Sample records for acid-grafted coir pith

  1. Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith.

    PubMed

    Suksabye, Parinda; Thiravetyan, Paitip

    2012-07-15

    Coir pith samples were chemically modified by grafting with acrylic acid for the removal of Cr(VI) from electroplating wastewater. The presence of acrylic acid on the coir pith surface was verified by a scanning electron microscope with an electron dispersive x-ray spectrometer (SEM/EDX), Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TG). The carbonyl groups (C==O) from the carboxylic acids (COOH) increased on the coir pith surface after grafting with acrylic acid. In addition, the thermal stability of the acrylic acid-grafted coir pith also improved. The optimum conditions for grafting the acrylic acid on the coir pith consisted of 2 M acrylic acid and 0.00125 M ceric ammonium nitrate (CAN, as an initiator). The maximum Cr(VI) removal (99.99 ± 0.07%) was obtained with the following conditions: a 1.3% (w/v) dosage of acrylic acid-grafted coir pith, a system pH of 2, a contact time of 22 h, a temperature of 30 °C, a particle size of <150 μm and an initial Cr(VI) of 1,171 mg l(-1). At system pH of 2, Cr(VI) in the HCrO(4)(-) form can be adsorbed with acrylic acid-grafted coir pith via an electrostatic attraction. The adsorption isotherm of 2 M acrylic acid-grafted coir pith exhibited a good fit with the Langmuir isotherm. The maximum Cr(VI) adsorption capacity of the 2 M acrylic acid-grafted coir pith was 196.00 mg Cr(VI) g(-1) adsorbent, whereas for coir pith without grafting, the maximum Cr(VI) removal was 165.00 mg Cr(VI) g(-1) adsorbent. The adsorption capacity of the acrylic acid-grafted coir pith for Cr(VI) was higher compared to the original coir pith. This result was due to the enhancement of the carbonyl groups on the coir pith surface that may have involved the mechanism of chromium adsorption. The X-ray absorption near edged structure (XANES) and desorption studies suggested that most of the Cr(III) that presented on the acrylic acid-grafted coir pith was due to the Cr(VI) being reduced to Cr(III) on the adsorbent surface. FTIR

  2. Chromium removal from electroplating wastewater by coir pith.

    PubMed

    Suksabye, Parinda; Thiravetyan, Paitip; Nakbanpote, Woranan; Chayabutra, Supanee

    2007-03-22

    Coir pith is a by-product from padding used in mattress factories. It contains a high amount of lignin. Therefore, this study investigated the use of coir pith in the removal of hexavalent chromium from electroplating wastewater by varying the parameters, such as the system pH, contact time, adsorbent dosage, and temperature. The maximum removal (99.99%) was obtained at 2% (w/v) dosage, particle size <75microm, at initial Cr(VI) 1647mgl(-1), system pH 2, and an equilibrium time of 18h. The adsorption isotherm of coir pith fitted reasonably well with the Langmuir model. The maximum Cr(VI) adsorption capacity of coir pith at 15, 30, 45 and 60 degrees C was 138.04, 197.23, 262.89 and 317.65mgCr(VI)g(-1) coir pith, respectively. Thermodynamic parameters indicated an endothermic process and the adsorption process was favored at high temperature. Desorption studies of Cr(VI) on coir pith and X-ray absorption near edge structure (XANES) suggested that most of the chromium bound on the coir pith was in Cr(III) form due to the fact that the toxic Cr(VI) adsorbed on the coir pith by electrostatic attraction was easily reduced to less toxic Cr(III). Fourier transform infrared (FT-IR) spectrometry analysis indicated that the carbonyl (CO) groups and methoxy (O-CH(3)) groups from the lignin structure in coir pith may be involved in the mechanism of chromium adsorption. The reduced Cr(III) on the coir pith surface may be bound with CO groups and O-CH(3) groups through coordinate covalent bonding in which a lone pair of electrons in the oxygen atoms of the methoxy and carbonyl groups can be donated to form a shared bond with Cr(III).

  3. Use of coir pith particles in composites with Portland cement.

    PubMed

    Brasileiro, Gisela Azevedo Menezes; Vieira, Jhonatas Augusto Rocha; Barreto, Ledjane Silva

    2013-12-15

    Brazil is the fourth largest world's producer of coconut (Cocos nucifera L.). Coconut crops generate several wastes, including, coir pith. Coir pith and short fibers are the byproducts of extracting the long fibers and account for approximately 70% of the mature coconut husk. The main use of coir pith is as an agricultural substrate. Due to its shape and small size (0.075-1.2 mm), this material can be considered as a particulate material. The aim of this study was to evaluate the use of coir pith as an aggregate in cementitious composites and to evaluate the effect of the presence of sand in the performance of these composites. Some composites were produced exclusively with coir pith particles and other composites with coir pith partially substituting the natural sand. The cementitious composites developed were tested for their physical and mechanical properties and characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy to evaluate the effect of coir pith particles addition in cement paste and sand-cement-mortar. The statistical significance of the results was evaluated by one-way analysis of variance (ANOVA) test followed by multiple comparisons of the means by Tukey's test that showed that the composites with coir pith particles, with or without natural sand, had similar mechanical results, i.e., means were not statistically different at 5% significance level. There was a reduction in bulk density and an improved post-cracking behavior in the composites with coir pith particles compared to conventional mortar and to cement paste. These composites can be used for the production of lightweight, nonstructural building materials, according to the values of compressive strength (3.97-4.35 MPa) and low bulk density (0.99-1.26 g/cm(3)). Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Adsorption characteristics of cadmium(II) onto functionalized poly(hydroxyethylmethacrylate)-grafted coconut coir pith.

    PubMed

    Anirudhan, Thayyath Sreenivasan; Divya, Lekshmi; Rijith, Sreenivasan

    2010-07-01

    This study explored the feasibility of utilizing a novel adsorbent, poly(hydroxyethylmethacrylate)-grafted coconut coir pith with carboxyl functionality (PGCP-COOH) for the removal of cadmium(II) from water and wastewater. Maximum removal of 99.9% was observed for an initial concentration of 25 mg/L at pH 6.0 and adsorbent dose of 2.0 g/L. The first-order reversible kinetic model and Langmuir isotherm model were resulted in high correlation coefficients and described well the adsorption of Cd(II) onto PGCP-COOH. The complete removal of 22.4 mg/L Cd(II) from fertilizer industry wastewater was achieved by 2.0 g/L PGCP-COOH. The reusability of the PGCP-COOH for several cycles was demonstrated using 0.1 M HCl solution.

  5. Drying kinetics and mathematical modeling of hot air drying of coconut coir pith.

    PubMed

    Fernando, J A K M; Amarasinghe, A D U S

    2016-01-01

    Drying kinetics of coir pith was studied and the properties of compressed coir pith discs were analyzed. Coir pith particles were oven dried in the range of temperatures from 100 to 240 °C and the rehydration ability of compressed coir pith was evaluated by finding the volume expansion. The optimum drying temperature was found to be 140 °C. Hot air drying was carried out to examine the drying kinetics by allowing the coir pith particles to fluidize and circulate inside the drying chamber. Particle motion within the drying chamber closely resembled the particle motion in a flash dryer. The effective moisture diffusivity was found to increase from 1.18 × 10(-8) to 1.37 × 10(-8) m(2)/s with the increase of air velocity from 1.4 to 2.5 m/s respectively. Correlation analysis and residual plots were used to determine the adequacy of existing mathematical models for describing the drying behavior of coir pith. The empirical models, Wang and Singh model and Linear model, were found to be adequate for accurate prediction of drying behavior of coir pith. A new model was proposed by modifying the Wang and Singh model and considering the effect of air velocity. It gave the best correlation between observed and predicted moisture ratio with high value of coefficient of determination (R(2)) and lower values of root mean square error, reduced Chi square (χ(2)) and mean relative deviation (E%).

  6. Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith.

    PubMed

    Suksabye, Parinda; Thiravetyan, Paitip; Nakbanpote, Woranan

    2008-12-15

    The removal of Cr(VI) from electroplating wastewater by coir pith was investigated in a fixed-bed column. The experiments were conducted to study the effect of important parameters such as bed depth (40-60cm) and flow rate (10-30ml min(-1)). At 0.05 C(t)/C(0), the breakthrough volume increased as flow rate decreased or a bed depth increased due to an increase in empty bed contact time (EBCT). The bed depth service time model (BDST) fit well with the experimental data in the initial region of the breakthrough curve, while the simulation of the whole curve using non-linear regression analysis was effective using the Thomas model. The adsorption capacity estimated from the BDST model was reduced with increasing flow rate, which was 16.40mg cm(-3) or 137.91mg Cr(VI)g(-1) coir pith for the flow rates of 10ml min(-1) and 14.05mg cm(-3) or 118.20mg Cr(VI)g(-1) coir pith for the flow rates of 30ml min(-1). At the highest bed depth (60cm) and the lowest flow rate (10mlmin(-1)), the maximum adsorption reached 201.47mg Cr(VI)g(-1) adsorbent according to the Thomas model. The column was regenerated by eluting chromium using 2M HNO(3) after adsorption studies. The desorption of Cr(III) in each of three cycles was about 67-70%. The desorption of Cr(III) in each cycle did not reach 100% due to the fact that Cr(V) was present through the reduction of Cr(VI), and was still in coir pith, possibly bound to glucose in the cellulose part of coir pith. Therefore, the Cr(V) complex cannot be desorbed in solution. The evidence of Cr(V) signal was observed in coir pith, alpha-cellulose and holocellulose extracted from coir pith using electron spin resonance (ESR).

  7. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon.

    PubMed

    Kavitha, D; Namasivayam, C

    2007-01-01

    Varying the parameters such as agitation time, dye concentration, adsorbent dose, pH and temperature carried out the potential feasibility of thermally activated coir pith carbon prepared from coconut husk for removal of methylene blue. Greater percentage of dye was removed with decrease in the initial concentration of dye and increase in amount of adsorbent used. Kinetic study showed that the adsorption of dye on coir pith carbon was a gradual process. Lagergren first-order, second-order, intra particle diffusion model and Bangham were used to fit the experimental data. Equilibrium isotherms were analysed by Langmuir, Freundlich, Dubnin-Radushkevich, and Tempkin isotherm. The adsorption capacity was found to be 5.87 mg/g by Langmuir isotherm for the particle size 250-500 microm. The equilibrium time was found to be 30 and 60 min for 10 and 20 mg/L and 100 min for 30, 40 mg/L dye concentrations, respectively. A maximum removal of 97% was obtained at natural pH 6.9 for an adsorbent dose of 100 mg/50 mL and 100% removal was obtained for an adsorbent dose of 600 mg/50 mL of 10 mg/L dye concentration. The pH effect and desorption studies suggest that chemisorption might be the major mode of the adsorption process. The change in entropy (DeltaS0) and heat of adsorption (DeltaH0) of coir pith carbon was estimated as 117.20 J/mol/K and 30.88 kJ/mol, respectively. The high negative value of change in Gibbs free energy indicates the feasible and spontaneous adsorption of methylene blue on coir pith carbon.

  8. Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies.

    PubMed

    Parab, Harshala; Joshi, Shreeram; Shenoy, Niyoti; Verma, Rakesh; Lali, Arvind; Sudersanan, M

    2005-07-01

    Basic aspects of uranium adsorption by coir pith have been investigated by batch equilibration. The influence of different experimental parameters such as final solution pH, adsorbent dosage, sorption time, temperature and various concentrations of uranium on uptake were evaluated. Maximum uranium adsorption was observed in the pH range 4.0-6.0. The Freundlich and Langmuir adsorption models were used for the mathematical description of the adsorption equilibrium. The equilibrium data fitted well to both the equilibrium models in the studied concentration range of uranium (200-800 mg/l) and temperatures (305-336 K). The coir pith exhibited the highest uptake capacity for uranium at 317 K, at the final solution pH value of 4.3 and at the initial uranium concentration of 800 mg/l. The kinetics of the adsorption process followed a second-order adsorption. The adsorbent used proved to be suitable for removal of uranium from aqueous solutions. 0.2 N HCl was effective in uranium desorption. The results indicated that the naturally abundant coir pith of otherwise nuisance value exhibited considerable potential for application in removal of uranium from aqueous solution.

  9. Engineering a lignocellulosic biosorbent--coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies.

    PubMed

    Parab, Harshala; Sudersanan, M

    2010-02-01

    A novel method of engineering lignocellulosic biosorbent- coir pith (CP) by incorporation of nickel hexacyanoferrate (NiHCF), also referred to as Prussian blue analogue (PBA) inside its porous matrix is reported. Structural characterization confirmed the successful synthesis of NiHCF in the coir pith matrix. Sorption capacity of coir pith (CP) before and after loading of NiHCF was investigated for cesium (Cs) in batch equilibrium studies. Kinetic studies showed that the sorption process was rapid and saturation was attained within 30 min. The applicability of non linear Langmuir, Freundlich and Redlich Peterson isotherms was examined for the experimental data. The present studies revealed that there was nearly 100% increase in the sorption capacity of CP after its surface modification with NiHCF. Owing to its low cost, fast sorption kinetics and high uptake capacity, coir pith loaded with NiHCF (CP-NiHCF) seems to be one of the most promising biosorbents for recovery of cesium from liquid nuclear wastes. (c) 2009 Elsevier Ltd. All rights reserved.

  10. Adsorptive removal of 2-chlorophenol by low-cost coir pith carbon.

    PubMed

    Namasivayam, C; Kavitha, D

    2003-03-17

    Adsorption of 2-chlorophenol (2-CP) by coir pith carbon was carried out by varying the parameters such as agitation time, 2-CP concentration, adsorbent dose, pH and temperature. Adsorption equilibrium reached at 40, 60, 80 and 100 min for 2-CP concentration of 10, 20, 30 and 40 mg/l, respectively. Adsorption followed second-order kinetics. The adsorption equilibrium data obeyed Freundlich isotherm. Acidic pH was favorable for the adsorption of 2-CP. Desorption studies showed that chemisorption plays a major role in the adsorption process. Copyright 2003 Elsevier Science B.V.

  11. Coconut coir pith lignin: A physicochemical and thermal characterization.

    PubMed

    Asoka Panamgama, L; Peramune, P R U S K

    2018-07-01

    The structural and thermal features of coconut coir pith lignin, isolated by three different extraction protocols incorporating two different energy supply sources, were characterized by different analytical tools. The three different chemical extraction protocols were alkaline - 7.5% (w/v) NaOH, organosolv - 85% (v/v) formic and acetic acids at 7:3 (v/v) ratio and polyethylene glycol (PEG): water ratio at 80:20wt%. The two sources of energy were thermal or microwave. Raw lignins were modified by epichlorohydrin to enhance reactivity, and the characteristics of raw and modified lignins were comparatively analysed. Using the thermal energy source, the alkaline and organosolv processes obtained the highest and lowest lignin yields of 26.4±1.5wt% and 3.4±0.2wt%, respectively, as shown by wet chemical analysis. Specific functional group analysis by Fourier transform infrared spectra (FTIR) revealed that significantly different amounts of hydroxyl and carbonyl groups exist in alkaline, organosolv and PEG lignins. Thermogravimetric analysis (TGA) illustrated that the lowest degradation onset temperature was recorded for organosolv lignin, and the overall order was organosolvcoir pith can be performed efficiently with several protocols and that those methods offer practical value to industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith.

    PubMed

    Krishnan, K Anoop; Haridas, Ajit

    2008-04-01

    Iron impregnated coir pith (CP-Fe-I) can be effectively used for the removal of phosphate from aqueous streams and sewage. Iron impregnation on natural coir pith was carried out by drop by drop addition method. The effect of various factors such as pH, initial concentration of phosphate, contact time and adsorbent dose on phosphate adsorption was studied by batch technique. The pH at 3.0 favored the maximum adsorption of phosphate from aqueous solutions. The effect of pH on phosphate adsorption was explained by pH(zpc), phosphate speciation in solution and affinity of anions towards the adsorbent sites. A comparative study of the adsorption of phosphate using CP-Fe-I and CP (coir pith) was made and results show that the former one is five to six times more effective than the latter. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Adsorption followed Langmuir isotherm model. Column studies were conducted to examine the utility of the investigated adsorbent for the removal of phosphate from continuously flowing aqueous solutions.

  13. Uptake of dyes by a promising locally available agricultural solid waste: coir pith.

    PubMed

    Namasivayam, C; Radhika, R; Suba, S

    2001-01-01

    The adsorption of rhodamine-B and acid violet by coir pith carbon was carried out by varying the parameters such as agitation time, dye concentration, adsorbent dose and pH. The adsorption followed both Langmuir and Freundlich isotherms. The adsorption capacity was found to be 2.56 mg and 8.06 mg dye per g of the adsorbent for rhodamine-B and acid violet, respectively. Adsorption of dyes followed first order rate kinetics. Acidic pH was favorable for the adsorption of acid violet and alkaline pH was favorable to rhodamine-B. Desorption studies showed that alkaline pH was favorable for the desorption of acid violet and acidic pH was favorable for the desorption of rhodamine-B.

  14. Expansive soil stabilization with coir waste and lime for flexible pavement subgrade

    NASA Astrophysics Data System (ADS)

    Narendra Goud, G.; Hyma, A.; Shiva Chandra, V.; Sandhya Rani, R.

    2018-03-01

    Expansive soil properties can be improved by various methods to make it suitable for construction of flexible pavement. The coir pith is the by-product (bio-waste) generated from coir industry during extraction of coir fiber from coconut husk. Openly disposed coir pith can make the surrounding areas unhygienic. This bio-waste can be one of the potential materials to stabilize the expansive soils. In the present study coir pith and lime are used as stabilizers. Different combinations of coir pith contents (1%, 2% and 3%) and lime contents (2%, 3% and 4%)are used to study the behavior of expansive soil. Unconfined compressive strength (UCS) of unstabilized and stabilized soils was determined. Optimum content of coir pith and lime are determined based on UCS of the soil. California bearing ratio of soil determined at optimum contents of coir pith and lime. Flexible pavement layer compositions for two levels of traffic using stabilized soil subgrade.

  15. Mercury(II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery.

    PubMed

    Anirudhan, T S; Divya, L; Ramachandran, M

    2008-09-15

    A new adsorbent (PGCP-COOH) having carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto coconut coir pith, CP (a coir industry-based lignocellulosic residue), using potassium peroxydisulphate as an initiator and in the presence of N,N'-methylenebisacrylamide as a cross-linking agent. The adsorbent was characterized with the help of infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and potentiometric titrations. The ability of PGCP-COOH to remove Hg(II) from aqueous solutions was assessed using batch adsorption technique under kinetic and equilibrium conditions. Adsorbent exhibits very high adsorption potential for Hg(II) and more than 99.0% removal was achieved in the pH range 5.5-8.0. Adsorption process was found to follow first-order-reversible kinetics. An increase of ionic strength of the medium caused a decrease in metal removal, indicating the occurrence of outer-sphere surface complex mechanism. The equilibrium data were fitted well by the Freundlich isotherm model (R(2)=0.99; chi(2)=1.81). The removal efficiency was tested using chlor-alkali industry wastewater. Adsorption isotherm experiments were also conducted for comparison using a commercial carboxylate-functionalized ion exchanger, Ceralite IRC-50. Regeneration experiments were tried for four cycles and results indicate a capacity loss of <9.0%.

  16. Removal of chromium(VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent.

    PubMed

    Namasivayam, C; Sureshkumar, M V

    2008-05-01

    Coconut coir pith, an agricultural solid waste was used as biosorbent for the removal of chromium(VI) after modification with a cationic surfactant, hexadecyltrimethylammonium bromide. Optimum pH for Cr(VI) adsorption was found to be 2.0. Reduction of Cr(VI) to Cr(III) occurred to a slight extent during the removal. Langmuir, Freundlich and Dubinin Radushkevich (D-R) isotherms were used to model the adsorption equilibrium data and the system followed all the three isotherms. The adsorption capacity of the biosorbent was found to be 76.3 mg g(-1), which is higher or comparable to the adsorption capacity of various adsorbents reported in literature. Kinetic studies showed that the adsorption obeyed second order and Elovich model. Thermodynamic parameters such as delta G0, delta H0 and delta S0 were evaluated, indicating that the overall adsorption process was endothermic and spontaneous. Effects of foreign anions were also examined. The adsorbent was also tested for the removal of Cr(VI) from electroplating effluent.

  17. Arsenic(V) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery.

    PubMed

    Anirudhan, T S; Unnithan, Maya R

    2007-01-01

    The performance of a new anion exchanger (AE) prepared from coconut coir pith (CP), for the removal of arsenic(V) [As(V)] from aqueous solutions was evaluated in this study. The adsorbent (CP-AE) carrying dimethylaminohydroxypropyl weak base functional group was synthesized by the reaction of CP with epichlorohydrin and dimethylamine followed by treatment of hydrochloric acid. IR spectroscopy results confirm the presence of -NH(+)(CH(3))(2)Cl(-) group in the adsorbent. XRD studies confirm the decrease of crystallinity in CP-AE compared to CP, and it favours the protrusion of the functional group into the aqueous medium. Batch experiments were conducted to examine the efficiency of the adsorbent on As(V) removal. Maximum removal of 99.2% was obtained for an initial concentration of 1 mgl(-1) As(V) at pH 7.0 and an adsorbent dose of 2 gl(-1). The kinetics of sorption of As(V) onto CP-AE was described using the pseudo-second-order model. The equilibrium isotherms were determined for different temperatures and the results were analysed using the Langmuir equation. The temperature dependence indicates an exothermic process. Utility of the adsorbent was tested by removing As(V) from simulated groundwater. Regeneration studies were performed using 0.1N HCl. Batch adsorption-desorption studies illustrate that CP-AE could be used to remove As(V) from ground water and other industrial effluents.

  18. Kinetic studies of adsorption of thiocyanate onto ZnCl2 activated carbon from coir pith, an agricultural solid waste.

    PubMed

    Namasivayam, C; Sangeetha, D

    2005-09-01

    The adsorption of thiocyanate onto ZnCl2 activated carbon developed from coir pith was investigated to assess the possible use of this adsorbent. The influence of various parameters such as agitation time, thiocyanate concentration, adsorbent dose, pH and temperature has been studied. Adsorption followed second-order rate kinetics. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 16.2 mg g(-1) of the adsorbent. The per cent adsorption was maximum in the pH range 3.0-7.0. pH effect and desorption studies showed that ion exchange and chemisorption mechanism are involved in the adsorption process. Thermodynamic parameters such as DeltaG0, DeltaH0 and DeltaS0 for the adsorption were evaluated. The negative values of DeltaH0 confirm the exothermic nature of adsorption. Effects of foreign ions on the adsorption of thiocyanate have been investigated. Removal of thiocyanate from ground water was also tested.

  19. Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir

    NASA Astrophysics Data System (ADS)

    Fatmawati, Akbarningrum; Agustriyanto, Rudy

    2015-12-01

    Biomass waste utilization for biofuel production such as bioethanol, has become more prominent currently. Coconut coir is one of lignocellulosic food wastes, which is abundant in Indonesia. Bioethanol production from such materials consists of more than one step. Pretreatment and enzymatic hydrolysis is crucial steps to produce sugar which can then be fermented into bioethanol. In this research, ground coconut coir was pretreated using dilute sulfuric acid at 121°C. This pretreatment had increased the cellulose content and decreased the lignin content of coconut coir. The pretreated coconut coir was hydrolyzed using a mix of two commercial cellulase enzymes at pH of 4.8 and temperature of 50°C. The enzymatic hydrolysis was conducted at several initial coconut coir slurry concentrations (0.1-2 g/100 mL) and reaction times (2-72 hours). The reducing sugar concentration profiles had been produced and can be used to obtain reaction rates. The highest reducing sugar concentration obtained was 1,152.567 mg/L, which was produced at initial slurry concentration of 2 g/100 mL and 72 hours reaction time. In this paper, the reducing sugar concentrations were empirically modeled as a function of reaction time using power equations. Michaelis-Menten kinetic model for enzymatic hydrolysis reaction is adopted. The kinetic parameters of that model for sulfuric acid-pretreated coconut coir enzymatic hydrolysis had been obtained which are Vm of 3.587×104 mg/L.h, and KM of 130.6 mg/L.

  20. Physical properties of coir and pineapple leaf fibre reinforced polylactic acid hybrid composites

    NASA Astrophysics Data System (ADS)

    Siakeng, R.; Jawaid, M.; Ariffin, H.; Sapuan, S. M.

    2018-01-01

    This study examined the physical behaviour of Coir fibres (CF)/Pineapple leaf fibres (PALF)/Poly lactic acid (PLA) composites. In this research, coir and PALF reinforced PLA hybrid composites were fabricated by hand lay-up process and hot press. The aim of this work is to do comparative study on density, water absorption (WA) and thickness swelling (TS) of untreated CF/PALF reinforced PLA composites and hybrid composites. The effect of different fibre ratios in hybridization on density, WA and TS of CF/PALF hybrid composites were also analyzed and C7P3 showed highest density while P30 had lowest. The results indicated that the density varies on different fibre ratio. WA and TS of CF/PALF composites and hybrid composites vary with fibres ratio and soaking duration. WA and TS of untreated CF/PALF hybrid composites were increased by increasing coir fibre ratio so, C30 showed highest WA and TS whereas P30 and C1P1 showed least WA and TS respectively apart from neat PLA.

  1. Coir fiber reinforced polypropylene composite panel for automotive interior applications

    Treesearch

    Nadir Ayrilmis; Songklod Jarusombuti; Vallayuth Fueangvivat; Piyawade Bauchongkol; Robert H. White

    2011-01-01

    In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the...

  2. What happens in the pith stays in the pith: tissue-localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores.

    PubMed

    Lee, Gisuk; Joo, Youngsung; Kim, Sang-Gyu; Baldwin, Ian T

    2017-11-01

    Herbivore attack is known to elicit systemic defense responses that spread throughout the host plant and influence the performance of other herbivores. While these plant-mediated indirect competitive interactions are well described, and the co-existence of herbivores from different feeding guilds is common, the mechanisms of co-existence are poorly understood. In both field and glasshouse experiments with a native tobacco, Nicotiana attenuata, we found no evidence of negative interactions when plants were simultaneously attacked by two spatially separated herbivores: a leaf chewer Manduca sexta and a stem borer Trichobaris mucorea. T. mucorea attack elicited jasmonic acid (JA) and jasmonoyl-l-isoleucine bursts in the pith of attacked stems similar to those that occur in leaves when M. sexta attacks N. attenuata leaves. Pith chlorogenic acid (CGA) levels increased 1000-fold to levels 6-fold higher than leaf levels after T. mucorea attack; these increases in pith CGA levels, which did not occur in M. sexta-attacked leaves, required JA signaling. With plants silenced in CGA biosynthesis (irHQT plants), CGA, as well as other caffeic acid conjugates, was demonstrated in both glasshouse and field experiments to function as a direct defense protecting piths against T. mucorea attack, but not against leaf chewers or sucking insects. T. mucorea attack does not systemically activate JA signaling in leaves, while M. sexta leaf-attack transiently induces detectable but minor pith JA levels that are dwarfed by local responses. We conclude that tissue-localized defense responses allow tissue-specialized herbivores to share the same host and occupy different chemical defense niches in the same hostplant. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  3. Biosoftening of coir fiber using selected microorganisms.

    PubMed

    Rajan, Akhila; Senan, Resmi C; Pavithran, C; Abraham, T Emilia

    2005-12-01

    Coir fiber belongs to the group of hard structural fibers obtained from coconut husk. As lignin is the main constituent of coir responsible for its stiffness, microbes that selectively remove lignin without loss of appreciable amounts of cellulose are extremely attractive in biosoftening. Five isolated strains were compared with known strains of bacteria and fungi. The raw fiber treated with Pseudomonas putida and Phanerocheate chrysosporium produced better softened fiber at 30+/-2 degrees C and neutral pH. FeSO4 and humic acid were found to be the best inducers for P. chrysosporium and P. putida, respectively, while sucrose and dextrose were the best C-sources for both. Biosoftening of unretted coir fibers was more advantageous than the retted fibers. Unlike the weak chemically softened fiber, microbial treatment produced soft, whiter fibers having better tensile strength and elongation (44.6-44.8%) properties. Scanning electron microscopy photos showed the mycelia penetrating the pores of the fiber, removing the tylose plug and degrading lignin.

  4. Two-steps microwave-assisted treatment on acid hydrolysis of sago pith for bioethanol production

    NASA Astrophysics Data System (ADS)

    Sunarti, T. C.; Yanti, S. D.; Ruriani, E.

    2017-05-01

    Sago is a genus of palm that can be utilized to produce fermentable sugars as substrate for bioethanol. Sago pith is a heterogeneous substrate consists of starch and fiber. Acid hydrolysis by microwave heating radiation can break down starch and fibers together in a very short time, so it is considered to be very efficient process. The use of microwave energy (as power level) and variation of heating time can produce fermentable sugar with certain characteristics. This study included the preparation and analysis of sago pith flour; process of acid hydrolysis (0.3 M and 0.5 M H2SO4) using two steps microwave heating, first with power level 30% (1, 2 and 3 min) and second with power level 70% (3 min); and ethanol production. The conventional treatment (autoclaving at 121°C for 15 min) was carried for the comparison. The highest fermentable sugar (105.7 g/l) was resulted from microwave heating with power level 30% for 2 min followed by the power level 70% for 3 min. This hydrolyzate then used as substrate for bioethanol fermentation and partially neutralized (pH 3, 4, 5) by using yeast Issatchenkia orientalis, and the highest ethanol (2.8 g/l) was produced in pH 5.

  5. Influence of Chemical Treatment on Thermal Decomposition and Crystallite Size of Coir Fiber

    NASA Astrophysics Data System (ADS)

    Manjula, R.; Raju, N. V.; Chakradhar, R. P. S.; Kalkornsurapranee, Ekwipoo; Johns, Jobish

    2018-01-01

    Coir fibers were treated with sodium hydroxide (NaOH) and glutaraldehyde (GA). The influence of alkali and aldehyde treatment on thermal degradation and crystallinity of coir fiber was studied in detail. Thermogravimetric analysis and X-ray diffraction techniques were mainly used to characterize the coir samples. Activation energy of degradation was calculated from Broido and Horowitz-Metzger equations. NaOH-treated samples showed an increase in thermal stability. Removal of impurities such as waxy and fatty acid residues from the coir fiber by reacting with strong base solution improved the stability of fiber. Crosslinking of cellulose with GA in the fiber enhanced the stability of the material. Scanning electron microscopy was employed to analyze the change in surface morphology upon chemical treatment. Improvement in the properties suggests that NaOH and GA can be effectively used to modify coir fiber with excellent stability.

  6. Study of pyrolysed acid and based treated coconut coir as green photocatalyst substrate

    NASA Astrophysics Data System (ADS)

    Asim, Nilofar; Emdadi, Zeynab; Abdullah, N. A.; Mohammad, Masita; Badiei, Marzieh; Sopian, Kamaruzzaman

    2017-12-01

    This study investigates the possible contribution to sustainable development by utilizing agriculture waste materials to prepare a substrate for photo-catalysis application. The photocatalytic performance of impregnated TiO2 on acid and base- treated coconut coir (CC) and their pyrolysed form have been studied. The photocatalytic performance of impregnated TiO2 on acid treated CC improved compared to bare TiO2. However, the pyrolysed samples showed higher thermal stability and porosity compared to only treated CC, their catalytic performance was decreased. It seems that impregnated TiO2 undergo interaction with treated CC during pyrolysis. More investigations to reveal exact reason of this behavior is in progress.

  7. Coir fibre toxicity: in vivo and in vitro studies.

    PubMed

    Saxena, R P; Dogra, R K; Bhattacherjee, J W

    1982-03-01

    The biological activity of coir fibre, coir ash and their components were investigated in vitro by measuring the haemolytic activity and macrophage cytotoxicity. In vivo studies carried out by injecting guinea pigs intratracheally with coir fibres resulted in resolving granulomas. The observed haemolytic activity and macrophage cytotoxicity was more marked with coir ash compared with coir fibres. Chemical analysis of coir ash revealed the presence of toxic chemical constituents in appreciable amounts.

  8. A clinical and radiographic study of coir workers.

    PubMed

    Uragoda, C G

    1975-02-01

    Processing of coir, which is the fibre obtained from the husk of the coconut, is a dusty procedure; 779 workers in two coir processing factories in Sri Lanka were examined clincally and radiographically for evidence of respiratory disease. Respiratory symptoms were present in 20 (2-6%) of them, which is no higher than in the general population. Respiratory disease such as asthma, chronic bronchitis, byssinosis, and pulmonary tuberculosis which may occur from occupational exposures were considered, but there was no evidence to suggest a definite association between these conditions and coir dust. Twenty-two workers had abnormal chest radiographs, but when compared with a control group of 591 workers from an engineering firm where lesions were found in 20 cases, there was no significant difference. In the opinion of the medical officer, management and workers of the large factory investigated, coir dust does not produce any respiratory disability. The chemical composition of coir dust is similar to that of sisal which is also relatively inert.

  9. A clinical and radiographic study of coir workers.

    PubMed Central

    Uragoda, C G

    1975-01-01

    Processing of coir, which is the fibre obtained from the husk of the coconut, is a dusty procedure; 779 workers in two coir processing factories in Sri Lanka were examined clincally and radiographically for evidence of respiratory disease. Respiratory symptoms were present in 20 (2-6%) of them, which is no higher than in the general population. Respiratory disease such as asthma, chronic bronchitis, byssinosis, and pulmonary tuberculosis which may occur from occupational exposures were considered, but there was no evidence to suggest a definite association between these conditions and coir dust. Twenty-two workers had abnormal chest radiographs, but when compared with a control group of 591 workers from an engineering firm where lesions were found in 20 cases, there was no significant difference. In the opinion of the medical officer, management and workers of the large factory investigated, coir dust does not produce any respiratory disability. The chemical composition of coir dust is similar to that of sisal which is also relatively inert. PMID:1125129

  10. Nasobronchial allergy and pulmonary function abnormalities among coir workers of Alappuzha.

    PubMed

    Panicker, Venugopal; Karunakaran, Raseela; Ravindran, C

    2010-07-01

    Coir is a commercially important natural fiber obtained from the coconut husk. Coir can be woven into strong twine or rope, and is used for padding mattresses, upholstery, etc. Coir industry provides a major share of occupation to the natives of Alappuzha district of Kerala State. It has been noticed earlier that there is increased incidence of nasobronchial allergy among the population involved in this industry. This study was aimed at recognizing the symptomatology and pulmonary functional impairment among symptomatic coir workers. All coir workers who attended our institute over a period of three years were included in the study. Detailed occupational history was taken; symptom profile was studied in detail, clinical examination and pulmonary function tests conducted. Among the 624 symptomatic coir workers selected for this purpose, 64 patients had purely nasal symptoms, while 560 had symptoms of nasobronchial allergy. 357 patients had reversible obstruction on PFT, while 121 had only small airway obstruction. We conclude that coir work induced nasobronchial allergy and pulmonary function abnormalities. In absence of CT scan and bronchial challenge testing it may be inappropriate to label coir work as occupational hazard. However the present study may be used as thought provoking study to initiate further understanding.

  11. Kinetic and equilibrium characterization of uranium(VI) adsorption onto carboxylate-functionalized poly(hydroxyethylmethacrylate)-grafted lignocellulosics.

    PubMed

    Anirudhan, T S; Divya, L; Suchithra, P S

    2009-01-01

    This study investigated the feasibility of using a new adsorbent prepared from coconut coir pith, CP (a coir industry-based lignocellulosic residue), for the removal of uranium [U(VI)] from aqueous solutions. The adsorbent (PGCP-COOH) having a carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto CP using potassium peroxydisulphate-sodium thiosulphite as a redox initiator and in the presence of N,N'-methylenebisacrylamide as a crosslinking agent. IR spectroscopy results confirm the graft copolymer formation and carboxylate functionalization. XRD studies confirm the decrease of crystallinity in PGCP-COOH compared to CP, and it favors the protrusion of the functional group into the aqueous medium. The thermal stability of the samples was studied using thermogravimetry (TG). Surface charge density of the samples as a function of pH was determined using potentiometric titration. The ability of PGCP-COOH to remove U(VI) from aqueous solutions was assessed using a batch adsorption technique. The maximum adsorption capacity was observed at the pH range 4.0-6.0. Maximum removal of 99.2% was observed for an initial concentration of 25mg/L at pH 6.0 and an adsorbent dose of 2g/L. Equilibrium was achieved in approximately 3h. The experimental kinetic data were analyzed using a first-order kinetic model. The temperature dependence indicates an endothermic process. U(VI) adsorption was found to decrease with an increase in ionic strength due to the formation of outer-sphere surface complexes on PGCP-COOH. Equilibrium data were best modeled by the Langmuir isotherm. The thermodynamic parameters such as DeltaG(0), DeltaH(0) and DeltaS(0) were derived to predict the nature of adsorption. Adsorption experiments were also conducted using a commercial cation exchanger, Ceralite IRC-50, with carboxylate functionality for comparison. Utility of the adsorbent was tested by removing U(VI) from simulated nuclear industry wastewater

  12. Median and common peroneal neuropathy in coir workers of Alappuzha district, Kerala.

    PubMed

    Chandra, Sadanandavalli Retnaswami; Anand, Biji; Issac, Thomas Gregor

    2017-01-01

    Coir work, in a large number of people involves mechanically rolling the coconut fibers into coir which is later subjected to various processes. The primary work is done as a cottage industry specially by women in the sitting posture for several hours. This study reports evidence of median and common peroneal neuropathy electrophysiologically in people who had been engaged in this job for several years. This study was initiated to establish the possible relationship between coir work and symptomatic neuropathies which was seen in that region with all investigations " for other causes not " contributing to the etiological diagnosis. One hundred and forty-two upper limbs and 142 lower limbs in patients engaged in long years of coir work but having no symptoms were evaluated electrophysiologically with informed consent and financial compensation, appropriate inclusion and exclusion criteria were followed as described in the text. There is electrophysiological evidence for median and common peroneal neuropathy in persons engaged in long years of coir work. Coir workers neuropathy appears to be a new occupational neuropathy which can be prevented by following simple preventive measures.

  13. The Use of Arbuscular Mycorrhizal Fungi to Improve Strawberry Production in Coir Substrate

    PubMed Central

    Robinson Boyer, Louisa; Feng, Wei; Gulbis, Natallia; Hajdu, Klara; Harrison, Richard J.; Jeffries, Peter; Xu, Xiangming

    2016-01-01

    Strawberry is an important fruit crop within the UK. To reduce the impact of soil-borne diseases and extend the production season, more than half of the UK strawberry production is now in substrate (predominantly coir) under protection. Substrates such as coir are usually depleted of microbes including arbuscular mycorrhizal fungi (AMF) and consequently the introduction of beneficial microbes is likely to benefit commercial cropping systems. Inoculating strawberry plants in substrate other than coir has been shown to increase plants tolerance to soil-borne pathogens and water stress. We carried out studies to investigate whether AMF could improve strawberry production in coir under low nitrogen input and regulated deficit irrigation. Application of AMF led to an appreciable increase in the size and number of class I fruit, especially under either deficient irrigation or low nitrogen input condition. However, root length colonization by AMF was reduced in strawberry grown in coir compared to soil and Terragreen. Furthermore, the appearance of AMF colonizing strawberry and maize roots grown in coir showed some physical differences from the structure in colonized roots in soil and Terragreen: the colonization structure appeared to be more compact and smaller in coir. PMID:27594859

  14. Median and common peroneal neuropathy in coir workers of Alappuzha district, Kerala

    PubMed Central

    Chandra, Sadanandavalli Retnaswami; Anand, Biji; Issac, Thomas Gregor

    2017-01-01

    Introduction: Coir work, in a large number of people involves mechanically rolling the coconut fibers into coir which is later subjected to various processes. The primary work is done as a cottage industry specially by women in the sitting posture for several hours. This study reports evidence of median and common peroneal neuropathy electrophysiologically in people who had been engaged in this job for several years. This study was initiated to establish the possible relationship between coir work and symptomatic neuropathies which was seen in that region with all investigations “for other causes not” contributing to the etiological diagnosis. Subjects and Methods: One hundred and forty-two upper limbs and 142 lower limbs in patients engaged in long years of coir work but having no symptoms were evaluated electrophysiologically with informed consent and financial compensation, appropriate inclusion and exclusion criteria were followed as described in the text. Results: There is electrophysiological evidence for median and common peroneal neuropathy in persons engaged in long years of coir work. Conclusions: Coir workers neuropathy appears to be a new occupational neuropathy which can be prevented by following simple preventive measures. PMID:28298838

  15. The Effect of Sunlight in Parenchyma Pith Cells Diameter of Manihot esculenta

    NASA Astrophysics Data System (ADS)

    Susanti, D.; Aziz, D. N.; Astuti, W.; Nuraeni, E.

    2017-03-01

    Sunlight is one of the factors that effect on the grow of a plant. Manihot esculenta is one of the plants that easily found in Indonesia because its role as staple food. The aim of this research is to know the correlation between sunlight the grow of parenchyma pith cells diameter of Manihot esculenta. Independent variable in this research is sunlight, and dependent variable is the parenchyma pith cells diameter of Manihot esculenta. Data was collected is in qualitative and quantitative form. Qualitative data gotten gained by morphology observation. The parenchyma pith cells of Manihot esculenta that is affected by sunlight in 1310 x 10 Lux, morphologically has hexagon, cell walls thick, solid state, and regular composition. Meanwhile, the parenchyma pith cells that has less sunlight (363 x 10 Lux) has a hexagon shape, thin cell walls thin, soft state, and irregular composition. Qualitative data suported by quantitative data. The size of parenchyma pith cells diameter that is affected by sunlight in 1310 x 10 Lux 96,4 µm. While, the stem parenchyma pith cells diameter empulur that has less sunlight (363 x 10 Lux) is 129,8 µm.

  16. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Yu, Yang; Zhang, Bowu; Yang, Xuanxuan; Li, Linfan; Yu, Ming; Li, Jingye

    2011-02-01

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  17. Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability

    NASA Astrophysics Data System (ADS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.

    2016-06-01

    Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.

  18. Mechanical properties and flexure behaviour of lightweight foamed concrete incorporating coir fibre

    NASA Astrophysics Data System (ADS)

    Mohamad, Noridah; Afif Iman, Muhamad; Othuman Mydin, M. A.; Samad, A. A. A.; Rosli, J. A.; Noorwirdawati, A.

    2018-04-01

    This paper presents an experimental investigation on the mechanical properties and flexural behaviour of lightweight foamed concrete (LFC) with added coir fibre as filler. The compressive strength (Pt), tensile strength (Ft), modulus of elasticity (E), ultimate load and crack pattern of the foamed concrete were determined. The coir fibre was added to the foamed concrete mixture at 0.1%, 0.2% and 0.3% of the total weight of cement. Effects of various percentage of coir fibre used on foam concrete’s mechanical and properties and flexural behaviour were studied and analysed. It was found that the increase percentage of fibre resulted in increase in compressive strength, tensile strength and modulus of elasticity of LFC mixture. LFC with added coir of 0.3% experienced the smallest crack propagation.

  19. Coconut coir as biosorbent for Cr(VI) removal from laboratory wastewater.

    PubMed

    Gonzalez, Mário H; Araújo, Geórgia C L; Pelizaro, Claudia B; Menezes, Eveline A; Lemos, Sherlan G; de Sousa, Gilberto Batista; Nogueira, Ana Rita A

    2008-11-30

    A high cost-effective treatment of sulphochromic waste is proposed employing a raw coconut coir as biosorbent for Cr(VI) removal. The ideal pH and sorption kinetic, sorption capacities, and sorption sites were the studied biosorbent parameters. After testing five different isotherm models with standard solutions, Redlich-Peterson and Toth best fitted the experimental data, obtaining a theoretical Cr(VI) sorption capacity (SC) of 6.3 mg g(-1). Acid-base potentiometric titration indicated around of 73% of sorption sites were from phenolic compounds, probably lignin. Differences between sorption sites in the coconut coir before and after Cr adsorption identified from Fourier transform infrared spectra suggested a modification of sorption sites after sulphochromic waste treatment, indicating that the sorption mechanism involves organic matter oxidation and chromium uptake. For sulphocromic waste treatment, the SC was improved to 26.8+/-0.2 mg g(-1), and no adsorbed Cr(VI) was reduced, remaining only Cr(III) in the final solution. The adsorbed material was calcinated to obtain Cr(2)O(3,) with a reduction of more than 60% of the original mass.

  20. Structural characterization of lignin isolated from coconut (Cocos nucifera) coir fibers.

    PubMed

    Rencoret, Jorge; Ralph, John; Marques, Gisela; Gutiérrez, Ana; Martínez, Ángel T; del Río, José C

    2013-03-13

    The structure of the isolated milled "wood" lignin from coconut coir has been characterized using different analytical methods, including Py-GC/MS, 2D NMR, DFRC, and thioacidolysis. The analyses demonstrated that it is a p-hydroxyphenyl-guaiacyl-syringyl (H-G-S) lignin, with a predominance of G units (S/G ratio 0.23) and considerable amounts of associated p-hydroxybenzoates. Two-dimensional NMR indicated that the main substructures present in this lignin include β-O-4' alkyl aryl ethers followed by phenylcoumarans and resinols. Two-dimensional NMR spectra also indicated that coir lignin is partially acylated at the γ-carbon of the side chain with p-hydroxybenzoates and acetates. DFRC analysis showed that acetates preferentially acylate the γ-OH in S rather than in G units. Despite coir lignin's being highly enriched in G-units, thioacidolysis indicated that β-β' resinol structures are mostly derived from sinapyl alcohol. Finally, we find evidence that the flavone tricin is incorporated into the coconut coir lignin, as has been recently noted for various grasses.

  1. Surface Heave Behaviour of Coir Geotextile Reinforced Sand Beds

    NASA Astrophysics Data System (ADS)

    Lal, Dharmesh; Sankar, N.; Chandrakaran, S.

    2017-06-01

    Soil reinforcement by natural fibers is one of the cheapest and attractive ground improvement techniques. Coir is the most abundant natural fiber available in India and due to its high lignin content; it has a larger life span than other natural fibers. It is widely used in India for erosion control purposes, but its use as a reinforcement material is rather limited. This study focuses on the use of coir geotextile as a reinforcement material to reduce surface heave phenomena occurring in shallow foundations. This paper presents the results of laboratory model tests carried out on square footings supported on coir geotextile reinforced sand beds. The influence of various parameters such as depth of reinforcement, length, and number of layers of reinforcement was studied. It was observed that surface heave is considerably reduced with the provision of geotextile. Heave reduction up to 98.7% can be obtained by the proposed method. Heave reduction is quantified by a non-dimensional parameter called heave reduction factor.

  2. Effect Of Coir Fibres On The Compaction And Unconfined Compressive Strength Of Bentonite-Lime-Gypsum Mixture

    NASA Astrophysics Data System (ADS)

    Tilak B., Vidya; Dutta, Rakesh Kumar; Mohanty, Bijayananda

    2015-06-01

    This paper presents the effect of coir fibres on the compaction and unconfined compressive strength of a bentonite-lime-gypsum mixture. The coir fiber content varied from 0.5 to 2 %. The results indicated that the dry unit weight and the optimum moisture content of a bentonite - lime mix increased with the addition of gypsum. The unconfined compressive strength of the bentonite increased with the increase in the lime content up to 8 %. Beyond 8 %, the unconfined compressive strength decreased. The dry unit weight of the reference mix decreased, and the optimum moisture content increased with the addition of coir fibre. The unconfined compressive strength of the bentonite + 8 % lime mix increased up to 4 % with the gypsum. Beyond 4 %, the unconfined compressive strength decreased. The unconfined compressive strength of the reference mix increased with the addition of coir fibre up to a fibre content of 1.5 %. The unconfined compressive strength of the reference mix-coir fibre composite was less in comparison to the reference mix. The unconfined compressive strength of the bentonite increased with the addition of lime and gypsum and with the increase in the curing period. The improvement in the post-peak region was better for the reference mix with reinforced coir fibres as compared to the unreinforced reference mix. The improved post-peak behaviour of the bentonite-lime-gypsum-coir fibre mixture could boost the construction of temporary roads on such problematic soils. Further, its use will also provide an environmental motivation for providing a means of consuming large quantities of coir fibres.

  3. Precast self-compacting concrete (PSCC) panel with added coir fiber: An overview

    NASA Astrophysics Data System (ADS)

    Afif Iman, Muhamad; Mohamad, Noridah; Samad, Abdul Aziz Abdul; Goh, W. I.; Othuman Mydin, M. A.; Afiq Tambichik, Muhamad; Bosro, Mohamad Zulhairi Mohd; Wirdawati, A.; Jamaluddin, N.

    2018-04-01

    Self-compacting concrete (SCC) is the alternative way to reduce construction time and improve the quality and strength of concrete. The panel system fabricated from SCC contribute to the IBS system that is sustainable and environmental friendly. The precast self-compacting concrete (PSCC) panel with added coir fiber will be overview in this paper. The properties of SCC and coir fiber are studied and reviewed from the previous researches. Finite element analysis is used to support the experimental results by conduction parametric simulation study on PSCC under flexure load. In general, it was found that coir fiber has a significant influence on the flexural load and crack propagation. Higher fiber incorporated in SCC resulted with higher ultimate load of PSCC.

  4. Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Abdullah, H. Z.; Idris, M. I.

    2013-12-01

    This research focuses on the fabrication and characterization of sandwich composite panels using glass fiber composite skin and polyurethane foam reinforced coconut coir fiber core. The main objectives are to characterize the physical and mechanical properties and to elucidate the effect of coconut coir fibers in polyurethane foam cores and sandwich composite panels. Coconut coir fibers were used as reinforcement in polyurethane foams in which later were applied as the core in sandwich composites ranged from 5 wt% to 20 wt%. The physical and mechanical properties found to be significant at 5 wt% coconut coir fiber in polyurethane foam cores as well as in sandwich composites. It was found that composites properties serve better in sandwich composites construction.

  5. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review.

    PubMed

    Liu, Jun; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai

    2017-10-15

    In recent years, increasing attention has been paid to the grafting of phenolic acid onto chitosan in order to enhance the bioactivity and widen the application of chitosan. Here, we present a comprehensive overview on the recent advances of phenolic acid grafted chitosan (phenolic acid-g-chitosan) in many aspects, including the synthetic method, structural characterization, biological activity, physicochemical property and potential application. In general, four kinds of techniques including carbodiimide based coupling, enzyme catalyzed grafting, free radical mediated grafting and electrochemical methods are frequently used for the synthesis of phenolic acid-g-chitosan. The structural characterization of phenolic acid-g-chitosan can be determined by several instrumental methods. The physicochemical properties of chitosan are greatly altered after grafting. As compared with chitosan, phenolic acid-g-chitosan exhibits enhanced antioxidant, antimicrobial, antitumor, anti-allergic, anti-inflammatory, anti-diabetic and acetylcholinesterase inhibitory activities. Notably, phenolic acid-g-chitosan shows potential applications in many fields as coating agent, packing material, encapsulation agent and bioadsorbent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The effect of different levels of sunflower head pith addition on the properties of model system emulsions prepared from fresh and frozen beef.

    PubMed

    Sariçoban, Cemalettin; Yilmaz, Mustafa Tahsin; Karakaya, Mustafa; Tiske, Sümeyra Sultan

    2010-01-01

    The effect of sunflower head pith on the functional properties of emulsions was studied by using a model system. Oil/water (O/W) model emulsion systems were prepared from fresh and frozen beef by the addition of the pith at five concentrations. Emulsion capacity (EC), stability (ES), viscosity (EV), colour and flow properties of the prepared model system emulsions were analyzed. The pith addition increased the EC and ES and the highest EC and ES values were reached when 5% of pith added; however, further increase in the pith concentration caused an inverse trend in these values. Fresh beef emulsions had higher EC and ES values than did frozen beef emulsions. One percent pith concentration was the critic level for the EV values of fresh beef emulsions. EV values of the emulsions reached a maximum level at 5% pith level, followed by a decrease at 7% pit level.

  7. Enhancement of nitric oxide release and hemocompatibility by surface chirality of D-tartaric acid grafting

    NASA Astrophysics Data System (ADS)

    Han, Honghong; Wang, Ke; Fan, Yonghong; Pan, Xiaxin; Huang, Nan; Weng, Yajun

    2017-12-01

    Nitric Oxide (NO) generation from endogenous NO-donors catalyzed by diselenide modified biomaterials has been reported. Here we reported surface chirality by L-tartaric acid and D-tartaric acid grafting on the outermost showed a significant impact on diselenide modified biomaterials, which modulated protein adsorption, NO release and anti-platelet adhesion properties. D-tartaric acid grafted surface showed more blood protein adsorption than that of L-surfaces by QCM analysis, however, ELISA analysis disclosed less fibrinogen denatured on the D surfaces. Due to the surface ratio of selenium decreasing, NO release catalyzed by L-tartaric acid grafting on the outermost significantly decreased in comparison to that of only selenocystamine immobilized surfaces. While NO release catalyzed by D-tartaric acid grafting on the outermost didn't decrease and was similar with that of selenocystamine immobilized surfaces. Surface chirality combined with NO release had synergetic effects on platelet adhesion, and it showed the lowest number of platelets adhered on the D-tartaric acid grafted surfaces. Thus surface chirality from D-tartaric acid grafting enhanced hemocompatibility of the surface in this study. Our work provides new insights into engineering novel blood contacting biomaterials by taking into account surface chirality.

  8. Enzyme immobilization on ultrafine cellulose fibers via poly(acrylic acid) electrolyte grafts.

    PubMed

    Chen, Hong; Hsieh, You-Lo

    2005-05-20

    Ultrafine cellulose fiber (diameter 200-400 nm) surfaces were grafted with polyacrylic acid (PAA) via either ceric ion initiated polymerization or methacrylation of cellulose with methacrylate chloride (MACl) and subsequent free-radical polymerization of acrylic acid. PAA grafts by ceric ion initiated polymerization increased with increasing reaction time (2-24 h), monomer (0.3-2.4 M), and initiator (1-10 mM) concentrations, and spanned a broad range from 5.5-850%. PAA grafts on the methacrylated cellulose fibers also increased with increasing molar ratios of MACl to cellulosic hydroxyl groups (MACl/OH, 2-6.4) and monomer acrylic acid (AA) to initiator potassium persulfate (KPS) ratios ([AA]/[KPS], 1.5-6), and were in a much narrower range between 12.8% and 29.4%. The adsorption of lipase (at 1 mg/ml lipase and pH 7) and the activity of adsorbed lipase (pH 8.5, 30 degrees C), in both cases decreased with increasing PAA grafts. The highest adsorption and activity of the lipase on the ceric ion initiated grafted fibers were 1.28 g/g PAA and 4.3 U/mg lipase, respectively, at the lowest grafting level of 5.5% PAA, whereas they were 0.33 g/g PAA and 7.1 U/mg lipase, respectively, at 12.8% PAA grafts on the methacrylated and grafted fibers. The properties of the grafted fibers and the absorption behavior and activity of lipase suggest that the PAA grafts are gel-like by ceric-initiated reaction and brush-like by methacrylation and polymerization. The adsorbed lipase on the ceric ion-initiated grafted surface possessed greatly improved organic solvent stability over the crude lipase. The adsorbed lipases exhibited 0.5 and 0.3 of the initial activity in the second and third assay cycles, respectively. (c) 2004 Wiley Periodicals, Inc.

  9. Environmental friendly method for the extraction of coir fibre and isolation of nanofibre.

    PubMed

    Abraham, Eldho; Deepa, B; Pothen, L A; Cintil, J; Thomas, S; John, M J; Anandjiwala, R; Narine, S S

    2013-02-15

    The objective of this work was to develop an environmental friendly method for the effective utilization of coir fibre by adopting steam pre-treatment. The retting of the coconut bunch makes strong environmental problems which can be avoided by this method. Chemical characterization of the fibre during each processing stages confirmed the increase of cellulose content from raw (40%) to final steam treated fibres (93%). Morphological and dynamic light scattering analyses of the fibres at different processing stages revealed that the isolation of cellulose nano fibres occur in the final step of the process as an aqueous suspension. FT-IR and XRD analysis demonstrated that the treatments lead to the gradual removal of lignin and hemicelluloses from the fibres. The existence of strong lignin-cellulose complex in the raw coir fibre is proved by its enhanced thermal stability. Steam explosion has been proved to be a green method to expand the application areas of coir fibre. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Preparation and characterization of poly(acrylic acid)-hydroxyethyl cellulose graft copolymer.

    PubMed

    Abdel-Halim, E S

    2012-10-01

    Poly(acrylic acid) hydroxyethyl cellulose [poly(AA)-HEC] graft copolymer was prepared by polymerizing acrylic acid (AA) with hydroxyethyl cellulose (HEC) using potassium bromate/thiourea dioxide (KBrO(3)/TUD) as redox initiation system. The polymerization reaction was carried out under a variety of conditions including concentrations of AA, KBrO(3) and TUD, material to liquor ratio and polymerization temperature. The polymerization reaction was monitored by withdrawing samples from the reaction medium and measuring the total conversion. The rheological properties of the poly(AA)-HEC graft copolymer were investigated. The total conversion and rheological properties of the graft copolymer depended on the ratio of KBrO(3) to TUD and on acrylic acid concentration as well as temperature and material to liquor ratio. Optimum conditions of the graft copolymer preparation were 30 mmol KBrO(3) and 30 mmol TUD/100g HEC, 100% AA (based on weight of HEC), duration 2h at temperature 50 °C using a material to liquor ratio of 1:10. Copyright © 2012. Published by Elsevier Ltd.

  11. Thrombin immobilization to methacrylic acid grafted poly(3-hydroxybutyrate) and its in vitro application.

    PubMed

    Akkaya, Alper; Pazarlioglu, Nurdan

    2013-01-01

    Poly(3-hydroxybutyrate) is nontoxic and biodegradable, with good biocompatibility and potential support for long-term implants. For this reason, it is a good support for enzyme immobilization. Enzyme immobilization could not be done directly because poly(3-hydroxybutyrate) has no functional groups. Therefore, modification should be done for enzyme immobilization. In this study, methacrylic acid was graft polymerized to poly(3-hydroxybutyrate) and thrombin was immobilized to polymethacrylic acid grafted poly(3-hydroxybutyrate). In fact, graft polymerization of methacrylic acid to poly(3-hydroxybutyrate) and thrombin immobilization was a model study. Biomolecule immobilized poly(3-hydroxybutyrate) could be used as an implant. Thrombin was selected as a biomolecule for this model study and it was immobilized to methacrylic acid grafted poly(3-hydroxybutyrate). Then the developed product was used to stop bleeding.

  12. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    NASA Astrophysics Data System (ADS)

    Cuiqin, Fang; Jinxian, Wu; Julin, Wang; Tao, Zhang

    2015-11-01

    The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  13. [Ursolic acid inhibits corneal graft rejection following orthotopic allograft transplantation in rats].

    PubMed

    Wang, Bo; Wu, Jing; Ma, Ming; Li, Ping-Ping; Yu, Jian

    2015-04-01

    To investigate the effects of ursolic acid on corneal graft rejection in a rat model of othotopic corneal allograft transplantation. Forty-eight recipient Wistar rats were divided into normal control group with saline treatment (group A), autograft group with saline treatment (group B), SD rat allograft group with saline treatment (group C), and SD rat allograft group with intraperitoneal ursolic acid (UA) treatment group (group D). The rats received saline or UC (20 mg·kg(-1)·d(-1)) treatment for 12 days following othotopic graft transplantation. The grafts were evaluated using the Larkin corneal rejection rating system, and the graft survival was assessed with Kaplan-Meier analysis. On day 14, the grafts were harvested for histological examination, Western blotting, and assessment of expressions of interlukin-2 (IL-2), interferon-γ (IFN-γ), nuclear transcription factor-κB (NF-κB) p65, vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 (ICAM-1). The allograft survival was significantly longer in group D than in group C (29.12±9.58 vs 9.67±2.16 days, P<0.05). UC treatment obviously reduced the expression levels of IL-2, IFN-γ, NF-κBp65, ICAM-1 and VEGF and increased inhibitory kappa B alpha (IκB-α) expression in the grafts, where no obvious inflammatory cell infiltration or corneal neovascularization was found. As a NF-κB inhibitor, ursolic acid can prevent corneal neovascularization and corneal allograft rejection to promote graft survival in rats following orthotopic corneal allograft transplantation.

  14. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants.

    PubMed

    Abad, Manuel; Noguera, Patricia; Puchades, Rosa; Maquieira, Angel; Noguera, Vicente

    2002-05-01

    Selected physico-chemical and chemical characteristics of 13 coconut coir dust (mesocarp pithy tissue plus short-length fibres) samples from Asia, America and Africa were evaluated as peat alternatives. All properties studied differed significantly between and within sources, and from the control Sphagnum peat. pH of coir dust was slightly acidic, whereas salinity varied dramatically between 39 and 597 mS m(-1) in the saturated media extract. The cation exchange capacity and carbon/nitrogen (C/N) ratio ranged from 31.7 to 95.4 cmol(c) kg(-1) and from 75 to 186, respectively. Most carbon was found as lignin and cellulose. The concentrations of available nitrogen, calcium, magnesium and micro-elements were low, while those of phosphorus and potassium were remarkably high (0.28-2.81 mol m(-3) and 2.97-52.66 mol m(-3) for P and K, respectively). Saline ion concentrations, especially chloride and sodium, were also high.

  15. Synthesis of novel grafted hyaluronic acid with antitumor activity.

    PubMed

    Abu Elella, Mahmoud H; Mohamed, Riham R; Sabaa, Magdy W

    2018-06-01

    In our study, we aimed to synthesize novel grafted hyaluronic acid with cationic biodegradable polymer, poly (N-vinyl imidazole) (PVI), through free radical polymerization using potassium persulfate as initiator. The effect of various grafting factors including initiator and monomer concentrations, reaction time and temperature was studied on the percentage of grafting parameters such as; graft yield (% GY), grafting efficiency (% GE) and amount of homopolymer formation (% H). Maximum grafted HA was% GY = 235% and%GE = 83% obtained on optimum conditions at [I n ] = 17.5 mmol L -1 , [M] = 1.25 mol L -1 , Temp. = 50 °C, time = 1.5 h and [HA] = 0.025 mol L -1 . The structure of grafted HA (HA-g-PVI) was elucidated via various analysis tools such as; elemental analyses, FTIR, 1 H NMR, XRD, TGA and Field emission scanning electron microscopy (FE-SEM). Hepatic and breast cancers are two common cancer types threatening people worldwide, so, the antitumor activity of two grafted HA samples (% GY = 155% and 235%) was studied against hepatic cancer (HepG-2) and breast cancer cell lines (MCF-7) compared to unmodified HA and PVI. The results showed that antitumor activity of grafted samples was more than unmodified HA and increased with increasing the grafting percentage of PVI onto HA chains, also, the antitumor activity of tested samples against HepG-2 cell lines was higher than MCF-7 cell lines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa.

    PubMed

    Yang, Li; Zhao, Xin; Yang, Fan; Fan, Di; Jiang, Yuanzhong; Luo, Keming

    2016-01-28

    WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY19 was expressed in all tissues tested, with highest expression in stems, especially in pith. PtrWRKY19 was located in the nucleus and functioned as a transcriptional repressor. Ectopic expression of PtrWRKY19 in an atwrky12 mutant successfully rescued the phenotype in pith cell walls caused by the defect of AtWRKY12, suggesting that PtrWRKY19 had conserved functions for homologous AtWRKY12. Overexpression of PtrWRKY19 in poplar plants led to a significant increase in the number of pith parenchyma cells. qRT-PCR analysis showed that lignin biosynthesis-related genes were repressed in transgenic plants. In transcient reporter assays, PtrWRKY19 was identified to repress transcription from the PtoC4H2 promoter containing the conserved W-box elements. These results indicated that PtrWRKY19 may function as a negative regulator of pith secondary wall formation in poplar.

  17. Optimization the mechanical properties of coir-luffa cylindrica filled hybrid composites by using Taguchi method

    NASA Astrophysics Data System (ADS)

    Krishnudu, D. Mohana; Sreeramulu, D.; Reddy, P. Venkateshwar

    2018-04-01

    In the current study mechanical properties of particles filled hybrid composites have been studied. The mechanical properties of the hybrid composite mainly depend on the proportions of the coir weight, Luffa weight and filler weight. RSM along with Taguchi method have been applied to find the optimized parameters of the hybrid composites. From the current study it was observed that the tensile strength of the composite mainly depends on the coir percent than the other two particles.

  18. Ash content of loblolly pine wood as related to specific gravity, growth rate, and distance from pith

    Treesearch

    Charles W. McMillin

    1968-01-01

    In earlywood of Pinus taeda L. grown in central Louisiana, ash content generally decreased with increasing distance from the pith and icnreased with increases in rate of tree growth (as measured in rings per inch). Latewood ash content was unrelated to the gross wood factors of distance, from the pith, specific gravity, and growth rate. The ash...

  19. In Vitro Antioxidant-Activity Evaluation of Gallic-Acid-Grafted Chitosan Conjugate Synthesized by Free-Radical-Induced Grafting Method.

    PubMed

    Hu, Qiaobin; Wang, Taoran; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-07-27

    The major objective of this work was to develop a green and facile process to prepare gallic acid-chitosan conjugate and comprehensively evaluate the physicochemical properties and biological activities of an as-prepared water-soluble chitosan derivative. A free-radical-induced grafting approach using an ascorbic acid-hydrogen peroxide redox pair was adopted. The obtained conjugate was characterized by Fourier transform infrared spectroscopy, UV-vis, X-ray diffraction, and pKa analysis. The antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6)-sulphonic acid (ABTS), reducing power, and oxygen-radical antioxidant-capacity assays. The results showed that the mass ratio of gallic acid to chitosan played a vital role in determining the grafting degree and ζ potential of the conjugates, with the ratio of 0.5:1 being the optimal ratio that resulted in the highest grafting degree. The antioxidant assays demonstrated that conjugation significantly improved the antioxidant activities, being dramatically higher than that of free chitosan. It was notable that the DPPH- and ABTS-scavenging activities of conjugate at 0.4 mg/mL reached the same level as the free gallic acid at the equivalent concentration. Our study demonstrated a green and facile synthesis approach to preparing a novel water-soluble chitosan derivative that may have promising potentials in the food industry.

  20. Removal of trichloroethylene by zerovalent iron/activated carbon derived from agricultural wastes.

    PubMed

    Su, Yuh-fan; Cheng, Yu-ling; Shih, Yang-hsin

    2013-11-15

    Activated carbon (AC) and zerovalent iron (ZVI) have been widely used in the adsorption and dehalogenation process, respectively, for the removal of organic compounds in environmental treatments. This study aims to prepare ZVI/AC derived from an agricultural waste, coir pith, through simple one-step pyrolysis. The effect of activation temperature and time on the surface area, iron content, and zerovalent iron ratio of ZVI/AC was systemically investigated. The results indicated that the activation of AC by FeSO4 significantly increased surface area of AC and distributed elemental iron over the AC. The X-ray diffraction (XRD), electron spectroscopy for chemical analysis (ESCA), and X-ray absorption near edge structure (XANES) spectra of ZVI/AC revealed that zerovalent iron was present. As compared to AC without FeSO4 activation, ZVI/AC increased the trichloroethylene removal rate constant by 7 times. The dechlorination ability of ZVI/AC was dominated by the zerovalent iron content. We have shown that lab-made ZVI/AC from coir pith can effectively adsorb and dehalogenate the chlorinated compounds in water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Structure-function properties of amylose-oleic acid inclusion complexes grafted with poly(methyl acrylate)

    USDA-ARS?s Scientific Manuscript database

    Spherulites, produced by steam jet-cooking high-amylose starch and oleic acid, were grafted with methyl acrylate, both before and after removal of un-complexed amylopectin. For comparison, granular high-amylose corn starch was graft polymerized in a similar manner. The amount of grafted and ungrafte...

  2. Cocos nucifera coir-mediated green synthesis of Pd NPs and its investigation against larvae and agricultural pest.

    PubMed

    Elango, Ganesh; Mohana Roopan, Selvaraj; Abdullah Al-Dhabi, Naif; Arasu, Mariadhas Valan; Irukatla Damodharan, Kasinathan; Elumalai, Kuppuswamy

    2017-12-01

    In recent decades, several scientists focused their process towards nanoparticles synthesis by using various sustainable approaches. Cocos nucifera (C. nucifera) was one of the versatile trees in tropical regions which also can act as a thrust quencher in all over the world. Cocos nucifera coir was one of the waste by-products in all coconut-refining industries and with the help C. nucifera coir, Palladium nanoparticles (Pd NPs) were synthesized. Green-synthesized spherical-shape Pd NPs were over layered by secondary metabolites from C. nucifera coir extract and with an average particle size of 62 ± 2 nm, which were confirmed by morphological analysis. Eco-friendly mediated Pd NPs were further subjected to several biological applications like larvicidal against Aedes aegypti (A. aegypti) and anti-feedent, ovicidal, and oviposition deterrent against agricultural pest Callasobruchus maculates (C. maculates) and compared with C. nuciferacoir methanolic extract, which results in LC 50 value of 288.88 ppm and LC 90 value of 483.06 ppm using LSD-Tukey's test against dengue vector (A. aegypti). Cocos nucifera coir methanolic extract shows significant output while compared with Pd NPs towards anti-feedent assays; ovicidal activity and oviposition deterrent were discussed here.

  3. Fabrication of high-performance poly(l-lactic acid)/lignin-graft-poly(d-lactic acid) stereocomplex films.

    PubMed

    Liu, Rui; Dai, Lin; Hu, Li-Qiu; Zhou, Wen-Qin; Si, Chuan-Ling

    2017-11-01

    The need for green renewable alternatives such as lignin to traditional fillers has driven recent interest in polylactic acid blend materials. Herein, lignin-graft-polylactic acid copolymers (LG-g-PDLA, LG-g-PDLLA, and LG-g-PLLA) have been synthesized via ring-opening polymerization of d-, dl-, and l-lactic acid. Then poly(l-lactic acid)/lignin-graft-polylactic acid (PLLA/LG-g-PDLA, /LG-g-PDLLA, and /LG-g-PLLA) complex films have been prepared. The results showed that, compared with LG-g-PDLA and LG-g-PLLA, a small amount of LG-g-PDLA addition could improve the crystallization rate, reduce the glass transition temperature and cold crystallization temperature of PLLA due to the stereocomplex crystallites. The thermal stability, tensile strength and strain of the stereocomplex films were also enhanced. Moreover, the PLLA/LG-g-PDLA films have good ultraviolet resistance and excellent biocompatibility. This study provides a green approach to design advanced polylactic acid-based blends with renewable natural resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Investigations of plasma induced effects on the surface properties of lignocellulosic natural coir fibres

    NASA Astrophysics Data System (ADS)

    Praveen, K. M.; Thomas, Sabu; Grohens, Yves; Mozetič, Miran; Junkar, Ita; Primc, Gregor; Gorjanc, Marija

    2016-04-01

    The development of lignocellulosic natural-fibre-reinforced polymers composites are constrained by two limitations: the upper temperature at which the fibre can be processed and the significant differences between the surface energy of the fibre and the polymer matrix. Since the fibres and matrices are chemically different, strong adhesion at their interface is needed for the effective transfer of stress and bond distribution throughout the interface. The present study investigated the plasma induced effects on the surface properties of natural coir fibres. Weakly ionized oxygen plasma was created in two different discharge chambers by an inductively coupled radiofrequency (RF) discharge. The water absorption studies showed an increase of water sorption from 39% to 100%. The morphological study using scanning electron microscopy (SEM) analysis also confirmed the surface changes which were observed after the plasma treatment. The topographic measurements and phase imaging done using atomic force microscopy (AFM) indicated difference in topographic features and etching of coir wall, which points to the removal of the first layer of coir fibre. X-ray photoelectron spectroscopy (XPS) analysis revealed that the oxygen content measured for samples treated at 50 Pa increased from initial 18% to about 32%.

  5. Graft Polymerization of Acrylic Acid on a Polytetrafluoroethylene Panel by an Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Lan, Yan; You, Qingliang; Cheng, Cheng; Zhang, Suzhen; Ni, Guohua; Nagatsu, M.; Meng, Yuedong

    2011-02-01

    Surface modification on a polytetrafluoroethylene (PTFE) panel was performed with sequential nitrogen plasma treatments and surface-initiated polymerization. By introducing COO- groups to the surface of the PTFE panel through grafting polymerization of acrylic acid (AA), a transparent poly (acrylic acid) (PAA) membrane was achieved from acrylic acid solution. Grafting polymerization initiating from the active groups was achieved on the PTFE panel surface after the nitrogen plasma treatment. Utilizing the acrylic acid as monomers, with COO- groups as cross link sites to form reticulation structure, a transparent poly (acrylic acid) membrane with arborescent macromolecular structure was formed on the PTFE panel surface. Analysis methods, such as fourier transform infrared spectroscopy (FTIR), microscopy and X-ray photoelectron spectroscopy (XPS), were utilized to characterize the structures of the macromolecule membrane on the PTFE panel surface. A contact angle measurement was performed to characterize the modified PTFE panels. The surface hydrophilicities of modified PTFE panels were significantly enhanced after the plasma treatment. It was shown that the grafting rate is related to the treating time and the power of plasma.

  6. Fabrication of borassus fruit lignocellulose fiber/PP composites and comparison with jute, sisal and coir fibers.

    PubMed

    Sudhakara, P; Jagadeesh, Dani; Wang, YiQi; Prasad, C Venkata; Devi, A P Kamala; Balakrishnan, G; Kim, B S; Song, J I

    2013-10-15

    Novel composites based on borassus fruit fine fiber (BFF) and polypropylene (PP) were fabricated with variable fiber composition (5, 10, 15 and 20 wt%) by injection molding. Maleated PP (MAPP) was also used as compatibilizer at 5 wt% for effective fiber-matrix adhesion. FTIR analysis confirms the evidence of a chemical bonding between the fiber and polymeric matrix through esterification in presence of MAPP. The tensile and flexural properties were found to increase with 15 and 10 wt% fiber loadings respectively, and decreased thereafter. Coir, jute and sisal fiber composites were also fabricated with 15 wt% fiber loading under the same conditions as used for BFF/PP composites. It was found that the mechanical properties of BFF (15 wt%)/PP composites were equivalent to jute/PP, sisal/PP and superior to coir/PP composites. Jute/PP and sisal/PP composites showed higher water absorption than BFF/PP and coir/PP composites. These results have demonstrated that the BFF/PP composites can also be an alternative material for composites applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Domain walls and Dzyaloshinskii-Moriya interaction in epitaxial Co/Ir(111) and Pt/Co/Ir(111)

    NASA Astrophysics Data System (ADS)

    Perini, Marco; Meyer, Sebastian; Dupé, Bertrand; von Malottki, Stephan; Kubetzka, André; von Bergmann, Kirsten; Wiesendanger, Roland; Heinze, Stefan

    2018-05-01

    We use spin-polarized scanning tunneling microscopy and density functional theory (DFT) to study domain walls (DWs) and the Dzyaloshinskii-Moriya interaction (DMI) in epitaxial films of Co/Ir(111) and Pt/Co/Ir(111). Our measurements reveal DWs with fixed rotational sense for one monolayer of Co on Ir, with a wall width around 2.7 nm. With Pt islands on top, we observe that the DWs occur mostly in the uncovered Co/Ir areas, suggesting that the wall energy density is higher in Pt/Co/Ir(111). From DFT we find an interfacial DMI that stabilizes Néel-type DWs with clockwise rotational sense. The calculated DW widths are in good agreement with the experimental observations. The calculated total DMI nearly doubles from Co/Ir(111) to Pt/Co/Ir(111); however, in the latter case the DMI is almost entirely due to the Pt with only a minor Ir contribution. Therefore a simple additive effect, in which both interfaces contribute significantly to the total DMI, is not observed for one atomic Co layer sandwiched between Ir and Pt.

  8. Graft polymerization of acrylic acid onto chitin nanofiber to improve dispersibility in basic water.

    PubMed

    Ifuku, Shinsuke; Iwasaki, Masayoshi; Morimoto, Minoru; Saimoto, Hiroyuki

    2012-09-01

    Graft copolymerization of acrylic acid (AA) on chitin nanofibers was carried out with potassium persulfate as a free radical initiator in an aqueous medium. The molar ratio of grafted AA increased with the AA concentration. The grafted chitin nanofibers were characterized by FT-IR, FE-SEM, UV-vis, XRD, and TGA. After polymerization, the characteristic morphology of chitin nanofibers was maintained. Chitin nanofibers grafted with AA were efficiently dissociated and dispersed homogeneously in basic water because of the electrostatic repulsion effect between nanofibers. AA was grafted on the surface and amorphous part of chitin nanofibers, and the original crystalline structure of α-chitin was maintained. At 330 °C, the weight residue of the graft copolymer increased with the grafted AA content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Gallic Acid Grafted Chitosan Has Enhanced Oxidative Stability in Bulk Oils.

    PubMed

    Gim, Seo Yeong; Hong, Seungmi; Kim, Mi-Ja; Lee, JaeHwan

    2017-07-01

    Gallic acid (GA) was grafted in chitosan and the effects of GA grafted chitosan (GA-g-CS) on the oxidative stability in bulk oil was tested at 60 and 140 °C. To text oxidative stability in oils, headspace oxygen content, conjugated dienoic acid (CDA) value, p-anisidine value (p-AV), and acid value were determined. Chitosan itself did not show antioxidative or prooxidative effects in oils at 60 °C. However, GA-g-CS and GA acted as antioxidants at 60 °C. At 140 °C heating with moisture supplied condition, different results were observed. GA-g-CS acted as antioxidants based on the results of CDA and p-AV. However, chitosan showed the highest oxidative stability based on results of acid value and brown color formation at 140 °C. This could be due to reduction of moisture content by chitosan. GA was continuously released from GA-g-CS in bulk oil. This might have provided extra antioxidant activities to oils. © 2017 Institute of Food Technologists®.

  10. Synthesis of modified sepiolite-g-polystyrene sulfonic acid nanohybrids by radiation induced graft polymerization

    NASA Astrophysics Data System (ADS)

    Taimur, Shaista; Hassan, Muhammad Inaam ul; Yasin, Tariq; Ali, Syed Wasim

    2018-07-01

    In this study, polystyrene (PS) grafted sepiolite nanohybrid (MS-g-PS) was synthesized by using simultaneous radiation grafting technique in the presence of dichloromethane (DCM) as solvent. The radiation grafting process was carried out under inert atmosphere at room temperature using gamma rays from a Co-60 irradiator. The degree of grafting was affected by absorbed dose and monomer concentration in the mixture. Sulfonation of synthesized nanohybrid was carried out with sulfuric acid. Both the grafting of styrene and its sulfonate derivative were verified by Fourier transform infrared spectroscopy (FT-IR). The structural and morphological investigations of these nanohybrids have been investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The gravimetric investigations showed that grafting yield increases with the absorbed dose. Results showed that the system allows the controlled grafting of styrene onto sepiolite (Sep) in DCM.

  11. Grafting of poly (lactic acid) with maleic anhydride using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Khankrua, R.; Pivsa-Art, S.; Hiroyuki, H.; Suttiruengwong, S.

    2015-07-01

    The aim of this work was to modify poly lactic acid (PLA) via free radical grafting with maleic anhydride (MA) by using supercritical carbon dioxide (SCCO2). Benzoyl peroxide (BPO) was used as an initiator. The solubility of MA in SCCO2 was first determined to estimate the suitable grafting conditions and equilibrium. From the solubility study of MA in SCCO2, it was found that the solubility of MA in SCCO2 increased with the increasing pressure and dissolution time. PLA films were first prepared by compression molding. The ratio of MA to BPO was 2:1. The reaction temperature and pressure were 70°C and 100 bar respectively. The grafting reaction and the degree of grafting were characterized by nuclear magnetic resonance (NMR) spectroscopy and titration, respectively. Scanning electron microscope (SEM) technique and contact angle were used to confirm the changes in physical properties of PLA film grafted MA. NMR spectrum indicated that the grafting of MA onto PLA was successively achieved. Degree of grafting by using SCCO2 was as high as 0.98%. This provided rather high grafting degree compared with other processes. SEM pictures showed the rough surface structure on modified PLA film. In addition, contact angle results showed an improvement of the hydrophilicity by maleic anhydride grafting onto polymers.

  12. Effects of point massage of liver and stomach channel combined with pith and trotter soup on postpartum lactation start time.

    PubMed

    Luo, Qiong; Hu, Yin; Zhang, Hui

    2017-10-01

    Delay in lactation initiation causes maternal anxiety and subsequent adverse impact on maternal exclusive breast feeding. It is important to explore a safe and convenient way to promote lactation initiation. The feasibility of point massage of liver and stomach channel combined with pith and trotter soup on prevention of delayed lactation initiation was investigated in the present study. 320 women were enrolled and randomly divided into four groups, control group (80 women), point massage group (80 women), pith and trotter soup group (80 women), and massage + soup group (80 women) to compare the lactation initiation time. We found that women in point massage group, pith and trotter soup group and massage + soup group had earlier initiation of lactation compared with control group. Women in massage + soup group had the earliest initiation time of lactation. There were significant differences between massage + soup group and pith and trotter soup group. But, there were no significant differences between massage + soup group and massage group. We conclude that point massage of the liver and stomach channel is easy to operate and has the preventive effect on delayed lactation initiation. Impact statement What is already known on this subject: Initiation of lactation is a critical period in postpartum milk secretion. Delays in lactation initiation lead to maternal anxiety and have an adverse impact on maternal exclusive breastfeeding. Sucking frequently by babies and mammary massage might be effective but insufficient for delayed lactation initiation. What the results of this study add: We found in the present study that lactation initiation is significantly earlier in women receiving routine nursing combined with point massage of liver and stomach channel, or pith trotters soup, or massage of liver and stomach channel with pith and trotters soup than in a control group receiving routine nursing. These three methods are all effective, while the most

  13. Hyaluronic acid enhancement of expanded polytetrafluoroethylene for small diameter vascular grafts

    NASA Astrophysics Data System (ADS)

    Lewis, Nicole R.

    Cardiovascular disease is the leading cause of mortality and morbidity in the United States and other developed countries. In the United States alone, 8 million people are diagnosed with peripheral arterial disease per year and over 250,000 patients have coronary bypass surgery each year. Autologous blood vessels are the standard graft used in small diameter (<6mm) arterial bypass procedures. Synthetic small diameter grafts have had limited success. While polyethylene (Dacron) and expanded polytetrafluoroethylene (ePTFE) are the most commonly used small diameter synthetic vascular graft materials, there are significant limitations that make these materials unfavorable for use in the low blood flow conditions of the small diameter arteries. Specifically, Dacron and ePTFE grafts display failure due to early thrombosis or late intimal hyperplasia. With the shortage of tissue donors and the limited supply of autologous blood vessels available, there is a need for a small diameter synthetic vascular graft alternative. The aim of this research is to create and characterize ePTFE grafts prepared with hyaluronic acid (HA), evaluate thrombogenic potential of ePTFE-HA grafts, and evaluate graft mechanical properties and coating durability. The results in this work indicate the successful production of ePTFE-HA materials using a solvent infiltration technique. Surface interactions with blood show increased platelet adhesion on HA-modified surfaces, though evidence may suggest less platelet activation and erythrocyte lysis. Significant changes in mechanical properties of HA-modified ePTFE materials were observed. Further investigation into solvent selection, uniformity of HA, endothelialization, and dynamic flow testing would be beneficial in the evaluation of these materials for use in small diameter vascular graft bypass procedures.

  14. Functional and surface-active membranes from poly(vinylidene fluoride)-graft-poly(acrylic acid) prepared via RAFT-mediated graft copolymerization.

    PubMed

    Ying, L; Yu, W H; Kang, E T; Neoh, K G

    2004-07-06

    Poly (vinylidene fluoride) (PVDF) with "living" poly (acrylic acid) (PAAc) side chains (PVDF-g-PAAc) was prepared by reversible addition-fragmentation chain transfer (RAFT)-mediated graft copolymerization of acrylic acid (AAc) with the ozone-pretreated PVDF. The chemical composition and structure of the copolymers were characterized by elemental analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The copolymer could be readily cast into pH-sensitive microfiltration (MF) membranes with enriched living PAAc graft chains on the surface (including the pore surfaces) by phase inversion in an aqueous medium. The surface composition of the membranes was determined by X-ray photoelectron spectroscopy. The morphology of the membranes was characterized by scanning electron microscopy. The pore size distribution of the membranes was found to be much more uniform than that of the corresponding membranes cast from PVDF-g-PAAc prepared by the "conventional" free-radical graft copolymerization process. Most important of all, the MF membranes with surface-tethered PAAc macro chain transfer agents, or the living membrane surfaces, could be further functionalized via surface-initiated block copolymerization with N-isopropylacrylamide (NIPAAM) to obtain the PVDF-g-PAAc-b-PNIPAAM MF membranes, which exhibited both pH- and temperature-dependent permeability to aqueous media.

  15. Inhibition of Listeria monocytogenes in Fresh Cheese Using Chitosan-Grafted Lactic Acid Packaging.

    PubMed

    Sandoval, Laura N; López, Monserrat; Montes-Díaz, Elizabeth; Espadín, Andres; Tecante, Alberto; Gimeno, Miquel; Shirai, Keiko

    2016-04-08

    A chitosan from biologically obtained chitin was successfully grafted with d,l-lactic acid (LA) in aqueous media using p-toluenesulfonic acid as catalyst to obtain a non-toxic, biodegradable packaging material that was characterized using scanning electron microscopy, water vapor permeability, and relative humidity (RH) losses. Additionally, the grafting in chitosan with LA produced films with improved mechanical properties. This material successfully extended the shelf life of fresh cheese and inhibited the growth of Listeria monocytogenes during 14 days at 4 °C and 22% RH, whereby inoculated samples with chitosan-g-LA packaging presented full bacterial inhibition. The results were compared to control samples and commercial low-density polyethylene packaging.

  16. Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid).

    PubMed

    Liuyun, Jiang; Lixin, Jiang; Chengdong, Xiong; Lijuan, Xu; Ye, Li

    2016-01-01

    It is promising and challenging to study surface modification for nano-hydroxyapatite to improve the dispersion and enhance the mechanical properties and bioactivity of poly(lactic acid-co-glycolic acid). In this paper, we designed an effective new surface grafting with the assist of l-lysine for nano-hydroxyapatite, and the nano-hydroxyapatite surface grafted with the assist of l-lysine (g-nano-hydroxyapatite) was incorporated into poly(lactic acid-co-glycolic acid) to develop a series of g-nano-hydroxyapatite/poly(lactic acid-co-glycolic acid) nano-composites. The surface modification reaction for nano-hydroxyapatite, the mechanical properties, and in vitro human osteoblast-like cell (MG-63) response were characterized and investigated by Fourier transformation infrared, thermal gravimetric analysis, dispersion test, electromechanical universal tester, differential scanning calorimeter measurements, and in vitro cells culture experiment. The results showed that the grafting amount on the surface of nano-hydroxyapatite was enhanced with the increase of l-lysine, and the dispersion of nano-hydroxyapatite was improved more, so that it brought about better promotion crystallization and more excellent mechanical enhancement effect for poly(lactic acid-co-glycolic acid), comparing with the unmodified nano-hydroxyapatite. Moreover, the cells' attachment and proliferation results confirmed that the incorporation of the g-nano-hydroxyapatite into poly(lactic acid-co-glycolic acid) exhibited better biocompatibility than poly(lactic acid-co-glycolic acid). The above results indicated that the new surface grafting with the assist of l-lysine for nano-hydroxyapatite was an ideal novel surface modification method, which brought about better mechanical enhancement effect and in vitro bioactivity for poly(lactic acid-co-glycolic acid) with adding higher g-nano-hydroxyapatite content, suggesting it had a great potential to be used as bone fracture internal fixation materials

  17. Preconcentration and Determination of Mefenamic Acid in Pharmaceutical and Biological Fluid Samples by Polymer-grafted Silica Gel Solid-phase Extraction Following High Performance Liquid Chromatography

    PubMed Central

    Bagheri Sadeghi, Hayedeh; Panahi, Homayon Ahmad; Mahabadi, Mahsa; Moniri, Elham

    2015-01-01

    Mefenamic acid is a nonsteroidal anti-inflammatory drug (NSAID) that has analgesic, anti-infammatory and antipyretic actions. It is used to relieve mild to moderate pains. Solid-phase extraction of mefenamic acid by a polymer grafted to silica gel is reported. Poly allyl glycidyl ether/iminodiacetic acid-co-N, N-dimethylacrylamide was synthesized and grafted to silica gel and was used as an adsorbent for extraction of trace mefenamic acid in pharmaceutical and biological samples. Different factors affecting the extraction method were investigated and optimum conditions were obtained. The optimum pH value for sorption of mefenamic acid was 4.0. The sorption capacity of grafted adsorbent was 7.0 mg/g. The best eluent solvent was found to be trifluoroacetic acid-acetic acid in methanol with a recovery of 99.6%. The equilibrium adsorption data of mefenamic acid by grafted silica gel was analyzed by Langmuir model. The conformation of obtained data to Langmuir isotherm model reveals the homogeneous binding sites of grafted silica gel surface. Kinetic study of the mefenamic acid sorption by grafted silica gel indicates the good accessibility of the active sites in the grafted polymer. The sorption rate of the investigated mefenamic acid on the grafted silica gel was less than 5 min. This novel synthesized adsorbent can be successfully applied for the extraction of trace mefenamic acid in human plasma, urine and pharmaceutical samples. PMID:26330865

  18. Synthesis and Properties of Carbon Nanotube-Grafted Silica Nanoarchitecture-Reinforced Poly(Lactic Acid)

    PubMed Central

    Hsu, Yao-Wen; Wu, Chia-Ching; Wu, Song-Mao

    2017-01-01

    A novel nanoarchitecture-reinforced poly(lactic acid) (PLA) nanocomposite was prepared using multi-walled carbon nanotube (MWCNT)-grafted silica nanohybrids as reinforcements. MWCNT-grafted silica nanohybrids were synthesized by the generation of silica nanoparticles on the MWCNT surface through the sol-gel technique. This synthetic method involves organo-modified MWCNTs that are dispersed in tetrahydrofuran, which incorporates tetraethoxysilane that undergoes an ultrasonic sol-gel process. Gelation yielded highly dispersed silica on the organo-modified MWCNTs. The structure and properties of the nanohybrids were established using 29Si nuclear magnetic resonance, Raman spectroscopy, wide-angle X-ray diffraction, thermogravimetric analysis, and transmission electron microscopy. The resulting MWCNT nanoarchitectures were covalently assembled into silica nanoparticles, which exhibited specific and controllable morphologies and were used to reinforce biodegradable PLA. The tensile strength and the heat deflection temperature (HDT) of the PLA/MWCNT-grafted silica nanocomposites increased when the MWCNT-grafted silica was applied to the PLA matrix; by contrast, the surface resistivity of the PLA/MWCNT-grafted silica nanocomposites appeared to decline as the amount of MWCNT-grafted silica in the PLA matrix increased. Overall, the reinforcement of PLA using MWCNT-grafted silica nanoarchitectures was efficient and improved its mechanical properties, heat resistance, and electrical resistivity. PMID:28773187

  19. Trapping by amylose of the aliphatic chain grafted onto chlorogenic acid: importance of the graft position.

    PubMed

    Le-Bail, P; Lorentz, C; Pencreac'h, G; Soultani-Vigneron, S; Pontoire, B; López Giraldo, L J; Villeneuve, P; Hendrickx, J; Tran, V

    2015-03-06

    5-Caffeoylquinic acid (chlorogenic acid), is classified in acid-phenols family and as polyphenolic compounds it possesses antioxidant activity. The oxydative modification of chlorogenic acid in foods may lead to alteration of their qualities; to counteract these degradation effects, molecular encapsulation was used to protect chlorogenic acid. Amylose can interact strongly with a number of small molecules, including lipids. In order to enable chlorogenic acid complexation by amylose, a C16 aliphatic chain was previously grafted onto the cycle of quinic acid. This work showed that for the two lipophilic derivatives of chlorogenic acid: hexadecyl chlorogenate obtained by alkylation and 3-O-palmitoyl chlorogenic acid obtained by acylation; only the 3-O-palmitoyl chlorogenic acid complexed amylose. The chlorogenic acid derivatives were studied by X-ray diffraction, differential scanning calorimetry and NMR to elucidate the interaction. By comparing the results with previous work on the complexation of amylose by 4-O-palmitoyl chlorogenic acid, the importance of the aliphatic chain position on the cycle of the quinic acid is clearly highlighted. A study in molecular modeling helped to understand the difference in behavior relative to amylose of these three derivatives of chlorogenic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Nonesterified fatty acids and development of graft failure in renal transplant recipients.

    PubMed

    Klooster, Astrid; Hofker, H Sijbrand; Navis, Gerjan; Homan van der Heide, Jaap J; Gans, Reinold O B; van Goor, Harry; Leuvenink, Henri G D; Bakker, Stephan J L

    2013-06-15

    Chronic transplant dysfunction is the most common cause of graft failure on the long term. Proteinuria is one of the cardinal clinical signs of chronic transplant dysfunction. Albumin-bound fatty acids (FA) have been hypothesized to be instrumental in the etiology of renal damage induced by proteinuria. We therefore questioned whether high circulating FA could be associated with an increased risk for future development of graft failure in renal transplant recipients (RTR). To this end, we prospectively investigated the association of fasting concentrations of circulating nonesterified FA (NEFA) with the development of graft failure in RTR. Baseline measurements were performed between 2001 and 2003 in outpatient RTR with a functioning graft of more than 1 year. Follow-up was recorded until May 19, 2009. Graft failure was defined as return to dialysis or retransplantation. We included 461 RTR at a median (interquartile range [IQR]) of 6.1 (3.3-11.3) years after transplantation. Median (IQR) fasting concentrations of NEFA were 373 (270-521) μM/L. Median (IQR) follow-up for graft failure beyond baseline was 7.1 (6.1-7.5) years. Graft failure occurred in 23 (15%), 14 (9%), and 9 (6%) of RTR across increasing gender-specific tertiles of NEFA (P=0.04). In a gender-adjusted Cox-regression analysis, log-transformed NEFA level was inversely associated with the development of graft failure (hazard ratio, 0.61; 95% confidence interval, 0.47-0.81; P<0.001). In this prospective cohort study in RTR, we found an inverse association between fasting NEFA concentrations and risk for development of graft failure. This association suggests a renoprotective rather than a tubulotoxic effect of NEFA. Further studies on the role of different types of NEFA in the progression of renal disease are warranted.

  1. Electron beam-induced graft polymerization of acrylic acid and immobilization of arginine-glycine-aspartic acid-containing peptide onto nanopatterned polycaprolactone.

    PubMed

    Sun, Hui; Wirsén, Anders; Albertsson, Ann-Christine

    2004-01-01

    Electron beam- (EB-) induced graft polymerization of acrylic acid and the subsequent immobilization of arginine-glycine-aspartic acid (RGD) peptide onto nanopatterned polycaprolactone with parallel grooves is reported. A high concentration of carboxylic groups was introduced onto the polymer substrate by EB-induced polymerization of acrylic acid. In the coupling of the RGD peptide to the carboxylated polymer surface, a three-step peptide immobilization process was used. This process included the activation of surface carboxylic acid into an active ester intermediate by use of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), the introduction of disulfide groups by use of 2-(2-pyridinyldithio)ethanamine hydrochloride (PDEA), and final immobilization of the peptide via a thiol-disulfide exchange reaction. The extent of coupling was measured by UV spectroscopy. A preliminary study of the in vitro behavior of keratinocytes (NCTC 2544) cultured on the acrylic acid-grafted and RGD peptide-coupled surface showed that most cells grown on the coupled samples had a spread-rounded appearance, while the majority of cells tended to be elongated along the grooves on uncoupled substrates.

  2. Effect of fiber fibrillation on impact and flexural strength of coir fiber reinforced epoxy hybrid composites

    NASA Astrophysics Data System (ADS)

    Mawardi, I.; Jufriadi; Hanif

    2018-03-01

    This study aims to develop fiber-reinforced epoxy resin composites. This study presents the effect of fiber fibrillation on the impact and flextural strength of the epoxy hybrid composite reinforced by coir fiber. Coir is soaked in 5% NaOH solution for 5 hours. Then fiber is rocessed using a blender of 2000 rpm density fibrillation. The length of time the fibrillation varied for 10, 20 and 30 minutes. Volume fraction of 30% fiber and matrix 70% composited. The composite uses a matrix of epoxy by hand lay up method. The implemented tests are impact and flexural tests. The test results show fiber fibrillation treatment can improve the composite mechanical properties. The highest impact and flexural strength, 24.45 kJ/m2 and 87.91 MPa were produced with fiber fibrillation for 10 minutes.

  3. Controlled graft copolymerization of lactic acid onto starch in a supercritical carbon dioxide medium.

    PubMed

    Salimi, Kouroush; Yilmaz, Mehmet; Rzayev, Zakir M O; Piskin, Erhan

    2014-12-19

    This work presents a new approach for the synthesis of a starch-g-poly L-lactic acid (St-g-PLA) copolymer via the graft copolymerization of LA onto starch using stannous 2-ethyl hexanoate (Sn(Oct)2) as a catalyst in a supercritical carbon dioxide (scCO2) medium. The effects of several process parameters, including the pressure, temperature, scCO2 flow rate and reaction time, on the polymerization yield and grafting degree were studied. Amorphous graft St-g-PLA copolymers with increased thermal stability and processability were produced with a high efficiency. The maximum grafting degree (i.e., 52% PLA) was achieved with the following reaction conditions: 6h, 100°C, 200 bar and a 1:3 (w/w) ratio of St/LA. It was concluded that these low cost biobased graft biopolymers are potential candidates for several environment-friendly applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The graft polymers from different species of lignin and acrylic acid: synthesis and mechanism study.

    PubMed

    Ye, De zhan; Jiang, Li; Ma, Chao; Zhang, Ming-hua; Zhang, Xi

    2014-02-01

    The influence of lignin species on the grafting mechanism of lignosulfonate (from eucalyptus and pine, recorded as HLS and SLS, respectively) with acrylic acid (AA) was investigated. The graft polymers were confirmed by the absorption of carbonyl groups in the FTIR spectra. The decreasing phenolic group's content (Ph-OH) is not only due to its participation as grafting site but also to the negative effect of initiator. In the initial period (0-60 min), HLS and SLS both accelerate the polymerization of AA. Additionally, Ph-OH group's content is proportional to product yield (Y%), monomer conversion (C%) and grafting efficiency (GE%), strongly indicating that it acts as active center. Nevertheless, compared with HLS, Y% and C% in SLS grafting system are lower though it has higher Ph-OH group's content, which is due to the quinonoid structure formed by the self-conjugated of phenoxy radical in Guaiacyl unit. Finally, the lignosulfonate grafting mechanism was proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Hanging angles of two electrostatically repelling pith balls of different masses

    NASA Astrophysics Data System (ADS)

    Tran, Phuc G.; Mungan, Carl E.

    2011-09-01

    An analytic solution can be derived for the angles of two mutually repelling charged pith balls of unequal mass hanging from strings from a common point of attachment. Just as in the equal-mass case, a cubic equation is found for the square of the sine of either angle, and an approximation can be used to avoid Cardano's formula for small angles. These results extend a standard problem treated in introductory undergraduate courses in electricity and magnetism.

  6. Immobilization of BSA, enzymes and cells of Bacillus stearothermophilus onto cellulose polygalacturonic acid and starch based graft copolymers containing maleic arhydride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beddows, C.G.; Gil, M.H.; Guthrie, J.T.

    1986-01-01

    Poly(maleic anhydride styrene) graft copolymers of cellulose, pectin polygalacturonic acid salt, calcium polygalacturonate, and starch were prepared and used to immobilize proteins. The cellulose grafts coupled quite appreciable quantities of acid phosphatase, glucose oxidase, and trypsin. However, the general retention of activity was somewhat disappointing. Further investigation with acid phosphatase showed that the amount of enzyme immobilized increased as the amount of anhydride in the graft copolymer increased but no such relationship existed for the enzymic activity. The cellulose graft copolymers were hydrolyzed and it appeared that the carboxyl group aided adsorption of the enzyme. Attempts to couple acid phosphatasemore » using CMC through the free carboxyl groups, created by hydrolysis, gave only a small increase in the extent of protein coupling. However, the unhydrolyzed system gave a useful degree of immobilization of cells of Bacillus stearothermophilus, as did a poly(maleic anhydride/styrene)-cocellulose system. Attempts to improve the activity by using grafts based on other polysaccharide supports met with mixed success. Pectin products were soluble. Polygalacturonic acid products were partially soluble and extremely high levels of enzymic activity were obtained. This was probably due in part to the hydrophilic nature of the system, which also encouraged absorption of the enzyme. Attempts were made to reduce the solubility by using the calcium pectinate salt. Immobilization of acid phosphatase and trypsin resulted in increased protein coupling but relatively poor activities were attained. Calcium polygalacturonate was used to prepare an insoluble graft copolymeric system containing acrylonitrile-comaleic anhydride. The resulting gels gave excellent coupling with acid phosphatase which had a very good retention of activity.« less

  7. Retinoic Acid Engineered Amniotic Membrane Used as Graft or Homogenate: Positive Effects on Corneal Alkali Burns.

    PubMed

    Joubert, Romain; Daniel, Estelle; Bonnin, Nicolas; Comptour, Aurélie; Gross, Christelle; Belville, Corinne; Chiambaretta, Frédéric; Blanchon, Loïc; Sapin, Vincent

    2017-07-01

    Alkali burns are the most common, severe chemical ocular injuries, their functional prognosis depending on corneal wound healing efficiency. The purpose of our study was to compare the benefits of amniotic membrane (AM) grafts and homogenates for wound healing in the presence or absence of previous all-trans retinoic acid (atRA) treatment. Fifty male CD1 mice with reproducible corneal chemical burn were divided into five groups, as follows: group 1 was treated with saline solution; groups 2 and 3 received untreated AM grafts or grafts treated with atRA, respectively; and groups 4 and 5 received untreated AM homogenates or homogenates treated with atRA, respectively. After 7 days of treatment, ulcer area and depth were measured, and vascular endothelial growth factor (VEGF) and matrix metalloproteinase 9 (MMP-9) were quantified. AM induction by atRA was confirmed via quantification of retinoic acid receptor β (RARβ), a well-established retinoic acid-induced gene. Significant improvements of corneal wound healing in terms of ulcer area and depth were obtained with both strategies. No major differences were found between the efficiency of AM homogenates and grafts. This positive action was increased when AM was pretreated with atRA. Furthermore, AM induced a decrease in VEGF and MMP-9 levels during the wound healing process. The atRA treatment led to an even greater decrease in the expression of both proteins. Amnion homogenate is as effective as AM grafts in promoting corneal wound healing in a mouse model. A higher positive effect was obtained with atRA treatment.

  8. Reaction Mechanisms and Structural and Physicochemical Properties of Caffeic Acid Grafted Chitosan Synthesized in Ascorbic Acid and Hydroxyl Peroxide Redox System.

    PubMed

    Liu, Jun; Pu, Huimin; Chen, Chong; Liu, Yunpeng; Bai, Ruyu; Kan, Juan; Jin, Changhai

    2018-01-10

    The ascorbic acid (AA) and hydroxyl peroxide (H 2 O 2 ) redox pair induced free radical grafting reaction is a promising approach to conjugate phenolic groups with chitosan (CS). In order to reveal the exact mechanisms of the AA/H 2 O 2 redox pair induced grafting reaction, free radicals generated in the AA/H 2 O 2 redox system were compared with hydroxyl radical ( • OH) produced in the Fe 2+ /H 2 O 2 redox system. Moreover, the structural and physicochemical properties of caffeic acid grafted CS (CA-g-CS) synthesized in these two redox systems were compared. Results showed that only ascorbate radical (Asc •- ) was produced in the AA/H 2 O 2 system. The reaction between Asc •- and CS produced novel carbon-centered radicals, whereas no new free radicals were detected when • OH reacted with CS. Thin layer chromatography, UV-vis, Fourier transform infrared, and nuclear magnetic resonance spectroscopic analyses all confirmed that CA was successfully grafted onto CS through Asc •- . However, CA could be hardly grafted onto CS via • OH. CA-g-CS synthesized through Asc •- exhibited lower thermal stability and crystallinity than the reaction product obtained through • OH. For the first time, our results demonstrated that the synthesis of CA-g-CS in the AA/H 2 O 2 redox system was mediated by Asc •- rather than • OH.

  9. Graphene-Like 2D Porous Carbon Nanosheets Derived from Cornstalk Pith for Energy Storage Materials

    NASA Astrophysics Data System (ADS)

    Gao, Kezheng; Niu, Qingyuan; Tang, Qiheng; Guo, Yaqing; Wang, Lizhen

    2018-01-01

    Biomass materials from different organisms or different parts (even different periods) of the same organism have different microscopic morphologies, hierarchical pore structures and even elemental compositions. Therefore, carbon materials inheriting the unique hierarchical microstructure of different biomass materials may exhibit significantly different electrochemical properties. Cornstalk pith and cornstalk skin (dried by freeze-drying) exhibit significantly different microstructures due to their different biological functions. The cornstalk skin-based carbon (S-carbon) exhibits a thick planar morphology, and the Barrett-Emmett-Teller (BET) surface area is only about 332.07 m2 g-1. However, cornstalk pith-based carbon (P-carbon) exhibits a graphene-like 2D porous nanosheet structure with a rough, wrinkled morphology, and the BET surface area is about 805.17 m2 g-1. In addition, a P-carbon supercapacitor exhibits much higher specific capacitance and much better rate capability than an S-carbon supercapacitor in 6 M potassium hydroxide (KOH) electrolyte.

  10. Polymethacrylic acid grafted psyllium (Psy- g-PMA): a novel material for waste water treatment

    NASA Astrophysics Data System (ADS)

    Kumar, Ranvijay; Sharma, Kaushlendra; Tiwary, K. P.; Sen, Gautam

    2013-03-01

    Polymethacrylic acid grafted psyllium (Psy- g-PMA) was synthesized by microwave assisted method, which involves a microwave irradiation in synergism with silver sulfate as a free radical initiator to initiate grafting reaction. Psy- g-PMA grades have been synthesized and characterized on structural basis (elemental analysis, FTIR spectroscopy, intrinsic viscosity study) as well as morphological and thermal studies, taking psyllium as reference. The effects of reaction time, amount of monomer and silver sulfate (free radical initiator) on grafting of PMA on psyllium backbone have been studied. It is observed that all the grades of Psy- g-PMA have higher intrinsic viscosities than that of psyllium. The best synthesized grade was Psy- g-PMA having intrinsic viscosity of 6.93 and 58 % grafting of PMA on the main polymer backbone. Further Psy- g-PMA applications as flocculants for waste water treatment have been investigated. Psy- g-PMA resulted in higher decrease in the flocculation parameters such as total dissolved solid or total solids compared to psyllium. Hence the result shows the possible application of grafted psyllium in wastewater treatment.

  11. Study on The Effectiveness of Egg Tray and Coir Fibre as A Sound Absorber

    NASA Astrophysics Data System (ADS)

    Kaamin, Masiri; Farah Atiqah Ahmad, Nor; Ngadiman, Norhayati; Kadir, Aslila Abdul; Razali, Siti Nooraiin Mohd; Mokhtar, Mardiha; Sahat, Suhaila

    2018-03-01

    Sound or noise pollution has become one major issues to the community especially those who lived in the urban areas. It does affect the activity of human life. This excessive noise is mainly caused by machines, traffic, motor vehicles and also any unwanted sounds that coming from outside and even from the inside of the building. Such as a loud music. Therefore, the installation of sound absorption panel is one way to reduce the noise pollution inside a building. The selected material must be a porous and hollow in order to absorb high frequency sound. This study was conducted to evaluate the potential of egg tray and coir fibre as a sound absorption panel. The coir fibre has a good coefficient value which make it suitable as a sound absorption material and can replace the traditional material; syntactic and wooden material. The combination of pyramid shape of egg tray can provide a large surface for uniform sound reflection. This study was conducted by using a panel with size 1 m x 1 m with a thickness of 6 mm. This panel consist of egg tray layer, coir fibre layer and a fabric as a wrapping for the aesthetic value. Room reverberation test has been carried to find the loss of reverberation time (RT). Result shows that, a reverberation time reading is on low frequency, which is 125 Hz to 1600 Hz. Within these frequencies, this panel can shorten the reverberation time of 5.63s to 3.60s. Hence, from this study, it can be concluded that the selected materials have the potential as a good sound absorption panel. The comparison is made with the previous research that used egg tray and kapok as a sound absorption panel.

  12. Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications.

    PubMed

    Cirillo, Giuseppe; Hampel, Silke; Klingeler, Rüdiger; Puoci, Francesco; Iemma, Francesca; Curcio, Manuela; Parisi, Ortensia Ilaria; Spizzirri, Umile Gianfranco; Picci, Nevio; Leonhardt, Albrecht; Ritschel, Manfred; Büchner, Bernd

    2011-02-01

    To prove the possibility of covalently functionalizing multi-walled carbon nanotubes (CNTs) by free radical grafting of gallic acid on their surface with the subsequent synthesis of materials with improved biological properties evaluated by specific in-vitro assays. Antioxidant CNTs were synthesized by radical grafting of gallic acid onto pristine CNTs. The synthesis of carbon nanotubes was carried out in a fixed-bed reactor and, after the removal of the amorphous carbon, the grafting process was performed. The obtained materials were characterized by fluorescence and Fourier transform infrared spectroscopy (FT-IR) analyses. After assessment of the biocompatibility and determination of the disposable phenolic group content, the antioxidant properties were evaluated in terms of total antioxidant activity and scavenger ability against 2,2'-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl and peroxyl radicals. Finally the inhibition activity on acetylcholinesterase was evaluated.   The covalent functionalization of CNTs with gallic acid was confirmed and the amount of gallic acid bound per g of CNTs was found to be 2.1±0.2 mg. Good antioxidant and scavenging properties were recorded in the functionalized CNTs, which were found to be able to inhibit the acetylcholinesterase with potential improved activity for biomedical and pharmaceutical applications. For the first time, a free radical grafting procedure was proposed as a synthetic approach for the covalent functionalization of CNTs with an antioxidant polyphenol. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society.

  13. Electron-beam-induced post-grafting polymerization of acrylic acid onto the surface of Kevlar fibers

    NASA Astrophysics Data System (ADS)

    Xu, Lu; Hu, Jiangtao; Ma, Hongjuan; Wu, Guozhong

    2018-04-01

    The surface of Kevlar fibers was successfully modified by electron beam (EB)-induced post-grafting of acrylic acid (AA). The generation of radicals in the fibers was confirmed by electron spin resonance (ESR) measurements, and the concentration of radicals was shown to increase as the absorbed dose increased, but decrease with increasing temperature. The influence of the synthesis conditions on the degree of grafting was also investigated. The surface microstructure and chemical composition of the modified Kevlar fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed that the surface of the grafted fibers was rougher than those of the pristine and irradiated fibers. XPS analysis confirmed an increase in C(O)OH groups on the surface of the Kevlar fibers, suggesting successful grafting of AA. These results indicate that EB-induced post-grafting polymerization is effective for modifying the surface properties of Kevlar fibers.

  14. Preparation of polymethacrylic acid-grafted HEMA/PVP microspheres and preliminary study on basic protein adsorption.

    PubMed

    Gao, Baojiao; Hu, Hongyan; Guo, Jianfeng; Li, Yanbin

    2010-06-01

    The crosslinked copolymeric microspheres (HEMA/NVP) of N-vinylpyrrolidone (NVP) and 2-hydroxyethyl methacrylate (HEMA) were prepared using inverse suspension polymerization method. Subsequently, the reaction of methacryloyl chloride with the hydroxyl groups on the surfaces of HEMA/NVP microspheres was performed, leading to the introduction of polymerisable double bonds onto the surfaces of microspheres HEMA/NVP. Afterward, methacrylic acid was allowed to be graft-polymerized on microspheres HEMA/NVP in the manner of "grafting from", resulting in the grafted microspheres PMAA-HEMA/NVP. The grafted microspheres PMAA-HEMA/NVP were fully characterized with several means. The graft-polymerization of MAA on microspheres HEMA/NVP was studied in detail, and the optimal reaction conditions were determined. Thereafter, the adsorption property of the grafted microspheres PMAA-HEMA/NVP for lysozyme as a basic protein model was preliminarily examined to explore the feasibility of removing deleterious basic protein such as density lipoprotein from blood. The experimental results indicate that the PMAA grafting degree on microspheres HEMA/NVP is limited because an enwinding polymer layer as a kinetic barrier on the surfaces of HEMA/NVP microspheres will be formed during the graft-polymerization, and block the graft-polymerization. In order to enhance PMAA grafting degree, reaction temperature, monomer concentration and the used amount of initiator should be effectively controlled. The experimental results also reveal that the grafted microspheres PMAA-HEMA/NVP possess very strong adsorption ability for lysozyme by right of strong electrostatic interaction. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites

    USDA-ARS?s Scientific Manuscript database

    The effects of different fiber treatments, namely washing with water, alkali treatment (mercerization) and bleaching, on mechanical and thermal properties of starch/EVA/coir biocomposites were evaluated by tensile tests and thermogravimetry (TG), respectively. Additionally, the fiber/matrix interfac...

  16. Conferring high-temperature tolerance to nontransgenic tomato scions using graft transmission of RNA silencing of the fatty acid desaturase gene.

    PubMed

    Nakamura, Shinya; Hondo, Kana; Kawara, Tomoko; Okazaki, Yozo; Saito, Kazuki; Kobayashi, Kappei; Yaeno, Takashi; Yamaoka, Naoto; Nishiguchi, Masamichi

    2016-02-01

    We investigated graft transmission of high-temperature tolerance in tomato scions to nontransgenic scions from transgenic rootstocks, where the fatty acid desaturase gene (LeFAD7) was RNA-silenced. Tomato was transformed with a plasmid carrying an inverted repeat of LeFAD7 by Agrobacterium. Several transgenic lines showed the lower amounts of LeFAD7 RNA and unsaturated fatty acids, while nontransgenic control did not, and siRNA was detected in the transgenic lines, but not in control. These lines grew under conditions of high temperature, while nontransgenic control did not. Further, the nontransgenic plants were grafted onto the silenced transgenic plants. The scions showed less of the target gene RNA, and siRNA was detected. Under high-temperature conditions, these grafted plants grew, while control grafted plants did not. Thus, it was shown that high-temperature tolerance was conferred in the nontransgenic scions after grafting onto the silenced rootstocks. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Effect of maleated natural rubber on tensile strength and compatibility of natural rubber/coconut coir composite

    NASA Astrophysics Data System (ADS)

    Ujianto, O.; Noviyanti, R.; Wijaya, R.; Ramadhoni, B.

    2017-07-01

    Natural rubber (NR)/coconut coir (CF) composites were fabricated using co-rotating twin screw extruder with maleated NR (MNR) used as compatibilizer. The MNR was produced at three level of maleic anhydride (MA), and analyzed qualitative and quantitatively using FTIR and titration technique. Analysis on MNR using FTIR and titration methods showed that MA was grafted on NR chain at different percentage (0.76, 2.23, 4.79%) depended on MA concentration. Tensile strength data showed the best tensile strength was produced at 7 phr of MNR with 1 phr of MA level in MNR resulting 16.4 MPa. The improvement of compatibilized samples were more than 300% compare to uncompatibilized composite attributed to better interfacial bonding. The improvement on tensile strength was significantly influenced by MNR level and amount of MA added to produce MNR, as well as their interaction. The optimum conditions for producing NR-CF composite were predicted at 6.5 phr of MNR level with 1 phr of MA concentration added in MNR production, regardless screw rotation settings. Results from verification experiments confirm that developed model was capable of describing phenomena during composite preparation. Morphology analysis using scanning electron microscopy shows smooth covered fiber in compatibilized samples than that of without MNR. The morphology also showed less voids on compatibilized samples attributed to better interfacial bonding leading to tensile strength improvement.

  18. Gallic acid grafting modulates the oxidative potential of ferrimagnetic bioactive glass-ceramic SC-45.

    PubMed

    Corazzari, Ingrid; Tomatis, Maura; Turci, Francesco; Ferraris, Sara; Bertone, Elisa; Prenesti, Enrico; Vernè, Enrica

    2016-12-01

    Magnetite-containing glass-ceramics are promising bio-materials for replacing bone tissue after tumour resection. Thanks to their ferrimagnetic properties, they generate heat when subjected to an alternated magnetic field. In virtue of this they can be employed for the hyperthermic treatment of cancer. Moreover, grafting anti-cancer drugs onto their surface produces specific anti-neoplastic activity in these biomaterials. Gallic acid (GA) exhibits antiproliferative activity which renders it a promising candidate for anticancer applications. In the present paper, the reactivity of ferrimagnetic glass-ceramic SC-45 grafted with GA (SC-45+GA) was studied in terms of ROS release, rupture of the C-H bond of the formate molecule and Fenton reactivity by EPR/spin trapping in acellular systems. The ability of these materials to cause lipid peroxidation was assessed by UV-vis/TBA assay employing linoleic acid as a model of membrane lipid. The results, compared to those obtained with SC-45, showed that GA grafting (i) significantly enhanced the Fenton reactivity and (ii) restored the former reactivity of SC-45 towards both the C-H bond and linoleic acid which had been completely suppressed by prolonged contact with water. Fe 2+ centres at the surface are probably implicated. GA, acting as a pro-oxidant, reduces Fe 3+ to Fe 2+ by maintaining a supply of Fe 2+ at the surface of SC-45+GA. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Mechanical properties evaluation of single and hybrid composites polyester reinforced bamboo, PALF and coir fiber

    NASA Astrophysics Data System (ADS)

    Rihayat, T.; Suryani, S.; Fauzi, T.; Agusnar, H.; Wirjosentono, B.; Syafruddin; Helmi; Zulkifli; Alam, P. N.; Sami, M.

    2018-03-01

    This study aims to determine the composition fiber natural of bamboo, pineapple leaf and coir in single and hybrid composite to see the best characteristics of tensile strength and flexural test by using a Universal Testing Machine (UTM) and observe the effect on the microstructure of the composite through optical and scanning electron microscopy. Bamboo, Palf and coir have synthesis from natural fiber was used as reinforcement in polyester composite using hand lay up or a hot-compression moulding while filler:matrix was used (45%:55wt.%, 70%:30wt.% and 15%:85wt.%). From the variation of the volume fraction between filler and matrix show that mechanical properties of composites increased with increasing amount of filler in the matrix. This is evidenced by the high mechanical properties A:B:C/Ps in compositions 45%: 55wt.% 136 Mpa while flexural strength 93 N and good structure surface morphology. This research has produced a hybrid composite materials that have high mechanical properties and bending compared with conventional synthetic fibers and other materials.

  20. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients.

    PubMed

    Essawy, Hisham A; Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F

    2016-08-01

    Superabsorbent polymers fabricated via grafting polymerization of acrylic acid from chitosan (CTS) yields materials that suffer from poor mechanical strength. Hybridization of chitosan with cellulose (Cell) via chemical bonding using thiourea formaldehyde resin increases the flexibility of the produced hybrid (CTS/Cell). The hybridization process and post graft polymerization of acrylic acid was followed using Fourier transform infrared (FTIR). Also, the obtained structures were homogeneous and exhibited uniform surface as could be shown from imaging with scanning electron microscopy (SEM). Thus, the polymers derived from the grafting of polyacrylic acid from (CTS/Cell) gave rise to much more mechanically robust structures ((CTS/Cell)-g-PAA) that bear wide range of pH response due to presence of chitosan and polyacrylic acid in one homogeneous entity. Additionally, the obtained structures possessed greater water absorbency 390, 39.5g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced retention potential even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high grafting efficiency (GE%), 86.4%, and grafting yield (GY%), 750%. The new superabsorbent polymers proved to be very efficient devices for controlled release of fertilizers into the soil which expands their use in agriculture and horticultural applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Properties of starch-polyglutamic acid (PGA) graft copolymer prepared by microwave irradiation - Fourier transform infrared spectroscopy (FTIR) and rheology studies

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of waxy starch-'-polygutamic acid (PGA) graft copolymers were investigated. Grafting was confirmed by FTIR spectroscopy. The starch-PGA copolymers absorbed water and formed gels, which exhibited concentration-dependent viscoelastic solid properties. Higher starch-PGA conce...

  2. Ligand-functionalized degradable polyplexes formed by cationic poly(aspartic acid)-grafted chitosan-cyclodextrin conjugates

    NASA Astrophysics Data System (ADS)

    Song, Hai-Qing; Li, Rui-Quan; Duan, Shun; Yu, Bingran; Zhao, Hong; Chen, Da-Fu; Xu, Fu-Jian

    2015-03-01

    Polypeptide-based degradable polyplexes attracted considerable attention in drug delivery systems. Polysaccharides including cyclodextrin (CD), dextran, and chitosan (CS) were readily grafted with cationic poly(aspartic acid)s (PAsps). To further enhance the transfection performances of PAsp-based polyplexes, herein, different types of ligand (folic acid, FA)-functionalized degradable polyplexes were proposed based on the PAsp-grafted chitosan-cyclodextrin conjugate (CCPE), where multiple β-CDs were tied on a CS chain. The FA-functionalized CCPE (i.e., CCPE-FA) was obtained via a host-guest interaction between the CD units of CCPE and the adamantane (Ad) species of Ad-modified FA (Ad-FA). The resulting CCPE/pDNA, CCPE-FA/pDNA, and ternary CCPE-FA/CCPE/pDNA (prepared by layer-by-layer assembly) polyplexes were investigated in detail using different cell lines. The CCPE-based polyplexes displayed much higher transfection efficiencies than the CS-based polyplexes reported earlier by us. The ternary polyplexes of CCPE-FA/CCPE/pDNA produced excellent gene transfection abilities in the folate receptor (FR)-positive tumor cells. This work would provide a promising means to produce highly efficient polyplexes for future gene therapy applications.Polypeptide-based degradable polyplexes attracted considerable attention in drug delivery systems. Polysaccharides including cyclodextrin (CD), dextran, and chitosan (CS) were readily grafted with cationic poly(aspartic acid)s (PAsps). To further enhance the transfection performances of PAsp-based polyplexes, herein, different types of ligand (folic acid, FA)-functionalized degradable polyplexes were proposed based on the PAsp-grafted chitosan-cyclodextrin conjugate (CCPE), where multiple β-CDs were tied on a CS chain. The FA-functionalized CCPE (i.e., CCPE-FA) was obtained via a host-guest interaction between the CD units of CCPE and the adamantane (Ad) species of Ad-modified FA (Ad-FA). The resulting CCPE/pDNA, CCPE

  3. Flavonoids preservation and release by methacrylic acid-grafted (N-vinyl-pyrrolidone).

    PubMed

    Parisi, Ortensia Ilaria; Puoci, Francesco; Iemma, Francesca; Curcio, Manuela; Cirillo, Giuseppe; Spizzirri, Umile Gianfranco; Picci, Nevio

    2013-01-01

    Flavonoids preservation and release. Synthesis of a polymeric material able to prevent thermal and photo degradation of a flavonoid model compound, such as (+)-catechin, and suitable for a controlled/sustained delivery of this molecule in gastro-intestinal simulating fluids. Methacrylic acid (MAA) was grafted onto poly(N-vinyl-pyrrolidone) (PVP) by a free radical grafting procedure involving a single-step reaction at room temperature. For this purpose, hydrogen peroxide/ascorbic acid redox pair was employed as water-soluble and biocompatible initiator system. FT-IR spectra confirmed the insertion of MAA onto the polymeric chain. Stability studies, performed under various conditions, such as freeze-thaw cycles, exposure to strong light, thermal stability studies under constant humidity and with light protection at different temperatures, showed the preservative properties of the polymeric material towards flavonoids. Furthermore, the biocompatibility was highlighted by Hen's Egg Test-Chorioallantoic Membrane assay and in vitro release studies demonstrated the possibility to employ PVP-MAA copolymer as a device for gastro-intestinal release of flavonoids. The coupling of good preservative properties together with biocompatibility and the usefulness as carrier in controlled release make this kind of material very interesting from an industrial point of view for different applications in food, pharmaceutical, and cosmetic fields.

  4. Paired dating of pith and outer edge (terminus) samples from prehispanic Caribbean wooden sculptures

    Treesearch

    Fiona Brock; Joanna Ostapkowicz; Christopher Bronk Ramsey; Alex Wiedenhoeft; Caroline Cartwright

    2012-01-01

    Radiocarbon dating of historical and archaeological wood can be complicated, sometimes involving issues of “inbuilt” age in slow-growing woods, and/or the possibility of reuse or long delays between felling and use of the wood. Terminus dates can be provided by dating the sapwood, or the outermost edge of heartwood, while a date from the pith can give an indication of...

  5. The efficacy of acrylic acid grafting and arginine-glycine-aspartic acid peptide immobilization on fibrovascular ingrowth into porous polyethylene implants in rabbits.

    PubMed

    Park, Byung Woo; Yang, Hee Seok; Baek, Se Hyun; Park, Kwideok; Han, Dong Keun; Lee, Tae Soo

    2007-06-01

    To determine the effects of acrylic acid (AA) grafting by argon plasma treatment and of immobilization of arginine-glycine-aspartic acid (RGD) peptides on fibrovascular ingrowth rate into high-density porous polyethylene (HPPE) anophthalmic orbital implants. Sixty rabbits were divided into three groups, with 20 rabbits in each group: (1) control group, rabbits implanted with unmodified HPPE; (2) PAA group, rabbits implanted with HPPE grafted with poly(AA) by argon plasma treatment; (3) RGD group, rabbits implanted with HPPE grafted with AA by argon plasma treatment and subsequently immobilized with RGD peptide. An HPPE spherical implant was put in the abdominal muscles of rabbit. After implantation for 4 weeks, the retrieved implants were sectioned and stained with hematoxylin and eosin (H&E). Blood vessels were counted using CD-31 immunostaining. Cross-sectional areas of fibrovascular ingrowth, blood vessel densities, and host inflammatory response scores were determined for all three groups. The mean cross-sectional areas of fibrovascularization at 2 and 3 weeks after implantation were the greatest in the RGD group, followed by the PAA group. While minimal fibrovascular ingrowths were noted in all implants at 1 week, all the implants showed nearly complete ingrowth at 4 weeks. Blood vessel densities were the highest in the RGD group, followed by the PAA group at 2, 3, and 4 weeks. The mean inflammation scores of the PAA and RGD groups were less than that of the control group. Fibrovascularization into HPPE implants was enhanced by surface grafting of AA and further improved by immobilizing RGD peptides onto the grafted AA surfaces. The inflammatory reactions were mild by either technique of surface modification.

  6. 3D hierarchical Ag nanostructures formed on poly(acrylic acid) brushes grafted graphene oxide as promising SERS substrates

    NASA Astrophysics Data System (ADS)

    Xing, Guoke; Wang, Ke; Li, Ping; Wang, Wenqin; Chen, Tao

    2018-03-01

    In this study, in situ generation of Ag nanostructures with various morphology on poly(acrylic acid) (PAA) brushes grafted onto graphene oxide (GO), for use as substrates for surface-enhanced Raman scattering (SERS), is demonstrated. The overall synthetic strategy involves the loading of Ag precursor ions ((Ag+ and [Ag(NH3)2]+) onto PAA brush-grafted GO, followed by their in situ reduction to Ag nanostructures of various morphology using a reducing agent (NaBH4 or ascorbic acid). Novel 3D hierarchical flowerlike Ag nanostructures were obtained by using AgNO3 as precursor and ascorbic acid as reducing agent. Using 4-aminothiophenol as probe molecules, the as-prepared hierarchical Ag nanostructures exhibited excellent SERS performance, providing enhancement factors of ˜107.

  7. Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Shen, Xin; Zhou, Huan; Wang, Yingjun; Deng, Linhong

    2016-05-01

    We develop a novel chitosan-citric acid film (abbreviated as CS-CA) suitable for biomedical applications in this study. In this CS-CA film, the citric acid, which is a harmless organic acid has been extensively investigated as a modifying agent on carbohydrate polymers, was cross-linked by 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto the surface of chitosan (CS) film. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirms the graft copolymerization of the modified chitosan film (CS-CA). Surface wettability, moisturizing performance, the capacity of mineralization in vitro and biocompatibility of the films were characterized. After modification, this CS-CA film has good hydrophilicity. It is very evident that the citric acid grafting treatment significantly promotes the biomineralization of the chitosan based substrates. Cell experiments show that the MC3T3-E1 osteoblasts can adhere and proliferate well on the surface of CS-CA film. This CS-CA film, which can be prepared in large quantities and at low cost, should have potential application in bone tissue engineering.

  8. Morphological characteristics of loblolly pine wood as related to specific gravity, growth rate and distance from pith

    Treesearch

    Charles W. McMillin

    1968-01-01

    Earlywood and latewood tracheid length and transverse cellular dimensions of wood removed from stems of loblolly pine (Pinus taeda L.) and factorially aegregated by specific gravity, rings from the pith, and growth rate were determined from sample chips. The independent relationships of each factor with fiber morphology are described.

  9. Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid.

    PubMed

    Witono, J R; Noordergraaf, I W; Heeres, H J; Janssen, L P B M

    2014-03-15

    An important application of starch grafted with copolymers from unsaturated organic acids is the use as water absorbent. Although much research has been published in recent years, the kinetics of water absorption and the swelling behavior of starch based superabsorbents are relatively unexplored. Also, water retention under mechanical strain is usually not reported. Cassava starch was used since it has considerable economic potential in Asia. The gelatinized starch was grafted with acrylic acid and Fenton's initiator and crosslinked with N,N'-methylenebisacrylamide (MBAM). Besides a good initial absorption capacity, the product could retain up to 63 g H2O/g under severe suction. The material thus combines a good absorption capacity with sufficient gel strength. The mathematical analysis of the absorption kinetics shows that at conditions of practical interest, the rate of water penetration into the gel is determined by polymer chain relaxations and not by osmotic driven diffusion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Improving grafting efficiency of dicarboxylic anhydride monomer on polylactic acid by manipulating monomer structure and using comonomer and reducing agent

    USDA-ARS?s Scientific Manuscript database

    Maleic anhydride (MA) grafted polylactic acid (PLA) acting as reactive compatibilizer for PLA blends and composites has been reported. However, melt free-radical grafting of MA on PLA is often subject to steric and electron effects of the substituents in the monomer and low initiation efficiency, yi...

  11. Surface modification of calcium hydroxyapatite by grafting of etidronic acid

    NASA Astrophysics Data System (ADS)

    Othmani, Masseoud; Aissa, Abdallah; Bac, Christophe Goze; Rachdi, Férid; Debbabi, Mongi

    2013-06-01

    The surface of prepared calcium hydroxyapatite CaHAp has been modified by grafting the etidronic acid (ETD). For that purpose, CaHAp powders have been suspended in an aqueous etidronate solution with different concentrations. The obtained composites CaHAp-(ETD) were characterized by TEM and AFM techniques to determinate morphological properties and were also characterized by XRD, IR, NMR and chemical and thermal analysis to determinate their physico-chemical properties and essentially the nature of the interaction between the inorganic support and the grafted organic ETD. After reaction with ETD, XRD powder analysis shows that the apatitic structure remains unchanged with slight affectation of its crystallinity. The presence of etidronate fragment bounded to hydroxyapatite was confirmed by IR and solid-state NMR spectroscopy. TEM and AFM techniques indicate that the presence of etidronate changes the morphology of the particles. Basing on the obtained results, a reactional mechanism was proposed to explain the formation of covalent Casbnd Osbnd Porg bonds on the hydroxyapatite surface between the superficial hydroxyl groups (tbnd Casbnd OH) of the apatite and phosphonate group (Psbnd OH) of etidronate.

  12. Improving the degradation behavior and in vitro biological property of nano-hydroxyapatite surface- grafted with the assist of citric acid.

    PubMed

    Jiang, Liuyun; Jiang, Lixin; Xiong, Chengdong; Su, Shengpei

    2016-10-01

    To obtain ideal nano-hydroxyapatite(n-HA) filler for poly(lactide-co-glycolide) (PLGA), a new surface-grafting with the assist of citric acid for nano-hydroxyapatite (n-HA) was designed, and the effect of n-HA surface-grafted with or without citric acid on in vitro degradation behavior and cells viability was studied by the experiments of soaking in simulated body fluid (SBF) and incubating with human osteoblast-like cells (MG-63). The change of pH value, tensile strength reduction, the surface deposits, cells attachment and proliferation of samples during the soaking and incubation were investigated by means of pH meter, electromechanical universal tester, scanning electron microscope (SEM) coupled with energy-dispersive spectro-scopy (EDS), fluorescence microscope and MTT method. The results showed that the introduction of citric acid not only delayed the strength reduction during the degradation by inhibiting the detachment of n-HA from PLGA, but also endowed it better cell attachment and proliferation, suggesting that the n-HA surface-grafted with the assist of citric acid was an important bioactive ceramic fillers for PLGA used as bone materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Kinetic and calorimetric study of the adsorption of dyes on mesoporous activated carbon prepared from coconut coir dust.

    PubMed

    Macedo, Jeremias de Souza; da Costa Júnior, Nivan Bezerra; Almeida, Luis Eduardo; Vieira, Eunice Fragoso da Silva; Cestari, Antonio Reinaldo; Gimenez, Iara de Fátima; Villarreal Carreño, Neftali Lênin; Barreto, Ledjane Silva

    2006-06-15

    Mesoporous activated carbon has been prepared from coconut coir dust as support for adsorption of some model dye molecules from aqueous solutions. The methylene blue (MB) and remazol yellow (RY) molecules were chosen for study of the adsorption capacity of cationic and anionic dyes onto prepared activated carbon. The adsorption kinetics was studied with the Lagergren first- and pseudo-second-order kinetic models as well as the intraparticle diffusion model. The results for both dyes suggested a multimechanism sorption process. The adsorption mechanisms in the systems dyes/AC follow pseudo-second-order kinetics with a significant contribution of intraparticle diffusion. The samples simultaneously present acidic and basic sites able to act as anchoring sites for basic and acidic dyes, respectively. Calorimetric studies reveal that dyes/AC interaction forces are correlated with the pH of the solution, which can be related to the charge distribution on the AC surface. These AC samples also exhibited very short equilibrium times for the adsorption of both dyes, which is an economically favorable requisite for the activated carbon described in this work, in addition to the local abundance of the raw material.

  14. Surface modification of polyisobutylene via grafting amino acid-based poly (acryloyl-6-aminocaproic acid) as multifunctional material.

    PubMed

    Du, Yanqiu; Li, Chunming; Jin, Jing; Li, Chao; Jiang, Wei

    2018-01-01

    Amino acid-based P(acryloyl-6-aminocaproic acid) (PAACA) brushes were fabricated on polyisobutylene (PIB) surface combined with plasma pre-treatment and UV-induced grafting polymerization to construct an antifouling and functional material. The hydrophilicity and hemocompatibility of PIB were largely improved by surface modification of AACA, which were confirmed by water contact angle and platelet adhesion, respectively. PAACA brushes were precisely located onto the surface of PIB to create a patterned PIB-g-PAACA structure, and then the carboxyl groups on PAACA was activated to immobilize functional protein-Concanavalin A (Con A). The obtained Con A-coupled microdomains could further capture erythrocytes. This method developed a platform on commercial PIB surface via amino acid-based polymer brushes which had a promising application in drug delivery and disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ethylene vinyl acetate based radiation grafted hydrophilic matrices: Process parameter standardization, grafting kinetics and characterization

    NASA Astrophysics Data System (ADS)

    Chaudhari, C. V.; Mondal, R. K.; Dubey, K. A.; Grover, V.; Panicker, L.; Bhardwaj, Y. K.; Varshney, L.

    2016-08-01

    A transparent, elastomeric, grafted matrix for several potential applications was synthesized by single-step simultaneous radiation grafting of methacrylic acid onto ethylene vinyl acetate (EVA). CuSO4 was found to be the most suitable homo-polymerization inhibitor among different inhibitors tried. The grafting kinetics was found to be a strong function of dose rate (D) and monomer content (M) and an equation relating grafting rate Rg=Kg [M]1.13D0.23 was deduced. Crystallinity of the grafted matrices as assessed from XRD and DSC measurements indicated decrease in crystalline content with increase in grafting yield, suggesting crystalline domain of EVA get disrupted on grafting. Elastic modulus increased linearly with the increase in grafting yield, though elongation at break decreased precipitously from 900% to 30% at even 9% grafting. Thermo-gravimetric analysis showed three step weight loss of the grafted EVA matrix. The grafting of MAA resulted in increase in surface energy mainly due to enhanced polar component.

  16. Properties of amylose-oleic acid inclusion complexes from corn starch grafted with poly(methyl acrylate)

    USDA-ARS?s Scientific Manuscript database

    Corn starch granules have been previously investigated as fillers in polymers. In this study, much smaller particles in the form of spherulites produced by steam jet-cooking high-amylose corn starch and oleic acid to form amylose inclusion complexes were graft polymerized with methyl acrylate, both ...

  17. Synthesis of perm-selective membranes by grafting acrylic acid into air-irradiated Teflon-FEP films

    NASA Astrophysics Data System (ADS)

    Bozzi, Annick; Chapiro, Adolphe

    Grafting acrylic acid into air-irradiated Teflon-FEP films was investigated. Pre-irradiation doses ranged from 0.5 to 10 kGy. Grafting occurred at 45 or 60°C. Homopolymerization inhibitors, ferrous ions or methylene blue, were added to the system. It was found that after completion of the reaction, within 40-100 min, membranes were obtained with very low electric resistivities. The influence of added inhibitors, pre-irradiation dose and grafting temperature was studied. From the results it is concluded that the initiating centers in air-irradiated Teflon-FEP are, on the one hand, peroxides of structure POOP', in which P is a polymeric radical and Pprime; a small fragment, and on the other trapped PO .2 radicals. The latter only react after losing their oxygen. In the presence of polymerization inhibitors, initiation involves a redox process which reduces the overall activation energy.

  18. Potassium fulvate as co-interpenetrating agent during graft polymerization of acrylic acid from cellulose.

    PubMed

    Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F; Essawy, Hisham A

    2016-10-01

    Grafting polymerization of acrylic acid onto cellulose in presence of potassium fulvate (KF) as a co-interpenetrating agent results enhanced water sorption compared to materials prepared similarly in its absence. The insertion of potassium fulvate (KF) did not affect the grafting process and is thought to proceed in parallel to the graft polymerization via intensive polycondensation reactions of its function groups (-COOH and OH) with COOH of the monomer and OH groups of cellulose. The combination of graft copolymerization and polycondensation reactions is assumed to produce interpenetrating network structure. Fourier transform infrared (FTIR) confirmed successful incorporation within the network structure which is an evidence for formation of interpenetrating network. The obtained structures showed homogeneous uniform surface as revealed by scanning electron microscopy (SEM). The obtained superabsorbent possessed high water absorbency 422 and 48.8g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced water retention even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high content of hydrophilic groups. The new superabsorbents proved to be efficient devices for controlled release of fertilizers which expands their use in agricultural applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Separation of copper ions from iron ions using PVA-g-(acrylic acid/N-vinyl imidazole) membranes prepared by radiation-induced grafting.

    PubMed

    Ajji, Zaki; Ali, Ali M

    2010-01-15

    Acrylic acid (AAc), N-vinyl imidazole (Azol) and their binary mixtures were graft copolymerized onto poly(vinyl alcohol) membranes using gamma irradiation. The ability of the grafted membranes to separate Cu ions from Fe ions was investigated with respect to the grafting yield and the pH of the feed solution. The data showed that the diffusion of copper ions from the feed compartment to the receiver compartment depends on the grafting yield of the membranes and the pH of the feed solution. To the contrary, iron ions did not diffuse through the membranes of all grafting yields. However, a limited amount of iron ions diffused in strong acidic medium. This study shows that the prepared membranes could be considered for the separation of copper ions from iron ions. The temperature of thermal decomposition of pure PVA-g-AAc/Azol membrane, PVA-g-AAc/Azol membrane containing copper ions, and PVA-g-AAc/Azol membrane containing iron ions were determined using TGA analyzer. It was shown that the presence of Cu and Fe ions increases the decomposition temperature, and the membranes bonded with iron ions are more stable than those containing copper ions.

  20. Properties of extruded starch-poly(methyl acrylate) graft copolymers prepared from spherulites formed from amylose-oleic acid inclusion complexes

    USDA-ARS?s Scientific Manuscript database

    Mixtures of high amylose corn starch and oleic acid were processed by steam jet-cooking, and the dispersions were rapidly cooled to yield amylose-oleic acid inclusion complexes as sub-micron spherulites and spherulite aggregates. Dispersions of these spherulite particles were then graft polymerized ...

  1. Porosity Assessment for Different Diameters of Coir Lignocellulosic Fibers

    NASA Astrophysics Data System (ADS)

    da Luz, Fernanda Santos; Paciornik, Sidnei; Monteiro, Sergio Neves; da Silva, Luiz Carlos; Tommasini, Flávio James; Candido, Verônica Scarpini

    2017-10-01

    The application of natural lignocellulosic fibers (LCFs) in engineering composites has increased interest in their properties and structural characteristics. In particular, the inherent porosity of an LCF markedly affects its density and the adhesion to polymer matrices. For the first time, both open and closed porosities of a natural LCF, for different diameter ranges, were assessed. Fibers extracted from the mesocarp of the coconut fruit were investigated by nondestructive methods of density measurements and x-ray microtomography (microCT). It was found that, for all diameter ranges, the closed porosity is significantly higher than the open porosity. The total porosity increases with diameter to around 60% for coir fibers with more than 503 μm in diameter. The amount and characteristics of these open and closed porosities were revealed by t test and Weibull statistics as well as by microCT.

  2. Tensile and morphology properties of PLA/LNR blends modified with maleic anhydride grafted-polylactic acid and -natural rubber

    NASA Astrophysics Data System (ADS)

    Ruf, Mohd Farid Hakim Mohd; Ahmad, Sahrim; Chen, Ruey Shan; Shahdan, Dalila; Zailan, Farrah Diyana

    2018-04-01

    This research was carried out to investigate the addition of grafted copolymers of maleic anhydride grafted-polylactic acid(PLA-g-MA) and maleic anhydride grafted-natural rubber (NR-g-MA) on the tensile and morphology properties of polylactic acid/ liquid natural rubber (PLA/LNR) blends. Prior to blend preparation, the PLA-g-MA and NR-g-MA was first self-synthesized using maleic anhydride (MA) and dicumyl peroxide (DCP) as initiator together with the PLA and NR respectively. The PLA/LNR, PLA/LNR/PLA-g-MA and PLA/LNR/NR-g-MA blends were prepared via melt-blending method. The loading of PLA-g-MA and NR-g-MA was varied by 5, 10 and 15 wt% respectively. The addition of PLA-g-MA led to increment in tensile strength with 5 and 10 wt% while NR-g-MA gives lower than controlled sample (PLA/LNR blend). Scanning electron microscope (SEM) showed the interaction of the components in the blends. The PLA/LNR compatibilized with PLA-g-MA and NR-g-MA shows greater dispersion and adhesion.

  3. Experimental investigation on an entrained flow type biomass gasification system using coconut coir dust as powdery biomass feedstock.

    PubMed

    Senapati, P K; Behera, S

    2012-08-01

    Based on an entrained flow concept, a prototype atmospheric gasification system has been designed and developed in the laboratory for gasification of powdery biomass feedstock such as rice husks, coconut coir dust, saw dust etc. The reactor was developed by adopting L/D (height to diameter) ratio of 10, residence time of about 2s and a turn down ratio (TDR) of 1.5. The experimental investigation was carried out using coconut coir dust as biomass feedstock with a mean operating feed rate of 40 kg/h The effects of equivalence ratio in the range of 0.21-0.3, steam feed at a fixed flow rate of 12 kg/h, preheat on reactor temperature, product gas yield and tar content were investigated. The gasifier could able to attain high temperatures in the range of 976-1100 °C with gas lower heating value (LHV) and peak cold gas efficiency (CGE) of 7.86 MJ/Nm3 and 87.6% respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Blend membrane of succinic acid-crosslinked chitosan grafted with heparin/PVA-PEG (polyvinyl alcohol-polyethylene glycol) and its characterization

    NASA Astrophysics Data System (ADS)

    Sangkota, V. D. A.; Lusiana, R. A.; Astuti, Y.

    2018-04-01

    Crosslinking and grafting reactions are required to modify the functional groups on chitosan to increase the number of its active groups. In this study, crosslinking reaction of succinic acid and grafting reaction of heparin on chitosan were conducted to produce a membrane as a candidate of a hemodialysis membrane. The mole ratio between chitosan and succinate acids was varied to obtain the best composition of modified materials. By blending all the material composition with PVA-PEG, the blend was transformed into a membrane. The resulted membrane was then characterized by various test methods such as tests of thickness, weight, water uptake, pH resistance, tensile strength and membrane hydrophilicity. The results showed that the best composition of the membrane reached in the addition of 0.011 gram of succinic acid proved by its highest mechanical strength compared to the other membranes.

  5. Synthesis and evaluation of chitosan-graft-poly (2-hydroxyethyl methacrylate-co-itaconic acid) as a drug carrier for controlled release of tramadol hydrochloride

    PubMed Central

    Subramanian, Kaliappa gounder; Vijayakumar, Vediappan

    2011-01-01

    Chitosan-graft-poly (2-hydroxyethyl methacrylate-co-itaconic acid) has been synthesized for different feed ratios of 2-hydroxyethyl methacrylate and itaconic acid and characterized by FT-IR, thermogravimetry and swelling in simulated biological fluids (SBF) and evaluated as a drug carrier with model drug, tramadol hydrochloride (TRM). Grafting decreased the thermal stability of chitosan. FT-IR spectra of tablet did not reveal any molecular level (i.e. at <10 nm scale) drug–polymer interaction. But differential scanning calorimetric studies indicated a probable drug–polymer interaction at a scale >100 nm level. The observed Korsmeyer–Peppas’s power law exponents (0.19–1.21) for the in vitro release profiles of TRM in SBF and other drugs such as 5-fluorouracil (FU), paracetamol (PCM) and vanlafaxine hydrochloride (VNF) with the copolymer carriers revealed an anomalous drug release mechanism. The decreased release rates for the grafted chitosan and the enhanced release rate for the grafts with increasing itaconic acid content in the feed were more likely attributed to the enhanced drug–matrix interaction and polymer–SBF interactions, respectively. The different release profiles of FU, PCM, TRM and VNF with the copolymer matrix are attributed to the different chemical structures of drugs. The above features suggest the graft copolymer’s candidature for use as a promising oral drug delivery system. PMID:23960799

  6. Fast microwave-assisted green synthesis of xanthan gum grafted acrylic acid for enhanced methylene blue dye removal from aqueous solution.

    PubMed

    Makhado, Edwin; Pandey, Sadanand; Nomngongo, Philiswa N; Ramontja, James

    2017-11-15

    In the present project, graft polymerization was employed to synthesis a novel adsorbent using acrylic acid (AA) and xanthan gum (XG) for cationic methylene dye (MB + ) removal from aqueous solution. The XG was rapidly grafted with acrylic acid (CH 2 =CHCOOH) under microwave heating. Fourier-transform infrared spectroscopy (FTIR), Proton Nuclear magnetic resonance spectroscopy ( 1 H NMR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Thermal gravimetric analysis (TGA) techniques were used to verify the adsorbent formed under optimized reaction conditions. Optimum reaction conditions [AA (0.4M), APS (0.05M), XG (2gL -1 ), MW power (100%), MW time (80s)] offer maximum %G and %GE of 484 and 78.3, respectively. The removal ratio of adsorbent to MB + reached to 92.8% at 100mgL -1 . Equilibrium and kinetic adsorptions of dyes were better explained by the Langmuir isotherm and pseudo second-order kinetic model respectively. The results demonstrate xanthan gum grafted polyacrylic acid (mw XG-g-PAA) absorbent had the universality for removal of dyes through the chemical adsorption mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Draft genome of a Xanthomonas perforans strain associated with pith necrosis.

    PubMed

    Torelli, Emanuela; Aiello, Dalia; Polizzi, Giancarlo; Firrao, Giuseppe; Cirvilleri, Gabriella

    2015-02-01

    Xanthomonas perforans causes bacterial spot of tomato and pepper. A genome draft of an unusual isolate (strain 4P1S2), differing in that it was associated with stem pith necrosis, was assembled from Illumina MiSeq sequencing data using the draft of X. perforans strain 91-118 as a reference. The resulting draft (accession number JRWW00000000) largely overlapped with the reference draft. In addition, the reads not mapping on the reference assembly were selected and used for a further assembly, that revealed a large putative plasmid. The analysis of the predicted proteins showed only few gene features that could be potentially implicated in the switch of a phytopathological behavior. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Potassium fulvate-modified graft copolymer of acrylic acid onto cellulose as efficient chelating polymeric sorbent.

    PubMed

    Mohamed, Magdy F; Essawy, Hisham A; Ammar, Nabila S; Ibrahim, Hanan S

    2017-01-01

    Acrylic acid (AA) was graft copolymerized from cellulose (Cell) in presence of potassium fulvate (KF) in order to enhance the chemical activity of the resulting chelating polymer and the handling as well. Fourier transform infrared (FTIR) proved that KF was efficiently inserted and became a permanent part of the network structure of the sorbent in parallel during the grafting copolymerization. Scanning electron microscopy (SEM) revealed intact homogeneous structure with uniform surface. This indicates improvement of the handling, however, it was not the case for the graft copolymer of acrylic acid onto cellulose in absence of KF, which is known to be brittle and lacks mechanical integrity. Effective insertion of this co-interpenetrating agent provided more functional groups, such as OH and COOH, which improved the chelating power of the produced sorbent as found for the removal of Cu 2+ ions from its aqueous solutions (the removal efficiency reached ∼98.9%). Different models were used to express the experimental data. The results corroborated conformity of the pseudo-second order kinetic model and Langmuir isotherm model to the sorption process, which translates into dominance of the chemisorption. Regeneration of the chelating polymers under harsh conditions did not affect the efficiency of copper ions uptake up to three successive cycles. A thermodynamic investigation ensured exothermic nature of the adsorption process that became less favourable at higher temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evaluation of the alpha-1 and alpha-2 adrenoceptor-mediated effects of a series of dimethoxy-substituted tolazoline derivatives in the cardiovascular system of the pithed rat.

    PubMed

    Ruffolo, R R; Messick, K

    1985-01-01

    The alpha-1 and alpha-2 adrenoceptor-mediated effects of a series of dimethoxy-substituted tolazoline derivatives were investigated in the cardiovascular system of the pithed rat. The 2,5- and 3,5-dimethoxy-substituted tolazoline derivatives produced vasopressor responses that were inhibited by the alpha-1 adrenoceptor antagonist, prazosin (0.1 mg/kg i.v.), and were not affected by the alpha-2 adrenoceptor antagonist, yohimbine (1 mg/kg i.v.), suggesting that these derivatives selectively activate postsynaptic vascular alpha-1 adrenoceptors. The 2,5- and 3,5-dimethoxy-substituted derivatives of tolazoline did not produce an alpha-2 adrenoceptor-mediated inhibition of neurogenic tachycardia in cord-stimulated pithed rats and were therefore presumed to be devoid of alpha-2 adrenoceptor agonist activity. In contrast, 2,3-dimethoxytolazoline produced a vasopressor effect that was inhibited by yohimbine but not by prazosin, suggesting selective activation of postsynaptic vascular alpha-2 adrenoceptors. Consistent with this observation is the fact that 2,3-dimethoxytolazoline elicited a dose-dependent, alpha-2 adrenoceptor-mediated inhibition of neurogenic tachycardia in cord-stimulated pithed rat. 3,4-Dimethoxytolazoline was a weak alpha-1 adrenoceptor agonist in the vasculature of the pithed rat and was devoid of agonist activity at alpha-2 adrenoceptors. However, 3,4-dimethoxytolazoline was found to be an alpha-2 adrenoceptor antagonist of similar potency as yohimbine. The results of the present study indicate that dimethoxy-substituted derivatives of tolazoline possess different activities and selectivities at alpha-1 and alpha-2 adrenoceptors depending upon the positions of substitution.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Novel multi-biotin grafted poly(lactic acid) and its self-assembling nanoparticles capable of binding to streptavidin

    PubMed Central

    Yan, Hao; Jiang, Weimin; Zhang, Yinxing; Liu, Ying; Wang, Bin; Yang, Li; Deng, Lihong; Singh, Gurinder K; Pan, Jun

    2012-01-01

    Targeted drug delivery requires novel biodegradable, specific binding systems with longer circulation time. The aim of this study was to prepare biotinylated poly(lactic acid) (PLA) nanoparticles (NPs) which can meet regular requirements as well conjugate more biotins in the polymer to provide better binding with streptavidin. A biotin-graft-PLA was synthesized based on previously published biodegradable poly(ethylene glycol) (PEG)-graft-PLA, with one polymer molecule containing three PEG molecules. Newly synthesized biotin-graft-PLA had three biotins per polymer molecule, higher than the previous biotinylated PLA (≤1 biotin per polymer molecule). A PEG with a much lower molecular weight (MW ~1900) than the previous biotinylated PLA (PEG MW ≥ 3800), and thus more biocompatible, was used which supplied good nonspecific protein-resistant property compatible to PEG-graft-PLA, suggesting its possible longer stay in the bloodstream. Biotin-graft-PLA specifically bound to streptavidin and self-assembled into NPs, during which naproxen, a model small molecule (MW 230 Da) and hydrophobic drug, was encapsulated (encapsulation efficiency 51.88%). The naproxen-loaded NPs with particle size and zeta potential of 175 nm and −27.35 mV realized controlled release within 170 hours, comparable to previous studies. The biotin-graft-PLA NPs adhered approximately two-fold more on streptavidin film and on biotin film via a streptavidin arm both in static and dynamic conditions compared with PEG-graft-PLA NPs, the proven nonspecific protein-resistant NPs. The specific binding of biotin-graft-PLA NPs with streptavidin and with biotin using streptavidin arm, as well as its entrapment and controlled release for naproxen, suggest potential applications in targeted drug delivery. PMID:22334778

  11. Invertase immobilization onto radiation-induced graft copolymerized polyethylene pellets

    NASA Astrophysics Data System (ADS)

    de Queiroz, Alvaro Antonio Alencar; Vitolo, Michele; de Oliveira, Rômulo Cesar; Higa, Olga Zazuco

    1996-06-01

    The graft copolymer poly(ethylene-g-acrylic acid) (LDPE-g-AA) was prepared by radiation-induced graft copolymerization of acrylic acid onto low density polyethylene (LDPE) pellets, and characterized by infrared photoacoustic spectroscopy and scanning electron microscopy (SEM). The presence of the grafted poly(acrylic acid) (PAA) was established. Invertase was immobilized onto the graft polymer and the thermodynamic parameters of the soluble and immobilized enzyme were determined. The Michaelis constant, Km, and the maximum reaction velocity, Vmax, were determined for the free and the immobilized invertase. The Michaelis constant, Km was larger for the immobilized invertase than for the free enzyme, whereas Vmax was smaller for the immobilized invertase. The thermal stability of the immobilized invertase was higher than that of the free enzyme.

  12. Urinary Liver Type Fatty Acid Binding Protein Is Negatively Associated With Estimated Glomerular Filtration Rate in Renal Transplant Recipients With Graft Loss.

    PubMed

    Huang, Y-C; Chang, Y-S; Chen, C-C; Tsai, S-F; Yu, T-M; Wu, M-J; Chen, C-H

    2018-05-01

    Liver type fatty acid binding protein (L-FABP) is abundant not only in the liver but also in the kidney and is excreted in urine. Its primary function is to facilitate intracellular long chain fatty acid transport and it might also act as an endogenous antioxidant molecular. The purpose of this study was to investigate whether plasma or urinary L-FABP levels were associated with graft function in renal transplant recipients. Sixty-seven renal transplant recipients with a mean age of 48.8 years were recruited. The mean duration of renal transplantation was 4131 days. Recipients were divided into 2 groups based on their estimated glomerular filtration rate (eGFR) values: moderate graft function (eGFR ≥60 mL/min/1.73 m 2 ) and low graft function (eGFR <60 mL/min/1.73 m 2 ). Fasting plasma and urinary L-FABP levels were measured. There was no significant difference in plasma L-FABP level between the 2 groups, although recipients in the low graft function group had significantly lower urinary L-FABP level when compared with recipients in the moderate graft function group. Plasma and urinary L-FABP levels were not associated with eGFR in the 67 recipients; however, urinary L-FABP level (β = -1.24, P = .037) and level adjusted by urinary creatinine (β = -0.75, P = .046) were significantly negatively associated with eGFR in recipients with low graft function after adjusting for potential confounders. Increased urinary L-FABP level seems to be a significant indicator of decreased graft function in renal transplant recipients with loss of graft function. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Plasma-induced grafting of acrylic acid on bentonite for the removal of U(VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Hongshan, ZHU; Shengxia, DUAN; Lei, CHEN; Ahmed, ALSAEDI; Tasawar, HAYAT; Jiaxing, LI

    2017-11-01

    Fabrication of reusable adsorbents with satisfactory adsorption capacity and using environment-friendly preparation processes is required for the environment-related applications. In this study, acrylic acid (AA) was grafted onto bentonite (BT) to generate an AA-graft-BT (AA-g-BT) composite using a plasma-induced grafting technique considered to be an environment-friendly method. The as-prepared composite was characterized by scanning electron microscopy, x-ray powder diffraction, thermal gravity analysis, Fourier transform infrared spectroscopy and Barrett-Emmett-Teller analysis, demonstrating the successful grafting of AA onto BT. In addition, the removal of uranium(VI) (U(VI)) from contaminated aqueous solutions was examined using the as-prepared composite. The influencing factors, including contact time, pH value, ionic strength, temperature, and initial concentration, for the removal of U(VI) were investigated by batch experiments. The experimental process fitted best with the pseudo-second-order kinetic and the Langmuir models. Moreover, thermodynamic investigation revealed a spontaneous and endothermic process. Compared with previous adsorbents, AA-g-BT has potential practical applications in treating U(VI)-contaminated solutions.

  14. Effect of Protocatechuic Acid-Grafted-Chitosan Coating on the Postharvest Quality of Pleurotus eryngii.

    PubMed

    Liu, Jun; Meng, Chen-Guang; Wang, Xing-Chi; Chen, Yao; Kan, Juan; Jin, Chang-Hai

    2016-09-28

    Protocatechuic acid-grafted-chitosan (PA-g-CS) solution with antioxidant activity was developed as a novel edible coating material for Pleurotus eryngii postharvest storage. The effect of PA-g-CS coating on the postharvest quality of P. eryngii was investigated by determination of various physicochemical parameters and enzyme activities. Results showed that the antioxidant capacity and viscosity of PA-g-CS solutions were closely related to the grafting degree and were much higher than that of chitosan (CS) solution. At the end of 15 days of storage, serious mushroom browning was observed in the control and CS coating groups. By contrast, PA-g-CS coating groups with medium and high grafting degrees maintained better physical appearance. Among all of the treatment groups, P. eryngii in PA-g-CS III coating group exhibited the highest firmness and the lowest weight loss, browning degree, respiration rate, malondialdehyde content, electrolyte leakage rate, superoxide anion production rate, and hydrogen peroxide content. Moreover, P. eryngii in PA-g-CS III coating group maintained relatively higher antioxidant enzyme activities but lower polyphenol oxidase activity than other treatment groups. Therefore, PA-g-CS III is a promising preservation agent for P. eryngii.

  15. A comparative study on the graft copolymerization of acrylic acid onto rayon fibre by a ceric ion redox system and a γ-radiation method.

    PubMed

    Kaur, Inderjeet; Kumar, Raj; Sharma, Neelam

    2010-10-13

    Functionalization of rayon fibre has been carried out by grafting acrylic acid (AAC) both by a chemical method using a Ce(4+)-HNO(3) redox initiator and by a mutual irradiation (γ-rays) method. The reaction conditions affecting the grafting percentage have been optimized for both methods, and the results are compared. The maximum percentage of grafting (50%) by the chemical method was obtained utilizing 18.24 × 10(-3) moles/L of ceric ammonium nitrate (CAN), 39.68 × 10(-2) moles/L of HNO(3), and 104.08 × 10(-2) moles/L of AAc in 20 mL of water at 45°C for 120 min. For the radiation method, the maximum grafting percentage (60%) was higher, and the product was obtained under milder reaction conditions using a lower concentration of AAc (69.38 × 10(-2) moles/L) in 10 mL of water at an optimum total dose of 0.932 kGy. Swelling studies showed higher swelling for the grafted rayon fibre in water (854.54%) as compared to the pristine fibre (407%), while dye uptake studies revealed poor uptake of the dye (crystal violet) by the grafted fibre in comparison with the pristine fibre. The graft copolymers were characterized by IR, TGA, and scanning electron micrographic methods. Grafted fibre, prepared by the radiation-induced method, showed better thermal behaviour. Comparison of the two methods revealed that the radiation method of grafting of acrylic acid onto rayon fibre is a better method of grafting in comparison with the chemical method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Phosphate functionalized and lactic acid containing graft copolymer: synthesis and evaluation as biomaterial for bone tissue engineering applications.

    PubMed

    Datta, Pallab; Chatterjee, Jyotirmoy; Dhara, Santanu

    2013-01-01

    Polyvinyl alcohol (PVA) and polylactic acids (PLA) are biocompatible materials possessing some inherent contrasting limitations which have reduced the scope of their individual applicability. Specifically, overcoming strong hydrophobicity and introducing chemical groups for biofunctionalization are unmet challenges for PLA whilst chemical endeavors to render adequate aqueous stability and cell adhesion properties to PVA have not produced completely intended results. Objective of the present work is to explore synthesis of a graft polymer as an approach towards coupling biofunctional groups with PLA materials. In a two-step reaction, PPVA (phosphorylated polyvinyl alcohol or PVA pre-functionalized with phosphate) is esterified with lactic acid followed by polymerization into PLA in presence of stannous chloride as catalyst to obtain phosphorylated polyvinyl alcohol-graft-polylactic acid (PPVA-g-LA) copolymer. Product is characterized by nuclear magnetic resonance, X-ray diffraction, and thermogravimetric analysis. PPVA-g-LA shows an increase in uniaxial elongation compared to parent PPVA under condition of tensile loading. The graft copolymer also exhibits higher water contact angles compared to PPVA, but a more hydrophilic surface compared to PLA. Culture of MG-63 cells on solvent cast films of polymers demonstrates that PPVA-g-LA as a cell substrate can significantly (p < 0.05) improve proliferation and differentiation of cells compared to PPVA substrate whereas in comparison to PLA can significantly ameliorate osteoblast function of cultured cells. Overall, results illustrate the feasibility of PVA to act as a carrier for biofunctional agents to be coupled to lactic acid-based biomaterials with subsequent improvement in cell response on the polymers. In this attempt, it also affords materials with tunable surface or bulk properties of relevance for tissue engineering applications.

  17. Hyaluronic Acid Graft Copolymers with Cleavable Arms as Potential Intravitreal Drug Delivery Vehicles.

    PubMed

    Borke, Tina; Najberg, Mathie; Ilina, Polina; Bhattacharya, Madhushree; Urtti, Arto; Tenhu, Heikki; Hietala, Sami

    2018-01-01

    Treatment of retinal diseases currently demands frequent intravitreal injections due to rapid clearance of the therapeutics. The use of high molecular weight polymers can extend the residence time in the vitreous and prolong the injection intervals. This study reports a water soluble graft copolymer as a potential vehicle for sustained intravitreal drug delivery. The copolymer features a high molecular weight hyaluronic acid (HA) backbone and poly(glyceryl glycerol) (PGG) side chains attached via hydrolysable ester linkers. PGG, a polyether with 1,2-diol groups in every repeating unit available for conjugation, serves as a detachable carrier. The influence of synthesis conditions and incubation in physiological media on the molecular weight of HA is studied. The cleavage of the PGG grafts from the HA backbone is quantified and polymer-from-polymer release kinetics are determined. The biocompatibility of the materials is tested in different cell cultures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Antibacterial poly(lactic acid) (PLA) films grafting electrospun PLA/Ally isothioscyanate (AITC) fibers for food packaging

    USDA-ARS?s Scientific Manuscript database

    Poly(lactic acid) (PLA) fibers of submicron sizes encapsulating allyl isothiocyanate (AITC) (PfA) were made and electrospun onto the surfaces of PLA films (PfA-g-film). SEM examination confirmed that the fibers were grafted to the PLA film after the (PfA-g-film) underwent air blowing and water washi...

  19. Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography.

    PubMed

    Maciejewska, Magdalena; Krzywania-Kaliszewska, Alicja; Zaborski, Marian

    2012-09-28

    Inverse gas chromatography (IGC) was applied at infinite dilution to evaluate the surface properties of calcium and magnesium oxide nanoparticles and the effect of surface grafted unsaturated carboxylic acid on the nanopowder donor-acceptor characteristics. The dispersive components (γ(s)(D)) of the free energy of the nanopowders were determined by Gray's method, whereas their tendency to undergo specific interactions was estimated based on the electron donor-acceptor approach presented by Papirer. The calcium and magnesium oxide nanoparticles exhibited high surface energies (79 mJ/m² and 74 mJ/m², respectively). Modification of nanopowders with unsaturated carboxylic acids decreased their specific adsorption energy. The lowest value of γ(s)(D) was determined for nanopowders grafted with undecylenic acid, approximately 55 mJ/m². The specific interactions were characterised by the molar free energy (ΔG(A)(SP)) and molar enthalpy (ΔH(A)(SP)) of adsorption as well as the donor and acceptor interaction parameters (K(A), K(D)). Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Removal of nutrients in denitrification system using coconut coir fibre for the biological treatment of aquaculture wastewater.

    PubMed

    Manoj, Valsa Remony; Vasudevan, Namasivayam

    2012-03-01

    Ideal bacterial support medium for fixed film denitrification processes/bioreactors must be inexpensive, durable and possess large surface area with sufficient porosity. The present study has been focussed on removing nitrate nitrogen at two different nitrate nitrogen loading rates (60 (NLR I) and 120 (NLR II) mg l(-1)) from simulated aquaculture wastewater. Coconut coir fibre and a commercially available synthetic reticulated plastic media (Fujino Spirals) were used as packing medium in two independent upflow anaerobic packed bed column reactors. Removal of nitrate nitrogen was studied in correlation with other nutrients (COD, TKN, dissolved orthophosphate). Maximum removal of 97% at NLR-I and 99% at NLR - II of nitrate nitrogen was observed in with either media. Greater consistency in the case of COD removal of upto 81% was observed at NLR II where coconut coir was used as support medium compared to 72% COD removal by Fujino Spirals. The results observed indicate that the organic support medium is just as efficient in nitrate nitrogen removal as conventionally used synthetic support medium. The study is important as it specifically focuses on denitrification of aquaculture wastewater using cheaper organic support medium in anoxic bioreactors for the removal of nitrate nitrogen; which is seldom addressed as a significant problem.

  1. Grafting of activated carbon cloths for selective adsorption

    NASA Astrophysics Data System (ADS)

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  2. Selective adsorption of Pb (II) ions by amylopectin-g-poly (acrylamide-co-acrylic acid): A bio-degradable graft copolymer.

    PubMed

    Sasmal, Dinabandhu; Maity, Jayanta; Kolya, Haradhan; Tripathy, Tridib

    2017-04-01

    Amylopectin-g-poly (acrylamide-co-acrylic acid) [AP-g-poly (AM-co-AA)] was synthesised in water medium by using potassium perdisulphate as an initiator. The graft copolymer was characterized by molecular weight determination by size exclusion chromatography (SEC), fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscope (SEM) studies, thermal analysis, measurement of neutralisation equivalent and biodegradation studies. The graft copolymer was used for Pb (II) ion removal from aqueous solution. The Pb (II) ion removal capacity of the graft copolymer was also compared with another laboratory developed graft copolymer Amylopectin-g-poly (acrylamide) (AP-g-PAM). Both the graft copolymers were also used for the competitive metal ions removal with Pb (II)/Cd (II), Pb (II)/Zn (II), Pb (II)/Ni (II), Pb (II)/Cu (II) pairs separately under similar conditions. AP-g-poly (AM-co-AA) showed better Pb (II) ion adsorbing power over AP-g-PAM and also much selective towards Pb (II) ions. The adsorption follows a second order rate equation and Langmuir isotherm model. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Preparation of starch-poly-glutamic acid graft copolymers by microwave irradiation and the characterization of their properties

    USDA-ARS?s Scientific Manuscript database

    Graft copolymers of waxy maize starch and poly-y-glutamic acid (PGA) were produced in an aqueous solution using microwave irradiation. The microwave reaction conditions were optimized with regard to temperature and pH. The temperature of 180 deg C and pH 7.0 were the best reaction conditions resulti...

  4. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel.

    PubMed

    Fayyad, Eman M; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali

    2016-10-20

    An anticorrosion coating film based on the formation of nanocomposite coating is reported in this study. The composite consisted of chitosan (green matrix), oleic acid, and graphene oxide (nano filler). The nanocomposite coating was arranged on the surface of carbon steel, and the corrosion resistance was monitored using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). Compared to the pure chitosan (CS) coating, the corrosion resistance of oleic acid-modified chitosan/graphene oxide film (CS/GO-OA) is increased by 100 folds. Since the well-dispersed smart grafted nanolayers delayed the penetration rate of corrosive species and thus maintained long term anticorrosive stability which is correlated with hydrophobicity and permeability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The effect of layer-by-layer chitosan-hyaluronic acid coating on graft-to-bone healing of a poly(ethylene terephthalate) artificial ligament.

    PubMed

    Li, Hong; Ge, Yunsheng; Zhang, Pengyun; Wu, Lingxiang; Chen, Shiyi

    2012-01-01

    Surface coating with an organic layer-by-layer self-assembled template of chitosan and hyaluronic acid on a poly(ethylene terephthalate) (PET) artificial ligament was designed for the promotion and enhancement of graft-to-bone healing after artificial ligament implantation in a bone tunnel. The results of in vitro culturing of MC3T3-E1 mouse osteoblastic cells supported the hypothesis that the layer-by-layer coating of chitosan and hyaluronic acid could promote the cell compatibility of grafts and could promote osteoblast proliferation. A rabbit extra-articular tendon-to-bone healing model was used to evaluate the effect of this kind of surface-modified stainless artificial ligament in vivo. The final results proved that this organic compound coating could significantly promote and enhance new bone formation at the graft-bone interface histologically and, correspondingly, the experimental group with coating had significantly higher biomechanical properties compared with controls at 8 weeks (P < 0.05).

  6. Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion.

    PubMed

    Alves, P; Pinto, S; Kaiser, Jean-Pierre; Bruinink, Arie; de Sousa, Hermínio C; Gil, M H

    2011-02-01

    The material performance, in a biological environment, is mainly mediated by its surface properties and by the combination of chemical, physical, biological, and mechanical properties required, for a specific application. In this study, the surface of a thermoplastic polyurethane (TPU) material (Elastollan(®)1180A50) was activated either by plasma or by ultra-violet (UV) irradiation. After surface activation, methacrylic acid (MAA) was linked to the surface of TPU in order to improve its reactivity and to reduce cell adhesion. Grafted surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), by atomic force microscopy (AFM) and by contact angle measurements. Blood compatibility studies and cell adhesion tests with human bone marrow cells (HBMC) were also performed. If was found that UV grafting method led to better results than the plasma activation method, since cell adhesion was reduced when methacrylic acid was grafted to the TPU surface by UV. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Distribution Analysis of Anthocyanins, Sugars, and Organic Acids in Strawberry Fruits Using Matrix-Assisted Laser Desorption/Ionization-Imaging Mass Spectrometry.

    PubMed

    Enomoto, Hirofumi; Sato, Kei; Miyamoto, Koji; Ohtsuka, Akira; Yamane, Hisakazu

    2018-05-16

    Anthocyanins, sugars, and organic acids contribute to the appearance, health benefits, and taste of strawberries. However, their spatial distribution in the ripe fruit has been fully unrevealed. Therefore, we performed matrix-assisted laser desorption/ionization, MALDI-IMS, analysis to investigate their spatial distribution in ripe strawberries. The detection sensitivity was improved by using the TM-Sprayer for matrix application. In the receptacle, pelargonidins were distributed in the skin, cortical, and pith tissues, whereas cyanidins and delphinidins were slightly localized in the skin. In the achene, mainly cyanidins were localized in the outside of the skin. Citric acid was mainly distributed in the upper and bottom side of cortical tissue. Although hexose was distributed almost equally throughout the fruits, sucrose was mainly distributed in the upper side of cortical and pith tissues. These results suggest that using the TM-Sprayer in MALDI-IMS was useful for microscopic distribution analysis of anthocyanins, sugars, and organic acids in strawberries.

  8. Properties of Starch-Poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonic acid) Graft Copolymers Prepared by Reactive Extrusion

    USDA-ARS?s Scientific Manuscript database

    Graft copolymers of starch with acrylamide and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) were prepared by reactive extrusion in a twin-screw extruder. The weight ratio of total monomer to starch was fixed at 1:3, while the molar fraction of AMPS in the monomer feed ranged from 0 to 0.119. Mon...

  9. Chrysanthemum cutting productivity and rooting ability are improved by grafting.

    PubMed

    Zhang, Jing; Chen, Sumei; Liu, Ruixia; Jiang, Jiafu; Chen, Fadi; Fang, Weimin

    2013-01-01

    Chrysanthemum has been commercially propagated by rooting of cuttings, whereas the quality will decline over multiple collections from a single plant. Therefore, we compared the vigour, rooting ability, and some physiological parameters between cuttings harvested from nongrafted "Jinba" (non-grafted cuttings) with those collected from grafted "Jinba" plants onto Artemisia scoparia as a rootstock (grafted cuttings). The yield, length, node number, stem diameter, fresh weight, and dry weight of the grafted cuttings were superior to the non-grafted cuttings. Also grafted cuttings "Jinba" rooted 1 day earlier, but showing enhanced rooting quality including number, length, diameter, and dry weight of roots, where compared to the non-grafted. The physiological parameters that indicated contents of soluble protein, peroxidase activity, soluble sugar, and starch, ratios of soluble sugar/nitrogen ratio, and carbohydrate/nitrogen (C/N), as well as contents of indole-3-acetic acid (IAA) and abscisic acid (ABA), and IAA/ABA ratio were significantly increased in the grafted cuttings. This suggested their important parts in mediating rooting ability. Results from this study showed that grafting improved productivity and rooting ability related to an altered physiology, which provide a means to meet the increasing demand.

  10. Preparation, properties and biological application of pH-sensitive poly(ethylene oxide) (PEO) hydrogels grafted with acrylic acid(AAc) using gamma-ray irradiation

    NASA Astrophysics Data System (ADS)

    Nho, Young Chang; Mook Lim, Youn; Moo Lee, Young

    2004-09-01

    pH-sensitive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing it in the small intestine. In this study, hydrogels based on poly(ethylene oxide) (PEO) networks grafted with acrylic acid (AAc) were prepared via a two-step process. PEO hydrogels were prepared by γ-ray irradiation, and then grafting by AAc monomer onto the PEO hydrogels with the subsequent irradiation (radiation dose: 5-20 kGy, dose rate: 2.15 kGy/h). These grafted hydrogels showed a pH-sensitive swelling behavior. The grafted hydrogels were used as a carrier for the drug delivery systems for the controlled release of insulin. The in vitro drug release behaviors of these hydrogels were examined by quantification analysis with a UV/VIS spectrophotometer. Insulin was loaded into freeze-dried hydrogels (7 mm×3 mm×2.5 mm) and administrated orally to healthy and diabetic Wistar rats. The oral administration of insulin-loaded hydrogels to Wistar rats decreased the blood glucose levels obviously for at least 4 h due to the absorption of insulin in the gastrointestinal tract.

  11. Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent.

    PubMed

    Maatar, Wafa; Boufi, Sami

    2015-08-01

    A poly(methacrylic acid-co-maleic acid) grafted nanofibrillated cellulose (NFC-MAA-MA) aerogel was prepared via radical polymerization in an aqueous solution using Fenton's reagent. The ensuing aerogel, in the form of a rigid porous material, was characterized by FTIR and NMR and used as an adsorbent for the removal of heavy metals from aqueous solutions. It showed an efficient adsorption, exceeding 95% toward Pb(2+), Cd(2+), Zn(2+) and Ni(2+) when their concentration was lower than 10 ppm and ranged from 90% to 60% for a metal concentration higher than 10 ppm. Over 98% of the adsorbed metal ion was recovered using EDTA as a desorbing solution, and the subsequent washing allowed the aerogel to be reused repeatedly without noticeable loss of adsorption capacity. It was concluded that the (NFC-MAA-MA) aerogel may be used as a high capacity and reusable sorbent material in heavy-metal removing processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The promise of a specially-designed graft copolymer of acrylic acid onto cellulose as selective sorbent for heavy metal ions.

    PubMed

    Essawy, Hisham A; Mohamed, Magdy F; Ammar, Nabila S; Ibrahim, Hanan S

    2017-10-01

    A specially-designed graft copolymer of acrylic acid onto in-situ formed cellulose-fulvate hybrid showed privileged tendency for uptake of Pb(II) during competitive removal from a mixture containing Cd(II) and Ni(II) within 5min at pH 5. This novel trend is attributed mainly to the crowded high content of coordinating centers within the designed graft copolymer along with the acquired superabsorbency. This provides an outstanding tool to separate some metal ions selectively from mixtures containing multiple ions on kinetic basis. Thus, the designed graft copolymer structure exhibited superior efficiency that reached ∼95% for sole removal of Pb(II). Kinetic modeling for Pb(II) individual removal showed excellent fitting with a pseudo second-order model. Intraparticle diffusion model on the other hand ensured governance of boundary layer effect over diffusion during the removal process due to the superabsorbency feature of the graft copolymer. The experimental findings were described with models such as Freundlich, Langmuir, and Dubinin-Radushkevich. The Langmuir and Freundlich models showed convenience with the adsorption isotherm of Pb(II) onto the developed graft copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Grafting molecularly imprinted poly(2-acrylamido-2-methylpropanesulfonic acid) onto the surface of carbon microspheres

    NASA Astrophysics Data System (ADS)

    Yang, Yongzhen; Zhang, Yan; Li, Sha; Liu, Xuguang; Xu, Bingshe

    2012-06-01

    Poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) was grafted on the surface of carbon microspheres (CMSs), which were modified in prior by a mixed acid (HNO3 and H2SO4) oxidation and 3-methacryloxypropyl trimethoxysilane silanization. Then, the molecularly imprinting polymerization was carried out towards the macromolecule PAMPS grafted on the surface of CMSs using dibenzothiophene (DBT) as template, ethylene dimethacrylate as cross-linking agent and (NH4)2S2O8 (APS) as initiator to prepare surface molecularly imprinted polymer (MIP-PAMPS/CMSs) for adsorbing DBT. The optimized conditions of grafting PAMPS, including AMPS dosage, APS content, reaction temperature and reaction time, were emphasized in this paper. The morphology of the samples was characterized by field emission scanning electron microscopy. The functional groups were analyzed qualitatively by Fourier transform infrared spectrometry. The grafting degree of PAMPS was investigated by thermogravimetry. The results show that the preferable AMPS dosage, APS content, reaction temperature and time were 5 g, 0.15 g, 70 °C and 12 h, respectively, for preparing PAMPS/CMSs composite on the basis of 1.0 g of silanized-CMSs. The absorbing characteristic of MIP-PAMPS/CMSs toward DBT was studied preliminarily with dynamic adsorption. In the experiment of dynamic adsorption, MIP-PAMPS/CMSs and non-imprinted polymer (NIP-PAMPS/CMSs) were compared with respect to their rapid adsorption in 1 mmol/L of DBT solution in n-hexane. When the first 1 mL of 1 mmol/L DBT solution was injected and flowed through a column packed with 0.1 g of MIP-PAMPS/CMSs, the content of DBT reduced to 0.265 mmol/L, that is, decreased significantly from 279 to 74 ppm. When 3 mL of DBT solution was flowed through the packed column, the adsorption of MIP-PAMPS/CMSs toward DBT reached saturation with the maximum adsorption amount of 1.38 × 10-2 mmol/g and the overall adsorption efficiency of 46%, while NIP-PAMPS/CMSs adsorbed only 1.66

  14. Radiation grafting of acrylamide and maleic acid on chitosan and effective application for removal of Co(II) from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Saleh, Alaaeldine Sh.; Ibrahim, Ahmed G.; Elsharma, Emad M.; Metwally, Essam; Siyam, Tharwat

    2018-03-01

    The graft copolymerization has been proven as a superior polymerization technique because it combines the functional advantages of the grafted and base polymers. In this work, the radiation-induced grafting of acrylamide (AAm) and maleic acid (MA) onto chitosan (CTS) was developed and optimized by determining the grafting percentage and efficiency as a function of grafting conditions such as AAm, MA, and CTS concentrations, and absorbed dose. Fourier transform infrared spectroscopic analysis (FTIR) confirmed the graft copolymerization. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) further characterized the grafted copolymers and showed their high thermal stability. Using batch sorption experiments and 60Co as a radiotracer, poly(CTS-AAm) and poly(CTS-MA) were evaluated for Co(II) removal from aqueous solutions. The Co(II) removal increases with increasing time, pH, polymer, and Co(II) concentrations. Experimentally, P(CTS-AAm) and P(CTS-MA) show high sorption capacities of Co(II), i.e. 150 mg g-1 and 421 mg g-1, respectively, which makes them potential sorbents of Co(II) for water and wastewater treatment. Finally, the Co(II) sorption was examined using sorption isotherm and kinetic models. The sorption was best fitted to Langmuir model which suggests the sorption is of chemisorption type. On the other hand, the sorption kinetics was best represented by Elovich model which also indicates the chemical nature of Co(II) sorption on P(CTS-AAm) and P(CTS-MA).

  15. Structure-function properties of starch graft poly(methyl acrylate)copolymers

    USDA-ARS?s Scientific Manuscript database

    Spherulites, produced by steam jet-cooking high-amylose starch and oleic acid, were grafted with methyl acrylate, both before and after removal of un-complexed amylopectin. For comparison, granular high-amylose corn starch was graft polymerized in a similar manner. The amount of grafted and ungrafte...

  16. Comparative Biomechanical and Microstructural Analysis of Native versus Peracetic Acid-Ethanol Treated Cancellous Bone Graft

    PubMed Central

    Rauh, Juliane; Despang, Florian; Baas, Jorgen; Liebers, Cornelia; Pruss, Axel; Günther, Klaus-Peter; Stiehler, Maik

    2014-01-01

    Bone transplantation is frequently used for the treatment of large osseous defects. The availability of autologous bone grafts as the current biological gold standard is limited and there is a risk of donor site morbidity. Allogenic bone grafts are an appealing alternative, but disinfection should be considered to reduce transmission of infection disorders. Peracetic acid-ethanol (PE) treatment has been proven reliable and effective for disinfection of human bone allografts. The purpose of this study was to evaluate the effects of PE treatment on the biomechanical properties and microstructure of cancellous bone grafts (CBG). Forty-eight human CBG cylinders were either treated by PE or frozen at −20°C and subjected to compression testing and histological and scanning electron microscopy (SEM) analysis. The levels of compressive strength, stiffness (Young's modulus), and fracture energy were significantly decreased upon PE treatment by 54%, 59%, and 36%, respectively. Furthermore, PE-treated CBG demonstrated a 42% increase in ultimate strain. SEM revealed a modified microstructure of CBG with an exposed collagen fiber network after PE treatment. We conclude that the observed reduced compressive strength and reduced stiffness may be beneficial during tissue remodeling thereby explaining the excellent clinical performance of PE-treated CBG. PMID:24678514

  17. Comparative biomechanical and microstructural analysis of native versus peracetic acid-ethanol treated cancellous bone graft.

    PubMed

    Rauh, Juliane; Despang, Florian; Baas, Jorgen; Liebers, Cornelia; Pruss, Axel; Gelinsky, Michael; Günther, Klaus-Peter; Stiehler, Maik

    2014-01-01

    Bone transplantation is frequently used for the treatment of large osseous defects. The availability of autologous bone grafts as the current biological gold standard is limited and there is a risk of donor site morbidity. Allogenic bone grafts are an appealing alternative, but disinfection should be considered to reduce transmission of infection disorders. Peracetic acid-ethanol (PE) treatment has been proven reliable and effective for disinfection of human bone allografts. The purpose of this study was to evaluate the effects of PE treatment on the biomechanical properties and microstructure of cancellous bone grafts (CBG). Forty-eight human CBG cylinders were either treated by PE or frozen at -20 °C and subjected to compression testing and histological and scanning electron microscopy (SEM) analysis. The levels of compressive strength, stiffness (Young's modulus), and fracture energy were significantly decreased upon PE treatment by 54%, 59%, and 36%, respectively. Furthermore, PE-treated CBG demonstrated a 42% increase in ultimate strain. SEM revealed a modified microstructure of CBG with an exposed collagen fiber network after PE treatment. We conclude that the observed reduced compressive strength and reduced stiffness may be beneficial during tissue remodeling thereby explaining the excellent clinical performance of PE-treated CBG.

  18. Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering.

    PubMed

    Palumbo, Fabio Salvatore; Pitarresi, Giovanna; Fiorica, Calogero; Rigogliuso, Salvatrice; Ghersi, Giulio; Giammona, Gaetano

    2013-07-01

    In this work hyaluronic acid (HA) functionalized with ethylenediamine (EDA) has been employed to graft α-elastin. In particular a HA-EDA derivative bearing 50 mol% of pendant amino groups has been successfully employed to produce the copolymer HA-EDA-g-α-elastin containing 32% w/w of protein. After grafting with α-elastin, remaining free amino groups reacted with ethylene glycol diglycidyl ether (EGDGE) for producing chemical hydrogels, proposed as scaffolds for tissue engineering. Swelling degree, resistance to chemical and enzymatic hydrolysis, as well as preliminary biological properties of HA-EDA-g-α-elastin/EGDGE scaffold have been evaluated and compared with a HA-EDA/EGDGE scaffold. The presence of α-elastin grafted to HA-EDA improves attachment, viability and proliferation of primary rat dermal fibroblasts and human umbilical artery smooth muscle cells. Biological performance of HA-EDA-g-α-elastin/EGDGE scaffold resulted comparable to that of a commercial collagen type I sponge (Antema®), chosen as a positive control. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Aqueous or solvent based surface modification: The influence of the combination solvent - organic functional group on the surface characteristics of titanium dioxide grafted with organophosphonic acids

    NASA Astrophysics Data System (ADS)

    Roevens, Annelore; Van Dijck, Jeroen G.; Geldof, Davy; Blockhuys, Frank; Prelot, Benedicte; Zajac, Jerzy; Meynen, Vera

    2017-09-01

    To alter the versatility of interactions at its surface, TiO2 is modified with organophosphonic acids (PA). A thorough understanding of the role of all synthesis conditions is necessary to achieve controlled functionalization. This study reports on the effect of using water, toluene and their mixtures when performing the modification of TiO2 with PA. Sorption and calorimetry measurements of surface interactions with various probing species clearly indicate that, by grafting PA in water, clear differences appear in the distribution of organic groups on the surface. Also the functional group of the PA determines the impact of using water as solvent. Modification in toluene results in a higher modification degree for propylphosphonic acid (3PA), as the solvent-solute interaction may hinder the grafting with phenylphosphonic acid (PhPA) in toluene. Water is preferred as solvent for PhPA modification as stabilizing π-OH interactions enhance surface grafting overcoming the competitive interaction of water at the surface as observed with 3PA. By using water in toluene mixtures for the functionalization of TiO2 with 3PA, the degree of functionalization is higher than when only water or toluene is used. Furthermore, adding small amounts of water leads to the formation of titanium propylphosphonates, next to surface grafting.

  20. Hypothermia augments non-cholinergic neuronal bronchoconstriction in pithed guinea-pigs.

    PubMed

    Rechtman, M P; King, R G; Boura, A L

    1991-08-16

    Electrical stimulation at C4-C7 in the spinal canal of pithed guinea-pigs injected with atropine, d-tubocurarine and pentolinium caused frequency-dependent bronchoconstriction. Such non-cholinergic responses to electrical stimulation, unlike responses to substance P, were abolished by pretreatment with capsaicin but not by mepyramine or propranolol. Bronchoconstrictor responses to electrical stimulation were inversely related to rectal temperature (between 30-40 degrees C) whereas responses to substance P increased with increasing temperature over the same range. Ouabain (i.v.) augmented responses to electrical stimulation at 35-37 degrees C but depressed those at 30-32 degrees C. Both morphine and the alpha 2-adrenoceptor agonist B-HT920 (i.v.) inhibited non-cholinergic-mediated bronchoconstrictor responses at 30-32 degrees C. These results stress the importance of adequate control of body temperature in this preparation. Lowered body temperature may increase neuronal output of neuropeptides whilst depressing bronchial smooth muscle sensitivity. The data support previous conclusions regarding the role of Na+/K+ activated ATPase in temperature-induced changes in sensitivity to bronchoconstrictor stimuli.

  1. Grafting of vinyl acetate-ethylacrylate binary monomer mixture onto guar gum.

    PubMed

    Singh, Vandana; Singh, Angela; Joshi, Sneha; Malviya, Tulika

    2016-03-01

    Present article reports on guar gum (GG) functionalization through graftcopolymerization of vinylacetate (VAC) and ethylacrylate (EA) from their binary mixtures. The potassium persulfate/ascorbic acid (KPS/AA) redox initiator system has been used for the binary grafting under the previously optimized conditions for VAC grafting at guar gum. The concentration of ascorbic acid (AA), persulfate (KPS), and grafting temperature were varied to optimize the binary grafting. A preliminary investigation revealed that the copolymer has excellent ability to capture Hg(II) from aqueous solution. It was observed that the optimum % grafting sample (CP3) was best at Hg(II) adsorption. CP3 and mercury loaded CP3 (CP3-Hg) have been extensively characterized using Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Thermo gravimetric analysis (TGA) and a plausible mechanism for the grafting has been proposed. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Role of 5-HT7 receptors in the inhibition of the vasodepressor sensory CGRPergic outflow in pithed rats.

    PubMed

    Cuesta, Cristina; García-Pedraza, José Ángel; García, Mónica; Villalón, Carlos M; Morán, Asunción

    2014-10-01

    The role of calcitonin gene-related peptide (CGRP) in the modulation of vascular tone has been widely documented. Indeed, electrical stimulation of the perivascular sensory outflow in pithed rats induces vasodepressor responses by activation of CGRP receptors. This study investigated the role of 5-HT7 receptors in the inhibition of the rat vasodepressor sensory outflow. Male Wistar pithed rats were pretreated with i.v. continuous infusions of hexamethonium and methoxamine, followed by physiological saline or AS-19 (a 5-HT7 receptor agonist). Then, electrical stimulation of the spinal cord resulted in frequency-dependent decreases in DBP. The infusions of AS-19, as compared to those of saline, inhibited the vasodepressor responses induced by electrical stimulation without affecting those to i.v. bolus injections of exogenous α-CGRP. This inhibition by AS-19 was abolished by the antagonists pimozide (5-HT7) or sulfisoxazole (ETA), but not by indomethacin (COX1/2) or losartan (AT1), at doses that did not affect per se the electrically-induced vasodepressor responses. Interestingly, glibenclamide (an ATP-dependent K(+) channel blocker) attenuated these vasodepressor responses. The present results suggest that AS-19-induced inhibition of the rat vasodepressor sensory CGRPergic outflow is mainly mediated by 5-HT7 receptors via endothelin release, with the possible involvement of ATP-dependent K(+) channels. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Biodiesel fuel production from waste cooking oil using radiation-grafted fibrous catalysts

    NASA Astrophysics Data System (ADS)

    Ueki, Yuji; Saiki, Seiichi; Hoshina, Hiroyuki; Seko, Noriaki

    2018-02-01

    Waste cooking oil, which can be used as a raw material for biodiesel fuel (BDF), contains two kinds of oil components: triglycerides (TGs) and free fatty acids (FFAs). Therefore, both alkaline-type and acid-type catalysts are needed to produce BDF from waste cooking oil. In this study, an alkaline-type grafted fibrous catalyst bearing OH- ions was synthesized by radiation-induced emulsion grafting of 4-chloromethylstyrene onto a polyethylene-coated polypropylene (PE/PP) nonwoven fabric, amination with trimethylamine, and further treatment with NaOH. Furthermore, an acid-type catalyst bearing H+ ions was synthesized by radiation-induced emulsion grafting of ethyl p-styrenesulfonate onto a PE/PP nonwoven fabric, saponification with NaOH, and protonation with HNO3. The OH- and H+ densities of the grafted fibrous catalysts were controlled by the grafting yield. The maximum OH- and H+ densities of the catalysts were 3.6 mmol-OH-/g-catalyst and 3.4 mmol-H+/g-catalyst, respectively. The performances of the catalysts were evaluated in the batchwise transesterification of TGs and ethanol, and the batchwise esterification of FFAs and ethanol. In both cases, TGs and FFAs were gradually converted into BDF. The mixed oil and four actual waste cooking oils, which contained both TGs and FFAs, were completely converted into BDF by sequential catalytic reactions with the acid-type grafted fibrous catalyst and then the alkaline-type grafted fibrous catalyst.

  4. A grafting from approach to graft polystyrene chains at the surface of graphene nanolayers by RAFT polymerization: Various graft densities from hydroxyl groups

    NASA Astrophysics Data System (ADS)

    Roghani-Mamaqani, Hossein; Khezri, Khezrollah

    2016-01-01

    (3-Aminopropyl) triethoxysilane was grafted at the surface of GO in low and high different graft densities to yield GOHAL and GOHAH, respectively. Subsequently, 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (RA) was attached at the surface of GOHAL and GOHAH by an amidation reaction to yield GOHRL and GOHRH, respectively. Then, GOHRL and GOHRH were used in grafting from RAFT polymerization of styrene. Grafting of APTES and RA was approved by Fourier transform infrared spectroscopy, X-ray photo electron spectroscopy, and Raman spectroscopy. Expansion of graphene interlayer by oxidation and functionalization processes was evaluated by X-ray diffraction. Conversion values of styrene were calculated using gas chromatography. Molecular weight and PDI values of attached polystyrene (PS) chains were studied by size exclusion chromatography. Thermogravimetric analysis was also used to investigate the degradation temperatures, char contents, and graft contents of modifiers and PS chains. GOHRH and GOHRL reach to char content of 55.3 and 45.2% at 600 °C, which shows that weight ratio of modifier (APTES and RA moieties) is 15.3 and 5.2%, respectively. Scanning and transmission electron microscopies show that graphite layers with flat and smooth surface wrinkled after oxidation and turned to opaque layers by grafting PS.

  5. Structure-function properties of starch spherulites grafted with poly(methyl acrylate)

    USDA-ARS?s Scientific Manuscript database

    Spherulites, produced by steam jet-cooking high-amylose starch and oleic acid, were grafted with methyl acrylate, both before and after removal of un-complexed amylopectin. For comparison, granular high-amylose corn starch was graft polymerized in a similar manner. The amount of grafted and ungrafte...

  6. Selective crystallization of calcium salts by poly(acrylate)-grafted chitosan.

    PubMed

    Neira-Carrillo, Andrónico; Yazdani-Pedram, Mehrdad; Retuert, Jaime; Diaz-Dosque, Mario; Gallois, Sebastien; Arias, José L

    2005-06-01

    The biopolymer chitosan was chemically modified by grafting polyacrylamide or polyacrylic acid in a homogeneous aqueous phase using potassium persulfate (KPS) as redox initiator system in the presence of N,N-methylene-bis-acrylamide as a crosslinking agent. The influence of the grafted chitosan on calcium salts crystallization in vitro was studied using the sitting-drop method. By using polyacrylamide grafted chitosan as substrate, rosette-like CaSO4 crystals were observed. This was originated by the presence of sulfate coming from the initiator KPS. By comparing crystallization on pure chitosan and on grafted chitosan, a dramatic influence of the grafted polymer on the crystalline habit of both salts was observed. Substrates prepared by combining sulfate with chitosan or sulfate with polyacrylamide did not produce similar CaSO4 morphologies. Moreover, small spheres or donut-shaped CaCO3 crystals on polyacrylic acid grafted chitosan were generated. The particular morphology of CaCO3 crystals depends also on other synthetic parameters such as the molecular weight of the chitosan sample and the KPS concentration.

  7. Inclusion complex from cyclodextrin-grafted hyaluronic acid and pseudo protein as biodegradable nano-delivery vehicle for gambogic acid.

    PubMed

    Ji, Ying; Shan, Shuo; He, Mingyu; Chu, Chih-Chang

    2017-10-15

    β-Cyclodextrin can form inclusion complex with a series of guest molecules including phenyl moieties, and has gained considerable popularity in the study of supramolecular nanostructure. In this study, a biodegradable nanocomplex (HA(CD)-4Phe4 nanocomplex) was developed from β-cyclodextrin grafted hyaluronic acid (HA) and phenylalanine based poly(ester amide). The phenylalanine based poly(ester amide) is a biodegradable pseudo protein which provides the encapsulation capacity for gambogic acid (GA), a naturally-derived chemotherapeutic which has been effectively employed to treat multidrug resistant tumor. The therapeutic potency of free GA is limited due to its poor solubility in water and the lack of tumor-selective toxicity. The nanocomplex carrier enhanced the solubility and availability of GA in aqueous media, and the HA component enabled the targeted delivery to tumor cells with overexpression of CD44 receptors. In the presence of hyaluronidase, the release of GA from the nanocomplex was significantly accelerated, due to the enzymatic biodegradation of the carrier. Compared to free GA, GA-loaded nanocomplex exhibited improved cytotoxicity in MDA-MB-435/MDR multidrug resistant melanoma cells, and induced enhanced level of apoptosis and mitochondrial depolarization, at low concentration of GA (1-2µM). The nanocomplex enhanced the therapeutic potency of GA, especially when diluted in physiological environment. In addition, suppressed matrix metalloproteinase activity was also detected in MDA-MB-435/MDR cells treated by GA-loaded nanocomplex, which demonstrated its potency in the inhibition of tumor metastasis. The in vitro data suggested that HA(CD)-4Phe4 nanocomplex could provide a promising alternative in the treatment of multidrug resistant tumor cells. Gambogic acid (GA), naturally derived from genus Garcinia trees, exhibited significant cytotoxic activity against multiple types of tumors with resistance to traditional chemotherapeutics. Unfortunately

  8. Polyether-polyester graft copolymer

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  9. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries

    PubMed Central

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  10. Gallic acid grafting effect on delivery performance and antiglaucoma efficacy of antioxidant-functionalized intracameral pilocarpine carriers.

    PubMed

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang

    2016-07-01

    Functionalization of therapeutic carrier biomaterials can potentially provide additional benefits in drug delivery for disease treatment. Given that this modification determines final therapeutic efficacy of drug carriers, here, we investigate systematically the role of grafting amount of antioxidant gallic acid (GA) onto GN in situ gelling copolymers made of biodegradable gelatin and thermo-responsive poly(N-isopropylacrylamide) for intracameral delivery of pilocarpine in antiglaucoma treatment. As expected, increasing redox reaction time increased total antioxidant activities and free radical scavenging abilities of synthesized carrier biomaterials. The hydrophilic nature of antioxidant molecules strongly affected physicochemical properties of carrier materials with varying GA grafting amounts, thereby dictating in vitro release behaviors and mechanisms of pilocarpine. In vitro oxidative stress challenges revealed that biocompatible carriers with high GA content alleviated lens epithelial cell damage and reduced reactive oxygen species. Intraocular pressure and pupil diameter in glaucomatous rabbits showed correlations with GA-mediated release of pilocarpine. Additionally, enhanced pharmacological treatment effects prevented corneal endothelial cell loss during disease progression. Increasing GA content increased total antioxidant level and decreased nitrite level in the aqueous humor, suggesting a much improved antioxidant status in glaucomatous eyes. This work significantly highlights the dependence of physicochemical properties, drug release behaviors, and bioactivities on intrinsic antioxidant capacities of therapeutic carrier biomaterials for glaucoma treatment. Development of injectable biodegradable polymer depots and functionalization of carrier biomaterials with antioxidant can potentially provide benefits such as improved bioavailability, controlled release pattern, and increased therapeutic effect in intracameral pilocarpine administration for glaucoma

  11. Effect of acetyl salicylic acid on increased production of thromboxane after aortic graft surgery.

    PubMed

    Lewin, J; Swedenborg, J; Egberg, N; Vesterqvist, O; Green, K

    1989-06-01

    Contact between blood and foreign surfaces, e.g. vascular grafts, causes activation and release of platelets. One consequence of platelet activation is production of thromboxane A2 (TxA2). The physiological effects of TxA2, i.e. platelet aggregation and vaso-constriction are counteracted by another prostanoid, prostacyclin (PGI2). Acetylsalicylic acid (ASA) causes a longlasting inhibition of platelet TxA2 production and a more shortlasting inhibition of PGI2 production. The present study examines TxA2 and PGI2 synthesis in patients receiving synthetic arterial grafts, some of which were treated with ASA. The prostanoid synthesis was evaluated by measurement of their main urinary metabolites with gas chromatography-mass spectrometry. Platelet release was evaluated by measurements of beta-thromboglobulin (beta-TG) and the plasma coagulation by measurements of fibrinopeptide A (FPA). These compounds were also measured in urine in order to avoid artifacts caused by activation of platelets and plasma coagulation during blood sampling. Following replacement of the abdominal aorta with a synthetic vascular graft there was a marked increase in the synthesis of TxA2 and PGI2. Increased levels of beta-TG and FPA were also demonstrated. Administration of ASA on the first and second postoperative days significantly reduced the synthesis of TxA2 but caused no significant effects on the other parameters measured. It is concluded that ASA may be beneficial in the postoperative period since it counteracts TxA2 with vasoconstricting and platelet aggregating properties but leaves PGI2 with vasodilating and antiaggregating properties relatively uneffected.

  12. Poly(methacrylic acid)-grafted chitosan microspheres via surface-initiated ATRP for enhanced removal of Cd(II) ions from aqueous solution.

    PubMed

    Huang, Liqiang; Yuan, Shaojun; Lv, Li; Tan, Guangqun; Liang, Bin; Pehkonen, S O

    2013-09-01

    Cross-linked chitosan (CCS) microspheres tethered with pH-sensitive poly(methacrylic acid) (PMAA) brushes were developed for the efficient removal of Cd(II) ions from aqueous solutions. Functional PMAA brushes containing dense and active carboxyl groups (COOH) were grafted onto the CCS microsphere surface via surface-initiated atom transfer radical polymerization (ATRP). Batch adsorption results showed that solution pH values had a major impact on cadmium adsorption by the PMAA-grafted CCS microspheres with the optimal removal observed above pH 5. The CCS-g-PMAA microsphere was found to achieve the adsorption equilibrium of Cd(II) within 1 h, much faster than about 7 h on the CCS microsphere. At pH 5 and with an initial concentration 0.089-2.49 mmol dm(-3), the maximum adsorption capacity of Cd(II), derived from the Langmuir fitting on the PMAA-grafted microspheres was around 1.3 mmol g(-1). Desorption and adsorption cycle experimental results revealed that the PMAA-grafted CCS microspheres loaded with Cd(II) can be effectively regenerated in a dilute HNO3 solution, and the adsorption capacity remained almost unchanged upon five cycle reuse. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A case grafted with polyglycolic acid sheets and fibrin glue for protection after temporary resection of a metastatic cervical skin tumor.

    PubMed

    Matsuzuka, Takashi; Suzuki, Masahiro; Ikeda, Masakazu; Sato, Kaoru; Fujimoto, Junko; Hosaka, Rumi; Tanji, Yuko; Soeda, Shu; Murono, Shigeyuki

    2018-04-01

    The aim of this case report was to evaluate the usefulness of a grafting with polyglycolic acid sheet and a fibrin glue spray (PGA sheet grafting) after resection of a cervical skin tumor. A 61-year-old woman presented with left cervical skin tumor resistance to chemo-radiotherapy. She had been undergoing multimodal therapy for ovarian serous papillary adenocarcinoma for the previous six years. Although she had a poor general condition and a cervical skin tumor of 9cm in diameter, which was painful and easy bleeding, had offensive smell, she hoped to return to her job. Under local anesthesia, resection was performed, and PGA sheet grafting were used to shield the skin defect. After resection, she was relieved from pain, and could stay home without daily wound treatment. One and half months after resection, the wound was almost epithelialized. The PGA sheets consist of soft, elastic, nonwoven fabric made of PGA. In recent years, PGA sheet grafting has been widely used in the reconstruction and was chosen to shield the skin defect for this case. PGA sheet grafting after resection of cervical skin tumor can be an acceptable method for palliative care to relieve pain, bleeding, offensive smell, and ugly appearance. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Influence of grafting solvents on the properties of polymer electrolyte membranes prepared by γ-ray preirradiation method

    NASA Astrophysics Data System (ADS)

    Kimura, Yosuke; Asano, Masaharu; Chen, Jinhua; Maekawa, Yasunari; Katakai, Ryoichi; Yoshida, Masaru

    2008-07-01

    The effect of grafting solvents, such as isopropanol (iPrOH), tetrachloroethane (TCE), tetrahydrofuran (THF), and toluene, on the preparation of poly(ethylene- co-tetrafluoroethylene)-graft-poly(styrene sulfonic acid) (ETFE-g-PSSA) electrolyte membranes by the γ-ray preirradiation grafting method was investigated. It was found that the iPrOH can drastically accelerate the grafting, resulting in a higher degree of grafting. However, for an appropriate degree of grafting of about 50%, the sulfonic acid groups in the ETFE-g-PSSA membrane prepared with the iPrOH were mainly distributed near the membrane surface, as shown by low proton conductivity in the membrane thickness direction. In contrast to this result, the ETFE-g-PSSA membranes prepared with the THF, toluene and TCE exhibited uniform distribution of the sulfonic acid groups in the membrane. Especially, in the case of the TCE grafting solvent, the chemical stability of the resultant electrolyte membrane was clearly higher than those prepared with the other grafting solvents.

  15. Solid phase graft copolymerization of acrylic monomers onto thermoplastics and their use as blend compatibilizers

    NASA Astrophysics Data System (ADS)

    Subramanian, Srinivas

    This research work is an extension of some of the earlier work done on the development of solid phase grafting technique to graft various monomers onto polymers as well as postulation of the usefulness of the graft copolymers thus synthesized. Polystyrene grafted with acrylic acid, previously developed in bench scale, was synthesized in pilot-plant scale batches. Process parameter studies on the grafting of acrylic acid onto polypropylene and developmental studies on the grafting of maleic anhydride onto polystyrene were also done. Polymers grafted with polar molecules such as maleic anhydride and acrylic acid have been used to compatibilize immiscible blends of polar and non-polar polymers. On the same note, the applicability of the solid phase graft copolymers as blend compatibilizers were investigated and their performance was compared to commercially available compatibilizers. Solid phase graft copolymerization process is a technique to synthesize graft copolymers. Some of its salient features are use of minimal solvent to conduct the reaction and easy equipment modification. It is a low pressure and low temperature process. This technique provides a viable alternative to the environmentally hazardous, and time consuming conventional process currently in use. Hence, development of this technique could be beneficial not only to the plastics industry, but also to mankind. Also, this technique provides a low-cost and extremely easy method to develop graft copolymers such as acrylic acid functionalized polymers that are rapidly gaining popularity as blend compatibilizers and polymer reinforcing agents. A study that proves the potential of these solid phase graft copolymers as good blend compatibilizers for industrially important immiscible polymers will develop interest in the industries about this grafting process. The free radical solid phase graft copolymerization process was carried in a modified Brabender-type mixer fitted with specially designed blades to

  16. Conformation and hydration of surface grafted and free polyethylene oxide chains in solutions

    NASA Astrophysics Data System (ADS)

    Dahal, Udaya; Wang, Zilu; Dormidontova, Elena

    Due to the wide application of polyethylene oxide (PEO), ranging from biomedicine to fuel cells, it is one of the most studied polymers in the scientific world. In order to elucidate detailed molecular-level insights on the impact of surface grafting on PEO conformation, we performed atomistic molecular dynamics simulations of PEO chains in solution and grafted to a flat gold surface in different solvents. We examined the hydration as well as conformation of the free chain compared to the grafted polymer in pure water and mixed solvents. We find that grafted chains are stiffer and have a stronger tendency to form helical structures in isobutyric acid or mixture of isobutyric acid and water solution than the free chains in corresponding solutions. For grafted chains exposed to pure water the random coil conformation is retained at low grafting density, but becomes stretched and more dehydrated as the grafting density or temperature increases. This research is supported by NSF (DMR-1410928).

  17. Enhancement of the grafting performance and of the water absorption of cassava starch graft copolymer by gamma radiation

    NASA Astrophysics Data System (ADS)

    Kiatkamjornwong, Suda; Meechai, Nispa

    1997-06-01

    Enhancement of the gamma radiation grafting of acrylonitrile onto gelatinized cassava starch was investigated. Infrared spectrometry was used to follow the chemical changes in the grafting reaction and from saponification. The saponified starch- g-PAN (HSPAN) was then characterized in terms of grafting parameters to provide a guide for the optimum total dose (kGy) and the appropriate ratio of starch/acrylonitrile for a fixed dose rate of 2.5 × 10 -1 kGy/min. Other dose rates were also carried out to obtain the appropriate result of grafting copolymerization and of water absorption. A thin aluminium foil, covering the inner wall of the reaction vessel, was found to be far more effective than any other metal films in the enhancement of the grafting reaction and the water absorption as well. Nitric acid in the medium increases the grafting yield and the water absorption. Methyl ether hydroquinone inhibitor was evaluated for its ability to increase homopolymerization and decrease graft reaction. When styrene was used as a comonomer, it hampered the grafting of acrylonitrile onto starch backbone. The water absorption capacity was improved by freeze-drying the HSPAN. The treatment of the HSPAN with aluminium trichloride hexahydrate was found to enhance the degree of wicking, but to decrease the water absorbency.

  18. Generation of a chickenized catalytic anti-nucleic acid antibody by complementarity-determining region grafting.

    PubMed

    Roh, Jooho; Byun, Sung June; Seo, Youngsil; KIm, Minjae; Lee, Jae-Ho; Kim, Songmi; Lee, Yuno; Lee, Keun Woo; Kim, Jin-Kyoo; Kwon, Myung-Hee

    2015-02-01

    In contrast to a number of studies on the humanization of non-human antibodies, the reshaping of a non-human antibody into a chicken antibody has never been attempted. Therefore, nothing is known about the animal species-dependent compatibility of the framework regions (FRs) that sustain the appropriate conformation of the complementarity-determining regions (CDRs). In this study, we attempted the reshaping of the variable domains of the mouse catalytic anti-nucleic acid antibody 3D8 (m3D8) into the FRs of a chicken antibody (“chickenization”) by CDR grafting, which is a common method for the humanization of antibodies. CDRs of the acceptor chicken antibody that showed a high homology to the FRs of m3D8 were replaced with those of m3D8, resulting in the chickenized antibody (ck3D8). ck3D8 retained the biochemical properties (DNA binding, DNA hydrolysis, and cellular internalizing activities) and three-dimensional structure of m3D8 and showed reduced immunogenicity in chickens. Our study demonstrates that CDR grafting can be applied to the chickenization of a mouse antibody, probably due to the interspecies compatibility of the FRs.

  19. PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties.

    PubMed

    Lizundia, Erlantz; Fortunati, Elena; Dominici, Franco; Vilas, José Luis; León, Luis Manuel; Armentano, Ilaria; Torre, Luigi; Kenny, Josè M

    2016-05-20

    Cellulose nanocrystals (CNC), extracted from microcrystalline cellulose by acid hydrolysis, were grafted by ring opening polymerization of L-Lactide initiated from the hydroxyl groups available at their surface and two different CNC:L-lactide ratios (20:80 and 5:95) were obtained. The resulting CNC-g-PLLA nanohybrids were incorporated in poly(lactic acid) (PLA) matrix by an optimized extrusion process at two different content (1 wt.% and 3 wt.%) and obtained bionanocomposite films were characterized by thermal, mechanical, optical and morphological properties. Thermal analysis showed CNC grafted with the higher ratio of lactide play a significant role as a nucleating agent. Moreover, they contribute to a significant increase in the crystallization rate of PLA, and the best efficiency was revealed with 3 wt.% of CNC-g-PLLA. This effect was confirmed by the increased in Young's modulus, suggesting the CNC graft ratio and content contribute significantly to the good dispersion in the matrix, positively affecting the final bionanocomposite properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers.

    PubMed

    Nap, R J; Tagliazucchi, M; Szleifer, I

    2014-01-14

    This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads

  1. Radiation induced graft copolymerization of methyl methacrylate onto chrome-tanned pig skins

    NASA Astrophysics Data System (ADS)

    Pietrucha, K.; Pȩkala, W.; Kroh, J.

    Graft copolymerization of methyl methacrylate (MMA) onto chrome-tanned pig skins was carried out by the irradiation with 60Co ?-rays. The grafted polymethyl methacrylate (PMMA) chains were isolated by acid hydrolysis of the collagen backbone in order to characterize the graft copolymers. Proof of grafting was obtained through the detection of amino acid endgroups in the isolated grafts by reaction with ninhydrin. The grafting yield of MMA in aqueous emulsion was found to be higher than that for pure MMA and MMA in acetone. The degree of grafting increases with increasing monomer concentration in emulsion and reaches maximum at radiation dose ca 15 kGy. The yield of grafting is very high - ca 90% of monomer converts into copolymer and only 10% is converted into homopolymer. The present paper reports the physical properties of chrome-tanned pig skins after graft polymerization with MMA in emulsion. Modified leathers are more resistant against water absorption and abrasion in comparison with unmodified ones. They have more uniform structure over the whole surface, greater thickness and stiffness. The results reported seem to indicate that MMA may be used in the production of shoe upper and sole leathers. The mechanism of some of the processes occuring during radiation grafting of MMA in water emulsion on tanned leathers has been also suggested and discussed.

  2. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid).

    PubMed

    Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar

    2014-10-13

    This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Environmentally friendly surface modification of silk fiber: Chitosan grafting and dyeing

    NASA Astrophysics Data System (ADS)

    Davarpanah, Saideh; Mahmoodi, Niyaz Mohammad; Arami, Mokhtar; Bahrami, Hajir; Mazaheri, Firoozmehr

    2009-01-01

    In this paper, the surface modification of silk fiber using anhydrides to graft the polysaccharide chitosan and dyeing ability of the grafted silk were studied. Silk fiber was degummed and acylated with two anhydrides, succinic anhydride (SA) and phthalic anhydride (PA), in different solvents (dimethyl sulfoxide (DMSO) and N, N-dimethyl formamide (DMF)). The effects of anhydrides, solvents, anhydride concentration, liquor ratio (L:R) and reaction time on acylation of silk were studied. The polysaccharide chitosan was grafted to the acylated silk fiber and dyed by acid dye (Acid Black NB.B). The effects of pH, chitosan concentration, and reaction time on chitosan grafting of acylated silk were investigated. The physical properties show sensible changes regardless of weight gain. Scanning electron microscopy (SEM) analysis showed the presence of foreign materials firmly attached to the surface of silk. FTIR spectroscopy provided evidence that chitosan was grafted onto the acylated silk through the formation of new covalent bonds. The dyeing of the chitosan grafted-acylated silk fiber indicated the higher dye ability in comparison to the acylated and degummed silk samples. The mechanism of chitosan grafting over degummed silk through anhydride linkage was proposed. The findings of this research support the potential production of new environmentally friendly textile fibers. It is worthwhile to mention that the grafted samples have antibacterial potential due to the antibacterial property of chitosan molecules.

  4. Process for radiation grafting hydrogels onto organic polymeric substrates

    DOEpatents

    Ratner, Buddy D.; Hoffman, Allan S.

    1976-01-01

    An improved process for radiation grafting of hydrogels onto organic polymeric substrates is provided comprising the steps of incorporating an effective amount of cupric or ferric ions in an aqueous graft solution consisting of N-vinyl-2 - pyrrolidone or mixture of N-vinyl-2 - pyrrolidone and other monomers, e.g., 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, propylene glycol acrylate, acrylamide, methacrylic acid and methacrylamide, immersing an organic polymeric substrate in the aqueous graft solution and thereafter subjecting the contacted substrate with ionizing radiation.

  5. Air Pump-Assisted Graft Centration, Graft Edge Unfolding, and Graft Uncreasing in Young Donor Graft Pre-Descemet Endothelial Keratoplasty.

    PubMed

    Jacob, Soosan; Narasimhan, Smita; Agarwal, Amar; Agarwal, Athiya; A I, Saijimol

    2017-08-01

    To assess an air pump-assisted technique for graft centration, graft edge unfolding, and graft uncreasing while performing pre-Descemet endothelial keratoplasty (PDEK) using young donor grafts. Continuous pressurized air infusion was used for graft centration, graft edge unfolding, and graft unwrinkling. Ten eyes of 10 patients underwent PDEK with donors aged below 40 years. In all eyes, the donor scrolled into tight scrolls. In all cases, the air pump-assisted technique was effective in positioning and centering the graft accurately and in straightening infolded graft edges and smoothing out graft creases and wrinkles. Endothelial cell loss was 38.6%. Postoperative best-corrected visual acuity at 6 months was 0.66 ± 0.25 in decimal equivalent. Continuous pressurized air infusion acted as a third hand providing a continuous pressure head that supported the graft and prevented graft dislocation as well as anterior chamber collapse during intraocular maneuvering. Adequate maneuvering space was available in all cases, and bleeding, if any, was tamponaded successfully in all cases. Although very young donor grafts may be used for PDEK, they are difficult to center and unroll completely before floating against host stroma. An air pump-assisted technique using continuous pressurized air infusion allows successful final graft positioning even with very young donor corneas. It thus makes surgery easier as several key steps are made easier to handle. It additionally helps in tamponading hemorrhage during peripheral iridectomy, increasing surgical space, preventing fluctuations in the anterior chamber depth, and promoting graft adherence.

  6. Facile synthesis of a conjugation-grafted-TiO2 nanohybrid with enhanced visible-light photocatalytic properties from nanotube titanic acid precursors

    NASA Astrophysics Data System (ADS)

    Guo, Yanru; Zhang, Min; Zhang, Zhihua; Li, Qiuye; Yang, Jianjun

    2016-08-01

    A conjugation-grafted-TiO2 nanohybrid was synthesized by chemically grafting conjugated structures on the surface of nanotube titanic acid (NTA) precursor-based TiO2 through the controlled thermal degradation of a coacervated polymer layer of polyvinyl alcohol (PVA). The interfacial interactions between the NTA precursor-based TiO2 and conjugated structures were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Moreover, the effects of the NTA's pretreatment temperature and the weight ratio of NTA to PVA on the photocatalytic degradation of methyl orange were also investigated. A higher NTA pretreatment temperature and a lower NTA to PVA weight ratio were found to enhance photogenerated electron-hole separation efficiency and photocatalytic activity. Moreover, the conjugation-grafted-TiO2 nanohybrid synthesized from the NTA precursor displayed a much higher visible-light photocatalytic activity than that of the sample obtained from the P25 precursor. The origin of the enhanced photocatalytic activity under visible-light irradiation is also discussed in detail.

  7. High performance perpendicular magnetic tunnel junction with Co/Ir interfacial anisotropy for embedded and standalone STT-MRAM applications

    NASA Astrophysics Data System (ADS)

    Huai, Yiming; Gan, Huadong; Wang, Zihui; Xu, Pengfa; Hao, Xiaojie; Yen, Bing K.; Malmhall, Roger; Pakala, Nirav; Wang, Cory; Zhang, Jing; Zhou, Yuchen; Jung, Dongha; Satoh, Kimihiro; Wang, Rongjun; Xue, Lin; Pakala, Mahendra

    2018-02-01

    High volume spin transfer torque magnetoresistance random access memory (STT-MRAM) for standalone and embedded applications requires a thin perpendicular magnetic tunnel junction (pMTJ) stack (˜10 nm) with a tunnel magnetoresistance (TMR) ratio over 200% after high temperature back-end-of-line (BEOL) processing up to 400 °C. A thin reference layer with low magnetic moment and strong perpendicular magnetic anisotropy (PMA) is key to reduce the total thickness of the full pMTJ stack. We demonstrated strong interfacial PMA and a perpendicular Ruderman-Kittel-Kasuya-Yosida exchange interaction in the Co/Ir system. Owing to the additional high PMA at the Ir/Co interface in combination with a conventional CoFeB/MgO interface in the Ir/Co/Mo/CoFeB/MgO reference layer, the full film pMTJ showed a TMR ratio over 210% after annealing at 400 °C for 150 min. The high TMR ratio can be attributed to the thin stack design by combining a thin reference layer with the efficient compensation by a thin pinned layer. The annealing stability may be explained by the absence of solid solution in the Co-Ir system and the low oxygen affinity of Mo in the reference layer and the free layer. High device performance with a TMR ratio over 210% was also confirmed after subjecting the patterned devices to BEOL processing temperatures of up to 400 °C. This proposed pMTJ design is suitable for both standalone and embedded STT-MRAM applications.

  8. Auxin enhances grafting success in Carya cathayensis (Chinese hickory).

    PubMed

    Saravana Kumar, R M; Gao, Liu Xiao; Yuan, Hu Wei; Xu, Dong Bin; Liang, Zhao; Tao, Shen Chen; Guo, Wen Bin; Yan, Dao Liang; Zheng, Bing Song; Edqvist, Johan

    2018-03-01

    Application of auxin to root stock and scion increases the success rate of grafting in Chinese hickory. The nuts of the Chinese hickory (Carya cathayensis) tree are considered both delicious and healthy. The popularity and high demand result is that the hickory nuts are of very high economical value for horticulture. This is particularly true for the Zhejiang province in eastern China where this tree is widely cultivated. However, there are several difficulties surrounding the hickory cultivation, such as for example long vegetative growth, tall trees, labour-intensive nut picking, and slow variety improvements. These complications form a great bottleneck in the expansion of the hickory industry. The development of an efficient grafting procedure could surpass at least some of these problems. In this study, we demonstrate that application of the auxin indole-3-acetic acid promotes the grafting process in hickory, whereas application of the auxin transport inhibitor 1-N-naphthylphthalamic acid inhibits the grafting process. Furthermore, we have identified hickory genes in the PIN, ABCB, and AUX/LAX-families known to encode influx and efflux carriers in the polar transport of auxin. We show that increased expression of several of these genes, such as CcPIN1b and CcLAX3, is correlating with successful grafting.

  9. Patupilone-loaded poly(L-glutamic acid)-graft-methoxy-poly(ethylene glycol) micelle for oncotherapy.

    PubMed

    Yan, Jing; Zhang, Dawei; Yu, Haiyang; Ma, Lili; Deng, Mingxiao; Tang, Zhaohui; Zhang, Xuefei

    2017-03-01

    Patupilone, an original natural anti-cancer agent, also known as epothilone B or Epo906, has shown promise for the treatment of a variety of cancers, however, the systematic side effects of patupilone significantly impaired its clinical translation. Herein, patupilone-loaded PLG-g-mPEG micelles were prepared. Patupilone was grafted to a poly(L-glutamic acid)-graft-methoxy-poly(ethylene glycol) (PLG-g-mPEG) by Steglich esterification reaction to give PLG-g-mPEG/Epo906 that could self-assemble to form patupilone-loaded micelles (Epo906-M). The Epo906-M was able to inhibit the proliferation of A549, MCF-7 cancer cells and BEAs-2B cells in vitro. For in vivo treatment of orthotopic xenograft tumor models (MCF-7), the Epo906-M exhibited higher tumor inhibition efficiency with lower side effects as compared with free Epo906. Seventeen percent of the body weight loss appeared in the group treated with free Epo906 of 0.25 mg kg -1 , while the group treated with Epo906-M of 10 mg kg -1 showed less than ten percent of body weight loss and displayed stronger tumor inhibiting effect. Therefore, the polypeptide-patupilone conjugate has improved potential for oncotherapy.

  10. Graft copolymerization of acrylonitrile onto recycled newspapers cellulose pulp

    NASA Astrophysics Data System (ADS)

    Awang, N. A.; Salleh, W. N. W.; Hasbullah, H.; Yusof, N.; Aziz, F.; Jaafar, J.; Ismail, A. F.

    2017-09-01

    The extraction of recycled newspapers (RNP) cellulose pulp began by a series of chemical alkali extraction, 5 wt% NaOH at 125°C for 2 h. Subsequently, the bleaching of alkalized pulp was carried out by using 2 wt% NaClO2 solutions in the presence of 60 wt% of nitric acid, for 4 h at 100°C. The graft copolymerization of acrylonitrile onto the bleached cellulose pulp was initiated by using ceric ammonium nitrate. The grafting conditions were optimized by varying the ceric ammonium nitrate (CAN) initiator concentration, acrylonitrile (ACN) concentration and reaction time. The successfully of the grafting process were determined by calculating the grafting yield (%GY) and grafting efficiency (%GE). The morphological and chemical structure of resulting grafted and ungrafted recycled newspaper cellulose pulp were characterized by using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy.

  11. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Güven, Olgun; Mashentseva, Anastassiya A.; Atıcı, Ayse Bakar; Gorin, Yevgeniy G.; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2017-01-01

    Poly(ethylene terephthalate) PET, track-etched membranes (TeMs) with 400 nm average pore size were UV-grafted with poly(acrylic acid) (PAA) after oxidation of inner surfaces by H2O2/UV system. Carboxylate groups of grafted PAA chains were easily complexed with Cu2+ ions in aqueous solutions. These ions were converted into metallic copper nanoparticles (NPs) by radiation-induced reduction of copper ions in aqueous-alcohol solution by gamma rays in the dose range of 46-250 kGy. Copper ions chelating with -COOH groups of PAA chains grafted on PET TeMs form polymer-metal ion complex that prevent the formation of agglomerates during reduction of copper ions to metallic nanoparticles. The detailed analysis by X-Ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the deposition of copper nanoparticles with the average size of 70 nm on the inner surface of nanochannels of PET TeMs. Samples were also investigated by FTIR, ESR spectroscopies to follow copper ion reduction.

  12. Inhibition of cell surface expression of endothelial adhesion molecules by ursolic acid prevents intimal hyperplasia of venous bypass grafts in rats

    PubMed Central

    Zeller, Iris; Wiedemann, Dominik; Schwaiger, Stefan; Stelzmüller, Marlies; Kreutmayer, Simone; Leberfing, Oliver; Stuppner, Hermann; Bernhard, David

    2012-01-01

    OBJECTIVES Despite rapid progress in surgical techniques, there is still a significant lack of surgery-supportive pharmacological treatments. The aim of this study was to test the hypothesis that ursolic acid (UA) may prevent intimal hyperplasia of venous bypass grafts. METHODS The hypothesis was tested by means of primary cell isolation and culture followed by real-time polymerase chain reaction, western blotting, fluorescence microscopy and fluorescence-activated cell sorting analyses, as well as an in vivo rat model for intimal hyperplasia of venous bypass grafts and immunohistochemistry and histochemistry. RESULTS The local application of UA significantly inhibited intimal hyperplasia in vivo (intimal thickness control: 25 μm, UA group: 18 μM–8 weeks after surgery). The UA treatment of grafts significantly resulted in reduced endothelial vascular cell adhesion molecule-1 (VCAM-1) expression, reduced infiltration of the grafts vessel wall by CD45-positive cells and increased smooth muscle cell (SMC) death. In in vitro condition, it could be shown that UA inhibits VCAM-1 expression downstream of NFκB and is likely to interfere with VCAM-1 protein synthesis in endothelial cells. Quantification of cell death in vascular smooth muscle cells treated with UA indicated that UA is a potent inducer of SMC apoptosis. CONCLUSIONS Our results suggest that UA-mediated inhibition of endothelial VCAM-1 expression reduces the infiltration of venous bypass grafts by CD45-positive cells and inhibits intimal hyperplasia. Apoptosis induction in SMCs may be another method in which UA reduces intimal thickening. UA may constitute a surgery-supportive pharmacon that reduces intimal hyperplasia of vein grafts. PMID:22551965

  13. Bioactive and metal uptake studies of carboxymethyl chitosan-graft-D-glucuronic acid membranes for tissue engineering and environmental applications.

    PubMed

    Jayakumar, R; Rajkumar, M; Freitas, H; Sudheesh Kumar, P T; Nair, S V; Furuike, T; Tamura, H

    2009-08-01

    Carboxymethyl chitosan-graft-D-glucuronic acid (CMCS-g-D-GA) was prepared by grafting D-GA onto CMCS in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and then the membranes were made from it. In this work, the bioactivity studies of CMCS-g-D-GA membranes were carried out and then characterized by SEM, CLSM, XRD and FT-IR. The CMCS-g-D-GA membranes were found to be bioactive. The adsorption of Ni2+, Zn2+ and Cu2+ ions onto CMCS-g-D-GA membranes has also been investigated. The maximum adsorption capacity of CMCS-g-D-GA for Ni2+, Zn2+ and Cu2+ was found to be 57, 56.4 and 70.2 mg/g, respectively. Hence, these membranes were useful for tissue engineering, environmental and water purification applications.

  14. Local vs. systemic administration of bisphosphonates in rat cleft bone graft: A comparative study

    PubMed Central

    Lin, Lawrence; Olson, Jeffrey; Kwon, Taewoo; Bezouglaia, Olga; Tran, Jaime; Hoang, Michael; Bui, Kimberly; Kim, Reuben H.; Tetradis, Sotirios

    2018-01-01

    A majority of patients with orofacial cleft deformity requires cleft repair through a bone graft. However, elevated amount of bone resorption and subsequent bone graft failure remains a significant clinical challenge. Bisphosphonates (BPs), a class of anti-resorptive drugs, may offer great promise in enhancing the clinical success of bone grafting. In this study, we compared the effects of systemic and local delivery of BPs in an intraoral bone graft model in rats. We randomly divided 34 female 20-week-old Fischer F344 Inbred rats into four groups to repair an intraoral critical-sized defect (CSD): (1) Control: CSD without graft (n = 4); (2) Graft/Saline: bone graft with systemic administration of saline 1 week post-operatively (n = 10); (3) Graft/Systemic: bone graft with systemic administration of zoledronic acid 1 week post-operatively (n = 10); and (4) Graft/Local: bone graft pre-treated with zoledronic acid (n = 10). At 6-weeks post-operatively, microCT volumetric analysis showed a significant increase in bone fraction volume (BV/TV) in the Graft/Systemic (62.99 ±14.31%) and Graft/Local (69.35 ±13.18%) groups compared to the Graft/Saline (39.18±10.18%). Similarly, histological analysis demonstrated a significant increase in bone volume in the Graft/Systemic (78.76 ±18.00%) and Graft/Local (89.95 ±4.93%) groups compared to the Graft/Saline (19.74±18.89%). The local delivery approach resulted in the clinical success of bone grafts, with reduced graft resorption and enhanced osteogenesis and bony integration with defect margins while avoiding the effects of BPs on peripheral osteoclastic function. In addition, local delivery of BPs may be superior to systemic delivery with its ease of procedure as it involves simple soaking of bone graft materials in BP solution prior to graft placement into the defect. This new approach may provide convenient and promising clinical applications towards effectively managing cleft patients. PMID:29304080

  15. Water-soluble graft copolymers of starch-acrylamide and uses therefor

    DOEpatents

    Butler, George B.; Hogen-Esch, Thieo E.; Meister, John J.; Pledger, Jr., Huey

    1983-08-23

    Graft copolymers having starch as the central chain with grafted side chains of acrylamide or acrylamide-acrylic acid, and a process for preparation of such copolymers in the presence of Ce.sup.+4 or other redox initiators. These copolymers are employed in preparing highly viscous aqueous solutions that are particularly useful in oil recovery from subterranean wells.

  16. Preparation of metal adsorbent from poly(methyl acrylate)-grafted-cassava starch via gamma irradiation

    NASA Astrophysics Data System (ADS)

    Suwanmala, Phiriyatorn; Hemvichian, Kasinee; Hoshina, Hiroyuki; Srinuttrakul, Wannee; Seko, Noriaki

    2012-08-01

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, % Dg=191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum condition. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15 and 1.6 mmol/g-adsorbent for Cd2+, Al3+, UO22+, V5+ and Pb2+, respectively, in the batch mode adsorption.

  17. Evaluation of sanitizers for inactivating Salmonella on in-shell pecans and pecan nutmeats.

    PubMed

    Beuchat, Larry R; Mann, David A; Alali, Walid Q

    2012-11-01

    Chlorine, organic acids, and water extracts of inedible pecan components were tested for effectiveness in killing Salmonella on pecans. In-shell pecans and nutmeats (U.S. Department of Agriculture medium pieces) were immersion inoculated with a mixture of five Salmonella serotypes, dried to 3.7% moisture, and stored at 4°C for 3 to 6 weeks. In-shell nuts were immersed in chlorinated water (200, 400, and 1,000 μg/ml), lactic acid (0.5, 1, and 2%), and levulinic acid (0.5, 1, and 2%) with and without 0.05% sodium dodecyl sulfate (SDS), and a mixed peroxyacid sanitizer (Tsunami 200, 40 μg/ml) for up to 20 min at 21°C. The rate of reduction of free chlorine in conditioning water decreased as the ratio of in-shell nuts/water was increased. The rate of reduction was more rapid when nuts were not precleaned before treatment. The initial population of Salmonella on in-shell nuts (5.9 to 6.3 log CFU/g) was reduced by 2.8 log CFU/g after treating with chlorinated water (1,000 μg/ml). Treatment with 2% lactic acid plus SDS or 2% levulinic acid plus SDS reduced the pathogen by 3.7 and 3.4 log CFU/g, respectively. Lactic and levulinic acids (2%) without SDS were less effective (3.3- and 2.1-log CFU/g reductions, respectively) than acids with SDS. Treatment with Tsunami 200 resulted in a 2.4-log CFU/g reduction. In-shell nuts and nutmeats were immersed in water extracts of ground pecan shucks (hulls), shells, a mixture of shells and pith, and pith. The general order of lethality of extracts to Salmonella was shuck < shell-pith ≤ shell ≤ pith < chlorine (400 μg/ml) and shuck < shell ≤ pith = shell-pith < chlorine (400 μg/ml). Results emphasize the importance of removing soil and dust on in-shell pecans before conditioning in chlorinated water and the need for sanitizers with increased effectiveness in killing Salmonella on pecans.

  18. Graft-Sparing Strategy for Thoracic Prosthetic Graft Infection.

    PubMed

    Uchino, Gaku; Yoshida, Takeshi; Kakii, Bunpachi; Furui, Masato

    2018-04-01

     Thoracic prosthetic graft infection is a rare but serious complication with no standard management. We reported our surgical experience on graft-sparing strategy for thoracic prosthetic graft infection.  This study included patients who underwent graft-sparing surgery for thoracic prosthetic graft infection at Matsubara Tokushukai Hospital in Japan from January 2000 to October 2017.  There were 17 patients included in the analyses, with a mean age at surgery of 71.0 ± 10.5 years; 11 were men. In-hospital mortality was observed in five patients (29.4%).  Graft-sparing surgery for thoracic prosthetic graft infection is an alternative option particularly for early graft infection after hemiarch replacement. Georg Thieme Verlag KG Stuttgart · New York.

  19. Collagen-grafted porous HDPE/PEAA scaffolds for bone reconstruction.

    PubMed

    Kim, Chang-Shik; Jung, Kyung-Hye; Kim, Hun; Kim, Chan-Bong; Kang, Inn-Kyu

    2016-01-01

    After tumor resection, bone reconstruction such as skull base reconstruction using interconnected porous structure is absolutely necessary. In this study, porous scaffolds for bone reconstruction were prepared using heat-pressing and salt-leaching methods. High-density polyethylene (HDPE) and poly(ethylene-co-acrylic acid) (PEAA) were chosen as the polymer composites for producing a porous scaffold of high mechanical strength and having high reactivity with biomaterials such as collagen, respectively. The porous structure was observed through surface images, and its intrusion volume and porosity were measured. Owing to the carboxylic acids on PEAA, collagen was successfully grafted onto the porous HDPE/PEAA scaffold, which was confirmed by FT-IR spectroscopy and electron spectroscopy for chemical analysis. Osteoblasts were cultured on the collagen-grafted porous scaffold, and their adhesion, proliferation, and differentiation were investigated. The high viability and growth of the osteoblasts suggest that the collagen-grafted porous HDPE/PEAA is a promising scaffold material for bone generation.

  20. Multi-armed poly(L-glutamic acid)-graft-oligoethylenimine copolymers as efficient nonviral gene delivery vectors.

    PubMed

    Chen, Lei; Tian, Huayu; Chen, Jie; Chen, Xuesi; Huang, Yubin; Jing, Xiabin

    2010-01-01

    The application of polyethylenimine (PEI) in gene delivery has been severely limited by significant cytotoxicity that results from a nondegradable methylene backbone and high cationic charge density. It is therefore necessary to develop novel biodegradable PEI derivates for low-toxic, highly efficient gene delivery. A series of novel cationic copolymers with various charge density were designed and synthesized by grafting different kinds of oligoethylenimine (OEI) onto a determinate multi-armed poly(L-glutamic acid) backbone. The molecular structures of multi-armed poly(L-glutamic acid)-graft-OEI (MP-g-OEI) copolymers were characterized using nuclear magnetic resonance, viscosimetry and gel permeation chromatography. Moreover, the MP-g-OEI/DNA complexes were measured by a gel retardation assay, dynamic light scattering and atomic force microscopy to determine DNA binding ability, particle size, zeta potential, complex formation and shape, respectively. MP-g-OEI copolymers were also evaluated in Chinese hamster ovary and human embryonic kidney-293 cells for their cytotoxicity and transfection efficiency. The particle sizes of MP-g-OEI/DNA complexes were in a range of 109.6-182.6 nm and the zeta potentials were in a range of 29.2-44.5 mV above the N/P ratio of 5. All the MP-g-OEI copolymers exhibited lower cytotoxicity and higher gene transfection efficiency than PEI25k in the absence and presence of serum with different cell lines. Importantly, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed that the cytotoxicity of MP-g-OEI copolymers varied with their molecular weight and charge density, and two of MP-g-OEI copolymers (OEI600-MP and OEI1800-MP) could achieve optimal transfection efficiency at a similar low N/P ratio as that for PEI25k. MP-g-OEI copolymers demonstrated considerable potential as nonviral vectors for gene therapy. Copyright 2009 John Wiley & Sons, Ltd.

  1. Water-soluble graft copolymers of starch-acrylamide and uses therefor

    DOEpatents

    Butler, G.B.; Hogen-Esch, T.E.; Meister, J.J.; Pledger, H. Jr.

    1983-08-23

    Graft copolymers having starch as the central chain with grafted side chains of acrylamide or acrylamide-acrylic acid, and a process for preparation of such copolymers in the presence of Ce[sup +4] or other redox initiators are disclosed. These copolymers are employed in preparing highly viscous aqueous solutions that are particularly useful in oil recovery from subterranean wells. 2 figs.

  2. Gamma radiation grafted polymers for immobilization of Brucella antigen in diagnostic test studies

    NASA Astrophysics Data System (ADS)

    Docters, E. H.; Smolko, E. E.; Suarez, C. E.

    The radiation grafting process has a wide field of industrial applications, and in the recent years the immobilization of biocomponents in grafted polymeric materials obtained by means of ionizing radiations is a new and important contribution to biotechnology. In the present work, gamma preirradiation grafting method was employed to produce acrylics hydrogels onto polyethylene (PE), polyvinyl chloride (PVC) and polystyrene (PS). Two monomers were used to graft the previously mentioned polymers: methacrylic acid (MAAc) and acrylamide (AAm), and several working conditions were considered as influencing the degree of grafting. All this grafted polymers were used to study the possibility of a subsequent immobilization of Brucella antigen (BAg) in diagnostic test studies (ELISA).

  3. Subcritical carbon dioxide-water hydrolysis of sugarcane bagasse pith for reducing sugars production.

    PubMed

    Liang, Jiezhen; Chen, Xiaopeng; Wang, Linlin; Wei, Xiaojie; Wang, Huasheng; Lu, Songzhou; Li, Yunhua

    2017-03-01

    The aim of present study was to obtain total reducing sugars (TRS) by hydrolysis in subcritical CO 2 -water from sugarcane bagasse pith (SCBP), the fibrous residue remaining after papermaking from sugarcane bagasse. The optimum hydrolysis conditions were evaluated by L 16 (4 5 ) orthogonal experiments. The TRS yield achieved 45.8% at the optimal conditions: 200°C, 40min, 500rmin -1 , CO 2 initial pressure of 1MPa and liquid-to-solid ratio of 50:1. Fourier transform infrared spectrometry and two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance were used to characterize hydrolysis liquor, treated and untreated SCBP, resulting in the removal of hemicelluloses to mainly produce xylose, glucose and arabinose during hydrolysis. The severity factors had no correlation to TRS yield, indicating that the simple kinetic processes of biomass solubilisation cannot perfectly describe the SCBP hydrolysis. The first-order kinetic model based on consecutive reaction was used to obtain rate constants, activation energies and pre-exponential factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatsumi, Y.; Chachin, K.; Ogata, K.

    The purpose of the experiment was to determine the changes of o- diphenol, ascorbic acid, and activities of polyphenol oxidase and peroxidase, accompanied with the browning by the low dose of gamma ray, in three parts of tuber tissue (cortex, vascular bundle, and pith), and to observe the relation between the browning and the changes of ihose compounds and enzyme activities. The odiphenol content increased in irradiated tabers and the increasing rate was greater in cortex and vascular bundle than in pith. The ascorbic acid content decreased with higher doses, and the decreasing rate was greater in cortex and vascularmore » bundle than in pith. The activities of polyphenol oxidase and peroxidase also increased in irradiated tubers. The activity of polyphenol oxidase increased more in cortex than in vascular bundle and pith and the activity of peroxidase increased more in vascular bundle than in cortex and pith. ln the potato tubers in which irradiation was conducted immediately after harvest, the browning was induced within several days after irradiation. However, in the potato tubers in which irradiation was conducted about 3 months, the browning did not occur after irradiation. The former showed the increase of o-diphenol content and the activities of these enzymes, and the decrease of ascorbic acid content, the latter did not show the changes of o-diphenol and ascorbic acid and activities of the enzymes. (auth)« less

  5. Highly Efficient Catalysis of Azo Dyes Using Recyclable Silver Nanoparticles Immobilized on Tannic Acid-Grafted Eggshell Membrane

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojing; Liang, Miao; Liu, Mingyue; Su, Rongxin; Wang, Mengfan; Qi, Wei; He, Zhimin

    2016-10-01

    In this study, a facile one-step synthesis of a novel nanocomposite catalytic film was developed based on silver nanoparticles (AgNPs) immobilized in tannic acid-modified eggshell membrane (Tan-ESM). Tannic acid, as a typical plant polyphenol from oak wood, was first grafted onto ESM fibers to serve as both the reductant and the stabilizer during the synthesis of AgNPs. The morphology, constitution, and thermal stability of the resulting AgNPs@Tan-ESM composites were fully characterized to explain the excellent catalytic efficiency of AgNPs@Tan-ESM composites. These composite catalysts were applied to the degradation of azo dyes which exhibited the high catalytic activity toward Congo red and methyl orange according to the kinetic curves. More importantly, they can be easily recovered and reused for many times because of their good stability.

  6. Evolution of skin grafting for treatment of burns: Reverdin pinch grafting to Tanner mesh grafting and beyond.

    PubMed

    Singh, Mansher; Nuutila, Kristo; Collins, K C; Huang, Anne

    2017-09-01

    Skin grafting is the current standard care in the treatment of full thickness burns. It was first described around 1500 BC but the vast majority of advancements have been achieved over the past 200 years. An extensive literature review was conducted on Pubmed, Medline and Google Scholar researching the evolution of skin grafting techniques. The authors concentrated on the major landmarks of skin grafting and also provide an overview of ongoing research efforts in this field. The major innovations of skin grafting include Reverdin pinch grafting, Ollier grafting, Thiersch grafting, Wolfe grafting, Padgett dermatome and modifications, Meek-wall microdermatome and Tanner mesh grafting. A brief description of the usage, advantages and limitations of each technique is included in the manuscript. Skin grafting technique have evolved significantly over past 200 years from Reverdin pinch grafting to modern day meshed skin grafts using powered dermatome. Increasing the expansion ratio and improving the cosmetic and functional outcome are the main focus of ongoing skin grafting research and emerging techniques (such as Integra ® , Recell ® , Xpansion ® ) are showing promise. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  7. Skin graft

    MedlinePlus

    ... that need skin grafts to heal Venous ulcers, pressure ulcers , or diabetic ulcers that do not heal Very ... graft; Full thickness skin graft Patient Instructions Preventing pressure ulcers Surgical wound care - open Images Skin graft Skin ...

  8. Hyaluronic acid-grafted PLGA nanoparticles for the sustained delivery of berberine chloride for an efficient suppression of Ehrlich ascites tumors.

    PubMed

    Bhatnagar, Priyanka; Kumari, Manisha; Pahuja, Richa; Pant, A B; Shukla, Y; Kumar, Pradeep; Gupta, K C

    2018-06-01

    To promote the specific targeting and elimination of CD44-positive cancer cells, berberine chloride (BRB)-encapsulated hyaluronic acid-grafted poly(lactic-co-glycolic acid) copolymer (BRB-d(HA)-g-PLGA) nanoparticles (NPs) were prepared. The targeted action of these NPs was compared to non-targeted BRB-loaded PLGA NPs and bulk BRB. The in vitro studies demonstrated faster release of BRB and increased cytotoxicity of BRB-d(HA)-g-PLGA NPs in Hela and MCF-7 cells in comparison to BRB-PLGA NPs and bulk BRB. The uptake of BRB-d(HA)-g-PLGA NPs was increased in case of MCF-7 cells as compared to HeLa cells owing to the higher expression of CD44 receptors on MCF-7 cells. The CD44 receptor-mediated uptake of these NPs was confirmed through competitive inhibition experiments. The in vitro results were further validated in vivo in Ehrlich Ascites Carcinoma (EAC)-bearing mice. EAC-bearing mice were injected intravenously with these NPs and the results obtained were compared with that of BRB-PLGA NPs and bulk BRB. BRB-d(HA)-g-PLGA NPs were found to significantly enhance apoptosis, sub-G1 content, life span, mean survival time, and ROS levels in EAC cells with subsequent decrease in mitochondrial membrane potential and tumor burden ion tumor-bearing mice. Taking into account the findings of in vitro and in vivo studies, the enhanced and targeted anti-tumor activity of HA-grafted PLGA copolymer-encapsulated NPs of BRB cannot be negated. Therefore, HA-grafted nanoparticle-based delivery of BRB may offer a promising and improved alternative for anti-tumor therapy.

  9. Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly(acrylamide-co-methacrylic acid) hydrogels.

    PubMed

    Mittal, H; Jindal, R; Kaith, B S; Maity, A; Ray, S S

    2015-01-22

    This study reports the microwave-assisted synthesis of gum-ghatti (Gg)-grafted poly(acrylamide-co-methacrylic acid) (AAm-co-MAA) hydrogels for the development of biodegradable flocculants and adsorbents. The synthesized hydrogels were characterized using TGA, FTIR and SEM. TGA studies revealed that the synthesized hydrogels were thermally more stable than pristine Gg and exhibited maximum swelling capacity of 1959% at 60°C in neutral pH. The optimal Gg-cl-P(AAm-co-MAA) hydrogel was successfully employed for the removal of saline water from various petroleum fraction-saline emulsions. The maximum flocculation efficiency was achieved in an acidic clay suspension with a 15 mg polymer dose at 40°C. Moreover, the synthesized hydrogel adsorbed 94% and 75% of Pb(2+) and Cu(2+), respectively, from aqueous solutions. Finally, the Gg-cl-P(AAm-co-MAA) hydrogel could be degraded completely within 50 days. In summary, the Gg-cl-P(AAm-co-MAA) hydrogel was demonstrated to have potential for use as flocculants and heavy metal absorbents for industrial waste water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Proteomic study participating the enhancement of growth and salt tolerance of bottle gourd rootstock-grafted watermelon seedlings.

    PubMed

    Yang, Yanjuan; Wang, Liping; Tian, Jing; Li, Jing; Sun, Jin; He, Lizhong; Guo, Shirong; Tezuka, Takafumi

    2012-09-01

    An insertion grafting technique to do research on salt tolerance was applied using watermelon (Citrullus lanatus [Thunb.] Mansf. cv. Xiuli) as a scion and bottle gourd (Lagenaria siceraria Standl. cv. Chaofeng Kangshengwang) as a rootstock. Rootstock-grafting significantly relieved the inhibition of growth and photosynthesis induced by salt stress in watermelon plants. Proteomic analysis revealed 40 different expressed proteins in response to rootstock-grafting and/or salt stress. These proteins were involved in Calvin cycle, amino acids biosynthesis, carbohydrate and energy metabolism, ROS defense, hormonal biosynthesis and signal transduction. Most of these proteins were up-regulated by rootstock-grafting and/or susceptible to salt stress. The enhancement of the metabolic activities of Calvin cycle, biosynthesis of amino acids, carotenoids and peroxisomes, glycolytic pathway and tricarboxylic acid cycle will probably contribute to intensify the biomass and photosynthetic capacity in rootstock-grafted seedlings under condition without salt. The accumulation of key enzymes included in these biological processes described above seems to play an important role in the enhancement of salt tolerance of rootstock-grafted seedlings. Furthermore, leucine-rich repeat transmembrane protein kinase and phospholipase may be involved in transmitting the internal and external stimuli induced by grafting and/or salt stress. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Systemic resistance in citrus to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids.

    PubMed

    Agut, Blas; Gamir, Jordi; Jaques, Josep A; Flors, Victor

    2016-10-01

    Recent research suggests that systemic signalling and communication between roots and leaves plays an important role in plant defence against herbivores. In the present study, we show that the oviposition of the two-spotted spider mite Tetranychus urticae in the systemic leaves of citrus rootstock Citrus aurantium (sour orange) was reduced by 50% when a lower leaf was previously infested with conspecifics. Metabolomic and gene expression analysis of the root efflux revealed a strong accumulation of glutamic acid (Glu) that triggered the expression of the citrus putative glutamate receptor (GRL) in the shoots. Additionally, uninfested sour orange systemic leaves showed increased expression of glutamate receptors and higher amounts of jasmonic acid (JA) and 12-oxo-phytodienoic acid in plants that were previously infested. Glu perception in the shoots induced the JA pathway, which primed LOX-2 gene expression when citrus plants were exposed to a second infestation. The spider mite-susceptible citrus rootstock Cleopatra mandarin (C. unshiu) also expressed systemic resistance, although the resistance was less effective than the resistance in sour orange. Surprisingly, the mobile signal in Cleopatra mandarin was not Glu, which suggests a strong genotype-dependency for systemic signalling in citrus. When the cultivar Clemenules (C. clementina) was grafted onto sour orange, there was a reduction in symptomatic leaves and T. urticae populations compared to the same cultivar grafted onto Cleopatra mandarin. Thus, systemic resistance is transmitted from the roots to the shoots in citrus and is dependent on rootstock resistance. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Study of physical and sound absorbing property of epoxy blended coir dust biocomposite

    NASA Astrophysics Data System (ADS)

    Nath, G.; Mishra, S. P.

    2016-09-01

    Reinforcement biocomposite has gained more attention recently due to its low cost, abundantly availability, low density, specific properties, easy method of separation, enhanced energy recovery, CO2 neutrality, biodegradability and recyclable in nature. As a waste product of coconut fruit, the coconut coir dust (CCD) obtained from the coconut husk. The biocomposite material prepared from the CCD modified with the proper blended solution with the help of ultrasonic technique. The study of adiabatic compressibility of acetone / water (70/30) worth its blending property for bleaching of CCD. The biocomposite material of CCD was prepared with epoxy resin. The different physical properties such as sound absorption coefficient, thermal conductivity and electrical conductivity were measured. The morphological study of biocomposite and measurement of sound absorption coefficient shows good evidence of sound absorbing characteristics of biocomposite of CCD. The sound absorption property of composite material shows a significant result where as the thermal conductivity and electrical conductivity executes a weak result. Thus biocomposite of CCD can acts as a good sound absorber and band conductor of heat and electric current.

  13. Connective tissue changes in a mouse model of vein graft disease.

    PubMed

    Schachner, T; Heiss, S; Mayr, T; Steger, C; Zipponi, D; Reisinger, P; Bonaros, N; Laufer, G; Bonatti, J

    2008-04-01

    The extracellular matrix plays an important physiological role in the architecture of the vascular wall. In arterialized vein grafts severe early changes, such as thrombosis and neointimal hyperplasia occur. Paclitaxel is in clinical use as antiproliferative coating of coronary stents. We aimed to investigate the early connective tissue changes in arterialized vein grafts and the influence of perivascular paclitaxel treatment in an in vivo model. C57 black mice underwent interposition of the vena cava into the carotid artery. Neointimal hyperplasia, thrombosis, acid mucopolysaccharides (Alcian), collagen fibers (trichrome Masson), elastic fibers, and apoptosis rate (TUNEL) were quantified in paclitaxel treated veins and controls. In both, controls and paclitaxel treated vein grafts acid mucopolysaccharides and elastic fibers were found predominantly in the neointima, whereas collagen fibers were found mainly in the media and adventitia. At 4 weeks postoperatively the neointimal thickness in controls was 52 (13-130) microm, whereas in 0.6 mg/mL l paclitaxel treated veins it was 103 (43-318) microm (P=0.094). At 8 weeks postoperatively paclitaxel treated veins showed a significantly increased neointimal thickness of 136 (87-199) microm compared with 79 (62-146) microm in controls (P=0.032). There was no difference in apoptosis rate between the two groups (P=NS). Even with the lowest concentration of 0.008 mg/mL paclitaxel veins showed a neointimal thickness of 67 (46-205) microm at 4 weeks postoperatively (P=NS vs controls). Early vein graft disease is characterised by an accumulation of acid mucopolysaccharides and elastic fibers in the thickened neointima. Paclitaxel treatment increases the neointimal hyperplasia in mouse vein grafts in vivo.

  14. pH-sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Yoshihiro; Ochiai, Yasushi; Park, Y.S.

    1997-02-19

    Benzyl glutamate NCA was graft-polymerized onto a porous poly(tetrafluoroethylene) membrane in order to study the effects of pH and ionic strength on permeation rate. The membrane was first glow-discharged in the presence of ammonia in order to produce amino groups on the surface. Following graft polymerization the graft chains were hydrolyzed to yield poly(glutamic acid). The rate of water permeation through this poly(glutamic acid)-grafted polymer membrane was pH-dependent and found to be slow under high-pH conditions and fast under low-pH conditions. Under high-pH conditions, randomly coiled graft chains extend to close the pores. The chains form a helix structure andmore » open the pores under low-pH conditions. The magnitude of the permeation rate was dependent upon the length and density of graft chains. Ionic strength also affected the permeation rate. 39 refs., 7 figs., 2 tabs.« less

  15. Immobilized enzymes in blood plasma exchangers via radiation grafting

    NASA Astrophysics Data System (ADS)

    Gombotz, Wayne; Hoffman, Allan; Schmer, Gottfried; Uenoyama, Satoshi

    The enzyme asparaginase was immobilized onto a porous hollow polypropylene (PP) fiber blood plasma exchange device for the treatment of acute lymphocytic leukemia. The devices were first radiation grafted with polymethacrylic acid (poly(MAAc)). This introduces carboxyl groups onto the surface of the fibers. Several variables were studied in the grafting reaction including the effects of solvent type and monomer concentration. The carboxyl groups were activated with N-hydroxy succinimide (NHS) using carbodiimide chemistry. Asparaginase was then covalently immobilized on the activated surfaces. Quantitative relationships were found relating the percent graft to the amount of immobilized enzyme which was active. The enzyme reactor was tested both in vitro and in vivo using a sheep as an animal model.

  16. Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith.

    PubMed

    Chávez-Gómez, B; Quintero, R; Esparza-García, F; Mesta-Howard, A M; Zavala Díaz de la Serna, F J; Hernández-Rodríguez, C H; Gillén, T; Poggi-Varaldo, H M; Barrera-Cortés, J; Rodríguez-Vázquez, R

    2003-09-01

    Sixteen co-cultures composed of four bacteria and four fungi grown on sugarcane bagasse pith were tested for phenanthrene degradation in soil. The four bacteria were identified as Pseudomonas aeruginose, Ralstonia pickettii, Pseudomonas sp. and Pseudomonas cepacea. The four fungi were identified as: Penicillium sp., Trichoderma viride, Alternaria tenuis and Aspergillus terrus that were previously isolated from different hydrocarbon-contaminated soils. Fungi had a statistically significant positive (0.0001

  17. Co-delivery of a laminin-111 supplemented hyaluronic acid based hydrogel with minced muscle graft in the treatment of volumetric muscle loss injury

    PubMed Central

    Goldman, Stephen M.; Henderson, Beth E. P.; Walters, Thomas J.

    2018-01-01

    Minced muscle autografting mediates de novo myofiber regeneration and promotes partial recovery of neuromuscular strength after volumetric muscle loss injury (VML). A major limitation of this approach is the availability of sufficient donor tissue for the treatment of relatively large VMLs without inducing donor site morbidity. This study evaluated a laminin-111 supplemented hyaluronic acid based hydrogel (HA+LMN) as a putative myoconductive scaffolding to be co-delivered with minced muscle grafts. In a rat tibialis anterior muscle VML model, delivery of a reduced dose of minced muscle graft (50% of VML defect) within HA+LMN resulted in a 42% improvement of peak tetanic torque production over unrepaired VML affected limbs. However, the improvement in strength was not improved compared to a 50% minced graft-only control group. Moreover, histological analysis revealed that the improvement in in vivo functional capacity mediated by minced grafts in HA+LMN was not accompanied by a particularly robust graft mediated regenerative response as determined through donor cell tracking of the GFP+ grafting material. Characterization of the spatial distribution and density of macrophage and satellite cell populations indicated that the combination therapy damps the heightened macrophage response while re-establishing satellite content 14 days after VML to a level consistent with an endogenously healing ischemia-reperfusion induced muscle injury. Moreover, regional analysis revealed that the combination therapy increased satellite cell density mostly in the remaining musculature, as opposed to the defect area. Based on the results, the following salient conclusions were drawn: 1) functional recovery mediated by the combination therapy is likely due to a superposition of de novo muscle fiber regeneration and augmented repair of muscle fibers within the remaining musculature, and 2) The capacity for VML therapies to augment regeneration and repair within the remaining musculature

  18. Electrostrictive Graft Elastomers

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor); St.Clair, Terry L. (Inventor)

    2003-01-01

    An electrostrictive graft elastomer has a backbone molecule which is a non-crystallizable, flexible macromolecular chain and a grafted polymer forming polar graft moieties with backbone molecules. The polar graft moieties have been rotated by an applied electric field, e.g., into substantial polar alignment. The rotation is sustained until the electric field is removed. In another embodiment, a process for producing strain in an elastomer includes: (a) providing a graft elastomer having a backbone molecule which is a non-crystallizable, flexible macromolecular chain and a grafted polymer forming polar graft moieties with backbone molecules; and (b) applying an electric field to the graft elastomer to rotate the polar graft moieties, e.g., into substantial polar alignment.

  19. Proton exchange membranes prepared by grafting of styrene/divinylbenzene into crosslinked PTFE membranes

    NASA Astrophysics Data System (ADS)

    Li, Jingye; Ichizuri, Shogo; Asano, Saneto; Mutou, Fumihiro; Ikeda, Shigetoshi; Iida, Minoru; Miura, Takaharu; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2005-07-01

    Thin PTFE membranes were prepared by coating the PTFE dispersion onto the aluminum films. Thus the thin crosslinked PTFE (RX-PTFE) membranes were obtained by means of electron beam irradiation above the melting temperature of PTFE under oxygen-free atmosphere. The RX-PTFE membranes were pre-irradiated and grafted by styrene with or without divinylbenzene (DVB) in liquid phase. The existence of DVB accelerated the initial grafting rate. The styrene grafted RX-PTFE membranes are white colored, on the other hand, the styrene/DVB grafted RX-PTFE membranes are colorless. The proton exchange membranes (PEMs) were obtained by sulfonating the grafted membranes using chlorosulfonic acid. The ion exchange capacity (IEC) values of the PEMs ranging from 1.5 to 2.8 meq/g were obtained. The PEMs made from the styrene/DVB grafted membranes showed higher chemical stability than those of the styrene grafted membranes under oxidative circumstance.

  20. Grafting improves cucumber water stress tolerance in Saudi Arabia.

    PubMed

    Al-Harbi, Abdulaziz R; Al-Omran, Abdulrasoul M; Alharbi, Khadiga

    2018-02-01

    Water scarcity is a major limiting factor for crop productivity in arid and semi-arid areas. Grafting elite commercial cultivars onto selected vigorous rootstocks is considered as a useful strategy to alleviate the impact of environmental stresses. This study aims to investigate the feasibility of using grafting to improve fruit yield and quality of cucumber under water stress conditions. Alosama F 1 cucumber cultivar ( Cucumis sativus L.) was grafted onto Affyne ( Cucumis sativus L.) and Shintoza A90 ( Cucurbitamaxima × C. moschata ) rootstocks. Non-grafted plants were used as control. All genotypes were grown under three surface drip irrigation regimes: 50%, 75% and 100% of the crop evapotranspiration (ETc), which represent high-water stress, moderate-water stress and non-water stress conditions, respectively. Yield and fruit quality traits were analyzed and assessed. In comparison to the non-grafted plants, the best grafting treatment under water stress was Alosama F 1 grafted onto Shintoza A90 rootstock. It had an overall improved yield and fruit quality under water stress owing to an increase in the total fruit yield by 27%, from 4.815 kg plant -1 in non-grafted treatment to 6.149 kg plant -1 in grafted treatment under moderate -water stress, total soluble solid contents (13%), titratable acidity (39%) and vitamin C (33%). The soil water contents were low in soil surface and increase gradually with soil depth, while salt distribution showed an adverse trend. The positive effects of grafting on plant growth, productivity, and water use efficiency support this strategy as an useful tool for improving water stress tolerance in greenhouse grown cucumber in Saudi Arabia.

  1. Bone grafts.

    PubMed

    Hubble, Matthew J W

    2002-09-01

    Bone grafts are used in musculoskeletal surgery to restore structural integrity and enhance osteogenic potential. The demand for bone graft for skeletal reconstruction in bone tumor, revision arthroplasty, and trauma surgery, couple with recent advances in understanding and application of the biology of bone transplantation, has resulted in an exponential increase in the number of bone-grafting procedures performed over the last decade. It is estimated that 1.5 million bone-grafting procedures are currently performed worldwide each year, compared to a fraction of that number 20 years ago. Major developments also have resulted in the harvesting, storage, and use of bone grafts and production of graft derivatives, substitutes, and bone-inducing agents.

  2. Graphene nanosheets and polyacrylic acid grafted silicon composite anode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Assresahegn, Birhanu Desalegn; Ossonon, Benjamin Diby; Bélanger, Daniel

    2018-07-01

    A silicon/graphene composite anode for lithium-ion batteries was fabricated with a high loading of Si by combining surface-modified silicon with graphene. The Si nanopowder was modified by a binder-like organic moeity (1-(bromoethyl) benzene and polyacrylic acid) grafted on the surface of hydrogenated silicon by diazonium chemistry and surface initiated atom transfer radical polymerization. The graphene was produced by electrochemical exfoliation of natural graphite. The optimum composite electrode prepared without a binder, with silicon loading as high as 85 wt% and a mass loading of 1.1 ± 0.1 mg cm-2 yielded a discharge capacity of 1020 mAh per gram of electrode mass (or 1200 mAh per gram of Si) after 586 charge/discharge cycles at a rate of 3.4 A g-1. It showed first cycle Coulombic efficiency of more than 90% in the absence of electrolyte additives at a current rate of 0.05 A g-1.

  3. Nanoparticles of alkylglyceryl-dextran-graft-poly(lactic acid) for drug delivery to the brain: Preparation and in vitro investigation.

    PubMed

    Toman, Petr; Lien, Chun-Fu; Ahmad, Zeeshan; Dietrich, Susanne; Smith, James R; An, Qian; Molnár, Éva; Pilkington, Geoffrey J; Górecki, Darek C; Tsibouklis, John; Barbu, Eugen

    2015-09-01

    Poly(lactic acid), which has an inherent tendency to form colloidal systems of low polydispersity, and alkylglyceryl-modified dextran - a material designed to combine the non-immunogenic and stabilising properties of dextran with the demonstrated permeation enhancing ability of alkylglycerols - have been combined for the development of nanoparticulate, blood-brain barrier-permeating, non-viral vectors. To this end, dextran, that had been functionalised via treatment with epoxide precursors of alkylglycerol, was covalently linked to poly(lactic acid) using a carbodiimide cross-linker to form alkylglyceryl-modified dextran-graft-poly(lactic acid). Solvent displacement and electrospray methods allowed the formulation of these materials into nanoparticles having a unimodal size distribution profile of about 100-200nm and good stability at physiologically relevant pH (7.4). The nanoparticles were characterised in terms of hydrodynamic size (by Dynamic Light Scattering and Nanoparticle Tracking Analysis), morphology (by Scanning Electron Microscopy and Atomic Force Microscopy) and zeta potential, and their toxicity was evaluated using MTT and PrestoBlue assays. Cellular uptake was evidenced by confocal microscopy employing nanoparticles that had been loaded with the easy-to-detect Rhodamine B fluorescent marker. Transwell-model experiments employing mouse (bEnd3) and human (hCMEC/D3) brain endothelial cells revealed enhanced permeation (statistically significant for hCMEC/D3) of the fluorescent markers in the presence of the nanoparticles. Results of studies using Electric Cell Substrate Impedance Sensing suggested a transient decrease of the barrier function in an in vitro blood-brain barrier model following incubation with these nanoformulations. An in ovo study using 3-day chicken embryos indicated the absence of whole-organism acute toxicity effects. The collective in vitro data suggest that these alkylglyceryl-modified dextran-graft-poly(lactic acid) nanoparticles

  4. Effects of Local Administration of Boric Acid on Posterolateral Spinal Fusion with Autogenous Bone Grafting in a Rodent Model.

    PubMed

    Kömürcü, Erkam; Özyalvaçlı, Gülzade; Kaymaz, Burak; Gölge, Umut Hatay; Göksel, Ferdi; Cevizci, Sibel; Adam, Gürhan; Ozden, Raif

    2015-09-01

    Spinal fusion is among the most frequently applied spinal surgical procedures. The goal of the present study was to evaluate whether the local administration of boric acid (BA) improves spinal fusion in an experimental spinal fusion model in rats. Currently, there is no published data that evaluates the possible positive effects if the local administration of BA on posterolateral spinal fusion. Thirty-two rats were randomly divided into four independent groups: no material was added at the fusion area for group 1; an autogenous morselized corticocancellous bone graft was used for group 2; an autogenous morselized corticocancellous bone graft with boric acid (8.7 mg/kg) for group 3; and only boric acid was placed into the fusion area for group 4. The L4-L6 spinal segments were collected at week 6, and the assessments included radiography, manual palpation, and histomorphometry. A statistically significant difference was determined between the groups with regard to the mean histopathological scores (p = 0.002), and a paired comparison was made with the Mann-Whitney U test to detect the group/groups from which the difference originated. It was determined that only the graft + BA practice increased the histopathological score significantly with regard to the control group (p = 0.002). Whereas, there was no statistically significant difference between the groups in terms of the manual assessment of fusion and radiographic analysis (respectively p = 0.328 and p = 0.196). This preliminary study suggests that BA may clearly be useful as a therapeutic agent in spinal fusion. However, further research is required to show the most effective dosage of BA on spinal fusion, and should indicate whether BA effects spinal fusion in the human body.

  5. Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder. Part II: Thermal, FTIR and morphological characterisation

    NASA Astrophysics Data System (ADS)

    Aydınlı, Bahattin; Tin c̡er, Teoman

    2001-10-01

    Radiation induced grafted polyacrylic acid (PAA), polymethacrylic acid (PMAA), polyacrylamide (PAAm), poly N,N-dimethyl acrylamide (PNDAAm) and poly 1-vinyl-2 pyrrolidone (PVP) on ultra-high molecular weight polyethylene (UHMWPE) were characterised by DSC, FTIR and SEM analysis. While the effect of irradiation on pure UHMWPE was found to increase crystallinity and cause higher enthalpy of crystallisation, grafted UHMWPE powders showed lower crystallinity and enthalpy of crystallisation. In all grafted UHMWPE there existed secondary transitions corresponding to grafting polymers in the first run of DSC above 60°C and they became clearer at a higher grafting level. In the second run of DSC some Tg values appeared to shift to higher temperatures while some were not detected. FTIR analysis indicated the presence of water-soluble polymers in the grafted UHMWPE. The characteristic peaks of water-soluble polymers became sharper in the grafted UHMWPE. SEM analysis revealed that the grafting occurs both on fiber and microparticles of UHMWPE while flowing characteristic of powder is retained.

  6. Control of lipid oxidation by nonmigratory active packaging films prepared by photoinitiated graft polymerization.

    PubMed

    Tian, Fang; Decker, Eric A; Goddard, Julie M

    2012-08-08

    Transition metal-promoted oxidation impacts the quality, shelf life, and nutrition of many packaged foods. Metal-chelating active packaging therefore offers a means to protect foods against oxidation. Herein, we report the development and characterization of nonmigratory metal-chelating active packaging. To prepare the films, carboxylic acids were grafted onto the surfaces of polypropylene films by photoinitiated graft polymerization of acrylic acid. Attenuated total reflectance/Fourier transform infrared spectroscopy, contact angle, scanning electron microscopy, and iron-chelating assay were used to characterize film properties. Graft polymerization yielded a carboxylic acid density of 68.67 ± 9.99 nmol per cm(2) film, with ferrous iron-chelating activity of 71.07 ± 12.95 nmol per cm(2). The functionalized films extended the lag phase of lipid oxidation in a soybean oil-in-water emulsion system from 2 to 9 days. The application of such nonmigratory active packaging films represents a promising approach to reduce additive use while maintaining food quality.

  7. Studies in fat grafting: Part III. Fat grafting irradiated tissue--improved skin quality and decreased fat graft retention.

    PubMed

    Garza, Rebecca M; Paik, Kevin J; Chung, Michael T; Duscher, Dominik; Gurtner, Geoffrey C; Longaker, Michael T; Wan, Derrick C

    2014-08-01

    Following radiation therapy, skin becomes fibrotic and can present a difficult problem for reconstructive surgeons. There is an increasing belief that fat grafting under irradiated skin can reverse the damage caused by radiation. The present study evaluated the effect of fat grafting on irradiated skin, along with fat graft quality and retention rates in irradiated tissue. Nine adult Crl:NU-Foxn1 CD-1 mice underwent 30-Gy external beam irradiation of the scalp. Four weeks after irradiation, scalp skin from irradiated and nonirradiated mice was harvested and compared histologically for dermal thickness, collagen content, and vascular density. Human fat grafts were then injected in the subcutaneous plane of the scalp. Skin assessment was performed in the irradiated group at 2 and 8 weeks after grafting, and fat graft retention was measured at baseline and every 2 weeks up to 8 weeks after grafting using micro-computed tomography. Finally, fat graft samples were explanted at 8 weeks, and quality scoring was performed. Fat grafting resulted in decreased dermal thickness, decreased collagen content, and increased vascular density in irradiated skin. Computed tomographic analysis revealed significantly decreased fat graft survival in the irradiated group compared with the nonirradiated group. Histologic scoring of explanted fat grafts demonstrated no difference in quality between the irradiated and nonirradiated groups. Fat grafting attenuates dermal collagen deposition and vessel depletion characteristic of radiation fibrosis. Although fat graft retention rates are significantly lower in irradiated than in nonirradiated tissue, the quality of retained fat between the groups is similar.

  8. Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media.

    PubMed

    Kloser, Elisabeth; Gray, Derek G

    2010-08-17

    Aqueous suspensions of poly(ethylene oxide)-grafted nanocrystalline cellulose (PEO-grafted NCC) were prepared in order to achieve steric instead of electrostatic stabilization. A two-step process was employed: in the first step NCC suspensions prepared by sulfuric acid hydrolysis were desulfated with sodium hydroxide, and in the second step the surfaces of the crystals were functionalized with epoxy-terminated poly(ethylene oxide) (PEO epoxide) under alkaline conditions. The PEO-grafted samples were analyzed by conductometric titration, ATR-IR, solid-state NMR, MALDI-TOF MS, SEC MALLS, and AFM. The covalent nature of the linkage was confirmed by weight increase and MALDI-TOF analysis. The PEO-grafted cellulose nanocrystals (CNCs) formed a stable colloidal suspension that remained well dispersed, while the desulfated nanoparticles aggregated and precipitated. Upon concentration of the PEO-grafted aqueous NCC suspension, a chiral nematic phase was observed.

  9. Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality.

    PubMed

    Xiong, Jing; Tian, Yongqiang; Wang, Jingguo; Liu, Wei; Chen, Qing

    2017-01-01

    Rockwool (RC) and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC) has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC) cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better). For all substrates, the blossom-end rot (BER) of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato.

  10. Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality

    PubMed Central

    Xiong, Jing; Tian, Yongqiang; Wang, Jingguo; Liu, Wei; Chen, Qing

    2017-01-01

    Rockwool (RC) and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC) has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC) cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better). For all substrates, the blossom-end rot (BER) of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato. PMID:28824665

  11. [Correlation between serum uric acid level and acute renal injury after coronary artery bypass grafting].

    PubMed

    Xu, D Q; Du, J; Zheng, Z; Tang, Y; Zou, L; Zhang, Y H; Zhang, H T

    2017-07-11

    Objective: To evaluate whether early postoperative serum uric acid level can predict postoperative acute renal injury (AKI) among patients undergoing coronary artery bypass grafting (CABG). Methods: The study retrospectively enrolled 1 306 patients undergoing CABG in Fuwai Hospital between September 2012 and December 2013. The patients were divided into 5 groups by the concentrations of serum uric acid measured on the morning of the first postoperative day, and uric acid categories were as follow: less than 195 μmol/L (Q1 group, 262 cases), 195-236 μmol/L (Q2 group, 263 cases), 237-280 μmol/L (Q3 group, 260 cases), 281-336 μmol/L (Q4 group, 261 cases), more than 336 μmol/L (Q5 group, 260 cases). The primary end points were AKI (RIFLE criteria), severe AKI (AKI≥stage Ⅰ), postoperative continuous renal replacement therapy (CRRT) requirement, in-hospital death, length of stay in hospital and intensive care unit(ICU). The area under the receiver-operating characteristic (ROC) curve (AUC) was used to determine the ability of the early postoperative serum uric acid level as a risk factor for postoperative AKI prediction. Results: Among the 1 306 patients enrolled in the study, AKI was found in 335 patients (25.65%). After adjusting for variables that were different between the 5 groups, the Q5 group had significantly higher risk of AKI, AKI≥ stage Ⅰ and the requirement of CRRT ( P <0.01). The ROC for the outcome of postoperative AKI had an AUC of 0.648 (95% CI: 0.612-0.683) when serum creatinine levels alone were used and 0.722 (95% CI: 0.688-0.755) when serum uric acid levels alone were used (both P <0.001). Early postoperative serum uric acid was a better predictor than serum creatinine( P <0.001). Conclusion: The serum uric acid concentration within 12 hours after operation is an independent predictor of postoperative AKI in patients undergoing CABG, which could be used to identify patients at high risk for AKI.

  12. Grafting the alar rim: application as anatomical graft.

    PubMed

    Gruber, Ronald P; Fox, Paige; Peled, Anne; Belek, Kyle A

    2014-12-01

    Alar rim contour and alar rim grafts have become essential components of rhinoplasty. Ideally, grafts of the nose should be anatomical in shape. So doing might make grafts of the alar rim more robust. The authors considered doing that by applying the graft as a continuous extension of the lateral crus. Twelve patients (two men and 10 women) constituted the study group (seven primary and five secondary cases). Of those, there were five concave rims, two concave rims with rim retraction, two boxy tips, and three cephalically oriented lateral crura. Surgical technique included the following: (1) an open approach was used; (2) a marginal incision that ignored the caudal margin of the lateral crus (the incision went straight posteriorly to a point 5 to 6 mm from the rim margin) was used; (3) a triangular graft was made to cover the exposed vestibular skin; (4) it was secured end to end to the caudal border of the lateral crus; and (5) the poster end was allowed to sit in a small subcutaneous pocket. Follow-up was 11 to 19 months. All 12 patients exhibited good rims as judged by a blinded panel. Rim retraction was not fully corrected in one patient, but no further treatment was required. One patient did require a secondary small rim graft for residual rim concavity. The concept of grafting the alar rim is strongly supported by the authors' results. The modifications the authors applied by designing the graft to be anatomical in shape has been a technical help.

  13. Effect of grafted oligopeptides on friction.

    PubMed

    Iarikov, Dmitri D; Ducker, William A

    2013-05-14

    Frictional and normal forces in aqueous solution at 25 °C were measured between a glass particle and oligopeptide films grafted from a glass plate. Homopeptide molecules consisting of 11 monomers of either glutamine, leucine, glutamic acid, lysine, or phenylalanine and one heteropolymer were each "grafted from" an oxidized silicon wafer using microwave-assisted solid-phase peptide synthesis. The peptide films were characterized using X-ray photoelectron spectroscopy and secondary ion mass spectrometry. Frictional force measurements showed that the oligopeptides increased the magnitude of friction compared to that on a bare hydrophilic silicon wafer but that the friction was a strong function of the nature of the monomer unit. Overall we find that the friction is lower for more hydrophilic films. For example, the most hydrophobic monomer, leucine, exhibited the highest friction whereas the hydrophilic monomer, polyglutamic acid, exhibited the lowest friction at zero load. When the two surfaces had opposite charges, there was a strong attraction, adhesion, and high friction between the surfaces. Friction for all polymers was lower in phosphate-buffered saline than in pure water, which was attributed to lubrication via hydrated salt ions.

  14. Polymer-grafted Lignin: Molecular Design and Interfacial Activities

    NASA Astrophysics Data System (ADS)

    Gupta, Chetali

    The broader technical objective of this work is to develop a strategy for using the biopolymer lignin in a wide variety of surfactant applications through polymer grafting. These applications include emulsion stabilizers, dispersants and foaming agents. The scientific objective of the research performed within this thesis is to understand the effect of molecular architecture and polymer grafting on the interfacial activity at the air-liquid, liquid-liquid and solid-liquid interface. Research has focused on designing of these lignopolymers with controlled architecture using polyethylene glycol, poly(acrylic acid) and polyacrylamide grafts. The interfacial activity for all polymer grafts has been tested at all three interfaces using a broad range of techniques specific to the interface. Results have shown that the hydrophobicity of the lignin core is responsible for enhanced interfacial activity at the air-liquid and liquid-liquid interface. Conversely, improved hydrophilicity and "electrosteric" interactions are required for higher interfacial activity of the lignin at the liquid-solid interface. The high interfacial activity of the polymer-grafted lignin observed in the air-liquid and liquid-liquid interfaces not only resulted in viscosity reduction but also strength enhancement at the liquid-solid interface. The broader implication of this study is to be able to predict what chemical functionalities need to be adjusted to get the desired viscosity reduction.

  15. Grafting Technique to Eliminate Rootstock Suckering of Grafted Tomatoes

    USDA-ARS?s Scientific Manuscript database

    Vegetable grafting has been proposed as a technique for avoiding disease problems in tomatoes in open field production. In this study we investigated the current use of grafting in an open field scenario and found a serious problem with the grafting techniques. In the Fall of 2007, commercially pr...

  16. Pharmacological analysis of the inhibition produced by moxonidine and agmatine on the vasodepressor sensory CGRPergic outflow in pithed rats.

    PubMed

    Rubio-Beltrán, Eloísa; Labastida-Ramírez, Alejandro; Hernández-Abreu, Oswaldo; MaassenVanDenBrink, Antoinette; Villalón, Carlos M

    2017-10-05

    Calcitonin gene-related peptide (CGRP) plays a role in several (patho)physiological functions, and modulation of its release is considered a therapeutic target. In this respect, electrical spinal (T 9 --T 12 ) stimulation of the perivascular sensory outflow in pithed rats produces vasodepressor responses mediated by CGRP release. This study investigated the role of imidazoline I 1 and I 2 receptors in the inhibition by moxonidine and agmatine of these vasodepressor responses. Male Wistar pithed rats (pretreated i.v. with 25mg/kg gallamine and 2mg/kg⋅min hexamethonium) received i.v. continuous infusions of methoxamine (20μg/kg⋅min) followed by physiological saline (0.02ml/min), moxonidine (1, 3, 10 or 30μg/kg⋅min) or agmatine (1000 or 3000μg/kg⋅min). Under these conditions, electrical stimulation (0.56-5.6Hz; 50V; 2ms) of the spinal cord (T 9 -T 12 ) produced frequency-dependent vasodepressor responses which were: (i) unchanged during saline infusion; and (ii) inhibited during the above infusions of moxonidine or agmatine. Moreover, using i.v. administrations, the inhibition by 3μg/kg⋅min moxonidine or 3000μg/kg⋅min agmatine (which failed to inhibit the vasodepressor responses by α-CGRP; 0.1-1µg/kg) was: (i) unaltered after saline (1ml/kg), rauwolscine (300μg/kg; α 2 -adrenoceptor antagonist) or BU224 (300μg/kg; imidazoline I 2 receptor antagonist); and (ii) reversed after AGN 192403 (3000μg/kg; imidazoline I 1 receptor antagonist). This reversion was relatively more pronounced after AGN 192403 plus rauwolscine. These blocking doses of antagonists lacked any effects on the electrically-induced vasodepressor responses. Therefore, the inhibition of the vasodepressor sensory CGRPergic outflow by moxonidine and agmatine is mainly mediated by prejunctional imidazoline I 1 receptors on perivascular sensory nerves. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Nanofat grafting under a split-thickness skin graft for problematic wound management.

    PubMed

    Kemaloğlu, Cemal Alper

    2016-01-01

    Obesity and certain medical disorders make the reconstruction of skin defects challenging. Different kind of procedure can be used for these defect, besides, skin grafting is one of the most common and simplest procedure. Fat grafting and stem cells which are located in the adipose tissue have been commonly used in plastic surgery for regeneration and rejuvenation purposes. To decrease graft failure rate we performed nanofat grafting under an autologous split-thickness skin graft in our patient who had a problematic wound. The case of a 35-year-old female patient with a traumatic skin defect on her left anterior crural region is described herein. After subsequent flap reconstruction, the result was disappointing and the defect size was widened. The defect was treated with combined grafting (nanofat grafting under an autologous split-thickness skin graft). At the 6 months follow-up assessment after combined grafting, the integrity of the skin graft was good with excellent pliability. Combined grafting for problematic wounds seems to be a useful technique for cases requiring reconstruction. The potential existence of stem cells may be responsible for the successful result in our patient.

  18. Impact of graft implantation order on graft survival in simultaneous pancreas-kidney transplantation.

    PubMed

    Niclauss, Nadja; Bédat, Benoît; Morel, Philippe; Andres, Axel; Toso, Christian; Berney, Thierry

    2016-05-01

    The optimal order of revascularization for pancreas and kidney grafts in simultaneous pancreas-kidney transplantation has not been established. In this study, we investigate the influence of graft implantation order on graft survival in SPK. 12 700 transplantations from the Scientific Registry of Transplant Recipients were analyzed retrospectively. Graft implantation order was determined based on the reported ischemia times of pancreas and kidney grafts. Pancreas and kidney graft survivals were analyzed depending on graft implantation order at 3 months and 5 years using Kaplan-Meier plots. Significance was tested with log-rank test and Cox regression model. In 8454 transplantations, the pancreas was implanted first (PBK), and in 4246 transplantations, the kidney was implanted first (KBP). The proportion of lost pancreas grafts at 3 months was significantly lower in PBK (9.4% vs. 10.8%, P = 0.011). Increasing time lag (>2 h) between kidney and pancreas graft implantation in KBP accentuated the detrimental impact on pancreas graft survival (12.5% graft loss at 3 months, P = 0.001). Technical failure rates were reduced in PBK (5.6 vs. 6.9%, P = 0.005). Graft implantation order had no impact on kidney graft survival. In summary, although observed differences are small, pancreas graft implantation first increases short-term pancreas graft survival and reduces rates of technical failure. © 2016 Steunstichting ESOT.

  19. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.

    PubMed

    Nair, Nitish; Wentzel, Nathaniel; Jayaraman, Arthi

    2011-05-21

    In efforts to produce polymeric materials with tailored physical properties, significant interest has grown around the ability to control the spatial organization of nanoparticles in polymer nanocomposites. One way to achieve controlled particle arrangement is by grafting the nanoparticle surface with polymers that are compatible with the matrix, thus manipulating the interfacial interactions between the nanoparticles and the polymer matrix. Previous work has shown that the molecular weight of the grafted polymer, both at high grafting density and low grafting density, plays a key role in dictating the effective inter-particle interactions in a polymer matrix. At high grafting density nanoparticles disperse (aggregate) if the graft molecular weight is higher (lower) than the matrix molecular weight. At low grafting density the longer grafts can better shield the nanoparticle surface from direct particle-particle contacts than the shorter grafts and lead to the dispersion of the grafted particles in the matrix. Despite the importance of graft molecular weight, and evidence of non-trivial effects of polydispersity of chains grafted on flat surfaces, most theoretical work on polymer grafted nanoparticles has only focused on monodisperse grafted chains. In this paper, we focus on how bidispersity in grafted chain lengths affects the grafted chain conformations and inter-particle interactions in an implicit solvent and in a dense homopolymer polymer matrix. We first present the effects of bidispersity on grafted chain conformations in a single polymer grafted particle using purely Monte Carlo (MC) simulations. This is followed by calculations of the potential of mean force (PMF) between two grafted particles in a polymer matrix using a self-consistent Polymer Reference Interaction Site Model theory-Monte Carlo simulation approach. Monte Carlo simulations of a single polymer grafted particle in an implicit solvent show that in the bidisperse polymer grafted particles

  20. Synthesis, characterization, and rheological studies of model water-soluble graft copolymers for application in enhanced oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, L.S.

    1982-12-01

    Model water-soluble graft copolymers have been synthesized with acrylamide as the major grafting monomer and dextran as the substrate in order to define more clearly the structural parameters that are important in enhanced oil recovery applications. The structures of the model graft copolymer samples were studied by aqueous size exclusion chromatography, viscometry, elemental analysis, and selective hydrolysis of the graft copolymer backbone. The grafting systems with selected grafting monomers included Fe(II)/H/sub 2/O/sub 2/ with acrylamide, and Ce(IV)/HNO/sub 3/ with acrylamide, acrylamide/2-acrylamido-2-meth propane sulfonic acid, or acrylamide/diacetone acrylamide. The viscosity and pseudoplasticity of the resulting graft copolymers were affected by bothmore » total molecular weight and length of grafted chains; however, the latter was apparently more important when behavior was compared to linear counterparts.« less

  1. Extraction of palm tree cellulose and its functionalization via graft copolymerization.

    PubMed

    Al-Hoqbani, Abdulmajeed A; Abdel-Halim, E S; Al-Deyab, Salem S

    2014-09-01

    The work in this paper was planned with the aim of extracting the cellulosic component of palm tree waste and functionalizing this cellulose through graft copolymerization with acrylic acid. The cellulose extraction included hot alkali treatment with aqueous sodium hydroxide to remove the non-cellulosic binding materials. The alkali treatment was followed by an oxidative bleaching using peracid/hydrogen peroxide mixture with the aim of removing the rest of non-cellulosic materials to improve the fiber hydrophilicity and accessibility towards further grafting reaction. Optimum conditions for cellulose extraction are boiling in 5% (W/V) NaOH in a material to liquor ratio of 1:20 for 1 h then bleaching with 60 ml/l bleaching mixture at initial pH value of 6.5 for 30 min. The pH of the bleaching medium is turned to the alkaline range 11 and bleaching continues for extra 30 min. Graft copolymerization reaction was initiated by potassium bromate/thiourea dioxide redox system. Optimum conditions for grafting are 30 mmol of potassium bromate, 30 mmol of thiourea dioxide and 150 g of acrylic acid (each per 100 g of cellulose). The polymerization reaction was carried out for 120 min at 50°C using a material to liquor ratio of 1:20. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Proximal Tibial Bone Graft

    MedlinePlus

    ... All Site Content AOFAS / FootCareMD / Treatments Proximal Tibial Bone Graft Page Content What is a bone graft? Bone grafts may be needed for various ... the proximal tibia. What is a proximal tibial bone graft? Proximal tibial bone graft (PTBG) is a ...

  3. Determination of reaction rates and activation energy in aerobic composting processes for yard waste.

    PubMed

    Uma, R N; Manjula, G; Meenambal, T

    2007-04-01

    The reaction rates and activation energy in aerobic composting processes for yard waste were determined using specifically designed reactors. Different mixture ratios were fixed before the commencement of the process. The C/N ratio was found to be optimum for a mixture ratio of 1:6 containing one part of coir pith to six parts of other waste which included yard waste, yeast sludge, poultry yard waste and decomposing culture (Pleurotosis). The path of stabilization of the wastes was continuously monitored by observing various parameters such as temperature, pH, Electrical Conductivity, C.O.D, VS at regular time intervals. Kinetic analysis was done to determine the reaction rates and activation energy for the optimum mixture ratio under forced aeration condition. The results of the analysis clearly indicated that the temperature dependence of the reaction rates followed the Arrhenius equation. The temperature coefficients were also determined. The degradation of the organic fraction of the yard waste could be predicted using first order reaction model.

  4. EFFECTS OF DIFFERENT HYDROPONIC SUBSTRATE COMBINATIONS AND WATERING REGIMES ON PHYSIOLOGICAL AND ANTI-FUNGAL PROPERTIES OF SIPHONOCHILUS AETHIOPICUS

    PubMed Central

    S, Xego; L, Kambizi; F, Nchu

    2017-01-01

    Background: Production of medicinal plants in controlled environments, particularly hydroponic technology, provides opportunities for high quality biomass accumulation and optimizes production of secondary metabolites. Applying special watering regimes in combination with efficient soil draining is an encouraging new tool for the production of pharmaceutical relevant plants. The purpose of this paper was to evaluate the effect of substrate combinations and watering regimes on nutrient uptake, anti-F. oxysporum activity and secondary metabolite profile of S. aethiopicus. Materials and Methods: Coir was used as the main component for the preparation of media in different combinations; TI (Coir + vermiculite + perlite + bark), T2 (Coir + bark), T3 (Coir + perlite) and T4 (Coir + vermiculite). Plants in different treatments were grown under two watering regimes: 3 and 5-days watering intervals. At 9 weeks post treatment, plants were harvested, oven dried and tissue nutrient content, anti-F. oxysporum activity and secondary metabolites were analyzed. Results: The results showed that there were significant differences (P < 0.05) on the uptake of P, K, N, Mg, Fe, Cu, B and NH4-.The highest mean values for most nutrients were obtained in treatments under 3-days interval. Acetone extracts of S. aethiopicus under 5-days interval were the most bioactive against F. oxysporum. The MIC values obtained are relatively lower for the rhizomes, ranging from 0.078 - 0.3125 mg/ml compared to the higher MIC values (0.375 - 0.75 mg/ml) obtained in the leaves. LC-MS analysis of acetone extracts revealed the presence of phytochemicals such as caffeic acid, quercetin, p-hydroxybenzoic acid, rutin, kaempferol, epicatechin, naringenin, hesperetin and protocatechuic acid. Conclusion: The antimicrobial activity and/or the phytochemical profile of the crude extracts were affected by watering regimes. PMID:28480420

  5. EFFECTS OF DIFFERENT HYDROPONIC SUBSTRATE COMBINATIONS AND WATERING REGIMES ON PHYSIOLOGICAL AND ANTI-FUNGAL PROPERTIES OF SIPHONOCHILUS AETHIOPICUS.

    PubMed

    S, Xego; L, Kambizi; F, Nchu

    2017-01-01

    Production of medicinal plants in controlled environments, particularly hydroponic technology, provides opportunities for high quality biomass accumulation and optimizes production of secondary metabolites. Applying special watering regimes in combination with efficient soil draining is an encouraging new tool for the production of pharmaceutical relevant plants. The purpose of this paper was to evaluate the effect of substrate combinations and watering regimes on nutrient uptake, anti- F. oxysporum activity and secondary metabolite profile of S. aethiopicus . Coir was used as the main component for the preparation of media in different combinations; TI (Coir + vermiculite + perlite + bark), T2 (Coir + bark), T3 (Coir + perlite) and T4 (Coir + vermiculite). Plants in different treatments were grown under two watering regimes: 3 and 5-days watering intervals. At 9 weeks post treatment, plants were harvested, oven dried and tissue nutrient content, anti- F. oxysporum activity and secondary metabolites were analyzed. The results showed that there were significant differences ( P < 0.05) on the uptake of P, K, N, Mg, Fe, Cu, B and NH4 - .The highest mean values for most nutrients were obtained in treatments under 3-days interval. Acetone extracts of S. aethiopicus under 5-days interval were the most bioactive against F. oxysporum . The MIC values obtained are relatively lower for the rhizomes, ranging from 0.078 - 0.3125 mg/ml compared to the higher MIC values (0.375 - 0.75 mg/ml) obtained in the leaves. LC-MS analysis of acetone extracts revealed the presence of phytochemicals such as caffeic acid, quercetin, p-hydroxybenzoic acid, rutin, kaempferol, epicatechin, naringenin, hesperetin and protocatechuic acid. The antimicrobial activity and/or the phytochemical profile of the crude extracts were affected by watering regimes.

  6. Specific Biomimetic Hydroxyapatite Nanotopographies Enhance Osteoblastic Differentiation and Bone Graft Osteointegration

    PubMed Central

    Loiselle, Alayna E.; Wei, Lai; Faryad, Muhammad; Paul, Emmanuel M.; Lewis, Gregory S.; Gao, Jun; Lakhtakia, Akhlesh

    2013-01-01

    Impaired healing of cortical bone grafts represents a significant clinical problem. Cadaveric bone grafts undergo extensive chemical processing to decrease the risk of disease transmission; however, these processing techniques alter the bone surface and decrease the osteogenic potential of cells at the healing site. Extensive work has been done to optimize the surface of bone grafts, and hydroxyapatite (HAP) and nanotopography both increase osteoblastic differentiation. HAP is the main mineral component of bone and can enhance osteoblastic differentiation and bone implant healing in vivo, while nanotopography can enhance osteoblastic differentiation, adhesion, and proliferation. This is the first study to test the combined effects of HAP and nanotopographies on bone graft healing. With the goal of identifying the optimized surface features to improve bone graft healing, we tested the hypothesis that HAP-based nanotopographic resurfacing of bone grafts improves integration of cortical bone grafts by enhancing osteoblastic differentiation. Here we show that osteoblastic cells cultured on processed bones coated with specific-scale (50–60 nm) HAP nanotopographies display increased osteoblastic differentiation compared to cells on uncoated bone, bones coated with poly-l-lactic acid nanotopographies, or other HAP nanotopographies. Further, bone grafts coated with 50–60-nm HAP exhibited increased formation of new bone and improved healing, with mechanical properties equivalent to live autografts. These data indicate the potential for specific HAP nanotopographies to not only increase osteoblastic differentiation but also improve bone graft incorporation, which could significantly increase patient quality of life after traumatic bone injuries or resection of an osteosarcoma. PMID:23510012

  7. Removal of hexavalent Cr by coconut coir and derived chars--the effect of surface functionality.

    PubMed

    Shen, Ying-Shuian; Wang, Shan-Li; Tzou, Yu-Min; Yan, Ya-Yi; Kuan, Wen-Hui

    2012-01-01

    The Cr(VI) removal by coconut coir (CC) and chars obtained at various pyrolysis temperatures were evaluated. Increasing the pyrolysis temperature resulted in an increased surface area of the chars, while the corresponding content of oxygen-containing functional groups of the chars decreased. The Cr(VI) removal by CC and CC-derived chars was primarily attributed to the reduction of Cr(VI) to Cr(III) by the materials and the extent and rate of the Cr(VI) reduction were determined by the oxygen-containing functional groups in the materials. The contribution of pure Cr(VI) adsorption to the overall Cr(VI) removal became relatively significant for the chars obtained at higher temperatures. Accordingly, to develop a cost-effective method for removing Cr(VI) from water, the original CC is more advantageous than the carbonaceous counterparts because no pyrolysis is required for the application and CC has a higher content of functional groups for reducing Cr(VI) to less toxic Cr(III). Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Treatment of Venous Aortorenal Bypass Graft Aneurysm Using a Stent-Graft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novotny, Jiri, E-mail: jino@medicon.cz; Peregrin, Jan H.; Stribrna, Jarmila

    2010-02-15

    We present the case of a 77-year-old male patient who had undergone a bilateral venous aortorenal bypass graft 30 years previously. Thirteen years previously, the patient was shown to have a decrease in renal function, with mild shrinking of both kidneys; additionally, a stenosis was found in the left proximal anastomosis. At the most recent follow-up visit (1 year previously), ultrasound revealed an aneurysm (42 mm in diameter) of the left renal bypass graft; the finding was confirmed by CT angiography. A significant ostial stenosis of the left renal bypass graft was also confirmed. It was decided to place amore » self-expandable stent-graft into the aneurysm while also attempting to dilate the stenosis. Proximal endoleak after stent-graft placement necessitated the implantation of another, balloon-expandable stent-graft into the bypass graft ostium. Postprocedural angiography and follow-up by CT angiography at 3 months confirmed good patency of the stent-grafts and complete thrombosis of the aneurysmal sac, with preserved kidney perfusion. Renal function remained unaltered, while the hypertension is better controlled.« less

  9. Improvement of pesticide adsorption capacity of cellulose fibre by high-energy irradiation-initiated grafting of glycidyl methacrylate

    NASA Astrophysics Data System (ADS)

    Takács, Erzsébet; Wojnárovits, László; Koczog Horváth, Éva; Fekete, Tamás; Borsa, Judit

    2012-09-01

    Cellulose as a renewable raw material was used for preparation of adsorbent of organic impurities in wastewater treatment. Hydrophobic surface of cellulose substrate was developed by grafting glycidyl methacrylate in simultaneous grafting using gamma irradiation initiation. Water uptake of cellulose significantly decreased while adsorption of phenol and a pesticide molecule (2,4-dichlorophenoxyacetic acid: 2,4-D) increased upon grafting. Adsorption equilibrium data fitted the Freundlich isotherm for both solutes.

  10. Calcar bone graft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bargar, W.L.; Paul, H.A.; Merritt, K.

    1986-01-01

    A canine model was developed to investigate the use of an autogeneic iliac bone graft to treat the calcar deficiency commonly found at the time of revision surgery for femoral component loosening. Five large male mixed-breed dogs had bilateral total hip arthroplasty staged at three-month intervals, and were sacrificed at six months. Prior to cementing the femoral component, an experimental calcar defect was made, and a bicortical iliac bone graft was fashioned to fill the defect. Serial roentgenograms showed the grafts had united with no resorption. Technetium-99 bone scans showed more uptake at three months than at six months inmore » the graft region. Disulfine blue injection indicated all grafts were perfused at both three and six months. Thin section histology, fluorochromes, and microradiographs confirmed graft viability in all dogs. Semiquantitative grading of the fluorochromes indicated new bone deposition in 20%-50% of each graft at three months and 50%-80% at six months. Although the calcar bone graft was uniformly successful in this canine study, the clinical application of this technique should be evaluated by long-term results in humans.« less

  11. Surface functionalization of solid state ultra-high molecular weight polyethylene through chemical grafting

    NASA Astrophysics Data System (ADS)

    Sherazi, Tauqir A.; Rehman, Tayyiba; Naqvi, Syed Ali Raza; Shaikh, Ahson Jabbar; Shahzad, Sohail Anjum; Abbas, Ghazanfar; Raza, Rizwan; Waseem, Amir

    2015-12-01

    The surface of ultra-high molecular weight polyethylene (UHMWPE) powder was functionalized with styrene using chemical grafting technique. The grafting process was initiated through radical generation on base polymer matrix in the solid state by sodium thiosulfate, while peroxides formed at radical sites during this process were dissociated by ceric ammonium nitrate. Various factors were optimized and reasonably high level of monomer grafting was achieved, i.e., 15.6%. The effect of different acids as additive and divinyl benzene (DVB) as a cross-linking agent was also studied. Post-grafting sulfonation was conducted to introduce the ionic moieties to the grafted polymer. Ion-exchange capacity (IEC) was measured experimentally and is found to be 1.04 meq g-1, which is in close agreement with the theoretical IEC values. The chemical structure of grafted and functionalized polymer was characterized by attenuated total reflection infrared spectroscopy (ATR-FTIR) and thermal properties were investigated by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Thermal analysis depicts that the presence of radicals on the polymer chain accelerates the thermal decomposition process. The results signify that the chemical grafting is an effective tool for substantial surface modification and subsequent functionalization of polyethylene.

  12. Bone Graft Alternatives

    MedlinePlus

    ... Spine Treatment Spondylolisthesis BLOG FIND A SPECIALIST Treatments Bone Graft Alternatives Patient Education Committee Patient Education Committee ... procedure such as spinal fusion. What Types of Bone Grafts are There? Bone grafts that are transplanted ...

  13. Post-plasma grafting of AEMA as a versatile tool to biofunctionalise polyesters for tissue engineering.

    PubMed

    Desmet, Tim; Billiet, T; Berneel, Elke; Cornelissen, Ria; Schaubroeck, David; Schacht, Etienne; Dubruel, Peter

    2010-12-08

    In the last decade, substantial research in the field of post-plasma grafting surface modification has focussed on the introduction of carboxylic acids on surfaces by grafting acrylic acid (AAc). In the present work, we report on an alternative approach for biomaterial surface functionalisation. Thin poly-ε-caprolactone (PCL) films were subjected to a dielectric barrier discharge Ar-plasma followed by the grafting of 2-aminoethyl methacrylate (AEMA) under UV-irradiation. X-ray photoelectron spectroscopy (XPS) confirmed the presence of nitrogen. The ninhydrin assay demonstrated, both quantitatively and qualitatively, the presence of free amines on the surface. Confocal fluorescence microscopy (CFM), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to visualise the grafted surfaces, indicating the presence of pAEMA. Static contact angle (SCA) measurements indicated a permanent increase in hydrophilicity. Furthermore, the AEMA grafted surfaces were applied for comparing the physisorption and covalent immobilisation of gelatin. CFM demonstrated that only the covalent immobilisation lead to a complete coverage of the surface. Those gelatin-coated surfaces obtained were further coated using fibronectin. Osteosarcoma cells demonstrated better cell-adhesion and cell-viability on the modified surfaces, compared to the pure PCL films. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial.

    PubMed

    Villegas, María F; Garcia-Uriostegui, Lorena; Rodríguez, Ofelia; Izquierdo-Barba, Isabel; Salinas, Antonio J; Toriz, Guillermo; Vallet-Regí, María; Delgado, Ezequiel

    2017-09-26

    This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR) studies of lysine-grafted MCM-41 (MCM-LYS) simultaneously showed bands at 3080 and 1540 cm -1 and bands at 1625 and 1415 cm -1 corresponding to -NH 3+ /COO - pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%). This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion.

  15. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial

    PubMed Central

    Villegas, María F.; Garcia-Uriostegui, Lorena; Rodríguez, Ofelia; Izquierdo-Barba, Isabel; Salinas, Antonio J.; Toriz, Guillermo; Vallet-Regí, María; Delgado, Ezequiel

    2017-01-01

    This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR) studies of lysine-grafted MCM-41 (MCM-LYS) simultaneously showed bands at 3080 and 1540 cm−1 and bands at 1625 and 1415 cm−1 corresponding to -NH3+/COO− pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%). This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion. PMID:28952559

  16. Nanopyroxene Grafting with β-Cyclodextrin Monomer for Wastewater Applications.

    PubMed

    Nafie, Ghada; Vitale, Gerardo; Carbognani Ortega, Lante; Nassar, Nashaat N

    2017-12-06

    Emerging nanoparticle technology provides opportunities for environmentally friendly wastewater treatment applications, including those in the large liquid tailings containments in the Alberta oil sands. In this study, we synthesize β-cyclodextrin grafted nanopyroxenes to offer an ecofriendly platform for the selective removal of organic compounds typically present in these types of applications. We carry out computational modeling at the micro level through molecular mechanics and molecular dynamics simulations and laboratory experiments at the macro level to understand the interactions between the synthesized nanomaterials and two-model naphthenic acid molecules (cyclopentanecarboxylic and trans-4-pentylcyclohexanecarboxylic acids) typically existing in tailing ponds. The proof-of-concept computational modeling and experiments demonstrate that monomer grafted nanopyroxene  or nano-AE of the sodium iron-silicate aegirine are found to be promising candidates for the removal of polar organic compounds from wastewater, among other applications. These nano-AE offer new possibilities for treating tailing ponds generated by the oil sands industry.

  17. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich's Ascites Carcinoma.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya Bhushan; Shukla, Yogeshwer; Panda, Amulya; Gupta, Kailash Chand

    2016-08-01

    Rapidly increasing malignant neoplastic disease demands immediate attention. Several dietary compounds have recently emerged as strong anti-cancerous agents. Among, Bromelain (BL), a protease from pineapple plant, was used to enhance its anti-cancerous efficacy using nanotechnology. In lieu of this, hyaluronic acid (HA) grafted PLGA copolymer, having tumor targeting ability, was developed. BL was encapsulated in copolymer to obtain BL-copolymer nanoparticles (NPs) that ranged between 140 to 281nm in size. NPs exhibited higher cellular uptake and cytotoxicity in cells with high CD44 expression as compared with non-targeted NPs. In vivo results on tumor bearing mice showed that NPs were efficient in suppressing the tumor growth. Hence, the formulation could be used as a self-targeting drug delivery cargo for the remission of cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    PubMed

    Chan, Alex H P; Tan, Richard P; Michael, Praveesuda L; Lee, Bob S L; Vanags, Laura Z; Ng, Martin K C; Bursill, Christina A; Wise, Steven G

    2017-01-01

    Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL) we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM) analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP). This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days). We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  19. Delayed grafting for banked skin graft in lymph node flap transfer.

    PubMed

    Ciudad, Pedro; Date, Shivprasad; Orfaniotis, Georgios; Dower, Rory; Nicoli, Fabio; Maruccia, Michele; Lin, Shu-Ping; Chuang, Chu-Yi; Chuang, Tsan-Yu; Wang, Gou-Jen; Chen, Hung-Chi

    2017-02-01

    Over the last decade, lymph node flap (LNF) transfer has turned out to be an effective method in the management of lymphoedema of extremities. Most of the time, the pockets created for LNF cannot be closed primarily and need to be resurfaced with split thickness skin grafts. Partial graft loss was frequently noted in these cases. The need to prevent graft loss on these iatrogenic wounds made us explore the possibility of attempting delayed skin grafting. We have herein reported our experience with delayed grafting with autologous banked split skin grafts in cases of LNF transfer for lymphoedema of the extremities. Ten patients with International Society of Lymphology stage II-III lymphoedema of upper or lower extremity were included in this study over an 8-month period. All patients were thoroughly evaluated and subjected to lymph node flap transfer. The split skin graft was harvested and banked at the donor site, avoiding immediate resurfacing over the flap. The same was carried out in an aseptic manner as a bedside procedure after confirming flap viability and allowing flap swelling to subside. Patients were followed up to evaluate long-term outcomes. Flap survival was 100%. Successful delayed skin grafting was done between the 4th and 6th post-operative day as a bedside procedure under local anaesthesia. The split thickness skin grafts (STSG) takes more than 97%. One patient needed additional medications during the bedside procedure. All patients had minimal post-operative pain and skin graft requirement. The patients were also reported to be satisfied with the final aesthetic results. There were no complications related to either the skin grafts or donor sites during the entire period of follow-up. Delayed split skin grafting is a reliable method of resurfacing lymph node flaps and has been shown to reduce the possibility of flap complications as well as the operative time and costs. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  20. Correlation between the distribution of lignin and pectin and distribution of sorbed metal ions (lead and zinc) on coir (Cocos nucifera L.).

    PubMed

    Conrad, Kathrine

    2008-11-01

    Plant fibres are capacious for sorption of metal ions, and can be used in water cleaning. Knowledge about the sorption will help in selection of the fibre and optimisation of its chemical modification, if any. The aim of this paper is to investigate the connection, if any, between the distribution of lignin and pectin and the loading of Pb and Zn on coir (mesocarp fibres from Cocos nucifera L.). The coir consisted mainly of xylem and a fibre sheath. The lignin was evenly distributed in the cell walls of the fibre sheath, but in the xylem, there was no detectable content in the compound middle lamella, and a smaller content of lignin in the secondary walls than in the walls of the fibre sheath. The only detectable content of pectin in the fibre sheath walls was in the middle lamella, cell corners and extracellular matrix, while in the xylem, the pectin was almost evenly distributed in the wall, with a higher concentration in the middle lamella and cell corners. All cell walls facing the lacuna had a high content of pectin. The metal ions were mainly loaded on the xylem and cell walls facing the lacuna, maybe with an additional trend to be loaded on the large fibres. Lead was distributed on and across the whole secondary wall. Zinc was loaded on the secondary walls, but there was no information about the distribution across the wall. If there is a simple correlation between the loading of metal ions and the distribution of lignin or pectin, these investigations point at no correlation with lignin and a positive correlation with pectin. It has to be stressed that these conclusions are made on limited material and are therefore preliminary in nature.

  1. Superabsorbent nanocomposite synthesis of cellulose from rice husk grafted poly(acrylate acid-co-acrylamide)/bentonite

    NASA Astrophysics Data System (ADS)

    Helmiyati; Abbas, G. H.; Kurniawan, S.

    2017-04-01

    Superabsorbent nanocomposite synthesis of cellulose rice husk as the backbone with free radical polymerization method in copolymerization grafted with acrylic acid and acrylamide monomer. The cellulose was isolated from rice husk with mixture of toluene and ethanol and then hemicellulose and lignin were removed by using potassium hydroxide 4% and hydrogen peroxide 2%. The obtained cellulose rendement was 37.85%. The functional group of lignin analyzed by FTIR spectra was disappeared at wavenumber 1724 cm-1. Crystal size of the obtained isolated cellulose analyzed by XRD diffraction pattern was 34.6 nm, indicated the nanocrystal structure. Copolymerization was performed at temperature of 70°C with flow nitrogen gas. Initiator and crosslinking agent used were potassium persulfate and N‧N-methylene-bis-acrylamide. The swelling capacity of water and urea showed the results was quite satisfactory, the maximum swelling capacity in urea and water were 611.700 g/g and 451.303 g/g, respectively, and can be applied in agriculture to absorb water and urea fertilizer.

  2. Aspirin decreases platelet uptake on Dacron vascular grafts in baboons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, W.C.; Connolly, R.J.; Callow, A.D.

    The influence of a single dose of aspirin (5.4-7.4 mg/kg) on platelet uptake on 4-mm Dacron interposition grafts was studied in a baboon model using gamma camera scanning for 111-Indium labeled platelets. In vitro assessment of platelet function after aspirin administration revealed that in the baboon, as in the human, aspirin abolished arachidonic acid-induced platelet aggregation, prolonged the lag time between exposure to collagen and aggregation, and decreased plasma thromboxane B2 levels. Aspirin also prolonged the template bleeding time. Scans for 111-Indium labeled platelets revealed that pretreatment with a single dose of aspirin decreased platelet uptake on 4-mm Dacron carotidmore » interposition grafts. This decrease in platelet uptake was associated with a significant improvement in 2-hour graft patency and with a trend toward improved 2-week patency.« less

  3. Effector T cells require fatty acid metabolism during murine graft-versus-host disease

    PubMed Central

    Byersdorfer, Craig A.; Tkachev, Victor; Opipari, Anthony W.; Goodell, Stefanie; Swanson, Jacob; Sandquist, Stacy; Glick, Gary D.; Ferrara, James L. M.

    2013-01-01

    Activated T cells require increased energy to proliferate and mediate effector functions, but the metabolic changes that occur in T cells following stimulation in vivo are poorly understood, particularly in the context of inflammation. We have previously shown that T cells activated during graft-versus-host disease (GVHD) primarily rely on oxidative phosphorylation to synthesize adenosine 5′-triphosphate. Here, we demonstrate that alloreactive effector T cells (Teff) use fatty acids (FAs) as a fuel source to support their in vivo activation. Alloreactive T cells increased FA transport, elevated levels of FA oxidation enzymes, up-regulated transcriptional coactivators to drive oxidative metabolism, and increased their rates of FA oxidation. Importantly, increases in FA transport and up-regulation of FA oxidation machinery occurred specifically in T cells during GVHD and were not seen in Teff following acute activation. Pharmacological blockade of FA oxidation decreased the survival of alloreactive T cells but did not influence the survival of T cells during normal immune reconstitution. These studies suggest that pathways controlling FA metabolism might serve as therapeutic targets to treat GVHD and other T-cell–mediated immune diseases. PMID:24046012

  4. Complete Occlusion of a Subcutaneous Pyelovesical Bypass Graft (Detour® System) Caused by Uric Acid Stone Formation.

    PubMed

    Wilhelm, Konrad; Schultze-Seemann, Wolfgang; Miernik, Arkadiusz

    2017-01-01

    Subcutaneous pyelovesical bypass graft (SPBG) is a urinary diversion treatment option for ureteral obstruction. Initially its use was limited to palliative care patients. However, the indication profile has been extended to selected patients with benign conditions causing ureteral obstruction and hydronephrosis. Occlusion of SPBGs is rarely reported and mostly related to infections. We describe the clinical case of a patient with SPBG after iatrogenic ureteral stricture who was not suitable for other reconstructive treatment forms due to distinct retroperitoneal scarring after multiple previous surgeries. Several months after the SPBG insertion, the patient developed complete occlusion of the system with uric acid stone material. Sufficient endoscopic intervention was not feasible. After forced chemolitholysis, the stone mass could be completely dissolved. Since then the patient has remained symptom-free. © 2014 S. Karger AG, Basel.

  5. Irradiation grafting of natural rubber latex with maleic anhydride and its compatibilization of poly(lactic acid)/natural rubber blends

    NASA Astrophysics Data System (ADS)

    Pongsathit, Siriwan; Pattamaprom, Cattaleeya

    2018-03-01

    Maleic anhydride (MA) is an interesting monomer to be grafted onto natural rubber(NR) due to its potential as a compatibilizer of hydrophobic rubbers and polymers with higher polarity. So far, radiation grafting of MA onto NR in latex state has not been reported. In this study, the grafting of NR with MA in latex state was investigated by exposing the latex to cobalt-60 gamma irradiation at a fixed MA content of 9% and a varied absorbed doses from 2 to 10 kGy. The FTIR spectrometer, 1H NMR spectrometer and gel content analysis have confirmed successful grafting of MA onto NR after irradiation. The grafted NRs were then used to increase the compatibility and the impact property of PLA/NR blends. It was found that the highest impact strength of the blends was achieved when the grafting was carried out at the absorbed dose of 4 kGy.

  6. Block and Graft Copolymers of Polyhydroxyalkanoates

    NASA Astrophysics Data System (ADS)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  7. Solvent effect on post-irradiation grafting of styrene onto poly(ethylene-alt-tetrafluoroethylene) (ETFE) films

    NASA Astrophysics Data System (ADS)

    Napoleão Geraldes, Adriana; Augusto Zen, Heloísa; Ribeiro, Geise; Fernandes Parra, Duclerc; Benévolo Lugão, Ademar

    2013-03-01

    Radiation-induced grafting of styrene onto ETFE films in different solvent was investigated after simultaneous irradiation (in post-irradiation condition) using a 60Co source. Grafting of styrene followed by sulfonation onto poly(ethylene-alt-tetrafluoroethylene) (ETFE) are currently studied for synthesis of ion exchange membranes. The ETFE films were immersed in styrene/toluene, styrene/methanol and styrene/isopropyl alcohol and irradiated at 20 and 100 kGy doses at room temperature. The post-irradiation time was established at 14 day and the grafting degree was evaluated. The grafted films were sulfonated using chlorosulfonic acid and 1,2-dichloroethane 20:80 (v/v) at room temperature for 5 h. The degree of grafting (DOG) was determined gravimetrically and physical or chemical changes were evaluated by differential scanning calorimeter analysis (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The ion exchange capacity (IEC) values showed the best performance of sulfonation for ETFE membranes grafted in toluene solvent. Surface images of the grafted films by SEM technique have presented a strong effect of the solvents on the films morphology.

  8. Poly (ethylenimine)-grafted-poly [(aspartic acid)-co-lysine], a potential non-viral vector for DNA delivery.

    PubMed

    Tang, Gu Ping; Yang, Zhi; Zhou, Jun

    2006-01-01

    A potential non-viral gene-transfer vector, poly(ethylenimine)-grafted-poly[(aspartic acid)-co-lysine] (PSL), has been developed by thermal polycondensation of aspartic acid and lysine under reduced pressure. Low-molecular-mass branch poly(ethylenimine) (PEI600) was conjugated to the backbone. The chemical structure of the resulting co-polymer was identified by 1H-NMR, FT-IR, TGA and X-ray diffraction. The results of the MTT assay showed that at concentration up to 4000 nmol/l of the vector cell viability was over 80% and showed low toxicity. Electrophoretic retardation and ethidum bromide assay showed that at N/P ratios 12-15 (w/w) the DNA could be condensed and neutralized. Using the zeta potential assay we discovered that it had a high positive charge on its surface of the particle (over 30 mV). The particle sizes of the co-polymer/DNA complexes were 150-170 nm, as measured by DLS and AFM. Compared with PEI600, co-polymer/DNA complexes showed a significant enhancement of transfection activity in the absence and presence of serum in NT2 and COS7 cell lines. This means that the PEI600-PSL co-polymer is a promising candidate for gene delivery.

  9. A double-blind, placebo-controlled trial of epsilon-aminocaproic acid for reducing blood loss in coronary artery bypass grafting surgery.

    PubMed

    Kikura, Mutsuhito; Levy, Jerrold H; Tanaka, Kenichi A; Ramsay, James G

    2006-02-01

    Epsilon-aminocaproic acid is a plasmin inhibitor that potentially reduces perioperative bleeding when administered prophylactically to cardiac surgery patients. To evaluate the efficacy of epsilon-aminocaproic acid, a prospective placebo-controlled trial was conducted in patients undergoing primary coronary artery bypass grafting surgery. One hundred patients were randomly assigned to receive either epsilon-aminocaproic acid (100 mg/kg before skin incision followed by 1 g/hour continuous infusion until chest closure, 10 g in cardiopulmonary bypass circuit) or placebo, and the efficacy of epsilon-aminocaproic acid was evaluated by the reduction in postoperative thoracic-drainage volume and in donor-blood transfusion up to postoperative day 12. Postoperative thoracic-drainage volume was significantly lower in the epsilon-aminocaproic acid group compared with the placebo group (epsilon-aminocaproic acid, 649 +/- 261 mL; versus placebo, 940 +/- 626 mL; p=0.003). There were no significant differences between the epsilon-aminocaproic acid and placebo groups in the percentage of patients requiring donor red blood cell transfusions (epsilon-aminocaproic acid, 24%; versus placebo, 18%; p=0.62) or in the number of units of donor red blood cells transfused (epsilon-aminocaproic acid, 2.2 +/- 0.8 U; versus placebo, 1.9 +/- 0.8 U; p=0.29). Epsilon-aminocaproic acid did not reduce the risk of donor red blood cell transfusions compared with placebo (odds ratio: 1.2, 95% confidence interval; 0.4 to 3.2, p=0.63). Prophylactic administration of epsilon-aminocaproic acid reduces postoperative thoracic-drainage volume by 30%, but it may not be potent enough to reduce the requirement and the risk for donor blood transfusion in cardiac surgery patients. This information is useful for deciding on a therapy for hemostasis in cardiac surgery.

  10. Fruit quality of seedless watermelon grafted onto squash rootstocks under different production systems.

    PubMed

    Liu, Qianru; Zhao, Xin; Brecht, Jeffrey K; Sims, Charles A; Sanchez, Tatiana; Dufault, Nicholas S

    2017-11-01

    The market demand for seedless watermelon has been continuously increasing because of consumer preference. Grafting is a useful tool to manage soilborne diseases in watermelon production, but the use of squash rootstocks may negatively affect watermelon fruit quality. Currently, most research has focused on seeded cultivars, while grafting effects on seedless watermelons remain largely unknown. This multi-season study was conducted to assess the effects of squash rootstocks, including both Cucurbita maxima × C. moschata and C. moschata cultivars, with intact or excised and regenerated roots, on fruit quality of seedless watermelon 'Melody' using both instrumental and sensory measurements under different production scenarios. The grafted watermelon plants were also challenged by field inoculation with Fusarium oxysporum f.sp. niveum. A combination of instrumental measurements and consumer sensory analyses suggested that fruit quality of the seedless watermelon 'Melody' was not impacted by the use of the squash rootstocks used in this study, which included soluble solids content, titratable acidity, pH and most fruit sensory properties. Watermelon flesh firmness was increased by grafting but the grafting effect on lycopene content was inconclusive. Root excision and regeneration did not influence the grafting effect, whereas the grafting effect on flesh firmness varied among the rootstocks under Fusarium inoculation. Overall, grafting with squash rootstocks did not reduce fruit quality attributes of 'Melody' but improved texture. Our results support incorporating grafting into integrated management programs for seedless watermelon production. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. The Synthesis of Cellulose Graft Copolymers Using Cu(0)-Mediated Polymerization

    NASA Astrophysics Data System (ADS)

    Donaldson, Jason L.

    Cellulose is the most abundant renewable polymer on the planet and there is great interest in expanding its use beyond its traditional applications. However, its hydrophilicity and insolubility in most common solvent systems are obstacles to its widespread use in advanced materials. One way to counteract this is to attach hydrophobic polymer chains to cellulose: this allows the properties of the copolymer to be tailored by the molecular weight, density, and physical properties of the grafts. Two methods were used here to synthesize the graft copolymers: a 'grafting-from' approach, where synthetic chains were grown outward from bromoester moieties on cellulose (Cell-BiB) via Cu(0)-mediated polymerization; and a 'grafting-to' approach, where fully formed synthetic chains with terminal sulfide functionality were added to cellulose acetate with methacrylate functionality (CA-MAA) via thiol-ene Michael addition. The Cell-BiB was synthesized in the ionic liquid 1-butyl-3-methylimidazolium chloride and had a degree of substitution of 1.13. Polymerization from Cell-BiB proceeded at similar but slightly slower rate than an analogous non-polymeric initiator (EBiB). The average graft density of poly(methyl acrylate) chains was 0.71 chains/ring, with a maximum of 1.0 obtained. The graft density when grafting poly(methyl methacrylate) was only 0.15, and this appeared to be due to the slow initiation of BiB groups. Using EBiB to model the reaction and improve the design should allow this to be overcome. Chain extension experiments demonstrated the living behaviour of the polymer. The CA-MAA was synthesized by esterification with methacrylic acid. Reactions of CA-MAA with thiophenol and dodecanethiol resulted in quantitative addition of the thiol to the alkene. The grafts were synthesized by Cu(0)-mediated polymerization from a bifunctional initiator containing a disulfide bond, followed by reduction to sulfides. The synthetic polymers were successfully grafted to CA-MAA but the

  12. Spontaneous transfer of stearic acids between human serum albumin and PEG:2000-grafted DPPC membranes.

    PubMed

    Pantusa, Manuela; Stirpe, Andrea; Sportelli, Luigi; Bartucci, Rosa

    2010-05-01

    Electron spin resonance (ESR) spectroscopy is used to study the transfer of stearic acids between human serum albumin (HSA) and sterically stabilized liposomes (SSL) composed of dipalmitoylphosphatidylcholine (DPPC) and of submicellar content of poly(ethylene glycol:2000)-dipalmitoylphosphatidylethanolamine (PEG:2000-DPPE). Protein/lipid dispersions are considered in which spin-labelled stearic acids at the 16th carbon atom along the acyl chain (16-SASL) are inserted either in the protein or in the SSL. Two component ESR spectra with different rotational mobility are obtained over a broad range of temperature and membrane composition. Indeed, superimposed to an anisotropic protein-signal, appears a more isotropic lipid-signal. Since in the samples only one matrix (protein or membranes) is spin-labelled, the other component accounts for the transfer of 16-SASL between albumin and membranes. The two components have been resolved and quantified by spectral subtractions, and the fraction, f (p) (16-SASL), of spin labels bound non-covalently to the protein has been used to monitor the transfer. It is found that it depends on the type of donor and acceptor matrix, on the physical state of the membranes and on the grafting density of the polymer-lipids. Indeed, it is favoured from SSL to HSA and the fraction of stearic acids transferred increases with temperature in both directions of transfer. Moreover, in the presence of polymer-lipids, the transfer from HSA to SSL is slightly attenuated, especially in the brush regime of the polymer-chains. Instead, the transfer from SSL to HSA is favoured by the polymer-lipids much more in the mushroom than in the brush regime.

  13. Surgical Outcomes of Porcine Acellular Dermis Graft in Anophthalmic Socket: Comparison with Oral Mucosa Graft.

    PubMed

    Teo, Livia; Woo, Young Jun; Kim, Dong Kyu; Kim, Chang Yeom; Yoon, Jin Sook

    2017-02-01

    We describe our experience with the Permacol graft in anophthalmic socket reconstruction, and compare it to the autologous buccal mucosal graft, emphasizing the postoperative vascularization and contraction of each graft. This was a retrospective comparative study. We measured the time necessary for the graft surface to be completely vascularized, as well as the fornix depth of the conjunctival sac in anophthalmic patients. Ten patients underwent Permacol graft reconstruction, with 44 undergoing buccal mucosal graft reconstruction. Seven eyelids (70%) in the Permacol group had a good outcome, with improvement in lower eyelid position and prosthesis retention. Nine out of 10 eyelids (90%) in this group showed complete vascularization of the graft at 2.6 ± 1.9 months postoperatively, while the grafted buccal mucosa was fully vascularized at 1.1 ± 0.3 months postoperatively ( p < 0.01). Postoperative fornix depth in the Permacol group was 9.1 ± 2.2 mm, compared to 14.9 ± 4.5 mm in the buccal mucosal graft group ( p < 0.01). Mean increases in fornix depth were 33.1% and 67.9% of the mean vertical length of the implanted graft. The Permacol graft can be useful as spacer graft material in anophthalmic socket patients. It takes longer to vascularize, and undergoes greater graft shrinkage with time, compared to the buccal mucosal graft.

  14. Synthesis of antibacterial surfaces by plasma grafting of zinc oxide based nanocomposites onto polypropylene.

    PubMed

    de Rancourt, Yoann; Couturaud, Benoit; Mas, André; Robin, Jean Jacques

    2013-07-15

    Antibacterial polymer surfaces were designed using ZnO nanoparticles as a bactericide. Mineral encapsulated nanoparticles were grafted onto activated polymer surfaces through their shells. Polypropylene (PP) surfaces were treated using an innovative process coupling core-shell technology and plasma grafting, well-known techniques commonly used to obtain active surfaces for biomedical applications. First, ZnO nanoparticles were encapsulated by (co)polymers: poly(acrylic acid) (PAA) or a poly(methyl methacrylate-co-methacrylic acid) copolymer [P(MMA-MA)]. Second, PP substrates were activated using plasma treatment. Finally, plasma-treated surfaces were immersed in solutions containing the encapsulated nanoparticles dispersed in an organic solvent and allowed to graft onto it. The presence of nanoparticles on the substrates was demonstrated using Fourier-Transform Infrared Spectroscopy (FTIR) analysis, Scanning Electron Microspcopy (SEM)/Energy-Dispersive X-ray (EDX), and Atomic Force Microscopy (AFM) studies. Indeed, the ZnO-functionalized substrates exhibited an antibacterial response in Escherichia coli adhesion tests. Moreover, this study revealed that, surprisingly, native ZnO nanoparticles without any previous functionalization could be directly grafted onto polymeric surfaces through plasma activation. The antibacterial activity of the resulting sample was shown to be comparable to that of the other samples. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Radiation-grafted proton exchange membranes based on co-grafting from binary monomer mixtures into poly(ethylene-co-tetrafluoroethylene) (ETFE) film

    NASA Astrophysics Data System (ADS)

    Sohn, Joon-Yong; Sung, Hae-Jun; Song, Joo-Myung; Shin, Junhwa; Nho, Young-Chang

    2012-08-01

    In this study, proton exchange membranes (PEMs) based on a poly(ethylene-co-tetrafluoroethylene) (ETFE) film were synthesized through the graft copolymerization of styrene and VTMS (vinyltrimethoxysilane), or styrene and TMSPM (3-(trimethoxysilyl) propyl methacrylate) binary monomer systems using a simultaneous irradiation method. The prepared membranes with the similar degrees of grafting were investigated by measuring ion exchange capacity, proton conductivity, water uptake, chemical stability, and dimensional stability. The results indicate that the silane-crosslinked proton exchange membrane (PEM) has not only lower water uptake and dimensional change but also high proton conductivity at low humidity condition compared to non-crosslinked poly(ethylene-co-tetrafluoroethylene)-g-poly(styrene sulfonic acid) (ETFE-g-PSSA). Also, the chemical stability of silane-crosslinked fuel cell membranes was more improved than that of non-crosslinked fuel cell membrane.

  16. Improved biocompatibility of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer by a surface graft polymerization of hyaluronic acid.

    PubMed

    Li, Xiaomeng; Luan, Shifang; Shi, Hengchong; Yang, Huawei; Song, Lingjie; Jin, Jing; Yin, Jinghua; Stagnaro, Paola

    2013-02-01

    Hyaluronic acid (HA) is an important component of extracellular matrix (ECM) in many tissues, providing a hemocompatible and supportive environment for cell growth. In this study, glycidyl methacrylate-hyaluronic acid (GMHA) was first synthesized and verified by proton nuclear magnetic resonance ((1)H NMR) spectroscopy. GMHA was then grafted to the surface of biomedical elastomer poly (styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) via an UV-initiated polymerization, monitored by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The further improvement of biocompatibility of the GMHA-modified SEBS films was assessed by platelet adhesion experiments and in vitro response of murine osteoblastic cell line MC-3T3-E1 with the virgin SEBS surface as the reference. It showed that the surface modification with HA strongly resisted platelet adhesion whereas improved cell-substrate interactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Properties of carbon composite paper derived from coconut coir as a function of polytetrafluoroethylene content

    NASA Astrophysics Data System (ADS)

    Destyorini, Fredina; Indriyati; Indayaningsih, Nanik; Prihandoko, Bambang; Zulfia Syahrial, Anne

    2018-03-01

    The carbon composite papers were produced by utilizing carbon materials from coconut coir. In the present work, carbon composite papers (CCP) were prepared by mixing carbon materials in the form of powder and fibre with polymer (ethylene vinyl acetate and polyethylene glycol) in xylene at 100°C. Then, polytetrafluoroethylene (PTFE) with different content was used to treat the surface of CCP. The properties of PTFE-coated CCP were analysed by means of contact angle measurement, tensile testing, porosity, density, and electrical conductivity measurements. As expected, all CCP’s surfaces treated with PTFE were found to be hydrophobic with contact angle >120° and relatively constant during 60 minutes measurement. Furthermore, water contact angle, density, and mechanical properties of CCP generally increase with increasing PTFE content. However, the porosity and electrical conductivity of CCP decrease slightly as the PTFE content increased from 0 wt% to 30 wt%. Based on the observation and analysis, the optimum PTFE content on CCP was 20 %, in which the mechanical properties and hydrophobicity behaviour were improved significantly, but it was only caused a very small drop in porosity and electrical conductivity

  18. Chemically grafted polymeric filters for chemical sensors: Hyperbranched poly(acrylic acid) films incorporating {Beta}-cyclodextrin receptors and amine-functionalized filter layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dermody, D.L.; Peez, R.F.; Bergbreiter, D.E.

    1999-02-02

    The authors report a new molecular-filter approach for enhancing the selectivity of chemical sensors. Specifically, they describe electrochemical sensors prepared from Au electrodes coated with {beta}-cyclodextrin-functionalized, hyperbranched poly(acrylic acid)(PAA) films capped with a chemically grafted, ultrathin polyamine layer. The hyperbranched PAA film is a highly functionalized framework for covalently binding the {beta}-cyclodextrin molecular receptors. The thin, grafted polyamine overlayer acts as a pH-sensitive molecular filter that selectively passes suitably charged analytes. Poly(amidoamine) dendrimers or poly-D-lysine is used as 10--15-nm-thick filter layers. The results show that at low pH, when the polyamines are fully protonated, positively charged redox probe molecules, suchmore » as benzyl viologen (BV), do not permeate the filter layer. However, at high pH, when the filter layer is uncharged, BV penetrates the filter layer and is reduced at the electrode. The opposite pH dependence is observed for negatively charged redox molecules such as anthraquinone-2-sulfonate (AQS). Both BV and AQS specifically interact with the {beta}-cyclodextrin receptors underlying the polyamine filter layers.« less

  19. Graft union formation in artichoke grafting onto wild and cultivated cardoon: an anatomical study.

    PubMed

    Trinchera, Alessandra; Pandozy, Gianmarco; Rinaldi, Simona; Crinò, Paola; Temperini, Olindo; Rea, Elvira

    2013-12-15

    In order to develop a non-chemical method such as grafting effective against well-known artichoke soil borne diseases, an anatomical study of union formation in artichoke grafted onto selected wild and cultivated cardoon rootstocks, both resistant to Verticillium wilt, was performed. The cardoon accessions Belgio (cultivated cardoon) and Sardo (wild cardoon) were selected as rootstocks for grafting combinations with the artichoke cv. Romolo. Grafting experiments were carried out in the autumn and spring. The anatomical investigation of grafting union formation was conducted by scanning electron microscopy (SEM) on the grafting portions at the 3rd, 6th, 10th, 12th day after grafting. For the autumn experiment only, SEM analysis was also performed at 30 d after grafting. A high affinity between artichoke scion and cardoon rootstocks was observed, with some genotype differences in healing time between the two bionts. SEM images of scion/rootstock longitudinal sections revealed the appearance of many interconnecting structures between the two grafting components just 3d after grafting, followed by a vascular rearrangement and a callus development during graft union formation. De novo formation of many plasmodesmata between scion and rootstock confirmed their high compatibility, particularly in the globe artichoke/wild cardoon combination. Moreover, the duration of the early-stage grafting process could be influenced not only by the scion/rootstock compatibility, but also by the seasonal conditions, being favored by lower temperatures and a reduced light/dark photoperiod. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Post-irradiation time effects on the graft of poly(ethylene-alt-tetrafluoroethylene) (ETFE) films for ion exchange membrane application

    NASA Astrophysics Data System (ADS)

    Geraldes, Adriana N.; Zen, Heloísa A.; Ribeiro, Geise; Ferreira, Henrique P.; Souza, Camila P.; Parra, Duclerc F.; Santiago, Elisabete I.; Lugão, Ademar B.

    2010-03-01

    Grafting of styrene followed by sulfonation onto poly(ethylene-alt-tetrafluoroethylene) (ETFE) was studied for synthesis of ion exchange membranes. Radiation-induced grafting of styrene onto ETFE films was investigated after simultaneous irradiation (in post-irradiation condition) using a 60Co source. The ETFE films were irradiated at 20 kGy dose at room temperature and chemical changes were monitored after contact with styrene for grafting. The post-irradiation time was established at 14 days when the films were remained in styrene/toluene 1:1 v/v. After this period the grafting degree was evaluated in the samples. The grafted films were sulfonated using chlorosulfonic acid and 1, 2-dichloroethane 20:80 (v/v) at room temperature for 5 h. The membranes were analyzed by infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermogravimetric measurements (TG) and degree of grafting (DOG). The ion exchange capacity (IEC) of membranes was determined by acid-base titration and the values for ETFE membranes were achieved higher than Nafion ® films. Preliminary single cell performance was made using pure H 2 and O 2 as reactants at a cell temperature of 80 °C and atmospheric gas pressure. The fuel cell performance of ETFE films was satisfactory when compared to state-of-art Nafion ® membranes.

  1. Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization.

    PubMed

    Majoinen, Johanna; Walther, Andreas; McKee, Jason R; Kontturi, Eero; Aseyev, Vladimir; Malho, Jani Markus; Ruokolainen, Janne; Ikkala, Olli

    2011-08-08

    Herein we report the synthesis of cellulose nanocrystals (CNCs) grafted with poly(acrylic acid) (PAA) chains of different lengths using Cu-mediated surface initiated-controlled radical polymerization (SI-CRP). First, poly(tert-butylacrylate) (PtBA) brushes were synthesized; then, subsequent acid hydrolysis was used to furnish PAA brushes tethered onto the CNC surfaces. The CNCs were chemically modified to create initiator moieties on the CNC surfaces using chemical vapor deposition (CVD) and continued in solvent phase in DMF. A density of initiator groups of 4.6 bromine ester groups/nm(2) on the CNC surface was reached, suggesting a dense functionalization and a promising starting point for the controlled/living radical polymerization. The SI-CRP of tert-butylacrylate proceeded in a well-controlled manner with the aid of added sacrificial initiator, yielding polymer brushes with polydispersity values typically well below 1.12. We calculated the polymer brush grafting density to almost 0.3 chains/nm(2), corresponding to high grafting densities and dense polymer brush formation on the nanocrystals. Successful rapid acid hydrolysis to remove the tert-butyl groups yielded pH-responsive PAA-polyelectrolyte brushes bound to the CNC surface. Individually dispersed rod-like nanoparticles with brushes of PtBA or PAA were clearly visualized by AFM and TEM imaging.

  2. Response of Fibroblasts MRC-5 to Flufenamic Acid-Grafted MCM-41 Nanoparticles.

    PubMed

    Lara, Giovanna Gomes; Cipreste, Marcelo Fernandes; Andrade, Gracielle Ferreira; Silva, Wellington Marcos da; Sousa, Edésia Martins Barros de

    2018-01-09

    Recently, flufenamic acid (FFA) was discovered among fenamates as a free radical scavenger and gap junction blocker; however, its effects have only been studied in cancer cells. Normal cells in the surroundings of a tumor also respond to radiation, although they are not hit by it directly. This phenomenon is known as the bystander effect, where response molecules pass from tumor cells to normal ones, through communication channels called gap junctions. The use of the enhanced permeability and retention effect, through which drug-loaded nanoparticles smaller than 200 nm may accumulate around a tumor, can prevent the local side effect upon controlled release of the drug. The present work, aimed at functionalizing MCM-41 (Mobil Composition of Matter No. 41) silica nanoparticles with FFA and determining its biocompatibility with human fibroblasts MRC-5 (Medical Research Council cell strain 5). MCM-41, was synthesized and characterized structurally and chemically, with multiple techniques. The biocompatibility assay was performed by Live/Dead technique, with calcein and propidium-iodide. MRC-5 cells were treated with FFA-grafted MCM-41 for 48 h, and 98% of cells remained viable, without signs of necrosis or morphological changes. The results show the feasibility of MCM-41 functionalization with FFA, and its potential protection of normal cells, in comparison to the role of FFA in cancerous ones.

  3. Response of Fibroblasts MRC-5 to Flufenamic Acid-Grafted MCM-41 Nanoparticles

    PubMed Central

    Lara, Giovanna Gomes; Andrade, Gracielle Ferreira; da Silva, Wellington Marcos

    2018-01-01

    Recently, flufenamic acid (FFA) was discovered among fenamates as a free radical scavenger and gap junction blocker; however, its effects have only been studied in cancer cells. Normal cells in the surroundings of a tumor also respond to radiation, although they are not hit by it directly. This phenomenon is known as the bystander effect, where response molecules pass from tumor cells to normal ones, through communication channels called gap junctions. The use of the enhanced permeability and retention effect, through which drug-loaded nanoparticles smaller than 200 nm may accumulate around a tumor, can prevent the local side effect upon controlled release of the drug. The present work, aimed at functionalizing MCM-41 (Mobil Composition of Matter No. 41) silica nanoparticles with FFA and determining its biocompatibility with human fibroblasts MRC-5 (Medical Research Council cell strain 5). MCM-41, was synthesized and characterized structurally and chemically, with multiple techniques. The biocompatibility assay was performed by Live/Dead technique, with calcein and propidium–iodide. MRC-5 cells were treated with FFA-grafted MCM-41 for 48 h, and 98% of cells remained viable, without signs of necrosis or morphological changes. The results show the feasibility of MCM-41 functionalization with FFA, and its potential protection of normal cells, in comparison to the role of FFA in cancerous ones. PMID:29315235

  4. Coir geotextile for slope stabilization and cultivation - A case study in a highland region of Kerala, South India

    NASA Astrophysics Data System (ADS)

    Vishnudas, Subha; Savenije, Hubert H. G.; Van der Zaag, Pieter; Anil, K. R.

    A sloping field is not only vulnerable to soil erosion it may also suffer from soil moisture deficiency. Farmers that cultivate on slopes everywhere face similar problems. Conservation technologies may reduce soil and nutrient losses, and thus enhance water holding capacity and soil fertility. But although these technologies promote sustainable crop production on steep slopes, the construction of physical structure such as bench terraces are often labour intensive and expensive to the farmers, since construction and maintenance require high investments. Here we studied the efficiency of coir geotextile with and without crop cultivation in reducing soil moisture deficiency on marginal slopes in Kerala, India. From the results it is evident that the slopes treated with geotextile and crops have the highest moisture retention capacity followed by geotextiles alone, and that the control plot has the lowest moisture retention capacity. As the poor and marginal farmers occupy the highland region, this method provides an economically viable option for income generation and food security along with slope stabilization.

  5. The role of partitioning of reagents in grafting and curing reactions initiated by ionizing radiation and UV

    NASA Astrophysics Data System (ADS)

    Chaplin, R. P.; Dworjanyn, P. A.; Gamage, N. J. W.; Garnett, J. L.; Jankiewicz, S. V.; Khan, M. A.; Sangster, D. F.

    1996-03-01

    Experimental evidence involving monomer absorption studies using tritiated styrene is shown to support the proposal that additives such as mineral acids and certain inorganic salts when dissolved in the monomer solution enhance radiation grafting yields by a mechanism involving partitioning of reagents. Photoinitiators such as benzoin ethyl ether and its methyl analogue are reported as new additives for grafting of styrene in methanol to cellulose and polypropylene initiated by ionizing radiation. The partitioning concept is shown to be relevant in analogous UV grafting and curing processes.

  6. PEM Anchorage on Titanium Using Catechol Grafting

    PubMed Central

    Marie, Hélène; Barrere, Amélie; Schoentstein, Frédérique; Chavanne, Marie-Hélène; Grosgogeat, Brigitte; Mora, Laurence

    2012-01-01

    Background This study deals with the anchorage of polyelectrolyte films onto titanium surfaces via a cathecol-based linker for biomedical applications. Methodology The following study uses a molecule functionalized with a catechol and a carboxylic acid: 3-(3,4-dihydroxyphenyl)propanoic acid. This molecule is anchored to the TiO2 substrate via the catechol while the carboxylic acid reacts with polymers bearing amine groups. By providing a film anchorage of chemisorption type, it makes possible to deposit polyelectrolytes on the surface of titanium. Principal Findings Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), contact angle and atomic force microscopy (AFM) measurements show that the different steps of grafting have been successfully performed. Conclusions This method based on catechol anchorage of polyelectrolytes open a window towards large possibilities of clinical applications. PMID:23226262

  7. Predictors of early graft failure after coronary artery bypass grafting for chronic total occlusion.

    PubMed

    Oshima, Hideki; Tokuda, Yoshiyuki; Araki, Yoshimori; Ishii, Hideki; Murohara, Toyoaki; Ozaki, Yukio; Usui, Akihiko

    2016-07-01

    Little is known regarding the transit-time flow measurement (TTFM) variables in grafts anastomosed to chronically totally occluded vessels (CTOs). We aimed to establish the TTFM cut-off values for detecting graft failure in bypass grafts anastomosed to chronically totally occluded arteries and clarify the relationship between early graft failure and the grade of collateral circulation/regional wall motion of the CTO territory. Among 491 patients who underwent isolated coronary artery bypass grafting (CABG) from 2009 to 2015, 196 cases with CTOs underwent postoperative coronary angiography within 1 month after CABG. Two hundred and forty-one CTOs in all patients were examined. Thirty-two CTOs (13%) were not bypassed and 214 conduits were anastomosed to CTOs and underwent intraoperative TTFM. Arterial conduits and saphenous vein grafts (SVGs) were used in 102 and 112 cases, respectively. Among the arterial conduit procedures that were performed, 78 involved the left internal thoracic artery (LITA), 10 involved the right internal thoracic artery (RITA) and 14 involved the right gastroepiploic artery (rGEA). Any graft showing Fitzgibbon type B or O lesions on angiography was considered to be a failing graft. The insufficiency rates for LITA, RITA, rGEA and SVG procedures were 5.1, 10, 14.3 and 7.1%, respectively. The TTFM variables recorded in failing grafts had a significantly lower mean flow (Qmean) and higher pulsatility index (PI) compared with patent grafts. Furthermore, akinetic or dyskinetic wall motion in the territory of bypassed CTOs was observed at a significantly higher rate in failing grafts. A multivariable regression analysis and receiver operating characteristic analysis revealed good predictors of early graft failure as follows: a Qmean value of < 11.5 ml/min for arterial conduits, a PI value of >5.85 and akinetic/dyskinetic wall motion in the CTO territory for SVGs. The Rentrop collateral grade was not associated with early graft failure. The Qmean

  8. Plasma-grafting polymerization on carbon fibers and its effect on their composite properties

    NASA Astrophysics Data System (ADS)

    Zhang, Huanxia; Li, Wei

    2015-11-01

    Interfacial adhesion between matrix and fibers plays a crucial role in controlling the performance of composites. Carbon fibers have the major constraint of chemical interness and hence have limited adhesion with the matrix. Surface treatment of fibers is the best solution to this problem. In this work, carbon fibers were activated by plasma and grafting polymerization. The grafting ratio of polymerization was obtained by acid-base titration. The chemical and physical changes induced by the treatments on carbon fiber surface was examined using contact angle measurements, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The interfacial adhesion of CF/EP (carbon fiber/epoxy) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. Experimental results show that the grafting rate was not only the function of the plasma-treat time but also the concentration of the grafting polymerization. The oxygen-containing groups (such as Csbnd O, Cdbnd O, and Osbnd Cdbnd O) and the interfacial shear strength (IFSS) of the plasma-grafting carbon fiber increased more significantly than the carbon fiber without plasma treatment grafted with MAH. This demonstrates that the surfaces of the carbon fiber samples are more active, hydrophilic, and rough after plasma-grafting treatments using a DBD operating in ambient argon mixture with oxygen. With DBD (dielectric barrier discharges) operating in ambient argon mixture with oxygen, the more active, hydrophilic, and rough surface was obtained by the plasma-grafting treatments.

  9. Microwave induced synthesis of graft copolymer of binary vinyl monomer mixtures onto delignified Grewia optiva fiber: application in dye removal

    PubMed Central

    Gupta, Vinod Kumar; Pathania, Deepak; Priya, Bhanu; Singha, Amar Singh; Sharma, Gaurav

    2014-01-01

    Grafting method, through microwave radiation technique is very effective in terms of time consumption, cost effectiveness and environmental friendliness. Via this method, delignified Grewia optiva identified as a waste biomass, was graft copolymerized with methylmethacrylate (MMA) as an principal monomer in a binary mixture of ethyl methacrylate (EMA) and ethyl acrylate (EA) under microwave irradiation (MWR) using ascorbic acid/H2O2 as an initiator system. The concentration of the comonomer was optimized to maximize the graft yield with respect to the primary monomer. Maximum graft yield (86.32%) was found for dGo-poly(MMA-co-EA) binary mixture as compared to other synthesized copolymer. The experimental results inferred that the optimal concentrations for the comonomers to the optimized primary monomer was observed to be 3.19 mol/L × 10−1 for EMA and 2.76 mol/L × 10−1 for EA. Delignified and graft copolymerized fiber were subjected to evaluation of physicochemical properties such as swelling behavior and chemical resistance. The synthesized graft copolymers were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction techniques. Thermal stability of dGo-poly(MMA-co-EA) was found to be more as compared to the delignified Grewia optiva fiber and other graft copolymers. Although the grafting technique was found to decrease percentage crystallinity and crystallinity index among the graft copolymers but there was significant increase in their acid/base and thermal resistance properties. The grafted samples have been explored for the adsorption of hazardous methylene dye from aqueous system. PMID:25157348

  10. Improved anti-tumor activity and safety profile of a paclitaxel-loaded glycyrrhetinic acid-graft-hyaluronic acid conjugate as a synergistically targeted drug delivery system.

    PubMed

    Zhang, Li; Zhou, Jian-Ping; Yao, Jing

    2015-12-01

    The present study was designed to develop and evaluate glycyrrhetinic acid-graft-hyaluronic acid (HGA) conjugate for intravenous paclitaxel (PTX) delivery. Lyophilized PTX-loaded self-assembled HGA nanoparticles (PTX/HGAs) were prepared and characterized by dynamic light scattering measurements. Hemolysis test, intravenous irritation assessment, and in vitro and in vivo pharmacodynamic studies were carried out. B16F10 and HepG2 cells were used in the cell apoptosis analysis. The mouse MDA-MB-231 xenograft model was used for the evaluation of in vivo anticancer activity of the drugs, by the analysis of tumor growth and side effects on other tissues. PTX/HGAs showed high stability and good biocompability. Compared with PTX plus GA plus HA solution, PTX/HGAs displayed obvious superiority in inducing the apoptosis of the cancer cells. Following systemic administration, PTX/HGAs efficiently suppressed tumor growth, with mean tumor inhibition ratio (TIR) being 65.08%, which was significantly higher than that of PTX plus GA plus HA treatment. In conclusion, PTX/HGAs demonstrated inhibitory effects tumor growth without unwanted side effects, suggesting that HGA conjugates hold a great potential as a delivery carrier for cancer chemotherapeutics to improve therapeutic efficacy and minimize adverse effects. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  11. Percutaneous coronary intervention strategies and prognosis for graft lesions following coronary artery bypass grafting

    PubMed Central

    LIU, YIN; ZHOU, XIUJUN; JIANG, HUA; GAO, MINGDONG; WANG, LIN; SHI, YUTIAN; GAO, JING

    2015-01-01

    The purpose of this study was to compare the prognosis of graft-percutaneous coronary intervention (PCI) and native vessel (NV)-PCI, drug-eluting stents (DESs) and bare-metal stents (BMSs) for the treatment of graft lesions following coronary artery bypass grafting (CABG), and to determine the risk factors for major adverse cardiac events (MACEs). A total of 289 patients who underwent PCI following CABG between August 2005 and March 2010 were retrospectively analyzed. The effects on survival were compared among patients who underwent NV- and graft-PCI, and DES and BMS implantation. Additionally, the risk factors for MACEs following PCI for graft lesions were analyzed. The findings showed that MACE-free and revascularization-free survival rates were significantly higher in the NV-PCI group compared with those in the graft-PCI group. There were 63 cases (29.0%) of MACEs in the DES group and 25 cases (52.1%) in the BMS group. In patients undergoing NV-PCI, the DES group had significantly fewer MACEs and less target vessel revascularization (TVR) than the BMS group. In patients undergoing graft-PCI, the DES group showed a tendency for fewer MACEs and a lower incidence of cardiac mortality, myocardial infarction and TVR compared with the BMS group. Diabetes, an age of >70 years and graft-PCI were independent risk factors for MACEs in patients post-PCI. It is concluded that NV-PCI has superior long-term outcomes compared with graft-PCI, and should therefore be considered as the first-line treatment for graft disease following CABG. Despite this, graft-PCI remains a viable option. DESs are the first choice for graft-PCI due to their safety and efficacy and their association with reduced mortality and MACE rate. Diabetes, older age and graft-PCI are independent risk factors for MACEs in patients post-CABG who are undergoing revascularization. PMID:26136874

  12. Polyacrylic acid grafted kaolinite via a facile ‘grafting to’ approach based on heterogeneous esterification and its adsorption for Cu2+

    NASA Astrophysics Data System (ADS)

    Zhao, Ping; Zhou, Qi; Yan, Chunjie; Luo, Wenjun

    2017-03-01

    Kaolinite (KLN) was successfully decorated by polyacrylic acid (PAA) brushes via a facile ‘one-step’ manner in this study. This process was achieved by heterogeneous esterification between carboxyl on the PAA chains and hydroxyl on the KLN in the presence of Al3+ as catalyst. The prepared composite (denoted as PAA-g-KLN) was characterized by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction pattern (XRD), Field emission scanning electron microscopy (FE-SEM) and thermogravimetry (TG) to confirm the successful grafting of PAA brushes on the surface of KLN. Subsequently, the PAA-g-KLN was used as adsorbent for the removal of Cu2+ from wastewater. Due to the introduction of abundant and highly accessible carboxyl groups on the surface of kaolinite, PAA-g-KLN exhibited an enhanced adsorption performance than raw kaolinite, which could be up to 32.45 mg·g-1 at 45 °C with a fast adsorption kinetic. Theoretical models analysis revealed that Langmuir isotherm model and the pseudo second-order model were more suitable for well elucidation of the experimental data. In addition, the regeneration experiment showed that the PAA-g-KLN could still keep a satisfactory adsorption capacity (>65%) by being reused for 6 consecutive cycles. The study provides an easy and rapid method for surface polyelectrolyte modification on inorganic mineral as a promising adsorbent to remove Cu2+ from aqueous solution.

  13. Modification of an endovascular stent graft for abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Moloye, Olajompo Busola

    Endovascular surgery is currently used to treat abdominal aortic aneurysms (AAA). A stent graft is deployed to exclude blood flow from the aneurysm sac. It is an effective procedure used in preventing aneurysm rupture, with reduced patient morbidity and mortality compared to open surgical repair. Migration and leakage around the device ("endoleak") due to poor sealing of the stent graft to the aorta have raised concerns about the long-term durability of endovascular repair. A preliminary study of cell migration and proliferation is presented as a prelude to a more extensive in vivo testing. A method to enhance the biological seal between the stent graft and the aorta is proposed to eliminate this problem. This can be achieved by impregnating the stent graft with 50/50 poly (DL-lactide co glycolic acid) (PLGA) and growth factors such as basic fibroblast growth factor (bFGF) or connective tissue growth factor (CTGF), at the proximal and distal ends. It is hypothesized that as PLGA degrades it will release the growth factors that will promote proliferation and migration of aortic smooth muscle cells to the coated site, leading to a natural seal between the aorta and the stent graft. In addition, growth factor release should promote smooth muscle cell (SMC) contraction that will help keep the stent graft in place at the proximal and distal ends. It is shown that a statistically significant effect of increased cell proliferation and migration is observed for CTGF release. Less of an effect is noted for bFGF or just the PLGA. The effect is estimated to be large enough to be clinically significant in a future animal study. The long term goal of this study is to reduce migration encounter after graft deployment and to reduce secondary interventions of EVAR especially for older patients who are unfit for open surgical treatment.

  14. Dacarbazine-Loaded Hollow Mesoporous Silica Nanoparticles Grafted with Folic Acid for Enhancing Antimetastatic Melanoma Response.

    PubMed

    Liu, Qianqian; Xu, Nan; Liu, Liping; Li, Jun; Zhang, Yamin; Shen, Chen; Shezad, Khurram; Zhang, Lianbin; Zhu, Jintao; Tao, Juan

    2017-07-05

    Dacarbazine (DTIC) is one of the most important chemotherapeutic agents for the treatment of melanoma; however, its poor solubility, photosensitivity, instability, and serious toxicity to normal cells limit its clinical applications. In this article, we present a rationally designed nanocarrier based on hollow mesoporous silica nanoparticles (HMSNs) for the encapsulation and targeted release of DTIC for eradicating melanoma. The nanocarrier (DTIC@HMLBFs) is prepared by modifying HMSNs with carboxyl groups to enhance the loading of DTIC, followed by further enveloping of folic acid-grafted liposomes, which act as a melanoma active target for controlled and targeted drug release. In vitro, DTIC@HMLBFs exhibited the strongest cytotoxicity to melanoma cells compared with DTIC@HMSNs and free DTIC. The in vivo investigations demonstrate that the rationally designed nanocarrier loaded with DTIC achieves significant improvement against lung metastasis of melanoma via targeting melanoma cells and tumor-associated macrophages. This study provides a promising platform for the design and fabrication of multifunctional nanomedicines, which are potentially useful for the treatment of melanoma.

  15. Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Vatanpour, Vahid; Zoqi, Naser

    2017-02-01

    In this study, modification of commercial seawater reverse osmosis membranes was carried out with simultaneous use of surface grafting and nanoparticle incorporation. Membrane grafting with a hydrophilic acrylic acid monomer and thermal initiator was used to increase membrane surface hydrophilicity. The used nanomaterial was carboxylated multiwalled carbon nanotubes (MWCNTs), which were dispersed in the grafting solution and deposited on membrane surface to reduce fouling by creating polymer brushes and hydrodynamic resistance. Effectiveness of the grafting process (formation of graft layer on membrane surface) was proved by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analyses. Increase of membrane surface hydrophilicity was approved with contact angle test. First, the grafting was performed on the membrane surfaces with different monomer concentrations, various contact times and several membrane curing times (three variables for optimization). The modified membranes were tested by a cross-flow setup using saline solution for permeability and rejection tests, and bovine serum albumin (BSA) solution for fouling test. The results showed that the modified membranes with 0.75 M of monomer, 3 min contact time and 80 min curing time in an oven at 50 °C presented the highest flux and lowest rejection decline related to the commercial reverse osmosis membrane. In the next step, the optimum grafting condition was selected and the nanotubes with different weight percentages were dispersed in the acrylic acid monomer solution. The membrane containing 0.25 wt% COOH-MWCNTs showed the highest fouling resistance.

  16. Management of an infected aortic graft with endovascular stent grafting.

    PubMed

    Jamel, Sara; Attia, Rizwan; Young, Christopher

    2013-01-01

    Aortic graft infection, one of the most common fatal complications of aortovascular surgery, is managed mainly by the removal of infected graft material and re-establishment of vascular continuity using an extra-anatomical bypass or in situ graft replacement. Despite significant progress in perioperative, surgical, and medical treatments, the mortality and morbidity for this condition remain high. Here, we report the use of endograft implantation and prolonged intravenous antibiotics to successfully treat a life-threatening Dacron aortic tube graft infection and anastomotic leak. Although the gold standard is surgical removal of infected material and repair with a homograft, in certain extremely high-risk patients such as ours, an alternate strategy may be warranted when the risks associated with surgery are prohibitive. Endovascular repair of a surgical Dacron graft leak may provide a novel temporizing measure in the acute setting, allowing for delayed semi-urgent surgical intervention, or it may provide a definitive treatment, as in our case. At the four-year follow-up, our patient was well with a good quality of life and with no clinical, radiological, or biochemical evidence of infection.

  17. Rejuvenation of Sequoia sempervirens by Repeated Grafting of Shoot Tips onto Juvenile Rootstocks in Vitro 1

    PubMed Central

    Huang, Li-Chun; Lius, Suwenza; Huang, Bau-Lian; Murashige, Toshio; Mahdi, El Fatih M.; Van Gundy, Richard

    1992-01-01

    Repeated grafting of 1.5-centimeter long shoot tips from an adult Sequoia sempervirens tree onto fresh, rooted juvenile stem cuttings in vitro resulted in progressive restoration of juvenile traits. After four successive grafts, stem cuttings of previously adult shoots rooted as well, branched as profusely, and grew with as much or more vigor as those of seedling shoots. Reassays disclosed retention for 3 years of rooting competence at similar levels as originally restored. Adventitious shoot formation was remanifested and callus development was depressed in stem segments from the repeatedly grafted adult. The reversion was associated with appearance and disappearance of distinctive leaf proteins. Neither gibberellic acid nor N6-beneyladenine as nutrient supplements duplicated the graft effects. ImagesFigure 2Figure 5Figure 8 PMID:16668609

  18. An automated perfusion bioreactor for the streamlined production of engineered osteogenic grafts.

    PubMed

    Ding, Ming; Henriksen, Susan S; Wendt, David; Overgaard, Søren

    2016-04-01

    A computer-controlled perfusion bioreactor was developed for the streamlined production of engineered osteogenic grafts. This system automated the required bioprocesses, from the initial filling of the system through the phases of cell seeding and prolonged cell/tissue culture. Flow through chemo-optic micro-sensors allowed to non-invasively monitor the levels of oxygen and pH in the perfused culture medium throughout the culture period. To validate its performance, freshly isolated ovine bone marrow stromal cells were directly seeded on porous scaffold granules (hydroxyapatite/β-tricalcium-phosphate/poly-lactic acid), bypassing the phase of monolayer cell expansion in flasks. Either 10 or 20 days after culture, engineered cell-granule grafts were implanted in an ectopic mouse model to quantify new bone formation. After four weeks of implantation, histomorphometry showed more bone in bioreactor-generated grafts than cell-free granule controls, while bone formation did not show significant differences between 10 days and 20 days of incubation. The implanted granules without cells had no bone formation. This novel perfusion bioreactor has revealed the capability of activation larger viable bone graft material, even after shorter incubation time of graft material. This study has demonstrated the feasibility of engineering osteogenic grafts in an automated bioreactor system, laying the foundation for a safe, regulatory-compliant, and cost-effective manufacturing process. © 2015 Wiley Periodicals, Inc.

  19. A comparative study of the effect of Ni9+ and Au8+ ion beams on the properties of poly(methacrylic acid) grafted gum ghatti films

    NASA Astrophysics Data System (ADS)

    Sharma, Kashma; Kaith, B. S.; Kumar, Vijay; Kumar, Vinod; Kalia, Susheel; Kapur, B. K.; Swart, H. C.

    2014-04-01

    A systematic comparative study was carried out for the induced changes in the chemical, structural, morphological and thermal properties of poly(methacrylic acid) grafted gum ghatti i.e. [Gg-cl-poly(MAA)] material by irradiation of 120 MeV Ni9+ and Au8+ ions at various fluences ranging from 3×1011 to 3×1012 ions/cm2. The degradation of the material was observed after ion irradiation. A significant loss of crystallinity and change in the crystallite size was observed in irradiated samples of Gg-cl-poly(MAA). The changes in chemical properties and surface morphology were observed by Fourier transform infrared spectroscopy and scanning electron microscopy respectively. The magnitude of the effect of the irradiation was observed to be greater in the case of Au8+ ions irradiation than those of Ni9+ ions irradiation due to the high electronic energy loss of the Au8+ ions in the grafted samples.

  20. Comprehensive mechanical characterization of PLA fabric combined with PCL to form a composite structure vascular graft.

    PubMed

    Li, Chaojing; Wang, Fujun; Douglas, Graeham; Zhang, Ze; Guidoin, Robert; Wang, Lu

    2017-05-01

    Vascular grafts made by tissue engineering processes are prone to buckling and twisting, which can impede blood flow and lead to collapse of the vessel. These vascular conduits may suffer not only from insufficient tensile strength, but also from vulnerabilities related to compression, torsion, and pulsatile pressurization. Aiming to develop a tissue engineering-inspired blood conduit, composite vascular graft (cVG) prototypes were created by combining a flexible polylactic acid (PLA) knitted fabric with a soft polycaprolactone (PCL) matrix. The graft is to be populated in-situ with cellular migration and proliferation into the device. Comprehensive characterizations probed the relationship between structure and mechanical properties of the different cVG prototypes. The composite grafts exhibited major improvements in mechanical characteristics compared to single-material devices, with particular improvement in compression and torsional resistance. A commercial expanded polytetrafluoroethylene (ePTFE) vascular graft was used as a control against the proposed composite vascular grafts. CVG devices showed high tensile strength, high bursting strength, and improved suture retention. Compression, elastic recovery, and compliance were similar to those for the ePTFE graft. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Grafting of alginates on UF/NF ceramic membranes for wastewater treatment.

    PubMed

    Athanasekou, C P; Romanos, G E; Kordatos, K; Kasselouri-Rigopoulou, V; Kakizis, N K; Sapalidis, A A

    2010-10-15

    The mechanism of heavy metal ion removal in processes involving multi-layered tubular ultrafiltration and nanofiltration (UF/NF) membranes was investigated by conducting retention experiments in both flow-through and cross-flow modes. The prospect of the regeneration of the membranes through an acidic process was also examined and discussed. The UF/NF membranes were functionalised with alginates to develop hybrid inorganic/organic materials for continuous, single pass, wastewater treatment applications. The challenge laid in the induction of additional metal adsorption and improved regeneration capacity. This was accomplished by stabilizing alginates either into the pores or on the top-separating layer of the membrane. The preservation of efficient water fluxes at moderate trans-membrane pressures introduced an additional parameter that was pursued in parallel to the membrane modification process. The deposition and stabilization of alginates was carried out via physical (filtration/cross-linking) and chemical (grafting) procedures. The materials developed by means of the filtration process exhibited a 25-60% enhancement of their Cd(2+) binding capacity, depending on the amount of the filtered alginate solution. The grafting process led to the development of alginate layers with adequate stability under acidic regeneration conditions and metal retention enhancement of 25-180%, depending on the silane involved as grafting agent and the solvent of silanisation. 2010 Elsevier B.V. All rights reserved.

  2. Plant grafting: new mechanisms, evolutionary implications.

    PubMed

    Goldschmidt, Eliezer E

    2014-01-01

    Grafting, an old plant propagation practice, is still widely used with fruit trees and in recent decades also with vegetables. Taxonomic proximity is a general prerequisite for successful graft-take and long-term survival of the grafted, composite plant. However, the mechanisms underlying interspecific graft incompatibility are as yet insufficiently understood. Hormonal signals, auxin in particular, are believed to play an important role in the wound healing and vascular regeneration within the graft union zone. Incomplete and convoluted vascular connections impede the vital upward and downward whole plant transfer routes. Long-distance protein, mRNA and small RNA graft-transmissible signals currently emerge as novel mechanisms which regulate nutritional and developmental root/top relations and may play a pivotal role in grafting physiology. Grafting also has significant pathogenic projections. On one hand, stock to scion mechanical contact enables the spread of diseases, even without a complete graft union. But, on the other hand, grafting onto resistant rootstocks serves as a principal tool in the management of fruit tree plagues and vegetable soil-borne diseases. The 'graft hybrid' historic controversy has not yet been resolved. Recent evidence suggests that epigenetic modification of DNA-methylation patterns may account for certain graft-transformation phenomena. Root grafting is a wide spread natural phenomenon; both intraspecific and interspecific root grafts have been recorded. Root grafts have an evolutionary role in the survival of storm-hit forest stands as well as in the spread of devastating diseases. A more fundamental evolutionary role is hinted by recent findings that demonstrate plastid and nuclear genome transfer between distinct Nicotiana species in the graft union zone, within a tissue culture system. This has led to the formation of alloploid cells that, under laboratory conditions, gave rise to a novel, alloploid Nicotiana species, indicating

  3. Plant grafting: new mechanisms, evolutionary implications

    PubMed Central

    Goldschmidt, Eliezer E.

    2014-01-01

    Grafting, an old plant propagation practice, is still widely used with fruit trees and in recent decades also with vegetables. Taxonomic proximity is a general prerequisite for successful graft-take and long-term survival of the grafted, composite plant. However, the mechanisms underlying interspecific graft incompatibility are as yet insufficiently understood. Hormonal signals, auxin in particular, are believed to play an important role in the wound healing and vascular regeneration within the graft union zone. Incomplete and convoluted vascular connections impede the vital upward and downward whole plant transfer routes. Long-distance protein, mRNA and small RNA graft-transmissible signals currently emerge as novel mechanisms which regulate nutritional and developmental root/top relations and may play a pivotal role in grafting physiology. Grafting also has significant pathogenic projections. On one hand, stock to scion mechanical contact enables the spread of diseases, even without a complete graft union. But, on the other hand, grafting onto resistant rootstocks serves as a principal tool in the management of fruit tree plagues and vegetable soil-borne diseases. The ‘graft hybrid’ historic controversy has not yet been resolved. Recent evidence suggests that epigenetic modification of DNA-methylation patterns may account for certain graft-transformation phenomena. Root grafting is a wide spread natural phenomenon; both intraspecific and interspecific root grafts have been recorded. Root grafts have an evolutionary role in the survival of storm-hit forest stands as well as in the spread of devastating diseases. A more fundamental evolutionary role is hinted by recent findings that demonstrate plastid and nuclear genome transfer between distinct Nicotiana species in the graft union zone, within a tissue culture system. This has led to the formation of alloploid cells that, under laboratory conditions, gave rise to a novel, alloploid Nicotiana species

  4. Grafting of GMA and some comonomers onto chitosan for controlled release of diclofenac sodium.

    PubMed

    Sharma, Rajeev Kr; Lalita; Singh, Anirudh P; Chauhan, Ghanshyam S

    2014-03-01

    In order to develop pH sensitive hydrogels for controlled drug release we have graft copolymerized glycidyl methacrylate (GMA) with comonomers acrylic acid, acrylamide and acrylonitrile, onto chitosan (Ch) by using potassium persulphate (KPS) as free radical initiator in aqueous solution. The optimum percent grafting for GMA was recorded for 1g chitosan at [KPS]=25.00 × 10(-3)mol/L, [GMA]=0.756 × 10(-3)mol/L, reaction temperature=60 °C and reaction time=1h in 20 mL H2O. Binary monomers were grafted for five different concentrations at optimum grafting conditions evaluated for GMA alone onto chitosan. The graft copolymers were characterized by FTIR, XRD, TGA and SEM. The swelling properties of chitosan and graft copolymers were investigated at different pH to define their end uses in sustained release of an anti-inflammatory drug, diclofenac sodium. Percent drug release w.r.t. drug loaded in polymeric sample was studied as function of time in buffer solutions of pH 2.0 and 7.4. In vitro release data was analyzed using Fick's Law. Chitosan grafted with binary monomers, GMA-co-AAm and GMA-co-AN showed very good results for sustained release of drug at 7.4 pH. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Current status of grafts and implants in rhinoplasty: Part II. Homologous grafts and allogenic implants.

    PubMed

    Sajjadian, Ali; Naghshineh, Nima; Rubinstein, Roee

    2010-03-01

    After reading this article, the participant should be able to: 1. Understand the challenges in restoring volume and structural integrity in rhinoplasty. 2. Identify the appropriate uses of various homologous grafts and allogenic implants in reconstruction, including: (a) freeze-dried acellular allogenic cadaveric dermis grafts, (b) irradiated cartilage grafts, (c) hydroxyapatite mineral matrix, (d) silicone implants, (e) high-density polyethylene implants, (f) polytetrafluoroethylene implants, and (g) injectable filler materials. 3. Identify the advantages and disadvantages of each of these biomaterials. 4. Understand the specific techniques that may aid in the use these grafts or implants. This review specifically addresses the use of homologous grafts and allogenic implants in rhinoplasty. It is important to stress that autologous materials remain the preferred graft material for use in rhinoplasty, owing to their high biocompatibility and low risk of infection and extrusion. However, concerns of donor-site morbidity, graft availability, and graft resorption have motivated the development and use of homologous and allogenic implants.

  6. Coating of Dacron vascular grafts with an ionic polyurethane: a novel sealant with protein binding properties.

    PubMed

    Phaneuf, M D; Dempsey, D J; Bide, M J; Quist, W C; LoGerfo, F W

    2001-03-01

    The purpose of this study was to develop a novel sealant that would seal prosthetic vascular graft interstices and be accessible for protein binding. Crimped knitted Dacron vascular grafts were cleaned (CNTRL) and hydrolyzed in boiling sodium hydroxide (HYD). These HYD grafts were sealed using an 11% solids solution of a polyether-based urethane with carboxylic acid groups (PEU-D) via a novel technique that employs both trans-wall and luminal perfusion. Carboxylic acid content, determined via methylene blue dye uptake, was 2.3- and 4.2-fold greater in PEU-D segments (1.0+/-0.27 nmol/mg) as compared to HYD and CNTRL segments, respectively. Water permeation through PEU-D graft (1.1+/-2 ml/cm2 min(-1)) was comparable to collagen-impregnated Dacron (9.8+/-10 ml/cm2 min(-1)). Non-specific 125I-albumin (125I-Alb) binding to PEU-D segments (18+/-3 ng/mg) was significantly lower than HYD and CNTRL segments. 125I-Alb linkage to PEU-D using the crosslinker EDC resulted in 5.7-fold greater binding (103+/-2 ng/mg) than non-specific PEU-D controls. However, covalent linkage of 125I-Alb to PEU-D was 4.9- and 5.9-fold less than CNTRL and HYD segments with EDC, respectively. Thus, ionic polyurethane can be applied to a pre-formed vascular graft, seal the interstices and create "anchor" sites for protein attachment.

  7. XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems.

    PubMed

    Pitaksaringkarn, Weerasak; Matsuoka, Keita; Asahina, Masashi; Miura, Kenji; Sage-Ono, Kimiyo; Ono, Michiyuki; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Ishii, Tadashi; Iwai, Hiroaki; Satoh, Shinobu

    2014-11-01

    One week after partial incision of Arabidopsis inflorescence stems, the repair process in damaged tissue includes pith cell proliferation. Auxin is a key factor driving this process, and ANAC071, a transcription factor gene, is upregulated in the distal region of the incised stem. Here we show that XTH20 and the closely related XTH19, members of xyloglucan endotransglucosylase/hydrolases family catalyzing molecular grafting and/or hydrolysis of cell wall xyloglucans, were also upregulated in the distal part of the incised stem, similar to ANAC071. XTH19 was expressed in the proximal incision region after 3 days or after auxin application to the decapitated stem. Horizontal positioning of the plant with the incised side up resulted in decreased ProDR 5 :GUS, ANAC071, XTH20, and XTH19 expression and reduced pith cell proliferation. In incised stems of Pro35S :ANAC071-SRDX plants, expression of XTH20 and XTH19 was substantially and moderately decreased, respectively. XTH20 and XTH19 expression and pith cell proliferation were suppressed in anac071 plants and were increased in Pro35S :ANAC071 plants. Pith cell proliferation was also inhibited in the xth20xth19 double mutant. Furthermore, ANAC071 bound to the XTH20 and XTH19 promoters to induce their expression. This study revealed XTH20 and XTH19 induction by auxin via ANAC071 in the distal part of an incised stem and their involvement in cell proliferation in the tissue reunion process. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  8. Biodegradation of toluene vapor in coir based upflow packed bed reactor by Trichoderma asperellum isolate.

    PubMed

    Gopinath, M; Mohanapriya, C; Sivakumar, K; Baskar, G; Muthukumaran, C; Dhanasekar, R

    2016-03-01

    In the present study, a new biofiltration system involving a selective microbial strain isolated from aerated municipal sewage water attached with coir as packing material was developed for toluene degradation. The selected fungal isolate was identified as Trichoderma asperellum by 16S ribosomal RNA (16S rRNA) sequencing method, and pylogenetic tree was constructed using BLASTn search. Effect of various factors on growth and toluene degradation by newly isolated T. asperellum was studied in batch studies, and the optimum conditions were found to be pH 7.0, temperature 30 °C, and initial toluene concentration 1.5 (v/v)%. Continuous removal of gaseous toluene was monitored in upflow packed bed reactor (UFPBR) using T. asperellum. Effect of various parameters like column height, flow rate, and the inlet toluene concentration were studied to evaluate the performance of the biofilter. The maximum elimination capacity (257 g m(-3) h(-1)) was obtained with the packing height of 100 cm with the empty bed residence time of 5 min. Under these optimum conditions, the T. asperellum showed better toluene removal efficiency. Kinetic models have been developed for toluene degradation by T. asperellum using macrokinetic approach of the plug flow model incorporated with Monod model.

  9. Penile Inversion Vaginoplasty with or without Additional Full-Thickness Skin Graft: To Graft or Not to Graft?

    PubMed

    Buncamper, Marlon E; van der Sluis, Wouter B; de Vries, Max; Witte, Birgit I; Bouman, Mark-Bram; Mullender, Margriet G

    2017-03-01

    Penile inversion vaginoplasty is considered to be the gold standard for gender reassignment surgery in transgender women. The use of additional full-thickness skin graft as neovaginal lining is controversial. Some believe that having extra penile skin for the vulva gives better aesthetic results. Others believe that it gives inferior functional results because of insensitivity and skin graft contraction. Transgender women undergoing penile inversion vaginoplasty were studied prospectively. The option to add full-thickness skin graft is offered in patients where the penile skin length lies between 7 and 12 cm. Neovaginal depth was measured at surgery and during follow-up (3, 13, 26, and 52 weeks postoperatively). Satisfaction with the aesthetic result, neovaginal depth, and dilation regimen during follow-up were recorded. Satisfaction, sexual function, and genital self-image were assessed using questionnaires. A total of 100 patients were included (32 with and 68 without additional full-thickness skin graft). Patient-reported aesthetic outcome, overall satisfaction with the neovagina, sexual function, and genital self-image were not significantly associated with surgical technique. The mean intraoperative neovaginal depth was 13.8 ± 1.4 cm. After 1 year, this was 11.5 ± 2.5 cm. The largest decline (-15 percent) in depth is observed in the first 3 postoperative weeks (p < 0.01). The authors can confirm neither of the suggested arguments, for or against full-thickness skin graft use, in penile inversion vaginoplasty. The additional use of full-thickness skin graft does not influence neovaginal shrinkage, nor does it affect the patient- and physician-reported aesthetic or functional outcome. Therapeutic, IV.

  10. Laccase catalysed grafting of phenolic onto xylan to improve its applicability in films

    NASA Astrophysics Data System (ADS)

    Pei, Jicheng; Wang, Bing; Zhang, Fangdong; Li, Zhongyang; Yin, Yunbei; Zhang, Dongxu

    2015-07-01

    Xylan can be tailored for various value-added applications. However, its use in aqueous systems is hampered by its complex structure, and small molecular weight. This research aimed at improving the xylan molecular weight and changing its structure. Laccase-catalysed oxidation of 4-coumaric acid (PCA), ferulic acid (FA), syringaldehyde (SD), and vanillin (VA) onto xylan was grafted to study the changes in its structure, tensile properties, and antibacterial activities. A Fourier transform infrared (FTIR) spectrum analyser was used to observe the changes in functional groups of xylan. The results showed a band at 1635 cm-1 corresponding to the stretching vibration of conjugated carbonyl carboxy hemoglobin and a benzene ring structure were strengthened; the appearance of a new band between 1200 cm-1 and 1270 cm-1 corresponding to alkyl ethers on the aryl C-O stretching vibration was due to the fact that during the grafting process, the number of benzene ring structures increased and covalent connections occurred between phenols and xylan. The reaction mechanism for the laccase-catalysed oxidation of phenol compounds onto xylan was preliminary explored by 13C-NMR. The results showed that PCA-xylan, FA-xylan graft poly onto xylan by Cγ ester bond, SD-xylan graft poly onto xylan by ether bond and an ester bond, and VD-xylan graft poly onto xylan by ether bond. The film strength of xylan derivatives has been significantly increased, especially for the PCA-xylan derivative. The increases in tensile stress at break, tensile strength, tensile yield stress, and Young's modulus were: 24.04%, 31.30%, 55.56%, and 28.21%, respectively. After laccase/phenolics were modified, xylan had a good antibacterial effect to E. coli, Corynebacterium glutamicum, and Bacillus subtilis. The SD-xylan, FA-xylan, and PCA-xylan showed a greater efficacy against E. coli, Corynebacterium glutamicum, and Bacillus subtilis, respectively.

  11. Poor Patient and Graft Outcome After Induction Treatment by Antithymocyte Globulin in Recipients of a Kidney Graft After Nonrenal Organ Transplantation.

    PubMed

    Mai, Hoa Le; Treilhaud, Michèle; Ben-Arye, Shani Leviatan; Yu, Hai; Perreault, Hélène; Ang, Evelyn; Trébern-Launay, Katy; Laurent, Julie; Malard-Castagnet, Stéphanie; Cesbron, Anne; Nguyen, Thi Van Ha; Brouard, Sophie; Rostaing, Lionel; Houssel-Debry, Pauline; Legendre, Christophe; Girerd, Sophie; Kessler, Michèle; Morelon, Emmanuel; Sicard, Antoine; Garrigue, Valérie; Karam, Georges; Chen, Xi; Giral, Magali; Padler-Karavani, Vered; Soulillou, Jean Paul

    2018-04-01

    End-stage renal failure occurs in a substantial number of patients having received a nonrenal transplantation (NRT), for whom a kidney transplantation is needed. The medical strategy regarding the use of immunosuppression (IS) for a kidney graft in patients after an NRT is not well established. The prekidney grafts long-term IS advocates for a mild induction, such as using anti-IL-2R antibodies, whereas addition of new incompatibilities and anti-HLA preimmunization may suggest using stronger IS such as induction by polyclonal antithymocyte globulins (ATG). We performed Cox multivariate and propensity score analysis of our validated transplant database to study the impact of the type of induction therapy on kidney graft survival of recipients of a kidney graft after NRT. We report here that kidney transplantation after NRT treated with an ATG induction has a poorer outcome (kidney and recipient survival) than that with an anti-IL-2R induction. After accounting for potential baseline differences with a multivariate Cox model, or by adjusting on a propensity score, we found that despite patients having received ATG cumulate more risk factors, ATG appears independently involved. As animal-derived biotherapeutics induce antiglycan antibodies and particularly anti-N-glycolylneuraminic acid (Neu5Gc) IgGs which may activate endothelial cells in patients and grafts, we also investigated the magnitude and the nature of the anti-Neu5Gc elicited by the induction and showed that induction was associated with a shift in anti-Neu5Gc IgG repertoire. Possible reasons and mechanisms of a deleterious ATG usage in these patients are discussed. Our study suggests that ATG induction after a kidney transplantation in recipients already under maintenance IS for a NRT should be used cautiously.

  12. Grafting in Arabidopsis.

    PubMed

    Bainbridge, Katherine; Bennett, Tom; Crisp, Peter; Leyser, Ottoline; Turnbull, Colin

    2014-01-01

    Grafting provides a simple way to generate chimeric plants with regions of different genotypes and thus to assess the cell autonomy of gene action. The technique of grafting has been widely used in other species, but in Arabidopsis, its small size makes the process rather more demanding. However, there are now several well-established grafting procedures available, which we described here, and their use has already contributed greatly to understanding of such processes as shoot branching control, flowering, disease resistance, and systemic silencing.

  13. Grafting of Chitosan and Chitosantrimethoxylsilylpropyl Methacrylate on Single Walled Carbon Nanotubes-Synthesis and Characterization

    PubMed Central

    Carson, Laura; Kelly-Brown, Cordella; Stewart, Melisa; Oki, Aderemi; Regisford, Gloria; Stone, Julia; Traisawatwong, Pasakorn; Durand-Rougely, Clarissa; Luo, Zhiping

    2011-01-01

    Acid functionalized single walled carbon nanotubes (CNTs) were grafted to chitosan by first reacting the oxidized CNTs with thionyl chloride to form acyl-chlorinated CNTs. This product was subsequently dispersed in chitosan and covalently grafted to form CNT-chitosan. CNT-chitosan was further grafted onto 3-trimethoxysilylpropyl methacrylate by free radical polymerization conditions, to yield CNT-g-chitosan-g-3-trimethoxysilylpropyl methacrylate (TMSPM), hereafter referred to as CNT-chitosan-3-TMSPM. These composites were characterized by Fourier Transform Infrared Resonance Spectroscopy (FTIR), carbon-13 nuclear magnetic resonance (13C NMR), Thermogravimetric Analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The composite showed improved thermal stability and could be of great potential use in bone tissue engineering. PMID:21765959

  14. Gum Graft Surgery

    MedlinePlus

    ... gum line and reduce sensitivity. What are the benefits of gum graft surgery? A gum graft can ... improve function or esthetics, patients often receive the benefits of both: a beautiful new smile and improved ...

  15. Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties.

    PubMed

    Albert, Albert; Barnett, Alejandro O; Thomassen, Magnus S; Schmidt, Thomas J; Gubler, Lorenz

    2015-10-14

    Radiation-grafted membranes can be considered an alternative to perfluorosulfonic acid (PFSA) membranes, such as Nafion, in a solid polymer electrolyte electrolyzer. Styrene, acrylonitrile, and 1,3-diisopropenylbenzene monomers are cografted into preirradiated 50 μm ethylene tetrafluoroethylene (ETFE) base film, followed by sulfonation to introduce proton exchange sites to the obtained grafted films. The incorporation of grafts throughout the thickness is demonstrated by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis of the membrane cross-sections. The membranes are analyzed in terms of grafting kinetics, ion-exchange capacity (IEC), and water uptake. The key properties of radiation-grafted membranes and Nafion, such as gas crossover, area resistance, and mechanical properties, are evaluated and compared. The plot of hydrogen crossover versus area resistance of the membranes results in a property map that indicates the target areas for membrane development for electrolyzer applications. Tensile tests are performed to assess the mechanical properties of the membranes. Finally, these three properties are combined to establish a figure of merit, which indicates that radiation-grafted membranes obtained in the present study are promising candidates with properties superior to those of Nafion membranes. A water electrolysis cell test is performed as proof of principle, including a comparison to a commercial membrane electrode assembly (MEA).

  16. Skin grafts: a rural general surgical perspective.

    PubMed

    Henderson, Nigel J; Fancourt, Michael; Gilkison, William; Kyle, Stephen; Mosquera, Damien

    2009-05-01

    Skin grafts are a common method of closing skin defects. The literature comparing methods of graft application and subsequent outcomes is poor, but reports indicate a graft failure rate between 2 and 30%. The aim of this study was to audit our current skin graft practice. Data were collected prospectively on all skin grafts performed by the general surgical department between 1st December 2005 and 1st December 2006. A standardized proforma on each patient included data on age, gender, graft indication, application method, comorbidities, length of stay, and graft outcomes including graft take at 1, 2 and 6 weeks post-operatively. There were 85 grafts performed on 74 patients, median age 72 years (9-102 years), with 10 (12%) acute admissions. Prophylactic antibiotics were given to 50% (38 of 74) of patients. Successful grafts (>80% take) were performed in 68 (80%) patients. The overall graft complication rate was 24.7% (22 of 85 grafts). Infection occurred in 13 of 17 graft failures. No patients underwent re-operation for graft failure. Patients who received prophylactic antibiotics had a reduced risk of graft failure (Fisher's exact test, P = 0.016). Skin grafts were performed successfully in the majority of patients. Graft complication and failure rates compare well with the world literature. The use of prophylactic antibiotics was the only predictor of successful graft take.

  17. Vein Graft Preservation Solutions, Patency, and Outcomes After Coronary Artery Bypass Graft Surgery

    PubMed Central

    Harskamp, Ralf E.; Alexander, John H.; Schulte, Phillip J.; Brophy, Colleen M.; Mack, Michael J.; Peterson, Eric D.; Williams, Judson B.; Gibson, C. Michael; Califf, Robert M.; Kouchoukos, Nicholas T.; Harrington, Robert A.; Ferguson, T. Bruce; Lopes, Renato D.

    2015-01-01

    IMPORTANCE In vitro and animal model data suggest that intraoperative preservation solutions may influence endothelial function and vein graft failure (VGF) after coronary artery bypass graft (CABG) surgery. Clinical studies to validate these findings are lacking. OBJECTIVE To evaluate the effect of vein graft preservation solutions on VGF and clinical outcomes in patients undergoing CABG surgery. DESIGN, SETTING, AND PARTICIPANTS Data from the Project of Ex-Vivo Vein Graft Engineering via Transfection IV (PREVENT IV) study, a phase 3, multicenter, randomized, double-blind, placebo-controlled trial that enrolled 3014 patients at 107 US sites from August 1, 2002, through October 22, 2003, were used. Eligibility criteria for the trial included CABG surgery for coronary artery disease with at least 2 planned vein grafts. INTERVENTIONS Preservation of vein grafts in saline, blood, or buffered saline solutions. MAIN OUTCOMES AND MEASURES One-year angiographic VGF and 5-year rates of death, myocardial infarction, and subsequent revascularization. RESULTS Most patients had grafts preserved in saline (1339 [44.4%]), followed by blood (971 [32.2%]) and buffered saline (507 [16.8%]). Baseline characteristics were similar among groups. One-year VGF rates were much lower in the buffered saline group than in the saline group (patient-level odds ratio [OR], 0.59 [95% CI, 0.45-0.78; P < .001]; graft-level OR, 0.63 [95% CI, 0.49-0.79; P < .001]) or the blood group (patient-level OR, 0.62 [95% CI, 0.46-0.83; P = .001]; graft-level OR, 0.63 [95% CI, 0.48-0.81; P < .001]). Use of buffered saline solution also tended to be associated with a lower 5-year risk for death, myocardial infarction, or subsequent revascularization compared with saline (hazard ratio, 0.81 [95% CI, 0.64-1.02; P = .08]) and blood (0.81 [0.63-1.03; P = .09]) solutions. CONCLUSIONS AND RELEVANCE Patients undergoing CABG whose vein grafts were preserved in a buffered saline solution had lower VGF rates and trends

  18. Skin graft - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100100.htm Skin graft - series—Normal anatomy To use the sharing features ... entire body, and acts as a protective barrier. Skin grafts may be recommended for: Extensive wounds Burns Specific ...

  19. Upper limb grafts for hemodialysis access.

    PubMed

    Shemesh, David; Goldin, Ilya; Verstandig, Anthony; Berelowitz, Daniel; Zaghal, Ibrahim; Olsha, Oded

    2015-01-01

    Arteriovenous (AV) grafts are required for hemodialysis access when options for native fistulas have been fully exhausted, where they continue to play an important role in hemodialysis patients, offering a better alternative to central vein catheters. When planning autogenous accesses using Doppler ultrasound, adequate arterial inflow and venous outflow must be consciously preserved for future access creation with grafts. Efforts to improve graft patency include changing graft configuration, graft biology and hemodynamics. Industry offers early cannulation grafts to reduce central catheter use and a bioengineered graft is undergoing clinical studies. Although the outcome of AV grafts is inferior to fistulas, grafts can provide long-term hemodialysis access that is a better alternative to central venous catheters. AV grafts have significant drawbacks, mainly poor patency, infection and cost but also have some advantages: early maturation, ease of creation and needling and widespread availability. The outcome of AV graft surgery is variable from center to center. The primary patency rate for AV grafts is 58% at 6 months and the secondary patency rate is 76% at 6 months and 55% at 18 months. There are centers of excellence that report a 1 year secondary patency rate of up to 91%. In this review of the use of AV grafts for hemodialysis access in the upper extremities, technical issues involved in planning the access and performing the surgery in its different configurations are discussed and the role of surveillance and maintenance with their attendant surgical and radiological interventions is described.

  20. Xenon Treatment Protects Against Cold Ischemia Associated Delayed Graft Function and Prolongs Graft Survival in Rats

    PubMed Central

    Zhao, H; Watts, H R; Chong, M; Huang, H; Tralau-Stewart, C; Maxwell, P H; Maze, M; George, A J T; Ma, D

    2013-01-01

    Prolonged hypothermic storage causes ischemia-reperfusion injury (IRI) in the renal graft, which is considered to contribute to the occurrence of the delayed graft function (DGF) and chronic graft failure. Strategies are required to protect the graft and to prolong renal graft survival. We demonstrated that xenon exposure to human proximal tubular cells (HK-2) led to activation of range of protective proteins. Xenon treatment prior to or after hypothermia–hypoxia challenge stabilized the HK-2 cellular structure, diminished cytoplasmic translocation of high-mobility group box (HMGB) 1 and suppressed NF-κB activation. In the syngeneic Lewis-to-Lewis rat model of kidney transplantation, xenon exposure to donors before graft retrieval or to recipients after engraftment decreased caspase-3 expression, localized HMGB-1 within nuclei and prevented TLR-4/NF-κB activation in tubular cells; serum pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced and renal function was preserved. Xenon treatment of graft donors or of recipients prolonged renal graft survival following IRI in both Lewis-to-Lewis isografts and Fischer-to-Lewis allografts. Xenon induced cell survival or graft functional recovery was abolished by HIF-1α siRNA. Our data suggest that xenon treatment attenuates DGF and enhances graft survival. This approach could be translated into clinical practice leading to a considerable improvement in long-term graft survival. PMID:23710625

  1. A new grafting technique for tympanoplasty: tympanoplasty with a boomerang-shaped chondroperichondrial graft (TwBSCPG).

    PubMed

    Dündar, Rıza; Soy, Fatih Kemal; Kulduk, Erkan; Muluk, Nuray Bayar; Cingi, Cemal

    2014-10-01

    The aim of this study was to introduce a new grafting technique in tympanoplasty that involves use of a boomerang-shaped chondroperichondrial graft (BSCPG). The anatomical and functional results were evaluated. A new tympanoplasty with boomerang-shaped chondroperichondrial graft (TwBSCPG) technique was used in 99 chronic otitis media patients with central or marginal perforation of the tympanic membrane and a normal middle ear mucosa. All 99 patients received chondroperichondrial cartilage grafts with a boomerang-shaped cartilage island left at the anterior and inferior parts. Postoperative follow-ups were conducted at months 1, 6, and 12. Preoperative and postoperative audiological examinations were performed and air-bone gaps were calculated according to the pure-tone averages (PTAs) of the patients. In the preoperative period, most (83.8%) air-bone gaps were ≥ 16 dB; after operating using the TwBSCPG technique, the air-bone gaps decreased to 0-10 dB in most patients (77.8%). In the TwBSCPG patients, the mean preoperative air-bone gap was 22.02 ± 6.74 dB SPL. Postoperatively, the mean postoperative air-bone gap was 8.70 ± 5.74 dB SPL. The TwBSCPG technique therefore decreased the postoperative air-bone gap compared to that preoperatively (p = 0.000, z = -8.645). At the 1-month follow-up, there were six graft perforations and one graft retraction. At the 6-month follow-up, there were nine graft perforations and three graft retractions. At 12 months, there were seven graft perforations and four graft retractions. During the first year after the boomerang tympanoplasty surgery, graft lateralization was not detected in any patient. Retractions were grade 1 according to the Sade classification and were localized to the postero-superior quadrant of the tympanic membrane. The TwBSCPG technique has benefits with respect to postoperative anatomical and audiological results. It prevents perforation of the tympanic membrane at the anterior quadrant and avoids graft

  2. Effect of flexibility of grafted polymer on the morphology and property of nanosilica/PVC composites

    NASA Astrophysics Data System (ADS)

    Zhu, Aiping; Cai, Aiyun; Zhou, Weidong; Shi, Zhehua

    2008-04-01

    In this study, poly(methyl methacrylate)-grafted-nanosilica (PMMA-g-silica) and a copolymer of styrene (St), n-butyl acrylate (BA) and acrylic acid (AA)-grafted-nanosilica (PSBA-g-silica) hybrid nanoparticles were prepared by using a heterophase polymerization technique in an aqueous system. The grafted polymers made up approximately 50 wt.% of the resulted hybrid nanoparticles which showed a spherical and well-dispersed morphology. The silica hybrid nanoparticles were subsequently used as fillers in a poly(vinyl chloride) (PVC) matrix to fabricate PVC nanocomposite. Morphology study of PVC nanocomposites revealed that both PMMA- and PSBA-grafted-silica had an adhesive interface between the silica and PVC. The tensile strength and elongation to break were found to be improved significantly in comparison with that of untreated nanosilica/PVC composites. Finally our results clearly demonstrated that the properties (e.g. chain flexibility, composition) of the grafted polymer in the hybrid nanoparticles could significantly affect the dispersion behavior of hybrid nanoparticles in PVC matrix, dynamic mechanical thermal properties and mechanical properties of the resulted PVC composites.

  3. Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate

    PubMed Central

    Mrudula, Soma; Murugammal, Rangasamy

    2011-01-01

    Aspergillus niger was used for cellulase production in submerged (SmF) and solid state fermentation (SSF). The maximum production of cellulase was obtained after 72 h of incubation in SSF and 96 h in Smf. The CMCase and FPase activities recorded in SSF were 8.89 and 3.56 U per g of dry mycelial bran (DBM), respectively. Where as in Smf the CMase & FPase activities were found to be 3.29 and 2.3 U per ml culture broth, respectively. The productivity of extracellular cellulase in SSF was 14.6 fold higher than in SmF. The physical and nutritional parameters of fermentation like pH, temperature, substrate, carbon and nitrogen sources were optimized. The optimal conditions for maximum biosynthesis of cellulase by A. niger were shown to be at pH 6, temperature 30 °C. The additives like lactose, peptone and coir waste as substrate increased the productivity both in SmF and SSF. The moisture ratio of 1:2 (w/v) was observed for optimum production of cellulase in SSF. PMID:24031730

  4. Adolescent External Iliac Artery Trauma: Recurrent Aneurysmal Dilatation of an Iliofemoral Saphenous Vein Graft Treated by Stent-Grafting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenton, James, E-mail: jlenton@doctors.org.u; Davies, John; Homer-Vanniasinkam, S.

    An adolescent male sustained a severe penetrating injury to the external iliac artery. Emergency surgical revascularization was with a reversed long saphenous vein interposition graft. The primary graft and the subsequent revision graft both became aneurysmal. The second graft aneurysm was successfully excluded by endovascular stent-grafts with medium-term primary patency. A venous graft was used initially rather than a synthetic graft to reduce the risk of infection and the potential problems from future growth. Aneurysmal dilatation of venous grafts in children and adolescents is a rare but recognized complication. To the best of our knowledge, exclusion of these aneurysms withmore » stent-grafts has not been previously reported in the adolescent population.« less

  5. Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay.

    PubMed

    Hebbar, Raghavendra S; Isloor, Arun M; Prabhu, Balakrishna; Inamuddin; Asiri, Abdullah M; Ismail, A F

    2018-03-16

    Functional surfaces and polymers with branched structures have a major impact on physicochemical properties and performance of membrane materials. With the aim of greener approach for enhancement of permeation, fouling resistance and detrimental heavy metal ion rejection capacity of polyetherimide membrane, novel grafting of poly (4-styrenesulfonate) brushes on low cost, natural bentonite was carried out via distillation-precipitation polymerisation method and employed as a performance modifier. It has been demonstrated that, modified bentonite clay exhibited significant improvement in the hydrophilicity, porosity, and water uptake capacity with 3 wt. % of additive dosage. SEM and AFM analysis showed the increase in macrovoides and surface roughness with increased additive concentration. Moreover, the inclusion of modified bentonite displayed an increase in permeation rate and high anti-irreversible fouling properties with reversible fouling ratio of 75.6%. The humic acid rejection study revealed that, PEM-3 membrane having rejection efficiency up to 87.6% and foulants can be easily removed by simple hydraulic cleaning. Further, nanocomposite membranes can be significantly employed for the removal of hazardous heavy metal ions with a rejection rate of 80% and its tentative mechanism was discussed. Conspicuously, bentonite clay-bearing poly (4-styrenesulfonate) brushes are having a synergistic effect on physicochemical properties of nanocomposite membrane to enhance the performance in real field applications.

  6. Compliance Study of Endovascular Stent Grafts Incorporated with Polyester and Polyurethane Graft Materials in both Stented and Unstented Zones

    PubMed Central

    Guan, Ying; Wang, Lu; Lin, Jing; King, Martin W.

    2016-01-01

    Compliance mismatch between stent graft and host artery may induce complications and blood flow disorders. However, few studies have been reported on stent graft compliance. This study aims to explore the deformation and compliance of stent graft in stented and unstented zones under three pressure ranges. Compliance of two stent grafts incorporated with polyurethane graft (nitinol-PU) and polyester graft (nitinol-PET) materials respectively were tested; the stents used in the two stent grafts were identical. For the circumferential deformation of the stent grafts under each pressure range, the nitinol-PET stent graft was uniform in both zones. The nitinol-PU stent graft was circumferentially uniform in the stented zone, however, it was nonuniform in the unstented zone. The compliance of the PU graft material was 15 times higher than that of the PET graft. No significant difference in compliance was observed between stented and unstented zones of the nitinol-PET stent graft regardless of the applied pressure range. However, for the nitinol-PU stent graft, compliance of the unstented PU region was approximately twice that of the stented region; thus, compliance along the length of the nitinol-PU stent graft was not constant and different from that of the nitinol-PET stent graft. PMID:28773781

  7. RAFT-synthesized Graft Copolymers that Enhance pH-dependent Membrane Destabilization and Protein Circulation Times

    PubMed Central

    Crownover, Emily; Duvall, Craig L.; Convertine, Anthony; Hoffman, Allan S.; Stayton, Patrick S.

    2012-01-01

    Here we describe a new graft copolymer architecture of poly(propylacrylic acid) (polyPAA) that displays potent pH-dependent, membrane-destabilizing activity and in addition is shown to enhance protein blood circulation kinetics. PolyPAA containing a single telechelic alkyne functionality was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization with an alkyne-functional chain transfer agent (CTA) and coupled to RAFT polymerized poly(azidopropyl methacrylate) (polyAPMA) through azide-alkyne [3+2] Huisgen cycloaddition. The graft copolymers become membrane destabilizing at endosomal pH values and are active at significantly lower concentrations than the linear polyPAA. A biotin terminated polyPAA graft copolymer was prepared by grafting PAA onto polyAPMA polymerized with a biotin functional RAFT CTA. The blood circulation time and biodistribution of tritium labeled avidin conjugated to the polyPAA graft copolymer was characterized along with a clinically utilized 40 kDa branched polyethylene glycol (PEG) also possessing biotin functionalization. The linear and graft polyPAA increase the area under the curve (AUC) over avidin alone by 9 and 12 times, respectively. Furthermore, polyPAA graft copolymer conjugates accumulated in tumor tissue significantly more than the linear polyPAA and the branched PEG conjugates. The collective data presented in this report indicate that the polyPAA graft copolymers exhibit robust pH-dependent, membrane-destabilizing activity, low cytotoxicity and significantly enhance blood circulation time and tumor accumulation. PMID:21699931

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagrimini, L.M.

    Tobacco (Nicotiana tabacum) plants transformed with a chimeric tobacco anionic peroxidase gene have previously been shown to synthesize high levels of peroxidase in all tissues throughout the plant. One of several distinguishable phenotypes of transformed plants is the rapid browning of pith tissue upon wounding. Pith tissue from plants expressing high levels of peroxidase browned within 24 hours of wounding, while tissue from control plants did not brown as late as 7 days after wounding. A correlation between peroxidase activity and wound-induced browning was observed, whereas no relationship between polyphenol oxidase activity and browning was found. The purified tobacco anionicmore » peroxidase was subjected to kinetic analysis with substrates which resemble the precursors of lignin or polyphenolic acid. The purified enzyme was found to readily polymerize phenolic acids in the presence of H{sub 2}O{sub 2} via a modified ping-pong mechanism. The percentage of lignin and lignin-related polymers in cell walls was nearly twofold greater in pith tissue isolated from peroxidase-overproducer plants compared to control plants. Lignin deposition in wounded pith tissue from control plants closely followed the induction of peroxidase activity. However, wound-induced lignification occurred 24 to 48 hours sooner in plants overexpressing the anionic peroxidase. This suggests that the availability of peroxidase rather than substrate may delay polyphenol deposition in wounded tissue.« less

  9. Wound-Induced Deposition of Polyphenols in Transgenic Plants Overexpressing Peroxidase 1

    PubMed Central

    Lagrimini, L. Mark

    1991-01-01

    Tobacco (Nicotiana tabacum) plants transformed with a chimeric tobacco anionic peroxidase gene have previously been shown to synthesize high levels of peroxidase in all tissues throughout the plant. One of several distinguishable phenotypes of transformed plants is the rapid browning of pith tissue upon wounding. Pith tissue from plants expressing high levels of peroxidase browned within 24 hours of wounding, while tissue from control plants did not brown as late as 7 days after wounding. A correlation between peroxidase activity and wound-induced browning was observed, whereas no relationship between polyphenol oxidase activity and browning was found. The purified tobacco anionic peroxidase was subjected to kinetic analysis with substrates which resemble the precursors of lignin or polyphenolic acid. The purified enzyme was found to readily polymerize phenolic acids in the presence of H2O2 via a modified ping-pong mechanism. The percentage of lignin and lignin-related polymers in cell walls was nearly twofold greater in pith tissue isolated from peroxidase-overproducer plants compared to control plants. Lignin deposition in wounded pith tissue from control plants closely followed the induction of peroxidase activity. However, wound-induced lignification occurred 24 to 48 hours sooner in plants overexpressing the anionic peroxidase. This suggests that the availability of peroxidase rather than substrate may delay polyphenol deposition in wounded tissue. ImagesFigure 1Figure 2Figure 3 PMID:16668224

  10. Photosynthetic Traits of Plants and the Biochemical Profile of Tomato Fruits Are Influenced by Grafting, Salinity Stress, and Growing Season.

    PubMed

    Marsic, Nina Kacjan; Vodnik, Dominik; Mikulic-Petkovsek, Maja; Veberic, Robert; Sircelj, Helena

    2018-06-06

    Changes in the photosynthetic traits of plants and metabolic composition of fruits of two tomato cultivars, grafted onto two rootstocks, grown in three salinity levels were studied in two growing periods during the season. Increased salinity stress conditions lowered water potential, stomatal conductance, and transpiration rate of grafted tomato plants, in both growing periods. Water deficit induced stomatal closure, which resulted in stomatal limitation of photosynthesis. The proline content in tomato leaves increased and was closely correlated with salinity. Some of the quality parameters of tomato fruits were affected by rootstock. The sugar/acid ratio was the highest in fruits of 'Belle'/'Maxifort' grafts. With increasing salt stress conditions from 40 to 60 mM NaCl, the lycopene content increased and ascorbic acid content decreased in fruits of 'Gardel'/'Maxifort' grafts, indicating the ability of this scion/rootstock combination to mitigate the toxicity effect of salinity stress. A higher phenolics concentration in fruits from the first growing period may be an additional indicator of stress, caused by higher temperatures and solar radiation, compared with the later period.

  11. Xenon treatment protects against cold ischemia associated delayed graft function and prolongs graft survival in rats.

    PubMed

    Zhao, H; Watts, H R; Chong, M; Huang, H; Tralau-Stewart, C; Maxwell, P H; Maze, M; George, A J T; Ma, D

    2013-08-01

    Prolonged hypothermic storage causes ischemia-reperfusion injury (IRI) in the renal graft, which is considered to contribute to the occurrence of the delayed graft function (DGF) and chronic graft failure. Strategies are required to protect the graft and to prolong renal graft survival. We demonstrated that xenon exposure to human proximal tubular cells (HK-2) led to activation of range of protective proteins. Xenon treatment prior to or after hypothermia-hypoxia challenge stabilized the HK-2 cellular structure, diminished cytoplasmic translocation of high-mobility group box (HMGB) 1 and suppressed NF-κB activation. In the syngeneic Lewis-to-Lewis rat model of kidney transplantation, xenon exposure to donors before graft retrieval or to recipients after engraftment decreased caspase-3 expression, localized HMGB-1 within nuclei and prevented TLR-4/NF-κB activation in tubular cells; serum pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced and renal function was preserved. Xenon treatment of graft donors or of recipients prolonged renal graft survival following IRI in both Lewis-to-Lewis isografts and Fischer-to-Lewis allografts. Xenon induced cell survival or graft functional recovery was abolished by HIF-1α siRNA. Our data suggest that xenon treatment attenuates DGF and enhances graft survival. This approach could be translated into clinical practice leading to a considerable improvement in long-term graft survival. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  12. Similar Outcomes in Diabetes Patients After Coronary Artery Bypass Grafting With Single Internal Thoracic Artery Plus Radial Artery Grafting and Bilateral Internal Thoracic Artery Grafting.

    PubMed

    Raza, Sajjad; Blackstone, Eugene H; Houghtaling, Penny L; Koprivanac, Marijan; Ravichandren, Kirthi; Javadikasgari, Hoda; Bakaeen, Faisal G; Svensson, Lars G; Sabik, Joseph F

    2017-12-01

    The purpose of this study was to determine in patients with diabetes mellitus whether single internal thoracic artery (SITA) plus radial artery (RA) grafting yields outcomes similar to those of bilateral internal thoracic artery (BITA) grafting. From January 1994 to January 2011, 1,325 diabetic patients underwent primary isolated coronary artery bypass graft surgery with either (1) SITA plus RA with or without saphenous vein (SV) grafts (n = 965) or (2) BITA with or without SV grafts (n = 360); an internal thoracic artery was used in all patients to graft the left anterior descending coronary artery. Endpoints were in-hospital outcomes and time-related mortality. Median follow-up was 7.4 years, with a total follow-up of 9,162 patient-years. Propensity score matching was performed to identify 282 well-matched pairs for adjusted comparisons. Unadjusted in-hospital mortality was 0.52% for SITA plus RA with or without SV grafts and 0.28% for BITA with or without SV grafts, and prevalence of deep sternal wound infection was 3.2% and 1.7%, respectively. Unadjusted survival at 1, 5, 10, and 14 years was 97%, 88%, 68%, and 51% for SITA plus RA with or without SV grafts, and 97%, 95%, 80%, and 66% for BITA with or without SV grafts, respectively. Among propensity-matched patients, in-hospital mortality (0.35% versus 0.35%) and prevalence of deep sternal wound infection (1.4% versus 1.4%) were similar (p > 0.9) in the two groups, as was 1-, 5-, 10-, and 14-year survival: 97%, 90%, 70%, and 58% for SITA plus RA with or without SV grafting versus 97%, 93%, 79%, and 64% for BITA with or without SV grafting, respectively (early p = 0.8, late p = 0.2). For diabetic patients, SITA plus RA with or without SV grafting and BITA with or without SV grafting yield similar in-hospital outcomes and long-term survival after coronary artery bypass graft surgery. Therefore, both SITA plus RA and BITA plus SV grafting should be considered for these patients. Copyright © 2017 The Society

  13. Donor Indocyanine Green Clearance Test Predicts Graft Quality and Early Graft Prognosis After Liver Transplantation.

    PubMed

    Tang, Yunhua; Han, Ming; Chen, Maogen; Wang, Xiaoping; Ji, Fei; Zhao, Qiang; Zhang, Zhiheng; Ju, Weiqiang; Wang, Dongping; Guo, Zhiyong; He, Xiaoshun

    2017-11-01

    Transplantation centers have given much attention to donor availability. However, no reliable quantitative methods have been employed to accurately assess graft quality before transplantation. Here, we report that the indocyanine green (ICG) clearance test is a valuable index for liver grafts. We performed the ICG clearance test on 90 brain-dead donors within 6 h before organ procurement between March 2015 and November 2016. We also analyzed the relationship between graft liver function and early graft survival after liver transplantation (LT). Our results suggest that the ICG retention rate at 15 min (ICGR15) of donors before procurement was independently associated with 3-month graft survival after LT. The best donor ICGR15 cutoff value was 11.0%/min, and we observed a significant increase in 3-month graft failure among patients with a donor ICGR15 above this value. On the other hand, a donor ICGR15 value of ≤ 11.0%/min could be used as an early assessment index of graft quality because it provides additional information to the transplant surgeon or organ procurement organization members who must maintain or improve organ function to adapt the LT. An ICG clearance test before liver procurement might be an effective quantitative method to predict graft availability and improve early graft prognosis after LT.

  14. Enhancing integration of articular cartilage grafts via photochemical bonding.

    PubMed

    Arvayo, Alberto L; Wong, Ivan J; Dragoo, Jason L; Levenston, Marc E

    2018-03-25

    The integration of osteochondral grafts to native articular cartilage is critical as the lack of graft integration may lead to continued tissue degradation, poor load transfer and inadequate nutrient transport. Photochemical bonding promotes graft integration by activating a photosensitizer at the interface via a light source and avoids negative effects associated with other bonding techniques. We hypothesized that the bond strength depends on photosensitizer type and concentration in addition to light exposure. Photochemical bonding was evaluated using methylene blue (MB), a cationic phenothiazine photosensitizer, and two phthalocyanine photosensitizers, Al(III) phthalocyanine chloride tetrasulfonic acid (CASPc) and aluminum phthalocyanine chloride (AlPc). Exposure was altered by varying irradiation time for a fixed irradiance or by varying irradiance with a fixed irradiation time. MB was ineffective at producing bonding at the range of concentrations tested while CASPc produced a peak twofold bond strength increase over controls. AlPc produced substantial bonding at all concentrations with a peak 3.9-fold bond strength increase over controls. Parametric tests revealed that bond strength depended primarily on the total energy delivered to the bonding site rather than the rate of light delivery or light irradiance. Bond strength persisted for 1 week of in-vitro culture, which warrants further exploration for clinical applications. These studies indicate that photochemical bonding is a viable strategy for enhancing articular cartilage graft integration. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Graft selection strategy in adult-to-adult living donor liver transplantation: When both hemiliver grafts meet volumetric criteria.

    PubMed

    Kurihara, Takeshi; Yoshizumi, Tomoharu; Yoshida, Yoshihiro; Ikegami, Toru; Itoh, Shinji; Harimoto, Norifumi; Ninomiya, Mizuki; Uchiyama, Hideaki; Okabe, Hirohisa; Kimura, Koichi; Kawanaka, Hirofumi; Shirabe, Ken; Maehara, Yoshihiko

    2016-07-01

    To ensure donor safety in living donor liver transplantation (LDLT), the left and caudate lobe (LL) is the preferred graft choice. However, patient prognosis may still be poor even if graft volume (GV) selection criteria are met. Our aim was to evaluate the effects of right lobe (RL) donation when the LL graft selection criteria are met. Consecutive donors (n = 135) with preoperative LL graft volumetric GV/standard liver volume (SLV) of ≥35% and RL remnant of ≥35% were retrospectively studied. Patients were divided into 2 groups: LL graft and RL graft. Recipient's body surface area (BSA), Model for End-Stage Liver Disease (MELD) score, and the donor's age were higher in the RL group. The donor's BSA and preoperative volumetric GV/SLV of the LL graft were smaller in the RL group. The predicted score (calculated using data for graft size, donor age, MELD score, and the presence of portosystemic shunt, which correlated well with graft function and with 6-month graft survival) of the RL group, was significantly lower if the LL graft were used, but using the actual RL graft improved the score equal to that of the LL group. Six-month and 12-month graft survival rates did not differ between the 2 groups. In patients with a poor prognosis, a larger RL graft improved the predicted score and survival was equal to that of patients who received LL grafts. In conclusion, graft selection by GV, donor age, and recipient MELD score improves outcomes in LDLT. Liver Transplantation 22 914-922 2016 AASLD. © 2016 American Association for the Study of Liver Diseases.

  16. Transcription factors for modification of lignin content in plants

    DOEpatents

    Wang, Huanzhong; Chen, Fang; Dixon, Richard A.

    2015-06-02

    The invention provides methods for modifying lignin, cellulose, xylan, and hemicellulose content in plants, and for achieving ectopic lignification and, for instance, secondary cell wall synthesis in pith cells, by altered regulation of a WRKY transcription factor. Nucleic acid constructs for altered WRKY-TF expression are described. Transgenic plants are provided that comprise modified pith cell walls, and lignin, cellulose, and hemicellulose content. Plants described herein may be used, for example, as improved biofuel feedstock and as highly digestible forage crops.

  17. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.

    PubMed

    Zhang, Chunmei; Wang, Liwei; Zhai, Tianliang; Wang, Xinchao; Dan, Yi; Turng, Lih-Sheng

    2016-01-01

    Graphene oxide (GO) was incorporated into poly(lactic acid) (PLA) as a reinforcing nanofiller to produce composite nanofibrous scaffolds using the electrospinning technique. To improve the dispersion of GO in PLA and the interfacial adhesion between the filler and matrix, GO was surface-grafted with poly(ethylene glycol) (PEG). Morphological, thermal, mechanical, and wettability properties, as well as preliminary cytocompatibility with Swiss mouse NIH 3T3 cells of PLA, PLA/GO, and PLA/GO-g-PEG electrospun nanofibers, were characterized. Results showed that the average diameter of PLA/GO-g-PEG electrospun nanofibers decreased with filler content. Both GO and GO-g-PEG improved the thermal stability of PLA, but GO-g-PEG was more effective. The water contact angle test of the nanofiber mats showed that the addition of GO in PLA did not change the surface wettability of the materials, but PLA/GO-g-PEG samples exhibited improved wettability with lower water contact angles. The tensile strength of the composite nanofiber mats was improved with the addition of GO, and it was further enhanced when GO was surface grafted with PEG. This suggested that improved interfacial adhesion between GO and PLA was achieved by grafting PEG onto the GO. The cell viability and proliferation results showed that the cytocompatibility of PLA was not compromised with the addition of GO and GO-g-PEG. With enhanced mechanical properties as well as good wettability and cytocompatibility, PLA/GO-g-PEG composite nanofibers have the potential to be used as scaffolds in tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Novel strategy to engineer trachea cartilage graft with marrow mesenchymal stem cell macroaggregate and hydrolyzable scaffold.

    PubMed

    Liu, Liangqi; Wu, Wei; Tuo, Xiaoye; Geng, Wenxin; Zhao, Jie; Wei, Jing; Yan, Xingrong; Yang, Wei; Li, Liwen; Chen, Fulin

    2010-05-01

    Limited donor sites of cartilage and dedifferentiation of chondrocytes during expansion, low tissue reconstruction efficiency, and uncontrollable immune reactions to foreign materials are the main obstacles to overcome before cartilage tissue engineering can be widely used in the clinic. In the current study, we developed a novel strategy to fabricate tissue-engineered trachea cartilage grafts using marrow mesenchymal stem cell (MSC) macroaggregates and hydrolyzable scaffold of polylactic acid-polyglycolic acid copolymer (PLGA). Rabbit MSCs were continuously cultured to prepare macroaggregates in sheet form. The macroaggregates were studied for their potential for chondrogenesis. The macroaggregates were wrapped against the PLGA scaffold to make a tubular composite. The composites were incubated in spinner flasks for 4 weeks to fabricate trachea cartilage grafts. Histological observation and polymerase chain reaction array showed that MSC macroaggregates could obtain the optimal chondrogenic capacity under the induction of transforming growth factor-beta. Engineered trachea cartilage consisted of evenly spaced lacunae embedded in a matrix rich in proteoglycans. PLGA scaffold degraded totally during in vitro incubation and the engineered cartilage graft was composed of autologous tissue. Based on this novel, MSC macroaggregate and hydrolyzable scaffold composite strategy, ready-to-implant autologous trachea cartilage grafts could be successfully fabricated. The strategy also had the advantages of high efficiency in cell seeding and tissue regeneration, and could possibly be used in future in vivo experiments.

  19. Performance evaluation and modelling studies of gravel--coir fibre--sand multimedia stormwater filter.

    PubMed

    Samuel, Manoj P; Senthilvel, S; Tamilmani, D; Mathew, A C

    2012-09-01

    A horizontal flow multimedia stormwater filter was developed and tested for hydraulic efficiency and pollutant removal efficiency. Gravel, coconut (Cocos nucifera) fibre and sand were selected as the media and filled in 1:1:1 proportion. A fabric screen made up of woven sisal hemp was used to separate the media. The adsorption behaviour of coir fibre was determined in a series of column and batch studies and the corresponding isotherms were developed. The hydraulic efficiency of the filter showed a diminishing trend as the sediment level in inflow increased. The filter exhibited 100% sediment removal at lower sediment concentrations in inflow water (>6 g L(-1)). The filter could remove NO3(-), SO4(2-) and total solids (TS) effectively. Removal percentages of Mg(2+) and Na(+) were also found to be good. Similar results were obtained from a field evaluation study. Studies were also conducted to determine the pattern of silt and sediment deposition inside the filter body. The effects of residence time and rate of flow on removal percentages of NO3(-) and TS were also investigated out. In addition, a multiple regression equation that mathematically represents the filtration process was developed. Based on estimated annual costs and returns, all financial viability criteria (internal rate of return, net present value and benefit-cost ratio) were found favourable and affordable to farmers for investment in the developed filtration system. The model MUSIC was calibrated and validated for field conditions with respect to the developed stormwater filter.

  20. Biodegradability of poly(3-hydroxybutyrate) film grafted with vinyl acetate: Effect of grafting and saponification

    NASA Astrophysics Data System (ADS)

    Wada, Yuki; Seko, Noriaki; Nagasawa, Naotsugu; Tamada, Masao; Kasuya, Ken-ichi; Mitomo, Hiroshi

    2007-06-01

    Radiation-induced graft polymerization of vinyl acetate (VAc) onto poly(3-hydroxybutyrate) (PHB) film was carried out. At a degree of grafting higher than 5%, the grafted films (PHB-g-VAc) completely lost the enzymatic degradability that is characteristic of PHB due to the grafted VAc covering the surface of the PHB film. However, the biodegradability of the PHB-g-VAc films was recovered when the films were saponified in alkali solution under optimum conditions. Graft chains of the PHB-g-VAc film reacted selectively to become biodegradable polyvinyl alcohol (PVA). The biodegradability of the saponified PHB-g-VAc film increased rapidly with time.

  1. Causes of corneal graft failure in India.

    PubMed

    Dandona, L; Naduvilath, T J; Janarthanan, M; Rao, G N

    1998-09-01

    The success of corneal grafting in visual rehabilitation of the corneal blind in India depends on survival of the grafts. Understanding the causes of graft failure may help reduce the risk of failure. We studied these causes in a series of 638 graft failures at our institution. Multivariate logistic regression analysis was used to evaluate the association of particular causes of graft failure with indications for grafting, socioeconomic status, age, sex, host corneal vascularization, donor corneal quality, and experience of surgeon. The major causes of graft failure were allograft rejection (29.2%), increased intraocular pressure (16.9%), infection excluding endophthalmitis (15.4%), and surface problems (12.7%). The odds of infection causing graft failure were significantly higher in patients of lower socioeconomic status (odds ratio 2.45, 95% CI 1.45-4.15). Surface problems as a cause of graft failure was significantly associated with grafts done for corneal scarring or for regrafts (odds ratio 3.36, 95% CI 1.80-6.30). Increased intraocular pressure as a cause of graft failure had significant association with grafts done for aphakic or pseudophakic bullous keratopathy, congenital conditions or glaucoma, or regrafts (odds ratio 2.19, 95% CI 1.25-3.84). Corneal dystrophy was the indication for grafting in 12 of the 13 cases of graft failure due to recurrence of host disease. Surface problems, increased intraocular pressure, and infection are modifiable risk factors that are more likely to cause graft failure in certain categories of patients in India. Knowledge about these associations can be helpful in looking for and aggressively treating these modifiable risk factors in the at-risk categories of corneal graft patients. This can possibly reduce the chance of graft failure.

  2. Plant grafting: insights into tissue regeneration.

    PubMed

    Melnyk, Charles W

    2017-02-01

    For millennia, people have cut and joined different plants together through a process known as grafting. The severed tissues adhere, the cells divide and the vasculature differentiates through a remarkable process of regeneration between two genetically distinct organisms as they become one. Grafting is becoming increasingly important in horticulture where it provides an efficient means for asexual propagation. Grafting also combines desirable roots and shoots to generate chimeras that are more vigorous, more pathogen resistant and more abiotic stress resistant. Thus, it presents an elegant and efficient way to improve plant productivity in vegetables and trees using traditional techniques. Despite this horticultural importance, we are only beginning to understand how plants regenerate tissues at the graft junction. By understanding grafting better, we can shed light on fundamental regeneration pathways and the basis for self/non-self recognition. We can also better understand why many plants efficiently graft whereas others cannot, with the goal of improving grafting so as to broaden the range of grafted plants to create even more desirable chimeras. Here, I review the latest findings describing how plants graft and provide insight into future directions in this emerging field.

  3. Synthesis and characterization of poly(maleic acid)-grafted crosslinked chitosan nanomaterial with high uptake and selectivity for Hg(II) sorption.

    PubMed

    Ge, Huacai; Hua, Tingting

    2016-11-20

    Chitosan-poly(maleic acid) nanomaterial (PMACS) with the size of 400-900nm was synthesized by grafting poly(maleic acid) onto chitosan and then crosslinking with glutaraldehyde. The synthesis conditions were optimized. The structure and morphology of PMACS were characterized by FT-IR, XRD, SEM and TGA. PMACS was used to adsorb some heavy metal ions such as Hg(II), Pb(II), Cu(II), Cd(II), Co(II), and Zn(II). The results indicated that PMACS had selectivity for Hg(II) sorption. The effects of various variables for sorption of Hg(II) were further explored. The maximum capacity for Hg(II) sorption was found to be 1044mgg(-1) at pH 6.0, which could compare with the maximal value of the recently reported other sorbents. The sorption followed the pseudo-second-order kinetics and Langmuir isotherm models. The rising of temperature benefited the uptake and the sorption was a spontaneous chemical process. The sorbent could be reused with EDTA. Hence, the nanomaterial would be used as a selective and high uptake sorbent in the removal of Hg(II) from effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Graft union formation in Douglas-fir.

    Treesearch

    D.L. Copes

    1969-01-01

    Greenhouse-grown Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) graft unions were examined between 2 and 84 days after grafting. Room temperature was maintained at 60-70 F throughout the growing season. In most respects grafts of Douglas-fir followed development patterns previously reported for spruce and pine grafts, but specific differences...

  5. FAS grafted superhydrophobic ceramic membrane

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Yu, Yun; Zhou, Jianer; Song, Lixin; Hu, Xingfang; Larbot, Andre

    2009-08-01

    The hydrophobic properties of γ-Al 2O 3 membrane have been obtained by grafting fluoroalkylsilane (FAS) on the surface of the membrane. The following grafting parameters were studied: the eroding time of the original membrane, the grafting time, the concentration of FAS solution and the multiplicity of grafting. Hydrophobicity of the membranes was characterized by contact angle (CA) measurement. The thermogravimetric analysis (TGA) was used to investigate the weight loss process (25-800 °C) of the fluoroalkylsilane grafted on Al 2O 3 powders under different grafting conditions. The morphologies of the membranes modified under different parameters were examined by field emission scanning electron microscopy (FE-SEM) and the surface roughness (Ra) was measured using white light interferometers. A needle-like structure was observed on the membrane surface after modification, which causes the change of Ra. On the results above, we speculated a model to describe the reaction between FAS and γ-Al 2O 3 membrane surface as well as the formed surface morphology.

  6. The Synthesis and Structural Characterization of Graft Copolymers Composed of γ-PGA Backbone and Oligoesters Pendant Chains

    NASA Astrophysics Data System (ADS)

    Kwiecień, Iwona; Radecka, Iza; Kowalczuk, Marek; Jelonek, Katarzyna; Orchel, Arkadiusz; Adamus, Grażyna

    2017-10-01

    The novel copolymers composed of poly-γ-glutamic acid (γ-PGA) and oligoesters have been developed. The structures of the obtained copolymers including variety of end groups were determined at the molecular level with the aid of electrospray ionization multistage mass spectrometry (ESI-MSn). The fragmentation experiment performed for the selected sodium adducts of the copolymers confirmed that the developed methods lead to the formation of graft copolymers composed of poly-γ-glutamic acid (γ-PGA) backbone and oligoesters pendant chains. Moreover, it was established that fragmentation of selected sodium adducts of graft copolymers proceeded via random breakage of amide bonds along the backbone and ester bonds of the oligoesters pendant chains. Considering potential applications of the synthesized copolymers in the area of biomaterials, the hydrolytic degradation under laboratory conditions and in vitro cytotoxicity tests were performed. The ESI-MSn technique applied in this study has been proven to be a useful tool in structural studies of novel graft copolymers as well as their degradation products. [Figure not available: see fulltext.

  7. Surface functionalization of mesoporous silica SBA-15 by liquid-phase grafting of zirconium phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Sheng; Hagaman, Edward; Ma, Zhen

    2010-01-01

    The introduction of mesoporous silicas in the 1990s has offered new opportunities for the engineering of ordered catalytic nanoreactors, but the acid properties of mesoporous silicas are rather poor. Herein, mesoporous silica (SBA-15) surfaces were functionalized by zirconium phosphate via two methods recently developed in our group. Zr(OPr){sub 4} and POCl{sub 3} were used as appropriate precursors in both methods. The main difference between these methods lies in whether Zr(OPr){sub 4} is grafted onto SBA-15 first and POCl{sub 3} second (method 1) or the grafting process takes place in one pot, with SBA-15, Zr(OPr){sub 4}, and POCl{sub 3} altogether (methodmore » 2). More zirconium phosphate could be grafted by repeating the above procedures. The materials were characterized by ICP-OES, XRD, N{sub 2} adsorption-desorption, TEM, {sup 31}P and {sup 29}Si MAS NMR, and NH{sub 3}-TPD, and their applications in catalytic isopropanol dehydration, cumene cracking, and metal-ion adsorption were demonstrated. Aluminum phosphate-modified SBA-15 samples could be obtained via these two methods as well. This work enriches the family of metal phosphate-functionalized mesoporous silicas as new solid acid catalysts.« less

  8. Comparison of endothelial function of coronary artery bypass grafts in diabetic and nondiabetic patients: Which graft offers the best?

    PubMed Central

    Gür, Demet Özkaramanlı; Gür, Özcan; Gürkan, Selami; Cömez, Selcem; Gönültaş, Aylin; Yılmaz, Murat

    2016-01-01

    Objective: Diabetes associated endothelial dysfunction, which determines both long and short term graft patency, is not uniform in all coronary artery bypass surgery (CABG) grafts. Herein this study, we aimed to investigate the degree of endothelial dysfunction in diabetic radial artery (RA), internal mammarian artery (IMA) and saphenous vein (SV) grafts in vitro tissue bath system. Methods: This is a prospective experimental study. Fifteen diabetic and 15 non-diabetic patients were included to the study. A total number of 96 graft samples were collected; 16 graft samples for each graft type from both diabetic and non-diabetic patients. Arterial grafts were harvested with pedicles and SV grafts were harvested by ‘no touch’ technique. Vasodilatation response of vascular rings to carbachol, which induces nitric oxide (NO) mediated vasodilatation, was designated as the measure of endothelial function. Results: The IMA grafts had the most prominent NO mediated vasodilatation in both diabetic and non-diabetic patients, concluding a better preserved endothelial function than SV and RA. The ‘no-touch’ SV and RA grafts had similar vasodilatation responses in non-diabetic patients. In diabetic patients, on the other hand, RA grafts exhibited the least vasodilatation response (ie. worst endothelial function), even less vasodilatation than ‘no touch’ SV grafts (p<0.0001). Conclusion: Deteriorated function of RA grafts in diabetic patients, even worse than SV grafts made evident by this study, encourages the use of ‘no touch’ technique as the method of SV harvesting and more meticulous imaging of RA before its use as a graft in diabetic patients. PMID:26301347

  9. Proteomic Study Related to Vascular Connections in Watermelon Scions Grafted onto Bottle-Gourd Rootstock under Different Light Intensities

    PubMed Central

    Muneer, Sowbiya; Ko, Chung Ho; Soundararajan, Prabhakaran; Manivnnan, Abinaya; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2015-01-01

    Although grafting is broadly used in the production of crops, no information is available about the proteins involved in vascular connections between rootstock and scion. Similarly, proteome changes under the light intensities widely used for grafted seedlings are of practical use. The objective of this study was to determine the proteome of vascular connections using watermelon (Citrullus vulgaris Schrad.) ‘Sambok Honey’ and ‘Speed’ as the scion and bottle gourd (Lagenaria siceraria Stanld.) ‘RS Dongjanggun’ as the rootstock grown under different light intensities (25, 50, 75 and 100 μmol m−2 s−1). Our proteomic analysis revealed 24 and 27 differentially expressed proteins in ‘Sambok Honey’ and ‘Speed’, respectively, under different light intensities. The identified proteins were largely involved in ion binding, amino acid metabolism, transcriptional regulation and defense response. The enhancement of ion-binding, transcriptional regulation, amino acid metabolism, and defense response proteins suggests a strengthening of the connection between the rootstock and scion under high light intensity. Indeed, the accumulation of key enzymes in the biological processes described above appears to play an important role in the vascular connections of grafted seedlings. Moreover, it appears that 100 μmol m−2 s−1 results in better protein expression responses in grafted seedlings. PMID:25789769

  10. Proteomic study related to vascular connections in watermelon scions grafted onto bottle-gourd rootstock under different light intensities.

    PubMed

    Muneer, Sowbiya; Ko, Chung Ho; Soundararajan, Prabhakaran; Manivnnan, Abinaya; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2015-01-01

    Although grafting is broadly used in the production of crops, no information is available about the proteins involved in vascular connections between rootstock and scion. Similarly, proteome changes under the light intensities widely used for grafted seedlings are of practical use. The objective of this study was to determine the proteome of vascular connections using watermelon (Citrullus vulgaris Schrad.) 'Sambok Honey' and 'Speed' as the scion and bottle gourd (Lagenaria siceraria Stanld.) 'RS Dongjanggun' as the rootstock grown under different light intensities (25, 50, 75 and 100 μmol m-2 s-1). Our proteomic analysis revealed 24 and 27 differentially expressed proteins in 'Sambok Honey' and 'Speed', respectively, under different light intensities. The identified proteins were largely involved in ion binding, amino acid metabolism, transcriptional regulation and defense response. The enhancement of ion-binding, transcriptional regulation, amino acid metabolism, and defense response proteins suggests a strengthening of the connection between the rootstock and scion under high light intensity. Indeed, the accumulation of key enzymes in the biological processes described above appears to play an important role in the vascular connections of grafted seedlings. Moreover, it appears that 100 μmol m-2 s-1 results in better protein expression responses in grafted seedlings.

  11. Novel expansion techniques for skin grafts

    PubMed Central

    Kadam, Dinesh

    2016-01-01

    The quest for skin expansion is not restricted to cover a large area alone, but to produce acceptable uniform surfaces, robust engraftment to withstand mechanical shear and infection, with a minimal donor morbidity. Ease of the technique, shorter healing period and reproducible results are essential parameters to adopt novel techniques. Significant advances seen in four fronts of autologous grafting are: (1) Dermal–epidermal graft expansion techniques, (2) epidermal graft harvests technique, (3) melanocyte-rich basal cell therapy for vitiligo and (4) robust and faster autologous cell cultures. Meek's original concept that the sum of perimeter of smaller grafts is larger than the harvested graft, and smaller the graft size, the greater is the potential for regeneration is witnessed in newer modification. Further, as graft size becomes smaller or minced, these micrografts can survive on the wound bed exudate irrespective of their dermal orientation. Expansion produced by 4 mm × 4 mm sized Meek micrografts is 10-folds, similarly 0.8 mm × 0.8 mm size micrografts produce 100-fold expansion, which becomes 700-fold with pixel grafts of 0.3 mm × 0.3 mm size. Fractional skin harvest is another new technique with 700 μ size full thickness graft. These provide instant autologous non-cultured graft to cover extensive areas with similar quality of engraftment surface as split skin grafts. Newer tools for epidermal blister graft harvest quickly, with uniform size to produce 7-fold expansions with reproducible results. In addition, donor area heals faster with minimal scar. Melanocyte-rich cell suspension is utilised in vitiligo surgery tapping the potential of hair root melanocytes. Further advances in the cell culture to reduce the cultivation time and provide stronger epidermal sheets with dermal carrier are seen in trials. PMID:27274117

  12. Effect of aniline on cadmium adsorption by sulfanilic acid-grafted magnetic graphene oxide sheets.

    PubMed

    Hu, Xin-jiang; Liu, Yun-guo; Zeng, Guang-ming; Wang, Hui; Hu, Xi; Chen, An-wei; Wang, Ya-qin; Guo, Yi-Mming; Li, Ting-ting; Zhou, Lu; Liu, Shao-heng; Zeng, Xiao-xia

    2014-07-15

    Cd(II) has posed severe health risks worldwide. To remove this contaminant from aqueous solution, the sulfanilic acid-grafted magnetic graphene oxide sheets (MGOs/SA) were prepared and characterized. The mutual effects of Cd(II) and aniline adsorption on MGOs/SA were studied. The effects of operating parameters such as pH, ionic strength, contact time and temperature on the Cd(II) enrichment, as well as the adsorption kinetics and isotherm were also investigated. The results demonstrated that MGOs/SA could effectively remove Cd(II) and aniline from the aqueous solution and the two adsorption processes were strongly dependent on solution pH. The Cd(II) adsorption was reduced by the presence of aniline at pH<5.4 but was improved at pH>5.4. The presence of Cd(II) diminished the adsorption capacity for aniline at pH<7.8 but enhanced the aniline adsorption at pH>7.8. The decontamination of Cd(II) by MGOs/SA was influenced by ionic strength. Besides, the adsorption process could be well described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that the intraparticle diffusion was not the only rate-limiting step for the adsorption process. Moreover, the experimental data of isotherm followed the Freundlich isotherm model. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. One Year Outcomes of 101 BeGraft Stent Grafts used as Bridging Stents in Fenestrated Endovascular Repairs.

    PubMed

    Spear, Rafaelle; Sobocinski, Jonathan; Hertault, Adrien; Delloye, Matthieu; Azzauiu, Richard; Fabre, Dominique; Haulon, Stéphan

    2018-04-01

    To evaluate the outcomes of the second generation BeGraft balloon expandable covered stent Graft System (Bentley InnoMed, Hechingen, Germany) implanted as bridging stent grafts during fenestrated endovascular aortic repair (FEVAR) of complex aneurysms. This was a single centre prospective study including all consecutive patients treated by FEVAR performed with second generation BeGraft stent grafts as bridging stents. Demographics of patients, diameter and length of the bridging stent grafts, technical success, re-interventions, occlusions, post-operative events, and imaging (Cone Beam CT and/or CT scan, and contrast enhanced ultrasound) were prospectively collected in an electronic database. Duplex ultrasound was performed before discharge and at 6 month follow-up. At 1 year, patients were evaluated clinically and by imaging (CT and ultrasound). Between November 2015 and September 2016, 39 consecutive patients (one woman) were treated with custom made fenestrated endografts (2-5 fenestrations) for complex aneurysms or type 1 endoleak after EVAR, using a variety of bridging stents including the BeGraft. All 101 BeGraft stent grafts were successfully delivered and deployed. There was no in hospital mortality. Early fenestration patency rate was 99% (96/97); the sole target vessel post-operative occlusion was secondary to a dissection of the renal artery distal to the stent. Complementary stenting was unsuccessful in recovering renal artery patency; bilateral renal stent occlusion was observed in the same patient on a CT scan performed 2 months after the procedure. He required post-operative dialysis. No additional renal impairment was observed. During follow-up (median 13 months [11-15]), all fenestrations stented with BeGraft stent grafts remained patent (95/97, 98%). One type 1b endoleak was detected and treated (2.6%). BeGraft stent grafts used as bridging stents during FEVAR are associated with favourable outcomes at 1 year follow-up. Long-term follow-up is

  14. Bilateral internal mammary artery grafting: in situ versus Y-graft. Similar 20-year outcome.

    PubMed

    Di Mauro, Michele; Iacò, Angela L; Allam, Ahmed; Awadi, Mohammed O; Osman, Ahmed A; Clemente, Daniela; Calafiore, Antonio M

    2016-10-01

    The aim of this study was to evaluate the 20-year clinical outcome of patients undergoing coronary artery bypass grafting with bilateral internal mammary arteries (BIMAs) using two different configurations, in situ versus Y-graft. From September 1991 to December 2002, 2150 patients with multivessel coronary artery disease underwent isolated myocardial revascularization with BIMA grafting. BIMA was used as an in situ or Y-configuration in 1332 and 818 cases, respectively. A propensity score model was applied to calculate a standardized difference of ≤10% between groups (BIMA in situ vs BIMA Y-graft), and a cohort of 1468 matched patients was identified (734 in each group). Death, non-fatal myocardial infarction and the need for repeat revascularization were defined as 'major adverse cardiac events'. Late mortality was 24.3% (n = 357) [BIMA in situ vs BIMA Y-graft: 26.9% (n = 197) vs 21.8% (n = 160)]; in 11.6% (n = 170) of cases death was due to cardiac causes [11.9% (n = 87) vs 11.3% (n = 83)]. The rate of major adverse cardiac events was 37.1% (n = 545) [40.8% (n = 299) vs 33.5% (n = 246)]. The 20-year survival was 59 ± 6% and the event-free survival was 45 ± 7%. The clinical outcome of BIMA grafting is independent of surgical configuration. Y-grafting increases the flexibility of BIMA grafting and should be taken into account when a surgical strategy for myocardial revascularization needs to be planned. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  15. Effects of progesterone on cardiovascular responses to amines and to sympathetic stimulation in the pithed rat

    PubMed Central

    Fozard, J. R.

    1971-01-01

    1. Blood pressure and heart rate responses to adrenaline, noradrenaline, tyramine, 5-hydroxytryptamine and stimulation of the spinal sympathetic outflow were measured in pithed rats pretreated either with progesterone (20 mg/kg daily for 14 days) or the vehicle solution of ethyl oleate. 2. Pretreatment with progesterone increased the durations but not the magnitudes of the blood pressure and heart rate responses to adrenaline and that phase of the response to sympathetic stimulation attributable to amine release from the adrenal medulla. 3. Responses to noradrenaline, tyramine, 5-hydroxytryptamine and that phase of the response to sympathetic stimulation associated with amine release from the sympathetic nerves were not significantly different in the two groups. 4. Pyrogallol (5 mg/kg) increased the duration but not the magnitude of responses to adrenaline, noradrenaline and sympathetic stimulation in both experimental groups. The increases in duration were consistently less in animals pretreated with progesterone than in controls. 5. Pretreatment with progesterone did not affect the total amount of radioactivity nor the proportion of catechol to non-catechol metabolites excreted in the urine during a period of 7·25 h following an intraperitoneal injection of (±) isoprenaline-7-3H. 6. It is concluded that the effects of progesterone may result from a localized decrease in catechol O-methyl transferase activity within the cardiovascular system. PMID:5280141

  16. Design and optimization of a tissue-engineered bone graft substitute

    NASA Astrophysics Data System (ADS)

    Shimko, Daniel Andrew

    2004-12-01

    In 2000, 3.1 million surgical procedures on the musculoskeletal system were reported in the United States. For many of these cases, bone grafting was essential for successful fracture stabilization. Current techniques use intact bone obtained either from the patient (autograft) or a cadaver (allograft) to repair large defects, however, neither source is optimal. Allografts suffer integration problems, and for autografts, the tissue supply is limited. Because of these shortcomings, and the high demand for graft tissues, alternatives are being explored. To successfully engineer a bone graft replacement, one must employ a three pronged research approach, addressing (1) the cells that will inhabit the new tissue, (2) the culture environment that these cells will be exposed to, and (3) the scaffold in which these cells will reside. The work herein examines each of these three aspects in great detail. Both adult and embryonic stem cells (ESCs) were considered for the tissue-engineered bone graft. Both exhibited desirable qualities, however, neither were optimal in all categories examined. In the end, the possibility of teratoma formation and ethical issues surrounding ESCs, made the use of adult marrow-derived stem cells in the remaining experiments obligatory. In subsequent experiments, the adult stem cells' ability to form bone was optimized. Basic fibroblast growth factor, fetal bovine serum, and extracellular calcium supplementation studies were all performed. Ultimately, adult stem cells cultured in alpha-MEM supplemented with 10% fetal bovine serum, 10mM beta-glycerophosphate, 10nM dexamethasone, 50mug/ml ascorbic acid, 1%(v/v) antibiotic/antimycotic, and 10.4mM CaCl2 performed the best, producing nearly four times more mineral than any other medium formulation. Several scaffolds were then investigated including those fabricated from poly(alpha-hydroxy esters), tantalum, and poly-methylmethacrylate. In the final study, the most appealing cell type, medium

  17. Graft-versus-host disease

    MedlinePlus

    GVHD; Bone marrow transplant - graft-versus-host disease; Stem cell transplant - graft-versus-host disease; Allogeneic transplant - ... GVHD may occur after a bone marrow, or stem cell, transplant in which someone receives bone marrow ...

  18. Posterior repair with perforated porcine dermal graft.

    PubMed

    Taylor, G Bernard; Moore, Robert D; Miklos, John R; Mattox, T Fleming

    2008-01-01

    To compare postoperative vaginal incision separation and healing in patients undergoing posterior repair with perforated porcine dermal grafts with those that received grafts without perforations. Secondarily, the tensile properties of the perforated and non-perforated grafts were measured and compared. This was a non-randomized retrospective cohort analysis of women with stage II or greater rectoceles who underwent posterior repair with perforated and non-perforated porcine dermal grafts (Pelvicol(TM) CR Bard Covington, GA USA). The incidence of postoperative vaginal incision separation (dehiscence) was compared. A secondary analysis to assess graft tensile strength, suture pull out strength, and flexibility after perforation was performed using standard test method TM 0133 and ASTM bending and resistance protocols. Seventeen percent of patients (21/127) who received grafts without perforations developed vaginal incision dehiscence compared to 7% (5/71) of patients who received perforated grafts (p = 0.078). Four patients with vaginal incision dehiscence with non-perforated grafts required surgical revision to facilitate healing. Neither tensile strength or suture pull out strength were significantly different between perforated and non-perforated grafts (p = 0.81, p = 0.29, respectively). There was no difference in the flexibility of the two grafts (p = 0.20). Perforated porcine dermal grafts retain their tensile properties and are associated with fewer vaginal incision dehiscences.

  19. Emerging concepts in liver graft preservation

    PubMed Central

    Bejaoui, Mohamed; Pantazi, Eirini; Folch-Puy, Emma; Baptista, Pedro M; García-Gil, Agustín; Adam, René; Roselló-Catafau, Joan

    2015-01-01

    The urgent need to expand the donor pool in order to attend to the growing demand for liver transplantation has obliged physicians to consider the use of suboptimal liver grafts and also to redefine the preservation strategies. This review examines the different methods of liver graft preservation, focusing on the latest advances in both static cold storage and machine perfusion (MP). The new strategies for static cold storage are mainly designed to increase the fatty liver graft preservation via the supplementation of commercial organ preservation solutions with additives. In this paper we stress the importance of carrying out effective graft washout after static cold preservation, and present a detailed discussion of the future perspectives for dynamic graft preservation using MP at different temperatures (hypothermia at 4 °C, normothermia at 37 °C and subnormothermia at 20 °C-25 °C). Finally, we highlight some emerging applications of regenerative medicine in liver graft preservation. In conclusion, this review discusses the “state of the art” and future perspectives in static and dynamic liver graft preservation in order to improve graft viability. PMID:25593455

  20. In vitro characterization of pH-sensitive azithromycin-loaded methoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) micelles.

    PubMed

    Teng, Fangfang; Deng, Peizong; Song, Zhimei; Zhou, Feilong; Feng, Runliang; Liu, Na

    2017-06-15

    In order to improve azithromycin's antibacterial activity in acidic medium, monomethoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) copolymer was synthesized through allylation, free radical addition, ring-opening polymerization and amidation reactions with methoxy poly (ethylene glycol) as raw material. Drug loading capacity and encapsulation efficiency of azithromycin-loaded micelles prepared via thin film hydration method were 11.58±0.86% and 96.06±1.93%, respectively. The drug-loaded micelles showed pH-dependent property in the respects of particle size, zeta potential at the range of pH 5.5-7.8. It could control drug in vitro release and demonstrate higher release rate at pH 6.0 than that at pH 7.4. In vitro antibacterial experiment indicated that the activity of azithromycin-loaded micelles against S. aureus was superior to free azithromycin in medium at both pH 6.0 and pH 7.4. Using fluorescein as substitute with pH-dependent fluorescence decrease property, laser confocal fluorescence microscopy analysis confirmed that cellular uptake of micelles was improved due to protonation of copolymer's imidazole groups at pH 6.0. The enhanced cellular uptake and release of drug caused its activity enhancement in acidic medium when compared with free drug. The micellar drug delivery system should be potential application in the field of bacterial infection treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Coralline hydroxyapatite bone graft substitutes.

    PubMed

    Elsinger, E C; Leal, L

    1996-01-01

    The authors present a review of the various bone grafts currently available with special attention to coral bone grafts. Several of the benefits of coralline hydroxyapatite bone graft substitutes, such as safety and biocompatibility, will be addressed in this article, part of an ongoing investigation of coral bone grafts used in triple arthrodesis procedures. To date, eight cases have been performed. In seven cases, granular chips were employed to pack the subtalar joint. The final case, presented in this article, represents a 26-year-old male who, 2 years previously, sustained a calcaneal fracture with resultant shortening along the lateral column. A coralline hydroxyapatite block was used at the calcaneocuboid joint to achieve distraction. Clinically, the patient is progressing well at 10 months postoperatively. Radiographically, one can still clearly appreciate the margins of the bone graft at 5 months.

  2. Controlling the cell adhesion property of silk films by graft polymerization.

    PubMed

    Dhyani, Vartika; Singh, Neetu

    2014-04-09

    We report here a graft polymerization method to improve the cell adhesion property of Bombyx mori silk fibroin films. B. mori silk has evolved as a promising material for tissue engineering because of its biocompatibility and biodegradability. However, silk's hydrophobic character makes cell adhesion and proliferation difficult. Also, the lack of sufficient reactive amino acid residues makes biofunctionalization via chemical modification challenging. Our study describes a simple method that provides increased chemical handles for tuning of the surface chemistry of regenerated silk films (SFs), thus allowing manipulation of their bioactivity. By grafting pAAc and pHEMA via plasma etching, we have increased carboxylic acid and hydroxyl groups on silk, respectively. These modifications allowed us to tune the hydrophilicity of SFs and provide functional groups for bioconjugation. Our strategy also allowed us to develop silk-based surface coatings, where spatial control over cell adhesion can be achieved. This control over cell adhesion in a particular region of the SFs is difficult to obtain via existing methods of modifying the silk fibroin instead of the SF surface. Thus, our strategy will be a valuable addition to the toolkit of biofunctionalization for enhancing SFs' tissue engineering applications.

  3. Organosiloxane-grafted natural polymer coatings

    DOEpatents

    Sugama, Toshifumi

    1998-01-01

    A new family of polysaccharide graft polymers are provided as corrosion resistant coatings having antimicrobial properties which are useful on light metals such as aluminum, magnesium, zinc, steel and their alloys. Methods of making the polysaccharide graft polymers are also included. The methods of making the polysaccharide graft polymers involve reacting a polysaccharide source with an antimicrobial agent under conditions of hydrolysis-condensation.

  4. Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles.

    PubMed

    Tao, Peng; Viswanath, Anand; Schadler, Linda S; Benicewicz, Brian C; Siegel, Richard W

    2011-09-01

    Visibly highly transparent indium tin oxide (ITO)/epoxy nanocomposites were prepared by dispersing polyglycidyl methacrylate (PGMA) grafted ITO nanoparticles into a commercial epoxy resin. The oleic acid stabilized, highly crystalline, and near monodisperse ITO nanoparticles were synthesized via a nonaqueous synthetic route with multigram batch quantities. An azido-phosphate ligand was synthesized and used to exchange with oleic acid on the ITO surface. The azide terminal group allows for the grafting of epoxy resin compatible PGMA polymer chains via Cu(I) catalyzed alkyne-azide "click" chemistry. Transmission electron microscopy (TEM) observation shows that PGMA grafted ITO particles were homogeneously dispersed within the epoxy matrix. Optical properties of ITO/epoxy nanocomposites with different ITO concentrations were studied with an ultraviolet-visible-near-infrared (UV-vis-NIR) spectrometer. All the ITO/epoxy nanocomposites show more than 90% optical transparency in the visible light range and absorption of UV light from 300 to 400 nm. In the near-infrared region, ITO/epoxy nanocomposites demonstrate low transmittance and the infrared (IR) transmission cutoff wavelength of the composites shifts toward the lower wavelength with increased ITO concentration. The ITO/epoxy nanocomposites were applied onto both glass and plastic substrates as visibly transparent and UV/IR opaque optical coatings.

  5. Serum Uric Acid and Renal Transplantation Outcomes: At Least 3-Year Post-transplant Retrospective Multivariate Analysis

    PubMed Central

    Zhang, Kun; Gao, Baoshan; Wang, Yuantao; Wang, Gang; Wang, Weigang; Zhu, Yaxiang; Yao, Liyu; Gu, Yiming; Chen, Mo; Zhou, Honglan; Fu, Yaowen

    2015-01-01

    Since the association of serum uric acid and kidney transplant graft outcome remains disputable, we sought to evaluate the predictive value of uric acid level for graft survival/function and the factors could affect uric acid as time varies. A consecutive cohort of five hundred and seventy three recipients transplanted during January 2008 to December 2011 were recruited. Data and laboratory values of our interest were collected at 1, 3, 6, 12, 24 and 36 months post-transplant for analysis. Cox proportional hazard model, and multiple regression equation were built to adjust for the possible confounding variables and meet our goals as appropriate. The current cohort study lasts for 41.86 ± 15.49 months. Uric acid level is proven to be negatively associated with eGFR at different time point after adjustment for age, body mass index and male gender (standardized β ranges from -0.15 to -0.30 with all P<0.001).Males with low eGFR but high level of TG were on CSA, diuretics and RAS inhibitors and experienced at least one episode of acute rejection and diabetic issue were associated with a higher mean uric acid level. Hyperuricemia was significantly an independent predictor of pure graft failure (hazard ratio=4.01, 95% CI: 1.25-12.91, P=0.02) after adjustment. But it was no longer an independent risk factor for graft loss after adjustment. Interestingly, higher triglyceride level can make incidence of graft loss (hazard ratio=1.442, for each unit increase millimoles per liter 95% CI: 1.008-2.061, P=0.045) and death (hazard ratio=1.717, 95% CI: 1.105-2.665, P=0.016) more likely. The results of our study suggest that post-transplant elevated serum uric acid level is an independent predictor of long-term graft survival and graft function. Together with the high TG level impact on poor outcomes, further investigations for therapeutic effect are needed. PMID:26208103

  6. Removal of lead from aqueous solutions using Cassia grandis seed gum-graft-poly(methylmethacrylate).

    PubMed

    Singh, Vandana; Tiwari, Stuti; Sharma, Ajit Kumar; Sanghi, Rashmi

    2007-12-15

    Using persulfate/ascorbic acid redox system, a series of Cassia grandis seed gum-graft-poly(methylmethacrylate) samples were synthesized. The copolymer samples were evaluated for lead(II) removal from the aqueous solutions where the sorption capacities were found proportional to the grafting extent. The conditions for the sorption were optimized using copolymer sample of highest percent grafting. The sorption was found pH and concentration dependent, pH 2.0 being the optimum value. Adsorption of lead by the grafted seed gum followed a pseudo-second-order kinetics with a rate constant of 4.64 x 10(-5) g/mg/min. The equilibrium data followed the Langmuir isotherm model with maximum sorption capacity of 126.58 mg/g. The influence of electrolytes NaCl, Na(2)SO(4) on lead uptake was also studied. Desorption with 2 N HCl could elute 76% of the lead ions from the lead-loaded copolymer. The regeneration experiments revealed that the copolymer could be successfully reused for at least four cycles though there was a successive loss in lead sorption capacity with every cycle. The adsorbent was also evaluated for Pb(II) removal from battery waste-water containing 2166 mg/L Pb(II). From 1000 times diluted waste water, 86.1% Pb(II) could be removed using 0.05 g/20 ml adsorbent dose, while 0.5 g/20 ml adsorbent dose was capable of removing 60.29% Pb from 10 times diluted waste water. Optimum Pb(II) binding under highly acidic conditions indicated that there was a significant contribution of nonelectrostatic interactions in the adsorption process. A possible mechanism for the adsorption has been discussed.

  7. Vascularized bone graft for scaphoid nonunions.

    PubMed

    Mih, Alexander D

    2004-09-01

    Scaphoid fracture nonunion remains a challenging problem that may persist despite traditional methods of bone grafting and internal fixation. The alteration of wrist mechanics created by nonunion as well as the development of avascular necrosis leads to degenerative change of the radiocarpal joint accompanied by loss of motion and pain. The use of a vascularized bone graft has the theoretical benefit of increased blood flow that exceeds that of nonvascularized grafts. Numerous sources of vascularized bone graft have been described, including those from remote sites as well as from the carpus and distal radius. Knowledge of the blood supply to the distal radius has allowed for development of several vascularized bone graft harvest sites. The results of vascularized bone grafting from the distal radius have been encouraging, with numerous authors reporting the successful treatment of scaphoid nonunions.

  8. Lignin poly(lactic acid) copolymers

    DOEpatents

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  9. Synthesis and characterisation of multifunctional alginate microspheres via the in situ formation of ZnO quantum dots and the graft of 4-(1-pyrenyl) butyric acid to sodium alginate.

    PubMed

    Luo, Guilin; Wang, Jianxin; Wang, Yingying; Feng, Bo; Weng, Jie

    2015-01-01

    Growth factor-loaded fluorescent alginate microspheres, which can realise sustained growth factor release and fluorescence imaging, were synthesised by in situ formation of ZnO quantum dots (QDs) and covalent graft of 4-(1-pyrenyl) butyric acid (PBA). BSA was chosen as a growth factor model protein to study the release kinetic of growth factors from alginate microspheres. The microsphere size and fluorescent properties were also investigated. Investigations of cell culture were used for evaluating biocompatibility of BSA-loaded fluorescent microspheres and fluorescence imaging property of ZnO QDs and PBA-grafted sodium alginate from the microspheres. The results show that they have good fluorescent property either to microspheres or to cells and fluorescent microspheres have good biocompatibility and property in sustained release of growth factors. The obtained microspheres will be expected to realise the imaging of cells and materials and also the release of growth factor in tissue engineering or in cell culture.

  10. Rib Bone Graft Adjusted to Fit the Facial Asymmetry: A Frame Structure Graft.

    PubMed

    Lee, Yoon Ho; Choi, Jong Hwan; Hwang, Kun; Choi, Jun Ho

    2015-10-01

    The authors introduce the concept of a "frame structure graft" in which a harvested rib bone was adjusted to fit facial asymmetry. On the costochondral junction of the sixth or seventh rib, a 5 cm incision was made. Through a subperiosteal dissection, the rib bone was harvested. Using a reciprocating saw, the harvested rib was scored on its anterior surface as well as its posterior surface with a partial depth at different intervals. The harvested rib bone was placed on the skin surface of the unaffected side of the face and a curvature was created exactly matching that of the unaffected side by bending the bone using a greenstick fracture. Thereafter, the graft was adjusted to conceal the asymmetry of the deficient side. The adjusted "frame structure" was transferred to the defect through the incisions on the affected side, and the "frame structure" graft was placed on the mandible or zygoma. The graft fixation was done externally with at least 2 Kirschner wires (K-wires). From January 2005 to August 2013, a total of 30 patients (13 men, 17 women, mean age 25.6 years) received a frame structure graft. All 30 patients achieved good healing at the operation site without complications. Donor-site morbidity as pneumothorax from the rib bone harvest was not found. Merits of this frame structure graft, the authors think, are that this method could allow a similar curvature to the normal side. In addition, the procedure itself is easy.

  11. Stent-Graft Treatment of Late Stenosis of the Left Common Carotid Artery Following Thoracic Graft Placement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medda, Massimo; Lioupis, Christos, E-mail: lioupisC@vodafone.net.gr; Mollichelli, Nadia

    2008-03-15

    We report the case of a patient with subtotal occlusion of the origin of the left common carotid artery (CCA) following thoracic graft placement. Retrograde endovascular placement of a stent-graft by minimal cervical access was undertaken to repair the occlusive lesion of the left CCA and prevent future complications of endoluminal thoracic reconstruction. The retrograde endovascular repair of CCA lesions, as other authors have already suggested, may be the treatment of choice in 'high-surgical-risk' patients. In these cases where the ostium of supra-aortic trunks is compromised following thoracic aorta stent-graft migration, endoluminal placement of a stent-graft in the CCA canmore » guarantee both maintenance of carotid flow and thoracic stent-graft fixation.« less

  12. Surface radical chain-transfer reaction in deep eutectic solvents for preparation of silica-grafted stationary phases in hydrophilic interaction chromatography.

    PubMed

    Yang, Beibei; Cai, Tianpei; Li, Zhan; Guan, Ming; Qiu, Hongdeng

    2017-12-01

    In this paper, deep eutectic solvents (DESs) were firstly used as new and green solvents for the preparation of polymer-grafted silica stationary phases. 1-Vinylimidazole and acrylic acid were homopolymerized and copolymerized on silica via surface radical chain-transfer reaction in the DESs. Three stationary phases including poly(1-vinylimidazole)-, poly(acrylic acid)-, poly(1-vinylimidazole-co-acrylic acid)-grafted silica were obtained and characterized by elemental analysis and Fourier transform infrared spectroscopy. Their hydrophilic interaction chromatographic properties were investigated for separation of nucleosides, nucleobases, saccharides and amino acids. The retention changes of nucleosides and nucleobases on these columns were investigated under different chromatographic conditions including acetonitrile content, salt concentration, pH of mobile phase and column temperature. The repeatability of these columns was also investigated. The results demonstrate that DESs can be used as new media for the synthesis of silica-based stationary phases by homopolymerization and copolymerization on the surface of porous silica particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Organosiloxane-grafted natural polymer coatings

    DOEpatents

    Sugama, Toshifumi

    1998-12-01

    A new family of polysaccharide graft polymers are provided as corrosion resistant coatings having antimicrobial properties which are useful on light metals such as aluminum, magnesium, zinc, steel and their alloys. Methods of making the polysaccharide graft polymers are also included. The methods of making the polysaccharide graft polymers involve reacting a polysaccharide source with an antimicrobial agent under conditions of hydrolysis-condensation. 17 figs.

  14. Magnesium inference screw supports early graft incorporation with inhibition of graft degradation in anterior cruciate ligament reconstruction

    PubMed Central

    Cheng, Pengfei; Han, Pei; Zhao, Changli; Zhang, Shaoxiang; Zhang, Xiaonong; Chai, Yimin

    2016-01-01

    Patients after anterior cruciate ligament (ACL) reconstruction surgery commonly encounters graft failure in the initial phase of rehabilitation. The inhibition of graft degradation is crucial for the successful reconstruction of the ACL. Here, we used biodegradable high-purity magnesium (HP Mg) screws in the rabbit model of ACL reconstruction with titanium (Ti) screws as a control and analyzed the graft degradation and screw corrosion using direct pull-out tests, microCT scanning, and histological and immunohistochemical staining. The most noteworthy finding was that tendon graft fixed by HP Mg screws exhibited biomechanical properties substantially superior to that by Ti screws and the relative area of collagen fiber at the tendon-bone interface was much larger in the Mg group, when severe graft degradation was identified in the histological analysis at 3 weeks. Semi-quantitative immunohistochemical results further elucidated that the MMP-13 expression significantly decreased surrounding HP Mg screws with relatively higher Collagen II expression. And HP Mg screws exhibited uniform corrosion behavior without displacement or loosening in the femoral tunnel. Therefore, our results demonstrated that Mg screw inhibited graft degradation and improved biomechanical properties of tendon graft during the early phase of graft healing and highlighted its potential in ACL reconstruction. PMID:27210585

  15. Magnesium inference screw supports early graft incorporation with inhibition of graft degradation in anterior cruciate ligament reconstruction

    NASA Astrophysics Data System (ADS)

    Cheng, Pengfei; Han, Pei; Zhao, Changli; Zhang, Shaoxiang; Zhang, Xiaonong; Chai, Yimin

    2016-05-01

    Patients after anterior cruciate ligament (ACL) reconstruction surgery commonly encounters graft failure in the initial phase of rehabilitation. The inhibition of graft degradation is crucial for the successful reconstruction of the ACL. Here, we used biodegradable high-purity magnesium (HP Mg) screws in the rabbit model of ACL reconstruction with titanium (Ti) screws as a control and analyzed the graft degradation and screw corrosion using direct pull-out tests, microCT scanning, and histological and immunohistochemical staining. The most noteworthy finding was that tendon graft fixed by HP Mg screws exhibited biomechanical properties substantially superior to that by Ti screws and the relative area of collagen fiber at the tendon-bone interface was much larger in the Mg group, when severe graft degradation was identified in the histological analysis at 3 weeks. Semi-quantitative immunohistochemical results further elucidated that the MMP-13 expression significantly decreased surrounding HP Mg screws with relatively higher Collagen II expression. And HP Mg screws exhibited uniform corrosion behavior without displacement or loosening in the femoral tunnel. Therefore, our results demonstrated that Mg screw inhibited graft degradation and improved biomechanical properties of tendon graft during the early phase of graft healing and highlighted its potential in ACL reconstruction.

  16. Surface and anti-fouling properties of a polyampholyte hydrogel grafted onto a polyethersulfone membrane.

    PubMed

    Zhang, Wei; Yang, Zhe; Kaufman, Yair; Bernstein, Roy

    2018-05-01

    Zwitterion polymers have anti-fouling properties; therefore, grafting new zwitterions to surfaces, particularly as hydrogels, is one of the leading research directions for preventing fouling. Specifically, polyampholytes, polymers of random mixed charged subunits with a net-electric charge, offer a synthetically easy alternative for studying new zwitterions with a broad spectrum of charged moieties. Here, a novel polyampholyte hydrogel was grafted onto the surface of polyethersulfone membrane by copolymerizing a mixture of vinylsulfonic acid (VSA) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METMAC) as the negatively and positively charged monomers, respectively, using various monomer ratios in the polymerization solution, and with N,N'-methylenebisacrylamide as the crosslinker. The physicochemical, morphological and anti-fouling properties of the modified membranes were systematically investigated. Hydrophilic hydrogels were successfully grafted using monomers at different molar ratios. A thin-film zwitterion hydrogel (∼90 nm) was achieved at a 3:1 [VSA:METMAC] molar ratio in the polymerization solution. Among all examined membranes, the zwitterion polyampholyte-modified membrane demonstrated the lowest adsorption of proteins, humic acid, and sodium alginate. It also had low fouling and high flux recovery following filtration with a protein or with an extracellular polymeric substance solution. These findings suggest that this polyampholyte hydrogel is applicable as a low fouling surface coating. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Early matrix change of a nanostructured bone grafting substitute in the rat.

    PubMed

    Xu, Weiguo; Holzhüter, Gerd; Sorg, Heiko; Wolter, Daniel; Lenz, Solvig; Gerber, Thomas; Vollmar, Brigitte

    2009-11-01

    A nanocrystalline bone substitute embedded in a highly porous silica gel matrix (NanoBone) has previously been shown to bridge bone defects by an organic matrix. As the initial host response on the bone graft substitute might be a determinant for subsequent bone formation, our present purpose was to characterize the early tissue reaction on this biomaterial. After implantation of 80 mg of NanoBone into the adipose neck tissue of a total of 35 rats, grafts were harvested for subsequent analysis at days 3, 6, 9, 12, and 21. The biomaterial was found encapsulated by granulation tissue which partly penetrated the implant at day 3 and completely pervaded the graft at day 12 on implantation. Histology revealed tartrate-resistant acid phosphatase (TRAP)-positive giant cells covering the biomaterial. ED1 (CD68) immunopositivity of these cells further indicated their osteoclast-like phenotype. Scanning electron microscopy revealed organic tissue components within the periphery of the graft already at day 9, whereas the central hematoma region still presented the silica-surface of the biomaterial. Energy dispersive X-ray spectroscopy further demonstrated that the silica gel was degraded faster in the peripheral granulation tissue than in the central hematoma and was replaced by organic host components by day 12. In conclusion, the silica gel matrix is rapidly replaced by carbohydrate macromolecules. This might represent a key step in the process of graft degradation on its way toward induction of bone formation. The unique composition and structure of this nanoscaled biomaterial seem to support its degradation by host osteoclast-like giant cells.

  18. Developments in parallel grafts for aortic arch lesions.

    PubMed

    Kolvenbach, Ralf R; Rabin, Asaf; Karmeli, Ron; Alpaslan, Alper; Schwierz, Elizabeth

    2016-06-01

    Due to the shortage of commercially available off the shelf aortic arch grafts since the last years parallel grafts or chimney grafts have played an increasing role in the treatment of patients with aortic arch lesions. Although there are still issues with type endoleaks and gutters between the chimney graft and the aortic stent-graft remaining. We report our results with the Medtronic thoracic graft in combination with long self-expanding parallel grafts, to ensure an overlapping zone of more than 7 cm between the different grafts. Alternatively, sandwich configurations are used where a direct contact between the parallel graft and the aortic wall is avoided. We have placed a total of 65 parallel grafts into supra-aortic branches. In 21 cases chimney grafts were placed into the carotid artery, in most cases into the left common carotid artery. In 36 cases chimney grafts were placed into left subclavian artery. A maximum number of 4 parallel grafts were placed for total endovascular debranching. In addition, in 8 patients a parallel graft had to be placed into the innominate artery. There was a patency of 69% for all subclavian artery chimney grafts versus 73% for carotid artery parallel grafts. Of note is a stroke rate of 5.2% in all these cases. Only 2 of the patients with an occluded left subclavian artery chimney graft required a bypass procedure for arm claudication or ischemia. We had a primary type I endoleak rate of 28%. In almost 25% secondary interventions were required mainly to treat type I leaks, in those cases where the leak did not resolve spontaneously. The overall mortality rate was 3.5%. The results of parallel graft in the aortic arch are promising, but of major concern is still the high rate of type I endoleaks as well as the neurological complication rate, most probably due to catheter manipulation in patients with severe atherosclerotic arch lesions.

  19. Inheritance of graft compatibility in Douglas fir.

    Treesearch

    D.L. Copes

    1973-01-01

    Graft compatibility of genetically related and unrelated rootstock-scion combinations was compared. Scion clones were 75% compatible when grafted on half-related rootstocks but only 56% compatible when grafted on unrelated rootstocks. Most variance associated with graft incompatibility in Douglas-fir appears to be caused by multiple genes.

  20. Cranial Bone Graft Donor Site Reconstruction.

    PubMed

    Çelik, Muzaffer

    2017-01-01

    My most important concern, in my entire experience with cranial bone grafting procedures, is managing the bone graft donor site such as donor site cavity from harvesting and weakness of the cranium. The most common patient complaint, following cranial bone grafting for aesthetic indications, is the presence of a cavity at the donor site. The authors have managed more than 200 patients since 2001, wherein the cranial bone graft-donor sites were reconstructed with tiny bone chip lamellae harvested from the area adjacent to the donor site. This procedure was associated with a low incidence of patient complaints, thereby suggesting higher patient satisfaction. This approach for cranial bone grafting appears to have a high patient acceptance.

  1. Radiation graft modification of EPDM rubber

    NASA Astrophysics Data System (ADS)

    Katbab, A. A.; Burford, R. P.; Garnett, J. L.

    N-Vinyl pyrrolidone (NVP), 2-hydroxyethylmethacrylate (HEMA) and acrylamide (AAm) have been grafted to the surface of rubber vulcanizates based on ethylene-propylene-terpolymer (EPDM) using the simultaneous radiation method to alter surface properties such as wettability and therefore biocompatibility. The effect of monomer concentration, solvent and EPDM structural factors on the grafting behavior have been investigated. The inhibitory effect upon homopolymerization of various salts has also been evaluated for the three monomers. NVP and HEMA could be grafted onto EPDM rubber in the presence of aqueous solutions of cupric nitrate at 0.005 M and 1.0 M concentrations respectively. Aqueous solutions of Mohr's salt (ammonium ferrous sulphate) at 0.05 M not only suppressed the homopolymerization of AAm but also increased grafting yield. The percentage grafting also increased with increasing AAm concentration. A mechanism has been proposed to explain the behaviour of these monomers. The inclusion of multifunctional acrylates in additive amounts (1.0 vol%) enhanced the graft degree. Modified samples were able to be efficiently stained, allowing the depth of the graft copolymerization to be determined by light microscopy. Water was found to have an accelerating effect on the polymerization of these monomers, but methanol prevented their polymerization completely. The effect of EPDM structural factors upon degree of grafting was found to vary, depending upon the monomer type.

  2. A study on the morphology of polystyrene-grafted poly(ethylene-alt-tetrafluoroethylene) (ETFE) films prepared using a simultaneous radiation grafting method

    NASA Astrophysics Data System (ADS)

    Song, Ju-Myung; Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young Chang; Shin, Junhwa

    2014-04-01

    The morphology of polystyrene-grafted poly(ethylene-alt-tetrafluoroethylene) (ETFE) films prepared using a simultaneous radiation grafting method was investigated using DMA, DSC, XRD, and SAXS instruments. The DMA study indicates that the ETFE amorphous phase and PS amorphous phase are mixed well in the PS-grafted ETFE films while the ETFE crystalline phase and the PS amorphous phase are separated, suggesting that the PS chains are grafted mainly on the ETFE amorphous regions. The DSC and XRD data showed that the natural crystalline structures of ETFE in the grafted ETFE films are not affected by the degree of grafting. The SAXS profiles displayed that the inter-crystalline distance of the ETFE films increases with an increasing degree of grafting, which further implies that the PS graft chains formed by the simultaneous irradiation has a significant impact on the amorphous morphology of the resulting grafted ETFE film. Thus, these results indicate that the styrene monomers are mainly grafted on the ETFE amorphous regions during the simultaneous radiation grafting process.

  3. Synthesis and characterization of polypyrrole grafted chitin

    NASA Astrophysics Data System (ADS)

    Ramaprasad, A. T.; Latha, D.; Rao, Vijayalakshmi

    2017-05-01

    Synthesis and characterization of chitin grafted with polypyrrole (PPy) is reported in this paper. Chitin is soaked in pyrrole solution of various concentrations for different time intervals and polymerized using ammonium peroxy disulphate (APS) as an initiator. Grafting percentage of polypyrrole onto chitin is calculated from weight of chitin before and after grafting. Grafting of polymer is further verified by dissolution studies. The grafted polymer samples are characterized by FTIR, UV-Vis absorption spectrum, XRD, DSC, TGA, AFM, SEM and conductivity studies.

  4. Library of Antifouling Surfaces Derived From Natural Amino Acids by Click Reaction.

    PubMed

    Xu, Chen; Hu, Xin; Wang, Jie; Zhang, Ye-Min; Liu, Xiao-Jiu; Xie, Bin-Bin; Yao, Chen; Li, Yi; Li, Xin-Song

    2015-08-12

    Biofouling is of great concern in numerous applications ranging from ophthalmological implants to catheters, and from bioseparation to biosensors. In this report, a general and facile strategy to combat surface fouling is developed by grafting of amino acids onto polymer substrates to form zwitterionic structure through amino groups induced epoxy ring opening click reaction. First of all, a library of poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) hydrogels with zwitterionic surfaces were prepared, resulting in the formation of pairs of carboxyl anions and protonated secondary amino cations. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the successful immobilization of amino acids on the hydrogel surfaces. After that, the contact angle and equilibrium water content of the modified hydrogels showed that the hydrogels exhibited improved hydrophilicity compared with the parent hydrogel. Furthermore, the protein deposition was evaluated by bicinchoninic acid assay using bovine serum albumin (BSA) and lysozyme as models. The results indicated that the performance of the hydrogels was determined by the nature of incorporated amino acid: the hydrogels incorporated with neutral amino acids had nonspecific antiadsorption capability to both BSA and lysozyme; the hydrogels incorporated with charged amino acids showed antiadsorption behaviors against protein with same charge and enhanced adsorption to the protein with opposite charge; the optimal antiadsorption performance was observed on the hydrogels incorporated with polar amino acids with a hydroxyl residual. The improvement of antiprotein fouling of the neutral amino acids grafted hydrogels can be ascribed to the formation of zwitterionic surfaces. Finally, a couple of soft contact lenses grafted with amino acids were fabricated having improved antifouling property and hydrophilicity. The result demonstrated the success of

  5. Adsorption of drugs onto a pH responsive poly(N,N-dimethyl aminoethyl methacrylate) grafted anion-exchange membrane in vitro.

    PubMed

    Karppi, Jouni; Akerman, Satu; Akerman, Kari; Sundell, Annika; Nyyssönen, Kristiina; Penttilä, Ilkka

    2007-06-29

    The influence of charge and lipophilicity of acidic and basic model drugs on their adsorption onto poly(N,N-dimethyl aminoethyl methacrylic acid) grafted poly(vinylidene fluoride) (DMAEMA-PVDF) membranes was evaluated. The effect of serum proteins (albumin, IgG) and hormones (cortisol, free thyroxine (T(4)F) and thyrotropin (TSH)) on drug adsorption was also studied. Acidic model drugs (antiepileptics and benzodiazepies) adsorbed to a greater extent onto the membrane from Hepes buffer at ionic strength of 25mM and pH 7.0 than basic drugs (antidepressants) did. Adsorption of acidic model drugs was based on electrostatic interactions between positively charged tertiary amino groups of DMAEMA side-chain and acidic negatively charged drug. Albumin diminished the adsorption of drugs from serum onto the membrane. Lipophilicity was related to the adsorption of acidic model drugs from serum onto the membrane. The degree of grafting had the greatest effect on adsorption of lipophilic drugs, but no influence was observed on adsorption of hydrophilic drugs. The present results showed that acidic drugs and albumin adsorbed onto the membrane, which suggests that the PVDF-DMAEMA membrane may be suitable for separating acidic drugs from protein-free substances for subsequent monitoring and evaluation.

  6. Graft failure after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Ozdemir, Zehra Narli; Civriz Bozdağ, Sinem

    2018-04-18

    Graft failure is a serious complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT) defined as either lack of initial engraftment of donor cells (primary graft failure) or loss of donor cells after initial engraftment (secondary graft failure). Successful transplantation depends on the formation of engrafment, in which donor cells are integrated into the recipient's cell population. In this paper, we distinguish two different entities, graft failure (GF) and poor graft function (PGF), and review the current comprehensions of the interactions between the immune and hematopoietic compartments in these conditions. Factors associated with graft failure include histocompatibility locus antigen (HLA)-mismatched grafts, underlying disease, type of conditioning regimen and stem cell source employed, low stem cell dose, ex vivo T-cell depletion, major ABO incompatibility, female donor grafts for male recipients, disease status at transplantation. Although several approaches have been developed which aimed to prevent graft rejection, establish successful engraftment and treat graft failure, GF remains a major obstacle to the success of allo-HSCT. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) still remains to be the curative treatment option for various non-malignant and malignant hematopoietic diseases. The outcome of allo-HSCT primarily depends on the engraftment of the graft. Graft failure (GF), is a life-threatening complication which needs the preferential therapeutic manipulation. In this paper, we focused on the definitions of graft failure / poor graft function and also we reviewed the current understanding of the pathophysiology, risk factors and treatment approaches for these entities. Copyright © 2018. Published by Elsevier Ltd.

  7. Synthesis, characterization and foaming of PHEA-PLLA, a new graft copolymer for biomedical engineering.

    PubMed

    Carfì Pavia, Francesco; La Carrubba, Vincenzo; Brucato, Valerio; Palumbo, Fabio Salvatore; Giammona, Gaetano

    2014-08-01

    In this study a chemical grafting procedure was set up in order to link high molecular weight poly L-lactic acid (PLLA) chains to the hydrophilic α,β-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) backbone. A graft copolymer named PHEA-g-PLLA (or simply PHEA-PLLA) was obtained bearing a degree of derivatization of 1.0 mol.% of PLLA as grafted chain. This new hybrid derivative offers both the opportune crystallinity necessary for the production of scaffolds trough a thermally induced phase separation (TIPS) technique and the proper chemical reactivity to perform further functionalizations with bio-effectors and drugs. PHEA-PLLA porous scaffolds for tissue engineering applications were successfully obtained via TIPS and characterized. Structures with an open porosity and a good level of interconnection were detected. As the applicability of the scaffold is mainly dependent on its pore size, preliminary studies about the mechanisms governing scaffold's pore diameter were carried out. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries.

    PubMed

    Bagnasco, D Suarez; Ballarin, F Montini; Cymberknop, L J; Balay, G; Negreira, C; Abraham, G A; Armentano, R L

    2014-12-01

    Development of successful small-diameter vascular grafts constitutes a real challenge to biomaterial engineering. In most cases these grafts fail in-vivo due to the presence of a mechanical mismatch between the native vessel and the vascular graft. Biomechanical characterization of real native vessels provides significant information for synthetic graft development. Electrospun nanofibrous vascular grafts emerge as a potential tailor made solution to this problem. PLLA-electrospun nanofibrous tubular structures were prepared and selected as model bioresorbable grafts. An experimental setup, using gold standard and high resolution ultrasound techniques, was adapted to characterize in vitro the poly(L-lactic acid) (PLLA) electrospun structures. The grafts were subjected to near physiologic pulsated pressure conditions, following the pressure-diameter loop approach and the criteria stated in the international standard for cardiovascular implants-tubular vascular prostheses. Additionally, ovine femoral arteries were subjected to a similar evaluation. Measurements of pressure and diameter variations allowed the estimation of dynamical compliance (%C, 10(-2) mmHg) and the pressure-strain elastic modulus (E(Pε), 10(6) dyn cm(-2)) of the abovementioned vessels (grafts and arteries). Nanofibrous PLLA showed a decrease in %C (1.38±0.21, 0.93±0.13 and 0.76±0.15) concomitant to an increase in EPε (10.57±0.97, 14.31±1.47 and 17.63±2.61) corresponding to pressure ranges of 50 to 90 mmHg, 80 to 120 mmHg and 100 to 150 mmHg, respectively. Furthermore, femoral arteries exhibited a decrease in %C (8.52±1.15 and 0.79±0.20) and an increase in E(Pε) (1.66±0.30 and 15.76±4.78) corresponding to pressure ranges of 50-90 mmHg (elastin zone) and 100-130 mmHg (collagen zone). Arterial mechanics framework, extensively applied in our previous works, was successfully used to characterize PLLA vascular grafts in vitro, although its application can be directly extended to in vivo

  9. Elaboration of nano-structured grafted polymeric surface.

    PubMed

    Vrlinic, Tjasa; Debarnot, Dominique; Mozetic, Miran; Vesel, Alenka; Kovac, Janez; Coudreuse, Arnaud; Legeay, Gilbert; Poncin-Epaillard, Fabienne

    2011-10-15

    The surface grafting of multi-polymeric materials can be achieved by grafting as components such as polymers poly(N-isopropylacrylamide) and/or surfactant molecules (hexatrimethylammonium bromide, polyoxyethylene sorbitan monolaurate). The chosen grafting techniques, i.e. plasma activation followed by coating, allow a large spectrum of functional groups that can be inserted on the surface controlling the surface properties like adhesion, wettability and biocompatibility. The grafted polypropylene surfaces were characterized by contact angle analyses, XPS and AFM analyses. The influence of He plasma activation, of the coating parameters such as concentrations of the various reactive agents are discussed in terms of hydrophilic character, chemical composition and morphologic surface heterogeneity. The plasma pre-activation was shown inevitable for a permanent polymeric grafting. PNIPAM was grafted alone or with a mixture of the surfactant molecules. Depending on the individual proportion of each component, the grafted surfaces are shown homogeneous or composed of small domains of one component leading to a nano-structuration of the grafted surface. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Flocculation characteristics of polyacrylamide grafted cellulose from Phyllostachys heterocycla: An efficient and eco-friendly flocculant.

    PubMed

    Liu, Hongyi; Yang, Xiaogang; Zhang, Yong; Zhu, Hangcheng; Yao, Juming

    2014-08-01

    This work presents a synthesis process and flocculation characteristics of an eco-friendly flocculant based on bamboo pulp cellulose (BPC) from Phyllostachys heterocycla. Ployacrylamide (PAM) was grafted onto the BPC by free-radical graft copolymerization in homogeneous aqueous solution. The optimal synthesis conditions of the bamboo pulp cellulose-graft-ployacrylamide flocculant (BPC-g-PAM) and its performance on wastewater treatments were investigated. A UV-based method was used to rapidly determine the degree of substitution (DS) of BPC. The results showed that, under the optimal synthesis conditions, the obtained BPC-g-PAM held a grafting ratio of 43.8% and DS of 1.31. Turbidity removal of the product reached 98.0% accompanying with the significant flocculation and sedimentation in target suspensions. The flocculation mechanism was explored by means of zeta potential method. For negatively charged contaminants, like kaolin clay particles, the BPC-g-PAM could remove the contaminants efficiently via bridging and charge neutralization in acidic or neutral environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. PRFM enhance wound healing process in skin graft.

    PubMed

    Reksodiputro, Mirta; Widodo, Dini; Bashiruddin, Jenny; Siregar, Nurjati; Malik, Safarina

    2014-12-01

    Facial plastic and reconstructive surgery often used skin graft on defects that cannot be covered primarily by a local flap. However, wound healing using skin graft is slow, most of the time the graft is contractured and the take of graft is not optimal. Platelet rich fibrin matrix (PRFM) is a new generation of concentrated platelets that produce natural fibrin and reported to speed up the healing process. Application of PRFM in the skin graft implants is expected to increase the survival of the graft. We used porcine as animal models to elucidate the effect of autologous PRFM on wound healing in full-thickness (FTSG) and split-thickness (STSG) skin grafts. Survival level of the skin graft was determined by using ImageJ software based on the formation of collagen type 1 and graft take. We observed that the use of PRFM in FTSG and STSG increased type 1 collagen formation. We also found that PRFM addition in STSG gave the best skin graft take. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Design and development of multilayer vascular graft

    NASA Astrophysics Data System (ADS)

    Madhavan, Krishna

    2011-07-01

    Vascular graft is a widely-used medical device for the treatment of vascular diseases such as atherosclerosis and aneurysm as well as for the use of vascular access and pediatric shunt, which are major causes of mortality and morbidity in this world. Dysfunction of vascular grafts often occurs, particularly for grafts with diameter less than 6mm, and is associated with the design of graft materials. Mechanical strength, compliance, permeability, endothelialization and availability are issues of most concern for vascular graft materials. To address these issues, we have designed a biodegradable, compliant graft made of hybrid multilayer by combining an intimal equivalent, electrospun heparin-impregnated poly-epsilon-caprolactone nanofibers, with a medial equivalent, a crosslinked collagen-chitosan-based gel scaffold. The intimal equivalent is designed to build mechanical strength and stability suitable for in vivo grafting and to prevent thrombosis. The medial equivalent is designed to serve as a scaffold for the activity of the smooth muscle cells important for vascular healing and regeneration. Our results have shown that genipin is a biocompatible crosslinker to enhance the mechanical properties of collagen-chitosan based scaffolds, and the degradation time and the activity of smooth muscle cells in the scaffold can be modulated by the crosslinking degree. For vascular grafting and regeneration in vivo, an important design parameter of the hybrid multilayer is the interface adhesion between the intimal and medial equivalents. With diametrically opposite affinities to water, delamination of the two layers occurs. Physical or chemical modification techniques were thus used to enhance the adhesion. Microscopic examination and graft-relevant functional characterizations have been performed to evaluate these techniques. Results from characterization of microstructure and functional properties, including burst strength, compliance, water permeability and suture

  13. Half-peroneus-longus-tendon graft augmentation for unqualified hamstring tendon graft of anterior cruciate ligament reconstruction.

    PubMed

    Liu, Chung-Ting; Lu, Yung-Chang; Huang, Chang-Hung

    2015-09-01

    In some situations, harvested hamstring tendon grafts are not qualified for anterior cruciate ligament (ACL) reconstruction. This study aimed to present a reinforcing method with additional half peroneus longus tendon (half-PLT) graft augmentation. Eight cases underwent ACL reconstruction with unqualified hamstring tendon grafts (diameter <7 mm) and were salvaged by additional half-PLT graft augmentation. The pivot shift test and KT-1000 tests were performed 3 years after surgery. Functional evaluation of subjective International Knee Documentation Committee (IKDC) and Lysholm scores was also done. In addition, Foot and Ankle Disability Index (FADI) scores were used to evaluate the function of the ankle donor site. The diameter of unqualified four-strand hamstring tendon grafts was 6.2 mm on average (range, 6.0-6.5 mm). The average diameter of hamstring grafts with half-PLT augmentation was 9.6 mm (range, 9.5-10.0 mm). The pivot shift test was negative in all patients. No significant differences between normal and abnormal knees were found by KT-1000. The average IKDC score was 86.0 (range, 83 to 89), and the average Lysholm score was 84.4 (range, 80-90). The average FADI score for the donor sites of half-PLT was 135.8 (range, 134-136). Additional half-PLT can successfully and safely reinforce unqualified hamstring tendon grafts for ACL reconstruction.

  14. Maximal blood flow acceleration analysis in the early diastolic phase for aortocoronary artery bypass grafts: a new transit-time flow measurement predictor of graft failure following coronary artery bypass grafting.

    PubMed

    Handa, Takemi; Orihashi, Kazumasa; Nishimori, Hideaki; Yamamoto, Masaki

    2016-11-01

    Maximal graft flow acceleration (max df/dt) determined using transit-time flowmetry (TTFM) in the diastolic phase was assessed as a potential predictor of graft failure for aortocoronary artery (AC) bypass grafts in coronary artery bypass patients. Max df/dt was retrospectively measured in 114 aortocoronary artery bypass grafts. TTFM data were fitted to a 9-polynomial curve, which was derived from the first-derivative curve, to measure max df/dt (9-polynomial max df/dt). Abnormal TTFM was defined as a mean flow of <15 ml/min, a pulsatility index of >5 or a diastolic filling ratio of <50 %. Postoperative assessments were routinely performed by coronary artery angiography (CAG) at 1 year after surgery. Using TTFM, 68 grafts were normal, 4 of which were failing on CAG, and 46 grafts were abnormal, 21 of which were failing on CAG. 9-polynomial max df/dt was significantly lower in abnormal TTFM/failing by the CAG group compared with abnormal TTFM/patent by the CAG group (1.08 ± 0.89 vs. 2.05 ± 1.51 ml/s(2), respectively; P < 0.01, Mann-Whitney U test, Holm adjustment). TTFM 9-polynomial max df/dt in the early diastolic phase may be a promising predictor of future graft failure for AC bypass grafts, particularly in abnormal TTFM grafts.

  15. Separation of transition metals on a poly-iminodiacetic acid grafted polymeric resin column with post-column reaction detection utilising a paired emitter-detector diode system.

    PubMed

    Barron, Leon; O'Toole, Martina; Diamond, Dermot; Nesterenko, Pavel N; Paull, Brett

    2008-12-05

    The selectivity, retention and separation of transition metals on a short (2 mm x 50 mm) column packed with a poly-iminodiacetic acid functionalised polymer 10 microm resin (Dionex ProPac IMAC-10) are presented. This stationary phase, typically used for the separation of proteins, is composed of long chain poly-iminodiacetic acid groups grafted to a hydrophilic layer surrounding a 10 microm polymeric bead. Through the use of a combination of a multi-step pH and picolinic acid gradient, the separation of magnesium, iron, cobalt, cadmium, zinc, lead and copper was possible, followed by post-column reaction with 4-(2-pyridylazo) resorcinol (PAR) and absorbance detection at 510 nm using a novel and inexpensive optical detector, comprised of two light emitting diodes with one acting as a light source and the other as a detector. Column efficiency for selective transition metals was in excess of N=10,000, with the baseline separation of seven metal cations in <3 min possible under optimised conditions. Detection limits of between 5 and 81 microg/L were possible based upon a 50 microL injection volume.

  16. Physical properties of agave cellulose graft polymethyl methacrylate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim

    2013-11-27

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm{sup −1} which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity indexmore » upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.« less

  17. The effect of graft strength on knee laxity and graft in-situ forces after posterior cruciate ligament reconstruction.

    PubMed

    Lai, Yu-Shu; Chen, Wen-Chuan; Huang, Chang-Hung; Cheng, Cheng-Kung; Chan, Kam-Kong; Chang, Ting-Kuo

    2015-01-01

    Surgical reconstruction is generally recommended for posterior cruciate ligament (PCL) injuries; however, the use of grafts is still a controversial problem. In this study, a three-dimensional finite element model of the human tibiofemoral joint with articular cartilage layers, menisci, and four main ligaments was constructed to investigate the effects of graft strengths on knee kinematics and in-situ forces of PCL grafts. Nine different graft strengths with stiffness ranging from 0% (PCL rupture) to 200%, in increments of 25%, of an intact PCL's strength were used to simulate the PCL reconstruction. A 100 N posterior tibial drawer load was applied to the knee joint at full extension. Results revealed that the maximum posterior translation of the PCL rupture model (0% stiffness) was 6.77 mm in the medial compartment, which resulted in tibial internal rotation of about 3.01°. After PCL reconstruction with any graft strength, the laxity of the medial tibial compartment was noticeably improved. Tibial translation and rotation were similar to the intact knee after PCL reconstruction with graft strengths ranging from 75% to 125% of an intact PCL. When the graft's strength surpassed 150%, the medial tibia moved forward and external tibial rotation greatly increased. The in-situ forces generated in the PCL grafts ranged from 13.15 N to 75.82 N, depending on the stiffness. In conclusion, the strength of PCL grafts have has a noticeable effect on anterior-posterior translation of the medial tibial compartment and its in-situ force. Similar kinematic response may happen in the models when the PCL graft's strength lies between 75% and 125% of an intact PCL.

  18. Bypass grafting to the anterior tibial artery.

    PubMed

    Armour, R H

    1976-01-01

    Four patients with severe ischaemia of a leg due to atherosclerotic occlusion of the tibial and peroneal arteries had reversed long saphenous vein grafts to the patent lower part of the anterior tibial artery. Two of these grafts continue to function 19 and 24 months after operation respectively. One graft failed on the fifth postoperative day and another occluded 4 months after operation. The literature on femorotibial grafting has been reviewed. The early failure rate of distal grafting is higher than in the case of femoropopliteal bypass, but a number of otherwise doomed limbs can be salvaged. Contrary to widely held views, grafting to the anterior tibial artery appears to give results comparable to those obtained when the lower anastomosis is made to the posterior tibial artery.

  19. Pretreatment of liver grafts in vivo by γ-aminobutyric acid receptor regulation reduces cold ischemia/warm reperfusion injury in rat

    PubMed Central

    Hori, Tomohide; Gardner, Lindsay B.; Hata, Toshiyuki; Chen, Feng; Baine, Ann-Marie T.; Uemoto, Shinji; Nguyen, Justin H.

    2014-01-01

    Summary Background: Gamma-aminobutyric acid (GABA) is found throughout the body. The regulation of GABA receptor (GABAR) reduces oxidative stress (OS). Ischemia/reperfusion injury after orthotopic liver transplantation (OLT) causes OS-induced graft damage. The effects of GABAR regulation in donors in vivo were investigated. Material/Methods: Donor rats received saline, a GABAR agonist or GABAR antagonist 4 h before surgery. Recipient rats were divided into four groups according to the donor treatments: laparotomy, OLT with saline, OLT with GABAR agonist and OLT with GABAR antagonist. Histopathological, biochemical and immunohistological examinations were performed at 6, 12 and 24 h after OLT. Protein assays were performed at 6 h after OLT. The 4-hydroxynonenal (4-HNE), ataxia-telangiectasia mutated kinase (ATM), phosphorylated histone H2AX (γH2AX), phosphatidylinositol-3 kinase (PI3K), Akt and superoxide dismutase (SOD) were assessed by western blot analysis. Results: In the univariate analysis, histopathological and biochemical profiles verified that the GABAR agonist reduced graft damage. Immunohistology revealed that the GABAR agonist prevented the induction of apoptosis. Measurement of 4-4-HNE levels confirmed OS-induced damage after OLT, and the GABAR agonist improved this damage. In the γH2AX, PI3K, Akt and antioxidant enzymes (SODs), ATM and H2AX were greatly increased after OLT, and were reduced by the GABAR agonist. In the multivariate analyses between multiple groups, histopathological assessment, aspartate aminotransferase level, immunohistological examinations for apoptotic induction and γH2AX showed statistical differences. Conclusions: A specific agonist demonstrated regulation of GABAR in vivo in the liver. This activation in vivo reduced OS after OLT via the ATM/H2AX pathway. PMID:23792534

  20. Hydrogen, a potential safeguard for graft-versus-host disease and graft ischemia-reperfusion injury?

    PubMed Central

    Yuan, Lijuan; Shen, Jianliang

    2016-01-01

    Post-transplant complications such as graft-versus-host disease and graft ischemia-reperfusion injury are crucial challenges in transplantation. Hydrogen can act as a potential antioxidant, playing a preventive role against post-transplant complications in animal models of multiple organ transplantation. Herein, the authors review the current literature regarding the effects of hydrogen on graft ischemia-reperfusion injury and graft-versus-host disease. Existing data on the effects of hydrogen on ischemia-reperfusion injury related to organ transplantation are specifically reviewed and coupled with further suggestions for future work. The reviewed studies showed that hydrogen (inhaled or dissolved in saline) improved the outcomes of organ transplantation by decreasing oxidative stress and inflammation at both the transplanted organ and the systemic levels. In conclusion, a substantial body of experimental evidence suggests that hydrogen can significantly alleviate transplantation-related ischemia-reperfusion injury and have a therapeutic effect on graft-versus-host disease, mainly via inhibition of inflammatory cytokine secretion and reduction of oxidative stress through several underlying mechanisms. Further animal experiments and preliminary human clinical trials will lay the foundation for hydrogen use as a drug in the clinic. PMID:27652837

  1. Microspheres Assembled from Chitosan-Graft-Poly(lactic acid) Micelle-Like Core-Shell Nanospheres for Distinctly Controlled Release of Hydrophobic and Hydrophilic Biomolecules.

    PubMed

    Niu, Xufeng; Liu, Zhongning; Hu, Jiang; Rambhia, Kunal J; Fan, Yubo; Ma, Peter X

    2016-07-01

    To simultaneously control inflammation and facilitate dentin regeneration, a copolymeric micelle-in-microsphere platform is developed in this study, aiming to simultaneously release a hydrophobic drug to suppress inflammation and a hydrophilic biomolecule to enhance odontogenic differentiation of dental pulp stem cells in a distinctly controlled fashion. A series of chitosan-graft-poly(lactic acid) copolymers is synthesized with varying lactic acid and chitosan weight ratios, self-assembled into nanoscale micelle-like core-shell structures in an aqueous system, and subsequently crosslinked into microspheres through electrostatic interaction with sodium tripolyphosphate. A hydrophobic biomolecule either coumarin-6 or fluocinolone acetonide (FA) is encapsulated into the hydrophobic cores of the micelles, while a hydrophilic biomolecule either bovine serum albumin or bone morphogenetic protein 2 (BMP-2) is entrapped in the hydrophilic shells and the interspaces among the micelles. Both hydrophobic and hydrophilic biomolecules are delivered with distinct and tunable release patterns. Delivery of FA and BMP-2 simultaneously suppresses inflammation and enhances odontogenesis, resulting in significantly enhanced mineralized tissue regeneration. This result also demonstrates the potential for this novel delivery system to deliver multiple therapeutics and to achieve synergistic effects. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Composition, Taste, Aroma, and Antioxidant Activity of Solidified Noncentrifugal Brown Sugars Prepared from Whole Stalk and Separated Pith of Sugarcane (Saccharum officinarum L.).

    PubMed

    Takahashi, Makoto; Ishmael, Mutanda; Asikin, Yonathan; Hirose, Naoto; Mizu, Masami; Shikanai, Takesi; Tamaki, Hajime; Wada, Koji

    2016-10-25

    In this study, 2 types of solidified noncentrifugal brown sugars (W-NCS and P-NCS) were prepared from the whole stalk and separated pith, respectively, of raw sugarcane (Saccharum officinarum L.). These products were discriminated in terms of their quality attributes, including color, sugars and minerals composition, taste, aroma, and antioxidant activity. The brown color of P-NCS was clearly different compared with that of W-NCS with a color difference value (ΔE * ) of 9.36. There was no difference in the sugars and minerals composition between the 2 types of sugar, which led to very similar taste profiles. However, P-NCS had a weaker aroma intensity than W-NCS did. Moreover, P-NCS retained more than 60% of the antioxidant activity of W-NCS. The information gleaned from this study might be used to select appropriate end-uses for these 2 types of sugars. © 2016 Institute of Food Technologists®.

  3. Autologous patch graft in tube shunt surgery.

    PubMed

    Aslanides, I M; Spaeth, G L; Schmidt, C M; Lanzl, I M; Gandham, S B

    1999-10-01

    To evaluate an alternate method of covering the subconjunctival portion of the tube in aqueous shunt surgery. Evidence of tube erosion, graft-related infection, graft melting, or other associated intraocular complications were evaluated. A retrospective study of 16 patients (17 eyes) who underwent tube shunt surgery at Wills Eye Hospital between July 1991 and October 1996 was conducted. An autologous either "free" or "rotating" scleral lamellar graft was created to cover the subconjunctival portion of the tube shunt. All patients were evaluated for at least 6 months, with a mean follow-up of 14.8 months (range 6-62 months). All eyes tolerated the autologous graft well, with no clinical evidence of tube erosion, or graft-related or intraocular complications. Autologous patch graft in tube shunt surgery appears--in selected cases--to be an effective, safe and inexpensive surgical alternative to allogenic graft materials. It also offers ease of availability, and eliminates the risk of transmitting infectious disease.

  4. Hydrophilization of Magnetic Nanoparticles with Modified Alternating Copolymers. Part 1: The Influence of the Grafting

    PubMed Central

    Bronstein, Lyudmila M.; Shtykova, Eleonora V.; Malyutin, Andrey; Dyke, Jason C.; Gunn, Emily; Gao, Xinfeng; Stein, Barry; Konarev, Peter V.; Dragnea, Bogdan; Svergun, Dmitri I.

    2010-01-01

    Iron oxide nanoparticles (NPs) with a diameter 21.6 nm were coated with poly(maleic acid-alt-1-octadecene) (PMAcOD) modified with grafted 5,000 Da poly(ethyelene glycol) (PEG) or short ethylene glycol (EG) tails. The coating procedure utilizes hydrophobic interactions of octadecene and oleic acid tails, while the hydrolysis of maleic anhydride moieties as well as the presence of hydrophilic PEG (EG) tails allows the NP hydrophilicity. The success of the NP coating was found to be independent of the degree of grafting which was varied between 20 and 80% of the –MacOD-units, but depended on the length of the grafted tail. The NP coating and hydrophilization did not occur when the modified copolymer contained 750 Da PEG tails independently of the grafting degree. To explain this phenomenon the micellization of the modified PMAcOD copolymers in water was analyzed by small angle x-ray scattering (SAXS). The PMAcOD molecules with the grafted 750 Da PEG tails form compact non-interacting disk-like micelles, whose stability apparently allows for no interactions with the NP hydrophobic shells. The PMAcOD containing the 5,000 Da PEG and EG tails form much larger aggregates capable of an efficient coating of the NPs. The coated NPs were characterized using transmission electron microscopy, dynamic light scattering, ζ-potential measurements, and thermal gravimetry analysis. The latter method demonstrated that the presence of long PEG tails in modified PMAcOD allows the attachment of fewer macromolecules (by a factor of ~20) compared to the case of non-modified or EG modified PMAcOD, emphasizing the importance of PEG tails in NP hydrophilization. The NPs coated with PMAcOD modified with 60% (towards all –MAcOD- units) of the 5,000 PEG tails bear a significant negative charge and display good stability in buffers. Such NPs can be useful as magnetic cores for virus-like particle formation. PMID:21221425

  5. Bovine and PTFE vascular graft results in hemodialysis patients.

    PubMed

    Sert, S; Demirogullari, B; Ziya Anadol, A; Guvence, N; Dalgic, A

    2000-01-01

    Purpose. There are many reports of patency periods, failure rates, thrombosis and infection attacks connected with vascular grafts. In this article, the results of polytetrafluoroethylene (PTFE) and Bovine grafts were compared in a forty-four month period. Methods. 61 vascular grafts (29 PTFE, 32 bovine) were placed in 49 patients. The grafts were compared in different ways, such as survival, complication rates and placement area using life survey analysis. Results. Mean survival time was 17 mo (SE +/- 2.8) for PTFE grafts and 11 mo (SE +/- 1.1) for bovine grafts. A failure rate of 34% due only to graft complications were found in PTFE and 25% in bovine grafts. All graft complications were seen in the first year. Comparison of the cumulative survival rates of the groups were found to be insignificant during the study period and the first year ( p>0.05). Regardless of the type, there was no signif-icant difference between the grafts placed in the forearm and the grafts in the thigh (p>0.05). Conclusions. There is no survival difference between PTFE and bovine grafts. First year of the grafts is important for developing complications.

  6. Cadaveric aorta implantation for aortic graft infection.

    PubMed

    Ali, Asad; Bahia, Sandeep S S; Ali, Tahir

    2016-01-01

    This case report describes a 73-year-old gentleman who underwent explantation of an infected prosthetic aorto-iliac graft and replacement with a cryopreserved thoracic and aorto-iliac allograft. The patient has been followed up a for more than a year after surgery and remains well. After elective tube graft repair of his abdominal aortic aneurysm (AAA) in 2003, he presented to our unit in 2012 in cardiac arrest as a result of a rupture of the distal graft suture line due to infection. After resuscitation he underwent aorto-bifemoral grafting using a cuff of the original aortic graft proximally. Distally the new graft was anastomosed to his common femoral arteries, with gentamicin beads left in situ. Post discharge the patient was kept under close surveillance with serial investigations including nuclear scanning, however it became apparent that his new graft was infected and that he would require aortic graft replacement, an operation with a mortality of at least 50%. The patient underwent the operation and findings confirmed a synthetic graft infection. This tube graft was explanted and a cryopreserved aorta was used to the refashion the abdominal aorta and its bifurcation. The operation required a return to theatre day one post operatively for a bleeding side branch, which was repaired. The patient went on to make a full recovery stepping down from the intensive therapy unit day 6 post operatively and went on to be discharged 32 days after his cryopreserved aorta implantation. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Corneal graft reversal: Histopathologic report of two cases

    PubMed Central

    Qahtani, Abdullah A.; Alkatan, Hind M.

    2014-01-01

    Graft reversal is a rare cause for failed PKP. In this case report we are presenting 2 graft failure cases in which the corneal grafts were reversed unintentionally. The onset of signs of graft failure, however was variable. We have included their clinical course and the histopathologic findings of the removed corneal grafts. A total of 6 cases including ours have been reported so far. The aim of this report is to attract the attention of corneal surgeons to an additional rare cause for failed penetrating keratoplasty (PKP) which is donor graft reversal. PMID:25473355

  8. Corneal graft reversal: Histopathologic report of two cases.

    PubMed

    Qahtani, Abdullah A; Alkatan, Hind M

    2014-10-01

    Graft reversal is a rare cause for failed PKP. In this case report we are presenting 2 graft failure cases in which the corneal grafts were reversed unintentionally. The onset of signs of graft failure, however was variable. We have included their clinical course and the histopathologic findings of the removed corneal grafts. A total of 6 cases including ours have been reported so far. The aim of this report is to attract the attention of corneal surgeons to an additional rare cause for failed penetrating keratoplasty (PKP) which is donor graft reversal.

  9. Fast preconcentration of trace rare earth elements from environmental samples by di(2-ethylhexyl)phosphoric acid grafted magnetic nanoparticles followed by inductively coupled plasma mass spectrometry detection

    NASA Astrophysics Data System (ADS)

    Yan, Ping; He, Man; Chen, Beibei; Hu, Bin

    2017-10-01

    In this work, di(2-ethylhexyl)phosphoric acid (P204) grafted magnetic nanoparticles were synthesized by fabricating P204 onto Fe3O4@TiO2 nanoparticles based on Lewis acid-base interaction between Ti and phosphate group under weakly acidic condition. The prepared Fe3O4@TiO2@P204 nanoparticles exhibited excellent selectivity for rare earth elements, and good anti-interference ability. Based on it, a method of magnetic solid phase extraction (MSPE) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for fast preconcentration and determination of trace rare earth elements in environmental samples. Under the optimal conditions, the detection limits of rare earth elements were in the range of 0.01 (Tm)-0.12 (Nd) ng L- 1 with an enrichment factor of 100-fold, and the relative standard deviations ranged from 4.9 (Pr) to 10.7% (Er). The proposed method was successfully applied to the determination of rare earth elements in environmental samples, including river water, lake water, seawater and sediment.

  10. The role of plant hormones during grafting.

    PubMed

    Nanda, Amrit K; Melnyk, Charles W

    2018-01-01

    For millennia, people have cut and joined different plant tissues together through a process known as grafting. By creating a chimeric organism, desirable properties from two plants combine to enhance disease resistance, abiotic stress tolerance, vigour or facilitate the asexual propagation of plants. In addition, grafting has been extremely informative in science for studying and identifying the long-distance movement of molecules. Despite its increasing use in horticulture and science, how plants undertake the process of grafting remains elusive. Here, we discuss specifically the role of eight major plant hormones during the wound healing and vascular formation process, two phenomena involved in grafting. We furthermore present the roles of these hormones during graft formation and highlight knowledge gaps and future areas of interest for the field of grafting biology.

  11. Laccase from Aspergillus niger: A novel tool to graft multifunctional materials of interests and their characterization.

    PubMed

    Iqbal, Hafiz M N; Kyazze, Godfrey; Tron, Thierry; Keshavarz, Tajalli

    2018-03-01

    In the present study, we propose a green route to prepare poly(3-hydroxybutyrate) [(P(3HB)] grafted ethyl cellulose (EC) based green composites with novel characteristics through laccase-assisted grafting. P(3HB) was used as a side chain whereas, EC as a backbone material under ambient processing conditions. A novel laccase obtained from Aspergillus niger through its heterologous expression in Saccharomyces cerevisiae was used as a green catalyst for grafting purposes without the use of additional initiator and/or cross-linking agents. Subsequently, the resulting P(3HB)- g -EC composites were characterized using a range of analytical and imagining techniques. Fourier transform infrared spectroscopy (FT-IR) spectra showed an increase in the hydrogen-bonding type interactions between the side chains of P(3HB) and backbone material of EC. Evidently, X-ray diffraction (XRD) analysis revealed a decrease in the crystallinity of the P(3HB)- g -EC composites as compared to the pristine individual polymers. A homogeneous P(3HB) distribution was also achieved in case of the graft composite prepared in the presence of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as a mediator along with laccase as compared to the composite prepared using pure laccase alone. A substantial improvement in the thermal and mechanical characteristics was observed for grafted composites up to the different extent as compared to the pristine counterparts. The hydrophobic/hydrophilic properties of the grafted composites were better than those of the pristine counterparts.

  12. Graft reconditioning with nitric oxide gas in rat liver transplantation from cardiac death donors.

    PubMed

    Kageyama, Shoichi; Yagi, Shintaro; Tanaka, Hirokazu; Saito, Shunichi; Nagai, Kazuyuki; Hata, Koichiro; Fujimoto, Yasuhiro; Ogura, Yasuhiro; Tolba, Rene; Shinji, Uemoto

    2014-03-27

    Liver transplant outcomes using grafts donated after cardiac death (DCD) remain poor. We investigated the effects of ex vivo reconditioning of DCD grafts with venous systemic oxygen persufflation using nitric oxide gas (VSOP-NO) in rat liver transplants. Orthotopic liver transplants were performed in Lewis rats, using DCD grafts prepared using static cold storage alone (group-control) or reconditioning using VSOP-NO during cold storage (group-VSOP-NO). Experiment I: In a 30-min warm ischemia model, graft damage and hepatic expression of inflammatory cytokines, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and endothelin-1 (ET-1) were examined, and histologic analysis was performed 2, 6, 24, and 72 hr after transplantation. Experiment II: In a 60-min warm ischemia model, grafts were evaluated 2 hr after transplantation (6 rats/group), and survival was assessed (7 rats/group). Experiment I: Group-VSOP-NO had lower alanine aminotransferase (ALT) (P<0.001), hyaluronic acid (P<0.05), and malondialdehyde (MDA) (P<0.001), hepatic interleukin-6 expression (IL-6) (P<0.05), and hepatic tumor necrosis factor-alpha (TNF-α) expression (P<0.001). Hepatic eNOS expression (P<0.001) was upregulated, whereas hepatic iNOS (P<0.01) and ET-1 (P<0.001) expressions were downregulated. The damage of hepatocyte and sinusoidal endothelial cells (SECs) were lower in group-VSOP-NO.Experiment II: VSOP-NO decreased ET-1 and 8-hydroxy-2'deoxyguanosine (8-OHdG) expression and improved survival after transplantation by 71.4% (P<0.01). These results suggest that VSOP-NO effectively reconditions warm ischemia-damaged grafts, presumably by decreasing ET-1 upregulation and oxidative damage.

  13. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials.

    PubMed

    Kim, Young-Kyun; Kim, Su-Gwan; Yun, Pil-Young; Yeo, In-Sung; Jin, Seung-Chan; Oh, Ji-Su; Kim, Heung-Joong; Yu, Sun-Kyoung; Lee, Sook-Young; Kim, Jae-Sung; Um, In-Woong; Jeong, Mi-Ae; Kim, Gyung-Wook

    2014-01-01

    This study evaluated the surface structures and physicochemical characteristics of a novel autogenous tooth bone graft material currently in clinical use. The material's surface structure was compared with a variety of other bone graft materials via scanning electron microscope (SEM). The crystalline structure of the autogenous tooth bone graft material from the crown (AutoBT crown) and root (AutoBT root), xenograft (BioOss), alloplastic material (MBCP), allograft (ICB), and autogenous mandibular cortical bone were compared using x-ray diffraction (XRD) analysis. The solubility of each material was measured with the Ca/P dissolution test. The results of the SEM analysis showed that the pattern associated with AutoBT was similar to that from autogenous cortical bones. In the XRD analysis, AutoBT root and allograft showed a low crystalline structure similar to that of autogenous cortical bones. In the CaP dissolution test, the amount of calcium and phosphorus dissolution in AutoBT was significant from the beginning, while displaying a pattern similar to that of autogenous cortical bones. In conclusion, autogenous tooth bone graft materials can be considered to have physicochemical characteristics similar to those of autogenous bones. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Synthesis, characterization, and morphology study of poly(acrylamide-co-acrylic acid)-grafted-poly(styrene-co-methyl methacrylate) "raspberry"-shape like structure microgels by pre-emulsified semi-batch emulsion polymerization.

    PubMed

    Ramli, Ros Azlinawati; Hashim, Shahrir; Laftah, Waham Ashaier

    2013-02-01

    A novel microgels were polymerized using styrene (St), methyl methacrylate (MMA), acrylamide (AAm), and acrylic acid (AAc) monomers in the presence of N,N'-methylenebisacrylamide (MBA) cross-linker. Pre-emulsified monomer was first prepared followed by polymerizing monomers using semi-batch emulsion polymerization. Fourier Transform Infrared Spectroscopy (FTIR) and (1)H Nuclear Magnetic Resonance (NMR) were used to determine the chemical structure and to indentify the related functional group. Grafting and cross-linking of poly(acrylamide-co-acrilic acid)-grafted-poly(styrene-co-methyl methacrylate) [poly(AAm-co-AAc)-g-poly(St-co-MMA)] microgels are approved by the disappearance of band at 1300 cm(-1), 1200 cm(-1) and 1163 cm(-1) of FTIR spectrum and the appearance of CH peaks at 5.5-5.7 ppm in (1)H NMR spectrum. Scanning Electron Microscope (SEM) images indicated that poly(St-co-MMA) particle was lobed morphology coated by cross-linked poly(AAm-co-AAc) shell. Furthermore, SEM results revealed that poly(AAm-co-AAc)-g-poly(St-co-MMA) is composite particle that consist of "raspberry"-shape like structure core. Internal structures of the microgels showed homogeneous network of pores, an extensive interconnection among pores, thicker pore walls, and open network structures. Water absorbency test indicated that the sample with particle size 0.43 μm had lower equilibrium water content, % than the sample with particle size 7.39 μm. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Characterization of evolving biomechanical properties of tissue engineered vascular grafts in the arterial circulation.

    PubMed

    Udelsman, Brooks V; Khosravi, Ramak; Miller, Kristin S; Dean, Ethan W; Bersi, Matthew R; Rocco, Kevin; Yi, Tai; Humphrey, Jay D; Breuer, Christopher K

    2014-06-27

    We used a murine model to assess the evolving biomechanical properties of tissue engineered vascular grafts (TEVGs) implanted in the arterial circulation. The initial polymeric tubular scaffold was fabricated from poly(lactic acid)(PLA) and coated with a 50:50 copolymer of poly(caprolactone) and poly(lactic acid)(P[PC/LA]). Following seeding with syngeneic bone marrow derived mononuclear cells, TEVGs (n=50) were implanted as aortic interposition grafts in wild-type mice and monitored serially using ultrasound. A custom biaxial mechanical testing device was used to quantify the in vitro circumferential and axial mechanical properties of grafts explanted at 3 or 7 months. At both times, TEVGs were much stiffer than native tissue in both directions. Repeated mechanical testing of some TEVGs treated with elastase or collagenase suggested that elastin did not contribute significantly to the overall stiffness whereas collagen did contribute. Traditional histology and immunostaining revealed smooth muscle cell layers, significant collagen deposition, and increasing elastin production in addition to considerable scaffold at both 3 and 7 months, which likely dominated the high stiffness seen in mechanical testing. These results suggest that PLA has inadequate in vivo degradation, which impairs cell-mediated development of vascular neotissue having properties closer to native arteries. Assessing contributions of individual components, such as elastin and collagen, to the developing neovessel is needed to guide computational modeling that may help to optimize the design of the TEVG. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Comparative Efficacies of Collagen-Based 3D Printed PCL/PLGA/β-TCP Composite Block Bone Grafts and Biphasic Calcium Phosphate Bone Substitute for Bone Regeneration.

    PubMed

    Hwang, Kyoung-Sub; Choi, Jae-Won; Kim, Jae-Hun; Chung, Ho Yun; Jin, Songwan; Shim, Jin-Hyung; Yun, Won-Soo; Jeong, Chang-Mo; Huh, Jung-Bo

    2017-04-17

    The purpose of this study was to compare bone regeneration and space maintaining ability of three-dimensional (3D) printed bone grafts with conventional biphasic calcium phosphate (BCP). After mixing polycaprolactone (PCL), poly (lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) in a 4:4:2 ratio, PCL/PLGA/β-TCP particulate bone grafts were fabricated using 3D printing technology. Fabricated particulate bone grafts were mixed with atelocollagen to produce collagen-based PCL/PLGA/β-TCP composite block bone grafts. After formation of calvarial defects 8 mm in diameter, PCL/PLGA/β-TCP composite block bone grafts and BCP were implanted into bone defects of 32 rats. Although PCL/PLGA/β-TCP composite block bone grafts were not superior in bone regeneration ability compared to BCP, the results showed relatively similar performance. Furthermore, PCL/PLGA/β-TCP composite block bone grafts showed better ability to maintain bone defects and to support barrier membranes than BCP. Therefore, within the limitations of this study, PCL/PLGA/β-TCP composite block bone grafts could be considered as an alternative to synthetic bone grafts available for clinical use.

  17. Conducting electrospun fibres with polyanionic grafts as highly selective, label-free, electrochemical biosensor with a low detection limit for non-Hodgkin lymphoma gene.

    PubMed

    Kerr-Phillips, Thomas E; Aydemir, Nihan; Chan, Eddie Wai Chi; Barker, David; Malmström, Jenny; Plesse, Cedric; Travas-Sejdic, Jadranka

    2018-02-15

    A highly selective, label-free sensor for the non-Hodgkin lymphoma gene, with an aM detection limit, utilizing electrochemical impedance spectroscopy (EIS) is presented. The sensor consists of a conducting electrospun fibre mat, surface-grafted with poly(acrylic acid) (PAA) brushes and a conducting polymer sensing element with covalently attached oligonucleotide probes. The sensor was fabricated from electrospun NBR rubber, embedded with poly(3,4-ethylenedioxythiophene) (PEDOT), followed by grafting poly(acrylic acid) brushes and then electrochemically polymerizing a conducting polymer monomer with ssDNA probe sequence pre-attached. The resulting non-Hodgkin lymphoma gene sensor showed a detection limit of 1aM (1 × 10 -18 mol/L), more than 400 folds lower compared to a thin-film analogue. The sensor presented extraordinary selectivity, with only 1%, 2.7% and 4.6% of the signal recorded for the fully non-complimentary, T-A and G-C base mismatch oligonucleotide sequences, respectively. We suggest that such greatly enhanced selectivity is due to the presence of negatively charged carboxylic acid moieties from PAA grafts that electrostatically repel the non-complementary and mismatch DNA sequences, overcoming the non-specific binding. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Facile Modification of Reverse Osmosis Membranes by Surfactant-Assisted Acrylate Grafting for Enhanced Selectivity.

    PubMed

    Baransi-Karkaby, Katie; Bass, Maria; Levchenko, Stanislav; Eitan, Shahar; Freger, Viatcheslav

    2017-02-21

    The top polyamide layer of composite reverse osmosis (RO) membranes has a fascinatingly complex structure, yet nanoscale nonuniformities inherently present in polyamide layer may reduce selectivity, e.g., for boron rejection. This study examines improving selectivity by in situ "caulking" such nonuniformities using concentration polarization-enhanced graft-polymerization with a surfactant added to the reactive solution. The surfactant appears to enhance both polarization (via monomer solubilization in surfactant micelles) and adherence of graft-polymer to the membrane surface, which facilitates grafting and reduces monomer consumption. The effect of surfactant was particularly notable for a hydrophobic monomer glycidyl methacrylate combined with a nonionic surfactant Triton X-100. With Triton added at an optimal level, close to critical micellization concentration (CMC), monomer gets solubilized and highly concentrated within micelles, which results in a significantly increased degree of grafting and uniformity of the coating compared to a procedure with no surfactant added. Notably, no improvement was obtained for an anionic surfactant SDS or the cationic surfactant DTAB, in which cases the high CMC of surfactant precludes high monomer concentration within micelles. The modification procedure was also up-scalable to membranes elements and resulted in elements with permeability comparable to commercial brackish water RO elements with superior boric acid rejection.

  19. Gingival Unit Graft Versus Free Gingival Graft for Treatment of Gingival Recession: A Randomized Controlled Clinical Trial

    PubMed Central

    Jenabian, Niloofar; Bahabadi, Mohadese Yazdanpanah; Bijani, Ali; Rad, Morteza Rahimi

    2016-01-01

    Objectives: Gingival recession can lead to root exposure and discomfort for patients. There are various techniques for root coverage. The aim of this study was to compare the use of gingival unit graft (palatal graft including the marginal gingiva and papillae) with free gingival graft for treatment of localized gingival recession. Materials and Methods: In this randomized controlled clinical trial, 18 bilateral localized recessions of Miller class I and II were treated in nine systemically healthy patients. Recessions were randomly treated with gingival unit graft in one side and conventional free gingival graft in the other side. Clinical parameters including clinical attachment level, keratinized tissue width, probing depth and vertical recession depth (VRD) were recorded at baseline and at one, three and six months after surgery. The healing index and patient satisfaction were also evaluated. One-way and two-way repeated measures ANOVA and paired t-test were used for statistical analyses. Results: Both techniques caused significant improvement in clinical parameters. Gingival unit graft produced higher satisfaction esthetically (P=0.050, 0.024 and 0.024, respectively at the three time points), higher healing index (P<0.001), higher root coverage percentage at one month after surgery (34.04%, P=0.011) and greater reduction of recession width three months after surgery (P=0.007) but the reduction in VRD at this side was not significantly greater. Conclusions: Gingival unit graft might be an acceptable modality in Miller Class I/II recession defects. This technique may have advantages over free gingival graft such as significantly superior clinical and esthetic results. PMID:28392815

  20. Polyether/Polyester Graft Copolymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  1. In vivo quantitation of platelet deposition on human peripheral arterial bypass grafts using indium-111-labeled platelets. Effect of dipyridamole and aspirin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pumphrey, C.W.; Chesebro, J.H.; Dewanjee, M.K.

    Indium-111-labeled autologous platelets, injected 48 hours after operation, were used to evaluate the thrombogenicity of prosthetic material and the effect of platelet inhibitor therapy in vivo. Dacron double-velour (Microvel) aortofemoral artery bifurcation grafts were placed in 16 patients and unilateral polytetrafluoroethylene femoropopliteal grafts were placed in 10 patients. Half the patients in each group received platelet inhibitors before operation (dipyridamole, 100 mg 4 times a day) and after operation (dipyridamole, 75 mg, and acetylsalicylic acid, 325 mg 3 times a day); the rest of the patients served as control subjects. Five-minute scintigrams of the graft region were taken with amore » gamma camera interfaced with a computer 48, 72, and 96 hours after injection of the labeled platelets. Platelet deposition was estimated from the radioactivities of the grafts and expressed as counts per 100 pixels per microcurie injected. Dipyridamole and aspirin therapy significantly reduced the number of platelets deposited on Dacron grafts and prevented platelet accumulation over 3 days. With the small amount of platelet deposition on polytetrafluoroethylene femoropopliteal artery grafts even in control patients, platelet inhibitor therapy had no demonstrable effect on platelet deposition on these grafts. It is concluded that (1) platelet deposition on vascular grafts in vivo can be quantitated by noninvasive methods, and (2) dipyridamole and aspirin therapy reduced platelet deposition on Dacron aortofemoral artery grafts.« less

  2. Bioinspired bioadhesive polymers: dopa-modified poly(acrylic acid) derivatives.

    PubMed

    Laulicht, Bryan; Mancini, Alexis; Geman, Nathanael; Cho, Daniel; Estrellas, Kenneth; Furtado, Stacia; Hopson, Russell; Tripathi, Anubhav; Mathiowitz, Edith

    2012-11-01

    The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Exercise through a cardiac rehabilitation program attenuates oxidative stress in patients submitted to coronary artery bypass grafting.

    PubMed

    Taty Zau, José Francisco; Costa Zeferino, Rodrigo; Sandrine Mota, Nádia; Fernandes Martins, Gerez; Manoel Serra, Salvador; Bonates da Cunha, Therezil; Medeiros Lima, Daniel; Bragança Pereira, Basilio de; Matos do Nascimento, Emília; Filho, Danilo Wilhelm; Curi Pedrosa, Rozangela; Pedrosa, Roberto Coury

    2018-12-01

    Cardiovascular disease is the main cause of morbidity and mortality in the world and oxidative stress has been implicated in the pathogenesis. Cardiac rehabilitation in patients with coronary artery disease submitted to coronary artery bypass grafting may prevent cardiovascular events probably through the attenuation of oxidative stress. The aim of this study was to evaluate the benefits of a cardiac rehabilitation program in the control of the systemic oxidative stress. The studied population consisted of 40 patients, with chronic stable coronary artery disease submitted to coronary artery bypass grafting, who attended a cardiac rehabilitation program. Biomarkers of oxidative stress were evaluated in the blood of these patients at different moments. After the onset of cardiac rehabilitation, there was a significant and progressive decrease in thiobarbituric acid reactive substances levels and protein carbonyls, an initial increase and subsequent decrease in superoxide dismutase, catalase and glutathione peroxidase activities. Also, a progressive increase of uric acid, while ferric reducing antioxidant power levels increased only at the end of the cardiac rehabilitation and a tendency to increase of glutathione contents. The results suggest that regular exercise through a cardiac rehabilitation program can attenuate oxidative stress in chronic coronary artery disease patients submitted to coronary artery bypass grafting.

  4. [An experimental study of the healing of velour grafts].

    PubMed

    Kobayashi, O

    1986-02-01

    An experimental study of implantation of velour grafts in the abdominal aorta or the external iliac artery of dogs was conducted with the object of evaluating the type of velour surface best fit for small-caliber artery implantation. Velour grafts measuring 4mm in diameter with differing velour surfaces were used as materials. Velour grafts now available on the market differ not only in velour surface but also in structure, notably in porosity and wall thickness. Hence each of the grafts used was reversed (i.e. inside out) and thus new grafts were prepared. These grafts were considered most suitable for making a comparative study of the effects of velour surface on healing. Macroscopic and histological findings revealed that each graft was good healing with the rate of patency as high as 84 percent. However, like Vasculour-D grafts, crimped grafts which preserve the crimp after implantation was significantly thicker at the internal valley than other grafts. Based on the findings of this experimental study non-crimped velour grafts were considered to be best fit for small-caliber artery implantation.

  5. A multilayered polyurethane foam technique for skin graft immobilization.

    PubMed

    Nakamura, Motoki; Ito, Erika; Kato, Hiroshi; Watanabe, Shoichi; Morita, Akimichi

    2012-02-01

    Several techniques are applicable for skin graft immobilization. Although the sponge dressing is a popular technique, pressure failure near the center of the graft is a weakness of the technique that can result in engraftment failure. To evaluate the efficacy of a new skin graft immobilization technique using multilayered polyurethane foam in vivo and in vitro. Twenty-six patients underwent a full-thickness skin graft. Multiple layers of a hydrocellular polyurethane foam dressing were used for skin graft immobilization. In addition, we created an in vitro skin graft model that allowed us to estimate immobilization pressure at the center and edges of skin grafts of various sizes. Overall mean graft survival was 88.9%. In the head and neck region (19 patients), mean graft survival was 93.6%. Based on the in vitro outcomes, this technique supplies effective pressure (<30 mmHg) to the center region of the skin graft. This multilayered polyurethane foam dressing is simple, safe, and effective for skin graft immobilization. © 2011 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  6. Circulating nucleic acids and evolution.

    PubMed

    Anker, Philippe; Stroun, Maurice

    2012-06-01

    J.B. Lamarck in 1809 was the first to present a theory of evolution. He proposed it was due to the adaptation of species to environmental changes, this adaptation being acquired by the offspring. In 1868, Darwin suggested that cells excrete gemmules, which circulate through the body and reach the gonads where they are transmitted to the next generation. His main argument came from graft hybrids. In the fifties and sixties, Russian geneticists, rejecting neo-Darwinism, said that acquired characteristics were the basis of evolution. The main experiments on which they based their theory were the transmission of hereditary characteristics by a special technique of grafting between two varieties of plants. We repeated this kind of experiment and also succeeded in obtaining hereditary modifications of the pupil plants that acquired some characteristics of the mentor variety. Rather than adopting the views of the Russian scientists, we suggested that DNA was circulating between the mentor and pupil plants. Hirata's group have shown recently, by using molecular techniques such as cloning, RFLP PCR and sequencing some genes of their graft hybrids of pepper plants, that transfer of informative molecules from the mentor to the pupil plant does exist. Nucleic acids are actively released by cells; they circulate in the body. They can transform oncogenically or trigger antibody response but the only genetic transformation showing that DNA can go from the soma to the germen comes from graft hybrids. This suggests that circulating nucleic acids, in this case DNA, like Darwin's gemmules, play a role in the mechanism of evolution.

  7. Compliance effects on small diameter polyurethane graft patency.

    PubMed

    Uchida, N; Kambic, H; Emoto, H; Chen, J F; Hsu, S; Murabayshi, S; Harasaki, H; Nosé, Y

    1993-10-01

    Microporous compliance matched and noncompliant grafts were compared in a dog carotid artery interposition model. We fabricated 4 mm diameter sponge type polyurethane (Biomer) tubes 5 cm in length with a 0.5 mm wall thickness. The luminal surface was covered with a 50 microns coating of cross-linked gelatin. Compliance was measured in vitro and in vivo by volume and vessel diameter changes. Over a mean arterial pressure range of 55-155 mm Hg, the diameter changes of grafts and stump arteries were measured in situ using an ultrasonic Hokanson device. Compliance matched grafts were found to have the same in vitro compliance values as the natural canine carotid at a mean arterial pressure of 100 mm Hg. Compliance matched and noncompliant grafts had values of 10.3 +/- 1.3 and 0.9 +/- 0.1 x 10(-2) mm Hg, respectively. End to end arterial anastomoses were constructed between the graft and the host arteries. The use of synthetic grafts with matched compliance to the adjacent natural vessels has been advocated as the ideal solution to circumvent the problems of graft failure. These studies indicate that compliance values for compliance matched grafts decreased immediately after implantation (from 10.3 to 6.5 x 10(-2) %/mm Hg) and within 6 weeks decreased to 3.6 x 10(-2) %/mm Hg. The compliance values for noncompliant grafts remained constant throughout the test period. At autopsy all grafts showed a tightly adhered tissue capsule. The thickness of the anastomotic hyperplasia at the distal sites of compliance matched grafts was significantly different (P < .05) than that of the adjacent artery. The patency for compliant and noncompliant grafts was 64% and 50%, respectively. Evidence for polyurethane graft degradation was obtained by Fourier transform infrared spectroscopy and gel permeation chromatography analysis of patent explants. Compliance mismatch alone does not contribute to graft failure, however, material degradation, suture technique and/or capsule formation can

  8. Ultralow dose effects in ion-beam induced grafting of polymethylmethacrylate (PMMA)

    NASA Astrophysics Data System (ADS)

    Corelli, J. C.; Steckl, A. J.; Pulver, D.; Randall, J. N.

    We have investigated the process of image enhancement in high resolution lithography through polymer grafting techniques. Sensitivity gains of 10 3-10 4 were obtained for H +, X-ray, e-beam and deep-UV irradiations. Ultralow dose effects in 60 keV H + irradiated PMMA have been observed through the use of the acrylic acid (AA) monomer grafting with irradiated PMMA. At conventional doses of 10 10 cm -2 an inner structure of each feature is revealed. At doses of (1-2) X 10 9 cm -2, discrete events within the exposed regions are observable. This is the first time that individual events have been observable in a lithography process and sets the upper limit in the useful sensitivity of the resist and ion lithography process. This effect is directly observable only with ions, because of their higher efficiency per particle than either photons or electrons.

  9. Ursolic acid promotes robust tolerance to cardiac allografts in mice

    PubMed Central

    Liu, Y; Huang, X; Li, Y; Li, C; Hu, X; Xue, C; Meng, F; Zhou, P

    2011-01-01

    Nuclear factor (NF)-κB is an important molecule in T cell activation. Our previous work has found that T cell-restricted NF-κB super-repressor (IκBαΔN-Tg) mice, expressing an inhibitor of NF-κB restricted to the T cell compartment, can permanently accept fully allogeneic cardiac grafts and secondary donor skin grafts. In this study, we explore if transient NF-κB inhibition by a small molecular inhibitor could induce permanent graft survival. Ursolic acid, a small molecular compound, dose-dependently inhibited T cell receptor (TCR)-triggered NF-κB nuclear translocation and T cell activation in vitro. In vivo, ursolic acid monotherapy prolonged significantly the survival of cardiac allograft in mice. Assisted with donor-specific transfusion (DST) on day 0, ursolic acid promoted 84·6% of first cardiac grafts to survive for more than 150 days. While the mice with long-term surviving grafts (LTS) did not reject the second donor strain hearts for more than 100 days without any treatment, they all promptly rejected the third-party strain hearts within 14 days. Interestingly, this protocol did not result in an increased proportion of CD4+CD25+forkhead box P3+ regulatory T cells in splenocytes. That adoptive transfer experiments also did not support regulation was the main mechanism in this model. Splenocytes from LTS showed reduced alloreactivity to donor antigen. However, depletion of CD4+CD25+ regulatory T cells did not alter the donor-reactivity of LTS splenocytes. These data suggest that depletion of donor-reactive T cells may play an important role in this protocol. PMID:21391985

  10. Graft union formation in tomato plants: peroxidase and catalase involvement.

    PubMed

    Fernandez-Garcia, Nieves; Carvajal, Micaela; Olmos, Enrique

    2004-01-01

    The use of grafted plants in vegetable crop production is now being expanded greatly. However, few data are available on the formation of graft unions in vegetables. In this work, the structural development of the graft union formation in tomato plants is studied, together with the possible relationship with activities of peroxidases and catalases. Tomato (Lycopersicon esculentum Mill.) seedlings of cultivar Fanny were grafted on the rootstock of cultivar AR-9704 using the 'tongue approach grafting' method, and were grown in a crop chamber. A study of the structural development of the graft union and the involvement of peroxidases and catalases in the process of graft formation was carried out during the first stages of the graft union (4, 8 and 15 d after grafting). Observation of the structure of the graft union showed formation of xylem and phloem vessels through the graft union 8 d after grafting. In addition, root hydraulic conductance, L0, indicate that the graft union is fully functional 8 d after grafting, which coincided with an increase of peroxidase and catalase activities. These results suggest that increased peroxidase and catalase activities might be implicated in graft development in tomato plants.

  11. Double-layered collagen graft to the radial forearm free flap donor sites without skin graft.

    PubMed

    Park, Tae-Jun; Kim, Hong-Joon; Ahn, Kang-Min

    2015-12-01

    Radial forearm free flap is the most reliable flap for intraoral soft tissue reconstruction after cancer ablation surgery. However, unesthetic scar of the donor site and the need for a second donor site for skin graft are major disadvantages of the forearm flap. The purpose of this study was to report the clinical results of double-layered collagen graft to the donor site of the forearm free flap without skin graft. Twenty-two consecutive patients who underwent oral cancer ablation and forearm reconstruction between April 2010 and November 2013 were included in this study. Male to female ratio was 12:10, and average age was 61.0 years old (27-84). Double-layered collagen was grafted to the donor site of the forearm free flap and healed for secondary intention. Upper silicone had been trimmed at the periphery during secondary intention, and dry dressing was used. Postoperative scar healing and esthetic results and function were evaluated. An average follow-up period was 34.9 months. The scar area was decreased to 63.9 % in average. The complete healing was obtained between 1.5 and 3 months according to the defect size. There was no functional defect or impairment 3 months after operation. All patients were satisfied with the esthetic results. Three patients died of recurred cancer. Double-layered collagen graft was successfully performed in this study. Without the thigh skin graft, patients had experienced less painful postoperative healing periods and discomfort.

  12. Management of Contaminated Autologous Grafts in Plastic Surgery

    PubMed Central

    Centeno, Robert F; Desai, Ankit R; Watson, Marla E

    2008-01-01

    Background: Contamination of autologous grafts unfortunately occurs in plastic surgery, but the literature provides no guidance for management of such incidents. Methods: American Society of Aesthetic Plastic Surgery members were asked to complete an online survey that asked about the number and causes of graft contaminations experienced, how surgeons dealt with the problem, the clinical outcomes, and patient disclosure. Results: Nineteen hundred surgeons were asked to participate in the survey, and 223 responded. Of these, 70% had experienced at least 1 graft contamination incident, with 26% experiencing 4 or more. The most frequently reported reason for graft contamination was a graft falling on the floor (reported by 75%). Nearly two thirds of the contaminated grafts related to craniofacial procedures. Ninety-four percent of grafts were managed with decontamination and completion of the operation. The most common method of decontamination was washing with povidone-iodine, but this practice is contrary to recommendations in the literature. Only 3 surgeons (1.9%) said a clinical infection developed following decontaminated graft use. Patients were not informed in 60% of graft contamination incidents. The survey results and review of the literature led to development of algorithms for the management of inadvertent graft contamination and patient disclosure. Conclusions: Although autologous grafts do become contaminated in plastic surgery, the overwhelming majority can be safely decontaminated and produce minimal or no clinical sequelae. The algorithms presented are intended to serve as guides for prevention of contamination events or for their management should they occur. PMID:18496583

  13. Polyethylene oxide hydration in grafted layers

    NASA Astrophysics Data System (ADS)

    Dormidontova, Elena; Wang, Zilu

    Hydration of water soluble polymers is one of the key-factors defining their conformation and properties, similar to biopolymers. Polyethylene oxide (PEO) is one of the most important biomedical-applications polymers and is known for its reverse temperature solubility due to hydrogen bonding with water. As in many practical applications PEO chains are grafted to surfaces, e.g. of nanoparticles or planar surfaces, it is important to understand PEO hydration in such grafted layers. Using atomistic molecular dynamic simulations we investigate the details of molecular conformation and hydration of PEO end-grafted to gold surfaces. We analyze polymer and water density distribution as a function of distance from the surface for different grafting densities. Based on a detailed analysis of hydrogen bonding between polymer and water in grafted PEO layers, we will discuss the extent of PEO hydration and its implication for polymer conformation, mobility and layer properties. This research is supported by NSF (DMR-1410928).

  14. The effect of delayed graft function on graft and patient survival in kidney transplantation: an approach using competing events analysis.

    PubMed

    Fonseca, Isabel; Teixeira, Laetitia; Malheiro, Jorge; Martins, La Salete; Dias, Leonídio; Castro Henriques, António; Mendonça, Denisa

    2015-06-01

    In kidney transplantation, the impact of delayed graft function (DGF) on long-term graft and patient survival is controversial. We examined the impact of DGF on graft and recipient survival by accounting for the possibility that death with graft function may act as a competing risk for allograft failure. We used data from 1281 adult primary deceased-donor kidney recipients whose allografts functioned at least 1 year. The probability of graft loss occurrence is overestimated using the complement of Kaplan-Meier estimates (1-KM). Both the cause-specific Cox proportional hazard regression model (standard Cox) and the subdistribution hazard regression model proposed by Fine and Gray showed that DGF was associated with shorter time to graft failure (csHR = 2.0, P = 0.002; sHR = 1.57, P = 0.009), independent of acute rejection (AR) and after adjusting for traditional factors associated with graft failure. Regarding patient survival, DGF was a predictor of patient death using the cause-specific Cox model (csHR = 1.57, P = 0.029) but not using the subdistribution model. The probability of graft loss from competing end points should not be reported with the 1-KM. Application of a regression model for subdistribution hazard showed that, independent of AR, DGF has a detrimental effect on long-term graft survival, but not on patient survival. © 2015 Steunstichting ESOT.

  15. Prolonged survival of reconstituted skin grafts without immunosuppression.

    PubMed

    Sasamoto, Y; Alexander, J W; Babcock, G F

    1990-01-01

    Reconstituted skin composed of a cultured allogeneic epithelial sheet (CAES) and a cultured allogeneic dermis (CAD) was evaluated in a rat model to determine whether it could survive for a prolonged period without immunosuppression. Additionally, free CAD grafts were evaluated for their suitability as dermal substitutes. Male Buffalo rats were used as donors and male Lewis rats as recipients. Split-thickness skin obtained from Buffalo rats was separated into epidermis and dermis by means of Dispase II enzyme. The epidermal layers were minced and trypsinized. Then dispersed single keratinocytes were inoculated onto a irradiated 3T3 cell feeder layer. After a suitable period, a confluent cultured keratinocyte layer was detached and provided CAES grafts. Cultured allogeneic dermis grafts were prepared from cultures of the dermal component. Cultured allogeneic dermis grafts, covered by split thickness isografts (STIG) or local skin flaps, became revascularized at a rate of 94.6% and 90.9%, respectively, 7 days after grafting. However, only 25% of CAD grafts covered by synthetic materials became vascularized. Four types of wound coverage were compared including: (1) CAES grafts, (2) CAES over CAD grafts, (3) split-thickness isografts, and (4) STIG over CAD grafts. In groups 2 and 4, CAD grafts were applied 7 days before CAES grafts or STIG. Grafts of groups 1 and 2 were successful in only 36.7% and 31.1% of the animals and resulted in a high rate of wound contracture--72.4%, 66.7%, respectively. On the other hand, in groups 3 and 4, higher average rates of revascularization (92.0% and 88.3%) and lower rates of wound contracture (25.4% and 24.2%) were obtained.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Vascularized nerve graft: a clinical contribution.

    PubMed

    Luchetti, R; De Santis, G; Soragni, O; Deluca, S; Pederzini, L; Alfarano, M; Landi, A

    1990-01-01

    The authors present 4 cases of vascularized nerve graft. The results were better than those obtained with traditional grafting. The indication is a rare one, and the experimental results are contradictory. Indications are limited to Volkmann ischemic syndromes, post-actinic lesions of the brachial plexus, infections and finally, post-burning scarring. Nevertheless, traditional nerve grafts remain the treatment of choice for peripheral nerve lesions which cannot undergo direct suturing.

  17. 21 CFR 872.3930 - Bone grafting material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bone grafting material. 872.3930 Section 872.3930...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3930 Bone grafting material. (a) Identification. Bone grafting material is a material such as hydroxyapatite, tricalcium phosphate, polylactic and...

  18. 21 CFR 872.3930 - Bone grafting material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bone grafting material. 872.3930 Section 872.3930...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3930 Bone grafting material. (a) Identification. Bone grafting material is a material such as hydroxyapatite, tricalcium phosphate, polylactic and...

  19. 21 CFR 872.3930 - Bone grafting material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bone grafting material. 872.3930 Section 872.3930...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3930 Bone grafting material. (a) Identification. Bone grafting material is a material such as hydroxyapatite, tricalcium phosphate, polylactic and...

  20. 21 CFR 872.3930 - Bone grafting material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bone grafting material. 872.3930 Section 872.3930...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3930 Bone grafting material. (a) Identification. Bone grafting material is a material such as hydroxyapatite, tricalcium phosphate, polylactic and...

  1. 21 CFR 872.3930 - Bone grafting material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone grafting material. 872.3930 Section 872.3930...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3930 Bone grafting material. (a) Identification. Bone grafting material is a material such as hydroxyapatite, tricalcium phosphate, polylactic and...

  2. Effect of stearic acid-grafted starch compatibilizer on properties of linear low density polyethylene/thermoplastic starch blown film.

    PubMed

    Khanoonkon, Nattaporn; Yoksan, Rangrong; Ogale, Amod A

    2016-02-10

    The present work aims to investigate the effect of stearic acid-grafted starch (ST-SA) on the rheological, thermal, optical, dynamic mechanical thermal, and tensile properties of linear low density polyethylene/thermoplastic starch (LLDPE/TPS) blends, as well as on their water vapor and oxygen barrier properties. Blends consisting of LLDPE and TPS in a weight ratio of 60:40 and ST-SA at different concentrations, i.e. 1, 3 and 5%, were prepared using a twin-screw extruder. The obtained resins were subsequently converted into films via blown film extrusion. Incorporation of ST-SA resulted in a decreased degree of shear thinning, reduced ambient temperature elasticity, and improved tensile strength, secant modulus, extensibility, and UV absorption, as well as diminished water vapor and oxygen permeabilities of the LLDPE/TPS blend. These effects are attributed to the enhanced interfacial adhesion between LLDPE and TPS phases through the compatibilizing effect induced by ST-SA, and the good dispersion of the TPS phase in the LLDPE matrix. The results confirmed that ST-SA could potentially be used as a compatibilizer for the LLDPE/TPS blend system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Analysis by early angiography of right internal thoracic artery grafting via the transverse sinus : predictors of graft failure.

    PubMed

    Ura, M; Sakata, R; Nakayama, Y; Arai, Y; Oshima, S; Noda, K

    2000-02-15

    There has been debate regarding whether technically demanding right internal thoracic artery (RITA) grafting via the transverse sinus can be extensively applied to patients in high-risk groups, such as patients with a small body size, elderly patients, and woman with relatively smaller coronary artery and internal thoracic artery (ITA) diameters. Of the 1456 patients who underwent isolated coronary artery bypass grafting between January 1989 and December 1998 at Kumamoto Central Hospital, 393 patients (mean age, 62.4+/-9.0 years) with the RITA anastomosed to the major branches of the circumflex artery were studied. Left ITA grafting was performed in 384 patients, and in 369, the in situ left ITA was anastomosed to the left anterior descending coronary artery using standard methods. Early postoperative angiography was performed in 381 patients. The RITA was occluded in 4 patients, and string-like artery and significant stenosis were present in 11 and 7 patients, respectively; RITA graft patency was thus 94.1%. Of the preoperative variables and angiographic data, simple and multiple logistic regression analyses identified decreased severity of native stenosis, diffuse sclerosis of native vessels, and residual side branches of the ITA as independent predictors of nonfunctional grafts. The method of ITA grafting did not influence the patency of the graft. The excellent patency rate demonstrated by this study, the largest angiographic study to date of RITA grafting via the transverse sinus, indicates that this technique can provide reliable revascularization of the left ventricle and that it has the potential to be applied to a wide variety of patients with diseased circumflex arteries.

  4. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Barleany, Dhena Ria; Ulfiyani, Fida; Istiqomah, Shafina; Heriyanto, Heri; Rahmayetty, Erizal

    2015-12-01

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w-1 acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g-1 of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g-1 and 523 g g-1 for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM).

  5. Aortic Replacement with Sutureless Intraluminal Grafts

    PubMed Central

    Lemole, Gerald M.

    1990-01-01

    To avoid the anastomotic complications and long cross-clamp times associated with standard suture repair of aortic lesions, we have implanted sutureless intraluminal grafts in 122 patients since 1976. Forty-nine patients had disorders of the ascending aorta, aortic arch, or both: their operative mortality was 14% (7 patients), and the group's 5-year actuarial survival rate has been 64%. There have been no instances of graft dislodgment, graft infection, aortic bleeding, or pseudoaneurysm formation. Forty-two patients had disorders of the descending aorta and thoracoabdominal aorta: their early mortality was 10% (4 patients), and the group's 5-year actuarial survival rate has been 56%. There was 1 early instance of graft dislodgment, but no pseudoaneurysm formation, graft erosion, aortic bleeding, intravascular hemolysis, or permanent deficits in neurologic, renal, or vascular function. Thirty-one patients had the sutureless intraluminal graft implanted in the abdominal aortic position: their early mortality was 6% (2 patients), and the 5-year actuarial survival rate for this group has been 79%. There were no instances of renal failure, ischemic complication, postoperative paraplegia, pseudoaneurysm, or anastomotic true aneurysm. Our recent efforts have been directed toward developing an adjustable spool that can adapt to the widest aorta or the narrowest aortic arch vessel; but in the meanwhile, the present sutureless graft yields shorter cross-clamp times, fewer intraoperative complications, and both early and late results as satisfactory as those afforded by traditional methods of aortic repair. (Texas Heart Institute Journal 1990; 17:302-9) Images PMID:15227522

  6. Comparison of sequential left internal thoracic artery grafting and separate left internal thoracic artery and venous grafting : A 5-year follow-up.

    PubMed

    Wendt, D; Schmidt, D; Wasserfuhr, D; Osswald, B; Thielmann, M; Tossios, P; Kühl, H; Jakob, H; Massoudy, P

    2010-09-01

    The superiority of left internal thoracic artery (LITA) grafting to the left anterior descending artery (LAD) is well established. Patency rates of 80%-90% have been reported at 10-year follow-up. However, the superiority of sequential LITA grafting has not been proven. Our aim was to compare patency rates after sequential LITA grafting to a diagonal branch and the LAD with patency rates of LITA grafting to the LAD and separate vein grafting to a diagonal branch. A total of 58 coronary artery bypass graft (CABG) patients, operated on between 01/2000 and 12/2002, underwent multi-slice computed tomography (MSCT) between 2006 and 2008. Of these patients, 29 had undergone sequential LITA grafting to a diagonal branch and to the LAD ("Sequential" Group), while in 29 the LAD and a diagonal branch were separately grafted with LITA and vein ("Separate" Group). Patencies of all anastomoses were investigated. Mean follow-up was 1958±208 days. The patency rate of the LAD anastomosis was 100% in the Sequential Group and 93% in the Separate Group (p=0.04). The patency rate of the diagonal branch anastomosis was 100% in the Sequential Group and 89% in the Separate Group (p=0.04). Mean intraoperative flow on LITA graft was not different between groups (69±8ml/min in the Sequential Group and 68±9ml/min in the Separate Group, p=n.s.). Patency rates of both the LAD and the diagonal branch anastomoses were higher after sequential arterial grafting compared with separate arterial and venous grafting at 5-year follow-up. This indicates that, with regard to the antero-lateral wall of the left ventricle, there is an advantage to sequential arterial grafting compared with separate arterial and venous grafting.

  7. Biosorption of Cr(VI) by coconut coir: spectroscopic investigation on the reaction mechanism of Cr(VI) with lignocellulosic material.

    PubMed

    Shen, Ying-Shuian; Wang, Shan-Li; Huang, Shiuh-Tsuen; Tzou, Yu-Min; Huang, Jang-Hung

    2010-07-15

    In this study, the removal mechanism of Cr(VI) from water by coconut coir (CC) was investigated using X-ray photoelectron spectroscopy (XPS), Cr K-edge X-ray absorption near edge structure (XANES) and FTIR spectroscopy. The results showed that, upon reaction with CC at pH 3, Cr(VI) was reduced to Cr(III), which was either bound to CC or released back into solution. As revealed by the FTIR spectra of CC before and after reacting with Cr(VI), the phenolic methoxyl and hydroxyl groups of lignin in CC are the dominant drivers of Cr(VI) reduction, giving rise to carbonyl and carboxyl groups on CC. These functional groups can subsequently provide binding sites for Cr(III) resulting from Cr(VI) reduction. In conjunction with forming complexes with carbonyl and carboxyl groups, the formation of Cr(III) hydroxide precipitate could also readily occur as revealed by the linear combination fitting of the Cr K-edge XANES spectrum using a set of reference compounds. The phenolic groups in lignin are responsible for initiating Cr(VI) reduction, so lignocellulosic materials containing a higher amount of phenolic groups are expected to be more effective scavengers for removal of Cr(VI) from the environment. 2010 Elsevier B.V. All rights reserved.

  8. Effect of the ionic strength of a mobile phase on the chromatographic retention and thermodynamic characteristics of the adsorption of enantiomers of α-phenylcarboxylic acids on a chiral adsorbent with grafted antibiotic eremomycin

    NASA Astrophysics Data System (ADS)

    Reshetova, E. N.

    2017-01-01

    The effect the ionic strength of an aqueous ethanol mobile phase containing buffer salt has the on retention and thermodynamics of adsorption of optical isomers of some α-phenylcarboxylic acids on chiral adsorbent Nautilus-E with grafted antibiotic eremomycin is investigated. It is shown that ion exchange processes participate in the adsorption of enantiomers of α-phenylcarboxylic acids. It is established that electrostatic interactions contribute to the retention of enantiomers of α-phenylcarboxylic acids and affect selectivity only slightly. The dependences of retention characteristics, selectivity, and thermodynamic parameters on the concentration of the buffer salt in the eluent are determined. A statistical analysis of enthalpy-entropy compensation is performed, and the compensation effect is shown to be true. It is found that the points corresponding to the investigated adsorbates are distributed over the compensation dependence according to the spatial structural characteristics of molecules.

  9. Doping Level of Boron-Doped Diamond Electrodes Controls the Grafting Density of Functional Groups for DNA Assays.

    PubMed

    Švorc, Ĺubomír; Jambrec, Daliborka; Vojs, Marian; Barwe, Stefan; Clausmeyer, Jan; Michniak, Pavol; Marton, Marián; Schuhmann, Wolfgang

    2015-09-02

    The impact of different doping levels of boron-doped diamond on the surface functionalization was investigated by means of electrochemical reduction of aryldiazonium salts. The grafting efficiency of 4-nitrophenyl groups increased with the boron levels (B/C ratio from 0 to 20,000 ppm). Controlled grafting of nitrophenyldiazonium was used to adjust the amount of immobilized single-stranded DNA strands at the surface and further on the hybridization yield in dependence on the boron doping level. The grafted nitro functions were electrochemically reduced to the amine moieties. Subsequent functionalization with a succinic acid introduced carboxyl groups for subsequent binding of an amino-terminated DNA probe. DNA hybridization significantly depends on the probe density which is in turn dependent on the boron doping level. The proposed approach opens new insights for the design and control of doped diamond surface functionalization for the construction of DNA hybridization assays.

  10. The Effect of Graft Strength on Knee Laxity and Graft In-Situ Forces after Posterior Cruciate Ligament Reconstruction

    PubMed Central

    Lai, Yu-Shu; Chen, Wen-Chuan; Huang, Chang-Hung; Cheng, Cheng-Kung; Chan, Kam-Kong; Chang, Ting-Kuo

    2015-01-01

    Surgical reconstruction is generally recommended for posterior cruciate ligament (PCL) injuries; however, the use of grafts is still a controversial problem. In this study, a three-dimensional finite element model of the human tibiofemoral joint with articular cartilage layers, menisci, and four main ligaments was constructed to investigate the effects of graft strengths on knee kinematics and in-situ forces of PCL grafts. Nine different graft strengths with stiffness ranging from 0% (PCL rupture) to 200%, in increments of 25%, of an intact PCL’s strength were used to simulate the PCL reconstruction. A 100 N posterior tibial drawer load was applied to the knee joint at full extension. Results revealed that the maximum posterior translation of the PCL rupture model (0% stiffness) was 6.77 mm in the medial compartment, which resulted in tibial internal rotation of about 3.01°. After PCL reconstruction with any graft strength, the laxity of the medial tibial compartment was noticeably improved. Tibial translation and rotation were similar to the intact knee after PCL reconstruction with graft strengths ranging from 75% to 125% of an intact PCL. When the graft’s strength surpassed 150%, the medial tibia moved forward and external tibial rotation greatly increased. The in-situ forces generated in the PCL grafts ranged from 13.15 N to 75.82 N, depending on the stiffness. In conclusion, the strength of PCL grafts have has a noticeable effect on anterior-posterior translation of the medial tibial compartment and its in-situ force. Similar kinematic response may happen in the models when the PCL graft’s strength lies between 75% and 125% of an intact PCL. PMID:26001045

  11. Cartilage grafting in nasal reconstruction.

    PubMed

    Immerman, Sara; White, W Matthew; Constantinides, Minas

    2011-02-01

    Nasal reconstruction after resection for cutaneous malignancies poses a unique challenge to facial plastic surgeons. The nose, a unique 3-D structure, not only must remain functional but also be aesthetically pleasing to patients. A complete understanding of all the layers of the nose and knowledge of available cartilage grafting material is necessary. Autogenous material, namely septal, auricular, and costal cartilage, is the most favored material in a free cartilage graft or a composite cartilage graft. All types of material have advantages and disadvantages that should guide the most appropriate selection to maximize the functional and cosmetic outcomes for patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Biological Effects of Orthodontic Tooth Movement Into the Grafted Alveolar Cleft.

    PubMed

    Sun, Jian; Zhang, Xiaoyue; Li, Renmei; Chen, Zhengxi; Huang, Yuanliang; Chen, Zhenqi

    2018-03-01

    Functional stimulus during orthodontic tooth movement into the grafted bone can lead to better alveolar bone grafting outcomes. The aim of this study was to analyze the biological effects of orthodontic tooth movement into the grafted alveolar cleft area with histologic staining, fluorescence staining, and real-time polymerase chain reaction (PCR). An animal model of orthodontic tooth movement into the grafted alveolar cleft area was established in 8-week-old Sprague-Dawley rats. The animals were divided into the experimental group and the control group. Four checkpoints were observed: before orthodontic stimuli, day 1 after orthodontic stimuli, day 3 after orthodontic stimuli, and day 5 after orthodontic stimuli. The cleft bone formation conditions, including the collagen fibers and the activities of the osteoclasts and osteoblasts, were evaluated by histologic staining. The expression of tartrate-resistant acid phosphatase (TRAP), receptor activator nuclear factor κB ligand, and Runt-related transcription factor 2 was detected by real-time PCR in both groups. Hematoxylin-eosin staining showed that the remodeling process of iliac autografts was completed when the orthodontic stress was applied, whereas the bone tissues first showed osteoclastogenesis and then osteogenesis. On the basis of TRAP staining, the osteoclasts increased to the maximal amount on day 3 and decreased thereafter. Evidence from tetracycline fluorescence staining indicated that no obvious changes in osteoblast activity were detected at the early stage; however, it gradually increased, especially in the region close to the root surface. According to real-time PCR, the expression of TRAP increased in both the early and middle stages, that of receptor activator nuclear factor κB ligand increased in the early stage, and that of Runt-related transcription factor 2 increased in the late stage. Moreover, the results showed significant differences between the experimental and control groups

  13. The PM2.5 capture of poly (lactic acid)/nano MOFs eletrospinning membrane with hydrophilic surface

    NASA Astrophysics Data System (ADS)

    Wang, Yating; Dai, Xiu; Li, Xu; Wang, Xinlong

    2018-03-01

    In this article, metal organic frameworks (MOFs) material is introduced in the poly (lactic acid) (PLA) by electrospinning to fabricate the nanocomposite membrane. The acrylic acid (AA) is grafted onto the membrane under UV light. The prepared membrane is studied by scanning electron microscopy (SEM), x-ray diffraction (XRD), thermogravimetry (TG), contact angle test and tensile strength test. The SEM image and XRD indicate that nano MOFs particles adhere to the membrane. Contact angle test shows that grafting AA on the composite fiber membrane improves its hydrophilicity effectively. TG analyses show that the particulate matter (PM) capture capacity of PLA membrane with 2 wt% ZIF-8 content is 22%, which rises to 37% after grafting.

  14. Foam-rubber stents for skin grafts.

    PubMed

    Larson, P O

    1990-09-01

    A variety of stents are used to immobilize skin grafts and to hold them firmly to the recipient site. Tie-down stents, the most common type, are constructed from bulky, sterile dressing and are overtied with suture material. These stents are often cumbersome to apply. As an alternative, stents made from foam-rubber pads (Reston, 3M Company, St. Paul, MN) were stapled over skin grafts. These stents could be applied quickly, and they maintain continuous, uniform pressure on the immobilized grafts.

  15. Acellular vascular matrix grafts from human placenta chorion: Impact of ECM preservation on graft characteristics, protein composition and in vivo performance.

    PubMed

    Schneider, Karl H; Enayati, Marjan; Grasl, Christian; Walter, Ingrid; Budinsky, Lubos; Zebic, Gabriel; Kaun, Christoph; Wagner, Anja; Kratochwill, Klaus; Redl, Heinz; Teuschl, Andreas H; Podesser, Bruno K; Bergmeister, Helga

    2018-05-29

    Small diameter vascular grafts from human placenta, decellularized with either Triton X-100 (Triton) or SDS and crosslinked with heparin were constructed and characterized. Graft biochemical properties, residual DNA, and protein composition were evaluated to compare the effect of the two detergents on graft matrix composition and structural alterations. Biocompatibility was tested in vitro by culturing the grafts with primary human macrophages and in vivo by subcutaneous implantation of graft conduits (n = 7 per group) into the flanks of nude rats. Subsequently, graft performance was evaluated using an aortic implantation model in Sprague Dawley rats (one month, n = 14). In situ graft imaging was performed using MRI angiography. Retrieved specimens were analyzed by electromyography, scanning electron microscopy, histology and immunohistochemistry to evaluate cell migration and the degree of functional tissue remodeling. Both decellularization methods resulted in grafts of excellent biocompatibility in vitro and in vivo, with low immunogenic potential. Proteomic data revealed removal of cytoplasmic proteins with relative enrichment of ECM proteins in decelluarized specimens of both groups. Noteworthy, LC-Mass Spectrometry analysis revealed that 16 proteins were exclusively preserved in Triton decellularized specimens in comparison to SDS-treated specimens. Aortic grafts showed high patency rates, no signs of thrombus formation, aneurysms or rupture. Conduits of both groups revealed tissue-specific cell migration indicative of functional remodeling. This study strongly suggests that decellularized allogenic grafts from the human placenta have the potential to be used as vascular replacement materials. Both detergents produced grafts with low residual immunogenicity and appropriate mechanical properties. Observed differences in graft characteristics due to preservation method had no impact on successful in vivo performance in the rodent model. Copyright

  16. Soft tissue graft interference fit fixation: observations on graft insertion site healing and tunnel remodeling 2 years after ACL reconstruction in sheep.

    PubMed

    Hunt, Patrick; Rehm, Oliver; Weiler, Andreas

    2006-12-01

    Using soft tissue grafts for anterior cruciate ligament (ACL) reconstruction, insertion site healing plays a crucial role in the long-term fate of the graft. It has been shown in an experimental animal study that using a soft tissue graft and anatomic graft fixation, a direct ligamentous insertion alike the native ACL developed 24 weeks postoperatively. Yet there are no reports on the long-term insertion site healing of anatomically fixed soft tissue grafts. The objective of this study was to evaluate graft insertion site healing, the intra-tunnel fate of the graft and its osseous replacement 2 years after ACL reconstruction in sheep. The left ACLs of six sheep were replaced by an autologous flexor tendon split graft and anatomically fixed with biodegradable poly-(D, L-lactide) interference screws. Animals received polychromic sequential labeling at different points in time to determine bone apposition per period. For evaluation of the insertion site healing and intra-tunnel changes, MRI scans were taken in vivo. Following sacrifice, radiographic imaging, conventional histology and fluorescence microscopy was undertaken. Most of the specimens showed a wide direct ligamentous insertion. It showed patterns alike the direct ligament insertion seen in intact ACLs. The intra-tunnel part of the graft had completely lost its tendon-like structure and in two cases, it was separated from the graft insertion by a thick bony layer. The biodegradable interference screw was fully degraded in all specimens. Ossification of the former drill tunnels was intense, showing only partial-length tunnel remnants in one femoral and three tibial specimens. As the graft heals to the joint surface and the aperture site is closed with soft tissue, mechanical stress of the intra-tunnel part of the graft is eliminated and the bone tunnel is protected from synovial fluid, resulting in osseous bridging of the tunnel aperture site, accelerated intra-tunnel graft resorption and its osseous

  17. [Features of skin graft in pediatric plastic surgery].

    PubMed

    Depoortère, C; François, C; Belkhou, A; Duquennoy-Martinot, V; Guerreschi, P

    2016-10-01

    Skin graft is a skin tissue fragment transferred from a donor site to a receiving site with a spontaneous revascularization. Basic process of plastic surgery, skin graft known in children, specific, warnings and refinements. It finds its indication in many pediatric cases: integumental diseases (neavus, hamartoma), acute burns and scars, traumatic loss of substance or surgically induced, congenital malformations of the hands and feet, etc. Specific skin graft techniques in children are developed: donor sites, sampling technique and procedure, early postoperative care. Especially in children, the scalp is a perfect site for split skin graft and technique is actively developed. Refinements and special cases are discussed: use of dermal matrices, allografts, xenografts, negative pressure therapy, prior skin expansion of the donor site. Results of skin graft in children are exposed: taking of graft, growth and shrinkage, pigmentation. Skin graft sometimes allows to stay the complex movement and get the best final benefit, permanent or at least temporary, in a growing being. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells.

    PubMed

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-02-15

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.

  19. Bone graft

    MedlinePlus

    ... dry. Follow instructions about showering. DO NOT smoke. Smoking slows or prevents bone healing. If you smoke, the graft is more likely to fail. Be aware that nicotine patches slow healing just like smoking does.

  20. Subventricular Zone-Derived Neural Stem Cell Grafts Protect Against Hippocampal Degeneration and Restore Cognitive Function in the Mouse Following Intrahippocampal Kainic Acid Administration

    PubMed Central

    Miltiadous, Panagiota; Kouroupi, Georgia; Stamatakis, Antonios; Koutsoudaki, Paraskevi N.

    2013-01-01

    Temporal lobe epilepsy (TLE) is a major neurological disease, often associated with cognitive decline. Since approximately 30% of patients are resistant to antiepileptic drugs, TLE is being considered as a possible clinical target for alternative stem cell-based therapies. Given that insulin-like growth factor I (IGF-I) is neuroprotective following a number of experimental insults to the nervous system, we investigated the therapeutic potential of neural stem/precursor cells (NSCs) transduced, or not, with a lentiviral vector for overexpression of IGF-I after transplantation in a mouse model of kainic acid (KA)-induced hippocampal degeneration, which represents an animal model of TLE. Exposure of mice to the Morris water maze task revealed that unilateral intrahippocampal NSC transplantation significantly prevented the KA-induced cognitive decline. Moreover, NSC grafting protected against neurodegeneration at the cellular level, reduced astrogliosis, and maintained endogenous granule cell proliferation at normal levels. In some cases, as in the reduction of hippocampal cell loss and the reversal of the characteristic KA-induced granule cell dispersal, the beneficial effects of transplanted NSCs were manifested earlier and were more pronounced when these were transduced to express IGF-I. However, differences became less pronounced by 2 months postgrafting, since similar amounts of IGF-I were detected in the hippocampi of both groups of mice that received cell transplants. Grafted NSCs survived, migrated, and differentiated into neurons—including glutamatergic cells—and not glia, in the host hippocampus. Our results demonstrate that transplantation of IGF-I producing NSCs is neuroprotective and restores cognitive function following KA-induced hippocampal degeneration. PMID:23417642

  1. Successful Antibiotic Treatment of Severe Staphylococcal Infection of a Long Stent Graft in the Superficial Femoral Artery with Graft Preservation in the Long Term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treitl, Marcus, E-mail: Marcus.Treitl@med.uni-muenchen.de; Rademacher, Antje; Becker-Lienau, Johanna

    2011-06-15

    Introduction: Bacterial infection of endovascular stent grafts is a serious condition, regularly leading to graft replacement by open bypass surgery.Case ReportWe describe the case of a staphylococcal infection of a 150-mm covered stent graft (Gore Viabahn), placed in the superficial femoral artery. Stent graft infection was successfully treated by oral administration of penicillinase-resistant flucloxacillin and the lipopeptide daptomycin with complete graft preservation, not requiring surgical treatment. During 1-year follow-up, the graft infection did not reappear. However, the patient developed restenosis at the proximal margin of the stent with recurrence of mild claudication, so far treated conservatively. Conclusion: With the increasedmore » use of covered stent grafts in the peripheral vasculature, the frequency of graft infection will increase. We demonstrate that with newly developed antibiotics, it is possible to treat this severe complication conservatively, with complete graft preservation and without the need for bypass surgery in selected cases.« less

  2. Effect of vacuum-assisted closure combined with open bone grafting to promote rabbit bone graft vascularization.

    PubMed

    Hu, Chao; Zhang, Taogen; Ren, Bin; Deng, Zhouming; Cai, Lin; Lei, Jun; Ping, Ansong

    2015-04-27

    Patients with composite bone non-union and soft tissue defects are difficult to treat. Vacuum-assisted closure (VAC) combined with open bone grafting is one of the most effective treatments at present. The aim of the present study was to preliminarily investigate the effect and mechanism of VAC combined with open bone grafting to promote rabbit bone graft vascularization, and to propose a theoretical basis for clinical work. Twenty-four New Zealand white rabbits were randomly divided into an experimental and a control group. Allogeneic bones were grafted and banded with the proximal femur with a suture. The experimental group had VAC whereas the control group had normal wound closure. The bone vascularization rate was compared based on X-ray imaging, fluorescent bone labeling (labeled tetracycline hydrochloride and calcein), calcium content in the callus, and expression of fibroblast growth factor-2 (FGF-2) in bone allografts by Western blot analysis at the 4th, 8th, and 12th week after surgery. At the 4th, 8th, and 12th week after surgery, the results of the tests demonstrated that the callus was larger, contained more calcium (p<0.05), and expressed FGF-2 at higher levels (p<0.05) in the experimental group than in the control group. Fluorescent bone labeling showed the distance between the two fluorescent ribbons was significantly shorter in the control group than in the experimental group at the 8th and 12th week after surgery. VAC combined with open bone grafting promoted rabbit bone graft vascularization.

  3. Synthesis and characterization of polyvinylimidazole-grafted superparamagnetic iron oxide nanoparticles (Si-PVIm-grafted SPION)

    NASA Astrophysics Data System (ADS)

    Erdemi, H.; Sözeri, H.; Şenel, M.; Baykal, A.

    2012-08-01

    Polyvinylimidazole (PVIm)-grafted superparamagnetic iron oxide nanoparticles (SPION) (Si-PVIm-grafted Fe3O4 NPs) were prepared by grafting of telomere of PVIm on the SPION. The product identified as magnetite, which has an average crystallite size of 9 ± 2 nm as estimated from X-ray line profile fitting. Particle size was estimated as 10.0 ± 0.5 nm from TEM micrographs. Mean particle size is found as 8.4 ± 1.0 nm which agrees well with the values calculated from XRD patterns (9 ± 2 nm). Vibrating Sample Magnetometer (VSM) analysis explained the superparamagnetic nature of the nanocomposite. Thermogravimetric analysis showed that the Si-Imi is 25 % of the Si-PVIm-grafted SPION, which means an inorganic content is about 75 %. Detailed electrical and dielectric properties of the properties of the product are also presented. The conductivity of the sample increases significantly with temperature and has the value in the range of 1.14 × 10-7-1.78 × 10-4 S cm-1. Analysis of the real and imaginary parts of the permittivities indicated temperature and frequency dependency representing interfacial polarization and temperature-assisted reorganization effects.

  4. Periosteal BMP2 activity drives bone graft healing.

    PubMed

    Chappuis, Vivianne; Gamer, Laura; Cox, Karen; Lowery, Jonathan W; Bosshardt, Dieter D; Rosen, Vicki

    2012-10-01

    Bone graft incorporation depends on the orchestrated activation of numerous growth factors and cytokines in both the host and the graft. Prominent in this signaling cascade is BMP2. Although BMP2 is dispensable for bone formation, it is required for the initiation of bone repair; thus understanding the cellular mechanisms underlying bone regeneration driven by BMP2 is essential for improving bone graft therapies. In the present study, we assessed the role of Bmp2 in bone graft incorporation using mice in which Bmp2 has been removed from the limb prior to skeletal formation (Bmp2(cKO)). When autograft transplantations were performed in Bmp2cKO mice, callus formation and bone healing were absent. Transplantation of either a vital wild type (WT) bone graft into a Bmp2(cKO) host or a vital Bmp2(cKO) graft into a WT host also resulted in the inhibition of bone graft incorporation. Histological analyses of these transplants show that in the absence of BMP2, periosteal progenitors remain quiescent and healing is not initiated. When we analyzed the expression of Sox9, a marker of chondrogenesis, on the graft surface, we found it significantly reduced when BMP2 was absent in either the graft itself or the host, suggesting that local BMP2 levels drive periosteal cell condensation and subsequent callus cell differentiation. The lack of integrated healing in the absence of BMP2 was not due to the inability of periosteal cells to respond to BMP2. Healing was achieved when grafts were pre-soaked in rhBMP2 protein, indicating that periosteal progenitors remain responsive in the absence of BMP2. In contrast to the requirement for BMP2 in periosteal progenitor activation in vital bone grafts, we found that bone matrix-derived BMP2 does not significantly enhance bone graft incorporation. Taken together, our data show that BMP2 signaling is not essential for the maintenance of periosteal progenitors, but is required for the activation of these progenitors and their subsequent

  5. Protective constriction of coronary vein grafts with knitted nitinol

    PubMed Central

    Moodley, Loven; Franz, Thomas; Human, Paul; Wolf, Michael F.; Bezuidenhout, Deon; Scherman, Jacques; Zilla, Peter

    2013-01-01

    OBJECTIVES Different flow patterns and shear forces were shown to cause significantly more luminal narrowing and neointimal tissue proliferation in coronary than in infrainguinal vein grafts. As constrictive external mesh support of vein grafts led to the complete suppression of intimal hyperplasia (IH) in infrainguinal grafts, we investigated whether mesh constriction is equally effective in the coronary position. METHODS Eighteen senescent Chacma baboons (28.8 ± 3.6 kg) received aorto-coronary bypass grafts to the left anterior descending artery (LAD). Three groups of saphenous vein grafts were compared: untreated controls (CO); fibrin sealant-sprayed controls (CO + FS) and nitinol mesh-constricted grafts (ME + FS). Meshes consisted of pulse-compliant, knitted nitinol (eight needles; 50 μm wire thickness; 3.4 mm resting inner diameter, ID) spray attached to the vein grafts with FS. After 180 days of implantation, luminal dimensions and IH were analysed using post-explant angiography and macroscopic and histological image analysis. RESULTS At implantation, the calibre mismatch between control grafts and the LAD expressed as cross-sectional quotient (Qc) was pronounced [Qc = 0.21 ± 0.07 (CO) and 0.18 ± 0.05 (CO + FS)]. Mesh constriction resulted in a 29 ± 7% reduction of the outer diameter of the vein grafts from 5.23 ± 0.51 to 3.68 ± 0 mm, significantly reducing the calibre discrepancy to a Qc of 0.41 ± 0.17 (P < 0.02). After 6 months of implantation, explant angiography showed distinct luminal irregularities in control grafts (ID difference between widest and narrowest segment 74 ± 45%), while diameter variations were mild in mesh-constricted grafts. In all control grafts, thick neointimal tissue was present [600 ± 63 μm (CO); 627 ± 204 μm (CO + FS)] as opposed to thin, eccentric layers of 249 ± 83 μm in mesh-constricted grafts (ME + FS; P < 0.002). The total wall thickness had increased by 363 ± 39% (P < 0.00001) in CO and 312 ± 61% (P < 0

  6. Photoacoustic detection of neovascularities in skin graft

    NASA Astrophysics Data System (ADS)

    Yamazaki, Mutsuo; Sato, Shunichi; Saitoh, Daizo; Ishihara, Miya; Okada, Yoshiaki; Ashida, Hiroshi; Obara, Minoru

    2005-04-01

    We previously proposed a new method for monitoring adhesion of skin graft by measuring photoacoustic (PA) signal originated from the neovascularities. In this study, immunohistochemical staining (IHC) with CD31 antibody was performed for grafted skin tissue to observe neovascularity, and the results were compared with PA signals. We also used a laser Doppler imaging (LDI) to observe blood flow in the grafted skin, and sensitivity of PA measurement and that of LDI were compared. In rat autograft models, PA signals were measured for the grafted skin at postgrafting times of 0-48 h. At 6 h postgrafting, PA signal was observed in the skin depth region of 500-600 mm, while the results of IHC showed that angiogenesis occurred at the depth of about 600 mm. Depths at which PA signal and angiogenesis were observed decreased with postgrafting time. These indicate that the PA signal observed at 6 h postgrafting originated from the neovascularities in the skin graft. Results of LDI showed no blood-originated signal before 48 h postgrafting. These findings suggest that PA measurement is effective in monitoring the adhesion of skin graft in early stage after transplantation.

  7. Study and Optimization on graft polymerization under normal pressure and air atmospheric conditions, and its application to metal adsorbent

    NASA Astrophysics Data System (ADS)

    Ueki, Yuji; Chandra Dafader, Nirmal; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2012-07-01

    Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA-grafted NWPE (GMA-g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA-g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h-1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.

  8. Controlled grafting of comb copolymer brushes on poly(tetrafluoroethylene) films by surface-initiated living radical polymerizations.

    PubMed

    Yu, W H; Kang, E T; Neoh, K G

    2005-01-04

    Surface modification of poly(tetrafluoroethylene) (PTFE) films by well-defined comb copolymer brushes was carried out. Peroxide initiators were generated directly on the PTFE film surface via radio frequency Ar plasma pretreatment, followed by air exposure. Poly(glycidyl methacrylate) (PGMA) brushes were first prepared by surface-initiated reversible addition-fragmentation chain transfer polymerization from the peroxide initiators on the PTFE surface in the presence of a chain transfer agent. Kinetics study revealed a linear increase in the graft concentration of PGMA with the reaction time, indicating that the chain growth from the surface was consistent with a "controlled" or "living" process. alpha-Bromoester moieties were attached to the grafted PGMA by reaction of the epoxide groups with 2-bromo-2-methylpropionic acid. The comb copolymer brushes were subsequently prepared via surface-initiated atom transfer radical polymerization of two hydrophilic vinyl monomers, including poly(ethylene glycol) methyl ether methacrylate and sodium salt of 4-styrenesulfonic acid. The chemical composition of the modified PTFE surfaces was characterized by X-ray photoelectron spectroscopy.

  9. Polypeptide Grafted Hyaluronan: Synthesis and Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaojun; Messman, Jamie M; Mays, Jimmy

    2010-01-01

    Poly(L-leucine) grafted hyaluronan (HA-g-PLeu) has been synthesized via a Michael addition reaction between primary amine terminated poly(L-leucine) and acrylate-functionalized HA (TBAHA-acrylate). The precursor hyaluronan was first functionalized with acrylate groups by reaction with acryloyl chloride in the presence of triethylamine in N,N-dimethylformamide. 1H NMR analysis of the resulting product indicated that an increase in the concentration of acryloylchoride with respect to hydroxyl groups on HA has only a moderate effect on functionalization efficiency, f. A precise control of stoichiometry was not achieved, which could be attributed to partial solubility of intermolecular aggregates and the hygroscopic nature of HA. Michael additionmore » at high [PLeu- NH2]/[acrylate]TBAHA ratios gave a molar grafting ratio of only 0.20 with respect to the repeat unit of HA, indicating grafting limitation due to insolubility of the grafted HA-g-PLeu. Soluble HA-g-PLeu graft copolymers were obtained for low grafting ratios (<0.039) with <8.6% by mass of PLeu and were characterized thoroughly using light scattering, 1H NMR, FT-IR, and AFM techniques. Light scattering experiments showed a strong hydrophobic interaction between PLeu chains, resulting in aggregates with segregated nongrafted HA segments. This yields local networks of aggregates, as demonstrated by atomic force microscopy. Circular dichroism spectroscopy showed a -sheet conformation for aggregates of poly(L-leucine).« less

  10. Grafting methyl acrylic onto carbon fiber via Diels-Alder reaction for excellent mechanical and tribological properties of phenolic composites

    NASA Astrophysics Data System (ADS)

    Fei, Jie; Duan, Xiao; Luo, Lan; Zhang, Chao; Qi, Ying; Li, Hejun; Feng, Yongqiang; Huang, Jianfeng

    2018-03-01

    Carbon fibers (CFs) were grafted with methyl acrylic via Diels-Alder reaction at the different oil bath temperature effectively creating a carboxyl functionalized surface. The effect of grafting temperature on the surface morphology and functional groups of carbon fibers were investigated by FTIR, Raman spectroscopy, XPS and SEM respectively. The results showed that the optimal grafting temperature was 80 °C, and the relative surface coverage by carboxylic acid groups increased from an initial 5.16% up to 19.30% significantly improved the chemical activity without damaging the skin and core region of the carbon fibers. Mechanical property tests indicated that the shear and tensile strength of the sample with the grafting temperature of 80 °C (CFRP-3) increased obviously by 90.3% and 78.7%, respectively, compared with the pristine carbon fibers reinforced composite. Further, the sample CFRP-3 exhibited higher and more stable friction coefficient and improved wear resistance, while the wear rate decreased 52.7%, from 10.8 × 10-6 to 5.1 × 10-6 mm3/N m. The present work shows that grafting methyl acrylic via Diels-Alder reaction could be a highly efficient and facile method to functionalize carbon fibers for advanced composites.

  11. Synthesis, characterization and liver targeting evaluation of self-assembled hyaluronic acid nanoparticles functionalized with glycyrrhetinic acid.

    PubMed

    Wang, Xiaodan; Gu, Xiangqin; Wang, Huimin; Sun, Yujiao; Wu, Haiyang; Mao, Shirui

    2017-01-01

    Recently, polymeric materials with multiple functions have drawn great attention as the carrier for drug delivery system design. In this study, a series of multifunctional drug delivery carriers, hyaluronic acid (HA)-glycyrrhetinic acid (GA) succinate (HSG) copolymers were synthesized via hydroxyl group modification of hyaluronic acid. It was shown that the HSG nanoparticles had sub-spherical shape, and the particle size was in the range of 152.6-260.7nm depending on GA graft ratio. HSG nanoparticles presented good short term and dilution stability. MTT assay demonstrated all the copolymers presented no significant cytotoxicity. In vivo imaging analysis suggested HSG nanoparticles had superior liver targeting efficiency and the liver targeting capacity was GA graft ratio dependent. The accumulation of DiR (a lipophilic, NIR fluorescent cyanine dye)-loaded HSG-6, HSG-12, and HSG-20 nanoparticles in liver was 1.8-, 2.1-, and 2.9-fold higher than that of free DiR. The binding site of GA on HA may influence liver targeting efficiency. These results indicated that HSG copolymers based nanoparticles are potential drug carrier for improved liver targeting. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Synthesis and characterization of hydrolysed starch-g-poly(methacrylic acid) composite.

    PubMed

    Zahran, Magdy K; Ahmed, Enas M; El-Rafie, Mohamed H

    2016-06-01

    A novel method for the synthesis of starch-g-poly(methacrylic acid) composite was adopted by graft polymerization of hydrolysed starch (HS) and methacrylic acid (MAA) in aqueous medium using an efficient sodium perborate (SPB)-thiourea (TU) redox initiation system. The parameters influencing the redox system efficiency and thence the polymerization method were considered. These parameters comprehended the concentrations of MAA, SPB, TU and SPB/TU molar ratio as well as the polymerization temperature. The polymerization reaction was scrutinized through calculation of the MAA total conversion percent (TC%). The resultant poly(MAA-HS) composite was assessed by evaluating the polymer criteria (the graft yield, GY%; the grafting efficiency, GE%; the homopolymer, HP%; and the total conversion). The comportment of the apparent viscosity of the cooked poly(MAA)-starch composite paste, obtained under diverse polymerization conditions, was examined. Tentative mechanisms, which depict all occasions that happen amid the entire course of the polymerization reaction, have been proffered. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Prototyped grafting plate for reconstruction of mandibular defects.

    PubMed

    Zhou, Libin; Wang, Peilin; Han, Haolun; Li, Baowei; Wang, Hongnan; Wang, Gang; Zhao, Jinlong; Liu, Yanpu; Wu, Wei

    2014-12-01

    To esthetically and functionally restore a 40-mm canine mandibular discontinuity defect using a custom-made titanium bone-grafting plate in combination with autologous iliac bone grafts. Individualized titanium bone-grafting plates were manufactured using a series of techniques, including reverse engineering, computer aided design, rapid prototyping and titanium casting. A 40-mm discontinuous defect in the right mandibular body was created in 9 hybrid dogs. The defect was restored immediately using the customized plate in combination with autologous cancellous iliac blocks. Sequential radionuclide bone imaging was performed to evaluate the bone metabolism and reconstitution of the grafts. The specimens were evaluated by biomechanical testing, 3-dimensional microcomputed tomographic scanning, and histological examination. The results revealed that the symmetry of the mandibles was reconstructed using the customized grafting plate, and the bony continuity of the mandibles was restored. By 12 weeks after the operation, the cancellous iliac grafts became a hard bone block, which was of comparable strength to native mandibles. A fibrous tissue intermediate was found between the remodelled bone graft and the titanium plate. The results indicate that the prototyped grafting plate can be used to restore mandibular discontinuous defects, and satisfactory aesthetical and functional reconstruction can be achieved. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Epoxy and Silicone Optical Nanocomposites Filled with Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tao, Peng

    Polymer nanocomposites, as a technologically important class of materials, exhibit diverse functional properties, and are used for applications ranging from structural and biomedical to electronic and optical. The properties of polymer nanocomposites are determined, in part, by the chemical composition of the polymer matrix and the nanofillers. Their properties are also sensitive to the geometry and size of the nanofillers, and to spatial distribution of the fillers. Control of the nanoparticle size and dispersion within a given polymer provides opportunities to tailor and optimize the properties of nanocomposites for specific application. For optical applications such as encapsulation of light emitting diodes (LEDs), polymer nanocomposites filled with homogeneously dispersed nanoparticles would endow the polymer encapsulant with new functionality without sacrificing optical transparency. To this end, this thesis focuses on developing a simple and versatile approach towards the fabrication of epoxy and silicone transparent nanocomposites using matrix compatible chain-grafted nanoparticles as fillers, and studying the optical properties of the nanocomposites. The surface chemistry and grafted polymer chain design have been shown to play an important role in determining the dispersion state of the grafted nanoparticles and hence the final optical properties of the nanocomposites. To prepare transparent epoxy nanocomposites, poly (glycidyl methacrylate) (PGMA) chains were grafted onto the optical nanoparticle surfaces via a combined phosphate ligand exchange process and azide-alkyne "click" chemistry. The dispersion behavior of PGMA-grafted nanoparticles within the epoxy matrix was investigated by systematically varying the grafting density and grafted chain length. It was found that within the small molecular weight epoxy resins, the dispersion states are more sensitive to the grafting density than the molecular weight of grafted chains. With high grafting densities

  15. Effectiveness of Fibrin Glue in Adherence of Skin Graft.

    PubMed

    Reddy, Konda Sireesha; Chittoria, Ravi Kumar; Babu, Preethitha; Marimuthu, Senthil Kumaran; Kumar, Sudhanva Hemanth; Subbarayan, Elan Kumar; Chavan, Vinayak; Mohapatra, Devi Prasad; Sivakumar, Dinesh Kumar; Friji, M T

    2017-01-01

    Graft fixation is important for graft take. Fibrin glue has been proposed as an ideal material, because of its human origin and it provides firm adhesion in seconds or minutes. To evaluate the efficiency of fibrin glue, in increasing the take of skin graft. Assessment includes surgical time taken for graft fixation, haematoma/seroma formation, engraftment and wound closure by day 14. The study is an observational prospective study conducted in the Department of Plastic Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, from January 2016 to June 2016. Sixteen patients who underwent split skin grafting were assessed during the study period. Fibrin glue was used on the recipient bed before grafting. Better haemostasis and graft adhesion, with a significant reduction of surgical time, were noted. The safety profile of fibrin glue was excellent as indicated by the lack of any related serious adverse experiences. These findings demonstrate that it is safe and effective for attachment of skin grafts, with outcomes at least as good as conventional methods.

  16. Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide.

    PubMed

    Yang, Zhen; Yang, Hu; Jiang, Ziwen; Cai, Tao; Li, Haijiang; Li, Haibo; Li, Aimin; Cheng, Rongshi

    2013-06-15

    In the current work, a series of amphoteric grafting chitosan-based flocculants (carboxymethyl chitosan-graft-polyacrylamide, denoted as CMC-g-PAM) was designed and prepared successfully. The flocculants were applied to eliminate various dyes from aqueous solutions. Among different graft copolymers, CMC-g-PAM11 with a PAM grafting ratio of 74% demonstrated the most efficient performance for removal of both the anionic dye (Methyl Orange, MO) and the cationic dye (Basic Bright Yellow, 7GL) under the corresponding favored conditions (80 mg/L of the flocculant at pH 4.0, and 160 mg/L at pH 11.0). In comparison with its precursors, chitosan and carboxymethyl chitosan, CMC-g-PAM11 showed higher removal efficiencies and wider flocculation windows. More importantly, the graft copolymer produced notably more compacted flocs based on image analysis in combination with fractal theory, which was of great significance in practical water treatment. Furthermore, the flocculation mechanism was discussed in detail. The grafted polyacrylamide chains were found to contribute much to the improved bridging and sweeping flocculation effects, but reduced charge neutralization flocculation for the effect of charge screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Development of tissue-engineered self-expandable aortic stent grafts (Bio stent grafts) using in-body tissue architecture technology in beagles.

    PubMed

    Kawajiri, Hidetake; Mizuno, Takeshi; Moriwaki, Takeshi; Ishibashi-Ueda, Hatsue; Yamanami, Masashi; Kanda, Keiichi; Yaku, Hitoshi; Nakayama, Yasuhide

    2015-02-01

    In this study, we aimed to describe the development of tissue-engineered self-expandable aortic stent grafts (Bio stent graft) using in-body tissue architecture technology in beagles and to determine its mechanical and histological properties. The preparation mold was assembled by insertion of an acryl rod (outer diameter, 8.6 mm; length, 40 mm) into a self-expanding nitinol stent (internal diameter, 9.0 mm; length, 35 mm). The molds (n = 6) were embedded into the subcutaneous pouches of three beagles for 4 weeks. After harvesting and removing each rod, the excessive fragile tissue connected around the molds was trimmed, and thus tubular autologous connective tissues with the stent were obtained for use as Bio stent grafts (outer diameter, approximately 9.3 mm in all molds). The stent strut was completely surrounded by the dense collagenous membrane (thickness, ∼150 µm). The Bio stent graft luminal surface was extremely flat and smooth. The graft wall of the Bio stent graft possessed an elastic modulus that was almost two times higher than that of the native beagle abdominal aorta. This Bio stent graft is expected to exhibit excellent biocompatibility after being implanted in the aorta, which may reduce the risk of type 1 endoleaks or migration. © 2014 Wiley Periodicals, Inc.

  18. Indications and results of omental pedicle grafts in oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, J.Y.; Lacour, J.; Margulis, A.

    1979-12-01

    Sixty omental grafts were performed in our department. Sixty-two percent concerned breast cancer patients. Other grafts were undertaken for other cancers: head and neck, gynecologic urologic and intestinal, skin and soft tissue tumors. These grafts were indicated for radionecrosis or chemonecrosis in 33 cases and for cancer recurrence in 26 cases (among whom 24 were previously irradiated). Only one graft was performed for lymphoedema treatment. Overall, fifty four patients (83.5%) had successful grafts, and six (16.5%) had graft failures. According to the treated lesion we obtained 82% of successful treatment among patients treated for radio or chemonecrosis, and 92% formore » patients treated for recurrences.« less

  19. Laser-assisted fibrinogen bonding of umbilical vein grafts.

    PubMed

    Oz, M C; Williams, M R; Souza, J E; Dardik, H; Treat, M R; Bass, L S; Nowygrod, R

    1993-06-01

    Despite success with autologous tissue welding, laser welding of synthetic vascular prostheses has not been possible. The graft material appears inert and fails to allow the collagen breakdown and electrostatic bonding that results in tissue welding. To develop a laser welding system for graft material, we repaired glutaraldehyde-tanned human umbilical cord vein graft incisions using laser-assisted fibrinogen bonding (LAFB) technology. Modified umbilical vein graft was incised transversely (1.2 cm). Incisions were repaired using sutures, laser energy alone, or LAFB. For LAFB, indocyanine green dye was mixed with human fibrinogen and the compound applied with forceps onto the weld site prior to exposure to 808 nm diode laser energy (power density 4.8 W/cm 2). Bursting pressures for sutured repairs (126.6 +/- 23.4 mm Hg) were similar to LAFB anastomoses (111.6 +/- 55.0 mm Hg). No evidence of collateral thermal injury to the graft material was noted. In vivo evaluation of umbilical graft bonding with canine arteries demonstrates that LAFB can reliably reinforce sutured anastomoses. The described system for bonding graft material with laser exposed fibrinogen may allow creation or reinforcement of vascular anastomoses in procedures where use of autologous tissue is not feasible.

  20. Morphological observation, RNA-Seq quantification, and expression profiling: novel insight into grafting-responsive carotenoid biosynthesis in watermelon grafted onto pumpkin rootstock.

    PubMed

    Liu, Guang; Yang, Xingping; Xu, Jinhua; Zhang, Man; Hou, Qian; Zhu, Lingli; Huang, Ying; Xiong, Aisheng

    2017-03-01

    Watermelon is an important and economical horticultural crop in China, where ~20% of the plants are grafted. The development of grafted watermelon fruit involves a diverse range of gene interactions that results in dynamic changes in fruit. However, the molecular mechanisms underlying grafting-induced fruit quality change are unclear. In the present study, we measured the lycopene content by high-performance liquid chromatography and used RNA-Seq (quantification) to perform a genome-wide transcript analysis of fruits from watermelon grafted onto pumpkin rootstock (pumpkin-grafted watermelon, PGW), self-grafted watermelon (SGW), and non-grafted watermelon (NGW). The results showed variation in the lycopene content in the flesh of PGW fruits, first increasing and then decreasing in the four stages, which was different from the trend in the flesh of NGW and SGW fruits. The transcriptome profiling data provided new information on the grafting-induced gene regulation of lycopene biosynthesis during fruit growth and development. The expression levels of 33 genes from 8 gene families (GGPS, PSY, PDS, ZDS, CRTISO, LCYb, LCYe, and CHY) related to lycopene biosynthesis, which play critical roles in fruit coloration and contribute significantly to fruit phytonutrient values, were monitored during the four periods of fruit development in watermelon. Compared with those of NGW and SGW, 14 genes were differentially expressed in PGW during fruit development, suggesting that these genes possibly help to mediate lycopene biosynthesis in grafted watermelon fruit. Our work provides some novel insights into grafting-responsive carotenoid metabolism and its potential roles during PGW fruit development and ripening. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Hot callusing for propagation of American beech by grafting

    Treesearch

    David W. Carey; Mary E. Mason; Paul Bloese; Jennifer L. Koch

    2013-01-01

    To increase grafting success rate, a hot callus grafting system was designed and implemented as part of a multiagency collaborative project to manage beech bark disease (BBD) through the establishment of regional BBD-resistant grafted seed orchards. Five years of data from over 2000 hot callus graft attempts were analyzed using a logistic regression model to determine...

  2. Surface characterization of lignocellulosics for composite manufacture

    NASA Astrophysics Data System (ADS)

    Iyer, Ananth V.

    The objectives of this research were to form moisture resistant wheat strawboards, either by altering the straw surface characteristics or by changing the chemistry of the polymeric 4, 4' diphenylmethane diisocyanate (PMDI)-based matrix and interface. Part I compared the surface characteristics of wheat, barley, oat, rice, kenaf, hemp and softwood particles. All cereal straws had two surfaces: epidermis and brittle-pith unlike one heterogeneous type observed for bast fibers and softwood particles. The epidermis of cereal straws was not wet by water or aqueous binders, whereas the pith surface allowed the penetration of water, but was not readily wetted by aqueous binders. Between the different surface treatments evaluated for wheat straw in Part II, NaOH selectively peeled-off the epidermis and pith layers. The treated straw particles were formable into strawboards using aqueous phenol-formaldehyde, urea-formaldehyde, and duroplastic acrylic acid binders with good internal bond strength (IBS) and adequate water resistance. In Part III it was shown that, decreasing straw particle sizes and bleaching worsened the mechanical properties of strawboards, but the moisture absorption properties of bleached strawboards were lower than the unbleached ones. Layering of straw particles in strawboards did not seem to affect their mechanical or moisture absorption properties. Part IV showed that the pith surface of wheat straw was fractured on curing with PMDI, providing hollow microcrevices for water accumulation. Furthermore, the cured PMDI formed a network polyurea/polyuretonimine/polycarbodiimide/polyisocyanurate polymer on straw surfaces whose properties dictated the properties of strawboards. Among the different mono-, bi-, and tri-functional alcohols, amines and carboxylic acids evaluated in Part V as H-donor substitutes to moisture for reaction with PMDI on straw surfaces, ethylene glycol, resorcinol, glycerin and citric acid provided IBS values greater than the ANSI

  3. Forearm versus upper arm grafts for vascular access.

    PubMed

    Gage, Shawn M; Lawson, Jeffrey H

    2017-03-06

    Forearm and upper arm arteriovenous grafts perform similarly in terms of patency and complications. Primary patency at 1 year for forearm arteriovenous grafts versus upper arm grafts ranges from 22%-50% versus 22%-42%, and secondary patency at 1 year ranges from 78%-89% versus 52%-67%), respectively. Secondary patency at 2 years, ranges from 30%-64% versus 35%-60% for forearm and upper arteriovenous graft, respectively. Ample pre-operative planning is essential to improved clinical success and the decision to place a graft at one location versus the other should be based solely on previous access history, physical exam, appropriate venous imaging, and other factors that make up the clinical picture. Operative implant strategies and risk of complications are very similar between the two configurations. Postoperative ischemia due to steal syndrome is a potential complication that requires immediate attention. Utilization of the proximal radial or ulnar artery for inflow for the graft can minimize risk of clinically relevant steal syndrome.

  4. Toward a patient-specific tissue engineered vascular graft

    PubMed Central

    Best, Cameron; Strouse, Robert; Hor, Kan; Pepper, Victoria; Tipton, Amy; Kelly, John; Shinoka, Toshiharu; Breuer, Christopher

    2018-01-01

    Integrating three-dimensional printing with the creation of tissue-engineered vascular grafts could provide a readily available, patient-specific, autologous tissue source that could significantly improve outcomes in newborns with congenital heart disease. Here, we present the recent case of a candidate for our tissue-engineered vascular graft clinical trial deemed ineligible due to complex anatomical requirements and consider the application of three-dimensional printing technologies for a patient-specific graft. We 3D-printed a closed-disposable seeding device and validated that it performed equivalently to the traditional open seeding technique using ovine bone marrow–derived mononuclear cells. Next, our candidate’s preoperative imaging was reviewed to propose a patient-specific graft. A seeding apparatus was then designed to accommodate the custom graft and 3D-printed on a commodity fused deposition modeler. This exploratory feasibility study represents an important proof of concept advancing progress toward a rationally designed patient-specific tissue-engineered vascular graft for clinical application. PMID:29568478

  5. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barleany, Dhena Ria, E-mail: dbarleany@yahoo.com; Ulfiyani, Fida; Istiqomah, Shafina

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w{sup −1} acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 gmore » g{sup −1} of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g{sup −1} and 523 g g{sup −1} for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM)« less

  6. Comparative Proteomic Analysis of the Graft Unions in Hickory (Carya cathayensis) Provides Insights into Response Mechanisms to Grafting Process

    PubMed Central

    Xu, Dongbin; Yuan, Huwei; Tong, Yafei; Zhao, Liang; Qiu, Lingling; Guo, Wenbin; Shen, Chenjia; Liu, Hongjia; Yan, Daoliang; Zheng, Bingsong

    2017-01-01

    Hickory (Carya cathayensis), a tree with high nutritional and economic value, is widely cultivated in China. Grafting greatly reduces the juvenile phase length and makes the large scale cultivation of hickory possible. To reveal the response mechanisms of this species to grafting, we employed a proteomics-based approach to identify differentially expressed proteins in the graft unions during the grafting process. Our study identified 3723 proteins, of which 2518 were quantified. A total of 710 differentially expressed proteins (DEPs) were quantified and these were involved in various molecular functional and biological processes. Among these DEPs, 341 were up-regulated and 369 were down-regulated at 7 days after grafting compared with the control. Four auxin-related proteins were down-regulated, which was in agreement with the transcription levels of their encoding genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the ‘Flavonoid biosynthesis’ pathway and ‘starch and sucrose metabolism’ were both significantly up-regulated. Interestingly, five flavonoid biosynthesis-related proteins, a flavanone 3-hyfroxylase, a cinnamate 4-hydroxylase, a dihydroflavonol-4-reductase, a chalcone synthase, and a chalcone isomerase, were significantly up-regulated. Further experiments verified a significant increase in the total flavonoid contents in scions, which suggests that graft union formation may activate flavonoid biosynthesis to increase the content of a series of downstream secondary metabolites. This comprehensive analysis provides fundamental information on the candidate proteins and secondary metabolism pathways involved in the grafting process for hickory. PMID:28496455

  7. Can Diastat Grafts Meet the Challenges of Daily Punctures?

    PubMed

    Chandran, Prem K G; Messer, Diane; Sidwell, Richard A; Stubbs, David H; Nish, Andrew D

    1997-01-01

    To determine whether Diastat grafts can meet the challenges of daily needle punctures required for home hemodialysis (HD), a retrospective analysis was performed on the experience with 47 grafts placed in 44 patients receiving HD three times a week. The control group consisted of 17 patients who received 17 stretch polytetrafluoroethylene (s-PTFE) grafts. Apart from their ability to better contain bleeding after needle withdrawal, in all measures of longevity the Diastat grafts were outperformed by the s-PTFE grafts. No more direct data exist to address the original challenge.

  8. The influence of Australian eye banking practices on corneal graft survival.

    PubMed

    Keane, Miriam C; Lowe, Marie T; Coster, Douglas J; Pollock, Graeme A; Williams, Keryn A

    2013-08-19

    To identify eye banking practices that influence corneal graft survival. Prospective cohort study of records of 19,254 followed corneal grafts in 15160 patients, submitted to the Australian Corneal Graft Registry between May 1985 and July 2012. Influence of corneal preservation method (organ culture, moist pot, Optisol, other); death-to-enucleation, death-to-preservation and enucleation-to-graft times; transportation by air; graft era; and indication for graft on probability of graft survival at most recent follow-up. In multivariate analysis, 919 penetrating grafts performed using corneas transported interstate by air exhibited worse survival than 14,684 grafts performed using corneas retrieved and used locally (hazard ratio [HR], 1.44; 95% CI, 1.21-1.73; P = 0.001). This was also the case for traditional lamellar grafts (64 corneas transported by air and 813 used locally; HR, 1.69; 95% CI, 1.03-2.78; P = 0.038). Indication for graft influenced survival of penetrating grafts (4611 keratoconus, 727 emergency or high-risk, 10,265 other indication; global P < 0.001) and traditional lamellar grafts (65 keratoconus, 212 emergency or high-risk, 600 other indication; global P < 0.001). The preservation medium in which corneas used for traditional lamellar grafts were stored exerted a marginal influence on graft survival (global P = 0.047). Donor corneas transported interstate exhibited poorer survival after transplantation than those retrieved and grafted locally. Higher proportions of emergency procedures involving transported corneas did not account for this difference. Where possible, efforts to avoid transportation of corneal tissue by air freight within Australia may be warranted.

  9. Descemet Stripping Automated Endothelial Keratoplasty for Failed Penetrating Keratoplasty: Influence of the Graft-Host Junction on the Graft Survival Rate.

    PubMed

    Omoto, Takashi; Sakisaka, Toshihiro; Toyono, Tetsuya; Yoshida, Junko; Shirakawa, Rika; Miyai, Takashi; Yamagami, Satoru; Usui, Tomohiko

    2018-04-01

    To investigate the clinical results of Descemet stripping automated endothelial keratoplasty (DSAEK) for failed penetrating keratoplasty (PK) and the influence of the graft-host junction (GHJ) on the graft survival rate. Data were retrospectively collected on patient demographics, visual outcomes, complications, and graft survival rate for 17 eyes of 16 patients who underwent DSAEK for failed PK. The graft survival rate was compared between the eyes when divided into a bump group and a well-aligned group according to the shape of the GHJ detected on anterior segment optical coherence tomography. The most common indication for initial PK was bullous keratopathy after glaucoma surgery (35.3%). Seven eyes (41.2%) were classified into the bump group and 10 eyes (58.8%) into the well-aligned group. The mean best-ever documented visual acuity (BDVA) after DSAEK was 0.33 logMAR. Postoperatively, almost 70% of eyes achieved a BDVA that was within 0.2 logMAR of their preoperative BDVA. Graft detachment occurred in 29.4% of eyes and primary graft failure in 17.6%. All primary failures occurred in the bump group. The cumulative graft survival rate was 82.3% at 1 year, 73.2% at 2 years, and 58.6% at 3 years. Graft failure was more likely in eyes in the bump group than in those in the well-aligned group (P = 0.037, Wilcoxon test). DSAEK for failed PK had a favorable outcome in this study. However, the GHJ should be assessed carefully before performing the procedure.

  10. Redesigning Aldolase Stereoselectivity by Homologous Grafting.

    PubMed

    Bisterfeld, Carolin; Classen, Thomas; Küberl, Irene; Henßen, Birgit; Metz, Alexander; Gohlke, Holger; Pietruszka, Jörg

    2016-01-01

    The 2-deoxy-d-ribose-5-phosphate aldolase (DERA) offers access to highly desirable building blocks for organic synthesis by catalyzing a stereoselective C-C bond formation between acetaldehyde and certain electrophilic aldehydes. DERA´s potential is particularly highlighted by the ability to catalyze sequential, highly enantioselective aldol reactions. However, its synthetic use is limited by the absence of an enantiocomplementary enzyme. Here, we introduce the concept of homologous grafting to identify stereoselectivity-determining amino acid positions in DERA. We identified such positions by structural analysis of the homologous aldolases 2-keto-3-deoxy-6-phosphogluconate aldolase (KDPG) and the enantiocomplementary enzyme 2-keto-3-deoxy-6-phosphogalactonate aldolase (KDPGal). Mutation of these positions led to a slightly inversed enantiopreference of both aldolases to the same extent. By transferring these sequence motifs onto DERA we achieved the intended change in enantioselectivity.

  11. Fate and transport with material response characterization of green sorption media for copper removal via desorption process.

    PubMed

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-07-01

    Multiple adsorption and desorption cycles are required to achieve the reliable operation of copper removal and recovery. A green sorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was evaluated in this study for its desorptive characteristics as a companion study of the corresponding adsorption process in an earlier publication. We conducted a screening of potential desorbing agents, batch desorption equilibrium and kinetic studies, and batch tests through 3 adsorption/desorption cycles. The desorbing agent screening revealed that hydrochloric acid has good potential for copper desorption. Equilibrium data fit the Freundlich isotherm, whereas kinetic data had high correlation with the Lagergren pseudo second-order model and revealed a rapid desorption reaction. Batch equilibrium data over 3 adsorption/desorption cycles showed that the coconut coir and media mixture were the most resilient, demonstrating they could be used through 3 or more adsorption/desorption cycles. FE-SEM imaging, XRD, and EDS analyses supported the batch adsorption and desorption results showing significant surface sorption of CuO species in the media mixture and coconut coir, followed by partial desorption using 0.1 M HCl as a desorbing agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Angiogenesis in healing autogenous flexor-tendon grafts.

    PubMed

    Gelberman, R H; Chu, C R; Williams, C S; Seiler, J G; Amiel, D

    1992-09-01

    On the basis of recent evidence that flexor tendon grafts may heal without the ingrowth of vascular adhesions, eighteen autogenous donor tendons of intrasynovial and extrasynovial origin were transferred to the synovial sheaths in the forepaws of nine dogs, and controlled passive mobilization was instituted early in the postoperative period. The angiogenic responses of the tendon grafts were determined with perfusion studies with India ink followed by cleaing of the tissues with the Spalteholz technique at two, four, and six weeks. A consistent pattern of neovascularization was noted in the donor tendons of extrasynovial origin. Vascular adhesions arising from the flexor digitorum superficialis and the tendon sheath enveloped the tendon grafts by two weeks. By six weeks, the vascularity of the tendon grafts of extrasynovial origin appeared completely integrated with that of the surrounding tissues. Examination of cross sections revealed that the segments of tendon had been completely vascularized by obliquely oriented intratendinous vessels. In contrast, the flexor tendon grafts of intrasynovial origin healed without ingrowth of vascular adhesions. Primary intrinsic neovascularization took place from the proximal and, to a lesser extent, distal sites of the sutures. Examination of cross sections revealed vessels extending through the surface layer of the tendon graft, with small vessels penetrating the interior of the tendons at regular intervals.

  13. Grafted Polystyrene Monolayer Brush as Both Negative and Positive Tone Electron Beam Resist.

    PubMed

    Aydinoglu, Ferhat; Yamada, Hirotaka; Dey, Ripon K; Cui, Bo

    2017-05-23

    Although spin coating is the most widely used electron-beam resist coating technique in nanolithography, it cannot typically be applied for nonflat or irregular surfaces. Here, we demonstrate that monolayer polystyrene brush can be grafted on substrates and used as both positive and negative electron-beam resist, which can be applied for such unconventional surfaces. Polystyrene is a popular negative resist when using solvent developer but solvent cannot be used for grafted polystyrene brush that is firmly bonded to the substrate. Instead, we employed two unconventional development methods to lead polystyrene brush to positive or negative tone behavior. Negative tone was achieved by thermal development at 300 °C because exposed thus cross-linked polystyrene brush is more thermally stable against vaporization than unexposed linear one. Surprisingly, positive tone behavior occurred when the brush was grafted onto an aluminum (Al) layer and the film stack was developed using diluted hydrofluoric acid (HF) that etched the underlying Al layer. By transferring the patterns into the silicon (Si) substrates using the thin Al layer as a sacrificial hard mask for dry etch, well-defined structures in Si were obtained in two different electron-beam resist tones as well as in nonflat surfaces.

  14. Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity

    PubMed Central

    Liu, Shanshan; Li, Hao; Lv, Xiangzhang; Ahammed, Golam Jalal; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Asami, Tadao; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Balancing stomata-dependent CO2 assimilation and transpiration is a key challenge for increasing crop productivity and water use efficiency under drought stress for sustainable crop production worldwide. Here, we show that cucumber and luffa plants with luffa as rootstock have intrinsically increased water use efficiency, decreased transpiration rate and less affected CO2 assimilation capacity following drought stress over those with cucumber as rootstock. Drought accelerated abscisic acid (ABA) accumulation in roots, xylem sap and leaves, and induced the transcript of ABA signaling genes, leading to a decreased stomatal aperture and transpiration in the plants grafted onto luffa roots as compared to plants grafted onto cucumber roots. Furthermore, stomatal movement in the plants grafted onto luffa roots had an increased sensitivity to ABA. Inhibition of ABA biosynthesis in luffa roots decreased the drought tolerance in cucumber and luffa plants. Our study demonstrates that the roots of luffa have developed an enhanced ability to sense the changes in root-zone moisture and could eventually deliver modest level of ABA from roots to shoots that enhances water use efficiency under drought stress. Such a mechanism could be greatly exploited to benefit the agricultural production especially in arid and semi-arid areas. PMID:26832070

  15. Rabbit antithymocyte globulin–induced serum sickness disease and human kidney graft survival

    PubMed Central

    Couvrat-Desvergnes, Grégoire; Salama, Apolline; Le Berre, Ludmilla; Evanno, Gwénaëlle; Viklicky, Ondrej; Hruba, Petra; Vesely, Pavel; Guerif, Pierrick; Dejoie, Thomas; Rousse, Juliette; Nicot, Arnaud; Bach, Jean-Marie; Ang, Evelyn; Foucher, Yohann; Brouard, Sophie; Castagnet, Stéphanie; Giral, Magali; Harb, Jean; Perreault, Hélène; Charreau, Béatrice; Lorent, Marine; Soulillou, Jean-Paul

    2015-01-01

    BACKGROUND. Rabbit-generated antithymocyte globulins (ATGs), which target human T cells, are widely used as immunosuppressive agents during treatment of kidney allograft recipients. However, ATGs can induce immune complex diseases, including serum sickness disease (SSD). Rabbit and human IgGs have various antigenic differences, including expression of the sialic acid Neu5Gc and α-1-3-Gal (Gal), which are not synthesized by human beings. Moreover, anti-Neu5Gc antibodies have been shown to preexist and be elicited by immunization in human subjects. This study aimed to assess the effect of SSD on long-term kidney allograft outcome and to compare the immunization status of grafted patients presenting with SSD following ATG induction treatment. METHODS. We analyzed data from a cohort of 889 first kidney graft recipients with ATG induction (86 with SSD [SSD+] and 803 without SSD [SSD–]) from the Données Informatisées et Validées en Transplantation data bank. Two subgroups of SSD+ and SSD– patients that had received ATG induction treatment were then assessed for total anti-ATG, anti-Neu5Gc, and anti-Gal antibodies using ELISA assays on sera before and after transplantation. RESULTS. SSD was significantly associated with long-term graft loss (>10 years, P = 0.02). Moreover, SSD+ patients exhibited significantly elevated titers of anti-ATG (P = 0.043) and anti-Neu5Gc (P = 0.007) IgGs in late post-graft samples compared with SSD– recipients. CONCLUSION. In conclusion, our data indicate that SSD is a major contributing factor of late graft loss following ATG induction and that anti-Neu5Gc antibodies increase over time in SSD+ patients. FUNDING. This study was funded by Société d’Accélération du Transfert de Technologies Ouest Valorisation, the European FP7 “Translink” research program, the French National Agency of Research, Labex Transplantex, the Natural Science and Engineering Research Council of Canada, and the Canadian Foundation for Innovation. PMID

  16. [Bile duct lesions repaired with peritoneal tube grafts].

    PubMed

    Lorenzana-Bautista, Ileana; Flores-Plascencia, Aníbal; Barrios-Pineda, Francisco Javier; Alderete-Vázquez, Georgia; Sánchez-Valdivieso, Enrique Alejandro

    2013-01-01

    A significant number of people suffer iatrogenic bile duct injury during laparoscopic cholescystectomy. Biliary-digestive bypass may be complicated by stenosis and biliary sepsis, affecting both quality of life and life expectancy. To avoid bypass synthetic grafts have been used, which are expensive. Evaluating autologous implantation of peritoneus as alternative of bile duct repair. Under general anesthesia, ten New Zealand adult rabbits were operated, common bile duct approached and sectioned underneath the cystic duct followed by a liver biopsy. An autologous graft was built of peritoneum and graft-bile duct proximal and distal end-to-end anastomosis done. Animals were followed-up by weekly bilirrubin and transferases. Rabbits were scheduled euthanized and a liver biopsy done for histological examinations. Autologous graft was easy to create and all rabbits survived. They did not develop jaundice or alterations in their normal habits. At necropsy, autologous grafts were removed and no signs of occlusion were noticed. Moderate short-term liver damage was observed but long-term damage was negligible. Bileoma and pyogenic liver abscess were observed in two animals, respectively. Our results favourably match well-known procedures used for bile duct repair, especially in cases of severe injury (Bismuth-Strasberg E1-3): it seems less complicated than biliary-digestive bypass, not as expensive as synthetic grafts, and much easier to build than human amnion graft. Interposing an autologous graft of peritoneum is an easy-to-create surgical procedure and circumferential bile duct injuries were adequately repaired.

  17. Circulating AST, H-FABP, and NGAL are early and accurate biomarkers of graft injury and dysfunction in a preclinical model of kidney transplantation.

    PubMed

    Jochmans, Ina; Lerut, Evelyne; van Pelt, Jos; Monbaliu, Diethard; Pirenne, Jacques

    2011-11-01

    To investigate circulating biomarkers of initial graft injury in a porcine kidney autotransplant model. Injury endured by kidney grafts early posttransplant determines their outcome. However, creatinine (clearance) is a poor surrogate of tissue injury and urinary biomarkers are limited by graft anuria or persistent native kidney diuresis. No validated circulating biomarkers quantifying initial graft injury exist. Minimally injured porcine kidney grafts (n = 6) were cold stored (18 hours) and autotransplanted. Moderately (n = 6) and severely injured grafts (n = 7) were exposed to 30 or 60 minutes warm ischemia before storage and autotransplantation. Four biomarkers [aspartate transaminase (AST), heart-type fatty acid-binding protein (H-FABP), neutrophil gelatinase-associated lipocalin (NGAL), and N-acetyl-β-glucosaminidase (NAG)] were measured posttransplant and compared with creatinine (clearance) and histology. Diuresis was delayed in moderately [2.5 days (2-3)] and severely [4 days (4-5)] versus minimally injured grafts (P < 0.001). Creatinine peaked later than AST, H-FABP, and NGAL [4 days (3-5) vs 3 hours (3-6), 6 hours (6-24), 2 days (1-3), respectively] and only differentiated minimally from severely injured grafts. Peak AST and H-FABP distinguished all injury grades. Neutrophil gelatinase-associated lipocalin discriminated initial graft injury 2 days posttransplant. Peak AST, H-FABP, and NGAL correlated with peak creatinine [Pearson coefficients: 0.70 (P = 0.001), 0.85 (P < 0.0001), 0.80 (P < 0.0001)]. N-acetyl-β-glucosaminidase was not different. Decreased clearance accounted for a small percentage of H-FABP and NGAL increase. Histology was not different among transplanted groups. Plasma AST, H-FABP, and NGAL reflect the severity of initial kidney graft injury and predict graft dysfunction earlier and more accurately than creatinine (clearance) and histology. They represent promising tools to improve patient care after kidney transplantation.

  18. Amphiphilic graft polymer with reduction breakable main chain prepared via click polymerization and grafting onto

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojin; Dai, Yu

    2018-06-01

    Amphiphilic graft polymer PSS- g-Pal/PEG with reduction breakable main chain was synthesized via click polymerization of dialkynyl (containing disulfide bond) and diazide (containing pendant diol) and one-pot grafting onto of hydrophobic palmitate (Pal) and hydrophilic methoxy poly(ethylene glycol) (PEG). PSS- g-Pal/PEG is able to form polymeric micelles by self-assembly in water via dialysis. Polymeric micelles are nano-sized spheres and the particle size is approximately 70 nm. Of note, polymeric micelles are reduction-responsive owing to the disulfide bonds in main chain of PSS- g-Pal/PEG. Therefore, polymeric micelles prepared from amphiphilic graft polymer PSS- g-Pal/PEG are able to fast release the drugs in the presence of the reducing agents such as DL-dithiothreitol (DTT).

  19. Use of Autologous Scleral Graft in Ahmed Glaucoma Valve Surgery.

    PubMed

    Wolf, Alvit; Hod, Yair; Buckman, Gila; Stein, Nili; Geyer, Orna

    2016-04-01

    To compare the efficacy of an autoscleral free-flap graft versus an autoscleral rotational flap graft in Ahmed glaucoma valve (AGV) surgery. Medical records (2005 to 2012) of 51 consecutive patients (51 eyes) who underwent AGV surgery with the use of either an autoscleral free-flap graft or an autoscleral rotational flap graft to cover the external tube at the limbus were retrieved for review. The main outcome measure was the incidence of tube exposure associated with each surgical approach. Twenty-seven consecutive patients (27 eyes) received a free-flap graft and 24 consecutive patients (24 eyes) received a rotational flap graft. The mean follow-up time was 55.6 ± 18.3 months for the former and 24.2± 5 .0 months for the latter (P<0.0001). Two patients in the free-flap group (8.9%) developed tube exposure at 24 and 55 months postoperatively compared with none of the patients in the rotational flap group. Graft thinning without evidence of conjunctival erosion was observed in 15 patients (55%) in the free-flap group and in 7 patients (29.1%) in the rotational flap group. The use of an autoscleral rotational flap graft is an efficacious technique for primary tube patch grafting in routine AGV surgery, and yielded better results than an autoscleral free-flap graft. Its main advantages over donor graft material are availability and lower cost.

  20. Impact of solvent selection on graft polymerization of acrylamide onto starch

    USDA-ARS?s Scientific Manuscript database

    The impact on polymer properties [molecular weight, monomer conversion, graft content, graft efficiency and anhydroglucose units between grafts (AGU/graft)] that result from changing the solvent for the graft co-polymerization of acrylamide onto starch from water to dimethylsulfoxide (DMSO) was eval...