Sample records for acid-based doubly cross-linked

  1. Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying.

    PubMed

    Zu, Guoqing; Shimizu, Taiyo; Kanamori, Kazuyoshi; Zhu, Yang; Maeno, Ayaka; Kaji, Hironori; Shen, Jun; Nakanishi, Kazuki

    2018-01-23

    Aerogels have many attractive properties but are usually costly and mechanically brittle, which always limit their practical applications. While many efforts have been made to reinforce the aerogels, most of the reinforcement efforts sacrifice the transparency or superinsulating properties. Here we report superflexible polyvinylpolymethylsiloxane, (CH 2 CH(Si(CH 3 )O 2/2 )) n , aerogels that are facilely prepared from a single precursor vinylmethyldimethoxysilane or vinylmethyldiethoxysilane without organic cross-linkers. The method is based on consecutive processes involving radical polymerization and hydrolytic polycondensation, followed by ultralow-cost, highly scalable, ambient-pressure drying directly from alcohol as a drying medium without any modification or additional solvent exchange. The resulting aerogels and xerogels show a homogeneous, tunable, highly porous, doubly cross-linked nanostructure with the elastic polymethylsiloxane network cross-linked with flexible hydrocarbon chains. An outstanding combination of ultralow cost, high scalability, uniform pore size, high surface area, high transparency, high hydrophobicity, excellent machinability, superflexibility in compression, superflexibility in bending, and superinsulating properties has been achieved in a single aerogel or xerogel. This study represents a significant progress of porous materials and makes the practical applications of transparent flexible aerogel-based superinsulators realistic.

  2. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid

    PubMed Central

    Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram

    2017-01-01

    Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80–100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials. PMID:28208822

  3. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid.

    PubMed

    Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram

    2017-02-13

    Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80-100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.

  4. Citric-Acid-Derived Photo-cross-Linked Biodegradable Elastomers

    PubMed Central

    Gyawali, Dipendra; Tran, Richard T.; Guleserian, Kristine J.; Tang, Liping; Yang, Jian

    2010-01-01

    Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. POMC is a low-molecular-mass pre-polymer with a molecular mass average between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation at break between 38 and 382%. FT-IR–ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague–Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications. PMID:20557687

  5. Ion exchange selectivity for cross-linked polyacrylic acid

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.

  6. Cross-Linked Micellar Spherical Nucleic Acids from Thermoresponsive Templates

    PubMed Central

    2017-01-01

    A one-pot synthesis of micellar spherical nucleic acid (SNA) nanostructures using Pluronic F127 as a thermoresponsive template is reported. These novel constructs are synthesized in a chemically straightforward process that involves intercalation of the lipid tails of DNA amphiphiles (CpG motifs for TLR-9 stimulation) into the hydrophobic regions of Pluronic F127 micelles, followed by chemical cross-linking and subsequent removal of non-cross-linked structures. The dense nucleic acid shell of the resulting cross-linked micellar SNA enhances their stability in physiological media and facilitates their rapid cellular internalization, making them effective TLR-9 immunomodulatory agents. These constructs underscore the potential of SNAs in regulating immune response and address the relative lack of stability of noncovalent constructs. PMID:28207251

  7. DNA cross-linking by dehydromonocrotaline lacks apparent base sequence preference.

    PubMed

    Rieben, W Kurt; Coulombe, Roger A

    2004-12-01

    Pyrrolizidine alkaloids (PAs) are ubiquitous plant toxins, many of which, upon oxidation by hepatic mixed-function oxidases, become reactive bifunctional pyrrolic electrophiles that form DNA-DNA and DNA-protein cross-links. The anti-mitotic, toxic, and carcinogenic action of PAs is thought to be caused, at least in part, by these cross-links. We wished to determine whether the activated PA pyrrole dehydromonocrotaline (DHMO) exhibits base sequence preferences when cross-linked to a set of model duplex poly A-T 14-mer oligonucleotides with varying internal and/or end 5'-d(CG), 5'-d(GC), 5'-d(TA), 5'-d(CGCG), or 5'-d(GCGC) sequences. DHMO-DNA cross-links were assessed by electrophoretic mobility shift assay (EMSA) of 32P endlabeled oligonucleotides and by HPLC analysis of cross-linked DNAs enzymatically digested to their constituent deoxynucleosides. The degree of DNA cross-links depended upon the concentration of the pyrrole, but not on the base sequence of the oligonucleotide target. Likewise, HPLC chromatograms of cross-linked and digested DNAs showed no discernible sequence preference for any nucleotide. Added glutathione, tyrosine, cysteine, and aspartic acid, but not phenylalanine, threonine, serine, lysine, or methionine competed with DNA as alternate nucleophiles for cross-linking by DHMO. From these data it appears that DHMO exhibits no strong base preference when forming cross-links with DNA, and that some cellular nucleophiles can inhibit DNA cross-link formation.

  8. Intra-molecular cross-linking of acidic residues for protein structure studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruppa, Gary Hermann; Young, Malin M.; Novak, Petr

    2005-03-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would be useful in developing structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine selective reagents that can cross-link lysine residues to other lysine residues or the amino terminus. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution, and solvent accessibility of themore » lysines in the protein sequence. To overcome these limitations we have investigated the use of cross-linking reagents that can react with other reactive sidechains in proteins. We used 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E), and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO sidechains can react to form 'zero-length' cross-links with nearby primary amine containing resides, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO sidechains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker ann of variable length. Using these reagents, we have found three new 'zero-length' cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18, and K63-E64). Using the dihydrazide cross-linkers, we have identified 2 new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 angstroms. These results show that additional structural

  9. To Cross-Link or Not to Cross-Link? Cross-Linking Associated Foreign Body Response of Collagen-Based Devices

    PubMed Central

    Delgado, Luis M.; Bayon, Yves; Pandit, Abhay

    2015-01-01

    Collagen-based devices, in various physical conformations, are extensively used for tissue engineering and regenerative medicine applications. Given that the natural cross-linking pathway of collagen does not occur in vitro, chemical, physical, and biological cross-linking methods have been assessed over the years to control mechanical stability, degradation rate, and immunogenicity of the device upon implantation. Although in vitro data demonstrate that mechanical properties and degradation rate can be accurately controlled as a function of the cross-linking method utilized, preclinical and clinical data indicate that cross-linking methods employed may have adverse effects on host response, especially when potent cross-linking methods are employed. Experimental data suggest that more suitable cross-linking methods should be developed to achieve a balance between stability and functional remodeling. PMID:25517923

  10. Cross-linked polyelectrolyte for direct methanol fuel cells applications based on a novel sulfonated cross-linker

    NASA Astrophysics Data System (ADS)

    Li, Mingyu; Zhang, Gang; Xu, Shuai; Zhao, Chengji; Han, Miaomiao; Zhang, Liyuan; Jiang, Hao; Liu, Zhongguo; Na, Hui

    2014-06-01

    A novel type of cross-linked proton exchange membrane of lower methanol permeation and high proton conductivity is prepared, based on a newly synthesized sulfonated cross-linker: carboxyl terminated benzimidazole trimer bearing sulfonic acid groups (s-BI). Compared to membranes cross-linked with non-sulfonated cross-linker (BI), SPEEK/s-BI-n membranes show higher IEC values and proton conductivities. Meanwhile, oxidative stability and mechanical property of SPEEK/s-BI-n membranes are obviously improved. Among SPEEK/s-BI-n membranes, SPEEK/s-BI-2 exhibits high proton conductivity, low swelling ratio (0.122 S cm-1 and 15.2% at 60 °C, respectively) and low methanol permeability coefficient. These results imply that the cross-linked membranes prepared with the newly sulfonated cross-linker are promising for the direct methanol fuel cells (DMFCs) application.

  11. Study of the effect of mixing approach on cross-linking efficiency of hyaluronic acid-based hydrogel cross-linked with 1,4-butanediol diglycidyl ether.

    PubMed

    Al-Sibani, Mohammed; Al-Harrasi, Ahmed; Neubert, Reinhard H H

    2016-08-25

    Regardless of various strategies reported for cross-linking hyaluronic acid (HA) with 1,4-butanediol diglycidyl ether (BDDE), seeking new strategies that enhance cross-linking efficiency with a low level of cross-linker is essential. In this work, we studied the influence of mixing approach on two cross-linked BDDE-HA hydrogels prepared by two different mixing approaches; the large-batch mixing approach in which the hydrogel quantities were all mixed as a single lump in one container (hydrogel 1), and the small-batches mixing approach in which the hydrogel quantities were divided into smaller batches, mixed separately at various HA/BDDE ratios then combined in one reaction mixture (hydrogel 2). The result showed that the cross-linking reaction was mixing process-dependent. Degradation tests proved that, in relation to hydrogel 1, hydrogel 2 was more stable, and exhibited a higher resistance towards hyaluronidase activity. The swelling ratio of hydrogel 1 was significantly higher than that of hydrogel 2 in distilled water; however, in phosphate buffer saline, both hydrogels showed no significant difference. SEM images demonstrated that hydrogel 2 composite showed a denser network structure and smaller pore-size than hydrogel 1. In comparison to native HA, the occurrence of chemical modification in the cross-linked hydrogels was confirmed by FTIR and NMR distinctive peaks. These peaks also provided evidence that hydrogel 2 exhibited a higher degree of modification than hydrogel 1. In conclusion, the small-batches mixing approach proved to be more effective than large-batch mixing in promoting HA-HA entanglement and increasing the probability of BDDE molecules for binding with HA chains. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Halogeno-substituted 2-aminobenzoic acid derivatives for negative ion fragmentation studies of N-linked carbohydrates.

    PubMed

    Harvey, David J

    2005-01-01

    Negative ion electrospray mass spectra of high-mannose N-linked glycans derivatised with 2-aminobenzoic acids and ionised from solutions containing ammonium hydroxide gave prominent [M-H](-) ions accompanied by weaker [M-2H](2-) ions. Fragmentation of both types of ions gave prominent singly charged glycosidic cleavage ions containing the derivatised reducing terminus and ions from the non-reducing terminus that appeared to be products of cross-ring cleavages. Differentiation of these two groups of ions was conveniently achieved in a single spectrum by use of chloro- or bromo-substituted benzoic acids in order to label ions containing the derivative with an atom with a distinctive isotope pattern. Fragmentation of the doubly charged ions gave more abundant fragments, both singly and doubly charged, than did fragmentation of the singly charged ions, but information of chain branching was masked by the appearance of prominent ions produced by internal cleavages. Copyright (c) 2005 John Wiley & Sons, Ltd.

  13. Genipin Cross-Linked Glucose Oxidase and Catalase Multi-enzyme for Gluconic Acid Synthesis.

    PubMed

    Cui, Caixia; Chen, Haibin; Chen, Biqiang; Tan, Tianwei

    2017-02-01

    In this work, glucose oxidase (GOD) and catalase (CAT) were used simultaneously to produce gluconic acid from glucose. In order to reduce the distance between the two enzymes, and therefore improve efficiency, GOD and CAT were cross-linked together using genipin. Improvements in gluconic acid production were due to quick removal of harmful intermediate hydrogen peroxide by CAT. GOD activity was significantly affected by the proportion of CAT in the system, with GOD activity in the cross-linked multi-enzyme (CLME) being 10 times higher than that in an un-cross-linked GOD/CAT mixture. The glucose conversion rate after 15 h using 15 % glucose was also 10 % higher using the CLME than was measured using a GOD/CAT mixture.

  14. Rheological characterization of cataplasm bases composed of cross-linked partially neutralized polyacrylate hydrogel.

    PubMed

    Wang, Jian; Zhang, Hongqin; An, Dianyun; Yu, Jian; Li, Wei; Shen, Teng; Wang, Jianxin

    2014-10-01

    Viscoelasticity is a useful parameter for characterizing the intrinsic properties of the cross-linked polyacrylate hydrogel used in cataplasm bases. The aim of this study was to investigate the effects of various formulation parameters on the rheological characteristics of polyacrylate hydrogel. The hydrogel layers were formed using a partially neutralized polyacrylate (Viscomate(™)), which contained acrylic acid and sodium acrylate in different copolymerization ratios, as the cross-linked gel framework. Dihydroxyaluminum aminoacetate (DAAA), which produces aluminum ions, was used as the cross-linking agent. Rheological analyses were performed using a "stress amplitude sweep" and a "frequency sweep". The results showed that greater amounts of acrylic acid in the structure of Viscomate as well as higher concentrations of DAAA and Viscomate led to an increase in the elastic modulus (G'). However, greater amounts of acrylic acid in the structure of Viscomate and higher concentrations of DAAA had an opposite on the viscous modulus (G″); this might be owing to higher steric hindrance. The results of this study can serve as guidelines for the optimization of formulations for cataplasms.

  15. Porous Cross-Linked Polyimide Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)

    2015-01-01

    Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.

  16. Acid–base bifunctional shell cross-linked micelle nanoreactor for one-pot tandem reaction

    DOE PAGES

    Lee, Li -Chen; Lu, Jie; Weck, Marcus; ...

    2015-12-29

    In shell cross-linked micelles (SCMs) containing acid sites in the shell and base sites in the core are prepared from amphiphilic poly(2-oxazoline) triblock copolymers. These materials are utilized as two-chamber nanoreactors for a prototypical acid-base bifunctional tandem deacetalization-nitroaldol reaction. Furthermore, the acid and base sites are localized in different regions of the micelle, allowing the two steps in the reaction sequence to largely proceed in separate compartments, akin to the compartmentalization that occurs in biological systems.

  17. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  18. Nucleic Acid-Based Cross-Linking Assay for Detection and Quantification of Hepatitis B Virus DNA

    PubMed Central

    Lai, Vicky C. H.; Guan, Richard; Wood, Michael L.; Lo, Su Kong; Yuen, Man-Fung; Lai, Ching-Lung

    1999-01-01

    A nucleic acid photo-cross-linking technology was used to develop a direct assay for the quantification of hepatitis B virus (HBV) DNA levels in serum. Cross-linker-modified DNA probes complementary to the viral genomes of the major HBV subtypes were synthesized and used in an assay that could be completed in less than 6 h. The quantification range of the assay, as determined by testing serial dilutions of Eurohep HBV reference standards and cloned HBV DNA, was 5 × 105 to 3 × 109 molecules of HBV DNA/ml of serum. Within-run and between-run coefficients of variation (CVs) for the assay were 4.3 and 4.0%, respectively. The assay was used to determine HBV DNA levels in 302 serum samples, and the results were compared to those obtained after testing the same samples with the Chiron branched-DNA (bDNA) assay for HBV DNA. Of the samples tested, 218 were positive for HBV DNA by both assays and 72 gave results below the cutoff for both assays. Of the remaining 12 samples, 10 were positive for HBV DNA by the cross-linking assay only; the 2 other samples were positive by the bDNA assay only. Twenty-eight samples had to be retested by the bDNA assay (CV, >20% between the results obtained from the testing of each sample in duplicate), whereas only three samples required retesting by the cross-linking assay. The correlation between the HBV DNA levels, as measured by the two tests, was very high (r = 0.902; P = 0.01). We conclude that the cross-linking assay is a sensitive and reproducible method for the detection and quantification of HBV DNA levels in serum. PMID:9854083

  19. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    PubMed

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Folic acid conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel for site specific delivery of hydrophobic drugs to cancer cells.

    PubMed

    Pillai, Jisha Jayadevan; Thulasidasan, Arun Kumar Theralikattu; Anto, Ruby John; Chithralekha, Devika Nandan; Narayanan, Ashwanikumar; Kumar, Gopalakrishnapillai Sankaramangalam Vinod

    2014-07-15

    The hydrogel based system is found to be rarely reported for the delivery of hydrophobic drug due to the incompatibility of hydrophilicity of the polymer network and the hydrophobicity of drug. This problem can be solved by preparing semi-interpenetrating network of cross-linked polymer for tuning the hydrophilicity so as to entrap the hydrophobic drugs. The current study is to develop a folic acid conjugated cross-linked pH sensitive, biocompatible polymeric hydrogel to achieve a site specific drug delivery. For that, we have synthesized a folic acid conjugated PEG cross-linked acrylic polymer (FA-CLAP) hydrogel and investigated its loading and release of curcumin. The formed polymer hydrogel was then conjugated with folic acid for the site specific delivery of curcumin to cancer cells and then further characterized and conducted the cell uptake and cytotoxicity studies on human cervical cancer cell lines (HeLa). In this study, we synthesized folic acid conjugated cross-linked acrylic hydrogel for the delivery of hydrophobic drugs to the cancer site. Poly (ethyleneglycol) (PEG) diacrylate cross-linked acrylic polymer (PAA) was prepared via inverse emulsion polymerization technique and later conjugated it with folic acid (FA-CLAP). Hydrophobic drug curcumin is entrapped into it and investigated the entrapment efficiency. Characterization of synthesized hydogel was done by using Fourier Transform-Infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC). Polymerization and folate conjugation was confirmed by FT-IR spectroscopy. The release kinetics of drug from the entrapped form was studied which showed initial burst release followed by sustained release due to swelling and increased cross-linking. In vitro cytotoxicity and cell uptake studies were conducted in human cervical cancer (HeLa) cell lines. Results showed that curcumin entrapped folate conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel showed

  1. Effects of chebulic acid on advanced glycation endproducts-induced collagen cross-links.

    PubMed

    Lee, Ji-Young; Oh, Jun-Gu; Kim, Jin Sook; Lee, Kwang-Won

    2014-01-01

    Advanced glycation end-products (AGEs) have been implicated in the development of diabetic complications. We report the antiglycating activity of chebulic acid (CA), isolated from Terminalia chebula on breaking the cross-links of proteins induced by AGEs and inhibiting the formation of AGEs. Aminoguanidine (AG) reduced 50% of glycated bovine serum albumin (BSA) with glycolaldehyde (glycol-BSA)-induced cross-links of collagen at a concentration of 67.8 ± 2.5 mM, the level of CA required for exerting a similar antiglycating activity was 38.8 ± 0.5 µM. Also, the breaking activity on collagen cross-links induced by glycol-BSA was potent with CA (IC50=1.46 ± 0.05 mM), exhibiting 50-fold stronger breaking activity than with ALT-711, a well-known cross-link breaker (IC50=72.2 ± 2.4 mM). IC50 values of DPPH· scavenging activity for CA and ascorbic acid (AA) were 39.2 ± 4.9 and 19.0 ± 1.2 µg dry matter (DM) mL(-1), respectively, and ferric reducing and antioxidant power (FRAP) activities for CA and AA were 4.70 ± 0.06 and 11.4 ± 0.1 mmol/FeSO4·7H2O/g DM, respectively. The chelating activities of CA, AG and ALT711 on copper-catalyzed oxidation of AA were compared, and in increasing order, ALT-711 (IC50 of 1.92 ± 0.20 mM)cross-linking, the activity of which may be explained in large part by its chelating and antioxidant activities, suggesting that CA may constitute a promising antiglycating candidate in intervening AGE-mediated diabetic complications.

  2. Collision-induced fragmentation of negative ions from N-linked glycans derivatized with 2-aminobenzoic acid.

    PubMed

    Harvey, David J

    2005-05-01

    N-Linked glycans from bovine ribonuclease B, chicken ovalbumin, bovine fetuin, porcine thyroglobulin and human alpha(1)-acid glycoprotein were derivatized with 2-aminobenzoic acid by reductive amination and their tandem mass spectra were recorded by negative ion electrospray ionization with a quadrupole time-of-flight mass spectrometer. Derivatives were also prepared from 2-amino-5-methyl- and 2-amino-4,5-dimethoxybenzoic acid in order to confirm the identity of fragment ions containing the reducing terminus. Major fragments from the [M - H](-) ions from the neutral glycans retained the derivative (Y-type cleavages) and provided information on sequence and branching. Other major fragments were products of A-type cross-ring cleavages giving information on antenna structure. Singly doubly and triply charged ions were formed from sialylated glycans. They produced major fragments by loss of sialic acid and a series of singly charged ions that were similar to those from the neutral analogues. Doubly charge ions were also produced by the neutral glycans and were fragmented to form product ions with one and two charges. Again, the fragment ions with a single charge were similar to those from the singly charged parents, but branching information was less obvious because of the occurrence of more abundant ions produced by multiple cleavages. Detection limits were around 200 fmol (3 : 1 signal-to-noise ratio). Copyright 2005 John Wiley & Sons, Ltd.

  3. Amino Acid Proximities in Two Sup35 Prion Strains Revealed by Chemical Cross-linking*

    PubMed Central

    Wong, Shenq-Huey; King, Chih-Yen

    2015-01-01

    Strains of the yeast prion [PSI] are different folding patterns of the same Sup35 protein, which stacks up periodically to form a prion fiber. Chemical cross-linking is employed here to probe different fiber structures assembled with a mutant Sup35 fragment. The photo-reactive cross-linker, p-benzoyl-l-phenylalanine (pBpa), was biosynthetically incorporated into bacterially prepared recombinant Sup(1–61)-GFP, containing the first 61 residues of Sup35, followed by the green fluorescent protein. Four methionine substitutions and two alanine substitutions were introduced at fixed positions in Sup(1–61) to allow cyanogen bromide cleavage to facilitate subsequent mass spectrometry analysis. Amyloid fibers of pBpa and Met/Ala-substituted Sup(1–61)-GFP were nucleated from purified yeast prion particles of two different strains, namely VK and VL, and shown to faithfully transmit specific strain characteristics to yeast expressing the wild type Sup35 protein. Intra- and intermolecular cross-linking were distinguished by tandem mass spectrometry analysis on fibers seeded from solutions containing equal amounts of 14N- and 15N-labeled protein. Fibers propagating the VL strain type exhibited intra- and intermolecular cross-linking between amino acid residues 3 and 28, as well as intra- and intermolecular linking between 32 and 55. Inter- and intramolecular cross-linking between residues 32 and 55 were detected in fibers propagating the VK strain type. Adjacencies of amino acid residues in space revealed by cross-linking were used to constrain possible chain folds of different [PSI] strains. PMID:26265470

  4. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid.

    PubMed

    Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars

    2013-11-06

    Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Nitric oxide-induced interstrand cross-links in DNA.

    PubMed

    Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R

    2003-05-01

    The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.

  6. Di-isodityrosine is the intermolecular cross-link of isodityrosine-rich extensin analogs cross-linked in vitro.

    PubMed

    Held, Michael A; Tan, Li; Kamyab, Abdolreza; Hare, Michael; Shpak, Elena; Kieliszewski, Marcia J

    2004-12-31

    Extensins are cell wall hydroxyproline-rich glycoproteins that form covalent networks putatively involving tyrosyl and lysyl residues in cross-links catalyzed by one or more extensin peroxidases. The precise cross-links remain to be chemically identified both as network components in muro and as enzymic products generated in vitro with native extensin monomers as substrates. However, some extensin monomers contain variations within their putative cross-linking motifs that complicate cross-link identification. Other simpler extensins are recalcitrant to isolation including the ubiquitous P3-type extensin whose major repetitive motif, Hyp)(4)-Ser-Hyp-Ser-(Hyp)(4)-Tyr-Tyr-Tyr-Lys, is of particular interest, not least because its Tyr-Tyr-Tyr intramolecular isodityrosine cross-link motifs are also putative candidates for further intermolecular cross-linking to form di-isodityrosine. Therefore, we designed a set of extensin analogs encoding tandem repeats of the P3 motif, including Tyr --> Phe and Lys --> Leu variations. Expression of these P3 analogs in Nicotiana tabacum cells yielded glycoproteins with virtually all Pro residues hydroxylated and subsequently arabinosylated and with likely galactosylated Ser residues. This was consistent with earlier analyses of P3 glycopeptides isolated from cell wall digests and the predictions of the Hyp contiguity hypothesis. The tyrosine-rich P3 analogs also contained isodityrosine, formed in vivo. Significantly, these isodityrosine-containing analogs were further cross-linked in vitro by an extensin peroxidase to form the tetra-tyrosine intermolecular cross-link amino acid di-isodityrosine. This is the first identification of an inter-molecular cross-link amino acid in an extensin module and corroborates earlier suggestions that di-isodityrosine represents one mechanism for cross-linking extensins in muro.

  7. The properties of water in swollen cross-linked polystyrene sulfo acids

    NASA Astrophysics Data System (ADS)

    Gagarin, A. N.; Tokmachev, M. G.; Kovaleva, S. S.; Ferapontov, N. B.

    2008-11-01

    The properties of water in polystyrene sulfo acid gels with various cross-linking degrees were studied by optical volumetry and dynamic desorption porosimetry. The isotherms of water desorption obtained by dynamic desorption porosimetry coincided with isopiestic isotherms, which allowed this method to be recommended for the determination of the amount of water in polymer gels. Joint optical volumetry and dynamic desorption porosimetry studies showed that the interphase boundary in the cross-liked hydrophilic polymer-water system did not coincide with the visible gel boundary, because gels were two-phase systems, which contained water of two types, “free” and “bound.” The influence of the degree of polymer cross-linking on the amounts and properties of water of the two types was studied. It was shown that constants of water distribution in the polymer could be calculated from the dynamic desorption porosimetry data.

  8. Biomechanical Strengthening of the Human Cornea Induced by Nanoplatform-Based Transepithelial Riboflavin/UV-A Corneal Cross-Linking.

    PubMed

    Labate, Cristina; Lombardo, Marco; Lombardo, Giuseppe; De Santo, Maria Penelope

    2017-01-01

    The purpose of this study was to investigate the biomechanical stiffening effect induced by nanoplatform-based transepithelial riboflavin/UV-A cross-linking protocol using atomic force microscopy (AFM). Twelve eye bank donor human sclerocorneal tissues were investigated using a commercial atomic force microscope operated in force spectroscopy mode. Four specimens underwent transepithelial corneal cross-linking using a hypotonic solution of 0.1% riboflavin with biodegradable polymeric nanoparticles of 2-hydroxypropyl-β-cyclodextrin plus enhancers (trometamol and ethylenediaminetetraacetic acid) and UV-A irradiation with a 10 mW/cm2 device for 9 minutes. After treatment, the corneal epithelium was removed using the Amoils brush, and the Young's modulus of the most anterior stroma was quantified as a function of scan rate by AFM. The results were compared with those collected from four specimens that underwent conventional riboflavin/UV-A corneal cross-linking and four untreated specimens. The average Young's modulus of the most anterior stroma after the nanoplatform-based transepithelial and conventional riboflavin/UV-A corneal cross-linking treatments was 2.5 times (P < 0.001) and 1.7 times (P < 0.001) greater than untreated controls respectively. The anterior stromal stiffness was significantly different between the two corneal cross-linking procedures (P < 0.001). The indentation depth decreased after corneal cross-linking treatments, ranging from an average of 2.4 ± 0.3 μm in untreated samples to an average of 1.2 ± 0.1 μm and 1.8 ± 0.1 μm after nanoplatform-based transepithelial and conventional cross-linking, respectively. The present nanotechnology-based transepithelial riboflavin/UV-A corneal cross-linking was effective to improve the biomechanical strength of the most anterior stroma of the human cornea.

  9. Preliminary study of highly cross-linked hyaluronic acid-based combination therapy for management of knee osteoarthritis-related pain

    PubMed Central

    Palmieri, Beniamino; Rottigni, Valentina; Iannitti, Tommaso

    2013-01-01

    Background Hyaluronic acid has been extensively used for treatment of knee osteoarthritis due to its anti-inflammatory properties and its ability to act as a synovial lubricant. Furthermore, it has found application in combination with other drugs in the dermatological field and in pre-clinical studies in animal models of osteoarthritis. Experimental evidence suggests that a combination of this macromolecule with other drugs may act as a slow-release depot. However, to date, to the best of our knowledge, no one has tested local intra-articular delivery of highly cross-linked hyaluronic acid combined with bisphosphonate or nonsteroidal anti-inflammatory drugs for management of knee osteoarthritis pain in the clinical setting. The aim of the present randomized double-blind study was to investigate, for the first time, the effect of a highly cross-linked hyaluronic acid, Variofill®, alone or in combination with diclofenac sodium or sodium clodronate, for management of bilateral knee osteoarthritis-related pain. Methods Sixty-two patients with symptomatic bilateral medial tibiofemoral knee osteoarthritis (Kellgren–Lawrence grade II and III) and pain in both knees corresponding to a daily visual analog scale (VAS) score ≥ 30 in the month before the beginning of the study were included in this investigation. Patients were divided into three groups: group 1, treated with an injection of hyaluronic acid alone (66 mg) into each knee; group 2, treated with an injection of hyaluronic acid (49.5 mg) plus diclofenac sodium (5 mg) into each knee; group 3, treated with an injection of hyaluronic acid (49.5 mg) plus sodium clodronate (5 mg) into each knee. Patients also underwent blood tests for measurement of erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) immediately before and at 6-month follow-up. Results Hyaluronic acid alone and in combination with sodium clodronate or diclofenac sodium produced a significant improvement in mean VAS pain score at 3 and

  10. Enzymatically Cross-linked Alginic-Hyaluronic acid Composite Hydrogels As Cell Delivery Vehicles

    PubMed Central

    Ganesh, Nitya; Hanna, Craig; Nair, Shantikumar V.; Nair, Lakshmi S.

    2013-01-01

    An injectable composite gel was developed from alginic and hyaluronic acid. The ezymatically cross-linked injectable gels were prepared via the oxidative coupling of tyramine modified sodium algiante and sodium hyaluronate in the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H2O2). The composite gels were prepared by mixing equal parts of the two tryaminated polymer solutions in 10U HRP and treating with 1.0% H2O2. The properties of the alginate gels were significanly affected by the addition of hyaluronic acid. The percentage water absorption and storage modulus of the composite gels were found to be lower than the alginate gels. The alginate and composite gels showed lower protein release compared to hyaluronate gels in the absence of hyaluronidase. Even hyaluronate gels showed only approximately 10% protein release after 14 days incubation in phosphate buffer solution. ATDC-5 cells encapsulated in the injectable gels showed high cell viability. The composite gels showed the presence of enlarged spherical cells with significantly higher metabolic activity compared to cells in hyaluronic and alginic acid gels. The results suggest the potential of the composite approach to develop covalently cross-linked hydrogels with tuneable physical, mechanical, and biological properties. PMID:23357799

  11. Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole

    NASA Astrophysics Data System (ADS)

    Søndergaard, Tonny; Cleemann, Lars Nilausen; Becker, Hans; Aili, David; Steenberg, Thomas; Hjuler, Hans Aage; Seerup, Larisa; Li, Qingfeng; Jensen, Jens Oluf

    2017-02-01

    Long-term durability of high temperature polymer electrolyte membrane fuel cells based on thermally cross-linked polybenzimidazole membranes was studied and compared with reference membranes based on linear polybenzimidazole. The test was conducted at 160 °C under constant load currents of 200 mA cm-2 for periods of 1000, 4400, and 13,000 h. Extensive beginning-of-life (BoL) and end-of-test (EoT) characterisation was carried out, and disturbance of the steady state operated cells was minimised by limiting in-line diagnostics to the low-invasive technique of electrochemical impedance spectroscopy (EIS). Up until the operating time of 9200 h, the cell equipped with the cross-linked membrane showed an average degradation rate of 0.5 μV h-1, compared to 2.6 μV h-1 for the reference membrane, though parallel tests for a shorter period of time showed deviations, likely due to malfunctioning contact between layers or cell components. For the full test period of 13,000 h, the average voltage decay rate was about 1.4 and 4.6 μV h-1 for cells equipped with cross-linked and linear polybenzimidazole membranes, respectively. EIS and post-test analysis revealed that the cross-linked membrane showed better stability in terms of area specific resistance due to improved acid retention characteristics.

  12. Levels of mature cross-links and advanced glycation end product cross-links in human vitreous.

    PubMed

    Matsumoto, Yukihiro; Takahashi, Masaaki; Chikuda, Makoto; Arai, Kiyomi

    2002-01-01

    To determine the levels of pyridinoline and deoxypyridinoline, two mature enzymatic cross-links, and pentosidine, an advanced glycation end product (AGE) cross-link, in the human vitreous, and to investigate the correlations among the cross-links and the effects of aging and diabetes mellitus (DM) on the levels of cross-links. Forty-five vitreous samples were collected from 32 patients (32 eyes) undergoing vitrectomy for diabetic retinopathy (DM group) and from 13 patients (13 eyes) (control group) who were age- and sex-matched patients with idiopathic macular hole or epiretinal membrane with no systemic conditions. The levels of the cross-links were determined using high-performance liquid chromatography after acid hydrolysis and pretreatment with SP-Sephadex. The levels of pentosidine, pyridinoline, and deoxypyridinoline were 27.3 +/- 23.1 (mean +/- SD) pmol/mL (detectable in 45 of 45 specimens), 79.0 +/- 40.2 ng/mL (43 of 45 specimens), and 54.0 +/- 9.5 (32 of 45 specimens) ng/mL, respectively. When the vitreous samples from the DM and the control groups were compared, a significant difference (P <.05) was found in the pentosidine level but not in the levels of pyridinoline or deoxypyridinoline. No significant correlations were found between age and the cross-links. Significant correlations (P <.01) were found among the cross-links. The results indicate that mature cross-link substances exist in the human vitreous. The results also suggest that glycation may occur in the vitreous after mature cross-links form and result in the formation of AGE cross-links. In human vitreous from patients with DM, increased levels of AGE cross-links may stabilize the formation of mature cross-links, but they did not increase the mature cross-links.

  13. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  14. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  15. Enrichment of Cross-Linked Peptides Using Charge-Based Fractional Diagonal Chromatography (ChaFRADIC).

    PubMed

    Tinnefeld, Verena; Venne, A Saskia; Sickmann, Albert; Zahedi, René P

    2017-02-03

    Chemical cross-linking of proteins is an emerging field with huge potential for the structural investigation of proteins and protein complexes. Owing to the often relatively low yield of cross-linking products, their identification in complex samples benefits from enrichment procedures prior to mass spectrometry analysis. So far, this is mainly accomplished by using biotin moieties in specific cross-linkers or by applying strong cation exchange chromatography (SCX) for a relatively crude enrichment. We present a novel workflow to enrich cross-linked peptides by utilizing charge-based fractional diagonal chromatography (ChaFRADIC). On the basis of two-dimensional diagonal SCX separation, we could increase the number of identified cross-linked peptides for samples of different complexity: pure cross-linked BSA, cross-linked BSA spiked into a simple protein mixture, and cross-linked BSA spiked into a HeLa lysate. We also compared XL-ChaFRADIC with size exclusion chromatography-based enrichment of cross-linked peptides. The XL-ChaFRADIC approach is straightforward, reproducible, and independent of the cross-linking chemistry and cross-linker properties.

  16. Integration of collinear-type doubly unresolved counterterms in NNLO jet cross sections

    NASA Astrophysics Data System (ADS)

    Del Duca, Vittorio; Somogyi, Gábor; Trócsányi, Zoltán

    2013-06-01

    In the context of a subtraction method for jet cross sections at NNLO accuracy in the strong coupling, we perform the integration over the two-particle factorised phase space of the collinear-type contributions to the doubly unresolved counterterms. We present the final result as a convolution in colour space of the Born cross section and of an insertion operator, which is written in terms of master integrals that we expand in the dimensional regularisation parameter.

  17. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors

    PubMed Central

    Zhang, Yumin; Zhou, Junhui; Yang, Cuihong; Wang, Weiwei; Chu, Liping; Huang, Fan; Liu, Qiang; Deng, Liandong; Kong, Deling; Liu, Jianfeng; Liu, Jinjian

    2016-01-01

    Although the shortcomings of small molecular antitumor drugs were efficiently improved by being entrapped into nanosized vehicles, premature drug release and insufficient tumor targeting demand innovative approaches that boost the stability and tumor responsiveness of drug-loaded nanocarriers. Here, we show the use of the core cross-linking method to generate a micelle with enhanced drug encapsulation ability and sensitivity of drug release in tumor. This kind of micelle could increase curcumin (Cur) delivery to HeLa cells in vitro and improve tumor accumulation in vivo. We designed and synthesized the core cross-linked micelle (CCM) with polyethylene glycol and folic acid-polyethylene glycol as the hydrophilic units, pyridyldisulfide as the cross-linkable and hydrophobic unit, and disulfide bond as the cross-linker. CCM showed spherical shape with a diameter of 91.2 nm by the characterization of dynamic light scattering and transmission electron microscope. Attributed to the core cross-linking, drug-loaded CCM displayed higher Nile Red or Cur-encapsulated stability and better sensitivity to glutathione than noncross-linked micelle (NCM). Cellular uptake and in vitro antitumor studies proved the enhanced endocytosis and better cytotoxicity of CCM-Cur against HeLa cells, which had a high level of glutathione. Meanwhile, the folate receptor-mediated drug delivery (FA-CCM-Cur) further enhanced the endocytosis and cytotoxicity. Ex vivo imaging studies showed that CCM-Cur and FA-CCM-Cur possessed higher tumor accumulation until 24 hours after injection. Concretely, FA-CCM-Cur exhibited the highest tumor accumulation with 1.7-fold of noncross-linked micelle Cur and 2.8-fold of free Cur. By combining cross-linking of the core with active tumor targeting of FA, we demonstrated a new and effective way to design nanocarriers for enhanced drug encapsulation, smart tumor responsiveness, and elevated tumor accumulation. PMID:27051287

  18. Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Boping; Ni, Jiangpeng; Xiang, Xiongzhi; Wang, Lei; Chen, Yongming

    2017-01-01

    Cross-linked sulfonated polyimides are one of the most promising materials for proton exchange membrane (PEM) applications. However, these cross-linked membranes are difficult to reprocess because they are insoluble. In this study, a series of cross-linkable sulfonated polyimides with flexible pendant alkyl side chains containing trimethoxysilyl groups is successfully synthesized. The cross-linkable polymers are highly soluble in common solvents and can be used to prepare tough and smooth films. Before the cross-linking reaction is complete, the membranes can be reprocessed, and the recovery rate of the prepared films falls within an acceptable range. The cross-linked membranes are obtained rapidly when the cross-linkable membranes are immersed in an acid solution, yielding a cross-linking density of the gel fraction of greater than 90%. The cross-linked membranes exhibit high proton conductivities and tensile strengths under hydrous conditions. Compared with those of pristine membranes, the oxidative and hydrolytic stabilities of the cross-linked membranes are significantly higher. The CSPI-70 membrane shows considerable power density in a direct methanol fuel cell (DMFC) test. All of these results suggest that the prepared cross-linked membranes have great potential for applications in proton exchange membrane fuel cells.

  19. Ionization Efficiency of Doubly Charged Ions Formed from Polyprotic Acids in Electrospray Negative Mode

    NASA Astrophysics Data System (ADS)

    Liigand, Piia; Kaupmees, Karl; Kruve, Anneli

    2016-07-01

    The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low p K a1 and p K a2) and to have high hydrophobicity (log P ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions.

  20. Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex

    NASA Astrophysics Data System (ADS)

    Truong, Quang Duc; Kakihana, Masato

    2012-06-01

    A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.

  1. Nitrous acid pretreatment of tendon xenografts cross-linked with glutaraldehyde and sterilized with gamma irradiation.

    PubMed

    Johnson, K A; Rogers, G J; Roe, S C; Howlett, C R; Clayton, M K; Milthorpe, B K; Schindhelm, K

    1999-06-01

    Collagenous xenografts made from kangaroo tail tendon cross-linked with glutaraldehyde have a potential application in the reconstruction of massive digital tendon deficits. However, a limitation to the clinical use of these xenografts has been the optimization of collagen cross-linking, and subsequent bio-incorporation and retention of mechanical properties following implantation. The purpose of this study was to evaluate the effect of nitrous acid on modulating the biologic and mechanical properties of tendon xenografts cross-linked with glutaraldehyde. Tendon xenografts were pretreated with 0.1 or 0.01 M nitrous acid solution, prior to cross-linking in 2% glutaraldehyde and sterilization by gamma irradiation. Xenografts were implanted intramuscularly in rabbits to examine biocompatability, and also used to repair ovine digital extensor tendon deficits to evaluate functional incorporation. Histologically, intramuscularly implanted nitrous acid pretreated xenografts in rabbits had a greater degree of diffuse cellular infiltration into interstitial splits in the graft than controls after 12 weeks. Xenografts implanted in an ovine extensor tendon deficit were evaluated after 26 and 52 weeks. Rate of failure of tenorrhaphies between host tendon and xenografts overall (15/21) was significantly greater (P < 0.05) than for autografts (1/21), suggesting that the holding power of sutures in xenografts was inferior to that obtained in autografts. Tensile failure stress of midsections of both nitrous acid pretreated and control xenografts was about 100 MPa prior to implantation (time zero). After 26 and 52 weeks, failure stress of both types of xenografts was significantly less than at time zero (P < 0.05). At 52 weeks, failure stress of nitrous acid pretreated xenografts (47.4 +/- 3.1 MPa) was significantly less than control xenografts (63.7 +/- 5.4 MPa); (P < 0.05). However, nitrous acid pretreated xenografts were similar to control xenografts in failure load (357 +/- 29

  2. Acid-triggered core cross-linked nanomicelles for targeted drug delivery and magnetic resonance imaging in liver cancer cells

    PubMed Central

    Li, Xian; Li, Hao; Yi, Wei; Chen, Jianyu; Liang, Biling

    2013-01-01

    Purpose To research the acid-triggered core cross-linked folate-poly(ethylene glycol)-b-poly[N-(N′,N′-diisopropylaminoethyl) glutamine] (folated-PEG-P[GA-DIP]) amphiphilic block copolymer for targeted drug delivery and magnetic resonance imaging (MRI) in liver cancer cells. Methods As an appropriate receptor of protons, the N,N-diisopropyl tertiary amine group (DIP) was chosen to conjugate with the side carboxyl groups of poly(ethylene glycol)-b-poly (L-glutamic acid) to obtain PEG-P(GA-DIP) amphiphilic block copolymers. By ultrasonic emulsification, PEG-P(GA-DIP) could be self-assembled to form nanosized micelles loading doxorubicin (DOX) and superparamagnetic iron oxide nanoparticles (SPIONs) in aqueous solution. When PEG-P(GA-DIP) nanomicelles were combined with folic acid, the targeted effect of folated-PEG-P(GA-DIP) nanomicelles was evident in the fluorescence and MRI results. Results To further increase the loading efficiency and the cell-uptake of encapsulated drugs (DOX and SPIONs), DIP (pKa≈6.3) groups were linked with ~50% of the side carboxyl groups of poly(L-glutamic acid) (PGA), to generate the core cross-linking under neutral or weakly acidic conditions. Under the acidic condition (eg, endosome/lysosome), the carboxyl groups were neutralized to facilitate disassembly of the P(GA-DIP) blocks’ cross-linking, for duly accelerating the encapsulated drug release. Combined with the tumor-targeting effect of folic acid, specific drug delivery to the liver cancer cells and MRI diagnosis of these cells were greatly enhanced. Conclusion Acid-triggered and folate-decorated nanomicelles encapsulating SPIONs and DOX, facilitate the targeted MRI diagnosis and therapeutic effects in tumors. PMID:23976852

  3. Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose

    Treesearch

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    Nanocomposite hydrogels were developed by cross-linking nanofibrillated cellulose with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. The cross-linked hydrogels showed enhanced water absorption and gel content with the addition of nanocellulose. In addition, the thermal stability, mechanical strength, and modulus increased with an increase in the...

  4. UV laser-induced cross-linking in peptides

    PubMed Central

    Leo, Gabriella; Altucci, Carlo; Bourgoin-Voillard, Sandrine; Gravagnuolo, Alfredo M.; Esposito, Rosario; Marino, Gennaro; Costello, Catherine E.; Velotta, Raffaele; Birolo, Leila

    2013-01-01

    RATIONALE The aim of this study was to demonstrate, and to characterize by high resolution mass spectrometry, that it is possible to preferentially induce covalent cross-links in peptides by using high energy femtosecond UV laser pulses. The cross-link is readily formed only when aromatic amino acids are present in the peptide sequence. METHODS Three peptides, xenopsin, angiotensin I, interleukin, individually or in combination, were exposed to high energy femtosecond UV laser pulses, either alone or in the presence of spin trapping molecules, the reaction products being characterized by high resolution mass spectrometry. RESULTS High resolution mass spectrometry and spin trapping strategies showed that cross-linking occurs readily, proceeds via a radical mechanism, and is the highly dominant reaction, proceeding without causing significant photo-damage in the investigated range of experimental parameters. CONCLUSIONS High energy femtosecond UV laser pulses can be used to induce covalent cross-links between aromatic amino acids in peptides, overcoming photo-oxidation processes, that predominate as the mean laser pulse intensity approaches illumination conditions achievable with conventional UV light sources. PMID:23754800

  5. Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative

    PubMed Central

    Sagnelli, Domenico; Kemmer, Gerdi Christine; Holse, Mette; Hebelstrup, Kim H.; Bao, Jinsong; Stelte, Wolfgang; Bjerre, Anne-Belinda; Blennow, Andreas

    2017-01-01

    Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi© plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material. PMID:28973963

  6. Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative.

    PubMed

    Sagnelli, Domenico; Hooshmand, Kourosh; Kemmer, Gerdi Christine; Kirkensgaard, Jacob J K; Mortensen, Kell; Giosafatto, Concetta Valeria L; Holse, Mette; Hebelstrup, Kim H; Bao, Jinsong; Stelte, Wolfgang; Bjerre, Anne-Belinda; Blennow, Andreas

    2017-09-30

    Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi © plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material.

  7. Cross-linked hyaluronic acid in pressure ulcer prevention.

    PubMed

    Beniamino, P; Vadalà, M; Laurino, C

    2016-07-02

    Long-term bedridden patients are at high risk of acquring pressure ulcers (PUs). In this group of patients, prevention is necessary to cut the health costs, improve quality of life and reduce the mortality. Here, we evaluated the effectiveness of a cross-linked hyaluronic acid (HA) as plastic bulking-agent filling and remodelling the deep dermis and subcutaneous space of the skin areas exposed to the risk of necrosis. Our work hypothesis has been to inflate a sub-dermal elastic cushion, filled with a natural ECM component, with the aim to induce a stronger tissue background resistant to the ulcerative process. All the patients had an increased risk of PUs, at the sacral, ileum or heel skin. Patients were being nursed accordingly to the standard orthopaedic ward management with a pressure relieveing air mattress. The standard protocol consisted in body mobilisation every 3 hours, 24 hours a day and accurate cleaning of the skin with liquid soap and water without any towel friction and without adding any cream or lotion for the skin protection. Our filling protocol enclosed: accurate disinfection of the skin to be injected with povidone-iodine solution, followed by a local anaesthesia with 28G 13 mm needle, injecting 1.5 ml of 1% xylocaine. Then slow, deep, subcutaneous injection of cross-linked HA was performed with a 18G long needle, in order to deliver a homogeneous, soft gel layer underneath and around the whitish erythematous skin edges at risk of ulceration. Patients' tolerability of the compound and adverse events were also recorded. There were 15 patients (78-94 years old) who participated in the study. All tolerated the procedure very well and no serious side effects were declared. No skin pressure ulceration was detected in the four weeks follow-up Conclusion: We have demonstrated the safety and tolerability of a cross-linked HA subdermal injection in PUs prevention. The compound stratifies in a soft, elastic, interstitial bulk into the deep dermis, thus

  8. Cross-linking of type I collagen with microbial transglutaminase: identification of cross-linking sites.

    PubMed

    Stachel, Ines; Schwarzenbolz, Uwe; Henle, Thomas; Meyer, Michael

    2010-03-08

    Collagen is a popular biomaterial. To deal with its lack of thermal stability and its weak resistance to proteolytic degradation, collagen-based materials are stabilized via different cross-linking procedures. Regarding the potential toxicity of residual cross-linking agents, enzyme-mediated cross-linking would provide an alternative and nontoxic method for collagen stabilization. The results of this study show that type I collagen is a substrate for mTG. However, epsilon-(gamma-glutamyl)lysine cross-links are only incorporated at elevated temperatures when the protein is partially or completely denatured. A maximum number of 5.4 cross-links per collagen monomer were found for heat-denatured collagen. Labeling with the primary amine monodansylcadaverine revealed that at least half of the cross-links are located within the triple helical region of the collagen molecule. Because the triple helix is highly ordered in its native state, this finding might explain why the glutamine residues are inaccessible for mTG under nondenaturing conditions.

  9. Porous Cross-Linked Polyimide-Urea Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)

    2015-01-01

    Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.

  10. Cross-linked polyvinyl alcohol and method of making same

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)

    1981-01-01

    A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.

  11. A novel collagen hydrogel cross-linked by gamma-ray irradiation in acidic pH conditions.

    PubMed

    Inoue, Naoki; Bessho, Masahiko; Furuta, Masakazu; Kojima, Takao; Okuda, Shuichi; Hara, Masayuki

    2006-01-01

    We made a new type of collagen gel by gamma-ray irradiation of an acidic solution of type-I collagen, and performed comparative studies on a conventional gel and the new type of gel. The neutral gel, a conventional 0.3% (w/v) collagen gel, was formed at neutral pH and then irradiated by gamma-rays. The acidic gel, a 0.3% (w/v) collagen gel, was formed directly from the acidic solution of collagen by y-ray irradiation. Both types of gel were prepared, swollen in water and then dried for the measurement of specific water content. The neutral gel showed a relatively high specific water content and shrunk moderately, depending on the dose, while the acidic gel showed lower specific water content and shrunk clearly by y-ray irradiation. A three-dimensional tangled network of microfibrils was clearly observed in the neutral gels by scanning electron microscopy, but not in the acidic gels. From these results, we concluded that the acidic gel was quite different from a conventional collagen gel. Sodium dodecylsulfate-polyacrylamide gel electrophoresis showed that the alpha1 subunit and alpha2 subunit of the collagen molecule were cross-linked. The triple-helical structure of collagen was only partially perturbed, but not denatured completely, because the circular dichroism spectrum of the collagen solution irradiated at 1.3 kGy was similar to that of native collagen solution. Amino-acid analysis revealed that tyrosine, phenylalanine and histidine decreased by irradiation in the neutral gel. In the case of the acidic gel, these three amino acids and methionine decreased. We considered that these amino acids were cross-linking points between the collagen subunits during the gamma-ray irradiation.

  12. Enhanced drug encapsulation and extended release profiles of calcium-alginate nanoparticles by using tannic acid as a bridging cross-linking agent.

    PubMed

    Abulateefeh, Samer R; Taha, Mutasem O

    2015-01-01

    Calcium alginate nanoparticles (NPs) suffer from sub-optimal stability in bio-relevant media leading to low drug encapsulation efficiency and uncontrolled release profiles. To sort out these drawbacks, a novel approach is proposed herein based on introducing tannic acid into these NPs to act as a bridging cross-linking aid agent. Calcium-alginate NPs were prepared by the ionotropic gelation method and loaded with diltiazem hydrochloride as a model drug. These NPs were characterized in terms of particle size, zeta potential, and morphology, and results were explained in accordance with Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The incorporation of tannic acid led to more than four folds increase in drug encapsulation efficiency (i.e. from 15.3% to 69.5%) and reduced burst drug release from 44% to around 10% within the first 30 min. These findings suggest the possibility of improving the properties of Ca-alginate NPs by incorporating cross-linking aid agents under mild conditions.

  13. Nano and micro mechanical properties of uncross-linked and cross-linked chitosan films

    PubMed Central

    Aryaei, Ashkan; Jayatissa, Ahalapitiya H.; Jayasuriya, A. Champa

    2016-01-01

    The aim of this study is to determine the nano and micro mechanical properties for uncross-linked and cross-linked chitosan films. Specifically, we looked at nanoindentation hardness, microhardness, and elastic modulus. It is important to study the nano and microscale mechanical properties of chitosan since chitosan has been widely used for biomedical applications. Using the solvent-cast method, the chitosan films were prepared at room temperature on the cleaned glass plates. The chitosan solution was prepared by dissolving chitosan in acetic acid 1% (v/v). Tripolyphosphate (TPP) was used to create the cross-links between amine groups in chitosan and phosphate groups in TPP. In this study, atomic force microscopy was used to measure the nanoindentation hardness and surface topography of the uncross-linked and cross-linked chitosan films. Elastic modulus was then calculated from the nanoindentation results. The effective elastic modulus was determined by microhardness with some modifications to previous theories. The microhardness of the chitosan films were measured using Vicker’s hardness meter under three different loads. Our results show that the microhardness and elastic modulus for cross-linked chitosan films are higher than the uncross-linked films. However, the cross-linked chitosan films show increased brittleness when compared to uncross-linked films. By increasing the load magnitude, the microhardness increases for both uncross-linked and cross-linked chitosan films. PMID:22100082

  14. N(4)C-ethyl-N(4)C cross-linked DNA: synthesis and characterization of duplexes with interstrand cross-links of different orientations.

    PubMed

    Noronha, Anne M; Noll, David M; Wilds, Christopher J; Miller, Paul S

    2002-01-22

    The preparation and physical properties of short DNA duplexes that contain a N(4)C-ethyl-N(4)C interstrand cross-link are described. Duplexes that contain an interstrand cross-link between mismatched C-C residues and duplexes in which the C residues of a -CG- or -GC- step are linked to give "staggered" interstrand cross-links were prepared using a novel N(4)C-ethyl-N(4)C phosphoramidite reagent. Duplexes with the C-C mismatch cross-link have UV thermal transition temperatures that are 25 degrees C higher than the melting temperatures of control duplexes in which the cross-link is replaced with a G-C base pair. It appears that this cross-link stabilizes adjacent base pairs and does not perturb the structure of the helix, a conclusion that is supported by the CD spectrum of this duplex and by molecular models. An even higher level of stabilization, 49 degrees C, is seen with the duplex that contains a -CG- staggered cross-link. Molecular models suggest that this cross-link may induce propeller twisting in the cross-linked base pairs, and the CD spectrum of this duplex exhibits an unusual negative band at 298 nm, although the remainder of the spectrum is similar to that of B-form DNA. Mismatched C-C or -CG- staggered cross-linked duplexes that have complementary overhanging ends can undergo self-ligation catalyzed by T4 DNA ligase. Analysis of the ligated oligomers by nondenaturing polyacrylamide gel electrophoresis shows that the resulting oligomers migrate in a manner similar to that of a mixture of non-cross-linked control oligomers and suggests that these cross-links do not result in significant bending of the helix. However, the orientation of the staggered cross-link can have a significant effect on the structure and stability of the cross-linked duplex. Thus, the thermal stability of the duplex that contains a -GC- staggered cross-link is 10 degrees C lower than the melting temperature of the control, non-cross-linked duplex. Unlike the -CG- staggered cross-link

  15. Triple differential cross sections of magnesium in doubly symmetric geometry

    NASA Astrophysics Data System (ADS)

    S, Y. Sun; X, Y. Miao; Xiang-Fu, Jia

    2016-01-01

    A dynamically screened three-Coulomb-wave (DS3C) method is applied to study the single ionization of magnesium by electron impact. Triple differential cross sections (TDCS) are calculated in doubly symmetric geometry at incident energies of 13.65, 17.65, 22.65, 27.65, 37.65, 47.65, 57.65, and 67.65 eV. Comparisons are made with experimental data and theoretical predictions from a three-Coulomb-wave function (3C) approach and distorted-wave Born approximation (DWBA). The overall agreement between the predictions of the DS3C model and the DWBA approach with the experimental data is satisfactory. Project supported by the National Natural Science Foundation of China (Grant No. 11274215).

  16. Is {sup 276}U a doubly magic nucleus?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liliani, N., E-mail: netta.liliani@gmail.com; Sulaksono, A.

    2016-04-19

    We investigate a possible new doubly magic heavy nucleus by using a relativistic mean-field (RMF) model with the addition of a cross interaction term of omega-rho mesons and an electromagnetic exchange term. We propose that {sup 276}U is a doubly magic nucleus. The evidence for {sup 276}U being a doubly magic nucleus is shown through the two-nucleon gaps, the single-particle energies, and the neutron skin thickness of the nucleus. We have also found that the prediction of {sup 276}U as a doubly magic nucleus by the RMF model is not affected by the inclusion of isoscalar-isovector and electromagnetic exchange couplings.

  17. Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking

    NASA Technical Reports Server (NTRS)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda

    2008-01-01

    Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.

  18. Light-induced cross-linking and post-cross-linking modification of polyglycidol.

    PubMed

    Marquardt, F; Bruns, M; Keul, H; Yagci, Y; Möller, M

    2018-02-08

    The photoinduced radical generation process has received renewed interest due to its economic and ecological appeal. Herein the light-induced cross-linking of functional polyglycidol and its post-cross-linking modification are presented. Linear polyglycidol was first functionalized with a tertiary amine in a two-step reaction. Dimethylaminopropyl functional polyglycidol was cross-linked in a UV-light mediated reaction with camphorquinone as a type II photoinitiator. The cross-linked polyglycidol was further functionalized by quaternization with various organoiodine compounds. Aqueous dispersions of the cross-linked polymers were investigated by means of DLS and zeta potential measurements. Polymer films were evaluated by DSC and XPS.

  19. Recovery of lactic acid from the pretreated fermentation broth based on a novel hyper-cross-linked meso-micropore resin: Modeling.

    PubMed

    Song, Mingkai; Jiao, Pengfei; Qin, Taotao; Jiang, Kangkang; Zhou, Jingwei; Zhuang, Wei; Chen, Yong; Liu, Dong; Zhu, Chenjie; Chen, Xiaochun; Ying, Hanjie; Wu, Jinglan

    2017-10-01

    An innovative benign process for recovery lactic acid from its fermentation broth is proposed using a novel hyper-cross-linked meso-micropore resin and water as eluent. This work focuses on modeling the competitive adsorption behaviors of glucose, lactic acid and acetic acid ternary mixture and explosion of the adsorption mechanism. The characterization results showed the resin had a large BET surface area and specific pore structure with hydrophobic properties. By analysis of the physicochemical properties of the solutes and the resin, the mechanism of the separation is proposed as hydrophobic effect and size-exclusion. Subsequently three chromatographic models were applied to predict the competitive breakthrough curves of the ternary mixture under different operating conditions. The pore diffusion was the major limiting factor for the adsorption process, which was consistent with the BET results. The novel HD-06 resin can be a good potential adsorbent for the future SMB continuous separation process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sodium tripolyphosphate cross-linked chitosan based sensor for enhacing sensing properties towards acetone

    NASA Astrophysics Data System (ADS)

    Nasution, T. I.; Asrosa, R.; Nainggolan, I.; Balyan, M.; Indah, R.; Wahyudi, A.

    2018-02-01

    In this report, sensing properties of sodium tripolyphosphate (TPP) cross-linked chitosan based sensor has been successfully enhanced towards acetone. Chitosan solutions were cross-linked with sodium TPP in variation of 0.1%, 0.5%, 1% and 1.5% w/v, respectively. The sensors were fabricated in film form using an electrochemical deposition method. The sensing properties of the sensors were observed by exposing the pure chitosan and sodium TPP cross-linked chitosan sensors towards acetone concentrations of 5, 10, 50, 100 and 200 ppm. The measurement results revealed that the maximum response in output voltage value of pure chitosan sensor was 0.35 V while sodium TPP crosslinked chitosan sensors were above 0.35 V towards 5 ppm acetone concentration. When the sensors were exposed towards acetone concentration of 200 ppm, the maximum response of pure chitosan was 0.45 V while sodium TPP crosslinked chitosan sensors were above 0.45 V. Amongst the variation of sodium TPP, the maximum response of 1% sodium TPP was the highest since the maximum response was 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration, respectively. While the maximum responses of other sodium TPP concentrations were under 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration. Moreover, 1% sodium TPP cross-linked chitosan based sensor showed good reproducibility and outstanding lifetime. Therefore, 1% sodium TPP cross-linked chitosan based sensor has exhibited remarkable sensing properties as a novel acetone sensor.

  1. Bioremediation of arsenic from water with citric acid cross-linked water hyacinth (E. crassipes) root powder.

    PubMed

    Gogoi, Pankaj; Adhikari, Pooja; Maji, Tarun K

    2017-08-01

    A green and novel approach was demonstrated for successful remediation of arsenic from contaminated water by citric acid (CA) cross-linked water hyacinth root powder (RP). Different analytical techniques were used to investigate the binding and structural properties of prepared materials. Titanium dioxide played a significant role in the cross-linking process. Incorporation of CA into RP enhanced its integrity, and thus removal efficiency remained unaffected after several cyclic runs. Also the turbidity which formed due to treatment with uncross-linked RP was reduced to below the permissible limit. Effect of the amount of CA, material dose, treatment time, initial ion concentration, and pH were investigated. Use of 10% (w/w) CA was found to be sufficient to bring down the turbidity of the treated water below 2.5 nephelometric turbidity unit (NTU) without hampering the removal capacity/rate. A material dose of 5 g/L removed successfully total inorganic arsenic concentration to below 10 μg/L. The sorption process could be reasonably explained by Langmuir isotherm, and the maximum adsorption capacity was found to be 28 μg of arsenic/g. The material was found to be more efficient at acidic pH (pH ZPC  = 6.72). The sorption process was governed by a pseudo-second-order kinetic model.

  2. The mechanism of collagen cross-linking in diabetes: a puzzle nearing resolution.

    PubMed

    Monnier, V M; Glomb, M; Elgawish, A; Sell, D R

    1996-07-01

    Considerable interest has been focused in recent years on the mechanism of collagen cross-linking by high glucose in vitro and in vivo. Experiments in both diabetic humans and in animals have shown that over time collagen becomes less soluble, less digestible by collagenase, more stable to heat-induced denaturation, and more glycated. In addition, collagen becomes more modified by advanced products of the Maillard reaction, i.e., immunoreactive advanced glycation end products and the glycoxidation markers carboxymethyllysine and pentosidine. Mechanistic studies have shown that collagen cross-linking in vitro can be uncoupled from glycation by the use of antioxidants and chelating agents. Experiments in the authors' laboratory revealed that approximately 50% of carboxymethyllysine formed in vitro originates from pathways other than oxidation of Amadori products, i.e., most likely the oxidation of Schiff base-linked glucose. In addition, the increase in thermal stability of rat tail tendons exposed to high glucose in vitro or in vivo was found to strongly depend on H2O2 formation. The final missing piece of the puzzle is that of the structure of the major cross-link. We speculate that it is a nonfluorescent nonultraviolet active cross-link between two lysine residues, which includes a fragmentation product of glucose linked in a nonreducible bond labile to both strong acids and bases.

  3. Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes.

    PubMed

    Bilal, Muhammad; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-03-01

    In the present study, horseradish peroxidase (HRP), in-house isolated crude cocktail enzyme, from Armoracia rusticana was cross-linked using a new type of cross-linking agent, i.e., ethylene glycol-bis [succinic acid N-hydroxysuccinimide, (EG-NHS)], which is mild in nature as compared to the glutaraldehyde (GA). The HRP-immobilized cross-linked enzyme aggregates (HRP-CLEAs) were developed using a wider range of EG-NHS and notably no adverse effect was observed. In a comparative evaluation, in the case of EG-NHS, a high-level stability in the residual activity was recorded, whereas a sharp decrease was observed in the case of glutaraldehyde. Following initial cross-linker evaluation, the HRP-CLEAs were tested to investigate their bio-catalytic efficacy for bioremediation purposes using a newly developed packed bed reactor system (PBRS). A maximal of 94.26% degradation of textile-based methyl orange dye was recorded within the shortest time frame, following 91.73% degradation of basic red 9, 84.35% degradation of indigo, 81.47% degradation of Rhodamin B, and 73.6% degradation of Rhodamine 6G, respectively, under the same working environment. Notably, the HRP-CLEAs retained almost 60% of its original activity after methyl orange dye degradation in seven consecutive cycles using PBRS. Furthermore, after HRP-CLEAs-mediated treatment in the PBRS, a significant toxicity reduction in the dye samples was recorded as compared to their pristine counterparts. In conclusion, the results suggest that the newly developed HRP-CLEAs have a great potential for industrial exploitation, to tackle numerous industrial dye-based emergent pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. [Facial injections of hyaluronic acid-based fillers for malformations. Preliminary study regarding scar tissue improvement and cosmetic betterment].

    PubMed

    Franchi, G; Neiva-Vaz, C; Picard, A; Vazquez, M-P

    2018-06-01

    Cross-linked hyaluronic acid-based fillers have gained rapid acceptance for treating facial wrinkles, deep tissue folds and sunken areas due to aging. This study evaluates, in addition to space-filling properties, their effects on softness and elasticity as a secondary effect, following injection of 3 commercially available cross-linked hyaluronic acid-based fillers (15mg/mL, 17,5mg/mL and 20mg/mL) in patients presenting with congenital or acquired facial malformations. We started injecting gels of cross-linked hyaluronic acid-based fillers in those cases in 2013; we performed 46 sessions of injections in 32 patients, aged from 13-32. Clinical assessment was performed by the patient himself and by a plastic surgeon, 15 days after injections and 6-18 months later. Cross-linked hyaluronic acid-based fillers offered very subtle cosmetic results and supplemented surgery with a very high level of satisfaction of the patients. When injected in fibrosis, the first session enhanced softness and elasticity; the second session enhanced the volume. Cross-linked hyaluronic acid-based fillers fill sunken areas and better softness and elasticity of scar tissues. In addition to their well-understood space-filling function, as a secondary effect, the authors demonstrate that cross-linked hyaluronic acid-based fillers improve softness and elasticity of scarring tissues. Many experimental studies support our observations, showing that cross-linked hyaluronic acid stimulates the production of several extra-cellular matrix components, including dermal collagen and elastin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... following prescribed conditions: (a) The cross-linked polyester resins are produced by the condensation of... fiber Polyester fiber produced by the condensation of one or more of the acids listed in paragraph (a)(1...

  6. New composite materials prepared by calcium phosphate precipitation in chitosan/collagen/hyaluronic acid sponge cross-linked by EDC/NHS.

    PubMed

    Kaczmarek, B; Sionkowska, A; Kozlowska, J; Osyczka, A M

    2018-02-01

    Nowadays, fabrication of composite materials based on biopolymers is a rising field due to potential for bone repair and tissue engineering application. Blending of different biopolymers and incorporation of inorganic particles in the blend can lead to new materials with improved physicochemical properties and biocompatibility. In this work 3D porous structures called scaffolds based on chitosan, collagen and hyaluronic acid were obtained through the lyophilization process. Scaffolds were cross-linked by EDC/NHS. Infrared spectra for the materials were made, the percentage of swelling, scaffolds porosity and density, mechanical parameters, thermal stability were studied. Moreover, the scaffolds were used as matrixes for the calcium phosphate in situ precipitation. SEM images were taken and EDX analysis was carried out for calcium and phosphorous content determination in the scaffold. In addition, the adhesion and proliferation of human osteosarcoma SaOS-2 cells was examined on obtained scaffolds. The results showed that the properties of 3D composites cross-linked by EDC/NHS were altered after the addition of 1, 2 and 5% hyaluronic acid. Mechanical parameters, thermal stability and porosity of scaffolds were improved. Moreover, calcium and phosphorous were found in each kind of scaffold. SEM images showed that the precipitation was homogeneously carried in the whole volume of samples. Attachment of SaOS-2 cells to all modified materials was better compared to unmodified control and proliferation of these cells was markedly increased on scaffolds with precipitated calcium phosphate. Obtained materials can provide the support useful in tissue engineering and regenerative medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    NASA Astrophysics Data System (ADS)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  8. Use of Activated Carbon in Packaging to Attenuate Formaldehyde-Induced and Formic Acid-Induced Degradation and Reduce Gelatin Cross-Linking in Solid Dosage Forms.

    PubMed

    Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A

    2016-07-01

    Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. A general method for targeted quantitative cross-linking mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NM...

  10. Immobilization of a phosphonated analog of matrix phosphoproteins within cross-linked collagen as a templating mechanism for biomimetic mineralization

    PubMed Central

    Gu, Li-sha; Kim, Young Kyung; Liu, Yan; Takahashi, Kei; Arun, Senthil; Wimmer, Courtney E.; Osorio, Raquel; Ling, Jun-qi; Looney, Stephen W.; Pashley, David H.; Tay, Franklin R.

    2010-01-01

    Immobilization of phosphoproteins on a collagen matrix is important for induction of intrafibrillar apatite mineralization. Unlike phosphate esters, polyphosphonic acid has no reactive sites for covalent binding to collagen amine groups. Binding of polyvinylphosphonic acid (PVPA), a biomimetic templating analog of matrix phosphoproteins, to collagen was found to be electrostatic in nature. Thus, an alternative retention mechanism was designed for immobilization of PVPA to collagen by cross-linking the latter with carbodiimide (EDC). This mechanism is based on the principle of size exclusion entrapment of PVPA molecules within the internal water compartments of collagen. By cross-linking collagen with EDC, a zero-length cross-linking agent, the sieving property of collagen is increased, enabling the PVPA to be immobilized within the collagen. Absence of covalent cross-linking between PVPA and collagen was confirmed by FT-IR spectroscopy. Based on these results, a concentration range for immobilized PVPA to template intrafibrillar apatite deposition was established and validated using a single-layer reconstituted type I collagen mineralization model. In the presence of a polyacrylic acid-containing mineralization medium, optimal intrafibrillar mineralization of the EDC-cross-linked collagen was achieved using 500 and 1,000 μg/mL PVPA. The mineralized fibrils exhibited a hierarchical order of intrafibrillar mineral infiltration, as manifested by the appearance of electron-dense periodicity within unstained fibrils. Understanding the basic processes in intrafibrillar mineralization of reconstituted collagen creates opportunities for the design of tissue engineering materials for hard tissue repair and regeneration. PMID:20688200

  11. Simultaneous wastewater treatment and bioelectricity production in microbial fuel cells using cross-linked chitosan-graphene oxide mixed-matrix membranes.

    PubMed

    Holder, Shima L; Lee, Ching-Hwa; Popuri, Srinivasa R

    2017-05-01

    Microbial fuel cells (MFCs) are emerging technology for wastewater treatment by chemical oxygen demand (COD) reduction and simultaneous bioelectricity production. Fabrication of an effective proton exchange membrane (PEM) is a vital component for MFC performance. In this work, green chitosan-based (CS) PEMs were fabricated with graphene oxide (GO) as filler material (CS-GO) and cross-linked with phosphoric acid (CS-GO-P(24)) or sulfuric acid (CS-GO-S(24)) to determine their effect on PEM properties. Interrogation of the physicochemical, thermal, and mechanical properties of the cross-linked CS-GO PEMs demonstrated that ionic cross-linking based on the incorporation of PO 4 3- groups in the CS-GO mixed-matrix composites, when compared with sulfuric acid cross-linking commonly used in proton exchange membrane fuel cell (PEMFC) studies, generated additional density of ionic cluster domains, rendered enhanced sorption properties, and augmented the thermal and mechanical stability of the composite structure. Consequently, bioelectricity performance analysis in MFC application showed that CS-GO-P(24) membrane produced 135% higher power density than the CS-GO-S(24) MFC system. Simultaneously, 89.52% COD removal of primary clarifier municipal wastewater was achieved in the MFC operated with the CS-GO-P(24) membrane.

  12. Synthesis and enzymatic degradation of epichlorohydrin cross-linked pectins.

    PubMed

    Semdé, Rasmané; Moës, André J; Devleeschouwer, Michel J; Amighi, Karim

    2003-02-01

    The water solubility of pectin was successfully decreased by cross-linking with increasing amounts of epichlorohydrin in the reaction media. The initial molar ratios of epichlorohydrin/ galacturonic acid monomer in the reaction mixtures were 0, 0.37, 0.56, 0.74, 1.00, 1.47, and 2.44. The resulting epichlorohydrin cross-linked pectins were thus referred to as C-LP0, C-LP37, C-LP56, C-LP75, C-LP100, C-LP150, and C-LP250, respectively. Methoxylation degrees ranged from 60.5 +/- 0.9% to 68.0 +/- 0.6%, and the effective cross-linking degrees, determined by quantification of the hydroxyl anions consumed during the reaction, were 0, 17.8, 26.0, 38.3, 46.5, 53.5, and 58.7%. respectively. After incubating the different cross-linked pectins (0.5% w/v) in 25 mL of 0.05 M acetate-phosphate buffer (pH 4.5), containing 50 microL of Pectinex Ultra SP-L (pectinolytic enzymes), between 60 and 80% of the pectin osidic bounds were broken in less than 1 hr. Moreover, increasing the cross-linking degree only resulted in a weak slowing on the enzymatic degradation velocity.

  13. Cross-linking Chemistry of Squid Beak*

    PubMed Central

    Miserez, Ali; Rubin, Daniel; Waite, J. Herbert

    2010-01-01

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance (1H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed. PMID:20870720

  14. Cross-linking chemistry of squid beak.

    PubMed

    Miserez, Ali; Rubin, Daniel; Waite, J Herbert

    2010-12-03

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance ((1)H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed.

  15. Theoretical and experimental quantification of doubly and singly differential cross sections for electron-induced ionization of isolated tetrahydrofuran molecules

    DOE PAGES

    Champion, Christophe; Quinto, Michele A.; Bug, Marion U.; ...

    2014-07-29

    Electron-induced ionization of the commonly used surrogate of the DNA sugar-phosphate backbone, namely, the tetrahydrofuran molecule, is here theoretically described within the 1 st Born approximation by means of quantum-mechanical approach. Comparisons between theory and recent experiments are reported in terms of doubly and singly differential cross sections.

  16. Genetically encoded releasable photo-cross-linking strategies for studying protein-protein interactions in living cells.

    PubMed

    Yang, Yi; Song, Haiping; He, Dan; Zhang, Shuai; Dai, Shizhong; Xie, Xiao; Lin, Shixian; Hao, Ziyang; Zheng, Huangtao; Chen, Peng R

    2017-10-01

    Although protein-protein interactions (PPIs) have crucial roles in virtually all cellular processes, the identification of more transient interactions in their biological context remains challenging. Conventional photo-cross-linking strategies can be used to identify transient interactions, but these approaches often suffer from high background due to the cross-linked bait proteins. To solve the problem, we have developed membrane-permeable releasable photo-cross-linkers that allow for prey-bait separation after protein complex isolation and can be installed in proteins of interest (POIs) as unnatural amino acids. Here we describe the procedures for using two releasable photo-cross-linkers, DiZSeK and DiZHSeC, in both living Escherichia coli and mammalian cells. A cleavage after protein photo-cross-linking (CAPP ) strategy based on the photo-cross-linker DiZSeK is described, in which the prey protein pool is released from a POI after affinity purification. Prey proteins are analyzed using mass spectrometry or 2D gel electrophoresis for global comparison of interactomes from different experimental conditions. An in situ cleavage and mass spectrometry (MS)-label transfer after protein photo-cross-linking (IMAPP) strategy based on the photo-cross-linker DiZHSeC is also described. This strategy can be used for the identification of cross-linking sites to allow detailed characterization of PPI interfaces. The procedures for photo-cross-linker incorporation, photo-cross-linking of interaction partners and affinity purification of cross-linked complexes are similar for the two photo-cross-linkers. The final section of the protocol describes prey-bait separation (for CAPP) and MS-label transfer and identification (for IMAPP). After plasmid construction, the CAPP and IMAPP strategies can be completed within 6 and 7 d, respectively.

  17. Physicochemical properties of collagen solutions cross-linked by glutaraldehyde.

    PubMed

    Tian, Zhenhua; Li, Conghu; Duan, Lian; Li, Guoying

    2014-06-01

    The physicochemical properties of collagen solutions (5 mg/ml) cross-linked by various amounts of glutaraldehyde (GTA) [GTA/collagen (w/w) = 0-0.5] under acidic condition (pH 4.00) were examined. Based on the results of the determination of residual amino group content, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, dynamic rheological measurements, differential scanning calorimetry and atomic force microscopy (AFM), it was proved that the collagen solutions possessed strikingly different physicochemical properties depending on the amount of GTA. At low GTA amounts [GTA/collagen (w/w) ≤ 0.1], the residual amino group contents of the cross-linked collagens decreased largely from 100% to 32.76%, accompanied by an increase in the molecular weight. Additionally, increases of the fiber diameter and the values of G', G″ and η* were measured, while the thermal denaturation temperature (Td) did not change visibly and the fluidity of collagen samples was still retained with increasing the GTA amount. When the ratio of GTA to collagen exceeded 0.1, although the residual amino group content only decreased by ~8.2%, the cross-linked collagen solution [GTA/collagen (w/w) = 0.3] displayed a clear loss of flow and a sudden rise (~2.0 °C) of the Td value compared to the uncross-linked collagen solution, probably illustrating that the collagen solution was converted into a gel with mature network structure-containing nuclei observed in AFM image. It was conjectured that the physicochemical properties of the collagen solutions might be in connection with the cross-linking between collagen molecules from the same aggregate or different aggregates.

  18. Effect of Cross-Linking on Free Volume Properties of PEG Based Thiol-Ene Networks

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Ramesh; Vasagar, Vivek; Nazarenko, Sergei

    According to the Fox and Loshaek theory, in elastomeric networks, free volume decreases linearly with the cross-link density increase. The aim of this study is to show whether the poly(ethylene glycol) (PEG) based multicomponent thiol-ene elastomeric networks demonstrate this model behavior? Networks with a broad cross-link density range were prepared by changing the ratio of the trithiol crosslinker to PEG dithiol and then UV cured with PEG diene while maintaining 1:1 thiol:ene stoichiometry. Pressure-volume-temperature (PVT) data of the networks was generated from the high pressure dilatometry experiments which was fit using the Simha-Somcynsky Equation-of-State analysis to obtain the fractional free volume of the networks. Using Positron Annihilation Lifetime Spectroscopy (PALS) analysis, the average free volume hole size of the networks was also quantified. The fractional free volume and the average free volume hole size showed a linear change with the cross-link density confirming that the Fox and Loshaek theory can be applied to this multicomponent system. Gas diffusivities of the networks showed a good correlation with free volume. A free volume based model was developed to describe the gas diffusivity trends as a function of cross-link density.

  19. Nanomechanics of layer-by-layer polyelectrolyte complexes: a manifestation of ionic cross-links and fixed charges.

    PubMed

    Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin

    2016-01-28

    This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further

  20. Improving Properties of Arrowroot Starch (Maranta arundinacea)/PVA Blend Films by Using Citric Acid as Cross-linking Agent

    NASA Astrophysics Data System (ADS)

    Sholichah, Enny; Purwono, Bambang; Nugroho, Pramono

    2017-12-01

    This research studied the effect of PVA as organic polymer and citric acid as crosslinker agent in the arrowroot starch/PVA blend films. The properties of films were investigated by water uptake, water vapor permeability, mechanical properties, thermal stability, spectra of FTIR and XRD patterns. PVA used in this research influenced the film properties at the highest concentration. The cross-linkingsinter or intra molecules of arrowroot and PVA were developed as ester bonds which are formed from the reaction of hydroxyl groups consisting of starch and PVA with citric acid. The ester bond was confirmed by FTIR spectra. The increase of the amount of citric acid affected significantly on physical, chemical and mechanical properties, water uptake, WVP and crystallinity. Water barrier level was reduced by decreasing of water uptake and WVP succeeded significantly with increased crosslinking. Cross-linking impact the thermal stability of the films. The elasticity of the films also increases the production of citric acid as a plasticizer in the making of the films as a food packaging material.

  1. Characterization of a Cross-Linked Protein–Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    PubMed Central

    2015-01-01

    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate to detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl-13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process. PMID:24806349

  2. Characterization of a Cross-Linked Protein-Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silakov, Alexey; Grove, Tyler L.; Radle, Matthew I.

    2014-08-14

    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate tomore » detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl- 13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process« less

  3. Near-threshold electron-impact doubly differential cross sections for the ionization of argon and krypton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, Brent R.; Khakoo, Murtadha A.

    2011-04-15

    We present normalized doubly differential cross sections (DDCS's) for the near-threshold, electron-impact single ionization of argon and krypton, similar to those taken earlier for Ne and Xe [Yates et al., J. Phys. B 42, 095206 (2009)]. The Ar measurements were taken at incident energies of 17, 18, 20, and 30 eV while the Kr measurements were taken at 15, 16, 17.5, and 20 eV. The DDCS scattering angles range from 15 deg. to 120 deg. The differential data are initially normalized to available experimental cross sections for excitation of the ground np{sup 6} to the np{sup 5}(n+1)s excited states ofmore » the noble gas and, after integration, to well-established experimental total ionization cross sections of Rapp and Englander-Golden [J. Chem. Phys. 43, 1464 (1965)].« less

  4. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.

    PubMed

    Chavez, Juan D; Eng, Jimmy K; Schweppe, Devin K; Cilia, Michelle; Rivera, Keith; Zhong, Xuefei; Wu, Xia; Allen, Terrence; Khurgel, Moshe; Kumar, Akhilesh; Lampropoulos, Athanasios; Larsson, Mårten; Maity, Shuvadeep; Morozov, Yaroslav; Pathmasiri, Wimal; Perez-Neut, Mathew; Pineyro-Ruiz, Coriness; Polina, Elizabeth; Post, Stephanie; Rider, Mark; Tokmina-Roszyk, Dorota; Tyson, Katherine; Vieira Parrine Sant'Ana, Debora; Bruce, James E

    2016-01-01

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.

  5. Migration of melamine from can coatings cross-linked with melamine-based resins, into food simulants and foods.

    PubMed

    Bradley, E L; Castle, L; Day, J S; Leak, J

    2011-02-01

    Resins based on melamine-formaldehyde and related analogues such as methylolated melamine are used to cross-link coatings used inside food cans and on the metal closures of glass jars. Thirteen commercially coated cans and closures representing 80% of the European market were tested using simulants under realistic industrial heat-processing conditions for canned and jarred foods. The food simulants and the retort conditions used were 3% acetic acid for 1 h at 100 °C and 10% ethanol for 1 h at 130 °C. The highest migration level seen for melamine into simulant was 332 µg kg⁻¹. There was no detectable migration of the melamine analogues cyanuric acid (<1 µg kg⁻¹) or ammelide (<5 µg kg⁻¹) from any sample. Twelve of the thirteen samples released no detectable ammeline (<5 µg kg⁻¹) but the coating giving the highest release of melamine did also release ammeline at 8 µg kg⁻¹ with the higher of the two process temperatures used. Migration experiments into food simulant and foods themselves were then conducted using two experimental coatings made using amino-based cross-linking resins. Coated metal panels were exposed to the food simulant 10% (v/v) aqueous ethanol and to three foodstuffs under a range of time and temperature conditions both in the laboratory and in a commercial food canning facility using proprietary time and temperature conditions. The highest migration into a food was 152 µg kg⁻¹ from the first coating processed for a long time at a moderate sterilisation temperature. The highest migration into simulant was also from this coating at 220 µg kg⁻¹ when processed at 134 °C for 60 min, dropping to 190 µg k⁻¹ when processed at 123 °C for 70 min. Migration from the second coating was quite uniformly two to three times lower under all tests. These migration results were significantly higher than the levels of melamine extractable using 95% ethanol at room temperature. The experiments show that commercial canning and retorting

  6. Incorporation of a Doubly Functionalized Synthetic Amino Acid into Proteins for Creating Chemical and Light-Induced Conjugates.

    PubMed

    Yamaguchi, Atsushi; Matsuda, Takayoshi; Ohtake, Kazumasa; Yanagisawa, Tatsuo; Yokoyama, Shigeyuki; Fujiwara, Yoshihisa; Watanabe, Takayoshi; Hohsaka, Takahiro; Sakamoto, Kensaku

    2016-01-20

    Z-Lysine (ZLys) is a lysine derivative with a benzyloxycarbonyl group linked to the ε-nitrogen. It has been genetically encoded with the UAG stop codon, using the pair of an engineered variant of pyrrolysyl-tRNA synthetase (PylRS) and tRNA(Pyl). In the present study, we designed a novel Z-lysine derivative (AmAzZLys), which is doubly functionalized with amino and azido substituents at the meta positions of the benzyl moiety, and demonstrated its applicability for creating protein conjugates. AmAzZLys was incorporated into proteins in Escherichia coli, by using the ZLys-specific PylRS variant. AmAzZLys was then site-specifically incorporated into a camelid single-domain antibody specific to the epidermal growth factor receptor (EGFR). A one-pot reaction demonstrated that the phenyl amine and azide were efficiently linked to the 5 kDa polyethylene glycol and a fluorescent probe, respectively, through specific bio-orthogonal chemistry. The antibody was then tested for the ability to form a photo-cross-link between its phenylazide moiety and the antigen, while the amino group on the same ring was used for chemical labeling. When incorporated at a selected position in the antibody and exposed to 365 nm light, AmAzZLys formed a covalent bond with the EGFR ectodomain, with the phenylamine moiety labeled fluorescently prior to the reaction. The present results illuminated the versatility of the ZLys scaffold, which can accommodate multiple reactive groups useful for protein conjugation.

  7. Radiation cross-linked collagen/dextran dermal scaffolds: effects of dextran on cross-linking and degradation.

    PubMed

    Zhang, Yaqing; Zhang, Xiangmei; Xu, Ling; Wei, Shicheng; Zhai, Maolin

    2015-01-01

    Ionizing radiation effectively cross-links collagen into network with enhanced anti-degradability and biocompatibility, while radiation-cross-linked collagen scaffold lacks flexibility, satisfactory surface appearance, and performs poor in cell penetration and ingrowth. To make the radiation-cross-linked collagen scaffold to serve as an ideal artificial dermis, dextran was incorporated into collagen. Scaffolds with the collagen/dextran (Col/Dex) ratios of 10/0, 7/3, and 5/5 were fabricated via (60)Co γ-irradiation cross-linking, followed by lyophilization. The morphology, microstructure, physicochemical, and biological properties were investigated. Compared with pure collagen, scaffolds with dextran demonstrated more porous appearance, enhanced hydrophilicity while the cross-linking density was lower with the consequence of larger pore size, higher water uptake, as well as reduced stiffness. Accelerated degradation was observed when dextran was incorporated in both the in vitro and in vivo assays, which led to earlier integration with cell and host tissue. The effect of dextran on degradation was ascribed to the decreased cross-linking density, looser microstructure, more porous and hydrophilic surface. Considering the better appearance, softness, moderate degradation rate due to controllable cross-linking degree and good biocompatibility as well, radiation-cross-linked collagen/dextran scaffolds are expected to serve as promising artificial dermal substitutes.

  8. Rheological Behavior, Granule Size Distribution and Differential Scanning Calorimetry of Cross-Linked Banana (Musa paradisiaca) Starch.

    NASA Astrophysics Data System (ADS)

    Núñez-Santiago, María C.; Maristany-Cáceres, Amira J.; Suárez, Francisco J. García; Bello-Pérez, Arturo

    2008-07-01

    Rheological behavior at 60 °C, granule size distribution and Differential Scanning Calorimetry (DSC) tests were employed to study the effect of diverse reaction conditions: adipic acid concentration, pH and temperature during cross-linking of banana (Musa paradisiaca) starch. These properties were determined in native banana starch pastes for the purpose of comparison. Rheological behavior from pastes of cross-linked starch at 60 °C did not show hysteresis, probably due the cross-linkage of starch that avoided disruption of granules, elsewhere, native starch showed hysteresis in a thixotropic loop. All pastes exhibited non-Newtonian shear thinning behavior. In all cases, size distribution showed a decrease in the median diameter in cross-linked starches. This condition produces a decrease in swelling capacity of cross-linked starch. The median diameter decreased with an increase of acid adipic concentration; however, an increase of pH and Temperature produced an increase in this variable. Finally, an increase in gelatinization temperature and entalphy (ΔH) were observed as an effect of cross-linkage. An increase in acid adipic concentration produced an increase in Tonset and a decrease in ΔH. pH and temperature. The cross-linked of banana starch produced granules more resistant during the pasting procedure.

  9. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the doubly unresolved subtraction terms

    NASA Astrophysics Data System (ADS)

    Somogyi, Gábor

    2013-04-01

    We finish the definition of a subtraction scheme for computing NNLO corrections to QCD jet cross sections. In particular, we perform the integration of the soft-type contributions to the doubly unresolved counterterms via the method of Mellin-Barnes representations. With these final ingredients in place, the definition of the scheme is complete and the computation of fully differential rates for electron-positron annihilation into two and three jets at NNLO accuracy becomes feasible.

  10. Cross-linked sulfonated aromatic ionomers via SO2 bridges: Conductivity properties

    NASA Astrophysics Data System (ADS)

    Di Vona, M. L.; Pasquini, L.; Narducci, R.; Pelzer, K.; Donnadio, A.; Casciola, M.; Knauth, P.

    2013-12-01

    The proton conductivity of SPEEK membranes in situ cross-linked by thermal treatment at 180 °C for various times was investigated by impedance spectroscopy. The conductivity measurements were made on fully humidified membranes between 25 and 65 °C and on membranes exposed to different relative humidity between 80 and 140 °C. The Ionic Exchange Capacity (IEC) was determined by acid-base titration and the water uptake by gravimetry. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking and hydration number. A curve of proton conductivity vs. hydration number allows predicting that in order to reach a value of 0.1 S/cm at 100 °C a hydration number above 20 is necessary. The measured conductivity at this temperature is 0.16 S/cm for a hydration number of 60.

  11. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    PubMed

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  12. Transglutaminase catalyzed cross-linking of sodium caseinate improves oxidative stability of flaxseed oil emulsion.

    PubMed

    Ma, Hairan; Forssell, Pirkko; Kylli, Petri; Lampi, Anna-Maija; Buchert, Johanna; Boer, Harry; Partanen, Riitta

    2012-06-20

    Sodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions. Peroxide value measurement, oxygen consumption measurement, and headspace gas chromatography analysis were used to study the oxidative stability of the emulsions. The emulsion made of the cross-linked sodium caseinate showed an improved oxidative stability with reduced formation of fatty acid hydroperoxides and volatiles and a longer period of low rate oxygen consumption. The improving effect of transglutaminase catalyzed cross-linking could be most likely attributed to the enhanced physical stability of the interfacial protein layer against competitive adsorption by oil oxidation products.

  13. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor)

    2016-01-01

    A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.

  14. A General Bioinspired, Metals-Based Synergic Cross-Linking Strategy toward Mechanically Enhanced Materials.

    PubMed

    Chen, Ke; Ding, Jin; Zhang, Shuhao; Tang, Xuke; Yue, Yonghai; Guo, Lin

    2017-03-28

    Creating lightweight engineering materials combining high strength and great toughness remains a significant challenge. Despite possessing-enhanced strength and stiffness, bioinspired/polymeric materials usually suffer from clearly reduced extensibility and toughness when compared to corresponding bulk polymer materials. Herein, inspired by tiny amounts of various inorganic impurities for mechanical improvement in natural materials, we present a versatile and effective metal ion (M n+ )-based synergic cross-linking (MSC) strategy incorporating eight types of metal ions into material bulks that can drastically enhance the tensile strength (∼24.1-70.8%), toughness (∼18.6-110.1%), modulus (∼21.6-66.7%), and hardness (∼6.4-176.5%) of multiple types of pristine materials (from hydrophilic to hydrophobic and from unary to binary). More importantly, we also explore the primarily elastic-plastic deformation mechanism and brittle fracture behavior (indentation strain of >5%) of the synergic cross-linked graphene oxide (Syn-GO) paper by means of in situ nanoindentation SEM. The MSC strategy for mechanically enhanced integration can be readily attributed to the formation of the complicated metals-based cross-linking/complex networks in the interfaces and intermolecules between functional groups of materials and various metal ions that give rise to efficient energy dissipation. This work suggests a promising MSC strategy for designing advanced materials with outstanding mechanical properties by adding low amounts (<1.0 wt %) of synergic metal ions serving as synergic ion-bonding cross-linkers.

  15. Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria.

    PubMed

    Baker, Edward N; Squire, Christopher J; Young, Paul G

    2015-10-01

    The ability of bacteria to adhere to other cells or to surfaces depends on long, thin adhesive structures that are anchored to their cell walls. These structures include extended protein oligomers known as pili and single, multi-domain polypeptides, mostly based on multiple tandem Ig-like domains. Recent structural studies have revealed the widespread presence of covalent cross-links, not previously seen within proteins, which stabilize these domains. The cross-links discovered so far are either isopeptide bonds that link lysine side chains to the side chains of asparagine or aspartic acid residues or ester bonds between threonine and glutamine side chains. These bonds appear to be formed by spontaneous intramolecular reactions as the proteins fold and are strategically placed so as to impart considerable mechanical strength. © 2015 Authors; published by Portland Press Limited.

  16. Synthesis, Characterisation, and Evaluation of a Cross-Linked Disulphide Amide-Anhydride-Containing Polymer Based on Cysteine for Colonic Drug Delivery

    PubMed Central

    Lim, Vuanghao; Peh, Kok Khiang; Sahudin, Shariza

    2013-01-01

    The use of disulphide polymers, a low redox potential responsive delivery, is one strategy for targeting drugs to the colon so that they are specifically released there. The objective of this study was to synthesise a new cross-linked disulphide-containing polymer based on the amino acid cysteine as a colon drug delivery system and to evaluate the efficiency of the polymers for colon targeted drug delivery under the condition of a low redox potential. The disulphide cross-linked polymers were synthesised via air oxidation of 1,2-ethanedithiol and 3-mercapto-N-2-(3-mercaptopropionamide)-3-mercapto propionic anhydride (trithiol monomers) using different ratio combinations. Four types of polymers were synthesised: P10, P11, P151, and P15. All compounds synthesised were characterised by NMR, IR, LC-MS, CHNS analysis, Raman spectrometry, SEM-EDX, and elemental mapping. The synthesised polymers were evaluated in chemical reduction studies that were performed in zinc/acetic acid solution. The suitability of each polymer for use in colon-targeted drug delivery was investigated in vitro using simulated conditions. Chemical reduction studies showed that all polymers were reduced after 0.5–1.0 h, but different polymers had different thiol concentrations. The bacterial degradation studies showed that the polymers were biodegraded in the anaerobic colonic bacterial medium. Degradation was most pronounced for polymer P15. This result complements the general consensus that biodegradability depends on the swellability of polymers in an aqueous environment. Overall, these results suggest that the cross-linked disulphide-containing polymers described herein could be used as coatings for drugs delivered to the colon. PMID:24351841

  17. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer

    PubMed Central

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H.; Nevosad, Andreas; Teichert, Christian; S. White, Matthew.; S. Sariciftci, Niyazi.; Scharber, Markus C.

    2014-01-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium–tin–oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor–acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837

  18. Electron Transfer Dissociation with Supplemental Activation to Differentiate Aspartic and Isoaspartic Residues in Doubly Charged Peptide Cations

    PubMed Central

    Chan, Wai Yi Kelly; Chan, T. W. Dominic; O’Connor, Peter B.

    2011-01-01

    Electron-transfer dissociation (ETD) with supplemental activation of the doubly charged deamidated tryptic digested peptide ions allows differentiation of isoaspartic acid and aspartic acid residues using c + 57 or z• − 57 peaks. The diagnostic peak clearly localizes and characterizes the isoaspartic acid residue. Supplemental activation in ETD of the doubly charged peptide ions involves resonant excitation of the charge reduced precursor radical cations and leads to further dissociation, including extra backbone cleavages and secondary fragmentation. Supplemental activation is essential to obtain a high quality ETD spectrum (especially for doubly charged peptide ions) with sequence information. Unfortunately, the low-resolution of the ion trap mass spectrometer makes detection of the diagnostic peak for the aspartic acid residue difficult due to interference with side-chain loss from arginine and glutamic acid residues. PMID:20304674

  19. Equilibrium adsorption of caffeic, chlorogenic and rosmarinic acids on cationic cross-linked starch with quaternary ammonium groups.

    PubMed

    Simanaviciute, Deimante; Klimaviciute, Rima; Rutkaite, Ramune

    2017-02-01

    In the present study, the equilibrium adsorption of caffeic acid (CA) and its derivatives, namely, chlorogenic (CGA) and rosmarinic (RA) acids on cationic cross-linked starch (CCS) with degree of substitution of quaternary ammonium groups of 0.42 have been investigated in relation to the structure and acidity of phenolic acids. The Langmuir, Freundlich and Dubinin-Radushkevich adsorption models have been used to describe the equilibrium adsorption of CA, CGA and RA from their initial solutions and solutions having the equimolar amount of NaOH at different temperatures. In the case of adsorption from the initial solutions of acids the values of adsorption parameters were closely related to the dissociation constants of investigated acids. According to the increasing effectiveness of adsorption, phenolic acids could be arranged in the following order: CAacids solutions changed their sorption properties which became mostly related to the acids structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Extending the cross-linking/mass spectrometry strategy: Facile incorporation of photo-activatable amino acids into the model protein calmodulin in Escherichia coli cells.

    PubMed

    Piotrowski, Christine; Ihling, Christian H; Sinz, Andrea

    2015-11-01

    Photo-induced cross-linking is a highly promising technique to investigate protein conformations and protein-protein interactions in their natural cellular environment. One strategy relies on the non-directed incorporation of diazirine-containing photo-activatable amino acids into proteins and a subsequent cross-link formation induced by UV-A irradiation. The advantage of this photo-cross-linking strategy is that it is not restricted to lysine residues and that hydrophobic regions in proteins can also be targeted, which is advantageous for investigating membrane proteins. Here, we present a simplified protocol that relies on the use of mineral salts medium without any special requirements for the incorporation of photo-methionines into proteins in Escherichia coli cells. The possibility to perform these experiments in E. coli is especially valuable as it is the major system for recombinant protein production. The method is exemplified for the Ca(2+) regulating protein calmodulin containing nine methionines, which were found to be replaced by their photo-activatable analogues. Our protocol allows the facile and stochastic incorporation of photo-methionines as the basis for conducting photo-cross-linking experiments in E. coli in an efficient manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Donor cross-linking for keratoplasty: a laboratory evaluation.

    PubMed

    Mukherjee, Achyut; Hayes, Sally; Aslanides, Ioannis; Lanchares, Elena; Meek, Keith M

    2015-12-01

    This laboratory-based investigation compares the topographic outcomes of conventional penetrating keratoplasty with that of a novel procedure in which donor corneas are cross-linked prior to keratoplasty. Penetrating keratoplasty procedures with continuous running sutures were carried out in a porcine whole globe model. Sixty eyes were randomly paired as 'donor' and 'host' tissue before being assigned to one of two groups. In the cross-linked group, donor corneas underwent riboflavin/UVA cross-linking prior to being trephined and sutured to untreated hosts. In the conventional keratoplasty group, both host and donor corneas remained untreated prior to keratoplasty. Topographic and corneal wavefront measurements were performed following surgery, and technical aspects of the procedure evaluated. Mean keratometric astigmatism was significantly lower in the cross-linked donor group at 3.67D (SD 1.8 D), vs. 8.43 D (SD 2.4 D) in the conventional keratoplasty group (p < 0.005). Mean wavefront astigmatism was also significantly reduced in the cross-linked donor group 4.71 D (SD 2.1) vs. 8.29D (SD 3.6) in the conventional keratoplasty group (p < 0.005). Mean RMS higher order aberration was significantly lower in the cross-linked donor group at 1.79 um (SD 0.98), vs. 3.05 um (SD 1.9) in the conventional keratoplasty group (P = 0.02). Qualitative analysis revealed less tissue distortion at the graft-host junction in the cross-linked group. Cross-linking of donor corneas prior to keratoplasty reduces intraoperative induced astigmatism and aberrations in an animal model. Further studies are indicated to evaluate the implications of this potential modification of keratoplasty surgery.

  2. In vivo evaluation of folate decorated cross-linked micelles for the delivery of platinum anticancer drugs.

    PubMed

    Eliezar, Jeaniffer; Scarano, Wei; Boase, Nathan R B; Thurecht, Kristofer J; Stenzel, Martina H

    2015-02-09

    The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.

  3. Physicochemical properties of cross-linked and acetylated starches and products of their hydrolysis in continuous recycle membrane reactor.

    PubMed

    Prochaska, Krystyna; Konował, Emilia; Sulej-Chojnacka, Joanna; Lewandowicz, Grazyna

    2009-11-01

    The aim of the present work was to study the physicochemical properties of doubly modified, by cross-linking and acetylating, starches as well as the products of their enzymatic hydrolysis. A two step procedure of hydrolysis, including the batch and membrane reactors, were investigated. The second step of enzymatic processes were carried out in a continuous recycle membrane reactor (CRMR). Three kinds of commercial starches--two preparations of acetylated distarch adipate E1422 of different degrees of cross-linking, as well as one preparation of acetylated distarch phosphate E1414 were examined. It was found that the degree of substitution of acetyl groups in the macromolecules of starch did not influence the effectiveness of hydrolysis. However, the degree of cross-linking with adipate groups slightly decreased the efficiency of processing in the CRMR. Additionally, the relationship between the type of hydrocolloid and its adsorption activity in the air/water and oil/water systems was considered. All obtained derivatives revealed adsorption properties and reduced the surface/interface tension in the air/water and oil/water systems. The efficiency and effectiveness of adsorption of the investigated hydrocolloids were affected by the type of modification as well as the degree of substitution of acetyl groups in the macromolecules of starch. Particle size distributions formed in aqueous solutions for all investigated hydrolyses were determined and compared with results obtained for commercial products.

  4. Enzymatically cross-linked injectable alginate-g-pyrrole hydrogels for neovascularization.

    PubMed

    Devolder, Ross; Antoniadou, Eleni; Kong, Hyunjoon

    2013-11-28

    Microparticles capable of releasing protein drugs are often incorporated into injectable hydrogels to minimize their displacement at an implantation site, reduce initial drug burst, and further control drug release rates over a broader range. However, there is still a need to develop methods for releasing drug molecules over extended periods of time, in order to sustain the bioactivity of drug molecules at an implantation site. In this study, we hypothesized that a hydrogel formed through the cross-linking of pyrrole units linked to a hydrophilic polymer would release protein drugs in a more sustained manner, because of an enhanced association between cross-linked pyrrole groups and the drug molecules. To examine this hypothesis, we prepared hydrogels of alginate substituted with pyrrole groups, alginate-g-pyrrole, through a horse-radish peroxidase (HRP)-activated cross-linking of the pyrrole groups. The hydrogels were encapsulated with poly(lactic-co-glycolic acid) (PLGA) microparticles loaded with vascular endothelial growth factor (VEGF). The resulting hydrogel system released VEGF in a more sustained manner than Ca(2+) alginate or Ca(2+) alginate-g-pyrrole gel systems. Finally, implantations of the VEGF-releasing HRP-activated alginate-g-pyrrole hydrogel system on chicken chorioallantoic membranes resulted in the formation of blood vessels in higher densities and with larger diameters, compared to other control conditions. Overall, the drug releasing system developed in this study will be broadly useful for regulating release rates of a wide array of protein drugs, and further enhance the quality of protein drug-based therapies. © 2013 Elsevier B.V. All rights reserved.

  5. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents.

    PubMed

    Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V; Bronich, Tatiana K

    2010-04-12

    Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca(2+)) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like nanospheres and demonstrated a time-dependent degradation in the conditions mimicking the intracellular reducing environment. The ionic character of the cores allowed to achieve a very high level of doxorubicin (DOX) loading (50% w/w) into the cross-linked micelles. DOX-loaded degradable cross-linked micelles exhibited more potent cytotoxicity against human A2780 ovarian carcinoma cells as compared to micellar formulations without disulfide linkages. These novel biodegradable cross-linked micelles are expected to be attractive candidates for delivery of anticancer drugs.

  6. Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels

    Treesearch

    Tobias Köhnke; Thomas Elder; Hans Theliander; Arthur J. Ragauskas

    2014-01-01

    Structured xylan-based hydrogels, reinforced with cellulose nanocrystals (CNCs), have successfully been prepared from water suspensions by cross-linking during freeze-casting. In order to induce cross-linking during the solidification/sublimation operation, xylan was first oxidized using sodium periodate to introduce dialdehydes. The oxidized xylan was then mixed with...

  7. Effects of cross-linked high-molecular-weight hyaluronic acid on epidural fibrosis: experimental study.

    PubMed

    Isık, Semra; Taşkapılıoğlu, M Özgür; Atalay, Fatma Oz; Dogan, Seref

    2015-01-01

    Epidural fibrosis is nonphysiological scar formation, usually at the site of neurosurgical access into the spinal canal, in the intimate vicinity of and around the origin of the radicular sheath. The formation of dense fibrous tissue causes lumbar and radicular pain. In addition to radicular symptoms, the formation of scar tissue may cause problems during reoperation. The authors aimed to investigate the effects of cross-linked high-molecular-weight hyaluronic acid (HA), an HA derivative known as HA gel, on the prevention of epidural fibrosis by using histopathological and biochemical parameters. Fifty-six adult female Sprague-Dawley rats were evaluated. The rats were divided into 4 groups. Rats in the sham group (n = 14) underwent laminectomy and discectomy and received no treatment; rats in the control group (n = 14) underwent laminectomy and discectomy and received 0.9% NaCl treatment in the surgical area; rats in the HA group (n = 14) received HA treatment at the surgical area after laminectomy and discectomy; and rats in the HA gel group (n = 14) underwent laminectomy and discectomy in addition to receiving treatment with cross-linked high-molecular-weight HA in the surgical area. All rats were decapitated after 4 weeks, and the specimens were evaluated histopathologically and biochemically. The results were statistically compared using the Mann-Whitney U-test. Compared with the sham and control groups, the HA and HA gel groups showed significantly lower fibroblast cell density and tissue hydroxyproline concentrations (p < 0.05). There was statistically significant lower dural adhesion and foreign-body reaction between the control and HA gel groups (p < 0.05). Granulation tissue and epidural fibrosis were significantly lower in the HA and HA gel groups compared with the sham group (p < 0.05). There were no significant differences in any histopathological parameters or biochemical values between Groups 3 and 4 (p > 0.05). Cross-linked high-molecular-weight HA

  8. Cross-Link Guided Molecular Modeling with ROSETTA

    PubMed Central

    Leitner, Alexander; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2013-01-01

    Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods. PMID:24069194

  9. Chitosan supramolecularly cross linked with trimesic acid - Facile synthesis, characterization and evaluation of adsorption potential for chromium(VI).

    PubMed

    Bhatt, Ronak; Sreedhar, B; Padmaja, P

    2017-11-01

    A facile synthesis of Chitosan Supramolecularly cross-linked with Trimesic Acid (CTMA) is reported in this work. The adsorption potential of CTMA for removal of hexavalent chromium was evaluated and the influence of pH, temperature, contact time and adsorbent dose on the adsorption process was investigated. The experimental results showed that CTMA could efficiently adsorb Cr 6+ and partially reduce it to the less toxic Cr 3+ state. The maximum adsorption capacity of CTMA for Cr 6+ was found to be 129.53mg/g at pH 2.0. CTMA and chromium loaded CTMA were characterised by FT-IR, Raman, TGA-DSC, SEM-EDX, XRD, ESR and XPS spectroscopic techniques. Chitosan was observed to be cross- linked with TMA via ionic, hydrogen bonding and pi-pi supramolecular interactions while adsorption of chromium onto CTMA was by electrostatic forces and hydrogen bonding. From the observed results it was evident that CTMA was successfully applied for simultaneous removal of chromium, lead and iron from chrome plating effluent. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Modeling Protein Excited-state Structures from "Over-length" Chemical Cross-links.

    PubMed

    Ding, Yue-He; Gong, Zhou; Dong, Xu; Liu, Kan; Liu, Zhu; Liu, Chao; He, Si-Min; Dong, Meng-Qiu; Tang, Chun

    2017-01-27

    Chemical cross-linking coupled with mass spectroscopy (CXMS) provides proximity information for the cross-linked residues and is used increasingly for modeling protein structures. However, experimentally identified cross-links are sometimes incompatible with the known structure of a protein, as the distance calculated between the cross-linked residues far exceeds the maximum length of the cross-linker. The discrepancies may persist even after eliminating potentially false cross-links and excluding intermolecular ones. Thus the "over-length" cross-links may arise from alternative excited-state conformation of the protein. Here we present a method and associated software DynaXL for visualizing the ensemble structures of multidomain proteins based on intramolecular cross-links identified by mass spectrometry with high confidence. Representing the cross-linkers and cross-linking reactions explicitly, we show that the protein excited-state structure can be modeled with as few as two over-length cross-links. We demonstrate the generality of our method with three systems: calmodulin, enzyme I, and glutamine-binding protein, and we show that these proteins alternate between different conformations for interacting with other proteins and ligands. Taken together, the over-length chemical cross-links contain valuable information about protein dynamics, and our findings here illustrate the relationship between dynamic domain movement and protein function. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Immobilization of cross-linked tannase enzyme on multiwalled carbon nanotubes and its catalytic behavior.

    PubMed

    Ong, Chong-Boon; Annuar, Mohamad S M

    2018-02-07

    Immobilization of cross-linked tannase on pristine multiwalled carbon nanotubes (MWCNT) was successfully performed. Cross-linking of tannase molecules was made through glutaraldehyde. The immobilized tannase exhibited significantly improved pH, thermal, and recycling stability. The optimal pH for both free and immobilized tannase was observed at pH 5.0 with optimal operating temperature at 30°C. Moreover, immobilized enzyme retained greater biocatalytic activities upon 10 repeated uses compared to free enzyme in solution. Immobilization of tannase was accomplished by strong hydrophobic interaction most likely between hydrophobic amino acid moieties of the glutaraldehyde-cross-linked tannase to the MWCNT.

  12. Identification of cross-linked amino acids in the protein pair HmaL23-HmaL29 from the 50S ribosomal subunit of the archaebacterium Haloarcula marismortui.

    PubMed

    Bergmann, U; Wittmann-Liebold, B

    1993-03-23

    50S ribosomal subunits from the extreme halophilic archaebacterium Haloarcula marismortui were treated with the homobifunctional protein-protein cross-linking reagents diepoxybutane (4 A) and dithiobis(succinimidyl propionate) (12 A). The dominant product with both cross-linking reagents was identified on the protein level as HmaL23-HmaL29, which is homologous to the protein pair L23-L29 from Escherichia coli [Walleczek, J., Martin, T., Redl, B., Stöffler-Meilicke, M., & Stöffler, G. (1989) Biochemistry 28, 4099-4105] and from Bacillus stearothermophilus [Brockmöller, J., & Kamp, R. M. (1986) Biol. Chem. Hoppe-Seyler 367, 925-935]. To reveal the exact cross-linking site in HmaL23-HmaL29, the cross-linked complex was purified on a preparative scale by conventional and high-performance liquid chromatography. After endoproteolytic fragmentation of the protein pair, the amino acids engaged in cross-link formation were unambiguously identified by N-terminal sequence analysis and mass spectrometry of the cross-linked peptides. The cross-link is formed between lysine-57 in the C-terminal region of HmaL29 and the alpha-amino group of the N-terminal serine in protein HmaL23, irrespective of the cross-linking reagent. This result demonstrates that the N-terminal region of protein HmaL23 and the C-terminal domain of HmaL29 are highly flexible so that the distance between the two polypeptide chains can vary by at least 8 A. Comparison of our cross-linking results with those obtained with B. stearothermophilus revealed that the fine structure within this ribosomal domain is at least partially conserved.

  13. A comparison of UV cross-linking and vacuum baking for nucleic acid immobilization and retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nierzwicki-Bauer, S.A.; Gebhardt, J.S.; Linkkila, L.

    The effectiveness of UV cross-linking and in vacuo baking for the immobilization and retention of DNA to various solid supports was investigated. Optimal immobilization treatments for supported and unsupported nitrocellulose and nylon membranes were: UV cross-linking at 254 nm with an exposure of 120 milliJoules/cm{sup 2}, or baking in vacuo for two hours at 80{degrees}C. UV-immobilized nitrocellulose-based membranes showed no increase in sensitivity when compared to baked membranes. An increase in sensitivity was observed for UV-immobilized nylon membranes as compared with baked nylon membranes in some instances, although this varied within lots of the membranes tested. Repeated strippings and heterologousmore » reprobings resulted in loss of target DNA from UV-immobilized nylon membranes as compared to baked nylon membranes. Loss of target DNA from UV-immobilized nitrocellulose-based membranes due to repeated strippings and reprobings was even more pronounced. In vacuo baking of supported and unsupported nitrocellulose and nylon membranes was more effective for immobilization, and more importantly, for retention of target DNA through many reprobings of the same blot.« less

  14. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    NASA Technical Reports Server (NTRS)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data

  15. Paper based colorimetric biosensing platform utilizing cross-linked siloxane as probe.

    PubMed

    Zhou, Miao; Yang, Minghui; Zhou, Feimeng

    2014-05-15

    Paper based colorimetric biosensing platform utilizing cross-linked siloxane 3-aminopropyltriethoxysilane (APTMS) as probe was developed for the detection of a broad range of targets including H2O2, glucose and protein biomarker. APTMS was extensively used for the modification of filter papers to develop paper based analytical devices. We discovered when APTMS was cross-linked with glutaraldehyde (GA), the resulting complex (APTMS-GA) displays brick-red color, and a visual color change was observed when the complex reacted with H2O2. By integrating the APTMS-GA complex with filter paper, the modified paper enables quantitative detection of H2O2 through the monitoring of the color intensity change of the paper via software Image J. Then, with the immobilization of glucose oxidase (GOx) onto the modified paper, glucose can be detected through the detection of enzymatically generated H2O2. For protein biomarker prostate specific antigen (PSA) assay, we immobilized capture, not captured anti-PSA antibody (Ab1) onto the paper surface and using GOx modified gold nanorod (GNR) as detection anti-PSA antibody (Ab2) label. The detection of PSA was also achieved via the liberated H2O2 when the GOx label reacted with glucose. The results demonstrated the possibility of this paper based sensor for the detection of different analytes with wide linear range. The low cost and simplicity of this paper based sensor could be developed for "point-of-care" analysis and find wide application in different areas. © 2013 Published by Elsevier B.V.

  16. Formaldehyde cross-linking and structural proteomics: Bridging the gap.

    PubMed

    Srinivasa, Savita; Ding, Xuan; Kast, Juergen

    2015-11-01

    Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Histidinoalanine, a naturally occurring cross-link derived from phosphoserine and histidine residues in mineral-binding phosphoproteins.

    PubMed

    Marsh, M E

    1986-05-06

    Native mineral-containing phosphoprotein particles were isolated from the Heterodont bivalve Macrocallista nimbosa. The native particles are discrete structures about 40 nm in diameter which migrate as a single band during electrophoresis in agarose gels. Removal of the mineral component with ethylenediaminetetraacetic acid dissociates the native protein into nonidentical subunits. The lower molecular weight subunits, representing 8% of the total protein, were obtained by differential centrifugation. The native protein is characterized by a high content of aspartic acid, phosphoserine, phosphothreonine, histidine, and the bifunctional cross-linking residue histidinoalanine. The low molecular weight subunits have the same amino acid composition except for a reduction in histidinoalanine and a corresponding increase in phosphoserine and histidine residues, demonstrating that the alanine portion of the cross-link is derived from phosphoserine residues. Ion-exchange chromatography and molecular sieve chromatography show that the low molecular weight subunits have a similar charge density but differ in molecular weight, and the relative mobilities of the subunits on agarose gels indicate that they are polymers of a single phosphoprotein molecule. The minimum molecular weight of the monomer is about 140 000 on the basis of the amino acid composition. The high molecular weight subunits are rich in histidinoalanine and too large to be resolved by either molecular sieve chromatography or gel electrophoresis. On the basis of the ultrastructural, electrophoretic, chromatographic, and compositional evidence, native phosphoprotein particles are composed of subunits ionically cross-linked via divalent cations. These subunits are variable molecular weight aggregates of a single phosphoprotein molecule covalently cross-linked via histidinoalanine residues. Evidence for a nonenzymatic cross-linking mechanism is discussed.

  18. Superlight Adsorbent Sponges Based on Graphene Oxide Cross-Linked with Poly(vinyl alcohol) for Continuous Flow Adsorption.

    PubMed

    Li, Xianfeng; Liu, Tao; Wang, Daohui; Li, Qing; Liu, Zhen; Li, Nana; Zhang, Yufeng; Xiao, Changfa; Feng, Xianshe

    2018-06-12

    In this study, superlight adsorbent sponges (bulk density 0.016-0.049 g·cm -3 ) were developed based on graphene oxide (GO) cross-linked with poly(vinyl alcohol) (PVA). The interlayer spacing of the GO nanosheets was increased by the insertion of PVA, and good mechanical integrity was attained by the cross-linked structure. They showed excellent continuous flow adsorption capacity (CFAC) when methylene blue (MB) was used as a model contaminant; a water flux of 396 L·m -2 ·h -1 through a 2 cm thick adsorbent sponge was achieved at a hydraulic head of only 10 cm water, with an almost complete retention of MB. They corresponded to a water permeability of 4.0 × 10 5 L·m -2 ·h -1 ·MPa -1 , which was several orders of magnitudes higher than GO-based membranes for similar applications reported in the literature. The GO nanosheets were completely immobilized in the sponge by cross-linking with PVA, and thus, there was no GO nanoparticle leaching or flushing out into the treated permeate water, which was another advantage over direct use of GO powders in water treatment. Because of the high water permeability and CFAC, the cross-linked GO/PVA sponges have a great potential for wastewater treatment.

  19. Fabrication of chemically cross-linked porous gelatin matrices.

    PubMed

    Bozzini, Sabrina; Petrini, Paola; Altomare, Lina; Tanzi, Maria Cristina

    2009-01-01

    The aim of this study was to chemically cross-link gelatin, by reacting its free amino groups with an aliphatic diisocyanate. To produce hydrogels with controllable properties, the number of reacting amino groups was carefully determined. Porosity was introduced into the gelatin-based hydrogels through the lyophilization process. Porous and non-porous matrices were characterized with respect to their chemical structure, morphology, water uptake and mechanical properties. The physical, chemical and mechanical properties of the porous matrices are related to the extent of their cross-linking, showing that they can be controlled by varying the reaction parameters. Water uptake values (24 hours) vary between 160% and 200% as the degree of cross-linking increases. The flexibility of the samples also decreases by changing the extent of cross-linking. Young's modulus shows values between 0.188 KPa, for the highest degree, and 0.142 KPa for the lowest degree. The matrices are potential candidates for use as tissue-engineering scaffolds by modulating their physical chemical properties according to the specific application.

  20. On the Reproducibility of Label-Free Quantitative Cross-Linking/Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Müller, Fränze; Fischer, Lutz; Chen, Zhuo Angel; Auchynnikava, Tania; Rappsilber, Juri

    2018-02-01

    Quantitative cross-linking/mass spectrometry (QCLMS) is an emerging approach to study conformational changes of proteins and multi-subunit complexes. Distinguishing protein conformations requires reproducibly identifying and quantifying cross-linked peptides. Here we analyzed the variation between multiple cross-linking reactions using bis[sulfosuccinimidyl] suberate (BS3)-cross-linked human serum albumin (HSA) and evaluated how reproducible cross-linked peptides can be identified and quantified by LC-MS analysis. To make QCLMS accessible to a broader research community, we developed a workflow that integrates the established software tools MaxQuant for spectra preprocessing, Xi for cross-linked peptide identification, and finally Skyline for quantification (MS1 filtering). Out of the 221 unique residue pairs identified in our sample, 124 were subsequently quantified across 10 analyses with coefficient of variation (CV) values of 14% (injection replica) and 32% (reaction replica). Thus our results demonstrate that the reproducibility of QCLMS is in line with the reproducibility of general quantitative proteomics and we establish a robust workflow for MS1-based quantitation of cross-linked peptides.

  1. Modified gum arabic cross-linked gelatin scaffold for biomedical applications.

    PubMed

    Sarika, P R; Cinthya, Kuriakose; Jayakrishnan, A; Anilkumar, P R; James, Nirmala Rachel

    2014-10-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. xTract: software for characterizing conformational changes of protein complexes by quantitative cross-linking mass spectrometry.

    PubMed

    Walzthoeni, Thomas; Joachimiak, Lukasz A; Rosenberger, George; Röst, Hannes L; Malmström, Lars; Leitner, Alexander; Frydman, Judith; Aebersold, Ruedi

    2015-12-01

    Chemical cross-linking in combination with mass spectrometry generates distance restraints of amino acid pairs in close proximity on the surface of native proteins and protein complexes. In this study we used quantitative mass spectrometry and chemical cross-linking to quantify differences in cross-linked peptides obtained from complexes in spatially discrete states. We describe a generic computational pipeline for quantitative cross-linking mass spectrometry consisting of modules for quantitative data extraction and statistical assessment of the obtained results. We used the method to detect conformational changes in two model systems: firefly luciferase and the bovine TRiC complex. Our method discovers and explains the structural heterogeneity of protein complexes using only sparse structural information.

  3. In Vivo Photo-Cross-Linking to Study T3S Interactions Demonstrated Using the Yersinia pestis T3S System.

    PubMed

    Henderson, Thomas A; Nilles, Matthew L

    2017-01-01

    Cross-linking of proteins is effective in determining protein-protein interactions. The use of photo-cross-linkers was developed to study protein interactions in several manners. One method involved the incorporation of photo-activatable cross-linking groups into chemically synthesized peptides. A second approach relies on incorporation of photo-activatable cross-linking groups into proteins using tRNAs with chemically bound photo-activatable amino acids with suppressor tRNAs translational systems to incorporate the tags into specific sites. A third system was made possible by the development of photoreactive amino acids that use the normal cellular tRNAs and aminoacyl tRNA synthetases. In this method, the third system is used to demonstrate its utility for the study of T3S system interactions. This method describes how two photo-activatable amino acids, photo-methionine and photo-leucine, that use the normal cellular machinery are incorporated into Yersinia pestis and used to study interactions in the T3S system. To demonstrate the system, the method was used to cross-link the T3S regulatory proteins LcrG and LcrV.

  4. Adsorption of allura red dye by cross-linked chitosan from shrimp waste.

    PubMed

    Sánchez-Duarte, Reyna G; Sánchez-Machado, Dalia I; López-Cervantes, Jaime; Correa-Murrieta, Ma A

    2012-01-01

    The present study was designed to evaluate the chitosan, which has been obtained by deacetylation of chitin, as a biosorbent. The chitin was isolated from fermented shrimp waste by an important local industrial food biopolymer. The aim of this work was the characterization of chitosan and preparation of cross-linked chitosan- tripolyphosphate (chitosan-TPP) beads for the removal of allura red food dye from aqueous solutions. Conditions of batch adsorption such as pH, time and adsorbent dose were examined. The effectiveness of cross-linked chitosan beads for dye removal was found to be higher for pH 2 (98%, percentage of dye removal) and tends to decrease at pHs of 3 to 11 (up to 49%). The values of percentage removal show that the adsorption capacity increases with time of contact and dosage of chitosan-TPP, but red dye adsorption is mainly influenced by pH level. The cross-linked chitosan-TPP beads can significantly adsorb allura red monoazo dye from aqueous solutions even at acidic pHs unlike raw chitosan beads that tend to dissolve in acidic solutions. Consequently, this modified chitosan has characteristics that allow minimization of environmental pollution and widening the valorization of shrimp waste.

  5. Cross-Linked Peptidoglycan Mediates Lysostaphin Binding to the Cell Wall Envelope of Staphylococcus aureus†

    PubMed Central

    Gründling, Angelika; Schneewind, Olaf

    2006-01-01

    Staphylococcus simulans bv. staphylolyticus secretes lysostaphin, a bacteriocin that cleaves pentaglycine cross bridges in the cell wall of Staphylococcus aureus. The C-terminal cell wall-targeting domain (CWT) of lysostaphin is required for selective binding of this bacteriocin to S. aureus cells; however, the molecular target for this was unknown. We used purified green fluorescent protein fused to CWT (GFP-CWT) to reveal species-specific association of the reporter with staphylococci. GFP-CWT bound S. aureus cells as well as purified peptidoglycan sacculi. The addition of cross-linked murein, disaccharides linked to interconnected wall peptides, blocked GFP-CWT binding to staphylococci, whereas murein monomers or lysostaphin-solubilized cell wall fragments did not. S. aureus strain Newman variants lacking the capacity for synthesizing polysaccharide capsule (capFO), poly-N-acetylglucosamine (icaAC), lipoprotein (lgt), cell wall-anchored proteins (srtA), or the glycolipid anchor of lipoteichoic acid (ypfP) bound GFP-CWT similar to wild-type staphylococci. A tagO mutant strain, defective in the synthesis of polyribitol wall teichoic acid attached to the cell wall envelope, displayed increased GFP-CWT binding. In contrast, a femAB mutation, reducing both the amount and the length of peptidoglycan cross-linking (monoglycine cross bridges), showed a dramatic reduction in GFP-CWT binding. Thus, the CWT domain of lysostaphin directs the bacteriocin to cross-linked peptidoglycan, which also serves as the substrate for its glycyl-glycine endopeptidase domain. PMID:16547033

  6. Cross-linked peptidoglycan mediates lysostaphin binding to the cell wall envelope of Staphylococcus aureus.

    PubMed

    Gründling, Angelika; Schneewind, Olaf

    2006-04-01

    Staphylococcus simulans bv. staphylolyticus secretes lysostaphin, a bacteriocin that cleaves pentaglycine cross bridges in the cell wall of Staphylococcus aureus. The C-terminal cell wall-targeting domain (CWT) of lysostaphin is required for selective binding of this bacteriocin to S. aureus cells; however, the molecular target for this was unknown. We used purified green fluorescent protein fused to CWT (GFP-CWT) to reveal species-specific association of the reporter with staphylococci. GFP-CWT bound S. aureus cells as well as purified peptidoglycan sacculi. The addition of cross-linked murein, disaccharides linked to interconnected wall peptides, blocked GFP-CWT binding to staphylococci, whereas murein monomers or lysostaphin-solubilized cell wall fragments did not. S. aureus strain Newman variants lacking the capacity for synthesizing polysaccharide capsule (capFO), poly-N-acetylglucosamine (icaAC), lipoprotein (lgt), cell wall-anchored proteins (srtA), or the glycolipid anchor of lipoteichoic acid (ypfP) bound GFP-CWT similar to wild-type staphylococci. A tagO mutant strain, defective in the synthesis of polyribitol wall teichoic acid attached to the cell wall envelope, displayed increased GFP-CWT binding. In contrast, a femAB mutation, reducing both the amount and the length of peptidoglycan cross-linking (monoglycine cross bridges), showed a dramatic reduction in GFP-CWT binding. Thus, the CWT domain of lysostaphin directs the bacteriocin to cross-linked peptidoglycan, which also serves as the substrate for its glycyl-glycine endopeptidase domain.

  7. Searching for the doubly charged scalars in the Georgi-Machacek model via γγ collisions at the ILC

    NASA Astrophysics Data System (ADS)

    Cao, Jun; Li, Yu-Qi; Liu, Yao-Bei

    2018-04-01

    The Georgi-Machacek (GM) model predicts the existence of the doubly-charged scalars H5±±, which can be seen the typical particles in this model and their diboson decay channels are one of the most promising ways to discover such new doubly-charged scalars. Based on the constraints of the latest combined ATLAS and CMS Higgs boson diphoton signal strength data at 2σ confidence level, we focus on the study of the triple scalar production in γγ collisions at the future International Linear collider (ILC): γγ → hH5++H 5‑‑, where the production cross-sections are very sensitive to the triple scalar coupling parameter ghHH. Considering the typical same-sign diboson decay modes for the doubly-charged scalars, the possible final signals might be detected via this process at the future ILC experiments.

  8. Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde

    PubMed Central

    Li, Bin; Shan, Chang-Lin; Zhou, Qing; Fang, Yuan; Wang, Yang-Li; Xu, Fei; Han, Li-Rong; Ibrahim, Muhammad; Guo, Long-Biao; Xie, Guan-Lin; Sun, Guo-Chang

    2013-01-01

    This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm−1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug. PMID:23670533

  9. Microwave measurements of the tropolone–formic acid doubly hydrogen bonded dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pejlovas, Aaron M.; Kukolich, Stephen G.; Serrato, Agapito

    2016-01-28

    The microwave spectrum was measured for the doubly hydrogen bonded dimer formed between tropolone and formic acid. The predicted symmetry of this dimer was C{sub 2v}(M), and it was expected that the concerted proton tunneling motion would be observed. After measuring 25 a- and b-type rotational transitions, no splittings which could be associated with a concerted double proton tunneling motion were observed. The calculated barrier to the proton tunneling motion is near 15 000 cm{sup −1}, which would likely make the tunneling frequencies too small to observe in the microwave spectra. The rotational and centrifugal distortion constants determined from the measuredmore » transitions were A = 2180.7186(98) MHz, B = 470.873 90(25) MHz, C = 387.689 84(22) MHz, D{sub J} = 0.0100(14) kHz, D{sub JK} = 0.102(28) kHz, and D{sub K} = 13.2(81) kHz. The B3LYP/aug-cc-pVTZ calculated rotational constants were within 1% of the experimentally determined values.« less

  10. Conformational analysis of a covalently cross-linked Watson-Crick base pair model.

    PubMed

    Jensen, Erik A; Allen, Benjamin D; Kishi, Yoshito; O'Leary, Daniel J

    2008-11-15

    Low-temperature NMR experiments and molecular modeling have been used to characterize the conformational behavior of a covalently cross-linked DNA base pair model. The data suggest that Watson-Crick or reverse Watson-Crick hydrogen bonding geometries have similar energies and can interconvert at low temperatures. This low-temperature process involves rotation about the crosslink CH(2)C(5') (psi) carbon-carbon bond, which is energetically preferred over the alternate CH(2)N(3) (phi) carbon-nitrogen bond rotation.

  11. Cross-linking by protein oxidation in the rapidly setting gel-based glues of slugs.

    PubMed

    Bradshaw, Andrew; Salt, Michael; Bell, Ashley; Zeitler, Matt; Litra, Noelle; Smith, Andrew M

    2011-05-15

    The terrestrial slug Arion subfuscus secretes a glue that is a dilute gel with remarkable adhesive and cohesive strength. The function of this glue depends on metals, raising the possibility that metal-catalyzed oxidation plays a role. The extent and time course of protein oxidation was measured by immunoblotting to detect the resulting carbonyl groups. Several proteins, particularly one with a relative molecular mass (M(r)) of 165 x 10³, were heavily oxidized. Of the proteins known to distinguish the glue from non-adhesive mucus, only specific size variants were oxidized. The oxidation appears to occur within the first few seconds of secretion. Although carbonyls were detected by 2,4-dinitrophenylhydrazine (DNPH) in denatured proteins, they were not easily detected in the native state. The presence of reversible cross-links derived from carbonyls was tested for by treatment with sodium borohydride, which would reduce uncross-linked carbonyls to alcohols, but stabilize imine bonds formed by carbonyls and thus lead to less soluble complexes. Consistent with imine bond formation, sodium borohydride led to a 20-35% decrease in the amount of soluble protein with a M(r) of 40-165 (x 10³) without changing the carbonyl content per protein. In contrast, the nucleophile hydroxylamine, which would competitively disrupt imine bonds, increased protein solubility in the glue. Finally, the primary amine groups on a protein with a M(r) of 15 x 10³ were not accessible to acid anhydrides. The results suggest that cross-links between aldehydes and primary amines contribute to the cohesive strength of the glue.

  12. Cross-linking by protein oxidation in the rapidly setting gel-based glues of slugs

    PubMed Central

    Bradshaw, Andrew; Salt, Michael; Bell, Ashley; Zeitler, Matt; Litra, Noelle; Smith, Andrew M.

    2011-01-01

    SUMMARY The terrestrial slug Arion subfuscus secretes a glue that is a dilute gel with remarkable adhesive and cohesive strength. The function of this glue depends on metals, raising the possibility that metal-catalyzed oxidation plays a role. The extent and time course of protein oxidation was measured by immunoblotting to detect the resulting carbonyl groups. Several proteins, particularly one with a relative molecular mass (Mr) of 165×103, were heavily oxidized. Of the proteins known to distinguish the glue from non-adhesive mucus, only specific size variants were oxidized. The oxidation appears to occur within the first few seconds of secretion. Although carbonyls were detected by 2,4-dinitrophenylhydrazine (DNPH) in denatured proteins, they were not easily detected in the native state. The presence of reversible cross-links derived from carbonyls was tested for by treatment with sodium borohydride, which would reduce uncross-linked carbonyls to alcohols, but stabilize imine bonds formed by carbonyls and thus lead to less soluble complexes. Consistent with imine bond formation, sodium borohydride led to a 20–35% decrease in the amount of soluble protein with a Mr of 40–165 (×103) without changing the carbonyl content per protein. In contrast, the nucleophile hydroxylamine, which would competitively disrupt imine bonds, increased protein solubility in the glue. Finally, the primary amine groups on a protein with a Mr of 15×103 were not accessible to acid anhydrides. The results suggest that cross-links between aldehydes and primary amines contribute to the cohesive strength of the glue. PMID:21525316

  13. Fine-mapping and cross-validation of QTLs linked to fatty acid composition in multiple independent interspecific crosses of oil palm.

    PubMed

    Ting, Ngoot-Chin; Yaakub, Zulkifli; Kamaruddin, Katialisa; Mayes, Sean; Massawe, Festo; Sambanthamurthi, Ravigadevi; Jansen, Johannes; Low, Leslie Eng Ti; Ithnin, Maizura; Kushairi, Ahmad; Arulandoo, Xaviar; Rosli, Rozana; Chan, Kuang-Lim; Amiruddin, Nadzirah; Sritharan, Kandha; Lim, Chin Ching; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Singh, Rajinder

    2016-04-14

    The commercial oil palm (Elaeis guineensis Jacq.) produces a mesocarp oil (commonly called 'palm oil') with approximately equal proportions of saturated and unsaturated fatty acids (FAs). An increase in unsaturated FAs content or iodine value (IV) as a measure of the degree of unsaturation would help to open up new markets for the oil. One way to manipulate the fatty acid composition (FAC) in palm oil is through introgression of favourable alleles from the American oil palm, E. oleifera, which has a more unsaturated oil. In this study, a segregating E. oleifera x E. guineensis (OxG) hybrid population for FAC is used to identify quantitative trait loci (QTLs) linked to IV and various FAs. QTL analysis revealed 10 major and two putative QTLs for IV and six FAs, C14:0, C16:0, C16:1, C18:0, C18:1 and C18:2 distributed across six linkage groups (LGs), OT1, T2, T3, OT4, OT6 and T9. The major QTLs for IV and C16:0 on LGOT1 explained 60.0 - 69.0 % of the phenotypic trait variation and were validated in two independent BC2 populations. The genomic interval contains several key structural genes in the FA and oil biosynthesis pathways such as PATE/FATB, HIBCH, BASS2, LACS4 and DGAT1 and also a relevant transcription factor (TF), WRI1. The literature suggests that some of these genes can exhibit pleiotropic effects in the regulatory networks of these traits. Using the whole genome sequence data, markers tightly linked to the candidate genes were also developed. Clustering trait values according to the allelic forms of these candidate markers revealed significant differences in the IV and FAs of the palms in the mapping and validation crosses. The candidate gene approach described and exploited here is useful to identify the potential causal genes linked to FAC and can be adopted for marker-assisted selection (MAS) in oil palm.

  14. Recent advances in corneal collagen cross-linking

    PubMed Central

    Sachdev, Gitansha Shreyas; Sachdev, Mahipal

    2017-01-01

    Corneal collagen cross-linking has become the preferred modality of treatment for corneal ectasia since its inception in late 1990s. Numerous studies have demonstrated the safety and efficacy of the conventional protocol. Our understanding of the cross-linking process is ever evolving, with its wide implications in the form of accelerated and pulsed protocols. Newer advancements in technology include various riboflavin formulations and the ability to deliver higher fluence protocols with customised irradiation patterns. A greater degree of customisation is likely the path forward, which will aim at achieving refractive improvements along with disease stability. The use of cross-linking for myopic correction is another avenue under exploration. Combination of half fluence cross-linking with refractive correction for high errors to prevent post LASIK regression is gaining interest. This review aims to highlight the various advancements in the cross-linking technology and its clinical applications. PMID:28905820

  15. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks) based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model.

    PubMed

    Dau, Michael; Ganz, Cornelia; Zaage, Franziska; Frerich, Bernhard; Gerber, Thomas

    2017-01-01

    The aim of this study was to examine the in vivo characteristics and levels of integration and degradation of a ready-to-use bone grafting block with elastic properties (elastic block) for the use in surgery. Thirty-six male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. All created defects - one per animal - were filled with an unsintered nanocrystalline hydroxyapatite embedded either with a non-cross-linked hydrogel carrier (CONT, n=18) or a cross-linked hydrogel carrier (elastic block [EB], n=18) based on polyvinylpyrrolidone (PVP) and silica sol, respectively. The animals were killed after 12 (n=12), 21 (n=12) and 63 days (n=12). The bone formation and defect healing were quantified by histomorphometric measurements made in paraffin sections. Additionally, immunohistochemical (tartrate-resistant acid phosphatase [TRAP] and alkaline phosphatase [aP]), antibody-based examinations (CD68) and energy-dispersive x-ray scattering measurements of silica atom concentration were carried out. A larger remaining bone defect area overall was observed in EB after 12 days and 21 days. After 63 days, similar areas of remaining bone defects were found. The amount of the remaining carrier material in EB overall was higher at all times. In CONT no residual carrier material was found at 12 days and later. CD68 analyses showed significantly lower level of CD68-positive marked cells after 21 days in CONT, and nonsignificant differences at 12 and 63 days, respectively. Additionally, a significantly higher level of aP-positive marked cells was observed in CONT after 12 days. Later on, the levels of aP-positive marked cells were slightly higher in EB (21 and 63 days). Furthermore, no significant differences regarding the level of TRAP-positive marked cells in each group were observed. The bone substitute (EB) with the cross-linked PVP-based hydrogel carrier leads at the beginning to a higher amount of remaining carrier material and remaining bone

  16. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks) based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model

    PubMed Central

    Dau, Michael; Ganz, Cornelia; Zaage, Franziska; Frerich, Bernhard; Gerber, Thomas

    2017-01-01

    Purpose The aim of this study was to examine the in vivo characteristics and levels of integration and degradation of a ready-to-use bone grafting block with elastic properties (elastic block) for the use in surgery. Materials and methods Thirty-six male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. All created defects – one per animal – were filled with an unsintered nanocrystalline hydroxyapatite embedded either with a non-cross-linked hydrogel carrier (CONT, n=18) or a cross-linked hydrogel carrier (elastic block [EB], n=18) based on polyvinylpyrrolidone (PVP) and silica sol, respectively. The animals were killed after 12 (n=12), 21 (n=12) and 63 days (n=12). The bone formation and defect healing were quantified by histomorphometric measurements made in paraffin sections. Additionally, immunohistochemical (tartrate-resistant acid phosphatase [TRAP] and alkaline phosphatase [aP]), antibody-based examinations (CD68) and energy-dispersive x-ray scattering measurements of silica atom concentration were carried out. Results A larger remaining bone defect area overall was observed in EB after 12 days and 21 days. After 63 days, similar areas of remaining bone defects were found. The amount of the remaining carrier material in EB overall was higher at all times. In CONT no residual carrier material was found at 12 days and later. CD68 analyses showed significantly lower level of CD68-positive marked cells after 21 days in CONT, and nonsignificant differences at 12 and 63 days, respectively. Additionally, a significantly higher level of aP-positive marked cells was observed in CONT after 12 days. Later on, the levels of aP-positive marked cells were slightly higher in EB (21 and 63 days). Furthermore, no significant differences regarding the level of TRAP-positive marked cells in each group were observed. Conclusion The bone substitute (EB) with the cross-linked PVP-based hydrogel carrier leads at the beginning to a higher

  17. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA.

    PubMed

    Yang, Zhiyu; Price, Nathan E; Johnson, Kevin M; Wang, Yinsheng; Gates, Kent S

    2017-06-20

    Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3'ddR5p) at the 3'-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3'ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3'ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Regulation Mechanism of Salt Ions for Superlubricity of Hydrophilic Polymer Cross-Linked Networks on Ti6Al4V.

    PubMed

    Zhang, Caixia; Liu, Yuhong; Liu, Zhifeng; Zhang, Hongyu; Cheng, Qiang; Yang, Congbin

    2017-03-07

    Poly(vinylphosphonic acid) (PVPA) cross-linked networks on Ti 6 Al 4 V show superlubricity behavior when sliding against polytetrafluoroethylene in water-based lubricants. The superlubricity can occur but only with the existence of salt ions in the polymer cross-linked networks. This is different from the phenomenon in most polymer brushes. An investigation into the mechanism revealed that cations and anions in the lubricants worked together to yield the superlubricity even under harsh conditions. It is proposed that the preferential interactions of cations with PVPA molecules rather than water molecules are the main reason for the superlubricity in water-based lubricants. The interaction of anions with water molecules regulates the properties of the tribological interfaces, which influences the magnitude of the friction coefficient. Owing to the novel cross-linked networks and the interactions between cations and polymer molecules, their superlubricity can be maintained even at a high salt ion concentration of 5 M. These excellent properties make PVPA-modified Ti 6 Al 4 V a potential candidate for application in artificial implants.

  19. An Evaluation of Lysyl Oxidase–Derived Cross-Linking in Keratoconus by Liquid Chromatography/Mass Spectrometry

    PubMed Central

    Takaoka, Anna; Babar, Natasha; Hogan, Julia; Kim, MiJung; Price, Marianne O.; Price, Francis W.; Trokel, Stephen L.; Paik, David C.

    2016-01-01

    Purpose Current literature contains scant information regarding the extent of enzymatic collagen cross-linking in the keratoconus (KC) cornea. The aim of the present study was to examine levels of enzymatic lysyl oxidase–derived cross-links in stromal collagen in KC tissue, and to correlate the cross-link levels with collagen fibril stability as determined by thermal denaturation temperature (Tm). Methods Surgical KC samples (n = 17) and Eye-Bank control (n = 11) corneas of age 18 to 68 years were analyzed. The samples were defatted, reduced (NaBH4), hydrolyzed (6N HCl at 110°C for 18 hours), and cellulose enriched before analysis by C8 high-performance liquid chromatography equipped with parallel fluorescent and mass detectors in selective ion monitoring mode (20 mM heptafluorobutyric acid/methanol 70:30 isocratic at 1 mL/min). Nine different cross-links were measured, and the cross-link density was determined relative to collagen content (determined colorimetrically). The Tm was determined by differential scanning calorimetry. Results Cross-links detected were dihydroxylysinonorleucine (DHLNL), hydroxylysinonorleucine, lysinonorleucine (LNL), and histidinohydroxylysinonorleucine in both control and KC samples. Higher DHLNL levels were detected in KC, whereas the dominant cross-link, LNL, was decreased in KC samples. Decreased LNL levels were observed among KC ≤ 40 corneas. There was no difference in total cross-link density between KC samples and the controls. Pyridinolines, desmosines, and pentosidine were not detected. There was no notable correlation between cross-link levels with fibril instability as determined by Tm. Conclusions Lower levels of LNL in the KC cornea suggest that there might be a cross-linking defect either in fibrillar collagen or the microfibrillar elastic network composed of fibrillin. PMID:26780316

  20. Textural and cargo release attributes of trisodium citrate cross-linked starch hydrogel.

    PubMed

    Abhari, Negar; Madadlou, Ashkan; Dini, Ali; Hosseini Naveh, Ozra

    2017-01-01

    An alkaline starch suspension was charged with citric acid and incubated for different durations (0, 8.5 or 17h). The suspension was then supplemented with caffeine and gelatinized to fabricate hydrogels which were subsequently stored for varying periods (0, 24 or 48h). Charging of the well-dissolved alkaline starch suspension with citric acid decreased at first both the flow index and consistency coefficient (K); however, starch cross-linking over time by the generated trisodium citrate increased the K value. The latter also inhibited gel syneresis and increased its water-holding capacity. Trisodium citrate did not nonetheless influence the gel hardness except for the sample incubated for maximum duration and stored for the longest period. The amount of the caffeine released from hydrogel decreased by citrate cross-linking and was higher at neutral pH than pH 2.0. Fourier-transform infra-red spectroscopy suggested that caffeine was enclosed within the gel network via non-covalent interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The advancement of chemical cross-linking and mass spectrometry for structural proteomics: from single proteins to protein interaction networks.

    PubMed

    Sinz, Andrea

    2014-12-01

    During the last 15 years, chemical cross-linking combined with mass spectrometry (MS) and computational modeling has advanced from investigating 3D-structures of isolated proteins to deciphering protein interaction networks. In this article, the author discusses the advent, the development and the current status of the chemical cross-linking/MS strategy in the context of recent technological developments. A direct way to probe in vivo protein-protein interactions is by site-specific incorporation of genetically encoded photo-reactive amino acids or by non-directed incorporation of photo-reactive amino acids. As the chemical cross-linking/MS approach allows the capture of transient and weak interactions, it has the potential to become a routine technique for unraveling protein interaction networks in their natural cellular environment.

  2. Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane.

    PubMed

    Guo, Haiquan; Meador, Mary Ann B; McCorkle, Linda; Quade, Derek J; Guo, Jiao; Hamilton, Bart; Cakmak, Miko; Sprowl, Guilherme

    2011-02-01

    We report the first synthesis of polyimide aerogels cross-linked through a polyhedral oligomeric silsesquioxane, octa(aminophenyl)silsesquioxane (OAPS). Gels formed from polyamic acid solutions of 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), bisaniline-p-xylidene (BAX) and OAPS were chemically imidized and dried using supercritical CO(2) extraction to give aerogels having density around 0.1 g/cm(3). The aerogels are greater than 90 % porous, have high surface areas (230 to 280 m(2)/g) and low thermal conductivity (14 mW/m-K at room temperature). Notably, the polyimide aerogels cross-linked with OAPS have higher modulus than polymer reinforced silica aerogels of similar density and can be fabricated as both monoliths and thin films. Thin films of the aerogel are flexible and foldable making them an ideal insulation for space suits, and inflatable structures for habitats or decelerators for planetary re-entry, as well as more down to earth applications.

  3. Rational Design, Synthesis and Evaluation of γ-CD-Containing Cross-Linked Polyvinyl Alcohol Hydrogel as a Prednisone Delivery Platform.

    PubMed

    Marican, Adolfo; Avila-Salas, Fabián; Valdés, Oscar; Wehinger, Sergio; Villaseñor, Jorge; Fuentealba, Natalia; Arenas-Salinas, Mauricio; Argandoña, Yerko; Carrasco-Sánchez, Verónica; Durán-Lara, Esteban F

    2018-03-07

    This study describes the in-silico rational design, synthesis and evaluation of cross-linked polyvinyl alcohol hydrogels containing γ-cyclodextrin (γ-CDHSAs) as platforms for the sustained release of prednisone (PDN). Through in-silico studies using semi-empirical quantum mechanical calculations, the effectiveness of 20 dicarboxylic acids to generate a specific cross-linked hydrogel capable of supporting different amounts of γ-cyclodextrin (γ-CD) was evaluated. According to the interaction energies calculated with the in-silico studies, the hydrogel made from PVA cross-linked with succinic acids (SA) was shown to be the best candidate for containing γ-CD. Later, molecular dynamics simulation studies were performed in order to evaluate the intermolecular interactions between PDN and three cross-linked hydrogel formulations with different proportions of γ-CD (2.44%, 4.76% and 9.1%). These three cross-linked hydrogels were synthesized and characterized. The loading and the subsequent release of PDN from the hydrogels were investigated. The in-silico and experimental results showed that the interaction between PDN and γ-CDHSA was mainly produced with the γ-CDs linked to the hydrogels. Thus, the unique structures and properties of γ-CDHSA demonstrated an interesting multiphasic profile that could be utilized as a promising drug carrier for controlled, sustained and localized release of PDN.

  4. Rational Design, Synthesis and Evaluation of γ-CD-Containing Cross-Linked Polyvinyl Alcohol Hydrogel as a Prednisone Delivery Platform

    PubMed Central

    Marican, Adolfo; Valdés, Oscar; Wehinger, Sergio; Villaseñor, Jorge; Fuentealba, Natalia; Argandoña, Yerko; Carrasco-Sánchez, Verónica

    2018-01-01

    This study describes the in-silico rational design, synthesis and evaluation of cross-linked polyvinyl alcohol hydrogels containing γ-cyclodextrin (γ-CDHSAs) as platforms for the sustained release of prednisone (PDN). Through in-silico studies using semi-empirical quantum mechanical calculations, the effectiveness of 20 dicarboxylic acids to generate a specific cross-linked hydrogel capable of supporting different amounts of γ-cyclodextrin (γ-CD) was evaluated. According to the interaction energies calculated with the in-silico studies, the hydrogel made from PVA cross-linked with succinic acids (SA) was shown to be the best candidate for containing γ-CD. Later, molecular dynamics simulation studies were performed in order to evaluate the intermolecular interactions between PDN and three cross-linked hydrogel formulations with different proportions of γ-CD (2.44%, 4.76% and 9.1%). These three cross-linked hydrogels were synthesized and characterized. The loading and the subsequent release of PDN from the hydrogels were investigated. The in-silico and experimental results showed that the interaction between PDN and γ-CDHSA was mainly produced with the γ-CDs linked to the hydrogels. Thus, the unique structures and properties of γ-CDHSA demonstrated an interesting multiphasic profile that could be utilized as a promising drug carrier for controlled, sustained and localized release of PDN. PMID:29518980

  5. Application of a fast sorting algorithm to the assignment of mass spectrometric cross-linking data.

    PubMed

    Petrotchenko, Evgeniy V; Borchers, Christoph H

    2014-09-01

    Cross-linking combined with MS involves enzymatic digestion of cross-linked proteins and identifying cross-linked peptides. Assignment of cross-linked peptide masses requires a search of all possible binary combinations of peptides from the cross-linked proteins' sequences, which becomes impractical with increasing complexity of the protein system and/or if digestion enzyme specificity is relaxed. Here, we describe the application of a fast sorting algorithm to search large sequence databases for cross-linked peptide assignments based on mass. This same algorithm has been used previously for assigning disulfide-bridged peptides (Choi et al., ), but has not previously been applied to cross-linking studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides*

    PubMed Central

    Giese, Sven H.; Fischer, Lutz; Rappsilber, Juri

    2016-01-01

    Cross-linking/mass spectrometry resolves protein–protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers. PMID:26719564

  7. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cross-linked polyacrylate copolymers. 177.1211... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked polyacrylate...

  8. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cross-linked polyacrylate copolymers. 177.1211... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked polyacrylate...

  9. Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase.

    PubMed

    Nadar, Shamraja S; Muley, Abhijeet B; Ladole, Mayur R; Joshi, Pranoti U

    2016-03-01

    Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase were prepared by precipitation and subsequent cross-linking. The non-toxic, biodegradable, biocompatible, renewable polysaccharide based macromolecular cross-linkers viz. agar, chitosan, dextran, and gum arabic were used as a substitute for traditional glutaraldehyde to augment activity recovery toward macromolecular substrate. Macromolecular cross-linkers were prepared by periodate mediated controlled oxidation of polysaccharides. The effects of precipitating agent, concentration and different cross-linkers on activity recovery of α-amylase CLEAs were investigated. α-Amylase aggregated with ammonium sulphate and cross-linked by dextran showed 91% activity recovery, whereas glutaraldehyde CLEAs (G-CLEAs) exhibited 42% activity recovery. M-CLEAs exhibited higher thermal stability in correlation with α-amylase and G-CLEAs. Moreover, dextran and chitosan M-CLEAs showed same affinity for starch hydrolysis as of free α-amylase. The changes in secondary structures revealed the enhancements in structural and conformational rigidity attributed by cross-linkers. Finally, after five consecutive cycles dextran M-CLEAs retained 1.25 times higher initial activity than G-CLEAs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Rapid Covalent Immobilization of Proteins by Phenol-Based Photochemical Cross-Linking.

    PubMed

    Ren, Jun; Tian, Kaikai; Jia, Lingyun; Han, Xiuyou; Zhao, Mingshan

    2016-10-19

    A strategy for photoinduced covalent immobilization of proteins on phenol-functionalized surfaces is described. Under visible light irradiation, the reaction can be completed within seconds at ambient temperature, with high yields in aqueous solution of physiological conditions. Protein immobilization is based on a ruthenium-catalyzed radical cross-linking reaction between proteins and phenol-modified surfaces, and the process has proven mild enough for lipase, Staphylococcus aureus protein A, and streptavidin to preserve their bioactivity. This strategy was successfully applied to antibody immobilization on different material platforms, including agarose beads, cellulose membranes, and glass wafers, thus providing a generic procedure for rapid biomodification of surfaces.

  11. Ionic Hydrogel Based on Chitosan Cross-Linked with 6-Phosphogluconic Trisodium Salt as a Drug Delivery System.

    PubMed

    Martínez-Martínez, Mayte; Rodríguez-Berna, Guillermo; Gonzalez-Alvarez, Isabel; Hernández, Ma Jesús; Corma, Avelino; Bermejo, Marival; Merino, Virginia; Gonzalez-Alvarez, Marta

    2018-04-09

    In this work, 6-phosphogluconic trisodium salt (6-PG - Na + ) is introduced as a new aqueous and nontoxic cross-linking agent to obtain ionic hydrogels. Here, it is shown the formation of hydrogels based on chitosan cross-linked with 6-PG - Na + . This formulation is obtained by ionic interaction of cationic groups of polymer with anionic groups of the cross-linker. These hydrogels are nontoxic, do not cause dermal irritation, are easy to extend, and have an adequate adhesion force to be applied as polymeric film over the skin. This formulation exhibits a first order release kinetic and can be applied as drug vehicle for topical administration or as wound dressing for wound healing. The primary goal of this communication is to report the identification and utility of 6-phosphogluconic trisodium salt (6-PG - Na + ) as a nontoxic cross-linker applicable for cationic polymers.

  12. The chain of cross-contamination: link-by-link.

    PubMed

    Schwartz, Jeanne

    2002-01-01

    Conscious efforts must be made to break the chain of cross-contamination--link-by-link. Pay attention to detail Avoid being careless Avoid touching objects while wearing soiled gloves Frequently wash hands (15-second hand washing) to remove pathogens--before and after gloving, and before handling food or drink Wear all PPE, and change accordingly.

  13. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries.

    PubMed

    Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li + /Li, an ionic conductivity of 6.79 × 10 -4 S cm -1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn 2+ ions at 25 and 55 °C. Thus, the LiNi 0.5 Mn 1.5 O 4 /Li and LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

  14. Synthesis of new kojic acid based unnatural α-amino acid derivatives.

    PubMed

    Balakrishna, C; Payili, Nagaraju; Yennam, Satyanarayana; Uma Devi, P; Behera, Manoranjan

    2015-11-01

    An efficient method for the preparation of kojic acid based α-amino acid derivatives by alkylation of glycinate schiff base with bromokojic acids have been described. Using this method, mono as well as di alkylated kojic acid-amino acid conjugates have been prepared. This is the first synthesis of C-linked kojic acid-amino acid conjugate where kojic acid is directly linked to amino acid through a C-C bond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - II. Verifications

    DOE PAGES

    Choi, Sooyoung; Kong, Chidong; Lee, Deokjung; ...

    2015-03-09

    A new methodology has been developed recently to treat resonance self-shielding in systems for which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. The theoretical development adopts equivalence theory in both micro- and macro-level heterogeneities to provide approximate analytical expressions for the shielded cross sections, which may be interpolated from a table of resonance integrals or Bondarenko factors using a modified background cross section as the interpolation parameter. This paper describes the first implementation of the theoretical equations in a reactor analysis code. In order to reduce discrepancies caused bymore » use of the rational approximation for collision probabilities in the original derivation, a new formulation for a doubly heterogeneous Bell factor is developed in this paper to improve the accuracy of doubly heterogeneous expressions. This methodology is applied to a wide range of pin cell and assembly test problems with varying geometry parameters, material compositions, and temperatures, and the results are compared with continuous-energy Monte Carlo simulations to establish the accuracy and range of applicability of the new approach. It is shown that the new doubly heterogeneous self-shielding method including the Bell factor correction gives good agreement with reference Monte Carlo results.« less

  16. A contact photo-cross-linking investigation of the active site of the 8-17 deoxyribozyme.

    PubMed

    Liu, Yong; Sen, Dipankar

    2008-09-12

    The small RNA-cleaving 8-17 deoxyribozyme (DNAzyme) has been the subject of extensive mechanistic and structural investigation, including a number of recent single-molecule studies of its global folding. Little detailed insight exists, however, into this DNAzyme's active site; for instance, the identity of specific nucleotides that are proximal to or in contact with the scissile site in the substrate. Here, we report a systematic replacement of a number of bases within the magnesium-folded DNAzyme-substrate complex with thio- and halogen-substituted base analogues, which were then photochemically activated to generate contact cross-links within the complex. Mapping of the cross-links revealed a striking pattern of DNAzyme-substrate cross-links but an absence of significant intra-DNAzyme cross-links. Notably, the two nucleotides directly flanking the scissile phosphodiester cross-linked strongly with functionally important elements within the DNAzyme, the thymine of a G.T wobble base pair, a WCGR bulge loop, and a terminal AGC loop. Mutation of the wobble base pair to a G-C pair led to a significant folding instability of the DNAzyme-substrate complex. The cross-linking patterns obtained were used to generate a model for the DNAzyme's active site that had the substrate's scissile phosphodiester sandwiched between the DNAzyme's wobble thymine and its AGC and WCGR loops.

  17. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications.

    PubMed

    López de Dicastillo, Carol; Rodríguez, Francisco; Guarda, Abel; Galotto, Maria José

    2016-01-20

    Development of antioxidant and antimicrobial active food packaging materials based on biodegradable polymer and natural plant extracts has numerous advantages as reduction of synthetic additives into the food, reduction of plastic waste, and food protection against microorganisms and oxidation reactions. In this way, active films based on methylcellulose (MC) and maqui (Aristotelia chilensis) berry fruit extract, as a source of antioxidants agents, were studied. On the other hand, due to the high water affinity of MC, this polymer was firstly cross-linked with glutaraldehyde (GA) at different concentrations. The results showed that the addition of GA decreased water solubility, swelling, water vapor permeability of MC films, and the release of antioxidant substances from the active materials increased with the concentration of GA. Natural extract and active cross-linked films were characterized in order to obtain the optimal formulation with the highest antioxidant activity and the best physical properties for latter active food packaging application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Polymer Micelles with Cross-Linked Polyanion Core for Delivery of a Cationic Drug Doxorubicin

    PubMed Central

    Kim, Jong Oh; Kabanov, Alexander V.; Bronich, Tatiana K.

    2009-01-01

    Polymer micelles with cross-linked ionic cores were prepared by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) copolymer and divalent metal cations as templates. Doxorubicin (DOX), an anthracycline anticancer drug, was successfully incorporated into the ionic cores of such micelles via electrostatic interactions. A substantial drug loading level (up to 50 w/w %) was achieved and it was strongly dependent on the structure of the cross-linked micelles and pH. The drug-loaded micelles were stable in aqueous dispersions exhibiting no aggregation or precipitation for a prolonged period of time. The DOX-loaded polymer micelles exhibited noticeable pH-sensitive behavior with accelerated release of DOX in acidic environment due to the protonation of carboxylic groups in the cores of the micelles. The attempt to protect the DOX-loaded core with the polycationic substances resulted in the decrease of loading efficacy and had a slight effect on the release characteristics of the micelles. The DOX-loaded polymer micelles exhibited a potent cytotoxicity against human A2780 ovarian carcinoma cells. These results point to a potential of novel polymer micelles with cross-linked ionic cores to be attractive carriers for the delivery of DOX. PMID:19386272

  19. Effect of the cross-linking agent on performances of NaCS-CS/WSC microcapsules.

    PubMed

    Wu, Qing-Xi; Xu, Xin; Wang, Zu-Li; Yao, Shan-Jing; Tong, Wang-Yu; Chen, Yan

    2016-11-01

    Based on the properties of oppositely charged natural polysaccharides, the polyelectrolyte complexes (PECs) prepared with chitosan-related polycationic polyelectrolytes and cellulose-related polyanionic polyelectrolytes have been widely concerned for their potential applications as micro-drug-carriers for colon. However, the poor mechanical property of the PECs becomes the obstacle encountered in practical applications. This study investigated the effect of the cross-linking agent (sodium polyphosphate, PPS) on the performances of sodium cellulose sulfate -chitosan/water soluble chitosan (NaCS-CS/WSC) microcapsules. The results revealed that PPS could penetrate through the PEC film and form tighter interior structures compared with the microcapsules without the addition of cross-linking agent. The NaCS-CS microcapsules and NaCS-WSC microcapsules with or without PPS had distinct microstructures, which could be ascribed to the different physicochemical properties of CS and WSC. During the formation process, CS can be dissolved in water under acidic conditions, while WSC can be directly dissolved and protonated in acid-free aqueous providing NH3(+) groups quickly, which resulted in the microstructure's difference. Further analysis showed the NaCS-CS-PPS microcapsules and NaCS-WSC-PPS microcapsules had lower swelling ratios due to their tighter interior microstructures that formed. The cross-linking agent had important effect on the total mass of PECs that produced; moreover, the decline of zeta potential of NaCS-CS-PPS microcapsules was lower than that of NaCS-CS microcapsules, similar trend was found in the NaCS-WSC-PPS microcapsules compared with NaCS-WSC microcapsules, indicating the PPS participated in the interactions and played a role in the microcapsules' formation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Negatively charged polysulfone membranes with hydrophilicity and antifouling properties based on in situ cross-linked polymerization.

    PubMed

    Zhu, Lijing; Song, Haiming; Zhang, Dawei; Wang, Gang; Zeng, Zhixiang; Xue, Qunji

    2017-07-15

    Polysulfone (PSf) membrane has been widely used in water separation and purification, although, membrane fouling is still a serious problem limiting its potential. We aim to improve the antifouling of PSf membranes via a very simple and efficient method. In this work, antifouling PSf membranes were fabricated via in situ cross-linked polymerization coupled with non-solvent induced phase separation. In brief, acrylic acid (AA) and vinyltriethoxysilane (VTEOS) were copolymerized in PSf solution, then directly casted into membranes without purification. With the increase of monomers concentration, the morphology of the as-cast membranes changed from a finger-like morphology to a fully sponge-like structure due to the increased viscosity and decreased precipitation rate of the polymer solutions. Meanwhile, the hydrophilicity and electronegativity of modified membranes were highly improved leading to inhibited protein adsorption and improved antifouling property. Furthermore, in order to further find out the different roles player by AA and VTESO, the modified membrane without VTEOS was prepared and characterized. The results indicated that AA is more effective in the membrane hydrophilicity improvement, VTEOS is more crucial to improve membrane stability. This work provides valuable guidance for fabricating PSf membranes with hydrophilicity and antifouling property via in situ cross-linked polymerization. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Enzymatic cross-linking of soy proteins within non-fat set yogurt gel.

    PubMed

    Soleymanpuori, Rana; Madadlou, Ashkan; Zeynali, Fariba; Khosrowshahi, Asghar

    2014-08-01

    Soy proteins as the health-promoting ingredients and candidate fat substitutes in dairy products are good substrates for the cross-linking action of the enzyme transglutaminase. Non-fat set yogurt samples were prepared from the milks enriched with soy protein isolate (SPI) and/or treated with the enzyme transglutaminase. The highest titrable acidity was recorded for the yogurt enriched with SPI and treated with the enzyme throughout the cold storage for 21 d. SPI-enrichment of yogurt milk increased the water holding capacity. Although enrichment with SPI did not influence the count of Streptococcus themophilus, increased that of Lactobacillus bulgaricus ∼3 log cycles. The enzymatic treatment of SPI-enriched milk however, suppressed the bacteria growth-promoting influence of SPI due probably to making the soy proteins inaccessible for Lactobacillus. SPI-enrichment and enzymatic treatment of milk decreased the various organic acids content in yoghurt samples; influence of the former was more significant. The cross-linking of milk proteins to soy proteins was confirmed with the gel electrophoresis results.

  2. Simultaneous cross-linking and p-doping of a polymeric semiconductor film by immersion into a phosphomolybdic acid solution for use in organic solar cells.

    PubMed

    Aizawa, Naoya; Fuentes-Hernandez, Canek; Kolesov, Vladimir A; Khan, Talha M; Kido, Junji; Kippelen, Bernard

    2016-03-07

    Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) is shown to be simultaneously cross-linked and p-doped when immersed into a phosphomolybdic acid solution, yielding conductive films with low solubility that can withstand the solution processing of subsequent photoactive layers. Such a modified PCDTBT film serves to improve hole collection and limit carrier recombination in organic solar cells.

  3. Characterization of the Deoxyguanosine–Lysine Cross-Link of Methylglyoxal

    PubMed Central

    2015-01-01

    Methylglyoxal is a mutagenic bis-electrophile that is produced endogenously from carbohydrate precursors. Methylglyoxal has been reported to induce DNA–protein cross-links (DPCs) in vitro and in cultured cells. Previous work suggests that these cross-links are formed between guanine and either lysine or cysteine side chains. However, the chemical nature of the methylglyoxal induced DPC have not been determined. We have examined the reaction of methylglyoxal, deoxyguanosine (dGuo), and Nα-acetyllysine (AcLys) and determined the structure of the cross-link to be the N2-ethyl-1-carboxamide with the lysine side chain amino group (1). The cross-link was identified by mass spectrometry and the structure confirmed by comparison to a synthetic sample. Further, the cross-link between methylglyoxal, dGuo, and a peptide (AcAVAGKAGAR) was also characterized. The mechanism of cross-link formation is likely to involve an Amadori rearrangement. PMID:24801980

  4. Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles.

    PubMed

    Tan, Shereen; Cui, Jiwei; Fu, Qiang; Nam, Eunhyung; Ladewig, Katharina; Ren, Jing M; Wong, Edgar H H; Caruso, Frank; Blencowe, Anton; Qiao, Greg G

    2016-03-09

    Burst release of a payload from polymeric particles upon photoirradiation was engineered by altering the cross-linking density. This was achieved via a dual cross-linking concept whereby noncovalent cross-linking was provided by cyclodextrin host-guest interactions, and irreversible covalent cross-linking was mediated by continuous assembly of polymers (CAP). The dual cross-linked particles (DCPs) were efficiently infiltrated (∼80-93%) by the biomacromolecule dextran (molecular weight up to 500 kDa) to provide high loadings (70-75%). Upon short exposure (5 s) to UV light, the noncovalent cross-links were disrupted resulting in increased permeability and burst release of the cargo (50 mol % within 1 s) as visualized by time-lapse fluorescence microscopy. As sunlight contains UV light at low intensities, the particles can potentially be incorporated into systems used in agriculture, environmental control, and food packaging, whereby sunlight could control the release of nutrients and antimicrobial agents.

  5. ProXL (Protein Cross-Linking Database): A Platform for Analysis, Visualization, and Sharing of Protein Cross-Linking Mass Spectrometry Data

    PubMed Central

    2016-01-01

    ProXL is a Web application and accompanying database designed for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data with an emphasis on structural analysis and quality control. ProXL is designed to be independent of any particular software pipeline. The import process is simplified by the use of the ProXL XML data format, which shields developers of data importers from the relative complexity of the relational database schema. The database and Web interfaces function equally well for any software pipeline and allow data from disparate pipelines to be merged and contrasted. ProXL includes robust public and private data sharing capabilities, including a project-based interface designed to ensure security and facilitate collaboration among multiple researchers. ProXL provides multiple interactive and highly dynamic data visualizations that facilitate structural-based analysis of the observed cross-links as well as quality control. ProXL is open-source, well-documented, and freely available at https://github.com/yeastrc/proxl-web-app. PMID:27302480

  6. ProXL (Protein Cross-Linking Database): A Platform for Analysis, Visualization, and Sharing of Protein Cross-Linking Mass Spectrometry Data.

    PubMed

    Riffle, Michael; Jaschob, Daniel; Zelter, Alex; Davis, Trisha N

    2016-08-05

    ProXL is a Web application and accompanying database designed for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data with an emphasis on structural analysis and quality control. ProXL is designed to be independent of any particular software pipeline. The import process is simplified by the use of the ProXL XML data format, which shields developers of data importers from the relative complexity of the relational database schema. The database and Web interfaces function equally well for any software pipeline and allow data from disparate pipelines to be merged and contrasted. ProXL includes robust public and private data sharing capabilities, including a project-based interface designed to ensure security and facilitate collaboration among multiple researchers. ProXL provides multiple interactive and highly dynamic data visualizations that facilitate structural-based analysis of the observed cross-links as well as quality control. ProXL is open-source, well-documented, and freely available at https://github.com/yeastrc/proxl-web-app .

  7. Doubly charged Higgsinos at the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, Durmus A.; Frank, Mariana; Turan, Ismail

    2009-05-01

    Several supersymmetric models with extended gauge structures, motivated by either grand unification or by neutrino mass generation, predict light doubly charged Higgsinos. In this work we study the signals of doubly charged Higgsinos at the Tevatron in both pair- and single-production modes, and show that it is possible, especially from the events containing same-sign same-flavor isolated leptons, to disentangle the effects of doubly charged Higgsinos in the Tevatron data.

  8. Biocompatibility and antifibrotic effect of UV-cross-linked hyaluronate as a release-system for tranilast after trabeculectomy in a rabbit model--a pilot study.

    PubMed

    Spitzer, Martin S; Sat, Macarena; Schramm, Charlotte; Schnichels, Sven; Schultheiss, Maximilian; Yoeruek, Efdal; Dzhelebov, Dimitar; Szurman, Peter

    2012-06-01

    To analyze the release kinetics and the clinical and histological effects of UV-cross-linked hyaluronic acid as a release-system for the transforming growth factor β-2 antagonist tranilast with anti-phlogistic properties on intraocular pressure after trabeculectomy in an aggressive scarring animal model. Hyaluronate acid was UV-cross linked and loaded with tranilast. The release of tranilast into a buffered salt solution was assessed spectrophotometrically. Glaucoma filtration surgery, similar to that performed in clinical practice, was performed on chinchilla rabbits. The rabbits were divided in 3 groups. (Group A: trabeculectomy alone, group B: trabeculectomy with a cross-linked hyaluronic acid gel preparation and group C: trabeculectomy with cross-linked hyaluronic gel preparation mixed with tranilast). Antifibrotic efficacy was established by clinical response and histologic examination. The cross-linked gels released tranilast for up to 26 h. The release plotted as a function of the square root of time was consistent with a largely diffusion-controlled release system. Both the gel preparation alone and the gel preparation mixed with tranilast were well tolerated in vivo. No adverse effects such as inflammation, corneal toxicity or blurring of the optical media were observed. The intraocular pressure reached preoperative levels within 9 days after surgery in control animals and group B, but remained significantly reduced (p = 0.00016) in the group with tranilast until day 22. The data of this pilot study suggest that the intraoperative application of UV-crossed linked hyaluronic acid used as a slow release system for tranilast may improve the surgical outcome of glaucoma filtration surgery.

  9. In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials.

    PubMed

    Heinz, Andrea; Ruttkies, Christoph K H; Jahreis, Günther; Schräder, Christoph U; Wichapong, Kanin; Sippl, Wolfgang; Keeley, Fred W; Neubert, Reinhard H H; Schmelzer, Christian E H

    2013-04-01

    Elastin is a vital protein and the major component of elastic fibers which provides resilience to many vertebrate tissues. Elastin's structure and function are influenced by extensive cross-linking, however, the cross-linking pattern is still unknown. Small peptides containing reactive allysine residues based on sequences of cross-linking domains of human elastin were incubated in vitro to form cross-links characteristic of mature elastin. The resultant insoluble polymeric biomaterials were studied by scanning electron microscopy. Both, the supernatants of the samples and the insoluble polymers, after digestion with pancreatic elastase or trypsin, were furthermore comprehensively characterized on the molecular level using MALDI-TOF/TOF mass spectrometry. MS(2) data was used to develop the software PolyLinX, which is able to sequence not only linear and bifunctionally cross-linked peptides, but for the first time also tri- and tetrafunctionally cross-linked species. Thus, it was possible to identify intra- and intermolecular cross-links including allysine aldols, dehydrolysinonorleucines and dehydromerodesmosines. The formation of the tetrafunctional cross-link desmosine or isodesmosine was unexpected, however, could be confirmed by tandem mass spectrometry and molecular dynamics simulations. The study demonstrated that it is possible to produce biopolymers containing polyfunctional cross-links characteristic of mature elastin from small elastin peptides. MALDI-TOF/TOF mass spectrometry and the newly developed software PolyLinX proved suitable for sequencing of native cross-links in proteolytic digests of elastin-like biomaterials. The study provides important insight into the formation of native elastin cross-links and represents a considerable step towards the characterization of the complex cross-linking pattern of mature elastin. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Poly-Cross-Linked PEI Through Aromatically Conjugated Imine Linkages as a New Class of pH-Responsive Nucleic Acids Packing Cationic Polymers

    PubMed Central

    Chen, Shun; Jin, Tuo

    2016-01-01

    Cationic polyimines polymerized through aromatically conjugated bis-imine linkages and intra-molecular cross-linking were found to be a new class of effective transfection materials for their flexibility in structural optimization, responsiveness to intracellular environment, the ability to facilitate endosome escape and cytosol release of the nucleic acids, as well as self-metabolism. When three phthalaldehydes of different substitution positions were used to polymerize highly branched low-molecular weight polyethylenimine (PEI 1.8K), the product through ortho-phthalimines (named PPOP) showed significantly higher transfection activity than its two tere- and iso-analogs (named PPTP and PPIP). Physicochemical characterization confirmed the similarity of three polyimines in pH-responded degradability, buffer capacity, as well as the size and Zeta potential of the polyplexes formed from the polymers. A mechanistic speculation may be that the ortho-positioned bis-imine linkage of PPOP may only lead to the straight trans-configuration due to steric hindrance, resulting in larger loops of intra-polymer cross-linking and more flexible backbone. PMID:26869931

  11. Protein cross-linking by chlorinated polyamines and transglutamylation stabilizes neutrophil extracellular traps.

    PubMed

    Csomós, Krisztián; Kristóf, Endre; Jakob, Bernadett; Csomós, István; Kovács, György; Rotem, Omri; Hodrea, Judit; Bagoly, Zsuzsa; Muszbek, Laszlo; Balajthy, Zoltán; Csősz, Éva; Fésüs, László

    2016-08-11

    Neutrophil extracellular trap (NET) ejected from activated dying neutrophils is a highly ordered structure of DNA and selected proteins capable to eliminate pathogenic microorganisms. Biochemical determinants of the non-randomly formed stable NETs have not been revealed so far. Studying the formation of human NETs we have observed that polyamines were incorporated into the NET. Inhibition of myeloperoxidase, which is essential for NET formation and can generate reactive chlorinated polyamines through hypochlorous acid, decreased polyamine incorporation. Addition of exogenous primary amines that similarly to polyamines inhibit reactions catalyzed by the protein cross-linker transglutaminases (TGases) has similar effect. Proteomic analysis of the highly reproducible pattern of NET components revealed cross-linking of NET proteins through chlorinated polyamines and ɛ(γ-glutamyl)lysine as well as bis-γ-glutamyl polyamine bonds catalyzed by the TGases detected in neutrophils. Competitive inhibition of protein cross-linking by monoamines disturbed the cross-linking pattern of NET proteins, which resulted in the loss of the ordered structure of the NET and significantly reduced capacity to trap bacteria. Our findings provide explanation of how NETs are formed in a reproducible and ordered manner to efficiently neutralize microorganisms at the first defense line of the innate immune system.

  12. Protein cross-linking by chlorinated polyamines and transglutamylation stabilizes neutrophil extracellular traps

    PubMed Central

    Csomós, Krisztián; Kristóf, Endre; Jakob, Bernadett; Csomós, István; Kovács, György; Rotem, Omri; Hodrea, Judit; Bagoly, Zsuzsa; Muszbek, Laszlo; Balajthy, Zoltán; Csősz, Éva; Fésüs, László

    2016-01-01

    Neutrophil extracellular trap (NET) ejected from activated dying neutrophils is a highly ordered structure of DNA and selected proteins capable to eliminate pathogenic microorganisms. Biochemical determinants of the non-randomly formed stable NETs have not been revealed so far. Studying the formation of human NETs we have observed that polyamines were incorporated into the NET. Inhibition of myeloperoxidase, which is essential for NET formation and can generate reactive chlorinated polyamines through hypochlorous acid, decreased polyamine incorporation. Addition of exogenous primary amines that similarly to polyamines inhibit reactions catalyzed by the protein cross-linker transglutaminases (TGases) has similar effect. Proteomic analysis of the highly reproducible pattern of NET components revealed cross-linking of NET proteins through chlorinated polyamines and ɛ(γ-glutamyl)lysine as well as bis-γ-glutamyl polyamine bonds catalyzed by the TGases detected in neutrophils. Competitive inhibition of protein cross-linking by monoamines disturbed the cross-linking pattern of NET proteins, which resulted in the loss of the ordered structure of the NET and significantly reduced capacity to trap bacteria. Our findings provide explanation of how NETs are formed in a reproducible and ordered manner to efficiently neutralize microorganisms at the first defense line of the innate immune system. PMID:27512953

  13. Discovery potentials of doubly charmed baryons

    NASA Astrophysics Data System (ADS)

    Yu, Fu-Sheng; Jiang, Hua-Yu; Li, Run-Hui; Lü, Cai-Dian; Wang, Wei; Zhao, Zhen-Xing

    2018-05-01

    The existence of doubly heavy flavor baryons has not been well established experimentally so far. In this Letter we systematically investigate the weak decays of the doubly charmed baryons, {{{\\Xi }}}{{cc}}++ and {{{\\Xi }}}{{cc}}+, which should be helpful for experimental searches for these particles. The long-distance contributions are first studied in the doubly heavy baryon decays, and found to be significantly enhanced. Comparing all the processes, {{{\\Xi }}}{{cc}}++\\to {{{Λ }}}{{c}}+{{{K}}}-{{{π }}}+{{{π }}}+ and {{{\\Xi }}}{{c}}+{{{π }}}+ are the most favorable decay modes for experiments to search for doubly heavy baryons. Supported by National Natural Science Foundation of China (11505083, 11505098, 11647310, 11575110, 11375208, 11521505, 11621131001, 11235005, 11447032, U1732101) and Natural Science Foundation of Shanghai (15DZ2272100)

  14. Cross-linking and the molecular packing of corneal collagen

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Chandler, G. S.; Tanzawa, H.; Katz, E. P.

    1996-01-01

    We have quantitatively characterized, for the first time, the cross-linking in bovine cornea collagen as a function of age. The major iminium reducible cross-links were dehydro-hydroxylysinonorleucine (deH-HLNL) and dehydro-histidinohydroxymerodesmosine (deH-HHMD). The former rapidly diminished after birth; however, the latter persisted in mature animals at a level of 0.3 - 0.4 moles/mole of collagen. A nonreducible cross-link, histidinohydroxylysinonorleucine (HHL), previously found only in skin, was also found to be a major mature cross-link in cornea. The presence of HHL indicates that cornea fibrils have a molecular packing similar to skin collagen. However, like deH-HHMD, the HHL content in corneal fibrils only reaches a maximum value with time about half that of skin. These data suggest that the corneal fibrils are comprised of discrete filaments that are internally stabilized by HHL and deH-HHMD cross-links. This pattern of intermolecular cross-linking would facilitate the special collagen swelling property required for corneal transparency.

  15. Stabilization of collagen nanofibers with l-lysine improves the ability of carbodiimide cross-linked amniotic membranes to preserve limbal epithelial progenitor cells

    PubMed Central

    Lai, Jui-Yang; Wang, Pei-Ran; Luo, Li-Jyuan; Chen, Si-Tan

    2014-01-01

    To overcome the drawbacks associated with limited cross-linking efficiency of carbodiimide modified amniotic membrane, this study investigated the use of l-lysine as an additional amino acid bridge to enhance the stability of a nanofibrous tissue matrix for a limbal epithelial cell culture platform. Results of ninhydrin assays and zeta potential measurements showed that the amount of positively charged amino acid residues incorporated into the tissue collagen chains is highly correlated with the l-lysine-pretreated concentration. The cross-linked structure and hydrophilicity of amniotic membrane scaffolding materials affected by the lysine molecular bridging effects were determined. With an increase in the l-lysine-pretreated concentration from 1 to 30 mM, the cross-linking density was significantly increased and water content was markedly decreased. The variations in resistance to thermal denaturation and enzymatic degradation were in accordance with the number of cross-links per unit mass of amniotic membrane, indicating l-lysine-modulated stabilization of collagen molecules. It was also noteworthy that the carbodiimide cross-linked tissue samples prepared using a relatively high l-lysine-pretreated concentration (ie, 30 mM) appeared to have decreased light transmittance and biocompatibility, probably due to the influence of a large nanofiber size and a high charge density. The rise in stemness gene and protein expression levels was dependent on improved cross-link formation, suggesting the crucial role of amino acid bridges in constructing suitable scaffolds to preserve limbal progenitor cells. It is concluded that mild to moderate pretreatment conditions (ie, 3–10 mM l-lysine) can provide a useful strategy to assist in the development of carbodiimide cross-linked amniotic membrane as a stable stem cell niche for corneal epithelial tissue engineering. PMID:25395849

  16. Cross-linking measurements of the Potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission, and virus-plant interactions.

    PubMed

    Chavez, Juan D; Cilia, Michelle; Weisbrod, Chad R; Ju, Ho-Jong; Eng, Jimmy K; Gray, Stewart M; Bruce, James E

    2012-05-04

    Protein interactions are critical determinants of insect transmission for viruses in the family Luteoviridae. Two luteovirid structural proteins, the capsid protein (CP) and the readthrough protein (RTP), contain multiple functional domains that regulate virus transmission. There is no structural information available for these economically important viruses. We used Protein Interaction Reporter (PIR) technology, a strategy that uses chemical cross-linking and high resolution mass spectrometry, to discover topological features of the Potato leafroll virus (PLRV) CP and RTP that are required for the diverse biological functions of PLRV virions. Four cross-linked sites were repeatedly detected, one linking CP monomers, two within the RTP, and one linking the RTP and CP. Virus mutants with triple amino acid deletions immediately adjacent to or encompassing the cross-linked sites were defective in virion stability, RTP incorporation into the capsid, and aphid transmission. Plants infected with a new, infectious PLRV mutant lacking 26 amino acids encompassing a cross-linked site in the RTP exhibited a delay in the appearance of systemic infection symptoms. PIR technology provided the first structural insights into luteoviruses which are crucially lacking and are involved in vector-virus and plant-virus interactions. These are the first cross-linking measurements on any infectious, insect-transmitted virus.

  17. Cross-linking measurements of the Potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission, and virus-plant interactions

    PubMed Central

    Chavez, Juan D.; Cilia, Michelle; Weisbrod, Chad R.; Ju, Ho-Jong; Eng, Jimmy K.; Gray, Stewart M.; Bruce, James E.

    2012-01-01

    Protein interactions are critical determinants of insect-transmission for viruses in the family Luteoviridae. Two luteovirid structural proteins, the capsid protein (CP) and the readthrough protein (RTP), contain multiple functional domains that regulate virus transmission. There is no structural information available for these economically important viruses. We used Protein Interaction Reporter (PIR) technology, a strategy that uses chemical cross-linking and high resolution mass spectrometry, to discover topological features of the Potato leafroll virus (PLRV) CP and RTP that are required for the diverse biological functions of PLRV virions. Four cross-linked sites were repeatedly detected, one linking CP monomers, two within the RTP, and one linking the RTP and CP. Virus mutants with triple amino acid deletions immediately adjacent to or encompassing the cross-linked sites were defective in virion stability, RTP incorporation into the capsid, and aphid transmission. Plants infected with a new, infectious PLRV mutant lacking 26 amino acids encompassing a cross-linked site in the RTP exhibited a delay in the appearance of systemic infection symptoms. PIR technology provided the first structural insights into luteoviruses which are crucially lacking and that are involved in vector-virus and plant-virus interactions. These are the first cross-linking measurements on any infectious, insect-transmitted virus. PMID:22390342

  18. CrossLink: a novel method for cross-condition classification of cancer subtypes.

    PubMed

    Ma, Chifeng; Sastry, Konduru S; Flore, Mario; Gehani, Salah; Al-Bozom, Issam; Feng, Yusheng; Serpedin, Erchin; Chouchane, Lotfi; Chen, Yidong; Huang, Yufei

    2016-08-22

    We considered the prediction of cancer classes (e.g. subtypes) using patient gene expression profiles that contain both systematic and condition-specific biases when compared with the training reference dataset. The conventional normalization-based approaches cannot guarantee that the gene signatures in the reference and prediction datasets always have the same distribution for all different conditions as the class-specific gene signatures change with the condition. Therefore, the trained classifier would work well under one condition but not under another. To address the problem of current normalization approaches, we propose a novel algorithm called CrossLink (CL). CL recognizes that there is no universal, condition-independent normalization mapping of signatures. In contrast, it exploits the fact that the signature is unique to its associated class under any condition and thus employs an unsupervised clustering algorithm to discover this unique signature. We assessed the performance of CL for cross-condition predictions of PAM50 subtypes of breast cancer by using a simulated dataset modeled after TCGA BRCA tumor samples with a cross-validation scheme, and datasets with known and unknown PAM50 classification. CL achieved prediction accuracy >73 %, highest among other methods we evaluated. We also applied the algorithm to a set of breast cancer tumors derived from Arabic population to assign a PAM50 classification to each tumor based on their gene expression profiles. A novel algorithm CrossLink for cross-condition prediction of cancer classes was proposed. In all test datasets, CL showed robust and consistent improvement in prediction performance over other state-of-the-art normalization and classification algorithms.

  19. Entropic benefit of a cross-link in protein association.

    PubMed

    Zaman, Muhammad H; Berry, R Stephen; Sosnick, Tobin R

    2002-08-01

    We introduce a method to estimate the loss of configurational entropy upon insertion of a cross-link to a dimeric system. First, a clear distinction is established between the loss of entropy upon tethering and binding, two quantities that are often considered to be equivalent. By comparing the probability distribution of the center-to-center distances for untethered and cross-linked versions, we are able to calculate the loss of translational entropy upon cross-linking. The distribution function for the untethered helices is calculated from the probability that a given helix is closer to its partner than to all other helices, the "Nearest Neighbor" method. This method requires no assumptions about the nature of the solvent, and hence resolves difficulties normally associated with calculations for systems in liquids. Analysis of the restriction of angular freedom upon tethering indicates that the loss of rotational entropy is negligible. The method is applied in the context of the folding of a ten turn helical coiled coil with the tether modeled as a Gaussian chain or a flexible amino acid chain. After correcting for loop closure entropy in the docked state, we estimate the introduction of a six-residue tether in the coiled coil results in an effective concentration of the chain to be about 4 or 100 mM, depending upon whether the helices are denatured or pre-folded prior to their association. Thus, tethering results in significant stabilization for systems with millimolar or stronger dissociation constants. Copyright 2002 Wiley-Liss, Inc.

  20. Doubly robust nonparametric inference on the average treatment effect.

    PubMed

    Benkeser, D; Carone, M; Laan, M J Van Der; Gilbert, P B

    2017-12-01

    Doubly robust estimators are widely used to draw inference about the average effect of a treatment. Such estimators are consistent for the effect of interest if either one of two nuisance parameters is consistently estimated. However, if flexible, data-adaptive estimators of these nuisance parameters are used, double robustness does not readily extend to inference. We present a general theoretical study of the behaviour of doubly robust estimators of an average treatment effect when one of the nuisance parameters is inconsistently estimated. We contrast different methods for constructing such estimators and investigate the extent to which they may be modified to also allow doubly robust inference. We find that while targeted minimum loss-based estimation can be used to solve this problem very naturally, common alternative frameworks appear to be inappropriate for this purpose. We provide a theoretical study and a numerical evaluation of the alternatives considered. Our simulations highlight the need for and usefulness of these approaches in practice, while our theoretical developments have broad implications for the construction of estimators that permit doubly robust inference in other problems.

  1. Eco-friendly and biocompatible cross-linked carboxymethylcellulose hydrogels as adsorbents for the removal of organic dye pollutants for environmental applications.

    PubMed

    Capanema, Nádia S V; Mansur, Alexandra A P; Mansur, Herman S; de Jesus, Anderson C; Carvalho, Sandhra M; Chagas, Poliane; de Oliveira, Luiz C

    2017-08-28

    In this study, new eco-friendly hydrogel adsorbents were synthesized based on carboxymethylcellulose (CMC, degree of substitution [DS] = 0.7) chemically cross-linked with citric acid (CA) using a green process in aqueous solution and applied for the adsorption of methylene blue (MB). Spectroscopic analyses demonstrated the mechanism of cross-linking through the reaction of hydroxyl functional groups from CMC with CA. These CMC hydrogels showed very distinct morphological features dependent on the extension of cross-linking and their nanomechanical properties were drastically increased by approximately 300% after cross-linking with 20% CA (e.g. elastic moduli from 80 ± 15 to 270 ± 50 MPa). Moreover, they were biocompatible using an in vitro cell viability assay in contact with human osteosarcoma-derived cells (SAOS) for 24 h. These CMC-based hydrogels exhibited adsorption efficiency above 90% (24 h) and maximum removal capacity of MB from 5 to 25 mg g -1 depending on the dye concentration (from 100 to 500 mg L -1 ), which was used as the model cationic organic pollutant. The adsorption of process of MB was well-fit to the pseudo-second-order kinetics model. The desorption of MB by immersion in KCl solution (3 mol L -1 , 24 h) showed a typical recovery efficiency of over 60% with conceivable reuse of these CMC-based hydrogels. Conversely, CMC hydrogels repelled methyl orange dye used as model anionic pollutant, proving the mechanism of adsorption by the formation of charged polyelectrolyte/dye complexes.

  2. Multiscale mechanical effects of native collagen cross-linking in tendon.

    PubMed

    Eekhoff, Jeremy D; Fang, Fei; Lake, Spencer P

    2018-06-06

    The hierarchical structure of tendon allows for attenuation of mechanical strain down decreasing length scales. While reorganization of collagen fibers accounts for microscale strain attenuation, cross-linking between collagen molecules contributes to deformation mechanisms at the fibrillar and molecular scales. Divalent and trivalent enzymatic cross-links form during the development of collagen fibrils through the enzymatic activity of lysyl oxidase (LOX). By establishing connections between telopeptidyl and triple-helical domains of adjacent molecules within collagen fibrils, these cross-links stiffen the fibrils by resisting intermolecular sliding. Ultimately, greater enzymatic cross-linking leads to less compliant and stronger tendon as a result of stiffer fibrils. In contrast, nonenzymatic cross-links such as glucosepane and pentosidine are not produced during development but slowly accumulate through glycation of collagen. Therefore, these cross-links are only expected to be present in significant quantities in advanced age, where there has been sufficient time for glycation to occur, and in diabetes, where the presence of more free sugar in the extracellular matrix increases the rate of glycation. Unlike enzymatic cross-links, current evidence suggests that nonenzymatic cross-links are at least partially isolated to the surface of collagen fibers. As a result, glycation has been proposed to primarily impact tendon mechanics by altering molecular interactions at the fiber interface, thereby diminishing sliding between fibers. Thus, increased nonenzymatic cross-linking decreases microscale strain attenuation and the viscous response of tendon. In conclusion, enzymatic and nonenzymatic collagen cross-links have demonstrable and distinct effects on the mechanical properties of tendon across different length scales.

  3. Doubly fed induction machine

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2005-10-11

    An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.

  4. Collagen cross-linking using riboflavin and ultraviolet-a for corneal thinning disorders: an evidence-based analysis.

    PubMed

    Pron, G; Ieraci, L; Kaulback, K

    2011-01-01

    The main objectives for this evidence-based analysis were to determine the safety and effectiveness of photochemical corneal collagen cross-linking with riboflavin (vitamin B(2)) and ultraviolet-A radiation, referred to as CXL, for the management of corneal thinning disease conditions. The comparative safety and effectiveness of corneal cross-linking with other minimally invasive treatments such as intrastromal corneal rings was also reviewed. The Medical Advisory Secretariat (MAS) evidence-based analysis was performed to support public financing decisions. SUBJECT OF THE EVIDENCE-BASED ANALYSIS: The primary treatment objective for corneal cross-linking is to increase the strength of the corneal stroma, thereby stabilizing the underlying disease process. At the present time, it is the only procedure that treats the underlying disease condition. The proposed advantages for corneal cross-linking are that the procedure is minimally invasive, safe and effective, and it can potentially delay or defer the need for a corneal transplant. In addition, corneal cross-linking does not adversely affect subsequent surgical approaches, if they are necessary, or interfere with corneal transplants. The evidence for these claims for corneal cross-linking in the management of corneal thinning disorders such as keratoconus will be the focus of this review. The specific research questions for the evidence review were as follows: TECHNICAL: How technically demanding is corneal cross-linking and what are the operative risks? What is known about the broader safety profile of corneal cross-linking?Effectiveness - Corneal Surface Topographic Affects:What are the corneal surface remodeling effects of corneal cross-linking?Do these changes interfere with subsequent interventions, particularly corneal transplant known as penetrating keratoplasty (PKP)?Effectiveness -Visual Acuity:What impacts does the remodeling have on visual acuity?Are these impacts predictable, stable, adjustable and

  5. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways*

    PubMed Central

    Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T.; Gasparutto, Didier; Geacintov, Nicholas E.; Saparbaev, Murat

    2015-01-01

    Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506–2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3′-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins. PMID:25903131

  6. Xilmass: A New Approach toward the Identification of Cross-Linked Peptides.

    PubMed

    Yılmaz, Şule; Drepper, Friedel; Hulstaert, Niels; Černič, Maša; Gevaert, Kris; Economou, Anastassios; Warscheid, Bettina; Martens, Lennart; Vandermarliere, Elien

    2016-10-18

    Chemical cross-linking coupled with mass spectrometry plays an important role in unravelling protein interactions, especially weak and transient ones. Moreover, cross-linking complements several structural determination approaches such as cryo-EM. Although several computational approaches are available for the annotation of spectra obtained from cross-linked peptides, there remains room for improvement. Here, we present Xilmass, a novel algorithm to identify cross-linked peptides that introduces two new concepts: (i) the cross-linked peptides are represented in the search database such that the cross-linking sites are explicitly encoded, and (ii) the scoring function derived from the Andromeda algorithm was adapted to score against a theoretical tandem mass spectrometry (MS/MS) spectrum that contains the peaks from all possible fragment ions of a cross-linked peptide pair. The performance of Xilmass was evaluated against the recently published Kojak and the popular pLink algorithms on a calmodulin-plectin complex data set, as well as three additional, published data sets. The results show that Xilmass typically had the highest number of identified distinct cross-linked sites and also the highest number of predicted cross-linked sites.

  7. Tunable mechanical properties of green solid films based on deoxyribonucleic acids

    NASA Astrophysics Data System (ADS)

    Matsuno, Hisao; Morimitsu, Yuma; Ohta, Noboru; Sekiguchi, Hiroshi; Takahara, Atsushi; Tanaka, Keiji

    Promoting green innovation to establish a worldwide low-carbon society is an urgent priority. We here show that solid films made from deoxyribonucleic acid (DNA) can be used as a structural material. The great advantage of DNA films over the ones made from synthetic polymers is that the mechanical properties are controllable, from glassy to rubbery, via semicrystalline by simply regulating the water content in the film. Why such unique mechanical properties can be manifested by the DNA films is determined from structural analyses using Fourier-transform infrared spectroscopy and wide-angle X-ray diffraction measurements. With increasing water content, the conformation of DNA was changed from A-form in an amorphous state to B-form in a partially packed one. DNA in the B-form became densely packed as the film was stretched. Also, DNAs were intermolecularly cross-linked using 2,5-hexanedione based on reductive amination induced by 2-picoline borane in aqueous phase. Cross-linking points were directly observed by atomic force microscopy. The tensile properties of cross-linked films were much better than those of non-cross-linked DNA films.

  8. Infrared microspectroscopic determination of collagen cross-links in articular cartilage

    NASA Astrophysics Data System (ADS)

    Rieppo, Lassi; Kokkonen, Harri T.; Kulmala, Katariina A. M.; Kovanen, Vuokko; Lammi, Mikko J.; Töyräs, Juha; Saarakkala, Simo

    2017-03-01

    Collagen forms an organized network in articular cartilage to give tensile stiffness to the tissue. Due to its long half-life, collagen is susceptible to cross-links caused by advanced glycation end-products. The current standard method for determination of cross-link concentrations in tissues is the destructive high-performance liquid chromatography (HPLC). The aim of this study was to analyze the cross-link concentrations nondestructively from standard unstained histological articular cartilage sections by using Fourier transform infrared (FTIR) microspectroscopy. Half of the bovine articular cartilage samples (n=27) were treated with threose to increase the collagen cross-linking while the other half (n=27) served as a control group. Partial least squares (PLS) regression with variable selection algorithms was used to predict the cross-link concentrations from the measured average FTIR spectra of the samples, and HPLC was used as the reference method for cross-link concentrations. The correlation coefficients between the PLS regression models and the biochemical reference values were r=0.84 (p<0.001), r=0.87 (p<0.001) and r=0.92 (p<0.001) for hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP), and pentosidine (Pent) cross-links, respectively. The study demonstrated that FTIR microspectroscopy is a feasible method for investigating cross-link concentrations in articular cartilage.

  9. Cross-Linked Nanohybrid Polymer Electrolytes With POSS Cross-Linker for Solid-State Lithium Ion Batteries.

    PubMed

    Zhang, Jinfang; Li, Xiaofeng; Li, Ying; Wang, Huiqi; Ma, Cheng; Wang, Yanzhong; Hu, Shengliang; Wei, Weifeng

    2018-01-01

    A new class of freestanding cross-linked hybrid polymer electrolytes (HPEs) with POSS as the cross-linker was prepared by a one-step free radical polymerization reaction. Octavinyl octasilsesquioxane (OV-POSS) with eight functional corner groups was used to provide cross-linking sites for the connection of polymer segments and the required mechanical strength to separate the cathode and anode. The unique cross-linked structure offers additional free volume for the motion of EO chains and provides fast and continuously interconnected ion-conducting channels along the nanoparticles/polymer matrix interface. The HPE exhibits the highest ionic conductivity of 1.39 × 10 -3 S cm -1 , as well as excellent interfacial compatibility with the Li electrode at 80°C. In particular, LiFePO 4 /Li cells based on the HPE deliver good rate capability and long-term cycling performance with an initial discharge capacity of 152.1 mAh g -1 and a capacity retention ratio of 88% after 150 cycles with a current density of 0.5 C at 80°C, demonstrating great potential application in high-performance LIBs at elevated temperatures.

  10. Cross-linked Nanohybrid Polymer Electrolytes with POSS Cross-linker for Solid-state Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Jinfang; Li, Xiaofeng; Li, Ying; Wang, Huiqi; Ma, Cheng; Wang, Yanzhong; Hu, Shengliang; Wei, Weifeng

    2018-05-01

    A new class of freestanding cross-linked hybrid polymer electrolytes (HPEs) with POSS as the cross-linker was prepared by a one-step free radical polymerization reaction. Octavinyl octasilsesquioxane (OV-POSS) with eight functional corner groups was used to provide cross-linking sites for the connection of polymer segments and the required mechanical strength to separate the cathode and anode. The unique cross-linked structure offers additional free volume for the motion of EO chains and provides fast and continuously interconnected ion-conducting channels along the nanoparticles/polymer matrix interface. The HPE exhibits the highest ionic conductivity of 1.39×10-3 S cm-1, as well as excellent interfacial compatibility with the Li electrode at 80 oC. In particular, LiFePO4/Li cells based on the HPE deliver good rate capability and long-term cycling performance with an initial discharge capacity of 152.1 mAh g-1 and a capacity retention ratio of 88% after 150 cycles with a current density of 0.5 C at 80 oC, demonstrating great potential application in high-performance LIBs at elevated temperatures.

  11. Metal-free and Scalable Synthesis of Porous Hyper-cross-linked Polymers: Towards Applications in Liquid-Phase Adsorption.

    PubMed

    Schute, Kai; Rose, Marcus

    2015-10-26

    A metal-free route for the synthesis of hyper-cross-linked polymers (HCP) based on Brønsted acids such as trifluoromethanesulfonic acid as well as H2 SO4 is reported. It is an improved method compared to conventional synthesis strategies that use stoichiometric amounts of metal-based Lewis acids such as FeCl3 . The resulting high-performance adsorbents exhibit a permanent porosity with high specific surface areas up to 1842 m(2)  g(-1) . Easy scalability of the HCP synthesis is proven on the multi-gram scale. All chemo-physical properties are preserved. Water-vapor adsorption shows that the resulting materials exhibit an even more pronounced hydrophobicity compared to the conventionally prepared materials. The reduced surface polarity enhances the selectivity in the liquid-phase adsorption of the biogenic platform chemical 5-hydroxymethylfurfural. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Investigation of cross-linking characteristics of novel hole-transporting materials for solution-processed phosphorescent OLEDs

    NASA Astrophysics Data System (ADS)

    Lee, Jaemin; Ameen, Shahid; Lee, Changjin

    2016-04-01

    After the success of commercialization of the vacuum-evaporated organic light-emitting diodes (OLEDs), solutionprocessing or printing of OLEDs are currently attracting much research interests. However, contrary to various kinds of readily available vacuum-evaporable OLED materials, the solution-processable OLED materials are still relatively rare. Hole-transporting layer (HTL) materials for solution-processed OLEDs are especially limited, because they need additional characteristics such as cross-linking to realize multilayer structures in solution-processed OLEDs, as well as their own electrically hole-transporting characteristics. The presence of such cross-linking characteristics of solutionprocessable HTL materials therefore makes them more challenging in the development stage, and also makes them essence of solution-processable OLED materials. In this work, the structure-property relationships of thermally crosslinkable HTL materials were systematically investigated by changing styrene-based cross-linking functionalities and modifying the carbazole-based hole-transporting core structures. The temperature dependency of the cross-linking characteristics of the HTL materials was systematically investigated by the UV-vis. absorption spectroscopy. The new HTL materials were also applied to green phosphorescent OLEDs, and their device characteristics were also investigated based on the chemical structures of the HTL materials. The device configuration was [ITO / PEDOT:PSS / HTL / EML / ETL / CsF / Al]. We found out that the chemical structures of the cross-linking functionalities greatly affect not only the cross-linking characteristics of the resultant HTL materials, but also the resultant OLED device characteristics. The increase of the maximum luminance and efficiency of OLEDs was evident as the cross-linking temperature decreases from higher than 200°C to at around 150°C.

  13. The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes

    NASA Astrophysics Data System (ADS)

    Vineesh, Thazhe Veettil; Alwarappan, Subbiah; Narayanan, Tharangattu N.

    2015-04-01

    Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes - [Ru(NH3)6]3+/2+, [Fe(CN)6]3-/4- and important bio-analytes - dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm-2) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices.Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes - [Ru(NH3)6]3+/2+, [Fe(CN)6]3-/4- and important bio-analytes - dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm-2) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c

  14. Role of special cross-links in structure formation of bacterial DNA polymer

    NASA Astrophysics Data System (ADS)

    Agarwal, Tejal; Manjunath, G. P.; Habib, Farhat; Lakshmi Vaddavalli, Pavana; Chatterji, Apratim

    2018-01-01

    Using data from contact maps of the DNA-polymer of Escherichia coli (E. Coli) (at kilobase pair resolution) as an input to our model, we introduce cross-links between monomers in a bead-spring model of a ring polymer at very specific points along the chain. Via suitable Monte Carlo simulations, we show that the presence of these cross-links leads to a particular organization of the chain at large (micron) length scales of the DNA. We also investigate the structure of a ring polymer with an equal number of cross-links at random positions along the chain. We find that though the polymer does get organized at the large length scales, the nature of the organization is quite different from the organization observed with cross-links at specific biologically determined positions. We used the contact map of E. Coli bacteria which has around 4.6 million base pairs in a single circular chromosome. In our coarse-grained flexible ring polymer model, we used 4642 monomer beads and observed that around 80 cross-links are enough to induce the large-scale organization of the molecule accounting for statistical fluctuations caused by thermal energy. The length of a DNA chain even of a simple bacterial cell such as E. Coli is much longer than typical proteins, hence we avoided methods used to tackle protein folding problems. We define new suitable quantities to identify the large scale structure of a polymer chain with a few cross-links.

  15. Assessment of UVA-Riboflavin Corneal Cross-Linking Using Small Amplitude Oscillatory Shear Measurements.

    PubMed

    Aslanides, Ioannis M; Dessi, Claudia; Georgoudis, Panagiotis; Charalambidis, Georgios; Vlassopoulos, Dimitris; Coutsolelos, Athanassios G; Kymionis, George; Mukherjee, Achyut; Kitsopoulos, Theofanis N

    2016-04-01

    The effect of ultraviolet (UV)-riboflavin cross-linking (CXL) has been measured primarily using the strip extensometry technique. We propose a simple and reliable methodology for the assessment of CXL treatment by using an established rheologic protocol based on small amplitude oscillatory shear (SAOS) measurements. It provides information on the average cross-link density and the elastic modulus of treated cornea samples. Three fresh postmortem porcine corneas were used to study the feasibility of the technique, one serving as control and two receiving corneal collagen cross-linking treatment. Subsequently, five pairs of fresh postmortem porcine corneas received corneal collagen cross-linking treatment with riboflavin and UVA-irradiation (370 nm; irradiance of 3 mW/cm2) for 30 minutes (Dresden protocol); the contralateral porcine corneas were used as control samples. After the treatment, the linear viscoelastic moduli of the corneal samples were measured using SAOS measurements and the average cross-linking densities extracted. For all cases investigated, the dynamic moduli of the cross-linked corneas were higher compared to those of the corresponding control samples. The increase of the elastic modulus of the treated samples was between 122% and 1750%. The difference was statistically significant for all tested samples (P = 0.018, 2-tailed t-test). We report a simple and accurate methodology for quantifying the effects of cross-linking on porcine corneas treated with the Dresden protocol by means of SAOS measurements in the linear regime. The measured dynamic moduli, elastic and viscous modulus, represent the energy storage and energy dissipation, respectively. Hence, they provide a means to assess the changing physical properties of the cross-linked collagen networks after CXL treatment.

  16. Enhanced Stability and Bioconjugation of Photo-cross-linked Polystyrene-Shell, Au-Core Nanoparticles

    PubMed Central

    Chen, Ying; Cho, Juhee; Young, Alexi; Taton, T. Andrew

    2008-01-01

    Encapsulating Au nanoparticles within a shell of photo-cross-linked block copolymer surfactant dramatically improves the physical and chemical stability of the nanoparticles, particularly when they are applied as bioconjugates. Photo-cross-linkable block copolymer amphiphiles [polystyrene-co-poly(4-vinyl benzophenone)]-block-poly(acrylic acid) [(PS-co-PVBP)-b-PAA] and [poly(styrene)-co-poly(4-vinyl benzophenone)]-block-poly(ethylene oxide) [(PS-co-PVBP)-b-PEO] were assembled around Au nanoparticles ranging from 12 nm to 108 nm in diameter. UV irradiation cross-linked the PVBP groups on the polymer to yield particles that withstood extremes of temperature, ionic strength, and chemical etching. Streptavidin was attached to [PS-co-PVBP]-b-PAA coated particles using the same noncovalent and covalent conjugation protocols used to bind biomolecules to divinylbenzene-crosslinked polystyrene microspheres. We expect that these particles will be useful as plasmonic, highly light-scattering and light-absorbing analogs to fluorescently labeled polystyrene nanospheres. PMID:17530871

  17. Collagen cross-linking in sun-exposed and unexposed sites of aged human skin

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Prisayanh, P.; Haque, Z.; Woodley, D. T.

    1991-01-01

    A recently described nonreducible, acid-heat stable compound, histidinohydroxylysinonorleucine (HHL), is a collagen cross-link isolated from mature skin tissue. Its abundance is related to chronologic aging of skin. The present communication describes the quantity of HHL from aged human skin of the same individuals in sun-exposed (wrist) and unexposed (buttock) sites. Punch biopsies were obtained from these sites from nine people of age 60 or older. HHL contents (moles/mole of collagen) at these sites were for wrist 0.13 +/- 0.07 and for buttock 0.69 +/- 0.17 (mean +/- SD, p less than 0.001). In addition, it was found that acute irradiation of the cross-linked peptides with UVA (up to 250 J/cm2) and UVB (up to 1 J/cm2) had no effect on HHL structure. The same treatment significantly degraded another nonreducible, stable collagen cross-link, pyridinoline. The results suggest that chronic sunlight exposure may be associated with an impediment to normal maturation of human dermal collagen resulting in tenuous amount of HHL. Thus, the process of photoaging in dermal collagen is different from that of chronologic aging in human skin.

  18. Localization/delocalization of charges in bay-linked perylene bisimides.

    PubMed

    Jiang, Wei; Xiao, Chengyi; Hao, Linxiao; Wang, Zhaohui; Ceymann, Harald; Lambert, Christoph; Di Motta, Simone; Negri, Fabrizia

    2012-05-29

    The copper-mediated Ullmann coupling of 1,7-dibromoperylene bisimides afforded structurally perfect singly-linked perylene bisimide (PBI) arrays, whilst the homo-coupling of 1,12-dibromoperylene bisimides gave doubly-linked and triply-linked diperylene bisimides. The interactions of three bay-linked diperylene bisimides that differed in their linkage (singly, doubly, and triply) were investigated in their neutral and reduced forms (mono-anion to tetra-anion). UV/Vis absorption and fluorescence spectroscopy revealed different degrees of interaction, which was explained by exciton coupling and conjugation effects. The electrochemical properties and spectroelectrochemistry also showed quite-different degrees of PBI interactions in the reduced mixed-valence species, which was apparent by the observation of CT bands. The interpretation of the experimental findings was supported by spin-restricted and -unrestricted DFT and time-dependent TD-DFT calculations with the long-range-corrected CAM-B3LYP functional. Accordingly, the degree of interaction in both the neutral and reduced forms of the bay-linked PBIs was qualitatively in the order doubly linkedlinked < triply linked, owing to the different degrees of twisting and flexibility between the two PBIs moieties. Only triply linked diPBI showed completely delocalized wavefunctions over the entire π-system. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Highly stable ionic-covalent cross-linked sulfonated poly(ether ether ketone) for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Lei, Linfeng; Zhu, Xingye; Xu, Jianfeng; Qian, Huidong; Zou, Zhiqing; Yang, Hui

    2017-05-01

    A novel ionic cross-linked sulfonated poly(ether ether ketone) containing equal content of sulfonic acid and pendant tertiary amine groups (TA-SPEEK) has been initially synthesized for the application in direct methanol fuel cells (DMFCs). By adjusting the ratio of p-xylene dibromide to tertiary amine groups of TA-SPEEK, a series of ionic-covalent cross-linked membranes (C-SPEEK-x) with tunable degree of cross-linking are prepared. Compared with the pristine membrane, the ionic and ionic-covalent cross-linked proton exchange membranes (PEMs) exhibit reduced methanol permeability and improved mechanical properties, dimensional and oxidative stability. The proton conductivity and methanol selectivity of protonated TA-SPEEK and C-SPEEK-x at 25 °C is up to 0.109 S cm-1 and 3.88 × 105 S s cm-3, respectively, which are higher than that of Nafion 115. The DMFC incorporating C-SPEEK-25 exhibits a maximum power density as high as 35.3 mW cm-2 with 4 M MeOH at 25 °C (31.8 mW cm-2 for Nafion 115). Due to the highly oxidative stability of the membrane, no obvious performance degradation of the DMFC is observed after more than 400 h operation, indicating such cost-effective ionic-covalent cross-linked membranes have substantial potential as alternative PEMs for DMFC applications.

  20. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment

    PubMed Central

    Rajan, Sujata Sundara; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L.; Sinko, Patrick J.

    2014-01-01

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH 7.4) and acetate buffer (AB, pH 4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%–14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. PMID:25223229

  1. Combining Amine-Reactive Cross-Linkers and Photo-Reactive Amino Acids for 3D-Structure Analysis of Proteins and Protein Complexes.

    PubMed

    Lössl, Philip; Sinz, Andrea

    2016-01-01

    During the last 15 years, the combination of chemical cross-linking and high-resolution mass spectrometry (MS) has matured into an alternative approach for analyzing 3D-structures of proteins and protein complexes. Using the distance constraints imposed by the cross-links, models of the protein or protein complex under investigation can be created. The majority of cross-linking studies are currently conducted with homobifunctional amine-reactive cross-linkers. We extend this "traditional" cross-linking/MS strategy by adding complementary photo-cross-linking data. For this, the diazirine-containing unnatural amino acids photo-leucine and photo-methionine are incorporated into the proteins and cross-link formation is induced by UV-A irradiation. The advantage of the photo-cross-linking strategy is that it is not restricted to lysine residues and that hydrophobic regions in proteins can be targeted, which is advantageous for investigating membrane proteins. We consider the strategy of combining cross-linkers with orthogonal reactivities and distances to be ideally suited for maximizing the amount of structural information that can be gained from a cross-linking experiment.

  2. Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy.

    PubMed

    Deshmukh, Ashish P; Simpson, André J; Hatcher, Patrick G

    2003-11-01

    Cutin is a polyester biopolymer component of plant leaf and fruit cuticles, most often associated with waxes and cuticular polysaccharides, and sometimes with another aliphatic biopolymer called cutan. Insolubility of these cuticular biopolymers has made it difficult to apply traditional analytical techniques for structure determination, because most techniques providing molecular level details require solubility. By using the relatively new technique of one and two-dimensional high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, with added information from solid-state 13C NMR spectroscopy, detailed through-bond connectivities and assignments are made for cutin from Lycopersicon esculentum (tomato) fruit. Based on the data obtained, tomato cutin is found to be predominantly an aliphatic polyester with some olefinic and aromatic moieties, consistent with previous studies that employed various degradative approaches. Aside from esters, there are free primary and secondary alcohol groups, as well as free fatty acids. A significant finding is the presence of alpha-branched fatty acids/esters. Mid-chain hydroxyls appear to be generally unesterified, but esters of mid-chain hydroxyls have been identified. The alpha-branched fatty acids/esters and esters of mid-chain hydroxyls could point towards cross-linking.

  3. Improved biodegradation of synthetic azo dye by horseradish peroxidase cross-linked on nano-composite support.

    PubMed

    Sun, Huaiyan; Jin, Xinyu; Long, Nengbing; Zhang, Ruifeng

    2017-02-01

    A ZnO nanowires/macroporous SiO 2 composite was used as support to immobilize horseradish peroxidase (HRP) by in-situ cross-linking method. Using diethylene glycol diglycidyl ether (DDE) as a long-chained cross-linker, it was adsorbed on the surface of ZnO nanowires before reaction with HRPs, the resulted composite was quite different from the traditional cross-linking enzyme aggregates (CLEAs) on both structure and catalytic performance. The immobilized HRP showed high activity in the decolorization of azo dyes. The effect of various conditions such as the loading amount of HRP, solution pH, temperature, contact time and concentration of dye were optimized on the decolorization. The decolorization percentage of Acid Blue 113 and Acid black 10 BX reached as high as 95.4% and 90.3%, respectively. The immobilized HRP gave the highest decolorization rate under dye concentration as 50mg/L and reaction time of 35min. The immobilized HRP exhibited much better resistance to temperature and pH inactivation than free HRP. The storage stability and reusability were greatly improved through the immobilization, from the decolorization of Acid blue 113 it was found that 80.4% of initial efficiency retained after incubation at 4°C for 60 days, and that 79.4% of decolorization efficiency retained after 12 cycles reuse. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Data-Adaptive Bias-Reduced Doubly Robust Estimation.

    PubMed

    Vermeulen, Karel; Vansteelandt, Stijn

    2016-05-01

    Doubly robust estimators have now been proposed for a variety of target parameters in the causal inference and missing data literature. These consistently estimate the parameter of interest under a semiparametric model when one of two nuisance working models is correctly specified, regardless of which. The recently proposed bias-reduced doubly robust estimation procedure aims to partially retain this robustness in more realistic settings where both working models are misspecified. These so-called bias-reduced doubly robust estimators make use of special (finite-dimensional) nuisance parameter estimators that are designed to locally minimize the squared asymptotic bias of the doubly robust estimator in certain directions of these finite-dimensional nuisance parameters under misspecification of both parametric working models. In this article, we extend this idea to incorporate the use of data-adaptive estimators (infinite-dimensional nuisance parameters), by exploiting the bias reduction estimation principle in the direction of only one nuisance parameter. We additionally provide an asymptotic linearity theorem which gives the influence function of the proposed doubly robust estimator under correct specification of a parametric nuisance working model for the missingness mechanism/propensity score but a possibly misspecified (finite- or infinite-dimensional) outcome working model. Simulation studies confirm the desirable finite-sample performance of the proposed estimators relative to a variety of other doubly robust estimators.

  5. In vivo oxidation in remelted highly cross-linked retrievals.

    PubMed

    Currier, B H; Van Citters, D W; Currier, J H; Collier, J P

    2010-10-20

    Elimination of free radicals to prevent oxidation has played a major role in the development and product differentiation of the latest generation of highly cross-linked ultra-high molecular weight polyethylene bearing materials. In the current study, we (1) examined oxidation in a series of retrieved remelted highly cross-linked ultra-high molecular weight polyethylene bearings from a number of device manufacturers and (2) compared the retrieval results with findings for shelf-stored control specimens. The hypothesis was that radiation-cross-linked remelted ultra-high molecular weight polyethylene would maintain oxidative stability in vivo comparable with the stability during shelf storage and in published laboratory aging tests. Fifty remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners and nineteen remelted highly cross-linked ultra-high molecular weight polyethylene tibial inserts were received after retrieval from twenty-one surgeons from across the U.S. Thirty-two of the retrievals had been in vivo for two years or more. Each was measured for oxidation with use of Fourier transform infrared spectroscopy. A control series of remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners from three manufacturers was analyzed with electron paramagnetic resonance spectroscopy to measure free radical content and with Fourier transform infrared spectroscopy to measure oxidation initially and after eight to nine years of shelf storage in air. The never-implanted, shelf-aged controls had no measurable free-radical content initially or after eight to nine years of shelf storage. The never-implanted controls showed no increase in oxidation during shelf storage. Oxidation measurements showed measurable oxidation in 22% of the retrieved remelted highly cross-linked liners and inserts after an average of two years in vivo. Because never-implanted remelted highly cross-linked ultra-high molecular weight

  6. Chitosan cross-linked with poly(ethylene glycol)dialdehyde via reductive amination as effective controlled release carriers for oral protein drug delivery.

    PubMed

    Jing, Zi-Wei; Ma, Zhi-Wei; Li, Chen; Jia, Yi-Yang; Luo, Min; Ma, Xi-Xi; Zhou, Si-Yuan; Zhang, Bang-Le

    2017-02-15

    The covalently cross-linked chitosan-poly(ethylene glycol) 1540 derivatives have been developed as a controlled release system with potential for the delivery of protein drug. The swelling characteristics of the hydrogels based on these derivatives as the function of different PEG content and the release profiles of a model protein (bovine serum albumin, BSA) from the hydrogels were evaluated in simulated gastric fluid with or without enzyme in order to simulate the gastrointestinal tract conditions. The derivatives cross-linked with difunctional PEG 1540 -dialdehyde via reductive amination can swell in alkaline pH and remain insoluble in acidic medium. The cumulative release amount of BSA was relatively low in the initial 2h and increased significantly at pH 7.4 with intestinal lysozyme for additional 12h. The results proved that the release-and-hold behavior of the cross-linked CS-PEG 1540 H-CS hydrogel provided a swell and intestinal enzyme controlled release carrier system, which is suitable for oral protein drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Analysis of Nidogen-1/Laminin γ1 Interaction by Cross-Linking, Mass Spectrometry, and Computational Modeling Reveals Multiple Binding Modes

    PubMed Central

    Lössl, Philip; Kölbel, Knut; Tänzler, Dirk; Nannemann, David; Ihling, Christian H.; Keller, Manuel V.; Schneider, Marian; Zaucke, Frank; Meiler, Jens; Sinz, Andrea

    2014-01-01

    We describe the detailed structural investigation of nidogen-1/laminin γ1 complexes using full-length nidogen-1 and a number of laminin γ1 variants. The interactions of nidogen-1 with laminin variants γ1 LEb2–4, γ1 LEb2–4 N836D, γ1 short arm, and γ1 short arm N836D were investigated by applying a combination of (photo-)chemical cross-linking, high-resolution mass spectrometry, and computational modeling. In addition, surface plasmon resonance and ELISA studies were used to determine kinetic constants of the nidogen-1/laminin γ1 interaction. Two complementary cross-linking strategies were pursued to analyze solution structures of laminin γ1 variants and nidogen-1. The majority of distance information was obtained with the homobifunctional amine-reactive cross-linker bis(sulfosuccinimidyl)glutarate. In a second approach, UV-induced cross-linking was performed after incorporation of the diazirine-containing unnatural amino acids photo-leucine and photo-methionine into laminin γ1 LEb2–4, laminin γ1 short arm, and nidogen-1. Our results indicate that Asn-836 within laminin γ1 LEb3 domain is not essential for complex formation. Cross-links between laminin γ1 short arm and nidogen-1 were found in all protein regions, evidencing several additional contact regions apart from the known interaction site. Computational modeling based on the cross-linking constraints indicates the existence of a conformational ensemble of both the individual proteins and the nidogen-1/laminin γ1 complex. This finding implies different modes of interaction resulting in several distinct protein-protein interfaces. PMID:25387007

  8. Cross-Linking Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Tetragonal chicken egg white crystals consist of 4(sub 3) helices running in alternating directions, the helix rows having a two fold symmetry with each other. The unit cell consists of one complete tetrameric turn from each of two adjacent helices (an octamer). PBC analysis indicates that the helix intermolecular bonds are the strongest in the crystal, therefore likely formed first. AFM analysis of the (110) surface shows only complete helices, no half steps or bisected helices being found, while AFM line scans to measure the growth step increments show that they are multiples of the 4(sub 3) helix tetramer dimensions. This supports our thesis that the growth units are in fact multiples of the four molecule 4(sub 3) helix unit, the "average" growth unit size for the (110) face being an octamer (two turns about the helix) and the (101) growth unit averaging about the size of a hexamer. In an effort to better understand the species involved in the crystal nucleation and growth process, we have initiated an experimental program to study the species formed in solution compared to what is found in the crystal through covalent cross-linking studies. These experiments use the heterobifunctional cross-linking agent aminoethyl-4-azidonitroanaline (AEANA). An aliphatic amine at one end is covalently attached to the protein by a carbodiimide-mediated reaction, and a photo reactive group at the other can be used to initiate crosslinking. Modifications to the parent structure can be used to alter the distance between the two reactive groups and thus the cross-linking agents "reach". In practice, the cross-linking agent is first coupled to the asp101 side chain through the amine group. Asp101 lies within the active site cleft, and previous work with fluorescent probes had shown that derivatives at this site still crystallize in the tetragonal space group. This was also found to be the case with the AEANA derivative, which gave red tetragonal crystals. The protein now has a

  9. Encapsulated eucalyptus oil in ionically cross-linked alginate microcapsules and its controlled release.

    PubMed

    Noppakundilograt, Supaporn; Piboon, Phianghathai; Graisuwan, Wilaiporn; Nuisin, Roongkan; Kiatkamjornwong, Suda

    2015-10-20

    Sodium alginate microcapsules containing eucalyptus oil were prepared by oil-in-water emulsification via Shirasu porous glass (SPG) membrane and cross-linked by calcium chloride (CaCl2). SPG membrane pore size of 5.2μm was used to control the size of eucalyptus oil microdroplets. Effects of sodium alginate, having a mannuronic acid/guluronic acid (M/G) ratio of 1.13, eucalyptus oil and CaCl2 amounts on microdroplet sizes and size distribution were elucidated. Increasing sodium alginate amounts from 0.1 to 0.5% (wv(-1)) sodium alginate, the average droplets size increased from 42.2±2.0 to 48.5±0.6μm, with CVs of 16.5±2.2 and 30.2±4.5%, respectively. CaCl2 successfully gave narrower size distribution of cross-linked eucalyptus oil microcapsules. The optimum conditions for preparing the microcapsules, oil loading efficiency, and controlled release of the encapsulated eucalyptus oil from the microcapsules as a function of time at 40°C were investigated. Release model for the oil from microcapsules fitted Ritger-Peppas model with non-Fickian transport mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Spectroscopic characterization of collagen cross-links in bone

    NASA Technical Reports Server (NTRS)

    Paschalis, E. P.; Verdelis, K.; Doty, S. B.; Boskey, A. L.; Mendelsohn, R.; Yamauchi, M.

    2001-01-01

    Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.

  11. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways.

    PubMed

    Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T; Gasparutto, Didier; Geacintov, Nicholas E; Saparbaev, Murat

    2015-06-05

    Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506-2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3'-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Organization of photosystem I polypeptides examined by chemical cross-linking

    NASA Technical Reports Server (NTRS)

    Armbrust, T. S.; Chitnis, P. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1996-01-01

    Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803 was examined using the chemical cross-linkers glutaraldehyde and N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide to investigate the organization of the polypeptide subunits. Thylakoid membranes and photosystem I, which was isolated by Triton X-100 fractionation, were treated with cross-linking reagents and were resolved using a Tricine/urea low-molecular-weight resolution gel system. Subunit-specific antibodies and western blotting analysis were used to identify the components of cross-linked species. These analyses identified glutaraldehyde-dependent cross-linking products composed of small amounts of PsaD and PsaC, PsaC and PsaE, and PsaE and PsaF. The novel cross-link between PsaE and PsaF was also observed following treatment with N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide. These cross-linking results suggest a structural interaction between PsaE and PsaF and predict a transmembrane topology for PsaF.

  13. Diepoxybutane Interstrand Cross-Links Induce DNA Bending

    PubMed Central

    Millard, Julie T.; McGowan, Erin E.; Bradley, Sharonda Q.

    2011-01-01

    The bifunctional alkylating agent 1,2,3,4-diepoxybutane (DEB) is thought to be a major contributor to the carcinogenicity of 1,3-butadiene, from which it is derived in vivo. DEB forms DNA interstrand cross-links primarily between distal deoxyguanosine residues at the duplex sequence 5’-GNC. In order for the short butanediol tether to span this distance, distortion of the DNA target has been postulated. We determined that the electrophoretic mobility of ligated DNA oligomers containing DEB cross-links was retarded in comparison with control, uncross-linked DNA. Our data are consistent with DNA bending of ~34° per lesion towards the major groove. PMID:21839139

  14. The validity of a web-based FFQ assessed by doubly labelled water and multiple 24-h recalls.

    PubMed

    Medin, Anine C; Carlsen, Monica H; Hambly, Catherine; Speakman, John R; Strohmaier, Susanne; Andersen, Lene F

    2017-12-01

    The aim of this study was to validate the estimated habitual dietary intake from a newly developed web-based FFQ (WebFFQ), for use in an adult population in Norway. In total, ninety-two individuals were recruited. Total energy expenditure (TEE) measured by doubly labelled water was used as the reference method for energy intake (EI) in a subsample of twenty-nine women, and multiple 24-h recalls (24HR) were used as the reference method for the relative validation of macronutrients and food groups in the entire sample. Absolute differences, ratios, crude and deattenuated correlations, cross-classifications, Bland-Altman plot and plots between misreporting of EI (EI-TEE) and the relative misreporting of food groups (WebFFQ-24HR) were used to assess the validity. Results showed that EI on group level was not significantly different from TEE measured by doubly labelled water (0·7 MJ/d), but ranking abilities were poor (r -0·18). The relative validation showed an overestimation for the majority of the variables using absolute intakes, especially for the food groups 'vegetables' and 'fish and shellfish', but an improved agreement between the test and reference tool was observed for energy adjusted intakes. Deattenuated correlation coefficients were between 0·22 and 0·89, and low levels of grossly misclassified individuals (0-3 %) were observed for the majority of the energy adjusted variables for macronutrients and food groups. In conclusion, energy estimates from the WebFFQ should be used with caution, but the estimated absolute intakes on group level and ranking abilities seem acceptable for macronutrients and most food groups.

  15. Intermolecular ionic cross-linked sulfonated poly(ether ether ketone) membranes containing diazafluorene for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Gong, Chenliang; Qi, Zhigang; Li, Hui; Wu, Zhongying; Zhang, Yakui; Zhang, Shujiang; Li, Yanfeng

    2015-06-01

    A series of novel ionic cross-linking sulfonated poly(ether ether ketone) (SPEEK) membranes containing the diazafluorene functional group are synthesized to reduce the swelling ratio and methanol permeability for direct methanol fuel cell (DMFC) applications. The ionic cross-linking is realized by the interaction between sulfonic acid groups and pyridyl in diazafluorene. The prepared membranes exhibit good mechanical properties, adequate thermal stability, good oxidative stability, appropriate water uptake and low swelling ratio. Moreover, the ionic cross-linked membranes exhibit lower methanol permeability in the range between 0.56 × 10-7 cm2 s-1 and 1.8 × 10-7 cm2 s-1, which is lower than Nafion 117, and they exhibit higher selectivity than Nafion 117 at 30 °C on the basis of applicable proton conductivity.

  16. Practical application of thermoreversibly Cross-linked rubber products

    NASA Astrophysics Data System (ADS)

    Polgar, L. M.; Picchioni, F.; de Ruiter, E.; van Duin, M.

    2017-07-01

    Currently, rubber products cannot simply be reprocessed after their product life, due to the irreversible cross-linking methods traditionally applied. The purpose of this work is to investigate how thermoreversible cross-linking of rubbers via Diels Alder chemistry can be used for the development of recyclable rubber products. Unfortunately, the applicability of the thermoreversible EPM-g-furan/BM system appears to be limited to room temperature applications, because of the rapid deterioration of the compression set at elevated temperatures compared to irreversibly cross-linked EPM. However, the use of EPM rubber modified with thiophene or cyclopentadiene moieties may extend the temperature application range and results in rubber products with acceptable properties. Finally, rubber products generally comprise fillers such as silica, carbon black or fibers. In this context, the reinforcing effect of short cut aramid fibers on the material properties of the newly developed thermoreversibly cross-linked EPM rubbers was also studied. The material properties of the resulting products were found to be comparable to those of a fiber reinforced, peroxide cured reference sample.

  17. Establishing low-lying doubly charmed baryons

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Xing; Mao, Qiang; Chen, Wei; Liu, Xiang; Zhu, Shi-Lin

    2017-08-01

    We systematically study the S -wave doubly charmed baryons using the method of QCD sum rules. Our results suggest that the Ξcc ++ recently observed by LHCb can be well identified as the S -wave Ξc c state of JP=1 /2+. We study its relevant Ωc c state, the mass of which is predicted to be around 3.7 GeV. We also systematically study the P -wave doubly charmed baryons, the masses of which are predicted to be around 4.1 GeV. Especially, there can be several excited doubly charmed baryons in this energy region, and we suggest searching for them in order to study the fine structure of the strong interaction.

  18. Photodissociative Cross-Linking of Non-covalent Peptide-Peptide Ion Complexes in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Nguyen, Huong T. H.; Andrikopoulos, Prokopis C.; Rulíšek, Lubomír; Shaffer, Christopher J.; Tureček, František

    2018-05-01

    We report a gas-phase UV photodissociation study investigating non-covalent interactions between neutral hydrophobic pentapeptides and peptide ions incorporating a diazirine-tagged photoleucine residue. Phenylalanine (Phe) and proline (Pro) were chosen as the conformation-affecting residues that were incorporated into a small library of neutral pentapeptides. Gas-phase ion-molecule complexes of these peptides with photo-labeled pentapeptides were subjected to photodissociation. Selective photocleavage of the diazirine ring at 355 nm formed short-lived carbene intermediates that underwent cross-linking by insertion into H-X bonds of the target peptide. The cross-link positions were established from collision-induced dissociation tandem mass spectra (CID-MS3) providing sequence information on the covalent adducts. Effects of the amino acid residue (Pro or Phe) and its position in the target peptide sequence were evaluated. For proline-containing peptides, interactions resulting in covalent cross-links in these complexes became more prominent as proline was moved towards the C-terminus of the target peptide sequence. The photocross-linking yields of phenylalanine-containing peptides depended on the position of both phenylalanine and photoleucine. Density functional theory calculations were used to assign structures of low-energy conformers of the (GLPMG + GLL*LK + H)+ complex. Born-Oppenheimer molecular dynamics trajectory calculations were used to capture the thermal motion in the complexes within 100 ps and determine close contacts between the incipient carbene and the H-X bonds in the target peptide. This provided atomic-level resolution of potential cross-links that aided spectra interpretation and was in agreement with experimental data. [Figure not available: see fulltext.

  19. HcRed, a Genetically Encoded Fluorescent Binary Cross-Linking Agent for Cross-Linking of Mitochondrial ATP Synthase in Saccharomyces cerevisiae

    PubMed Central

    Gong, Lan; Ramm, Georg; Devenish, Rodney J.; Prescott, Mark

    2012-01-01

    Genetically encoded fluorescent cross-linking agents represent powerful tools useful both for visualising and modulating protein interactions in living cells. The far-red fluorescent protein HcRed, which is fluorescent only in a dimer form, can be used to promote the homo-dimerisation of target proteins, and thereby yield useful information about biological processes. We have in yeast cells expressed HcRed fused to a subunit of mitochondrial ATP synthase (mtATPase). This resulted in cross-linking of the large multi-subunit mtATPase complex within the inner-membrane of the mitochondrion. Fluorescence microscopy revealed aberrant mitochondrial morphology, and mtATPase complexes isolated from mitochondria were recovered as fluorescent dimers under conditions where complexes from control mitochondria were recovered as monomers. When viewed by electron microscopy normal cristae were absent from mitochondria in cells in which mATPase complexes were cross-linked. mtATPase dimers are believed to be the building blocks that are assembled into supramolecular mtATPase ribbons that promote the formation of mitochondrial cristae. We propose that HcRed cross-links mATPase complexes in the mitochondrial membrane hindering the normal assembly/disassembly of the supramolecular forms of mtATPase. PMID:22496895

  20. Polyelectrolyte complexes between (cross-linked) N-carboxyethylchitosan and (quaternized) poly[2-(dimethylamino)ethyl methacrylate]: preparation, characterization, and antibacterial properties.

    PubMed

    Yancheva, Elena; Paneva, Dilyana; Maximova, Vera; Mespouille, Laetitia; Dubois, Philippe; Manolova, Nevena; Rashkov, Iliya

    2007-03-01

    Novel polyelectrolyte complexes (PECs) between N-carboxyethylchitosan (CECh) and well-defined (quaternized) poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) have been obtained. The modification of chitosan into CECh allows the preparation of PECs in a pH range in which chitosan cannot form complexes. The CECh/PDMAEMA complex is formed in a narrow pH range around 7. The quaternization of the tertiary amino groups of PDMAEMA enables complex formation with CECh both in neutral and in alkaline medium. Cross-linked CECh is also capable of forming complexes with (quaternized) PDMAEMA. The antibacterial activity of (cross-linked) CECh, (quaternized) PDMAEMA, and their complexes against Escherichia coli has been evaluated. In contrast to (quaternized) PDMAEMA, (cross-linked) CECh exhibits no antibacterial activity. The complex formation between cross-linked CECh and (quaternized) PDMAEMA results in a loss of the inherent antibacterial activity of the latter in neutral medium. In acidic medium, the complexes exhibit strong antibacterial activity due to complex disintegration and release of (quaternized) PDMAEMA.

  1. Thiolated and S-protected hydrophobically modified cross-linked poly(acrylic acid)--a new generation of multifunctional polymers.

    PubMed

    Bonengel, Sonja; Haupstein, Sabine; Perera, Glen; Bernkop-Schnürch, Andreas

    2014-10-01

    The aim of this study was to create a novel multifunctional polymer by covalent attachment of l-cysteine to the polymeric backbone of hydrophobically modified cross-linked poly(acrylic acid) (AC1030). Secondly, the free thiol groups of the resulting thiomer were activated using 2-mercaptonicotinic acid (2-MNA) to provide full reactivity and stability. Within this study, 1167.36 μmol cysteine and 865.72 μmol 2-MNA could be coupled per gram polymer. Studies evaluating mucoadhesive properties revealed a 4-fold extended adherence time to native small intestinal mucosa for the thiomer (AC1030-cysteine) as well as an 18-fold prolonged adhesion for the preactivated thiomer (AC1030-Cyst-2-MNA) compared to the unmodified polymer. Modification of the polymer led to a higher tablet stability concerning the thiomer and the S-protected thiomer, but a decelerated water uptake could be observed only for the preactivated thiomer. Neither the novel conjugates nor the unmodified polymer showed severe toxicity on Caco-2 cells. Evaluation of emulsification capacity proofed the ability to incorporate lipophilic compounds like medium chain triglycerides and the preservation of the emulsifying properties after the modifications. According to these results thiolated AC1030 as well as the S-protected thiolated polymer might provide a promising tool for solid and semisolid formulations in pharmaceutical development. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Dual Cross-Linked Biofunctional and Self-Healing Networks to Generate User-Defined Modular Gradient Hydrogel Constructs.

    PubMed

    Wei, Zhao; Lewis, Daniel M; Xu, Yu; Gerecht, Sharon

    2017-08-01

    Gradient hydrogels have been developed to mimic the spatiotemporal differences of multiple gradient cues in tissues. Current approaches used to generate such hydrogels are restricted to a single gradient shape and distribution. Here, a hydrogel is designed that includes two chemical cross-linking networks, biofunctional, and self-healing networks, enabling the customizable formation of modular gradient hydrogel construct with various gradient distributions and flexible shapes. The biofunctional networks are formed via Michael addition between the acrylates of oxidized acrylated hyaluronic acid (OAHA) and the dithiol of matrix metalloproteinase (MMP)-sensitive cross-linker and RGD peptides. The self-healing networks are formed via dynamic Schiff base reaction between N-carboxyethyl chitosan (CEC) and OAHA, which drives the modular gradient units to self-heal into an integral modular gradient hydrogel. The CEC-OAHA-MMP hydrogel exhibits excellent flowability at 37 °C under shear stress, enabling its injection to generate gradient distributions and shapes. Furthermore, encapsulated sarcoma cells respond to the gradient cues of RGD peptides and MMP-sensitive cross-linkers in the hydrogel. With these superior properties, the dual cross-linked CEC-OAHA-MMP hydrogel holds significant potential for generating customizable gradient hydrogel constructs, to study and guide cellular responses to their microenvironment such as in tumor mimicking, tissue engineering, and stem cell differentiation and morphogenesis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix.

    PubMed

    Rodriguez-Pascual, Fernando; Slatter, David Anthony

    2016-11-23

    Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades. While LOX-generated collagen cross-linking metabolites have been detected in different metazoan families, there is limited information about when and how collagen acquired this particular modification. By analyzing telopeptide and helical sequences, we identified highly conserved, potential cross-linking sites throughout the metazoan tree of life. Based on this analysis, we propose that they have importantly contributed to the formation and further expansion of fibrillar collagens.

  4. Cross-linking of bovine and caprine caseins by microbial transglutaminase and their use as microencapsulating agents for n-3 fatty acids

    USDA-ARS?s Scientific Manuscript database

    Bovine and caprine caseins were cross-linked with microbial transglutaminase (mTG). The mTG-cross-linked bovine or caprine casein dispersion, mixed with 14.5% maltodextrin (DE = 40), was used to prepare emulsions with 10.5% algae oil. Oxidative stability of emulsions was evaluated by peroxide valu...

  5. An In Vivo Photo-Cross-Linking Approach Reveals a Homodimerization Domain of Aha1 in S. cerevisiae

    PubMed Central

    Berg, Michael; Michalowski, Annette; Palzer, Silke; Rupp, Steffen; Sohn, Kai

    2014-01-01

    Protein-protein interactions play an essential role in almost any biological processes. Therefore, there is a particular need for methods which describe the interactions of a defined target protein in its physiological context. Here we report a method to photo-cross-link interacting proteins in S. cerevisiae by using the non-canonical amino acid p-azido-L-phenylalanine (pAzpa). Based on the expanded genetic code the photoreactive non-canonical amino acid pAzpa was site-specifically incorporated at eight positions into a domain of Aha1 that was previously described to bind Hsp90 in vitro to function as a cochaperone of Hsp90 and activates its ATPase activity. In vivo photo-cross-linking to the cognate binding partner of Aha1 was carried out by irradiation of mutant strains with UV light (365 nm) to induce covalent intermolecular bonds. Surprisingly, an interaction between Aha1 and Hsp90 was not detected, although, we could confirm binding of suppressed pAzpa containing Aha1 to Hsp90 by native co-immunoprecipitation. However, a homodimer consisting of two covalently crosslinked Aha1 monomers was identified by mass spectrometry. This homodimer could also be confirmed using p-benzoyl-L-phenylalanine, another photoreactive non-canonical amino acid. Crosslinking was highly specific as it was dependent on irradiation using UV light, the exact position of the non-canonical amino acid in the protein sequence as well as on the addition of the non-canonical amino acid to the growth medium. Therefore it seems possible that an interaction of Aha1 with Hsp90 takes place at different positions than previously described in vitro highlighting the importance of in vivo techniques to study protein-protein interactions. Accordingly, the expanded genetic code can easily be applied to other S. cerevisiae proteins to study their interaction under physiological relevant conditions in vivo. PMID:24614167

  6. Doubly stochastic radial basis function methods

    NASA Astrophysics Data System (ADS)

    Yang, Fenglian; Yan, Liang; Ling, Leevan

    2018-06-01

    We propose a doubly stochastic radial basis function (DSRBF) method for function recoveries. Instead of a constant, we treat the RBF shape parameters as stochastic variables whose distribution were determined by a stochastic leave-one-out cross validation (LOOCV) estimation. A careful operation count is provided in order to determine the ranges of all the parameters in our methods. The overhead cost for setting up the proposed DSRBF method is O (n2) for function recovery problems with n basis. Numerical experiments confirm that the proposed method not only outperforms constant shape parameter formulation (in terms of accuracy with comparable computational cost) but also the optimal LOOCV formulation (in terms of both accuracy and computational cost).

  7. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  8. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  9. Attosecond XUV absorption spectroscopy of doubly excited states in helium atoms dressed by a time-delayed femtosecond infrared laser

    NASA Astrophysics Data System (ADS)

    Yang, Z. Q.; Ye, D. F.; Ding, Thomas; Pfeifer, Thomas; Fu, L. B.

    2015-01-01

    In the present paper, we investigate the time-resolved transient absorption spectroscopy of doubly excited states of helium atoms by solving the time-dependent two-electron Schrödinger equation numerically based on a one-dimensional model. The helium atoms are subjected to an extreme ultraviolet (XUV) attosecond pulse and a time-delayed infrared (IR) few-cycle laser pulse. A superposition of doubly excited states populated by the XUV pulse is identified, which interferes with the direct ionization pathway leading to Fano resonance profiles in the photoabsorption spectrum. In the presence of an IR laser, however, the Fano line profiles are strongly modified: A shifting, splitting, and broadening of the original absorption lines is observed when the XUV attosecond pulse and infrared few-cycle laser pulse overlap in time, which is in good agreement with recent experimental results. At certain time delays, we observe symmetric Lorentz, inverted Fano profiles, and even negative absorption cross sections indicating that the XUV light can be amplified during the interaction with atoms. We further prove that the above pictures are general for different doubly excited states by suitably varying the frequency of the IR field to coherently couple the corresponding states.

  10. Cross-Linked Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.

    2004-01-01

    The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.

  11. Coating gigaporous polystyrene microspheres with cross-linked poly(vinyl alcohol) hydrogel as a rapid protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Huan, Guan-Sheng; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo; Huang, Fang

    2014-08-13

    Gigaporous polystyrene (PS) microspheres were hydrophilized by in situ polymerization to give a stable cross-linked poly(vinyl alcohol) (PVA) hydrogel coating, which can shield proteins from the hydrophobic PS surface underneath. The amination of microspheres (PS-NH2) was first carried out through acetylization, oximation and reduction, and then 4,4'-azobis (4-cyanovaleric acid) (ACV), a polymerization initiator, was covalently immobilized on PS-NH2 through amide bond formation, and the cross-linked poly(vinyl acetate) (PVAc) was prepared by radical polymerization at the surfaces of ACV-immobilized PS microspheres (PS-ACV). Finally, the cross-linked PVA hydrogel coated gigaporous PS microspheres (PS-PVA) was easily achieved through alcoholysis of PVAc. Results suggested that the PS microspheres were effectively coated with cross-linked PVA hydrogel, where the gigaporrous structure remained under optimal conditions. After hydrophilic modification (PS-PVA), the protein-resistant ability of microspheres was greatly improved. The hydroxyl-rich PS-PVA surface can be easily derivatized by classical chemical methods. Performance advantages of the PS-PVA column in flow experiment include good permeability, low backpressure, and mechanical stability. These results indicated that PS-PVA should be promising in rapid protein chromatography.

  12. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  13. Probing structures of large protein complexes using zero-length cross-linking.

    PubMed

    Rivera-Santiago, Roland F; Sriswasdi, Sira; Harper, Sandra L; Speicher, David W

    2015-11-01

    Structural mass spectrometry (MS) is a field with growing applicability for addressing complex biophysical questions regarding proteins and protein complexes. One of the major structural MS approaches involves the use of chemical cross-linking coupled with MS analysis (CX-MS) to identify proximal sites within macromolecules. Identified cross-linked sites can be used to probe novel protein-protein interactions or the derived distance constraints can be used to verify and refine molecular models. This review focuses on recent advances of "zero-length" cross-linking. Zero-length cross-linking reagents do not add any atoms to the cross-linked species due to the lack of a spacer arm. This provides a major advantage in the form of providing more precise distance constraints as the cross-linkable groups must be within salt bridge distances in order to react. However, identification of cross-linked peptides using these reagents presents unique challenges. We discuss recent efforts by our group to minimize these challenges by using multiple cycles of LC-MS/MS analysis and software specifically developed and optimized for identification of zero-length cross-linked peptides. Representative data utilizing our current protocol are presented and discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Study on the preparation process of cross-linked porous cassava starch

    NASA Astrophysics Data System (ADS)

    Yin, Xiulian; You, Qinghong; Wan, Miaomiao; Zhang, Xuejuan; Dai, Chunhua

    2017-04-01

    Using cassava starch as raw material, preparation process of porous cross-linked cassava starch was studied. Using TSTP as cross-linking agents, Orthogonal design was applied for the optimization of cross-linked porous starch preparation process. The results showed that the opitmal conditions of cross-linked porous cassava starch were as follows: reaction temperature 45°C, reaction time 20 h, 1% of the amount of the enzyme, the enzyme ratio of 1:5, pH 5.50, substrate concentration of 40%.

  15. Effect of base sequence on the DNA cross-linking properties of pyrrolobenzodiazepine (PBD) dimers

    PubMed Central

    Rahman, Khondaker M.; James, Colin H.; Thurston, David E.

    2011-01-01

    Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimers are synthetic sequence-selective DNA minor-groove cross-linking agents that possess two electrophilic imine moieties (or their equivalent) capable of forming covalent aminal linkages with guanine C2-NH2 functionalities. The PBD dimer SJG-136, which has a C8–O–(CH2)3–O–C8′′ central linker joining the two PBD moieties, is currently undergoing phase II clinical trials and current research is focused on developing analogues of SJG-136 with different linker lengths and substitution patterns. Using a reversed-phase ion pair HPLC/MS method to evaluate interaction with oligonucleotides of varying length and sequence, we recently reported (JACS, 2009, 131, 13 756) that SJG-136 can form three different types of adducts: inter- and intrastrand cross-linked adducts, and mono-alkylated adducts. These studies have now been extended to include PBD dimers with a longer central linker (C8–O–(CH2)5–O–C8′), demonstrating that the type and distribution of adducts appear to depend on (i) the length of the C8/C8′-linker connecting the two PBD units, (ii) the positioning of the two reactive guanine bases on the same or opposite strands, and (iii) their separation (i.e. the number of base pairs, usually ATs, between them). Based on these data, a set of rules are emerging that can be used to predict the DNA–interaction behaviour of a PBD dimer of particular C8–C8′ linker length towards a given DNA sequence. These observations suggest that it may be possible to design PBD dimers to target specific DNA sequences. PMID:21427082

  16. Implications of heavy quark-diquark symmetry for excited doubly heavy baryons and tetraquarks

    NASA Astrophysics Data System (ADS)

    Mehen, Thomas

    2017-11-01

    We give heavy quark-diquark symmetry predictions for doubly heavy baryons and tetraquarks in light of the recent discovery of the Ξcc ++ by LHCb. For five excited doubly charm baryons that are predicted to lie below the ΛcD threshold, we give predictions for their electromagnetic and strong decays using a previously developed chiral Lagrangian with heavy quark-diquark symmetry. Based on the mass of the Ξcc ++, the existence of a doubly heavy bottom I =0 tetraquark that is stable to strong and electromagnetic decays has been predicted. If the mass of this state is below 10405 MeV, as predicted in some models, we argue using heavy quark-diquark symmetry that the JP=1+ I =1 doubly bottom tetraquark state will lie just below the open bottom threshold and likely be a narrow state as well. In this scenario, we compute strong decay width for this state using a new Lagrangian for doubly heavy tetraquarks which is related to the singly heavy baryon Lagrangian by heavy quark-diquark symmetry.

  17. Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing.

    PubMed

    Montazer, Majid; Alimohammadi, Farbod; Shamei, Ali; Rahimi, Mohammad Karim

    2012-01-01

    Colloidal nano silver was applied on the surface of cotton fabric and stabilized using 1,2,3,4-butanetetracarboxylic acid (BTCA). The two properties of antimicrobial activity and resistance against creasing were imparted to the samples of fabric as a result of the treatment with silver nano colloid and BTCA. The antimicrobial property of samples was evaluated using two pathogenic bacteria including Escherichia coli and Staphylococcus aureus as outstanding barometers in this field. The durability of applied nanoparticles, color variation, wettability and wrinkle recovery angle of the treated samples were investigated employing related credible standards. The presence of nano silver particles on the surface of treated cotton fabric was proved using EDS spectrum as well as the SEM images. Furthermore, the creation of cross-links was confirmed by the means of both ATR-FTIR and Raman spectra. In conclusion, it was observed that BTCA plays a prominent role in stabilizing silver nanoparticle. Besides, Wettability and winkle recovery angle of finished samples decreased and increased, respectively. In addition, it is noteworthy that no obvious color variation was observed. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Cross-linked polymeric membranes for carbon dioxide separation

    DOEpatents

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon Mark; Long, Brian Keith; Jiang, De-en; Mays, Jimmy Wayne; Sokolov, Alexei P.; Saito, Tomonori

    2018-01-23

    A membrane useful in gas separation, the membrane comprising a cross-linked polysiloxane structure having a cross-link density of about 0.1.times.10.sup.-5 mol/cm.sup.3 to about 6.times.10.sup.-5 mol/cm.sup.3, where, in particular embodiments, the cross-linked polysiloxane structure has the following general structure: ##STR00001## wherein R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5, and R.sup.6 are independently selected from hydrocarbon groups having at least 1 and up to 6 carbon atoms; A.sup.1 and A.sup.2 are independently selected from cyclic hydrocarbon groups; L.sup.1 and L.sup.2 are linking groups or covalent bonds; n is an integer of at least 1; r and s are independently selected from integers of at least 1; and p is an integer of at least 10. The invention also includes methods for making and using the above-described membranes for gas separation.

  19. Cross-Linked Enzyme Aggregates for Applications in Aqueous and Nonaqueous Media.

    PubMed

    Roy, Ipsita; Mukherjee, Joyeeta; Gupta, Munishwar N

    2017-01-01

    Extensive cross-linking of a precipitate of a protein by a cross-linking reagent (glutaraldehyde has been most commonly used) creates an insoluble enzyme preparation called cross-linked enzyme aggregates (CLEAs). CLEAs show high stability and performance in conventional aqueous as well as nonaqueous media. These are also stable at fairly high temperatures. CLEAs with more than one kind of enzyme activity can be prepared, and such CLEAs are called combi-CLEAs or multipurpose CLEAs. Extent of cross-linking often influences their morphology, stability, activity, and enantioselectivity.

  20. Two-photon induced collagen cross-linking in bioartificial cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, Kai; Kensah, George; Heidrich, Marko; Meyer, Heiko; Martin, Ulrich; Gruh, Ina; Heisterkamp, Alexander

    2011-08-01

    Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.

  1. Cross-linked sulfonated poly(ether ether ketone) by using diamino-organosilicon for proton exchange fuel cells.

    PubMed

    Kayser, Marie J; Reinholdt, Marc X; Kaliaguine, Serge

    2011-03-31

    Fuel cells are at the battlefront to find alternate sources of energy to the highly polluting, economically and environmentally constraining fossil fuels. This work uses an organosilicon molecule presenting two amine functions, bis(3-aminopropyl)-tetramethyldisiloxane (APTMDS) with the aim of preparing cross-linked sulfonated poly(ether ether ketone) (SPEEK) based membranes. The hybrid membranes obtained at varying APTMDS loadings are characterized for their acid, proton conductivity, water uptake, and swelling properties. APTMDS may be considered as an extreme case of silica nanoparticle and is therefore most advantageously distributed within the polymeric matrix. The two amine groups can interact, via electrostatic interactions, with the sulfonic acid groups of SPEEK, resulting in a double anchoring of the molecule. The addition of a small amount of APTMDS is enhancing the mechanical and hydrolytic properties of the membranes and allows some unfolding of the polymer chains, rendering some acid sites accessible to water molecules and thus available for proton transport.

  2. Single-molecule analysis of DNA cross-links using nanopore technology

    NASA Astrophysics Data System (ADS)

    Wolna, Anna H.

    The alpha-hemolysin (alpha-HL) protein ion channel is a potential next-generation sequencing platform that has been extensively used to study nucleic acids at a single-molecule level. After applying a potential across a lipid bilayer, the imbedded alpha-HL allows monitoring of the duration and current levels of DNA translocation and immobilization. Because this method does not require DNA amplification prior to sequencing, all the DNA damage present in the cell at any given time will be present during the sequencing experiment. The goal of this research is to determine if these damage sites give distinguishable current levels beyond those observed for the canonical nucleobases. Because DNA cross-links are one of the most prevalent types of DNA damage occurring in vivo, the blockage current levels were determined for thymine-dimers, guanine(C8)-thymine(N3) cross-links and platinum adducts. All of these cross-links give a different blockage current level compared to the undamaged strands when immobilized in the ion channel, and they all can easily translocate across the alpha-HL channel. Additionally, the alpha-HL nanopore technique presents a unique opportunity to study the effects of DNA cross-links, such as thymine-dimers, on the secondary structure of DNA G-quadruplexes folded from the human telomere sequence. Using this single-molecule nanopore technique we can detect subtle structural differences that cannot be easily addressed using conventional methods. The human telomere plays crucial roles in maintaining genome stability. In the presence of suitable cations, the repetitive 5'-TTAGGG human telomere sequence can fold into G-quadruplexes that adopt the hybrid fold in vivo. The telomere sequence is hypersensitive to UV-induced thymine-dimer (T=T) formation, and yet the presence of thymine dimers does not cause telomere shortening. The potential structural disruption and thermodynamic stability of the T=T-containing natural telomere sequences were studied to

  3. Modeling of breakthrough curves of single and quaternary mixtures of ethanol, glucose, glycerol and acetic acid adsorption onto a microporous hyper-cross-linked resin.

    PubMed

    Zhou, Jingwei; Wu, Jinglan; Liu, Yanan; Zou, Fengxia; Wu, Jian; Li, Kechun; Chen, Yong; Xie, Jingjing; Ying, Hanjie

    2013-09-01

    The adsorption of quaternary mixtures of ethanol/glycerol/glucose/acetic acid onto a microporous hyper-cross-linked resin HD-01 was studied in fixed beds. A mass transport model based on film solid linear driving force and the competitive Langmuir isotherm equation for the equilibrium relationship was used to develop theoretical fixed bed breakthrough curves. It was observed that the outlet concentration of glucose and glycerol exceeded the inlet concentration (c/c0>1), which is an evidence of competitive adsorption. This phenomenon can be explained by the displacement of glucose and glycerol by ethanol molecules, owing to more intensive interactions with the resin surface. The model proposed was validated using experimental data and can be capable of foresee reasonably the breakthrough curve of specific component under different operating conditions. The results show that HD-01 is a promising adsorbent for recovery of ethanol from the fermentation broth due to its large capacity, high selectivity, and rapid adsorption rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Photoresponsive cross-linked polymeric particles for phototriggered burst release.

    PubMed

    Wang, Zhen; Yu, Lili; Lv, Cong; Wang, Peng; Chen, Yedong; Tang, Xinjing

    2013-01-01

    We synthesized a series of cross-linked photoresponsive polymeric particles with photolabile monomers and cross-linkers through miniemulsion polymerization. These particles are quite stable in dark, while light irradiation caused the breakage of particles and the efficient release of encapsulated contents up to 95% based on Nile red fluorescence. Photoswitches of particle systems were confirmed by fluorescence spectroscopy, SEM and colorimetry. Particle uptake and triggered release in RAW264.7 cells were confirmed by fluorescein diacetate loaded particles. © 2013 The Authors. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  5. Molecular Model for HNBR with Tunable Cross-Link Density.

    PubMed

    Molinari, N; Khawaja, M; Sutton, A P; Mostofi, A A

    2016-12-15

    We introduce a chemically inspired, all-atom model of hydrogenated nitrile butadiene rubber (HNBR) and assess its performance by computing the mass density and glass-transition temperature as a function of cross-link density in the structure. Our HNBR structures are created by a procedure that mimics the real process used to produce HNBR, that is, saturation of the carbon-carbon double bonds in NBR, either by hydrogenation or by cross-linking. The atomic interactions are described by the all-atom "Optimized Potentials for Liquid Simulations" (OPLS-AA). In this paper, first, we assess the use of OPLS-AA in our models, especially using NBR bulk properties, and second, we evaluate the validity of the proposed model for HNBR by investigating mass density and glass transition as a function of the tunable cross-link density. Experimental densities are reproduced within 3% for both elastomers, and qualitatively correct trends in the glass-transition temperature as a function of monomer composition and cross-link density are obtained.

  6. [Experimental realization of minimally invasive techniques of scleral collagen cross-linking].

    PubMed

    Iomdina, Е N; Tarutta, Е P; Semchishen, V А; Korigodskiy, А R; Zakharov, I D; Khoroshilova-Maslova, I P; Ignat'eva, N Yu; Kiseleva, Т N; Sianosyan, А А; Milash, S V

    To realize two minimally invasive techniques of scleral collagen cross-linking (SXL) at the equator and posterior pole of the eye: 1) targeted irradiation of the region with ultraviolet A (UVA) and 2) sub-Tenon injection of Sklerateks. To perform UVA-SXL, a tool was developed that includes a UV-LED light source (370 nm, 3 mW/cm2) and a polymer-coated silica multimode optical fiber located in one of the two channels of a detachable metal tip. The other channel is used to deliver riboflavin to the scleral surface. The study included 8 Chinchillas' eyes. Intact fellow eyes served as the controls. Scleral echodensity was measured in vivo with Voluson 730 Pro (Kretz) prior to the procedure and then 2 days and 1 month after. After enucleation, the elastic modulus and the degree of scleral cross-linking were established at the same time-points. A placebo-controlled study on the safety and effectiveness of sub-Tenon Sklerateks injections (solution of amino acid salts in the form of succinates) was conducted on 47 Chinchilla rabbits (94 eyes). Sklerateks or placebo (0.1 ml) was injected below the Tenon's capsule of either eye once a week for 1 month (4 injections; 1st series) or 3 months (12 injections; 2nd series). After the end of the course, 22 eyes were studied morphologically. In 72 eyes, scleral samples were obtained in order to evaluate the elastic modulus (Autograph AGS-H tester, SHIMADZU, Japan) and the rate of cross-linking (judging from the denaturation temperature) by differential scanning calorimetry (Phoenix DSC 204 calorimeter, Netzsch, Germany). After UVA irradiation, the scleral echodensity increased from 86.7±5.1 to 98±4.9 dB. The elastic modulus appeared 1.5 times higher than that of the control samples. The denaturation temperature also increased indicating the rate of scleral cross-linking as high as 15-18%. Weekly Sklerateks for 1-3 months has been shown to induce neither clinical, nor morphological signs of local irritative, damaging, or toxic

  7. Probing actin polymerization by intermolecular cross-linking.

    PubMed

    Millonig, R; Salvo, H; Aebi, U

    1988-03-01

    We have used N,N'-1,4-phenylenebismaleimide, a bifunctional sulfhydryl cross-linking reagent, to probe the oligomeric state of actin during the early stages of its polymerization into filaments. We document that one of the first steps in the polymerization of globular monomeric actin (G-actin) under a wide variety of ionic conditions is the dimerization of a significant fraction of the G-actin monomer pool. As polymerization proceeds, the yield of this initial dimer ("lower" dimer with an apparent molecular mass of 86 kD by SDS-PAGE [LD]) is attenuated, while an actin filament dimer ("upper" dimer with an apparent molecular mass of 115 kD by SDS-PAGE [UD] as characterized [Elzinga, M., and J. J. Phelan. 1984. Proc. Natl. Acad. Sci. USA. 81:6599-6602]) is formed. This shift from LD to UD occurs concomitant with formation of filaments as assayed by N-(1-pyrenyl)iodoacetamide fluorescence enhancement and electron microscopy. Isolated cross-linked LD does not form filaments, while isolated cross-linked UD will assemble into filaments indistinguishable from those polymerized from unmodified G-actin under typical filament-forming conditions. The presence of cross-linked LD does not effect the kinetics of polymerization of actin monomer, whereas cross-linked UD shortens the "lag phase" of the polymerization reaction in a concentration-dependent fashion. Several converging lines of evidence suggest that, although accounting for a significant oligomeric species formed during early polymerization, the LD is incompatible with the helical symmetry defining the mature actin filament; however, it could represent the interfilament dimer found in paracrystalline arrays or filament bundles. Furthermore, the LD is compatible with the unit cell structure and symmetry common to various types of crystalline actin arrays (Aebi, U., W. E. Fowler, G. Isenberg, T. D. Pollard, and P. R. Smith. 1981. J. Cell Biol. 91:340-351) and might represent the major structural state in which a mutant

  8. A Review of Collagen Cross-Linking in Cornea and Sclera

    PubMed Central

    Zhang, Xiao; Tao, Xiang-chen; Zhang, Jian; Li, Zhi-wei; Xu, Yan-yun; Wang, Yu-meng; Zhang, Chun-xiao; Mu, Guo-ying

    2015-01-01

    Riboflavin/UVA cross-linking is a technique introduced in the past decades for the treatment of keratoconus, keratectasia, and infectious keratitis. Its efficacy and safety have been investigated with clinical and laboratory studies since its first clinical application by Wollensak for the treatment of keratoconus. Although its complications are encountered during clinical practice, such as infection inducing risk, minimal invasion merits a further investigation on its future application in clinical practice. Recently, collagen cross-linking in sclera shows a promising prospect. In present study, we summarized the representative studies describing the clinical and laboratory application of collagen cross-linking published in past decades and provided our opinion on the positive and negative results of cross-linking in the treatment of ophthalmic disorders. PMID:25922758

  9. Durability improvements of two-dimensional metal nanoparticle sheets by molecular cross-linked structures between nanoparticles

    NASA Astrophysics Data System (ADS)

    Saito, Noboru; Ryuzaki, Sou; Wang, Pangpang; Park, Susie; Sakai, Nobuyuki; Tatsuma, Tetsu; Okamoto, Koichi; Tamada, Kaoru

    2018-03-01

    The durability of two-dimensional metal nanoparticle sheets is a crucial factor for realizing next-generation optoelectronic devices based on plasmonics such as organic light-emitting diodes. Here, we report improvements in the durability of Ag nanoparticle sheets by forming alkanedithiol (DT16) cross-linked structures between the nanoparticles. The cross-linked structures in a sheet were fabricated by the self-assembly of DT16-capped Ag nanoparticles with 10% coverage (AgDT16). The durabilities for thermal, organic solvent, and oxidation reactions of AgDT16 sheets were found to be improved owing to the cross-linked structures by comparing Ag nanoparticle sheets without the cross-linked structures. The absorbance spectra revealed that the Ag nanoparticle sheets without the structure are markedly damaged by each durability test, whereas the AgDT16 sheets remain. The molecular cross-linked structures between nanoparticles in two-dimansional metal nanoparticle sheets were found to have the potential to play a key role in the realization of plasmonic optoelectronic devices including metal nanoparticles.

  10. Applications of Ko Displacement Theory to the Deformed Shape Predictions of the Doubly-Tapered Ikhana Wing

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Richards, W. Lance; Fleischer, Van Tran

    2009-01-01

    The Ko displacement theory, formulated for weak nonuniform (slowly changing cross sections) cantilever beams, was applied to the deformed shape analysis of the doubly-tapered wings of the Ikhana unmanned aircraft. The two-line strain-sensing system (along the wingspan) was used for sensing the bending strains needed for the wing-deformed shapes (deflections and cross-sectional twist) analysis. The deflection equation for each strain-sensing line was expressed in terms of the bending strains evaluated at multiple numbers of strain-sensing stations equally spaced along the strain-sensing line. For the preflight shape analysis of the Ikhana wing, the strain data needed for input to the displacement equations for the shape analysis were obtained from the nodal-stress output of the finite-element analysis. The wing deflections and cross-sectional twist angles calculated from the displacement equations were then compared with those computed from the finite-element computer program. The Ko displacement theory formulated for weak nonlinear cantilever beams was found to be highly accurate in the deformed shape predictions of the doubly-tapered Ikhana wing.

  11. An atomistic model for cross-linked HNBR elastomers used in seals

    NASA Astrophysics Data System (ADS)

    Molinari, Nicola; Sutton, Adrian; Stevens, John; Mostofi, Arash

    2015-03-01

    Hydrogenated nitrile butadiene rubber (HNBR) is one of the most common elastomeric materials used for seals in the oil and gas industry. These seals sometimes suffer ``explosive decompression,'' a costly problem in which gases permeate a seal at the elevated temperatures and pressures pertaining in oil and gas wells, leading to rupture when the seal is brought back to the surface. The experimental evidence that HNBR and its unsaturated parent NBR have markedly different swelling properties suggests that cross-linking may occur during hydrogenation of NBR to produce HNBR. We have developed a code compatible with the LAMMPS molecular dynamics package to generate fully atomistic HNBR configurations by hydrogenating initial NBR structures. This can be done with any desired degree of cross-linking. The code uses a model of atomic interactions based on the OPLS-AA force-field. We present calculations of the dependence of a number of bulk properties on the degree of cross-linking. Using our atomistic representations of HNBR and NBR, we hope to develop a better molecular understanding of the mechanisms that result in explosive decompression.

  12. Doubly Vinylogous Aldol Reaction of Furoate Esters with Aldehydes and Ketones.

    PubMed

    Hartwig, William T; Sammakia, Tarek

    2017-01-06

    The use of bulky Lewis acids, aluminum tris(2,6-diphenylphenoxide) (ATPH) and aluminum tris(2,6-di-2-naphthylphenoxide) (ATNP), in the doubly vinylogous aldol reaction between methyl-5-methyl-2-furoate and aldehydes or ketones is described. These reactions proceed smoothly and in high yields with both enolizable and non-enolizable substrates. This C-C bond-forming reaction enables a new bond construction for the synthesis of functionalized furans.

  13. Exploring the kinetics of gelation and final architecture of enzymatically cross-linked chitosan/gelatin gels.

    PubMed

    da Silva, Marcelo A; Bode, Franziska; Grillo, Isabelle; Dreiss, Cécile A

    2015-04-13

    Small-angle neutron scattering (SANS) was used to characterize the nanoscale structure of enzymatically cross-linked chitosan/gelatin hydrogels obtained from two protocols: a pure chemical cross-linking process (C), which uses the natural enzyme microbial transglutaminase, and a physical-co-chemical (PC) hybrid process, where covalent cross-linking is combined with the temperature-triggered gelation of gelatin, occurring through the formation of triple-helices. SANS measurements on the final and evolving networks provide a correlation length (ξ), which reflects the average size of expanding clusters. Their growth in PC gels is restricted by the triple-helices (ξ ∼ 10s of Å), while ξ in pure chemical gels increases with cross-linker concentration (∼100s of Å). In addition, the shear elastic modulus in PC gels is higher than in pure C gels. Our results thus demonstrate that gelatin triple helices provide a template to guide the cross-linking process; overall, this work provides important structural insight to improve the design of biopolymer-based gels.

  14. UV cross-linking of donor corneas confers resistance to keratolysis.

    PubMed

    Arafat, Samer N; Robert, Marie-Claude; Shukla, Anita N; Dohlman, Claes H; Chodosh, James; Ciolino, Joseph B

    2014-09-01

    The aim of this study was to develop a modified ex vivo corneal cross-linking method that increases stromal resistance to enzymatic degradation for use as a carrier for the Boston keratoprosthesis. Ex vivo cross-linking of human corneas was performed using Barron artificial anterior chambers. The corneas were deepithelialized, pretreated with riboflavin solution (0.1% riboflavin/20% dextran), and irradiated with ultraviolet A (UV-A) light (λ = 370 nm, irradiance = 3 mW/cm) for various durations. The combined effect of UV-A and gamma (γ) irradiation was also assessed using the commercially available γ-irradiated corneal donors. The corneas were then trephined and incubated at 37°C with 0.3% collagenase A solution. The time to dissolution of each cornea was compared across treatments. Deepithelialized corneas (no UV light, no riboflavin) dissolved in 5.8 ± 0.6 hours. Cross-linked corneas demonstrated increased resistance to dissolution, with a time to dissolution of 17.8 ± 2.6 hours (P < 0.0001). The corneal tissues' resistance to collagenase increased with longer UV-A exposure, reaching a plateau at 30 minutes. Cross-linking both the anterior and posterior corneas did not provide added resistance when compared with cross-linking the anterior corneas only (P > 0.05). γ-irradiated corneas dissolved as readily as deepithelialized controls regardless of whether they were further cross-linked (5.6 ± 1.2 hours) or not (6.1 ± 0.6 hours) (P = 0.43). Collagen cross-linking of the deepithelialized anterior corneal surface for 30 minutes conferred optimal resistance to in vitro keratolysis by collagenase A.

  15. Liquid droplets of cross-linked actin filaments

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly; Banerjee, Shiladitya; Dasbiswas, Kinjal; Vaikuntanathan, Suriyanarayan; Gardel, Margaret

    Soft materials constructed from biomolecules self-assemble into a myriad of structures that work in concert to support cell physiology. One critical soft material is the actin cytoskeleton, a viscoelastic gel composed of cross-linked actin filaments. Although actin networks are primarily known for their elastic properties, which are crucial to regulating cell mechanics, the viscous behavior has been theorized to enable shape changes and flows. We experimentally demonstrate a fluid phase of cross-linked actin, where cross-linker condenses dilute short actin filaments into spindle-shaped droplets, or tactoids. Tactoids have shape dynamics consistent with a continuum model of liquid crystal droplets. The cross-linker, which acts as a long range attractive interaction, analogous to molecular cohesion, controls the tactoid shape and dynamics, which reports on the liquid's interfacial tension and viscosity. We investigate how the cross-linker properties and filament length influence the liquid properties. These results demonstrate a novel mechanism to control organization of the actin cytoskeleton and provide insight into design principles for complex, macromolecular liquid phases.

  16. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.

    PubMed

    Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E

    2015-06-01

    Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia. Copyright © 2015 the American Physiological Society.

  17. Collagen cross-linking of skin in patients with amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Ono, S.; Yamauchi, M.

    1992-01-01

    Collagen cross-links of skin tissue (left upper arm) from 11 patients with amyotrophic lateral sclerosis (ALS) and 9 age-matched control subjects were quantified. It was found that patients with ALS had a significant reduction in the content of an age-related, stable cross-link, histidinohydroxylysinonorleucine, that was negatively correlated with the duration of illness. The contents of sodium borohydride-reducible labile cross-links, dehydro-hydroxylysinonorleucine and dehydro-histidinohydroxymerodesmosine, were significantly increased and were positively associated with the duration of illness (r = 0.703, p less than 0.05 and r = 0.684, p less than 0.05, respectively). The results clearly indicate that during the course of ALS, the cross-linking pathway of skin collagen runs counter to its normal aging, resulting in a "rejuvenation" phenomenon of skin collagen. Thus, cross-linking of skin collagen is affected in ALS.

  18. Cyclodextrin-cross-linked diaminotriazine-based hydrogen bonding strengthened hydrogels for drug and reverse gene delivery.

    PubMed

    Hu, Xiufeng; Wang, Ning; Liu, Lu; Liu, Wenguang

    2013-01-01

    A hydrogen bonding strengthened hydrogel was prepared by radical copolymerization of poly(ethylene glycol) methacrylated β-cyclodextrin (PEG-β-CD) and 2-vinyl-4,6-diamino-1,3,5-triazine (VDT) monomer. PEG-β-CD served not only as a cross-linker, but also as a built-in solubilizing agent of the hydrophobic drug in the gel. Increasing VDT content resulted in a notable enhancement in the mechanical strengths of hydrogels whose equilibrium water contents could be modulated from 75% to 85% by varying the ratio of PEG-β-CD cross-linker. It was shown that copolymerizing more PEG-β-CDs could load higher amount of ibuprofen (IBU) in the gels and contribute to a slower release rate of IBU. Plasmid DNA could be anchored onto the surface of hydrogels due to the hydrogen bonding between the base pairs and diaminotriazine, thereby mediating efficient reverse gene transfection of luciferase gene in COS-7 cells cultured on the gel surface. The cytocompatible PEG-β-CD-cross-linked PVDT hydrogels with multifunction of drug and gene delivery hold a potential as tissue engineering scaffold.

  19. A Filtration-based Method of Preparing High-quality Nuclei from Cross-linked Skeletal Muscle for Chromatin Immunoprecipitation.

    PubMed

    Nohara, Kazunari; Chen, Zheng; Yoo, Seung-Hee

    2017-07-06

    Chromatin immunoprecipitation (ChIP) is a powerful method to determine protein binding to chromatin DNA. Fiber-rich skeletal muscle, however, has been a challenge for ChIP due to technical difficulty in isolation of high-quality nuclei with minimal contamination of myofibrils. Previous protocols have attempted to purify nuclei before cross-linking, which incurs the risk of altered DNA-protein interaction during the prolonged nuclei preparation process. In the current protocol, we first cross-linked the skeletal muscle tissue collected from mice, and the tissues were minced and sonicated. Since we found that ultracentrifugation was not able to separate nuclei from myofibrils using cross-linked muscle tissue, we devised a sequential filtration procedure to obtain high-quality nuclei devoid of significant myofibril contamination. We subsequently prepared chromatin by using an ultrasonicator, and ChIP assays with anti-BMAL1 antibody revealed robust circadian binding pattern of BMAL1 to target gene promoters. This filtration protocol constitutes an easily applicable method to isolate high-quality nuclei from cross-linked skeletal muscle tissue, allowing consistent sample processing for circadian and other time-sensitive studies. In combination with next-generation sequencing (NGS), our method can be deployed for various mechanistic and genomic studies focusing on skeletal muscle function.

  20. Preparation and characterization of malonic acid cross-linked chitosan and collagen 3D scaffolds: an approach on non-covalent interactions.

    PubMed

    Mitra, Tapas; Sailakshmi, G; Gnanamani, A; Mandal, A B

    2012-05-01

    The present study emphasizes the influence of non-covalent interactions on the mechanical and thermal properties of the scaffolds of chitosan/collagen origin. Malonic acid (MA), a bifuncitonal diacid was chosen to offer non-covalent cross-linking. Three dimensional scaffolds was prepared using chitosan at 1.0% (w/v) and MA at 0.2% (w/v), similarly collagen 0.5% (w/v) and MA 0.2% (w/v) and characterized. Results on FT-IR, TGA, DSC, SEM and mechanical properties (tensile strength, stiffness, Young's modulus, etc.) assessment demonstrated the existence of non-covalent interaction between MA and chitosan/collagen, which offered flexibility and high strength to the scaffolds suitable for tissue engineering research. Studies using NIH 3T3 fibroblast cells suggested biocompatibility nature of the scaffolds. Docking simulation study further supports the intermolecular hydrogen bonding interactions between MA and chitosan/collagen.

  1. Synthesis of hydrophobic cross-linked polyzwitterionic acid for simultaneous sorption of Eriochrome black T and chromium ions from binary hazardous waters.

    PubMed

    Saleh, Tawfik A; Muhammad, Auwal M; Ali, Shaikh A

    2016-04-15

    Hydrophobic cross-linked polyzwitterionic acid (HCPZA) containing long chain (C18) hydrophobes and residues of a glutamic acid having unquenched nitrogen valency was synthesized. Exploiting the chelating ability of the amino acid residues to scavenge toxic metals and the hydrophobic surface to scoop up the organic contaminants, the resin HCPZA was evaluated for simultaneous removal of chromium and Eriochrome black T (EBT) from wastewaters. The structure and morphology of the polymer before and after sorption were characterized by using FTIR, TGA, EDX and SEM. The effect of various parameters such as contact time, pH and initial concentrations were investigated to arrive at optimum conditions. The adsorption of Eriochrome black T and Cr (III) on HCPZA reached equilibrium in 30 min. The mechanism of adsorption was investigated using kinetic, diffusion and isotherm models. The adsorption kinetic data were described well by the pseudo-second order model and by the Freundlich isotherm model. EDX analysis confirmed the adsorption of Cr (III) and EBT on the polymer. The hydrophobic resin exhibited a remarkable simultaneous adsorption capacity for EBT and Cr (III) and thus demonstrated its potential to be a promising adsorbent for removal of dyes and heavy metal ions from wastewaters. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Ara h 2 cross-linking catalyzed by MTGase decreases its allergenicity.

    PubMed

    Wu, Zhihua; Lian, Jun; Zhao, Ruifang; Li, Kun; Li, Xin; Yang, Anshu; Tong, Ping; Chen, Hongbing

    2017-03-22

    Peanuts, whose major allergen is Ara h 2, are included among the eight major food allergens. After reduction using dithiothreitol (DTT), cross-linking of Ara h 2 could be catalyzed by microbial transglutaminase (MTGase), a widely used enzyme in the food industry. In this study, Ara h 2 cross-linking was catalyzed by MTGase after it was reduced by DTT. Using mass spectrometry and PLINK software, five cross-linkers were identified, and five linear allergen epitopes were found to be involved in the reactions. The IgE binding capacity of cross-linked Ara h 2 was found to be significantly lower compared to that of native and reduced Ara h 2. After simulated gastric fluid (SGF) digestion, the digested products of the cross-linked Ara h 2, again, had a significantly lower IgE binding capacity compared to untreated and reduced Ara h 2. Furthermore, reduced and cross-linked Ara h 2 (RC-Ara h 2) induced lower sensitization in mice, indicating its lower allergenicity. Reduction and MTGase-catalyzed cross-linking are effective methods to decrease the allergenicity of Ara h 2. The reactions involved linear allergen epitopes destroying the material basis of the allergenicity, and this might develop a new direction for protein desensitization processes.

  3. Linking Gestures: Cross-Cultural Variation during Instructional Analogies

    ERIC Educational Resources Information Center

    Richland, Lindsey Engle

    2015-01-01

    Deictic linking gestures, hand and arm motions that physically embody links being communicated between two or more objects in the shared communicative environment, are explored in a cross-cultural sample of mathematics instruction. Linking gestures are specifically examined here when they occur in the context of communicative analogies designed to…

  4. Quantification of the effect of cross-shear and applied nominal contact pressure on the wear of moderately cross-linked polyethylene.

    PubMed

    Abdelgaied, Abdellatif; Brockett, Claire L; Liu, Feng; Jennings, Louise M; Fisher, John; Jin, Zhongmin

    2013-01-01

    Polyethylene wear is a great concern in total joint replacement. It is now considered a major limiting factor to the long life of such prostheses. Cross-linking has been introduced to reduce the wear of ultra-high-molecular-weight polyethylene (UHMWPE). Computational models have been used extensively for wear prediction and optimization of artificial knee designs. However, in order to be independent and have general applicability and predictability, computational wear models should be based on inputs from independent experimentally determined wear parameters (wear factors or wear coefficients). The objective of this study was to investigate moderately cross-linked UHMWPE, using a multidirectional pin-on-plate wear test machine, under a wide range of applied nominal contact pressure (from 1 to 11 MPa) and under five different kinematic inputs, varying from a purely linear track to a maximum rotation of +/- 55 degrees. A computational model, based on a direct simulation of the multidirectional pin-on-plate wear tester, was developed to quantify the degree of cross-shear (CS) of the polyethylene pins articulating against the metallic plates. The moderately cross-linked UHMWPE showed wear factors less than half of that reported in the literature for, the conventional UHMWPE, under the same loading and kinematic inputs. In addition, under high applied nominal contact stress, the moderately crosslinked UHMWPE wear showed lower dependence on the degree of CS compared to that under low applied nominal contact stress. The calculated wear coefficients were found to be independent of the applied nominal contact stress, in contrast to the wear factors that were shown to be highly pressure dependent. This study provided independent wear data for inputs into computational models for moderately cross-linked polyethylene and supported the application of wear coefficient-based computational wear models.

  5. Developing a Multiplexed Quantitative Cross-Linking Mass Spectrometry Platform for Comparative Structural Analysis of Protein Complexes.

    PubMed

    Yu, Clinton; Huszagh, Alexander; Viner, Rosa; Novitsky, Eric J; Rychnovsky, Scott D; Huang, Lan

    2016-10-18

    Cross-linking mass spectrometry (XL-MS) represents a recently popularized hybrid methodology for defining protein-protein interactions (PPIs) and analyzing structures of large protein assemblies. In particular, XL-MS strategies have been demonstrated to be effective in elucidating molecular details of PPIs at the peptide resolution, providing a complementary set of structural data that can be utilized to refine existing complex structures or direct de novo modeling of unknown protein structures. To study structural and interaction dynamics of protein complexes, quantitative cross-linking mass spectrometry (QXL-MS) strategies based on isotope-labeled cross-linkers have been developed. Although successful, these approaches are mostly limited to pairwise comparisons. In order to establish a robust workflow enabling comparative analysis of multiple cross-linked samples simultaneously, we have developed a multiplexed QXL-MS strategy, namely, QMIX (Quantitation of Multiplexed, Isobaric-labeled cross (X)-linked peptides) by integrating MS-cleavable cross-linkers with isobaric labeling reagents. This study has established a new analytical platform for quantitative analysis of cross-linked peptides, which can be directly applied for multiplexed comparisons of the conformational dynamics of protein complexes and PPIs at the proteome scale in future studies.

  6. J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE.

    PubMed

    Gomoll, A; Wanich, T; Bellare, A

    2002-11-01

    Radiation and chemical cross-linking of medical grade ultrahigh molecular weight polyethylene (UHMWPE) has recently been utilized in an effort to improve wear performance of total joint replacement components. However, reductions in mechanical properties with cross-linking are cause for concern regarding the use of cross-linked UHMWPE for high-stress applications such as in total knee replacement prostheses. In this study, the fracture behavior of radiation cross-linked UHMWPE was compared to that of uncross-linked UHMWPE. The Rice and Sorensen model that utilizes mechanical parameters obtained from uniaxial tensile and compact tension tests was used to calculate the steady state J-integral fracture toughness, Jss, for radiation cross-linked UHMWPE. Jss decreased monotonically with increase in radiation dose. UHMWPE exhibited tough, ductile tearing behavior with stable crack growth when it was cross-linked using a gamma radiation dose of 0-50 kGy. However, in cross-linked UHMWPE irradiated to a dose of 100 and 200 kGy, unstable fracture occurred spontaneously upon attaining the initial crack driving force, J1c. This indicates that a high degree of cross-linking is less desirable for high-stress applications in orthopaedic implants. However, a substantial increase in J1c, even at a low degree of cross-linking, suggests that a low degree of cross-linking may be beneficial for resistance to delamination and catastrophic failure, both of which require an initiation step for the fracture to propagate in the material. This mechanical test should, however, be considered along with fatigue tests and joint simulator testing before determination of an appropriate amount of cross-linking for total joint replacement prostheses that experience high stresses.

  7. Design-Based Intervention Research as the Science of the Doubly Artificial

    ERIC Educational Resources Information Center

    Cole, Michael; Packer, Martin

    2016-01-01

    This article uses a variety of principles of cultural-historical activity theory to extend Herbert Simon's (1996) insight into the inherent linkage between the creation of artifacts and design. We argue that design research must grapple with the doubly artificial, as the classrooms in which many educational designs are implemented are themselves…

  8. Actin Cross-link Assembly and Disassembly Mechanics for α-Actinin and Fascin*

    PubMed Central

    Courson, David S.; Rock, Ronald S.

    2010-01-01

    Self-assembly of complex structures is commonplace in biology but often poorly understood. In the case of the actin cytoskeleton, a great deal is known about the components that include higher order structures, such as lamellar meshes, filopodial bundles, and stress fibers. Each of these cytoskeletal structures contains actin filaments and cross-linking proteins, but the role of cross-linking proteins in the initial steps of structure formation has not been clearly elucidated. We employ an optical trapping assay to investigate the behaviors of two actin cross-linking proteins, fascin and α-actinin, during the first steps of structure assembly. Here, we show that these proteins have distinct binding characteristics that cause them to recognize and cross-link filaments that are arranged with specific geometries. α-Actinin is a promiscuous cross-linker, linking filaments over all angles. It retains this flexibility after cross-links are formed, maintaining a connection even when the link is rotated. Conversely, fascin is extremely selective, only cross-linking filaments in a parallel orientation. Surprisingly, bundles formed by either protein are extremely stable, persisting for over 0.5 h in a continuous wash. However, using fluorescence recovery after photobleaching and fluorescence decay experiments, we find that the stable fascin population can be rapidly competed away by free fascin. We present a simple avidity model for this cross-link dissociation behavior. Together, these results place constraints on how cytoskeletal structures assemble, organize, and disassemble in vivo. PMID:20551315

  9. Cross-linked polyimides for integrated optics

    NASA Astrophysics Data System (ADS)

    Singer, Kenneth D.; Kowalczyk, Tony C.; Nguyen, Hung D.; Beuhler, Allyson J.; Wargowski, David A.

    1997-01-01

    We have investigated a promising class of polyimide materials for both passive and active electro-optic devices, namely crosslinkable polyimides. These fluorinated polyimides are soluble in the imidized form and are both thermally and photo-crosslinkable leading to easy processability into waveguide structures and the possibility of stable electro-optic properties. We have fabricated channel and slab waveguides and investigated the mechanism of optical propagation loss using photothermal deflection spectroscopy and waveguide loss spectroscopy, and found the losses to arise from residual absorption due to the formation of charge transfer states. The absorption is inhibited by fluorination leading to propagation losses as low as 0.3 dB/cm in the near infrared. Because of the ability to photocrosslink, channel waveguides are fabricated using a simple wet-etch process. Channel waveguides so formed are observed to have no excess loss over slab structures. Solubility followed by thermal cross-linking allows the formation of multilayer structures. We have produced electro-optic polymers by doping with the nonlinear optical chromophores, DCM and DADC; and a process of concurrent poling and thermal crosslinking. Multilayer structures have been investigated and poling fields optimized in the active layer by doping the cladding with an anti-static agent. The high glass-transition temperature and cross-linking leads to very stable electro-optic properties. We are currently building electro-optic modulators based on these materials. Progress and results in this area also are reported.

  10. Mechanical Strength Improvements of Carbon Nanotube Threads through Epoxy Cross-Linking

    PubMed Central

    Yu, Qingyue; Alvarez, Noe T.; Miller, Peter; Malik, Rachit; Haase, Mark R.; Schulz, Mark; Shanov, Vesselin; Zhu, Xinbao

    2016-01-01

    Individual Carbon Nanotubes (CNTs) have a great mechanical strength that needs to be transferred into macroscopic fiber assemblies. One approach to improve the mechanical strength of the CNT assemblies is by creating covalent bonding among their individual CNT building blocks. Chemical cross-linking of multiwall CNTs (MWCNTs) within the fiber has significantly improved the strength of MWCNT thread. Results reported in this work show that the cross-linked thread had a tensile strength six times greater than the strength of its control counterpart, a pristine MWCNT thread (1192 MPa and 194 MPa, respectively). Additionally, electrical conductivity changes were observed, revealing 2123.40 S·cm−1 for cross-linked thread, and 3984.26 S·cm−1 for pristine CNT thread. Characterization suggests that the obtained high tensile strength is due to the cross-linking reaction of amine groups from ethylenediamine plasma-functionalized CNT with the epoxy groups of the cross-linking agent, 4,4-methylenebis(N,N-diglycidylaniline). PMID:28787868

  11. Enantiomers Recognition of Propranolol Based on Organic-Inorganic Hybrid Open-Tubular MIPs-CEC Column Using 3-(Trimethoxysilyl)Propyl Methacrylate as a Cross-Linking Monomer.

    PubMed

    Chen, Guo-Ning; Li, Ning; Luo, Tian; Dong, Yu-Ming

    2017-04-01

    In this study, 3-(trimethoxysilyl)propyl methacrylate (γ-MPS), a bifunctional group compound, was used as a single cross-linking agent to prepare molecular imprinted inorganic-organic hybrid polymers by in situ polymerization for open-tubular capillary electro chromatography (CEC) column. The optimal preparation conditions were: the ratio between template molecule and functional monomer was 1:4; the volume proportion of porogen toluene and methanol was 1:1 and the volume of cross-linking agent γ-MPS was 69 μL. The optimal separation conditions were separation voltage of 15 kV; detection wavelength at 215 nm and background electrolyte composed of 70% acetonitrile/20 mmol/L boric acid salt (pH 6.9). Under the optimized conditions, the propranolol enantiomers can be separated well by CEC. The method is simple and fast, it can be a potentially useful approach for propranolol enantiomers separation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. γ-PGA and MTGase improve the formation of ε-(γ-glutamyl) lysine cross-links within hairtail (Trichiurus haumela) surimi protein.

    PubMed

    Hu, Yaqin; Shao, Ying; Wu, Chunhua; Yuan, Chunhong; Ishimura, Gakushi; Liu, Wenjuan; Chen, Shiguo

    2018-03-01

    The present study investigated the mechanism of ε-(γ-glutamyl) lysine cross-links within hairtail (Trichiurus haumela) surimi protein via γ-polyglutamic acid (γ-PGA) and MTGase. The results indicated that the addition of MTGase and γ-PGA markedly improved the gelation properties of hairtail surimi protein, including its maximum breaking force and deformation, water holding capacity and gel strength. The maximum improvements were achieved by adding 0.5units MTGase/g meat paste in combination with 0.06% γ-PGA. SDS-PAGE showed that the band intensity of cross-linked proteins increased, whereas that of myosin heavy chain decreased after treatments. Further scanning electron microscopy (SEM) analysis showed the formation of a denser gel matrix, which was caused by much stronger and more inter- and intra-molecular cross-linking of proteins, via MTGase catalysing ε-(γ-glutamyl) lysine cross-links formed between lysine residues in the gel protein and glutamic residues in the hydrolytic γ-PGA. The results provide reliable guidance for the improvement of hairtail surimi protein gelation properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Recyclable cross-linked anion exchange membrane for alkaline fuel cell application

    NASA Astrophysics Data System (ADS)

    Hou, Jianqiu; Liu, Yazhi; Ge, Qianqian; Yang, Zhengjin; Wu, Liang; Xu, Tongwen

    2018-01-01

    Cross-linking can effectively solve the conductivity-swelling dilemma in anion exchange membranes (AEMs) but will generate solid wastes. To address this, we developed an AEM cross-linked via disulfide bonds, bearing quaternary ammonium groups, which can be easily recycled. The membrane (RC-QPPO) with IEC of 1.78 mmol g-1, when cross-linked, showed enhanced mechanical properties and good hydroxide conductivity (24.6 mS cm-1 at 30 °C). Even at higher IEC value (2.13 mmol g-1), it still has low water uptake, low swelling ratio and delivers a peak power density of 150 mW cm-2 at 65 °C. Exploiting the formation of disulfide bonds from -SH groups, the membrane can be readily cross-linked in alkaline condition and recycled by reversibly breaking disulfide bonds with dithiothreitol (DTT). The recycled membrane solution can be directly utilized to cast a brand-new AEM. By washing away the residual DTT with water and exposure to air, it can be cross-linked again and this process is repeatable. During the recycling and cross-linking processes, the membrane showed a slight IEC decrease of 5% due to functional group degradation. The strategy presented here is promising in enhancing AEM properties and reducing the impact of artificial polymers on the environment.

  14. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics

    NASA Technical Reports Server (NTRS)

    Monk, Joshua D.; Lawson, John W.

    2016-01-01

    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  15. Phosphate uptake studies of cross-linked chitosan bead materials.

    PubMed

    Mahaninia, Mohammad H; Wilson, Lee D

    2017-01-01

    A systematic experimental study is reported that provides a molecular based understanding of cross-linked chitosan beads and their adsorption properties in aqueous solution containing phosphate dianion (HPO 4 2- ) species. Synthetically modified chitosan using epichlorohydrin and glutaraldehyde cross-linkers result in surface modified beads with variable hydrophile-lipophile character and tunable HPO 4 2- uptake properties. The kinetic and thermodynamic adsorption properties of cross-linked chitosan beads with HPO 4 2- species were studied in aqueous solution. Complementary structure and physicochemical characterization of chitosan beads via potentiometry, Raman spectroscopy, DSC, and dye adsorption measurements was carried out to establish structure-property relationships. The maximum uptake (Q m ) of bead systems with HPO 4 2- at equilibrium was 52.1mgg -1 ; whereas, kinetic uptake results for chitosan bead/phosphate systems are relatively rapid (0.111-0.113min -1 ) with an intraparticle diffusion rate-limiting step. The adsorption process follows a multi-step pathway involving inner- and outer-sphere complexes with significant changes in hydration. Phosphate uptake strongly depends on the composition and type of cross-linker used for preparation of chitosan beads. The adsorption isotherms and structural characterization of bead systems illustrate the role of surface charge, hydrophile-lipophile balance, adsorption site accessibility, and hydration properties of the chitosan bead surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Ultralow stress, thermally stable cross-linked polymer films of polydivinylbenzene (PDVB)

    DOE PAGES

    Lepro, Xavier; Ehrmann, Paul; Menapace, Joseph; ...

    2017-05-10

    Although closely related to polystyrene, poly(divinylbenzene) (PDVB) has found limited utility due to the difficulties associated with its synthesis. As a highly cross-linked polymer, PDVB is infusible and insoluble and thus nearly impossible to shape into films by either melt or solvent-based processes. Here, we report the initiated chemical vapor deposition (iCVD) of nearly stress-free, highly transparent, free-standing films of PDVB up to 25 μm thick. Films initially grow under tensile intrinsic stress but become more compressive with thickness and eventually converge to zero-stress values once they reach ≥10 μm in thickness. Upon initial heating, the evaporative loss of unreactedmore » monomer left in the polymer matrix induces between 35 and 45 MPa of tensile stress in the films. Afterward, subsequent heating cycles induce reversible stress and film expansion behaviors. We estimate the degree of cross-linking to be 44%, resulting in high thermal stability (up to 300 °C) and mechanical stiffness (Young’s modulus of 5.2 GPa). As a result, the low stress combined with high cross-linking makes iCVD PDVB an excellent candidate for protective coatings in harsh environments.« less

  17. Ultralow stress, thermally stable cross-linked polymer films of polydivinylbenzene (PDVB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepro, Xavier; Ehrmann, Paul; Menapace, Joseph

    Although closely related to polystyrene, poly(divinylbenzene) (PDVB) has found limited utility due to the difficulties associated with its synthesis. As a highly cross-linked polymer, PDVB is infusible and insoluble and thus nearly impossible to shape into films by either melt or solvent-based processes. Here, we report the initiated chemical vapor deposition (iCVD) of nearly stress-free, highly transparent, free-standing films of PDVB up to 25 μm thick. Films initially grow under tensile intrinsic stress but become more compressive with thickness and eventually converge to zero-stress values once they reach ≥10 μm in thickness. Upon initial heating, the evaporative loss of unreactedmore » monomer left in the polymer matrix induces between 35 and 45 MPa of tensile stress in the films. Afterward, subsequent heating cycles induce reversible stress and film expansion behaviors. We estimate the degree of cross-linking to be 44%, resulting in high thermal stability (up to 300 °C) and mechanical stiffness (Young’s modulus of 5.2 GPa). As a result, the low stress combined with high cross-linking makes iCVD PDVB an excellent candidate for protective coatings in harsh environments.« less

  18. Comparison of the properties of collagen-chitosan scaffolds after γ-ray irradiation and carbodiimide cross-linking.

    PubMed

    Chen, Zihao; Du, Tianming; Tang, Xiangyu; Liu, Changjun; Li, Ruixin; Xu, Cheng; Tian, Feng; Du, Zhenjie; Wu, Jimin

    2016-07-01

    The property of collagen-chitosan porous scaffold varies according to cross-linking density and scaffold composition. This study was designed to compare the properties of collagen-chitosan porous scaffolds cross-linked with γ-irradiation and carbodiimide (CAR) for the first time. Eleven sets of collagen-chitosan scaffolds containing different concentrations of chitosan at a 5% increasing gradient were fabricated. Fourier transform infrared spectroscopy was performed to confirm the success of cross-linking in the scaffolds. The scaffold morphology was evaluated under scanning electron microscope (SEM). SEM revealed that chitosan was an indispensable material for the fabrication of γ-ray irradiation scaffold. The microstructure of γ-ray irradiation scaffold was less stable than those of alternative scaffolds. Based upon swelling ratio, porosity factor, and collagenase degradation, γ-ray irradiation scaffold was less stable than CAR and 25% proportion of chitosan scaffolds. Mechanical property determines the orientation in γ-irradiation and CAR scaffold. In vitro degradation test indicated that γ-irradiation and CAR cross-linking can elevate the scaffold biocompatibility. Compared with γ-ray irradiation, CAR cross-linked scaffold containing 25% chitosan can more significantly enhance the bio-stability and biocompatibility of collagen-chitosan scaffolds. CAR cross-linked scaffold may be the best choice for future tissue engineering.

  19. Teaching Acid/Base Physiology in the Laboratory

    ERIC Educational Resources Information Center

    Friis, Ulla G.; Plovsing, Ronni; Hansen, Klaus; Laursen, Bent G.; Wallstedt, Birgitta

    2010-01-01

    Acid/base homeostasis is one of the most difficult subdisciplines of physiology for medical students to master. A different approach, where theory and practice are linked, might help students develop a deeper understanding of acid/base homeostasis. We therefore set out to develop a laboratory exercise in acid/base physiology that would provide…

  20. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma

    PubMed Central

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S.; Watanabe, Takeshi; Kim, Min P.; Blackmon, Shanda H.; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I.; Minelli, Rosalba; Scott, Kenneth L.; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R.; Creighton, Chad J.; Martinez, Elisabeth D.; Zal, Tomasz; Grande-Allen, K. Jane; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2015-01-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde–derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde–derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850

  1. A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - I. Theory

    DOE PAGES

    Williams, Mark L.; Lee, Deokjung; Choi, Sooyoung

    2015-03-04

    A new methodology has been developed to treat resonance self-shielding in doubly heterogeneous very high temperature gas-cooled reactor systems in which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. This new method first homogenizes the fuel grain and matrix materials using an analytically derived disadvantage factor from a two-region problem with equivalence theory and intermediate resonance method. This disadvantage factor accounts for spatial self-shielding effects inside each grain within the framework of an infinite array of grains. Then the homogenized fuel compact is self-shielded using a Bondarenko method to accountmore » for interactions between the fuel compact regions in the fuel lattice. In the final form of the equations for actual implementations, the double-heterogeneity effects are accounted for by simply using a modified definition of a background cross section, which includes geometry parameters and cross sections for both the grain and fuel compact regions. With the new method, the doubly heterogeneous resonance self-shielding effect can be treated easily even with legacy codes programmed only for a singly heterogeneous system by simple modifications in the background cross section for resonance integral interpolations. This paper presents a detailed derivation of the new method and a sensitivity study of double-heterogeneity parameters introduced during the derivation. The implementation of the method and verification results for various test cases are presented in the companion paper.« less

  2. Rheological Properties of Cross-Linked Hyaluronan–Gelatin Hydrogels for Tissue Engineering

    PubMed Central

    Vanderhooft, Janssen L.; Alcoutlabi, Mataz; Magda, Jules J.; Prestwich, Glenn D.

    2009-01-01

    Hydrogels that mimic the natural extracellular matrix (ECM) are used in three-dimensional cell culture, cell therapy, and tissue engineering. A semi-synthetic ECM based on cross-linked hyaluronana offers experimental control of both composition and gel stiffness. The mechanical properties of the ECM in part determine the ultimate cell phenotype. We now describe a rheological study of synthetic ECM hydrogels with storage shear moduli that span three orders of magnitude, from 11 to 3 500 Pa, a range important for engineering of soft tissues. The concentration of the chemically modified HA and the cross-linking density were the main determinants of gel stiffness. Increase in the ratio of thiol-modified gelatin reduced gel stiffness by diluting the effective concentration of the HA component. PMID:18839402

  3. Structuring of Amide Cross-Linked Non-Bridged and Bridged Alkyl-Based Silsesquioxanes.

    PubMed

    Nunes, S C; de Zea Bermudez, V

    2018-02-06

    The development of sophisticated organized materials exhibiting enhanced properties is a challenging topic of the domain of organic/inorganic hybrid materials. This review, composed of four sections, reports the work we have carried out over the last 10 years on the synthesis of amide cross-linked alkyl/siloxane hybrids by means of sol-gel chemistry and self-directed assembly/self-organization routes relying on weak interactions (hydrophobic interactions and hydrogen bonding). The various as-produced lamellar structures displaying a myriad of morphologies, often closely resembling those found in natural materials, are discussed. The major role played by the synthetic conditions (pH, water content, co-solvent(s) nature/concentration and dopant presence/concentration), the alkyl chains (length and presence of ramification or not) and the number of the amide cross-links present in the precursor, is evidenced. Examples of highly organized hybrids structures incorporating ionic species (alkali and alkaline earth metal salts) and optically-active centers (organic dyes and lanthanide ions) are described. A useful qualitative relationship deduced between the emission quantum yield of the ordered hybrid materials and the degree of order of the hydrogen-bonded network is highlighted. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Solomon link through an interwoven molecular grid.

    PubMed

    Beves, Jonathon E; Danon, Jonathan J; Leigh, David A; Lemonnier, Jean-François; Vitorica-Yrezabal, Iñigo J

    2015-06-22

    A molecular Solomon link was synthesized through the assembly of an interwoven molecular grid consisting of four bis(benzimidazolepyridyl)benzthiazolo[5,4-d]thiazole ligands and four zinc(II), iron(II), or cobalt(II) cations, followed by ring-closing olefin metathesis. NMR spectroscopy, mass spectrometry, and X-ray crystallography confirmed the doubly interlocked topology, and subsequent demetalation afforded the wholly organic Solomon link. The synthesis, in which each metal ion defines the crossing point of two ligand strands, suggests that interwoven molecular grids should be useful scaffolds for the rational construction of other topologically complex structures. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  5. Isolation of homoleptic platinum oxyanionic complexes with doubly protonated diazacrown cation

    NASA Astrophysics Data System (ADS)

    Vasilchenko, Danila; Tkachev, Sergey; Baidina, Iraida; Romanenko, Galina; Korenev, Sergey

    2017-02-01

    Doubly protonated diazacrown ether cation (1,4,10,13-tetraoxa-7,16-diazoniacyclooctadecane DCH22+) was used for the efficient isolation of the homoleptic platinum complexes [Pt(NO3)6]2- and [Pt(C2O4)2]2- to crystalline solid phases from solutions containing mixtures of related platinum complexes. DCH22+ molecules in nitric acid solution were shown to prevent the condensation of mononuclear [Pt(H2O)n(NO3)6-n]n-2 species.

  6. Photouncaged Sequence-specific Interstrand DNA Cross-Linking with Photolabile 4-oxo-enal-modified Oligonucleotides

    PubMed Central

    Sun, Jingjing; Tang, Xinjing

    2015-01-01

    DNA cross-linking technology is an attractive tool for the detection, regulation, and manipulation of genes. In this study, a series of photolabile 4-oxo-enal-modified oligonucleotides functionalized with photosensitive ο-nitrobenzyl derivatives were rationally designed as a new kind of photocaged cross-linking agents. A comprehensive evaluation of cross-linking reactions for different nucleobases in complementary strands under different conditions suggested that the modified DNA oligonucleotides tended to form interstrand cross-linking to nucleobases with the potential of thymidine > guanosine » cytidine ~ adenosine. Different from previous literature reports that cytidine and adenosine were preferential cross-linked nucleobases with 4-oxo-enal moieties, our study represents the first example of DNA cross-linking for T and G selectivity using 4-oxo-enal moiety. The cross-linked adducts were identified and their cross-linking mechanism was also illustrated. This greatly expands the applications of 4-oxo-enal derivatives in the studies of DNA damage and RNA structure PMID:26020694

  7. Photouncaged Sequence-specific Interstrand DNA Cross-Linking with Photolabile 4-oxo-enal-modified Oligonucleotides.

    PubMed

    Sun, Jingjing; Tang, Xinjing

    2015-05-28

    DNA cross-linking technology is an attractive tool for the detection, regulation, and manipulation of genes. In this study, a series of photolabile 4-oxo-enal-modified oligonucleotides functionalized with photosensitive ο-nitrobenzyl derivatives were rationally designed as a new kind of photocaged cross-linking agents. A comprehensive evaluation of cross-linking reactions for different nucleobases in complementary strands under different conditions suggested that the modified DNA oligonucleotides tended to form interstrand cross-linking to nucleobases with the potential of thymidine > guanosine » cytidine ~ adenosine. Different from previous literature reports that cytidine and adenosine were preferential cross-linked nucleobases with 4-oxo-enal moieties, our study represents the first example of DNA cross-linking for T and G selectivity using 4-oxo-enal moiety. The cross-linked adducts were identified and their cross-linking mechanism was also illustrated. This greatly expands the applications of 4-oxo-enal derivatives in the studies of DNA damage and RNA structure.

  8. Improvement on Physical Properties of Pullulan Films by Novel Cross-Linking Strategy.

    PubMed

    Chen, Chieh-Ting; Chen, Kuan-I; Chiang, Hsin-Han; Chen, Yu-Kuo; Cheng, Kuan-Chen

    2017-01-01

    Pullulan based films possess several advantages, including high transparency, low toxicity, good biodegradability, good mechanical properties, and low oxygen permeability, are preferable for food packaging. The application of pullulan films on food packaging, however, has inherent disadvantage of high water solubility. In this study, glutaraldehyde and glycerol were used as the cross-linking reagent and the plasticizer respectively to improve water resistance and physical properties of the pullulan films. Effects of cross-linking degree on physical properties, including water absorptions, swelling behaviors, water vapor permeability and tensile strengths of films were evaluated. FTIR results demonstrated that the pullulan films were successfully cross-linked by glutaraldehyde. The tensile strength of pullulan films could be enhanced significantly (P < 0.05) when glutaraldehyde was between 1% and 5% (w/w); nevertheless, the amount of glutaraldehyde above 20% (w/w) led to films brittleness. With the addition of glycerol as a plasticizer enhanced the extensibility of films as well as the hydrophilicity, resulting in higher water vapor permeability. © 2016 Institute of Food Technologists®.

  9. Spectroscopy of singly, doubly, and triply bottom baryons

    NASA Astrophysics Data System (ADS)

    Wei, Ke-Wei; Chen, Bing; Liu, Na; Wang, Qian-Qian; Guo, Xin-Heng

    2017-06-01

    Recently, some singly bottom baryons have been established experimentally, but none of the doubly or triply bottom baryons have been observed. Under the Regge phenomenology, the mass of an unobserved ground-state doubly or triply bottom baryon is expressed as a function of masses of the well-established light baryons and singly bottom baryons. Then, the values of Regge slopes and Regge intercepts for baryons containing one, two, or three bottom quarks are calculated. After that, the masses of the orbitally excited singly, doubly, and triply bottom baryons are estimated. Our predictions may be useful for the discovery of these baryons and their JP assignments.

  10. The Application of an Emerging Technique for Protein–Protein Interaction Interface Mapping: The Combination of Photo-Initiated Cross-Linking Protein Nanoprobes with Mass Spectrometry

    PubMed Central

    Ptáčková, Renata; Ječmen, Tomáš; Novák, Petr; Hudeček, Jiří; Stiborová, Marie; Šulc, Miroslav

    2014-01-01

    Protein–protein interaction was investigated using a protein nanoprobe capable of photo-initiated cross-linking in combination with high-resolution and tandem mass spectrometry. This emerging experimental approach introduces photo-analogs of amino acids within a protein sequence during its recombinant expression, preserves native protein structure and is suitable for mapping the contact between two proteins. The contact surface regions involved in the well-characterized interaction between two molecules of human 14-3-3ζ regulatory protein were used as a model. The employed photo-initiated cross-linking techniques extend the number of residues shown to be within interaction distance in the contact surface of the 14-3-3ζ dimer (Gln8–Met78). The results of this study are in agreement with our previously published data from molecular dynamic calculations based on high-resolution chemical cross-linking data and Hydrogen/Deuterium exchange mass spectrometry. The observed contact is also in accord with the 14-3-3ζ X-ray crystal structure (PDB 3dhr). The results of the present work are relevant to the structural biology of transient interaction in the 14-3-3ζ protein, and demonstrate the ability of the chosen methodology (the combination of photo-initiated cross-linking protein nanoprobes and mass spectrometry analysis) to map the protein-protein interface or regions with a flexible structure. PMID:24865487

  11. Three methods for in situ cross-linking of polyvinyl alcohol films for application as ion-conducting membranes in potassium hydroxide electrolyte. [battery separators

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Hsu, L. C.

    1979-01-01

    Three methods of in situ cross-linking polyvinyl alcohol films are presented. They are: (1) acetalization with a dialdehyde such as glutaraldehyde, (2) acetalization with aldehyde groups formed by selective oxidative cleaving of the few percent of 1,2 diol units present in polyvinyl alcohol, and (3) cross-linking by hydrogen abstraction by reaction with hydrogen atoms and hydroxyl radicals from irradiated water. For the third method, improvement in film conductivity in KOH solution at the expense of mechanical strength is obtained by the presence of polyacrylic acid in the polyvinyl alcohol films. Resistivities in 45 percent KOH are given for in situ cross-linked films prepared by each of the three methods.

  12. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide.

    PubMed

    Cui, Wei; Li, Mingzhu; Liu, Jiyang; Wang, Ben; Zhang, Chuck; Jiang, Lei; Cheng, Qunfeng

    2014-09-23

    Demands of the strong integrated materials have substantially increased across various industries. Inspired by the relationship of excellent integration of mechanical properties and hierarchical nano/microscale structure of the natural nacre, we have developed a strategy for fabricating the strong integrated artificial nacre based on graphene oxide (GO) sheets by dopamine cross-linking via evaporation-induced assembly process. The tensile strength and toughness simultaneously show 1.5 and 2 times higher than that of natural nacre. Meanwhile, the artificial nacre shows high electrical conductivity. This type of strong integrated artificial nacre has great potential applications in aerospace, flexible supercapacitor electrodes, artificial muscle, and tissue engineering.

  13. Weak reversible cross links may decrease the strength of aligned fiber bundles.

    PubMed

    Nabavi, S Soran; Hartmann, Markus A

    2016-02-21

    Reversible cross-linking is an effective strategy to specifically tailor the mechanical properties of polymeric materials that can be found in a variety of biological as well as man-made materials. Using a simple model in this paper the influence of weak, reversible cross-links on the mechanical properties of aligned fiber bundles is investigated. Special emphasis in this analysis is put on the strength of the investigated structures. Using Monte Carlo methods two topologies of cross-links exceeding the strength of the covalent backbone are studied. Most surprisingly only two cross-links are sufficient to break the backbone of a multi chain system, resulting in a reduced strength of the material. The found effect crucially depends on the ratio of inter- to intra-chain cross-links and, thus, on the grafting density that determines this ratio.

  14. General protein-protein cross-linking.

    PubMed

    Alegria-Schaffer, Alice

    2014-01-01

    This protocol describes a general protein-to-protein cross-linking procedure using the water-soluble amine-reactive homobifunctional BS(3) (bis[sulfosuccinimidyl] suberate); however, the protocol can be easily adapted using other cross-linkers of similar properties. BS(3) is composed of two sulfo-NHS ester groups and an 11.4 Å linker. Sulfo-NHS ester groups react with primary amines in slightly alkaline conditions (pH 7.2-8.5) and yield stable amide bonds. The reaction releases N-hydroxysuccinimide (see an application of NHS esters on Labeling a protein with fluorophores using NHS ester derivitization). © 2014 Elsevier Inc. All rights reserved.

  15. Structural interactions between retroviral Gag proteins examined by cysteine cross-linking.

    PubMed Central

    Hansen, M S; Barklis, E

    1995-01-01

    We have examined structural interactions between Gag proteins within Moloney murine leukemia virus (M-MuLV) particles by making use of the cysteine-specific cross-linking agents iodine and bis-maleimido hexane. Virion-associated wild-type M-MuLV Pr65Gag proteins in immature particles were intermolecularly cross-linked at cysteines to form Pr65Gag oligomers, from dimers to pentamers or hexamers. Following a systematic approach of cysteine-to-serine mutagenesis, we have shown that cross-linking of Pr65Gag occurred at cysteines of the nucleocapsid (NC) Cys-His motif, suggesting that the Cys-His motifs within virus particles are packed in close proximity. The M-MuLV Pr65Gag protein did not cross-link to the human immunodeficiency virus Pr55Gag protein when the two molecules were coexpressed, indicating either that they did not coassemble or that heterologous Gag proteins were not in close enough proximity to be cross-linked. Using an assembly-competent, protease-minus, cysteine-minus Pr65Gag protein as a template, novel cysteine residues were generated in the M-MuLV capsid domain major homology region (MHR). Cross-linking of proteins containing MHR cysteines showed above-background levels of Gag-Gag dimers but also identified a novel cellular factor, present in virions, that cross-linked to MHR residues. Although the NC cysteine mutation was compatible with M-MuLV particle assembly, deletions of the NC domain were not tolerated. These results suggest that the Cys-His motif is held in close proximity within immature M-MuLV particles by interactions between CA domains and/or non-Cys-His motif domains of the NC. PMID:7815493

  16. Novel magnetic cross-linked lipase aggregates for improving the resolution of (R, S)-2-octanol.

    PubMed

    Liu, Ying; Guo, Chen; Liu, Chun-Zhao

    2015-03-01

    Novel magnetic cross-linked lipase aggregates were fabricated by immobilizing the cross-linked lipase aggregates onto magnetic particles with a high number of -NH2 terminal groups using p-benzoquinone as the cross-linking agent. At the optimal fabrication conditions, 100% of immobilization efficiency and 139% of activity recovery of the magnetic cross-linked lipase aggregates were achieved. The magnetic cross-linked lipase aggregates were able to efficiently resolve (R, S)-2-octanol, and retained 100% activity and 100% enantioselectivity after 10 cycles of reuse, whereas the cross-linked lipase aggregates only retained about 50% activity and 70% enantioselectivity due to insufficient cross-linking. These results provide a great potential for industrial applications of the magnetic cross-linked lipase aggregates. © 2014 Wiley Periodicals, Inc.

  17. Bio-Based Artificial Nacre with Excellent Mechanical and Barrier Properties Realized by a Facile In Situ Reduction and Cross-Linking Reaction.

    PubMed

    Shahzadi, Kiran; Mohsin, Imran; Wu, Lin; Ge, Xuesong; Jiang, Yijun; Li, Hui; Mu, Xindong

    2017-01-24

    Demands for high strength integrated materials have substantially increased across various kinds of industries. Inspired by the relationship of excellent integration of mechanical properties and hierarchical nano/microscale structure of the natural nacre, a simple and facile method to fabricate high strength integrated artificial nacre based on sodium carboxymethylcellulose (CMC) and borate cross-linked graphene oxide (GO) sheets has been developed. The tensile strength and toughness of cellulose-based hybrid material reached 480.5 ± 13.1 MPa and 11.8 ± 0.4 MJm -3 by a facile in situ reduction and cross-linking reaction between CMC and GO (0.7%), which are 3.55 and 6.55 times that of natural nacre. This hybrid film exhibits better thermal stability and flame retardancy. More interestingly, the hybrid material showed good water stability compared to that in the original water-soluble CMC. This type of hybrid has great potential applications in aerospace, artificial muscle, and tissue engineering.

  18. Doubly anharmonic oscillator under the topological effects of a screw dislocation

    NASA Astrophysics Data System (ADS)

    Bakke, Knut

    2018-05-01

    We consider an elastic medium with the distortion of a circular curve into a vertical spiral, and investigate the influence of this topological defect on the doubly anharmonic oscillator. We show that the Schrödinger equation for the doubly anharmonic oscillator in the presence of this linear topological defect can be solved analytically. We also obtain the exact expressions for the permitted energies of the ground state of the doubly anharmonic oscillator, and show that the topology of the screw dislocation modifies the spectrum of energy of the doubly anharmonic oscillator.

  19. In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying

    PubMed Central

    2015-01-01

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼1–4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications. PMID:25630464

  20. In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying.

    PubMed

    Zhao, Weifeng; Nugroho, Robertus Wahyu N; Odelius, Karin; Edlund, Ulrica; Zhao, Changsheng; Albertsson, Ann-Christine

    2015-02-25

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼ 1-4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications.

  1. Synthesis and characterization of a biocompatible chitosan-based hydrogel cross-linked via 'click' chemistry for controlled drug release.

    PubMed

    Guaresti, O; García-Astrain, C; Palomares, T; Alonso-Varona, A; Eceiza, A; Gabilondo, N

    2017-09-01

    A chemically cross-linked chitosan-based hydrogel was successfully synthesized through Diels-Alder (DA) reaction and characterized. The final product was obtained after different steps; on the one hand, furan-modified chitosan (Cs-Fu) was synthesized by the reaction of furfural with the free amino groups of chitosan. On the other hand, highlighting the novelty of the present research, maleimide-functionalized chitosan (Cs-AMI) was prepared by the reaction of a maleimide-modified aminoacid with the amino groups of chitosan through amide coupling. The two complementary chitosan derivatives were cross-linked to the final hydrogel network. Both modification reactions were confirmed by FTIR and 1 H NMR, obtaining a degree of substitution (DS) of 31% and 26% for Cs-Fu and Cs-AMI, respectively. The as-designed hydrogel was analyzed in terms of microstructure, swelling capacity and rheological behaviour. The hydrogel showed pH-sensitivity, biocompatibility and inhibitory bacterial activity, promising features for biomedical applications, particularly for targeted-drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Neural network based control of Doubly Fed Induction Generator in wind power generation

    NASA Astrophysics Data System (ADS)

    Barbade, Swati A.; Kasliwal, Prabha

    2012-07-01

    To complement the other types of pollution-free generation wind energy is a viable option. Previously wind turbines were operated at constant speed. The evolution of technology related to wind systems industry leaded to the development of a generation of variable speed wind turbines that present many advantages compared to the fixed speed wind turbines. In this paper the phasor model of DFIG is used. This paper presents a study of a doubly fed induction generator driven by a wind turbine connected to the grid, and controlled by artificial neural network ANN controller. The behaviour of the system is shown with PI control, and then as controlled by ANN. The effectiveness of the artificial neural network controller is compared to that of a PI controller. The SIMULINK/MATLAB simulation for Doubly Fed Induction Generator and corresponding results and waveforms are displayed.

  3. DNA-Protein Cross-Links: Formation, Structural Identities, and Biological Outcomes.

    PubMed

    Tretyakova, Natalia Y; Groehler, Arnold; Ji, Shaofei

    2015-06-16

    Noncovalent DNA-protein interactions are at the heart of normal cell function. In eukaryotic cells, genomic DNA is wrapped around histone octamers to allow for chromosomal packaging in the nucleus. Binding of regulatory protein factors to DNA directs replication, controls transcription, and mediates cellular responses to DNA damage. Because of their fundamental significance in all cellular processes involving DNA, dynamic DNA-protein interactions are required for cell survival, and their disruption is likely to have serious biological consequences. DNA-protein cross-links (DPCs) form when cellular proteins become covalently trapped on DNA strands upon exposure to various endogenous, environmental and chemotherapeutic agents. DPCs progressively accumulate in the brain and heart tissues as a result of endogenous exposure to reactive oxygen species and lipid peroxidation products, as well as normal cellular metabolism. A range of structurally diverse DPCs are found following treatment with chemotherapeutic drugs, transition metal ions, and metabolically activated carcinogens. Because of their considerable size and their helix-distorting nature, DPCs interfere with the progression of replication and transcription machineries and hence hamper the faithful expression of genetic information, potentially contributing to mutagenesis and carcinogenesis. Mass spectrometry-based studies have identified hundreds of proteins that can become cross-linked to nuclear DNA in the presence of reactive oxygen species, carcinogen metabolites, and antitumor drugs. While many of these proteins including histones, transcription factors, and repair proteins are known DNA binding partners, other gene products with no documented affinity for DNA also participate in DPC formation. Furthermore, multiple sites within DNA can be targeted for cross-linking including the N7 of guanine, the C-5 methyl group of thymine, and the exocyclic amino groups of guanine, cytosine, and adenine. This structural

  4. DNA-Protein Cross-links: Formation, Structural Identities, and Biological Outcomes

    PubMed Central

    Tretyakova, Natalia Y.; Groehler, Arnold; Ji, Shaofei

    2015-01-01

    CONSPECTUS Non-covalent DNA-protein interactions are at the heart of normal cell function. In eukaryotic cells, genomic DNA is wrapped around histone octamers to allow for chromosomal packaging in the nucleus. Binding of regulatory protein factors to DNA directs replication, controls transcription, and mediates cellular responses to DNA damage. Because of their fundamental significance in all cellular processes involving DNA, dynamic DNA-protein interactions are required for cell survival, and their disruption is likely to have serious biological consequences. DNA-protein cross-links (DPCs) form when cellular proteins become covalently trapped on DNA strands upon exposure to various endogenous, environmental and chemotherapeutic agents. DPCs progressively accumulate in the brain and heart tissues as a result of endogenous exposure to reactive oxygen species and lipid peroxidation products, as well as normal cellular metabolism. A range of structurally diverse DPCs are found following treatment with chemotherapeutic drugs, transition metal ions, and metabolically activated carcinogens. Because of their considerable size and their helix-distorting nature, DPCs interfere with the progression of replication and transcription machineries and hence hamper the faithful expression of genetic information, potentially contributing to mutagenesis and carcinogenesis. Mass spectrometry-based studies have identified hundreds of proteins that can become cross-linked to nuclear DNA in the presence of reactive oxygen species, carcinogen metabolites, and antitumor drugs. While many of these proteins including histones, transcription factors, and repair proteins are known DNA binding partners, other gene products with no documented affinity for DNA also participate in DPC formation. Furthermore, multiple sites within DNA can be targeted for cross-linking including the N7 of guanine, the C-5 methyl group of thymine, and the exocyclic amino groups of guanine, cytosine, and adenine

  5. Catechol chemistry inspired approach to construct self-cross-linked polymer nanolayers as versatile biointerfaces.

    PubMed

    Liu, Xinyue; Deng, Jie; Ma, Lang; Cheng, Chong; Nie, Chuanxiong; He, Chao; Zhao, Changsheng

    2014-12-16

    In this study, we proposed a catechol chemistry inspired approach to construct surface self-cross-linked polymer nanolayers for the design of versatile biointerfaces. Several representative biofunctional polymers, P(SS-co-AA), P(SBMA-co-AA), P(EGMA-co-AA), P(VP-co-AA), and P(MTAC-co-AA), were first synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and then the catecholic molecules (dopamine, DA) were conjugated to the acrylic acid (AA) units by the facile carbodiimide chemistry. Then, the catechol (Cat) group conjugated biofunctional polymers, named PSS-Cat, PSBMA-Cat, PEGMA-Cat, PVP-Cat, and PMTAC-Cat, were applied for the construction of self-cross-linked nanolayers on polymeric substrates via the pH induced catechol cross-linking and immobilization. The XPS spectra, surface morphology, and wettability gave robust evidence that the catechol conjugated polymers were successfully coated, and the coated substrates possessed increased surface roughness and hydrophilicity. Furthermore, the systematic in vitro investigation of protein adsorption, platelet adhesion, activated partial thromboplastin time (APTT), thrombin time (TT), cell viability, and antibacterial ability confirmed that the coated nanolayers conferred the substrates with versatile biological performances. The PSS-Cat coated substrate had low blood component activation and excellent anticoagulant activity; while the PEGMA-Cat and PSBMA-Cat showed ideal resistance to protein fouling and inhibition of platelet activation. The PSS-Cat and PVP-Cat coated substrates exhibited promoted endothelial cell proliferation and viability. The PMTAC-Cat coated substrate showed an outstanding activity on bacterial inhibition. In conclusion, the catechol chemistry inspired approach allows the self-cross-linked nanolayers to be easily immobilized on polymeric substrates with the stable conformation and multiple biofunctionalities. It is expected that this low-cost and facile

  6. Photoinduced DNA Interstrand Cross-Link Formation by Naphthalene Boronates via a Carbocation.

    PubMed

    Wang, Yibin; Lin, Zechao; Fan, Heli; Peng, Xiaohua

    2016-07-18

    Most photoinduced DNA cross-link formation by a bifunctional aryl derivative is through a bisquinone methide. DNA cross-linking via a bisarylcarbocation remains a less explored area. We designed and synthesized a series of naphthalene boronates that produce DNA interstrand cross-links via a carbocation upon UV irradiation. A free radical was generated from the naphthalene boronates with 350 nm irradiation and further converted to a carbocation by electron transfer. The activation mechanism was determined using the orthogonal traps, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and methoxyamine that react with either the free radical or the carbocation but not both. This represents a novel example of photoinduced DNA cross-link formation via carbocations generated from a bisaryl derivative. This work provides information useful for the design of novel photoactivated DNA cross-linking agents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Analysis of glycation induced protein cross-linking inhibitory effects of some antidiabetic plants and spices.

    PubMed

    Perera, Handunge Kumudu Irani; Handuwalage, Charith Sandaruwan

    2015-06-09

    Protein cross-linking which occurs towards the latter part of protein glycation is implicated in the development of chronic diabetic complications. Glycation induced protein cross-linking inhibitory effects of nine antidiabetic plants and three spices were evaluated in this study using a novel, simple, electrophoresis based method. Methanol extracts of thirteen plants including nine antidiabetic plants and three spices were used. Lysozyme and fructose were incubated at 37 °C in the presence or absence of different concentrations of plant extracts up to 31 days. Standard glycation inhibitor aminoguanidine and other appropriate controls were included. A recently established sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) method was used to detect the products of protein cross-linking in the incubation mixtures. High molecular weight protein products representing the dimer, trimer and tetramer of lysozyme were detected in the presence of fructose. Among the nine antidiabetic plants, seven showed glycation induced protein cross-linking inhibitory effects namely Ficus racemosa (FR) stem bark, Gymnema sylvestre (GS) leaves, Musa paradisiaca (MP) yam, Phyllanthus debilis (PD) whole plant, Phyllanthus emblica (PE) fruit, Pterocarpus marsupium (PM) latex and Tinospora cordifolia (TC) leaves. Inhibition observed with Coccinia grandis (CG) leaves and Strychnos potatorum (SP) seeds were much low. Leaves of Gymnema lactiferum (GL), the plant without known antidiabetic effects showed the lowest inhibition. All three spices namely Coriandrum sativum (CS) seeds, Cinnamomum zeylanicum (CZ) bark and Syzygium aromaticum (SA) flower buds showed cross-link inhibitory effects with higher effects in CS and SA. PD, PE, PM, CS and SA showed almost complete inhibition on the formation of cross-linking with 25 μg/ml extracts. Methanol extracts of PD, PE, PM, CS and SA have shown promising inhibitory effects on glycation induced protein cross-linking.

  8. Induction of DNA-protein cross-links by platinum compounds.

    PubMed

    Woźniak, K; Walter, Z

    2000-01-01

    The differences between cis- and trans-diamminedichloroplatinum II (DDP) in forming DNA-protein cross-links in isolated human lymphocytes were investigated. Both cis- and trans-DDP can induce DNA-protein cross-links. We show that cis-DDP forms complexes between DNA and proteins faster than trans-DDP. This results from an increase in the quantity of DNA and platinum together with an increase in drug concentration. Under the same conditions trans-DDP causes a decrease in DNA-forming complexes with proteins. After a 12 h incubation of lymphocytes we observe a similar level of DNA in DNA-protein cross-links induced by DDP isomers, but more platinum appears in complexes induced by trans-DDP. The results obtained demonstrate that the antitumor drug - cis-DDP and the clinically ineffective trans-DDP induce links between DNA and proteins in a different manner. We suggest that the therapeutic activity of cis-DDP can in part arise from rapidly forming DNA-protein complexes which can destroy the most important cellular processes, such as replication and transcription.

  9. [Complications and postoperative therapeutic strategies in cross-linking].

    PubMed

    Kohlhaas, M

    2017-08-01

    The reduced corneal mechanical stability in keratoconus and similar collagen diseases can lead to a progressive and irregular corneal shape and decrease of visual acuity. A progression of keratectatic diseases can be shown with corneal topography. Keratoconus can be treated by photo-oxidative cross-linking of the corneal collagen. In order to achieve a high absorption of irradiation energy in the cornea, riboflavin at a concentration of 0.1% and UVA light at a wavelength of 370 nm corresponding to the relative maximum absorption of riboflavin (vitamin B2) are used. Evidence for corneal cross-linking are the increase of biomechanical stiffness, the increased resistance against enzymatic degradation, a higher shrinkage temperature, a lower swelling rate and an increased diameter of collagen fibers. The currently available data demonstrate that the therapeutic cross-linking procedure is safe when respecting the important theoretical and clinical parameters and that a progression of the keratoconus can be avoided. In 80% of cases an average levelling of the curvature of approximately 2 dpt can be achieved, which leads not only to stabilization but also to an increase in visual acuity of approximately 1.2 lines. In a Cochrane review from 2015 publications about complications and results were reviewed. Complication rates ranged from 1-10% depending on the initial situation, comorbidities and stage of the keratoconus. The most important complications are early epithelial wound healing problems as well as extremely rare perforations. Corneal cross-linking is a well-established and safe procedure but is not free of complications.

  10. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation

    PubMed Central

    Manaila, Elena; Stelescu, Maria Daniela; Craciun, Gabriela; Ighigeanu, Daniel

    2016-01-01

    The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose. PMID:28773626

  11. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation.

    PubMed

    Manaila, Elena; Stelescu, Maria Daniela; Craciun, Gabriela; Ighigeanu, Daniel

    2016-06-23

    The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose.

  12. Degradability of cross-linked polyurethanes based on synthetic polyhydroxybutyrate and modified with polylactide.

    PubMed

    Brzeska, Joanna; Morawska, Magda; Sikorska, Wanda; Tercjak, Agnieszka; Kowalczuk, Marek; Rutkowska, Maria

    2017-01-01

    In many areas of application of conventional non-degradable cross-linked polyurethanes (PUR), there is a need for their degradation under the influence of specific environmental factors. It is practiced by incorporation of sensitive to degradation compounds (usually of natural origin) into the polyurethane structure, or by mixing them with polyurethanes. Cross-linked polyurethanes (with 10 and 30%wt amount of synthetic poly([ R,S ]-3-hydroxybutyrate) (R,S-PHB) in soft segments) and their physical blends with poly([d,l]-lactide) (PDLLA) were investigated and then degraded under hydrolytic (phosphate buffer solution) and oxidative (CoCl 2 /H 2 O 2 ) conditions. The rate of degradation was monitored by changes of samples mass, morphology of surface and their thermal properties. Despite the small weight losses of samples, the changes of thermal properties of polymers and topography of their surface indicated that they were susceptible to gradual degradation under oxidative and hydrolytic conditions. Blends of PDLLA and polyurethane with 30 wt% of R,S -PHB in soft segments and PUR/PDLLA blends absorbed more water and degraded faster than polyurethane with low amount of R,S -PHB.

  13. Tissue-specific effects of aldose reductase inhibition on fluorescence and cross-linking of extracellular matrix in chronic galactosemia. Relationship to pentosidine cross-links.

    PubMed

    Richard, S; Tamas, C; Sell, D R; Monnier, V M

    1991-08-01

    Chronic experimental hyperglycemia mediated by galactose has been shown to induce browning and cross-linking of rat tail tendon collagen that could be duplicated in vitro by nonenzymatic galactosylation. To investigate the nature of these changes, Sprague-Dawley rats were placed on a 33% galactose diet without and with sorbinil for 6 and 12 mo. Collagen-linked fluorescence and pentosidine cross-links increased with age and galactosemia in tail tendons (P less than 0.001) and skin but were essentially unresponsive to aldose reductase inhibition (ARI). In contrast, tendon breaking time in urea, a likely parameter of cross-linking, was markedly improved (P less than 0.001) by ARI. Fluorescence that was inhibited by sorbinil treatment was increased in pepsin and proteinase K digest of aortic tissue from galactosemic rats (P less than 0.001), but impaired enzymatic digestibility was not observed. Systolic blood pressure as potential consequence of aortic stiffening was not increased in galactosemia. These data suggest that fluorescence in skin and tendon might be in part due to advanced glycosylation and pentosidine formation because these were not decreased by ARI. However, they also suggest that nonfluorescent cross-links may also be forming because, in contrast to fluorescence, tail tendon breaking time was partly corrected by ARI. Thus, it appears that extracellular matrix changes in chronic galactosemia are complex, being partly attributable to advanced glycosylation and partly to polyol-pathway activation.

  14. An AIEE fluorescent supramolecular cross-linked polymer network based on pillar[5]arene host-guest recognition: construction and application in explosive detection.

    PubMed

    Shao, Li; Sun, Jifu; Hua, Bin; Huang, Feihe

    2018-05-08

    Here a novel fluorescent supramolecular cross-linked polymer network with aggregation induced enhanced emission (AIEE) properties was constructed via pillar[5]arene-based host-guest recognition. Furthermore, the supramolecular polymer network can be used for explosive detection in both solution and thin films.

  15. EDC Cross-linking of Decellularized Tissue: A Promising Approach?

    PubMed

    Lehmann, Nadine; Christ, Torsten; Daugs, Aila; Bloch, Oliver; Holinski, Sebastian

    2017-07-01

    different at the respective times of explantation, but decreased in both groups toward 6 weeks. EDC cross-linking combined with GF coating of decellularized aortic wall tissue showed encouraging results. The treatment did not impair the advantages of decellularized tissue such as long-term recellularization, absence of calcification, and tissue integrity. Based on the low macrophage infiltration and minimal tissue degradation, treatment with EDC and VEGF could be useful after decellularization. However, further research is necessary to verify these findings in models, including mechanical stress.

  16. Hekate: Software Suite for the Mass Spectrometric Analysis and Three-Dimensional Visualization of Cross-Linked Protein Samples

    PubMed Central

    2013-01-01

    Chemical cross-linking of proteins combined with mass spectrometry provides an attractive and novel method for the analysis of native protein structures and protein complexes. Analysis of the data however is complex. Only a small number of cross-linked peptides are produced during sample preparation and must be identified against a background of more abundant native peptides. To facilitate the search and identification of cross-linked peptides, we have developed a novel software suite, named Hekate. Hekate is a suite of tools that address the challenges involved in analyzing protein cross-linking experiments when combined with mass spectrometry. The software is an integrated pipeline for the automation of the data analysis workflow and provides a novel scoring system based on principles of linear peptide analysis. In addition, it provides a tool for the visualization of identified cross-links using three-dimensional models, which is particularly useful when combining chemical cross-linking with other structural techniques. Hekate was validated by the comparative analysis of cytochrome c (bovine heart) against previously reported data.1 Further validation was carried out on known structural elements of DNA polymerase III, the catalytic α-subunit of the Escherichia coli DNA replisome along with new insight into the previously uncharacterized C-terminal domain of the protein. PMID:24010795

  17. Fatty acids linked to cardiovascular mortality are associated with risk factors

    PubMed Central

    Ebbesson, Sven O. E.; Voruganti, Venkata S.; Higgins, Paul B.; Fabsitz, Richard R.; Ebbesson, Lars O.; Laston, Sandra; Harris, William S.; Kennish, John; Umans, Benjamin D.; Wang, Hong; Devereux, Richard B.; Okin, Peter M.; Weissman, Neil J.; MacCluer, Jean W.; Umans, Jason G.; Howard, Barbara V.

    2015-01-01

    Background Although saturated fatty acids (FAs) have been linked to cardiovascular mortality, it is not clear whether this outcome is attributable solely to their effects on low-density lipoprotein cholesterol (LDL-C) or whether other risk factors are also associated with FAs. The Western Alaskan Native population, with its rapidly changing lifestyles, shift in diet from unsaturated to saturated fatty acids and dramatic increase in cardiovascular disease (CVD), presents an opportunity to elucidate any associations between specific FAs and known CVD risk factors. Objective We tested the hypothesis that the specific FAs previously identified as related to CVD mortality are also associated with individual CVD risk factors. Methods In this community-based, cross-sectional study, relative proportions of FAs in plasma and red blood cell membranes were compared with CVD risk factors in a sample of 758 men and women aged ≥35 years. Linear regression analyses were used to analyze relations between specific FAs and CVD risk factors (LDL-C, high-density lipoprotein cholesterol, triglycerides, C-reactive protein, systolic blood pressure, diastolic blood pressure, heart rate, body mass index, fasting glucose and fasting insulin, 2-hour glucose and 2-hour insulin). Results The specific saturated FAs previously identified as related to CVD mortality, the palmitic and myristic acids, were adversely associated with most CVD risk factors, whereas unsaturated linoleic acid (18:2n-6) and the marine n-3 FAs were not associated or were beneficially associated with CVD risk factors. Conclusions The results suggest that CVD risk factors are more extensively affected by individual FAs than hitherto recognized, and that risk for CVD, MI and stroke can be reduced by reducing the intake of palmitate, myristic acid and simple carbohydrates and improved by greater intake of linoleic acid and marine n-3 FAs. PMID:26274054

  18. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate.

    PubMed

    Geng, Guoqing; Myers, Rupert J; Li, Jiaqi; Maboudian, Roya; Carraro, Carlo; Shapiro, David A; Monteiro, Paulo J M

    2017-03-10

    The incorporation of Al and increased curing temperature promotes the crystallization and cross-linking of calcium (alumino)silicate hydrate (C-(A-)S-H), which is the primary binding phase in most contemporary concrete materials. However, the influence of Al-induced structural changes on the mechanical properties at atomistic scale is not well understood. Herein, synchrotron radiation-based high-pressure X-ray diffraction is used to quantify the influence of dreierketten chain cross-linking on the anisotropic mechanical behavior of C-(A-)S-H. We show that the ab-planar stiffness is independent of dreierketten chain defects, e.g. vacancies in bridging tetrahedra sites and Al for Si substitution. The c-axis of non-cross-linked C-(A-)S-H is more deformable due to the softer interlayer opening but stiffens with decreased spacing and/or increased zeolitic water and Ca 2+ of the interlayer. Dreierketten chain cross-links act as 'columns' to resist compression, thus increasing the bulk modulus of C-(A-)S-H. We provide the first experimental evidence on the influence of the Al-induced atomistic configurational change on the mechanical properties of C-(A-)S-H. Our work advances the fundamental knowledge of C-(A-)S-H on the lowest level of its hierarchical structure, and thus can impact the way that innovative C-(A-)S-H-based cementitious materials are developed using a 'bottom-up' approach.

  19. Iodopropyl-branched polysiloxane gel electrolytes with improved ionic conductivity upon cross-linking.

    PubMed

    De Gregorio, G L; Giannuzzi, R; Cipolla, M P; Agosta, R; Grisorio, R; Capodilupo, A; Suranna, G P; Gigli, G; Manca, M

    2014-11-21

    We here report the implementation of poly[(3-N-methylimidazoliumpropyl)methylsiloxane-co-dimethylsiloxane]iodides as suitable polymeric hosts for a novel class of in situ cross-linkable iodine/iodide-based gel-electrolytes for dye-sensitized solar cells. The polymers are first partially quaternized and then subjected to a thermal cross-linking which allows the formation of a 3D polymeric network which is accompanied by a dramatic enhancement of the ionic conductivity.

  20. Arp2/3 Complex from Acanthamoeba Binds Profilin and Cross-links Actin Filaments

    PubMed Central

    Mullins, R. Dyche; Kelleher, Joseph F.; Xu, James; Pollard, Thomas D.

    1998-01-01

    The Arp2/3 complex was first purified from Acanthamoeba castellanii by profilin affinity chromatography. The mechanism of interaction with profilin was unknown but was hypothesized to be mediated by either Arp2 or Arp3. Here we show that the Arp2 subunit of the complex can be chemically cross-linked to the actin-binding site of profilin. By analytical ultracentrifugation, rhodamine-labeled profilin binds Arp2/3 complex with a Kd of 7 μM, an affinity intermediate between the low affinity of profilin for barbed ends of actin filaments and its high affinity for actin monomers. These data suggest the barbed end of Arp2 is exposed, but Arp2 and Arp3 are not packed together in the complex exactly like two actin monomers in a filament. Arp2/3 complex also cross-links actin filaments into small bundles and isotropic networks, which are mechanically stiffer than solutions of actin filaments alone. Arp2/3 complex is concentrated at the leading edge of motile Acanthamoeba, and its localization is distinct from that of α-actinin, another filament cross-linking protein. Based on localization and actin filament nucleation and cross-linking activities, we propose a role for Arp2/3 in determining the structure of the actin filament network at the leading edge of motile cells. PMID:9529382

  1. Computational investigation of kinetics of cross-linking reactions in proteins: importance in structure prediction.

    PubMed

    Bandyopadhyay, Pradipta; Kuntz, Irwin D

    2009-01-01

    The determination of protein structure using distance constraints is a new and promising field of study. One implementation involves attaching residues of a protein using a cross-linking agent, followed by protease digestion, analysis of the resulting peptides by mass spectroscopy, and finally sequence threading to detect the protein folds. In the present work, we carry out computational modeling of the kinetics of cross-linking reactions in proteins using the master equation approach. The rate constants of the cross-linking reactions are estimated using the pKas and the solvent-accessible surface areas of the residues involved. This model is tested with fibroblast growth factor (FGF) and cytochrome C. It is consistent with the initial experimental rate data for individual lysine residues for cytochrome C. Our model captures all observed cross-links for FGF and almost 90% of the observed cross-links for cytochrome C, although it also predicts cross-links that were not observed experimentally (false positives). However, the analysis of the false positive results is complicated by the fact that experimental detection of cross-links can be difficult and may depend on specific experimental conditions such as pH, ionic strength. Receiver operator characteristic plots showed that our model does a good job in predicting the observed cross-links. Molecular dynamics simulations showed that for cytochrome C, in general, the two lysines come closer for the observed cross-links as compared to the false positive ones. For FGF, no such clear pattern exists. The kinetic model and MD simulation can be used to study proposed cross-linking protocols.

  2. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance.

    PubMed

    Nakano, Toshiaki; Xu, Xu; Salem, Amir M H; Shoulkamy, Mahmoud I; Ide, Hiroshi

    2017-06-01

    Ionizing radiation produces various DNA lesions such as base damage, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, the biological significance of DPCs remains elusive. In this article, we focus on radiation-induced DPCs and review the current understanding of their induction, properties, repair, and biological consequences. When cells are irradiated, the formation of base damage, SSBs, and DSBs are promoted in the presence of oxygen. Conversely, that of DPCs is promoted in the absence of oxygen, suggesting their importance in hypoxic cells, such as those present in tumors. DNA and protein radicals generated by hydroxyl radicals (i.e., indirect effect) are responsible for DPC formation. In addition, DPCs can also be formed from guanine radical cations generated by the direct effect. Actin, histones, and other proteins have been identified as cross-linked proteins. Also, covalent linkages between DNA and protein constituents such as thymine-lysine and guanine-lysine have been identified and their structures are proposed. In irradiated cells and tissues, DPCs are repaired in a biphasic manner, consisting of fast and slow components. The half-time for the fast component is 20min-2h and that for the slow component is 2-70h. Notably, radiation-induced DPCs are repaired more slowly than DSBs. Homologous recombination plays a pivotal role in the repair of radiation-induced DPCs as well as DSBs. Recently, a novel mechanism of DPC repair mediated by a DPC protease was reported, wherein the resulting DNA-peptide cross-links were bypassed by translesion synthesis. The replication and transcription of DPC-bearing reporter plasmids are inhibited in cells, suggesting that DPCs are potentially lethal lesions. However, whether DPCs are mutagenic and induce gross chromosomal alterations remains to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Nondestructive assessment of collagen hydrogel cross-linking using time-resolved autofluorescence imaging

    NASA Astrophysics Data System (ADS)

    Sherlock, Benjamin E.; Harvestine, Jenna N.; Mitra, Debika; Haudenschild, Anne; Hu, Jerry; Athanasiou, Kyriacos A.; Leach, J. Kent; Marcu, Laura

    2018-03-01

    We investigate the use of a fiber-based, multispectral fluorescence lifetime imaging (FLIm) system to nondestructively monitor changes in mechanical properties of collagen hydrogels caused by controlled application of widely used cross-linking agents, glutaraldehyde (GTA) and ribose. Postcross-linking, fluorescence lifetime images are acquired prior to the hydrogels being processed by rheological or tensile testing to directly probe gel mechanical properties. To preserve the sterility of the ribose-treated gels, FLIm is performed inside a biosafety cabinet (BSC). A pairwise correlation analysis is used to quantify the relationship between mean hydrogel fluorescence lifetimes and the storage or Young's moduli of the gels. In the GTA study, we observe strong and specific correlations between fluorescence lifetime and the storage and Young's moduli. Similar correlations are not observed in the ribose study and we postulate a reason for this. Finally, we demonstrate the ability of FLIm to longitudinally monitor dynamic cross-link formation. The strength of the GTA correlations and deployment of our fiber-based FLIm system inside the aseptic environment of a BSC suggests that this technique may be a valuable tool for the tissue engineering community where longitudinal assessment of tissue construct maturation in vitro is highly desirable.

  4. Effect of cross-linking of interfacial sodium caseinate by natural processing on the oxidative stability of oil-in-water (o/w) emulsions.

    PubMed

    Phoon, Pui Yeu; Paul, Lake N; Burgner, John W; San Martin-Gonzalez, M Fernanda; Narsimhan, Ganesan

    2014-04-02

    This study investigated how enzymatic cross-linking of interfacial sodium caseinate and emulsification, via high-pressure homogenization, influenced the intrinsic oxidative stability of 4% (w/v) menhaden oil-in-water emulsions stabilized by 1% (w/v) caseinate at pH 7. Oil oxidation was monitored by the ferric thiocyanate perioxide value assay. Higher homogenization pressure resulted in improved intrinsic emulsion oxidative stability, which is attributed to increased interfacial cross-linking as indicated by higher weighted average sedimentation coefficients of interfacial protein species (from 11.2 S for 0 kpsi/0.1 MPa to 18 S for 20 kpsi/137.9 MPa). Moderate dosage of transglutaminase at 0.5-1.0 U/mL emulsion enhanced intrinsic emulsion oxidative stability further, despite a contradictory reduction in the antioxidant property of cross-linked caseinate as tested by the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. This implied the prominent role of cross-linked interfacial caseinate as a physical barrier for oxygen transfer, hence its efficacy in retarding oil oxidation.

  5. Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering.

    PubMed

    Bozzini, Sabrina; Giuliano, Liliana; Altomare, Lina; Petrini, Paola; Bandiera, Antonella; Conconi, Maria Teresa; Farè, Silvia; Tanzi, Maria Cristina

    2011-12-01

    The use of polymers naturally occurring in the extracellular matrix (ECM) is a promising strategy in regenerative medicine. If compared to natural ECM proteins, proteins obtained by recombinant DNA technology have intrinsic advantages including reproducible macromolecular composition, sequence and molecular mass, and overcoming the potential pathogens transmission related to polymers of animal origin. Among ECM-mimicking materials, the family of recombinant elastin-like polymers is proposed for drug delivery applications and for the repair of damaged elastic tissues. This work aims to evaluate the potentiality of a recombinant human elastin-like polypeptide (HELP) as a base material of cross-linked matrices for regenerative medicine. The cross-linking of HELP was accomplished by the insertion of cross-linking sites, glutamine and lysine, in the recombinant polymer and generating ε-(γ-glutamyl) lysine links through the enzyme transglutaminase. The cross-linking efficacy was estimated by infrared spectroscopy. Freeze-dried cross-linked matrices showed swelling ratios in deionized water (≈2500%) with good structural stability up to 24 h. Mechanical compression tests, performed at 37°C in wet conditions, in a frequency sweep mode, indicated a storage modulus of 2/3 kPa, with no significant changes when increasing number of cycles or frequency. These results demonstrate the possibility to obtain mechanically resistant hydrogels via enzymatic crosslinking of HELP. Cytotoxicity tests of cross-linked HELP were performed with human umbilical vein endothelial cells, by use of transwell filter chambers for 1-7 days, or with its extracts in the opportune culture medium for 24 h. In both cases no cytotoxic effects were observed in comparison with the control cultures. On the whole, the results suggest the potentiality of this genetically engineered HELP for regenerative medicine applications, particularly for vascular tissue regeneration.

  6. Nano-hydrogels of methoxy polyethylene glycol-grafted branched polyethyleneimine via biodegradable cross-linking of Zn2+-ionomer micelle template

    NASA Astrophysics Data System (ADS)

    Abolmaali, Samira Sadat; Tamaddon, Ali Mohammad; Dinarvand, Rasoul

    2013-12-01

    Soft polymeric nanomaterials were synthesized by the template-assisted method involving self-association of methoxy polyethylene glycol- g-branched polyethyleneimine (mPEG- g-branched PEI) ionomer by transition metal ions such as Zn2+ followed by chemical cross-linking of the polyamine core by dithiopropionic acid. The formation of donor-acceptor complexes of Zn2+ and PEI ionomer was characterized by FT-IR spectroscopy and potentiometric titration. Turbidimetry was performed to study the solution property of the complexes which depended on pH, relative weight fraction of mPEG, and the molar ratio of Zn2+. The cross-linking reaction was studied by TNBS assay, 1H-NMR, and size exclusion chromatography. Upon removal of Zn2+ from cl-mPEG- g-branched PEI/Zn2+ at pH 3 by dialysis, the resulting cross-linked self-assembly represented a uniform, stable, and less positively charged hydrogel-like nanosphere with an intensity-averaged size ranging from 150 to 250 nm as determined by a Zetasizer. Atomic forced microscopy imaging was performed in intermittent contact mode in air that revealed discrete and oval-to-spherically shaped particles with average sizes ranging from 40 to 50 nm depending on the degree of cross-linking. This functional nanocarrier is expected to exhibit some key features such as active encapsulation of negatively charged hydrophilic agents in the swollen core of polyamine network and a hydrophilic mPEG shell which provides an increased solubility and passive targeting of active pharmaceutical agents to impaired tissues. The nano-hydrogels especially at 12 % degrees of cross-link demonstrated excellent biocompatibility determined by different experiments such as albumin aggregation, erythrocyte aggregation, hemolysis, and MTT cytotoxicity assay. Moreover, biodegradability of the cross-links as shown by the Ellman assay can offer a time-dependent degradation and redox-stimulated release of active agents.

  7. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    NASA Astrophysics Data System (ADS)

    Leoni, S.

    2016-05-01

    The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  8. Effect of Rubber Polarity on Cluster Formation in Rubbers Cross-Linked with Diels–Alder Chemistry

    PubMed Central

    2017-01-01

    Diels–Alder chemistry has been used for the thermoreversible cross-linking of furan-functionalized ethylene/propylene (EPM) and ethylene/vinyl acetate (EVM) rubbers. Both furan-functionalized elastomers were successfully cross-linked with bismaleimide to yield products with a similar cross-link density. NMR relaxometry and SAXS measurements both show that the apolar EPM-g-furan precursor contains phase-separated polar clusters and that cross-linking with polar bismaleimide occurs in these clusters. The heterogeneously cross-linked network of EPM-g-furan contrasts with the homogeneous network in the polar EVM-g-furan. The heterogeneous character of the cross-links in EPM-g-furan results in a relatively high Young’s modulus, whereas the more uniform cross-linking in EVM-g-furan results in a higher tensile strength and elongation at break. PMID:29213149

  9. Identification of Pyridinoline Trivalent Collagen Cross-Links by Raman Microspectroscopy.

    PubMed

    Gamsjaeger, Sonja; Robins, Simon P; Tatakis, Dimitris N; Klaushofer, Klaus; Paschalis, Eleftherios P

    2017-06-01

    Intermolecular cross-linking of bone collagen is intimately related to the way collagen molecules are arranged in a fibril, imparts certain mechanical properties to the fibril, and may be involved in the initiation of mineralization. Raman microspectroscopy allows the analysis of minimally processed bone blocks and provides simultaneous information on both the mineral and organic matrix (mainly type I collagen) components, with a spatial resolution of ~1 μm. The aim of the present study was to validate Raman spectroscopic parameters describing one of the major mineralizing type I trivalent cross-links, namely pyridinoline (PYD). To achieve this, a series of collagen cross-linked peptides with known PYD content (as determined by HPLC analysis), human bone, porcine skin, predentin and dentin animal model tissues were analyzed by Raman microspectroscopy. The results of the present study confirm that it is feasible to monitor PYD trivalent collagen cross-links by Raman spectroscopic analysis in mineralized tissues, exclusively through a Raman band ~1660 wavenumbers. This allows determination of the relative PYD content in undecalcified bone tissues with a spatial resolution of ~1 μm, thus enabling correlations with histologic and histomorphometric parameters.

  10. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Muratoglu, Orhun K.

    2007-12-01

    The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs developed in our laboratory.

  11. The Doubly Labeled Water Method for Measuring Human Energy Expenditure: Adaptations for Spaceflight

    NASA Technical Reports Server (NTRS)

    Schulz, Leslie O.

    1991-01-01

    It is essential to determine human energy requirements in space, and the doubly labeled water method has been identified as the most appropriate means of indirect calorimetry to meet this need. The method employs naturally occurring, stable isotopes of hydrogen (H-2, deuterium) and oxygen (O-18) which, after dosing, mix with body water. The deuterium is lost from the body as water while the O-18 is eliminated as both water and CO2. The difference between the two isotope elimination rates is therefore a measure of CO2 production and hence energy expenditure. Spaceflight will present a unique challenge to the application of the doubly labeled water method. Specifically, interpretation of doubly labeled water results assumes that the natural abundance or 'background' levels of the isotopes remain constant during the measurement interval. To address this issue, an equilibration model will be developed in an ongoing ground-based study. As energy requirements of women matched to counterparts in the Astronauts Corps are being determined by doubly labeled water, the baseline isotope concentration will be changed by consumption of 'simulated Shuttle water' which is artificially enriched. One group of subjects will be equilibrated on simulated Shuttle water prior to energy determinations by doubly labeled water while the others will consume simulated Shuttle water after dosing. This process will allow us to derive a prediction equation to mathematically model the effect of changing background isotope concentrations.

  12. Synthesis of Polylactide-Based Core-Shell Interface Cross-Linked Micelles for Anticancer Drug Delivery.

    PubMed

    Chen, Chih-Kuang; Lin, Wei-Jen; Hsia, Yu; Lo, Leu-Wei

    2017-03-01

    Well-defined poly(ethylene glycol)-b-allyl functional polylactide-b-polylactides (PEG-APLA-PLAs) are synthesized through sequential ring-opening polymerization. PEG-APLA-PLAs that have amphiphilic properties and reactive allyl side chains on their intermediate blocks are successfully transferred to core-shell interface cross-linked micelles (ICMs) by micellization and UV-initiated irradiation. ICMs have demonstrated enhanced colloidal stability in physiological-mimicking media. Hydrophobic molecules such as Nile Red or doxorubicin (Dox) are readily loaded into ICMs; the resulting drug-ICM formulations possess slow and sustained drug release profiles under physiological-mimicking conditions. ICMs exhibit negligible cytotoxicity in human uterine sarcoma cancer cells by using biodegradable aliphatic polyester as the hydrophobic segments. Relative to free Dox, Dox-loaded ICMs show a reduced cytotoxicity due to the late intracellular release of Dox from ICMs. Overall, ICMs represent a new type of biodegradable cross-linked micelle and can be employed as a promising platform for delivering a broad variety of hydrophobic drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Motion in partially and fully cross-linked F-actin networks

    NASA Astrophysics Data System (ADS)

    Morris, Eliza; Ehrlicher, Allen; Weitz, David

    2012-02-01

    Single molecule experiments have measured stall forces and procession rates of molecular motors on isolated cytoskeletal fibers in Newtonian fluids. But in the cell, these motors are transporting cargo through a highly complex cytoskeletal network. To compare these single molecule results to the forces exerted by motors within the cell, an evaluation of the response of the cytoskeletal network is needed. Using magnetic tweezers and fluorescence confocal microscopy we observe and quantify the relationship between bead motion and filament response in F-actin networks both partially and fully cross-linked with filamin We find that when the transition from full to partial cross-linking is brought about by a decrease in cross-linker concentration there is a simultaneous decline in the elasticity of the network, but the response of the bead remains qualitatively similar. However, when the cross-linking is reduced through a shortening of the F-actin filaments the bead response is completely altered. The characteristics of the altered bead response will be discussed here.

  14. Interrelation of electret properties of polyethylene foam from the method of cross-linking

    NASA Astrophysics Data System (ADS)

    Gilmanov, I. R.; Galikhanov, M. F.; Gilmanova, A. R.

    2017-09-01

    The electret properties of chemically cross-linked polyethylene foam and physically cross-linked polyethylene foam have been studied. It has been shown that chemically cross-linked polyethylene foam has higher surface potential, effective surface charge density and electric field strength compared to physically bonded polyethylene foam. This is due to the presence of molecules and fragments of dicumyl peroxide, which can play the role of traps for injection charge carriers, a greater degree of cross-linking and with the oxidation of polyethylene, which occurs during irradiation during physical cross-linking. When the foam is deformed, its electret properties are reduced, and when the volume is relaxed, they are restored. This is due to the partial mutual compensation of homo- and heterocharge during compression and the return of the structure of the gas-filled polymer to its former position when the load is removed.

  15. Robust cross-links in molluscan adhesive gels: Testing for contributions from hydrophobic and electrostatic interactions

    PubMed Central

    Smith, A.M.; Robinson, T. M.; Salt, M. D.; Hamilton, K. S.; Silvia, B. E.; Blasiak, R.

    2009-01-01

    The cross-linking interactions that provide cohesive strength to molluscan adhesive gels were investigated. Metal-based interactions have been shown to play an important role in the glue of the slug Arion subfuscus (Draparnaud), but other types of interactions may also contribute to the glue's strength and their role has not been investigated. This study shows that treatments that normally disrupt hydrophobic or electrostatic interactions have little to no effect on the slug glue. High salt concentrations and non-ionic detergent do not affect the solubility of the proteins in the glue or the ability of the glue proteins to stiffen gels. In contrast, metal chelation markedly disrupts the gel. Experiments with gel filtration chromatography identify a 40 kDa protein that is a central component of the cross-links in the glue. This 40 kDa protein forms robust macromolecular aggregations that are stable even in the presence of high concentrations of salt, non-ionic detergent, urea or metal chelators. Metal chelation during glue secretion, however, may block some of these cross-links. Such robust, non-specific interactions in an aqueous environment are highly unusual for hydrogels and reflect an intriguing cross-linking mechanism. PMID:18952190

  16. Robust cross-links in molluscan adhesive gels: testing for contributions from hydrophobic and electrostatic interactions.

    PubMed

    Smith, A M; Robinson, T M; Salt, M D; Hamilton, K S; Silvia, B E; Blasiak, R

    2009-02-01

    The cross-linking interactions that provide cohesive strength to molluscan adhesive gels were investigated. Metal-based interactions have been shown to play an important role in the glue of the slug Arion subfuscus (Draparnaud), but other types of interactions may also contribute to the glue's strength and their role has not been investigated. This study shows that treatments that normally disrupt hydrophobic or electrostatic interactions have little to no effect on the slug glue. High salt concentrations and non-ionic detergent do not affect the solubility of the proteins in the glue or the ability of the glue proteins to stiffen gels. In contrast, metal chelation markedly disrupts the gel. Experiments with gel filtration chromatography identify a 40 kDa protein that is a central component of the cross-links in the glue. This 40 kDa protein forms robust macromolecular aggregations that are stable even in the presence of high concentrations of salt, non-ionic detergent, urea or metal chelators. Metal chelation during glue secretion, however, may block some of these cross-links. Such robust, non-specific interactions in an aqueous environment are highly unusual for hydrogels and reflect an intriguing cross-linking mechanism.

  17. Exploring DNA-binding Proteins with In Vivo Chemical Cross-linking and Mass Spectrometry

    PubMed Central

    Qiu, Haibo; Wang, Yinsheng

    2009-01-01

    DNA-binding proteins are very important constituents of proteomes of all species and play crucial roles in transcription, DNA replication, recombination, repair and other activities associated with DNA. Although a number of DNA-binding proteins have been identified, many proteins involved in gene regulation and DNA repair are likely still unknown because of their dynamic and/or weak interactions with DNA. In this report, we described an approach for the comprehensive identification of DNA-binding proteins with in vivo formaldehyde cross-linking and LC-MS/MS. DNA-binding proteins could be purified via the isolation of DNA-protein complexes and released from the complexes by reversing the cross-linking. By using this method, we were able to identify more than one hundred DNA-binding proteins, such as proteins involved in transcription, gene regulation, DNA replication and repair, and a large number of proteins which are potentially associated with DNA and DNA-binding proteins. This method should be generally applicable to the investigation of other nucleic acid-binding proteins, and hold great potential in the comprehensive study of gene regulation, DNA damage response and repair, as well as many other critical biological processes at proteomic level. PMID:19714816

  18. Design of Self-Healing Supramolecular Rubbers by Introducing Ionic Cross-Links into Natural Rubber via a Controlled Vulcanization.

    PubMed

    Xu, Chuanhui; Cao, Liming; Lin, Baofeng; Liang, Xingquan; Chen, Yukun

    2016-07-13

    Introducing ionic associations is one of the most effective approaches to realize a self-healing behavior for rubbers. However, most of commercial rubbers are nonpolar rubbers without now available functional groups to be converted into ionic groups. In this paper, our strategy was based on a controlled peroxide-induced vulcanization to generate massive ionic cross-links via polymerization of zinc dimethacrylate (ZDMA) in natural rubber (NR) and exploited it as a potential self-healable material. We controlled vulcanization process to retard the formation of covalent cross-link network, and successfully generated a reversible supramolecular network mainly constructed by ionic cross-links. Without the restriction of covalent cross-linkings, the NR chains in ionic supramolecular network had good flexibility and mobility. The nature that the ionic cross-links was easily reconstructed and rearranged facilitating the self-healing behavior, thereby enabling a fully cut sample to rejoin and retain to its original properties after a suitable self-healing process at ambient temperature. This study thus demonstrates a feasible approach to impart an ionic association induced self-healing function to commercial rubbers without ionic functional groups.

  19. Mussel-Inspired Electro-Cross-Linking of Enzymes for the Development of Biosensors.

    PubMed

    El-Maiss, Janwa; Cuccarese, Marco; Maerten, Clément; Lupattelli, Paolo; Chiummiento, Lucia; Funicello, Maria; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia

    2018-06-06

    In medical diagnosis and environmental monitoring, enzymatic biosensors are widely applied because of their high sensitivity, potential selectivity, and their possibility of miniaturization/automation. Enzyme immobilization is a critical process in the development of this type of biosensors with the necessity to avoid the denaturation of the enzymes and ensuring their accessibility toward the analyte. Electrodeposition of macromolecules is increasingly considered to be the most suitable method for the design of biosensors. Being simple and attractive, it finely controls the immobilization of enzymes on electrode surfaces, usually by entrapment or adsorption, using an electrical stimulus. Performed manually, enzyme immobilization by cross-linking prevents enzyme leaching and was never done using an electrochemical stimulus. In this work, we present a mussel-inspired electro-cross-linking process using glucose oxidase (GOX) and a homobifunctionalized catechol ethylene oxide spacer as a cross-linker in the presence of ferrocene methanol (FC) acting as a mediator of the buildup. Performed in one pot, the process takes place in three steps: (i) electro-oxidation of FC, by the application of cyclic voltammetry, creating a gradient of ferrocenium (FC + ); (ii) oxidation of bis-catechol into a bis-quinone molecule by reaction with the electrogenerated FC + ; and (iii) a chemical reaction of bis-quinone with free amino moieties of GOX through Michael addition and a Schiff's base condensation reaction. Employed for the design of a second-generation glucose biosensor using ferrocene methanol (FC) as a mediator, this new enzyme immobilization process presents several advantages. The cross-linked enzymatic film (i) is obtained in a one-pot process with nonmodified GOX, (ii) is strongly linked to the metallic electrode surface thanks to catechol moieties, and (iii) presents no leakage issues. The developed GOX/bis-catechol film shows a good response to glucose with a quite wide

  20. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate

    NASA Astrophysics Data System (ADS)

    Geng, Guoqing; Myers, Rupert J.; Li, Jiaqi; Maboudian, Roya; Carraro, Carlo; Shapiro, David A.; Monteiro, Paulo J. M.

    2017-03-01

    The incorporation of Al and increased curing temperature promotes the crystallization and cross-linking of calcium (alumino)silicate hydrate (C-(A-)S-H), which is the primary binding phase in most contemporary concrete materials. However, the influence of Al-induced structural changes on the mechanical properties at atomistic scale is not well understood. Herein, synchrotron radiation-based high-pressure X-ray diffraction is used to quantify the influence of dreierketten chain cross-linking on the anisotropic mechanical behavior of C-(A-)S-H. We show that the ab-planar stiffness is independent of dreierketten chain defects, e.g. vacancies in bridging tetrahedra sites and Al for Si substitution. The c-axis of non-cross-linked C-(A-)S-H is more deformable due to the softer interlayer opening but stiffens with decreased spacing and/or increased zeolitic water and Ca2+ of the interlayer. Dreierketten chain cross-links act as ‘columns’ to resist compression, thus increasing the bulk modulus of C-(A-)S-H. We provide the first experimental evidence on the influence of the Al-induced atomistic configurational change on the mechanical properties of C-(A-)S-H. Our work advances the fundamental knowledge of C-(A-)S-H on the lowest level of its hierarchical structure, and thus can impact the way that innovative C-(A-)S-H-based cementitious materials are developed using a ‘bottom-up’ approach.

  1. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate

    DOE PAGES

    Geng, Guoqing; Myers, Rupert J.; Li, Jiaqi; ...

    2017-03-10

    The incorporation of Al and increased curing temperature promotes the crystallization and cross-linking of calcium (alumino)silicate hydrate (C-(A-)S-H), which is the primary binding phase in most contemporary concrete materials. However, the influence of Al-induced structural changes on the mechanical properties at atomistic scale is not well understood. Herein, synchrotron radiation-based high-pressure X-ray diffraction is used to quantify the influence of dreierketten chain cross-linking on the anisotropic mechanical behavior of C-(A-)S-H. We show that the ab-planar stiffness is independent of dreierketten chain defects, e.g. vacancies in bridging tetrahedra sites and Al for Si substitution. The c-axis of non-cross-linked C-(A-)S-H is moremore » deformable due to the softer interlayer opening but stiffens with decreased spacing and/or increased zeolitic water and Ca 2+ of the interlayer. Dreierketten chain cross-links act as ‘columns’ to resist compression, thus increasing the bulk modulus of C-(A-)S-H. We provide the first experimental evidence on the influence of the Al-induced atomistic configurational change on the mechanical properties of C-(A-)S-H. Our work advances the fundamental knowledge of C-(A-)S-H on the lowest level of its hierarchical structure, and thus can impact the way that innovative C-(A-)S-H-based cementitious materials are developed using a ‘bottom-up’ approach.« less

  2. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Guoqing; Myers, Rupert J.; Li, Jiaqi

    The incorporation of Al and increased curing temperature promotes the crystallization and cross-linking of calcium (alumino)silicate hydrate (C-(A-)S-H), which is the primary binding phase in most contemporary concrete materials. However, the influence of Al-induced structural changes on the mechanical properties at atomistic scale is not well understood. Herein, synchrotron radiation-based high-pressure X-ray diffraction is used to quantify the influence of dreierketten chain cross-linking on the anisotropic mechanical behavior of C-(A-)S-H. We show that the ab-planar stiffness is independent of dreierketten chain defects, e.g. vacancies in bridging tetrahedra sites and Al for Si substitution. The c-axis of non-cross-linked C-(A-)S-H is moremore » deformable due to the softer interlayer opening but stiffens with decreased spacing and/or increased zeolitic water and Ca 2+ of the interlayer. Dreierketten chain cross-links act as ‘columns’ to resist compression, thus increasing the bulk modulus of C-(A-)S-H. We provide the first experimental evidence on the influence of the Al-induced atomistic configurational change on the mechanical properties of C-(A-)S-H. Our work advances the fundamental knowledge of C-(A-)S-H on the lowest level of its hierarchical structure, and thus can impact the way that innovative C-(A-)S-H-based cementitious materials are developed using a ‘bottom-up’ approach.« less

  3. Cross-linking reveals laminin coiled-coil architecture

    PubMed Central

    Armony, Gad; Jacob, Etai; Moran, Toot; Levin, Yishai; Mehlman, Tevie; Levy, Yaakov; Fass, Deborah

    2016-01-01

    Laminin, an ∼800-kDa heterotrimeric protein, is a major functional component of the extracellular matrix, contributing to tissue development and maintenance. The unique architecture of laminin is not currently amenable to determination at high resolution, as its flexible and narrow segments complicate both crystallization and single-particle reconstruction by electron microscopy. Therefore, we used cross-linking and MS, evaluated using computational methods, to address key questions regarding laminin quaternary structure. This approach was particularly well suited to the ∼750-Å coiled coil that mediates trimer assembly, and our results support revision of the subunit order typically presented in laminin schematics. Furthermore, information on the subunit register in the coiled coil and cross-links to downstream domains provide insights into the self-assembly required for interaction with other extracellular matrix and cell surface proteins. PMID:27815530

  4. Thermoreversibly Cross-Linked EPM Rubber Nanocomposites with Carbon Nanotubes

    PubMed Central

    Criscitiello, Francesco; van Essen, Machiel; Araya-Hermosilla, Rodrigo; Migliore, Nicola; Lenti, Mattia; Raffa, Patrizio

    2018-01-01

    Conductive rubber nanocomposites were prepared by dispersing conductive nanotubes (CNT) in thermoreversibly cross-linked ethylene propylene rubbers grafted with furan groups (EPM-g-furan) rubbers. Their features were studied with a strong focus on conductive and mechanical properties relevant for strain-sensor applications. The Diels-Alder chemistry used for thermoreversible cross-linking allows for the preparation of fully recyclable, homogeneous, and conductive nanocomposites. CNT modified with compatible furan groups provided nanocomposites with a relatively large tensile strength and small elongation at break. High and low sensitivity deformation experiments of nanocomposites with 5 wt % CNT (at the percolation threshold) displayed an initially linear sensitivity to deformation. Notably, only fresh samples displayed a linear response of their electrical resistivity to deformations as the resistance variation collapsed already after one cycle of elongation. Notwithstanding this mediocre performance as a strain sensor, the advantages of using thermoreversible chemistry in a conductive rubber nanocomposite were highlighted by demonstrating crack-healing by welding due to the joule effect on the surface and the bulk of the material. This will open up new technological opportunities for the design of novel strain-sensors based on recyclable rubbers. PMID:29360772

  5. Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture.

    PubMed

    Zhao, Jun; Chen, Min; Wang, Xiaoyan; Zhao, Xiaodong; Wang, Zhenwen; Dang, Zhi-Min; Ma, Lan; Hu, Guo-Hua; Chen, Fenghua

    2013-06-26

    In this paper, the triple shape memory effects (SMEs) observed in chemically cross-linked polyethylene (PE)/polypropylene (PP) blends with cocontinuous architecture are systematically investigated. The cocontinuous window of typical immiscible PE/PP blends is the volume fraction of PE (v(PE)) of ca. 30-70 vol %. This architecture can be stabilized by chemical cross-linking. Different initiators, 2,5-dimethyl-2,5-di(tert-butylperoxy)-hexane (DHBP), dicumylperoxide (DCP) coupled with divinylbenzene (DVB) (DCP-DVB), and their mixture (DHBP/DCP-DVB), are used for the cross-linking. According to the differential scanning calorimetry (DSC) measurements and gel fraction calculations, DHBP produces the best cross-linking and DCP-DVB the worst, and the mixture, DHBP/DCP-DVB, is in between. The chemical cross-linking causes lower melting temperature (Tm) and smaller melting enthalpy (ΔHm). The prepared triple shape memory polymers (SMPs) by cocontinuous immiscible PE/PP blends with v(PE) of 50 vol % show pronounced triple SMEs in the dynamic mechanical thermal analysis (DMTA) and visual observation. This new strategy of chemically cross-linked immiscible blends with cocontinuous architecture can be used to design and prepare new SMPs with triple SMEs.

  6. On-Demand Dissolution of Chemically Cross-Linked Hydrogels.

    PubMed

    Konieczynska, Marlena D; Grinstaff, Mark W

    2017-02-21

    The formation and subsequent on-demand dissolution of chemically cross-linked hydrogels is of keen interest to chemists, engineers, and clinicians. In this Account, we summarize our recent advances in the area of dissolvable chemically cross-linked hydrogels and provide a comparative discussion of other recent hydrogel systems. Using biocompatible macromonomers, we developed a library of cross-linked dendritic hydrogels that possess favorable properties, including biocompatibility, tissue adhesion, and swelling. Additionally, these hydrogels possess the unique ability to dissolve on-demand via application of a biocompatible aqueous solution. Each of the three hydrogel systems described employs a thiol-thioester exchange reaction as the mechanism of dissolution. These new materials successfully decrease bleeding in in vivo models of hepatic and aortic hemorrhage and dissolve on-demand, providing easy removal. In addition, we evaluated these hydrogels as dressings for second-degree burn wounds and performed proof-of-concept in vivo studies. These hydrogel wound dressings provide a means of repeatedly changing the dressing in a minimally invasive and atraumatic manner while also serving as a protective barrier against bacterial infection. Finally, we highlight the seminal work of other researchers in the field of dissolvable chemically cross-linked hydrogels using thiol-disulfide exchange, retro-Michael-type, and retro-Diels-Alder reactions. These chemistries provide a versatile synthetic toolbox to dissolve hydrogels in a controlled manner on time scales from minutes to weeks. Continued investigation of these dissolution approaches as well as the development of new chemical reactions will open doors to other avenues of on-demand dissolution and expand the application space for these materials. In summary, the management and closure of wounds after traumatic injury or surgical intervention are of significant clinical importance. Stimuli-responsive hydrogels that

  7. Dependence of nanomechanical modification of polymers on plasma-induced cross-linking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajima, S.; Komvopoulos, K.

    2007-01-01

    The nanomechanical properties of low-density polyethylene (LDPE) modified by inductively coupled, radio-frequency Ar plasma were investigated by surface force microscopy. The polymer surface was modified under plasma conditions of different ion energy fluences and radiation intensities obtained by varying the sample distance from the plasma power source. Nanoindentation results of the surface stiffness versus maximum penetration depth did not reveal discernible differences between untreated and plasma-treated LDPE, presumably due to the small thickness of the modified surface layer that resulted in a substrate effect. On the contrary, nanoscratching experiments demonstrated a significant increase in the surface shear resistance of plasma-modifiedmore » LDPE due to chain cross-linking. These experiments revealed an enhancement of cross-linking with increasing ion energy fluence and radiation intensity, and a tip size effect on the friction force and dominant friction mechanisms (adhesion, plowing, and microcutting). In addition, LDPE samples with a LiF crystal shield were exposed to identical plasma conditions to determine the role of vacuum ultraviolet (VUV) and ultraviolet (UV) radiation in the cross-linking process. The cross-linked layer of plasma-treated LDPE exhibited much higher shear strength than that of VUV/UV-treated LDPE. Plasma-induced surface modification of the nanomechanical properties of LDPE is interpreted in the context of molecular models of the untreated and cross-linked polymer surfaces derived from experimental findings.« less

  8. Covalent cross-linking as a strategy to generate novel materials based on layered (2D) and other low D structures.

    PubMed

    Rao, C N R; Pramoda, K; Kumar, Ram

    2017-09-12

    Covalent linking of 2D structures such as graphene, MoS 2 and C 3 N 4 by employing coupling reactions provides a strategy to generate a variety of materials with new or improved properties. These materials in a way provide the counter point based on covalent bonds to the van der Waals heterostructures. In this article, we describe materials obtained by linking graphene, MoS 2 and BN with other layered structures and also with one-dimensional nanotubes and zero-dimensional MOFs and MOPs. Novel properties of the materials relate not only to porosity, surface area and gas adsorption, but also to supercapacitor characterstics, mechanical properties and the hydrogen evolution reaction. It should be possible to discover many more interesting structures and materials by employing the cross-linking strategy described here.

  9. Sequential optimization of methotrexate encapsulation in micellar nano-networks of polyethyleneimine ionomer containing redox-sensitive cross-links

    PubMed Central

    Abolmaali, Samira Sadat; Tamaddon, Ali; Yousefi, Gholamhossein; Javidnia, Katayoun; Dinarvand, Rasoul

    2014-01-01

    A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG) and Zn2+ were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn2+, and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman’s assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX), approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 μM. The enhanced antitumor activity in vitro might be attributed to endocytic entry of MTX-loaded nano-networks that was found in the epifluorescence microscopy experiment for the fluorophore-labeled nano-networks. PMID:24944513

  10. Sequential optimization of methotrexate encapsulation in micellar nano-networks of polyethyleneimine ionomer containing redox-sensitive cross-links.

    PubMed

    Abolmaali, Samira Sadat; Tamaddon, Ali; Yousefi, Gholamhossein; Javidnia, Katayoun; Dinarvand, Rasoul

    2014-01-01

    A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG) and Zn(2+) were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn(2+), and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman's assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX), approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 μM. The enhanced antitumor activity in vitro might be attributed to endocytic entry of MTX-loaded nano-networks that was found in the epifluorescence microscopy experiment for the fluorophore-labeled nano-networks.

  11. Bovine pericardium based non-cross linked collagen matrix for successful root coverage, a clinical study in human

    PubMed Central

    2012-01-01

    Introduction The aim of this study was to clinically assess the capacity of a novel bovine pericardium based, non-cross linked collagen matrix in root coverage. Methods 62 gingival recessions of Miller class I or II were treated. The matrix was adapted underneath a coronal repositioned split thickness flap. Clinical values were assessed at baseline and after six months. Results The mean recession in each patient was 2.2 mm at baseline. 6 Months after surgery 86.7% of the exposed root surfaces were covered. On average 0,3 mm of recession remained. The clinical attachment level changed from 3.5 ± 1.3 mm to 1,8 ( ± 0,7) mm during the observational time period. No statistically significant difference was found in the difference of probing depth. An increase in the width of gingiva was significant. With a baseline value of 1.5 ± 0.9 mm an improvement of 2.4 ± 0.8 mm after six month could be observed. 40 out of 62 recessions were considered a thin biotype at baseline. After 6 months all 62 sites were assessed thick. Conclusions The results demonstrate the capacity of the bovine pericardium based non-cross linked collagen matrix for successful root coverage. This material was able to enhance gingival thickness and the width of keratinized gingiva. The percentage of root coverage achieved thereby is comparable to existing techniques. This method might contribute to an increase of patient's comfort and an enhanced aesthetical outcome. PMID:22390875

  12. Bovine pericardium based non-cross linked collagen matrix for successful root coverage, a clinical study in human.

    PubMed

    Schlee, Markus; Ghanaati, Shahram; Willershausen, Ines; Stimmlmayr, Michael; Sculean, Anton; Sader, Robert A

    2012-03-05

    The aim of this study was to clinically assess the capacity of a novel bovine pericardium based, non-cross linked collagen matrix in root coverage. 62 gingival recessions of Miller class I or II were treated. The matrix was adapted underneath a coronal repositioned split thickness flap. Clinical values were assessed at baseline and after six months. The mean recession in each patient was 2.2 mm at baseline. 6 Months after surgery 86.7% of the exposed root surfaces were covered. On average 0,3 mm of recession remained. The clinical attachment level changed from 3.5 ± 1.3 mm to 1,8 ( ± 0,7) mm during the observational time period. No statistically significant difference was found in the difference of probing depth. An increase in the width of gingiva was significant. With a baseline value of 1.5 ± 0.9 mm an improvement of 2.4 ± 0.8 mm after six month could be observed. 40 out of 62 recessions were considered a thin biotype at baseline. After 6 months all 62 sites were assessed thick. The results demonstrate the capacity of the bovine pericardium based non-cross linked collagen matrix for successful root coverage. This material was able to enhance gingival thickness and the width of keratinized gingiva. The percentage of root coverage achieved thereby is comparable to existing techniques. This method might contribute to an increase of patient's comfort and an enhanced aesthetical outcome. © 2012 Schlee et al; licensee BioMed Central Ltd.

  13. Trapping of a Cross-link Formed by a Major Purine Adduct of a Metabolite of the Carcinogen N-Nitrosomorpholine by Inorganic and Biological Reductants

    PubMed Central

    Koissi, Niangoran; Fishbein, James C.

    2013-01-01

    3-Hydroperoxy-N-nitrosomorpholine in buffered aqueous media in the presence of calf thymus DNA was treated with a phosphine reductant to generate the transient α-hydroxynitrosamine and subsequent diazonium ion that alkylated the DNA, as previously reported. Subsequent addition of hydride donors, for 30 min, followed by acid hydrolysis of the mixture allowed detection and quantification of 6-(2-(2-((9H-purin-6-yl)amino)ethoxy)ethoxy)-9H-purin-2-amine, the reduced cross-link formed from deposition, via the diazonium ion, of a 3-oxa-pentanal fragment on O6-Gua, and condensation with N6-Ade, presumably in the vicinity. Decreasing temperature of the reactions and decreasing pH modestly increased the yields of trapped crosslink. Among three borohydride reductants, NaNCBH3 is superior, being ∼4 times more effective on a molar basis, as opposed to a hydride equivalent basis, than NaBH4 or Na(AcO)3BH. For trapping with NaNCBH3, it is deduced that the reaction likely occurs with the iminium ion that is in protonic equilibrium with its conjugate base imine. In an experiment in which the hydroperoxide was decomposed and NaNCBH3 was introduced after various times, the amount of cross-link was observed to increase, nearly linearly, by about four-fold over one week. These data indicate that there are a minimum of 2 populations of cross-links, one that forms rapidly, in minutes, and another that grows in with time, over days. Reduced nicotinamide co-factors and ascorbate are observed to effect reduction (over 3 days) of the cross-links confirming the possibility that otherwise reversible cross-links might be immortalized under biological conditions. PMID:23587048

  14. Fiber optic immunosensor for cross-linked fibrin concentration

    NASA Astrophysics Data System (ADS)

    Moskowitz, Samuel E.

    2000-08-01

    Working with calcium ions in the blood, platelets produce thromboplastin which transforms prothrombin into thrombin. Removing peptides, thrombin changes fibrinogen into fibrin. Cross-linked insoluble fibrin polymers are solubilized by enzyme plasmin found in blood plasma. Resulting D-dimers are elevated in patients with intravascular coagulation, deep venous thrombosis, pulmonary embolism, myocardial infarction, multiple trauma, cancer, impaired renal and liver functions, and sepsis. Consisting principally of a NIR 780 nm GaAlAs laser diode and a 800 nm avalanche photodiode (APD), the fiber-optic immunosensor can determined D-dimer concentration to levels <0.1 ng/ml. A capture monoclonal antibody to the antigen soluble cross-linked fibrin is employed. Immobilized at the tip of an optical fiber by avidin-biotin, the captured antigen is detected by a second antibody which is labeled with NN 382 fluorescent dye. An evanescent wave traveling on an excitation optical fiber excites the antibody-antigen fluorophore complex. Concentration of cross-linked fibrin is directly proportional to the APD measured intensity of fluorescence. NIR fluorescence has advantages of low background interference, short fluorescence lifetime, and large difference between excitation and emission peaks. Competitive ELISA test for D-dimer concentration requires trained personnel performing a time consuming operation.

  15. Influence of cross-linked arabinoxylans on the postprandial blood glucose response in rats.

    PubMed

    Vogel, Barbara; Gallaher, Daniel D; Bunzel, Mirko

    2012-04-18

    Viscous dietary fibers are well established to reduce the blood glucose response to a meal. In this study, arabinoxylans, the most abundant dietary fiber in most cereals, were extracted under alkaline conditions and cross-linked by using laccase. Cross-linking of the arabinoxylans led to gel formation and increased in vitro viscosity almost 100-fold after drying and rehydration. To determine the ability of these cross-linked arabinoxylans to blunt the postprandial blood glucose curve of a meal, arabinoxylans, either native or cross-linked, and either prehydrated or not, were fed to rats as part of a meal, and blood glucose was monitored at intervals after the meal. Cellulose, a nonviscous fiber, served as a control. Cross-linked, but not native, arabinoxylans significantly reduced the area under the blood glucose time curve 5-9% relative to cellulose, indicating that they remained viscous within the gastrointestinal tract, and thus likely provide the health benefits found with other viscous fibers.

  16. Quantitative evaluation of protein conformation in pharmaceuticals using cross-linking reactions coupled with LC-MS/MS analysis.

    PubMed

    Yamaguchi, Hideto; Hirakura, Yutaka; Shirai, Hiroki; Mimura, Hisashi; Toyo'oka, Toshimasa

    2011-06-01

    The need for a simple and high-throughput method for identifying the tertiary structure of protein pharmaceuticals has increased. In this study, a simple method for mapping the protein fold is proposed for use as a complementary quality test. This method is based on cross-linking a protein using a [bis(sulfosuccinimidyl)suberate (BS(3))], followed by peptide mapping by LC-MS. Consensus interferon (CIFN) was used as the model protein. The tryptic map obtained via liquid chromatography tandem mass spectroscopy (LC-MS/MS) and the mass mapping obtained via matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy were used to identify cross-linked peptides. While LC-MS/MS analyses found that BS(3) formed cross-links in the loop region of the protein, which was regarded as the biologically active site, sodium dodecyl-sulfate polyacrylamide gel electrophoresis demonstrated that cross-linking occurred within a protein molecule, but not between protein molecules. The occurrence of cross-links at the active site depends greatly on the conformation of the protein, which is determined by the denaturing conditions. Quantitative evaluation of the tertiary structure of CIFN was thus possible by monitoring the amounts of cross-linked peptides generated. Assuming that background information is available at the development stage, this method may be applicable to process development as a complementary test for quality control. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Competition between dewetting and cross-linking in poly(N-vinylpyrrolidone)/polystyrene bilayer films.

    PubMed

    Telford, Andrew M; Thickett, Stuart C; James, Michael; Neto, Chiara

    2011-12-06

    We investigated the dewetting of metastable poly(N-vinylpyrrolidone) (PNVP) thin films (45 nm) on top of polystyrene (PS) thin films (58 nm) as a function of annealing temperature and molecular weight of PS (96 and 6850 kg/mol). We focused on the competition between dewetting, occurring as a result of unfavorable intermolecular interactions at the PNVP/PS interface, and spontaneous cross-linking of PNVP, occurring during thermal annealing, as we recently reported (Telford, A. M.; James, M.; Meagher, L.; Neto, C. ACS Appl. Mater. Interfaces 2010, 2, 2399-2408). Using optical microscopy, we studied how the dewetting morphology and dynamics at different temperatures depended on the relative viscosity of the top PNVP film, which increased with cross-linking time, and of the bottom PS film. In the PNVP/PS96K system, cross-linking dominated over dewetting at temperatures below 180 °C, reducing drastically nucleated hole density and their maximum size, while above 180 °C the two processes reversed, with complete dewetting occurring at 200 °C. On the other hand, the PNVP/PS6850K system never achieved advanced dewetting stages as the dewetting was slower than cross-linking in the investigated temperature range. In both systems, dewetting of the PNVP films could be avoided altogether by thermally annealing the bilayers at temperatures where cross-linking dominated. The cross-linking was characterized quantitatively using neutron reflectometry, which indicated shrinkage and densification of the PNVP film, and qualitatively through selective removal of the bottom PS film. A simple model accounting for progressive cross-linking during the dewetting process predicted well the observed hole growth profiles and produced estimates of the PNVP cross-linking rate coefficients and of the activation energy of the process, in good agreement with literature values for similar systems. © 2011 American Chemical Society

  18. Nondestructive assessment of collagen hydrogel cross-linking using time-resolved autofluorescence imaging.

    PubMed

    Sherlock, Benjamin E; Harvestine, Jenna N; Mitra, Debika; Haudenschild, Anne; Hu, Jerry; Athanasiou, Kyriacos A; Leach, J Kent; Marcu, Laura

    2018-03-01

    We investigate the use of a fiber-based, multispectral fluorescence lifetime imaging (FLIm) system to nondestructively monitor changes in mechanical properties of collagen hydrogels caused by controlled application of widely used cross-linking agents, glutaraldehyde (GTA) and ribose. Postcross-linking, fluorescence lifetime images are acquired prior to the hydrogels being processed by rheological or tensile testing to directly probe gel mechanical properties. To preserve the sterility of the ribose-treated gels, FLIm is performed inside a biosafety cabinet (BSC). A pairwise correlation analysis is used to quantify the relationship between mean hydrogel fluorescence lifetimes and the storage or Young's moduli of the gels. In the GTA study, we observe strong and specific correlations between fluorescence lifetime and the storage and Young's moduli. Similar correlations are not observed in the ribose study and we postulate a reason for this. Finally, we demonstrate the ability of FLIm to longitudinally monitor dynamic cross-link formation. The strength of the GTA correlations and deployment of our fiber-based FLIm system inside the aseptic environment of a BSC suggests that this technique may be a valuable tool for the tissue engineering community where longitudinal assessment of tissue construct maturation in vitro is highly desirable. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. Durability and mechanical properties of silane cross-linked wood thermoplastic composites

    Treesearch

    Magnus Bengtsson; Nicole M. Stark; Kristiina Oksman

    2007-01-01

    In this study, silane cross-linked wood–polyethylene composite profiles were manufactured by reactive extrusion. These composites were evaluated regarding their durability and mechanical properties in comparison with two non-cross-linked wood– polyethylene composites. An addition of only 2% w/w of silane solution during manufacturing was enough to achieve almost 60%...

  20. The Preparation and Properties of Thermo-reversibly Cross-linked Rubber Via Diels-Alder Chemistry.

    PubMed

    Polgar, Lorenzo Massimo; van Duin, Martin; Picchioni, Francesco

    2016-08-25

    A method for using Diels Alder thermo-reversible chemistry as cross-linking tool for rubber products is demonstrated. In this work, a commercial ethylene-propylene rubber, grafted with maleic anhydride, is thermo-reversibly cross-linked in two steps. The pending anhydride moieties are first modified with furfurylamine to graft furan groups to the rubber backbone. These pendant furan groups are then cross-linked with a bis-maleimide via a Diels-Alder coupling reaction. Both reactions can be performed under a broad range of experimental conditions and can easily be applied on a large scale. The material properties of the resulting Diels-Alder cross-linked rubbers are similar to a peroxide-cured ethylene/propylene/diene rubber (EPDM) reference. The cross-links break at elevated temperatures (> 150 °C) via the retro-Diels-Alder reaction and can be reformed by thermal annealing at lower temperatures (50-70 °C). Reversibility of the system was proven with infrared spectroscopy, solubility tests and mechanical properties. Recyclability of the material was also shown in a practical way, i.e., by cutting a cross-linked sample into small parts and compression molding them into new samples displaying comparable mechanical properties, which is not possible for conventionally cross-linked rubbers.

  1. Photochromic cross-link polymer for color changing and sensing surface

    NASA Astrophysics Data System (ADS)

    Fu, Richard; Shi, Jianmin; Forsythe, Eric; Srour, Merric

    2016-12-01

    Photochromic cross-link polymers were developed using patented ultraviolet (UV) photoinitiator and commercial photochromic dyes. The photochromic dyes have been characterized by measuring absorbance before and after UV activation using UV-visible (Vis) spectrometry with varying activation intensities and wavelengths. Photochromic cross-link polymers were characterized by a dynamic xenon and UV light activation and fading system. The curing processes on cloth were established and tested to obtain effective photochromic responses. Both PulseForge photonic curing and PulseForge plus heat surface curing processes had much better photochromic responses (18% to 19%, 16% to 25%, respectively) than the xenon lamp treatment (8%). The newly developed photochromic cross-link polymer showed remarkable coloration contrasts and fast and comparable coloration and fading rates. Those intelligent, controlled color changing and sensing capabilities will be used on flexible and "drapeable" surfaces, which will incorporate ultra-low power sensors, sensor indicators, and identifiers.

  2. In vitro progesterone release from γ-irradiated cross-linked polydimethylsiloxane

    NASA Astrophysics Data System (ADS)

    Mashak, Arezou; Taghizadeh, S. Mojtaba

    2006-02-01

    Instead of conventional method such as thermal cross-linking method, γ-irradiation is used to improve the properties of polydimethylsiloxane (PDMS) as a matrix containing progesterone. The thermal cross-linking of PDMS monolithic systems containing drug is deleterious to the drug. Usually, all drugs are unstable both at high vulcanizing temperature and in the presence of peroxide catalysts. This novel method is found to be effective for the stability of the controlled drug delivery systems. The PDMS (three medical grades) matrices were exposed to γ-irradiation in ambient conditions with total doses of 50, 75 and 100 kGy. The mechanical properties confirmed that the samples are cross-linked. It is found that the progesterone release rate is affected by irradiation treatment. It is deduced, however that there is no significant difference in the release profile of progesterone by increasing the irradiation dose from 50 to 100 kGy.

  3. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin β1

    PubMed Central

    Klockenbusch, Cordula; Kast, Juergen

    2010-01-01

    Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively. PMID:20634879

  4. Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange.

    PubMed

    Bruchet, Marion; Melman, Artem

    2015-10-20

    Calcium cross-linked alginate hydrogels are widely used in targeted drug delivery, tissue engineering, wound treatment, and other biomedical applications. We developed a method for preparing homogeneous alginate hydrogels cross-linked with Ca(2+) cations using reductive cation exchange in homogeneous iron(III) cross-linked alginate hydrogels. Treatment of iron(III) cross-linked alginate hydrogels with calcium salts and sodium ascorbate results in reduction of iron(III) cations to iron(II) that are instantaneously replaced with Ca(2+) cations, producing homogeneous ionically cross-linking hydrogels. Alternatively, the cation exchange can be performed by photochemical reduction in the presence of calcium chloride using a sacrificial photoreductant. This approach allows fabrication of patterned calcium alginate hydrogels through photochemical patterning of iron(III) cross-linked alginate hydrogel followed by the photochemical reductive exchange of iron cations to calcium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Yiju; Yu, Neng; Yan, Peng; Li, Yuguang; Zhou, Xuemei; Chen, Shuangling; Wang, Guiling; Wei, Tong; Fan, Zhuangjun

    2015-12-01

    In this paper, MnO2 nanoplates loading on biomass-derived cross-linked carbon nanosheets have been prepared by a two-step synthesis. At first, the cross-linked carbon nanosheets derived from willow catkin are synthesized by one-step pyrolysis and activation method, then the MnO2 anchored cross-linked carbon nanosheets is prepared via in-situ hydrothermal deposition. The asymmetric supercapacitor with terrific energy and power density is assembled by employing the MnO2 anchored cross-linked carbon nanosheets as the positive electrode and the cross-linked carbon nanosheets as the negative electrode in a 1 M Na2SO4 electrolyte. The asymmetric supercapacitor displays a high energy density of 23.6 Wh kg-1 at a power density of 188.8 W kg-1 within a wide voltage rage of 0-1.9 V. In addition, the asymmetric supercapacitor exhibits excellent cycling stability with only 1.4% capacitance loss after 10000 cycles at 1 A g-1. These discoveries open up the prospect of biomass/biowaste derived carbon-based composites for high-voltage asymmetric supercapacitors with superb energy and power density performance.

  6. Let there be light: photo-cross-linked block copolymer nanoparticles.

    PubMed

    Roy, Debashish; Sumerlin, Brent S

    2014-01-01

    Polymeric nanoparticles are prepared by selectively cross-linking a photo-sensitive dimethylmaleimide-containing block of a diblock copolymer via UV irradiation. A well-defined photo-cross-linkable block copolymer is prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization of a dimethylmaleimide-functional acrylamido monomer containing photoreactive pendant groups with a poly(N,N-dimethylacrylamide) (PDMA) macro-chain transfer agent. The resulting amphiphilic block copolymers form micelles in water with a hydrophilic PDMA shell and a hydrophobic photo-cross-linkable dimethylmaleimide-containing core. UV irradiation results in photodimerization of the dimethylmaleimide groups within the micelle cores to yield core-cross-linked aggregates. Alternatively, UV irradiation of homogeneous solutions of the block copolymer in a non-selective solvent leads to in situ nanoparticle formation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fabrication of Si negative electrodes for Li-ion batteries (LIBs) using cross-linked polymer binders.

    PubMed

    Jang, Suk-Yong; Han, Sien-Ho

    2016-12-19

    Currently, Si as an active material for LIBs has been attracting much attention due to its high theoretical specific capacity (3572 mAh g -1 ). However, a disadvantage when using a Si negative electrode for LIBs is the abrupt drop of its capabilities during the cycling process. Therefore, there have been a few studies of polymers such as poly(vinylidene fluoride) (PVdF), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR) and polyacrylic acid (PAA) given that the robust structure of a polymeric binder to LIBs anodes is a promising means by which to enhance the performance of high-capacity anodes. These studies essentially focused mainly on modifying of the linear-polymer component or on copolymers dissolved in solvents. Cross-linking polymers as a binder may be preferred due to their good scratch resistance, excellent chemical resistance and high levels of adhesion and resilience. However, because these types of polymers (with a rigid structure and cross-linking points) are also insoluble in general organic solvents, applying these types in this capacity is virtually impossible.

  8. Development of casein microgels from cross-linking of casein micelles by genipin.

    PubMed

    Silva, Naaman F Nogueira; Saint-Jalmes, Arnaud; de Carvalho, Antônio F; Gaucheron, Frédéric

    2014-09-02

    Casein micelles are porous colloidal particles, constituted of casein molecules, water, and minerals. The vulnerability of the supramolecular structure of casein micelles face to changes in the environmental conditions restrains their applications in other domains besides food. Thus, redesigning casein micelles is a challenge to create new functionalities for these biosourced particles. The objective of this work was to create stable casein microgels from casein micelles using a natural cross-linker, named genipin. Suspensions of purified casein micelles (25 g L(-1)) were mixed with genipin solutions to have final concentrations of 5, 10, and 20 mM genipin. Covalently linked casein microgels were formed via cross-linking of lysyl and arginyl residues of casein molecules. The reacted products exhibited blue color. The cross-linking reaction induced gradual changes on the colloidal properties of the particles. The casein microgels were smaller and more negatively charged and presented smoother surfaces than casein micelles. These results were explained based on the cross-linking of free NH2 present in an external layer of κ-casein. Light scattering and rheological measurements showed that the reaction between genipin and casein molecules was intramicellar, as one single population of particles was observed and the values of viscosity (and, consequently, the volume fraction of the particles) were reduced. Contrary to the casein micelles, the casein microgels were resistant to the presence of dissociating agents, e.g., citrate (calcium chelating) and urea, but swelled as a consequence of internal electrostatic repulsion and the disruption of hydrophobic interactions between protein chains. The casein microgels did not dissociate at the air-solution interface and formed solid-like interfaces rather than a viscoelastic gel. The potential use of casein microgels as adaptable nanocarriers is proposed in the article.

  9. The effect of ionotropic gelation residence time on alginate cross-linking and properties.

    PubMed

    Patel, Mitulkumar A; AbouGhaly, Mohamed H H; Schryer-Praga, Jacqueline V; Chadwick, Keith

    2017-01-02

    The ability to engineer biocompatible polymers with controllable properties is highly desirable. One such approach is to cross-link carbohydrate polymers using ionotropic gelation (IG). Previous studies have investigated the effect of curing time on alginate cross-linking. Herein, we discuss a novel study detailing the effect of IG residence time (IGRT) on the cross-linking of alginate with calcium ions (Ca 2+ ) along with water migration (syneresis) and their subsequent impact on the pharmaceutical properties of alginate particles. IGRT was shown to have a significant effect on particle size, porosity, density, mechanical strength and swelling of calcium alginate particles as well as drug release mechanism. Furthermore, we describe a novel application of electron dispersive spectroscopy (EDS), in conjunction with Fourier Transform- infra red (FT-IR) spectroscopy, to analyze and monitor the changes in Ca 2+ concentration during cross-linking. A simple procedure to determine the concentration and distribution of the surface and internal Ca 2+ involved in alginate cross-linking was successfully developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Cross-Linked Hydrogel for Pharmaceutical Applications: A Review

    PubMed Central

    2017-01-01

    Hydrogels are promising biomaterials because of their important qualities such as biocompatibility, biodegradability, hydrophilicity and non-toxicity. These qualities make hydrogels suitable for application in medical and pharmaceutical field. Recently, a tremendous growth of hydrogel application is seen, especially as gel and patch form, in transdermal drug delivery. This review mainly focuses on the types of hydrogels based on cross-linking and; secondly to describe the possible synthesis methods to design hydrogels for different pharmaceutical applications. The synthesis and chemistry of these hydrogels are discussed using specific pharmaceutical examples. The structure and water content in a typical hydrogel have also been discussed. PMID:29399542

  11. Measurement of doubly differential electron bremsstrahlung cross sections at the end point (tip) for C, Al, Te, Ta and Au

    NASA Astrophysics Data System (ADS)

    García-Alvarez, J. A.; Fernández-Varea, J. M.; Vanin, V. R.; Santos, O. C. B.; Barros, S. F.; Malafronte, A. A.; Rodrigues, C. L.; Martins, M. N.; Koskinas, M. F.; Maidana, N. L.

    2017-08-01

    We have used the low-energy beam line of the São Paulo Microtron accelerator to study the maximum energy transfer point (tip) of electron-atom bremsstrahlung spectra for C, Al, Te, Ta and Au. Absolute cross sections differential in energy and angle of the emitted photon were measured for various electron kinetic energies between 20 and 100 keV, and photon emission angles of 35◦, 90◦ and 131◦. The bremsstrahlung spectra were collected with three HPGe detectors and their response functions were evaluated analytically. Rutherford backscattering spectrometry allowed us to obtain the thicknesses of the targets with good accuracy. We propose a simple model for the tip region of the bremsstrahlung spectrum emitted at a given angle, whose adjustable parameters are the mean energy of the incident beam and its spread as well as an amplitude. The model was fitted simultaneously to the pulse-height distributions recorded at the three angles, determining the doubly differential cross sections from the corresponding amplitudes. The measured values have uncertainties between 3% and 13%. The agreement of the experimental results with the theoretical partial-wave calculations of Pratt and co-workers depends on the analyzed element and angle but is generally satisfactory. In the case of Al and Au, the uncertainty attributed to the theory is probably overestimated.

  12. LFQProfiler and RNP(xl): Open-Source Tools for Label-Free Quantification and Protein-RNA Cross-Linking Integrated into Proteome Discoverer.

    PubMed

    Veit, Johannes; Sachsenberg, Timo; Chernev, Aleksandar; Aicheler, Fabian; Urlaub, Henning; Kohlbacher, Oliver

    2016-09-02

    Modern mass spectrometry setups used in today's proteomics studies generate vast amounts of raw data, calling for highly efficient data processing and analysis tools. Software for analyzing these data is either monolithic (easy to use, but sometimes too rigid) or workflow-driven (easy to customize, but sometimes complex). Thermo Proteome Discoverer (PD) is a powerful software for workflow-driven data analysis in proteomics which, in our eyes, achieves a good trade-off between flexibility and usability. Here, we present two open-source plugins for PD providing additional functionality: LFQProfiler for label-free quantification of peptides and proteins, and RNP(xl) for UV-induced peptide-RNA cross-linking data analysis. LFQProfiler interacts with existing PD nodes for peptide identification and validation and takes care of the entire quantitative part of the workflow. We show that it performs at least on par with other state-of-the-art software solutions for label-free quantification in a recently published benchmark ( Ramus, C.; J. Proteomics 2016 , 132 , 51 - 62 ). The second workflow, RNP(xl), represents the first software solution to date for identification of peptide-RNA cross-links including automatic localization of the cross-links at amino acid resolution and localization scoring. It comes with a customized integrated cross-link fragment spectrum viewer for convenient manual inspection and validation of the results.

  13. Polypeptide nanogels with hydrophobic moieties in the cross-linked ionic cores: Synthesis, characterization and implications for anticancer drug delivery

    PubMed Central

    Kim, Jong Oh; Oberoi, Hardeep S.; Desale, Swapnil; Kabanov, Alexander V.; Bronich, Tatiana K.

    2014-01-01

    Polymer nanogels have gained considerable attention as a potential platform for drug delivery applications. Here we describe the design and synthesis of novel polypeptide-based nanogels with hydrophobic moieties in the cross-linked ionic cores. Diblock copolymer, poly(ethylene glycol)-b-poly(L-glutamic acid), hydrophobically modified with L-phenylalanine methyl ester moieties was used for controlled template synthesis of nanogels with small size (ca. 70 nm in diameter) and narrow particle size distribution. Steady-state and time-resolved fluorescence studies using coumarin C153 indicated the existence of hydrophobic domains in the ionic cores of the nanogels. Stable doxorubicin-loaded nanogels were prepared at high drug capacity (30 w/w%). We show that nanogels are enzymatically-degradable leading to accelerated drug release under simulated lysosomal acidic pH. Furthermore, we demonstrate that the nanogel-based formulation of doxorubicin is well tolerated and exhibit an improved antitumor activity compared to a free doxorubicin in an ovarian tumor xenograft mouse model. Our results signify the point to a potential of these biodegradable nanogels as attractive carriers for delivery of chemotherapeutics. PMID:23998716

  14. Possibility of synthesizing a doubly magic superheavy nucleus

    NASA Astrophysics Data System (ADS)

    Aritomo, Y.

    2007-02-01

    The possibility of synthesizing a doubly magic superheavy nucleus, 298114184, is investigated on the basis of fluctuation-dissipation dynamics. In order to synthesize this nucleus, we must generate more neutron-rich compound nuclei because of the neutron emissions from excited compound nuclei. The compound nucleus 304114 has two advantages to achieving a high survival probability. First, because of low neutron separation energy and rapid cooling, the shell correction energy recovers quickly. Secondly, owing to neutron emissions, the neutron number in the nucleus approaches that of the double closed shell and the nucleus attains a large fission barrier. Because of these two effects, the survival probability of 304114 does not decrease until the excitation energy E*=50 MeV. These properties lead to a rather high evaporation residue cross section.

  15. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  16. The counterbend dynamics of cross-linked filament bundles and flagella

    PubMed Central

    Coy, Rachel

    2017-01-01

    Cross-linked filament bundles, such as in cilia and flagella, are ubiquitous in biology. They are considered in textbooks as simple filaments with larger stiffness. Recent observations of flagellar counterbend, however, show that induction of curvature in one section of a passive flagellum instigates a compensatory counter-curvature elsewhere, exposing the intricate role of the diminutive cross-linking proteins at large scales. We show that this effect, a material property of the cross-linking mechanics, modifies the bundle dynamics and induces a bimodal L2 − L3 length-dependent material response that departs from the Euler–Bernoulli theory. Hence, the use of simpler theories to analyse experiments can result in paradoxical interpretations. Remarkably, the counterbend dynamics instigates counter-waves in opposition to driven oscillations in distant parts of the bundle, with potential impact on the regulation of flagellar bending waves. These results have a range of physical and biological applications, including the empirical disentanglement of material quantities via counterbend dynamics. PMID:28566516

  17. Automated Assignment of MS/MS Cleavable Cross-Links in Protein 3D-Structure Analysis

    NASA Astrophysics Data System (ADS)

    Götze, Michael; Pettelkau, Jens; Fritzsche, Romy; Ihling, Christian H.; Schäfer, Mathias; Sinz, Andrea

    2015-01-01

    CID-MS/MS cleavable cross-linkers hold an enormous potential for an automated analysis of cross-linked products, which is essential for conducting structural proteomics studies. The created characteristic fragment ion patterns can easily be used for an automated assignment and discrimination of cross-linked products. To date, there are only a few software solutions available that make use of these properties, but none allows for an automated analysis of cleavable cross-linked products. The MeroX software fills this gap and presents a powerful tool for protein 3D-structure analysis in combination with MS/MS cleavable cross-linkers. We show that MeroX allows an automatic screening of characteristic fragment ions, considering static and variable peptide modifications, and effectively scores different types of cross-links. No manual input is required for a correct assignment of cross-links and false discovery rates are calculated. The self-explanatory graphical user interface of MeroX provides easy access for an automated cross-link search platform that is compatible with commonly used data file formats, enabling analysis of data originating from different instruments. The combination of an MS/MS cleavable cross-linker with a dedicated software tool for data analysis provides an automated workflow for 3D-structure analysis of proteins. MeroX is available at www.StavroX.com .

  18. CLMSVault: A Software Suite for Protein Cross-Linking Mass-Spectrometry Data Analysis and Visualization.

    PubMed

    Courcelles, Mathieu; Coulombe-Huntington, Jasmin; Cossette, Émilie; Gingras, Anne-Claude; Thibault, Pierre; Tyers, Mike

    2017-07-07

    Protein cross-linking mass spectrometry (CL-MS) enables the sensitive detection of protein interactions and the inference of protein complex topology. The detection of chemical cross-links between protein residues can identify intra- and interprotein contact sites or provide physical constraints for molecular modeling of protein structure. Recent innovations in cross-linker design, sample preparation, mass spectrometry, and software tools have significantly improved CL-MS approaches. Although a number of algorithms now exist for the identification of cross-linked peptides from mass spectral data, a dearth of user-friendly analysis tools represent a practical bottleneck to the broad adoption of the approach. To facilitate the analysis of CL-MS data, we developed CLMSVault, a software suite designed to leverage existing CL-MS algorithms and provide intuitive and flexible tools for cross-platform data interpretation. CLMSVault stores and combines complementary information obtained from different cross-linkers and search algorithms. CLMSVault provides filtering, comparison, and visualization tools to support CL-MS analyses and includes a workflow for label-free quantification of cross-linked peptides. An embedded 3D viewer enables the visualization of quantitative data and the mapping of cross-linked sites onto PDB structural models. We demonstrate the application of CLMSVault for the analysis of a noncovalent Cdc34-ubiquitin protein complex cross-linked under different conditions. CLMSVault is open-source software (available at https://gitlab.com/courcelm/clmsvault.git ), and a live demo is available at http://democlmsvault.tyerslab.com/ .

  19. Tea Derived Galloylated Polyphenols Cross-Link Purified Gastrointestinal Mucins

    PubMed Central

    Georgiades, Pantelis; Pudney, Paul D. A.; Rogers, Sarah; Thornton, David J.; Waigh, Thomas A.

    2014-01-01

    Polyphenols derived from tea are thought to be important for human health. We show using a combination of particle tracking microrheology and small-angle neutron scattering that polyphenols acts as cross-linkers for purified gastrointestinal mucin, derived from the stomach and the duodenum. Both naturally derived purified polyphenols, and green and black tea extracts are shown to act as cross-linkers. The main active cross-linking component is found to be the galloylated forms of catechins. The viscosity, elasticity and relaxation time of the mucin solutions experience an order of magnitude change in value upon addition of the polyphenol cross-linkers. Similarly small-angle neutron scattering experiments demonstrate a sol-gel transition with the addition of polyphenols, with a large increase in the scattering at low angles, which is attributed to the formation of large scale (>10 nm) heterogeneities during gelation. Cross-linking of mucins by polyphenols is thus expected to have an impact on the physicochemical environment of both the stomach and duodenum; polyphenols are expected to modulate the barrier properties of mucus, nutrient absorption through mucus and the viscoelastic microenvironments of intestinal bacteria. PMID:25162539

  20. Catalytic trimerization of aromatic nitriles and triaryl-s-triazine ring cross-linked high temperature resistant polymers and copolymers made thereby

    NASA Technical Reports Server (NTRS)

    Hsu, L. C. (Inventor)

    1979-01-01

    Triazine compounds and cross-linked polymer compositions are made by heating aromatic nitriles to a temperature in the range of from about 100 C to about 700 C, and preferably in the range of from about 200 C to about 350 C, in the presence of a catalyst or mixture of catalysts selected from one or more of the following groups: (1) organic sulfonic and sulfinic acids, (2) organic phosphonic and phosphinic acids, and (3)metallic acetylacetonates, at a pressure in the range of from about atmospheric pressure to about 10,000 psi and preferably in the range of from about 200 psi to about 750 psi. Aromatic nitrile-modified (terminated and/or appended) imide, benzimidazole, imidazopyrrolone, quinoxaline, and other condensation type prepolymers or their precopolymers are made which are trimerized with or without a filler by the aforementioned catalytic trimerization process into triaryl-s-triazine ring containing or cross-linked polymeric or copolymeric products useful in applications requiring high thermal-oxidative stability and high performance structural properties at elevated temperatures.

  1. Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor

    NASA Astrophysics Data System (ADS)

    Chaudoy, V.; Tran Van, F.; Deschamps, M.; Ghamouss, F.

    2017-02-01

    In the present work, we developed a gel polymer electrolyte via the incorporation of a room temperature ionic liquid into a cross-linked polymer matrix. The cross-linked gel electrolyte was prepared using a free radical polymerization of methacrylate and dimethacrylate oligomers dissolved in 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide. Combining the advantages of the ionic liquids and of conventional polymers, the cross-linked gel polymer electrolyte was used both as a separator and as an electrolyte for a leakage-free and non-flammable EDLC supercapacitor. The quasi-all solid-state supercapacitors showed rather good capacitance, power and energy densities by comparison to a liquid electrolyte-based EDLC.

  2. Synthesis and characterization of a novel hyaluronic acid hydrogel.

    PubMed

    Zhao, X

    2006-01-01

    Hyaluronic acid (hyaluronan, HA) has many medical applications as a biomaterial. To enhance its biostability, a novel hydrogel of cross-linked hyaluronic acid was prepared using a double cross-linking process, which involves building cross-linkages between hydroxyl group pairs and carboxyl group pairs. The present study explored a number of cross-linking processes in order to obtain different degrees of cross-linking, which were evaluated by the measurement of water absorption capacity as an index of the gel network density. To gain a better understanding of the stability of the gel, the chemical structure and particularly the rheological behaviour of the cross-linked HA, which included the influences of factors, such as degree of cross-linking, HA concentration and gel particle size, were investigated. The in vitro biostability against hyaluronidase and free radical degradation was tested to show that the cross-linked hydrogel had improved resistance to in vitro hyaluronidase and free radical degradation.

  3. Vision Restoration with a Collagen Cross-linked Boston Keratoprosthesis Unit

    DTIC Science & Technology

    2017-09-01

    Tissue Bank International, the tissue bank used for this study changed their company name to KeraLink International. The name was changed to better...solution to KeraLink International, and Dr. Joseph Ciolino traveled to the tissue bank to train staff on the Cross-Linking procedure. KeraLink is now... tissue by collagen-crosslinking the cornea graft ex vivo using vitamin B2 (riboflavin) and ultraviolet light. The overall objective of this study is

  4. Cross-linked compared with historical polyethylene in THA: an 8-year clinical study.

    PubMed

    Geerdink, Carel H; Grimm, Bernd; Vencken, Wendy; Heyligers, Ide C; Tonino, Alphons J

    2009-04-01

    Wear particle-induced osteolysis is a major cause of aseptic loosening in THA. Increasing wear resistance of polyethylene (PE) occurs by increasing the cross-link density and early reports document low wear rates with such implants. To confirm longer-term reductions in wear we compared cross-linked polyethylene (irradiation in nitrogen, annealing) with historical polyethylene (irradiation in air) in a prospective, randomized clinical study involving 48 patients who underwent THAs with a minimum followup of 7 years (mean, 8 years; range, 7-9 years). The insert material was the only variable. The Harris hip score, radiographic signs of osteolysis, and polyethylene wear were recorded annually. Twenty-three historical and 17 moderately cross-linked polyethylene inserts were analyzed (five patients died, three were lost to followup). At 8 years, the wear rate was lower for cross-linked polyethylene (0.088 +/- 0.03 mm/year) than for the historical polyethylene (0.142 +/- 0.07 mm/year). This reduction (38%) did not diminish with time (33% at 5 years). Acetabular cyst formation was less frequent (39% versus 12%), affected fewer DeLee and Charnley zones (17% versus 4%), and was less severe for the cross-linked polyethylene. The only revision was for an aseptically loose cup in the historical polyethylene group. Moderately cross-linked polyethylene maintained its wear advantage with time and produced less osteolysis, showing no signs of aging at mid-term followup. Level I, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  5. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells.

    PubMed

    Nojima, Kuniharu; Hochegger, Helfrid; Saberi, Alihossein; Fukushima, Toru; Kikuchi, Koji; Yoshimura, Michio; Orelli, Brian J; Bishop, Douglas K; Hirano, Seiki; Ohzeki, Mioko; Ishiai, Masamichi; Yamamoto, Kazuhiko; Takata, Minoru; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamazoe, Mitsuyoshi; Kawamoto, Takuo; Araki, Kasumi; Takahashi, Jun A; Hashimoto, Nobuo; Takeda, Shunichi; Sonoda, Eiichiro

    2005-12-15

    Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.

  6. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    DOE PAGES

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; ...

    2015-10-20

    The development of high performance materials for CO 2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO 2 permeability ~ 6800 Barrer and CO 2/N 2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, whichmore » provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.« less

  7. Impact of styrenic polymer one-step hyper-cross-linking on volatile organic compound adsorption and desorption performance.

    PubMed

    Ghafari, Mohsen; Atkinson, John D

    2018-06-05

    A novel one-step hyper-cross-linking method, using 1,2-dichloroethane (DCE) and 1,6-dichlorohexane (DCH) cross-linkers, expands the micropore volume of commercial styrenic polymers. Performance of virgin and modified polymers was evaluated by measuring hexane, toluene, and methyl-ethyl-ketone (MEK) adsorption capacity, adsorption/desorption kinetics, and desorption efficiency. Hyper-cross-linked polymers have up to 128% higher adsorption capacity than virgin polymers at P/P 0  = 0.05 due to micropore volume increases up to 330%. Improvements are most pronounced with the DCE cross-linker. Hyper-cross-linking has minimal impact on hexane adsorption kinetics, but adsorption rates for toluene and MEK decrease by 6-41%. Desorption rates decreased (3-36%) for all materials after hyper-cross-linking, with larger decreases for DCE hyper-cross-linked polymers due to smaller average pore widths. For room temperature desorption, 20-220% more adsorbate remains in hyper-cross-linked polymers after regeneration compared to virgin materials. DCE hyper-cross-linked polymers have 13-92% more residual adsorbate than DCH counterparts. Higher temperatures were required for DCE hyper-cross-linked polymers to completely desorb VOCs compared to the DCH hyper-cross-linked and virgin counterparts. Results show that the one-step hyper-cross-linking method for modifying styrenic polymers improves adsorption capacity because of added micropores, but decreases adsorption/desorption kinetics and desorption efficiency for large VOCs due to a decrease in average pore width. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Stereodivergent catalytic doubly diastereoselective nitroaldol reactions using heterobimetallic complexes.

    PubMed

    Sohtome, Yoshihiro; Kato, Yuko; Handa, Shinya; Aoyama, Naohiro; Nagawa, Keita; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2008-06-05

    Stereodivergent construction of three contiguous stereocenters in catalytic doubly diastereoselective nitroaldol reactions of alpha-chiral aldehydes with nitroacetaldehyde dimethyl acetal using two types of heterobimetallic catalysts is described. A La-Li-BINOL (LLB) catalyst afforded anti,syn-nitroaldol products in >20:1-14:1 selectivity, and a Pd/La/Schiff base catalyst afforded complimentary syn,syn-nitroaldol products in 10:1-5:1 selectivity.

  9. Preparation and evaluation of BSA-based hydrosol nanoparticles cross-linked with genipin for oral administration of poorly water-soluble curcumin.

    PubMed

    Shahgholian, Narges; Rajabzadeh, Ghadir; Malaekeh-Nikouei, Bizhan

    2017-11-01

    One of the most interesting functions of albumin is the ability to interact with bioactive compounds. This study describes preparation of protein-based nanoparticles (NPs) for the preparation of solid dispersion of curcumin (CN). Fabrication of hydrosol system of dispersed CN in bovine serum albumin (BSA) was approached, followed by cross-linking with glutaraldehyde (Gta). Response surface methodology (RSM) was used to investigate the influence of input factors (pH, CN content and organic phase ratio (r)), on the particle size and CN entrapment efficiency (EE). Particle size, EE and CN loading efficiency (LE) at optimum condition (pH 7, r 10% and 3.4mg of CN content), were found to be in the range of 153-184.4nm, 72.54%, and 14.508μg/mg, respectively. In the optimum formulation, genipin (Gnp) was used at three different levels (0.1-0.2 and 0.3% w/w of BSA), as a safe, natural cross-linker instead of toxic Gta, to address the limitation of oral delivery purpose. AFM and SEM analysis revealed the spherical and smooth surface of Nps. Ninhydrin (NHD) assay and FT-IR analysis confirmed the cross-linking between BSA and Gnp. In vitro release studies ensure the efficiency of the formulation for sustained release of soluble CN. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Experimental scleral cross-linking increases glaucoma damage in a mouse model

    PubMed Central

    Kimball, Elizabeth C.; Nguyen, Cathy; Steinhart, Matthew R.; Nguyen, Thao D.; Pease, Mary E.; Oglesby, Ericka N.; Oveson, Brian C.; Quigley, Harry A.

    2014-01-01

    The purpose of this study was to assess the effect of a scleral cross-linking agent on susceptibility to glaucoma damage in a mouse model. CD1 mice underwent 3 subconjunctival injections of 0.5 M glyceraldehyde (GA) in 1 week, then had elevated intraocular pressure (IOP) induced by bead injection. Degree of cross-linking was measured by enzyme-linked immunosorbent assay (ELISA), scleral permeability was measured by fluorescence recovery after photobleaching (FRAP), and the mechanical effects of GA exposure were measured by inflation testing. Control mice had buffer injection or no injection in 2 separate glaucoma experiments. IOP was monitored by Tonolab and retinal ganglion cell (RGC) loss was measured by histological axon counting. To rule out undesirable effects of GA, we performed electroretinography and detailed histology of the retina. GA exposure had no detectable effects on RGC number, retinal structure or function either histologically or electrophysiologically. GA increased cross-linking of sclera by 37% in an ELISA assay, decreased scleral permeability (FRAP, p = 0.001), and produced a steeper pressure—strain behavior by in vitro inflation testing. In two experimental glaucoma experiments, GA-treated eyes had greater RGC axon loss from elevated IOP than either buffer-injected or control eyes, controlling for level of IOP exposure over time (p = 0.01, and 0.049, multivariable regression analyses). This is the first report that experimental alteration of the sclera, by cross-linking, increases susceptibility to RGC damage in mice. PMID:25285424

  11. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA

    PubMed Central

    Yang, Zhiyu; Price, Nathan E.; Johnson, Kevin M.

    2017-01-01

    Abstract Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3’ddR5p) at the 3’-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3’ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3’ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. PMID:28531327

  12. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Panek, John

    2010-01-01

    Polyimide aerogels with three-dimensional cross-linked structure are made using linear oligomeric segments of polyimide, and linked with one of the following into a 3D structure: trifunctional aliphatic or aromatic amines, latent reactive end caps such as nadic anhydride or phenylethynylphenyl amine, and silica or silsesquioxane cage structures decorated with amine. Drying the gels supercritically maintains the solid structure of the gel, creating a polyimide aerogel with improved mechanical properties over linear polyimide aerogels. Lightweight, low-density structures are desired for acoustic and thermal insulation for aerospace structures, habitats, astronaut equipment, and aeronautic applications. Aerogels are a unique material for providing such properties because of their extremely low density and small pore sizes. However, plain silica aerogels are brittle. Reinforcing the aerogel structure with a polymer (X-Aerogel) provides vast improvements in strength while maintaining low density and pore structure. However, degradation of polymers used in cross-linking tends to limit use temperatures to below 150 C. Organic aerogels made from linear polyimide have been demonstrated, but gels shrink substantially during supercritical fluid extraction and may have lower use temperature due to lower glass transition temperatures. The purpose of this innovation is to raise the glass transition temperature of all organic polyimide aerogel by use of tri-, tetra-, or poly-functional units in the structure to create a 3D covalently bonded network. Such cross-linked polyimides typically have higher glass transition temperatures in excess of 300 400 C. In addition, the reinforcement provided by a 3D network should improve mechanical stability, and prevent shrinkage on supercritical fluid extraction. The use of tri-functional aromatic or aliphatic amine groups in the polyimide backbone will provide such a 3D structure.

  13. A structural and kinetic study on myofibrils prevented from shortening by chemical cross-linking.

    PubMed

    Herrmann, C; Sleep, J; Chaussepied, P; Travers, F; Barman, T

    1993-07-20

    In previous work, we studied the early steps of the Mg(2+)-ATPase activity of Ca(2+)-activated myofibrils [Houadjeto, M., Travers, F., & Barman, T. (1992) Biochemistry 31, 1564-1569]. The myofibrils were free to contract, and the results obtained refer to the ATPase cycle of myofibrils contracting with no external load. Here we studied the ATPase of myofibrils contracting isometrically. To prevent shortening, we cross-linked them with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). SDS-PAGE and Western blot analyses showed that the myosin rods were extensively cross-linked and that 8% of the myosin heads were cross-linked to the thin filament. The transient kinetics of the cross-linked myofibrils were studied in 0.1 M potassium acetate, pH 7.4 and 4 degrees C, by the rapid-flow quench method. The ATP binding steps were studied by the cold ATP chase and the cleavage and release of products steps by the Pi burst method. In Pi burst experiments, the sizes of the bursts were equal within experimental error to the ATPase site concentrations (as determined by the cold ATP chase methods) for both cross-linked (isometric) and un-cross-linked (isotonic) myofibrils. This shows that in both cases the rate-limiting step is after the cleavage of ATP. When cross-linked, the kcat of Ca(2+)-activated myofibrils was reduced from 1.7 to 0.8 s-1. This is consistent with the observation that fibers shortening at moderate velocity have a higher ATPase activity than isometric fibers.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Synthesis and Antimicrobial Activity of Some Novel Cross-Linked Chitosan Hydrogels

    PubMed Central

    Mohamed, Nadia Ahmed; Fahmy, Mona Mohamed

    2012-01-01

    Four novel hydrogels based on chitosan were synthesized via a cross-linking reaction of chitosan with different concentrations of oxalyl bis 4-(2,5-dioxo-2H-pyrrol- 1(5H)-yl)benzamide. Their structures were confirmed by fourier transform infrared X-ray (FTIR), scanning electron microscopy (SEM) and X-ray diffraction. The antimicrobial activities of the hydrogels against two crop-threatening pathogenic fungi namely: Aspergillus fumigatus (A. fumigatus, RCMBA 06002), and Aspergillus niger (A. niger, RCMBA 06106), and five bacterial species namely: Bacillis subtilis (B. subtilis, RCMBA 6005), Staphylococcus aureus (S. aureus, RCMBA 2004), Streptococcus pneumoniae (S. pneumonia, RCMB 000101) as Gram positive bacteria, and Salmonella typhimurium (S. typhimurium, RCMB 000104), and Escherichia coli (E. coli, RCMBA 5003) as Gram negative bacteria have been investigated. The prepared hydrogels showed much higher antimicrobial activities than that of the parent chitosan. The hydrogels were more potent in case of Gram-positive bacteria than Gram-negative bacteria. Increasing the degree of cross-linking in the hydrogels resulted in a weaker antimicrobial activity. PMID:23109847

  15. Synthesis, Characterization, and Cross-Linking Strategy of a Quercetin-Based Epoxidized Monomer as a Naturally-Derived Replacement for BPA in Epoxy Resins.

    PubMed

    Kristufek, Samantha L; Yang, Guozhen; Link, Lauren A; Rohde, Brian J; Robertson, Megan L; Wooley, Karen L

    2016-08-23

    The natural polyphenolic compound quercetin was functionalized and cross-linked to afford a robust epoxy network. Quercetin was selectively methylated and functionalized with glycidyl ether moieties using a microwave-assisted reaction on a gram scale to afford the desired monomer (Q). This quercetin-derived monomer was treated with nadic methyl anhydride (NMA) to obtain a cross-linked network (Q-NMA). The thermal and mechanical properties of this naturally derived network were compared to those of a conventional diglycidyl ether bisphenol A-derived counterpart (DGEBA-NMA). Q-NMA had similar thermal properties [i.e., glass transition (Tg ) and decomposition (Td ) temperatures] and comparable mechanical properties (i.e., Young's Modulus, storage modulus) to that of DGEBA-NMA. However, it had a lower tensile strength and higher flexural modulus at elevated temperatures. The application of naturally derived, sustainable compounds for the replacement of commercially available petrochemical-based epoxies is of great interest to reduce the environmental impact of these materials. Q-NMA is an attractive candidate for the replacement of bisphenol A-based epoxies in various specialty engineering applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cross Country MetroLink Segment I Business Plan

    DOT National Transportation Integrated Search

    1997-12-02

    In the St. Louis, Missouri metropolitan area, the East-West Gateway Coordinating Council decided the route for the first MetroLink extension in the Cross-County Corridor in September 1997. The next phase, reflected in this paper is develop, during th...

  17. Bypass of a psoralen DNA interstrand cross-link by DNA polymerases beta, iota, and kappa in vitro

    PubMed Central

    Smith, Leigh A.; Makarova, Alena V.; Samson, Laura; Thiesen, Katherine E.; Dhar, Alok; Bessho, Tadayoshi

    2012-01-01

    Repair of DNA inter-strand cross-links in mammalian cells involves several biochemically distinctive processes, including the release of one of the cross-linked strands and translesion DNA synthesis (TLS). In this report, we investigated in vitro TLS activity of psoralen DNA inter-strand cross-link by three DNA repair polymerases, DNA polymerase beta, kappa and iota. DNA polymerase beta is capable of bypassing a psoralen cross-link with a low efficiency. Cell extracts prepared from DNA polymerase beta knockout mouse embryonic fibroblast showed a reduced bypass activity of the psoralen cross-link and purified DNA polymerase beta restored the bypass activity. In addition, DNA polymerase iota mis-incorporated thymine across the psoralen cross-link and DNA polymerase kappa extended these mis-paired primer ends, suggesting that DNA polymerase iota may serve as an inserter and DNA polymerase kappa may play a role as an extender in the repair of psoralen DNA inter-strand cross-links. The results demonstrated here indicate that multiple DNA polymerases could participate in TLS steps in mammalian DNA inter-strand cross-link repair. PMID:23106263

  18. Liquid behavior of cross-linked actin bundles.

    PubMed

    Weirich, Kimberly L; Banerjee, Shiladitya; Dasbiswas, Kinjal; Witten, Thomas A; Vaikuntanathan, Suriyanarayanan; Gardel, Margaret L

    2017-02-28

    The actin cytoskeleton is a critical regulator of cytoplasmic architecture and mechanics, essential in a myriad of physiological processes. Here we demonstrate a liquid phase of actin filaments in the presence of the physiological cross-linker, filamin. Filamin condenses short actin filaments into spindle-shaped droplets, or tactoids, with shape dynamics consistent with a continuum model of anisotropic liquids. We find that cross-linker density controls the droplet shape and deformation timescales, consistent with a variable interfacial tension and viscosity. Near the liquid-solid transition, cross-linked actin bundles show behaviors reminiscent of fluid threads, including capillary instabilities and contraction. These data reveal a liquid droplet phase of actin, demixed from the surrounding solution and dominated by interfacial tension. These results suggest a mechanism to control organization, morphology, and dynamics of the actin cytoskeleton.

  19. The effect of virtual cross linking on the oxidative stability and lipid uptake of aliphatic poly(urethane urea).

    PubMed

    Thomas, Vinoy; Jayabalan, Muthu

    2002-01-01

    In vitro oxidative degradation and lipid sorption of aliphatic, low elastic modulus and virtually cross-linked poly(urethane urea)s based on 4,4' methylene bis(cyclohexyl isocyanate), hydroxy terminated poly butadiene and hexamethylene diamine were evaluated. The aged samples revealed no weight loss in the oxidation medium. The IR spectral analyses revealed the stability of unsaturated double bonds at 964 cm(-1) (characteristic for polybutadiene soft segment) with no change in peak intensity. The poly(tetramethylene glycol) (PTMG)-added poly(ether urethane urea) polymer also revealed no disappearance of IR peaks for ether and unsaturated double bonds in samples aged in vitro oxidation medium. All the polymers have shown increase in weight due to lipid up take in lipid-rich medium (palm oil) but it was rather low in Dulbecco's modified eagle medium (DMEM) cholesterol. The slight change in mechanical properties of the present polymers in oxidation and DMEM is due to the rearrangement of molecular structure with virtual cross links of hydrogen bonding (physical cross linking) without degradation and plasticization effect of lipid. The influence of these media on the rearrangement of virtual cross links has been observed. Higher the virtual cross-link density, lesser is the loss of tensile properties of poly(urethane urea)s in the oxidation medium and vice versa. On the other hand, higher the virtual cross-link density of poly(urethane urea), higher is the loss of ultimate tensile strength and stress at 100% strain and vice versa in DMEM medium.

  20. Mixed-Isotope Labeling with LC-IMS-MS for Characterization of Protein–Protein Interactions by Chemical Cross-Linking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkley, Eric D.; Baker, Erin S.; Crowell, Kevin L.

    2013-02-20

    Chemical cross-linking of proteins followed by proteolysis and mass spectrometric analysis of the resulting cross-linked peptides can provide insights into protein structure and protein-protein interactions. However, cross-linked peptides are by necessity of low stoichometry and have different physicochemical properties than linear peptides, routine unambiguous identification of the cross-linked peptides has remained difficult. To address this challenge, we demonstrated the use of liquid chromatography and ion mobility separations coupled with mass spectrometry in combination with a heavy-isotope labeling method. The combination of mixed-isotope cross-linking and ion mobility provided unique and easily interpretable spectral multiplet features for the intermolecular cross-linked peptides. Applicationmore » of the method to two different homodimeric proteins - SrfN, a virulence factor from Salmonella Typhimurium and SO_2176, a protein of unknown function from Shewanella oneidensis- revealed several cross-linked peptides from both proteins that were identified with a low false discovery rate (estimated using a decoy approach). A greater number of cross-linked peptides were identified using ion mobility drift time information in the analysis than when the data were summed across the drift time dimension before analysis. The identified cross-linked peptides migrated more quickly in the ion mobility drift tube than the unmodified peptides.« less

  1. Collagen type IX from human cartilage: a structural profile of intermolecular cross-linking sites.

    PubMed Central

    Diab, M; Wu, J J; Eyre, D R

    1996-01-01

    Type IX collagen, a quantitatively minor collagenous component of cartilage, is known to be associated with and covalently cross-linked to type II collagen fibrils in chick and bovine cartilage. Type IX collagen molecules have also been shown to form covalent cross-links with each other in bovine cartilage. In the present study we demonstrate by structural analysis and location of cross-linking sites that, in human cartilage, type IX collagen is covalently cross-linked to type II collagen and to other molecules of type IX collagen. We also present evidence that, if the proteoglycan form of type IX collagen is present in human cartilage, it can only be a minor component of the matrix, similar to findings with bovine cartilage. PMID:8660302

  2. A photo-cross-linking approach to monitor folding and assembly of newly synthesized proteins in a living cell.

    PubMed

    Miyazaki, Ryoji; Myougo, Naomi; Mori, Hiroyuki; Akiyama, Yoshinori

    2018-01-12

    Many proteins form multimeric complexes that play crucial roles in various cellular processes. Studying how proteins are correctly folded and assembled into such complexes in a living cell is important for understanding the physiological roles and the qualitative and quantitative regulation of the complex. However, few methods are suitable for analyzing these rapidly occurring processes. Site-directed in vivo photo-cross-linking is an elegant technique that enables analysis of protein-protein interactions in living cells with high spatial resolution. However, the conventional site-directed in vivo photo-cross-linking method is unsuitable for analyzing dynamic processes. Here, by combining an improved site-directed in vivo photo-cross-linking technique with a pulse-chase approach, we developed a new method that can analyze the folding and assembly of a newly synthesized protein with high spatiotemporal resolution. We demonstrate that this method, named the pulse-chase and in vivo photo-cross-linking experiment (PiXie), enables the kinetic analysis of the formation of an Escherichia coli periplasmic (soluble) protein complex (PhoA). We also used our new technique to investigate assembly/folding processes of two membrane complexes (SecD-SecF in the inner membrane and LptD-LptE in the outer membrane), which provided new insights into the biogenesis of these complexes. Our PiXie method permits analysis of the dynamic behavior of various proteins and enables examination of protein-protein interactions at the level of individual amino acid residues. We anticipate that our new technique will have valuable utility for studies of protein dynamics in many organisms. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Molecular weight dependency of polyrotaxane-cross-linked polymer gel extensibility.

    PubMed

    Ohmori, Kana; Abu Bin, Imran; Seki, Takahiro; Liu, Chang; Mayumi, Koichi; Ito, Kohzo; Takeoka, Yukikazu

    2016-12-11

    This work investigates the influence of the molecular weight of polyrotaxane (PR) cross-linkers on the extensibility of polymer gels. The polymer gels, which were prepared using PR cross-linkers of three different molecular weights but the same number of cross-linking points per unit volume of gel, have almost the same Young's modulus. By contrast, the extensibility and rupture strength of the polymer gels are substantially increased with increasing molecular weight of the PR cross-linker.

  4. The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams

    PubMed Central

    Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing

    2016-01-01

    Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams. PMID:27841307

  5. The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams

    NASA Astrophysics Data System (ADS)

    Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing

    2016-11-01

    Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams.

  6. Emerging synthetic strategies for core cross-linked star (CCS) polymers and applications as interfacial stabilizers: bridging linear polymers and nanoparticles.

    PubMed

    Chen, Qijing; Cao, Xueteng; Xu, Yuanyuan; An, Zesheng

    2013-10-01

    Core cross-linked star (CCS) polymers become increasingly important in polymer science and are evaluated in many value-added applications. However, limitations exist to varied degrees for different synthetic methods. It is clear that improvement in synthetic efficiency is fundamental in driving this field moving even further. Here, the most recent advances are highlighted in synthetic strategies, including cross-linking with cross-linkers of low solubility, polymerization-induced self-assembly in aqueous-based heterogeneous media, and cross-linking via dynamic covalent bonds. The understanding of CCS polymers is also further refined to advocate their role as an intermediate between linear polymers and polymeric nanoparticles, and their use as interfacial stabilizers is rationalized within this context. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts.

    PubMed

    Chu, Chenyu; Deng, Jia; Xiang, Lin; Wu, Yingying; Wei, Xiawei; Qu, Yili; Man, Yi

    2016-10-01

    Collagen membranes have ideal biological and mechanical properties for supporting infiltration and proliferation of osteoblasts and play a vital role in guided bone regeneration (GBR). However, pure collagen can lead to inflammation, resulting in progressive bone resorption. Therefore, a method for regulating the level of inflammatory cytokines at surgical sites is paramount for the healing process. Epigallocatechin-3-gallate (EGCG) is a component extracted from green tea with numerous biological activities including an anti-inflammatory effect. Herein, we present a novel cross-linked collagen membrane containing different concentrations of EGCG (0.0064%, 0.064%, and 0.64%) to regulate the level of inflammatory factors secreted by pre-osteoblast cells; improve cell proliferation; and increase the tensile strength, wettability, and thermal stability of collagen membranes. Scanning electron microscope images show that the surfaces of collagen membranes became smoother and the collagen fiber diameters became larger with EGCG treatment. Measurement of the water contact angle demonstrated that introducing EGCG improved membrane wettability. Fourier transform infrared spectroscopy analyses indicated that the backbone of collagen was intact, and the thermal stability was significant improved in differential scanning calorimetry. The mechanical properties of 0.064% and 0.64% EGCG-treated collagen membranes were 1.5-fold greater than those of the control. The extent of cross-linking was significantly increased, as determined by a 2,4,6-trinitrobenzenesulfonic acid solution assay. The Cell Counting Kit-8 (CCK-8) and live/dead assays revealed that collagen membrane cross-linked by 0.0064% EGCG induced greater cell proliferation than pure collagen membranes. Additionally, real-time polymerase chain reaction and enzyme-linked immunosorbent assay results showed that EGCG significantly affected the production of inflammatory factors secreted by MC3T3-E1 cells. Taken together, our

  8. Facile fabrication of core cross-linked micelles by RAFT polymerization and enzyme-mediated reaction.

    PubMed

    Wu, Yukun; Lai, Quanyong; Lai, Shuqi; Wu, Jing; Wang, Wei; Yuan, Zhi

    2014-06-01

    Polymeric micelles formed in aqueous solution by assembly of amphiphilic block copolymers have been extensively investigated due to their great potential as drug carriers. However, the stability of polymeric assembly is still one of the major challenges in delivering drugs to tissues and cells. Here, we report a facile route to fabricate core cross-linked (CCL) micelles using an enzymatic polymerization as the cross-linking method. We present synthesis of poly(ethylene glycol)-block-poly(N-isopropyl acrylamide-co-N-(4-hydroxyphenethyl) acrylamide) diblock copolymer PEG-b-P(NIPAAm-co-NHPAAm) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was then self-assembled into non-cross-linked (NCL) micelles upon heating above the lower critical solution temperature (LCST), and subsequently cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as enzyme and oxidant. The characterization of the diblock copolymer and micelles were studied by NMR, DLS, UV-vis, and fluorescence spectroscopy. The fluorescence study reveals that the cross-linking process endows the micelles with much lower critical micelle concentration (CMC). In addition, the drug release study shows that the CCL micelles have lower release amount of doxorubicin (DOX) than the NCL micelles due to the enhanced stability of the CCL micelles by core cross-linking process. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Whey protein isolate with improved film properties through cross-linking catalyzed by small laccase from Streptomyces coelicolor.

    PubMed

    Quan, Wei; Zhang, Chong; Zheng, Meixia; Lu, Zhaoxin; Lu, Fengxia

    2018-08-01

    The effects of small laccase (SLAC) from Streptomyces coelicolor on the properties of whey protein isolate (WPI) films were studied. WPI was catalyze by SLAC without phenolic acid assistance. Particle size distribution results showed that some complexes with higher relative molecular weight formed in WPI samples treated with SLAC. The content of α-helixes decreased while those of β-sheets and random coils increased following SLAC treatment according to circular dichroism results. Fourier transform infrared spectral analysis suggested that some conformational changes occurred in WPI following SLAC treatment. Analysis of WPI films prepared by casting after SLAC treatment indicated that their film properties were all improved, including mechanical properties, solubility, water vapor, oxygen and carbon dioxide barrier properties, film color, light transmission, transparency and thermal properties. Compared with that of the control film, some obvious differences in the morphology of the WPI films were observed following SLAC treatment. This report demonstrates that laccase can directly catalyze protein cross-linking, which may be useful to improve the performance of protein films. In this study, SLAC was applied to WPI edible film during the film-making process. The results showed that SLAC can catalyze WPI cross-linking without phenolic acid assistance, and WPI film properties were improved after SLAC treatment. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Preparation and characterization of electrospun in-situ cross-linked gelatin-graphite oxide nanofibers.

    PubMed

    Zhan, Jianchao; Morsi, Yosry; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-01-01

    Electrospun gelatin(Gel) nanofibers scaffold has such defects as poor mechanical property and quick degradation due to high solubility. In this study, the in situ cross-linked electrospinning technique was used for the production of gelatin nanofibers. Deionized water was chosen as the spinning solvent and graphite oxide (GO) was chosen as the enhancer. The morphological structure, porosity, thermal property, moisture absorption, and moisture retention performance, hydrolysis resistance, mechanical property, and biocompatibility of the produced nanofibers were investigated. Compared with in situ cross-linked gelatin nanofibers scaffold, in situ cross-linked Gel-GO nanofibers scaffold has the following features: (1) the hydrophilicity, moisture absorption, and moisture retention performance slightly reduce, while the hydrolysis resistance is improved; (2) the breaking strength, breaking elongation, and Young's modulus are significantly improved; (3) the porosity slightly reduces while the biocompatibility considerably increases. The in situ cross-linked Gel-GO nanofibers scaffold is likely to be applied in such fields as drug delivery and scaffold for skin tissue engineering.

  11. Cross-linked polyethylene does not reduce wear in total knee arthroplasty.

    PubMed

    Lasurt-Bachs, S; Torner, P; Maculé, F; Prats, E; Menéndez-García, F; Ríos-Guillermo, J; Torrents, A

    To compare two different types of inserts: Ultra-high molecular weight polyethylene (UHMWPE) and cross-linked polyethylene with a quantitative and qualitative study of polyethylene wear particles in synovial fluid 3 years after total knee arthroplasty. A prospective, randomized, controlled cohort study with blinded evaluation was carried out on 25 patients undergoing staged bilateral total knee replacement, 6 months apart. Knee arthrocentesis was performed on 12 patients 3 years after surgery, and the polyethylene particles were analyzed. No significant differences were found in the number of particles generated by the two different types of inserts at 3 years from total knee arthroplasty (3,000×: x¯ cross-linked=849.7; x¯ UHMWPE=796.9; P=.63; 20,000×: x¯ cross-linked=66.3; x¯ UHMWPE=73.1; P=.76). Likewise, no differences in the probability of finding elongated (χ 2 =0.19; P=.66) or rounded (χ 2 =1.44; P=.23) particles in both types of inserts were observed. However, the probability of finding fibrillar particles is 3.08 times greater in UHMWPE. Cross-linked polyethylene does not significantly reduce the generation of polyethylene particles in patients with total knee arthroplasty, 3 years after the surgical procedure. Copyright © 2018 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Physicochemical properties and micro-structural characteristics in starch from kudzu root as affected by cross-linking.

    PubMed

    Chen, Boru; Dang, Leping; Zhang, Xiao; Fang, Wenzhi; Hou, Mengna; Liu, Tiankuo; Wang, Zhanzhong

    2017-03-15

    Kudzu starch was cross-linked with sodium trimetaphosphate (STMP) at different temperatures, time and of STMP concentrations in this work. The cross-linked starches (CLSs) were fractionated further into cross-linked amylose and amylopectin in order to compare the effect of cross-linking on the microstructure. According to scanning electron microscope (SEM), CLSs displayed the resemble appearance of spherical and polygonal shapes like NS. X-ray diffraction (XRD) revealed that amylose of native starch (A), NS and CLS displayed a combination of A-type and B-type structure, while that was not found in amylose of cross-linked starch (CLA). The deconvoluted fourier transform infrared (FT-IR) indicated that crystal structure of kudzu starch was losing with the proceeding of cross-linking reaction. The CLSs exhibited a higher retrogradation and freeze-thaw stability than NS. This was accompanied by a significant decrease in sedimentation, transparency, swelling power and solubility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Identification of mammalian proteins cross-linked to DNA by ionizing radiation.

    PubMed

    Barker, Sharon; Weinfeld, Michael; Zheng, Jing; Li, Liang; Murray, David

    2005-10-07

    Ionizing radiation (IR) is an important environmental risk factor for various cancers and also a major therapeutic agent for cancer treatment. Exposure of mammalian cells to IR induces several types of damage to DNA, including double- and single-strand breaks, base and sugar damage, as well as DNA-DNA and DNA-protein cross-links (DPCs). Little is known regarding the biological consequences of DPCs. Identifying the proteins that become cross-linked to DNA by IR would be an important first step in this regard. We have therefore undertaken a proteomics study to isolate and identify proteins involved in IR-induced DPCs. DPCs were induced in AA8 Chinese hamster ovary or GM00637 human fibroblast cells using 0-4 gray of gamma-rays under either aerated or hypoxic conditions. DPCs were isolated using a recently developed method, and proteins were identified by mass spectrometry. We identified 29 proteins as being cross-linked to DNA by IR under aerated and/or hypoxic conditions. The identified proteins include structural proteins, actin-associated proteins, transcription regulators, RNA-splicing components, stress-response proteins, cell cycle regulatory proteins, and GDP/GTP-binding proteins. The involvement of several proteins (actin, histone H2B, and others) in DPCs was confirmed by using Western blot analysis. The dose responsiveness of DPC induction was examined by staining one-dimensional SDS-polyacrylamide gels with SYPRO Tangerine followed by analysis using fluorescence imaging. Quantitation of the fluorescence signal indicated no significant difference in total yields of IR-induced DPCs generated under aerated or hypoxic conditions, although differences were observed for several individual protein bands.

  14. Boric Acid Induced Transient Cross-Links in Lactose-Modified Chitosan (Chitlac).

    PubMed

    Sacco, Pasquale; Furlani, Franco; Cok, Michela; Travan, Andrea; Borgogna, Massimiliano; Marsich, Eleonora; Paoletti, Sergio; Donati, Ivan

    2017-12-11

    The present paper explores the effect of boric acid on Chitlac, a lactose-modified chitosan which had previously shown interesting biological and physical-chemical features. The herewith-reported experimental evidences demonstrated that boric acid binds to Chitlac, producing conformational and association effects on the chitosan derivative. The thermodynamics of boric acid binding to Chitlac was explored by means of 11 B NMR, circular dichroism (CD), and UV-vis spectroscopy, while macromolecular effects were investigated by means of viscometry and dynamic light scattering (DLS). The experimental results revealed a chain-chain association when limited amounts of boric acid were added to Chitlac. However, upon exceeding a critical boric acid limit dependent on the polysaccharide concentration, the soluble aggregates disentangle. The rheological behavior of Chitlac upon treatment with boric acid was explored showing a dilatant behavior in conditions of steady flow. An uncommonly high dependence in the scaling law between the zero-shear viscosity and the concentration of Chitlac was found, i.e., η 0 ∝ C CTL 5.8 , pointing to interesting potential implications of the present system in biomaterials development.

  15. Estimating Mass Parameters of Doubly Synchronous Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Davis, Alex; Scheeres, Daniel J.

    2017-10-01

    The non-spherical mass distributions of binary asteroid systems lead to coupled mutual gravitational forces and torques. Observations of the coupled attitude and orbital dynamics can be leveraged to provide information about the mass parameters of the binary system. The full 3-dimensional motion has 9 degrees of freedom, and coupled dynamics require the use of numerical investigation only. In the current study we simplify the system to a planar ellipsoid-ellipsoid binary system in a doubly synchronous orbit. Three modes are identified for the system, which has 4 degrees of freedom, with one degree of freedom corresponding to an ignorable coordinate. The three modes correspond to the three major librational modes of the system when it is in a doubly synchronous orbit. The linearized periods of each mode are a function of the mass parameters of the two asteroids, enabling measurement of these parameters based on observations of the librational motion. Here we implement estimation techniques to evaluate the capabilities of this mass measurement method. We apply this methodology to the Trojan binary asteroid system 617 Patroclus and Menoetius (1906 VY), the final flyby target of the recently announced LUCY Discovery mission. This system is of interest because a stellar occultation campaign of the Patroclus and Menoetius system has suggested that the asteroids are similarly sized oblate ellipsoids moving in a doubly-synchronous orbit, making the system an ideal test for this investigation. A number of missed observations during the campaign also suggested the possibility of a crater on the southern limb of Menoetius, the presence of which could be evaluated by our mass estimation method. This presentation will review the methodology and potential accuracy of our approach in addition to evaluating how the dynamical coupling can be used to help understand light curve and stellar occultation observations for librating binary systems.

  16. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials.

    PubMed

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang; Ma, David Hui-Kang

    2017-02-01

    Due to their ability to mimic the structure of extracellular matrix, electrospun gelatin nanofibers are promising cell scaffolding materials for tissue engineering applications. However, the hydrophilic gelatin molecules usually need stabilization before use in aqueous physiological environment. Considering that biomaterials cross-linked via film immersion technique may have a more homogeneous cross-linked structure than vapor phase cross-linking, this work aims to investigate the chemical modification of electrospun gelatin nanofibrous membranes by liquid phase carbodiimide in the presence of ethanol/water co-solvents with varying ethanol concentrations ranging from 80 to 99.5vol%. The results of characterization showed that increasing water content in the binary reaction solvent system increases the extent of cross-linking of gelatin nanofibers, but simultaneously promotes the effect of biopolymer swelling and distortion in fiber mat structure. As compared to non-cross-linked counterparts, carbodiimide treated gelatin nanofibrous mats exhibited better thermal and biological stability where the shrinkage temperature and resistance to enzymatic degradation varied in response to ethanol/water solvent composition-mediated generation of cross-links. Irrespective of their cross-linking density, all studied membrane samples did not induce any responses in ocular epithelial cell cultures derived from cornea, lens, and retina. Unlike many other cross-linking agents and/or methods (e.g., excessive vapor phase cross-linking) that may pose a risk of toxicity, our study demonstrated that these nanofibrous materials are well tolerated by anterior segment tissues. These findings also indicate the safety of using ethanol/water co-solvents for chemical cross-linking of gelatin to engineer nanofibrous materials with negligible biological effects. In summary, the present results suggest the importance of solvent-mediated carbodiimide cross-linking in modulating structure

  17. Signatures of doubly-charged Higgsinos at colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, D. A.; Deutsches Elektronen-Synchrotron, DESY, D-22603 Hamburg; Frank, M.

    2008-11-23

    Several supersymmetric models with extended gauge structures predict light doubly-charged Higgsinos. Their distinctive signature at the large hadron collider is highlighted by studying its production and decay characteristics.

  18. Photoinduced collagen cross-linking: a new approach to venous insufficiency.

    PubMed

    Frullini, Alessandro; Manetti, Leonardo; Di Cicco, Emiliano; Fortuna, Damiano

    2011-08-01

    What little research has been done on methods of venous valve function recovery with radiofrequency has had disappointing results. Valvuloplasty has some supporters, but the majority of physicians do not consider it a valid therapeutic option. To test a new method of treating varicose veins based on their collagen structure. This procedure it is not a thermal treatment, but it is fast, with significant shrinking and preservation of the endothelium. In the laboratory, we subjected greater saphenous vein specimens to irradiation with a blue light-emitting diode generated (wavelength 450-480 nm) while a riboflavin solution (vitamin B2) was administered. The riboflavin acts as a cross-linking agent, and the blue light as the activator. In this photo-induced reaction, oxygen singlet is produced with oxidative deamination, forming new covalent bonds between collagen fibrils and water. In venous specimens, we demonstrated fast and significant shrinkaged without histologic evidence of endothelial damage and with evident change in mechanical properties of varicose veins. Photochemically induced collagen cross-linking to restructure varicose veins is only a research field but may become an important tool for recovery of vein diameter and valve function. © 2011 by the American Society for Dermatologic Surgery, Inc.

  19. Drug-Triggered and Cross-Linked Self-Assembling Nanofibrous Hydrogels

    PubMed Central

    Kumar, Vivek A.; Shi, Siyu; Wang, Benjamin K.; Li, I-Che; Jalan, Abhishek A.; Sarkar, Biplab; Wickremasinghe, Navindee C.; Hartgerink, Jeffrey D.

    2015-01-01

    Self-assembly of multidomain peptides (MDP) can be tailored to carry payloads that modulate the extracellular environment. Controlled release of growth factors, cytokines, and small-molecule drugs allows for unique control of in vitro and in vivo responses. In this study, we demonstrate this process of ionic cross-linking of peptides using multivalent drugs to create hydrogels for sustained long-term delivery of drugs. Using phosphate, heparin, clodronate, trypan, and suramin, we demonstrate the utility of this strategy. Although all multivalent anions result in good hydrogel formation, demonstrating the generality of this approach, suramin led to the formation of the best hydrogels per unit concentration and was studied in greater detail. Suramin ionically cross-linked MDP into a fibrous meshwork as determined by scanning and transmission electron microscopy. We measured material storage and loss modulus using rheometry and showed a distinct increase in G′ and G″ as a function of suramin concentration. Release of suramin from scaffolds was determined using UV spectroscopy and showed prolonged release over a 30 day period. Suramin bioavailability and function were demonstrated by attenuated M1 polarization of THP-1 cells compared to positive control. Overall, this design strategy has allowed for the development of a novel class of polymeric delivery vehicles with generally long-term release and, in the case of suramin, cross-linked hydrogels that can modulate cellular phenotype. PMID:25831137

  20. Doubly charged coronene clusters—Much smaller than previously observed

    NASA Astrophysics Data System (ADS)

    Mahmoodi-Darian, Masoomeh; Raggl, Stefan; Renzler, Michael; Goulart, Marcelo; Huber, Stefan E.; Mauracher, Andreas; Scheier, Paul; Echt, Olof

    2018-05-01

    The smallest doubly charged coronene cluster ions reported so far, Cor152+, were produced by charge exchange between bare coronene clusters and He2+ [H. A. B. Johansson et al., Phys. Rev. A 84, 043201 (2011)]. These dications are at least five times larger than the estimated Rayleigh limit, i.e., the size at which the activation barrier for charge separation vanishes. Such a large discrepancy is unheard of for doubly charged atomic or molecular clusters. Here we report the mass spectrometric observation of doubly charged coronene trimers, produced by electron ionization of helium nanodroplets doped with coronene. The observation implies that Cor32+ features a non-zero fission barrier too large to overcome under the present experimental conditions. The height of the barriers for the dimer and trimer has been estimated by means of density functional theory calculations. A sizeable barrier for the trimer has been revealed in agreement with the experimental findings.

  1. Cross-modal links among vision, audition, and touch in complex environments.

    PubMed

    Ferris, Thomas K; Sarter, Nadine B

    2008-02-01

    This study sought to determine whether performance effects of cross-modal spatial links that were observed in earlier laboratory studies scale to more complex environments and need to be considered in multimodal interface design. It also revisits the unresolved issue of cross-modal cuing asymmetries. Previous laboratory studies employing simple cues, tasks, and/or targets have demonstrated that the efficiency of processing visual, auditory, and tactile stimuli is affected by the modality, lateralization, and timing of surrounding cues. Very few studies have investigated these cross-modal constraints in the context of more complex environments to determine whether they scale and how complexity affects the nature of cross-modal cuing asymmetries. Amicroworld simulation of battlefield operations with a complex task set and meaningful visual, auditory, and tactile stimuli was used to investigate cuing effects for all cross-modal pairings. Significant asymmetric performance effects of cross-modal spatial links were observed. Auditory cues shortened response latencies for collocated visual targets but visual cues did not do the same for collocated auditory targets. Responses to contralateral (rather than ipsilateral) targets were faster for tactually cued auditory targets and each visual-tactile cue-target combination, suggesting an inhibition-of-return effect. The spatial relationships between multimodal cues and targets significantly affect target response times in complex environments. The performance effects of cross-modal links and the observed cross-modal cuing asymmetries need to be examined in more detail and considered in future interface design. The findings from this study have implications for the design of multimodal and adaptive interfaces and for supporting attention management in complex, data-rich domains.

  2. Induction and repair of DNA cross-links induced by sulfur mustard in the A-549 cell line followed by a comet assay.

    PubMed

    Jost, Petr; Svobodova, Hana; Stetina, Rudolf

    2015-07-25

    Sulfur mustard is a highly toxic chemical warfare agent with devastating impact on intoxicated tissues. DNA cross-links are probably the most toxic DNA lesions induced in the cell by sulfur mustard. The comet assay is a very sensitive method for measuring DNA damage. In the present study using the A-549 lung cell line, the comet assay protocol was optimized for indirect detection of DNA cross-links induced by sulfur mustard. The method is based on the additional treatment of the assayed cells containing cross-links with the chemical mutagen, styrene oxide. Alkali-labile adducts of styrene oxide cause DNA breaks leading to the formation of comets. A significant dose-dependent reduction of DNA migration of the comet's tail was found after exposing cells to sulfur mustard, indicative of the amount of sulfur mustard induced cross-links. The remarkable decrease of % tail DNA could be observed as early as 5min following exposure to sulfur mustard and the maximal effect was found after 30min, when DNA migration was reduced to the minimum. Sulfur mustard preincubated in culture medium without cells lost its ability to induce cross-links and had a half-life of about 15min. Pre-incubation longer than 30min does not lead to a significant increase in cross-links when applied to cells. However, the amount of cross-links is decreased during further incubation due to repair. The current modification of the comet assay provides a useful tool for detecting DNA cross-links induced by sulfur mustard and could be used for detection of other DNA cross-linking agents such as chemotherapeutic drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. The Non-catalytic B Subunit of Coagulation Factor XIII Accelerates Fibrin Cross-linking*

    PubMed Central

    Souri, Masayoshi; Osaki, Tsukasa; Ichinose, Akitada

    2015-01-01

    Covalent cross-linking of fibrin chains is required for stable blood clot formation, which is catalyzed by coagulation factor XIII (FXIII), a proenzyme of plasma transglutaminase consisting of catalytic A (FXIII-A) and non-catalytic B subunits (FXIII-B). Herein, we demonstrate that FXIII-B accelerates fibrin cross-linking. Depletion of FXIII-B from normal plasma supplemented with a physiological level of recombinant FXIII-A resulted in delayed fibrin cross-linking, reduced incorporation of FXIII-A into fibrin clots, and impaired activation peptide cleavage by thrombin; the addition of recombinant FXIII-B restored normal fibrin cross-linking, FXIII-A incorporation into fibrin clots, and activation peptide cleavage by thrombin. Immunoprecipitation with an anti-fibrinogen antibody revealed an interaction between the FXIII heterotetramer and fibrinogen mediated by FXIII-B and not FXIII-A. FXIII-B probably binds the γ-chain of fibrinogen with its D-domain, which is near the fibrin polymerization pockets, and dissociates from fibrin during or after cross-linking between γ-chains. Thus, FXIII-B plays important roles in the formation of a ternary complex between proenzyme FXIII, prosubstrate fibrinogen, and activator thrombin. Accordingly, congenital or acquired FXIII-B deficiency may result in increased bleeding tendency through impaired fibrin stabilization due to decreased FXIII-A activation by thrombin and secondary FXIII-A deficiency arising from enhanced circulatory clearance. PMID:25809477

  4. Collagen cross-link excretion during space flight and bed rest

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Nillen, J. L.; Leblanc, A.; Lipton, A.; Demers, L. M.; Lane, H. W.; Leach, C. S.; LeBlanc, A. (Principal Investigator)

    1998-01-01

    Extended exposure to weightlessness results in bone loss. However, little information exists as to the precise nature or time course of this bone loss. Bone resorption results in the release of collagen breakdown products, including N-telopeptide and the pyridinium (PYD) cross-links, pyridinoline and deoxypyridinoline. Urinary pyridinoline and deoxypyridinoline are known to increase during bed rest. We assessed excretion of PYD cross-links and N-telopeptide before, during, and after long (28-day, 59-day, and 84-day) Skylab missions, as well as during short (14-day) and long (119-day) bed-rest studies. During space flight, the urinary cross-link excretion level was twice those observed before flight. Urinary excretion levels of the collagen breakdown products were also 40-50% higher, during short and long bed rest, than before. These results clearly show that the changes in bone metabolism associated with space flight involve increased resorption. The rate of response (i.e. within days to weeks) suggests that alterations in bone metabolism are an early effect of weightlessness. These studies are important for a better understanding of bone metabolism in space crews and in those who are bedridden.

  5. The use of molecular dynamics simulations to evaluate the DNA sequence-selectivity of G-A cross-linking PBD-duocarmycin dimers.

    PubMed

    Jackson, Paul J M; Rahman, Khondaker M; Thurston, David E

    2017-01-01

    The pyrrolobenzodiazepine (PBD) and duocarmycin families are DNA-interactive agents that covalently bond to guanine (G) and adenine (A) bases, respectively, and that have been joined together to create synthetic dimers capable of cross-linking G-G, A-A, and G-A bases. Three G-A alkylating dimers have been reported in publications to date, with defined DNA-binding sites proposed for two of them. In this study we have used molecular dynamics simulations to elucidate preferred DNA-binding sites for the three published molecular types. For the PBD-CPI dimer UTA-6026 (1), our simulations correctly predicted its favoured binding site (i.e., 5'-C(G)AATTA-3') as identified by DNA cleavage studies. However, for the PBD-CI molecule ('Compound 11', 3), we were unable to reconcile the results of our simulations with the reported preferred cross-linking sequence (5'-ATTTTCC(G)-3'). We found that the molecule is too short to span the five base pairs between the A and G bases as claimed, but should target instead a sequence such as 5'-ATTTC(G)-3' with two less base pairs between the reacting G and A residues. Our simulation results for this hybrid dimer are also in accord with the very low interstrand cross-linking and in vitro cytotoxicity activities reported for it. Although a preferred cross-linking sequence was not reported for the third hybrid dimer ('27eS', 2), our simulations predict that it should span two base pairs between covalently reacting G and A bases (e.g., 5'-GTAT(A)-3'). Copyright © 2016. Published by Elsevier Ltd.

  6. Identification of the bombesin receptor on murine and human cells by cross-linking experiments.

    PubMed

    Kris, R M; Hazan, R; Villines, J; Moody, T W; Schlessinger, J

    1987-08-15

    The bombesin receptor present on the surface of murine and human cells was identified using 125I-labeled gastrin-releasing peptide as a probe, the cross-linking agent disuccinimidyl suberate, and sodium dodecyl sulfate gels. A clone of NIH-3T3 cells which possesses approximately 80,000 bombesin receptors/cell with a single binding constant of approximately 1.9 X 10(-9) M was used in these studies. In addition, we used Swiss 3T3 cells and a human glioma cell line which possesses approximately 100,000 and approximately 55,000 bombesin receptors/cell, respectively. Under conditions found optimal for binding, it is demonstrated that 125I-labeled gastrin-releasing peptide can be cross-linked specifically to a glycoprotein of apparent molecular mass of 65,000 daltons on the surface of the NIH-3T3 cells. Similar results were obtained when the cross-linked product was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing or non-reducing conditions. Moreover, the cross-linking reaction is specific and saturable and the 65,000-dalton polypeptide is not observed when the cross-linking experiments were performed with a NIH-3T3 cell line which is devoid of bombesin receptors. Interestingly, glycoproteins with apparent molecular weights of 75,000 were labeled specifically by 125I-labeled gastrin-releasing peptide when similar experiments were performed with Swiss 3T3 cells and with human glioma cell line GM-340. These different molecular weights may indicate differential glycosylation as treatment with the enzyme N-glycanase reduced the apparent molecular weight of the cross-linked polypeptide to 45,000. On the basis of these results it is concluded that the cross-linked polypeptides represent the bombesin receptor or the ligand-binding subunit of a putative larger bombesin receptor expressed on the surface of these cells.

  7. In Situ Forming, Cytocompatible, and Self-Recoverable Tough Hydrogels Based on Dual Ionic and Click Cross-Linked Alginate.

    PubMed

    Ghanian, Mohammad Hossein; Mirzadeh, Hamid; Baharvand, Hossein

    2018-05-14

    A dual cross-linking strategy was developed to answer the urgent need for fatigue-resistant, cytocompatible, and in situ forming tough hydrogels. Clickable, yet calcium-binding derivatives of alginate were synthesized by partial substitution of its carboxyl functionalities with furan, which could come into Diels-Alder click reaction with maleimide end groups of a four arm poly(ethylene glycol) cross-linker. Tuning the cooperative viscoelastic action of transient ionic and permanent click cross-links within the single network of alginate provided a soft tough hydrogel with a set of interesting features: (i) immediate self-recovery under cyclic loading, (ii) highly efficient and autonomous self-healing upon fracture, (iii) in situ forming ability for molding and minimally invasive injection, (iv) capability for viable cell encapsulation, and (v) reactivity for on-demand biomolecule conjugation. The facile strategy is applicable to a wide range of natural and synthetic polymers by introducing the calcium binding and click reacting functional groups and can broaden the use of tough hydrogels in load-bearing, cell-laden applications such as soft tissue engineering and bioactuators.

  8. Mapping protein-RNA interactions by RCAP, RNA-cross-linking and peptide fingerprinting.

    PubMed

    Vaughan, Robert C; Kao, C Cheng

    2015-01-01

    RNA nanotechnology often feature protein RNA complexes. The interaction between proteins and large RNAs are difficult to study using traditional structure-based methods like NMR or X-ray crystallography. RCAP, an approach that uses reversible-cross-linking affinity purification method coupled with mass spectrometry, has been developed to map regions within proteins that contact RNA. This chapter details how RCAP is applied to map protein-RNA contacts within virions.

  9. Full Two-Body Problem Mass Parameter Observability Explored Through Doubly Synchronous Systems

    NASA Astrophysics Data System (ADS)

    Davis, Alex Benjamin; Scheeres, Daniel

    2018-04-01

    The full two-body problem (F2BP) is often used to model binary asteroid systems, representing the bodies as two finite mass distributions whose dynamics are influenced by their mutual gravity potential. The emergent behavior of the F2BP is highly coupled translational and rotational mutual motion of the mass distributions. For these systems the doubly synchronous equilibrium occurs when both bodies are tidally-locked and in a circular co-orbit. Stable oscillations about this equilibrium can be shown, for the nonplanar system, to be combinations of seven fundamental frequencies of the system and the mutual orbit rate. The fundamental frequencies arise as the linear periods of center manifolds identified about the equilibrium which are heavily influenced by each body’s mass parameters. We leverage these eight dynamical constraints to investigate the observability of binary asteroid mass parameters via dynamical observations. This is accomplished by proving the nonsingularity of the relationship between the frequencies and mass parameters for doubly synchronous systems. Thus we can invert the relationship to show that given observations of the frequencies, we can solve for the mass parameters of a target system. In so doing we are able to predict the estimation covariance of the mass parameters based on observation quality and define necessary observation accuracies for desired mass parameter certainties. We apply these tools to 617 Patroclus, a doubly synchronous Trojan binary and flyby target of the LUCY mission, as well as the Pluto and Charon system in order to predict mutual behaviors of these doubly synchronous systems and to provide observational requirements for these systems’ mass parameters

  10. Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Xiong, Xue; Yang, Ming; Liu, Changlin; Li, Xiaobo; Tang, Dawei

    2017-07-01

    The thermal conductivity of cross-linked bulk polyethylene is studied using molecular dynamics simulation. The atomic structure of the cross-linked polyethylene (PEX) is generated through simulated bond formation using LAMMPS. The thermal conductivity of PEX is studied with different degrees of crosslinking, chain length, and tensile strain. Generally, the thermal conductivity increases with the increasing degree of crosslinking. When the length of the primitive chain increases, the thermal conductivity increases linearly. When the polymer is stretched along one direction, the thermal conductivity increases in the stretched direction and decreases in the direction perpendicular to it. However, the thermal conductivity varies slightly when the polymer is stretched in three directions simultaneously.

  11. Grid-connected in-stream hydroelectric generation based on the doubly fed induction machine

    NASA Astrophysics Data System (ADS)

    Lenberg, Timothy J.

    Within the United States, there is a growing demand for new environmentally friendly power generation. This has led to a surge in wind turbine development. Unfortunately, wind is not a stable prime mover, but water is. Why not apply the advances made for wind to in-stream hydroelectric generation? One important advancement is the creation of the Doubly Fed Induction Machine (DFIM). This thesis covers the application of a gearless DFIM topology for hydrokinetic generation. After providing background, this thesis presents many of the options available for the mechanical portion of the design. A mechanical turbine is then specified. Next, a method is presented for designing a DFIM including the actual design for this application. In Chapter 4, a simulation model of the system is presented, complete with a control system that maximizes power generation based on water speed. This section then goes on to present simulation results demonstrating proper operation.

  12. Cross-informant and cross-national equivalence using item-response theory (IRT) linking: A case study using the behavioral assessment for children of African heritage in the United States and Jamaica.

    PubMed

    Lambert, Michael Canute; Ferguson, Gail M; Rowan, George T

    2016-03-01

    Cross-national study of adolescents' psychological adjustment requires measures that permit reliable and valid assessment across informants and nations, but such measures are virtually nonexistent. Item-response-theory-based linking is a promising yet underutilized methodological procedure that permits more accurate assessment across informants and nations. To demonstrate this procedure, the Resilience Scale of the Behavioral Assessment for Children of African Heritage (Lambert et al., 2005) was administered to 250 African American and 294 Jamaican nonreferred adolescents and their caregivers. Multiple items without significant differential item functioning emerged, allowing scale linking across informants and nations. Calibrating item parameters via item response theory linking can permit cross-informant cross-national assessment of youth. (c) 2016 APA, all rights reserved).

  13. Dehydration of an ethanol/water azeotrope through alginate-DNA membranes cross-linked with metal ions by pervaporation.

    PubMed

    Uragami, Tadashi; Banno, Masashi; Miyata, Takashi

    2015-12-10

    To obtain high dehydration membranes for an ethanol/water azeotrope, dried blend membranes prepared from mixtures of sodium alginate (Alg-Na) and sodium deoxyribonucleate (DNA-Na) were cross-linked by immersing in a methanol solution of CaCl2 or MaCl2. In the dehydration of an ethanol/water azeotropic mixture by pervaporation, the effects of immersion time in methanol solution of CaCl2 or MaCl2 on the permeation rate and water/ethanol selectivity through Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes were investigated. Alg-DNA/Mg(2+) cross-linked membrane immersed for 12h in methanol solution of MaCl2 exhibited the highest water/ethanol selectivity. This results from depressed swelling of the membranes by formation of a cross-linked structure. However, excess immersion in solution containing cross-linker led to an increase in the hydrophobicity of cross-linked membrane. Therefore, the water/ethanol selectivity of Alg-DNA/Mg(2+) cross-linked membranes with an excess immersion in cross-linking solution was lowered. The relationship between the structure of Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotropic mixture is discussed in detail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Quantification of the Effect of Cross-shear on the Wear of Conventional and Highly Cross-linked UHMWPE

    PubMed Central

    Kang, Lu; Galvin, Alison L.; Brown, Thomas D.; Jin, Zhongmin; Fisher, John

    2008-01-01

    A computational model has been developed to quantify the degree of cross-shear of a polyethylene pin articulating against a metallic plate, based on the direct simulation of a multidirectional pin-on-plate wear machine. The principal molecular orientation (PMO) was determined for each polymer site. The frictional work in the direction perpendicular to the PMO was assumed to produce the greatest orientation softening (Wang et al., 1997). The cross-shear ratio (CS) was defined as the frictional work perpendicular to the PMO direction, divided by the total frictional work. Cross-shear on the pin contact surface was location-specific, and of continuously changing magnitude because the direction of frictional force continuously changed due to pin rotation. The polymer pin motion was varied from a purely linear track (CS=0) up to a maximum rotation of ±55° (CS=0.254). The relationship between wear factors (K) measured experimentally and theoretically predicted CS was defined using logarithmic functions for both conventional and highly cross-linked UHMWPE. Cross-shear increased the apparent wear factor for both polyethylenes by more than 5-fold compared to unidirectional wear. PMID:17936763

  15. Platinum covalent shell cross-linked micelles designed to deliver doxorubicin for synergistic combination cancer therapy

    PubMed Central

    Zhu, Caiying; Xiao, Jingjing; Tang, Ming; Feng, Hua; Chen, Wulian; Du, Ming

    2017-01-01

    The preparation of polymer therapeutics capable of controlled release of multiple chemotherapeutic drugs has remained a tough problem in synergistic combination cancer therapy. Herein, a novel dual-drug co-delivery system carrying doxorubicin (DOX) and platinum(IV) (Pt[IV]) was developed. An amphiphilic diblock copolymer, PCL-b-P(OEGMA-co-AzPMA), was synthesized and used as a nanoscale drug carrier in which DOX and Pt(IV) could be packaged together. The copolymers were shell cross-linked by Pt(IV) prodrug via a click reaction. Studies on the in vitro drug release and cellular uptake of the dual-drug co-delivery system showed that the micelles were effectively taken up by the cells and simultaneously released drugs in the cells. Futhermore, the co-delivery polymer nanoparticles caused much higher cell death in HeLa and A357 tumor cells than either the free drugs or single-drug-loaded micelles at the same dosage, exhibiting a synergistic combination of DOX and Pt(IV). The results obtained with the shell cross-linked micelles based on an anticancer drug used as a cross-linking linkage suggested a promising application of the micelles for multidrug delivery in combination cancer therapy. PMID:28553108

  16. The counterbend phenomenon in flagellar axonemes and cross-linked filament bundles

    PubMed Central

    Gadêlha, Hermes; Gaffney, Eamonn A.; Goriely, Alain

    2013-01-01

    Recent observations of flagellar counterbend in sea urchin sperm show that the mechanical induction of curvature in one part of a passive flagellum induces a compensatory countercurvature elsewhere. This apparent paradoxical effect cannot be explained using the standard elastic rod theory of Euler and Bernoulli, or even the more general Cosserat theory of rods. Here, we develop a geometrically exact mechanical model to describe the statics of microtubule bundles that is capable of predicting the curvature reversal events observed in eukaryotic flagella. This is achieved by allowing the interaction of deformations in different material directions, by accounting not only for structural bending, but also for the elastic forces originating from the internal cross-linking mechanics. Large-amplitude static configurations can be described analytically, and an excellent match between the model and the observed counterbend deformation was found. This allowed a simultaneous estimation of multiple sperm flagellum material parameters, namely the cross-linking sliding resistance, the bending stiffness, and the sperm head junction compliance ratio. We further show that small variations on the empirical conditions may induce discrepancies for the evaluation of the flagellar material quantities, so that caution is required when interpreting experiments. Finally, our analysis demonstrates that the counterbend emerges as a fundamental property of sliding resistance in cross-linked filamentous polymer bundles, which also suggests that cross-linking proteins may contribute to the regulation of the flagellar waveform in swimming sperm via counterbend mechanics. PMID:23824293

  17. Cell protein cross-linking by erbstatin and related compounds | Center for Cancer Research

    Cancer.gov

    The scheme depicts a possible mechanism of cross-linking by erbstatin and related analogues. A mechanism of action is proposed which involves initial oxidation to reactive quinone intermediates that subsequently cross-link protein nucleophiles via multiple 1,4-Michael-type additions. Similar alkylation of protein by protein-tyrosine kinase inhibitors, such as herbimycin A, has

  18. N1N8-bis(gamma-glutamyl)spermidine cross-linking in epidermal-cell envelopes. Comparison of cross-link levels in normal and psoriatic cell envelopes.

    PubMed Central

    Martinet, N; Beninati, S; Nigra, T P; Folk, J E

    1990-01-01

    N1N8-Bis(gamma-glutamyl)spermidine was found in exhaustive proteolytic digests of isolated cell envelopes from human epidermis at levels comparable with those of epsilon-(gamma-glutamyl)lysine. Significantly higher than normal amounts of these compounds, particularly the bis(gamma-glutamyl)polyamine, were observed in envelopes from afflicted areas (scales) of psoriatic patients. These findings support the notions that N1N8-bis(gamma-glutamyl)spermidine, like epsilon-(gamma-glutamyl)lysine, functions in cell envelopes as an enzyme-generated protein cross-link and stabilizing force and that individuals with the chronic, recurrent skin disease, psoriasis, exhibit in involved epidermis abnormal cell-envelope-protein cross-linking. PMID:2241917

  19. A Novel MS-Cleavable Azo Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS)

    NASA Astrophysics Data System (ADS)

    Iacobucci, Claudio; Hage, Christoph; Schäfer, Mathias; Sinz, Andrea

    2017-10-01

    The chemical cross-linking/mass spectrometry (MS) approach is a growing research field in structural proteomics that allows gaining insights into protein conformations. It relies on creating distance constraints between cross-linked amino acid side chains that can further be used to derive protein structures. Currently, the most urgent task for designing novel cross-linking principles is an unambiguous and automated assignment of the created cross-linked products. Here, we introduce the homobifunctional, amine-reactive, and water soluble cross-linker azobisimidoester (ABI) as a prototype of a novel class of cross-linkers. The ABI-linker possesses an innovative modular scaffold combining the benefits of collisional activation lability with open shell chemistry. This MS-cleavable cross-linker can be efficiently operated via free radical initiated peptide sequencing (FRIPS) in positive ionization mode. Our proof-of-principle study challenges the gas phase behavior of the ABI-linker for the three amino acids, lysine, leucine, and isoleucine, as well as the model peptide thymopentin. The isomeric amino acids leucine and isoleucine could be discriminated by their characteristic side chain fragments. Collisional activation experiments were conducted via positive electrospray ionization (ESI) on two Orbitrap mass spectrometers. The ABI-mediated formation of odd electron product ions in MS/MS and MS3 experiments was evaluated and compared with a previously described azo-based cross-linker. All cross-linked products were amenable to automated analysis by the MeroX software, underlining the future potential of the ABI-linker for structural proteomics studies. [Figure not available: see fulltext.

  20. Studies of the permeation properties of glomerular basement membrane: cross-linking renders glomerular basement membrane permeable to protein.

    PubMed

    Walton, H A; Byrne, J; Robinson, G B

    1992-03-20

    Cross-linking glomerular basement membrane (GBM) has been shown to render it more permeable to protein. Isolated pig GBM was cross-linked with dimethylmalonimidate which reacts selectively with lysine epsilon-NH2 groups or with glutaraldehyde, a less selective cross-linking agent. Studies of the ultrafiltration properties of these materials in vitro using cytochrome c, myoglobin, bovine serum albumin and immunoglobulin showed that cross-linking had markedly increased solvent and protein fluxes as compared with native membranes particularly at higher pressures. Filtration studies with serum demonstrated that the cross-linked membranes were more permeable to serum proteins. Thickness measurements under pressure indicated that cross-linked membrane was less compressed than native membrane as pressure was increased. Pore theory did not provide a suitable model for analysis of the results, but analysis of the results using the fibre-matrix hypothesis indicated that cross-linking had the effect of bundling together the fibres (type IV collagen) in the GBM matrix. The effect of cross-linking on filtration could be explained by a combination of contraction of the membrane, fibre bundling and increased rigidity compared with native membrane. Cross-linking of GBM might lead to long-term damage of the glomerular capillary wall in nephritis, so promoting proteinuria.

  1. Mocaf cross-linking with gluten to improve the quality of mocaf dough

    NASA Astrophysics Data System (ADS)

    Raharja, Sapta; Udin, Faqih; Suparno, Ono; Febrianti, Faricha Helfi; Nuraisyah, Ani

    2017-03-01

    Crosslink between mocaf and gluten is conducted to increase the using of mocaf which has very big potential in Indonesia. The effort of cross-linking between mocaf and gluten is to get mocaf flour with better dough quality. This study aims to produce a cross-linked mocaf-gluten flour and to evaluate the influence of heating temperature (X1) and the addition of gluten concentration (X2) using completely randomized design factorial (RAFL). The cross-linking is carried out in alkaline solution with 10%, 20%, and 30% gluten addition and heating temperature at 50, 55, and 60 °C. The result showed that mocaf - gluten flour with the treatment of 30% gluten addition at 55 °C had the largest amount of protein and baking expansion (i.e 19.77% and 2.78 mL/g). Swelling power of the flour was increasing along with the increasing of water absorbing capacity of the mocaf - gluten flour. Birefringence properties of mocaf - gluten flour tended to be reduced as the increasing heating temperature. FTIR analysis of mocaf - gluten flour showed that there was peak strengthening of the infrared spectrum of the C - N bond at 1167-1159 cm-1 which was presumably resulted from the gluten addition and the cross-linking properties.

  2. Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme

    NASA Technical Reports Server (NTRS)

    Meador, Ann B.; Capadona, Lynn A.

    2008-01-01

    A document discusses a new, simplified method for cross-linking silica and other oxide aerogels, with a polymeric material to increase strength of such materials without adversely affecting porosity or low density. This innovation introduces the polymer precursor into the sol before gelation either as an agent, which co-reacts with the oxide gel, or as soluble polymer precursors, which do not interact with the oxide gel in any way. Subsequent exposure to heat, light, catalyst or other method of promoting polymerization causes cross-linking without any additional infiltration steps.

  3. Nuclear spectroscopy of doubly-even130,132Ba

    NASA Astrophysics Data System (ADS)

    Gupta, Anuradha; Gupta, Surbhi; Singh, Suram; Bharti, Arun

    2018-05-01

    A comparative study of some high-spin characteristic nuclear structure properties of doubly-even 130,132Ba nuclei has been made using two microscopic frameworks - CHFB and PSM. The yrast spectra, intrinsic quadrupole moment and deformation systematics of these nuclei have been successfully calculated. Further, the calculated data from both the frameworks is also compared with the available experimental data and a good agreement has been obtained. The present CHFB calculations describes very well the low spin structure of even-even 130,132Ba nuclei whereas PSM calculations provide a qualitative description of the high-spin band structure of doubly-even 130,132Ba nuclei.

  4. In Vivo Immune Responses of Cross-Linked Electrospun Tilapia Collagen Membrane.

    PubMed

    Hassanbhai, Ammar Mansoor; Lau, Chau Sang; Wen, Feng; Jayaraman, Praveena; Goh, Bee Tin; Yu, Na; Teoh, Swee-Hin

    2017-10-01

    Collagen has been used extensively in tissue engineering applications. However, the source of collagen has been primarily bovine and porcine. In view of the potential risk of zoonotic diseases and religious constraints associated with bovine and porcine collagen, fish collagen was examined as an alternative. The aim of this study is to use tilapia fish collagen to develop a cross-linked electrospun membrane to be used as a barrier membrane in guided bone regeneration. As there is limited data available on the cytotoxicity and immunogenicity of cross-linked tilapia collagen, in vitro and in vivo tests were performed to evaluate this in comparison to the commercially available Bio-Gide ® membrane. In this study, collagen was extracted and purified from tilapia skin and electrospun into a nanofibrous membrane. The resultant membrane was cross-linked to obtain a cross-linked electrospun tilapia collagen (CETC) membrane, which was characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), degradation studies, cytotoxicity studies, and cell proliferation studies. The membranes were also implanted subcutaneously in rats and the host immune responses were examined. The DSC data showed that cross-linking increased the denaturation temperature of tilapia collagen to 58.3°C ± 1.4°C. The in vitro tests showed that CETC exhibited no cytotoxicity toward murine fibroblast L929 cells, and culture of murine preosteoblast MC3T3-E1 cells demonstrated better proliferation on CETC as compared to Bio-Gide. When implanted in rats, CETC caused a higher production of interleukin IL-6 at early time points as compared to Bio-Gide, but there was no long-term inflammatory responses after the acute inflammation phase. This finding was supported with histology data, which clearly illustrated that CETC has a decreased inflammatory response comparable to the benchmark control group. In all, this study demonstrated the viability for the use of CETC as a

  5. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils

    PubMed Central

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J.; Buehler, Markus J.

    2015-01-01

    Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength. PMID:25153614

  6. The process of EDC-NHS cross-linking of reconstituted collagen fibres increases collagen fibrillar order and alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepherd, D. V., E-mail: dvs23@cam.ac.uk; Shepherd, J. H.; Cameron, R. E.

    We describe the production of collagen fibre bundles through a multi-strand, semi-continuous extrusion process. Cross-linking using an EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), NHS (N-hydroxysuccinimide) combination was considered. Atomic Force Microscopy and Raman spectroscopy focused on how cross-linking affected the collagen fibrillar structure. In the cross-linked fibres, a clear fibrillar structure comparable to native collagen was observed which was not observed in the non-cross-linked fibre. The amide III doublet in the Raman spectra provided additional evidence of alignment in the cross-linked fibres. Raman spectroscopy also indicated no residual polyethylene glycol (from the fibre forming buffer) or water in any of the fibres.

  7. Fabrication and characterization of hydrothermal cross-linked chitosan porous scaffolds for cartilage tissue engineering applications.

    PubMed

    Shamekhi, Mohammad Amin; Rabiee, Ahmad; Mirzadeh, Hamid; Mahdavi, Hamid; Mohebbi-Kalhori, Davod; Baghaban Eslaminejad, Mohamadreza

    2017-11-01

    The use of various chemical cross-linking agents for the improvement of scaffolds physical and mechanical properties is a common practical method, which is limited by cytotoxicity effects. Due to exerting contract type forces, chondrocytes are known to implement shrinkage on the tissue engineered constructs, which can be avoided by the scaffold cross-linking. In the this research, chitosan scaffolds are cross-linked with hydrothermal treatment with autoclave sterilization time of 0, 10, 20 and 30min, to avoid the application of the traditional chemical toxic materials. The optimization studies with gel content and crosslink density measurements indicate that for 20min sterilization time, the gel content approaches to ~80%. The scaffolds are fully characterized by the conventional techniques such as SEM, porosity and permeability, XRD, compression, thermal analysis and dynamic mechanical thermal analysis (DMTA). FT-IR studies shows that autoclave inter-chain cross-linking reduces the amine group absorption at 1560cm -1 and increase the absorption of N-acetylated groups at 1629cm -1 . It is anticipated, that this observation evidenced by chitosan scaffold browning upon autoclave cross-linking is an indication of the familiar maillard reaction between amine moieties and carbonyl groups. The biodegradation rate analysis shows that chitosan scaffolds with lower concentrations, possess suitable degradation rate for cartilage tissue engineering applications. In addition, cytotoxicity analysis shows that fabricated scaffolds are biocompatible. The human articular chondrocytes seeding into 3D cross-linked scaffolds shows a higher viability and proliferation in comparison with the uncross-linked samples and 2D controls. Investigation of cell morphology on the scaffolds by SEM, shows a more spherical morphology of chondrocytes on the cross-linked scaffolds for 21days of in vitro culture. Copyright © 2017. Published by Elsevier B.V.

  8. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    PubMed

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure.

    PubMed

    Shu, X Z; Zhu, K J

    2002-02-21

    By adopting a novel chitosan cross-linked method, i.e. chitosan/gelatin droplet coagulated at low temperature and then cross-linked by anions (sulfate, citrate and tripolyphosphate (TPP)), the chitosan beads were prepared. Scanning electron microscopy (SEM) observation showed that sulfate/chitosan and citrate/chitosan beads usually had a spherical shape, smooth surface morphology and integral inside structure. Cross-sectional analysis indicated that the cross-linking process of sulfate and citrate to chitosan was much faster than that of TPP due to their smaller molecular size. But, once completely cross-linked, TPP/chitosan beads possessed much better mechanical strength and the force to break the beads was approximately ten times higher than that of sulfate/chitosan or citrate/chitosan beads. Release media pH and ionic strength seriously influenced the controlled drug release properties of the beads, which related to the strength of electrostatic interaction between anions and chitosan. Sulfate and citrate cross-linked chitosan beads swelled and even dissociated in simulated gastric fluid (SGF) and hence, model drug (riboflavin) released completely in 5 h; while in simulated intestinal fluid (SIF), beads remained in a shrinkage state and drug released slowly (release % usually <70% in 24 h). However, swelling and drug release of TPP/chitosan bead was usually insensitive to media pH. Chitosan beads, cross-linked by a combination of TPP and citrate (or sulfate) together, not only had a good shape, but also improved pH-responsive drug release properties. Salt weakened the interaction of citrate, especially sulfate with chitosan and accelerated beads swelling and hence drug release rate, but it was insensitive to that of TPP/chitosan. These results indicate that ionically cross-linked chitosan beads may be useful in stomach specific drug delivery.

  10. Synthesis and Characterization of Cleavable Core-Cross-Linked Micelles Based on Amphiphilic Block Copolypeptoids as Smart Drug Carriers.

    PubMed

    Li, Ang; Zhang, Donghui

    2016-03-14

    Amphiphilic block copolypeptoids consisting of a hydrophilic poly(N-ethyl glycine) segment and a hydrophobic poly[(N-propargyl glycine)-r-(N-decyl glycine)] random copolymer segment [PNEG-b-P(NPgG-r-NDG), EPgD] have been synthesized by sequential primary amine-initiated ring-opening polymerization (ROP) of the corresponding N-alkyl N-carboxyanhydride monomers. The block copolypeptoids form micelles in water and the micellar core can be cross-linked with a disulfide-containing diazide cross-linker by copper-mediated alkyne-azide cycloaddition (CuAAC) in aqueous solution. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical micelles with uniform size for both the core-cross-linked micelles (CCLMs) and non-cross-linked micelles (NCLMs) precursors for selective block copolypeptoid polymers. The CCLMs exhibited increased dimensional stability relative to the NCLMs in DMF, a nonselective solvent for the core and corona segments. Micellar dissociation of CCLMs can be induced upon addition of a reducing agent (e.g., dithiothreitol) in dilute aqueous solutions, as verified by a combination of fluorescence spectroscopy, size exclusion chromatography (SEC), and (1)H NMR spectroscopic measurement. Doxorubicin (DOX), an anticancer drug, can be loaded into the hydrophobic core of CCLMs with a maximal 23% drug loading capacity (DLC) and 37% drug loading efficiency (DLE). In vitro DOX release from the CCLMs can be triggered by DTT (10 mM), in contrast to significantly reduced DOX release in the absence of DTT, attesting to the reductively responsive characteristic of the CCLMs. While the CCLMs exhibited minimal cytotoxicity toward HepG2 cancer cells, DOX-loaded CCLMs inhibited the proliferation of the HepG2 cancer cells in a concentration and time dependent manner, suggesting the controlled release of DOX from the DOX-loaded CCLMS in the cellular environment.

  11. Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels

    NASA Astrophysics Data System (ADS)

    Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike

    2013-06-01

    We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.

  12. Chemical cross-linking of polypropylenes towards new shape memory polymers.

    PubMed

    Raidt, Thomas; Hoeher, Robin; Katzenberg, Frank; Tiller, Joerg C

    2015-04-01

    In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross-linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x-iPP is stable for many cycles, x-sPP ruptures after the first shape-memory cycle. It is shown by wide-angle X-ray scattering (WAXS) experiments that cross-linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Comparison of doubly labeled water with respirometry at low- and high-activity levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerterp, K.R.; Brouns, F.; Saris, W.H.

    1988-07-01

    In previous studies the doubly labeled water method for measuring energy expenditure in free-living humans has been validated against respirometry under sedentary conditions. In the present investigation, energy expenditure is measured simultaneously with doubly labeled water and respirometry at low- and high-activity levels. Over 6 days, five subjects were measured doing mainly sedentary activities like desk work; their average daily metabolic rate was 1.40 +/- 0.09 (SD) times sleeping metabolic rate. Four subjects were measured twice over 3.5 days, including 2 days with heavy bicycle ergometer work, resulting in an average daily metabolic rate of 2.61 +/- 0.25 (SD) timesmore » sleeping metabolic rate. At the low-activity level, energy expenditures from the doubly labeled water method were on the average 1.4 +/- 3.9% (SD) larger than those from respirometry. At the high-activity level, the doubly labeled water method yielded values that were 1.0 +/- 7.0% (SD) lower than those from respirometry. Results demonstrate the utility of the doubly labeled water method for the determination of energy expenditure in the range of activity levels in daily life.« less

  14. Thermally Conductive-Silicone Composites with Thermally Reversible Cross-links.

    PubMed

    Wertz, J T; Kuczynski, J P; Boday, D J

    2016-06-08

    Thermally conductive-silicone composites that contain thermally reversible cross-links were prepared by blending diene- and dienophile-functionalized polydimethylsiloxane (PDMS) with an aluminum oxide conductive filler. This class of thermally conductive-silicones are useful as thermal interface materials (TIMs) within Information Technology (IT) hardware applications to allow rework of valuable components. The composites were rendered reworkable via retro Diels-Alder cross-links when temperatures were elevated above 130 °C and required little mechanical force to remove, making them advantageous over other TIM materials. Results show high thermal conductivity (0.4 W/m·K) at low filler loadings (45 wt %) compared to other TIM solutions (>45 wt %). Additionally, the adhesion of the material was found to be ∼7 times greater at lower temperatures (25 °C) and ∼2 times greater at higher temperatures (120 °C) than commercially available TIMs.

  15. The effect of cross-linking on the molecular dynamics of the segmental and β Johari-Goldstein processes in polyvinylpyrrolidone-based copolymers.

    PubMed

    Redondo-Foj, Belén; Sanchis, María Jesús; Ortiz-Serna, Pilar; Carsí, Marta; García, José Miguel; García, Félix Clemente

    2015-09-28

    The effect of the cross-link density on the molecular dynamics of copolymers composed of vinylpyrrolidone (VP) and butyl acrylate (BA) was studied using differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy (DRS). A single glass transition was detected by DSC measurements. The dielectric spectra exhibit conductive processes and three dipolar relaxations labeled as α, β and γ in the decreasing order of temperatures. The cross-linker content affects both α and β processes, but the fastest γ process is relatively unaffected. An increase of cross-linking produces a typical effect on the α process dynamics: (i) the glass transition temperature is increased, (ii) the dispersion is broadened, (iii) its strength is decreased and (iv) the relaxation times are increased. However, the β process, which possesses typical features of a pure Johari-Goldstein relaxation, unexpectedly loses the intermolecular character for the highest cross-linker content.

  16. Exploring Tyrosine-Triazolinedione (TAD) Reactions for the Selective Conjugation and Cross-Linking of N-Carboxyanhydride (NCA) Derived Synthetic Copolypeptides.

    PubMed

    Hanay, Saltuk B; Ritzen, Bas; Brougham, Dermot; Dias, Aylvin A; Heise, Andreas

    2017-07-01

    Highly efficient functionalization and cross-linking of polypeptides is achieved via tyrosine-triazolinedione (TAD) conjugation chemistry. The feasibility of the reaction is demonstrated by the reaction of 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) with tyrosine containing block copolymer poly(ethylene glycol)-Tyr 4 as well as a statistical copolymer of tyrosine and lysine (poly(Lys 40 -st-Tyr 10 )) prepared form N-carboxyanhydride polymerization. Selective reaction of PTAD with the tyrosine units is obtained and verified by size exclusion chromatography and NMR spectroscopy. Moreover, two monofunctional and two difunctional TAD molecules are synthesized. It is found that their stability in the aqueous reaction media significantly varied. Under optimized reaction conditions selective functionalization and cross-linking, yielding polypeptide hydrogels, can be achieved. TAD-mediated conjugation can offer an interesting addition in the toolbox of selective (click-like) polypeptide conjugation methodologies as it does not require functional non-natural amino acids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application.

    PubMed

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Liu, Le; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-11-12

    Acid-base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-section morphology as scanning electron microscopy and energy-dispersive X-ray spectroscopy images show. The acid-base interaction of ionic cross-linking and hydrogen bonding between SPEEK and PAN could effectively reduce water uptake, swelling ratio, and vanadium ion permeability, and improve the performance and stability of blend membrane. Because of the good balance of proton conductivity and vanadium ion permeability, blend membrane with 20 wt % PAN (S/PAN-20%) showed higher Coulombic efficiency (96.2% vs 91.1%) and energy efficiency (83.5% vs 78.4%) than Nafion 117 membrane at current density of 80 mA cm(-2) when they were used in VRFB single cell. Besides, S/PAN-20% membrane kept a stable performance during 150 cycles at current density of 80 mA cm(-2) in the cycle life test. Hence the SPEEK/PAN acid-base blend membrane could be used as promising candidate for VRFB application.

  18. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  19. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils.

    PubMed

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J; Buehler, Markus J

    2015-12-01

    Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Covariate selection with group lasso and doubly robust estimation of causal effects

    PubMed Central

    Koch, Brandon; Vock, David M.; Wolfson, Julian

    2017-01-01

    Summary The efficiency of doubly robust estimators of the average causal effect (ACE) of a treatment can be improved by including in the treatment and outcome models only those covariates which are related to both treatment and outcome (i.e., confounders) or related only to the outcome. However, it is often challenging to identify such covariates among the large number that may be measured in a given study. In this paper, we propose GLiDeR (Group Lasso and Doubly Robust Estimation), a novel variable selection technique for identifying confounders and predictors of outcome using an adaptive group lasso approach that simultaneously performs coefficient selection, regularization, and estimation across the treatment and outcome models. The selected variables and corresponding coefficient estimates are used in a standard doubly robust ACE estimator. We provide asymptotic results showing that, for a broad class of data generating mechanisms, GLiDeR yields a consistent estimator of the ACE when either the outcome or treatment model is correctly specified. A comprehensive simulation study shows that GLiDeR is more efficient than doubly robust methods using standard variable selection techniques and has substantial computational advantages over a recently proposed doubly robust Bayesian model averaging method. We illustrate our method by estimating the causal treatment effect of bilateral versus single-lung transplant on forced expiratory volume in one year after transplant using an observational registry. PMID:28636276

  1. Glucose Electrodes Based on Cross-Linked (Os(bpy)2CI)+/2+ Complexed Poly(1-Vinylimidazole) Films

    DTIC Science & Technology

    1993-05-24

    oxidase (GOX) through covalent bonding in the cross-linking step, glucose was electrooxidized at 250 mV (SCE). The characteristics of these... electrooxidation currents were independent of the polymers’ osmium content in the studied (3 - 10 osmium S_ _ centers per monomer unit ) range, Electrodes...glucose was electrooxidized at 250 mV (SCE). The characteristics of these electrodes depended on the GOX concentration, film thickness, 02

  2. Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes.

    PubMed

    Khanday, W A; Asif, M; Hameed, B H

    2017-02-01

    Cross-linked beads of activated oil palm ash zeolite/chitosan (Z-AC/C) composite were prepared through the hydrothermal treatment of NaOH activated oil palm ash followed by beading with chitosan. The effects of initial dye concentration (50-400mg/L), temperature (30°C-50°C) and pH (3-13) on batch adsorption of methylene blue (MB) and acid blue 29 (AB29) were studied. Adsorption of both dyes was better described by Pseudo-second-order kinetics and Freundlich isotherm model. The maximum adsorption capacities of Z-AC/C were 151.51, 169.49, and 199.20mg/g for MB and 212.76, 238.09, and 270.27mg/g for AB29 at 30°C, 40°C, and 50°C, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Probabilistic cross-link analysis and experiment planning for high-throughput elucidation of protein structure.

    PubMed

    Ye, Xiaoduan; O'Neil, Patrick K; Foster, Adrienne N; Gajda, Michal J; Kosinski, Jan; Kurowski, Michal A; Bujnicki, Janusz M; Friedman, Alan M; Bailey-Kellogg, Chris

    2004-12-01

    Emerging high-throughput techniques for the characterization of protein and protein-complex structures yield noisy data with sparse information content, placing a significant burden on computation to properly interpret the experimental data. One such technique uses cross-linking (chemical or by cysteine oxidation) to confirm or select among proposed structural models (e.g., from fold recognition, ab initio prediction, or docking) by testing the consistency between cross-linking data and model geometry. This paper develops a probabilistic framework for analyzing the information content in cross-linking experiments, accounting for anticipated experimental error. This framework supports a mechanism for planning experiments to optimize the information gained. We evaluate potential experiment plans using explicit trade-offs among key properties of practical importance: discriminability, coverage, balance, ambiguity, and cost. We devise a greedy algorithm that considers those properties and, from a large number of combinatorial possibilities, rapidly selects sets of experiments expected to discriminate pairs of models efficiently. In an application to residue-specific chemical cross-linking, we demonstrate the ability of our approach to plan experiments effectively involving combinations of cross-linkers and introduced mutations. We also describe an experiment plan for the bacteriophage lambda Tfa chaperone protein in which we plan dicysteine mutants for discriminating threading models by disulfide formation. Preliminary results from a subset of the planned experiments are consistent and demonstrate the practicality of planning. Our methods provide the experimenter with a valuable tool (available from the authors) for understanding and optimizing cross-linking experiments.

  4. Highly efficient preparation of selectively isotope cluster-labeled long chain fatty acids via two consecutive C(sp3)-C(sp3) cross-coupling reactions.

    PubMed

    Lethu, Sébastien; Matsuoka, Shigeru; Murata, Michio

    2014-02-07

    An efficient synthesis involving two copper-catalyzed alkyl-alkyl coupling reactions has been designed to easily access doubly isotope-labeled fatty acids. Such NMR- and IR-active compounds were obtained in excellent overall yields and will be further used for determining the conformation of an alkyl chain of lipidic biomolecules upon interaction with proteins.

  5. Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking.

    PubMed

    Yoon, Jihee; Oh, Dongyeop X; Jo, Changshin; Lee, Jinwoo; Hwang, Dong Soo

    2014-12-14

    Si-based anodes in lithium ion batteries (LIBs) have exceptionally high theoretical capacity, but the use of a Si-based anode in LIBs is problematic because the charging-discharging process can fracture the Si particles. Alginate and its derivatives show promise as Si particle binders in the anode. We show that calcium-mediated "egg-box" electrostatic cross-linking of alginate improves toughness, resilience, electrolyte desolvation of the alginate binder as a Si-binder for LIBs. Consequently, the improved mechanical properties of the calcium alginate binder compared to the sodium alginate binder and other commercial binders extend the lifetime and increase the capacity of Si-based anodes in LIBs.

  6. Interfacial friction and adhesion of cross-linked polymer thin films swollen with linear chains.

    PubMed

    Zhang, Qing; Archer, Lynden A

    2007-07-03

    The preparation and interfacial properties of a new type of tethered, thin-film lubricant coating are presented. These coatings are composed of three components: a dense self-assembled monolayer (SAM) underlayer that presents reactive vinyl groups at its surface; a cross-linked polydimethylsiloxane (PDMS) overlayer that is covalently tethered to the SAM; and free, mobile linear PDMS chains dispersed in the network. We investigate the influence of the molecular weight (Ms) and concentration of the free PDMS chains on the structure and equilibrium swelling properties of the cross-linked films. Using a bead-probe lateral force microscopy measurement technique, we also quantify the interfacial friction and adhesion characteristics of surfaces functionalized with these coatings. We find that both the volume fraction and the molecular weight of free PDMS molecules in the coatings influence their interfacial friction and adhesion properties. For example, the addition of short PDMS chains in dry, cross-linked PDMS thin films yields tethered surface coatings with ultralow friction coefficients (mu = 5.2 x 10(-3)). An analysis based on classical lubrication theory suggests that the reduction in friction force produced by free polymer is a consequence of the gradual separation of asperities on opposing surfaces and the consequent substitution of solid-solid friction by viscous drag of the free polymer chains in the network.

  7. Relationships between human cortical bone toughness and collagen cross-links on paired anatomical locations.

    PubMed

    Gauthier, Rémy; Follet, Hélène; Langer, Max; Gineyts, Evelyne; Rongiéras, Frédéric; Peyrin, Françoise; Mitton, David

    2018-07-01

    Human cortical bone fracture processes depend on the internal porosity network down to the lacunar length scale. Recent results show that at the collagen scale, the maturation of collagen cross-links may have a negative influence on bone mechanical behavior. While the effect of pentosidine on human cortical bone toughness has been studied, the influence of mature and immature enzymatic cross-links has only been studied in relation to strength and work of fracture. Moreover, these relationships have not been studied on different paired anatomical locations. Thus, the aim of the current study was to assess the relationships between both enzymatic and non-enzymatic collagen cross-links and human cortical bone toughness, on four human paired anatomical locations. Single Edge Notched Bending toughness tests were performed for two loading conditions: a quasi-static standard condition, and a condition representative of a fall. These tests were done with 32 paired femoral diaphyses, femoral necks and radial diaphyses (18 women, age 81 ± 12 y.o.; 14 men, age 79 ± 8 y.o.). Collagen enzymatic and non-enzymatic crosslinks were measured on the same bones. Maturation of collagen was defined as the ratio between immature and mature cross-links (CX). The results show that there was a significant correlation between collagen cross-link maturation and bone toughness when gathering femoral and radial diaphyses, but not when considering each anatomical location individually. These results show that the influence of collagen enzymatic and non-enzymatic cross-links is minor when considering human cortical bone crack propagation mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Low-Temperature Cross-Linking of PEDOT:PSS Films Using Divinylsulfone.

    PubMed

    Mantione, Daniele; Del Agua, Isabel; Schaafsma, Wandert; ElMahmoudy, Mohammed; Uguz, Ilke; Sanchez-Sanchez, Ana; Sardon, Haritz; Castro, Begoña; Malliaras, George G; Mecerreyes, David

    2017-05-31

    Recent interest in bioelectronics has prompted the exploration of properties of conducting polymer films at the interface with biological milieus. Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) from a commercially available source has been used as a model system for these studies. Different cross-linking schemes have been used to stabilize films of this material against delamination and redispersion, but the cost is a decrease in the electrical conductivity and/or additional heat treatment. Here we introduce divinylsulfone (DVS) as a new cross-linker for PEDOT:PSS. Thanks to the higher reactiveness of the vinyl groups of DVS, the cross-linking can be performed at room temperature. In addition, DVS does not reduce electronic conductivity of PEDOT:PSS but rather increases it by acting as a secondary dopant. Cell culture studies show that PEDOT:PSS:DVS films are cytocompatible and support neuroregeneration. As an example, we showed that this material improved the transconductance value and stability of an organic electrochemical transistor (OECT) device. These results open the way for the utilization of DVS as an effective cross-linker for PEDOT:PSS in bioelectronics applications.

  9. Liposome-Cross-Linked Hybrid Hydrogels for Glutathione-Triggered Delivery of Multiple Cargo Molecules.

    PubMed

    Liang, Yingkai; Kiick, Kristi L

    2016-02-08

    Novel, liposome-cross-linked hybrid hydrogels cross-linked by the Michael-type addition of thiols with maleimides were prepared via the use of maleimide-functionalized liposome cross-linkers and thiolated polyethylene glycol (PEG) polymers. Gelation of the materials was confirmed by oscillatory rheology experiments. These hybrid hydrogels are rendered degradable upon exposure to thiol-containing molecules such as glutathione (GSH), via the incorporation of selected thioether succinimide cross-links between the PEG polymers and liposome nanoparticles. Dynamic light scattering (DLS) characterization confirmed that intact liposomes were released upon network degradation. Owing to the hierarchical structure of the network, multiple cargo molecules relevant for chemotherapies, namely doxorubicin (DOX) and cytochrome c, were encapsulated and simultaneously released from the hybrid hydrogels, with differential release profiles that were driven by degradation-mediated release and Fickian diffusion, respectively. This work introduces a facile approach for the development of advanced, hybrid drug delivery vehicles that exhibit novel chemical degradation.

  10. Measurement of Doubly Charged Ions in Ion Thruster Plumes

    NASA Technical Reports Server (NTRS)

    Williams, George J., Jr.; Domonkos, Matthew T.; Chavez, Joy M.

    2002-01-01

    The ratio of doubly to singly charged ions was measured in the plumes of a 30 cm and of a 40 cm ion thruster. The measured ratio was correlated with observed erosion rates and thruster operating conditions. The measured and calculated erosion rates paralleled variation in the j(sup ++)/j(sup +) ratio and indicated that the erosion was dominated by Xe III. Simple models of cathode potential surfaces which were developed in support of this work were in agreement with this conclusion and provided a predictive capability of the erosion given the ratio of doubly to singly charged ion currents.

  11. Cross-linking staphylococcal enterotoxin A bound to major histocompatibility complex class I is required for TNF-alpha secretion

    NASA Technical Reports Server (NTRS)

    Wright, A. D.; Chapes, S. K.

    1999-01-01

    The mechanism of how superantigens function to activate cells has been linked to their ability to bind and cross-link the major histocompatibility complex class II (MHCII) molecule. Cells that lack the MHCII molecule also respond to superantigens, however, with much less efficiency. Therefore, the purpose of this study was to confirm that staphylococcal enterotoxin A (SEA) could bind the MHCI molecule and to test the hypothesis that cross-linking SEA bound to MHCII-deficient macrophages would induce a more robust cytokine response than without cross-linking. We used a capture enzyme-linked immunosorbent assay and an immunprecipitation assay to directly demonstrate that MHCI molecules bind SEA. Directly cross-linking MHCI using monoclonal antibodies or cross-linking bound SEA with an anti-SEA antibody or biotinylated SEA with avidin increased TNF-alpha and IL-6 secretion by MHCII(-/-) macrophages. The induction of a vigorous macrophage cytokine response by SEA/anti-SEA cross-linking of MHCI offers a mechanism to explain how MHCI could play an important role in superantigen-mediated pathogenesis. Copyright 1999 Academic Press.

  12. Determination of the parameters controlling swelling of chemically cross-linked pH-sensitive poly(N-vinylimidazole) hydrogels.

    PubMed

    Molina, M Jesús; Gómez-Antón, M Rosa; Piérola, Inés F

    2007-10-25

    The number of variables controlling the behavior of ionic gels is large and very often some of them are unknown. The aim of this work is to interpret quantitatively the swelling behavior of pH sensitive gels, with the minimum number of simplifying assumptions. With this purpose, the equilibrium degree of swelling (S) and protonation (alpha) of chemically cross-linked poly(N-vinylimidazole) (PVI) immersed in aqueous salt solutions were measured as a function of the ionic strength (mu), in the whole range of pH. In acid solutions with pH in the range 0 to 4, imidazole moieties become protonated, and PVI behaves as a polyelectrolyte gel: S decreases upon increasing mu both for NaCl and for CaCl(2), with HCl as protonating acid. In aqueous solutions with larger pH, between 4 and 12, the hydrogel is practically neutral, and S increases as mu rises, showing a salting-in effect. From the quantitative analysis of these results, the following facts emerged. Protonation induces chain stiffness (as measured by the non-Gaussian factor) and worsening of the solvent quality of the aqueous media (as measured by the polymer-solvent interaction parameter). For alpha below 33%, swelling seems to be governed by the excess of mobile counterions inside the gel with respect to the bath, with a minor but still significantly negative contribution of the osmotic swelling pressure due to polymer-solvent mixing. Above 33% protonation, it is necessary to consider Manning counterion condensation to get parameters with physical meaning. The crossover between polyelectrolyte and salting-in effects corresponds to alpha and mu values with the same ionic and mixing contributions to the osmotic swelling pressure. The formation of ionic nonpermanent cross-links, with H(2)SO(4) as the protonating acid, was discarded.

  13. Collagen Cross-Linking Using Riboflavin and Ultraviolet-A for Corneal Thinning Disorders

    PubMed Central

    Pron, G; Ieraci, L; Kaulback, K

    2011-01-01

    Executive Summary Objective The main objectives for this evidence-based analysis were to determine the safety and effectiveness of photochemical corneal collagen cross-linking with riboflavin (vitamin B2) and ultraviolet-A radiation, referred to as CXL, for the management of corneal thinning disease conditions. The comparative safety and effectiveness of corneal cross-linking with other minimally invasive treatments such as intrastromal corneal rings was also reviewed. The Medical Advisory Secretariat (MAS) evidence-based analysis was performed to support public financing decisions. Subject of the Evidence-Based Analysis The primary treatment objective for corneal cross-linking is to increase the strength of the corneal stroma, thereby stabilizing the underlying disease process. At the present time, it is the only procedure that treats the underlying disease condition. The proposed advantages for corneal cross-linking are that the procedure is minimally invasive, safe and effective, and it can potentially delay or defer the need for a corneal transplant. In addition, corneal cross-linking does not adversely affect subsequent surgical approaches, if they are necessary, or interfere with corneal transplants. The evidence for these claims for corneal cross-linking in the management of corneal thinning disorders such as keratoconus will be the focus of this review. The specific research questions for the evidence review were as follows: Technical: How technically demanding is corneal cross-linking and what are the operative risks? Safety: What is known about the broader safety profile of corneal cross-linking? Effectiveness - Corneal Surface Topographic Affects: What are the corneal surface remodeling effects of corneal cross-linking? Do these changes interfere with subsequent interventions, particularly corneal transplant known as penetrating keratoplasty (PKP)? Effectiveness -Visual Acuity: What impacts does the remodeling have on visual acuity? Are these impacts

  14. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors: An Investigation of Design Flexibility.

    PubMed

    Kumar, E K Pramod; Jølck, Rasmus I; Andresen, Thomas L

    2015-09-01

    The design flexibility that polymeric micelles offer in the fabrication of optical nanosensors for ratiometric pH measurements is investigated. pH nanosensors based on polymeric micelles are synthesized either by a mixed-micellization approach or by a postmicelle modification strategy. In the mixed-micellization approach, self-assembly of functionalized unimers followed by shell cross-linking by copper-catalyzed azide-alkyne cycloaddition (CuAAC) results in stabilized cRGD-functionalized micelle pH nanosensors. In the postmicelle modification strategy, simultaneous cross-linking and fluorophore conjugation at the micelle shell using CuAAC results in a stabilized micelle pH nanosensor. Compared to the postmicelle modification strategy, the mixed-micellization approach increases the control of the overall composition of the nanosensors. Both approaches provide stable nanosensors with similar pKa profiles and thereby nanosensors with similar pH sensitivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Doubly tagged delayed-choice tunable quantum eraser: coherence, information and measurement

    NASA Astrophysics Data System (ADS)

    Imran, Muhammad; Tariq, Hinna; Rameez-ul-Islam; Ikram, Manzoor

    2018-01-01

    We present an idea for the doubly tagged delayed-choice tunable quantum eraser in a cavity QED setup, based on fully controlled resonant as well as dispersive atom-field interactions. Two cavity fields, bound initially in the Bell state, are coupled to a three-level atom. Such an atom is initially prepared in the coherent superposition of the lower two levels and is quite capable of exhibiting Ramsey fringes if taken independently. It is shown that the coherence lost due to tagging can not only be retrieved but that the fringe visibility/path distinguishability can also be conditionally tuned in a delayed manner through local manipulation of the entangled cavity fields. The stringent condition here is the retainment of the system’s coherence during successive manipulations of the individual cavity fields. Such a quantum eraser, therefore, prominently highlights the links among all the counterintuitive features of quantum theory including the conception of time, measurement, state vector reduction, coherence and information in an unambiguous manner. The schematics can be straightforwardly extended to a multipartite scenario and employed to explore multi-player quantum games with the payoff being strangely decided through delayed choice setups.

  16. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, Nenad M.; Chen, Jian

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme.

  17. Advanced Sodium Ion Battery Anode Constructed via Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder.

    PubMed

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Li, Xiaolin; Peng, Huisheng; Wang, Donghai

    2015-12-22

    Maintaining structural stability is a great challenge for high-capacity conversion electrodes with large volume change but is necessary for the development of high-energy-density, long-cycling batteries. Here, we report a stable phosphorus anode for sodium ion batteries by the synergistic use of chemically bonded phosphorus-carbon nanotube (P-CNT) hybrid and cross-linked polymer binder. The P-CNT hybrid was synthesized through ball-milling of red phosphorus and carboxylic group functionalized carbon nanotubes. The P-O-C bonds formed in this process help maintain contact between phosphorus and CNTs, leading to a durable hybrid. In addition, cross-linked carboxymethyl cellulose-citric acid binder was used to form a robust electrode. As a result, this anode delivers a stable cycling capacity of 1586.2 mAh/g after 100 cycles, along with high initial Coulombic efficiency of 84.7% and subsequent cycling efficiency of ∼99%. The unique electrode framework through chemical bonding strategy reported here is potentially inspirable for other electrode materials with large volume change in use.

  18. Nucleic acid duplexes incorporating a dissociable covalent base pair

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  19. Nucleic acid duplexes incorporating a dissociable covalent base pair

    PubMed Central

    Gao, Kui; Orgel, Leslie E.

    1999-01-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure. PMID:10611299

  20. A facile approach toward multifunctional polyethersulfone membranes via in situ cross-linked copolymerization.

    PubMed

    Sun, Chuangchao; Ji, Haifeng; Qin, Hui; Nie, Shengqiang; Zhao, Weifeng; Zhao, Changsheng

    2015-01-01

    In this study, multifunctional polyethersulfone (PES) membranes are prepared via in situ cross-linked copolymerization coupled with a liquid-liquid phase separation technique. Acrylic acid (AA) and N-vinylpyrrolidone (VP) are copolymerized in PES solution, and the solution is then directly used to prepare PES membranes. The infrared and X-ray photoelectron spectroscopy testing, scanning electron microscopy, and water contact angle measurements confirm the successful modification of pristine PES membrane. Protein adsorption, platelet adhesion, plasma recalcification time, and activated partial thromboplastin time assays convince that the modified PES membranes have a better biocompatibility than pristine PES membrane. In addition, the modified membranes showed good protein antifouling property and significant adsorption property of cationic dye. The loading of Ag nanoparticles into the modified membranes endows the composite membranes with antibacterial activity.

  1. Covariate selection with group lasso and doubly robust estimation of causal effects.

    PubMed

    Koch, Brandon; Vock, David M; Wolfson, Julian

    2018-03-01

    The efficiency of doubly robust estimators of the average causal effect (ACE) of a treatment can be improved by including in the treatment and outcome models only those covariates which are related to both treatment and outcome (i.e., confounders) or related only to the outcome. However, it is often challenging to identify such covariates among the large number that may be measured in a given study. In this article, we propose GLiDeR (Group Lasso and Doubly Robust Estimation), a novel variable selection technique for identifying confounders and predictors of outcome using an adaptive group lasso approach that simultaneously performs coefficient selection, regularization, and estimation across the treatment and outcome models. The selected variables and corresponding coefficient estimates are used in a standard doubly robust ACE estimator. We provide asymptotic results showing that, for a broad class of data generating mechanisms, GLiDeR yields a consistent estimator of the ACE when either the outcome or treatment model is correctly specified. A comprehensive simulation study shows that GLiDeR is more efficient than doubly robust methods using standard variable selection techniques and has substantial computational advantages over a recently proposed doubly robust Bayesian model averaging method. We illustrate our method by estimating the causal treatment effect of bilateral versus single-lung transplant on forced expiratory volume in one year after transplant using an observational registry. © 2017, The International Biometric Society.

  2. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, N.M.; Chen, J.

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme. No Drawings

  3. Cellulose Nanofibrils Aerogel Cross-Linked by Poly(vinyl alcohol) and Acrylic Acid for Efficient and Recycled Adsorption with Heavy Metal Ions.

    PubMed

    She, Jiarong; Tian, Cuihua; Wu, Yiqiang; Li, Xianjun; Luo, Sha; Qing, Yan; Jiang, Zheng

    2018-06-01

    Cellulose nanofibrils (CNFs), disintegrated from natural fibers, are promising alternatives in wastewater purification for the porous structure and numerous hydroxyls. The pristine CNFs aerogel has limited mechanical strength and are vulnerable to collapse when exposed to water. In this work, eco-friendly and recycled CNFs aerogel adsorbents were successfully prepared using cellulose nanofibrils (CNFs), which cross-linked by poly(vinyl alcohol) (PVA) and acrylic acid (AA). The combination of PVA and AA endowed CNFs aerogel strong three-dimensional porous structure and desirable adsorption properties. The heavy metal ions were adsorbed on the CNFs-PVA-AA (CPA) adsorbents efficiently and the maximum adsorption capacities for Cu2+ and Pb2+ approached 30.0 mg/g and 131.5 mg/g, respectively. The CPA adsorbent also showed excellent reusability and their adsorption capacities maintained 89% and 88% for Cu2+ and Pb2+ after 5 repeated uses. The adsorption of these heavy metal ions were confirmed to follow pseudo-second-order kinetic and Langmuir isotherm model. The functions of C ═ O and -OH were the major adsorption sites. Chemical adsorption combined with the porous physical adsorption made the CPA to be excellent adsorbent for the removal of heavy metal ions in wastewater.

  4. Skin bacterial flora as a potential risk factor predisposing to late bacterial infection after cross-linked hyaluronic acid gel augmentation.

    PubMed

    Netsvyetayeva, Irina; Marusza, Wojciech; Olszanski, Romuald; Szyller, Kamila; Krolak-Ulinska, Aneta; Swoboda-Kopec, Ewa; Sierdzinski, Janusz; Szymonski, Zachary; Mlynarczyk, Grazyna

    2018-01-01

    Cross-linked hyaluronic acid (HA) gel is widely used in esthetic medicine. Late bacterial infection (LBI) is a rare, but severe complication after HA augmentation. The aim of this study was to determine whether patients who underwent the HA injection procedure and developed LBI had qualitatively different bacterial flora on the skin compared to patients who underwent the procedure without any complications. The study group comprised 10 previously healthy women with recently diagnosed, untreated LBI after HA augmentation. The control group comprised 17 healthy women who had a similar amount of HA injected with no complications. To assess the difference between the two groups, their skin flora was cultured from nasal swabs, both before and after antibiotic treatment in the study group. A significant increase in the incidence of Staphylococcus epidermidis was detected in the control group ( P =0.000) compared to the study group. The study group showed a significantly higher incidence of Staphylococcus aureus ( P =0.005), Klebsiella pneumoniae ( P =0.006), Klebsiella oxytoca ( P =0.048), and Staphylococcus haemolyticus ( P =0.048) compared to the control group. The bacterial flora on the skin differed in patients with LBI from the control group. The control group's bacterial skin flora was dominated by S. epidermidis . Patients with LBI had a bacterial skin flora dominated by potentially pathogenic bacteria.

  5. Developing and physicochemical evaluation of cross-linked electrospun gelatin-glycerol nanofibrous membranes for medical applications

    NASA Astrophysics Data System (ADS)

    Morsy, Reda; Hosny, Marwa; Reicha, Fikry; Elnimr, Tarek

    2017-05-01

    This study aims to develop optimal cross-linked electrospun gelatin-glycerol (GEL-GLY) nano-fibrous mats suitable for tissue engineering and wound dressing applications. The optimized procedure involves heating the gelatin and gelatin-glycerol solutions up to 90 °C. The electrospinning process was performed, followed by further cross-linking of electrospun films in a container containing glutaraldehyde (GTA) vapor. The results of X-ray diffraction (XRD), Fourier transformed infrared (FTIR), and Differential thermal analysis (DTA) confirmed that heating gelatin solution up to 90 °C in the presence of glycerol affected the cross-linking efficiency and interactions between GTA molecules and gelatin chains. Scanning Electron Microscope (SEM) analysis showed that GEL-GLY nano-fibrous mats with weight ratios less than or equal (12:3 w/w) exhibited a regular morphology with defect free in addition to increasing the degradation time, cross-linking efficiency, and swelling degree of electrospun gelatin/glycerol.

  6. Collision-induced dissociative chemical cross-linking reagents and methodology: Applications to protein structural characterization using tandem mass spectrometry analysis.

    PubMed

    Soderblom, Erik J; Goshe, Michael B

    2006-12-01

    Chemical cross-linking combined with mass spectrometry is a viable approach to study the low-resolution structure of protein and protein complexes. However, unambiguous identification of the residues involved in a cross-link remains analytically challenging. To enable a more effective analysis across various MS platforms, we have developed a novel set of collision-induced dissociative cross-linking reagents and methodology for chemical cross-linking experiments using tandem mass spectrometry (CID-CXL-MS/MS). These reagents incorporate a single gas-phase cleavable bond within their linker region that can be selectively fragmented within the in-source region of the mass spectrometer, enabling independent MS/MS analysis for each peptide. Initial design concepts were characterized using a synthesized cross-linked peptide complex. Following verification and subsequent optimization of cross-linked peptide complex dissociation, our reagents were applied to homodimeric glutathione S-transferase and monomeric bovine serum albumin. Cross-linked residues identified by our CID-CXL-MS/MS method were in agreement with published crystal structures and previous cross-linking studies using conventional approaches. Common LC/MS/MS acquisition approaches such as data-dependent acquisition experiments using ion trap mass spectrometers and product ion spectral analysis using SEQUEST were shown to be compatible with our CID-CXL-MS/MS reagents, obviating the requirement for high resolution and high mass accuracy measurements to identify both intra- and interpeptide cross-links.

  7. Dynamic Droop–Based Inertial Control of a Doubly-Fed Induction Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Min; Muljadi, Eduard; Park, Jung-Wook

    2016-07-01

    If a large disturbance occurs in a power grid, two auxiliary loops for the inertial control of a wind turbine generator have been used: droop loop and rate of change of frequency (ROCOF) loop. Because their gains are fixed, difficulties arise in determining them suitable for all grid and wind conditions. This paper proposes a dynamic droop-based inertial control scheme of a doubly-fed induction generator (DFIG). The scheme aims to improve the frequency nadir (FN) and ensure stable operation of a DFIG. To achieve the first goal, the scheme uses a droop loop, but it dynamically changes its gain basedmore » on the ROCOF to release a large amount of kinetic energy during the initial stage of a disturbance. To do this, a shaping function that relates the droop to the ROCOF is used. To achieve the second goal, different shaping functions, which depend on rotor speeds, are used to give a large contribution in high wind conditions and prevent over-deceleration in low wind conditions during inertial control. The performance of the proposed scheme was investigated under various wind conditions using an EMTP-RV simulator. The results indicate that the scheme improves the FN and ensures stable operation of a DFIG.« less

  8. Surgery for doubly committed ventricular septal defects.

    PubMed

    Shamsuddin, Ahmad Mahir; Chen, Yen Chuan; Wong, Abdul Rahim; Le, Trong-Phi; Anderson, Robert H; Corno, Antonio F

    2016-08-01

    Doubly committed ventricular septal defects (VSDs) account for up to almost one-third of isolated ventricular septal defects in Asian countries, compared with only 1/20th in western populations. In our surgical experience, this type of defect accounted for almost three-quarters of our practice. To date, patch closure has been considered the gold standard for surgical treatment of these lesions. Our objectives are to evaluate the indications and examine the outcomes of surgery for doubly committed VSDs. Between October 2013, when our service of paediatric cardiac surgery was opened, and December 2014, 24 patients were referred for surgical closure of VSDs. Among them, 17 patients (71%), with the median age of 6 years, ranging from 2 to 9 years, and with a median body weight of 19 kg, ranging from 11 to 56 kg, underwent surgical repair for doubly committed defects. In terms of size, the defect was considered moderate in 4 and large in 13. Aortic valvular regurgitation (AoVR) was present in 11 patients (65%) preoperatively, with associated malformations found in 14 (82%), with 5 patients (29%) having two or more associated defects. After surgery, there was trivial residual shunting in 2 patients (12%). AoVR persisted in 6 (35%), reducing to trivial in 5 (29%) and mild in 1 (6%). Mean stays in the intensive care unit and hospital were 2.6 ± 1.2 days, ranging from 2 to 7 days, and 6.8 ± 0.8 days, ranging from 6 to 9 days, respectively. The mean follow-up was 14 ± 4 months, ranging from 6 to 20 months, with no early or late deaths and without clinical deterioration. The incidence of doubly committed lesions is high in our experience, frequently associated with AoVR and other associated malformation. Early detection is crucial to prevent further progression of the disease. Patch closure remains the gold standard in management, not least since it allows simultaneous repair of associated intracardiac defects. © The Author 2016. Published by Oxford University Press on

  9. Electron Bremsstrahlung Cross Sections at 25 and 50 keV from Xe and Kr

    NASA Astrophysics Data System (ADS)

    Portillo, Salvador; Quarles, C. A.

    2002-05-01

    Absolute doubly differential bremsstrahlung cross sections for radiation at 90 from 25 and 50 keV electron bombardment of Kr and Xe of will be presented. The electrons were accelerated by a Cockcroft - Walton accelerator into an Al chamber through a .06" Al collimator. Thick target bremsstrahlung background was minimized by having Al nipples and fixtures and by the addition of a carbon lined nipple placed at 180 to the SiLi detector. A comparison of the doubly differential cross sections will be made with current bremsstrahlung theories. The ratio of the Kr and Xe cross sections will also be compared with the theoretical cross section ratios. The ratio provides a more sensitive test of the contribution, if any, of polarization bremsstrahlung.

  10. Cross-linking connectivity in bone collagen fibrils: the COOH-terminal locus of free aldehyde

    NASA Technical Reports Server (NTRS)

    Otsubo, K.; Katz, E. P.; Mechanic, G. L.; Yamauchi, M.

    1992-01-01

    Quantitative analyses of the chemical state of the 16c residue of the alpha 1 chain of bone collagen were performed on samples from fetal (4-6-month embryo) and mature (2-3 year old) bovine animals. All of this residue could be accounted for in terms of three chemical states, in relative amounts which depended upon the age of the animal. Most of the residue was incorporated into either bifunctional or trifunctional cross-links. Some of it, however, was present as free aldehyde, and the content increased with maturation. This was established by isolating and characterizing the aldehyde-containing peptides generated by tryptic digestion of NaB3H4-reduced mature bone collagen. We have concluded that the connectivity of COOH-terminal cross-linking in bone collagen fibrils changes with maturation in the following way: at first, each 16c residue in each of the two alpha 1 chains of the collagen molecule is incorporated into a sheet-like pattern of intermolecular iminium cross-links, which stabilizes the young, nonmineralized fibril as a whole. In time, some of these labile cross-links maturate into pyridinoline while others dissociate back to their precursor form. The latter is likely due to changes in the molecular packing brought about by the mineralization of the collagen fibrils. The resultant reduction in cross-linking connectivity may provide a mechanism for enhancing certain mechanical characteristics of the skeleton of a mature animal.

  11. Cross-linked collagen sponges loaded with plant polyphenols with inhibitory activity towards chronic wound enzymes.

    PubMed

    Antonio, Francesko; Guillem, Rocasalbas; Sonia, Touriño; Clara, Mattu; Piergiorgio, Gentile; Valeria, Chiono; Gianluca, Ciardelli; Tzanov, Tzanko

    2011-10-01

    Collagen sponges loaded with polyphenols from Hamamelis virginiana were investigated as active materials for chronic wound dressings, evaluating in vitro the inhibition of two major enzymes that impair the wound healing process - myeloperoxidase (MPO) and collagenase. Prior to polyphenols loading, collagen was cross-linked with genipin to improve its biostability. The effect of genipin cross-linking and polyphenol concentration in the development of mechanically and enzymatically stable sponges was studied. The tensile strength of the cross-linked collagen increased with the increase of the cross-linking degree, coupled to decrease in the elongation and the swelling capacity of the sponges. The stability of the sponges to collagenase digestion reached maximum when 1 mM genipin was used. However, the biostability decreased more than 10-fold after loading the sponges with polyphenols (0.5 mg/mL), nevertheless, this effect was partially overcome using higher concentration of polyphenols (1 and 2 mg/mL) to inhibit collagenase. Moreover, the polyphenols released from the sponges were sufficient for complete inhibition of MPO activity. No considerable cytotoxicity of the genipin cross-linked collagen loaded with polyphenols was observed evaluating the NIH 3T3 fibroblasts viability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics.

    PubMed

    Lai, Jui-Yang; Ma, David Hui-Kang

    2013-01-01

    Given that the cells can sense nanometer dimensions, the chemical cross-linking-mediated alteration in fibrillar structure of collagenous tissue scaffolds is critical to determining their cell culture performances. This article explores, for the first time, the effect of nanofibrous structure of glutaraldehyde (GTA) cross-linked amniotic membrane (AM) on limbal epithelial cell (LEC) cultivation. Results of ninhydrin assays demonstrated that the amount of new cross-links formed between the collagen chains is significantly increased with increasing the cross-linking time from 1 to 24 hours. By transmission electron microscopy, the AM treated with GTA for a longer duration exhibited a greater extent of molecular aggregation, thereby leading to a considerable increase in nanofiber diameter and resistance against collagenase degradation. In vitro biocompatibility studies showed that the samples cross-linked with GTA for 24 hours are not well-tolerated by the human corneal epithelial cell cultures. When the treatment duration is less than 6 hours, the biological tissues cross-linked with GTA for a longer time may cause slight reductions in 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt, and anti-inflammatory activities. Nevertheless, significant collagen molecular aggregation also enhances the stemness gene expression, indicating a high ability of these AM matrices to preserve the progenitors of LECs in vitro. It is concluded that GTA cross-linking of collagenous tissue materials may affect their nanofibrous structures and corneal epithelial stem cell culture characteristics. The AM treated with GTA for 6 hours holds promise for use as a niche for the expansion and transplantation of limbal epithelial progenitor cells.

  13. Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics

    PubMed Central

    Lai, Jui-Yang; Ma, David Hui-Kang

    2013-01-01

    Given that the cells can sense nanometer dimensions, the chemical cross-linking-mediated alteration in fibrillar structure of collagenous tissue scaffolds is critical to determining their cell culture performances. This article explores, for the first time, the effect of nanofibrous structure of glutaraldehyde (GTA) cross-linked amniotic membrane (AM) on limbal epithelial cell (LEC) cultivation. Results of ninhydrin assays demonstrated that the amount of new cross-links formed between the collagen chains is significantly increased with increasing the cross-linking time from 1 to 24 hours. By transmission electron microscopy, the AM treated with GTA for a longer duration exhibited a greater extent of molecular aggregation, thereby leading to a considerable increase in nanofiber diameter and resistance against collagenase degradation. In vitro biocompatibility studies showed that the samples cross-linked with GTA for 24 hours are not well-tolerated by the human corneal epithelial cell cultures. When the treatment duration is less than 6 hours, the biological tissues cross-linked with GTA for a longer time may cause slight reductions in 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt, and anti-inflammatory activities. Nevertheless, significant collagen molecular aggregation also enhances the stemness gene expression, indicating a high ability of these AM matrices to preserve the progenitors of LECs in vitro. It is concluded that GTA cross-linking of collagenous tissue materials may affect their nanofibrous structures and corneal epithelial stem cell culture characteristics. The AM treated with GTA for 6 hours holds promise for use as a niche for the expansion and transplantation of limbal epithelial progenitor cells. PMID:24204144

  14. Doubly stochastic Poisson processes in artificial neural learning.

    PubMed

    Card, H C

    1998-01-01

    This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.

  15. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Tsung-Han; Ertem, S. Piril; Maes, Ashley M.

    2015-01-28

    Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scatteringmore » experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity.« less

  16. Two DD-carboxypeptidases from Mycobacterium smegmatis affect cell surface properties through regulation of peptidoglycan cross-linking and glycopeptidolipids.

    PubMed

    Pandey, Satya Deo; Pal, Shilpa; Kumar N, Ganesh; Bansal, Ankita; Mallick, Sathi; Ghosh, Anindya S

    2018-05-07

    During the peptidoglycan (PG) maturation of mycobacteria, the glycan strands are interlinked by both 3-3 (between two meso-DAP) and 4-3 cross-links (between D-ala and meso-DAP), though there is a predominance (60-80%) of 3-3 cross-links. The DD-CPases act on pentapeptides to generate tetrapeptides that are used by LD-transpeptidases as substrates to form 3-3 cross-links. Therefore, DD-CPases play a crucial role in mycobacterial PG cross-link formation. However, the physiology of DD-CPases in mycobacteria is relatively unexplored. Here, we deleted two DD-CPase genes, msmeg_2433 , and msmeg_2432 , both individually and in combination, from Mycobacterium smegmatis mc 2 155. Though the single DD-CPase deletions had no significant impact on the mycobacterial physiology, many interesting functional alterations were observed in the double deletion mutant, viz. , a predominance in PG cross-link formation was shifted from 3-3 cross-links to 4-3, cell surface glycopeptidolipid (GPL) expression was reduced and susceptibility towards β-lactams and anti-tubercular agents was enhanced. Moreover, the existence of the double mutant within murine macrophages was better as compared to the parent. Interestingly, the complementation with any one of the DD-CPase genes could restore the wild-type phenotype. In a nutshell, we infer that the altered ratio of 4-3: 3-3 PG cross-links might have influenced the expression of surface GPLs, colony morphology, biofilm formation,, drug susceptibility and subsistence of the cells within macrophages. Importance The glycan strands in mycobacterial peptidoglycan (PG) are interlinked by both 3-3 and 4-3 cross-links. The DD-CPases generate tetrapeptides by acting on the pentapeptides, and LD-transpeptidases use tetrapeptides as substrates to form 3-3 cross-links. Here, we showed that simultaneous deletions of two DD-CPases alter the nature of PG cross-linking from 3-3 cross-links to 4-3 cross-links. The deletions subsequently decrease the expression

  17. PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

  18. Lethality to leukemia cell lines of DNA interstrand cross-links generated by Cloretazine derived alkylating species

    PubMed Central

    Penketh, Philip G.; Baumann, Raymond P.; Ishiguro, Kimiko; Shyam, Krishnamurthy; Seow, Helen A.; Sartorelli, Alan C.

    2010-01-01

    Cloretazine [1, 2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(methylamino)carbonyl]-hydrazine; VNP40101M; 101M] is a relatively new prodrug with activity in elderly acute myelogenous leukemia patients. Its therapeutic action is due largely to the production of 1-(3-cytosinyl),2-(1-guanyl)ethane cross-links (G-C ethane cross-links) in DNA. The number of cross-links produced in three experimental leukemia lines (L1210, U937 and HL-60) were fewer than 10 per genome at their respective LC50 concentrations. Only 1 in approximately 20,000 90CE molecules produce a cross-link in the AGT (O6-alkylguanine-DNA alkyltransferase) negative L1210 and U937 cell lines and 1 in 400,000 in the AGT positive HL-60 cell line. PMID:18479747

  19. A Comparison of Different Teaching Designs of "Acids and Bases" Subject

    ERIC Educational Resources Information Center

    Ültay, Neslihan; Çalik, Muammer

    2016-01-01

    Inability to link the acid-base concepts with daily life phenomena (as contexts) highlights the need for further research on the context-based acid-base chemistry. In this vein, the aim of this study is to investigate the effects of different teaching designs (REACT strategy, 5Es learning model and traditional (existing) instruction) relevant with…

  20. Electro-Responsive Behaviour Multi-Wall Nanotubes/Gelatin Composites and Cross-Linked Gelatin Electrospun Mats

    DTIC Science & Technology

    2008-02-11

    sample , could explain large swelling in blend samples which might enhance ions diffusion and lead to an increase of bending. 21 References [1...1 Final Report on Electro-responsive behaviour multi-wall nanotubes/gelatin composites and cross-linked gelatin electrospun mats...12-10-2007 4. TITLE AND SUBTITLE Electro-responsive behaviour multi-wall nanotubes/gelatin composites and cross-linked gelatin electrospun mats