip arthroplasty.

    PubMed

    Ueno, Masaya; Sonohata, Motoki; Fukumori, Norio; Kawano, Shunsuke; Kitajima, Masaru; Mawatari, Masaaki

    2016-01-01

    Tranexamic acid has been reported to be safer with topical administration than with intravenous administration in total knee arthroplasty. However, the most effective administration route of tranexamic acid in total hip arthroplasty remains controversial. This study compared the effectiveness of topical tranexamic acid administration with that of intravenous tranexamic acid administration in total hip arthroplasty. We retrospectively examined the medical records of 886 patients with osteoarthritis of the hip joint, who had undergone unilateral primary total hip arthroplasty. The patients were divided into a control group (n = 302; did not receive tranexamic acid), topical group (n = 265; topically administered 2 g tranexamic acid in 30 mL normal saline via drain tubes placed in the joint before wound closure along with posterior soft tissue repair), and intravenous group (n = 319; intravenously administered 1 g tranexamic acid before skin incision along with posterior soft tissue repair). Data on blood loss, hemoglobin levels, transfusion rates, and occurrence of deep vein thrombosis and pulmonary embolization were collected. The mean operation times were approximately 40 min in all of the groups. The operation time and intra-operative blood loss were significantly lower in the control group than in the topical and intravenous groups. However, the post-operative blood loss, total blood loss, and decrease in the hemoglobin level were significantly higher in the control group than in the topical and intravenous groups. There were no significant differences in terms of blood loss and systemic complications between the tranexamic acid administration methods. Tranexamic acid reduces both post-operative and total blood loss in total hip arthroplasty. Moreover, a lower amount of tranexamic acid can be used to reduce blood loss in total hip arthroplasty with intravenous tranexamic acid administration than with topical tranexamic acid administration. Therefore, we

  10. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [Austin, TX

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  11. Site-specific incorporation of redox active amino acids into proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  12. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  13. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  14. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  15. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes.

    PubMed

    Kondo, Jiro; Westhof, Eric

    2011-10-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.

  16. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide–protein complexes

    PubMed Central

    Kondo, Jiro; Westhof, Eric

    2011-01-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues. PMID:21737431

  17. Crystal structure of axolotl (Ambystoma mexicanum) liver bile acid-binding protein bound to cholic and oleic acid.

    PubMed

    Capaldi, Stefano; Guariento, Mara; Perduca, Massimiliano; Di Pietro, Santiago M; Santomé, José A; Monaco, Hugo L

    2006-07-01

    The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent. (c) 2006 Wiley-Liss, Inc.

  18. Relationship between Total Homocysteine, Folic Acid, and Thyroid Hormones in Hypothyroid Dogs.

    PubMed

    Gołyński, M; Lutnicki, K; Krumrych, W; Szczepanik, M; Gołyńska, M; Wilkołek, P; Adamek, Ł; Sitkowski, Ł; Kurek, Ł

    2017-09-01

    Both elevated homocysteine and decreased folic acid concentrations are observed in human patients with hypothyroidism and can influence the development of numerous secondary disorders. The aim of the study was to assess total homocysteine concentration in serum and to examine its relationship with the concentration of folic acid and thyroid hormones (tT4 and fT4). Ten healthy and 19 hypothyroid client-owned dogs. Dogs with clinical signs of hypothyroidism had the diagnosis confirmed by additional tests. Total homocysteine, folic acid, total thyroxine, and free thyroxine concentrations in serum were evaluated. Hypothyroid dogs were diagnosed with increased homocysteine (median 22.20 μmol/L; range, 16.50-37.75) and decreased folic acid (median 20.62 nmol/L; range, 10.54-26.35) concentrations, as compared to healthy dogs (11.52 μmol/L; range, 10.00-16.65 and 30.68 nmol/L; range, 22.84-38.52, respectively). In sick dogs, total homocysteine was inversely correlated with folic acid (ρ = -0.47, P < 0.001), total thyroxine (ρ = -0.69, P = 0.0092), and free thyroxine (ρ = -0.56, P = 0.0302). Hypothyroidism in dogs causes hyperhomocysteinemia. Concomitant mild folic acid decrease in hypothyroid dogs might be as a result of hyperhomocysteinemia. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  19. Electricity-Free, Sequential Nucleic Acid and Protein Isolation

    PubMed Central

    Pawlowski, David R.; Karalus, Richard J.

    2012-01-01

    Traditional and emerging pathogens such as Enterohemorrhagic Escherichia coli (EHEC), Yersinia pestis, or prion-based diseases are of significant concern for governments, industries and medical professionals worldwide. For example, EHECs, combined with Shigella, are responsible for the deaths of approximately 325,000 children each year and are particularly prevalent in the developing world where laboratory-based identification, common in the United States, is unavailable 1. The development and distribution of low cost, field-based, point-of-care tools to aid in the rapid identification and/or diagnosis of pathogens or disease markers could dramatically alter disease progression and patient prognosis. We have developed a tool to isolate nucleic acids and proteins from a sample by solid-phase extraction (SPE) without electricity or associated laboratory equipment 2. The isolated macromolecules can be used for diagnosis either in a forward lab or using field-based point-of-care platforms. Importantly, this method provides for the direct comparison of nucleic acid and protein data from an un-split sample, offering a confidence through corroboration of genomic and proteomic analysis. Our isolation tool utilizes the industry standard for solid-phase nucleic acid isolation, the BOOM technology, which isolates nucleic acids from a chaotropic salt solution, usually guanidine isothiocyanate, through binding to silica-based particles or filters 3. CUBRC's proprietary solid-phase extraction chemistry is used to purify protein from chaotropic salt solutions, in this case, from the waste or flow-thru following nucleic acid isolation4. By packaging well-characterized chemistries into a small, inexpensive and simple platform, we have generated a portable system for nucleic acid and protein extraction that can be performed under a variety of conditions. The isolated nucleic acids are stable and can be transported to a position where power is available for PCR amplification while

  20. Electricity-free, sequential nucleic acid and protein isolation.

    PubMed

    Pawlowski, David R; Karalus, Richard J

    2012-05-15

    Traditional and emerging pathogens such as Enterohemorrhagic Escherichia coli (EHEC), Yersinia pestis, or prion-based diseases are of significant concern for governments, industries and medical professionals worldwide. For example, EHECs, combined with Shigella, are responsible for the deaths of approximately 325,000 children each year and are particularly prevalent in the developing world where laboratory-based identification, common in the United States, is unavailable (1). The development and distribution of low cost, field-based, point-of-care tools to aid in the rapid identification and/or diagnosis of pathogens or disease markers could dramatically alter disease progression and patient prognosis. We have developed a tool to isolate nucleic acids and proteins from a sample by solid-phase extraction (SPE) without electricity or associated laboratory equipment (2). The isolated macromolecules can be used for diagnosis either in a forward lab or using field-based point-of-care platforms. Importantly, this method provides for the direct comparison of nucleic acid and protein data from an un-split sample, offering a confidence through corroboration of genomic and proteomic analysis. Our isolation tool utilizes the industry standard for solid-phase nucleic acid isolation, the BOOM technology, which isolates nucleic acids from a chaotropic salt solution, usually guanidine isothiocyanate, through binding to silica-based particles or filters (3). CUBRC's proprietary solid-phase extraction chemistry is used to purify protein from chaotropic salt solutions, in this case, from the waste or flow-thru following nucleic acid isolation(4). By packaging well-characterized chemistries into a small, inexpensive and simple platform, we have generated a portable system for nucleic acid and protein extraction that can be performed under a variety of conditions. The isolated nucleic acids are stable and can be transported to a position where power is available for PCR amplification

  1. The primary structure of fatty-acid-binding protein from nurse shark liver. Structural and evolutionary relationship to the mammalian fatty-acid-binding protein family.

    PubMed

    Medzihradszky, K F; Gibson, B W; Kaur, S; Yu, Z H; Medzihradszky, D; Burlingame, A L; Bass, N M

    1992-02-01

    The primary structure of a fatty-acid-binding protein (FABP) isolated from the liver of the nurse shark (Ginglymostoma cirratum) was determined by high-performance tandem mass spectrometry (employing multichannel array detection) and Edman degradation. Shark liver FABP consists of 132 amino acids with an acetylated N-terminal valine. The chemical molecular mass of the intact protein determined by electrospray ionization mass spectrometry (Mr = 15124 +/- 2.5) was in good agreement with that calculated from the amino acid sequence (Mr = 15121.3). The amino acid sequence of shark liver FABP displays significantly greater similarity to the FABP expressed in mammalian heart, peripheral nerve myelin and adipose tissue (61-53% sequence similarity) than to the FABP expressed in mammalian liver (22% similarity). Phylogenetic trees derived from the comparison of the shark liver FABP amino acid sequence with the members of the mammalian fatty-acid/retinoid-binding protein gene family indicate the initial divergence of an ancestral gene into two major subfamilies: one comprising the genes for mammalian liver FABP and gastrotropin, the other comprising the genes for mammalian cellular retinol-binding proteins I and II, cellular retinoic-acid-binding protein myelin P2 protein, adipocyte FABP, heart FABP and shark liver FABP, the latter having diverged from the ancestral gene that ultimately gave rise to the present day mammalian heart-FABP, adipocyte FABP and myelin P2 protein sequences. The sequence for intestinal FABP from the rat could be assigned to either subfamily, depending on the approach used for phylogenetic tree construction, but clearly diverged at a relatively early evolutionary time point. Indeed, sequences proximately ancestral or closely related to mammalian intestinal FABP, liver FABP, gastrotropin and the retinoid-binding group of proteins appear to have arisen prior to the divergence of shark liver FABP and should therefore also be present in elasmobranchs

  2. Tranexamic acid versus aminocaproic acid for blood management after total knee and total hip arthroplasty: A systematic review and meta-analysis.

    PubMed

    Liu, Qiuliang; Geng, Peishuo; Shi, Longyan; Wang, Qi; Wang, Pengliang

    2018-06-01

    To compare the efficacy and safety of tranexamic acid and aminocaproic acid for reducing blood loss and transfusion requirements after total knee and total hip arthroplasty. We conduct electronic searches of Medline (1966-2017.11), PubMed (1966-2017.11), Embase (1980-2017.11), ScienceDirect (1985-2017.11) and the Cochrane Library (1900-2017.11). The primary outcomes, including total blood loss, hemoglobin decline and transfusion requirements. Secondary outcomes include length of hospital stay and postoperative complications such as the incidence of deep vein thrombosis and pulmonary embolism. Each outcome is combined and calculated using the statistical software STATA 12.0. Fixed/random effect model is adopted based on the heterogeneity tested by I 2 statistic. A total of 1714 patients are analyzed across three randomized controlled trials (RCTs) and one non-RCT. The present meta-analysis reveals that TXA is associated with a significantly reduction of total blood loss and postoperative hemoglobin drop compared with EACA. No significant differences are identified in terms of transfusion rates, length of hospital stay, and the incidence of postoperative complications. Although total blood loss and postoperative hemoglobin drop are significant greater in EACA groups, there is no significant difference between TXA and EACA groups in terms of transfusion rates. Based on the current evidence available, higher quality RCTs are still required for further research. Copyright © 2018 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis.

    PubMed

    de Almeida, I Tavares; Cortez-Pinto, H; Fidalgo, G; Rodrigues, D; Camilo, M E

    2002-06-01

    Non-alcoholic steatohepatitis (NASH), the association of steatosis with an inflammatory response, is a novel liver disease of unknown pathogenesis and prognosis. Triacylglycerols and their precursors, the fatty acids, are the likely candidates to accumulate in the hepatocyte. Disturbed fatty acid metabolism can be involved in the pathogenesis of NASH but there is no information concerning its plasma fatty acid profile. The aim of this study was to evaluate plasma total (esterified plus free) and free fatty acids concentrations to assess the association of NASH with plasma fatty acid accumulation. Overnight fasting blood samples from 22 biopsy-proven NASH patients and of 6 matched age healthy controls were studied. NASH patients had significantly higher concentration of total and free fatty acids than controls (P<0.05), higher total saturated and monounsaturated levels in both studied lipid fractions (P<0.05), mainly due to the increase of hexadecanoic, hexadecenoic and octadecenoic acids. Absolute polyunsaturated fatty acids (PUFA) concentrations were similar in both groups. The C20:4/C18:2 and the C18:1/C18:0 ratios as well as the peroxidability index were not significantly different. In overweight/obese patients NASH is associated with deranged fatty acid metabolism which may be involved in its pathogenesis and/or progression.

  4. Study on furundu, a traditional Sudanese fermented roselle (Hibiscus sabdariffa L.) seed: effect on in vitro protein digestibility, chemical composition, and functional properties of the total proteins.

    PubMed

    Yagoub, Abu El-Gasim A; Mohamed, Babiker E; Ahmed, Abdel Halim R; El Tinay, Abdullahi H

    2004-10-06

    Furundu, a meat substitute, is traditionally prepared by cooking the karkade (Hibiscus sabdariffa L.) seed and then fermenting it for 9 days. Physicochemical and functional properties of raw and cooked seed and of furundu ferments were analyzed. Furundu preparation resulted in significant changes in karkade seed major nutrients. Total polyphenols and phytic acid were also reduced. The increase in total acidity and fat acidity coupled with a decrease in pH indicates microbial hydrolysis of the major nutrients; proteins, carbohydrates, and fats. In vitro digestibility of the seed proteins reached the maximum value (82.7%) at the sixth day of fermentation, but thereafter it significantly decreased. The effect of furundu preparation on N solubility profiles and functional properties, such as emulsification and foaming properties and other related parameters, is investigated in water and in 1 M NaCl extracts from defatted flour samples. The results show that cooking followed by fermentation affects proteins solubility in water and 1 M NaCl. The foaming capacity (FC) from the flour of raw seed decreased as a result of cooking. Fermentation for 9 days significantly increased the FC of the cooked seed, restoring the inherent value. Foam from fermented samples collapsed more rapidly during a period of 120 min as compared to the foam from raw and cooked karkade seeds; stability in 1 M NaCl was lower as compared to those in water. In water, the emulsion stability (ES) from the fermented samples was significantly higher than that of the raw seed flour. Addition of 1 M NaCl significantly decreased the ES of the fermented samples.

  5. Matched cohort study of topical tranexamic acid in cementless primary total hip replacement.

    PubMed

    Sanz-Reig, Javier; Mas Martinez, Jesus; Verdu Román, Carmen; Morales Santias, Manuel; Martínez Gimenez, Enrique; Bustamante Suarez de Puga, David

    2018-03-29

    Tranexamic acid has been shown to be effective in reducing blood loss after total hip replacement. The purpose of this study was to prospectively assess the effectiveness of topical TXA use to reduce blood loss after primary total hip replacement and to compare these outcomes with those of a matched control group from a similar cohort that did not have received tranexamic acid. This is a prospective matched control study to assess the effect of a 2 g topical tranexamic acid in 50 mL physiological saline solution in total hip replacement. Primary outcomes were hemoglobin and hematocrit drop, and total blood loss. Secondary outcomes were transfusion rates, length of hospital stay, deep vein thrombosis, and pulmonary embolism events. We could match 100 patients to a control group. There were no statistical significantly differences between the two groups. The hemoglobin and hematocrit postoperative values were significantly higher in topical tranexamic acid group than in control group (P < 0.001). The mean total blood loss was 769 in topical tranexamic acid group and 1163 in control group with significant differences (P = 0.001), which meant 34% reduction in total blood loss. Length of stay was lower in topical tranexamic acid group. The risk of deep vein thrombosis and pulmonary events did not increase. A single dose of 2 g tranexamic acid in 50 mL physiological saline solution topical administration was effective and safe in reducing bleeding in patients undergoing unilateral primary non-cemented total hip replacement compared to a matched control group.

  6. Master Amino acid Pattern as sole and total substitute for dietary proteins during a weight-loss diet to achieve the body's nitrogen balance equilibrium.

    PubMed

    Lucà-Moretti, M; Grandi, A; Lucà, E; Muratori, G; Nofroni, M G; Mucci, M P; Gambetta, P; Stimolo, R; Drago, P; Giudice, G; Tamburlin, N; Karbalai, M; Valente, C; Moras, G

    2003-01-01

    Results of this multicentric study have shown that by giving Master Amino acid Pattern (MAP) as a sole and total substitute of dietary proteins to 500 overweight participants undergoing the American Nutrition Clinics/Overweight Management Program (ANC/OMP), the participants' body nitrogen balance could be maintained in equilibrium with essentially no calories (MAP 1 g=0.04 kcal), thereby preserving the body's structural and functional proteins, eliminating excessive water retention from the interstitial compartment, and preventing the sudden weight increase after study conclusion commonly known as the yo-yo effect. Study results have shown that the use of MAP, in conjunction with the ANC/OMP regimen, has proven to be safe and effective by preventing those adverse effects associated with a negative nitrogen balance, such as oversized or flabby tissue, stretch marks, the sagging of breast tissue, increased hair loss, faded hair color, and fragile or brittle nails. Also prevented were those anomalies commonly associated with weight-loss diets, such as hunger, weakness, headache caused by ketosis, constipation, and decreased libido. The use of MAP in conjunction with the ANC/OMP also allowed for mean weight loss of 2.5 kg (5.5 lb) per week, achieved through reduction of excessive fat tissue and elimination of excessive water retention from the interstitial compartment.

  7. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase.

  8. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    PubMed Central

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725

  9. Fermentable soluble fibres spare amino acids in healthy dogs fed a low-protein diet.

    PubMed

    Wambacq, Wendy; Rybachuk, Galena; Jeusette, Isabelle; Rochus, Kristel; Wuyts, Brigitte; Fievez, Veerle; Nguyen, Patrick; Hesta, Myriam

    2016-06-28

    Research in cats has shown that increased fermentation-derived propionic acid and its metabolites can be used as alternative substrates for gluconeogenesis, thus sparing amino acids for other purposes. This amino acid sparing effect could be of particular interest in patients with kidney or liver disease, where this could reduce the kidneys'/liver's burden of N-waste removal. Since dogs are known to have a different metabolism than the obligatory carnivorous cat, the main objective of this study was to assess the possibility of altering amino acid metabolism through intestinal fermentation in healthy dogs. This was studied by supplementing a low-protein diet with fermentable fibres, hereby providing an initial model for future studies in dogs suffering from renal/liver disease. Eight healthy dogs were randomly assigned to one of two treatment groups: sugar beet pulp and guar gum mix (SF: soluble fibre, estimated to mainly stimulate propionic acid production) or cellulose (IF: insoluble fibre). Treatments were incorporated into a low-protein (17 %) extruded dry diet in amounts to obtain similar total dietary fibre (TDF) contents for both diets (9.4 % and 8.2 % for the SF and IF diet, respectively) and were tested in a 4-week crossover feeding trial. Apparent faecal nitrogen digestibility and post-prandial fermentation metabolites in faeces and plasma were evaluated. Dogs fed the SF diet showed significantly higher faecal excretion of acetic and propionic acid, resulting in a higher total SCFA excretion compared to IF. SF affected the three to six-hour postprandial plasma acylcarnitine profile by significantly increasing AUC of acetyl-, propionyl-, butyryl- + isobutyryl-, 3-OH-butyryl-, 3-OH-isovaleryl- and malonyl-L-carnitine. Moreover, the amino acid plasma profile at that time was modified as leucine + isoleucine concentrations were significantly increased by SF, and a similar trend for phenylalanine and tyrosine's AUC was found. These results indicate

  10. Crude protein and essential amino acid requirements in chicks during the first week posthatch.

    PubMed

    Sklan, D; Noy, Y

    2003-05-01

    1. This study examined optimal lysine and sulphur amino acid supply in the first week posthatch in broilers and the relationship between essential amino acids and dietary crude protein during the first week posthatch on performance at 7 d and through marketing. 2. The optimal supply during the 7 d posthatch using a 230 g/kg crude protein diet for sulphur amino acids was 9.1 and for lysine was 10.3-10.8 g/kg with maximal body weight (BW) or feed efficiency as the criteria. 3. Feeding diets with crude protein content ranging from 200 to 260 g/kg with either constant amounts of essential amino acids at different crude protein levels or constant ratios of essential amino acids to crude protein resulted in enhanced performance at 7 but not at 4 d with high protein intake and proportionally increased essential amino acids. 4. Performance on diets with crude protein ranging from 160 to 280 g/kg, with constant ratios of essential amino acid to crude protein, was much enhanced with the high crude protein diets at 7 d. All chicks were transferred to standard diets after 7 d and the BW advantage due to the balanced amino acid-high crude protein diet remained through marketing. 5. Thus increasing essential amino acids in a constant ratio to crude protein enhanced performance during the 7 d posthatch.

  11. NIAS-Server: Neighbors Influence of Amino acids and Secondary Structures in Proteins.

    PubMed

    Borguesan, Bruno; Inostroza-Ponta, Mario; Dorn, Márcio

    2017-03-01

    The exponential growth in the number of experimentally determined three-dimensional protein structures provide a new and relevant knowledge about the conformation of amino acids in proteins. Only a few of probability densities of amino acids are publicly available for use in structure validation and prediction methods. NIAS (Neighbors Influence of Amino acids and Secondary structures) is a web-based tool used to extract information about conformational preferences of amino acid residues and secondary structures in experimental-determined protein templates. This information is useful, for example, to characterize folds and local motifs in proteins, molecular folding, and can help the solution of complex problems such as protein structure prediction, protein design, among others. The NIAS-Server and supplementary data are available at http://sbcb.inf.ufrgs.br/nias .

  12. Interaction of melanin with proteins--the importance of an acidic intramelanosomal pH.

    PubMed

    Mani, I; Sharma, V; Tamboli, I; Raman, G

    2001-06-01

    Melanin is a highly irregular heteropolymer consisting of monomeric units derived from the enzymatic oxidation of the amino acid tyrosine. The process of melanin formation takes place in specialized acidic organelles (melanosomes) in melanocytes. The process of melanin polymerization requires an alkaline pH in vitro, and therefore, the purpose of an acidic environment in vivo remains a mystery. It is known that melanin is always bound to protein in vivo. It is also seen that polymerization in vitro at an acidic pH necessarily requires the presence of proteins. The effect of various model proteins on melanin synthesis and their interaction with melanin was studied. It was seen that many proteins could increase melanin synthesis at an acidic pH, and that different proteins resulted in the formation of different states of melanin, i.e., a precipitate or a soluble, protein-bound form. We also present evidence to show that soluble protein-bound melanin is present in vivo (in B16 cells as well as in B16 melanoma tissue). An acidic pH appeared to be necessary to ensure the formation of a uniform, very high molecular weight melano-protein complex. The interaction between melanin and proteins appears to be largely charge-dependent as evidenced by zeta potential measurements, and this interaction is also increased in an acidic pH. Thus, it appears that an acidic intramelanosomal pH is essential to ensure maximum interaction between protein and melanin, and also to ensure that all the melanin formed is protein-bound.

  13. Intake of total omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid and risk of coronary heart disease in the Spanish EPIC cohort study.

    PubMed

    Amiano, P; Machón, M; Dorronsoro, M; Chirlaque, M Dolores; Barricarte, A; Sánchez, M-J; Navarro, C; Huerta, J M; Molina-Montes, E; Sánchez-Cantalejo, E; Urtizberea, M; Arriola, L; Larrañaga, N; Ardanaz, E; Quirós, J R; Moreno-Iribas, C; González, C A

    2014-03-01

    The evidence about the benefits of omega-3 fatty acid intake on coronary heart disease (CHD) is not consistent. We thus aimed to assess the relation between dietary intake of total omega-3 fatty acids (from plant and marine foods) and marine polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on the risk of CHD in the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). The analysis included 41,091 men and women aged 20-69 years, recruited from 1992 to 1996 and followed-up until December 2004. Omega-3 fatty acid intake was estimated from a validated dietary questionnaire. Only participants with definite incident CHD event were considered as cases. Cox regression models were used to assess the association between the intake of total omega-3 fatty acids, EPA or DHA and CHD. A total of 609 participants (79% men) had a definite CHD event. Mean intakes of total omega-3 fatty acids, EPA and DHA were very similar in the cases and in the cohort, both in men and women. In the multivariate adjusted model, omega-3 fatty acids, EPA and DHA were not related to incident CHD in either men or women. The hazard ratios (HR) for omega-3 were 1.23 in men (95% CI 0.94-15.9, p = 0.20); and 0.77 in women (95% CI 0.46-1.30, p = 0.76). In the Spanish EPIC cohort, with a relatively high intake of fish, no association was found between EPA, DHA and total omega-3 fatty acid intake and risk of CHD. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Only One of the Five Ralstonia solanacearum Long-Chain 3-Ketoacyl-Acyl Carrier Protein Synthase Homologues Functions in Fatty Acid Synthesis

    PubMed Central

    Cheng, Juanli; Ma, Jincheng; Lin, Jinshui; Fan, Zhen-Chuan; Cronan, John E.

    2012-01-01

    Ralstonia solanacearum, a major phytopathogenic bacterium, causes a bacterial wilt disease in diverse plants. Although fatty acid analyses of total membranes of R. solanacearum showed that they contain primarily palmitic (C16:0), palmitoleic (C16:1) and cis-vaccenic (C18:1) acids, little is known regarding R. solanacearum fatty acid synthesis. The R. solanacearum GMI1000 genome is unusual in that it contains four genes (fabF1, fabF2, fabF3, and fabF4) annotated as encoding 3-ketoacyl-acyl carrier protein synthase II homologues and one gene (fabB) annotated as encoding 3-ketoacyl-acyl carrier protein synthase I. We have analyzed this puzzling apparent redundancy and found that only one of these genes, fabF1, encoded a long-chain 3-ketoacyl-acyl carrier protein synthase, whereas the other homologues did not play roles in R. solanacearum fatty acid synthesis. Mutant strains lacking fabF1 are nonviable, and thus, FabF1 is essential for R. solanacearum fatty acid biosynthesis. Moreover, R. solanacearum FabF1 has the activities of both 3-ketoacyl-acyl carrier protein synthase II and 3-ketoacyl-acyl carrier protein synthase I. PMID:22194290

  15. Isolation and characterization of a novel acidic matrix protein hic22 from the nacreous layer of the freshwater mussel, Hyriopsis cumingii.

    PubMed

    Liu, X J; Jin, C; Wu, L M; Dong, S J; Zeng, S M; Li, J L

    2016-07-29

    Matrix proteins that either weakly acidic or unusually highly acidic have important roles in shell biomineralization. In this study, we have identified and characterized hic22, a weakly acidic matrix protein, from the nacreous layer of Hyriopsis cumingii. Total protein was extracted from the nacre using 5 M EDTA and hic22 was purified using a DEAE-sepharose column. The N-terminal amino acid sequence of hic22 was determined and the complete cDNA encoding hic22 was cloned and sequenced by rapid amplification of cDNA ends-polymerase chain reaction. Finally, the localization and distribution of hic22 was determined by in situ hybridization. Our results revealed that hic22 encodes a 22-kDa protein composed of 185 amino acids. Tissue expression analysis and in situ hybridization indicated that hic22 is expressed in the dorsal epithelial cells of the mantle pallial; moreover, significant expression levels of hic22 were observed after the early formation of the pearl sac (days 19-77), implying that hic22 may play an important role in biomineralization of the nacreous layer.

  16. Amino acid profiles of rumen undegradable protein: a comparison between forages including cereal straws and alfalfa and their respective total mixed rations.

    PubMed

    Wang, B; Jiang, L S; Liu, J X

    2018-06-01

    Optimizing the amino acid (AA) profile of rumen undegradable protein (RUP) can positively affect the amount of milk protein. This study was conducted to improve knowledge regarding the AA profile of rumen undegradable protein from corn stover, rice straw and alfalfa hay as well as the total mixed ratio diets (TMR) based on one of them as forage source [forage-to-concentrate ratio of 45:55 (30% of corn stover (CS), 30% of rice straw (RS), 23% of alfalfa hay (AH) and dry matter basis)]. The other ingredients in the three TMR diets were similar. The RUP of all the forages and diets was estimated by incubation for 16 hr in the rumen of three ruminally cannulated lactating cows. All residues were corrected for microbial colonization, which was necessary in determining the AA composition of RUP from feed samples using in situ method. Compared with their original AA composition, the AA pattern of forages and forage-based diets changed drastically after rumen exposure. In addition, the extent of ruminal degradation of analysed AA was not constant among the forages. The greatest individual AA degradability of alfalfa hay and corn stover was Pro, but was His of rice straw. A remarkable difference was observed between microbial attachment corrected and uncorrected AA profiles of RUP, except for alfalfa hay and His in the three forages and TMR diets. The ruminal AA degradability of cereal straws was altered compared with alfalfa hay but not for the TMR diets. In summary, the AA composition of forages and TMR-based diets changed significantly after ruminal exposure, indicating that the original AA profiles of the feed cannot represent its AA composition of RUP. The AA profile of RUP and ruminal AA degradability for corn stover and rice straw contributed to missing information in the field. © 2017 Blackwell Verlag GmbH.

  17. Predicting nucleic acid binding interfaces from structural models of proteins.

    PubMed

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  18. Predicting nucleic acid binding interfaces from structural models of proteins

    PubMed Central

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2011-01-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared to patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. PMID:22086767

  19. Effects of dietary cottonseed oil and tannin supplements on protein and fatty acid composition of bovine milk.

    PubMed

    Aprianita, Aprianita; Donkor, Osaana N; Moate, Peter J; Williams, S Richard O; Auldist, Martin J; Greenwood, Jae S; Hannah, Murray C; Wales, William J; Vasiljevic, Todor

    2014-05-01

    This experiment was conducted to determine the effects of diets supplemented with cottonseed oil, Acacia mearnsii-condensed tannin extract, and a combination of both on composition of bovine milk. Treatment diets included addition of cottonseed oil (800 g/d; CSO), condensed tannin from Acacia mearnsii (400 g/d; TAN) or a combination of cottonseed oil (800 g/d) and condensed tannin (400 g/d; CPT) with a diet consisting of 6·0 kg dry matter (DM) of concentrates and alfalfa hay ad libitum, which also served as the control diet (CON). Relative to the CON diet, feeding CSO and CPT diets had a minor impact on feed intake and yield of lactose in milk. These diets increased yields of milk and protein in milk. In contrast to the TAN diet, the CSO and CPT diets significantly decreased milk fat concentration and altered milk fatty acid composition by decreasing the proportion of saturated fatty acids but increasing proportions of monounsaturated and polyunsaturated fatty acids. The CPT diet had a similar effect to the CSO diet in modifying fatty acid profile. Overall, reduction in milk fat concentration and changes in milk fatty acid profile were probably due to supplementation of linoleic acid-rich cottonseed oil. The TAN diet had no effect on feed intake, milk yield and milk protein concentration. However, a reduction in the yields of protein and lactose occurred when cows were fed this diet. Supplemented tannin had no significant effect on fat concentration and changes in fatty acid profile in milk. All supplemented diets did not affect protein concentration or composition, nitrogen concentration, or casein to total protein ratio of the resulting milk.

  20. Thyroid hormone responsive protein Spot14 enhances catalysis of fatty acid synthase in lactating mammary epithelium[S

    PubMed Central

    Rudolph, Michael C.; Wellberg, Elizabeth A.; Lewis, Andrew S.; Terrell, Kristina L.; Merz, Andrea L.; Maluf, N. Karl; Serkova, Natalie J.; Anderson, Steven M.

    2014-01-01

    Thyroid hormone responsive protein Spot 14 has been consistently associated with de novo fatty acid synthesis activity in multiple tissues, including the lactating mammary gland, which synthesizes large quantities of medium chain fatty acids (MCFAs) exclusively via FASN. However, the molecular function of Spot14 remains undefined during lactation. Spot14-null mice produce milk deficient in total triglyceride and de novo MCFA that does not sustain optimal neonatal growth. The lactation defect was rescued by provision of a high fat diet to the lactating dam. Transgenic mice overexpressing Spot14 in mammary epithelium produced total milk fat equivalent to controls, but with significantly greater MCFA. Spot14-null dams have no diminution of metabolic gene expression, enzyme protein levels, or intermediate metabolites that accounts for impaired de novo MCFA. When [13C] fatty acid products were quantified in vitro using crude cytosolic lysates, native FASN activity was 1.6-fold greater in control relative to Spot14-null lysates, and add back of Spot14 partially restored activity. Recombinant FASN catalysis increased 1.4-fold and C = 14:0 yield was enhanced 4-fold in vitro following addition of Spot14. These findings implicate Spot14 as a direct protein enhancer of FASN catalysis in the mammary gland during lactation when maximal MCFA production is needed. PMID:24771867

  1. Database of amino acid-nucleotide contacts in contacts in DNA-homeodomain protein

    NASA Astrophysics Data System (ADS)

    Grokhlina, T. I.; Zrelov, P. V.; Ivanov, V. V.; Polozov, R. V.; Chirgadze, Yu. N.; Sivozhelezov, V. S.

    2013-09-01

    The analysis of amino acid-nucleotide contacts in interfaces of the protein-DNA complexes, intended to find consistencies in the protein-DNA recognition, is a complex problem that requires an analysis of the physicochemical characteristics of these contacts and the positions of the participating amino acids and nucleotides in the chains of the protein and the DNA, respectively, as well as conservatism of these contacts. Thus, those heterogeneous data should be systematized. For this purpose we have developed a database of amino acid-nucleotide contacts ANTPC (Amino acid Nucleotide Type Position Conservation) following the archetypal example of the proteins in the homeodomain family. We show that it can be used to compare and classify the interfaces of the protein-DNA complexes.

  2. Cloning and characteristics of fish glial fibrillary acidic protein: implications for optic nerve regeneration.

    PubMed

    Cohen, I; Shani, Y; Schwartz, M

    1993-08-15

    Mammalian central nervous system neurons do not regenerate after axonal injury, unlike their counterparts in fish and amphibians. After axonal injury, glial cells in mammals do not support regrowth of axons, while in fish they support the regeneration process. Controversy exists as to whether or not the intact fish optic nerve expresses glial fibrillary acidic protein, a well-known marker for mature astrocytes, and thus whether its astrocytes differ in this respect from those of the brain and spinal cord, as well as from optic nerve astrocytes of other species. In an attempt to resolve this question we cloned fish glial fibrillary acidic protein. Two different complementary DNA clones were isolated from a carp brain complementary DNA library, each encoding a different form of glial fibrillary acidic protein apparently originating from different genes. Monospecific polyclonal antibodies were raised against a peptide synthesized according to the predicted amino acid sequence, and used to identify and localize the fish glial fibrillary acidic protein. Two glial fibrillary acidic proteins (of 49 kDa and 51 kDa) were identified by the antibodies in all tested fish central nervous system tissues. The antibodies were then used to examine glial fibrillary acidic protein immunoreactivity in sections taken from uninjured and injured optic nerves of goldfish. Injury was followed by an elevation in glial fibrillary acidic protein immunoreactivity along the whole length of the nerve, except at the site of the injury, where--as in the case of vimentin--no immunoreactivity was detectable. However, in contrast to vimentin-positive glial cells, which repopulate the site of the injury soon after the optic nerve is injured, glial fibrillary acidic protein-positive glial cells remained outside the injury site for as long as 6 weeks after the injury. Despite the injury-induced changes in glial fibrillary acidic protein immunoreactivity, no change was observed in the level of transcript

  3. Improving protein complex classification accuracy using amino acid composition profile.

    PubMed

    Huang, Chien-Hung; Chou, Szu-Yu; Ng, Ka-Lok

    2013-09-01

    Protein complex prediction approaches are based on the assumptions that complexes have dense protein-protein interactions and high functional similarity between their subunits. We investigated those assumptions by studying the subunits' interaction topology, sequence similarity and molecular function for human and yeast protein complexes. Inclusion of amino acids' physicochemical properties can provide better understanding of protein complex properties. Principal component analysis is carried out to determine the major features. Adopting amino acid composition profile information with the SVM classifier serves as an effective post-processing step for complexes classification. Improvement is based on primary sequence information only, which is easy to obtain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Acid extraction and purification of recombinant spider silk proteins.

    PubMed

    Mello, Charlene M; Soares, Jason W; Arcidiacono, Steven; Butler, Michelle M

    2004-01-01

    A procedure has been developed for the isolation of recombinant spider silk proteins based upon their unique stability and solubilization characteristics. Three recombinant silk proteins, (SpI)7, NcDS, and [(SpI)4/(SpII)1]4, were purified by extraction with organic acids followed by affinity or ion exchange chromatography resulting in 90-95% pure silk solutions. The protein yield of NcDS (15 mg/L culture) and (SpI)7 (35 mg/L) increased 4- and 5-fold, respectively, from previously reported values presumably due to a more complete solubilization of the expressed recombinant protein. [(SpI)4/(SpII)1]4, a hybrid protein based on the repeat sequences of spidroin I and spidroin II, had a yield of 12.4 mg/L. This method is an effective, reproducible technique that has broad applicability for a variety of silk proteins as well as other acid stable biopolymers.

  5. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle.

    PubMed

    Reidy, P T; Walker, D K; Dickinson, J M; Gundermann, D M; Drummond, M J; Timmerman, K L; Cope, M B; Mukherjea, R; Jennings, K; Volpi, E; Rasmussen, B B

    2014-06-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P < 0.05). However, the ingestion of the protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P < 0.05). Postexercise myofibrillar protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein. Copyright © 2014 the American Physiological Society.

  6. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle

    PubMed Central

    Reidy, P. T.; Walker, D. K.; Dickinson, J. M.; Gundermann, D. M.; Drummond, M. J.; Timmerman, K. L.; Cope, M. B.; Mukherjea, R.; Jennings, K.; Volpi, E.

    2014-01-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P < 0.05). However, the ingestion of the protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P < 0.05). Postexercise myofibrillar protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein. PMID:24699854

  7. Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa.

    PubMed

    Trevino, Saul R; Scholtz, J Martin; Pace, C Nick

    2007-02-16

    Poor protein solubility is a common problem in high-resolution structural studies, formulation of protein pharmaceuticals, and biochemical characterization of proteins. One popular strategy to improve protein solubility is to use site-directed mutagenesis to make hydrophobic to hydrophilic mutations on the protein surface. However, a systematic investigation of the relative contributions of all 20 amino acids to protein solubility has not been done. Here, 20 variants at the completely solvent-exposed position 76 of ribonuclease (RNase) Sa are made to compare the contributions of each amino acid. Stability measurements were also made for these variants, which occur at the i+1 position of a type II beta-turn. Solubility measurements in ammonium sulfate solutions were made at high positive net charge, low net charge, and high negative net charge. Surprisingly, there was a wide range of contributions to protein solubility even among the hydrophilic amino acids. The results suggest that aspartic acid, glutamic acid, and serine contribute significantly more favorably than the other hydrophilic amino acids especially at high net charge. Therefore, to increase protein solubility, asparagine, glutamine, or threonine should be replaced with aspartic acid, glutamic acid or serine.

  8. Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa

    PubMed Central

    Trevino, Saul R.; Scholtz, J. Martin; Pace, C. Nick

    2009-01-01

    SUMMARY Poor protein solubility is a common problem in high resolution structural studies, formulation of protein pharmaceuticals, and biochemical characterization of proteins. One popular strategy to improve protein solubility is to use site-directed mutagenesis to make hydrophobic to hydrophilic mutations on the protein surface. However, a systematic investigation of the relative contributions of all twenty amino acids to protein solubility has not been done. Here, twenty variants at the completely solvent-exposed position 76 of Ribonuclease (RNase) Sa are made to compare the contributions of each amino acid. Stability measurements were also made for these variants, which occur at the i+1 position of a type II β-turn. Solubility measurements in ammonium sulfate solutions were made at high positive net charge, low net charge, and high negative net charge. Surprisingly, there was a wide range of contributions to protein solubility even among the hydrophilic amino acids. The results suggest that aspartic acid, glutamic acid, and serine contribute significantly more favorably than the other hydrophilic amino acids especially at high net charge. Therefore, to increase protein solubility, asparagine, glutamine, or threonine should be replaced with aspartic acid, glutamic acid or serine. PMID:17174328

  9. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which oftenmore » takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.« less

  10. Multiexcitation Fluorogenic Labeling of Surface, Intracellular, and Total Protein Pools in Living Cells

    PubMed Central

    2016-01-01

    Malachite green (MG) is a fluorogenic dye that shows fluorescence enhancement upon binding to its engineered cognate protein, a fluorogen activating protein (FAP). Energy transfer donors such as cyanine and rhodamine dyes have been conjugated with MG to modify the spectral properties of the fluorescent complexes, where the donor dyes transfer energy through Förster resonance energy transfer to the MG complex resulting in binding-conditional fluorescence emission in the far-red region. In this article, we use a violet-excitable dye as a donor to sensitize the far-red emission of the MG-FAP complex. Two blue emitting fluorescent coumarin dyes were coupled to MG and evaluated for energy transfer to the MG-FAP complex via its secondary excitation band. 6,8-Difluoro-7-hydroxycoumarin-3-carboxylic acid (Pacific blue, PB) showed the most efficient energy transfer and maximum brightness in the far-red region upon violet (405 nm) excitation. These blue-red (BluR) tandem dyes are spectrally varied from other tandem dyes and are able to produce fluorescence images of the MG-FAP complex with a large Stokes shift (>250 nm). These dyes are cell-permeable and are used to label intracellular proteins. Used together with a cell-impermeable hexa-Cy3-MG (HCM) dye that labels extracellular proteins, we are able to visualize extracellular, intracellular, and total pools of cellular protein using one fluorogenic tag that combines with distinct dyes to effect different spectral characteristics. PMID:27159569

  11. Advances in protein-amino acid nutrition of poultry.

    PubMed

    Baker, David H

    2009-05-01

    The ideal protein concept has allowed progress in defining requirements as well as the limiting order of amino acids in corn, soybean meal, and a corn-soybean meal mixture for growth of young chicks. Recent evidence suggests that glycine (or serine) is a key limiting amino acid in reduced protein [23% crude protein (CP) reduced to 16% CP] corn-soybean meal diets for broiler chicks. Research with sulfur amino acids has revealed that small excesses of cysteine are growth depressing in chicks fed methionine-deficient diets. Moreover, high ratios of cysteine:methionine impair utilization of the hydroxy analog of methionine, but not of methionine itself. A high level of dietary L: -cysteine (2.5% or higher) is lethal for young chicks, but a similar level of DL: -methionine, L: -cystine or N-acetyl-L: -cysteine causes no mortality. A supplemental dietary level of 3.0% L: -cysteine (7x requirement) causes acute metabolic acidosis that is characterized by a striking increase in plasma sulfate and decrease in plasma bicarbonate. S-Methylmethionine, an analog of S-adenosylmethionine, has been shown to have choline-sparing activity, but it only spares methionine when diets are deficient in choline and(or) betaine. Creatine, or its precursor guanidinoacetic acid, can spare dietary arginine in chicks.

  12. The effects of reduced dietary protein level on amino acid transporters and mTOR signaling pathway in pigs.

    PubMed

    Wang, Dan; Wan, Xuebin; Peng, Jian; Xiong, Qi; Niu, Hongdan; Li, Huanan; Chai, Jin; Jiang, Siwen

    2017-04-01

    Amino acid transporter plays an important role in regulating mTOR signaling pathway. This study investigated the effects of reduced dietary protein levels on amino acid transporters and mTOR signaling pathway. A total of 54 weaning pigs were randomly allocated into a 3 × 3 factorial design, followed by slaughtering the pigs separately after 10-, 25- and 45-day feeding, with 18 pigs from each feeding period divided into three subgroups for treatment with three different protein-level diets: 20% crude protein (CP) diet (normal recommended, high protein, HP), 17% CP diet (medium protein, MP) and 14% CP diet (low protein, LP). The results indicated that reduced dietary protein level decreased the weight of longissimus dorsi. Additionally, quantitative PCR chip analysis showed that mRNA expression of amino acid transporters SLC38A2, SLC1A7, SLC7A1, SLC7A5, SLC16A10 and SLC3A2 in the LP group were significantly (P < 0.05) higher than those in the MP or HP group, and the phosphorylation of mTOR and S6K1 decreased in the LP group after 25-day feeding. Furthermore, the vitro experimental results further confirmed that the mRNA levels for SLC7A1, SLC7A5, SLC3A2, SLC38A2 and SLC36A1 were increased and the phosphorylation of mTOR and S6K1 was decreased when the concentration of amino acids in C2C12 myoblasts was reduced. All these results indicated that the LP diet induced a high expression of amino acid transporters and the inhibition of the mTOR activity, which resulting in restriction on protein synthesis and longissimus dorsi growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Neuromuscular electrical stimulation prior to presleep protein feeding stimulates the use of protein-derived amino acids for overnight muscle protein synthesis.

    PubMed

    Dirks, Marlou L; Groen, Bart B L; Franssen, Rinske; van Kranenburg, Janneau; van Loon, Luc J C

    2017-01-01

    Short periods of muscle disuse result in substantial skeletal muscle atrophy. Recently, we showed that both neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. In this study, we test our hypothesis that NMES can augment the use of presleep protein-derived amino acids for overnight muscle protein synthesis in older men. Twenty healthy, older [69 ± 1 (SE) yr] men were subjected to 24 h of bed rest, starting at 8:00 AM. In the evening, volunteers were subjected to 70-min 1-legged NMES, while the other leg served as nonstimulated control (CON). Immediately following NMES, 40 g of intrinsically l-[1- 13 C]-phenylalanine labeled protein was ingested prior to sleep. Blood samples were taken throughout the night, and muscle biopsies were obtained from both legs in the evening and the following morning (8 h after protein ingestion) to assess dietary protein-derived l-[1- 13 C]-phenylalanine enrichments in myofibrillar protein. Plasma phenylalanine concentrations and plasma l-[1- 13 C]-phenylalanine enrichments increased significantly following protein ingestion and remained elevated for up to 6 h after protein ingestion (P < 0.05). During overnight sleep, myofibrillar protein-bound l-[1- 13 C]-phenylalanine enrichments (MPE) increased to a greater extent in the stimulated compared with the control leg (0.0344 ± 0.0019 vs. 0.0297 ± 0.0016 MPE, respectively; P < 0.01), representing 18 ± 6% greater incorporation of presleep protein-derived amino acids in the NMES compared with CON leg. In conclusion, application of NMES prior to presleep protein feeding stimulates the use of dietary protein-derived amino acids for overnight muscle protein synthesis in older men. Neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. Here we demonstrate that in older

  14. Electrophoretic Mobility Shift Assay (EMSA) for Detecting Protein-Nucleic Acid Interactions

    PubMed Central

    Hellman, Lance M.; Fried, Michael G.

    2009-01-01

    The gel electrophoresis mobility shift assay (EMSA) is used to detect protein complexes with nucleic acids. It is the core technology underlying a wide range of qualitative and quantitative analyses for the characterization of interacting systems. In the classical assay, solutions of protein and nucleic acid are combined and the resulting mixtures are subjected to electrophoresis under native conditions through polyacrylamide or agarose gel. After electrophoresis, the distribution of species containing nucleic acid is determined, usually by autoradiography of 32P-labeled nucleic acid. In general, protein-nucleic acid complexes migrate more slowly than the corresponding free nucleic acid. In this article, we identify the most important factors that determine the stabilities and electrophoretic mobilities of complexes under assay conditions. A representative protocol is provided and commonly used variants are discussed. Expected outcomes are briefly described. References to extensions of the method and a troubleshooting guide are provided. PMID:17703195

  15. Acute supplementation of amino acids increases net protein accretion in IUGR fetal sheep

    PubMed Central

    Rozance, Paul J.; Thorn, Stephanie R.; Friedman, Jacob E.; Hay, William W.

    2012-01-01

    Placental insufficiency decreases fetal amino acid uptake from the placenta, plasma insulin concentrations, and protein accretion, thus compromising normal fetal growth trajectory. We tested whether acute supplementation of amino acids or insulin into the fetus with intrauterine growth restriction (IUGR) would increase net fetal protein accretion rates. Late-gestation IUGR and control (CON) fetal sheep received acute, 3-h infusions of amino acids (with euinsulinemia), insulin (with euglycemia and euaminoacidemia), or saline. Fetal leucine metabolism was measured under steady-state conditions followed by a fetal muscle biopsy to quantify insulin signaling. In CON, increasing amino acid delivery rates to the fetus by 100% increased leucine oxidation rates by 100%. In IUGR, amino acid infusion completely suppressed fetal protein breakdown rates but increased leucine oxidation rate by only 25%, resulting in increased protein accretion rates by 150%. Acute insulin infusion, however, had very little effect on amino acid delivery rates, fetal leucine disposal rates, or fetal protein accretion rates in CON or IUGR fetuses despite robust signaling of the fetal skeletal muscle insulin-signaling cascade. These results indicate that, when amino acids are given directly into the fetal circulation independently of changes in insulin concentrations, IUGR fetal sheep have suppressed protein breakdown rates, thus increasing net fetal protein accretion. PMID:22649066

  16. Relationship between Acute Phase Proteins and Serum Fatty Acid Composition in Morbidly Obese Patients

    PubMed Central

    Fernandes, Ricardo; Beserra, Bruna Teles Soares; Cunha, Raphael Salles Granato; Hillesheim, Elaine; Camargo, Carolina de Quadros; Pequito, Danielle Cristina Tonello; de Castro, Isabela Coelho; Fernandes, Luiz Cláudio; Nunes, Everson Araújo; Trindade, Erasmo Benício Santos de Moraes

    2013-01-01

    Background. Obesity is considered a low-grade inflammatory state and has been associated with increased acute phase proteins as well as changes in serum fatty acids. Few studies have assessed associations between acute phase proteins and serum fatty acids in morbidly obese patients. Objective. To investigate the relationship between acute phase proteins (C-Reactive Protein, Orosomucoid, and Albumin) and serum fatty acids in morbidly obese patients. Methods. Twenty-two morbidly obese patients were enrolled in this study. Biochemical and clinical data were obtained before bariatric surgery, and fatty acids measured in preoperative serum. Results. Orosomucoid was negatively correlated with lauric acid (P = 0.027) and eicosapentaenoic acid (EPA) (P = 0.037) and positively with arachidonic acid (AA) (P = 0.035), AA/EPA ratio (P = 0.005), and n-6/n-3 polyunsaturated fatty acids ratio (P = 0.035). C-Reactive Protein (CRP) was negatively correlated with lauric acid (P = 0.048), and both CRP and CRP/Albumin ratio were negatively correlated with margaric acid (P = 0.010, P = 0.008, resp.). Albumin was positively correlated with EPA (P = 0.027) and margaric acid (P = 0.008). Other correlations were not statistically significant. Conclusion. Our findings suggest that serum fatty acids are linked to acute phase proteins in morbidly obese patients. PMID:24167354

  17. Validated age-specific reference values for CSF total protein levels in children.

    PubMed

    Kahlmann, V; Roodbol, J; van Leeuwen, N; Ramakers, C R B; van Pelt, D; Neuteboom, R F; Catsman-Berrevoets, C E; de Wit, M C Y; Jacobs, B C

    2017-07-01

    To define age-specific reference values for cerebrospinal fluid (CSF) total protein levels for children and validate these values in children with Guillain-Barré syndrome (GBS), acute disseminated encephalomyelitis (ADEM) and multiple sclerosis (MS). Reference values for CSF total protein levels were determined in an extensive cohort of diagnostic samples from children (<18 year) evaluated at Erasmus Medical Center/Sophia Children's Hospital. These reference values were confirmed in children diagnosed with disorders unrelated to raised CSF total protein level and validated in children with GBS, ADEM and MS. The test results of 6145 diagnostic CSF samples from 3623 children were used to define reference values. The reference values based on the upper limit of the 95% CI (i.e. upper limit of normal) were for 6 months-2 years 0.25 g/L, 2-6 years 0.25 g/L, 6-12 years 0.28 g/L, 12-18 years 0.34 g/L. These reference values were confirmed in a subgroup of 378 children diagnosed with disorders that are not typically associated with increased CSF total protein. In addition, the CSF total protein levels in these children in the first 6 months after birth were highly variable (median 0.47 g/L, IQR 0.26-0.65). According to these new reference values, CSF total protein level was elevated in 85% of children with GBS, 66% with ADEM and 23% with MS. More accurate age-specific reference values for CSF total protein levels in children were determined. These new reference values are more sensitive than currently used values for diagnosing GBS and ADEM in children. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  18. Black soldier fly as dietary protein source for broiler quails: meat proximate composition, fatty acid and amino acid profile, oxidative status and sensory traits.

    PubMed

    Cullere, M; Tasoniero, G; Giaccone, V; Acuti, G; Marangon, A; Dalle Zotte, A

    2018-03-01

    In the perspective of improving the sustainability of meat production, insects have been rapidly emerging as innovative feed ingredient for some livestock species, including poultry. However, at present, there is still limited knowledge regarding the quality and sensory traits of the derived meat. Therefore, the present study tested the effect of a partial substitution of soya bean meal and oil with defatted black soldier fly (Hermetia illucens) larvae meal (H) in the diet for growing broiler quails (Coturnix coturnix japonica) on meat proximate composition, cholesterol, amino acid and mineral contents, fatty acid profile, oxidative status and sensory characteristics. To this purpose, three dietary treatments were designed: a control diet (C) and two diets (H1 and H2) corresponding to 10% and 15% H inclusion levels, respectively, were fed to growing quails from 10 to 28 days of age. At 28 days of age, quails were slaughtered and breast meat was used for meat quality evaluations. Meat proximate composition, cholesterol content and oxidative status remained unaffected by H supplementation as well as its sensory characteristics and off-flavours perception. Differently, with increasing the dietary H inclusion, the total saturated fatty acid and total monounsaturated fatty acid proportions raised to the detriment of the polyunsaturated fatty acid fraction thus lowering the healthiness of the breast meat. The H2 diet increased the contents of aspartic acid, glutamic acid, alanine, serine, tyrosine and threonine thus further enhancing the biological value of the meat protein. As a direct result of the dietary content of Ca and P, the meat of quails fed with the highest H level, displayed the highest Ca and the lowest P values. Therefore, meat quality evaluations confirmed H to be a promising insect protein source for quails. The only potential drawback from feeding H to broiler quails regarded the fatty acid profile of the meat, therefore requiring further research

  19. Effect of tannic acid on the synthesis of protein and nucleic acid by rat liver

    PubMed Central

    Badawy, A. A.-B.; White, Audrey E.; Lathe, G. H.

    1969-01-01

    1. As early as 1hr. after the intraperitoneal administration of tannic acid to rats, it could be demonstrated in the liver. At 3hr. the nuclear fraction contained the largest amount of tannic acid. 2. Nuclear RNA synthesis was inhibited in vivo 2hr. after the administration of tannic acid. Induction by cortisol of tryptophan pyrrolase was 90% inhibited at 24hr. 3. Incorporation of [1-14C]leucine into protein by liver slices from treated rats was decreased by 50% after 24hr. Its incorporation into postmitochondrial supernatant from treated animals was not inhibited. Incorporation into slices and postmitochondrial supernatants were inhibited in vitro by tannic acid. 4. The sequence of events: concentration of tannic acid in nuclei, inhibition of nuclear RNA synthesis, inhibition of protein synthesis and production of necrosis, is discussed. PMID:5808319

  20. Nucleic acid chaperone activity of retroviral Gag proteins.

    PubMed

    Rein, Alan

    2010-01-01

    Retrovirus particles in which the Gag protein has not yet been cleaved by the viral protease are termed immature particles. The viral RNA within these particles shows clear evidence of the action of a nucleic acid chaperone (NAC): the genomic RNA is dimeric, and a cellular tRNA molecule is annealed, by its 3' 18 nucleotides, to a complementary stretch in the viral RNA, in preparation for priming reverse transcription in the next round of infection. It seems very likely that the NAC that has catalyzed dimerization and tRNA annealing is the NC domain of the Gag protein itself. However, neither the dimeric linkage nor the tRNA:viral RNA complex has the same structure as those in mature virus particles: thus the conformational effects of Gag within the particles are not equivalent to those of the free NC protein present in mature particles. It is not known whether these dissimilarities reflect intrinsic differences in the NAC activities of Gag and NC, or limitations on Gag imposed by the structure of the immature particle. Analysis of the interactions of recombinant Gag proteins with nucleic acids is complicated by the fact that they result in assembly of virus-like particles. Nevertheless, the available data indicates that the affinity of Gag for nucleic acids can be considerably higher than that of free NC. This enhanced affinity may be due to contributions of the matrix domain, a positively charged region at the N-terminus of Gag; interactions of neighboring Gag molecules with each other may also increase the affinity due to cooperativity of the binding. Recombinant HIV-1 Gag protein clearly exhibits NAC activity. In two well-studied experimental systems, Gag was more efficient than NC, as its NAC effects could be detected at a significantly lower molar ratio of protein to nucleotide than with NC. In one system, binding of nucleic acid by the matrix domain of Gag retarded the Gag-induced annealing of two RNAs; this effect could be ameliorated by the competitive

  1. Thiol-based Redox Proteins in Brassica napus Guard Cell Abscisic Acid and Methyl Jasmonate Signaling

    PubMed Central

    Zhu, Mengmeng; Zhu, Ning; Song, Wen-yuan; Harmon, Alice C.; Assmann, Sarah M.; Chen, Sixue

    2014-01-01

    SUMMARY Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in different physiological processes. Little is known, however, about redox sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in-gel electrophoresis (DIGE) and isotope-coded affinity tag (ICAT). In total, 65 and 118 potential redox responsive proteins were identified in ABA and MeJA treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra-molecular disulfide bonds. Most of the proteins fall into the functional groups of energy, stress and defense, and metabolism. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA and MeJA treated samples. A total of 44 cysteines was mapped in all the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a SNRK2 kinase and an isopropylmalate dehydrogenase were confirmed to be redox regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in guard cell ABA and MeJA signal transduction. PMID:24580573

  2. Folic acid-conjugated soybean protein-based nanoparticles mediate efficient antitumor ability in vitro.

    PubMed

    Yao, Weijing; Zha, Qian; Cheng, Xu; Wang, Xin; Wang, Jun; Tang, Rupei

    2016-11-23

    In this study, soy protein isolate was hydrolyzed by compound enzymes to give aqueous soy protein with low molecular weights. Folic acid modified and free soy protein nanoparticles were successfully prepared by a desolvation method as target-specific drug delivery, respectively. Ultraviolet spectrophotometry demonstrated that folic acid was successfully grafted onto soy protein. The shape and size of folic acid modified soy protein nanoparticles were detected by transmission electron microscopy, scanning electron microscope, and dynamic light scattering. In addition, a series of characteristics including kinetic stability, pH stability, and time stability were also performed. Doxorubicin was successfully loaded into folic acid modified soy protein nanoparticles, and the encapsulation and loading efficiencies were 96.7% and 23%, respectively. Doxorubicin-loaded folic acid modified soy protein nanoparticles exhibited faster drug release rate than soy protein nanoparticles in PBS solution (pH = 5). The tumor penetration and antitumor experiments were done using three-dimensional multicellular tumor spheroids as the in vitro model. The results proved that folic acid modified soy protein nanoparticles display higher penetration and accumulation than soy protein nanoparticles, therefore possessing efficient growth inhibitory ability against multicellular tumor spheroids. © The Author(s) 2016.

  3. Total lipid and fatty acid composition of eight strains of marine diatoms

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Mai, Kang-Sen; Sun, Shi-Chun

    2000-12-01

    Fatty acid composition and total lipid content of 8 strains of marine diatoms ( Nitzschia frustrula, Nitzschia closterium, Nitzschia incerta, Navicula pelliculosa, Phaeodactylum tricornutum, Synedra fragilaroides) were examined. The microalgae were grown under defined conditions and harvested at the late exponential phase. The major fatty acids in most strains were 14∶0 (1.0% 6.3%), 16∶0 (13.5 26.4%), 16∶1n-7 (21.1% 46.3%) and 20∶5n-3 (6.5% 19.5%). The polyunsaturated fatty acids 16∶2n-4, 16∶3n-4, 16∶4n-1 and 20∶4n-6 also comprised a significant proportion of the total fatty acids in some strains. The characteristic fatty acid composition of diatoms is readily distinguishable from those of other microalgal groups. Significant concentration of the polyunsaturated fatty acid 20∶5n-3 (eicosapentaenoic acid) was present in each strain, with the highest proportion in B222 (19.5%).

  4. Analysis of soybean root proteins affected by gibberellic acid treatment under flooding stress.

    PubMed

    Oh, Myeong Won; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Flooding is a serious abiotic stress for soybean because it restricts growth and reduces grain yields. To investigate the effect of gibberellic acid (GA) on soybean under flooding stress, root proteins were analyzed using a gel-free proteomic technique. Proteins were extracted from the roots of 4-days-old soybean seedlings exposed to flooding stress in the presence and absence of exogenous GA3 for 2 days. A total of 307, 324, and 250 proteins were identified from untreated, and flooding-treated soybean seedlings without or with GA3, respectively. Secondary metabolism- and cell-related proteins, and proteins involved in protein degradation/synthesis were decreased by flooding stress; however, the levels of these proteins were restored by GA3 supplementation under flooding. Fermentation- and cell wall-related proteins were not affected by GA3 supplementation. Furthermore, putative GA-responsive proteins, which were identified by the presence of a GA-responsive element in the promoter region, were less abundant by flooding stress; however, these proteins were more abundant by GA3 supplementation under flooding. Taken together, these results suggest that GA3 affects the abundance of proteins involved in secondary metabolism, cell cycle, and protein degradation/synthesis in soybeans under flooding stress.

  5. Role of Protein and Amino Acids in Infant and Young Child Nutrition: Protein and Amino Acid Needs and Relationship with Child Growth.

    PubMed

    Uauy, Ricardo; Kurpad, Anura; Tano-Debrah, Kwaku; Otoo, Gloria E; Aaron, Grant A; Toride, Yasuhiko; Ghosh, Shibani

    2015-01-01

    Over a third of all deaths of children under the age of five are linked to undernutrition. At a 90% coverage level, a core group of ten interventions inclusive of infant and young child nutrition could save one million lives of children under 5 y of age (15% of all deaths) (Lancet 2013). The infant and young child nutrition package alone could save over 220,000 lives in children under 5 y of age. High quality proteins (e.g. milk) in complementary, supplementary and rehabilitation food products have been found to be effective for good growth. Individual amino acids such as lysine and arginine have been found to be factors linked to growth hormone release in young children via the somatotropic axis and high intakes are inversely associated with fat mass index in pre-pubertal lean girls. Protein intake in early life is positively associated with height and weight at 10 y of age. This paper will focus on examining the role of protein and amino acids in infant and young child nutrition by examining protein and amino acid needs in early life and the subsequent relationship with stunting.

  6. Amino Acid Flux from Metabolic Network Benefits Protein Translation: the Role of Resource Availability.

    PubMed

    Hu, Xiao-Pan; Yang, Yi; Ma, Bin-Guang

    2015-06-09

    Protein translation is a central step in gene expression and affected by many factors such as codon usage bias, mRNA folding energy and tRNA abundance. Despite intensive previous studies, how metabolic amino acid supply correlates with protein translation efficiency remains unknown. In this work, we estimated the amino acid flux from metabolic network for each protein in Escherichia coli and Saccharomyces cerevisiae by using Flux Balance Analysis. Integrated with the mRNA expression level, protein abundance and ribosome profiling data, we provided a detailed description of the role of amino acid supply in protein translation. Our results showed that amino acid supply positively correlates with translation efficiency and ribosome density. Moreover, with the rank-based regression model, we found that metabolic amino acid supply facilitates ribosome utilization. Based on the fact that the ribosome density change of well-amino-acid-supplied genes is smaller than poorly-amino-acid-supply genes under amino acid starvation, we reached the conclusion that amino acid supply may buffer ribosome density change against amino acid starvation and benefit maintaining a relatively stable translation environment. Our work provided new insights into the connection between metabolic amino acid supply and protein translation process by revealing a new regulation strategy that is dependent on resource availability.

  7. Effects of antinutritional factors on protein digestibility and amino acid availability in foods.

    PubMed

    Gilani, G Sarwar; Cockell, Kevin A; Sepehr, Estatira

    2005-01-01

    Digestibility of protein in traditional diets from developing countries such as India, Guatemala, and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94%). The presence of less digestible protein fractions, high levels of insoluble fiber, and high concentrations of antinutritional factors in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, are responsible for poor digestibility of protein. The effects of the presence of some of the important antinutritional factors on protein and amino digestibilities of food and feed products are reviewed in this chapter. Food and feed products may contain a number of antinutritional factors that may adversely affect protein digestibility and amino acid availability. Antinutritional factors may occur naturally, such as glucosinolates in mustard and rapeseed protein products, trypsin inhibitors and hemagglutinins in legumes, tannins in legumes and cereals, phytates in cereals and oilseeds, and gossypol in cottonseed protein products. Antinutritional factors may also be formed during heat/alkaline processing of protein products, yielding Maillard compounds, oxidized forms of sulfur amino acids, D-amino acids, and lysinoalanine (LAL, an unnatural amino acid derivative). The presence of high levels of dietary trypsin inhibitors from soybeans, kidney beans, or other grain legumes can cause substantial reductions in protein and amino acid digestibilities (up to 50%) in rats and pigs. Similarly, the presence of high levels of tannins in cereals, such as sorghum, and grain legumes, such as fababean (Vicia faba L.), can result in significantly reduced protein and amino acid digestibilities (up to 23%) in rats, poultry, and pigs. Studies involving phytase supplementation of production rations for swine or poultry have provided indirect evidence that normally encountered levels of phytates in cereals and legumes

  8. The peritumoural adipose tissue microenvironment and cancer. The roles of fatty acid binding protein 4 and fatty acid binding protein 5.

    PubMed

    Guaita-Esteruelas, S; Gumà, J; Masana, L; Borràs, J

    2018-02-15

    The adipose tissue microenvironment plays a key role in tumour initiation and progression because it provides fatty acids and adipokines to tumour cells. The fatty acid-binding protein (FABP) family is a group of small proteins that act as intracellular fatty acid transporters. Adipose-derived FABPs include FABP4 and FABP5. Both have an important role in lipid-related metabolic processes and overexpressed in many cancers, such as breast, prostate, colorectal and ovarian. Moreover, their expression in peritumoural adipose tissue is deregulated, and their circulating levels are upregulated in some tumours. In this review, we discuss the role of the peritumoural adipose tissue and the related adipokines FABP4 and FABP5 in cancer initiation and progression and the possible pathways implicated in these processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of Long-Term Protein Restriction on Meat Quality, Muscle Amino Acids, and Amino Acid Transporters in Pigs.

    PubMed

    Yin, Jie; Li, Yuying; Zhu, Xiaotong; Han, Hui; Ren, Wenkai; Chen, Shuai; Bin, Peng; Liu, Gang; Huang, Xingguo; Fang, Rejun; Wang, Bin; Wang, Kai; Sun, Liping; Li, Tiejun; Yin, Yulong

    2017-10-25

    This study aimed to investigate the long-term effects of protein restriction from piglets to finishing pigs for 16 weeks on meat quality, muscle amino acids, and amino acid transporters. Thirty-nine piglets were randomly divided into three groups: a control (20-18-16% crude protein, CP) and two protein restricted groups (17-15-13% CP and 14-12-10% CP). The results showed that severe protein restriction (14-12-10% CP) inhibited feed intake and body weight, while moderate protein restriction (17-15-13% CP) had little effect on growth performance in pigs. Meat quality (i.e., pH, color traits, marbling, water-holding capacity, and shearing force) were tested, and the results exhibited that 14-12-10% CP treatment markedly improved muscle marbling score and increased yellowness (b*). pH value (45 min) was significantly higher in 17-15-13% CP group than that in other groups. In addition, protein restriction reduced muscle histone, arginine, valine, and isoleucine abundances and enhanced glycine and lysine concentrations compared with the control group, while the RT-PCR results showed that protein restriction downregulated amino acids transporters. Mechanistic target of rapamycin (mTOR) signaling pathway was inactivated in the moderate protein restricted group (17-15-13% CP), while severe protein restriction with dietary 14-12-10% CP markedly enhanced mTOR phosphorylation. In conclusion, long-term protein restriction affected meat quality and muscle amino acid metabolism in pigs, which might be associated with mTOR signaling pathway.

  10. Assessment on proximate composition, dietary fiber, phytic acid and protein hydrolysis of germinated Ecuatorian brown rice.

    PubMed

    Cáceres, Patricio J; Martínez-Villaluenga, Cristina; Amigo, Lourdes; Frias, Juana

    2014-09-01

    Germinated brown rice (GBR) is considered healthier than brown rice (BR) but its nutritive value has been hardly studied. Since nutritive quality of GBR depends on genetic diversity and germination conditions, six Ecuadorian BR varieties were germinated at 28 and 34 ºC for 48 and 96 h in darkness and proximate composition, dietary fiber fractions, phytic acid content as well as degree of protein hydrolysis and peptide content were studied. Protein, lipids, ash and available carbohydrate ranged 7.3-10.4%, 2.0-4.0%, 0.8-1.5% and 71.6 to 84.0%, respectively, in GBR seedlings. Total dietary fiber increased during germination (6.1-13.6%), with a large proportion of insoluble fraction, while phytic acid was reduced noticeably. In general, protein hydrolysis occurred during germination was more accused at 28 ºC for 48 h. These results suggest that GBR can be consumed directly as nutritive staple food for a large population worldwide contributing to their nutritional requirements.

  11. Age and gender related changes of salivary total protein levels for forensic application.

    PubMed

    Bhuptani, D; Kumar, S; Vats, M; Sagav, R

    2018-05-30

    Saliva is one of the most commonly encountered biological fluids found at the crime scene. Forensic science including forensic odontology is focused on the positive identification of individuals. The salivary protein profiling can help in personalization by the changes associated with age throughout life and gender. These changes also seem to vary with the dietary habits, environmental factors and geographical areas. Thus, the aim of present study is to estimate these changes in salivary total protein concentration and profiling in individuals of Gujarat, India. The association of total protein concentration and protein content with the age, gender, tooth eruption, functions of the protein and its physiological significance are also intended for study in this population. One hundred unstimulated whole saliva samples from study subjects of Gujarat population were collected and grouped based on age and gender. Total protein concentration was determined by Bradford assay; also protein was separated and analyzed using Sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS PAGE). T Test and ANOVA were used for statistical analysis. The concentration of Total Protein was found to be between 2-4 mg/ml. It showed a positive correlation with age and gender. It can be concluded more protein bands were prominently present in the adolescents group followed by children and lastly in the adults groups.More high (more than 80 kDa) and low (less than 30 kDa) molecular weight proteins are seen in children and adolescents than adults. SDS PAGE allowed identification and comparison of group variabilities in protein profiles. The total salivary protein showed an association between the parameters under this study which will aid in the individual identification in the field of forensics.

  12. Salivary Sialic Acid Levels in Smokeless Tobacco Users

    PubMed Central

    Farhad Mollashahi, Leila; Honarmand, Marieh; Nakhaee, Alireza; Mollashahi, Ghasem

    2016-01-01

    Background Smokeless tobacco chewing is one of the known risk factors for oral cancer. It is consumed widely by residents of southeastern Iran. Objectives In this study, salivary free and total sialic acid, and total protein were compared in paan consumers and non-consumers. Patients and Methods In this cross-sectional study, unstimulated saliva of 94 subjects (44 paan consumers and 50 non-consumers) who were referred to the oral medicine department of the dentistry school of Zahedan were collected. Salivary free and total sialic acid, and total protein concentration were measured by standard biochemical methods, and the obtained data were analyzed using SPSS 20 through the non-parametric Mann-Whitney test. Results The concentration of salivary free sialic acid (23.21 ± 18.98 mg/L) was significantly increased in paan consumers. The concentration of salivary Total sialic acid (TSA) (39.57 ± 26.58 mg/L) and total protein (0.77 ± 0.81 mg/mL) showed increases in paan consumers, however, the results were not statistically significant. Conclusions Salivary free and total sialic acid, and total protein were higher in the paan consumers compared to non-consumers. Due to the carcinogenic effect of smokeless tobacco, measurement of these parameters in saliva may be useful in early detection of oral cancer. PMID:27622172

  13. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2010-09-07

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  14. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2012-07-10

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  15. Estimation of lactose interference in vaccines and a proposal of methodological adjustment of total protein determination by the lowry method.

    PubMed

    Kusunoki, Hideki; Okuma, Kazu; Hamaguchi, Isao

    2012-01-01

    For national regulatory testing in Japan, the Lowry method is used for the determination of total protein content in vaccines. However, many substances are known to interfere with the Lowry method, rendering accurate estimation of protein content difficult. To accurately determine the total protein content in vaccines, it is necessary to identify the major interfering substances and improve the methodology for removing such substances. This study examined the effects of high levels of lactose with low levels of protein in freeze-dried, cell culture-derived Japanese encephalitis vaccine (inactivated). Lactose was selected because it is a reducing sugar that is expected to interfere with the Lowry method. Our results revealed that concentrations of ≥ 0.1 mg/mL lactose interfered with the Lowry assays and resulted in overestimation of the protein content in a lactose concentration-dependent manner. On the other hand, our results demonstrated that it is important for the residual volume to be ≤ 0.05 mL after trichloroacetic acid precipitation in order to avoid the effects of lactose. Thus, the method presented here is useful for accurate protein determination by the Lowry method, even when it is used for determining low levels of protein in vaccines containing interfering substances. In this study, we have reported a methodological adjustment that allows accurate estimation of protein content for national regulatory testing, when the vaccine contains interfering substances.

  16. Water and temperature stresses impact canola (Brassica napus L.) fatty acid, protein and yield over nitrogen and sulfur

    USDA-ARS?s Scientific Manuscript database

    Interactive effects of weather and soil nutrient status often control crop productivity. An experiment was conducted to determine effects of N and S fertilizer rate, soil water, and atmospheric temperature on canola fatty acid (FA), total oil, protein and grain yield. Nitrogen and S were assessed in...

  17. AFAL: a web service for profiling amino acids surrounding ligands in proteins

    NASA Astrophysics Data System (ADS)

    Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S.; Quatrini, Raquel

    2014-11-01

    With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.

  18. AFAL: a web service for profiling amino acids surrounding ligands in proteins.

    PubMed

    Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S; Quatrini, Raquel

    2014-11-01

    With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html ). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.

  19. Reasons for the occurrence of the twenty coded protein amino acids

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Miller, S. L.

    1981-01-01

    Factors involved in the selection of the 20 protein L-alpha-amino acids during chemical evolution and the early stages of Darwinian evolution are discussed. The selection is considered on the basis of the availability in the primitive ocean, function in proteins, the stability of the amino acid and its peptides, stability to racemization, and stability on the transfer RNA. It is concluded that aspartic acid, glutamic acid, arginine, lysine, serine and possibly threonine are the best choices for acidic, basic and hydroxy amino acids. The hydrophobic amino acids are reasonable choices, except for the puzzling absences of alpha-amino-n-butyric acid, norvaline and norleucine. The choices of the sulfur and aromatic amino acids seem reasonable, but are not compelling. Asparagine and glutamine are apparently not primitive. If life were to arise on another planet, it would be expected that the catalysts would be poly-alpha-amino acids and that about 75% of the amino acids would be the same as on the earth.

  20. Membrane protein extraction and purification using styrene-maleic acid (SMA) copolymer: effect of variations in polymer structure.

    PubMed

    Morrison, Kerrie A; Akram, Aneel; Mathews, Ashlyn; Khan, Zoeya A; Patel, Jaimin H; Zhou, Chumin; Hardy, David J; Moore-Kelly, Charles; Patel, Roshani; Odiba, Victor; Knowles, Tim J; Javed, Masood-Ul-Hassan; Chmel, Nikola P; Dafforn, Timothy R; Rothnie, Alice J

    2016-12-01

    The use of styrene-maleic acid (SMA) copolymers to extract and purify transmembrane proteins, while retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent-based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation, we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene and maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA), which vary in size and shape, were used. Our results show that several polymers, can be used to extract membrane proteins, comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular mass (7.5-10 kDa), is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification, SMA 2000 was found to be the best choice for yield, purity and function. However, the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  1. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  2. Designing Light-Activated Charge-Separating Proteins with a Naphthoquinone Amino Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtenstein, Bruce R.; Bialas, Chris; Cerda, José F.

    2015-09-14

    The first principles design of manmade redox-protein maquettes is used to clarify the physical/chemical engineering supporting the mechanisms of natural enzymes with a view to recapitulate and surpass natural performance. Herein, we use intein-based protein semisynthesis to pair a synthetic naphthoquinone amino acid (Naq) with histidine-ligated photoactive metal–tetrapyrrole cofactors, creating a 100 μs photochemical charge separation unit akin to photosynthetic reaction centers. By using propargyl groups to protect the redox-active para-quinone during synthesis and assembly while permitting selective activation, we gain the ability to employ the quinone amino acid redox cofactor with the full set of natural amino acids inmore » protein design. Direct anchoring of quinone to the protein backbone permits secure and adaptable control of intraprotein electron-tunneling distances and rates.« less

  3. Amino Acid Composition of Protein-Enriched Dried Pasta:
Is It Suitable for a Low-Carbohydrate Diet?

    PubMed

    Filip, Sebastjan; Vidrih, Rajko

    2015-09-01

    Today, obesity is one of the major health problems, a so-called epidemic of the developed world. Obesity arises through an imbalance between energy intake and energy expenditure, so it is important for products to have a balanced nutritional composition. The aim of this study is to prepare high-protein pasta with high nutritional quality, with emphasis on its amino acid composition, as ordinary durum pasta lacks lysine and threonine. Ordinary durum wheat pasta contains, on average, 77% carbohydrate, and can have even less than 10% protein. It is therefore often excluded from normal energy-restricted diets, and especially from low-carbohydrate diets. In this study pasta that can satisfy the nutritional requirements of a low-carbohydrate diet and is suitable for daily use was developed and evaluated. Protein-enhanced pasta was produced by adding high amounts of plant protein extract (40% dry matter) without (plain high-protein pasta) or with 3% dried spinach powder (high-protein spinach pasta) to durum wheat semolina. According to the sensory analysis data, the addition of 40% of plant protein extract satisfied sensory and nutritional requirements, allowing further development and evaluation for possible marketing. This analysis shows that these high-protein neutral and spinach pasta contain 36.4 and 39.6 g of protein per 100 g of dry mass, 12.07 and 14.70 g of total essential amino acids per 100 g of dry mass, and a high content of branched-chain amino acids, i.e. 5.54 and 6.65 g per 100 g of dry mass, respectively. This therefore represents a true alternative to durum wheat pasta for low-carbohydrate diets.

  4. Amino Acid Composition of Protein-Enriched Dried Pasta:
Is It Suitable for a Low-Carbohydrate Diet?

    PubMed Central

    Vidrih, Rajko

    2015-01-01

    Summary Today, obesity is one of the major health problems, a so-called epidemic of the developed world. Obesity arises through an imbalance between energy intake and energy expenditure, so it is important for products to have a balanced nutritional composition. The aim of this study is to prepare high-protein pasta with high nutritional quality, with emphasis on its amino acid composition, as ordinary durum pasta lacks lysine and threonine. Ordinary durum wheat pasta contains, on average, 77% carbohydrate, and can have even less than 10% protein. It is therefore often excluded from normal energy-restricted diets, and especially from low-carbohydrate diets. In this study pasta that can satisfy the nutritional requirements of a low-carbohydrate diet and is suitable for daily use was developed and evaluated. Protein-enhanced pasta was produced by adding high amounts of plant protein extract (40% dry matter) without (plain high-protein pasta) or with 3% dried spinach powder (high-protein spinach pasta) to durum wheat semolina. According to the sensory analysis data, the addition of 40% of plant protein extract satisfied sensory and nutritional requirements, allowing further development and evaluation for possible marketing. This analysis shows that these high-protein neutral and spinach pasta contain 36.4 and 39.6 g of protein per 100 g of dry mass, 12.07 and 14.70 g of total essential amino acids per 100 g of dry mass, and a high content of branched-chain amino acids, i.e. 5.54 and 6.65 g per 100 g of dry mass, respectively. This therefore represents a true alternative to durum wheat pasta for low-carbohydrate diets. PMID:27904361

  5. Stabilization of Proteins and Noncovalent Protein Complexes during Electrospray Ionization by Amino Acid Additives.

    PubMed

    Zhang, Hua; Lu, Haiyan; Chingin, Konstantin; Chen, Huanwen

    2015-07-21

    Ionization of proteins and noncovalent protein complexes with minimal disturbance to their native structure presents a great challenge for biological mass spectrometry (MS). In living organisms, the native structure of intracellular proteins is commonly stabilized by solute amino acids (AAs) accumulated in cells at very high concentrations. Inspired by nature, we hypothesized that AAs could also pose a stabilizing effect on the native structure of proteins and noncovalent protein complexes during ionization. To test this hypothesis, here we explored MS response for various protein complexes upon the addition of free AAs at mM concentrations into the electrospray ionization (ESI) solution. Thermal activation of ESI droplets in the MS inlet capillary was employed as a model destabilizing factor during ionization. Our results indicate that certain AAs, in particular proline (Pro), pose considerable positive effect on the stability of noncovalent protein complexes in ESI-MS without affecting the signal intensity of protein ions and original protein-ligand equilibrium, even when added at the 20 mM concentration. The data suggest that the degree of protein stabilization is primarily determined by the osmolytic and ampholytic characteristics of AA solutes. The highest stability and visibility of noncovalent protein complexes in ESI-MS are achieved using AA additives with neutral isoelectric point, moderate proton affinity, and unfavorable interaction with the native protein state. Overall, our results indicate that the simple addition of free amino acids into the working solution can notably improve the stability and accuracy of protein analysis by native ESI-MS.

  6. Nucleic acid aptamers as stabilizers of proteins: the stability of tetanus toxoid.

    PubMed

    Jain, Nishant Kumar; Jetani, Hardik C; Roy, Ipsita

    2013-07-01

    Exposure of tetanus toxoid to moisture leads to its aggregation and reduction of potency. The aim of this work was to use SELEX (systematic evolution of ligands by exponential enrichment) protocol and select aptamers which recognize tetanus toxoid (Mr ~150 kDa) with high affinity. Colyophilized preparations of tetanus toxoid and specific aptamers were encapsulated in PLGA microspheres and sustained release of the antigen was observed up to 55 days using different techniques. The total protein released was between 40-55% (24-45% residual antigenicity) in the presence of the aptamers as compared to 25% (11% residual antigenicity) for the antigen alone. We show that instead of inhibiting absorption of moisture, the aptamers blocked the protein unfolding upon absorption of moisture, inhibiting the initiation of aggregation. When exposed to accelerated storage conditions, some of the RNA sequences were able to inhibit moisture-induced aggregation in vitro and retain antigenicity of tetanus toxoid. Nucleic acid aptamers represent a novel class of protein stabilizers which stabilize the protein by interacting directly with it. This mechanism is unlike that of small molecules which alter the medium properties and hence depend on the stress condition a protein is exposed to.

  7. Engineering acyl carrier protein to enhance production of shortened fatty acids.

    PubMed

    Liu, Xueliang; Hicks, Wade M; Silver, Pamela A; Way, Jeffrey C

    2016-01-01

    The acyl carrier protein (ACP) is an essential and ubiquitous component of microbial synthesis of fatty acids, the natural precursor to biofuels. Natural fatty acids usually contain long chains of 16 or more carbon atoms. Shorter carbon chains, with increased fuel volatility, are desired for internal combustion engines. Engineering the length specificity of key proteins in fatty acid metabolism, such as ACP, may enable microbial synthesis of these shorter chain fatty acids. We constructed a homology model of the Synechococcus elongatus ACP, showing a hydrophobic pocket harboring the growing acyl chain. Amino acids within the pocket were mutated to increase steric hindrance to the acyl chain. Certain mutant ACPs, when over-expressed in Escherichia coli, increased the proportion of shorter chain lipids; I75 W and I75Y showed the strongest effects. Expression of I75 W and I75Y mutant ACPs also increased production of lauric acid in E. coli that expressed the C12-specific acyl-ACP thioesterase from Cuphea palustris. We engineered the specificity of the ACP, an essential protein of fatty acid metabolism, to alter the E. coli lipid pool and enhance production of medium-chain fatty acids as biofuel precursors. These results indicate that modification of ACP itself could be combined with enzymes affecting length specificity in fatty acid synthesis to enhance production of commodity chemicals based on fatty acids.

  8. Overexpression of heart-type fatty acid binding protein enhances fatty acid-induced podocyte injury.

    PubMed

    Gao, Qing; Sarkar, Alhossain; Chen, Yizhi; Xu, Bo; Zhu, Xiaojuan; Yuan, Yang; Guan, Tianjun

    2018-02-01

    Deregulated lipid metabolism is a characteristic of metabolic diseases including type 2 diabetes and obesity, and likely contributes to podocyte injury and end-stage kidney disease. Heart-type fatty acid binding protein (H-FABP) was reported to be associated with lipid metabolism. The present study investigated whether H-FABP contributes to podocyte homeostasis. Podocytes were transfected by lentiviral vector to construct a cell line which stably overexpressed H-FABP. Small interfering RNA capable of effectively silencing H-FABP was introduced into podocytes to construct a cell line with H-FABP knockdown. Certain groups were treated with palmitic acid (PA) and the fat metabolism, as well as inflammatory and oxidative stress markers were measured. PA accelerated lipid metabolism derangement, inflammatory reaction and oxidative stress in podocytes. Overexpression of H-FABP enhanced the PA-induced disequilibrium in podocytes. The mRNA and protein expression levels of acyl-coenzyme A oxidase 3 and monocyte chemotactic protein 1, and the protein expression levels of 8-hydroxy-2'-deoxyguanosine and 4-hydroxynonenal were upregulated in the H-FABP overexpression group, while the mRNA and protein expression of peroxisome proliferator activated receptor α was downregulated. Knockdown of H-FABP inhibited the PA-induced injury and lipid metabolism derangement, as well as the inflammatory reaction and oxidative stress in podocytes. These results indicated that overexpression of H-FABP enhances fatty acid-induced podocyte injury, while H-FABP inhibition may represent a potential therapeutic strategy for the prevention of lipid metabolism-associated podocyte injury.

  9. Structural and functional interaction of fatty acids with human liver fatty acid-binding protein (L-FABP) T94A variant.

    PubMed

    Huang, Huan; McIntosh, Avery L; Martin, Gregory G; Landrock, Kerstin K; Landrock, Danilo; Gupta, Shipra; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2014-05-01

    The human liver fatty acid-binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride levels. How this amino acid substitution elicits these effects is not known. This issue was addressed using human recombinant wild-type (WT) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC and CC). The T94A substitution did not alter or only slightly altered L-FABP binding affinities for saturated, monounsaturated or polyunsaturated long chain fatty acids, nor did it change the affinity for intermediates of triglyceride synthesis. Nevertheless, the T94A substitution markedly altered the secondary structural response of L-FABP induced by binding long chain fatty acids or intermediates of triglyceride synthesis. Finally, the T94A substitution markedly decreased the levels of induction of peroxisome proliferator-activated receptor α-regulated proteins such as L-FABP, fatty acid transport protein 5 and peroxisome proliferator-activated receptor α itself meditated by the polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid in cultured primary human hepatocytes. Thus, although the T94A substitution did not alter the affinity of human L-FABP for long chain fatty acids, it significantly altered human L-FABP structure and stability, as well as the conformational and functional response to these ligands. © 2014 FEBS.

  10. Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein.

    PubMed

    Ishihara, Hirofumi; Obata, Toshihiro; Sulpice, Ronan; Fernie, Alisdair R; Stitt, Mark

    2015-05-01

    Protein synthesis and degradation represent substantial costs during plant growth. To obtain a quantitative measure of the rate of protein synthesis and degradation, we supplied (13)CO2 to intact Arabidopsis (Arabidopsis thaliana) Columbia-0 plants and analyzed enrichment in free amino acids and in amino acid residues in protein during a 24-h pulse and 4-d chase. While many free amino acids labeled slowly and incompletely, alanine showed a rapid rise in enrichment in the pulse and a decrease in the chase. Enrichment in free alanine was used to correct enrichment in alanine residues in protein and calculate the rate of protein synthesis. The latter was compared with the relative growth rate to estimate the rate of protein degradation. The relative growth rate was estimated from sequential determination of fresh weight, sequential images of rosette area, and labeling of glucose in the cell wall. In an 8-h photoperiod, protein synthesis and cell wall synthesis were 3-fold faster in the day than at night, protein degradation was slow (3%-4% d(-1)), and flux to growth and degradation resulted in a protein half-life of 3.5 d. In the starchless phosphoglucomutase mutant at night, protein synthesis was further decreased and protein degradation increased, while cell wall synthesis was totally inhibited, quantitatively accounting for the inhibition of growth in this mutant. We also investigated the rates of protein synthesis and degradation during leaf development, during growth at high temperature, and compared synthesis rates of Rubisco large and small subunits of in the light and dark. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species.

    PubMed

    Mikulic-Petkovsek, Maja; Schmitzer, Valentina; Slatnar, Ana; Stampar, Franci; Veberic, Robert

    2012-10-01

    Sugars, organic acids, and total phenolic content in fruit of 25 wild and cultivated berry species were identified and quantified with high-performance liquid chromatograph. The composition of sugars, organic acids, and total phenolic compounds in various species of Vaccinium, Rubus, Ribes, and Fragaria genus was evaluated. Additonally, total phenolics of less known berry species of the Morus, Amelanchier, Sorbus, Sambucus, Rosa, Lycium, Actinidia, and Aronia genus were determined in wild growing as well as in cultivated fruits. Significant differences in the concentration of sugars and organic acids were detected among the berry species. Glucose and fructose were the most abundant sugars in berry fruits and the major organic acids were malic and citric acid. However, in kiwi fruit, sucrose represented as much as 71.9% of total sugars. Sorbitol has been detected and quantified in chokeberry, rowanberry, and eastern shadbush fruit. The highest content of total analyzed sugars was determined in rowanberry fruit, followed by dog rose, eastern shadbush, hardy kiwifruit, American cranberry, chokeberry, and jostaberry fruit. Rowanberry stands out as the fruit with the highest content of total analyzed organic acids, followed by jostaberry, lingonberry, red gooseberry, hardy kiwifruit, and black currant. The berries of white gooseberry, black currant, red currant, and white currant had the lowest sugar/organic acid ratio and were thus perceptively the sourest species analyzed. On the other hand, the species with highest sugar/organic acid ratio were goji berry, eastern shadbush, black mulberry, and wild grown blackberry. The highest amounts of total phenols were quantified in chokeberry fruit. Wild strawberry, raspberry, and blackberry had 2- to 5-fold more total phenolics compared to cultivated plants. The fruit of analyzed berry species contained different levels of sugars, organic acids, and total phenolics. Moreover, it has been demonstrated that wild grown species

  12. Acyl homoserine lactone changes the abundance of proteins and the levels of organic acids associated with stationary phase in Salmonella Enteritidis.

    PubMed

    de Almeida, Felipe Alves; Pimentel-Filho, Natan de Jesus; Carrijo, Lanna Clícia; Bento, Cláudia Braga Pereira; Baracat-Pereira, Maria Cristina; Pinto, Uelinton Manoel; de Oliveira, Leandro Licursi; Vanetti, Maria Cristina Dantas

    2017-01-01

    Quorum sensing (QS) is cell-cell communication mechanism mediated by signaling molecules known as autoinducers (AIs) that lead to differential gene expression. Salmonella is unable to synthesize the AI-1 acyl homoserine lactone (AHL), but is able to recognize AHLs produced by other microorganisms through SdiA protein. Our study aimed to evaluate the influence of AI-1 on the abundance of proteins and the levels of organic acids of Salmonella Enteritidis. The presence of N-dodecyl-homoserine lactone (C12-HSL) did not interfere on the growth or the total amount of extracted proteins of Salmonella. However, the abundance of the proteins PheT, HtpG, PtsI, Adi, TalB, PmgI (or GpmI), Eno, and PykF enhanced while the abundance of the proteins RplB, RplE, RpsB, Tsf, OmpA, OmpC, OmpD, and GapA decreased when Salmonella Enteritidis was anaerobically cultivated in the presence of C12-HSL. Additionally, the bacterium produced less succinic, lactic, and acetic acids in the presence of C12-HSL. However, the concentration of extracellular formic acid reached 20.46 mM after 24 h and was not detected when the growth was in the absence of AI-1. Considering the cultivation period for protein extraction, their abundance, process and function, as well as the levels of organic acids, we observed in cells cultivated in presence of C12-HSL a correlation with what is described in the literature as entry into the stationary phase of growth, mainly related to nitrogen and amino acid starvation and acid stress. Further studies are needed in order to determine the specific role of the differentially abundant proteins and extracellular organic acids secreted by Salmonella in the presence of quorum sensing signaling molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Raw mechanically separated chicken meat and salmon protein hydrolysate as protein sources in extruded dog food: effect on protein and amino acid digestibility.

    PubMed

    Tjernsbekk, M T; Tauson, A-H; Kraugerud, O F; Ahlstrøm, Ø

    2017-10-01

    Protein quality was evaluated for mechanically separated chicken meat (MSC) and salmon protein hydrolysate (SPH), and for extruded dog foods where MSC or SPH partially replaced poultry meal (PM). Apparent total tract digestibility (ATTD) of crude protein (CP) and amino acids (AA) in the protein ingredients and extruded foods was determined with mink (Neovison vison). The extruded dog foods included a control diet with protein from PM and grain, and two diets where MSC or SPH provided 25% of the dietary CP. Nutrient composition of the protein ingredients varied, dry matter (DM) was 944.0, 358.0 and 597.4 g/kg, CP was 670.7, 421.2 and 868.9 g/kg DM, crude fat was 141.4, 547.8 and 18.5 g/kg DM and ash was 126.4, 32.1 and 107.0 g/kg DM for PM, MSC and SPH respectively. The content of essential AA (g/100 g CP) was more than 10.0 percentage units lower in SPH than in PM and MSC. The ATTD of CP differed (p < 0.001) between protein ingredients and was 80.9%, 88.2% and 91.3% for PM, MSC and SPH respectively. The ATTD of total AA was lowest (p < 0.001) for PM, and similar (p > 0.05) for MSC and SPH. In the extruded diets, the expected higher ATTD of CP and AA from replacement of PM with MSC or SPH was not observed. The ATTD of CP was determined to be 80.3%, 81.3% and 79.0% for the PM, MSC and SPH extruded foods respectively. Furthermore, the ATTD of several AA was numerically highest for the PM diet. Possibly, extrusion affected ATTD of the diets differently due to different properties and previous processing of the three protein ingredients. Journal of Animal Physiology and Animal Nutrition © 2017 Blackwell Verlag GmbH.

  14. Glutamic Acid - Amino Acid, Neurotransmitter, and Drug - Is Responsible for Protein Synthesis Rhythm in Hepatocyte Populations in vitro and in vivo.

    PubMed

    Brodsky, V Y; Malchenko, L A; Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2016-08-01

    Primary cultures of rat hepatocytes were studied in serum-free media. Ultradian protein synthesis rhythm was used as a marker of cell synchronization in the population. Addition of glutamic acid (0.2 mg/ml) to the medium of nonsynchronous sparse cultures resulted in detection of a common protein synthesis rhythm, hence in synchronization of the cells. The antagonist of glutamic acid metabotropic receptors MCPG (0.01 mg/ml) added together with glutamic acid abolished the synchronization effect; in sparse cultures, no rhythm was detected. Feeding rats with glutamic acid (30 mg with food) resulted in protein synthesis rhythm in sparse cultures obtained from the rats. After feeding without glutamic acid, linear kinetics of protein synthesis was revealed. Thus, glutamic acid, a component of blood as a non-neural transmitter, can synchronize the activity of hepatocytes and can form common rhythm of protein synthesis in vitro and in vivo. This effect is realized via receptors. Mechanisms of cell-cell communication are discussed on analyzing effects of non-neural functions of neurotransmitters. Glutamic acid is used clinically in humans. Hence, a previously unknown function of this drug is revealed.

  15. Fluorescence Modulation of Green Fluorescent Protein Using Fluorinated Unnatural Amino Acids.

    PubMed

    Villa, Jordan K; Tran, Hong-Anh; Vipani, Megha; Gianturco, Stephanie; Bhasin, Konark; Russell, Brent L; Harbron, Elizabeth J; Young, Douglas D

    2017-07-16

    The ability to modulate protein function through minimal perturbations to amino acid structure represents an ideal mechanism to engineer optimized proteins. Due to the novel spectroscopic properties of green fluorescent protein, it has found widespread application as a reporter protein throughout the fields of biology and chemistry. Using site-specific amino acid mutagenesis, we have incorporated various fluorotyrosine residues directly into the fluorophore of the protein, altering the fluorescence and shifting the pKa of the phenolic proton associated with the fluorophore. Relative to wild type GFP, the fluorescence spectrum of the protein is altered with each additional fluorine atom, and the mutant GFPs have the potential to be employed as pH sensors due to the altered electronic properties of the fluorine atoms.

  16. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2013-03-12

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetase that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel sythetases molecules, methods for identifying and making the novel synthetases, methods for producing containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lapidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  17. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.

    PubMed

    Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B

    2008-02-15

    Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression. Copyright 2007 Wiley-Liss, Inc.

  18. Influence of the Amino Acid Sequence on Protein-Mineral Interactions in Soil

    NASA Astrophysics Data System (ADS)

    Chacon, S. S.; Reardon, P. N.; Purvine, S.; Lipton, M. S.; Washton, N.; Kleber, M.

    2017-12-01

    The intimate associations between protein and mineral surfaces have profound impacts on nutrient cycling in soil. Proteins are an important source of organic C and N, and a subset of proteins, extracellular enzymes (EE), can catalyze the depolymerization of soil organic matter (SOM). Our goal was to determine how variation in the amino acid sequence could influence a protein's susceptibility to become chemically altered by mineral surfaces to infer the fate of adsorbed EE function in soil. We hypothesized that (1) addition of charged amino acids would enhance the adsorption onto oppositely charged mineral surfaces (2) addition of aromatic amino acids would increase adsorption onto zero charged surfaces (3) Increase adsorption of modified proteins would enhance their susceptibility to alterations by redox active minerals. To test these hypotheses, we generated three engineered proxies of a model protein Gb1 (IEP 4.0, 6.2 kDA) by inserting either negatively charged, positively charged or aromatic amino acids in the second loop. These modified proteins were allowed to interact with functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnessite) at pH 5 and 7. We used LC-MS/MS and solution-state Heteronuclear Single Quantum Coherence Spectroscopy NMR to observe modifications on engineered proteins as a consequence to mineral interactions. Preliminary results indicate that addition of any amino acids to a protein increase its susceptibility to fragmentation and oxidation by redox active mineral surfaces, and alter adsorption to the other mineral surfaces. This suggest that not all mineral surfaces in soil may act as sorbents for EEs and chemical modification of their structure should also be considered as an explanation for decrease in EE activity. Fragmentation of proteins by minerals can bypass the need to produce proteases, but microbial acquisition of other nutrients that require enzymes such as cellulases, ligninases or phosphatases

  19. Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB.

    PubMed

    Malki, Abderrahim; Le, Hai-Tuong; Milles, Sigrid; Kern, Renée; Caldas, Teresa; Abdallah, Jad; Richarme, Gilbert

    2008-05-16

    The acid stress chaperones HdeA and HdeB of Escherichia coli prevent the aggregation of periplasmic proteins at acidic pH. We show in this report that they also form mixed aggregates with proteins that have failed to be solubilized at acidic pH and allow their subsequent solubilization at neutral pH. HdeA, HdeB, and HdeA and HdeB together display an increasing efficiency for the solubilization of protein aggregates at pH 3. They are less efficient for the solubilization of aggregates at pH 2, whereas HdeB is the most efficient. Increasing amounts of periplasmic proteins draw increasing amounts of chaperone into pellets, suggesting that chaperones co-aggregate with their substrate proteins. We observed a decrease in the size of protein aggregates in the presence of HdeA and HdeB, from very high molecular mass aggregates to 100-5000-kDa species. Moreover, a marked decrease in the exposed hydrophobicity of aggregated proteins in the presence of HdeA and HdeB was revealed by 1,1'-bis(4-anilino)naphtalene-5,5'-disulfonic acid binding experiments. In vivo, during the recovery at neutral pH of acid stressed bacterial cells, HdeA and HdeB allow the solubilization and renaturation of protein aggregates, including those formed by the maltose receptor MalE, the oligopeptide receptor OppA, and the histidine receptor HisJ. Thus, HdeA and HdeB not only help to maintain proteins in a soluble state during acid treatment, as previously reported, but also assist, both in vitro and in vivo, in the solubilization at neutral pH of mixed protein-chaperone aggregates formed at acidic pH, by decreasing the size of protein aggregates and the exposed hydrophobicity of aggregated proteins.

  20. Seed storage protein deficiency improves sulfur amino acid content in common bean (Phaseolus vulgaris L.): redirection of sulfur from gamma-glutamyl-S-methyl-cysteine.

    PubMed

    Taylor, Meghan; Chapman, Ralph; Beyaert, Ronald; Hernández-Sebastià, Cinta; Marsolais, Frédéric

    2008-07-23

    The contents of sulfur amino acids in seeds of common bean ( Phaseolus vulgaris L.) are suboptimal for nutrition. They accumulate large amounts of a gamma-glutamyl dipeptide of S-methyl-cysteine, a nonprotein amino acid that cannot substitute for methionine or cysteine in the diet. Protein accumulation and amino acid composition were characterized in three genetically related lines integrating a progressive deficiency in major seed storage proteins, phaseolin, phytohemagglutinin, and arcelin. Nitrogen, carbon, and sulfur contents were comparable among the three lines. The contents of S-methyl-cysteine and gamma-glutamyl-S-methyl-cysteine were progressively reduced in the mutants. Sulfur was shifted predominantly to the protein cysteine pool, while total methionine was only slightly elevated. Methionine and cystine contents (mg per g protein) were increased by up to ca. 40%, to levels slightly above FAO guidelines on amino acid requirements for human nutrition. These findings may be useful to improve the nutritional quality of common bean.

  1. A sensitive method for measuring protein turnover based on the measurement of 2-3H-labelled amino acids in protein.

    PubMed Central

    Humphrey, T J; Davies, D D

    1976-01-01

    A method for measuring the rate of protein degradation is described. The method measures the change in 2-3H content of protein with time by racemization of the protein hydrolysate with acetic anhydride. The 3H on C-2 of amino acids is stable in proteins but becomes labile, owing to the action of transaminases, once the amino acids are released by proteolysis. The specific measurement of 2-3H in amino acids largely overcomes problems due to compartmentation and isotope recycling and evidence to support this claim is presented. Values for the half-life of Lemna minor (duckweed) protein determined by the new method are compared with values obtained by other methods. PMID:949338

  2. Glutamic Acid as Enhancer of Protein Synthesis Kinetics in Hepatocytes from Old Rats.

    PubMed

    Brodsky, V Y; Malchenko, L A; Butorina, N N; Lazarev Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2017-08-01

    Dense cultures of hepatocytes from old rats (~2 years old, body weight 530-610 g) are different from similar cultures of hepatocytes from young rats by the low amplitude of protein synthesis rhythm. Addition of glutamic acid (0.2, 0.4, or 0.6 mg/ml) into the culture medium with hepatocytes of old rats resulted in increase in the oscillation amplitudes of the protein synthesis rhythm to the level of young rats. A similar action of glutamic acid on the protein synthesis kinetics was observed in vivo after feeding old rats with glutamic acid. Inhibition of metabotropic receptors of glutamic acid with α-methyl-4-carboxyphenylglycine (0.01 mg/ml) abolished the effect of glutamic acid. The amplitude of oscillation of the protein synthesis rhythm in a cell population characterizes synchronization of individual oscillations caused by direct cell-cell communications. Hence, glutamic acid, acting as a receptor-dependent transmitter, enhanced direct cell-cell communications of hepatocytes that were decreased with aging. As differentiated from other known membrane signaling factors (gangliosides, norepinephrine, serotonin, dopamine), glutamic acid can penetrate into the brain and thus influence the communications and protein synthesis kinetics that are disturbed with aging not only in hepatocytes, but also in neurons.

  3. pH shift protein recovery with organic acids on texture and color of cooked gels.

    PubMed

    Paker, Ilgin; Beamer, Sarah; Jaczynski, Jacek; Matak, Kristen E

    2015-01-01

    Isoelectric solubilization and precipitation (ISP) processing uses pH shifts to separate protein from fish frames, which may increase commercial interest for silver carp. Texture and color properties of gels made from silver carp protein recovered at different pH strategies and organic acid types were compared. ISP was applied to headed gutted silver carp using 10 mol L(-1) sodium hydroxide (NaOH) and either glacial acetic acid (AA) or a (1:1) formic and lactic acid combination (F&L). Protein gels were made with recovered protein and standard functional additives. Texture profile analysis and the Kramer shear test showed that protein gels made from protein solubilized at basic pH values were firmer, harder, more cohesive, gummier and chewier (P < 0.05) than proteins solubilized under acidic conditions. Acidic solubilization led to whiter (P < 0.05) gels, and using F&L during ISP yielded whiter gels under all treatments (P < 0.05). Gels made from ISP-recovered silver carp protein using organic acids show potential for use as a functional ingredient in restructured foods. © 2014 Society of Chemical Industry.

  4. Quantifying Protein Synthesis and Degradation in Arabidopsis by Dynamic 13CO2 Labeling and Analysis of Enrichment in Individual Amino Acids in Their Free Pools and in Protein1[OPEN

    PubMed Central

    Fernie, Alisdair R.; Stitt, Mark

    2015-01-01

    Protein synthesis and degradation represent substantial costs during plant growth. To obtain a quantitative measure of the rate of protein synthesis and degradation, we supplied 13CO2 to intact Arabidopsis (Arabidopsis thaliana) Columbia-0 plants and analyzed enrichment in free amino acids and in amino acid residues in protein during a 24-h pulse and 4-d chase. While many free amino acids labeled slowly and incompletely, alanine showed a rapid rise in enrichment in the pulse and a decrease in the chase. Enrichment in free alanine was used to correct enrichment in alanine residues in protein and calculate the rate of protein synthesis. The latter was compared with the relative growth rate to estimate the rate of protein degradation. The relative growth rate was estimated from sequential determination of fresh weight, sequential images of rosette area, and labeling of glucose in the cell wall. In an 8-h photoperiod, protein synthesis and cell wall synthesis were 3-fold faster in the day than at night, protein degradation was slow (3%–4% d−1), and flux to growth and degradation resulted in a protein half-life of 3.5 d. In the starchless phosphoglucomutase mutant at night, protein synthesis was further decreased and protein degradation increased, while cell wall synthesis was totally inhibited, quantitatively accounting for the inhibition of growth in this mutant. We also investigated the rates of protein synthesis and degradation during leaf development, during growth at high temperature, and compared synthesis rates of Rubisco large and small subunits of in the light and dark. PMID:25810096

  5. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids

    PubMed Central

    Hesse, Almut

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  6. STRUCTURAL AND FUNCTIONAL INTERACTION OF FATTY ACIDS WITH HUMAN LIVER FATTY ACID BINDING PROTEIN (L-FABP) T94A VARIANT

    PubMed Central

    Huang, Huan; McIntosh, Avery L.; Martin, Gregory G.; Landrock, Kerstin K.; Landrock, Danilo; Gupta, Shipra; Atshaves, Barbara P.; Kier, Ann B.; Schroeder, Friedhelm

    2014-01-01

    The human liver fatty acid binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride (TG) levels. How this amino acid substitution elicits these effects is not known. This issue was addressed with human recombinant wild-type (WT, T94T) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC, and CC). T94A substitution did not or only slightly alter L-FABP binding affinities for saturated, monounsaturated, or polyunsaturated long chain fatty acids (LCFA), nor did it change the affinity for intermediates in TG synthesis. Nevertheless, T94A substitution markedly altered the secondary structural response of L-FABP induced by binding LCFA or intermediates of TG synthesis. Finally, T94A substitution markedly diminished polyunsaturated fatty acid, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), induction of peroxisome proliferator-activated receptor alpha (PPARα) - regulated proteins such as L-FABP, fatty acid transport protein 5 (FATP5), and PPARα itself in cultured primary human hepatocytes. Thus, while T94A substitution did not alter the affinity of human L-FABP for LCFAs, it significantly altered human L-FABP structure and stability as well as conformational and functional response to these ligands. PMID:24628888

  7. Overexpression of heart-type fatty acid binding protein enhances fatty acid-induced podocyte injury

    PubMed Central

    Gao, Qing; Sarkar, Alhossain; Chen, Yizhi; Xu, Bo; Zhu, Xiaojuan; Yuan, Yang; Guan, Tianjun

    2018-01-01

    Deregulated lipid metabolism is a characteristic of metabolic diseases including type 2 diabetes and obesity, and likely contributes to podocyte injury and end-stage kidney disease. Heart-type fatty acid binding protein (H-FABP) was reported to be associated with lipid metabolism. The present study investigated whether H-FABP contributes to podocyte homeostasis. Podocytes were transfected by lentiviral vector to construct a cell line which stably overexpressed H-FABP. Small interfering RNA capable of effectively silencing H-FABP was introduced into podocytes to construct a cell line with H-FABP knockdown. Certain groups were treated with palmitic acid (PA) and the fat metabolism, as well as inflammatory and oxidative stress markers were measured. PA accelerated lipid metabolism derangement, inflammatory reaction and oxidative stress in podocytes. Overexpression of H-FABP enhanced the PA-induced disequilibrium in podocytes. The mRNA and protein expression levels of acyl-coenzyme A oxidase 3 and monocyte chemotactic protein 1, and the protein expression levels of 8-hydroxy-2′-deoxyguanosine and 4-hydroxynonenal were upregulated in the H-FABP overexpression group, while the mRNA and protein expression of peroxisome proliferator activated receptor α was downregulated. Knockdown of H-FABP inhibited the PA-induced injury and lipid metabolism derangement, as well as the inflammatory reaction and oxidative stress in podocytes. These results indicated that overexpression of H-FABP enhances fatty acid-induced podocyte injury, while H-FABP inhibition may represent a potential therapeutic strategy for the prevention of lipid metabolism-associated podocyte injury. PMID:29434805

  8. Digestion of fatty acids in ruminants: a meta-analysis of flows and variation factors. 1. Total fatty acids.

    PubMed

    Schmidely, P; Glasser, F; Doreau, M; Sauvant, D

    2008-05-01

    A database built from 95 experiments with 303 treatments was used to quantify the ruminal biohydrogenation (BH) of fatty acids (FA), efficiency of microbial protein synthesis (EMPS), duodenal flow and intestinal absorption of total FA and of FA with 12 to 18 C units, in response to variations in dietary FA content, source or technological treatment of fat supplement. Flows of FA were expressed relative to dry matter intake (DMI) to compile data from bovine and ovine species. BH tended to increase curvilinearly with FA intake, whereas dietary FA did not affect EMPS. A linear relationship between FA intake and duodenal flow of total FA was obtained, with a coefficient of 0.75 ± 0.06 g duodenal FA/kg DMI for each g FA intake/kg DMI. Between experiments, positive balances of total FA (intake - duodenum) were related to low EMPS. Relationships between duodenal flows of FA with 12 to 18 C units and their respective intakes were linear, with a coefficient that increased with the number of C units. Duodenal flow of bacterial FA was linearly related to FA intake (coefficient 0.33 ± 0.13), whereas contribution of bacterial lipid to duodenal flow decreased as FA intake increased. For each FA with 12 to 16 C units, prediction of FA absorption from its respective duodenal flow was linear. For total FA and FA with 18 C units, apparent absorption levelled off at high duodenal flows. All these relationships were discussed according to current knowledge on microbial metabolism in the rumen and on the intestinal digestibility of FA in the intestine.

  9. [Analysis of proteins, amino acids and inorganic elements in Holotrichia diomphalia from different areas].

    PubMed

    Cao, Wei; Liu, Dan; Zhang, Yi-Kai; Wang, Xiao-Yu; Chang, Yan-Rong; Yang, Qian; Wang, Si-Wang

    2010-10-01

    To analyze the content of proteins,amino acids and inorganic elements of Holotrichia diomphalia in different growing areas as the references for quality evaluation and reasonable application of them. The contents of proteins were determined using semi-micro Kjeldahl method. The contents of seventeen amino acids and inorganic elements were determined with amino acid analyzer and atomic absorption spectrometer and elemental analyzer, respectively. The contents of protein were 33.4%-44.4%, and that in Jiangxi were the highest in five different areas. There were seventeen kinds of amino acids in Holotrichia diomphalia. Among them, seven amino acids were essential to human life. The content of glutamic acid was the highest in seventeen amino acids. In inorganic elements, the content of Mg, Ca was higher in macroelements and Fe, Zn was higher in microelements. There are many kinds of necessary amino acids and inorganic elements for man kind in Holotrichia diomphalia. The contents of proteins, amino acids and inorganic elements have some difference in Holotrichia diomphalia of different growing areas.

  10. Comparative characterization of random-sequence proteins consisting of 5, 12, and 20 kinds of amino acids

    PubMed Central

    Tanaka, Junko; Doi, Nobuhide; Takashima, Hideaki; Yanagawa, Hiroshi

    2010-01-01

    Screening of functional proteins from a random-sequence library has been used to evolve novel proteins in the field of evolutionary protein engineering. However, random-sequence proteins consisting of the 20 natural amino acids tend to aggregate, and the occurrence rate of functional proteins in a random-sequence library is low. From the viewpoint of the origin of life, it has been proposed that primordial proteins consisted of a limited set of amino acids that could have been abundantly formed early during chemical evolution. We have previously found that members of a random-sequence protein library constructed with five primitive amino acids show high solubility (Doi et al., Protein Eng Des Sel 2005;18:279–284). Although such a library is expected to be appropriate for finding functional proteins, the functionality may be limited, because they have no positively charged amino acid. Here, we constructed three libraries of 120-amino acid, random-sequence proteins using alphabets of 5, 12, and 20 amino acids by preselection using mRNA display (to eliminate sequences containing stop codons and frameshifts) and characterized and compared the structural properties of random-sequence proteins arbitrarily chosen from these libraries. We found that random-sequence proteins constructed with the 12-member alphabet (including five primitive amino acids and positively charged amino acids) have higher solubility than those constructed with the 20-member alphabet, though other biophysical properties are very similar in the two libraries. Thus, a library of moderate complexity constructed from 12 amino acids may be a more appropriate resource for functional screening than one constructed from 20 amino acids. PMID:20162614

  11. Hydrolysis of proteins with methanesulfonic acid for improved HPLC-ICP-MS determination of seleno-methionine in yeast and nuts.

    PubMed

    Wrobel, Katarzyna; Kannamkumarath, Sasi S; Wrobel, Kazimierz; Caruso, Joseph A

    2003-01-01

    In this work, the use of methanesulfonic acid for protein hydrolysis is proposed for evaluation of Se-methionine in yeast, Brazil nuts, and possibly other selenium-rich biological samples. The hydrolysis was carried out by heating the sample with 4 mol L(-1) acid at reflux for 8 h. Two chromatographic techniques (size-exclusion and ion-pairing) coupled with ICP-MS detection were used to compare the release of Se-methionine from proteins by enzymatic (proteinase K, protease XIV) and acid hydrolyses. A more efficient liberation of Se-methionine was observed by acid hydrolysis. For quantification, the sample extracts were introduced onto a C8 Alltima column, and the separation was achieved with a mobile phase containing 5 mmol L(-1) hexanesulfonic acid in citrate buffer (pH 4.5)/methanol (95:5). The results obtained by standard addition showed 816+/-17 micro g g(-1) and 36.2+/-1.5 micro g g(-1) of selenium in the form of Se-methionine in yeast and nuts, respectively (65% and 75% of total selenium).

  12. Effect of acid- and alkaline-aided extractions on functional and rheological properties of proteins recovered from mechanically separated turkey meat (MSTM).

    PubMed

    Hrynets, Yuliya; Omana, Dileep A; Xu, Yan; Betti, Mirko

    2010-09-01

    Functional and rheological characteristics of acid- and alkali-extracted proteins from mechanically separated turkey meat (MSTM) have been investigated. Extractions were carried out at 4 pH values (2.5, 3.5, 10.5, and 11.5). The study demonstrated that alkali and acid extractions resulted in significant (P < 0.0001) decreases of cooking and water loss compared to raw MSTM; however, the cooking loss was found to be similar (P = 0.5699) among the different protein isolates. Proteins extracted at pH 10.5 showed the lowest (P = 0.0249) water loss. Emulsion and foaming properties were found to be slightly higher in alkali-extracted proteins compared to those for acid extractions. The myofibrillar protein fraction showed better ability to form and stabilize emulsions compared to sarcoplasmic proteins. Myofibrillar proteins also showed better foam expansion; however, foam volume stability was similar for both myofibrillar and sarcoplasmic protein fractions. Textural characteristics (hardness, chewiness, springiness, and cohesiveness) of recovered proteins were found to be unaffected (P > 0.05) by different extraction pH. The protein extracted at pH 3.5 formed a highly viscoelastic gel network as evidenced by storage modulus (G') values, whereas the gel formed from proteins extracted at pH 10.5 was found to be the weakest. The work also revealed that acid treatments were more effective for removal of total heme pigments from MSTM. Color characteristics of protein isolates were markedly improved compared to the initial material and tended to be better when subjected to acid extractions. Mechanically separated meat is one of the cheapest sources of protein obtained by grinding meat and bones together and forcing the mixture through a perforated drum. The use of mechanically separated turkey meat (MSTM) for the production of further processed poultry products is limited due to its undesirable color and textural properties. Recovery of proteins from MSTM using pH shifting

  13. Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells.

    PubMed

    Zhu, Mengmeng; Zhu, Ning; Song, Wen-yuan; Harmon, Alice C; Assmann, Sarah M; Chen, Sixue

    2014-05-01

    Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in various physiological processes. However, little is known about redox-sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard-cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in-gel electrophoresis and isotope-coded affinity tagging. In total, 65 and 118 potential redox-responsive proteins were identified in ABA- and MeJA-treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra-molecular disulfide bonds. Most of the proteins fall into the functional groups of 'energy', 'stress and defense' and 'metabolism'. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA- and MeJA-treated samples. A total of 44 cysteines were mapped in the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a sucrose non-fermenting 1-related protein kinase and an isopropylmalate dehydrogenase, were confirmed to be redox-regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in ABA and MeJA signal transduction in guard cells. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  14. In silico designing of therapeutic protein enriched with branched-chain amino acids for the dietary treatment of chronic liver disease.

    PubMed

    L, Sunil; Vasu, Prasanna

    2017-09-01

    Leucine, isoleucine, and valine are three essential branched-chain amino acids (BCAA) account for 40-45% of total essential amino acids. BCAA stimulates protein synthesis primarily in skeletal muscles, and it can directly transport to circulatory blood stream bypassing the liver. Hence, a protein enriched with BCAA is an important therapeutic target for the dietary treatment of chronic liver disease. The present study is to design a synthetic protein enriched with BCAA and the challenge is to maximize the BCAA content, keeping the balanced ratio of leucine, isoleucine, valine - 2: 1: 1.2 as specified by WHO/UNU/FAO. Here, we turned the general concept of homology modeling and tried to find a suitable scaffold (α-helix) to host an excess amount of BCAA for increased stability and digestibility. A total of 50 protein models were constructed by using SWISS-MODEL, Modeller 9.17, ProtParam tool, and allergen online tools. Out of 50 different protein models, protein model-50 was found to be best, which had a well-defined 3D structure, good in silico digestibility, balanced ratio of BCAA and showed 65.57% structure identity to the template apo-bovine α-lactalbumin (1F6R). Templates search was performed against PDB using PSI-BLAST, SWISS-MODEL, PROFUNC, I-TASSER, and ConSurf. The secondary structure was predicted by PSSPred, PSIPRED, I-TASSER, PORTER, and SPIDER2. The modeled structure of protein Model-50 was validated by PROCHECK, ERRAT, ProSA, and QMEAN. COACH and ProFUNC tools were performed to determine the functional effects of protein model-50. Overall, the BCAA was enriched from 22 to 56.4% with the balanced ratio of Leu: Ile: Val (2: 1: 1.2). The Ramachandran plot showed 97.7% of the amino acid residues in allowed regions with ERRAT score of 86.05. We have successfully modeled the complete three-dimensional structure of the target protein model-50 using highly reputed computational tools. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Sex Steroid Modulation of Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Lysenko, Nina; Manning, Joan A.; Monroe, Scott E.; Burnett, David A.

    1980-01-01

    The mechanism by which sex steroids influence very low density hepatic lipoprotein triglyceride production has not been fully elucidated. In previous studies we showed that [14C]oleate utilization and incorporation into triglycerides were greater in hepatocyte suspensions from adult female rats than from males. The sex differences were not related to activities of the enzymes of triglyceride biosynthesis, whereas fatty acid binding protein (FABP) concentration in liver cytosol was greater in females. These findings suggested that sex differences in lipoprotein could reflect a sex steroid influence on the availability of fatty acids for hepatocellular triglyceride biosynthesis. In the present studies, sex steroid effects on hepatocyte [14C]oleate utilization and FABP concentration were investigated directly. Hepatocytes from immature (30-d-old) rats exhibited no sex differences in [14C]oleate utilization. With maturation, total [14C]oleate utilization and triglyceride biosynthesis increased moderately in female cells and decreased markedly in male cells; the profound sex differences in adults were maximal by age 60 d. Fatty acid oxidation was little affected. Rats were castrated at age 30 d, and received estradiol, testosterone, or no hormone until age 60 d, when hepatocyte [14C]oleate utilization was studied. Castration virtually eliminated maturational changes and blunted the sex differences in adults. Estradiol or testosterone largely reproduced the appropriate adult pattern of [14C]oleate utilization regardless of the genotypic sex of the treated animal. In immature females and males, total cytosolic FABP concentrations were similar. In 60-d-old animals, there was a striking correlation among all groups (females, males, castrates, and hormone-treated) between mean cytosolic FABP concentration on the one hand, and mean total [14C]oleate utilization (r = 0.91) and incorporation into triglycerides (r = 0.94) on the other. In 30-d-old animals rates of [14C

  16. Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited

    PubMed Central

    Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.

    2012-01-01

    Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the promiscuous binding and transport properties of L-FABP, we investigated structure and dynamics of human L-FABP with and without bound ligands by means of heteronuclear NMR. The overall conformation of human L-FABP shows the typical β-clam motif. Binding of two oleic acid (OA) molecules does not alter the protein conformation substantially, but perturbs the chemical shift of certain backbone and side-chain protons that are involved in OA binding according to the structure of the human L-FABP/OA complex. Comparison of the human apo and holo L-FABP structures revealed no evidence for an “open-cap” conformation or a “swivel-back” mechanism of the K90 side chain upon ligand binding, as proposed for rat L-FABP. Instead, we postulate that the lipid binding process in L-FABP is associated with backbone dynamics. PMID:22713574

  17. Meta-analysis of Intravenous Tranexamic Acid in Primary Total Hip Arthroplasty.

    PubMed

    Moskal, Joseph T; Capps, Susan G

    2016-09-01

    Previous meta-analyses established that tranexamic acid confers benefits when used during total hip arthroplasty (THA). However, 2 of these meta-analyses included a variety of routes of administration of tranexamic acid in THA (topical, intravenous, oral, and intra-articular), another meta-analysis included a variety of antifibrinolytic drugs (not restricted to a single drug), and the final meta-analysis included nonrandomized controlled trials. This meta-analysis focused on a single medication, tranexamic acid, administered in a specific way, intravenously in patients undergoing primary THA, using data reported only in randomized controlled studies. Outcomes were restricted to blood loss, allogeneic transfusion rates, and complications. Other outcomes, such as return to function or clinical scores, could not be evaluated because of lack of consistent reporting. To better understand the effects of intravenous tranexamic acid in THA on clinical outcomes, such as recovery, return to function, and patient-reported outcome measures, it would be helpful to have more controlled trials examining these measures in a standardized manner. Intravenous tranexamic acid was beneficial for blood loss intraoperatively, blood loss through drains, and total blood loss during hospitalization, in addition to reducing allogeneic transfusion rates. No difference between intravenous tranexamic acid and placebo was found for most complications, except deep venous thrombosis, which showed favorable results with placebo. [Orthopedics.2016; 39(5):e883-e892.]. Copyright 2016, SLACK Incorporated.

  18. Probing Protein Structure by Amino Acid-Specific Covalent Labeling and Mass Spectrometry

    PubMed Central

    Mendoza, Vanessa Leah; Vachet, Richard W.

    2009-01-01

    For many years, amino acid-specific covalent labeling has been a valuable tool to study protein structure and protein interactions, especially for systems that are difficult to study by other means. These covalent labeling methods typically map protein structure and interactions by measuring the differential reactivity of amino acid side chains. The reactivity of amino acids in proteins generally depends on the accessibility of the side chain to the reagent, the inherent reactivity of the label and the reactivity of the amino acid side chain. Peptide mass mapping with ESI- or MALDI-MS and peptide sequencing with tandem MS are typically employed to identify modification sites to provide site-specific structural information. In this review, we describe the reagents that are most commonly used in these residue-specific modification reactions, details about the proper use of these covalent labeling reagents, and information about the specific biochemical problems that have been addressed with covalent labeling strategies. PMID:19016300

  19. Glutamic Acid – the Main Dietary Amino Acid – and Blood Pressure: The INTERMAP Study

    PubMed Central

    Stamler, Jeremiah; Brown, Ian J; Daviglus, Martha L; Chan, Queenie; Kesteloot, Hugo; Ueshima, Hirotsugu; Zhao, Liancheng; Elliott, Paul

    2009-01-01

    Background Data are available indicating an independent inverse relationship of dietary vegetable protein to the blood pressure (BP) of individuals. Here we assess whether BP is associated with glutamic acid intake (the predominant dietary amino acid, especially in vegetable protein) and with each of four other amino acids higher relatively in vegetable than animal protein (proline, phenylalanine, serine, cystine). Methods and Results Cross-sectional epidemiological study; 4,680 persons ages 40–59 -- 17 random population samples in China, Japan, U.K., U.S.A.; BP measurement 8 times at 4 visits; dietary data (83 nutrients, 18 amino acids) from 4 standardized multi-pass 24-hour dietary recalls and 2 timed 24-hour urine collections. Dietary glutamic acid (percent of total protein intake) was inversely related to BP. Across multivariate regression models (Model 1 controlled for age, gender, sample, through Model 5 controlled for 16 non-nutrient and nutrient possible confounders) estimated average BP differences associated with glutamic acid intake higher by 4.72% total dietary protein (2 s.d.) were −1.5 to −3.0 mm Hg systolic and −1.0 to −1.6 mm Hg diastolic (Z-values −2.15 to −5.11). Results were similar for the glutamic acid-BP relationship with each other amino acid also in the model, e.g., with control for 15 variables plus proline, systolic/diastolic pressure differences −2.7/−2.0 (Z −2.51, −2.82). In these 2-amino acid models, higher intake (2 s.d.) of each other amino acid was associated with small BP differences and Z-values. Conclusions Dietary glutamic acid may have independent BP lowering effects, possibly contributing to the inverse relation of vegetable protein to BP. PMID:19581495

  20. Intramuscular fatty acid composition of lambs fed diets containing alternative protein sources.

    PubMed

    Scerra, M; Caparra, P; Foti, F; Cilione, C; Zappia, G; Motta, C; Scerra, V

    2011-03-01

    Thirty male Merinizzata italiana lambs were divided into three groups after weaning according to live weight. The diet of the three groups differed in the main protein source used in the concentrate, soybean meal for treatment SBM, faba bean for treatment FB and peas for treatment PEA. Lambs were fed ad libitum and slaughtered at about 160 days of age. Meat from the PEA group had higher proportions of the essential fatty acids C18:2 ω-6 and C18:3 ω-3 than from FB and SBM lambs and consequently its derivatives, C20:4 ω-6 and C20:5 ω-3 respectively, were higher in meat from PEA animals, compared to SBM and FB ones. The total n-3 fatty acids were highest in meat from PEA lambs and consequently PEA lambs showed a more favourable n-6/n-3 ratio. In conclusion the use of legume seeds such as peas in lamb diets positively affected intramuscular fatty acid composition. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  1. A Complex Prime Numerical Representation of Amino Acids for Protein Function Comparison.

    PubMed

    Chen, Duo; Wang, Jiasong; Yan, Ming; Bao, Forrest Sheng

    2016-08-01

    Computationally assessing the functional similarity between proteins is an important task of bioinformatics research. It can help molecular biologists transfer knowledge on certain proteins to others and hence reduce the amount of tedious and costly benchwork. Representation of amino acids, the building blocks of proteins, plays an important role in achieving this goal. Compared with symbolic representation, representing amino acids numerically can expand our ability to analyze proteins, including comparing the functional similarity of them. Among the state-of-the-art methods, electro-ion interaction pseudopotential (EIIP) is widely adopted for the numerical representation of amino acids. However, it could suffer from degeneracy that two different amino acid sequences have the same numerical representation, due to the design of EIIP. In light of this challenge, we propose a complex prime numerical representation (CPNR) of amino acids, inspired by the similarity between a pattern among prime numbers and the number of codons of amino acids. To empirically assess the effectiveness of the proposed method, we compare CPNR against EIIP. Experimental results demonstrate that the proposed method CPNR always achieves better performance than EIIP. We also develop a framework to combine the advantages of CPNR and EIIP, which enables us to improve the performance and study the unique characteristics of different representations.

  2. Gross and true ileal digestible amino acid contents of several animal body proteins and their hydrolysates.

    PubMed

    Cui, J; Chong, B; Rutherfurd, S M; Wilkinson, B; Singh, H; Moughan, P J

    2013-07-01

    Amino acid compositions of ovine muscle, ovine myofibrillar protein, ovine spleen, ovine liver, bovine blood plasma, bovine blood globulins and bovine serum albumin and the amino acid compositions and in vivo (laboratory rat) true ileal amino acid digestibilities of hydrolysates (sequential hydrolysis with Neutrase, Alcalase and Flavourzyme) of these protein sources were determined. True ileal amino acid digestibility differed (P<0.05) among the seven protein hydrolysates. The ovine myofibrillar protein and liver hydrolysates were the most digestible, with a mean true ileal digestibility across all amino acids of 99%. The least digestible protein hydrolysate was bovine serum albumin with a comparable mean true ileal digestibility of 93%. When the digestible amino acid contents were expressed as proportions relative to lysine, considerable differences, across the diverse protein sources, were found in the pattern of predicted absorbed amino acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Metabolic effects of keto acid--amino acid supplementation in patients with chronic renal insufficiency receiving a low-protein diet and recombinant human erythropoietin--a randomized controlled trial.

    PubMed

    Teplan, V; Schück, O; Votruba, M; Poledne, R; Kazdová, L; Skibová, J; Malý, J

    2001-09-17

    Supplement with keto acids/amino acids (KA) and erythropoietin can independently improve the metabolic sequels of chronic renal insufficiency. Our study was designed to establish whether a supplementation with keto acids/amino acids (KA) exerts additional beneficial metabolic effects in patients with chronic renal insufficiency (CRF) treated with a low-protein diet (LPD) and recombinant human erythropoietin (EPO). In a prospective randomized controlled trial over a period of 12 months, we evaluated a total of 38 patients (20 M/18 F) aged 32-68 years with a creatinine clearance (CCr) of 20-36 ml/min. All patients were receiving EPO (40 U/kg twice a week s.c.) and a low-protein diet (0.6 g protein/kg/day and 145 kJ/kg/day). The diet of 20 patients (Group I) was supplemented with KA at a dosage of 100 mg/kg/day while 18 patients (Group II) received no supplementation. During the study period, the glomerular filtration rate slightly decreased (CCr from 28.2 +/- 3.4 to 26.4 +/- 4.1 ml/min and 29.6 +/- 4.8 to 23.4 +/- 4.4 ml/min in groups I and II, respectively and Cin); this however was more marked in Group II (Group I vs. Group II, p < 0.01). The serum levels of urea also declined (p < 0.01), more pronouncedly in Group I (p < 0.025). In Group I, there was a significant rise in the levels of leucine (p < 0.01), isoleucine (p < 0.01), valine (p < 0.02) and albumin (p < 0.01) and a decrease in protein-uria (p < 0.01). Analysis of the lipid spectrum revealed a mild yet significant decrease in total cholesterol and LDL-cholesterol (p < 0.02), more pronounced in Group I. In Group I, there was a decrease in plasma triglycerides (from 4.2 +/- 0.8 down to values a low as 2.2 +/- 0.6 mmol/L; p < 0.01) whereas HDL-cholesterol levels increased (from 0.9 +/- 0.1 to 1.2 +/- 0.1 mmol/L, p < 0.01). A further remarkable finding was a reduction in the serum concentration of free radicals (p < 0.01). We conclude that a KA supplementation in patients with CRF receiving LPD and EPO

  4. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    NASA Astrophysics Data System (ADS)

    Lubarsky, Gennady V.; Lemoine, Patrick; Meenan, Brian J.; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-04-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix.

  5. Factor VII and protein C are phosphatidic acid-binding proteins.

    PubMed

    Tavoosi, Narjes; Smith, Stephanie A; Davis-Harrison, Rebecca L; Morrissey, James H

    2013-08-20

    Seven proteins in the human blood clotting cascade bind, via their GLA (γ-carboxyglutamate-rich) domains, to membranes containing exposed phosphatidylserine (PS), although with membrane binding affinities that vary by 3 orders of magnitude. Here we employed nanodiscs of defined phospholipid composition to quantify the phospholipid binding specificities of these seven clotting proteins. All bound preferentially to nanobilayers in which PS headgroups contained l-serine versus d-serine. Surprisingly, however, nanobilayers containing phosphatidic acid (PA) bound substantially more of two of these proteins, factor VIIa and activated protein C, than did equivalent bilayers containing PS. Consistent with this finding, liposomes containing PA supported higher proteolytic activity by factor VIIa and activated protein C toward their natural substrates (factors X and Va, respectively) than did PS-containing liposomes. Moreover, treating activated human platelets with phospholipase D enhanced the rates of factor X activation by factor VIIa in the presence of soluble tissue factor. We hypothesize that factor VII and protein C bind preferentially to the monoester phosphate of PA because of its accessibility and higher negative charge compared with the diester phosphates of most other phospholipids. We further found that phosphatidylinositol 4-phosphate, which contains a monoester phosphate attached to its myo-inositol headgroup, also supported enhanced enzymatic activity of factor VIIa and activated protein C. We conclude that factor VII and protein C bind preferentially to monoester phosphates, which may have implications for the function of these proteases in vivo.

  6. Protein turnover, amino acid requirements and recommendations for athletes and active populations

    PubMed Central

    Poortmans, J.R.; Carpentier, A.; Pereira-Lancha, L.O.; Lancha, A.

    2012-01-01

    Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers (13C-lysine, 15N-glycine, 2H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g·kg−1·day−1 compared to 0.8 g·kg−1·day−1 in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h. PMID:22666780

  7. Inferring Selection on Amino Acid Preference in Protein Domains

    PubMed Central

    Durbin, Richard

    2009-01-01

    Models that explicitly account for the effect of selection on new mutations have been proposed to account for “codon bias” or the excess of “preferred” codons that results from selection for translational efficiency and/or accuracy. In principle, such models can be applied to any mutation that results in a preferred allele, but in most cases, the fitness effect of a specific mutation cannot be predicted. Here we show that it is possible to assign preferred and unpreferred states to amino acid changing mutations that occur in protein domains. We propose that mutations that lead to more common amino acids (at a given position in a domain) can be considered “preferred alleles” just as are synonymous mutations leading to codons for more abundant tRNAs. We use genome-scale polymorphism data to show that alleles for preferred amino acids in protein domains occur at higher frequencies in the population, as has been shown for preferred codons. We show that this effect is quantitative, such that there is a correlation between the shift in frequency of preferred alleles and the predicted fitness effect. As expected, we also observe a reduction in the numbers of polymorphisms and substitutions at more important positions in domains, consistent with stronger selection at those positions. We examine the derived allele frequency distribution and polymorphism to divergence ratios of preferred and unpreferred differences and find evidence for both negative and positive selections acting to maintain protein domains in the human population. Finally, we analyze a model for selection on amino acid preferences in protein domains and find that it is consistent with the quantitative effects that we observe. PMID:19095755

  8. Refinement of Generalized Born Implicit Solvation Parameters for Nucleic Acids and their Complexes with Proteins

    PubMed Central

    Nguyen, Hai; Pérez, Alberto; Bermeo, Sherry; Simmerling, Carlos

    2016-01-01

    The Generalized Born (GB) implicit solvent model has undergone significant improvements in accuracy for modeling of proteins and small molecules. However, GB still remains a less widely explored option for nucleic acid simulations, in part because fast GB models are often unable to maintain stable nucleic acid structures, or they introduce structural bias in proteins, leading to difficulty in application of GB models in simulations of protein-nucleic acid complexes. Recently, GB-neck2 was developed to improve the behavior of protein simulations. In an effort to create a more accurate model for nucleic acids, a similar procedure to the development of GB-neck2 is described here for nucleic acids. The resulting parameter set significantly reduces absolute and relative energy error relative to Poisson Boltzmann for both nucleic acids and nucleic acid-protein complexes, when compared to its predecessor GB-neck model. This improvement in solvation energy calculation translates to increased structural stability for simulations of DNA and RNA duplexes, quadruplexes, and protein-nucleic acid complexes. The GB-neck2 model also enables successful folding of small DNA and RNA hairpins to near native structures as determined from comparison with experiment. The functional form and all required parameters are provided here and also implemented in the AMBER software. PMID:26574454

  9. Tranexamic Acid Reduced the Percent of Total Blood Volume Lost During Adolescent Idiopathic Scoliosis Surgery.

    PubMed

    Jones, Kristen E; Butler, Elissa K; Barrack, Tara; Ledonio, Charles T; Forte, Mary L; Cohn, Claudia S; Polly, David W

    2017-01-01

    Multilevel posterior spine fusion is associated with significant intraoperative blood loss. Tranexamic acid is an antifibrinolytic agent that reduces intraoperative blood loss. The goal of this study was to compare the percent of total blood volume lost during posterior spinal fusion (PSF) with or without tranexamic acid in patients with adolescent idiopathic scoliosis (AIS). Thirty-six AIS patients underwent PSF in 2011-2014; the last half (n=18) received intraoperative tranexamic acid. We retrieved relevant demographic, hematologic, intraoperative and outcomes information from medical records. The primary outcome was the percent of total blood volume lost, calculated from estimates of intraoperative blood loss (numerator) and estimated total blood volume per patient (denominator, via Nadler's equations). Unadjusted outcomes were compared using standard statistical tests. Tranexamic acid and no-tranexamic acid groups were similar (all p>0.05) in mean age (16.1 vs. 15.2 years), sex (89% vs. 83% female), body mass index (22.2 vs. 20.2 kg/m2), preoperative hemoglobin (13.9 vs. 13.9 g/dl), mean spinal levels fused (10.5 vs. 9.6), osteotomies (1.6 vs. 0.9) and operative duration (6.1 hours, both). The percent of total blood volume lost (TBVL) was significantly lower in the tranexamic acid-treated vs. no-tranexamic acid group (median 8.23% vs. 14.30%, p = 0.032); percent TBVL per level fused was significantly lower with tranexamic acid than without it (1.1% vs. 1.8%, p=0.048). Estimated blood loss (milliliters) was similar across groups. Tranexamic acid significantly reduced the percentage of total blood volume lost versus no tranexamic acid in AIS patients who underwent PSF using a standardized blood loss measure.Level of Evidence: 3. Institutional Review Board status: This medical record chart review (minimal risk) study was approved by the University of Minnesota Institutional Review Board.

  10. Nucleic acid encoding DS-CAM proteins and products related thereto

    DOEpatents

    Korenberg, Julie R.

    2005-11-01

    In accordance with the present invention, there are provided Down Syndrome-Cell Adhesion Molecule (DS-CAM) proteins. Nucleic acid sequences encoding such proteins and assays employing same are also disclosed. The invention DS-CAM proteins can be employed in a variety of ways, for example, for the production of anti-DS-CAM antibodies thereto, in therapeutic compositions and methods employing such proteins and/or antibodies. DS-CAM proteins are also useful in bioassays to identify agonists and antagonists thereto.

  11. Association of serum uric acid with high-sensitivity C-reactive protein in postmenopausal women.

    PubMed

    Raeisi, A; Ostovar, A; Vahdat, K; Rezaei, P; Darabi, H; Moshtaghi, D; Nabipour, I

    2017-02-01

    To explore the independent correlation between serum uric acid and low-grade inflammation (measured by high-sensitivity C-reactive protein, hs-CRP) in postmenopausal women. A total of 378 healthy Iranian postmenopausal women were randomly selected in a population-based study. Circulating hs-CRP levels were measured by highly specific enzyme-linked immunosorbent assay method and an enzymatic calorimetric method was used to measure serum levels of uric acid. Pearson correlation coefficient, multiple linear regression and logistic regression models were used to analyze the association between uric acid and hs-CRP levels. A statistically significant correlation was seen between serum levels of uric acid and log-transformed circulating hs-CRP (r = 0.25, p < 0.001). After adjustment for age and cardiovascular risk factors (according to NCEP ATP III criteria), circulating hs-CRP levels were significantly associated with serum uric acid levels (β = 0.20, p < 0.001). After adjustment for age and cardiovascular risk factors, hs-CRP levels ≥3 mg/l were significantly associated with higher uric acid levels (odds ratio =1.52, 95% confidence interval 1.18-1.96). Higher serum uric acid levels were positively and independently associated with circulating hs-CRP in healthy postmenopausal women.

  12. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.

    PubMed

    Shamim, Mohammad Tabrez Anwar; Anwaruddin, Mohammad; Nagarajaram, H A

    2007-12-15

    Fold recognition is a key step in the protein structure discovery process, especially when traditional sequence comparison methods fail to yield convincing structural homologies. Although many methods have been developed for protein fold recognition, their accuracies remain low. This can be attributed to insufficient exploitation of fold discriminatory features. We have developed a new method for protein fold recognition using structural information of amino acid residues and amino acid residue pairs. Since protein fold recognition can be treated as a protein fold classification problem, we have developed a Support Vector Machine (SVM) based classifier approach that uses secondary structural state and solvent accessibility state frequencies of amino acids and amino acid pairs as feature vectors. Among the individual properties examined secondary structural state frequencies of amino acids gave an overall accuracy of 65.2% for fold discrimination, which is better than the accuracy by any method reported so far in the literature. Combination of secondary structural state frequencies with solvent accessibility state frequencies of amino acids and amino acid pairs further improved the fold discrimination accuracy to more than 70%, which is approximately 8% higher than the best available method. In this study we have also tested, for the first time, an all-together multi-class method known as Crammer and Singer method for protein fold classification. Our studies reveal that the three multi-class classification methods, namely one versus all, one versus one and Crammer and Singer method, yield similar predictions. Dataset and stand-alone program are available upon request.

  13. One-Pot Procedure for Recovery of Gallic Acid from Wastewater and Encapsulation within Protein Particles.

    PubMed

    Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram; Mousavi, Mohammad E

    2016-02-24

    A whey protein isolate solution was heat-denatured and treated with the enzyme transglutaminase, which cross-linked ≈26% of the amino groups and increased the magnitude of the ζ-potential value. The protein solution was microemulsified, and then the resulting water-in-oil microemulsion was dispersed within a gallic acid-rich model wastewater. Gallic acid extraction by the outlined microemulsion liquid membrane (MLM) from the exterior aqueous phase (wastewater) and accumulation within the internal aqueous nanodroplets induced protein cold-set gelation and resulted in the formation of gallic acid-enveloping nanoparticles. Measurements with a strain-controlled rheometer indicated a progressive increase in the MLM viscosity during gallic acid recovery corresponding to particle formation. The mean hydrodynamic size of the nanoparticles made from the heat-denatured and preheated enzymatically cross-linked proteins was 137 and 122 nm, respectively. The enzymatic cross-linking of whey proteins led to a higher gallic acid recovery yield and increased the glass transition enthalpy and temperature. A similar impact on glass transition indices was observed by the gallic acid-induced nanoparticulation of proteins. Scanning electron microscopy showed the existence of numerous jammed/fused nanoparticles. It was suggested on the basis of the results of Fourier transform infrared spectroscopy that the in situ nanoparticulation of proteins shifted the C-N stretching and C-H bending peaks to higher wavenumbers. X-ray diffraction results proposed a decreased β-sheet content for proteins because of the acid-induced particulation. The nanoparticles made from the enzymatically cross-linked protein were more stable against the in vitro gastrointestinal digestion and retained almost 19% of the entrapped gallic acid after 300 min sequential gastric and intestinal digestions.

  14. Discovering amino acid patterns on binding sites in protein complexes

    PubMed Central

    Kuo, Huang-Cheng; Ong, Ping-Lin; Lin, Jung-Chang; Huang, Jen-Peng

    2011-01-01

    Discovering amino acid (AA) patterns on protein binding sites has recently become popular. We propose a method to discover the association relationship among AAs on binding sites. Such knowledge of binding sites is very helpful in predicting protein-protein interactions. In this paper, we focus on protein complexes which have protein-protein recognition. The association rule mining technique is used to discover geographically adjacent amino acids on a binding site of a protein complex. When mining, instead of treating all AAs of binding sites as a transaction, we geographically partition AAs of binding sites in a protein complex. AAs in a partition are treated as a transaction. For the partition process, AAs on a binding site are projected from three-dimensional to two-dimensional. And then, assisted with a circular grid, AAs on the binding site are placed into grid cells. A circular grid has ten rings: a central ring, the second ring with 6 sectors, the third ring with 12 sectors, and later rings are added to four sectors in order. As for the radius of each ring, we examined the complexes and found that 10Å is a suitable range, which can be set by the user. After placing these recognition complexes on the circular grid, we obtain mining records (i.e. transactions) from each sector. A sector is regarded as a record. Finally, we use the association rule to mine these records for frequent AA patterns. If the support of an AA pattern is larger than the predetermined minimum support (i.e. threshold), it is called a frequent pattern. With these discovered patterns, we offer the biologists a novel point of view, which will improve the prediction accuracy of protein-protein recognition. In our experiments, we produced the AA patterns by data mining. As a result, we found that arginine (arg) most frequently appears on the binding sites of two proteins in the recognition protein complexes, while cysteine (cys) appears the fewest. In addition, if we discriminate the shape

  15. Quantification Assays for Total and Polyglutamine-Expanded Huntingtin Proteins

    PubMed Central

    Boogaard, Ivette; Smith, Melanie; Pulli, Kristiina; Szynol, Agnieszka; Albertus, Faywell; Lamers, Marieke B. A. C.; Dijkstra, Sipke; Kordt, Daniel; Reindl, Wolfgang; Herrmann, Frank; McAllister, George; Fischer, David F.; Munoz-Sanjuan, Ignacio

    2014-01-01

    The expansion of a CAG trinucleotide repeat in the huntingtin gene, which produces huntingtin protein with an expanded polyglutamine tract, is the cause of Huntington's disease (HD). Recent studies have reported that RNAi suppression of polyglutamine-expanded huntingtin (mutant HTT) in HD animal models can ameliorate disease phenotypes. A key requirement for such preclinical studies, as well as eventual clinical trials, aimed to reduce mutant HTT exposure is a robust method to measure HTT protein levels in select tissues. We have developed several sensitive and selective assays that measure either total human HTT or polyglutamine-expanded human HTT proteins on the electrochemiluminescence Meso Scale Discovery detection platform with an increased dynamic range over other methods. In addition, we have developed an assay to detect endogenous mouse and rat HTT proteins in pre-clinical models of HD to monitor effects on the wild type protein of both allele selective and non-selective interventions. We demonstrate the application of these assays to measure HTT protein in several HD in vitro cellular and in vivo animal model systems as well as in HD patient biosamples. Furthermore, we used purified recombinant HTT proteins as standards to quantitate the absolute amount of HTT protein in such biosamples. PMID:24816435

  16. The effect of urea on refractometric total protein measurement in dogs and cats with azotemia.

    PubMed

    Legendre, Kelsey P; Leissinger, Mary; Le Donne, Viviana; Grasperge, Britton J; Gaunt, Stephen D

    2017-03-01

    While protein is the predominant solute measured in plasma or serum by a refractometer, nonprotein substances also contribute to the angle of refraction. There is debate in the current literature regarding which nonprotein substances cause factitiously high refractometric total protein measurements, as compared to the biuret assay. The purpose of the study was to determine if the blood of azotemic animals, specifically with increased blood urea concentration, will have significantly higher refractometric total protein concentrations compared to the total protein concentrations measured by biuret assay. A prospective case series was conducted by collecting data from azotemic (n = 26) and nonazotemic (n = 34) dogs and cats. In addition, an in vitro study was performed where urea was added to an enhanced electrolyte solution at increasing concentrations, and total protein was assessed by both the refractometer and spectrophotometer. Statistical analysis was performed to determine the effect of urea. The refractometric total protein measurement showed a positive bias when compared to the biuret protein measurement in both groups, but the bias was higher in the azotemic group vs the nonazotemic group. The mean difference in total protein measurements of the nonazotemic group (0.59 g/dL) was significantly less (P < .01) than the mean difference of the azotemic group (0.95 g/dL). The in vitro experiment revealed a positive bias with a proportional error. This study demonstrated that increasing concentrations of urea significantly increased the total protein concentration measured by the refractometer as compared to the biuret assay, both in vivo and in vitro. © 2017 American Society for Veterinary Clinical Pathology.

  17. Effects of a Novel Nutritional Formula Enriched With Eicosapentaenoic Acid and Docosahexaenoic Acid Specially Developed for Tube-Fed Hemodialysis Patients.

    PubMed

    Esaki, Shinga; Iwahori, Motokazu-Tohru; Takagi, Yuri; Wada, Toshikazu; Morita, Shunsuke; Sonoki, Hirofumi; Nakao, Toshiyuki

    2017-03-01

    To evaluate the effects of a nutritional formula enriched with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in tube-fed bedridden hemodialysis patients. A prospective, multicenter, single-arm study. Koyukai Memorial Hospital, Orimoto Hospital, and Chofu Hospital, Japan. Eleven tube-fed bedridden hemodialysis patients. Patients were fed a nutritional formula enriched with EPA and DHA for 12 weeks. Body weight; body mass index (BMI); serum levels of total protein, albumin, prealbumin, total cholesterol, triglyceride, and C-reactive protein (CRP); serum fatty acid composition. Body weight; BMI; and serum levels of total protein, albumin, total cholesterol, triglyceride, and CRP at 12 weeks were not significantly different from baseline levels. Serum prealbumin, EPA, and DHA levels significantly increased after 12 weeks of treatment. A nutritional formula enriched with EPA and DHA may be beneficial for nutritional management in tube-fed bedridden hemodialysis patients. Copyright © 2016. Published by Elsevier Inc.

  18. HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO. MR Blanton and ES Hunter. Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC, USA.
    Sponsor: JM Rogers.
    Haloacetic Acids (HAAs) formed during the disinfection process are present in drin...

  19. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    PubMed

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  20. Amino acid sequence of the smaller basic protein from rat brain myelin

    PubMed Central

    Dunkley, Peter R.; Carnegie, Patrick R.

    1974-01-01

    1. The complete amino acid sequence of the smaller basic protein from rat brain myelin was determined. This protein differs from myelin basic proteins of other species in having a deletion of a polypeptide of 40 amino acid residues from the centre of the molecule. 2. A detailed comparison is made of the constant and variable regions in a group of myelin basic proteins from six species. 3. An arginine residue in the rat protein was found to be partially methylated. The ratio of methylated to unmethylated arginine at this position differed from that found for the human basic protein. 4. Three tryptic peptides were isolated in more than one form. The differences between the two forms of each peptide are discussed in relation to the electrophoretic heterogeneity of myelin basic proteins, which is known to occur at alkaline pH values. 5. Detailed evidence for the amino acid sequence of the protein has been deposited as Supplementary Publication SUP 50029 at the British Library (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1973) 131, 5. PMID:4141893

  1. Light enhanced the accumulation of total fatty acids (TFA) and docosahexaenoic acid (DHA) in a newly isolated heterotrophic microalga Crypthecodinium sp. SUN.

    PubMed

    Sun, Dongzhe; Zhang, Zhao; Mao, Xuemei; Wu, Tao; Jiang, Yue; Liu, Jin; Chen, Feng

    2017-03-01

    In the present study, light illumination was found to be efficient in elevating the total fatty acid content in a newly isolated heterotrophic microalga, Crypthecodinium sp. SUN. Under light illumination, the highest total fatty acid and DHA contents were achieved at 96h as 24.9% of dry weight and 82.8mgg -1 dry weight, respectively, which were equivalent to 1.46-fold and 1.68-fold of those under the dark conditions. The elevation of total fatty acid content was mainly contributed by an increase of neutral lipids at the expense of starches. Moreover, light was found to alter the cell metabolism and led to a higher specific growth rate, higher glucose consumption rate and lower non-motile cell percentage. This is the first report that light can promote the total fatty acids accumulation in Crypthecodinium without growth inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of tranexamic acid administration on bleeding in primary total hip arthroplasty.

    PubMed

    Fernández-Cortiñas, A B; Quintáns-Vázquez, J M; Gómez-Suárez, F; Murillo, O Simón; Sánchez-López, B R; Pena-Gracía, J M

    To study the efficacy of tranexamic acid to decrease perioperative bleeding in patients who have undergone a total hip arthroplasty operation and to evaluate drug safety. Observational, prospective, controlled and randomized study on the efficacy of tranexamic acid as a method to reduce bleeding in primary hip replacement surgery. We included 134 patients operated during 2014 in our centre, who were divided into 2 groups according to whether or not they had received tranexamic acid. The main study variables were haemoglobin and haematocrit levels, the amount of blood collected from the post-operative drain in the first 12, 24 and 48hours and transfusion requirements. Post-operative haemoglobin and haematocrit levels were statistically higher (P<.001) in the group with treatment. During the first 48hours bleeding values from the group that did not receive TAX were higher compared to patients treated with tranexamic acid. Statistically significant differences (P=.001) were found as to the need for transfusion according to group, more transfusions were performed in the cohort that had not received tranexamic acid: 25.37% compared to 4.48% for the group with tranexamic acid. No adverse events related to administration of tranexamic acid were recorded. Administration of tranexamic acid has proved to be an effective and safe method to reduce peri-operative bleeding in patients who underwent total hip arthroplasty and avoids allogenic blood transfusion. Therefore, tranexamic acid treatment could entail a financial saving for the healthcare system and expose the patient to less risk. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment.

    PubMed

    Gruber, David F; Gaffney, Jean P; Mehr, Shaadi; DeSalle, Rob; Sparks, John S; Platisa, Jelena; Pieribone, Vincent A

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein's fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment.

  4. The effect of feeding high corn oil on fatty-acid-binding-protein isolated from rat liver.

    PubMed

    Catalá, A

    1987-12-01

    Fatty-acid-binding-protein isolated from liver of rats receiving normal or high fat diet was studied by three different methods. The effect of high fat diet on the thermal stability of the protein was determined employing differential scanning calorimetry. Fatty acids have a stabilizing effect on the thermal stability of the protein. In order to determine the relative binding affinity of native and delipidated protein a Sephadex G-50 assay was employed using [1-14C] oleate as ligand. The delipidated protein exhibited greater binding of oleate than did the native material. Increases in the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes in vitro were also observed when protein obtained from both sources were delipidated. The results suggest that high corn oil diet would modify the properties of fatty-acid-binding-protein in the uptake and cytosolic transport of long-chain fatty acids.

  5. Proximate composition, amino acid and fatty acid composition of fish maws.

    PubMed

    Wen, Jing; Zeng, Ling; Xu, Youhou; Sun, Yulin; Chen, Ziming; Fan, Sigang

    2016-01-01

    Fish maws are commonly recommended and consumed in Asia over many centuries because it is believed to have some traditional medical properties. This study highlights and provides new information on the proximate composition, amino acid and fatty acid composition of fish maws of Cynoscion acoupa, Congresox talabonoides and Sciades proops. The results indicated that fish maws were excellent protein sources and low in fat content. The proteins in fish maws were rich in functional amino acids (FAAs) and the ratio of FAAs and total amino acids in fish maws ranged from 0.68 to 0.69. Among species, croaker C. acoupa contained the most polyunsaturated fatty acids, arachidonic acid, docosahexaenoic acid and eicosapntemacnioc acid, showing the lowest value of index of atherogenicity and index of thrombogenicity, showing the highest value of hypocholesterolemic/hypercholesterolemic ratio, which is the most desirable.

  6. Secretion of whey acidic protein and cystatin is down regulated at mid-lactation in the red kangaroo (Macropus rufus)

    USGS Publications Warehouse

    Nicholas, K.R.; Fisher, J.A.; Muths, E.; Trott, J.; Janssens, P.A.; Reich, C.; Shaw, D.C.

    2001-01-01

    Milk collected from the red kangaroo (Macropus rufus) between day 100 and 260 of lactation showed major changes in milk composition at around day 200 of lactation, the time at which the pouch young begins to temporarily exit the pouch and eat herbage. The carbohydrate content of milk declined abruptly at this time and although there was only a small increase in total protein content, SDS PAGE analysis of milk revealed asynchrony in the secretory pattern of individual proteins. The levels of α-lactalbumin, β-lactoglobulin, serum albumin and transferrin remain unchanged during lactation. In contrast, the protease inhibitor cystatin, and the putative protease inhibitor whey acidic protein (WAP) first appeared in milk at elevated concentrations after approximately 150 days of lactation and then ceased to be secreted at approximately 200 days. In addition, a major whey protein, late lactation protein, was first detected in milk around the time whey acidic protein and cystatin cease to be secreted and was present at least until day 260 of lactation. The co-ordinated, but asynchronous secretion of putative protease inhibitors in milk may have several roles during lactation including tissue remodelling in the mammary gland and protecting specific proteins in milk required for physiological development of the dependent young.

  7. Secretion of whey acidic protein and cystatin is down regulated at mid-lactation in the red kangaroo (Macropus rufus)

    USGS Publications Warehouse

    Nicholas, K.R.; Fisher, J.A.; Muths, E.; Trott, J.; Janssens, P.A.; Reich, C.; Shaw, D.C.

    2001-01-01

    Milk collected from the red kangaroo (Macropus rufus) between day 100 and 260 of lactation showed major changes in milk composition at around day 200 of lactation, the time at which the pouch young begins to temporarily exit the pouch and eat herbage. The carbohydrate content of milk declined abruptly at this time and although there was only a small increase in total protein content, SDS PAGE analysis of milk revealed asynchrony in the secretory pattern of individual proteins. The levels of ??-lactalbumin, ??-lactoglobulin, serum albumin and transferrin remain unchanged during lactation. In contrast, the protease inhibitor cystatin, and the putative protease inhibitor whey acidic protein (WAP) first appeared in milk at elevated concentrations after approximately 150 days of lactation and then ceased to be secreted at approximately 200 days. In addition, a major whey protein, late lactation protein, was first detected in milk around the time whey acidic protein and cystatin cease to be secreted and was present at least until day 260 of lactation. The co-ordinated, but asynchronous secretion of putative protease inhibitors in milk may have several roles during lactation including tissue remodelling in the mammary gland and protecting specific proteins in milk required for physiological development of the dependent young. ?? 2001 Elsevier Science Inc.

  8. Evaluation of hyaluronic acid-protein conjugates for polymer masked-unmasked protein therapy.

    PubMed

    Ferguson, Elaine L; Alshame, Alshame M J; Thomas, David W

    2010-12-15

    Bioresponsive polymers may effectively be utilized to enhance the circulation time and stability of biologically active proteins and peptides, while reducing their immunogenicity and toxicity. Recently, dextrin-epidermal growth factor (EGF) conjugates, which make use of the Polymer-masked UnMasked Protein Therapy (PUMPT) concept, have been developed and shown potential as modulators of impaired wound healing. This study investigated the potential of PUMPT using hyaluronic acid (HA) conjugates to mask activity and enhance protein stability, while allowing restoration of biological activity following triggered degradation. HA fragments (Mw ∼90,000g/mol), obtained by acid hydrolysis of Rooster comb HA, were conjugated to trypsin as a model enzyme or to EGF as a model growth factor. Conjugates contained 2.45 and 0.98% (w/w) trypsin or EGF, respectively, and contained <5% free protein. HA conjugation did not significantly alter trypsin's activity. However, incubation of the conjugate with physiological concentrations of HAase increased its activity to ∼145% (p<0.001) that of the free enzyme. In contrast, when HA-EGF conjugates were tested in vitro, no effect on cell proliferation was seen, even in the presence of HAase. HA conjugates did not display typical masking/unmasking behavior, HA-trypsin conjugates exhibited ∼52% greater stability in the presence of elastase, compared to free trypsin, demonstrating the potential of HA conjugates for further development as modulators of tissue repair. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Mitochondrial genetic codes evolve to match amino acid requirements of proteins.

    PubMed

    Swire, Jonathan; Judson, Olivia P; Burt, Austin

    2005-01-01

    Mitochondria often use genetic codes different from the standard genetic code. Now that many mitochondrial genomes have been sequenced, these variant codes provide the first opportunity to examine empirically the processes that produce new genetic codes. The key question is: Are codon reassignments the sole result of mutation and genetic drift? Or are they the result of natural selection? Here we present an analysis of 24 phylogenetically independent codon reassignments in mitochondria. Although the mutation-drift hypothesis can explain reassignments from stop to an amino acid, we found that it cannot explain reassignments from one amino acid to another. In particular--and contrary to the predictions of the mutation-drift hypothesis--the codon involved in such a reassignment was not rare in the ancestral genome. Instead, such reassignments appear to take place while the codon is in use at an appreciable frequency. Moreover, the comparison of inferred amino acid usage in the ancestral genome with the neutral expectation shows that the amino acid gaining the codon was selectively favored over the amino acid losing the codon. These results are consistent with a simple model of weak selection on the amino acid composition of proteins in which codon reassignments are selected because they compensate for multiple slightly deleterious mutations throughout the mitochondrial genome. We propose that the selection pressure is for reduced protein synthesis cost: most reassignments give amino acids that are less expensive to synthesize. Taken together, our results strongly suggest that mitochondrial genetic codes evolve to match the amino acid requirements of proteins.

  10. Decarboxylation of malonyl-(acyl carrier protein) by 3-oxoacyl-(acyl carrier protein) synthases in plant fatty acid biosynthesis.

    PubMed Central

    Winter, E; Brummel, M; Schuch, R; Spener, F

    1997-01-01

    In order to identify regulatory steps in fatty acid biosynthesis, the influence of intermediate 3-oxoacyl-(acyl carrier proteins) (3-oxoacyl-ACPs) and end-product acyl-ACPs of the fatty acid synthase reaction on the condensation reaction was investigated in vitro, using total fatty acid synthase preparations and purified 3-oxoacyl-ACP synthases (KASs; EC 2.3.1.41) from Cuphea lanceolata seeds. KAS I and II in the fatty acid synthase preparations were assayed for the elongation of octanoyl- and hexadecanoyl-ACP respectively, and the accumulation of the corresponding condensation product 3-oxoacyl-ACP was studied by modulating the content of the reducing equivalentS NADH and NADPH. Complete omission of reducing equivalents resulted with either KAS in the abnormal synthesis of acetyl-ACP from malonyl-ACP by a decarboxylation reaction. Supplementation with NADPH or NADH, separately or in combination with recombinant 3-oxoacyl-ACP reductase (EC 1.1.1.100), led to a decrease in the amount of acetyl-ACP and a simultaneous increase in elongation products. This demonstrates that the accumulation of 3-oxoacyl-ACP inhibits the condensation reaction on the one hand, and induces the decarboxylation of malonyl-ACP on the other. By carrying out similar experiments with purified enzymes, this decarboxylation was attributed to the action of KAS. Our data point to a regulatory mechanism for the degradation of malonyl-ACP in plants which is activated by the accumulation of the fatty acid synthase intermediate 3-oxoacyl-ACP. PMID:9020860

  11. Decarboxylation of malonyl-(acyl carrier protein) by 3-oxoacyl-(acyl carrier protein) synthases in plant fatty acid biosynthesis.

    PubMed

    Winter, E; Brummel, M; Schuch, R; Spener, F

    1997-01-15

    In order to identify regulatory steps in fatty acid biosynthesis, the influence of intermediate 3-oxoacyl-(acyl carrier proteins) (3-oxoacyl-ACPs) and end-product acyl-ACPs of the fatty acid synthase reaction on the condensation reaction was investigated in vitro, using total fatty acid synthase preparations and purified 3-oxoacyl-ACP synthases (KASs; EC 2.3.1.41) from Cuphea lanceolata seeds. KAS I and II in the fatty acid synthase preparations were assayed for the elongation of octanoyl- and hexadecanoyl-ACP respectively, and the accumulation of the corresponding condensation product 3-oxoacyl-ACP was studied by modulating the content of the reducing equivalentS NADH and NADPH. Complete omission of reducing equivalents resulted with either KAS in the abnormal synthesis of acetyl-ACP from malonyl-ACP by a decarboxylation reaction. Supplementation with NADPH or NADH, separately or in combination with recombinant 3-oxoacyl-ACP reductase (EC 1.1.1.100), led to a decrease in the amount of acetyl-ACP and a simultaneous increase in elongation products. This demonstrates that the accumulation of 3-oxoacyl-ACP inhibits the condensation reaction on the one hand, and induces the decarboxylation of malonyl-ACP on the other. By carrying out similar experiments with purified enzymes, this decarboxylation was attributed to the action of KAS. Our data point to a regulatory mechanism for the degradation of malonyl-ACP in plants which is activated by the accumulation of the fatty acid synthase intermediate 3-oxoacyl-ACP.

  12. Enantiomeric separation of non-protein amino acids by electrokinetic chromatography.

    PubMed

    Pérez-Míguez, Raquel; Marina, María Luisa; Castro-Puyana, María

    2016-10-07

    New analytical methodologies enabling the enantiomeric separation of a group of non-protein amino acids of interest in the pharmaceutical and food analysis fields were developed in this work using Electrokinetic Chromatography. The use of FMOC as derivatization reagent and the subsequent separation using acidic conditions (formate buffer at pH 2.0) and anionic cyclodextrins as chiral selectors allowed the chiral separation of eight from the ten non-protein amino acids studied. Pyroglutamic acid, norvaline, norleucine, 3,4-dihydroxyphenilalanine, 2-aminoadipic acid, and selenomethionine were enantiomericaly separated using sulfated-α-CD while sulfated-γ-CD enabled the enantiomeric separation of norvaline, 3,4-dihydroxyphenilalanine, 2-aminoadipic acid, selenomethionie, citrulline, and pipecolic acid. Moreover, the potential of the developed methodologies was demonstrated in the analysis of citrulline and its enantiomeric impurity in food supplements. For that purpose, experimental and instrumental variables were optimized and the analytical characteristics of the proposed method were evaluated. LODs of 2.1×10 -7 and 1.8×10 -7 M for d- and l-citrulline, respectively, were obtained. d-Cit was not detectable in any of the six food supplement samples analyzed showing that the effect of storage time on the racemization of citrulline was negligible. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Interaction between Wine Phenolic Acids and Salivary Proteins by Saturation-Transfer Difference Nuclear Magnetic Resonance Spectroscopy (STD-NMR) and Molecular Dynamics Simulations.

    PubMed

    Ferrer-Gallego, Raúl; Hernández-Hierro, José Miguel; Brás, Natércia F; Vale, Nuno; Gomes, Paula; Mateus, Nuno; de Freitas, Victor; Heredia, Francisco J; Escribano-Bailón, María Teresa

    2017-08-09

    The interaction between phenolic compounds and salivary proteins is highly related to the astringency perception. Recently, it has been proven the existence of synergisms on the perceived astringency when phenolic acids were tested as mixtures in comparison to individual compounds, maintaining constant the total amount of the stimulus. The interactions between wine phenolic acids and the peptide fragment IB7 12 have been studied by saturation-transfer difference (STD) NMR spectroscopy. This technique provided the dissociation constants and the percentage of interaction between both individual and mixtures of hydroxybenzoic and hydroxycinnamic acids and the model peptide. It is noteworthy that hydroxybenzoic acids showed higher affinity for the peptide than hydroxycinnamic acids. To obtain further insights into the mechanisms of interaction, molecular dynamics simulations have been performed. Results obtained not only showed the ability of these compounds to interact with salivary proteins but also may justify the synergistic effect observed in previous sensory studies.

  14. Acidic Ribosomal Proteins from the Extreme ’Halobacterium cutirubrum’,

    DTIC Science & Technology

    the extreme halophilic bacterium, Halobacterium cutirubrum. The identification of the protein moieties involved in these and other interactions in...the halophile ribosome requires a rapid and reproducible screening method for the separation, enumeration and identification of these acidic...polypeptides in the complex ribosomal protein mixtures. In this paper the authors present the results of analyses of the halophile ribosomal proteins using a

  15. The fragile X mental retardation protein has nucleic acid chaperone properties

    PubMed Central

    Gabus, Caroline; Mazroui, Rachid; Tremblay, Sandra; Khandjian, Edouard W.; Darlix, Jean-Luc

    2004-01-01

    The fragile X syndrome is the most common cause of inherited mental retardation resulting from the absence of the fragile X mental retardation protein (FMRP). FMRP contains two K-homology (KH) domains and one RGG box that are landmarks characteristic of RNA-binding proteins. In agreement with this, FMRP associates with messenger ribonucleoparticles (mRNPs) within actively translating ribosomes, and is thought to regulate translation of target mRNAs, including its own transcript. To investigate whether FMRP might chaperone nucleic acid folding and hybridization, we analysed the annealing and strand exchange activities of DNA oligonucleotides and the enhancement of ribozyme-directed RNA substrate cleavage by FMRP and deleted variants relative to canonical nucleic acid chaperones, such as the cellular YB-1/p50 protein and the retroviral nucleocapsid protein HIV-1 NCp7. FMRP was found to possess all the properties of a potent nucleic acid chaperone, requiring the KH motifs and RGG box for optimal activity. These findings suggest that FMRP may regulate translation by acting on RNA–RNA interactions and thus on the structural status of mRNAs. PMID:15096575

  16. The fragile X mental retardation protein has nucleic acid chaperone properties.

    PubMed

    Gabus, Caroline; Mazroui, Rachid; Tremblay, Sandra; Khandjian, Edouard W; Darlix, Jean-Luc

    2004-01-01

    The fragile X syndrome is the most common cause of inherited mental retardation resulting from the absence of the fragile X mental retardation protein (FMRP). FMRP contains two K-homology (KH) domains and one RGG box that are landmarks characteristic of RNA-binding proteins. In agreement with this, FMRP associates with messenger ribonucleoparticles (mRNPs) within actively translating ribosomes, and is thought to regulate translation of target mRNAs, including its own transcript. To investigate whether FMRP might chaperone nucleic acid folding and hybridization, we analysed the annealing and strand exchange activities of DNA oligonucleotides and the enhancement of ribozyme-directed RNA substrate cleavage by FMRP and deleted variants relative to canonical nucleic acid chaperones, such as the cellular YB-1/p50 protein and the retroviral nucleocapsid protein HIV-1 NCp7. FMRP was found to possess all the properties of a potent nucleic acid chaperone, requiring the KH motifs and RGG box for optimal activity. These findings suggest that FMRP may regulate translation by acting on RNA-RNA interactions and thus on the structural status of mRNAs.

  17. Miniaturized technology for protein and nucleic acid point-of-care testing.

    PubMed

    Olasagasti, Felix; Ruiz de Gordoa, Juan Carlos

    2012-11-01

    The field of point-of-care (POC) testing technology is developing quickly and producing instruments that are increasingly reliable, while their size is being gradually reduced. Proteins are a common target for POC analyses and the detection of protein markers typically involves immunoassays aimed at detecting different groups of proteins such as tumor markers, inflammation proteins, and cardiac markers; but other techniques can also be used to analyze plasma proteins. In the case of nucleic acids, hybridization and amplification strategies can be used to record electromagnetic or electric signals. These techniques allow for the identification of specific viral or bacterial infections as well as specific cancers. In this review, we consider some of the latest advances in the analysis of specific nucleic acid and protein biomarkers, taking into account their trend toward miniaturization and paying special attention to the technology that can be implemented in future applications, such as lab-on-a-chip instruments. Copyright © 2012 Mosby, Inc. All rights reserved.

  18. Effect of Tranexamic Acid on Blood Loss and Blood Transfusion Reduction after Total Knee Arthroplasty.

    PubMed

    Seol, Young-Jun; Seon, Jong-Keun; Lee, Seung-Hun; Jin, Cheng; Prakash, Jatin; Park, Yong-Jin; Song, Eun-Kyoo

    2016-09-01

    Total knee arthroplasty (TKA) accompanies the risk of bleeding and need for transfusion. There are several methods to reduce postoperative blood loss and blood transfusion. One such method is using tranexamic acid during TKA. The purpose of this study was to confirm whether tranexamic acid reduces postoperative blood loss and blood transfusion after TKA. A total of 100 TKA patients were included in the study. The tranexamic acid group consisted of 50 patients who received an intravenous injection of tranexamic acid. The control included 50 patients who received a placebo injection. The amounts of drainage, postoperative hemoglobin, and transfusion were compared between the groups. The mean amount of drainage was lower in the tranexamic acid group (580.6±355.0 mL) than the control group (886.0±375.5 mL). There was a reduction in the transfusion rate in the tranexamic acid group (48%) compared with the control group (64%). The hemoglobin level was higher in the tranexamic acid group than in the control group at 24 hours postoperatively. The mean units of transfusion were smaller in the tranexamic acid group (0.76 units) than in the control group (1.28 units). Our data suggest that intravenous injection of tranexamic acid decreases the total blood loss and transfusion after TKA.

  19. Amino Acid Distribution Rules Predict Protein Fold: Protein Grammar for Beta-Strand Sandwich-Like Structures

    PubMed Central

    Kister, Alexander

    2015-01-01

    We present an alternative approach to protein 3D folding prediction based on determination of rules that specify distribution of “favorable” residues, that are mainly responsible for a given fold formation, and “unfavorable” residues, that are incompatible with that fold, in polypeptide sequences. The process of determining favorable and unfavorable residues is iterative. The starting assumptions are based on the general principles of protein structure formation as well as structural features peculiar to a protein fold under investigation. The initial assumptions are tested one-by-one for a set of all known proteins with a given structure. The assumption is accepted as a “rule of amino acid distribution” for the protein fold if it holds true for all, or near all, structures. If the assumption is not accepted as a rule, it can be modified to better fit the data and then tested again in the next step of the iterative search algorithm, or rejected. We determined the set of amino acid distribution rules for a large group of beta sandwich-like proteins characterized by a specific arrangement of strands in two beta sheets. It was shown that this set of rules is highly sensitive (~90%) and very specific (~99%) for identifying sequences of proteins with specified beta sandwich fold structure. The advantage of the proposed approach is that it does not require that query proteins have a high degree of homology to proteins with known structure. So long as the query protein satisfies residue distribution rules, it can be confidently assigned to its respective protein fold. Another advantage of our approach is that it allows for a better understanding of which residues play an essential role in protein fold formation. It may, therefore, facilitate rational protein engineering design. PMID:25625198

  20. Role of the Acidic Tail of High Mobility Group Protein B1 (HMGB1) in Protein Stability and DNA Bending

    PubMed Central

    Belgrano, Fabricio S.; de Abreu da Silva, Isabel C.; Bastos de Oliveira, Francisco M.; Fantappié, Marcelo R.; Mohana-Borges, Ronaldo

    2013-01-01

    High mobility group box (HMGB) proteins are abundant nonhistone proteins found in all eukaryotic nuclei and are capable of binding/bending DNA. The human HMGB1 is composed of two binding motifs, known as Boxes A and B, are L-shaped alpha-helix structures, followed by a random-coil acidic tail that consists of 30 Asp and Glu residues. This work aimed at evaluating the role of the acidic tail of human HMGB1 in protein stability and DNA interactions. For this purpose, we cloned, expressed and purified HMGB1 and its tailless form, HMGB1ΔC, in E. coli strain. Tryptophan fluorescence spectroscopy and circular dichroism (CD) experiments clearly showed an increase in protein stability promoted by the acidic tail under different conditions, such as the presence of the chemical denaturant guanidine hydrochloride (Gdn.HCl), high temperature and low pH. Folding intermediates found at low pH for both proteins were denatured only in the presence of chemical denaturant, thus showing a relatively high stability. The acidic tail did not alter the DNA-binding properties of the protein, although it enhanced the DNA bending capability from 76° (HMGB1ΔC) to 91° (HMGB1), as measured using the fluorescence resonance energy transfer technique. A model of DNA bending in vivo was proposed, which might help to explain the interaction of HMGB1 with DNA and other proteins, i.e., histones, and the role of that protein in chromatin remodeling. PMID:24255708

  1. PLASMA PROTEIN AND HEMOGLOBIN PRODUCTION : DELETION OF INDIVIDUAL AMINO ACIDS FROM GROWTH MIXTURE OF TEN ESSENTIAL AMINO ACIDS. SIGNIFICANT CHANGES IN URINARY NITROGEN.

    PubMed

    Robscheit-Robbins, F S; Miller, L L; Whipple, G H

    1947-02-28

    Given healthy dogs fed abundant iron and protein-free or low protein diets with sustained anemia and hypoproteinemia, we can study the capacity of these animals to produce simultaneously new hemoglobin and plasma protein. Reserve stores of blood protein-building materials are measurably depleted and levels of 6 to 8 gm. per cent for hemoglobin and 4 to 5 gm. per cent for plasma protein can be maintained for weeks or months depending upon the intake of food proteins or amino acid mixtures. These dogs are very susceptible to infection and various poisons. Dogs tire of these diets and loss of appetite terminates many experiments. Under these conditions (double depletion) standard growth mixtures of essential amino acids are tested to show the response in blood protein output and urinary nitrogen balance. As a part of each tabulated experiment one of the essential amino acids is deleted from the complete growth mixture to compare such response with that of the whole mixture. Methionine, threonine, phenylalanine, and tryptophane when singly eliminated from the complete amino acid mixture do effect a sharp rise in urinary nitrogen. This loss of urinary nitrogen is corrected when the individual amino acid is replaced in the mixture. Histidine, lysine, and valine have a moderate influence upon urinary nitrogen balance toward nitrogen conservation. Leucine, isoleucine, and arginine have minimal or no effect upon urinary nitrogen balance when these individual amino acids are deleted from the complete growth mixture of amino acids during 3 to 4 week periods. Tryptophane and to a less extent phenylalanine and threonine when returned to the amino acid mixture are associated with a conspicuous preponderance of plasma protein output over the hemoglobin output (Table 4). Arginine, lysine, and histidine when returned to the amino acid mixture are associated with a large preponderance of hemoglobin output. Various amino acid mixtures under these conditions may give a positive

  2. [Contents mensuration of total alkaloid in Uncaria rhynchophylla by acid dye colorimetry].

    PubMed

    Zeng, Chang-qing; Luo, Bei-liang

    2007-08-01

    To investigate the method of determination of total alkaloids Uncaria rhynchophylla. The Contents of total Alkaloid were determined by Acid dye Colorimetry. Acid dye color conditions: pH3.6 buffer 5.0 ml, bromocresol green liquid 5.0 ml; chloroform extraction three times, each time was exeracted for 2 minutes, put it aside for at least 5 minutes for the determination of the best method. Rhynchophylline 6.018 microg - 108.324 microg in the linear range, Recoveriys rate was 97.19%, RSD was 1.34% (n = 6). The method is simple, highly sensitive and reproducible.

  3. A dominant conformational role for amino acid diversity in minimalist protein–protein interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbreth, Ryan N.; Esaki, Kaori; Koide, Akiko

    Recent studies have shown that highly simplified interaction surfaces consisting of combinations of just two amino acids, Tyr and Ser, exhibit high affinity and specificity. The high functional levels of such minimalist interfaces might thus indicate small contributions of greater amino acid diversity seen in natural interfaces. Toward addressing this issue, we have produced a pair of binding proteins built on the fibronectin type III scaffold, termed “monobodies.” One monobody contains the Tyr/Ser binary-code interface (termed YS) and the other contains an expanded amino acid diversity interface (YSX), but both bind to an identical target, maltose-binding protein. The YSX monobodymore » bound with higher affinity, a slower off rate and a more favorable enthalpic contribution than the YS monobody. High-resolution X-ray crystal structures revealed that both proteins bound to an essentially identical epitope, providing a unique opportunity to directly investigate the role of amino acid diversity in a protein interaction interface. Surprisingly, Tyr still dominates the YSX paratope and the additional amino acid types are primarily used to conformationally optimize contacts made by tyrosines. Scanning mutagenesis showed that while all contacting Tyr side chains are essential in the YS monobody, the YSX interface was more tolerant to mutations. These results suggest that the conformational, not chemical, diversity of additional types of amino acids provided higher functionality and evolutionary robustness, supporting the dominant role of Tyr and the importance of conformational diversity in forming protein interaction interfaces.« less

  4. Effects of non-protein amino acids on survival and locomotion of Osmia bicornis.

    PubMed

    Felicioli, Antonio; Sagona, Simona; Galloni, Marta; Bortolotti, Laura; Bogo, Gherardo; Guarnieri, Massimo; Nepi, Massimo

    2018-04-17

    To investigate the effects of two non-protein amino acids, β-alanine and γ-amino butyric acid (GABA), on Osmia bicornis survival and locomotion, two groups of caged bees were fed with sugar syrup enriched with β-alanine and GABA, respectively. A further control group was fed with sugar syrup. Five behavioural categories were chosen according to the principle of parsimony and intrinsic unitary consistency from start to end, and recorded by scan sampling: two states (remaining under paper or in tubes) and three events (walking on net, feeding from flower and flying). We also analysed the amino acid content of haemolymph sampled from an additional 45 bees fed the same diets (15 per diet type). Bees fed with ß-alanine had a significantly shorter survival than those fed with control and GABA diets. The GABA diet induced higher locomotion than β-alanine. The former non-protein amino acid was only detected in the haemolymph of bees fed GABA. The results suggest that insects consuming non-protein amino-acid-rich diets absorb and transfer these substances to the haemolymph and that non-protein amino acids affect survival and locomotion. Ecological consequences are discussed in the framework of plant reproductive biology. This article is protected by copyright. All rights reserved. © 2018 The Royal Entomological Society.

  5. [Evaluation of the adjusted amino acid score by digestibility for estimating the protein quality and protein available in food and diets].

    PubMed

    Pak, N; Vera, G; Araya, H

    1985-03-01

    The purpose of the present study was to evaluate the amino acid score adjusted by digestibility to estimate protein quality and utilizable protein in foods and diets, considering net protein utilization (NPU) as a biological reference method. Ten foods of vegetable origin and ten of animal origin, as well as eight mixtures of foods of vegetable and animal origin were studied. When all the foods were considered, a positive (r = 0.83) and highly significant correlation (p less than 0.001) between NPU and the amino acid score adjusted by digestibility was found. When the foods were separated according to their origin, this correlation was positive only for the foods of vegetable origin (r = 0.93) and statistically significant (p less than 0.001). Also, only in those foods were similar values found between NPU and amino acid score adjusted by digestibility, as well as in utilizable protein estimated considering both methods. Caution is required to interpret protein quality and utilizable protein values of foods of animal origin and mixtures of foods of vegetable and animal origin when the amino acid score method adjusted by digestibility, or NPU, are utilized.

  6. Cinnamic Acid Derivatives as Inhibitors of Oncogenic Protein Kinases--Structure, Mechanisms and Biomedical Effects.

    PubMed

    Mielecki, Marcin; Lesyng, Bogdan

    2016-01-01

    Cinnamic acid belongs to phenolic-acid class of polyphenols, one of the most abundant plant secondary metabolites. These substances are widely studied because of plethora of their biological activities. In particular, their inhibition of protein kinases contributes to the pleiotropic effects in the cell. Protein kinases are essential in controlling cell signaling networks. Selective targeting of oncogenic protein kinases increases clinical anticancer efficacy. Cinnamic acid and related compounds have inspired researchers in the design of numerous synthetic and semisynthetic inhibitors of oncogenic protein kinases for the past three decades. Interest in cinnamoyl-scaffold-containing compounds revived in recent years, which was stimulated by modern drug design and discovery methodologies such as in vitro and in silico HTS. This review presents cinnamic acid derivatives and analogs for which direct inhibition of protein kinases was identified. We also summarize significance of the above protein kinase families - validated or promising targets for anticancer therapies. The inhibition mode may vary from ATP-competitive, through bisubstrate-competitive and mixedcompetitive, to non-competitive one. Kinase selectivity is often correlated with subtle chemical modifications, and may also be steered by an additional non-cinnamoyl fragment of the inhibitor. Specific cinnamic acid congeners may synergize their effects in the cell by a wider range of activities, like suppression of additional enzymes, e.g. deubiquitinases, influencing the same signaling pathways (e.g. JAK2/STAT). Cinnamic acid, due to its biological and physicochemical properties, provides nature-inspired ideas leading to novel inhibitors of oncogenic protein kinases and related enzymes, capable to target a variety of cancer cells.

  7. Effect of a keto acid-amino acid supplement on the metabolism and renal elimination of branched-chain amino acids in patients with chronic renal insufficiency on a low protein diet.

    PubMed

    Teplan, V; Schück, O; Horácková, M; Skibová, J; Holecek, M

    2000-10-27

    The aim of our study was to evaluate the effect of a low-protein diet supplemented with keto acids-amino acids on renal function and urinary excretion of branched-chain amino acids (BCAA) in patients with chronic renal insufficiency (CRI). In a prospective investigation 28 patients with CRI (16 male, 12 female, aged 28-66 yrs, CCr 18.6 +/- 10.2 ml/min) on a low-protein diet (0.6 g of protein /kg BW/day and energy intake 140 kJ/kg BW/day) for a period of one month were included. Subsequently, this low protein diet was supplemented with keto acids-amino acids at a dose of 0.1 g/kg BW/day orally for a period of 3 months. Examinations performed at baseline and at the end of the follow-up period revealed significant increase in the serum levels of BCAA leucine (p < 0.02), isoleucine (p < 0.03), and valine (p < 0.02) while their renal fractional excretion declined (p < 0.02, p < 0.01 resp.). Keto acid-amino acid administration had no effect on renal function and on the clearance of inulin, para-aminohippuric acid. Endogenous creatinine and urea clearance remained unaltered. A significant correlation between fractional excretion of sodium and leucine (p < 0.05) and a hyperbolic relationship between inulin clearance and fractional excretion of BCAA (p < 0.01) were seen. Moreover, a significant decrease in proteinuria (p < 0.02), plasma urea concentration and renal urea excretion and a rise in albumin level (p < 0.03) were noted. We conclude that in patients with CRI on a low protein diet the supplementation of keto acids-amino acids does not affect renal hemodynamics, but is associated--despite increases in plasma concentrations--with a reduction of renal amino acid and protein excretion suggesting induction of alterations in the tubular transport mechanisms.

  8. Spectrophotometric determination of total protein in serum using a novel near-infrared cyanine dye, 5,5'-dicarboxy-1,1'-disulfobutyl-3,3,3',3'-tetramethylindotricarbocyanine.

    PubMed

    Wang, Hong; Li, Wei-Rong; Guo, Xiao-Feng; Zhang, Hua-Shan

    2007-04-01

    The application of near-infrared (NIR) dyes (lambda (em) > 750 nm) to the analysis of biological samples shows much promise, because the long emission wavelengths of such dyes allow interferences from biomolecule matrices to be minimized. In this paper, a novel NIR dye, 5,5'-dicarboxy-1,1'-disulfobutyl-3,3,3',3'-tetramethylindotricarbocyanine (DCDSTCY) has been developed for the spectrophotometric determination of total protein in serum. Under acidic conditions, the binding of DCDSTCY to proteins caused a new peak at 878 nm, the height of which was proportional to the concentration of protein. The linear range of the method was found to be 0.04-0.5 microg mL(-1) for bovine serum albumin (BSA) and human serum albumin (HSA), and detection limits of 5 ng mL(-1) were obtained for these substances. The maximum binding number of BSA with DCDSTCY was measured to be 133. The method proposed here has been applied to the quantitation of total protein in serum, and recoveries of 96.6-104% were achieved. Figure Near-infrared probe for protein determination.

  9. Identification of Rosmarinic Acid-Adducted Sites in Meat Proteins in a Gel Model under Oxidative Stress by Triple TOF MS/MS.

    PubMed

    Tang, Chang-Bo; Zhang, Wan-Gang; Wang, Yao-Song; Xing, Lu-Juan; Xu, Xing-Lian; Zhou, Guang-Hong

    2016-08-24

    Triple TOF MS/MS was used to identify adducts between rosmarinic acid (RosA)-derived quinones and meat proteins in a gel model under oxidative stress. Seventy-five RosA-modified peptides responded to 67 proteins with adduction of RosA. RosA conjugated with different amino acids in proteins, and His, Arg, and Lys adducts with RosA were identified for the first time in meat. A total of 8 peptides containing Cys, 14 peptides containing His, 48 peptides containing Arg, 64 peptides containing Lys, and 5 peptides containing N-termini that which participated in adduction reaction with RosA were identified, respectively. Seventy-seven adduction sites were subdivided into all adducted proteins including 2 N-terminal adduction sites, 3 Cys adduction sites, 4 His adduction sites, 29 Arg adduction sites, and 39 Lys adduction sites. Site occupancy analyses showed that approximately 80.597% of the proteins carried a single RosA-modified site, 14.925% retained two sites, 1.492% contained three sites, and the rest 2.985% had four or more sites. Large-scale triple TOF MS/MS mapping of RosA-adducted sites reveals the adduction regulations of quinone and different amino acids as well as the adduction ratios, which clarify phenol-protein adductions and pave the way for industrial meat processing and preservation.

  10. The Abundant Class III Chitinase Homolog in Young Developing Banana Fruits Behaves as a Transient Vegetative Storage Protein and Most Probably Serves as an Important Supply of Amino Acids for the Synthesis of Ripening-Associated Proteins1

    PubMed Central

    Peumans, Willy J.; Proost, Paul; Swennen, Rony L.; Van Damme, Els J.M.

    2002-01-01

    Analyses of the protein content and composition revealed dramatic changes in gene expression during in situ banana (Musa spp.) fruit formation/ripening. The total banana protein content rapidly increases during the first 60 to 70 d, but remains constant for the rest of fruit formation/ripening. During the phase of rapid protein accumulation, an inactive homolog of class III chitinases accounts for up to 40% (w/v) of the total protein. Concomitant with the arrest of net protein accumulation, the chitinase-related protein (CRP) progressively decreases and several novel proteins appear in the electropherograms. Hence, CRP behaves as a fruit-specific vegetative storage protein that accumulates during early fruit formation and serves as a source of amino acids for the synthesis of ripening-associated proteins. Analyses of individual proteins revealed that a thaumatin-like protein, a β-1,3-glucanase, a class I chitinase, and a mannose-binding lectin are the most abundant ripening-associated proteins. Because during the ripening of prematurely harvested bananas, similar changes take place as in the in situ ripening bananas, CRP present in immature fruits is a sufficient source of amino acids for a quasi-normal synthesis of ripening-associated proteins. However, it is evident that the conversion of CRP in ripening-associated proteins takes place at an accelerated rate, especially when climacteric ripening is induced by ethylene. The present report also includes a discussion of the accumulation of the major banana allergens and the identification of suitable promoters for the production of vaccines in transgenic bananas. PMID:12376669

  11. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana.

    PubMed

    Huang, Tengfang; Jander, Georg

    2017-10-01

    Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of

  12. FAX1, a Novel Membrane Protein Mediating Plastid Fatty Acid Export

    PubMed Central

    Li, Nannan; Gügel, Irene Luise; Giavalisco, Patrick; Zeisler, Viktoria; Schreiber, Lukas; Soll, Jürgen; Philippar, Katrin

    2015-01-01

    Fatty acid synthesis in plants occurs in plastids, and thus, export for subsequent acyl editing and lipid assembly in the cytosol and endoplasmatic reticulum is required. Yet, the transport mechanism for plastid fatty acids still remains enigmatic. We isolated FAX1 (fatty acid export 1), a novel protein, which inserts into the chloroplast inner envelope by α-helical membrane-spanning domains. Detailed phenotypic and ultrastructural analyses of FAX1 mutants in Arabidopsis thaliana showed that FAX1 function is crucial for biomass production, male fertility and synthesis of fatty acid-derived compounds such as lipids, ketone waxes, or pollen cell wall material. Determination of lipid, fatty acid, and wax contents by mass spectrometry revealed that endoplasmatic reticulum (ER)-derived lipids decreased when FAX1 was missing, but levels of several plastid-produced species increased. FAX1 over-expressing lines showed the opposite behavior, including a pronounced increase of triacyglycerol oils in flowers and leaves. Furthermore, the cuticular layer of stems from fax1 knockout lines was specifically reduced in C29 ketone wax compounds. Differential gene expression in FAX1 mutants as determined by DNA microarray analysis confirmed phenotypes and metabolic imbalances. Since in yeast FAX1 could complement for fatty acid transport, we concluded that FAX1 mediates fatty acid export from plastids. In vertebrates, FAX1 relatives are structurally related, mitochondrial membrane proteins of so-far unknown function. Therefore, this protein family might represent a powerful tool not only to increase lipid/biofuel production in plants but also to explore novel transport systems involved in vertebrate fatty acid and lipid metabolism. PMID:25646734

  13. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    DOEpatents

    Xie, Jianming [San Diego, CA; Wang, Lei [San Diego, CA; Wu, Ning [Boston, MA; Schultz, Peter G [La Jolla, CA

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  14. Serum protein adsorption and platelet adhesion on aspartic-acid-immobilized polysulfone membranes.

    PubMed

    Higuchi, Akon; Hashiba, Hirokazu; Hayashi, Rika; Yoon, Boo Ok; Sakurai, Masaru; Hara, Mariko

    2004-01-01

    Polysulfone (PSf) membranes that covalently conjugated with aspartic acid (ASP-PSf) were prepared and analyzed for hemocompatability. Compared to PSf or other types of surface-modified PSf membranes, the ASP-PSf membranes had a reduced ability to adsorb protein from either a plasma solution or a mixed solution of albumin, globulin and fibrinogen. This appears to be due to the creation of a hydrophilic surface by the aspartic acid zwitterion immobilized on the ASP-PSf membranes. Furthermore, the analyses of membrane protein adsorption showed that a mixed protein solution recapitulates the cooperative adsorption of proteins that occurs in plasma. We also found that the number of adhering platelets was the lowest on the ASP-PSf membranes and, in general, that platelet adhesion decreased in parallel with fibrinogen adsorption. In summary, aspartic acid immobilized on the ASP-PSf membranes, which have zwitterions with a net zero charge, effectively contributes to the hydrophilic and hemocompatible sites on the surface of the hydrophobic PSf membranes.

  15. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Maximum anhydrous citric acid permissible for... Sinensis (l) Osbeck) § 51.1178 Maximum anhydrous citric acid permissible for corresponding total soluble solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content in...

  16. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Maximum anhydrous citric acid permissible for... Sinensis (l) Osbeck) § 51.1178 Maximum anhydrous citric acid permissible for corresponding total soluble solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content in...

  17. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals.

    PubMed

    Liu, Fobang; Lai, Senchao; Tong, Haijie; Lakey, Pascale S J; Shiraiwa, Manabu; Weller, Michael G; Pöschl, Ulrich; Kampf, Christopher J

    2017-03-01

    Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.

  18. Recovering folic acid and its identification on mixed pastes of tempeh and fermented vegetable as natural source of folic acid

    NASA Astrophysics Data System (ADS)

    Susilowati, Agustine; Aspiyanto, Maryati, Yati; Melanie, Hakiki; Lotulung, Puspa D.

    2017-11-01

    Mixing between tempeh and both fermented broccoli (Brassica oleracea) and spinach (Amaranthus sp.) were conducted to achieve mixed pastes as natural source of folic acid for 'smart food'. Mixing was performed on soy, mung bean, and kidney bean tempehs with both fermented broccoli and spinach at ratio of 1 : 1, 1 : 2, 1 : 3, 1 : 4, 1 : 5 and 1 : 6, respectively. Result of experimental activity showed that pulverizing ratio becoming more and more low will decrease total solids, soluble protein and N-Amino, but fluctuates on folic acid in mixed paste. Based on folic acid equivalent and the best fermented vegetable efficiency, optimization condition was reached in paste with combination between mung beans tempeh and fermented spinach at ratio of 1 : 2 by increasing folic acid concentration of 83.18 % (0.83 times), dissolved protein 432.29 % (4.32 times) and N-amino 55.36 % (0,55 times). While, it is occurred a lowering total solids 22.16 % (0.22 times) when compared with folic acid, soluble protein, N-amino, and total solids on initial materials of mung bean tempeh. In this condition, it is achieved folic acid monomer with molecular weight (MW) 148.14 Da. with relative intensity 100 %, and glutamic acid monomer 443.50 Da.with relative intensity 0.07 %.

  19. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family*

    PubMed Central

    Broussard, Tyler C.; Miller, Darcie J.; Jackson, Pamela; Nourse, Amanda; White, Stephen W.; Rock, Charles O.

    2016-01-01

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. PMID:26774272

  20. Effect of Tranexamic Acid on Blood Loss and Blood Transfusion Reduction after Total Knee Arthroplasty

    PubMed Central

    Seol, Young-Jun; Seon, Jong-Keun; Lee, Seung-Hun; Jin, Cheng; Prakash, Jatin; Park, Yong-Jin

    2016-01-01

    Purpose Total knee arthroplasty (TKA) accompanies the risk of bleeding and need for transfusion. There are several methods to reduce postoperative blood loss and blood transfusion. One such method is using tranexamic acid during TKA. The purpose of this study was to confirm whether tranexamic acid reduces postoperative blood loss and blood transfusion after TKA. Materials and Methods A total of 100 TKA patients were included in the study. The tranexamic acid group consisted of 50 patients who received an intravenous injection of tranexamic acid. The control included 50 patients who received a placebo injection. The amounts of drainage, postoperative hemoglobin, and transfusion were compared between the groups. Results The mean amount of drainage was lower in the tranexamic acid group (580.6±355.0 mL) than the control group (886.0±375.5 mL). There was a reduction in the transfusion rate in the tranexamic acid group (48%) compared with the control group (64%). The hemoglobin level was higher in the tranexamic acid group than in the control group at 24 hours postoperatively. The mean units of transfusion were smaller in the tranexamic acid group (0.76 units) than in the control group (1.28 units). Conclusions Our data suggest that intravenous injection of tranexamic acid decreases the total blood loss and transfusion after TKA. PMID:27595071

  1. Enteral obeticholic acid promotes intestinal growth in total parenteral nutrition fed neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Intestinal atrophy is an adverse outcome associated with prolonged total parenteral nutrition (PN) partly due to disruption of normal enterohepatic circulation of bile acids. Previously we showed that enteral treatment with chenodeoxycholic acid (CDCA), a dual agonist for the nuclear receptor, farne...

  2. Designing medical foods for inherited metabolic disorders: why intact protein is superior to amino acids.

    PubMed

    Ney, Denise Marie; Etzel, Mark Raymond

    2017-04-01

    Phenylketonuria and tyrosinemia are inherited metabolic disorders characterized by high blood levels of phenylalanine (Phe) or tyrosine (Tyr), due to mutations in genes affecting Phe and Tyr metabolism, respectively. The primary management is a lifelong diet restricted in protein from natural foods in combination with medical foods comprised mixtures of synthetic amino acids. Compliance is often poor after childhood leading to neuropsychological sequela. Glycomacropeptide, an intact 64 amino acid glycophosphopeptide isolated from cheese whey, provides a new paradigm for the management of phenylketonuria and tyrosinemia because glycomacropeptide contains no Phe and Tyr in its pure form, and is also a prebiotic. Medical foods made from glycomacropeptide have been used successfully for the management of phenylketonuria and tyrosinemia. Preclinical and clinical studies demonstrate that intact protein from glycomacropeptide provides a more acceptable and physiologic source of defined protein compared to amino acids in medical foods. For example, harmful gut bacteria were reduced, beneficial short chain fatty acids increased, renal workload decreased, protein utilization increased, and bone fragility decreased using intact protein versus amino acids. Advances in biotechnology will propel the transition from synthetic amino acids to intact proteins for the management of inherited metabolic disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.

    PubMed

    Wei, Qing; La, David; Kihara, Daisuke

    2017-01-01

    Prediction of protein-protein interaction sites in a protein structure provides important information for elucidating the mechanism of protein function and can also be useful in guiding a modeling or design procedures of protein complex structures. Since prediction methods essentially assess the propensity of amino acids that are likely to be part of a protein docking interface, they can help in designing protein-protein interactions. Here, we introduce BindML and BindML+ protein-protein interaction sites prediction methods. BindML predicts protein-protein interaction sites by identifying mutation patterns found in known protein-protein complexes using phylogenetic substitution models. BindML+ is an extension of BindML for distinguishing permanent and transient types of protein-protein interaction sites. We developed an interactive web-server that provides a convenient interface to assist in structural visualization of protein-protein interactions site predictions. The input data for the web-server are a tertiary structure of interest. BindML and BindML+ are available at http://kiharalab.org/bindml/ and http://kiharalab.org/bindml/plus/ .

  4. Free fatty acid particles in protein formulations, part 1: microspectroscopic identification.

    PubMed

    Cao, Xiaolin; Fesinmeyer, R Matthew; Pierini, Christopher J; Siska, Christine C; Litowski, Jennifer R; Brych, Stephen; Wen, Zai-Qing; Kleemann, Gerd R

    2015-02-01

    We report, for the first time, the identification of fatty acid particles in formulations containing the surfactant polysorbate 20. These fatty acid particles were observed in multiple mAb formulations during their expected shelf life under recommended storage conditions. The fatty acid particles were granular or sand-like in morphology and were several microns in size. They could be identified by distinct IR bands, with additional confirmation from energy-dispersive X-ray spectroscopy analysis. The particles were readily distinguishable from protein particles by these methods. In addition, particles containing a mixture of protein and fatty acids were also identified, suggesting that the particulation pathways for the two particle types may not be distinct. The techniques and observations described will be useful for the correct identification of proteinaceous versus nonproteinaceous particles in pharmaceutical products. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. White clover fractions as protein source for monogastrics: dry matter digestibility and protein digestibility-corrected amino acid scores.

    PubMed

    Stødkilde, Lene; Damborg, Vinni K; Jørgensen, Henry; Laerke, Helle N; Jensen, Søren K

    2018-05-01

    The present study aimed to evaluate the use of white clover as an alternative protein source for monogastrics. White clover plant and leaves were processed using a screw-press resulting in a solid pulp and a juice from which protein was acid-precipitated. The chemical composition of all fractions was determined and digestibility of dry matter (DM) and protein was assessed in an experiment with growing rats. Protein concentrates were produced with crude protein (CP) contents of 451 g kg -1 and 530 g kg -1 DM for white clover plant and leaves, respectively, and a pulp with CP contents of 313 and 374 g kg -1 DM from plant and leaves, respectively. The amino acid composition ranged from 4.72 to 6.49 g per 16 g of nitrogen (N) for lysine, 1.82-2.6 g per 16 g N for methionine and cysteine, and 3.66-5.24 g per 16 g N for threonine. True faecal digestibility of protein varied from 0.81 to 0.88, whereas DM digestibility was in the range 0.72-0.80. Methionine and cysteine were found to be limiting in all fractions, regardless of the reference group used. A high digestibility of white clover protein was found irrespective of the physical fractionation. Together with a well-balanced amino acid composition, this makes white clover a promising protein source for monogastrics. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Maximum anhydrous citric acid permissible for... Common Sweet Oranges (citrus Sinensis (l) Osbeck) § 51.1178 Maximum anhydrous citric acid permissible for... following Table II together with the minimum ratio of total soluble solids to anhydrous citric acid: Table...

  7. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Maximum anhydrous citric acid permissible for... Common Sweet Oranges (citrus Sinensis (l) Osbeck) § 51.1178 Maximum anhydrous citric acid permissible for... following Table II together with the minimum ratio of total soluble solids to anhydrous citric acid: Table...

  8. Oral Tranexamic Acid Reduces Transfusions in Total Knee Arthroplasty.

    PubMed

    Perreault, Roger E; Fournier, Christine A; Mattingly, David A; Junghans, Richard P; Talmo, Carl T

    2017-10-01

    Tranexamic acid (TXA) reduces intraoperative blood loss and transfusions in patients undergoing total knee arthroplasty. Although numerous studies demonstrate the efficacy of intravenous and topical TXA in these patients, few demonstrate the effectiveness and appropriate dosing recommendations of oral formulations. A retrospective cohort study was performed to evaluate differences in transfusion requirements in patients undergoing primary unilateral total knee arthroplasty with either no TXA (n = 866), a single-dose of oral TXA (n = 157), or both preoperative and postoperative oral TXA (n = 1049). Secondary outcomes included postoperative hemoglobin drop, total units transfused, length of stay, drain output, and cell salvage volume. Transfusion rates decreased from 15.4% in the no-oral tranexamic acid (OTA) group to 9.6% in the single-dose OTA group (P < .001) and 7% in the 2-dose group (P < .001), with no difference in transfusion rates between the single- and 2-dose groups (P = .390). In addition, postoperative hemoglobin drop was reduced from 4.2 g/dL in the no-OTA group to 3.5 g/dL in the single-dose group (P < .01) and to 3.4 g/dL in the 2-dose group (P < .01), without a difference between the single- and 2-dose groups (P = .233). OTA reduces transfusions, with greater ease of administration and improved cost-effectiveness relative to other forms of delivery. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Total particle, sulfate, and acidic aerosol emissions from kerosene space heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leaderer, B.P.; Boone, P.M.; Hammond, S.K.

    1990-06-01

    Chamber studies were conducted on four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine particles ({<=} 2.5-{mu}m diameter), sulfate, and acidic aerosol indoors. Fine particle concentrations in homes in which the heaters are used may be increased in excess of 20 {mu}g/m{sup 3} over background levels. Sulfate and acidic aerosol levels in such homes could exceed average and peak outdoor concentrations. Maltuned heaters could produce exceptionally high levels of all air contaminantsmore » measured.« less

  10. Total particle, sulfate, and acidic aerosol emissions from kerosene space heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leaderer, B.P.; Boone, P.M.; Hammond, S.K.

    1990-01-01

    The article discusses chamber studies of four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine particles (= or < 2.5 micrometer diameter), sulfate, and acidic aerosol indoors. Fine particle concentrations in houses in which the heaters are used may be increased in excess of 20 micrograms/m3 over background levels. Sulfate and acidic aerosol levels in such houses could exceed average and peak outdoor concentrations. Maltuned heaters could produce exceptionally high levels ofmore » all air contaminants measured.« less

  11. Brain–blood amino acid correlates following protein restriction in murine maple syrup urine disease

    PubMed Central

    2014-01-01

    Background Conventional therapy for patients with maple syrup urine disease (MSUD) entails restriction of protein intake to maintain acceptable levels of the branched chain amino acid, leucine (LEU), monitored in blood. However, no data exists on the correlation between brain and blood LEU with protein restriction, and whether correction in blood is reflected in brain. Methods To address this question, we fed intermediate MSUD mice diets of 19% (standard) and 6% protein, with collection of sera (SE), striata (STR), cerebellum (CE) and cortex (CTX) for quantitative amino acid analyses. Results LEU and valine (VAL) levels in all brain regions improved on average 28% when shifting from 19% to 6% protein, whereas the same improvements in SE were on average 60%. Isoleucine (ILE) in brain regions did not improve, while the SE level improved 24% with low-protein consumption. Blood-branched chain amino acids (LEU, ILE, and VAL in sera (SE)) were 362-434 μM, consistent with human values considered within control. Nonetheless, numerous amino acids in brain regions remained abnormal despite protein restriction, including glutamine (GLN), aspartate (ASP), glutamate (GLU), gamma-aminobutyric acid (GABA), asparagine (ASN), citrulline (CIT) and serine (SER). To assess the specificity of these anomalies, we piloted preliminary studies in hyperphenylalaninemic mice, modeling another large neutral aminoacidopathy. Employing an identical dietary regimen, we found remarkably consistent abnormalities in GLN, ASP, and GLU. Conclusions Our results suggest that blood amino acid analysis may be a poor surrogate for assessing the outcomes of protein restriction in the large neutral amino acidopathies, and further indicate that chronic neurotransmitter disruptions (GLU, GABA, ASP) may contribute to long-term neurocognitive dysfunction in these disorders. PMID:24886632

  12. Brain-blood amino acid correlates following protein restriction in murine maple syrup urine disease.

    PubMed

    Vogel, Kara R; Arning, Erland; Wasek, Brandi L; McPherson, Sterling; Bottiglieri, Teodoro; Gibson, K Michael

    2014-05-08

    Conventional therapy for patients with maple syrup urine disease (MSUD) entails restriction of protein intake to maintain acceptable levels of the branched chain amino acid, leucine (LEU), monitored in blood. However, no data exists on the correlation between brain and blood LEU with protein restriction, and whether correction in blood is reflected in brain. To address this question, we fed intermediate MSUD mice diets of 19% (standard) and 6% protein, with collection of sera (SE), striata (STR), cerebellum (CE) and cortex (CTX) for quantitative amino acid analyses. LEU and valine (VAL) levels in all brain regions improved on average 28% when shifting from 19% to 6% protein, whereas the same improvements in SE were on average 60%. Isoleucine (ILE) in brain regions did not improve, while the SE level improved 24% with low-protein consumption. Blood-branched chain amino acids (LEU, ILE, and VAL in sera (SE)) were 362-434 μM, consistent with human values considered within control. Nonetheless, numerous amino acids in brain regions remained abnormal despite protein restriction, including glutamine (GLN), aspartate (ASP), glutamate (GLU), gamma-aminobutyric acid (GABA), asparagine (ASN), citrulline (CIT) and serine (SER). To assess the specificity of these anomalies, we piloted preliminary studies in hyperphenylalaninemic mice, modeling another large neutral aminoacidopathy. Employing an identical dietary regimen, we found remarkably consistent abnormalities in GLN, ASP, and GLU. Our results suggest that blood amino acid analysis may be a poor surrogate for assessing the outcomes of protein restriction in the large neutral amino acidopathies, and further indicate that chronic neurotransmitter disruptions (GLU, GABA, ASP) may contribute to long-term neurocognitive dysfunction in these disorders.

  13. Decomposition of total solvation energy into core, side-chains and water contributions: Role of cross correlations and protein conformational fluctuations in dynamics of hydration layer

    NASA Astrophysics Data System (ADS)

    Mondal, Sayantan; Mukherjee, Saumyak; Bagchi, Biman

    2017-09-01

    Dynamical coupling between water and amino acid side-chain residues in solvation dynamics is investigated by selecting residues often used as natural probes, namely tryptophan, tyrosine and histidine, located at different positions on protein surface. Such differently placed residues are found to exhibit different timescales of relaxation. The total solvation response measured by the probe is decomposed in terms of its interactions with (i) protein core, (ii) side-chain and (iii) water. Significant anti cross-correlation among these contributions are observed. When the motion of the protein side-chains is quenched, solvation either becomes faster or slower depending on the location of the probe.

  14. Tsetse Salivary Gland Proteins 1 and 2 Are High Affinity Nucleic Acid Binding Proteins with Residual Nuclease Activity

    PubMed Central

    Caljon, Guy; Ridder, Karin De; Stijlemans, Benoît; Coosemans, Marc; Magez, Stefan; De Baetselier, Patrick; Van Den Abbeele, Jan

    2012-01-01

    Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans) saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2) display DNA/RNA non-specific, high affinity nucleic acid binding with KD values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents. PMID:23110062

  15. Conservation of Shannon's redundancy for proteins. [information theory applied to amino acid sequences

    NASA Technical Reports Server (NTRS)

    Gatlin, L. L.

    1974-01-01

    Concepts of information theory are applied to examine various proteins in terms of their redundancy in natural originators such as animals and plants. The Monte Carlo method is used to derive information parameters for random protein sequences. Real protein sequence parameters are compared with the standard parameters of protein sequences having a specific length. The tendency of a chain to contain some amino acids more frequently than others and the tendency of a chain to contain certain amino acid pairs more frequently than other pairs are used as randomness measures of individual protein sequences. Non-periodic proteins are generally found to have random Shannon redundancies except in cases of constraints due to short chain length and genetic codes. Redundant characteristics of highly periodic proteins are discussed. A degree of periodicity parameter is derived.

  16. Properties of whey protein isolates extruded under acidic and alkaline conditions.

    PubMed

    Onwulata, C I; Isobe, S; Tomasula, P M; Cooke, P H

    2006-01-01

    Whey proteins have wide acceptance and use in many products due to their beneficial nutritional properties. To further increase the amount of whey protein isolates (WPI) that may be added to products such as extruded snacks and meats, texturization of WPI is necessary. Texturization changes the folding of globular proteins to improve interaction with other ingredients and create new functional ingredients. In this study, WPI pastes (60% solids) were extruded in a twin-screw extruder at 100 degrees C with 4 pH-adjusted water streams: acidic (pH 2.0 +/- 0.2) and alkaline (pH 12.4 +/- 0.4) streams from 2 N HCl and 2 N NaOH, respectively, and acidic (pH 2.5 +/- 0.2) and alkaline (pH 11.5 +/- 0.4) electrolyzed water streams; these were compared with WPI extruded with deionized water. The effects of water acidity on WPI solubility at pH 7, color, microstructure, Rapid Visco Analyzer pasting properties, and physical structure were determined. Alkaline conditions increased insolubility caused yellowing and increased pasting properties significantly. Acidic conditions increased solubility and decreased WPI pasting properties. Subtle structural changes occurred under acidic conditions, but were more pronounced under alkaline conditions. Overall, alkaline conditions increased denaturation in the extruded WPI resulting in stringy texturized WPI products, which could be used in meat applications.

  17. Consumer perception of astringency in clear acidic whey protein beverages.

    PubMed

    Childs, Jessica L; Drake, MaryAnne

    2010-01-01

    Acidic whey protein beverages are a growing component of the functional food and beverage market. These beverages are also astringent, but astringency is an expected and desirable attribute of many beverages (red wine, tea, coffee) and may not necessarily be a negative attribute of acidic whey protein beverages. The goal of this study was to define the consumer perception of astringency in clear acidic whey protein beverages. Six focus groups (n=49) were held to gain understanding of consumer knowledge of astringency. Consumers were presented with beverages and asked to map them based on astringent mouthfeel and liking. Orthonasal thresholds for whey protein isolate (WPI) in water and flavored model beverages were determined using a 7-series ascending forced choice method. Mouthfeel/basic taste thresholds were determined for WPI in water. Acceptance tests on model beverages were conducted using consumers (n=120) with and without wearing nose clips. Consumers in focus groups were able to identify astringency in beverages. Astringency intensity was not directly related to dislike. The orthonasal threshold for WPI in water was lower (P < 0.05) than the mouthfeel/basic taste threshold of WPI in water. Consumer acceptance of beverages containing WPI was lower (P < 0.05) when consumers were not wearing nose clips compared to acceptance scores of beverages when consumers were wearing nose clips. These results suggest that flavors contributed by WPI in acidic beverages are more objectionable than the astringent mouthfeel and that both flavor and astringency should be the focus of ongoing studies to improve the palatability of these products. © 2010 Institute of Food Technologists®

  18. Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs

    PubMed Central

    Suryawan, Agus; O’Connor, Pamela M. J.; Bush, Jill A.; Nguyen, Hanh V.

    2009-01-01

    The high efficiency of protein deposition during the neonatal period is driven by high rates of protein synthesis, which are maximally stimulated after feeding. In the current study, we examined the individual roles of amino acids and insulin in the regulation of protein synthesis in peripheral and visceral tissues of the neonate by performing pancreatic glucose–amino acid clamps in overnight-fasted 7-day-old pigs. We infused pigs (n = 8–12/group) with insulin at 0, 10, 22, and 110 ng kg−0.66 min−1 to achieve ~0, 2, 6 and 30 μU ml−1 insulin so as to simulate below fasting, fasting, intermediate, and fed insulin levels, respectively. At each insulin dose, amino acids were maintained at the fasting or fed level. In conjunction with the highest insulin dose, amino acids were also allowed to fall below the fasting level. Tissue protein synthesis was measured using a flooding dose of L-[4-3H] phenylalanine. Both insulin and amino acids increased fractional rates of protein synthesis in longissimus dorsi, gastrocnemius, masseter, and diaphragm muscles. Insulin, but not amino acids, increased protein synthesis in the skin. Amino acids, but not insulin, increased protein synthesis in the liver, pancreas, spleen, and lung and tended to increase protein synthesis in the jejunum and kidney. Neither insulin nor amino acids altered protein synthesis in the stomach. The results suggest that the stimulation of protein synthesis by feeding in most tissues of the neonate is regulated by the post-prandial rise in amino acids. However, the feeding-induced stimulation of protein synthesis in skeletal muscles is independently mediated by insulin as well as amino acids. PMID:18683020

  19. Fed levels of amino acids are required for the somatotropin-induced increase in muscle protein synthesis.

    PubMed

    Wilson, Fiona A; Suryawan, Agus; Orellana, Renán A; Nguyen, Hanh V; Jeyapalan, Asumthia S; Gazzaneo, Maria C; Davis, Teresa A

    2008-10-01

    Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 microg x kg(-1) x day(-1)) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P<0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P<0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1.eIF4E complex association, and increased active eIF4E.eIF4G complex formation (P<0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex.

  20. Nucleic acid programmable protein array a just-in-time multiplexed protein expression and purification platform.

    PubMed

    Qiu, Ji; LaBaer, Joshua

    2011-01-01

    Systematic study of proteins requires the availability of thousands of proteins in functional format. However, traditional recombinant protein expression and purification methods have many drawbacks for such study at the proteome level. We have developed an innovative in situ protein expression and capture system, namely NAPPA (nucleic acid programmable protein array), where C-terminal tagged proteins are expressed using an in vitro expression system and efficiently captured/purified by antitag antibodies coprinted at each spot. The NAPPA technology presented in this chapter enable researchers to produce and display fresh proteins just in time in a multiplexed high-throughput fashion and utilize them for various downstream biochemical researches of interest. This platform could revolutionize the field of functional proteomics with it ability to produce thousands of spatially separated proteins in high density with narrow dynamic rand of protein concentrations, reproducibly and functionally. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Comparison of biuret and refractometry methods for the serum total proteins measurement in ruminants.

    PubMed

    Katsoulos, Panagiotis D; Athanasiou, Labrini V; Karatzia, Maria A; Giadinis, Nektarios; Karatzias, Harilaos; Boscos, Constantin; Polizopoulou, Zoe S

    2017-12-01

    Determination of serum total protein concentration is commonly performed by the biuret method. Refractometric measurement is a faster and less expensive alternative but its accuracy has not been determined in ruminants. The purpose of the study was to compare the serum total protein concentrations in cattle, sheep, and goats measured by the biuret method with those obtained by refractometry. Serum total protein concentration was determined in 120 cattle, 67 sheep, and 58 goat blood samples refractometrically and with the biuret method. The data were analyzed with a paired samples t-test, and Passing and Bablok regression equations and Bland and Altman plots were generated. There was a strong linear relationship between the total protein values determined with the refractometer and the biuret method in cattle, sheep, and goats. The statistical accuracy, which represents a bias correction factor that measures the deviation of the best-fit line from the 45° line through the origin, was 90.63% for cattle, 93.05% for sheep, and 91.76% for goats. The mean protein values determined with the refractometer were significantly lower than those measured with the biuret method in cattle and goats (P < .05) but not in sheep (P > .05). The evaluated refractometer was sufficiently accurate for the determination of serum total proteins in cattle, sheep, and goats, although it cannot be used interchangeably with the biuret method. The RIs should be corrected for negative bias based on the created equations. © 2017 American Society for Veterinary Clinical Pathology.

  2. Dietary Docosahexaenoic Acid Supplementation Enhances Expression of Fatty Acid-Binding Protein 5 at the Blood-Brain Barrier and Brain Docosahexaenoic Acid Levels.

    PubMed

    Pan, Yijun; Morris, Elonie R; Scanlon, Martin J; Marriott, Philip J; Porter, Christopher Jh; Nicolazzo, Joseph A

    2018-03-27

    The cytoplasmic trafficking of docosahexaenoic acid (DHA), a cognitively-beneficial fatty acid, across the blood-brain barrier (BBB) is governed by fatty acid-binding protein 5 (FABP5). Lower levels of brain DHA have been observed in Alzheimer's disease (AD), which is associated with diminished BBB expression of FABP5. Therefore, upregulating FABP5 expression at the BBB may be a novel approach for enhancing BBB transport of DHA in AD. DHA supplementation has been shown to be beneficial in various mouse models of AD, and therefore, the aim of this study was to determine whether DHA has the potential to upregulate the BBB expression of FABP5, thereby enhancing its own uptake into the brain. Treating human brain microvascular brain endothelial (hCMEC/D3) cells with the maximum tolerable concentration of DHA (12.5 μM) for 72 hr resulted in a 1.4-fold increase in FABP5 protein expression. Associated with this was increased expression of fatty acid transport proteins 1 and 4. To study the impact of dietary DHA supplementation, 6-8 week old C57BL/6 mice were fed with a control diet or a DHA-enriched diet for 21 days. Brain microvascular FABP5 protein expression was upregulated 1.7-fold in mice fed the DHA-enriched diet, and this was associated with increased brain DHA levels (1.3-fold). Despite an increase in brain DHA levels, reduced BBB transport of 14 C-DHA was observed over a 1 min perfusion, possibly as a result of competitive binding to FABP5 between dietary DHA and 14 C-DHA. The current study has demonstrated that DHA can increase BBB expression of FABP5, as well as fatty acid transporters, overall increasing brain DHA levels. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Free-Energy-Based Protein Design: Re-Engineering Cellular Retinoic Acid Binding Protein II Assisted by the Moveable-Type Approach.

    PubMed

    Zhong, Haizhen A; Santos, Elizabeth M; Vasileiou, Chrysoula; Zheng, Zheng; Geiger, James H; Borhan, Babak; Merz, Kenneth M

    2018-03-14

    How to fine-tune the binding free energy of a small-molecule to a receptor site by altering the amino acid residue composition is a key question in protein engineering. Indeed, the ultimate solution to this problem, to chemical accuracy (±1 kcal/mol), will result in profound and wide-ranging applications in protein design. Numerous tools have been developed to address this question using knowledge-based models to more computationally intensive molecular dynamics simulations-based free energy calculations, but while some success has been achieved there remains room for improvement in terms of overall accuracy and in the speed of the methodology. Here we report a fast, knowledge-based movable-type (MT)-based approach to estimate the absolute and relative free energy of binding as influenced by mutations in a small-molecule binding site in a protein. We retrospectively validate our approach using mutagenesis data for retinoic acid binding to the Cellular Retinoic Acid Binding Protein II (CRABPII) system and then make prospective predictions that are borne out experimentally. The overall performance of our approach is supported by its success in identifying mutants that show high or even sub-nano-molar binding affinities of retinoic acid to the CRABPII system.

  4. Betaine and arginine supplementation of low protein diets improves plasma lipids but does not affect hepatic fatty acid composition and related gene expression profiling in pigs.

    PubMed

    Madeira, Marta S; Rolo, Eva A; Lopes, Paula A; Ramos, Denis A; Alfaia, Cristina M; Pires, Virgínia Mr; Martins, Susana V; Pinto, Rui Ma; Prates, José Am

    2018-01-01

    The individual and combined effects of betaine and arginine supplemented to reduced protein diets were investigated on plasma metabolites, hepatic fatty acid composition and mRNA levels of lipid-sensitive factors in commercial pigs. Betaine has previously been shown to reduce carcass fat deposition and arginine improves meat quality of finishing pigs. Forty male crossbred pigs were randomly assigned to one of five diets (n = 8): 160 g kg -1 of crude protein (NPD), 130 g kg -1 of crude protein (RPD), RPD with 3.3 g kg -1 of betaine, RPD with 15 g kg -1 of arginine, and RPD with 3.3 g kg -1 of betaine and 15 g kg -1 of arginine. The restriction of dietary protein increased total lipids (P < 0.001), total cholesterol (P < 0.001), high-density lipoprotein-cholesterol (P < 0.001) and low-density lipoprotein cholesterol (P < 0.001). Betaine and arginine, individually or combined, reduced the majority of plasma lipids (P < 0.05) without affecting total fatty acids in the liver and the overall gene expression pattern. These findings suggest a positive effect of betaine and arginine, singly or combined, by reversing plasma lipids increase promoted by dietary protein restriction. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Noncoded amino acids in protein engineering: Structure-activity relationship studies of hirudin-thrombin interaction.

    PubMed

    De Filippis, Vincenzo; Acquasaliente, Laura; Pontarollo, Giulia; Peterle, Daniele

    2018-01-01

    The advent of recombinant DNA technology allowed to site-specifically insert, delete, or mutate almost any amino acid in a given protein, significantly improving our knowledge of protein structure, stability, and function. Nevertheless, a quantitative description of the physical and chemical basis that makes a polypeptide chain to efficiently fold into a stable and functionally active conformation is still elusive. This mainly originates from the fact that nature combined, in a yet unknown manner, different properties (i.e., hydrophobicity, conformational propensity, polarizability, and hydrogen bonding capability) into the 20 standard natural amino acids, thus making difficult, if not impossible, to univocally relate the change in protein stability or function to the alteration of physicochemical properties caused by amino acid exchange(s). In this view, incorporation of noncoded amino acids with tailored side chains, allowing to finely tune the structure at a protein site, would facilitate to dissect the effects of a given mutation in terms of one or a few physicochemical properties, thus much expanding the scope of physical organic chemistry in the study of proteins. In this review, relevant applications from our laboratory will be presented on the use of noncoded amino acids in structure-activity relationships studies of hirudin binding to thrombin. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  6. Nucleic acids encoding human trithorax protein

    DOEpatents

    Evans, Glen A.; Djabali, Malek; Selleri, Licia; Parry, Pauline

    2001-01-01

    In accordance with the present invention, there is provided an isolated peptide having the characteristics of human trithorax protein (as well as DNA encoding same, antisense DNA derived therefrom and antagonists therefor). The invention peptide is characterized by having a DNA binding domain comprising multiple zinc fingers and at least 40% amino acid identity with respect to the DNA binding domain of Drosophila trithorax protein and at least 70% conserved sequence with respect to the DNA binding domain of Drosophila trithorax protein, and wherein said peptide is encoded by a gene located at chromosome 11 of the human genome at q23. Also provided are methods for the treatment of subject(s) suffering from immunodeficiency, developmental abnormality, inherited disease, or cancer by administering to said subject a therapeutically effective amount of one of the above-described agents (i.e., peptide, antagonist therefor, DNA encoding said peptide or antisense DNA derived therefrom). Also provided is a method for the diagnosis, in a subject, of immunodeficiency, developmental abnormality, inherited disease, or cancer associated with disruption of chromosome 11 at q23.

  7. Human mRNA polyadenylate binding protein: evolutionary conservation of a nucleic acid binding motif.

    PubMed Central

    Grange, T; de Sa, C M; Oddos, J; Pictet, R

    1987-01-01

    We have isolated a full length cDNA (cDNA) coding for the human poly(A) binding protein. The cDNA derived 73 kd basic translation product has the same Mr, isoelectric point and peptidic map as the poly(A) binding protein. DNA sequence analysis reveals a 70,244 dalton protein. The N terminal part, highly homologous to the yeast poly(A) binding protein, is sufficient for poly(A) binding activity. This domain consists of a four-fold repeated unit of approximately 80 amino acids present in other nucleic acid binding proteins. In the C terminal part there is, as in the yeast protein, a sequence of approximately 150 amino acids, rich in proline, alanine and glutamine which together account for 48% of the residues. A 2,9 kb mRNA corresponding to this cDNA has been detected in several vertebrate cell types and in Drosophila melanogaster at every developmental stage including oogenesis. Images PMID:2885805

  8. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens.

    PubMed

    Yotsui, Izumi; Serada, Satoshi; Naka, Tetsuji; Saruhashi, Masashi; Taji, Teruaki; Hayashi, Takahisa; Quatrano, Ralph S; Sakata, Yoichi

    2016-03-18

    Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation, it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for desiccation

  9. Biochemical Changes in Terminal Root Galls Caused by an Ectoparasitic Nematode, Longidorus africanus: Amino Acids.

    PubMed

    Epstein, E; Cohn, E

    1971-10-01

    The amino acids of terminal root galls caused by Longidorus africanus on bur marigold (Bidens tripartita L.) and grapevine (Vitis vinifera L.) were studied. The galled roots of bur marigold contained 73% more cell-wall protein and 184% more free amino acids. The main changes among the free amino acids of the galled tissue were a large increase (1900%) in proline and a decrease in aspartic acid (56%) compared with the respective check tissue. Hydroxyproline decreased in the wall protein fraction from 5.6% in the healthy tissue to 3.6% in the infected tissue.Percent of hydroxyproline in total amino acids of the wall protein fraction of grapevine roots decreased from 0.7% in the healthy tissue to 0.3% in the galled tissue, and total proteins of this fraction decreased from 9.5 mg to 4.5 rag, respectively. Total protein in the protoplasmic fraction also decreased from 3.0 mg in healthy to 1.0 mg in infected roots. No change was noticed in total proteins in the free amino acids fraction but free proline decreased 40% in the infected roots.The relationship of these differences to the specific reactions of the hosts to nematode feeding is discussed.

  10. Total protein, albumin and low-molecular-weight protein excretion in HIV-positive patients.

    PubMed

    Campbell, Lucy J; Dew, Tracy; Salota, Rashim; Cheserem, Emily; Hamzah, Lisa; Ibrahim, Fowzia; Sarafidis, Pantelis A; Moniz, Caje F; Hendry, Bruce M; Poulton, Mary; Sherwood, Roy A; Post, Frank A

    2012-08-10

    Chronic kidney disease is common in HIV positive patients and renal tubular dysfunction has been reported in those receiving combination antiretroviral therapy (cART). Tenofovir (TFV) in particular has been linked to severe renal tubular disease as well as proximal tubular dysfunction. Markedly elevated urinary concentrations of retinal-binding protein (RBP) have been reported in patients with severe renal tubular disease, and low-molecular-weight proteins (LMWP) such as RBP may be useful in clinical practice to assess renal tubular function in patients receiving TFV. We analysed 3 LMWP as well as protein and albumin in the urine of a sample of HIV positive patients. In a cross-sectional fashion, total protein, albumin, RBP, cystatin C, and neutrophil gelatinase-associated lipocalin (NGAL) were quantified in random urine samples of 317 HIV positive outpatients and expressed as the ratio-to-creatinine (RBPCR, CCR and NGALCR). Exposure to cART was categorised as none, cART without TFV, and cART containing TFV and a non-nucleoside reverse-transcriptase-inhibitor (TFV/NNRTI) or TFV and a protease-inhibitor (TFV/PI). Proteinuria was present in 10.4 % and microalbuminuria in 16.7 % of patients. Albumin accounted for approximately 10 % of total urinary protein. RBPCR was within the reference range in 95 % of patients while NGALCR was elevated in 67 % of patients. No overall differences in urine protein, albumin, and LMWP levels were observed among patients stratified by cART exposure, although a greater proportion of patients exposed to TFV/PI had RBPCR >38.8 μg/mmol (343 μg/g) (p = 0.003). In multivariate analyses, black ethnicity (OR 0.43, 95 % CI 0.24, 0.77) and eGFR <75 mL/min/1.73 m2 (OR 3.54, 95 % CI 1.61, 7.80) were independently associated with upper quartile (UQ) RBPCR. RBPCR correlated well to CCR (r2 = 0.71), but not to NGALCR, PCR or ACR. In HIV positive patients, proteinuria was predominantly of tubular origin and microalbuminuria

  11. Identification of a maize nucleic acid-binding protein (NBP) belonging to a family of nuclear-encoded chloroplast proteins.

    PubMed Central

    Cook, W B; Walker, J C

    1992-01-01

    A cDNA encoding a nuclear-encoded chloroplast nucleic acid-binding protein (NBP) has been isolated from maize. Identified as an in vitro DNA-binding activity, NBP belongs to a family of nuclear-encoded chloroplast proteins which share a common domain structure and are thought to be involved in posttranscriptional regulation of chloroplast gene expression. NBP contains an N-terminal chloroplast transit peptide, a highly acidic domain and a pair of ribonucleoprotein consensus sequence domains. NBP is expressed in a light-dependent, organ-specific manner which is consistent with its involvement in chloroplast biogenesis. The relationship of NBP to the other members of this protein family and their possible regulatory functions are discussed. Images PMID:1346929

  12. Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean.

    PubMed

    Kulkarni, Krishnanand P; Patil, Gunvant; Valliyodan, Babu; Vuong, Tri D; Shannon, J Grover; Nguyen, Henry T; Lee, Jeong-Dong

    2018-03-01

    The objective of this study was to determine the genetic relationship between the oleic acid and protein content. The genotypes having high oleic acid and elevated protein (HOEP) content were crossed with five elite lines having normal oleic acid and average protein (NOAP) content. The selected accessions were grown at six environments in three different locations and phenotyped for protein, oil, and fatty acid components. The mean protein content of parents, HOEP, and NOAP lines was 34.6%, 38%, and 34.9%, respectively. The oleic acid concentration of parents, HOEP, and NOAP lines was 21.7%, 80.5%, and 20.8%, respectively. The HOEP plants carried both FAD2-1A (S117N) and FAD2-1B (P137R) mutant alleles contributing to the high oleic acid phenotype. Comparative genome analysis using whole-genome resequencing data identified six genes having single nucleotide polymorphism (SNP) significantly associated with the traits analyzed. A single SNP in the putative gene Glyma.10G275800 was associated with the elevated protein content, and palmitic, oleic, and linoleic acids. The genes from the marker intervals of previously identified QTL did not carry SNPs associated with protein content and fatty acid composition in the lines used in this study, indicating that all the genes except Glyma.10G278000 may be the new genes associated with the respective traits.

  13. Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins.

    PubMed

    Chavali, Sreenivas; Chavali, Pavithra L; Chalancon, Guilhem; de Groot, Natalia Sanchez; Gemayel, Rita; Latysheva, Natasha S; Ing-Simmons, Elizabeth; Verstrepen, Kevin J; Balaji, Santhanam; Babu, M Madan

    2017-09-01

    Proteins with amino acid homorepeats have the potential to be detrimental to cells and are often associated with human diseases. Why, then, are homorepeats prevalent in eukaryotic proteomes? In yeast, homorepeats are enriched in proteins that are essential and pleiotropic and that buffer environmental insults. The presence of homorepeats increases the functional versatility of proteins by mediating protein interactions and facilitating spatial organization in a repeat-dependent manner. During evolution, homorepeats are preferentially retained in proteins with stringent proteostasis, which might minimize repeat-associated detrimental effects such as unregulated phase separation and protein aggregation. Their presence facilitates rapid protein divergence through accumulation of amino acid substitutions, which often affect linear motifs and post-translational-modification sites. These substitutions may result in rewiring protein interaction and signaling networks. Thus, homorepeats are distinct modules that are often retained in stringently regulated proteins. Their presence facilitates rapid exploration of the genotype-phenotype landscape of a population, thereby contributing to adaptation and fitness.

  14. The human fatty acid-binding protein family: Evolutionary divergences and functions

    PubMed Central

    2011-01-01

    Fatty acid-binding proteins (FABPs) are members of the intracellular lipid-binding protein (iLBP) family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20) fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied. PMID:21504868

  15. Guidelines for the Use of Protein Domains in Acidic Phospholipid Imaging.

    PubMed

    Platre, Matthieu Pierre; Jaillais, Yvon

    2016-01-01

    Acidic phospholipids are minor membrane lipids but critically important for signaling events. The main acidic phospholipids are phosphatidylinositol phosphates (PIPs also known as phosphoinositides), phosphatidylserine (PS), and phosphatidic acid (PA). Acidic phospholipids are precursors of second messengers of key signaling cascades or are second messengers themselves. They regulate the localization and activation of many proteins, and are involved in virtually all membrane trafficking events. As such, it is crucial to understand the subcellular localization and dynamics of each of these lipids within the cell. Over the years, several techniques have emerged in either fixed or live cells to analyze the subcellular localization and dynamics of acidic phospholipids. In this chapter, we review one of them: the use of genetically encoded biosensors that are based on the expression of specific lipid binding domains (LBDs) fused to fluorescent proteins. We discuss how to design such sensors, including the criteria for selecting the lipid binding domains of interest and to validate them. We also emphasize the care that must be taken during data analysis as well as the main limitations and advantages of this approach.

  16. Nuclear translocation of proteins and the effect of phosphatidic acid.

    PubMed

    Yao, Hongyan; Wang, Geliang; Wang, Xuemin

    2014-01-01

    Transport of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors called importins, typically dimmers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complexes (NPCs). However, how proteins without canonical NLS move into the nucleus is not well understood. Recent results indicate that phospholipids, such as phosphatidic acid, play important roles in the intracellular translocation of proteins between the nucleus and cytoplasm.

  17. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise–Induced Muscle Protein Anabolism123

    PubMed Central

    Rasmussen, Blake B

    2016-01-01

    The goal of this critical review is to comprehensively assess the evidence for the molecular, physiologic, and phenotypic skeletal muscle responses to resistance exercise (RE) combined with the nutritional intervention of protein and/or amino acid (AA) ingestion in young adults. We gathered the literature regarding the translational response in human skeletal muscle to acute exposure to RE and protein/AA supplements and the literature describing the phenotypic skeletal muscle adaptation to RE and nutritional interventions. Supplementation of protein/AAs with RE exhibited clear protein dose–dependent effects on translational regulation (protein synthesis) through mammalian target of rapamycin complex 1 (mTORC1) signaling, which was most apparent through increases in p70 ribosomal protein S6 kinase 1 (S6K1) phosphorylation, compared with postexercise recovery in the fasted or carbohydrate-fed state. These acute findings were critically tested via long-term exposure to RE training (RET) and protein/AA supplementation, and it was determined that a diminishing protein/AA supplement effect occurs over a prolonged exposure stimulus after exercise training. Furthermore, we found that protein/AA supplements, combined with RET, produced a positive, albeit minor, effect on the promotion of lean mass growth (when assessed in >20 participants/treatment); a negligible effect on muscle mass; and a negligible to no additional effect on strength. A potential concern we discovered was that the majority of the exercise training studies were underpowered in their ability to discern effects of protein/AA supplementation. Regardless, even when using optimal methodology and large sample sizes, it is clear that the effect size for protein/AA supplementation is low and likely limited to a subset of individuals because the individual variability is high. With regard to nutritional intakes, total protein intake per day, rather than protein timing or quality, appears to be more of a factor

  18. Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences.

    PubMed

    Tan, Yen Hock; Huang, He; Kihara, Daisuke

    2006-08-15

    Aligning distantly related protein sequences is a long-standing problem in bioinformatics, and a key for successful protein structure prediction. Its importance is increasing recently in the context of structural genomics projects because more and more experimentally solved structures are available as templates for protein structure modeling. Toward this end, recent structure prediction methods employ profile-profile alignments, and various ways of aligning two profiles have been developed. More fundamentally, a better amino acid similarity matrix can improve a profile itself; thereby resulting in more accurate profile-profile alignments. Here we have developed novel amino acid similarity matrices from knowledge-based amino acid contact potentials. Contact potentials are used because the contact propensity to the other amino acids would be one of the most conserved features of each position of a protein structure. The derived amino acid similarity matrices are tested on benchmark alignments at three different levels, namely, the family, the superfamily, and the fold level. Compared to BLOSUM45 and the other existing matrices, the contact potential-based matrices perform comparably in the family level alignments, but clearly outperform in the fold level alignments. The contact potential-based matrices perform even better when suboptimal alignments are considered. Comparing the matrices themselves with each other revealed that the contact potential-based matrices are very different from BLOSUM45 and the other matrices, indicating that they are located in a different basin in the amino acid similarity matrix space.

  19. The fat and protein fractions of freshwater clam ( Corbicula fluminea) extract reduce serum cholesterol and enhance bile acid biosynthesis and sterol excretion in hypercholesterolaemic rats fed a high-cholesterol diet.

    PubMed

    Chijimatsu, Takeshi; Umeki, Miki; Okuda, Yuji; Yamada, Koji; Oda, Hiroaki; Mochizuki, Satoshi

    2011-02-01

    We investigated whether the fat and protein fractions of freshwater clam (Corbicula fluminea) extract (FCE) could ameliorate hypercholesterolaemia in rats fed a high-cholesterol diet. We also explored the mechanism and the components that exert the hypocholesterolaemic effect of FCE. The doses of the fat and protein fractions were equivalent to those in 30 % FCE. The fat and protein fractions of FCE, two major components of FCE, significantly reduced the serum and hepatic cholesterol levels. The fat fraction more strongly reduced serum cholesterol levels than the same level of total FCE. The excretion of faecal neutral sterols increased in rats fed the total the FCE and the fat fraction of FCE. On the other hand, faecal bile acid levels were greater in rats fed the total FCE and the fat and protein fractions of FCE than in control animals. The hepatic gene expression of ATP-binding cassette transporter G5 and cholesterol 7α-hydroxylase was up-regulated by the administration of the total FCE and both the fat and protein fractions of FCE. These results showed that the fat and protein fractions of FCE had hypocholesterolaemic properties, and that these effects were greater with the fat fraction than with the protein fraction. The present study indicates that FCE exerts its hypocholesterolaemic effects through at least two different mechanisms, including enhanced excretion of neutral sterols and up-regulated biosynthesis of bile acids.

  20. Acidic and basic solutions dissolve protein plugs made of lithostathine complicating choledochal cyst/pancreaticobiliary maljunction.

    PubMed

    Kaneko, Kenitiro; Ono, Yasuyuki; Tainaka, Takahisa; Sumida, Wataru; Ando, Hisami

    2009-07-01

    Symptoms of choledochal cysts are caused by protein plugs made of lithostathine, which block the long common channel and increase pancreaticobiliary ductal pressure. Agents that dissolve protein plugs can provide relief from or prevent symptoms. In the present study, drugs reportedly effective for pancreatic and biliary stones were used in dissolution tests. Protein plugs were obtained from choledochal cysts during surgery in two children (5- and 6-year-old girls). Plugs approximately 2 mm in diameter were immersed in citric acid, tartaric acid, dimethadione, bromhexine, dehydrocholic acid, sodium citrate, hydrochloric acid, and sodium hydroxide solutions under observation with a digital microscope. The pH of each solution was measured using a pH meter. Plugs dissolved in citric acid (5.2 mM; pH 2.64), tartaric acid (6.7 mM; pH 2.51), dimethadione (75 mM; pH 3.70), hydrochloric acid (0.5 mM; pH 3.13), and sodium hydroxide (75 mM; pH 12.75) solutions. Plugs did not dissolve in dimethadione (7.5 mM; pH 4.31), bromhexine (0.1%; pH 4.68), dehydrocholic acid (5%; pH 7.45), and sodium citrate (75 mM; pH 7.23) solutions. Protein plugs in choledochal cysts are dissolved in acidic and basic solutions, which may eliminate longitudinal electrostatic interactions of the lithostathine protofibrils.

  1. Computational mining for hypothetical patterns of amino acid side chains in protein data bank (PDB)

    NASA Astrophysics Data System (ADS)

    Ghani, Nur Syatila Ab; Firdaus-Raih, Mohd

    2018-04-01

    The three-dimensional structure of a protein can provide insights regarding its function. Functional relationship between proteins can be inferred from fold and sequence similarities. In certain cases, sequence or fold comparison fails to conclude homology between proteins with similar mechanism. Since the structure is more conserved than the sequence, a constellation of functional residues can be similarly arranged among proteins of similar mechanism. Local structural similarity searches are able to detect such constellation of amino acids among distinct proteins, which can be useful to annotate proteins of unknown function. Detection of such patterns of amino acids on a large scale can increase the repertoire of important 3D motifs since available known 3D motifs currently, could not compensate the ever-increasing numbers of uncharacterized proteins to be annotated. Here, a computational platform for an automated detection of 3D motifs is described. A fuzzy-pattern searching algorithm derived from IMagine an Amino Acid 3D Arrangement search EnGINE (IMAAAGINE) was implemented to develop an automated method for searching of hypothetical patterns of amino acid side chains in Protein Data Bank (PDB), without the need for prior knowledge on related sequence or structure of pattern of interest. We present an example of the searches, which is the detection of a hypothetical pattern derived from known structural motif of C2H2 structural pattern from zinc fingers. The conservation of particular patterns of amino acid side chains in unrelated proteins is highlighted. This approach can act as a complementary method for available structure- and sequence-based platforms and may contribute in improving functional association between proteins.

  2. Total Acid Value Titration of Hydrotreated Biomass Fast Pyrolysis Oil: Determination of Carboxylic Acids and Phenolics with Multiple End-Point Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, E.; Alleman, T. L.; McCormick, R. L.

    Total acid value titration has long been used to estimate corrosive potential of petroleum crude oil and fuel oil products. The method commonly used for this measurement, ASTM D664, utilizes KOH in isopropanol as the titrant with potentiometric end point determination by pH sensing electrode and Ag/AgCl reference electrode with LiCl electrolyte. A natural application of the D664 method is titration of pyrolysis-derived bio-oil, which is a candidate for refinery upgrading to produce drop in fuels. Determining the total acid value of pyrolysis derived bio-oil has proven challenging and not necessarily amenable to the methodology employed for petroleum products duemore » to the different nature of acids present. We presented an acid value titration for bio-oil products in our previous publication which also utilizes potentiometry using tetrabutylammonium hydroxide in place of KOH as the titrant and tetraethylammonium bromide in place of LiCl as the reference electrolyte to improve the detection of these types of acids. This method was shown to detect numerous end points in samples of bio-oil that were not detected by D664. These end points were attributed to carboxylic acids and phenolics based on the results of HPLC and GC-MS studies. Additional work has led to refinement of the method and it has been established that both carboxylic acids and phenolics can be determined accurately. Use of pH buffer calibration to determine half-neutralization potentials of acids in conjunction with the analysis of model compounds has allowed us to conclude that this titration method is suitable for the determination of total acid value of pyrolysis oil and can be used to differentiate and quantify weak acid species. The measurement of phenolics in bio-oil is subject to a relatively high limit of detection, which may limit the utility of titrimetric methodology for characterizing the acidic potential of pyrolysis oil and products.« less

  3. A Thermoacidophile-Specific Protein Family, DUF3211, Functions as a Fatty Acid Carrier with Novel Binding Mode

    PubMed Central

    Miyakawa, Takuya; Sawano, Yoriko; Miyazono, Ken-ichi; Miyauchi, Yumiko; Hatano, Ken-ichi

    2013-01-01

    STK_08120 is a member of the thermoacidophile-specific DUF3211 protein family from Sulfolobus tokodaii strain 7. Its molecular function remains obscure, and sequence similarities for obtaining functional remarks are not available. In this study, the crystal structure of STK_08120 was determined at 1.79-Å resolution to predict its probable function using structure similarity searches. The structure adopts an α/β structure of a helix-grip fold, which is found in the START domain proteins with cavities for hydrophobic substrates or ligands. The detailed structural features implied that fatty acids are the primary ligand candidates for STK_08120, and binding assays revealed that the protein bound long-chain saturated fatty acids (>C14) and their trans-unsaturated types with an affinity equal to that for major fatty acid binding proteins in mammals and plants. Moreover, the structure of an STK_08120-myristic acid complex revealed a unique binding mode among fatty acid binding proteins. These results suggest that the thermoacidophile-specific protein family DUF3211 functions as a fatty acid carrier with a novel binding mode. PMID:23836863

  4. Amino acid selective unlabeling for sequence specific resonance assignments in proteins

    PubMed Central

    Krishnarjuna, B.; Jaipuria, Garima; Thakur, Anushikha

    2010-01-01

    Sequence specific resonance assignment constitutes an important step towards high-resolution structure determination of proteins by NMR and is aided by selective identification and assignment of amino acid types. The traditional approach to selective labeling yields only the chemical shifts of the particular amino acid being selected and does not help in establishing a link between adjacent residues along the polypeptide chain, which is important for sequential assignments. An alternative approach is the method of amino acid selective ‘unlabeling’ or reverse labeling, which involves selective unlabeling of specific amino acid types against a uniformly 13C/15N labeled background. Based on this method, we present a novel approach for sequential assignments in proteins. The method involves a new NMR experiment named, {12COi–15Ni+1}-filtered HSQC, which aids in linking the 1HN/15N resonances of the selectively unlabeled residue, i, and its C-terminal neighbor, i + 1, in HN-detected double and triple resonance spectra. This leads to the assignment of a tri-peptide segment from the knowledge of the amino acid types of residues: i − 1, i and i + 1, thereby speeding up the sequential assignment process. The method has the advantage of being relatively inexpensive, applicable to 2H labeled protein and can be coupled with cell-free synthesis and/or automated assignment approaches. A detailed survey involving unlabeling of different amino acid types individually or in pairs reveals that the proposed approach is also robust to misincorporation of 14N at undesired sites. Taken together, this study represents the first application of selective unlabeling for sequence specific resonance assignments and opens up new avenues to using this methodology in protein structural studies. Electronic supplementary material The online version of this article (doi:10.1007/s10858-010-9459-z) contains supplementary material, which is available to authorized users. PMID:21153044

  5. Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mTOR-dependent translation initiation.

    PubMed

    Orellana, Renán A; Jeyapalan, Asumthia; Escobar, Jeffery; Frank, Jason W; Nguyen, Hanh V; Suryawan, Agus; Davis, Teresa A

    2007-11-01

    In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study, we determined the effect of amino acids on protein synthesis in skeletal muscle and other tissues in septic neonates. Overnight-fasted neonatal pigs were infused with endotoxin (LPS, 0 and 10 microg.kg(-1).h(-1)), whereas glucose and insulin were maintained at fasting levels; amino acids were clamped at fasting or fed levels. In the presence of fasting insulin and amino acids, LPS reduced protein synthesis in longissimus dorsi (LD) and gastrocnemius muscles and increased protein synthesis in the diaphragm, but had no effect in masseter and heart muscles. Increasing amino acids to fed levels accelerated muscle protein synthesis in LD, gastrocnemius, masseter, and diaphragm. LPS stimulated protein synthesis in liver, lung, spleen, pancreas, and kidney in fasted animals. Raising amino acids to fed levels increased protein synthesis in liver of controls, but not LPS-treated animals. The increase in muscle protein synthesis in response to amino acids was associated with increased mTOR, 4E-BP1, and S6K1 phosphorylation and eIF4G-eIF4E association in control and LPS-infused animals. These findings suggest that amino acids stimulate skeletal muscle protein synthesis during acute endotoxemia via mTOR-dependent ribosomal assembly despite reduced basal protein synthesis rates in neonatal pigs. However, provision of amino acids does not further enhance the LPS-induced increase in liver protein synthesis.

  6. Mechanism of Nucleic Acid Chaperone Function of Retroviral Nuceleocapsid (NC) Proteins

    NASA Astrophysics Data System (ADS)

    Rouzina, Ioulia; Vo, My-Nuong; Stewart, Kristen; Musier-Forsyth, Karin; Cruceanu, Margareta; Williams, Mark

    2006-03-01

    Recent studies have highlighted two main activities of HIV-1 NC protein contributing to its function as a universal nucleic acid chaperone. Firstly, it is the ability of NC to weakly destabilize all nucleic acid,(NA), secondary structures, thus resolving the kinetic traps for NA refolding, while leaving the annealed state stable. Secondly, it is the ability of NC to aggregate NA, facilitating the nucleation step of bi-molecular annealing by increasing the local NA concentration. In this work we use single molecule DNA stretching and gel-based annealing assays to characterize these two chaperone activities of NC by using various HIV-1 NC mutants and several other retroviral NC proteins. Our results suggest that two NC functions are associated with its zinc fingers and cationic residues, respectively. NC proteins from other retroviruses have similar activities, although expressed to a different degree. Thus, NA aggregating ability improves, and NA duplex destabilizing activity decreases in the sequence: MLV NC, HIV NC, RSV NC. In contrast, HTLV NC protein works very differently from other NC proteins, and similarly to typical single stranded NA binding proteins. These features of retroviral NCs co-evolved with the structure of their genomes.

  7. Dietary fish protein hydrolysates containing bioactive motifs affect serum and adipose tissue fatty acid compositions, serum lipids, postprandial glucose regulation and growth in obese Zucker fa/fa rats.

    PubMed

    Drotningsvik, Aslaug; Mjøs, Svein A; Pampanin, Daniela M; Slizyte, Rasa; Carvajal, Ana; Remman, Tore; Høgøy, Ingmar; Gudbrandsen, Oddrun A

    2016-10-01

    The world's fisheries and aquaculture industries produce vast amounts of protein-containing by-products that can be enzymatically hydrolysed to smaller peptides and possibly be used as additives to functional foods and nutraceuticals targeted for patients with obesity-related metabolic disorders. To investigate the effects of fish protein hydrolysates on markers of metabolic disorders, obese Zucker fa/fa rats consumed diets with 75 % of protein from casein/whey (CAS) and 25 % from herring (HER) or salmon (SAL) protein hydrolysate from rest raw material, or 100 % protein from CAS for 4 weeks. The fatty acid compositions were similar in the experimental diets, and none of them contained any long-chain n-3 PUFA. Ratios of lysine:arginine and methionine:glycine were lower in HER and SAL diets when compared with CAS, and taurine was detected only in fish protein hydrolysate diets. Motifs with reported hypocholesterolemic or antidiabetic activities were identified in both fish protein hydrolysates. Rats fed HER diet had lower serum HDL-cholesterol and LDL-cholesterol, and higher serum TAG, MUFA and n-3:n-6 PUFA ratio compared with CAS-fed rats. SAL rats gained more weight and had better postprandial glucose regulation compared with CAS rats. Serum lipids and fatty acids were only marginally affected by SAL, but adipose tissue contained less total SFA and more total n-3 PUFA when compared with CAS. To conclude, diets containing hydrolysed rest raw material from herring or salmon proteins may affect growth, lipid metabolism, postprandial glucose regulation and fatty acid composition in serum and adipose tissue in obese Zucker rats.

  8. Protein Losses and Urea Nitrogen Underestimate Total Nitrogen Losses in Peritoneal Dialysis and Hemodialysis Patients.

    PubMed

    Salame, Clara; Eaton, Simon; Grimble, George; Davenport, Andrew

    2018-04-28

    Muscle wasting is associated with increased mortality and is commonly reported in dialysis patients. Hemodialysis (HD) and peritoneal dialysis (PD) treatments lead to protein losses in effluent dialysate. We wished to determine whether changes in current dialysis practice had increased therapy-associated nitrogen losses. Cross-sectional cohort study. Measurement of total protein, urea and total nitrogen in effluent dialysate from 24-hour collections from PD patients, and during haemodiafiltration (HDF) and haemodialysis (HD) sessions. One hundred eight adult dialysis patients. Peritoneal dialysis, high-flux haemodialysis and haemodiafiltration. Total nitrogen and protein losses. Dialysate protein losses were measured in 68 PD and 40 HD patients. Sessional losses of urea (13.9 [9.2-21.1] vs. 4.8 [2.8-7.8] g); protein (8.6 [7.2-11.1] vs. 6.7 [3.9-11.1] g); and nitrogen (11.5 [8.7-17.7] vs. 4.9 [2.6-9.5] g) were all greater for HD than PD, P < .001. Protein-derived nitrogen was 71.9 (54.4-110.4) g for HD and 30.8 (16.1-59.6) g for PD. Weekly protein losses were lower with HD 25.9 (21.5-33.4) versus 46.6 (27-77.6) g/week, but nitrogen losses were similar. We found no difference between high-flux HD and HDF: urea (13.5 [8.8-20.6] vs. 15.3 [10.5-25.5] g); protein (8.8 [7.3-12.2] vs. 7.6 [5.8-9.0] g); and total nitrogen (11.6 [8.3-17.3] vs. 10.8 [8.9-22.5] g). Urea nitrogen (UN) only accounted for 45.1 (38.3-51.0)% PD and 63.0 (55.3-62.4)% HD of total nitrogen losses. Although sessional losses of protein and UN were greater with HD, weekly losses were similar between modalities. We found no differences between HD and HDF. However, total nitrogen losses were much greater than the combination of protein and UN, suggesting greater nutritional losses with dialysis than previously reported. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  9. Incorporation of Amino Acids with Long-Chain Terminal Olefins into Proteins.

    PubMed

    Exner, Matthias P; Köhling, Sebastian; Rivollier, Julie; Gosling, Sandrine; Srivastava, Puneet; Palyancheva, Zheni I; Herdewijn, Piet; Heck, Marie-Pierre; Rademann, Jörg; Budisa, Nediljko

    2016-02-29

    The increasing need for site-specific protein decorations that mimic natural posttranslational modifications requires access to a variety of noncanonical amino acids with moieties enabling bioorthogonal conjugation chemistry. Here we present the incorporation of long-chain olefinic amino acids into model proteins with rational variants of pyrrolysyl-tRNA synthetase (PylRS). Nε-heptenoyl lysine was incorporated for the first time using the known promiscuous variant PylRS(Y306A/Y384F), and Nε-pentenoyl lysine was incorporated in significant yields with the novel variant PylRS(C348A/Y384F). This is the only example of rational modification at position C348 to enlarge the enzyme's binding pocket. Furthermore, we demonstrate the feasibility of our chosen amino acids in the thiol-ene conjugation reaction with a thiolated polysaccharide.

  10. A model for protocellular coordination of nucleic acid and protein syntheses

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1981-01-01

    The proteinoid model for the coordination of protein synthesis with nucleic acid coding within the evolving protocell is discussed. Evidence for the self-ordering of amino acid chains, which would enhance the catalytic activity of a lysine-rich proteinoid, is presented, along with that for the preferential formation of microparticles, particularly proteinoid microparticles, in various solutions. Demonstrations of the catalytic activity of lysine-rich proteinoids in the synthesis of peptide and internucleotide bonds are pointed out. The view of evolution as a two stage sequence in which the geological synthesis of peptides evolved to the protocellular synthesis of peptides and oligonucleotides is discussed, and contrasted with the alternative view, in accord with the central dogma, that nucleic acids arose first then governed the production of proteins and protocells.

  11. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    PubMed

    McCormack, M; Brecher, P

    1987-06-15

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes.

  12. Major proteins of yam bean tubers.

    PubMed

    Gomes, A V; Sirju-Charran, G; Barnes, J A

    1997-09-01

    The tuberous roots of the Mexican yam bean, jicama, (Pachyrhizus erosus L. Urban) contained large quantities of two acidic glycoproteins which accounted for more than 70% of the total soluble proteins (about 3 g per 100 g of tuber on a dry weight basis). The two major proteins, tentatively named YBG1 and YBG2, had apparent M(r)s of 28,000 and 26,000, respectively, by SDS-PAGE. A third protein named YBP22 which accounted for 2-5% of the total soluble proteins had an M(r) of 22,000. YBG1 and YBG2 exhibited great similarity on the basis of their amino acid composition and had identical N-terminal amino acid sequences. The first 23 amino acids in the N-terminal region of YBG2 were DDLPDYVDWRDYGAVTRIKNQGQ which showed strong homology with the papain class of cysteine proteases. YBG1 and YBG2 were found to bind to a Concanavalin A-Sepharose column and were also stained positively by a sensitive glycoprotein stain. Both glycoproteins exhibited cysteine proteolytic activity. In contrast, YBP22 showed sequence homology with several known protease inhibitors, and a polyclonal antibody raised against this protein cross reacted with soybean trypsin inhibitor.

  13. Identify Secretory Protein of Malaria Parasite with Modified Quadratic Discriminant Algorithm and Amino Acid Composition.

    PubMed

    Feng, Yong-E

    2016-06-01

    Malaria parasite secretes various proteins in infected red blood cell for its growth and survival. Thus identification of these secretory proteins is important for developing vaccine or drug against malaria. In this study, the modified method of quadratic discriminant analysis is presented for predicting the secretory proteins. Firstly, 20 amino acids are divided into five types according to the physical and chemical characteristics of amino acids. Then, we used five types of amino acids compositions as inputs of the modified quadratic discriminant algorithm. Finally, the best prediction performance is obtained by using 20 amino acid compositions, the sensitivity of 96 %, the specificity of 92 % with 0.88 of Mathew's correlation coefficient in fivefold cross-validation test. The results are also compared with those of existing prediction methods. The compared results shown our method are prominent in the prediction of secretory proteins.

  14. TOTAL PARTICLE, SULFATE, AND ACIDIC AEROSOL EMISSIONS FROM KEROSENE SPACE HEATERS

    EPA Science Inventory

    Chamber studies were conducted on four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine part...

  15. Perlwapin, an Abalone Nacre Protein with Three Four-Disulfide Core (Whey Acidic Protein) Domains, Inhibits the Growth of Calcium Carbonate Crystals

    PubMed Central

    Treccani, Laura; Mann, Karlheinz; Heinemann, Fabian; Fritz, Monika

    2006-01-01

    We have isolated a new protein from the nacreous layer of the shell of the sea snail Haliotis laevigata (abalone). Amino acid sequence analysis showed the protein to consist of 134 amino acids and to contain three sequence repeats of ∼40 amino acids which were very similar to the well-known whey acidic protein domains of other proteins. The new protein was therefore named perlwapin. In addition to the major sequence, we identified several minor variants. Atomic force microscopy was used to explore the interaction of perlwapin with calcite crystals. Monomolecular layers of calcite crystals dissolve very slowly in deionized water and recrystallize in supersaturated calcium carbonate solution. When perlwapin was dissolved in the supersaturated calcium carbonate solution, growth of the crystal was inhibited immediately. Perlwapin molecules bound tightly to distinct step edges, preventing the crystal layers from growing. Using lower concentrations of perlwapin in a saturated calcium carbonate solution, we could distinguish native, active perlwapin molecules from denaturated ones. These observations showed that perlwapin can act as a growth inhibitor for calcium carbonate crystals in saturated calcium carbonate solution. The function of perlwapin in nacre growth may be to inhibit the growth of certain crystallographic planes in the mineral phase of the polymer/mineral composite nacre. PMID:16861275

  16. Nuclear translocation of proteins and the effect of phosphatidic acid

    PubMed Central

    Yao, Hongyan; Wang, Geliang; Wang, Xuemin

    2014-01-01

    Transport of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors called importins, typically dimmers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complexes (NPCs). However, how proteins without canonical NLS move into the nucleus is not well understood. Recent results indicate that phospholipids, such as phosphatidic acid, play important roles in the intracellular translocation of proteins between the nucleus and cytoplasm. PMID:25482760

  17. Identification of liver protein targets modified by tienilic acid metabolites using a two-dimensional Western blot-mass spectrometry approach

    NASA Astrophysics Data System (ADS)

    Methogo, Ruth Menque; Dansette, Patrick M.; Klarskov, Klaus

    2007-12-01

    A combined approach based on two-dimensional electrophoresis-immuno-blotting and nanoliquid chromatography coupled on-line with electrospray ionization mass spectrometry (nLC-MS/MS) was used to identify proteins modified by a reactive intermediate of tienilic acid (TA). Liver homogenates from rats exposed to TA were fractionated using ultra centrifugation; four fractions were obtained and subjected to 2D electrophoresis. Following transfer to PVDF membranes, modified proteins were visualized after India ink staining, using an anti-serum raised against TA and ECL detection. Immuno-reactive spots were localized on the PVDF membrane by superposition of the ECL image, protein spots of interest were excised, digested on the membrane with trypsin followed by nLC-MS/MS analysis and protein identification. A total of 15 proteins were identified as likely targets modified by a TA reactive metabolite. These include selenium binding protein 2, senescence marker protein SMP-30, adenosine kinase, Acy1 protein, adenosylhomocysteinase, capping protein (actin filament), protein disulfide isomerase, fumarylacetoacetase, arginase chain A, ketohexokinase, proteasome endopeptidase complex, triosephosphate isomerase, superoxide dismutase, dna-type molecular chaperone hsc73 and malate dehydrogenase.

  18. [Animal experiment studies on the changes in lipid and protein metabolism in L-carnitine-supplemented total parenteral nutrition].

    PubMed

    Böhles, H; Segerer, H; Fekl, W; Stehr, K

    1983-02-01

    The influence of i.v. L-carnitine on parameters of lipid- and nitrogen metabolism was studied during total parenteral nutrition of mini pigs (x: 4077; n = 9). The infusion protocol was divided into isocaloric and isonitrogenous 48-hour-periods. Amino acids (3 g/kg/day) were administered throughout all three periods. 140 Cal/kg/day were given as non-protein calories, consisting only of glucose during period 1. During periods 2 and 3 an amount of glucose calorically equivalent to 4 g fat/kg/day was substituted with a lipid emulsion. In period 3, L-carnitine (1,5 mg/kg/day) was added. During the entire regime key parameters of fat and nitrogen metabolism were determined. During all three periods indirect calorimetry was performed and the respiratory quotient calculated. The results demonstrate a more effective lipolysis and oxydation of fatty acids during L-carnitine supplementation. This results in an increased energy gain from exogenously administered fat and a distinct improvement of nitrogen balance.

  19. Fed levels of amino acids are required for the somatotropin-induced increase in muscle protein synthesis

    PubMed Central

    Wilson, Fiona A.; Suryawan, Agus; Orellana, Renán A.; Nguyen, Hanh V.; Jeyapalan, Asumthia S.; Gazzaneo, Maria C.; Davis, Teresa A.

    2008-01-01

    Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 μg·kg−1·day−1) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P < 0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P < 0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1·eIF4E complex association, and increased active eIF4E·eIF4G complex formation (P < 0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex. PMID:18682537

  20. Salicylic acid improves root antioxidant defense system and total antioxidant capacities of flax subjected to cadmium.

    PubMed

    Belkadhi, Aïcha; De Haro, Antonio; Soengas, Pilar; Obregon, Sara; Cartea, Maria Elena; Djebali, Wahbi; Chaïbi, Wided

    2013-07-01

    Cadmium (Cd) disrupts the normal growth and development of plants, depending on their tolerance to this toxic element. The present study was focused on the impacts of exogenous salicylic acid (SA) on the response and regulation of the antioxidant defense system and membrane lipids to 16-day-old flax plantlets under Cd stress. Exposure of flax to high Cd concentrations led to strong inhibition of root growth and enhanced lipid peroxides, membrane permeability, protein oxidation, and hydrogen peroxide (H2O2) production to varying degrees. Concomitantly, activities of the antioxidant enzymes catalase (CAT, EC 1.11.1.6), guaïcol peroxydase (GPX, EC 1.11.1.7), ascorbate peroxydase (APX, EC 1.11.1.11), and superoxide dismutase (SOD, EC 1.15.1.1), and the total antioxidant capacities (2,2'-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and ferric reducing antioxidant power (FRAP)) were significantly altered by Cd. In contrast, exogenous SA greatly reduced the toxic effects of Cd on the root growth, antioxidant system, and membrane lipid content. The Cd-treated plantlets pre-soaked with SA exhibited less lipid and protein oxidation and membrane alteration, as well as a high level of total antioxidant capacities and increased activities of antioxidant enzymes except of CAT. These results may suggest that SA plays an important role in triggering the root antioxidant system, thereby preventing membrane damage as well as the denaturation of its components.

  1. Acid-degradable lactobionic acid-modified soy protein nanogels crosslinked by ortho ester linkage for efficient antitumor in vivo.

    PubMed

    Cheng, Xu; Qin, Jiejie; Wang, Xin; Zha, Qian; Yao, Weijing; Fu, Shengxiang; Tang, Rupei

    2018-05-03

    It remains a crucial challenge to achieve efficient cellular uptake and intracellular drug release in tumor cells for the nanoscale drug delivery systems. Herein, acid-degradable nanogels were prepared by cross-linking methacrylated soy protein with an acid-labile ortho ester cross-linker (NG1), and then modified with lactobionic acid (LA) to give tumor-targeted nanogels (NG2). Both NG1 and NG2 displayed excellent stability in neutral environment, while showed pH-triggered degradation behaviors under mildly acidic conditions resulting from the breakage of ortho ester bonds. Doxorubicin (DOX) was successfully loaded into nanogels, which exhibited an accelerated release at low pH. In vitro cell studies demonstrated that LA-modified nanogels could effectively improve cellular internalization, show higher cytotoxicity and apoptosis toward asialoglycoprotein receptor (ASGPR) over-expressed HepG2 cells. In vivo antitumor experimentproved that LA modification could significantly enhance the tumor-targeting ability of nanogels and increase DOX concentration in tumor site, leading to better therapeutic efficacy. Histological analysis further demonstrated that soy protein-based nanogels did not cause any damage to normal organs. Overall, these pH-sensitive and tumor-targeting soy protein-based nanogels can be potential drug carriers for efficient tumor treatment. Copyright © 2018. Published by Elsevier B.V.

  2. Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy.

    PubMed

    Camborde, Laurent; Jauneau, Alain; Brière, Christian; Deslandes, Laurent; Dumas, Bernard; Gaulin, Elodie

    2017-09-01

    DNA-binding proteins (DNA-BPs) and RNA-binding proteins (RNA-BPs) have critical roles in living cells in all kingdoms of life. Various experimental approaches exist for the study of nucleic acid-protein interactions in vitro and in vivo, but the detection of such interactions at the subcellular level remains challenging. Here we describe how to detect nucleic acid-protein interactions in plant leaves by using a fluorescence resonance energy transfer (FRET) approach coupled to fluorescence lifetime imaging microscopy (FLIM). Proteins of interest (POI) are tagged with a GFP and transiently expressed in plant cells to serve as donor fluorophore. After sample fixation and cell wall permeabilization, leaves are treated with Sytox Orange, a nucleic acid dye that can function as a FRET acceptor. Upon close association of the GFP-tagged POI with Sytox-Orange-stained nucleic acids, a substantial decrease of the GFP lifetime due to FRET between the donor and the acceptor can be monitored. Treatment with RNase before FRET-FLIM measurements allows determination of whether the POI associates with DNA and/or RNA. A step-by-step protocol is provided for sample preparation, data acquisition and analysis. We describe how to calibrate the equipment and include a tutorial explaining the use of the FLIM software. To illustrate our approach, we provide experimental procedures to detect the interaction between plant DNA and two proteins (the AeCRN13 effector from the oomycete Aphanomyces euteiches and the AtWRKY22 defensive transcription factor from Arabidopsis). This protocol allows the detection of protein-nucleic acid interactions in plant cells and can be completed in <2 d.

  3. Characterization of the amino acid contribution to the folding degree of proteins.

    PubMed

    Estrada, Ernesto

    2004-03-01

    The folding degree index (Estrada, Bioinformatics 2002;18:697-704) is extended to account for the contribution of amino acids to folding. First, the mathematical formalism for extending the folding degree index is presented. Then, the amino acid contributions to folding degree of several proteins are used to analyze its relation to secondary structure. The possibilities of using these contributions in helping or checking the assignation of secondary structure to amino acids are also introduced. The influence of external factors to the amino acids contribution to folding degree is studied through the temperature effect on ribonuclease A. Finally, the analysis of 3D protein similarity through the use of amino acid contributions to folding degree is studied by selecting a series of lysozymes. These results are compared to that obtained by sequence alignment (2D similarity) and 3D superposition of the structures, showing the uniqueness of the current approach. Copyright 2004 Wiley-Liss, Inc.

  4. Facile total synthesis and antimicrobial activity of the marine fatty acids (Z)-2-methoxy-5-hexadecenoic acid and (Z)-2-methoxy-6-hexadecenoic acid.

    PubMed

    Carballeira, N M; Emiliano, A; Hernández-Alonso, N; González, F A

    1998-12-01

    The total synthesis of the naturally occurring (Z)-2-methoxy-5-hexadecenoic acid and (Z)-2-methoxy-6-hexadecenoic acid was accomplished using as a key step Mukaiyama's trimethylsilyl cyanide addition to 4- and 5-pentadecenal, respectively. These syntheses further confirm the structures of the natural marine fatty acids and corroborate their cis double-bond stereochemistry. The title compounds were antimicrobial against the Gram-positive bacteria Staphylococcus aureus (MIC 0.35 micromol/mL) and Streptococcus faecalis (MIC 0.35 micromol/mL).

  5. Fast computational methods for predicting protein structure from primary amino acid sequence

    DOEpatents

    Agarwal, Pratul Kumar [Knoxville, TN

    2011-07-19

    The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible intermediates in the protein folding pathway. The present invention has important applications to the design of novel drugs as well as protein engineering. The present invention predicts the three-dimensional structure of a protein independent of size of the protein, overcoming a significant limitation in the prior art.

  6. First total syntheses of (Z)-15-methyl-10-hexadecenoic acid and the (Z)-13-methyl-8-tetradecenoic acid

    PubMed Central

    Carballeira, Néstor M.; Montano, Nashbly; Padilla, Luis F.

    2006-01-01

    The first total syntheses for the (Z)-15-methyl-10-hexadecenoic acid and the (Z)-13-methyl-8-tetradecenoic acid were accomplished in seven steps and in 31–32% overall yields. The (trimethylsilyl)acetylene was the key reagent in both syntheses. It is proposed that the best synthetic strategy towards monounsaturated iso methyl-branched fatty acids with double bonds close to the ω end of the acyl chain is first acetylide coupling of (trimethylsilyl)acetylene to a long-chain bifunctional bromoalkane followed by a second acetylide coupling to a short-chain iso bromoalkane, since higher yields are thus obtained. Spectral data is also presented for the first time for these two unusual fatty acids with potential as biomarkers and as topoisomerase I inhibitors. PMID:17125759

  7. First total syntheses of (Z)-15-methyl-10-hexadecenoic acid and the (Z)-13-methyl-8-tetradecenoic acid.

    PubMed

    Carballeira, Néstor M; Montano, Nashbly; Padilla, Luis F

    2007-01-01

    The first total syntheses for the (Z)-15-methyl-10-hexadecenoic acid and the (Z)-13-methyl-8-tetradecenoic acid were accomplished in seven steps and in 31-32% overall yields. The (trimethylsilyl)acetylene was the key reagent in both syntheses. It is proposed that the best synthetic strategy towards monounsaturated iso methyl-branched fatty acids with double bonds close to the omega end of the acyl chain is first acetylide coupling of (trimethylsilyl)acetylene to a long-chain bifunctional bromoalkane followed by a second acetylide coupling to a short-chain iso bromoalkane, since higher yields are thus obtained. Spectral data is also presented for the first time for these two unusual fatty acids with potential as biomarkers and as topoisomerase I inhibitors.

  8. Ursolic Acid Inhibits Na+/K+-ATPase Activity and Prevents TNF-α-Induced Gene Expression by Blocking Amino Acid Transport and Cellular Protein Synthesis

    PubMed Central

    Yokomichi, Tomonobu; Morimoto, Kyoko; Oshima, Nana; Yamada, Yuriko; Fu, Liwei; Taketani, Shigeru; Ando, Masayoshi; Kataoka, Takao

    2011-01-01

    Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, induce the expression of a wide variety of genes, including intercellular adhesion molecule-1 (ICAM-1). Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) was identified to inhibit the cell-surface ICAM-1 expression induced by pro-inflammatory cytokines in human lung carcinoma A549 cells. Ursolic acid was found to inhibit the TNF-α-induced ICAM-1 protein expression almost completely, whereas the TNF-α-induced ICAM-1 mRNA expression and NF-κB signaling pathway were decreased only partially by ursolic acid. In line with these findings, ursolic acid prevented cellular protein synthesis as well as amino acid uptake, but did not obviously affect nucleoside uptake and the subsequent DNA/RNA syntheses. This inhibitory profile of ursolic acid was similar to that of the Na+/K+-ATPase inhibitor, ouabain, but not the translation inhibitor, cycloheximide. Consistent with this notion, ursolic acid was found to inhibit the catalytic activity of Na+/K+-ATPase. Thus, our present study reveals a novel molecular mechanism in which ursolic acid inhibits Na+/K+-ATPase activity and prevents the TNF-α-induced gene expression by blocking amino acid transport and cellular protein synthesis. PMID:24970122

  9. Effect of Maillard browning reaction on protein utilization and plasma amino acid response by rainbow trout (Salmo gairdneri).

    PubMed

    Plakas, S M; Lee, T C; Wolke, R E; Meade, T L

    1985-12-01

    The effect of the Maillard browning reaction in the diet of rainbow trout (Salmo gairdneri) on growth and amino acid availability was investigated. Chemical and enzymatic hydrolysis methods were applied for the detection of the losses of amino acids in a model protein browning system. Arginine and lysine exhibited the greatest losses in the mixture of fish protein isolate and glucose stored for 40 d at 37 degrees C. The apparent digestibility and absorption of individual amino acids, particularly lysine, was lower in trout fed browned protein than in those fed the control protein. Plasma lysine levels were significantly depressed, while the plasma levels of glucose and most other amino acids were elevated in relation to the loss in nutritive value of dietary protein after browning. The early Maillard reaction derivative of lysine, epsilon-deoxy-fructosyl-lysine, was recovered from browned protein (by using the in vitro enzymatic hydrolysis procedure) and from the plasma of trout fed browned protein. Analysis of plasma free amino acids provided an indication of lysine bioavailability and identified lysine as the first-limiting amino acid in the diets containing browned protein.

  10. Spaceflight effects on adult rat muscle protein, nucleic acids, and amino acids

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1986-01-01

    Exposure to conditions of weightlessness has been associated with decrements in muscle mass and strength. The present studies were undertaken to determine muscle responses at the cellular level. Male Sprague-Dawley rats (360-410 g) were exposed to 7 days of weightlessness during the Spacelab-3 shuttle flight (May 1985). Animals were killed 12 h postflight, and soleus (S), gastrocnemius (G), and extensor digitorum longus (EDL) muscles were excised. Muscle protein, RNA, and DNA were extracted and quantified. Differential muscle atrophy was accompanied by a significant (P less than 0.05) reduction in total protein only in S muscles. There were no significant changes in protein concentration (mg/g) in the muscles examined. In S muscles from flight animals, sarcoplasmic protein accounted for a significantly greater proportion of total protein that in ground controls (37.5 vs. 32.5%). Tissue concentrations (nmol/g) of asparagine-aspartate, glutamine-glutamate, glycine, histidine, and lysine were significantly reduced (from 17 to 63%) in S muscles from flight animals, but only glutamine-glutamate levels were decreased in the G and EDL. Muscle DNA content (microgram) was unchanged in the tissues examined, but S muscle DNA concentration (micrograms/mg) increased 27%. RNA content (micrograms) was significantly (P less than 0.025) reduced in S (-28%) and G(-22%) muscles following spaceflight. These results identify specific alterations in rat skeletal muscle during short term (7-day) exposure to weightlessness and compare favorably with observations previously obtained from ground-based suspension simulations.

  11. Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle

    PubMed Central

    Zhang, Youjun; Beard, Katherine F. M.; Swart, Corné; Bergmann, Susan; Krahnert, Ina; Nikoloski, Zoran; Graf, Alexander; Ratcliffe, R. George; Sweetlove, Lee J.; Fernie, Alisdair R.; Obata, Toshihiro

    2017-01-01

    Protein complexes of sequential metabolic enzymes, often termed metabolons, may permit direct channelling of metabolites between the enzymes, providing increased control over metabolic pathway fluxes. Experimental evidence supporting their existence in vivo remains fragmentary. In the present study, we test binary interactions of the proteins constituting the plant tricarboxylic acid (TCA) cycle. We integrate (semi-)quantitative results from affinity purification-mass spectrometry, split-luciferase and yeast-two-hybrid assays to generate a single reliability score for assessing protein–protein interactions. By this approach, we identify 158 interactions including those between catalytic subunits of sequential enzymes and between subunits of enzymes mediating non-adjacent reactions. We reveal channelling of citrate and fumarate in isolated potato mitochondria by isotope dilution experiments. These results provide evidence for a functional TCA cycle metabolon in plants, which we discuss in the context of contemporary understanding of this pathway in other kingdoms. PMID:28508886

  12. Amino acid alphabet reduction preserves fold information contained in contact interactions in proteins.

    PubMed

    Solis, Armando D

    2015-12-01

    To reduce complexity, understand generalized rules of protein folding, and facilitate de novo protein design, the 20-letter amino acid alphabet is commonly reduced to a smaller alphabet by clustering amino acids based on some measure of similarity. In this work, we seek the optimal alphabet that preserves as much of the structural information found in long-range (contact) interactions among amino acids in natively-folded proteins. We employ the Information Maximization Device, based on information theory, to partition the amino acids into well-defined clusters. Numbering from 2 to 19 groups, these optimal clusters of amino acids, while generated automatically, embody well-known properties of amino acids such as hydrophobicity/polarity, charge, size, and aromaticity, and are demonstrated to maintain the discriminative power of long-range interactions with minimal loss of mutual information. Our measurements suggest that reduced alphabets (of less than 10) are able to capture virtually all of the information residing in native contacts and may be sufficient for fold recognition, as demonstrated by extensive threading tests. In an expansive survey of the literature, we observe that alphabets derived from various approaches-including those derived from physicochemical intuition, local structure considerations, and sequence alignments of remote homologs-fare consistently well in preserving contact interaction information, highlighting a convergence in the various factors thought to be relevant to the folding code. Moreover, we find that alphabets commonly used in experimental protein design are nearly optimal and are largely coherent with observations that have arisen in this work. © 2015 Wiley Periodicals, Inc.

  13. FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases.

    PubMed

    Gao, Jinpeng; Ajjawi, Imad; Manoli, Arthur; Sawin, Andrew; Xu, Changcheng; Froehlich, John E; Last, Robert L; Benning, Christoph

    2009-12-01

    Polar membrane glycerolipids occur in a mixture of molecular species defined by a polar head group and characteristic acyl groups esterified to a glycerol backbone. A molecular species of phosphatidylglycerol specific to chloroplasts of plants carries a Delta(3-trans) hexadecenoic acid in the sn-2 position of its core glyceryl moiety. The fad4-1 mutant of Arabidopsis thaliana missing this particular phosphatidylglycerol molecular species lacks the necessary fatty acid desaturase, or a component thereof. The overwhelming majority of acyl groups associated with membrane lipids in plants contains double bonds with a cis configuration. However, FAD4 is unusual because it is involved in the formation of a trans double bond introduced close to the carboxyl group of palmitic acid, which is specifically esterified to the sn-2 glyceryl carbon of phosphatidylglycerol. As a first step towards the analysis of this unusual desaturase reaction, the FAD4 gene was identified by mapping of the FAD4 locus and coexpression analysis with known lipid genes. FAD4 encodes a predicted integral membrane protein that appears to be unrelated to classic membrane bound fatty acid desaturases based on overall sequence conservation. However, the FAD4 protein contains two histidine motifs resembling those of metalloproteins such as fatty acid desaturases. FAD4 is targeted to the plastid. Overexpression of the cDNA in transgenic Arabidopsis led to increased accumulation of the Delta(3-trans) hexadecanoyl group in phosphatidylglycerol relative to wild type. Taken together these results are consistent with the hypothesis that FAD4 is the founding member of a novel class of fatty acid desaturases.

  14. Indirect electrochemical detection for total bile acids in human serum.

    PubMed

    Zhang, Xiaoqing; Zhu, Mingsong; Xu, Biao; Cui, Yue; Tian, Gang; Shi, Zhenghu; Ding, Min

    2016-11-15

    Bile acids level in serum is a useful index for screening and diagnosis of hepatobiliary diseases. As bile acids concentration is closely related to the degree of hepatobiliary diseases, detecting it is a vital factor to understand the stage of the diseases. The prevalent determination for bile acids is the enzymatic cycling method which has low sensitivity while reagent-consuming. It is desirable to develop a new method with lower cost and higher sensitivity. An indirect electrochemical detection (IED) for bile acids in human serum was established using the screen printed carbon electrode (SPCE). Since bile acids do not show electrochemical signals, they were converted to 3-ketosteroids by 3-α-hydroxysteroid dehydrogenase (3α-HSD) in the presence of nicotinamide adenine dinucleotide (NAD(+)), which was reduced to NADH. NADH could then be oxidized on the surface of SPCE, generating a signal that was used to calculate the total bile acids (TBA) concentration. A good linear calibration for TBA was obtained at the concentration range from 5.00μM to 400μM in human serum. Both the precisions and recoveries were sufficient to be used in a clinical setting. The TBA concentrations in 35 human serum samples by our IED method didn't show significant difference with the result by enzymatic cycling method, using the paired t-test. Moreover, our IED method is reagent-saving, sensitive and cost-effective. Copyright © 2016. Published by Elsevier B.V.

  15. Protein Analysis of Sapienic Acid-Treated Porphyromonas gingivalis Suggests Differential Regulation of Multiple Metabolic Pathways.

    PubMed

    Fischer, Carol L; Dawson, Deborah V; Blanchette, Derek R; Drake, David R; Wertz, Philip W; Brogden, Kim A

    2016-01-01

    Lipids endogenous to skin and mucosal surfaces exhibit potent antimicrobial activity against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Our previous work demonstrated the antimicrobial activity of the fatty acid sapienic acid (C(16:1Δ6)) against P. gingivalis and found that sapienic acid treatment alters both protein and lipid composition from those in controls. In this study, we further examined whole-cell protein differences between sapienic acid-treated bacteria and untreated controls, and we utilized open-source functional association and annotation programs to explore potential mechanisms for the antimicrobial activity of sapienic acid. Our analyses indicated that sapienic acid treatment induces a unique stress response in P. gingivalis resulting in differential expression of proteins involved in a variety of metabolic pathways. This network of differentially regulated proteins was enriched in protein-protein interactions (P = 2.98 × 10(-8)), including six KEGG pathways (P value ranges, 2.30 × 10(-5) to 0.05) and four Gene Ontology (GO) molecular functions (P value ranges, 0.02 to 0.04), with multiple suggestive enriched relationships in KEGG pathways and GO molecular functions. Upregulated metabolic pathways suggest increases in energy production, lipid metabolism, iron acquisition and processing, and respiration. Combined with a suggested preferential metabolism of serine, which is necessary for fatty acid biosynthesis, these data support our previous findings that the site of sapienic acid antimicrobial activity is likely at the bacterial membrane. P. gingivalis is an important opportunistic pathogen implicated in periodontitis. Affecting nearly 50% of the population, periodontitis is treatable, but the resulting damage is irreversible and eventually progresses to tooth loss. There is a great need for natural products that can be used to treat and/or prevent the overgrowth of periodontal pathogens and

  16. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yotsui, Izumi, E-mail: izumi.yotsui@riken.jp; Serada, Satoshi, E-mail: serada@nibiohn.go.jp; Naka, Tetsuji, E-mail: tnaka@nibiohn.go.jp

    2016-03-18

    Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation,more » it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for

  17. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  18. Effect of Lipoic Acid on Serum Paraoxonase-1 and Paraoxonase-3 Protein Levels and Activities in Diabetic Rats.

    PubMed

    Ozgun, E; Ozgun, G S; Gokmen, S S; Eskıocak, S; Sut, N; Akıncı, M; Goncu, E; Cakır, E

    2016-02-05

    The aim of the present study was to investigate the effect of streptozotocin-induced diabetes mellitus and lipoic acid treatment on serum paraoxonase-1 and paraoxonase-3 protein levels and paraoxonase, arylesterase and lactonase activities.36 rats were equally and randomly divided into 4 groups as control, lipoic acid, diabetes and diabetes+lipoic acid. To induce diabetes, a single dose of streptozotocin (40 mg/kg) was injected intraperitoneally to diabetes and diabetes+lipoic acid groups. Lipoic acid (10 mg/kg/day) was injected intraperitoneally for 14 days to lipoic acid and diabetes+lipoic acid groups. Serum PON1 and PON3 protein levels were measured by western blotting. Serum paraoxonase, arylesterase and lactonase activities were determined by the measuring initial rate of substrate (paraoxon, phenylacetate and dihydrocoumarin) hydrolysis.Streptozotocin-induced diabetes mellitus caused a significant decrease whereas lipoic acid treatment caused a significant increase in serum PON1 and PON3 protein levels and paraoxonase, arylesterase and lactonase activities. The increase percent of serum PON3 protein was higher than that of serum PON1 protein and the increase percent of serum lactonase activity was higher than that of serum paraoxonase and arylesterase activities in diabetes+lipoic acid group.We can report that, like PON1 protein, PON3 protein and actually its lactonase activity may also have a role as an antioxidant in diabetes mellitus and lipoic acid treatment may be useful for the prevention of the atherosclerotic complications of diabetes by increasing serum PON1 and PON3 protein levels and serum enzyme activities. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Estimation of salivary flow rate, pH, buffer capacity, calcium, total protein content and total antioxidant capacity in relation to dental caries severity, age and gender.

    PubMed

    Pandey, Pallavi; Reddy, N Venugopal; Rao, V Arun Prasad; Saxena, Aditya; Chaudhary, C P

    2015-03-01

    The aim of the study was to evaluate salivary flow rate, pH, buffering capacity, calcium, total protein content and total antioxidant capacity in relation to dental caries, age and gender. The study population consisted of 120 healthy children aged 7-15 years that was further divided into two groups: 7-10 years and 11-15 years. In this 60 children with DMFS/dfs = 0 and 60 children with DMFS/dfs ≥5 were included. The subjects were divided into two groups; Group A: Children with DMFS/dfs = 0 (caries-free) Group B: Children with DMFS/dfs ≥5 (caries active). Unstimulated saliva samples were collected from all groups. Flow rates were determined, and samples analyzed for pH, buffer capacity, calcium, total protein and total antioxidant status. Salivary antioxidant activity is measured with spectrophotometer by an adaptation of 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonate) assays. The mean difference of the two groups; caries-free and caries active were proved to be statistically significant (P < 0.05) for salivary calcium, total protein and total antioxidant level for both the sexes in the age group 7-10 years and for the age 11-15 years the mean difference of the two groups were proved to be statistically significant (P < 0.05) for salivary calcium level for both the sexes. Salivary total protein and total antioxidant level were proved to be statistically significant for male children only. In general, total protein and total antioxidants in saliva were increased with caries activity. Calcium content of saliva was found to be more in caries-free group and increased with age.

  20. PrPC has nucleic acid chaperoning properties similar to the nucleocapsid protein of HIV-1.

    PubMed

    Derrington, Edmund; Gabus, Caroline; Leblanc, Pascal; Chnaidermann, Jonas; Grave, Linda; Dormont, Dominique; Swietnicki, Wieslaw; Morillas, Manuel; Marck, Daniel; Nandi, Pradip; Darlix, Jean-Luc

    2002-01-01

    The function of the cellular prion protein (PrPC) remains obscure. Studies suggest that PrPC functions in several processes including signal transduction and Cu2+ metabolism. PrPC has also been established to bind nucleic acids. Therefore we investigated the properties of PrPC as a putative nucleic acid chaperone. Surprisingly, PrPC possesses all the nucleic acid chaperoning properties previously specific to retroviral nucleocapsid proteins. PrPC appears to be a molecular mimic of NCP7, the nucleocapsid protein of HIV-1. Thus PrPC, like NCP7, chaperones the annealing of tRNA(Lys) to the HIV-1 primer binding site, the initial step of retrovirus replication. PrPC also chaperones the two DNA strand transfers required for production of a complete proviral DNA with LTRs. Concerning the functions of NCP7 during budding, PrPC also mimices NCP7 by dimerizing the HIV-1 genomic RNA. These data are unprecedented because, although many cellular proteins have been identified as nucleic acid chaperones, none have the properties of retroviral nucleocapsid proteins.

  1. Label-free proteomic analysis of environmental acidification-influenced Streptococcus pyogenes secretome reveals a novel acid-induced protein histidine triad protein A (HtpA) involved in necrotizing fasciitis.

    PubMed

    Wen, Yao-Tseng; Wang, Jie-Siou; Tsai, Shu-Han; Chuan, Chiang-Ni; Wu, Jiunn-Jong; Liao, Pao-Chi

    2014-09-23

    Streptococcus pyogenes is responsible for various diseases. During infection, bacteria must adapt to adverse environments, such as the acidic environment. Acidic stimuli may stimulate S. pyogenes to invade into deeper tissue. However, how this acidic stimulus causes S. pyogenes to manipulate its secretome for facilitating invasion remains unclear. The dynamic label-free LC-MS/MS profiling identified 97 proteins, which are influenced by environmental acidification. Among these, 33 (34%) of the identified proteins were predicted to be extracellular proteins. Interestingly, classical secretory proteins comprise approximately 90% of protein abundance of the secretome in acidic condition at the stationary phase. One acid-induced secreted protein, HtpA, was selected to investigate its role in invasive infection. The mouse infected by the htpA deficient mutant showed lower virulence and smaller lesion area than the wild-type strain. The mutant strain was more efficiently cleared at infected skin than the wild-type strain. Besides, the relative phagocytosis resistance is lower in the mutant strain than in the wild-type strain. These data indicate that a novel acid-induced virulence factor, HtpA, which improves anti-phagocytosis ability for causing necrotizing fasciitis. Our investigation provides vital information for documenting the broad influences and mechanisms underlying the invasive behavior of S. pyogenes in an acidified environment. The acidified infected environment may facilitate S. pyogenes invasion from the mucosa to the deeper subepithelial tissue. The acid stimuli have been considered to affect the complex regulatory network of S. pyogenes for causing severe infections. Many of secreted virulence factors influenced by acidified environment may also play a crucial role in pathogenesis of invasive disease. To investigate temporal secretome changes under acidic environment, a comparative secretomics approach using label-free LC-MS/MS was undertaken to analyze

  2. Xanthurenic acid translocates proapoptotic Bcl-2 family proteins into mitochondria and impairs mitochondrial function

    PubMed Central

    Malina, Halina Z; Hess, Otto M

    2004-01-01

    Background Xanthurenic acid is an endogenous molecule produced by tryptophan degradation, produced in the cytoplasm and mitochondria. Its accumulation can be observed in aging-related diseases, e.g. senile cataract and infectious disease. We previously reported that xanthurenic acid provokes apoptosis, and now present a study of the response of mitochondria to xanthurenic acid. Results Xanthurenic acid at 10 or 20 μM in culture media of human aortic smooth muscle cells induces translocation of the proteins Bax, Bak, Bclxs, and Bad into mitochondria. In 20 μM xanthurenic acid, Bax is also translocated to the nucleus. In isolated mitochondria xanthurenic acid leads to Bax and Bclxs oligomerization, accumulation of Ca2+, and increased oxygen consumption. Conclusion Xanthurenic acid interacts directly with Bcl-2 family proteins, inducing mitochondrial pathways of apoptosis and impairing mitochondrial functions. PMID:15068490

  3. Long-chain n-3 fatty acids enhance neonatal insulin-regulated protein metabolism in piglets by differentially altering muscle lipid composition

    PubMed Central

    Bergeron, Karen; Julien, Pierre; Davis, Teresa A.; Myre, Alexandre; Thivierge, M. Carole

    2009-01-01

    This study investigated the role of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFAs) of muscle phospholipids in the regulation of neonatal metabolism. Twenty-eight piglets were weaned at 2 days of age and raised on one of two milk formulas that consisted of either a control formula supplying 0% or a formula containing 3.5% LCn-3PUFAs until 10 or 28 days of age. There was a developmental decline in the insulin sensitivity of amino acid disposal in control pigs during the first month of life, with a slope of −2.24 μmol·kg−1·h−1 (P = 0.01) per unit of insulin increment, as assessed using hyperinsulinemic-euglycemic-euaminoacidemic clamps. LCn-3PUFA feeding blunted this developmental decline, resulting in differing insulin sensitivities (P < 0.001). When protein metabolism was assessed under parenteral feeding-induced hyperinsulinemia, LCn-3PUFAs reduced by 16% whole body oxidative losses of amino acids (from 238 to 231 μmol·kg−1·h−1; P = 0.06), allowing 41% more amino acids to accrete into body proteins (from 90 to 127 μmol·kg−1·h−1; P = 0.06). The fractional synthetic rate of muscle mixed proteins remained unaltered by the LCn-3PUFA feeding. However, LCn-3PUFAs retarded a developmental increase in the essential-to-nonessential amino acid ratio of the muscle intracellular free pool (P = 0.05). Overall, alterations in metabolism were concomitant with a preferential incorporation of LCn-3PUFAs into muscle total membrane phospholipids (P < 0.001), in contrast to intramuscular triglycerides. These results underscore the potential role of LCn-3PUFAs as regulators of different aspects of protein metabolism in the neonate. PMID:17673528

  4. Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins.

    PubMed

    Periat, Aurélie; Krull, Ira S; Guillarme, Davy

    2015-02-01

    This review summarizes the recent advances in the analysis of amino acids, peptides, and proteins using hydrophilic interaction chromatography. Various reports demonstrate the successful analysis of amino acids under such conditions. However, a baseline resolution of the 20 natural amino acids has not yet been published and for this reason, there is often a need to use mass spectrometry for detection to further improve selectivity. Hydrophilic interaction chromatography is also recognized as a powerful technique for peptide analysis, and there are a lot of papers showing its applicability for proteomic applications (peptide mapping). It is expected that its use for peptide mapping will continue to grow in the future, particularly because this analytical strategy can be combined with reversed-phase liquid chromatography, in a two-dimensional setup, to reach very high resolving power. Finally, the interest in hydrophilic interaction chromatography for intact proteins analysis is less evident due to possible solubility issues and a lack of suitable hydrophilic interaction chromatography stationary phases. To date, it has been successfully employed only for the characterization of membrane proteins, histones, and the separation of glycosylated isoforms of an intact glycoprotein. From our point of view, the number of hydrophilic interaction chromatography columns compatible with intact proteins (higher upper temperature limit, large pore size, etc.) is still too limited. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection.

    PubMed

    Rodriguez, Maria Cecilia; Conti, Gabriela; Zavallo, Diego; Manacorda, Carlos Augusto; Asurmendi, Sebastian

    2014-08-03

    Plant viral infections disturb defense regulatory networks during tissue invasion. Emerging evidence demonstrates that a significant proportion of these alterations are mediated by hormone imbalances. Although the DELLA proteins have been reported to be central players in hormone cross-talk, their role in the modulation of hormone signaling during virus infections remains unknown. This work revealed that TMV-Cg coat protein (CgCP) suppresses the salicylic acid (SA) signaling pathway without altering defense hormone SA or jasmonic acid (JA) levels in Arabidopsis thaliana. Furthermore, it was observed that the expression of CgCP reduces plant growth and delays the timing of floral transition. Quantitative RT-qPCR analysis of DELLA target genes showed that CgCP alters relative expression of several target genes, indicating that the DELLA proteins mediate transcriptional changes produced by CgCP expression. Analyses by fluorescence confocal microscopy showed that CgCP stabilizes DELLA proteins accumulation in the presence of gibberellic acid (GA) and that the DELLA proteins are also stabilized during TMV-Cg virus infections. Moreover, DELLA proteins negatively modulated defense transcript profiles during TMV-Cg infection. As a result, TMV-Cg accumulation was significantly reduced in the quadruple-DELLA mutant Arabidopsis plants compared to wild type plants. Taken together, these results demonstrate that CgCP negatively regulates the salicylic acid-mediated defense pathway by stabilizing the DELLA proteins during Arabidopsis thaliana viral infection, suggesting that CgCP alters the stability of DELLAs as a mechanism of negative modulation of antiviral defense responses.

  6. Total chemical synthesis of proteins without HPLC purification† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc01883a Click here for additional data file.

    PubMed Central

    Loibl, S. F.; Harpaz, Z.; Zitterbart, R.

    2016-01-01

    The total chemical synthesis of proteins is a tedious and time-consuming endeavour. The typical steps involve solid phase synthesis of peptide thioesters and cysteinyl peptides, native chemical ligation (NCL) in solution, desulfurization or removal of ligation auxiliaries in the case of extended NCL as well as many intermediary and final HPLC purification steps. With an aim to facilitate and improve the throughput of protein synthesis we developed the first method for the rapid chemical total on-resin synthesis of proteins that proceeds without a single HPLC-purification step. The method relies on the combination of three orthogonal protein tags that allow sequential immobilization (via the N-terminal and C-terminal ends), extended native chemical ligation and release reactions. The peptide fragments to be ligated are prepared by conventional solid phase synthesis and used as crude materials in the subsequent steps. An N-terminal His6 unit permits selective immobilization of the full length peptide thioester onto Ni-NTA agarose beads. The C-terminal peptide fragment carries a C-terminal peptide hydrazide and an N-terminal 2-mercapto-2-phenyl-ethyl ligation auxiliary, which serves as a reactivity tag for the full length peptide. As a result, only full length peptides, not truncation products, react in the subsequent on-bead extended NCL. After auxiliary removal the ligation product is liberated into solution upon treatment with mild acid, and is concomitantly captured by an aldehyde-modified resin. This step allows the removal of the most frequently observed by-product in NCL chemistry, i.e. the hydrolysed peptide thioester (which does not contain a C-terminal peptide hydrazide). Finally, the target protein is released with diluted hydrazine or acid. We applied the method in the synthesis of 46 to 126 amino acid long MUC1 proteins comprising 2–6 copies of a 20mer tandem repeat sequence. Only three days were required for the parallel synthesis of 9 MUC1 proteins

  7. Interference of ascorbic acid with chemical analytes.

    PubMed

    Meng, Qing H; Irwin, William C; Fesser, Jennifer; Massey, K Lorne

    2005-11-01

    Ascorbic acid can interfere with methodologies involving redox reactions, while comprehensive studies on main chemistry analysers have not been reported. We therefore attempted to determine the interference of ascorbic acid with analytes on the Beckman Synchron LX20. Various concentrations of ascorbic acid were added to serum, and the serum analytes were measured on the LX20. With a serum ascorbic acid concentration of 12.0 mmol/L, the values for sodium, potassium, calcium and creatinine increased by 43%, 58%, 103% and 26%, respectively (P<0.01). With a serum ascorbic acid concentration of 12.0 mmol/L, the values for chloride, total bilirubin and uric acid decreased by 33%, 62% and 83%, respectively (P<0.01), and were undetectable for total cholesterol, triglyceride, ammonia and lactate. There was no definite influence of ascorbic acid on analytical values for total CO(2), urea, glucose, phosphate, total protein, albumin, amylase, creatine kinase, creatine kinase-MB, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total iron, unbound iron-binding capacity or magnesium. Ascorbic acid causes a false increase in sodium, potassium, calcium and creatinine results and a false decrease in chloride, total bilirubin, uric acid, total cholesterol, triglyceride, ammonia and lactate results.

  8. A novel amino acid and metabolomics signature in mice overexpressing muscle uncoupling protein 3.

    PubMed

    Aguer, Céline; Piccolo, Brian D; Fiehn, Oliver; Adams, Sean H; Harper, Mary-Ellen

    2017-02-01

    Uncoupling protein 3 (UCP3) is highly selectively expressed in skeletal muscle and is known to lower mitochondrial reactive oxygen species and promote fatty acid oxidation; however, the global impact of UCP3 activity on skeletal muscle and whole-body metabolism have not been extensively studied. We utilized untargeted metabolomics to identify novel metabolites that distinguish mice overexpressing UCP3 in muscle, both at rest and after exercise regimens that challenged muscle metabolism, to potentially unmask subtle phenotypes. Male wild-type (WT) and muscle-specific UCP3-overexpressing transgenic (UCP3 Tg) C57BL/6J mice were compared with or without a 5 wk endurance training protocol at rest or after an acute exercise bout (EB). Skeletal muscle, liver, and plasma samples were analyzed by gas chromatography time-of-flight mass spectrometry. Discriminant metabolites were considered if within the top 99th percentile of variable importance measurements obtained from partial least-squares discriminant analysis models. A total of 80 metabolites accurately discriminated UCP3 Tg mice from WT when modeled within a specific exercise condition (i.e., untrained/rested, endurance trained/rested, untrained/EB, and endurance trained/EB). Results revealed that several amino acids and amino acid derivatives in skeletal muscle and plasma of UCP3 Tg mice (e.g., Asp, Glu, Lys, Tyr, Ser, Met) were significantly reduced after an EB; that metabolites associated with skeletal muscle glutathione/Met/Cys metabolism (2-hydroxybutanoic acid, oxoproline, Gly, and Glu) were altered in UCP3 Tg mice across all training and exercise conditions; and that muscle metabolite indices of dehydrogenase activity were increased in UCP3 Tg mice, suggestive of a shift in tissue NADH/NAD + ratio. The results indicate that mitochondrial UCP3 activity affects metabolism well beyond fatty acid oxidation, regulating biochemical pathways associated with amino acid metabolism and redox status. That select

  9. Identification of proteins regulated by ferulic acid in a middle cerebral artery occlusion animal model-a proteomics approach.

    PubMed

    Sung, Jin-Hee; Cho, Eun-Hae; Cho, Jae-Hyeon; Won, Chung-Kil; Kim, Myeong-Ok; Koh, Phil-Ok

    2012-11-01

    Ferulic acid plays a neuroprotective role in cerebral ischemia. The aim of this study was to identify the proteins that are differentially expressed following ferulic acid treatment during ischemic brain injury using a proteomics technique. Middle cerebral artery occlusion (MCAO) was performed to induce a focal cerebral ischemic injury in adult male rats, and ferulic acid (100 mg/kg) or vehicle was administered immediately after MCAO. Brain tissues were collected 24 hr after MCAO. The proteins in the cerebral cortex were separated using two-dimensional gel electrophoresis and were identified by mass spectrometry. We detected differentially expressed proteins between vehicle- and ferulic acid-treated animals. Adenosylhomocysteinase, isocitrate dehydrogenase [NAD(+)], mitogen-activated protein kinase kinase 1 and glyceraldehyde-3-phosphate dehydrogenase were decreased in the vehicle-treated group, and ferulic acid prevented the injury-induced decreases in these proteins. However, pyridoxal phosphate phosphatase and heat shock protein 60 were increased in the vehicle-treated group, while ferulic acid prevented the injury-induced increase in these proteins. It is accepted that these enzymes are involved in cellular metabolism and differentiation. Thus, these findings suggest evidence that ferulic acid plays a neuroprotective role against focal cerebral ischemia through the up- and down-modulation of specific enzymes.

  10. How the folding rates of two- and multistate proteins depend on the amino acid properties.

    PubMed

    Huang, Jitao T; Huang, Wei; Huang, Shanran R; Li, Xin

    2014-10-01

    Proteins fold by either two-state or multistate kinetic mechanism. We observe that amino acids play different roles in different mechanism. Many residues that are easy to form regular secondary structures (α helices, β sheets and turns) can promote the two-state folding reactions of small proteins. Most of hydrophilic residues can speed up the multistate folding reactions of large proteins. Folding rates of large proteins are equally responsive to the flexibility of partial amino acids. Other properties of amino acids (including volume, polarity, accessible surface, exposure degree, isoelectric point, and phase transfer energy) have contributed little to folding kinetics of the proteins. Cysteine is a special residue, it triggers two-state folding reaction and but inhibits multistate folding reaction. These findings not only provide a new insight into protein structure prediction, but also could be used to direct the point mutations that can change folding rate. © 2014 Wiley Periodicals, Inc.

  11. Blood Loss and Transfusion After Topical Tranexamic Acid Administration in Primary Total Knee Arthroplasty.

    PubMed

    Wang, Hao; Shen, Bin; Zeng, Yi

    2015-11-01

    There has been much debate and controversy about the safety and efficacy of the topical use of tranexamic acid in primary total knee arthroplasty (TKA). The purpose of this study was to perform a meta-analysis to evaluate whether there is less blood loss and lower rates of transfusion after topical tranexamic acid administration in primary TKA. A systematic review of the electronic databases PubMed, CENTRAL, Web of Science, and Embase was undertaken. All randomized, controlled trials and prospective cohort studies evaluating the effectiveness of topical tranexamic acid during primary TKA were included. The focus of the analysis was on the outcomes of blood loss results, transfusion rate, and thromboembolic complications. Subgroup analysis was performed when possible. Of 387 studies identified, 16 comprising 1421 patients (1481 knees) were eligible for data extraction and meta-analysis. This study indicated that when compared with the control group, topical application of tranexamic acid significantly reduced total drain output (mean difference, -227.20; 95% confidence interval, -347.11 to -107.30; P<.00001), total blood loss (mean difference, -311.28; 95% confidence interval, -404.94 to -217.62; P<.00001), maximum postoperative hemoglobin decrease (mean difference, -0.73; 95% confidence interval, -0.96 to -0.50; P<.00001), and blood transfusion requirements (risk ratios, 0.33; 95% confidence interval, 0.24 to 0.43; P=.14). The authors found a statistically significant reduction in blood loss and transfusion rates when using topical tranexamic acid in primary TKA. Furthermore, the currently available evidence does not support an increased risk of deep venous thrombosis or pulmonary embolism due to tranexamic acid administration. Topical tranexamic acid was effective for reducing postoperative blood loss and transfusion requirements without increasing the prevalence of thromboembolic complications. Copyright 2015, SLACK Incorporated.

  12. Influence of the stringent control system on the transcription of ribosomal ribonucleic acid and ribosomal protein genes in Escherichia coli.

    PubMed Central

    Dennis, P P

    1977-01-01

    The fraction of the total ribonucleic acid (RNA) synthesis rate that is messenger RNA (mRNA) for ribosomal protein (r-protein) and ribosomal RNA (rRNA) has been estimated in valS(Ts) rel+ stringent and valS(Ts) relA1 relaxed strains of Escherichia coli during a partial inhibition of valyl-transfer RNA aminoacylation. The partial inhibition was accomplished by shifting the strains from the permissive growth temperature of 29.5 degrees C to the semipermissive temperature of 35.5 degrees C. The RNA synthesized at the elevated temperature was pulse labeled with [3H]uracil. The fraction of the total incorpoarted 3H radioactivity in r-protein mRNA or in rRNA was estimated by specific hybridization to the transducing phages gammaspc1, which carries about 15 r-protein genes and lambdailv5, which carries an rRNA transcription unit. The results clearly demonstrate that the rel gene influences the fraction of the total RNA synthesis rate that is r protein mRNA and rRNA; in the rel+ strain they are significantly increased relative to control cultures. This indicates that the expression of the genes coding for the RNA and protein component of the ribosome are most likely regulated at the level of transcription. Furthermore, it appears that the distribution of functioning RNA polymerase between rRNA genes, r-protein genes, and other types of genes is influenced by the rel gene control system; presumably this influence is mediated through the unusual nucleotide guanosine tetraphosphate. PMID:320185

  13. Influence of dietary protein and fructooligosaccharides on fecal fermentative end-products, fecal bacterial populations and apparent total tract digestibility in dogs.

    PubMed

    Pinna, Carlo; Vecchiato, Carla Giuditta; Bolduan, Carmen; Grandi, Monica; Stefanelli, Claudio; Windisch, Wilhelm; Zaghini, Giuliano; Biagi, Giacomo

    2018-03-20

    Feeding dogs with diets rich in protein may favor putrefactive fermentations in the hindgut, negatively affecting the animal's intestinal environment. Conversely, prebiotics may improve the activity of health-promoting bacteria and prevent bacterial proteolysis in the colon. The aim of this study was to evaluate the effects of dietary supplementation with fructooligosaccharides (FOS) on fecal microbiota and apparent total tract digestibility (ATTD) in dogs fed kibbles differing in protein content. Twelve healthy adult dogs were used in a 4 × 4 replicated Latin Square design to determine the effects of four diets: 1) Low protein diet (LP, crude protein (CP) 229 g/kg dry matter (DM)); 2) High protein diet (HP, CP 304 g/kg DM); 3) Diet 1 + 1.5 g of FOS/kg; 4) Diet 2 + 1.5 g of FOS/kg. The diets contained silica at 5 g/kg as a digestion marker. Differences in protein content were obtained using different amounts of a highly digestible swine greaves meal. Each feeding period lasted 28 d, with a 12 d wash-out in between periods. Fecal samples were collected from dogs at 0, 21 and 28 d of each feeding period. Feces excreted during the last five days of each feeding period were collected and pooled in order to evaluate ATTD. Higher fecal ammonia concentrations were observed both when dogs received the HP diets (p < 0.001) and the supplementation with FOS (p < 0.05). The diets containing FOS resulted in greater ATTD of DM, Ca, Mg, Na, Zn, and Fe (p < 0.05) while HP diets were characterized by lower crude ash ATTD (p < 0.05). Significant interactions were observed between FOS and protein concentration in regards to fecal pH (p < 0.05), propionic acid (p < 0.05), acetic to propionic acid and acetic + n-butyric to propionic acid ratios (p < 0.01), bifidobacteria (p < 0.05) and ATTD of CP (p < 0.05) and Mn (p < 0.001). A relatively moderate increase of dietary protein resulted in higher concentrations of ammonia in

  14. Melamine and Cyanuric Acid do not interfere with Bradford and Ninhydrin assays for protein determination.

    PubMed

    Field, Anjalie; Field, Jeffrey

    2010-08-01

    In the fall of 2007 pet food contaminated with melamine and cyanuric acid caused kidney stones in thousands of animals. In the summer of 2008, a more serious outbreak of adulterated dairy food caused the deaths of six infants and sickened about 290,000 children in China. In all cases, melamine was likely added to inflate the apparent protein content of the foods. To determine if we could measure protein without interference from melamine and cyanuric acid we tested these compounds in the Bradford and Ninhydrin assays, two common dye-based assays for protein, as well as by ammonia release, the most common assay used in the food industry. Neither compound was detected in the Ninhydrin and Bradford assays at concentrations of >100 μg/ml. The ammonia assay detected melamine but was inconclusive with respect to cyanuric acid. To develop an accurate test for food that would not detect either chemical as a protein, assays were run on cat food and reconstituted milk powder. The Bradford assay readily measured the protein content of each food, and importantly, the addition of melamine or cyanuric acid to reconstituted milk did not affect the readings. The protein concentrations obtained for reconstituted milk powder were as expected, but those for the cat food were 10 to 30-fold lower, due to its low solubility. We conclude that dye-binding assays can be employed to detect protein in food without interference from melamine and cyanuric acid, thus reducing the incentive to use them as additives.

  15. Structural origins of pH and ionic strength effects on protein stability. Acid denaturation of sperm whale apomyoglobin.

    PubMed

    Yang, A S; Honig, B

    1994-04-15

    A recently developed approach to calculate the pH dependence of protein stability from three-dimensional structure information is applied to the analysis of acid denaturation of sperm whale apomyoglobin. The finite difference Poisson-Boltzmann method is used to calculate pKa values and these are used to obtain titration curves for the folded protein as well as for compact intermediates. The total electrostatic free energy change involved in apomyoglobin unfolding is then evaluated. Calculations are carried out of the unfolding free energy of the native (N) and the compact intermediate (I) of apomyoglobin relative to the unfolded state (U) over a range of pH at various ionic strengths. The contributions from key ionizable groups to the unfolding process are discussed. For the acid-induced partial unfolding of apomyoglobin near pH 5, the transition from N to I is found to be driven by three histidines that are exposed when the B, C, D and E helices unfold. Similarly, the unfolding of the compact intermediate I consisting of the A, G and H helices is driven primarily by a few carboxylic acids with low pKa values in the compact state. This picture is in contrast to the view which attributes acid denaturation to electrostatic repulsion resulting from the build up of positive charge. In fact, charge-charge interactions in myoglobin are found to be attractive at all pH values where the protein unfolds. pH-dependent changes in these interactions contribute to acid denaturation but other electrostatic effects, such as hydrogen bonding and solvation, are important as well. The effect of increasing ionic strength on unfolding is attributed to the decrease of attractive charge-charge interactions which destabilize the N state relative to I, but stabilize the I state relative to U by reducing the pKa shifts of a few critical carboxylic acids. The I state is found to be more stable than U at neutral pH thus accounting for its presence as an intermediate on the protein folding

  16. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  17. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  18. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  19. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  20. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  1. Protein extraction from human anagen head hairs 1-millimeter or less in total length.

    PubMed

    Carlson, Traci L; Moini, Mehdi; Eckenrode, Brian A; Allred, Brent M; Donfack, Joseph

    2018-04-01

    A simple method for extracting protein from human anagen (i.e., actively growing hair stage) head hairs was developed in this study for cases of limited sample availability and/or studies of specific micro-features within a hair. The distinct feature segments of the hair from one donor were divided lengthwise (i.e., each of ∼200-400 μm) and then pooled for three individual hairs to form a total of eight composite hair samples (i.e., each of ∼1 mm or less in total length). The proteins were extracted, digested using trypsin, and characterized via nano-flow liquid chromatography tandem-mass spectrometry (nLC-MS/MS). A total of 63 proteins were identified from all eight protein samples analyzed of which 60% were keratin and keratin-associated proteins. The major hair keratins identified are consistent with previous studies using fluorescence in situ hybridization and nLC-MS/MS while requiring over 400-8000-fold less sample. The protein extraction method from micro-sized human head hairs described in this study will enable proteomic analysis of biological evidence for cases of limited sample availability and will complement hair research. For example, research seeking to develop alternative non-DNA based techniques for comparing questioned to known hairs, and understanding the biochemistry of hair decomposition.

  2. Protection of protein from ruminal degradation by alkali-induced oxidation of chlorogenic acid in sunflower meal.

    PubMed

    Bongartz, V; Böttger, C; Wilhelmy, N; Schulze-Kaysers, N; Südekum, K-H; Schieber, A

    2018-02-01

    Lactating ruminants require an adequate supply of absorbable amino acids for the synthesis of milk protein from two sources, that is crude protein (CP) synthesized microbially in the rumen and ruminally undegraded CP (RUP) from feed which can both be digested in the small intestine. Several chemical and physical methods have been identified as being effective in increasing the proportion of RUP of total CP of a feedstuff, yet there is a continuing need for developing and establishing methods which protect feed protein from ruminal degradation with acceptable expenditure of labour and other costs. The objective of this study was to identify and quantify effects of and interactions between chlorogenic acid and protein in solvent-extracted sunflower meal (SFM) as induced by alkali treatment. Response surface methodology was employed to investigate the influence of pH, reaction time and drying temperature on the resulting SFM and, subsequently, its protein value for ruminants estimated from laboratory values. For this purpose, alkali-treated SFM was subjected to a fractionation of feed CP according to the Cornell net carbohydrate and protein system as a basis for estimating RUP at different assumed ruminal passage rates (K p ). To estimate the intestinal digestibility of the treated SFM and its RUP, a three-step enzymatic in vitro procedure was applied. Alkaline treatment of SFM increased RUP values with factors ranging from approximately 3 (K p =.08/hr) to 12 (K p =.02/hr). Furthermore, the intestinal digestibility of the alkali-treated SFM was enhanced by approximately 10% compared to untreated SFM. Increasing pH and reaction time led to both increasing RUP values and intestinal digestibility. In conclusion, a targeted alkaline treatment of naturally occurring compounds in feedstuffs might be a promising approach to provide high-RUP feeds for ruminants which, at the same time, have improved intestinal digestibility values. © 2017 Blackwell Verlag GmbH.

  3. A High-throughput Screening Assay for Determining Cellular Levels of Total Tau Protein

    PubMed Central

    Dehdashti, Seameen J.; Zheng, Wei; Gever, Joel R.; Wilhelm, Robert; Nguyen, Dac-Trung; Sittampalam, Gurusingham; McKew, John C.; Austin, Christopher P.; Prusiner, Stanley B.

    2014-01-01

    The microtubule-associated protein (MAP) tau has been implicated in the pathology of numerous neurodegenerative diseases. In the past decade, the hyperphosphorylated and aggregated states of tau protein have been important targets in the drug discovery field for the potential treatment of Alzheimer’s disease. Although several compounds have been reported to reduce the hyperphosphorylated state of tau or impact the stabilization of tau, their therapeutic activities are still to be validated. Recently, reduction of total cellular tau protein has emerged as an alternate intervention point for drug development and a potential treatment of tauopathies. We have developed and optimized a homogenous assay, using the AlphaLISA and HTRF assay technologies, for the quantification of total cellular tau protein levels in the SH-SY5Y neuroblastoma cell line. The signal-to-basal ratios were 375 and 5.3, and the Z’ factors were 0.67 and 0.60 for the AlphaLISA and HTRF tau assays, respectively. The clear advantages of this homogeneous tau assay over conventional total tau assays, such as ELISA and Western blot, are the elimination of plate wash steps and miniaturization of the assay into 1536-well plate format for the ultra–high-throughput screening of large compound libraries. PMID:23905996

  4. Analysis of Protein–Protein Interactions in MCF-7 and MDA-MB-231 Cell Lines Using Phthalic Acid Chemical Probes

    PubMed Central

    Liang, Shih-Shin; Wang, Tsu-Nai; Tsai, Eing-Mei

    2014-01-01

    Phthalates are a class of plasticizers that have been characterized as endocrine disrupters, and are associated with genital diseases, cardiotoxicity, hepatotoxicity, and nephrotoxicity in the GeneOntology gene/protein database. In this study, we synthesized phthalic acid chemical probes and demonstrated differing protein–protein interactions between MCF-7 cells and MDA-MB-231 breast cancer cell lines. Phthalic acid chemical probes were synthesized using silicon dioxide particle carriers, which were modified using the silanized linker 3-aminopropyl triethoxyslane (APTES). Incubation with cell lysates from breast cancer cell lines revealed interactions between phthalic acid and cellular proteins in MCF-7 and MDA-MB-231 cells. Subsequent proteomics analyses indicated 22 phthalic acid-binding proteins in both cell types, including heat shock cognate 71-kDa protein, ATP synthase subunit beta, and heat shock protein HSP 90-beta. In addition, 21 MCF-7-specific and 32 MDA-MB-231 specific phthalic acid-binding proteins were identified, including related proteasome proteins, heat shock 70-kDa protein, and NADPH dehydrogenase and ribosomal correlated proteins, ras-related proteins, and members of the heat shock protein family, respectively. PMID:25402641

  5. Tetrahymena thermophila acidic ribosomal protein L37 contains an archaebacterial type of C-terminus.

    PubMed

    Hansen, T S; Andreasen, P H; Dreisig, H; Højrup, P; Nielsen, H; Engberg, J; Kristiansen, K

    1991-09-15

    We have cloned and characterized a Tetrahymena thermophila macronuclear gene (L37) encoding the acidic ribosomal protein (A-protein) L37. The gene contains a single intron located in the 3'-part of the coding region. Two major and three minor transcription start points (tsp) were mapped 39 to 63 nucleotides upstream from the translational start codon. The uppermost tsp mapped to the first T in a putative T. thermophila RNA polymerase II initiator element, TATAA. The coding region of L37 predicts a protein of 109 amino acid (aa) residues. A substantial part of the deduced aa sequence was verified by protein sequencing. The T. thermophila L37 clearly belongs to the P1-type family of eukaryotic A-proteins, but the C-terminal region has the hallmarks of archaebacterial A-proteins.

  6. Determination of the total acidity in soft drinks using potentiometric sequential injection titration.

    PubMed

    van Staden, J Koos F; Mashamba, M Mulalo G; Stefan, R Raluca I

    2002-12-06

    A potentiometric SI titration system for the determination of total acidity in soft drinks is proposed. The concept is based on the aspiration of the acid soft drink sample between two base zones into a holding coil with the volume of the first base zone twice to that of the second one and channelled by flow reversal through a reaction coil to a potentiometric sensor. A solution of 0.1 mol l(-1) sodium chloride is used as ionic strength adjustment buffer in the carrier stream. The system has been applied to the analysis of some South African soft drinks having a total acidity level of about 0.2-0.3% (w/v). The method has a sample frequency of 45 samples per h with a linear range of 0.1 and 0.6% (w/v). It is easy to use, fully computerised, and gives the results that are comparable to both automated batch titration and manual titration.

  7. Total Protein Content Determination of Microalgal Biomass by Elemental Nitrogen Analysis and a Dedicated Nitrogen-to-Protein Conversion Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurens, Lieve M; Olstad-Thompson, Jessica L; Templeton, David W

    Accurately determining protein content is important in the valorization of algal biomass in food, feed, and fuel markets, where these values are used for component balance calculations. Conversion of elemental nitrogen to protein is a well-accepted and widely practiced method, but depends on developing an applicable nitrogen-to-protein conversion factor. The methodology reported here covers the quantitative assessment of the total nitrogen content of algal biomass and a description of the methodology that underpins the accurate de novo calculation of a dedicated nitrogen-to-protein conversion factor.

  8. Heart type fatty acid binding protein response and subsequent development of atherosclerosis in insulin resistant polycystic ovary syndrome patients.

    PubMed

    Cakir, Evrim; Ozbek, Mustafa; Sahin, Mustafa; Cakal, Erman; Gungunes, Askin; Ginis, Zeynep; Demirci, Taner; Delibasi, Tuncay

    2012-12-18

    Women with polycystic ovary syndrome (PCOS) have higher risk for cardiovascular disease (CVD). Heart type fatty acid binding protein (HFABP) has been found to be predictive for myocardial ischemia.Wet ested whether HFABP is the predictor for CVD in PCOS patients, who have an increased risk of cardiovascular disease. This was a prospective, cross sectional controlled study conducted in a training and research hospital.The study population consisted of 46 reproductive-age PCOS women and 28 control subjects. We evaluated anthropometric and metabolic parameters, carotid intima media thickness and HFABP levels in both PCOS patients and control group. Mean fasting insulin, homeostasis model assessment insulin resistance index (HOMA-IR), triglyceride, total cholesterol, low density lipoprotein cholesterol, free testosterone, total testosterone, carotid intima media thickness (CIMT) levels were significantly higher in PCOS patients. Although HFABP levels were higher in PCOS patients, the difference did not reach statistically significant in early age groups. After adjustment for age and body mass index, HFABP level was positive correlated with hsCRP, free testosterone levels, CIMT and HOMA-IR. Heart type free fatty acid binding protein appeared to have an important role in metabolic response and subsequent development of atherosclerosis in insulin resistant, hyperandrogenemic PCOS patients.

  9. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling.

    PubMed

    Zhao, Jian

    2015-04-01

    Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (PAs) play vital roles in plant hormonal and environmental responses and various cellular dynamics. Recent studies have further expanded the functions of PLDs and PAs into plant-microbe interaction. The molecular diversities and redundant functions make PLD-PA an important signalling complex regulating lipid metabolism, cytoskeleton dynamics, vesicle trafficking, and hormonal signalling in plant defence through protein-protein and protein-lipid interactions or hormone signalling. Different PLD-PA signalling complexes and their targets have emerged as fast-growing research topics for understanding their numerous but not yet established roles in modifying pathogen perception, signal transduction, and downstream defence responses. Meanwhile, advanced lipidomics tools have allowed researchers to reveal further the mechanisms of PLD-PA signalling complexes in regulating lipid metabolism and signalling, and their impacts on jasmonic acid/oxylipins, salicylic acid, and other hormone signalling pathways that essentially mediate plant defence responses. This review attempts to summarize the progress made in spatial and temporal PLD/PA signalling as well as PLD/PA-mediated modification of plant defence. It presents an in-depth discussion on the functions and potential mechanisms of PLD-PA complexes in regulating actin filament/microtubule cytoskeleton, vesicle trafficking, and hormonal signalling, and in influencing lipid metabolism-derived metabolites as critical signalling components in plant defence responses. The discussion puts PLD-PA in a broader context in order to guide future research. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis

    PubMed Central

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M.; Liu, Jie; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2011-01-01

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (Vmax/km) for any of the complexes is 70–6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex–mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716

  11. Comparison of total protein concentration in skeletal muscle as measured by the Bradford and Lowry assays.

    PubMed

    Seevaratnam, Rajini; Patel, Barkha P; Hamadeh, Mazen J

    2009-06-01

    The Lowry and Bradford assays are the most commonly used methods of total protein quantification, yet vary in several aspects. To date, no comparisons have been made in skeletal muscle. We compared total protein concentrations of mouse red and white gastrocnemius, reagent stability, protein stability and range of linearity using both assays. The Lowry averaged protein concentrations 15% higher than the Bradford with a moderate correlation (r = 0.36, P = 0.01). However, Bland-Altman analysis revealed considerable bias (15.8 +/- 29.7%). Both Lowry reagents and its protein-reagent interactions were less stable over time than the Bradford. The linear range of concentration was smaller for the Lowry (0.05-0.50 mg/ml) than the Bradford (0-2.0 mg/ml). We conclude that the Bradford and Lowry measures of total protein concentration in skeletal muscle are not interchangeable. The Bradford and Lowry assays have various strengths and weaknesses in terms of substance interference and protein size. However, the Bradford provides greater reagent stability, protein-reagent stability and range of linearity, and requires less time to analyse compared to the Lowry assay.

  12. High protein intake is associated with low prevalence of frailty among old Japanese women: a multicenter cross-sectional study

    PubMed Central

    2013-01-01

    Background Protein intake has been inversely associated with frailty. However, no study has examined the effect of the difference of protein sources (animal or plant) or the amino acid composing the protein on frailty. Therefore, we examined the association of protein and amino acid intakes with frailty among elderly Japanese women. Methods A total of 2108 grandmothers or acquaintances of dietetic students aged 65 years and older participated in this cross-sectional multicenter study, which was conducted in 85 dietetic schools in 35 prefectures of Japan. Intakes of total, animal, and plant protein and eight selected amino acids were estimated from a validated brief-type self-administered diet history questionnaire and amino acid composition database. Frailty was defined as the presence of three or more of the following four components: slowness and weakness (two points), exhaustion, low physical activity, and unintentional weight loss. Results The number of subjects with frailty was 481 (23%). Adjusted ORs (95% CI) for frailty in the first, second, third, fourth, and fifth quintiles of total protein intake were 1.00 (reference), 1.02 (0.72, 1.45), 0.64 (0.45, 0.93), 0.62 (0.43, 0.90), and 0.66 (0.46, 0.96), respectively (P for trend = 0.001). Subjects categorized to the third, fourth, and fifth quintiles of total protein intake (>69.8 g/d) showed significantly lower ORs than those to the first quintile (all P <0.03). The intakes of animal and plant protein and all selected amino acids were also inversely associated with frailty (P for trend <0.04), with the multivariate adjusted OR in the highest compared to the lowest quintile of 0.73 for animal protein and 0.66 for plant protein, and 0.67-0.74 for amino acids, albeit that the ORs for these dietary variables were less marked than those for total protein. Conclusions Total protein intake was significantly inversely associated with frailty in elderly Japanese women. The association of total protein with

  13. Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features.

    PubMed

    Curley, Allison A; Arion, Dominique; Volk, David W; Asafu-Adjei, Josephine K; Sampson, Allan R; Fish, Kenneth N; Lewis, David A

    2011-09-01

    Cognitive deficits in schizophrenia are associated with altered activity of the dorsolateral prefrontal cortex, which has been attributed to lower expression of the 67 kDa isoform of glutamic acid decarboxylase (GAD67), the major γ-aminobutyric acid (GABA)-synthesizing enzyme. However, little is known about the relationship of prefrontal GAD67 mRNA levels and illness severity, translation of the transcript into protein, and protein levels in axon terminals, the key site of GABA production and function. Quantitative polymerase chain reaction was used to measure GAD67 mRNA levels in postmortem specimens of dorsolateral prefrontal cortex from subjects with schizophrenia and matched comparison subjects with no known history of psychiatric or neurological disorders (N=42 pairs). In a subset of this cohort in which potential confounds of protein measures were controlled (N=19 pairs), Western blotting was used to quantify tissue levels of GAD67 protein in tissue. In five of these pairs, multilabel confocal immunofluorescence was used to quantify GAD67 protein levels in the axon terminals of parvalbumin-containing GABA neurons, which are known to have low levels of GAD67 mRNA in schizophrenia. GAD67 mRNA levels were significantly lower in schizophrenia subjects (by 15%), but transcript levels were not associated with predictors or measures of illness severity or chronicity. In schizophrenia subjects, GAD67 protein levels were significantly lower in total gray matter (by 10%) and in parvalbumin axon terminals (by 49%). The findings that lower GAD67 mRNA expression is common in schizophrenia, that it is not a consequence of having the illness, and that it leads to less translation of the protein, especially in the axon terminals of parvalbumin-containing neurons, support the hypothesis that lower GABA synthesis in parvalbumin neurons contributes to dorsolateral prefrontal cortex dysfunction and impaired cognition in schizophrenia.

  14. Temperature effects on protein depolymerization and amino acid immobilization rates in soils.

    NASA Astrophysics Data System (ADS)

    Noll, Lisa; Hu, Yuntao; Zhang, Shasha; Zheng, Qing; Wanek, Wolfgang

    2017-04-01

    Increasing N deposition, land use change, elevated atmospheric CO2 concentrations and global warming have altered soil nitrogen (N) cycling during the last decades. Those changes affected ecosystem services, such as C and N sequestration in soils, which calls for a better understanding of soil N transformation processes. The cleavage of macromolecular organic N by extracellular enzymes maintains an ongoing flow of new bioavailable organic N into biotic systems and is considered to be the bottle neck of terrestrial N cycling in litter and soils. Recent studies showed that protein depolymerization is susceptible to changes in C and N availabilities. Based on general biological observations the temperature sensitivity of soil organic N processes is expected to depend on whether they are rather enzyme limited (i.e. Q10=2) or diffusion limited (i.e. Q10= 1.0 - 1.3). However, temperature sensitivities of protein depolymerization and amino acid immobilization are still unknown. We therefore here report short-term temperature effects on organic N transformation rates in soils differing in physicochemical parameters but not in climate. Soil samples were collected from two geologically distinct sites close to the LFZ Raumberg-Gumpenstein, Styria, Austria, each from three different management types (arable land, grassland, forest). Four replicates of mineral soil were taken from every site and management type. The area provides a unique opportunity to study geological and management controls in soils without confounding effects of climate and elevation. The soils differ in several soil chemical parameters, such as soil pH, base saturation, soil C: N ratio and SOM content as well as in soil physical parameters, such as soil texture, bulk density and water holding capacity. Soils were pre-incubated at 5, 15 and 25˚ C for one day. Protein depolymerization rates and amino acid immobilization rates were assessed by an isotope pool dilution assay with 15N labeled amino acids at

  15. Insulin does not stimulate muscle protein synthesis during increased plasma branched-chain amino acids alone but still decreases whole body proteolysis in humans.

    PubMed

    Everman, Sarah; Meyer, Christian; Tran, Lee; Hoffman, Nyssa; Carroll, Chad C; Dedmon, William L; Katsanos, Christos S

    2016-10-01

    Insulin stimulates muscle protein synthesis when the levels of total amino acids, or at least the essential amino acids, are at or above their postabsorptive concentrations. Among the essential amino acids, branched-chain amino acids (BCAA) have the primary role in stimulating muscle protein synthesis and are commonly sought alone to stimulate muscle protein synthesis in humans. Fourteen healthy young subjects were studied before and after insulin infusion to examine whether insulin stimulates muscle protein synthesis in relation to the availability of BCAA alone. One half of the subjects were studied in the presence of postabsorptive BCAA concentrations (control) and the other half in the presence of increased plasma BCAA (BCAA). Compared with that prior to the initiation of the insulin infusion, fractional synthesis rate of muscle protein (%/h) did not change (P > 0.05) during insulin in either the control (0.04 ± 0.01 vs 0.05 ± 0.01) or the BCAA (0.05 ± 0.02 vs. 0.05 ± 0.01) experiments. Insulin decreased (P < 0.01) whole body phenylalanine rate of appearance (μmol·kg -1 ·min -1 ), indicating suppression of muscle proteolysis, in both the control (1.02 ± 0.04 vs 0.76 ± 0.04) and the BCAA (0.89 ± 0.07 vs 0.61 ± 0.03) experiments, but the change was not different between the two experiments (P > 0.05). In conclusion, insulin does not stimulate muscle protein synthesis in the presence of increased circulating levels of plasma BCAA alone. Insulin's suppressive effect on proteolysis is observed independently of the levels of circulating plasma BCAA. Copyright © 2016 the American Physiological Society.

  16. Insulin does not stimulate muscle protein synthesis during increased plasma branched-chain amino acids alone but still decreases whole body proteolysis in humans

    PubMed Central

    Everman, Sarah; Meyer, Christian; Tran, Lee; Hoffman, Nyssa; Carroll, Chad C.; Dedmon, William L.

    2016-01-01

    Insulin stimulates muscle protein synthesis when the levels of total amino acids, or at least the essential amino acids, are at or above their postabsorptive concentrations. Among the essential amino acids, branched-chain amino acids (BCAA) have the primary role in stimulating muscle protein synthesis and are commonly sought alone to stimulate muscle protein synthesis in humans. Fourteen healthy young subjects were studied before and after insulin infusion to examine whether insulin stimulates muscle protein synthesis in relation to the availability of BCAA alone. One half of the subjects were studied in the presence of postabsorptive BCAA concentrations (control) and the other half in the presence of increased plasma BCAA (BCAA). Compared with that prior to the initiation of the insulin infusion, fractional synthesis rate of muscle protein (%/h) did not change (P > 0.05) during insulin in either the control (0.04 ± 0.01 vs 0.05 ± 0.01) or the BCAA (0.05 ± 0.02 vs. 0.05 ± 0.01) experiments. Insulin decreased (P < 0.01) whole body phenylalanine rate of appearance (μmol·kg−1·min−1), indicating suppression of muscle proteolysis, in both the control (1.02 ± 0.04 vs 0.76 ± 0.04) and the BCAA (0.89 ± 0.07 vs 0.61 ± 0.03) experiments, but the change was not different between the two experiments (P > 0.05). In conclusion, insulin does not stimulate muscle protein synthesis in the presence of increased circulating levels of plasma BCAA alone. Insulin's suppressive effect on proteolysis is observed independently of the levels of circulating plasma BCAA. PMID:27530230

  17. Total antioxidant capacity in children with acute appendicitis.

    PubMed

    Kaya, M; Boleken, M E; Kanmaz, T; Erel, O; Yucesan, S

    2006-02-01

    This study aimed to investigate antioxidant capacity by using a novel automated method in children with acute appendicitis. Blood samples were obtained from consecutive patients with acute appendicitis (appendicitis group, n = 12) and acute abdominal pain due to non surgical disease (non-appendicitis group, n = 11), and from patients with inguinal hernia (healthy group, n = 12) as the control group. At admission, total antioxidant capacity (TAC) levels of plasma were evaluated in all patients by a method recently developed by Erel. Four other major individual plasma antioxidant components, the levels of total protein, albumin, uric acid and bilirubin, were also evaluated. Total antioxidant capacity in patients with acute appendicitis was statistically compared with the two other groups. While the TAC level in the appendicitis group was significantly greater than in the non-appendicitis group, no significant difference was found in healthy groups (p < 0.05, p > 0.05, 1.94 +/- 0.38, 1.40 +/- 0.36, and 1.99 +/- 0.35 respectively). Individual components of total antioxidant capacity, i.e. total protein, albumin, uric acid and bilirubin concentrations, were also higher in the patients with acute appendicitis than those of the other two control groups. Our data show that children with acute appendicitis do not have deficient blood plasma antioxidant capacity. These results provide evidence that acute appendicitis results in more induction of antioxidative response than non-surgical diseases.

  18. Alterations in the fatty acid profile, antioxidant enzymes and protein pattern of Biomphalaria alexandrina snails exposed to the pesticides diazinon and profenfos.

    PubMed

    Bakry, Fayez A; El-Hommossany, Karem; Abd El-Atti, Mahmoud; Ismail, Somaya M

    2016-04-01

    The use of pesticides is widespread in agricultural activities. These pesticides may contaminate the irrigation and drainage systems during agriculture activities and pests' control and then negatively affect the biotic and a biotic component of the polluted water courses. The present study aimed to evaluate the effect of the pesticides diazinon and profenfos on some biological activities of Biomphalaria alexandrina snails such as fatty acid profile, some antioxidant enzymes (thioredoxin reductase (TrxR), sorbitol dehydrogenase (SDH), superoxide dismutase (SOD), catalase (CAT) as well as glutathione reductase (GR) and lipid peroxidation (LP)) and protein patterns in snails' tissues exposed for 4 weeks to LC10 of diazinon and profenfos. The results showed that the two pesticides caused considerable reduction in survival rates and egg production of treated snails. Identification of fatty acid composition in snail tissues treated with diazinon and profenfos pesticides was carried out using gas-liquid chromatography (GLC). The results declared alteration in fatty acid profile, fluctuation in percentage of long chain and short chain fatty acid contributions either saturated or unsaturated ones, and a decrease in total lipid content in tissues of snails treated with these pesticides. The data demonstrate that there was a significant inhibition in the activities of tissues SOD, CAT, glutathione reductase (GR), TrxR, and SDH in tissues of treated snails, while a significant elevation was detected in LP as compared to the normal control. On the other hand, the electrophoretic pattern of total protein showed differences in number and molecular weights of protein bands due to the treatment of snails. It was concluded that the residues of diazinon and profenfos pesticides in aquatic environments have toxic effects onB. alexandrina snails. © The Author(s) 2013.

  19. Generation of therapeutic protein variants with the human serum albumin binding capacity via site-specific fatty acid conjugation.

    PubMed

    Cho, Jinhwan; Lim, Sung In; Yang, Byung Seop; Hahn, Young S; Kwon, Inchan

    2017-12-21

    Extension of the serum half-life is an important issue in developing new therapeutic proteins and expanding applications of existing therapeutic proteins. Conjugation of fatty acid, a natural human serum albumin ligand, to a therapeutic protein/peptide was developed as a technique to extend the serum half-life in vivo by taking advantages of unusually long serum half-life of human serum albumin (HSA). However, for broad applications of fatty acid-conjugation, several issues should be addressed, including a poor solubility of fatty acid and a substantial loss in the therapeutic activity. Therefore, herein we systematically investigate the conditions and components in conjugation of fatty acid to a therapeutic protein resulting in the HSA binding capacity without compromising therapeutic activities. By examining the crystal structure and performing dye conjugation assay, two sites (W160 and D112) of urate oxidase (Uox), a model therapeutic protein, were selected as sites for fatty acid-conjugation. Combination of site-specific incorporation of a clickable p-azido-L-phenylalanine to Uox and strain-promoted azide-alkyne cycloaddition allowed the conjugation of fatty acid (palmitic acid analog) to Uox with the HSA binding capacity and retained enzyme activity. Deoxycholic acid, a strong detergent, greatly enhanced the conjugation yield likely due to the enhanced solubility of palmitic acid analog.

  20. Effect of microfluidized and stearic acid modified soy protein in natural rubber

    USDA-ARS?s Scientific Manuscript database

    Microfluidized and stearic acid modified soy protein aggregates were used to reinforced natural rubber. The size of soy protein particles was reduced with a microfluidizing and ball milling process. Filler size reduction with longer ball milling time tends to increase tensile strength of the rubber ...

  1. Combined effects of dietary arginine, leucine and protein levels on fatty acid composition and gene expression in the muscle and subcutaneous adipose tissue of crossbred pigs.

    PubMed

    Madeira, Marta S; Pires, Virgínia M R; Alfaia, Cristina M; Luxton, Richard; Doran, Olena; Bessa, Rui J B; Prates, José A M

    2014-05-01

    The cumulative effects of dietary arginine, leucine and protein levels on fat content, fatty acid composition and mRNA levels of genes controlling lipid metabolism in pig longissimus lumborum muscle and subcutaneous adipose tissue (SAT) were investigated. The experiment was performed on fifty-four intact male pigs (Duroc × Pietrain × Large White × Landrace crossbred), with a live weight ranging from 59 to 92 kg. The pigs were randomly assigned to one of six experimental treatments (n 9). The treatments followed a 2 × 3 factorial arrangement, with two levels of arginine supplementation (0 v. 1 %) and three levels of a basal diet (normal protein diet, NPD; reduced protein diet, RPD; reduced protein diet to achieve 2 % of leucine, RPDL). The results showed that dietary arginine supplementation did not affect the intramuscular fat (IMF) content and back fat thickness, but increased the total fat in SAT. This effect was associated with an increase in fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD) mRNA levels in SAT, which suggests that arginine might be involved in the differential regulation of some key lipogenic genes in pig muscle and SAT. The increase in IMF content under the RPD, with or without leucine supplementation, was accompanied by increased FASN and SCD mRNA levels. Arginine supplementation did not influence the percentage of main fatty acids, while the RPD had a significant effect on fatty acid composition in both tissues. Leucine supplementation of RPD did not change IMF, total fat of SAT and back fat thickness, but increased 16 : 0 and 18 : 1cis-9 and decreased 18 : 2n-6 in muscle.

  2. Spontaneous mutual ordering of nucleic acids and proteins.

    PubMed

    Wills, Peter R

    2014-12-01

    It is proposed that the prebiotic ordering of nucleic acid and peptide sequences was a cooperative process in which nearly random populations of both kinds of polymers went through a codependent series of self-organisation events that simultaneously refined not only the accuracy of genetic replication and coding but also the functional specificity of protein catalysts, especially nascent aminoacyl-tRNA synthetase "urzymes".

  3. Determination of proteins induced in response to jasmonic acid and salicylic acid in resistant and susceptible cultivars of tomato.

    PubMed

    Afroz, Amber; Khan, Muhammad Rashid; Komatsu, Setsuko

    2010-07-01

    Jasmonic acid (JA) and salicylic acid (SA) are signaling molecules that play key roles in the regulation of metabolic processes, reproduction, and defense against pathogens. The proteomics approach was used to identify proteins that are induced by JA and SA in the tomato cultivars Roma and Pant Bahr, which are susceptible and resistant to bacterial wilt, respectively. Threonine deaminase and leucine amino peptidase were upregulated, and ribulose-1,5-bisphosphate carboxylase/oxygenase small chain was downregulated by time-course application of JA. Translationally controlled tumor protein was upregulated by time-course application of SA. Protein disulfide isomerase was upregulated by application of either JA or SA. Proteins related to defense, energy, and protein destination/storage are suspected to be responsible for the susceptibility or resistance of the cultivars. Furthermore, in Roma, iron ABC transporter was upregulated by JA and down-regulated by SA. Iron ABC transporter plays a part in the signal transduction of both JA and SA in cultivars of tomato that are resistant to bacterial wilt.

  4. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  5. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis

    NASA Astrophysics Data System (ADS)

    Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael

    2014-06-01

    Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications.

  6. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    USDA-ARS?s Scientific Manuscript database

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  7. Bacillus anthracis Overcomes an Amino Acid Auxotrophy by Cleaving Host Serum Proteins

    PubMed Central

    Terwilliger, Austen; Swick, Michelle C.; Pflughoeft, Kathryn J.; Pomerantsev, Andrei; Lyons, C. Rick; Koehler, Theresa M.

    2015-01-01

    ABSTRACT Bacteria sustain an infection by acquiring nutrients from the host to support replication. The host sequesters these nutrients as a growth-restricting strategy, a concept termed “nutritional immunity.” Historically, the study of nutritional immunity has centered on iron uptake because many bacteria target hemoglobin, an abundant circulating protein, as an iron source. Left unresolved are the mechanisms that bacteria use to attain other nutrients from host sources, including amino acids. We employed a novel medium designed to mimic the chemical composition of human serum, and we show here that Bacillus anthracis, the causative agent of anthrax disease, proteolyzes human hemoglobin to liberate essential amino acids which enhance its growth. This property can be traced to the actions of InhA1, a secreted metalloprotease, and extends to at least three other serum proteins, including serum albumin. The results suggest that we must also consider proteolysis of key host proteins to be a way for bacterial pathogens to attain essential nutrients, and we provide an experimental framework to determine the host and bacterial factors involved in this process. IMPORTANCE The mechanisms by which bacterial pathogens acquire nutrients during infection are poorly understood. Here we used a novel defined medium that approximates the chemical composition of human blood serum, blood serum mimic (BSM), to better model the nutritional environment that pathogens encounter during bacteremia. Removing essential amino acids from BSM revealed that two of the most abundant proteins in blood—hemoglobin and serum albumin—can satiate the amino acid requirement for Bacillus anthracis, the causative agent of anthrax. We further demonstrate that hemoglobin is proteolyzed by the secreted protease InhA1. These studies highlight that common blood proteins can be a nutrient source for bacteria. They also challenge the historical view that hemoglobin is solely an iron source for

  8. Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids.

    PubMed

    Shen, Dongsheng; Yin, Jun; Yu, Xiaoqin; Wang, Meizhen; Long, Yuyang; Shentu, Jiali; Chen, Ting

    2017-03-01

    In this study, tofu and egg white, representing typical protein-rich substrates in food waste based on vegetable and animal protein, respectively, were investigated for producing volatile fatty acids (VFAs) by acidogenic fermentation. VFA production, composition, conversion pathways and microbial communities in acidogenesis from tofu and egg white with and without hydrothermal (HT) pretreatment were compared. The results showed HT pretreatment could improve the VFA production of tofu but not for egg white. The optimum VFA yields were 0.46g/gVS (tofu with HT) and 0.26g/gVS (egg white without HT), respectively. Tofu could directly produce VFAs through the Stickland reaction, while egg white was converted to lactate and VFAs simultaneously. About 30-40% of total protein remained in all groups after fermentation. Up to 50% of the unconverted soluble protein in the HT groups was protease. More lactate-producing bacteria, mainly Leuconostoc and Lactobacillus, were present during egg white fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A reduced amino acid alphabet for understanding and designing protein adaptation to mutation.

    PubMed

    Etchebest, C; Benros, C; Bornot, A; Camproux, A-C; de Brevern, A G

    2007-11-01

    Protein sequence world is considerably larger than structure world. In consequence, numerous non-related sequences may adopt similar 3D folds and different kinds of amino acids may thus be found in similar 3D structures. By grouping together the 20 amino acids into a smaller number of representative residues with similar features, sequence world simplification may be achieved. This clustering hence defines a reduced amino acid alphabet (reduced AAA). Numerous works have shown that protein 3D structures are composed of a limited number of building blocks, defining a structural alphabet. We previously identified such an alphabet composed of 16 representative structural motifs (5-residues length) called Protein Blocks (PBs). This alphabet permits to translate the structure (3D) in sequence of PBs (1D). Based on these two concepts, reduced AAA and PBs, we analyzed the distributions of the different kinds of amino acids and their equivalences in the structural context. Different reduced sets were considered. Recurrent amino acid associations were found in all the local structures while other were specific of some local structures (PBs) (e.g Cysteine, Histidine, Threonine and Serine for the alpha-helix Ncap). Some similar associations are found in other reduced AAAs, e.g Ile with Val, or hydrophobic aromatic residues Trp with Phe and Tyr. We put into evidence interesting alternative associations. This highlights the dependence on the information considered (sequence or structure). This approach, equivalent to a substitution matrix, could be useful for designing protein sequence with different features (for instance adaptation to environment) while preserving mainly the 3D fold.

  10. Fatty Acid Binding Protein 5 Modulates Docosahexaenoic Acid-Induced Recovery in Rats Undergoing Spinal Cord Injury

    PubMed Central

    Figueroa, Johnny D.; Serrano-Illan, Miguel; Licero, Jenniffer; Cordero, Kathia; Miranda, Jorge D.

    2016-01-01

    Abstract Omega-3 polyunsaturated fatty acids (n-3 PUFAs) promote functional recovery in rats undergoing spinal cord injury (SCI). However, the precise molecular mechanism coupling n-3 PUFAs to neurorestorative responses is not well understood. The aim of the present study was to determine the spatiotemporal expression of fatty acid binding protein 5 (FABP5) after contusive SCI and to investigate whether this protein plays a role in n-3 PUFA–mediated functional recovery post-SCI. We found that SCI resulted in a robust spinal cord up-regulation in FABP5 mRNA levels (556 ± 187%) and protein expression (518 ± 195%), when compared to sham-operated rats, at 7 days post-injury (dpi). This upregulation coincided with significant alterations in the metabolism of fatty acids in the injured spinal cord, as revealed by metabolomics-based lipid analyses. In particular, we found increased levels of the n-3 series PUFAs, particularly docosahexaenoic acid (DHA; 22:6 n-3) and eicosapentaenoic acid (EPA; 20:5 n-3) at 7 dpi. Animals consuming a diet rich in DHA and EPA exhibited a significant upregulation in FABP5 mRNA levels at 7 dpi. Immunofluorescence showed low basal FABP5 immunoreactivity in spinal cord ventral gray matter NeuN+ neurons of sham-operated rats. SCI resulted in a robust induction of FABP5 in glial (GFAP+, APC+, and NG2+) and precursor cells (DCX+, nestin+). We found that continuous intrathecal administration of FABP5 silencing with small interfering RNA (2 μg) impaired spontaneous open-field locomotion post-SCI. Further, FABP5 siRNA administration hindered the beneficial effects of DHA to ameliorate functional recovery at 7 dpi. Altogether, our findings suggest that FABP5 may be an important player in the promotion of cellular uptake, transport, and/or metabolism of DHA post-SCI. Given the beneficial roles of n-3 PUFAs in ameliorating functional recovery, we propose that FABP5 is an important contributor to basic repair mechanisms in the

  11. Liquid chromatography-tandem mass spectrometry assay for the quantification of free and total sialic acid in human cerebrospinal fluid.

    PubMed

    van der Ham, Maria; de Koning, Tom J; Lefeber, Dirk; Fleer, André; Prinsen, Berthil H C M T; de Sain-van der Velden, Monique G M

    2010-05-01

    Analysis of sialic acid (SA) metabolites in cerebrospinal fluid (CSF) is important for clinical diagnosis. In the present study, a high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS) method for free sialic acid (FSA) and total sialic acid (TSA) in human CSF was validated. The method utilized a simple sample-preparation procedure of protein precipitation for FSA and acid hydrolysis for TSA. Negative electrospray ionisation was used to monitor the transitions m/z 308.2-->87.0 (SA) and m/z 311.2--> 90.0 ((13)C(3)-SA). Conjugated sialic acid (CSA) was calculated by subtracting FSA from TSA. We established reference intervals for FSA, TSA and CSA in CSF in 217 control subjects. The method has been applied to patients' samples with known differences in SA metabolites like meningitis (n=6), brain tumour (n=2), leukaemia (n=5), and Salla disease (n=1). Limit of detection (LOD) was 0.54 microM for FSA and 0.45 mM for TSA. Intra- and inter-assay variation for FSA (21.8 microM) were 4.8% (n=10) and 10.4% (n=40) respectively. Intra- and inter-assay variation for TSA (35.6 microM) were 9.7% (n=10) and 12.8% (n=40) respectively. Tested patients showed values of TSA above established reference value. The validated method allows sensitive and specific measurement of SA metabolites in CSF and can be applied for clinical diagnoses. 2010 Elsevier B.V. All rights reserved.

  12. Normal values of urine total protein- and albumin-to-creatinine ratios in term newborns.

    PubMed

    El Hamel, Chahrazed; Chianea, Thierry; Thon, Séverine; Lepichoux, Anne; Yardin, Catherine; Guigonis, Vincent

    2017-01-01

    It is important to have an accurate assessment of urinary protein when glomerulopathy or kidney injury is suspected. Currently available normal values for the neonate population have limited value, in part because they are based on small populations and obsolete creatinine assays. We have performed a prospective study with the aim to update the normal upper values of the urinary total protein-to-creatinine and albumin-to-creatinine ratios in term newborns. Urine samples were collected from 277 healthy, full-term newborns within the first 48 hours (D0-1) and between 72 and 120 h of life (D3-4). Total protein, albumin, creatinine and osmolality were measured and the upper limit of normal (upper-limit) values determined. At D0-1 and D3-4, the upper-limit values for the total protein-to-creatinine ratio were 1431 and 1205 mg/g (162 and 136 g/mol) and those for the albumin-to-creatinine ratio were 746 and 301 mg/g (84 and 34 g/mol), respectively. The upper-limit values were significantly higher at D0-1 than at D3-4 only for the albumin-to-creatinine ratio. This study determined the upper limit of normal values for urinary total protein-to-creatinine and albumin-to-creatinine ratios in the largest population of newborns studied to date. These values can therefore be considered as the most clinically relevant data currently available for the detection and diagnosis of glomerular injury in daily clinical practice in this population.

  13. Protein location prediction using atomic composition and global features of the amino acid sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherian, Betsy Sheena, E-mail: betsy.skb@gmail.com; Nair, Achuthsankar S.

    2010-01-22

    Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectivelymore » used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.« less

  14. Analysis of nucleic acid chaperoning by the prion protein and its inhibition by oligonucleotides

    PubMed Central

    Guichard, Cécile; Ivanyi-Nagy, Roland; Sharma, Kamal Kant; Gabus, Caroline; Marc, Daniel; Mély, Yves; Darlix, Jean-Luc

    2011-01-01

    Prion diseases are unique neurodegenerative illnesses associated with the conversion of the cellular prion protein (PrPC) into the aggregated misfolded scrapie isoform, named PrPSc. Recent studies on the physiological role of PrPC revealed that this protein has probably multiple functions, notably in cell–cell adhesion and signal transduction, and in assisting nucleic acid folding. In fact, in vitro findings indicated that the human PrP (huPrP) possesses nucleic acid binding and annealing activities, similarly to nucleic acid chaperone proteins that play essential roles in cellular DNA and RNA metabolism. Here, we show that a peptide, representing the N-terminal domain of huPrP, facilitates nucleic acid annealing by two parallel pathways nucleated through the stem termini. We also show that PrP of human or ovine origin facilitates DNA strand exchange, ribozyme-directed cleavage of an RNA template and RNA trans-splicing in a manner similar to the nucleocapsid protein of HIV-1. In an attempt to characterize inhibitors of PrP-chaperoning in vitro we discovered that the thioaptamer 5′-GACACAAGCCGA-3′ was extensively inhibiting the PrP chaperoning activities. At the same time a recently characterized methylated oligoribonucleotide inhibiting the chaperoning activity of the HIV-1 nucleocapsid protein was poorly impairing the PrP chaperoning activities. PMID:21737432

  15. Analysis of nucleic acid chaperoning by the prion protein and its inhibition by oligonucleotides.

    PubMed

    Guichard, Cécile; Ivanyi-Nagy, Roland; Sharma, Kamal Kant; Gabus, Caroline; Marc, Daniel; Mély, Yves; Darlix, Jean-Luc

    2011-10-01

    Prion diseases are unique neurodegenerative illnesses associated with the conversion of the cellular prion protein (PrP(C)) into the aggregated misfolded scrapie isoform, named PrP(Sc). Recent studies on the physiological role of PrP(C) revealed that this protein has probably multiple functions, notably in cell-cell adhesion and signal transduction, and in assisting nucleic acid folding. In fact, in vitro findings indicated that the human PrP (huPrP) possesses nucleic acid binding and annealing activities, similarly to nucleic acid chaperone proteins that play essential roles in cellular DNA and RNA metabolism. Here, we show that a peptide, representing the N-terminal domain of huPrP, facilitates nucleic acid annealing by two parallel pathways nucleated through the stem termini. We also show that PrP of human or ovine origin facilitates DNA strand exchange, ribozyme-directed cleavage of an RNA template and RNA trans-splicing in a manner similar to the nucleocapsid protein of HIV-1. In an attempt to characterize inhibitors of PrP-chaperoning in vitro we discovered that the thioaptamer 5'-GACACAAGCCGA-3' was extensively inhibiting the PrP chaperoning activities. At the same time a recently characterized methylated oligoribonucleotide inhibiting the chaperoning activity of the HIV-1 nucleocapsid protein was poorly impairing the PrP chaperoning activities.

  16. Protein and amino acid intakes in a rural area of Bangladesh.

    PubMed

    Heck, Julia E; Nieves, Jeri W; Chen, Yu; Parvez, Faruque; Brandt-Rauf, Paul W; Howe, Geoffrey R; Ahsan, Habibul

    2010-06-01

    Few studies have described protein and amino acid intakes in rural Bangladesh, a country with considerable undernutrition. The purpose of this population-based study was to assess and describe protein and amino acid intakes in Araihazar, Bangladesh. The study participants were 11,170 adult men and women who participated in the Health Effects of Arsenic Longitudinal Study (HEALS), which had a 98% participation rate. Dietary exposures were assessed by a food-frequency questionnaire that had been designed and validated for the HEALS study population. The mean body mass index (BMI) was 19.7 among all participants, and 34.9% of women and 44.4% of men had a BMI below 18.5. The average caloric intake was 2142 and 2394 kcal/day among women and men, respectively, and the mean protein intake was 67.5 and 78.2 g/day. The largest sources of protein were from rice and fish. Greater protein intake was related to younger age and several socioeconomic measures, including more years of education, land and television ownership, and employment in business, farming, or as a laborer (for men) or as a homemaker (for women). This study found a high prevalence of underweight among study participants. Nonetheless, most participants had adequate protein intake according to Food and Agriculture Organization standards for body weight.

  17. Biochemical studies of some non-conventional sources of proteins. Part 7. Effect of detoxification treatments on the nutritional quality of apricot kernels.

    PubMed

    el-Adawy, T A; Rahma, E H; el-Badawey, A A; Gomaa, M A; Lásztity, R; Sarkadi, L

    1994-01-01

    Detoxification of apricot kernels by soaking in distilled water and ammonium hydroxide for 30 h at 47 degrees C decreased the total protein, non-protein nitrogen, total ash, glucose, sucrose, minerals, non-essential amino acids, polar amino acids, acidic amino acids, aromatic amino acids, antinutritional factors, hydrocyanic acid, tannins and phytic acid. On the other hand, removal of toxic and bitter compounds from apricot kernels increased the relative content of crude fibre, starch, total essential amino acids. Higher in-vitro protein digestibility and biological value was also observed. Generally, the detoxified apricot kernels were nutritionally well balanced. Utilization and incorporation of detoxified apricot kernel flours in food products is completely safe from the toxicity point of view.

  18. Apparent total tract macronutrient digestibility, fecal characteristics, and fecal fermentative end-product concentrations of healthy adult dogs fed bioprocessed soy protein.

    PubMed

    Beloshapka, A N; de Godoy, M R C; Detweiler, K B; Newcomb, M; Ellegård, K H; Fahey, G C; Swanson, K S

    2016-09-01

    Animal proteins are commonly used in extruded dog foods. Plant-based proteins have a more consistent nutrient profile than animal sources but may contain antinutritional factors, including trypsin inhibitors and oligosaccharides. Bioprocessed soy protein (SP; HP-300; Hamlet Protein, Inc., Findlay, OH) is a processed soy-based product with low antinutritional factor concentrations and high protein quality. The objective was to evaluate the effects of SP on apparent total tract macronutrient digestibility, fecal characteristics, and fecal fermentative end products. Furthermore, this study aimed to identify if SP can be a replacement for poultry byproduct meal (PBPM) in dog food and determine if there are practical limits to its use. Three palatability experiments were conducted to evaluate 1) 0 vs. 12% SP, 2) 0 vs. 48% SP, and 3) 12 vs. 48% SP. For digestibility, 48 healthy adult Beagle dogs (20 females and 28 males; 3.4 yr mean age and 10.0 kg mean BW) were randomly allotted to 1 of 6 dietary treatments, 0 (control), 4, 8, 12, 24, and 48% SP, in a completely randomized design. All diets were formulated to meet Association of American Feed Control Officials nutrient profiles and contained approximately 30% CP and 16% fat. The treatment period consisted of a 10-d diet adaptation phase followed by a 4-d fresh and total fecal collection phase. The palatability results suggest that of the 3 inclusion levels tested (0, 12, or 48% SP), the best inclusion of SP is 12%, which was preferred over 0 and 48% SP. Digestibility and fecal data were evaluated for linear and quadratic effects using SAS. Stool output (on both an as-is and a DM basis) did not differ from the control except for the 48% SP treatment ( < 0.01). Fecal output per unit food intake differed ( < 0.01) from the control only at the 24 and 48% SP inclusion rates. No significant effects of feeding SP were found on stool consistency scores. Digestibility of DM, OM, and energy did not differ from the control at any

  19. "De-novo" amino acid sequence elucidation of protein G'e by combined "top-down" and "bottom-up" mass spectrometry.

    PubMed

    Yefremova, Yelena; Al-Majdoub, Mahmoud; Opuni, Kwabena F M; Koy, Cornelia; Cui, Weidong; Yan, Yuetian; Gross, Michael L; Glocker, Michael O

    2015-03-01

    Mass spectrometric de-novo sequencing was applied to review the amino acid sequence of a commercially available recombinant protein G´ with great scientific and economic importance. Substantial deviations to the published amino acid sequence (Uniprot Q54181) were found by the presence of 46 additional amino acids at the N-terminus, including a so-called "His-tag" as well as an N-terminal partial α-N-gluconoylation and α-N-phosphogluconoylation, respectively. The unexpected amino acid sequence of the commercial protein G' comprised 241 amino acids and resulted in a molecular mass of 25,998.9 ± 0.2 Da for the unmodified protein. Due to the higher mass that is caused by its extended amino acid sequence compared with the original protein G' (185 amino acids), we named this protein "protein G'e." By means of mass spectrometric peptide mapping, the suggested amino acid sequence, as well as the N-terminal partial α-N-gluconoylations, was confirmed with 100% sequence coverage. After the protein G'e sequence was determined, we were able to determine the expression vector pET-28b from Novagen with the Xho I restriction enzyme cleavage site as the best option that was used for cloning and expressing the recombinant protein G'e in E. coli. A dissociation constant (K(d)) value of 9.4 nM for protein G'e was determined thermophoretically, showing that the N-terminal flanking sequence extension did not cause significant changes in the binding affinity to immunoglobulins.

  20. Nucleic Acids for Ultra-Sensitive Protein Detection

    PubMed Central

    Janssen, Kris P. F.; Knez, Karel; Spasic, Dragana; Lammertyn, Jeroen

    2013-01-01

    Major advancements in molecular biology and clinical diagnostics cannot be brought about strictly through the use of genomics based methods. Improved methods for protein detection and proteomic screening are an absolute necessity to complement to wealth of information offered by novel, high-throughput sequencing technologies. Only then will it be possible to advance insights into clinical processes and to characterize the importance of specific protein biomarkers for disease detection or the realization of “personalized medicine”. Currently however, large-scale proteomic information is still not as easily obtained as its genomic counterpart, mainly because traditional antibody-based technologies struggle to meet the stringent sensitivity and throughput requirements that are required whereas mass-spectrometry based methods might be burdened by significant costs involved. However, recent years have seen the development of new biodetection strategies linking nucleic acids with existing antibody technology or replacing antibodies with oligonucleotide recognition elements altogether. These advancements have unlocked many new strategies to lower detection limits and dramatically increase throughput of protein detection assays. In this review, an overview of these new strategies will be given. PMID:23337338

  1. Unusual binding of ursodeoxycholic acid to ileal bile acid binding protein: role in activation of FXRα.

    PubMed

    Fang, Changming; Filipp, Fabian V; Smith, Jeffrey W

    2012-04-01

    Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA.

  2. Exposure to phthalic acid, phthalate diesters and phthalate monoesters from foodstuffs: UK total diet study results.

    PubMed

    Bradley, Emma L; Burden, Richard A; Bentayeb, Karim; Driffield, Malcolm; Harmer, Nick; Mortimer, David N; Speck, Dennis R; Ticha, Jana; Castle, Laurence

    2013-01-01

    Phthalates are ubiquitous in the environment and thus exposure to these compounds can occur in various forms. Foods are one source of such exposure. There are only a limited number of studies that describe the levels of phthalates (diesters, monoesters and phthalic acid) in foods and assess the exposure from this source. In this study the levels of selected phthalate diesters, phthalate monoesters and phthalic acid in total diet study (TDS) samples are determined and the resulting exposure estimated. The methodology for the determination of phthalic acid and nine phthalate monoesters (mono-isopropyl phthalate, mono-n-butyl phthalate, mono-isobutyl phthalate, mono-benzyl phthalate, mono-cyclohexyl phthalate, mono-n-pentyl phthalate, mono-(2-ethylhexyl) phthalate, mono-n-octyl phthalate and mono-isononyl phthalate) in foods is described. In this method phthalate monoesters and phthalic acid are extracted from the foodstuffs with a mixture of acidified acetonitrile and dichloromethane. The method uses isotope-labelled phthalic acid and phthalate monoester internal standards and is appropriate for quantitative determination in the concentration range of 5-100 µg kg⁻¹. The method was validated in-house and its broad applicability demonstrated by the analysis of high-fat, high-carbohydrate and high-protein foodstuffs as well as combinations of all three major food constituents. The methodology used for 15 major phthalate diesters has been reported elsewhere. Phthalic acid was the most prevalent phthalate, being detected in 17 food groups. The highest concentration measured was di-(2-ethylhexyl) phthalate in fish (789 µg kg⁻¹). Low levels of mono-n-butyl phthalate and mono-(2-ethylhexyl) phthalate were detected in several of the TDS animal-based food groups and the highest concentrations measured corresponded with the most abundant diesters (di-n-butyl phthalate and di-(2-ethylhexyl) phthalate). The UK Committee on Toxicity of Chemicals in Food, Consumer Products

  3. Peroxisome proliferator-binding protein: identification and partial characterization of nafenopin-, clofibric acid-, and ciprofibrate-binding proteins from rat liver.

    PubMed Central

    Lalwani, N D; Alvares, K; Reddy, M K; Reddy, M N; Parikh, I; Reddy, J K

    1987-01-01

    Peroxisome proliferators (PP) induce a highly predictable pleiotropic response in rat and mouse liver that is characterized by hepatomegaly, increase in peroxisome number in hepatocytes, and induction of certain peroxisomal enzymes. The PP-binding protein (PPbP) was purified from rat liver cytosol by a two-step procedure involving affinity chromatography and ion-exchange chromatography. Three PP, nafenopin and its structural analogs clofibric acid and ciprofibrate, were used as affinity ligands and eluting agents. This procedure yields a major protein with an apparent Mr of 70,000 on NaDodSO4/PAGE in the presence of reducing agent and Mr 140,000 (Mr 140,000-160,000) on gel filtration and polyacrylamide gradient gel electrophoresis under nondenaturing conditions, indicating that the active protein is a dimer. This protein has an acidic pI of 4.2 under nondenaturing conditions, which rises to 5.6 under denaturing conditions. The isolation of the same Mr 70,000 protein with three different, but structurally related, agents as affinity ligands and the immunological identity of the isolated proteins constitute strong evidence that this protein is the PPbP capable of recognizing PP that are structurally related to clofibrate. The PPbP probably plays an important role in the regulation of PP-induced pleiotropic response. Images PMID:3474650

  4. Visualization of Iron-Binding Micelles in Acidic Recombinant Biomineralization Protein, MamC

    DOE PAGES

    Kashyap, Sanjay; Woehl, Taylor; Valverde-Tercedor, Carmen; ...

    2014-01-01

    Biological macromolecules are utilized in low-temperature synthetic methods to exert precise control over nanoparticle nucleation and placement. They enable low-temperature formation of a variety of functional nanostructured materials with properties often not achieved via conventional synthetic techniques. Here we report on the in situ visualization of a novel acidic bacterial recombinant protein, MamC, commonly present in the magnetosome membrane of several magnetotactic bacteria, including Magnetococcus marinus , strain MC-1. Our findings provide an insight into the self-assembly of MamC and point to formation of the extended protein surface, which is assumed to play an important role in the formation ofmore » biotemplated inorganic nanoparticles. The self-organization of MamC is compared to the behavior of another acidic recombinant iron-binding protein, Mms6.« less

  5. Visualization of Iron-Binding Micelles in Acidic Recombinant Biomineralization Protein, MamC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Sanjay; Woehl, Taylor; Valverde-Tercedor, Carmen

    2014-03-07

    Biological macromolecules are utilized in low-temperature synthetic methods to exert precise control over nanoparticle nucleation and placement. They enable low-temperature formation of a variety of functional nanostructured materials with properties often not achieved via conventional synthetic techniques. Here we report on the in situ visualization of a novel acidic bacterial recombinant protein, MamC, commonly present in the magnetosome membrane of several magnetotactic bacteria, including Magnetococcus marinus, strain MC-1. Our findings provide an insight into the self-assembly of MamC and point to formation of the extended protein surface, which is assumed to play an important role in the formation of biotemplatedmore » inorganic nanoparticles. The self-organization of MamC is compared to the behavior of another acidic recombinant iron-binding protein, Mms6.« less

  6. Acid-degradable polyurethane particles for protein-based vaccines

    PubMed Central

    Bachelder, Eric M.; Beaudette, Tristan T.; Broaders, Kyle E.; Paramonov, Sergey E.; Dashe, Jesse; Fréchet, Jean M. J.

    2009-01-01

    Acid-degradable particles containing a model protein antigen, ovalbumin, were prepared from a polyurethane with acetal moieties embedded throughout the polymer, and characterized by dynamic light scattering and transmission electron microscopy. The small molecule degradation by-product of the particles was synthesized and tested in vitro for toxicity indicating an LC50 of 12,500 μg/ml. A new liquid chromatography-mass spectrometry technique was developed to monitor the in vitro degradation of these particles. The degradation by-product inside RAW macrophages was at its highest level after 24 hours of culture and was efficiently exocytosed until it was no longer detectable after four days. When tested in vitro, these particles induced a substantial increase in the presentation of the immunodominant ovalbumin-derived peptide SIINFEKL in both macrophages and dendritic cells. In addition, vaccination with these particles generated a cytotoxic T-lymphocyte response that was superior to both free ovalbumin and particles made from an analogous but slower-degrading acid-labile polyurethane polymer. Overall, we present a fully degradable polymer system with non-toxic by-products, which may find use in various biomedical applications including protein-based vaccines. PMID:18710254

  7. Differential Occurrence of Interactions and Interaction Domains in Proteins Containing Homopolymeric Amino Acid Repeats

    PubMed Central

    Pelassa, Ilaria; Fiumara, Ferdinando

    2015-01-01

    Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as “junk” sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in

  8. [Dynamics of amino acid and protein metabolism in laying hens after the administration of 15N-labeled wheat protein. 11. Incorporation of 15N in the tissues and the amino acids of the muscles].

    PubMed

    Gruhn, K; Zander, R

    1989-03-01

    Over a period of 4 days 12 colostomized laying hens daily received 36 g 15N labelled wheat with 15N excess (15N') of 14.37 atom-% together with a conventional feed mixture for laying hens. The labelling of the lysine N in the wheat was 13.58 atom-%, that of histidine N 14.38 and that of arginine 15N' 13.63 atom-% 15N'. Three hens each were butchered 12, 36, 60 and 108 h after the last 15N' feeding. The first three hens did not receive any feed before being butchered. The following three hens each received the unlabelled feed ration for another 1, 2 or 4 days resp. after the main period until they were butchered. The total of skeleton muscles, the heart and the stomach muscle (without inner skin) of each hen were combined into one sample, cut thinly, drenched with fluid nitrogen and pulverized. N, 15N' and the basic and non-basic amino acids as well as their 15N' were determined in the individual samples. In contrast to the organs, the proteins in the muscle tissue have a long half life so that a slight decrease of atom-% 15N' in the muscles could only be detected after 108 h. The 14N and 15N' quota of the non-basic amino acids in the total nitrogen of the muscles is 50%. The 14N quota of the basic amino acids is 30% and the 15N' quota only 22.5% in the total muscle N. The heavy nitrogen of the free lysine in the TCA soluble N fraction is hardly detectable 36 h and 60 h after the last 15N' supply and not at all after 108 h. In contrast to this, the other two free basic amino acids remain significantly higher labelled in dependence on the last butchering time.

  9. Optimizing total reflection X-ray fluorescence for direct trace element quantification in proteins I: Influence of sample homogeneity and reflector type

    NASA Astrophysics Data System (ADS)

    Wellenreuther, G.; Fittschen, U. E. A.; Achard, M. E. S.; Faust, A.; Kreplin, X.; Meyer-Klaucke, W.

    2008-12-01

    Total reflection X-ray fluorescence (TXRF) is a very promising method for the direct, quick and reliable multi-elemental quantification of trace elements in protein samples. With the introduction of an internal standard consisting of two reference elements, scandium and gallium, a wide range of proteins can be analyzed, regardless of their salt content, buffer composition, additives and amino acid composition. This strategy also enables quantification of matrix effects. Two potential issues associated with drying have been considered in this study: (1) Formation of heterogeneous residues of varying thickness and/or density; and (2) separation of the internal standard and protein during drying (which has to be prevented to allow accurate quantification). These issues were investigated by microbeam X-ray fluorescence (μXRF) with special emphasis on (I) the influence of sample support and (II) the protein / buffer system used. In the first part, a model protein was studied on well established sample supports used in TXRF, PIXE and XRF (Mylar, siliconized quartz, Plexiglas and silicon). In the second part we imaged proteins of different molecular weight, oligomerization state, bound metals and solubility. A partial separation of protein and internal standard was only observed with untreated silicon, suggesting it may not be an adequate support material. Siliconized quartz proved to be the least prone to heterogeneous drying of the sample and yielded the most reliable results.

  10. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review.

    PubMed

    Chalamaiah, M; Dinesh Kumar, B; Hemalatha, R; Jyothirmayi, T

    2012-12-15

    The fish processing industry produces more than 60% by-products as waste, which includes skin, head, viscera, trimmings, liver, frames, bones, and roes. These by-product wastes contain good amount of protein rich material that are normally processed into low market-value products, such as animal feed, fish meal and fertilizer. In view of utilizing these fish industry wastes, and for increasing the value to several underutilised fish species, protein hydrolysates from fish proteins are being prepared by several researchers all over the world. Fish protein hydrolysates are breakdown products of enzymatic conversion of fish proteins into smaller peptides, which normally contain 2-20 amino acids. In recent years, fish protein hydrolysates have attracted much attention of food biotechnologists due to the availability of large quantities of raw material for the process, and presence of high protein content with good amino acid balance and bioactive peptides (antioxidant, antihypertensive, immunomodulatory and antimicrobial peptides). Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Comparison of femtosecond laser and continuous wave UV sources for protein-nucleic acid crosslinking.

    PubMed

    Fecko, Christopher J; Munson, Katherine M; Saunders, Abbie; Sun, Guangxing; Begley, Tadhg P; Lis, John T; Webb, Watt W

    2007-01-01

    Crosslinking proteins to the nucleic acids they bind affords stable access to otherwise transient regulatory interactions. Photochemical crosslinking provides an attractive alternative to formaldehyde-based protocols, but irradiation with conventional UV sources typically yields inadequate product amounts. Crosslinking with pulsed UV lasers has been heralded as a revolutionary technique to increase photochemical yield, but this method had only been tested on a few protein-nucleic acid complexes. To test the generality of the yield enhancement, we have investigated the benefits of using approximately 150 fs UV pulses to crosslink TATA-binding protein, glucocorticoid receptor and heat shock factor to oligonucleotides in vitro. For these proteins, we find that the quantum yields (and saturating yields) for forming crosslinks using the high-peak intensity femtosecond laser do not improve on those obtained with low-intensity continuous wave (CW) UV sources. The photodamage to the oligonucleotides and proteins also has comparable quantum yields. Measurements of the photochemical reaction yields of several small molecules selected to model the crosslinking reactions also exhibit nearly linear dependences on UV intensity instead of the previously predicted quadratic dependence. Unfortunately, these results disprove earlier assertions that femtosecond pulsed laser sources provide significant advantages over CW radiation for protein-nucleic acid crosslinking.

  12. Effects of 20 standard amino acids on the growth, total fatty acids production, and γ-linolenic acid yield in Mucor circinelloides.

    PubMed

    Tang, Xin; Zhang, Huaiyuan; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2014-12-01

    Twenty standard amino acids were examined as single nitrogen source on the growth, total fatty acids production, and yield of γ-linolenic acid (GLA) in Mucor circinelloides. Of the amino acids, tyrosine gave the highest biomass and lipid accumulation and thus resulted in a high GLA yield with respective values of 17.8 g/L, 23 % (w/w, dry cell weight, DCW), and 0.81 g/L, which were 36, 25, and 72 % higher than when the fungus was grown with ammonium tartrate. To find out the potential mechanism underlying the increased lipid accumulation of M. circinelloides when grown on tyrosine, the activity of lipogenic enzymes of the fungus during lipid accumulation phase was measured. The enzyme activities of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase were up-regulated, while NADP-isocitrate dehydrogenase was down-regulated by tyrosine during the lipid accumulation phase of the fungus which suggested that these enzymes may be involved in the increased lipid biosynthesis by tyrosine in this fungus.

  13. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.

  14. High dietary protein intake is associated with an increased body weight and total death risk.

    PubMed

    Hernández-Alonso, Pablo; Salas-Salvadó, Jordi; Ruiz-Canela, Miguel; Corella, Dolores; Estruch, Ramón; Fitó, Montserrat; Arós, Fernando; Gómez-Gracia, Enrique; Fiol, Miquel; Lapetra, José; Basora, Josep; Serra-Majem, Lluis; Muñoz, Miguel Ángel; Buil-Cosiales, Pilar; Saiz, Carmen; Bulló, Mònica

    2016-04-01

    High dietary protein diets are widely used to manage overweight and obesity. However, there is a lack of consensus about their long-term efficacy and safety. Therefore, the aim of this study was to assess the effect of long-term high-protein consumption on body weight changes and death outcomes in subjects at high cardiovascular risk. A secondary analysis of the PREDIMED trial was conducted. Dietary protein was assessed using a food-frequency questionnaire during the follow-up. Cox proportional hazard models were used to estimate the multivariate-adjusted hazard ratio (HR) and 95% confidence intervals (95%CI) for protein intake in relation to the risk of body weight and waist circumference changes, cardiovascular disease, cardiovascular death, cancer death and total death. Higher total protein intake, expressed as percentage of energy, was significantly associated with a greater risk of weight gain when protein replaced carbohydrates (HR: 1.90; 95%CI: 1.05, 3.46) but not when replaced fat (HR: 1.69; 95%CI: 0.94, 3.03). However, no association was found between protein intake and waist circumference. Contrary, higher total protein intake was associated with a greater risk of all-cause death in both carbohydrate and fat substitution models (HR: 1.59; 95%CI: 1.08, 2.35; and HR: 1.66; 95%CI: 1.13, 2.43, respectively). A higher consumption of animal protein was associated with an increased risk of fatal and non-fatal outcomes when protein substituted carbohydrates or fat. Higher dietary protein intake is associated with long-term increased risk of body weight gain and overall death in a Mediterranean population at high cardiovascular risk. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  15. Total folate and folic acid intakes from foods and dietary supplements of US children aged 1–13 y1234

    PubMed Central

    Bailey, Regan L; McDowell, Margaret A; Dodd, Kevin W; Gahche, Jaime J; Dwyer, Johanna T; Picciano, Mary Frances

    2010-01-01

    Background: Total folate intake includes naturally occurring food folate and folic acid from fortified foods and dietary supplements. Recent reports have focused on total folate intakes of persons aged ≥14 y. Information on total folate intakes of young children, however, is limited. Objective: The objective was to compute total folate and total folic acid intakes of US children aged 1–13 y by using a statistical method that adjusts for within-person variability and to compare these intakes with the Dietary Reference Intake guidelines for adequacy and excess. Design: Data from the 2003–2006 National Health and Nutrition Examination Survey, a nationally representative cross-sectional survey, were analyzed. Total folate intakes were derived by combining intakes of food folate (naturally occurring and folic acid from fortified foods) on the basis of 24-h dietary recall results and folic acid intakes from dietary supplements on the basis of a 30-d questionnaire. Results: More than 95% of US children consumed at least the Estimated Average Requirement (EAR) for folate from foods alone. More than one-third (35%) of US children aged 1–13 y used dietary supplements, and 28% used dietary supplements containing folic acid. Supplement users had significantly higher total folate and folic acid intakes than did nonusers. More than half (53%) of dietary supplement users exceeded the Tolerable Upper Intake Level (UL) for total folic acid (fortified food + supplements) as compared with 5% of nonusers. Conclusions: Total folate intakes of most US children aged 1–13 y meet the EAR. Children who used dietary supplements had significantly higher total folate intakes and exceeded the UL by >50%. PMID:20534747

  16. Photo-induced formation of nitrous acid (HONO) on protein surfaces

    NASA Astrophysics Data System (ADS)

    Meusel, Hannah; Elshorbany, Yasin; Bartels-Rausch, Thorsten; Selzle, Kathrin; Lelieveld, Jos; Ammann, Markus; Pöschl, Ulrich; Su, Hang; Cheng, Yafang

    2014-05-01

    The study of nitrous acid (HONO) is of great interest, as the photolysis of HONO leads to the OH radical, which is the most important oxidant in the troposphere. HONO is directly emitted by combustion of fossil fuel and from soil biogenic nitrite (Su et al., 2011), and can also be formed by gas phase reactions of NO and OH and heterogeneous reactions of NO2. Previous atmospheric measurements have shown unexpectedly high HONO concentrations during daytime. Measured mixing ratios were about one order of magnitude higher than model simulations (Kleffmann et al. 2005, Vogel et al. 2003). The additional daytime source of HONO might be attributed to the photolysis of adsorbed nitric acid or heterogeneous photochemistry of NO2 on organic substrates, such as humic acids or polyphenolic compounds (Stemmler et al., 2006), or indirectly through nitration of phenols and subsequent photolysis of nitrophenols (Sosedova et al., 2011, Bejan et al., 2006). An important reactive surface for the heterogeneous formation of HONO could involve proteins, which are ubiquitous in the environment. They are part of coarse biological aerosol particles like pollen grains, fine particles (fragments of pollen, microorganism, plant debris) and dissolved in rainwater, soil and road dust (Miguel et al. 1999). In this project a thin film of bovine serum albumin (BSA), a model protein with 67 kDa and 21 tyrosine residues per molecule, is irradiated and exposed to nitrogen dioxide in humidified nitrogen. The formation of HONO is measured with long path absorption photometry (LOPAP). The generated HONO is in the range of 100 to 1100 ppt depending on light intensity, NO2 concentration and film thickness. Light induced HONO formation on protein surfaces is stable over the 20-hours experiment of irradiation and exposure. On the other hand, light activated proteins reacting with NO2 form nitrated proteins, as detected by liquid chromatography (LC-DAD). Our experiments on tetranitromethane (TNM) nitrated

  17. Hydrodynamic size-based separation and characterization of protein aggregates from total cell lysates

    PubMed Central

    Tanase, Maya; Zolla, Valerio; Clement, Cristina C; Borghi, Francesco; Urbanska, Aleksandra M; Rodriguez-Navarro, Jose Antonio; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Cuervo, Ana Maria; Santambrogio, Laura

    2016-01-01

    Herein we describe a protocol that uses hollow-fiber flow field-flow fractionation (FFF) coupled with multiangle light scattering (MALS) for hydrodynamic size-based separation and characterization of complex protein aggregates. The fractionation method, which requires 1.5 h to run, was successfully modified from the analysis of protein aggregates, as found in simple protein mixtures, to complex aggregates, as found in total cell lysates. In contrast to other related methods (filter assay, analytical ultracentrifugation, gel electrophoresis and size-exclusion chromatography), hollow-fiber flow FFF coupled with MALS allows a flow-based fractionation of highly purified protein aggregates and simultaneous measurement of their molecular weight, r.m.s. radius and molecular conformation (e.g., round, rod-shaped, compact or relaxed). The polyethersulfone hollow fibers used, which have a 0.8-mm inner diameter, allow separation of as little as 20 μg of total cell lysates. In addition, the ability to run the samples in different denaturing and nondenaturing buffer allows defining true aggregates from artifacts, which can form during sample preparation. The protocol was set up using Paraquat-induced carbonylation, a model that induces protein aggregation in cultured cells. This technique will advance the biochemical, proteomic and biophysical characterization of molecular-weight aggregates associated with protein mutations, as found in many CNS degenerative diseases, or chronic oxidative stress, as found in aging, and chronic metabolic and inflammatory conditions. PMID:25521790

  18. Growth and Clinical Variables in Nitrogen-Restricted Piglets Fed an Adjusted Essential Amino Acid Mix: Effects of Partially Intact Protein-Based Diets.

    PubMed

    Worsøe, Päivi S; Sangild, Per T; van Goudoever, Johannes B; Koletzko, Berthold; van der Beek, Eline M; Abrahamse-Berkeveld, Marieke; Burrin, Douglas G; van de Heijning, Bert J M; Thymann, Thomas

    2018-06-13

    Current recommendations for protein levels in infant formula are intended to ensure that growth matches or exceeds growth of breastfed infants, but may provide a surplus of amino acids (AAs). Recent infant studies with AA-based formulas support specific adjustment of the essential amino acid (EAA) composition allowing for potential lowering of total protein levels. With the use of a combination of intact protein and free EAAs, we designed a formula that meets these adjusted EAA requirements for infants. Our objective was to test whether this adjusted formula is safe and supports growth in a protein-restricted piglet model, and whether it shows better growth than an isonitrogenous formula based on free AAs. Term piglets (Landrace × Yorkshire × Duroc, n = 72) were fed 1 of 4 isoenergetic formulas containing 70% intact protein and 30% of an EAA mixture or a complete AA-based control for 20 d: standard formula (ST-100), ST-100 with 25% reduction in proteinaceous nitrogen (ST-75), ST-75 with an adjusted EAA composition (O-75), or a diet as O-75, given as a complete AA-based diet (O-75AA). After an initial adaptation period, ST-75 and O-75 pigs showed similar growth rates, both lower than ST-100 pigs (∼25 compared with 31 g · kg-1 · d-1, respectively). The O-75AA pigs showed further reduced growth rate (15 g · kg-1 · d-1) and fat proportion (both P < 0.05, relative to O-75). Formula based partly on intact protein is superior to AA-based formula in this experimental setting. The 25% lower, but EAA-adjusted, partially intact protein-based formula resulted in similar weight gain with a concomitant increased AA catabolism, compared with the standard 25% lower standard formula in artificially reared, protein-restricted piglets. Further studies should investigate if and how the specific EAA adjustments that allow for lowering of total protein levels will affect growth and body composition development in formula-fed infants.

  19. Vanillic acid from Actinidia deliciosa impedes virulence in Serratia marcescens by affecting S-layer, flagellin and fatty acid biosynthesis proteins.

    PubMed

    Sethupathy, Sivasamy; Ananthi, Sivagnanam; Selvaraj, Anthonymuthu; Shanmuganathan, Balakrishnan; Vigneshwari, Loganathan; Balamurugan, Krishnaswamy; Mahalingam, Sundarasamy; Pandian, Shunmugiah Karutha

    2017-11-27

    Serratia marcescens is one of the important nosocomial pathogens which rely on quorum sensing (QS) to regulate the production of biofilm and several virulence factors. Hence, blocking of QS has become a promising approach to quench the virulence of S. marcescens. For the first time, QS inhibitory (QSI) and antibiofilm potential of Actinidia deliciosa have been explored against S. marcescens clinical isolate (CI). A. deliciosa pulp extract significantly inhibited the virulence and biofilm production without any deleterious effect on the growth. Vanillic acid was identified as an active lead responsible for the QSI activity. Addition of vanillic acid to the growth medium significantly affected the QS regulated production of biofilm and virulence factors in a concentration dependent mode in S. marcescens CI, ATCC 14756 and MG1. Furthermore vanillic acid increased the survival of Caenorhabditis elegans upon S. marcescens infection. Proteomic analysis and mass spectrometric identification of differentially expressed proteins revealed the ability of vanillic acid to modulate the expression of proteins involved in S-layers, histidine, flagellin and fatty acid production. QSI potential of the vanillic acid observed in the current study paves the way for exploring it as a potential therapeutic candidate to treat S. marcescens infections.

  20. Circulating Omega-6 Polyunsaturated Fatty Acids and Total and Cause-Specific Mortality: The Cardiovascular Health Study

    PubMed Central

    Wu, Jason HY; Lemaitre, Rozenn N; King, Irena B; Song, Xiaoling; Psaty, Bruce M; Siscovick, David S; Mozaffarian, Dariush

    2014-01-01

    Background While omega-6 polyunsaturated fatty acids(n-6 PUFA) have been recommended to reduce CHD, controversy remains about benefits vs. harms, including concerns over theorized pro-inflammatory effects of n-6 PUFA. We investigated associations of circulating n-6 PUFA including linoleic acid(LA, the major dietary PUFA), γ-linolenic acid(GLA), dihomo-γ-linolenic acid(DGLA), and arachidonic acid(AA),with total and cause-specific mortality in the Cardiovascular Health Study, a community-based US cohort. Methods and Results Among 2,792 participants(age≥65y) free of CVD at baseline, plasma phospholipid n-6 PUFAwere measured at baseline using standardized methods. All-cause and cause-specific mortality, and total incident CHD and stroke, were assessed and adjudicated centrally. Associations of PUFA with risk were assessed by Cox regression. During 34,291 person-years of follow-up(1992–2010), 1,994 deaths occurred(678 cardiovascular deaths), with 427 fatal and 418 nonfatal CHD, and 154 fatal and 399 nonfatal strokes. In multivariable models, higher LA was associated with lower total mortality, with extreme-quintile HR=0.87(P-trend=0.005). Lower death was largely attributable to CVD causes, especially nonarrhythmic CHD mortality(HR=0.51, 95%CI=0.32–0.82, P-trend=0.001). Circulating GLA, DGLA, and AA were not significantly associated with total or cause-specific mortality; e.g., for AA and CHD death, the extreme-quintile HR was 0.97 (95%CI=0.70–1.34, P-trend=0.87). Evaluated semi-parametrically, LA showed graded inverse associations with total mortality(P=0.005). There was little evidence that associations of n-6 PUFA with total mortality varied by age, sex, race, or plasma n-3 PUFA. Evaluating both n-6 and n-3 PUFA, lowest risk was evident with highest levels of both. Conclusions High circulating LA, but not other n-6 PUFA, was inversely associated with total and CHD mortality in older adults. PMID:25124495

  1. Protein Expression Level of Skin Wrinkle-Related Factors in Hairless Mice Fed Hyaluronic Acid.

    PubMed

    Yun, Min-Kyu; Lee, Sung-Jin; Song, Hye-Jin; Yu, Heui-Jong; Rha, Chan Su; Kim, Dae-Ok; Choe, Soo-Young; Sohn, Johann

    2017-04-01

    The aim of this study was to evaluate the wrinkle improving effect of hyaluronic acid intakes. Wrinkles were induced by exposing the skin of hairless mice to ultraviolet B (UVB) irradiation for 14 weeks. Hyaluronic acid was administered to the mice for 14 weeks including 4 weeks before experiments. Skin tissue was assayed by enzyme-linked immunosorbent assay to determine protein expression of wrinkle-related markers. The group supplemented with high concentrations of hyaluronic acid appeared significantly better than control group for collagen, matrix metalloproteinase 1, interleukin (IL)-1β, and IL-6 assay. Transforming growth factor-β1 (TGF-β1) and hyaluronic acid synthase 2 (HAS-2) were not shown to be significantly different. In conclusion, hyaluronic acid administration regulated expression levels of proteins associated with skin integrity, and improved the wrinkle level in skin subjected to UVB irradiation.

  2. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria*

    PubMed Central

    Yao, Jiangwei; Bruhn, David F.; Frank, Matthew W.; Lee, Richard E.; Rock, Charles O.

    2016-01-01

    Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria. PMID:26567338

  3. Nutritional composition and total collagen content of three commercially important edible jellyfish.

    PubMed

    Khong, Nicholas M H; Yusoff, Fatimah Md; Jamilah, B; Basri, Mahiran; Maznah, I; Chan, Kim Wei; Nishikawa, Jun

    2016-04-01

    The study aimed to evaluate nutraceutical potential of three commercially significant edible jellyfish species (Acromitus hardenbergi, Rhopilema hispidum and Rhopilema esculentum). The bell and oral arms of these jellyfishes were analyzed for their proximate composition, calorific value, collagen content, amino acid profile, chemical score and elemental constituent. In general, all jellyfish possessed low calorific values (1.0-4.9 kcal/g D.W.) and negligible fat contents (0.4-1.8 g/100 g D.W.), while protein (20.0-53.9 g/100 g D.W.) and minerals (15.9-57.2g/100g D.W.) were found to be the richest components. Total collagen content of edible jellyfish varied from 122.64 to 693.92 mg/g D.W., accounting for approximately half its total protein content. The dominant amino acids in both bell and oral arms of all jellyfish studied includes glycine, glutamate, threonine, proline, aspartate and arginine, while the major elements were sodium, potassium, chlorine, magnesium, sulfur, zinc and silicon. Among the jellyfish, A. hardenbergi exhibited significantly higher total amino acids, chemical scores and collagen content (p<0.05) compared to R. hispidum and R. esculentum. Having good protein quality and low calories, edible jellyfish is an appealing source of nutritive ingredients for the development of oral formulations, nutricosmetics and functional food. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts

    PubMed Central

    Aloisi, Iris; Parrotta, Luigi; Ruiz, Karina B.; Landi, Claudia; Bini, Luca; Cai, Giampiero; Biondi, Stefania; Del Duca, Stefano

    2016-01-01

    Quinoa (Chenopodium quinoa Willd) is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Seed storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49) and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR), exposed to two levels of salinity (100 and 300 mM NaCl) were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage) were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC) and flavonoid (TFC) contents, and antioxidant activity (AA) of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace. VR had the

  5. Strategies for Cd accumulation in Dittrichia viscosa (L.) Greuter: role of the cell wall, non-protein thiols and organic acids.

    PubMed

    Fernández, R; Fernández-Fuego, D; Bertrand, A; González, A

    2014-05-01

    Dittrichia viscosa (L.) Greuter is plant species commonly found in degraded zones of Asturias (Spain), where it accumulates high levels of Cd, but the mechanisms involved in this response in non-model plants have not been elucidated. In this way, we analysed the fraction of the total Cd bound to the cell walls, the ultrastructural localization of this metal, and non-protein thiol and organic acid concentrations of two clones of D. viscosa: DV-A (from a metal-polluted soil) and DV-W (from a non-polluted area). After 10 days of hydroponic culture with Cd, fractionation and ultrastructural localisation studies showed that most of the Cd accumulated by D. viscosa was kept in the cell wall. The non-protein thiol content rose in D. viscosa with Cd exposure, especially in the non-metallicolous DV-W clone, and in both clones we found with Cd exposure a synthesis de novo of phytochelatins PC2 and PC3 in shoots and roots and also of other phytochelatin-related compounds, particularly in roots. Regarding organic acids, their concentration in both clones decreased in shoots after Cd treatment, but increased in roots, mainly due to changes in the citric acid concentration. Thus, retention of Cd in the cell wall seems to be the first strategy in response to metal entry in D. viscosa and once inside cells non-protein thiols and organic acids might also participate in Cd tolerance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Photo-CIDNP NMR spectroscopy of amino acids and proteins.

    PubMed

    Kuhn, Lars T

    2013-01-01

    Photo-chemically induced dynamic nuclear polarization (CIDNP) is a nuclear magnetic resonance (NMR) phenomenon which, among other things, is exploited to extract information on biomolecular structure via probing solvent-accessibilities of tryptophan (Trp), tyrosine (Tyr), and histidine (His) amino acid side chains both in polypeptides and proteins in solution. The effect, normally triggered by a (laser) light-induced photochemical reaction in situ, yields both positive and/or negative signal enhancements in the resulting NMR spectra which reflect the solvent exposure of these residues both in equilibrium and during structural transformations in "real time". As such, the method can offer - qualitatively and, to a certain extent, quantitatively - residue-specific structural and kinetic information on both the native and, in particular, the non-native states of proteins which, often, is not readily available from more routine NMR techniques. In this review, basic experimental procedures of the photo-CIDNP technique as applied to amino acids and proteins are discussed, recent improvements to the method highlighted, and future perspectives presented. First, the basic principles of the phenomenon based on the theory of the radical pair mechanism (RPM) are outlined. Second, a description of standard photo-CIDNP applications is given and it is shown how the effect can be exploited to extract residue-specific structural information on the conformational space sampled by unfolded or partially folded proteins on their "path" to the natively folded form. Last, recent methodological advances in the field are highlighted, modern applications of photo-CIDNP in the context of biological NMR evaluated, and an outlook into future perspectives of the method is given.

  7. Effect of technological processing and preservation method on amino acid content and protein quality in kale (Brassica oleracea L. var. acephala) leaves.

    PubMed

    Korus, Anna

    2012-02-01

    The aim of the investigation was to evaluate the level of amino acids and quality of protein in raw and processed kale leaves. In all samples the dominant amino acids in g kg⁻¹ raw matter were glutamic acid, aspartic acid and proline. In raw kale leaves the limiting amino acids were lysine, isoleucine and cystine with methionine, and in the remaining products also valine and leucine. Blanched kale leaves contained 88% of the amino acid content in raw leaves, 76% in cooked leaves, and 69-77% and 71-72% of initial levels in frozen and canned products, respectively. In raw, blanched and cooked leaves essential amino acids comprised 44%, 44% and 47%, respectively, of total amino acids; in frozen and canned leaves the proportions were 46% and 44%, respectively. The essential amino acid index was 97 for canned products, 100-109 for frozen leaves, and 117 for raw kale leaves. Raw and processed (blanched or cooked) kale leaves are a good source of amino acids. Copyright © 2011 Society of Chemical Industry.

  8. Folic acid modulates eNOS activity via effects on posttranslational modifications and protein–protein interactions☆

    PubMed Central

    Taylor, Sarah Y.; Dixon, Hannah M.; Yoganayagam, Shobana; Price, Natalie; Lang, Derek

    2013-01-01

    Folic acid enhances endothelial function and improves outcome in primary prevention of cardiovascular disease. The exact intracellular signalling mechanisms involved remain elusive and were therefore the subject of this study. Particular focus was placed on folic acid-induced changes in posttranslational modifications of endothelial nitric oxide synthase (eNOS). Cultured endothelial cells were exposed to folic acid in the absence or presence of phosphatidylinositol-3' kinase/Akt (PI3K/Akt) inhibitors. The phosphorylation status of eNOS was determined via western blotting. The activities of eNOS and PI3K/Akt were evaluated. The interaction of eNOS with caveolin-1, Heat-Shock Protein 90 and calmodulin was studied using co-immunoprecipitation. Intracellular localisation of eNOS was investigated using sucrose gradient centrifugation and confocal microscopy. Folic acid promoted eNOS dephosphorylation at negative regulatory sites, and increased phosphorylation at positive regulatory sites. Modulation of phosphorylation status was concomitant with increased cGMP concentrations, and PI3K/Akt activity. Inhibition of PI3K/Akt revealed specific roles for this kinase pathway in folic acid-mediated eNOS phosphorylation. Regulatory protein and eNOS protein associations were altered in favour of a positive regulatory effect in the absence of bulk changes in intracellular eNOS localisation. Folic acid-mediated eNOS activation involves the modulation of eNOS phosphorylation status at multiple residues and positive changes in important protein–protein interactions. Such intracellular mechanisms may in part explain improvements in clinical vascular outcome following folic acid treatment. PMID:23796957

  9. Isolation of an acidic protein from cholesterol gallstones, which inhibits the precipitation of calcium carbonate in vitro.

    PubMed Central

    Shimizu, S; Sabsay, B; Veis, A; Ostrow, J D; Rege, R V; Dawes, L G

    1989-01-01

    In seeking to identify nucleating/antinucleating proteins involved in the pathogenesis of cholesterol gallstones, a major acidic protein was isolated from each of 13 samples of cholesterol gallstones. After the stones were extracted with methyl t-butyl ether to remove cholesterol, and methanol to remove bile salts and other lipids, they were demineralized with EDTA. The extracts were desalted with Sephadex-G25, and the proteins separated by PAGE. A protein was isolated, of molecular weight below 10 kD, which included firmly-bound diazo-positive yellow pigments and contained 24% acidic, but only 7% basic amino acid residues. The presence of N-acetyl glucosamine suggested that this was a glycoprotein. This protein at concentrations as low as 2 micrograms/ml, but neither human serum albumin nor its complex with bilirubin, inhibited calcium carbonate precipitation from a supersaturated solution in vitro. This protein could be precipitated from 0.15 M NaCl solution by the addition of 0.5 M calcium chloride. Considering that cholesterol gallstones contain calcium and pigment at their centers, and that small acidic proteins are important regulators in other biomineralization systems, this protein seems likely to play a role in the pathogenesis of cholesterol gallstones. Images PMID:2592569

  10. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biedermannová, Lada, E-mail: lada.biedermannova@ibt.cas.cz; Schneider, Bohdan

    2015-10-27

    The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. Themore » results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.« less

  11. Protective effect of naringin on 3-nitropropionic acid-induced neurodegeneration through the modulation of matrix metalloproteinases and glial fibrillary acidic protein.

    PubMed

    Gopinath, Kulasekaran; Sudhandiran, Ganapasam

    2016-01-01

    Naringin (4',5,7-trihydroxy-flavonone-7-rhamnoglucoside), a flavonone present in grapefruit, has recently been reported to protect against neurodegeration, induced with 3-nitropropionic acid (3-NP), through its antioxidant, anti-inflammatory, and antiapoptotic properties. This study used a rat model of 3-NP-induced neurodegeneration to investigate the neuroprotective effects of naringin exerted by modulating the expression of matrix metalloproteinases and glial fibrillary acidic protein. Neurodegeneration was induced with 3-NP (10 mg/kg body mass, by intraperitoneal injection) once a day for 2 weeks, and induced rats were treated with naringin (80 mg/kg body mass, by oral gavage, once a day for 2 weeks). Naringin ameliorated the motor abnormalities caused by 3-NP, and reduced blood-brain barrier dysfunction by decreasing the expression of matrix metalloproteinases 2 and 9, along with increasing the expression of the tissue inhibitors of metalloproteinases 1 and 2 in 3-NP-induced rats. Further, naringin reduced 3-NP-induced neuroinflammation by decreasing the expression of nuclear factor-kappa B and glial fibrillary acidic protein. Thus, naringin exerts protective effects against 3-NP-induced neurodegeneration by ameliorating the expressions of matrix metalloproteinases and glial fibrillary acidic protein.

  12. Comparison of intravenous versus topical tranexamic acid in total knee arthroplasty: a prospective randomized study.

    PubMed

    Patel, Jay N; Spanyer, Jonathon M; Smith, Langan S; Huang, Jiapeng; Yakkanti, Madhusudhan R; Malkani, Arthur L

    2014-08-01

    The purpose of this study was to compare the efficacy of topical Tranexamic Acid (TXA) versus Intravenous (IV) Tranexamic Acid for reduction of blood loss following primary total knee arthroplasty (TKA). This prospective randomized study involved 89 patients comparing topical administration of 2.0g TXA, versus IV administration of 10mg/kg. There were no differences between the two groups with regard to patient demographics or perioperative function. The primary outcome measure, perioperative change in hemoglobin level, showed a decrease of 3.06 ± 1.02 in the IV group and 3.42 ± 1.07 in the topical group (P = 0.108). There were no statistical differences between the groups in preoperative hemoglobin level, lowest postoperative hemoglobin level, or total drain output. One patient in the topical group required blood transfusion (P = 0.342). Based on our study, topical Tranexamic Acid has similar efficacy to IV Tranexamic Acid for TKA patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Extraction of Total Nucleic Acids From Ticks for the Detection of Bacterial and Viral Pathogens

    PubMed Central

    Crowder, Chris D.; Rounds, Megan A.; Phillipson, Curtis A.; Picuri, John M.; Matthews, Heather E.; Halverson, Justina; Schutzer, Steven E.; Ecker, David J.; Eshoo, Mark W.

    2010-01-01

    Ticks harbor numerous bacterial, protozoal, and viral pathogens that can cause serious infections in humans and domestic animals. Active surveillance of the tick vector can provide insight into the frequency and distribution of important pathogens in the environment. Nucleic-acid based detection of tick-borne bacterial, protozoan, and viral pathogens requires the extraction of both DNA and RNA (total nucleic acids) from ticks. Traditional methods for nucleic acid extraction are limited to extraction of either DNA or the RNA from a sample. Here we present a simple bead-beating based protocol for extraction of DNA and RNA from a single tick and show detection of Borrelia burgdorferi and Powassan virus from individual, infected Ixodes scapularis ticks. We determined expected yields for total nucleic acids by this protocol for a variety of adult tick species. The method is applicable to a variety of arthropod vectors, including fleas and mosquitoes, and was partially automated on a liquid handling robot. PMID:20180313

  14. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C.

    PubMed

    Lin, Zhaoyu; Liu, Fei; Shi, Peiliang; Song, Anying; Huang, Zan; Zou, Dayuan; Chen, Qin; Li, Jianxin; Gao, Xiang

    2018-02-26

    Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.

  15. DNA Asymmetric Strand Bias Affects the Amino Acid Composition of Mitochondrial Proteins

    PubMed Central

    Min, Xiang Jia; Hickey, Donal A.

    2007-01-01

    Abstract Variations in GC content between genomes have been extensively documented. Genomes with comparable GC contents can, however, still differ in the apportionment of the G and C nucleotides between the two DNA strands. This asymmetric strand bias is known as GC skew. Here, we have investigated the impact of differences in nucleotide skew on the amino acid composition of the encoded proteins. We compared orthologous genes between animal mitochondrial genomes that show large differences in GC and AT skews. Specifically, we compared the mitochondrial genomes of mammals, which are characterized by a negative GC skew and a positive AT skew, to those of flatworms, which show the opposite skews for both GC and AT base pairs. We found that the mammalian proteins are highly enriched in amino acids encoded by CA-rich codons (as predicted by their negative GC and positive AT skews), whereas their flatworm orthologs were enriched in amino acids encoded by GT-rich codons (also as predicted from their skews). We found that these differences in mitochondrial strand asymmetry (measured as GC and AT skews) can have very large, predictable effects on the composition of the encoded proteins. PMID:17974594

  16. Use of tranexamic acid in primary total knee replacement: effects on perioperative blood loss.

    PubMed

    Volquind, Daniel; Zardo, Remi Antônio; Winkler, Bruno Costamilan; Londero, Bruno Bertagnolli; Zanelatto, Natália; Leichtweis, Gisele Perondi

    2016-01-01

    The use of tranexamic acid in primary total knee replacement surgeries has been the subject of constant study. The strategies to reduce bleeding are aimed at reducing the need for blood transfusion due to the risks involved. In this study we evaluated the use of tranexamic acid in reducing bleeding, need for blood transfusion, and prevalence of postoperative deep vein thrombosis in primary total knee replacement. 62 patients undergoing primary total knee replacement were enrolled in the study, from June 2012 to May 2013, and randomized to receive a single dose of 2.5g of intravenous tranexamic acid (Group TA) or saline (Group GP), 5min before opening the pneumatic tourniquet, respectively. Hemoglobin, hematocrit, and blood loss were recorded 24h after surgery. Deep vein thrombosis was investigated during patient's hospitalization and 15 and 30 days after surgery in review visits. There was no demographic difference between groups. Group TA had 13.89% decreased hematocrit (p=0.925) compared to placebo. Group TA had a decrease of 12.28% (p=0.898) in hemoglobin compared to Group GP. Group TA had a mean decrease of 187.35mL in blood loss (25.32%) compared to group GP (p=0.027). The number of blood transfusions was higher in Group GP (p=0.078). Thromboembolic events were not seen in this study. Tranexamic acid reduced postoperative bleeding without promoting thromboembolic events. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  17. Amino acid composition of two masticatory nuts (Cola acuminata and Garcinia kola) and a snack nut (Anacardium occidentale).

    PubMed

    Adeyeye, E I; Asaolu, S S; Aluko, A O

    2007-06-01

    The amino acid compositions of Cola acuminata, Garcinia kola and Anacardium occidentale were evaluated by ion-exchange chromatography. Glutamic acid was the most concentrated acid in the samples. In all the amino acids determined, A. occidentale had the most concentrated acid on a pairwise basis. The total amino acids were 356.24 mg/g protein, 112.90 mg/g protein and 659.17 mg/g protein for C. acuminata, G. kola and A. occidentale, respectively. The percentage total essential amino acids were 38.39% (C. acuminata), 47.05% (G. kola) and 51.04% (A. occidentale). Also the percentage total acidic amino acids were 38.16% (C. acuminata), 30.61% (G. kola) and 30.35% (A. occidentale). The calculated isoelectric points were 2.0 (C. acuminata), 0.7 (G. kola) and 3.9 (A. occidentale), showing they can all be precipitated at acidic pH. While threonine was the limiting amino acid in A. occidentale, it was valine in both C. acuminata and G. kola. The percentage cystine (Cys) levels in the total sulphur amino acid were 44.27% (C. acuminata), 37.75% (G. kola) and 50.51% (A. occidentale). The aim of this work was to compare the amino acid profile of the samples. It is recommended that C. acuminata and G. kola consumption be avoided by ulcer patients because of their high levels of acidic amino acids. A. occidentale amino acid scores ranged from 42% to 127%, suggesting that it could be used to enhance the protein quality of cereals through food complementation.

  18. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of total protein (expressed as free amino acid) L-Alanine 6.1 L-Arginine 6.6 L-Aspartic acid... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6 L... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Amino acids. 172.320 Section 172.320 Food and...

  19. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of total protein (expressed as free amino acid) L-Alanine 6.1 L-Arginine 6.6 L-Aspartic acid... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6 L... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Amino acids. 172.320 Section 172.320 Food and...

  20. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of total protein (expressed as free amino acid) L-Alanine 6.1 L-Arginine 6.6 L-Aspartic acid... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6 L... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Amino acids. 172.320 Section 172.320 Food and...

  1. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of total protein (expressed as free amino acid) L-Alanine 6.1 L-Arginine 6.6 L-Aspartic acid... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6 L... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Amino acids. 172.320 Section 172.320 Food and Drugs...

  2. Amino acid nutrition beyond methionine and lysine for milk protein

    USDA-ARS?s Scientific Manuscript database

    Amino acids are involved in many important physiological processes affecting the production, health, and reproduction of high-producing dairy cows. Most research and recommendations for lactating dairy cows has focused on methionine and lysine for increasing milk protein yield. This is because these...

  3. Interaction of perfluoroalkyl acids with human liver fatty acid-binding protein.

    PubMed

    Sheng, Nan; Li, Juan; Liu, Hui; Zhang, Aiqian; Dai, Jiayin

    2016-01-01

    Perfluoroalkyl acids (PFAAs) are highly persistent and bioaccumulative, resulting in their broad distribution in humans and the environment. The liver is an important target for PFAAs, but the mechanisms behind PFAAs interaction with hepatocyte proteins remain poorly understood. We characterized the binding of PFAAs to human liver fatty acid-binding protein (hL-FABP) and identified critical structural features in their interaction. The binding interaction of PFAAs with hL-FABP was determined by fluorescence displacement and isothermal titration calorimetry (ITC) assay. Molecular simulation was conducted to define interactions at the binding sites. ITC measurement revealed that PFOA/PFNA displayed a moderate affinity for hL-FABP at a 1:1 molar ratio, a weak binding affinity for PFHxS and no binding for PFHxA. Moreover, the interaction was mainly mediated by electrostatic attraction and hydrogen bonding. Substitution of Asn111 with Asp caused loss of binding affinity to PFAA, indicating its crucial role for the initial PFAA binding to the outer binding site. Substitution of Arg122 with Gly caused only one molecule of PFAA to bind to hL-FABP. Molecular simulation showed that substitution of Arg122 increased the volume of the outer binding pocket, making it impossible to form intensive hydrophobic stacking and hydrogen bonds with PFOA, and highlighting its crucial role in the binding process. The binding affinity of PFAAs increased significantly with their carbon number. Arg122 and Asn111 played a pivotal role in these interactions. Our findings may help understand the distribution pattern, bioaccumulation, elimination, and toxicity of PFAAs in humans.

  4. Total Protein of Whole Saliva as a Biomarker of Anaerobic Threshold

    ERIC Educational Resources Information Center

    Bortolini, Miguel Junior Sordi; De Agostini, Guilherme Gularte; Reis, Ismair Teodoro; Lamounier, Romeu Paulo Martins Silva; Blumberg, Jeffrey B.; Espindola, Foued Salmen

    2009-01-01

    Saliva provides a convenient and noninvasive matrix for assessing specific physiological parameters, including some biomarkers of exercise. We investigated whether the total protein concentration of whole saliva (TPWS) would reflect the anaerobic threshold during an incremental exercise test. After a warm-up period, 13 nonsmoking men performed a…

  5. Efficiency and safety of tranexamic acid in reducing blood loss in total shoulder arthroplasty

    PubMed Central

    Sun, Chuan-Xiu; Zhang, Lu; Mi, Li-Dong; Du, Guang-Yu; Sun, Xue-Gang; He, Sheng-Wei

    2017-01-01

    Abstract Objective: This meta-analysis aimed to evaluate the efficiency and safety of tranexamic acid for reducing blood loss and transfusion requirements in patients undergoing total shoulder arthroplasty. Methods: A systematic search was performed in Embase (1980–2017.04, embase.com), Medline (1966–2017.04, medline.com), PubMed (1966–2017.04, pubmed.com), ScienceDirect (1985–2017.04, sciencedirect.com), and Web of Science (1950–2017.04, webofknowledge.com). Study which assessed the efficiency and safety of tranexamic acid in total shoulder arthroplasty was selected. Meta-analysis was performed using Stata 11.0 software. Results: In all, 484 patients from 2 randomized controlled trials (RCTs) and 2 non-RCTs were subjected to meta-analysis. The present meta-analysis demonstrated that there was less total blood loss (mean difference [MD] −172.16, 95% confidence interval [CI] −35.46 to −308.87, P = .01, d = 0.33) and transfusion rate (odds ratio 0.34, 95% CI 0.13 to 0.91, P = .03, d = 0.29) in tranexamic acid groups compared with the control groups. There were no significant differences in duration of surgery (MD 0.02, 95% CI −0.12 to 0.22, P = .89, d = 0.19), length of stay (MD −0.06, 95% CI −0.26 to 0.14, P = .56, d = 0.20), or incidence of adverse effects such as deep venous thrombosis (odds ratio 1.15, 95% CI 0.33 to 4.00, P = .83, d = 0.53). Conclusion: Clinical application of tranexamic acid seemed to result in significant reductions in total blood loss, hemoglobin decline and transfusion requirements following total shoulder arthroplasty. Moreover, no increased risk of the thrombotic events was identified. Due to the limited quality of the evidence currently available, higher quality RCTs are required. PMID:28562553

  6. AMINO ACID MIXTURES EFFECTIVE PARENTERALLY FOR LONG CONTINUED PLASMA PROTEIN PRODUCTION. CASEIN DIGESTS COMPARED

    PubMed Central

    Madden, S. C.; Woods, R. R.; Shull, F. W.; Whipple, G. H.

    1944-01-01

    When blood plasma proteins are depleted by bleeding with return of red cells suspended in saline (plasmapheresis) it is possible to bring dogs to a steady state of hypoproteinemia and a constant level of plasma protein production if the diet nitrogen intake is controlled and limited. Such dogs are outwardly normal but have a lowered resistance to infection and to certain intoxications. The ten growth essential amino acids of Rose plus glycine will maintain nitrogen balance and produce as much new plasma protein as will good diet proteins. This good utilization is demonstrated over periods of several months when the amino acids are given either orally or parenterally. There is no evidence of toxicity in general nor to unnatural forms of these synthetic amino acids in particular. Given parenterally appropriate mixtures of these amino acids are well tolerated even upon rapid injection. The minimal daily requirements for a 10 kilo dog may be given intravenously in 10 minutes without reaction. Subcutaneously a 10 per cent solution may be given rapidly without reaction. Among various mixtures tested Vt approximates a minimum for a 10 kilo dog. It contains in grams (dl-threonine 0.7, dl-valine 1.5, l-(-) leucine 1.5, dl-isoleucine 1.4, dl-lysine hydrochloride 1.5, l(-) tryptophane 0.4, dl-phenylalanine 1.0, dl-methionine 0.6, l(+)-histidine hydrochloride 0.5, l(+)-arginine hydrochloride 0.5, and glycine 1.0. The presence of glycine improves tolerance to rapid intravenous injection, but excess glycine does not improve utilization of the mixture. Over a long period this mixture appears suboptimal in quantity. Doubled it is more than ample. Of two casein digests tested the one prepared by enzymatic hydrolysis provided good nitrogen retention and fairly good plasma protein production but was much less tolerable upon intravenous injection than certain mixtures of pure amino acids. The other one prepared by acid hydrolysis and tryptophane fortification afforded bare nitrogen

  7. Structural evidence for solvent-stabilisation by aspartic acid as a mechanism for halophilic protein stability in high salt concentrations.

    PubMed

    Lenton, Samuel; Walsh, Danielle L; Rhys, Natasha H; Soper, Alan K; Dougan, Lorna

    2016-07-21

    Halophilic organisms have adapted to survive in high salt environments, where mesophilic organisms would perish. One of the biggest challenges faced by halophilic proteins is the ability to maintain both the structure and function at molar concentrations of salt. A distinct adaptation of halophilic proteins, compared to mesophilic homologues, is the abundance of aspartic acid on the protein surface. Mutagenesis and crystallographic studies of halophilic proteins suggest an important role for solvent interactions with the surface aspartic acid residues. This interaction, between the regions of the acidic protein surface and the solvent, is thought to maintain a hydration layer around the protein at molar salt concentrations thereby allowing halophilic proteins to retain their functional state. Here we present neutron diffraction data of the monomeric zwitterionic form of aspartic acid solutions at physiological pH in 0.25 M and 2.5 M concentration of potassium chloride, to mimic mesophilic and halophilic-like environmental conditions. We have used isotopic substitution in combination with empirical potential structure refinement to extract atomic-scale information from the data. Our study provides structural insights that support the hypothesis that carboxyl groups on acidic residues bind water more tightly under high salt conditions, in support of the residue-ion interaction model of halophilic protein stabilisation. Furthermore our data show that in the presence of high salt the self-association between the zwitterionic form of aspartic acid molecules is reduced, suggesting a possible mechanism through which protein aggregation is prevented.

  8. Localization of a portion of the liver isoform of fatty-acid-binding protein (L-FABP) to peroxisomes

    PubMed Central

    Antonenkov, Vasily D.; Sormunen, Raija T.; Ohlmeier, Steffen; Amery, Leen; Fransen, Marc; Mannaerts, Guy P.; Hiltunen, J. Kalervo

    2005-01-01

    The liver isoform of fatty-acid-binding protein (L-FABP) facilitates the cellular uptake, transport and metabolism of fatty acids and is also involved in the regulation of gene expressions and cell differentiation. Consistent with these functions, L-FABP is predominantly present in the cytoplasm and to a lesser extent in the nucleus; however, a significant portion of this protein has also been detected in fractions containing different organelles. More recent observations, notably on L-FABP-deficient mice, indicated a possible direct involvement of L-FABP in the peroxisomal oxidation of long-chain fatty acids. In order to clarify the links between L-FABP and peroxisomal lipid metabolism, we reinvestigated the subcellular distribution of the protein. Analytical subcellular fractionation by a method preserving the intactness of isolated peroxisomes, two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with MS analysis, and immunoelectron microscopy of liver sections demonstrate the presence of L-FABP in the matrix of peroxisomes as a soluble protein. Peroxisomal L-FABP was highly inducible by clofibrate. The induction of L-FABP was accompanied by a marked increase in the binding capacity of peroxisomal matrix proteins for oleic acid and cis-parinaric acid. The peroxisomal β-oxidation of palmitoyl-CoA and acyl-CoA thioesterase activity were stimulated by L-FABP, indicating that the protein modulates the function of peroxisomal lipid-metabolizing enzymes. The possible role of intraperoxisomal L-FABP in lipid metabolism is discussed. PMID:16262600

  9. Localization of a portion of the liver isoform of fatty-acid-binding protein (L-FABP) to peroxisomes.

    PubMed

    Antonenkov, Vasily D; Sormunen, Raija T; Ohlmeier, Steffen; Amery, Leen; Fransen, Marc; Mannaerts, Guy P; Hiltunen, J Kalervo

    2006-03-01

    The liver isoform of fatty-acid-binding protein (L-FABP) facilitates the cellular uptake, transport and metabolism of fatty acids and is also involved in the regulation of gene expressions and cell differentiation. Consistent with these functions, L-FABP is predominantly present in the cytoplasm and to a lesser extent in the nucleus; however, a significant portion of this protein has also been detected in fractions containing different organelles. More recent observations, notably on L-FABP-deficient mice, indicated a possible direct involvement of L-FABP in the peroxisomal oxidation of long-chain fatty acids. In order to clarify the links between L-FABP and peroxisomal lipid metabolism, we reinvestigated the subcellular distribution of the protein. Analytical subcellular fractionation by a method preserving the intactness of isolated peroxisomes, two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with MS analysis, and immunoelectron microscopy of liver sections demonstrate the presence of L-FABP in the matrix of peroxisomes as a soluble protein. Peroxisomal L-FABP was highly inducible by clofibrate. The induction of L-FABP was accompanied by a marked increase in the binding capacity of peroxisomal matrix proteins for oleic acid and cis-parinaric acid. The peroxisomal beta-oxidation of palmitoyl-CoA and acyl-CoA thioesterase activity were stimulated by L-FABP, indicating that the protein modulates the function of peroxisomal lipid-metabolizing enzymes. The possible role of intraperoxisomal L-FABP in lipid metabolism is discussed.

  10. Amino acid sequences of ribosomal proteins S11 from Bacillus stearothermophilus and S19 from Halobacterium marismortui. Comparison of the ribosomal protein S11 family.

    PubMed

    Kimura, M; Kimura, J; Hatakeyama, T

    1988-11-21

    The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45-49%) than to the eubacterial counterparts (35%).

  11. A 100-Year Review: Protein and amino acid nutrition in dairy cows.

    PubMed

    Schwab, Charles G; Broderick, Glen A

    2017-12-01

    Considerable progress has been made in understanding the protein and amino acid (AA) nutrition of dairy cows. The chemistry of feed crude protein (CP) appears to be well understood, as is the mechanism of ruminal protein degradation by rumen bacteria and protozoa. It has been shown that ammonia released from AA degradation in the rumen is used for bacterial protein formation and that urea can be a useful N supplement when lower protein diets are fed. It is now well documented that adequate rumen ammonia levels must be maintained for maximal synthesis of microbial protein and that a deficiency of rumen-degradable protein can decrease microbial protein synthesis, fiber digestibility, and feed intake. Rumen-synthesized microbial protein accounts for most of the CP flowing to the small intestine and is considered a high-quality protein for dairy cows because of apparent high digestibility and good AA composition. Much attention has been given to evaluating different methods to quantify ruminal protein degradation and escape and for measuring ruminal outflows of microbial protein and rumen-undegraded feed protein. The methods and accompanying results are used to determine the nutritional value of protein supplements and to develop nutritional models and evaluate their predictive ability. Lysine, methionine, and histidine have been identified most often as the most-limiting amino acids, with rumen-protected forms of lysine and methionine available for ration supplementation. Guidelines for protein feeding have evolved from simple feeding standards for dietary CP to more complex nutrition models that are designed to predict supplies and requirements for rumen ammonia and peptides and intestinally absorbable AA. The industry awaits more robust and mechanistic models for predicting supplies and requirements of rumen-available N and absorbed AA. Such models will be useful in allowing for feeding lower protein diets and increased efficiency of microbial protein synthesis

  12. Use of refractometry for determination of psittacine plasma protein concentration.

    PubMed

    Cray, Carolyn; Rodriguez, Marilyn; Arheart, Kristopher L

    2008-12-01

    Previous studies have demonstrated both poor and good correlation of total protein concentrations in various avian species using refractometry and biuret methodologies. The purpose of the current study was to compare these 2 techniques of total protein determination using plasma samples from several psittacine species and to determine the effect of cholesterol and other solutes on refractometry results. Total protein concentration in heparinized plasma samples without visible lipemia was analyzed by refractometry and an automated biuret method on a dry reagent analyzer (Ortho 250). Cholesterol, glucose, and uric acid concentrations were measured using the same analyzer. Results were compared using Deming regression analysis, Bland-Altman bias plots, and Spearman's rank correlation. Correlation coefficients (r) for total protein results by refractometry and biuret methods were 0.49 in African grey parrots (n=28), 0.77 in Amazon parrots (20), 0.57 in cockatiels (20), 0.73 in cockatoos (36), 0.86 in conures (20), and 0.93 in macaws (38) (P< or =.01). Cholesterol concentration, but not glucose or uric acid concentrations, was significantly correlated with total protein concentration obtained by refractometry in Amazon parrots, conures, and macaws (n=25 each, P<.05), and trended towards significance in African grey parrots and cockatoos (P=.06). Refractometry can be used to accurately measure total protein concentration in nonlipemic plasma samples from some psittacine species. Method and species-specific reference intervals should be used in the interpretation of total protein values.

  13. Etomoxir-induced increase in UCP3 supports a role of uncoupling protein 3 as a mitochondrial fatty acid anion exporter.

    PubMed

    Schrauwen, Patrick; Hinderling, Vera; Hesselink, Matthijs K C; Schaart, Gert; Kornips, Esther; Saris, Wim H M; Westerterp-Plantenga, Margriet; Langhans, Wolfgang

    2002-10-01

    The physiological function of human uncoupling protein-3 is still unknown. Uncoupling protein-3 is increased during fasting and high-fat feeding. In these situations the availability of fatty acids to the mitochondria exceeds the capacity to metabolize fatty acids, suggesting a role for uncoupling protein-3 in handling of non-metabolizable fatty acids. To test the hypothesis that uncoupling protein-3 acts as a mitochondrial exporter of non-metabolizable fatty acids from the mitochondrial matrix, we gave human subjects Etomoxir (which blocks mitochondrial entry of fatty acids) or placebo in a cross-over design during a 36-h stay in a respiration chamber. Etomoxir inhibited 24-h fat oxidation and fat oxidation during exercise by approximately 14-19%. Surprisingly, uncoupling protein-3 content in human vastus lateralis muscle was markedly up-regulated within 36 h of Etomoxir administration. Up-regulation of uncoupling protein-3 was accompanied by lowered fasting blood glucose and increased translocation of glucose transporter-4. These data support the hypothesis that the physiological function of uncoupling protein-3 is to facilitate the outward transport of non-metabolizable fatty acids from the mitochondrial matrix and thus prevents mitochondria from the potential deleterious effects of high fatty acid levels. In addition our data show that up-regulation of uncoupling protein-3 can be beneficial in the treatment of type 2 diabetes.

  14. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes.

    PubMed

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Sánchez, Rosario; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2016-02-01

    Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics' efficiencies. β-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in 'de novo' fatty acid biosynthesis in plants. This complex, formed by four intraplastidial proteins, is responsible for the sequential condensation of two-carbon units, leading to 16- and 18-C acyl-ACP. HAD dehydrates 3-hydroxyacyl-ACP generating trans-2-enoyl-ACP. With the aim of a further understanding of fatty acid biosynthesis in sunflower (Helianthus annuus) seeds, two β-hydroxyacyl-[ACP] dehydratase genes have been cloned from developing seeds, HaHAD1 (GenBank HM044767) and HaHAD2 (GenBank GU595454). Genomic DNA gel blot analyses suggest that both are single copy genes. Differences in their expression patterns across plant tissues were detected. Higher levels of HaHAD2 in the initial stages of seed development inferred its key role in seed storage fatty acid synthesis. That HaHAD1 expression levels remained constant across most tissues suggest a housekeeping function. Heterologous expression of these genes in E. coli confirmed both proteins were functional and able to interact with the bacterial complex 'in vivo'. The large increase of saturated fatty acids in cells expressing HaHAD1 and HaHAD2 supports the idea that these HAD genes are closely related to the E. coli FabZ gene. The proposed three-dimensional models of HaHAD1 and HaHAD2 revealed differences at the entrance to the catalytic tunnel attributable to Phe166/Val1159, respectively. HaHAD1 F166V was generated to study the function of this residue. The 'in vitro' enzymatic characterization of the three HAD proteins demonstrated all were active, with the mutant having intermediate K m and V max values to the wild-type proteins.

  15. Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection

    NASA Astrophysics Data System (ADS)

    Grognot, Marianne; Gallot, Guilhem

    2015-09-01

    Using Attenuated Total Reflection imaging technique in the terahertz domain, we demonstrate non-invasive, non-staining real time measurements of cytoplasm leakage during permeabilization of epithelial cells by saponin. The terahertz signal is mostly sensitive to the intracellular protein concentration in the cells, in a very good agreement with standard bicinchoninic acid protein measurements. It opens the way to in situ real time dynamics of protein content and permeabilization in live cells.

  16. Application of 1-aminocyclohexane carboxylic acid to protein nanostructure computer design

    PubMed Central

    Rodríguez-Ropero, Francisco; Zanuy, David; Casanovas, Jordi; Nussinov, Ruth; Alemán, Carlos

    2009-01-01

    Conformationally restricted amino acids are promising candidates to serve as basic pieces in redesigned protein motifs which constitute the basic modules in synthetic nanoconstructs. Here we study the ability of constrained cyclic amino acid 1-aminocyclohexane-1-carboxylic acid (Ac6c) to stabilize highly regular β-helical motifs excised from naturally occurring proteins. Calculations indicate that the conformational flexibility observed in both the ring and the main chain is significantly higher than that detected for other 1-aminocycloalkane-1-carboxylic acid (Acnc, where n refers to the size of the ring) with smaller cycles. Incorporation of Ac6c into the flexible loops of β-helical motifs indicates that the stability of such excised building blocks as well as the nano-assemblies derived from them is significantly enhanced. Thus, the intrinsic Ac6c tendency to adopt folded conformations combined with the low structural strain of the cyclohexane ring confers the ability to both self-adapt to the β-helix motif and to stabilize the overall structure by absorbing part of its conformational fluctuations. Comparison with other Acnc residues indicates that the ability to adapt to the targeted position improves considerably with the ring size, i.e. when the rigidity introduced by the strain of the ring decreases. PMID:18201062

  17. Unusual binding of ursodeoxycholic acid to ileal bile acid binding protein: role in activation of FXRα[S

    PubMed Central

    Fang, Changming; Filipp, Fabian V.; Smith, Jeffrey W.

    2012-01-01

    Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA. PMID:22223860

  18. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds.

    PubMed

    Leach, Jennie B; Schmidt, Christine E

    2005-01-01

    The goal of this work was to utilize the naturally derived bioactive polymer hyaluronic acid (HA) to create a combination tissue engineering scaffold and protein delivery device. HA is a non-immunogenic, non-adhesive glycosaminoglycan that plays significant roles in several cellular processes, including angiogenesis and the regulation of inflammation. In previous work, we created photopolymerizable glycidyl methacrylate-hyaluronic acid (GMHA) hydrogels that had controlled degradation rates, were cytocompatible, and were able to be modified with peptide moieties. In the present studies, we characterized the release of a model protein, bovine serum albumin (BSA), from GMHA and GMHA-polyethylene glycol (PEG) hydrogels. Although BSA could be released rapidly (> 60% within 6 h) from 1% GMHA hydrogels, we found that increasing either the GMHA or the PEG concentrations could lengthen the duration of protein delivery. Preliminary size exclusion chromatography studies indicated that the released BSA was almost entirely in its native monomeric form. Lastly, protein release was extended to several weeks by suspending BSA-poly(lactic-co-glycolic acid) microspheres within the hydrogel bulk. These initial studies indicate that the naturally derived biopolymer HA can be employed to design novel photopolymerizable composites that are suitable for delivering stable proteins from scaffolding in tissue engineering applications.

  19. The moderate essential amino acid restriction entailed by low-protein vegan diets may promote vascular health by stimulating FGF21 secretion.

    PubMed

    McCarty, Mark F

    2016-02-12

    The serum total and LDL cholesterol levels of long-term vegans tend to be very low. The characteristically low ratio of saturated to unsaturated fat in vegan diets, and the absence of cholesterol in such diets, clearly contribute to this effect. But there is reason to suspect that the quantity and composition of dietary protein also play a role in this regard. Vegan diets of moderate protein intake tend to be relatively low in certain essential amino acids, and as a result may increase hepatic activity of the kinase GCN2, which functions as a gauge of amino acid status. GCN2 activation boosts the liver's production of fibroblast growth factor 21 (FGF21), a factor which favorably affects serum lipids and metabolic syndrome. The ability of FGF21 to decrease LDL cholesterol has now been traced to at least two mechanisms: a suppression of hepatocyte expression of sterol response element-binding protein-2 (SREBP-2), which in turn leads to a reduction in cholesterol synthesis; and up-regulated expression of hepatocyte LDL receptors, reflecting inhibition of a mechanism that promotes proteasomal degradation of these receptors. In mice, the vascular benefits of FGF21 are also mediated by favorable effects on adipocyte function - most notably, increased adipocyte secretion of adiponectin, which directly exerts anti-inflammatory effects on the vasculature which complement the concurrent reduction in LDL particles in preventing or reversing atherosclerosis. If, as has been proposed, plant proteins preferentially stimulate glucagon secretion owing to their amino acid composition, this would represent an additional mechanism whereby plant protein promotes FGF21 activity, as glucagon acts on the liver to boost transcription of the FGF21 gene.

  20. Proteins regulating the biosynthesis and inactivation of neuromodulatory fatty acid amides.

    PubMed

    Patricelli, M P; Cravatt, B F

    2001-01-01

    Fatty acid amides (FAAs) represent a growing family of biologically active lipids implicated in a diverse range of cellular and physiological processes. At present, two general types of fatty acid amides, the N-acylethanolamines (NAEs) and the fatty acid primary amides (FAPAs), have been identified as potential physiological neuromodulators/neurotransmitters in mammals. Representative members of these two subfamilies include the endocannabinoid NAE anandamide and the sleep-inducing FAPA oleamide. In this Chapter, molecular mechanisms proposed for the biosynthesis and inactivation of FAAs are critically evaluated, with an emphasis placed on the biochemical and cell biological properties of proteins thought to mediate these processes.