Sample records for acid-immobilized zirconium-pillared clay

  1. Physicochemical of pillared clays prepared by several metal oxides

    NASA Astrophysics Data System (ADS)

    Rinaldi, Nino; Kristiani, Anis

    2017-03-01

    Natural clays could be modified by the pillarization method, called as Pillared Clays (PILCs). PILCs have been known as porous materials that can be used for many applications, one of the fields is catalysis. PILCs as two dimensional materials are interesting because their structures and textural properties can be controlled by using a metal oxide as the pillar. Different metal oxide used as the pillar causes different properties results of pillared clays. Usually, natural smectite clays/bentonites are used as a raw material. Therefore, a series of bentonite pillared by metal oxides was prepared through pillarization method. Variation of metals pillared into bentonite are aluminium, chromium, zirconium, and ferro. The physicochemical properties of catalysts were characterized by using X-ray Diffraction (XRD), Thermo Gravimetric Analysis (TGA), Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) analysis, and Fourier transform infrared spectroscopy (FTIR) measurement. Noteworthy characterization results showed that different metals pillared into bentonite affected physical and chemical properties, i.e. basal spacing, surface area, pore size distribution, thermal stability and acidity.

  2. In situ synthesis, characterization, and catalytic performance of tungstophosphoric acid encapsulated into the framework of mesoporous silica pillared clay.

    PubMed

    Li, Baoshan; Liu, Zhenxing; Han, Chunying; Ma, Wei; Zhao, Songjie

    2012-07-01

    Mesoporous silica pillared clay (SPC) incorporated with tungstophosphoric acid (HPW) has been synthesized via in situ introducing P and W source in the acidic suspension of the clay interlayer template during the formation of the silica pillared clay. The samples were characterized by XRD, XRF, FT-IR, TG-DTA, N(2) adsorption-desorption, and SEM techniques. The results showed that the HPW formed by in situ method has been effectively introduced into the framework of mesoporous silica pillared clay and its Keggin structure remained perfectly after formation of the materials. In addition, samples with similar HPW loadings were also prepared by impregnation method using SPC as the support. HPW in the incorporated samples was better dispersed into the silica pillared clay than in the impregnated samples. The results of catalytic tests indicated that the encapsulated materials demonstrated better catalytic performance than the impregnated samples in oxidative desulfurization (ODS) of dibenzothiophene (DBT). Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Aluminium - Cobalt-Pillared Clay for Dye Filtration Membrane

    NASA Astrophysics Data System (ADS)

    Darmawan, A.; Widiarsih

    2018-04-01

    The manufacture of membrane support from cobalt aluminium pillared clay has been conducted. This research was conducted by mixing a clay suspension with pillared solution prepared from the mixture of Co(NO3)2.6H2O and AlCl3.6H2O. The molar ratio between Al and Co was 75:25 and the ratio of [OH-]/[metal] was 2. The clay suspension was stirred for 24 hours at room temperature, filtered and dried. The dried clay was then calcined at 200°C, 300°C and 400°C with a ramp rate of 2°C/min. Aluminium-cobalt-pillared clay was then characterized by XRD and GSA and moulded become a membrane support for subsequent tests on dye filtration. The XRD analysis showed that basal spacing (d 001) value of aluminium cobalt was 19.49 Å, which was higher than the natural clay of 15.08Å however, the basal spacing decreased with increasing calcination temperature. The result of the GSA analysis showed that the pore diameter of the aluminium cobalt pillared clay membrane was almost the same as that of natural clay that were 34.5Å and 34.2Å, respectively. Nevertheless, the pillared clay has a more uniform pore size distribution. The results of methylene blue filtration measurements demonstrated that the membrane filter support could well which shown by a clear filtrate at all concentrations tested. The value of rejection and flux decreased with the increasing concentration of methylene blue. The values of dye rejection and water flux reached 99.89% and 5. 80 x 10-6 kg min-1, respectively but they decreased with increasing concentration of methylene blue. The results of this study indicates that the aluminium-pillared clay cobalt could be used as membrane materials especially for ultrafiltration.

  4. Transition metal modified and partially calcined inorganic-organic pillared clays for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine from water.

    PubMed

    Cabrera-Lafaurie, Wilman A; Román, Félix R; Hernández-Maldonado, Arturo J

    2012-11-15

    Pharmaceutical and Personal Care Products (PPCPs) are considered emerging contaminants, and their efficient removal from water is going to be a challenging endeavor. Microporous adsorbent materials, including pillared clays, could offer a potential solution if tailored properly. Although pillared clays have been employed previously for the removal of organics, the effective removal of PPCPs will only be possible if their surface and textural properties are manipulated from the bottom-up. This work presents the use of modified inorganic-organic pillared clays (IOCs) for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine. The IOCs have been modified with Co(2+), Cu(2+), or Ni(2+) to induce complexation-like adsorbate-adsorbent interactions at ambient conditions, in an attempt to provide an efficient and yet reversible driving force in the sub-ppm concentration range. Furthermore, the IOCs were partially calcined to increase effective surface area by an order of magnitude while preserving some hydrophobicity. In general, the Ni(2+) IOCs exhibited the greatest interaction with salicylic and clofibric acids, respectively, while the Co(2+) adsorbents excelled at adsorbing caffeine at low concentrations. All of the metal-modified IOCs showed comparable adsorption capacities for the case of carbamazepine, probably due to the lack of availability of particular functional groups in this adsorbate. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Preparation, characterization and application in deep catalytic ODS of the mesoporous silica pillared clay incorporated with phosphotungstic acid.

    PubMed

    Li, Baoshan; Liu, Zhenxing; Liu, Jianjun; Zhou, Zhiyuan; Gao, Xiaohui; Pang, Xinmei; Sheng, Huiting

    2011-10-15

    Mesoporous silica pillared clay (SPC) materials with different contents of H(3)PW(12)O(40) (HPW) heteropoly acid were synthesized by introducing HPW into clay interlayer template in an acidic suspension using sol-gel method. Samples with similar HPW loadings were also prepared by impregnation method using SPC as the support. The results of the characterizations showed that HPW was dispersed more homogeneously in the encapsulated samples than in the impregnated samples. The encapsulated materials exhibited better catalytic performance than the impregnated samples in oxidative desulfurization of dibenzothiophene-containing model oil. The sulfur removal reached up to 98.6% for the model oil under the experiential conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Halloysite Clay Nanotubes for Enzyme Immobilization.

    PubMed

    Tully, Joshua; Yendluri, Raghuvara; Lvov, Yuri

    2016-02-08

    Halloysite clay is an aluminosilicate nanotube formed by rolling flat sheets of kaolinite clay. They have a 15 nm lumen, 50-70 nm external diameter, length of 0.5-1 μm, and different inside/outside chemistry. Due to these nanoscale properties, they are used for loading, storage, and controlled release of active chemical agents, including anticorrosions, biocides, and drugs. We studied the immobilization in halloysite of laccase, glucose oxidase, and lipase. Overall, negatively charged proteins taken above their isoelectric points were mostly loaded into the positively charged tube's lumen. Typical tube loading with proteins was 6-7 wt % from which one-third was released in 5-10 h and the other two-thirds remained, providing enhanced biocatalysis in nanoconfined conditions. Immobilized lipase showed enhanced stability at acidic pH, and the optimum pH shifted to more alkaline pH. Immobilized laccase was more stable with respect to time, and immobilized glucose oxidase showed retention of enzymatic activity up to 70 °C, whereas the native sample was inactive.

  7. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins.

    PubMed

    Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno

    2016-06-07

    Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.

  8. Degradation of methylene blue using pillared TiO2 on de-oiled spent bleaching clay

    NASA Astrophysics Data System (ADS)

    Hindryawati, N.; Panggabean, A. S.; Fadillah, N. D.; Erwin; Daniel

    2018-04-01

    Degradation of methylene blue (MB) using pillared TiO2 onto spent bleaching clay has been conducted. Activation of deoiled spent bleaching clay (DSBC) has been done using acid, followed by pillarization with TiO2 using rarasaponin from Klerak fruit as surfactant. From the X-ray diffraction results show the mineral on DSBC is rectorite with dioctahedral mica layer and dioctahedral smectite with ratio 2:1. This molecule have formula Na.Al4(Si, Al)8.O20.(OH)4. H2O and after calcinations the pattern TiO2 was appearance at 2θ: 27.4460°, 36.0850°, 54.3216° and 56.6403°. In order to test the catalytic performance of Ti-DSBC for photodegradation of MB under UV light was conducted under several reaction conditions. The highest degradation of MB was 90 % within 50 minutes and Ti-DSBC can be reused until 5 cycles with percent degradation MB was 84 %.

  9. Immobilization of heavy metals on pillared montmorillonite with a grafted chelate ligand.

    PubMed

    Brown, Loren; Seaton, Kenneth; Mohseni, Ray; Vasiliev, Aleksey

    2013-10-15

    The objective of this work was the development of an efficient adsorbent for irreversible immobilization of heavy metals in contaminated soils. The adsorbent was prepared by pillaring of montmorillonite with silica followed by grafting of a chelate ligand on its surface. Obtained adsorbent was mesoporous with high content of adsorption sites. Its structure was studied by BET adsorption of N2, dynamic light scattering, and scanning electron microscopy. The adsorption capacity of the organoclay was measured by its mixing with contaminated kaolin and soil samples and by analysis of heavy metal contents in leachate. Deionized water and 50% acetic acid were used for leaching of metals from the samples. As it was demonstrated by the experiments, the adsorbent was efficient in immobilization of heavy metals not only in neutral aqueous media but also in the presence of weak acid. As a result, the adsorbent can be used for reduction of heavy metal leaching from contaminated sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Catalytic Wastewater Treatment Using Pillared Clays

    NASA Astrophysics Data System (ADS)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  11. Influence of humic acids on the adsorption of Basic Yellow 28 dye onto an iron organo-inorgano pillared clay and two hydrous ferric oxides.

    PubMed

    Zermane, Faiza; Cheknane, Benamar; Basly, Jean Philippe; Bouras, Omar; Baudu, Michel

    2013-04-01

    Effect of humic acids (HAs), macromolecules from natural organic matter, on the adsorption of Basic Yellow 28 is the aim of the present work. Three adsorbents were investigated in this study: an iron organo-inorgano pillared clay and two synthetic Hydrous Iron Oxide (Goethite and HFO). The surface charge was positive in the pH range of this study for the pillared clay; in contrast, it changes from positive to negative when the pH value increased (pH>9) for the two (oxy)hydroxides. Pseudo-first order kinetic rate constants and adsorption capacities increase from humic acid to BY 28. Adsorption isotherms of BY 28 and HA in single component were analysed using the Freundlich equation. Adsorption capacities increased sharply when the pH value of the dye solution was raised from 3 to 9. Increasing the pH medium from 3 to 9 reduces the HA adsorption capacities onto Fe-SMPM and iron oxyhydroxides, respectively. Fitting between measured and predicted sorption capacities of BY 28 and HA in a binary component system indicates that the Sheindorf-Rebuhn-Sheintuch (SRS) model, an extended Freundlich model, is able to describe the simultaneous adsorption of BY 28 and HA. Humic acids favourably affect the adsorption of BY 28, and a cooperative mechanism could be suggested. The synergetic effect existing between BY 28 and HA is shown by the interaction coefficients η12, which are generally high and increase with pH. Some phenomena have been advanced to explain this mechanism. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation.

    PubMed

    Chang, Yi-Tang; Lee, Jiunn-Fwu; Liu, Keng-Hua; Liao, Yi-Fen; Yang, Vivian

    2016-03-01

    Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.

  13. The synthesis and application of pillared clays prepared from charge reduced montmorillonite

    NASA Astrophysics Data System (ADS)

    Engwall, Erik Edwin

    The synthesis of pillared interlayered clays (PILCs) makes use of the cation exchange capacity (CEC) of clay minerals to prop their structures open with large hydroxy-metal cations. Homo-ionic Ca-Montmorillonite with a CEC of 83.9 meq/100 g has been partially exchanged with varied amounts of Li+ and heated to 200°C for 24 hours. These have been used to produce Zr and Al PILCs making use of ethanol/water synthesis solutions to overcome the hydrophobic nature of the clay. For the Zr-PILC system, the d(001) spacings determined by x-ray diffraction (XRD) were relatively constant at 19.0--20.1 A with respect to changing the unpillared CEC. The Zr-PILCs had type I isotherms for argon at 87 K and for benzene, p-xylene and 1,3,5-trimethylbenzene adsorption at 30°C. Several Al-PILC synthesis procedures were evaluated and all produced materials whose adsorption capacity decreased with decreasing unpillared CEC. This reduction in adsorption capacity with unpillared CEC could be partially overcome by the combined use of ethanol/water pillaring solutions with ethanol/water washing. Previously unreported d(001) values in the range of 26.8 to 29.8 A were observed in Al-PILCs and were often bimodal with the expected values of about 18 A. These larger d(001) values were most prevalent at lower CEC values, if pillaring conditions favored the formation of polymeric species other than the Keggin cation. A new micropore size distribution model was developed to better understand PILC pore structure. The new model was compared to the Horvath and Kawazoe (1983) model (HK) and the Cheng and Yang (1994) model (CY) using argon adsorption at 87 K on Zr and Al-PILCs. The interlayer spacings determined by XRD for the test PILCs were 9.5 and 8.5 A for Zr and Al-PILCs respectively. Pore sizes predicted by the new model were 7.5 and 7.3 A for Zr and Al-PILCs respectively. The new model consistently predicts values that are closer to the interlayer spacing than either the HK or CY models. The new

  14. Bentonite modification with pillarization method using metal stannum

    NASA Astrophysics Data System (ADS)

    Widjaya, Robert R.; Juwono, Ariadne L.; Rinaldi, Nino

    2017-11-01

    Clay minerals have received considerable attention in the last years because of their environmental compatibility, low cost, high selectivity, and operational simplicity. Although clays are very useful for many application in the field of catalysis, they have main disadvantage: their lack of pore volume and spesific surface area. Porosity and stability of these materials are improved by pillaring the clay layers with SnCl4, which leads to materials known as pillared clays (PILC). This research aims were to characterize the Bentonite and Sn-Bentonite as catalysts for cracking and oligomerization. The Sn-Bentonite was prepared by pillarization method with a variation in metal ratio of 5 mmol dan 10 mmol.gr-1 of bentonit. The catalyst characterized by X-ray Diffraction, X-ray Fluorescence, Fourier Transform Infra Red, Brunauer Emmett Teller, Thermogravimetric Analysis. The results showed that the Sn-Bentonite catalyst had large basal spacing and good porous structure, and the specific surface areas increased. XRF detected the Sn in the Bentonite and TGA results showed the ability Sn-Bentonite in receiving heat. FTIR test showed two type of acidity, broansted and lewis acid. The characterized results indicated that Sn-Bentonite with metal ratio 5 mmol.gr-1 better than Sn-Bentonite with metal ratio 10 mmol.gr-1, in which there was a significant increase the basal spacings, specific surface area, and pore volume. The TGA results for Sn-Bentonite appeared to be more thermally stable than Bentonite.

  15. Synthesis and characterization of immobilized Ni-Co bimetallic using Tapanuli clay for catalyst application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuryanti,; Juwono, Ariadne L., E-mail: ariadne@sci.ui.ac.id; Krisnandi, Yuni K.

    2016-04-19

    Heterogeneous catalysts hold various advantages, namely, easy to separate from their products, reusable and regarded as environmental friendly materials. The synthesis of immobilized Ni monometallic, Co monometallic and Ni-Co bimetallic by Tapanuli clay were carried out using intercalation method. Firstly, the synthesis of Na-Bentonite was conducted to provide sufficient area to immobilize bimetal in the clay interlayer. Secondly, Ni, Co and Ni-Co were immobilized in the Tapanuli clay interlayer. Several techniques, such as X-Ray Diffraction, Fourier Transform Infra Red and Energy Dispersive X-Ray Analysis were applied to characterize and compare the properties of the synthesized materials. The results showed thatmore » the insertion of Ni, Co and Ni-Co in the clay interlayer occurred through a cation exchange reaction. The Energy Dispersive X-Ray analysis for Ni-Co bimetallic showed that the immobilized Ni and Co in the clay is in the ratio of 1:1. Catalytic test with Gas Chromatography showed that Ni-Co bimetallic generates a higher yield percentage compared to Ni and Co monometallic.« less

  16. Effect of sulfuric acid concentration of bentonite and calcination time of pillared bentonite

    NASA Astrophysics Data System (ADS)

    Mara, Ady; Wijaya, Karna; Trisunaryati, Wega; Mudasir

    2016-04-01

    An activation of natural clay has been developed. Activation was applied by refluxing the natural bentonite in variation of the sulfuric acid concentration and calcination time of pillared bentonite (PLC). Calcination was applied using oven in microwave 2,45 GHz. Determination of acidity was applied by measuring the amount of adsorbed ammonia and pyridine. Morphological, functional groups and chrystanility characterizations were analyzed using SEM, TEM, FTIR and XRD. Porosity was analyzed using SSA. The results showed that the greater of the concentration of sulfuric acid and calcination time was, the greater the acidity of bentonite as well as the pore diameter were. FTIR spectra showed no fundamental changes in the structure of the natural bentonite, SEM, and TEM images were showing an increase in space or field due to pillarization while the XRD patterns showed a shift to a lower peak. Optimization was obtained at a concentration of 2 M of sulfuric acid and calcination time of 20 minutes, keggin ion of 2.2 and suspension of 10 mmol, respectively each amounted to 11.7490 mmol/gram of ammonia and 2.4437 mmol/gram of pyridine with 154.6391 m2/gram for surface area, 0.130470 m3/gram of pore volume and 3.37484 nm of pore diameter.

  17. Single and multi-component adsorption of salicylic acid, clofibric acid, carbamazepine and caffeine from water onto transition metal modified and partially calcined inorganic-organic pillared clay fixed beds.

    PubMed

    Cabrera-Lafaurie, Wilman A; Román, Félix R; Hernández-Maldonado, Arturo J

    2015-01-23

    Fixed-beds of transition metal (Co(2+), Ni(2+) or Cu(2+)) inorganic-organic pillared clays (IOCs) were prepared to study single- and multi-component non-equilibrium adsorption of a set of pharmaceutical and personal care products (PPCPs: salicylic acid, clofibric acid, carbamazepine and caffeine) from water. Adsorption capacities for single components revealed that the copper(II) IOCs have better affinity toward salicylic and clofibric acid. However, multi-component adsorption tests showed a considerable decrease in adsorption capacity for the acids and an unusual selectivity toward carbamazepine depending on the transition metal. This was attributed to a combination of competition between PPCPs for adsorption sites, adsorbate-adsorbate interactions, and plausible pore blocking caused by carbamazepine. The cobalt(II) IOC bed that was partially calcined to fractionate the surfactant moiety showcased the best selectivity toward caffeine, even during multi-component adsorption. This was due to a combination of a mildly hydrophobic surface and interaction between the PPCP and cobalt(II). In general, the tests suggest that these IOCs may be a potential solution for the removal of PPCPs if employed in a layered-bed configuration, to take care of families of adsorbates in a sequence that would produce sharpened concentration wavefronts. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effect of the platinum content on the microstructure and micropore size distribution of Pt/alumina-pillared clays.

    PubMed

    Barrera-Vargas, M; Valencia-Rios, J; Vicente, M A; Korili, S A; Gil, A

    2005-12-15

    The aim of this work is to study the effect of the platinum content (0-1.8 wt % Pt) on the microstructure of an alumina-pillared clay. For this purpose, the nitrogen physisorption data at -196 degrees C, the micropore size distributions of the supported platinum catalysts, and the hydrogen chemisorption results at 30 degrees C have been analyzed and compared. The preparation of the catalysts has modified the textural properties of the Al-pillared clay support, giving rise to a loss of surface area and micropore volume. After reduction at 420 degrees C, the presence of dispersed metallic platinum with mean crystallite size in the 22-55 A range has been found by hydrogen adsorption. Comparison of all results reveals that the platinum species block the micropore entrances by steric hindrance to nitrogen access as the platinum content increases.

  19. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  20. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  1. Modified clay sorbents for wastewater treatment and immobilization of heavy metals in soils

    NASA Astrophysics Data System (ADS)

    Burlakovs, Juris; Klavins, Maris; Vincevica-Gaile, Zane; Stapkevica, Mara

    2014-05-01

    Soil and groundwater pollution with heavy metals is the result of both, anthropogenic and natural processes in the environment. Anthropogenic influence in great extent appears from industry, mining, treatment of metal ores and waste incineration. Contamination of soil and water can be induced by diffuse sources such as applications of agrochemicals and fertilizers in agriculture, air pollution from industry and transport, and by point sources, e.g., wastewater streams, runoff from dump sites and factories. Treatment processes used for metal removal from polluted soil and water include methodologies based on chemical precipitation, ion exchange, carbon adsorption, membrane filtration, adsorption and co-precipitation. Optimal removal of heavy metal ions from aqueous medium can be achieved by adsorption process which is considered as one of the most effective methods due to its cost-effectiveness and high efficiency. Immobilization of metals in contaminated soil also can be done with different adsorbents as the in situ technology. Use of natural and modified clay can be developed as one of the solutions in immobilization of lead, zinc, copper and other elements in polluted sites. Within the present study clay samples of different geological genesis were modified with sodium and calcium chlorides, iron oxyhydroxides and ammonium dihydrogen phosphate in variable proportions of Ca/P equimolar ratio to test and compare immobilization efficiency of metals by sorption and batch leaching tests. Sorption capacity for raw clay samples was considered as relatively lower referring to the modified species of the same clay type. In addition, clay samples were tested for powder X-ray difractometry, cation exchange, surface area properties, elemental composition, as well as scanning electron microscopy pictures of clay sample surface structures were obtained. Modified clay sorbents were tested for sorption of lead as monocontaminant and for complex contamination of heavy metals. The

  2. Preparation of Al/Fe-Pillared Clays: Effect of the Starting Mineral

    PubMed Central

    Muñoz, Helir-Joseph; Blanco, Carolina; Galeano, Luis-Alejandro

    2017-01-01

    Four natural clays were modified with mixed polyoxocations of Al/Fe for evaluating the effect of the physicochemical properties of the starting materials (chemical composition, abundance of expandable clay phases, cationic exchange capacity and textural properties) on final physicochemical and catalytic properties of Al/Fe-PILCs. The aluminosilicate denoted C2 exhibited the highest potential as starting material in the preparation of Al/Fe-PILC catalysts, mainly due to its starting cationic exchange capacity (192 meq/100 g) and the dioctahedral nature of the smectite phase. These characteristics favored the intercalation of the mixed (Al13−x/Fex)7+ Keggin-type polyoxocations, stabilizing a basal spacing of 17.4 Å and high increase of the BET surface (194 m2/g), mainly represented in microporous content. According to H2-TPR analyses, catalytic performance of the incorporated Fe in the Catalytic Wet Peroxide Oxidation (CWPO) reaction strongly depends on the level of location in mixed Al/Fe pillars. Altogether, such physicochemical characteristics promoted high performance in CWPO catalytic degradation of methyl orange in aqueous medium at very mild reaction temperatures (25.0 ± 1.0 °C) and pressure (76 kPa), achieving TOC removal of 52% and 70% of azo-dye decolourization in only 75 min of reaction under very low concentration of clay catalyst (0.05 g/L). PMID:29182560

  3. Removal of Ciprofloxacin from Aqueous Solutions Using Pillared Clays

    PubMed Central

    Roca Jalil, Maria Eugenia; Baschini, Miria; Sapag, Karim

    2017-01-01

    Emerging contaminants in the environment have caused enormous concern in the last few decades, and among them, antibiotics have received special attention. On the other hand, adsorption has shown to be a useful, low-cost, and eco-friendly method for the removal of this type of contaminants from water. This work is focused on the study of ciprofloxacin (CPX) removal from water by adsorption on pillared clays (PILC) under basic pH conditions, where CPX is in its anionic form (CPX−). Four different materials were synthetized, characterized, and studied as adsorbents of CPX (Al-, Fe-, Si-, and Zr-PILC). The highest CPX adsorption capacities of 100.6 and 122.1 mg g−1 were obtained for the Si- and Fe-PILC (respectively), and can be related to the porous structure of the PILCs. The suggested adsorption mechanism involves inner-sphere complexes formation as well as van der Waals interactions between CPX− and the available adsorption sites on the PILC surfaces. PMID:29168798

  4. Pillared montmorillonite catalysts for coal liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, R.K.; Olson, E.S.

    1994-12-31

    Pillared clays contain large micropores and have considerable potential for catalytic hydrogenation and cleavage of coal macromolecules. Pillared montmorillonite-supported catalysts were prepared by the intercalation of polynuclear hydroxychromium cations and subsequent impregnation of nickel and molybdenum. Infrared and thermogravimetric studies of pyridine-adsorbed catalysts indicated the presence of both Lewis and Bronsted acid sites. Thus, the catalysts have both acidic properties that can aid in hydrocracking and cleavage of carbon-heteroatom bonds as well as hydrogen-activating bimetallic sites. These catalysts were applied to the hydrodesulfurization and liquefaction of coal-derived intermediates. The reactions of model organosulfur compounds and coal liquids were carried outmore » at 300{degrees}-400{degrees}C for 3 hours in the presence of 1000 psi of molecular hydrogen. Reaction products were analyzed by GC/FT-IR/MS/AED. The catalysts have been found to be very effective in removing sulfur from model compounds as well as liquefaction products.« less

  5. Comperative study of catalase immobilization on chitosan, magnetic chitosan and chitosan-clay composite beads.

    PubMed

    Başak, Esra; Aydemir, Tülin; Dinçer, Ayşe; Becerik, Seda Çınar

    2013-12-01

    Catalase was immobilized on chitosan and modified chitosan. Studies were carried out on free-immobilized catalase concerning the determination of optimum temperature, pH, thermal, storage stability, reusability, and kinetic parameters. Optimum temperature and pH for free catalase and catalase immobilized were found as 35°C and 7.0, respectively. After 100 times of repeated tests, the immobilized catalases on chitosan-clay and magnetic chitosan maintain over 50% and 60% of the original activity, respectively. The ease of catalase immobilization on low-cost matrices and good stability upon immobilization in the present study make it a suitable product for further use in the food industry.

  6. Study of colloidal properties of natural and Al-pillared smectite and removal of copper ions from an aqueous solution.

    PubMed

    Sartor, Lucas Resmini; de Azevedo, Antonio Carlos; Andrade, Gabriel Ramatis Pugliese

    2015-01-01

    In this study, an Al-pillared smectite was synthesized and changes in its colloidal properties were investigated. The pillaring solution was prepared by mixing 0.4 mol L(-1) NaOH and 0.2 mol L(-1) AlCl3.6H2O solutions. Intercalated clays were heated to obtain the pillared clay, and X-ray diffractometry (XRD), X-ray fluorescence (XRF), Fourier transform infrared (FTIR) spectroscopy and N2 sorption/desorption isotherms analysis were done to characterize the changes in clay properties. Moreover, adsorption experiments were carried out in order to evaluate the capacity of the pillared clays to remove Cu2+ from an aqueous solution and to characterize the interaction between adsorbent and adsorbate. The results indicate that the natural clay has a basal spacing of 1.26 nm, whereas the pillared clays reached 1.78 nm (500°C) and 1.80 nm (350°C) after calcination. XRF analysis revealed an increase in the Al3+ in the pillared clay as compared to the natural clay. The surface area and pore volume (micro and mesoporous) were higher for the pillared clays. Experimental data from the adsorption experiment were fit to Langmuir and Freundlich and Temkin adsorption models, and the former one was the best fit (highest r2 value) for all the clays and lower standard deviation (Δg%) for the natural clay. On the other hand, the Temkin model exhibited Δg% value lower for the pillared clays. Thermodynamics parameters demonstrate that the Cu2+ adsorption process is spontaneous for all the clays, but with higher values for the pillared materials. In addition, application of the Dubinin-Radushkevich model revealed that the bond between the metal and the clay are weak, characterizing a physisorption.

  7. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    PubMed

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  8. Application of Local Adsorbant From Southeast Sulawesi Clay Immobilized Saccharomyces Cerevisiae Bread’s Yeast Biomass for Adsorption Of Mn(Ii) Metal Ion

    NASA Astrophysics Data System (ADS)

    R, Halimahtussaddiyah; Mashuni; Budiarni

    2017-05-01

    Southeast Sulawesi has a great stock of clay. It is probably to use as a source of adsorbent. The adsorbent capacity of clay can be largered with teratment using bread’s yeast as biomass. At this research, study of analysis adsorption of Mn(II) metal ion on clay immobilized Saccharomyces cerevisiae bread’s yeast biomass adsorbent has been conducted. The aims of this research were to determine the effects of contact time, pH and concentration of Mn(II) metal ion and to determine the adsorption capacity of clay immobilized S. cerevisiae biomass for adsorbtion of Mn(II) metal ion. Activated clay was synthesized by reaction of clay with KMnO4, H2SO4 and HCl. S. cerevisiae biomass was result by bread’s yeast mashed. Immobilization of S. cerevisiae biomass into clay was done by mixing of ratio of S. cerevisiae bread’s yeast biomass and clay equal to 1:3 (mass of biomassa : mass of clay). The adsorption capacity was determined by using Freundlich and Langmuir adsorption isoterms. The results of FTIR spectrums showed that the functional groups of clay immobilized S. cerevisiae biomass were Si-OH (wave number 1643 cm-1), Si-O-Si (wave number 1033 cm-1), N-H (wave number 2337 cm-1), O-H (wave number 3441cm-1), and C-H (wave number 2931 cm-1). The result of adsorption capacity from Mn(II) metal ion of contact time optimum 120 minutes, pH optimun at 7 and concentration optimum 50 mg/L were 1,816 mg/g; 0,509 mg/g and 2,624mg/g respectively. The adsorption capacity of Mn(II) metal ion with ratio 1:3 (biomass : clay) was 0,1045 mg/g. Type of isothermal adsorption followed the Freunlich adsorption.

  9. Study on structural characteristics of pillared clay modified phosphate fertilizers and its increase efficiency mechanism*

    PubMed Central

    Wu, Ping-xiao; Liao, Zong-wen

    2005-01-01

    Three types of new high-efficiency phosphate fertilizers were made when pillared clays at certain proportions were added into ground phosphate rock. Chemical analyses showed that their soluble phosphorus content decreased more than that of superphosphate. Pot experiment showed that, under equal weights, the new fertilizers increased their efficiency by a large margin over that of superphosphate. Researches on their structures by means of XRD, IR and EPR spectrum revealed that their crystal structures changed considerably, improving their activity and preventing the fixation of available phosphorus in the soil, and consequently, greatly improved the bioavailability and became the main cause of the increase of biomass. PMID:15682504

  10. Characterization and immobilization of Trametes versicolor laccase on magnetic chitosan-clay composite beads for phenol removal.

    PubMed

    Aydemir, Tülin; Güler, Semra

    2015-01-01

    Laccase from Trametes versicolor was immobilized on magnetic chitosan-clay composite beads by glutaraldehyde crosslinking. The physical, chemical, and biochemical properties of the immobilized laccase and its application in phenol removal were comprehensively investigated. The structure and morphology of the composite beads were characterized by SEM, TGA, and FTIR analyses. The immobilized laccase showed better storage stability and higher tolerance to the changes in pH and temperature compared with free laccase. Moreover, the immobilized laccase retained more than 75% of its original activity after 10 cycles. The efficiency of phenol removal by immobilized laccase was about 80% under the optimum conditions after 4 h.

  11. Studies on Acetone Powder and Purified Rhus Laccase Immobilized on Zirconium Chloride for Oxidation of Phenols

    PubMed Central

    Lu, Rong; Miyakoshi, Tetsuo

    2012-01-01

    Rhus laccase was isolated and purified from acetone powder obtained from the exudates of Chinese lacquer trees (Rhus vernicifera) from the Jianshi region, Hubei province of China. There are two blue bands appearing on CM-sephadex C-50 chromatography column, and each band corresponding to Rhus laccase 1 and 2, the former being the major constituent, and each had an average molecular weight of approximately 110 kDa. The purified and crude Rhus laccases were immobilized on zirconium chloride in ammonium chloride solution, and the kinetic properties of free and immobilized Rhus laccase, such as activity, molecular weight, optimum pH, and thermostability, were examined. In addition, the behaviors on catalytic oxidation of phenols also were conducted. PMID:22545205

  12. Reduction And Immobilization Of Hexavalent Chromium By Microbially Reduced Fe-bearing Clay Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanismsmore » of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10°, 20°, and 30°C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10°C, though at 30°C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was

  13. Lamellar zirconium phosphates to host metals for catalytic purposes.

    PubMed

    Ballesteros-Plata, Daniel; Infantes-Molina, Antonia; Rodríguez-Aguado, Elena; Braos-García, Pilar; Rodríguez-Castellón, Enrique

    2018-02-27

    In the present study a porous lamellar zirconium phosphate heterostructure (PPH) formed from zirconium(iv) phosphate expanded with silica galleries (P/Zr molar ratio equal to 2 and (Si + Zr)/P equal to 3) was prepared to host noble metals. Textural and structural characterization of PPH-noble metal materials was carried out in order to elucidate the location and dispersion of the metallic particles and the properties of the resulting material to be used in catalytic processes. In the present paper, their activity in the catalytic hydrodeoxygenation (HDO) reaction of dibenzofuran (DBF) was evaluated. X-ray diffraction (XRD), solid state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) evidenced that the structure of the pillared zirconium phosphate material was not modified by the incorporation of Pt and Pd. Moreover, transmission electron microscopy (TEM) showed a different dispersion of the noble metal. The acidity of the resulting PPH-noble metal materials also changed, although in all cases the acidity was of weak nature, and the incorporation of noble metals affected Brønsted acid sites as observed from 31 P NMR spectra. In general, the textural, structural and acidic properties of the resulting materials suggest that PPH can be considered a good candidate to be used as a catalytic support. Thus, the catalytic results of the PPH-noble metal samples indicated that the Pd sample showed a stable behavior probably ascribed to a high dispersion of the active phase. However, the Pt sample suffered from fast deactivation. The selectivity to the reaction products was strongly dependent on the noble metal employed.

  14. Inclusion of Ti and Zr species on clay surfaces and their effect on the interaction with organic molecules

    NASA Astrophysics Data System (ADS)

    Rangel-Rivera, Pedro; Bachiller-Baeza, María Belén; Galindo-Esquivel, Ignacio; Rangel-Porras, Gustavo

    2018-07-01

    The interactions between the clay surface and the organic molecules play an important role in the efficient of these materials in adsorption and catalytic processes. These materials are often modified with the inclusion of other catalytic particles for the purpose of enhancing the activity. In this study, commercial clay K10 was modified with the particles inclusion of titanium and zirconium. The solid surfaces were examined by infrared spectroscopy, scanning electron microscopy (SEM) coupled to an energy-dispersive X-ray spectroscopy device (EDS), and X-ray photoelectron spectroscopy (XPS). Temperature programmed desorption of ammonia (TPD-NH3) and propan-2-ol decomposition test reaction were performed to probe the acid properties. The adsorption of acetic acid, ethanol, and propan-2-ol on the surface of each solid and their thermal stability were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT). Finally, these materials were used in the esterification of acetic acid with penta-1-ol. The real effect over the incorporation of titanium species and zirconium species on clay surface for interacting with the organic molecules was discussed.

  15. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    PubMed

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-07-01

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Immobilization of soil cadmium using combined amendments of illite/smectite clay with bone chars.

    PubMed

    Li, Hong; Ou, Jieyong; Wang, Xuedong; Yan, Zengguang; Zhou, Youya

    2018-05-12

    The widespread use of cadmium (Cd)-containing organic fertilizers is a source of heavy metal inputs to agricultural soils in suburban areas. Therefore, the research and development of new materials and technologies for the remediation of Cd-contaminated soil is of great significance and has the potential to guarantee the safety of agricultural products and the protection of human health. We performed pot experiments to determine the potential of combined amendments of illite/smectite (I/S) clay with bone chars for the remediation of Cd-contaminated agricultural soils in a suburban area of Beijing, China. The results showed that both diethylene triamine pentaacetic acid (DTPA)-extractable Cd in soil and the Cd in Brassica chinensis were significantly decreased by the application of 1, 2, or 5% combined amendments with various I/S and bone char (BC) ratios. The higher proportions of BC used in the combined amendments resulted in a better immobilization of soil Cd. The application of the 5% amendment that combined I/S with either pig or cattle BC resulted in the best immobilization. All of the combined amendments, regardless of the composition and ratio of the components, had no negative effects on the growth of B. chinensis. Therefore, it was concluded that combined amendments of I/S and BC have a good potential for remediating Cd-contaminated soils.

  17. Novel one-pot synthesis of dicarboxylic acids mediated alginate-zirconium biopolymeric complex for defluoridation of water.

    PubMed

    Prabhu, Subbaiah Muthu; Meenakshi, Sankaran

    2015-04-20

    The present investigation explains the fluoride removal from aqueous solution using alginate-zirconium complex prepared with respective dicarboxylic acids like oxalic acid (Ox), malonic acid (MA) and succinic acid (SA) as a medium. The complexes viz., alginate-oxalic acid-zirconium (Alg-Ox-Zr), alginate-malonic acid-zirconium (Alg-MA-Zr) and alginate-succinic acid-zirconium (Alg-SA-Zr) were synthesized and studied for fluoride removal. The synthesized complexes were characterized by FTIR, XRD, SEM with EDAX and mapping images. The effects of various operating parameters were optimized. The result showed that the maximum removal of fluoride 9653mgF(-)/kg was achieved by Alg-Ox-Zr complex at acidic pH in an ambient atmospheric condition. Equilibrium data of Alg-Ox-Zr complex was fitted well with Freundlich isotherm. The calculated values of thermodynamic parameters indicated that the fluoride adsorption is spontaneous and endothermic in nature. The mechanism of fluoride removal behind Alg-Ox-Zr complex has been proposed in detail. The suitability of the Alg-Ox-Zr complex has been tested with the field sample collected in a nearby fluoride endemic area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Reactivity of clay minerals with acids and alkalies

    USGS Publications Warehouse

    Carroll, Dorothy; Starkey, Harry C.

    1971-01-01

    One-g samples of a montmorillonite, a metabentonite, an illite, two kaolinites, and three halloysites were treated with 50 ml of hydrochloric acid (6⋅45 N, 1:1), acetic acid (4⋅5 N, 1:3), sodium hydroxide (2⋅8 N), sodium chloride solution (pH 6⋅10; Na = 35‰; Cl = 21⋅5‰), and natural sea water (pH 7⋅85; Na = 35⋅5‰; Cl = 21⋅ 5‰) for a 10-day period in stoppered plastic vials. The supernatant solutions were removed from the clay minerals and analyzed for SiO2, Al2O3, CaO, MgO, Na2O, and K2O. All the solutions removed some SiO2, Al2O3, and Fe2O3 from the samples, but the quantities were small. Sodium hydroxide attacked the kaolin group minerals more strongly than it did montmorillonite, metabentonite, or illite. Halloysite was more strongly attacked by hydrochloric acid than was any of the other experimental minerals. Hydrochloric acid removed iron oxide coatings from soil clay minerals, but acetic acid did not remove them completely. The samples most strongly attacked by HCl and NaOH were examined by X-ray diffraction. Acid treatment did not destroy the structure of the clays, but the halloysite structure was partially destroyed. Sodium hydroxide attacked the halloysite structure, as shown by chemical analysis and X-ray diffraction. These experiments show that treatment in dilute acids has no harmful effect in the preparation of clays for X-ray diffraction. Acetic acid is preferred to hydrochloric acid for this purpose. Hydrochloric acid cleans clay minerals by removing free iron oxide from the surface; acetic acid is less effective.

  19. Theoretical stusy of the reaction between 2,2',4' - trihydroxyazobenzene-5-sulfonic acid and zirconium

    USGS Publications Warehouse

    Fletcher, Mary H.

    1960-01-01

    Zirconium reacts with 2,2',4'-trihydroxyazobenzene-5-sulfonic acid in acid solutions to Form two complexes in which the ratios of dye to zirconium are 1 to 1 and 2 to 1. Both complexes are true chelates, with zirconium acting as a bridge between the two orthohydroxy dye groups. Apparent equilibrium constants for the reactions to form each of the complexes are determined. The reactions are used as a basis for the determination of the active component in the dye and a graphical method for the determination of reagent purity is described. Four absorption spectra covering the wave length region from 350 to 750 mu are given, which completely define the color system associated with the reactions in solutions where the hydrochloric acid concentration ranges from 0.0064N to about 7N.

  20. Clay Minerals as Solid Acids and Their Catalytic Properties.

    ERIC Educational Resources Information Center

    Helsen, J.

    1982-01-01

    Discusses catalytic properties of clays, attributed to acidity of the clay surface. The formation of carbonium ions on montmorillonite is used as a demonstration of the presence of surface acidity, the enhanced dissociation of water molecules when polarized by cations, and the way the surface can interact with organic substances. (Author/JN)

  1. Phosphoric acid purification through different raw and activated clay materials (Southern Tunisia)

    NASA Astrophysics Data System (ADS)

    Trabelsi, Wafa; Tlili, Ali

    2017-05-01

    This study concerns the purification of Tunisian phosphoric acid produced by the Tunisian Chemical Group (TCG), using raw and activated clays materials from Southern Tunisia. The Gafsa basin clays samples (Jebel Hamadi (JHM); Jebel Stah (JS) and the El Hamma sample (Jebel Aïdoudi (JAD)) were activated with 3 M, HCl solution. Phosphoric acid purification was performed on raw and activated clays. Mineralogical characterisation was carried out using the X-ray powder diffraction method and infrared absorption spectroscopy. Textural changes between raw and activated clays were identified using SEM observations and specific surface analysis. Jebel Hamadi clays were almost dominated by smectite associated with kaolinite and illite traces, while Jebel Stah and Jebel Aïdoudi clays were composed of the association of smectite, illite and kaolinite. It is worth noting that the position of the smectite (001) reflection increased after the acidic activation in all studied samples, indicating the relaxation of the smectite structure along the c-axis. This was corroborated by the increasing specific surface area of the clay particles with the activation process. The specific surface area was close to 50 m2/g and 200 m2/g, for raw and activated materials, respectively. The maximum phosphoric acid purification was obtained by using activated clays with 3 N HCl for 4 h. This performance correlated with the maximum of the external specific surface area which generated strong acid sites. Furthermore, the best results of phosphoric acids purification from TCG were obtained at a specific consumption equivalent to 30 Kg of clay/ton of P2O5. These results showed that the best phosphoric acid purification was yielded by Jebel Aïdoudi clay. In all cases, the highest organic carbon reduction rates in the phosphoric acid after filtration were obtained at 90°C.

  2. High acidity unilamellar zeolite MCM-56 and its pillared and delaminated derivatives.

    PubMed

    Gil, Barbara; Makowski, Wacław; Marszalek, Bartosz; Roth, Wieslaw J; Kubu, Martin; Čejka, Jiři; Olejniczak, Zbigniew

    2014-07-21

    The unilamellar form of zeolite MWW, MCM-56, which is obtained by direct hydrothermal synthesis has been studied with regard to acidity and porosity in its original and post-synthesis modified pillared and delaminated forms. The acidity measured by FTIR was found to be only slightly lower than the highly active 3-D MWW forms, MCM-22 and MCM-49. Pivalonitrile adsorption, which is a measure of spatial openness, showed 50% accessibility vs. <30% for MCM-22/49. It highlights the potential of MCM-56 as a layered material with increased access to acid sites because it does not entail laborious post-synthesis modification. Swelling, pillaring and delamination of MCM-56 are facile but result in a reduction in the number of Brønsted acid sites (BAS) while increasing accessibility to pivalonitrile. The delamination procedure involving sonication and acidification of the highly basic mother liquor produces the most visible increase in surface area and access to all BAS. The accompanying doubling of the solid yield and the decrease in absolute number of BAS suggest significant precipitation of dissolved silica generated during swelling and sonication in high pH medium. The viability of separating surfactant covered layers upon sonication with the consequence of exposing hydrophobic hydrocarbon tails to aqueous environment is addressed.

  3. SEPARATION PROCESS FOR ZIRCONIUM AND COMPOUNDS THEREOF

    DOEpatents

    Crandall, H.W.; Thomas, J.R.

    1959-06-30

    The separation of zirconium from columbium, rare earths, yttrium and the alkaline earth metals, such mixtures of elements occurring in zirconium ores or neutron irradiated uranium is described. According to the invention a suitable separation of zirconium from a one normal acidic aqueous solution containing salts, nitrates for example, of tetravalent zirconium, pentavalent columbium, yttrium, rare earths in the trivalent state and alkaline earths can be obtained by contacting the aqueous solution with a fluorinated beta diketonc alone or in an organic solvent solution, such as benzene, to form a zirconium chelate compound. When the organic solvent is present the zirconium chelate compound is directly extracted; otherwise it is separated by filtration. The zirconium may be recovered from contacting the organic solvent solution containing the chelated compound by back extraction with either an aqueous hydrofluoric acid or an oxalic acid solution.

  4. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    PubMed

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.

  5. Adsorption of chloroacetanilide herbicides on soil and its components. III. Influence of clay acidity, humic acid coating and herbicide structure on acetanilide herbicide adsorption on homoionic clays.

    PubMed

    Liu, Wei-ping; Fang, Zhuo; Liu, Hui-jun; Yang, Wei-chun

    2002-04-01

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca(2+)-, Mg(2+)-, Al(3+)- and Fe(3+)-saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ < or = Fe3+ which coincided with the increasing acidity of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.

  6. Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production.

    PubMed

    Kwak, M Y; Rhee, J S

    1992-04-15

    Aspergillus oryzae in situ grown from spores entrapped in calcium alginate gel beads was used for the production of kojic acid. The immobilized cells in flask cultures produced kojic acid in a linear proportion while maintaining the stable metabolic activity for a prolonged production period. Kojic acid was accumulated up to a high concentration of 83 g/L, at which the kojic acid began to crystallize, and, thus, the culture had to be replaced with fresh media for the next batch culture. The overall productivities of two consecutive cultivations were higher than that of free mycelial fermentation. However, the production rate of kojic acid by the immobilized cells was suddenly decreased with the appearance of central cavernae inside the immobilized gel beads after 12 days of the third batch cultivation.

  7. Reduction of volatile acidity of acidic wines by immobilized Saccharomyces cerevisiae cells.

    PubMed

    Vilela, A; Schuller, D; Mendes-Faia, A; Côrte-Real, M

    2013-06-01

    Excessive volatile acidity in wines is a major problem and is still prevalent because available solutions are nevertheless unsatisfactory, namely, blending the filter-sterilized acidic wine with other wines of lower volatile acidity or using reverse osmosis. We have previously explored the use of an empirical biological deacidification procedure to lower the acetic acid content of wines. This winemaker's enological practice, which consists in refermentation associated with acetic acid consumption by yeasts, is performed by mixing the acidic wine with freshly crushed grapes, musts, or marc from a finished wine fermentation. We have shown that the commercial strain Saccharomyces cerevisiae S26 is able to decrease the volatile acidity of acidic wines with a volatile acidity higher than 1.44 g L(-1) acetic acid, with no detrimental impact on wine aroma. In this study, we aimed to optimize the immobilization of S26 cells in alginate beads for the bioreduction of volatile acidity of acidic wines. We found that S26 cells immobilized in double-layer alginate-chitosan beads could reduce the volatile acidity of an acidic wine (1.1 g L(-1) acetic acid, 12.5 % (v/v) ethanol, pH 3.12) by 28 and 62 % within 72 and 168 h, respectively, associated with a slight decrease in ethanol concentration (0.7 %). Similar volatile acidity removal efficiencies were obtained in medium with high glucose concentration (20 % w/v), indicating that this process may also be useful in the deacidification of grape musts. We, therefore, show that immobilized S. cerevisiae S26 cells in double-layer beads are an efficient alternative to improve the quality of wines with excessive volatile acidity.

  8. Synthesis of glyceryl ferulate by immobilized ferulic acid esterase.

    PubMed

    Matsuo, Takemasa; Kobayashi, Takashi; Kimura, Yukitaka; Tsuchiyama, Moriyasu; Oh, Tadanobu; Sakamoto, Tatsuji; Adachi, Shuji

    2008-12-01

    Glyceryl ferulate was synthesized by the condensation of ferulic acid with glycerol using Pectinase PL "Amano" from Aspergillus niger, which contained ferulic acid esterase, to improve the water-solubility of ferulic acid. The optimum reaction medium was glycerol/0.1 M acetate buffer, pH 4.0, (98:2 v/v). The enzyme immobilized onto Chitopearl BCW3003 exhibited the highest activity among the those immobilized onto various kinds of Chitopearl BCW resins. The optimum temperature for the immobilized enzyme was 50 degrees C, and it could be reused at least five times without a significant loss in activity for the synthesis of glyceryl ferulate in batch reaction. Storage of the reaction mixture at 25 degrees C improved the molar fraction of glyceryl ferulate relative to the dissolved ferulic residues.

  9. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    PubMed

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  10. Thrombin immobilization to methacrylic acid grafted poly(3-hydroxybutyrate) and its in vitro application.

    PubMed

    Akkaya, Alper; Pazarlioglu, Nurdan

    2013-01-01

    Poly(3-hydroxybutyrate) is nontoxic and biodegradable, with good biocompatibility and potential support for long-term implants. For this reason, it is a good support for enzyme immobilization. Enzyme immobilization could not be done directly because poly(3-hydroxybutyrate) has no functional groups. Therefore, modification should be done for enzyme immobilization. In this study, methacrylic acid was graft polymerized to poly(3-hydroxybutyrate) and thrombin was immobilized to polymethacrylic acid grafted poly(3-hydroxybutyrate). In fact, graft polymerization of methacrylic acid to poly(3-hydroxybutyrate) and thrombin immobilization was a model study. Biomolecule immobilized poly(3-hydroxybutyrate) could be used as an implant. Thrombin was selected as a biomolecule for this model study and it was immobilized to methacrylic acid grafted poly(3-hydroxybutyrate). Then the developed product was used to stop bleeding.

  11. Acid rock drainage passive remediation using alkaline clay: Hydro-geochemical study and impacts of vegetation and sand on remediation.

    PubMed

    Plaza, Fernando; Wen, Yipei; Liang, Xu

    2018-10-01

    Acid rock drainage (ARD) is one of the most adverse environmental problems of the mine industry, especially in regions with an abundance of coal refuse (CR) deposits (e.g. the Northern Appalachian Coalfield in the USA) where surface and ground waters are affected by this pollution due to the acidity and high content of sulfates and heavy metals. This study explores the effectiveness of the ARD passive remediation method using alkaline clay (AC) through a series of static and long-term kinetic laboratory experiments (over three years) complemented with field measurements and geochemical modeling. Two important issues associated with this passive and auto-sustainable ARD remediation method were investigated: 1) the hydrogeochemical study of the mixture in terms of the percentages of AC and CR, and, 2) impacts of vegetation cover and a saturated sand barrier on the remediation. Both the field measurements and the samples used for the experiments came from a local coal waste site. Through the analysis of the field measurements and the outcome of the laboratory experiments and the geochemical modeling, alkaline clay proved to be an effective remediation material for ARD, in terms of achieving a neutral pH in the leachate and immobilization of sulfate and metals such as Fe, Mn, Cu, Zn, Ni, Pb, Cd, Co. Moreover, it has been demonstrated that the use of vegetation and a saturated sand barrier are beneficial. Vegetation acted as a phytoaccumulation/phytoextraction agent, causing an additional immobilization of metals. The saturated sand barrier blocked downward the oxygen and water diffusion, reducing pyrite oxidation rates. The proposed remediation approach ensures that the acidity consumption will likely occur before all the alkalinity is exhausted. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. THE ANALYSIS OF URANIUM-ZIRCONIUM ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milner, G.W.C.; Skewies, A.F.

    1953-03-01

    A satisfactory procedure is described for the analysis of uranium-zirconium alloys containing up to 25% zirconium. It is based on the separation of the zirconium from the uranium by dissolving the cupferron complex of the former element into chloroform. After the evaporation of the solvent from the combined organic extracts, the residue is ignited to zirconium oxide. The latter is then re-dissolved and zirconium is separated from other elements co-extracted in the solvent extraction procedure by precipitation with mandelic acid. The zirconium mandelate is finally ignited to oxide at 960 deg C. The uranium is separated from the aqueous solutionmore » remaining from the cupferron extraction by precipitating with tannin at a pH of 8; the precipitate being removed by filtration and then ignited a t 800 deg C. The residue is dissolved in nitric acid and the uranium is finally determined by precipitating as ammonium diuranate and then igniting to U{sub 3}O{sub 8}. (auth)« less

  13. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  14. Production of α-keto acids Part I. Immobilized cells ofTrigonopsis variabilis containing D-amino acid oxidase.

    PubMed

    Brodelius, P; Nilsson, K; Mosbach, K

    1981-12-01

    Whole cells ofTrigonopsis variabilis were immobilized by entrapment in Ca(2+)-alginate and used for the production of α-keto acids from the corresponding D-amino acids. The D-amino acid oxidase within the immobilized cells has a broad substrate specificity. Hydrogen peroxide formed in the enzymatic reaction was efficiently hydrolyzed by manganese oxide co-immobilized with the cells. The amino acid oxidase activity was assayed with a new method based on reversed-phase HPLC. Oxygen requirements, bead size, concentration of cells in the beads, flow rate, and other factors were investigated in a " trickle-bed " reactor.

  15. IMPROVEMENT OF THE EXTRACTION SEPARATION OF URANIUM AND ZIRCONIUM USING ZIRCONIUM-MASKING REAGENTS (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyrs, M.; Caletka, R.; Selucky, P.

    1963-12-01

    The masking capacities of a series of reagents were studied in the zirconium extraction with tributyl phosphate solution in the presence of nitric acid. It was established that with many reagents an improvement of the separation of uranium from zirconium could be obtained. The efficiency of the reagents increases in the series tannin, oxalic acid, tiron, pyrogallol, and Arsenazo I. (tr-auth)

  16. SEPARATING HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Lister, B.A.J.; Duncan, J.F.

    1956-08-21

    A dilute aqueous solution of zirconyl chloride which is 1N to 2N in HCl is passed through a column of a cation exchange resin in acid form thereby absorbing both zirconium and associated hafnium impurity in the mesin. The cation exchange material with the absorbate is then eluted with aqueous sulfuric acid of a O.8N to 1.2N strength. The first portion of the eluate contains the zirconium substantially free of hafnium.

  17. Modification in band gap of zirconium complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Mayank, E-mail: mayank30134@gmail.com; Singh, J.; Chouhan, S.

    2016-05-06

    The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.

  18. Retention of contaminants Cd and Hg adsorbed and intercalated in aluminosilicate clays: A first principles study

    NASA Astrophysics Data System (ADS)

    Crasto de Lima, F. D.; Miwa, R. H.; Miranda, Caetano R.

    2017-11-01

    Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ˜20 and ˜130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.

  19. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    DOEpatents

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  20. Kefir immobilized on corn grains as biocatalyst for lactic acid fermentation and sourdough bread making.

    PubMed

    Plessas, Stavros; Alexopoulos, Athanasios; Bekatorou, Argyro; Bezirtzoglou, Eugenia

    2012-12-01

    The natural mixed culture kefir was immobilized on boiled corn grains to produce an efficient biocatalyst for lactic acid fermentation with direct applications in food production, such as sourdough bread making. The immobilized biocatalyst was initially evaluated for its efficiency for lactic acid production by fermentation of cheese whey at various temperatures. The immobilized cells increased the fermentation rate and enhanced lactic acid production compared to free kefir cells. Maximum lactic acid yield (68.8 g/100 g) and lactic acid productivity (12.6 g/L per day) were obtained during fermentation by immobilized cells at 37 °C. The immobilized biocatalyst was then assessed as culture for sourdough bread making. The produced sourdough breads had satisfactory specific loaf volumes and good sensory characteristics. Specifically, bread made by addition of 60% w/w sourdough containing kefir immobilized on corn was more resistant regarding mould spoilage (appearance during the 11(th) day), probably due to higher lactic acid produced (2.86 g/Kg of bread) compared to the control samples. The sourdough breads made with the immobilized biocatalyst had aroma profiles similar to that of the control samples as shown by headspace SPME GC-MS analysis. © 2012 Institute of Food Technologists®

  1. Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite.

    PubMed

    Lin, Jianwei; Zhang, Zhe; Zhan, Yanhui

    2017-05-01

    A zirconium-modified zeolite (ZrMZ) was prepared, and then, humic acid (HA) was immobilized on the ZrMZ surface to prepare HA-loaded ZrMZ (HA-ZrMZ). The obtained ZrMZ and HA-ZrMZ were characterized by energy dispersive X-ray spectroscopy, elemental analyzer, N 2 adsorption/desorption isotherms, pH at the point of zero charge, and X-ray photoelectron spectroscopy. The adsorption characteristics of phosphate on ZrMZ and HA-ZrMZ were comparatively investigated in batch mode. The adsorption mechanism of phosphate on ZrMZ and HA-ZrMZ was investigated by ionic strength effect and 31 P nuclear magnetic resonance. The mechanism for phosphate adsorption onto ZrMZ was the formation of inner-sphere phosphate complexes at the solid/solution interface. The preloading of HA on ZrMZ reduced the phosphate adsorption capacity, and the more the HA loading amount, the lower the phosphate adsorption capacity. However, the preloading of HA on ZrMZ did not change the phosphate adsorption mechanism; i.e., the formation of inner-sphere phosphate surface complexes was still responsible for the adsorption of phosphate on HA-ZrMZ. The decreased phosphate adsorption capacity for ZrMZ after HA coating could be attributed to the fact that the coating of HA on ZrMZ reduced the amount of binding active sites available for phosphate adsorption, changed the adsorbent surface charges, and reduced the specific surface areas and pore volumes of ZrMZ.

  2. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation

    NASA Astrophysics Data System (ADS)

    Wu, Lin Mei; Zhou, Chun Hui; Keeling, John; Tong, Dong Shen; Yu, Wei Hua

    2012-12-01

    This article reviews progress in the understanding of the role of clay minerals in crude oil formation, migration and accumulation. Clay minerals are involved in the formation of kerogen, catalytic cracking of kerogen into petroleum hydrocarbon, the migration of crude oil, and the continued change to hydrocarbon composition in underground petroleum reservoirs. In kerogen formation, clay minerals act as catalysts and sorbents to immobilize organic matter through ligand exchange, hydrophobic interactions and cation bridges by the mechanisms of Maillard reactions, polyphenol theory, selective preservation and sorptive protection. Clay minerals also serve as catalysts in acid-catalyzed cracking of kerogen into petroleum hydrocarbon through Lewis and Brønsted acid sites on the clay surface. The amount and type of clay mineral affect the composition of the petroleum. Brønsted acidity of clay minerals is affected by the presence and state of interlayer water, and displacement of this water is a probable driver in crude oil migration from source rocks. During crude oil migration and accumulation in reservoirs, the composition of petroleum is continually modified by interaction with clay minerals. The clays continue to function as sorbents and catalysts even while they are being transformed by diagenetic processes. The detail of chemical interactions and reaction mechanisms between clay minerals and crude oil formation remains to be fully explained but promises to provide insights with broader application, including catalytic conversion of biomass as a source of sustainable energy into the future.

  3. Monitoring bisphosphonate surface functionalization and acid stability of hierarchically porous titanium zirconium oxides.

    PubMed

    Ide, Andreas; Drisko, Glenna L; Scales, Nicholas; Luca, Vittorio; Schiesser, Carl H; Caruso, Rachel A

    2011-11-01

    To take advantage of the full potential of functionalized transition metal oxides, a well-understood nonsilane based grafting technique is required. The functionalization of mixed titanium zirconium oxides was studied in detail using a bisphosphonic acid, featuring two phosphonic acid groups with high surface affinity. The bisphosphonic acid employed was coupled to a UV active benzamide moiety in order to track the progress of the surface functionalization in situ. Using different material compositions, altering the pH environment, and looking at various annealing conditions, key features of the functionalization process were identified that consequently will allow for intelligent material design. Loading with bisphosphonic acid was highest on supports calcined at 650 °C compared to lower calcination temperatures: A maximum capacity of 0.13 mmol g(-1) was obtained and the adsorption process could be modeled with a pseudo-second-order rate relationship. Heating at 650 °C resulted in a phase transition of the mixed binary oxide to a ternary oxide, titanium zirconium oxide in the srilankite phase. This phase transition was crucial in order to achieve high loading of the bisphosphonic acid and enhanced chemical stability in highly acidic solutions. Due to the inert nature of phosphorus-oxygen-metal bonds, materials functionalized by bisphosphonic acids showed increased chemical stability compared to their nonfunctionalized counterparts in harshly acidic solutions. Leaching studies showed that the acid stability of the functionalized material was improved with a partially crystalline srilankite phase. The materials were characterized using nitrogen sorption, X-ray powder diffraction, and UV-vis spectroscopy; X-ray photoelectron spectroscopy was used to study surface coverage with the bisphosphonic acid molecules.

  4. Immobilization of folic acid on Eu3+-doped nanoporous silica spheres.

    PubMed

    Tagaya, Motohiro; Ikoma, Toshiyuki; Yoshioka, Tomohiko; Xu, Zhefeng; Tanaka, Junzo

    2011-08-07

    Folic acid (FA) was immobilized on Eu(3+)-doped nanoporous silica spheres (Eu:NPSs) through mediation of the 3-aminopropyltriethoxysilane adlayer. The ordered nanopores of Eu:NPS were preserved by the immobilization. The FA-immobilized Eu:NPSs showed the characteristic photoluminescence peak due to interactions between the FA molecules and Eu(3+) ions, and highly dispersed stability in phosphate buffered saline.

  5. Acid rock drainage passive remediation using alkaline clay and impacts of vegetation and saturated sand barrier

    NASA Astrophysics Data System (ADS)

    Plaza, F.; Wen, Y.; Liang, X.

    2017-12-01

    Acid rock drainage (ARD) caused by abundance of coal refuse (CR) deposits in mining regions requires adequate treatment to prevent serious water pollution due to its acidity and high concentrations of sulfate and metals/metalloids. Over the past decades, various approaches have been explored and developed to remediate ARD. This study uses laboratory experiments to investigate the effectiveness and impacts of ARD passive remediation using alkaline clay (AC), a by-product of the aluminum refining process. Twelve column kinetic leaching experiments were set up with CR/AC mixing ratios ranging from 1%AC to 10%AC. Samples were collected from these columns to measure the pH, sulfate, metals/metalloids, acidity and alkalinity. Additional tests of XRD and acid base accounting were also conducted to better characterize the mineral phase in terms of the alkalinity and acidity potential. Based on the leachate measurement results, these columns were further classified into two groups of neutral/near neutral pH and acidic pH for further analysis. In addition, impacts of the vegetation and saturated sand layer on the remediation effectiveness were explored. The results of our long-term (more than three years in some cases) laboratory experiments show that AC is an effective ARD remediation material for the neutralization of leachate pH and immobilization of sulfate and metals such as Fe, Mn, Cu, Zn, Ni, Pb, Cd, Co. The CR/AC mixing ratios higher than 3%AC are found to be effective, with 10% close to optimal. Moreover, the results demonstrate the benefits of using vegetation and a saturated sand barrier. Vegetation acted as a phytoaccumulation/phytoextraction agent, causing an additional immobilization of metals. The saturated sand barrier blocked the oxygen and water diffusion downwards, leading to a reduction of the pyrite oxidation rate. Finally, the proposed remediation approach shows that the acidity consumption will likely occur before all the alkalinity is exhausted

  6. Vinegar Production from Jabuticaba (Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria

    PubMed Central

    Silva, Monique Suela; Cristina de Souza, Angélica; Magalhăes-Guedes, Karina Teixeira; Ribeiro, Fernanda Severo de Rezende; Schwan, Rosane Freitas

    2016-01-01

    Summary Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba (Myrciaria jaboticaba) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans. To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar. PMID:27956867

  7. Vinegar Production from Jabuticaba (Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria.

    PubMed

    Dias, Disney Ribeiro; Silva, Monique Suela; Cristina de Souza, Angélica; Magalhăes-Guedes, Karina Teixeira; Ribeiro, Fernanda Severo de Rezende; Schwan, Rosane Freitas

    2016-09-01

    Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba ( Myrciaria jaboticaba ) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans . To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar.

  8. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    DOEpatents

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  9. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Dongyan, E-mail: xdy0156@sina.com; Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidicmore » property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.« less

  10. Zirconium-modified materials for selective adsorption and removal of aqueous arsenic

    DOEpatents

    Zhao, Hongting; Moore, Robert C.

    2004-11-30

    A method, composition, and apparatus for removing contaminant species from an aqueous medium comprising: providing a material to which zirconium has been added, the material selected from one or more of zeolites, cation-exchangeable clay minerals, fly ash, mesostructured materials, activated carbons, cellulose acetate, and like porous and/or fibrous materials; and contacting the aqueous medium with the material to which zirconium has been added. The invention operates on all arsenic species in the form of arsenate, arsenite and organometallic arsenic, with no pretreatment necessary (e.g., oxidative conversion of arsenite to arsenate).

  11. New Soft Rock Pillar Strength Formula Derived Through Parametric FEA Using a Critical State Plasticity Model

    NASA Astrophysics Data System (ADS)

    Rastiello, Giuseppe; Federico, Francesco; Screpanti, Silvio

    2015-09-01

    Many abandoned room and pillar mines have been excavated not far from the surface of large areas of important European cities. In Rome, these excavations took place at shallow depths (3-15 m below the ground surface) in weak pyroclastic soft rocks. Many of these cavities have collapsed; others appear to be in a stable condition, although an appreciable percentage of their structural components (pillars, roofs, etc.) have shown increasing signs of distress from both the morphological and mechanical points of view. In this study, the stress-strain behaviour of soft rock pillars sustaining systems of cavities under vertical loads was numerically simulated, starting from the in situ initial conditions due to excavation of the cavities. The mechanical behaviour of the constituent material of the pillar was modelled according to the Modified Cam-Clay constitutive law (elasto-plastic with strain hardening). The influence of the pillar geometry (cross-section area, shape, and height) and mechanical parameters of the soft rock on the ultimate compressive strength of the pillar as a whole was parametrically investigated first. Based on the numerical results, an original relationship for pillar strength assessment was developed. Finally, the estimated pillar strengths according to the proposed formula and well-known formulations in the literature were compared.

  12. Hydrolysis of tannic acid catalyzed by immobilized-stabilized derivatives of Tannase from Lactobacillus plantarum.

    PubMed

    Curiel, Jose Antonio; Betancor, Lorena; de las Rivas, Blanca; Muñoz, Rosario; Guisan, Jose M; Fernández-Lorente, Gloria

    2010-05-26

    A recombinant tannase from Lactobacillus plantarum , overexpressed in Escherichia coli , was purified in a single step by metal chelate affinity chromatography on poorly activated nickel supports. It was possible to obtain 0.9 g of a pure enzyme by using only 20 mL of chromatographic support. The pure enzyme was immobilized and stabilized by multipoint covalent immobilization on highly activated glyoxyl agarose. Derivatives obtained by multipoint and multisubunit immobilization were 500- and 1000-fold more stable than both the soluble enzyme and the one-point-immobilized enzyme in experiments of thermal and cosolvent inactivation, respectively. In addition, up to 70 mg of pure enzyme was immobilized on 1 g of wet support. The hydrolysis of tannic acid was optimized by using the new immobilized tannase derivative. The optimal reaction conditions were 30% diglyme at pH 5.0 and 4 degrees C. Under these conditions, it was possible to obtain 47.5 mM gallic acid from 5 mM tannic acid as substrate. The product was pure as proved by HPLC. On the other hand, the immobilized biocatalyst preserved >95% of its initial activity after 1 month of incubation under the optimal reaction conditions.

  13. Direct synthesis of zirconium powder by magnesium reduction

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Won; Yun, Jung-Yeul; Yoon, Sung-Won; Wang, Jei-Pil

    2013-05-01

    The direct synthesis of zirconium powder has been conducted through an analysis of the chemical reaction between evaporated ZrCl4 and molten magnesium over a range of reduction temperatures, concentration of hydrochloric acid, and stirring time. The observed results indicated that the purity of zirconium powder increased with increased stirring time, and Mg and MgCl2 were removed by 10 wt% of hydrochloric acid solution. The pure zirconium powder was obtained by stirring again for 5 h using 5 wt% of hydrochloric acid solution. It was noted that the mean particle size increased when the reaction temperature was increased, and the size of the powder at 1,123 K and 1,173 K was found to be 10 μm and 15 μm, respectively. In addition, the purity of the powder was also improved with temperature, and its purity finally reached up to 99.5% at 1,250 K. Overall, pure zirconium powder was obtained after a stirring stage for 5 hours using 5 wt% of hydrochloric acid solution.

  14. Enhancement of L(+)-Lactic Acid Production of Immobilized Rhizopus Oryzae Implanted by Ion Beams

    NASA Astrophysics Data System (ADS)

    Fan, Yonghong; Yang, Yingge; Zheng, Zhiming; Li, Wen; Wang, Peng; Yao, Liming; Yu, Zengliang

    2008-02-01

    Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. oryzae mutant (RL6041) with a 90% conversion rate of glucose into L-lactic acid was obtained by N+ implantation under the optimized conditions of a beam energy of 15 keV and a dose of 2.6 × 1015 ions/cm2. Using polyurethane foam as the immobilization matrix, the optimal L-lactic acid production conditions were determined as 4 mm polyurethane foam, 150 r/min, 50 g/L ~ 80 g/L of initial glucose, 38°C and pH 6.0. 15-cycle repeated productions of L-lactic acid by immobilized RL6041 were performed under the optimized culturing conditions and over 80% of the glucose was converted into L-lactic acid in 30 hours on average. The results show that immobilized RL6041 is a promising candidate for continuous L-lactic acid production.

  15. Minimalistic Liquid-Assisted Route to Highly Crystalline α-Zirconium Phosphate.

    PubMed

    Cheng, Yu; Wang, Xiaodong Tony; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2017-08-24

    Zirconium phosphates have potential applications in areas of ion exchange, catalysis, photochemistry, and biotechnology. However, synthesis methodologies to form crystalline α-zirconium phosphate (Zr(HPO 4 ) 2 ⋅H 2 O) typically involve the use of excess phosphoric acid, addition of HF or oxalic acid and long reflux times or hydrothermal conditions. A minimalistic sustainable route to its synthesis has been developed by using only zirconium oxychloride and concentrated phosphoric acid to form highly crystalline α-zirconium phosphate within hours. The morphology can be changed from platelets to rod-shaped particles by fluoride addition. By varying the temperature and time, α-zirconium phosphate with particle sizes from nanometers to microns can be obtained. Key features of this minimal solvent synthesis are the excellent yields obtained with high atom economy under mild conditions and ease of scalability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rational Design of Zirconium-doped Titania Photocatalysts with Synergistic Brønsted Acidity and Photoactivity.

    PubMed

    Ma, Runyuan; Wang, Liang; Zhang, Bingsen; Yi, Xianfeng; Zheng, Anmin; Deng, Feng; Yan, Xuhua; Pan, Shuxiang; Wei, Xiao; Wang, Kai-Xue; Su, Dang Sheng; Xiao, Feng-Shou

    2016-10-06

    The preparation of photocatalysts with high activities under visible-light illumination is challenging. We report the rational design and construction of a zirconium-doped anatase catalyst (S-Zr-TiO 2 ) with Brønsted acidity and photoactivity as an efficient catalyst for the degradation of phenol under visible light. Electron microscopy images demonstrate that the zirconium sites are uniformly distributed on the sub-10 nm anatase crystals. UV-visible spectrometry indicates that the S-Zr-TiO 2 is a visible-light-responsive catalyst with narrower band gap than conventional anatase. Pyridine-adsorption infrared and acetone-adsorption 13 C NMR spectra confirm the presence of Brønsted acidic sites on the S-Zr-TiO 2 sample. Interestingly, the S-Zr-TiO 2 catalyst exhibits high catalytic activity in the degradation of phenol under visible-light illumination, owing to a synergistic effect of the Brønsted acidity and photoactivity. Importantly, the S-Zr-TiO 2 shows good recyclability. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Temperature effects on protein depolymerization and amino acid immobilization rates in soils.

    NASA Astrophysics Data System (ADS)

    Noll, Lisa; Hu, Yuntao; Zhang, Shasha; Zheng, Qing; Wanek, Wolfgang

    2017-04-01

    the three different temperatures. Amino acid concentrations and at% 15N of amino acids were measured in soil extracts at two time points by a novel approach based on the conversion of α-amino groups to N2O and purge-and-trap isotope ratio mass spectrometry. Protein availability was measured by extraction in solvents of increasing extraction efficiency (water, salt, metaphosphate, hydroxide), followed by acid hydrolysis to free amino acids and reaction with orthophthaldialdehyde. Peptidase activity was also measured at 5, 15 and 25˚ C using fluorescence probes. We expect that soil texture (clay content) and pH will affect protein sorption and availability and thereby affect depolymerization rates. Soil C:N ratios may control the N demand of microorganisms and thus affect enzyme production and amino acid immobilization rates. Moreover, soil pH is a major control on microbial community structure and may thereby affect the production of extracellular enzymes involved in protein and peptide decomposition. Due to the differences in temperature sensitivity of diffusion and enzymatic processes we expect higher temperature sensitivities given that protein decomposition is enzyme- rather than substrate-limited. This study will therefore greatly advance our understanding of major controls of the soil N cycle and provide highly important data for refining soil N cycle models.

  18. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  19. Carbodiimide-mediated immobilization of acidic biomolecules on reversed-charge zwitterionic sensor chip surfaces.

    PubMed

    Risse, Fabian; Gedig, Erk T; Gutmann, Jochen S

    2018-04-30

    The carbodiimide-mediated amine coupling of protein ligands to sensor chips coated with anionic polycarboxylate hydrogels, such as carboxymethyl dextran, is the predominant covalent immobilization procedure utilized in optical biosensors, namely surface plasmon resonance (SPR) biosensors. Usually, electrostatic interactions at a slightly acidic pH and low ionic strength are employed to efficiently accumulate neutral and basic ligands on the chip surface, which are then covalently coupled by surface-bound active N-hydroxysuccinimide (NHS) esters. Unfortunately, this approach is not suitable for acidic proteins or other ligands with low isoelectric points (IEPs), such as nucleic acids, because the charge density of the polycarboxylates is greatly reduced at acidic pH or because electrostatic attraction cannot be achieved. To overcome these drawbacks, we have established a charge-reversal approach that allows the preconcentration of acidic proteins above their IEPs. A precisely controlled amount of tertiary amines is applied to reverse the previous anionic surface charge while maintaining carbodiimide compatibility with future protein immobilization. The mechanism of this reversed-charge immobilization approach was demonstrated employing protein A as a model protein and using attenuated total reflectance Fourier transform infrared spectroscopy, dynamic contact angle measurements, colorimetric quantification, and SPR analysis to characterize surface derivatization. Furthermore, even though it had previously proven impossible to preconcentrate DNA electrostatically and to covalently couple it to polyanionic chip surfaces, we demonstrated that our approach allowed DNA to be preconcentrated and immobilized in good yields. Graphical abstract Principle of the covalent immobilization of acidic ligands on reversed-charge zwitterionic sensor chip surfaces.

  20. Process for immobilizing radioactive boric acid liquid wastes

    DOEpatents

    Greenhalgh, Wilbur O.

    1986-01-01

    A method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  1. EPS production by Propionibacterium freudenreichii facilitates its immobilization for propionic acid production.

    PubMed

    Belgrano, F D S; Verçoza, B R F; Rodrigues, J C F; Hatti-Kaul, R; Pereira, N

    2018-04-28

    Immobilization of microbial cells is a useful strategy for developing high cell density bioreactors with improved stability and productivity for production of different chemicals. Functionalization of the immobilization matrix or biofilm forming property of some strains has been utilized for achieving cell attachment. The aim of the present study was to investigate the production of exopolysaccharide (EPS) by Propionibacterium freudenreichii C.I.P 59.32 and utilize this feature for immobilization of the cells on porous glass beads for production of propionic acid. Propionibacterium freudenreichii was shown to produce both capsular and excreted EPS during batch cultivations using glucose as carbon source. Different electron microscopy techniques confirmed the secretion of EPS and formation of cellular aggregates. The excreted EPS was mainly composed of mannose and glucose in a 5·3 : 1 g g -1 ratio. Immobilization of the cells on untreated and polyethyleneimine (PEI)-treated Poraver beads in a bioreactor was evaluated. Higher productivity and yield of propionic acid (0·566 g l -1  h -1 and 0·314 g g -1 , respectively) was achieved using cells immobilized to untreated beads and EPS production reached 617·5 mg l -1 after 48 h. These results suggest an important role of EPS-producing strains for improving cell immobilization and propionic acid production. This study demonstrates the EPS-producing microbe to be easily immobilized on a solid matrix and to be used in a bioprocess. Such a system could be optimized for achieving high cell density in fermentations without the need for functionalization of the matrix. © 2018 The Society for Applied Microbiology.

  2. Process for immobilizing radioactive boric acid liquid wastes

    DOEpatents

    Greenhalgh, W.O.

    1984-05-10

    Disclosed is a method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  3. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27.

    PubMed

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by LC MS/MS analysis. The method led to very effective (90%) laccase immobilization and also imparted significant stability to the enzyme (more than 70% after 5 months of storage at 4°C). In batch decolorization, 90-95% decolorization was achieved of the simulated dye effluent for up to 10-20 cycles. Continuous decolorization in a packed bed bioreactor led to nearly 90% decolorization for up to 5 days. The immobilized laccase was also effective in decolorization and degradation of Acid Red 27 in the presence of a mediator. Four products of degradation were identified by LC-MS/MS analysis. The immobilized laccase in PVA-nitrate was concluded to be an effective agent in treatment of textile dye effluents.

  4. Quercetin as colorimetric reagent for determination of zirconium

    USGS Publications Warehouse

    Grimaldi, F.S.; White, C.E.

    1953-01-01

    Methods described in the literature for the determination of zirconium are generally designed for relatively large amounts of this element. A good procedure using colorimetric reagent for the determination of trace amounts is desirable. Quercetin has been found to yield a sensitive color reaction with zirconium suitable for the determination of from 0.1 to 50?? of zirconium dioxide. The procedure developed involves the separation of zirconium from interfering elements by precipitation with p-dimethylaminoazophenylarsonic acid prior to its estimation with quercetin. The quercetin reaction is carried out in 0.5N hydrochloric acid solution. Under the operating conditions it is indicated that quercetin forms a 2 to 1 complex with zirconium; however, a 2 to 1 and a 1 to 1 complex can coexist under special conditions. Approximate values for the equilibrium constants of the complexes are K1 = 0.33 ?? 10-5 and K2 = 1.3 ?? 10-9. Seven Bureau of Standards samples of glass sands and refractories were analyzed with excellent results. The method described should find considerable application in the analysis of minerals and other materials for macro as well as micro amounts of zirconium.

  5. SEPARATION OF URANIUM FROM ZIRCONIUM AND NIOBIUM BY SOLVENT EXTRACTION

    DOEpatents

    Voiland, E.E.

    1958-05-01

    A process for separation of the uranium from zirconium and/or niobium values contained in 3 to 7M aqueous nitric acid solutions is described. This is accomplished by adding phosphoric acid anions to the nitric acid solution containing the uranium, zirconium, and/or niobium in an amount sufficient to make the solution 0.05 to 0.2M in phosphate ion and contacting the solution with an organic water-immiscible solvent such as MEK, whereby the uranyl values are taken up by the extract phase while the zirconium and niobium preferentially remain in the aqueous raffinate.

  6. Pilarization TiO2 onto De-oiled spent bleaching clay using Rarasaponin as surfactant

    NASA Astrophysics Data System (ADS)

    Hindryawati, N.; Daniel; Erwin; Fadillah, N. D.

    2018-03-01

    Synthesis and characterization TiO2 pillared deoiled spent bleaching clay (DSBC) with rarasaponin as surfactant had been done. Activation DSBC have been done with H2SO4 1N, followed by pillarization with TiO2 using rarasaponin as surfactant. Characterization has done with Fourier transform infrared spectroscopy showed the rarasaponin as surfactant was successfully carried out in DSBC with the presence of absorption peak C=O stretching group in a sharp 1720.50 cm-1 wavelength range. As well as the C-CH2 stretching uptake peak is represented on wave number 1462.04 cm-1 and 1033,85 cm-1 for aromatic functional group C=C stretching. After pillared by TiO2, the XRD pattern on DSBC showed new peak appears on 2θ = 27,4460° 36,0850° and 55,3216° and the mineral contain on DSBC is rectorite with dioctahedral mica layer and dioctahedral smectite with ratio 2:1. This molecule have formula Na.Al4(Si, Al)8.O20.(OH)4. H2O. Crystallinty of pillared clay showed 72,5014 % after calcination and there is some Ti suspected on the layer based on SEM.

  7. The radiolysis and radioracemization of amino acids on clays

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Hall, H.; Chow, G.; Yi, L.; Lemmon, R. M.

    1985-01-01

    The effects of the surfaces of kaolinite and bentonite clays on the radiolysis and radioracemization of L-leucine and its hydrochloride salt have been investigated experimentally. L-leucine and its hydrochloride salt were deposited on the clays and the amino acid/clay preparations were irradiated by a Co-60 gamma-ray source which induced 2-89 percent radiolysis. The efficiency of radiolysis and radioracemization were measured using gas chromatography. Results were obtained for leucine in 0.1 M aqueous solution for comparison with the clay-deposted leucine and leucine hydrochloride. It is found that radiolysis and radioracemization in the samples occurred according to a pseudo-first-order rate law. Comparison of the specific rate constants showed that leucine and its hydrochloride salt were the most resistant to both radiolysis and radioracemization, followed by leucine and its hydrochloride salt on kaolin. Leucine and its HCl salt on bentonite, and leucine in aqueous solution were found to be the least resistant to radiolysis and radioracemization. The experimental results are intepreted with respect to the Vester-Ulbricht mechanism for the origin of optical activity.

  8. Thermal immobilization of Cr, Cu and Zn of galvanizing wastes in the presence of clay and fly ash.

    PubMed

    Singh, I B; Chaturvedi, K; Yegneswaran, A H

    2007-07-01

    In the present investigation thermal treatment of galvanizing waste with clay and fly ash has been carried out to immobilize Cr, Zn, Cu and other metals of the waste at temperature range 850 degrees C to 950 degrees C. Leaching of the metals from the waste and solidified product was analyzed using toxic characteristic leaching procedure (TCLP). Results indicated that the composition of waste and clay treatment temperature are the key factors in determining the stability of solidified product. After heating at 950 degrees C, the solidified specimens of 10% waste with clay have shown comparatively a high compressive strength and less water absorption. However, a decrease in compressive strength and increase in water absorption were noticed after addition of 15% of waste with clay. The leachability of all the metals present in the waste was found to reduce considerably with the increase of treatment temperature. In the case of Cr and Zn, their leachabilty was found at unacceptable levels from the treated product obtained after heating at 850 degrees C However, their leachability was reduced significantly within an acceptable level after treatment at 950 degrees C. The thermal treatment has shown an increase of re-oxidation trend of Cr (III) to Cr (VI) up to 900 degrees C of heating and this trend became almost zero after heating at 950 degrees C. Addition of fly ash did not show any improvement in strength, durability and leachability of metals from the thermally treated product. X-ray diffraction (XRD) analysis of the product confirmed the presence of mixed phases of oxides of toxic metals.

  9. Spectroscopic Evidence of Uranium Immobilization in Acidic ...

    EPA Pesticide Factsheets

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6-5.8) conditions using U L3-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U-C bond distance at ~2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulating the SRS wetland process, U immobilization on roots was 2 orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was reoxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication on the long-term stewardship of U-contaminated wetlands. There were several former U processing facilities at the Savannah River Site (SRS), Aiken, SC. As a result of their operations, uranium has entered the surrounding environments. For example, approximately 45,000 kg o

  10. Fluorometric determination of zirconium in minerals

    USGS Publications Warehouse

    Alford, W.C.; Shapiro, L.; White, C.E.

    1951-01-01

    The increasing use of zirconium in alloys and in the ceramics industry has created renewed interest in methods for its determination. It is a common constituent of many minerals, but is usually present in very small amounts. Published methods tend to be tedious, time-consuming, and uncertain as to accuracy. A new fluorometric procedure, which overcomes these objections to a large extent, is based on the blue fluorescence given by zirconium and flavonol in sulfuric acid solution. Hafnium is the only element that interferes. The sample is fused with borax glass and sodium carbonate and extracted with water. The residue is dissolved in sulfuric acid, made alkaline with sodium hydroxide to separate aluminum, and filtered. The precipitate is dissolved in sulfuric acid and electrolysed in a Melaven cell to remove iron. Flavonol is then added and the fluorescence intensity is measured with a photo-fluorometer. Analysis of seven standard mineral samples shows excellent results. The method is especially useful for minerals containing less than 0.25% zirconium oxide.

  11. Variable Temperature Infrared Spectroscopy Investigation of Benzoic Acid Interactions with Montmorillonite Clay Interlayer Water.

    PubMed

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-07-01

    Molecular interactions between benzoic acid and cations and water contained in montmorillonite clay interlayer spaces are characterized by using variable temperature diffuse reflection infrared Fourier transform spectroscopy (VT-DRIFTS). Using sample perturbation and difference spectroscopy, infrared spectral changes resulting from removal of interlayer water and associated changes in local benzoic acid environments are identified. Difference spectra features can be correlated with changes in specific molecular vibrations that are characteristic of benzoic acid molecular orientation. Results suggest that the carboxylic acid functionality of benzoic acid interacts with interlayer cations through a bridging water molecule and that this interaction is affected by the nature of the cation present in the clay interlayer space.

  12. Citric acid production using immobilized conidia of Aspergillus niger TMB 2022

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsay, S.S.; To, K.Y.

    1987-02-20

    Conidia of Aspergillus niger TMB 2022 were immobilized in calcium alginate for the production of citric acid. A 1-ml condidia suspension containing ca. 2.32 x 10/sup 8/ conidia were entrapped into sodium alginate solution in order to prepare 3% Ca-alginate (w/v) gel bead. Immobilized conidia were inoculated into productive medium containing 14% sucrose, 0.25% (NH/sub 4/)/sub 2/CO/sub 3/, 0.25% KH/sub 2/PO/sub 4/, and 0.025% MgSO/sub 4/.7H/sub 2/O with addition of 0.06 mg/l CuSO/sub 4/.5H/sub 2/O, 0.25 mg/l ZnCl/sub 2/, 1.3 mg/l FeCl/sub 3/.6H/sub 2/O, pH 3.8, and incubated at 35 degrees C for 13 days by surface culture to producemore » 61.53 g/l anhydrous citric acid. Under the same conditions with a batchwise culture, it was found that immobilized conidia could maintain a longer period for citric acid production (31 days): over 70 g/l anhydrous citric acid from runs No. 2-4, with the maximum yield for anhydrous citric acid reaching 77.02 g/l for run No. 2. In contrast, free conidia maintained a shorter acid-producing phase, circa 17 days; the maximum yield for anhydrous citric acid was 71.07 g/l for run No. 2 but dropped quickly as the run number increased. 14 references.« less

  13. Continuous citric acid production in repeated-fed batch fermentation by Aspergillus niger immobilized on a new porous foam.

    PubMed

    Yu, Bin; Zhang, Xin; Sun, Wenjun; Xi, Xun; Zhao, Nan; Huang, Zichun; Ying, Zhuojun; Liu, Li; Liu, Dong; Niu, Huanqing; Wu, Jinglan; Zhuang, Wei; Zhu, Chenjie; Chen, Yong; Ying, Hanjie

    2018-06-20

    The efficiency of current methods for industrial production of citric acid is limited. To achieve continuous citric acid production with enhanced yield and reduced cost, immobilized fermentation was employed in an Aspergillus niger 831 repeated fed-batch fermentation system. We developed a new type of material (PAF201), which was used as a carrier for the novel adsorption immobilization system. Hydrophobicity, pore size and concentration of carriers were researched in A. niger immobilization. The efficiency of the A. niger immobilization process was analyzed by scanning electron microscopy. Then eight-cycle repeated fed-batch cultures for citric acid production were carried out over 600 h, which showed stable production with maximum citric acid concentrations and productivity levels of 162.7 g/L and 2.26 g L -1  h -1 , respectively. Compared with some other literatures about citric acid yield, PAF201 immobilization system is 11.3% higher than previous results. These results indicated that use of the new adsorption immobilization system could greatly improve citric acid productivity in repeated fed-batch fermentation. Moreover, these results could provide a guideline for A.niger or other filamentous fungi immobilization in industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Immobilization of Actinobacillus succinogenes by adhesion or entrapment for the production of succinic acid.

    PubMed

    Corona-González, Rosa Isela; Miramontes-Murillo, Ricardo; Arriola-Guevara, Enrique; Guatemala-Morales, Guadalupe; Toriz, Guillermo; Pelayo-Ortiz, Carlos

    2014-07-01

    The production of succinic acid was studied with entrapped and adsorbed Actinobacillus succinogenes. The adsorption of fermentation products (organic acids in the concentration range of 1-20 g/L) on different supports was evaluated. It was found that succinic acid was adsorbed in small quantities on diatomite and zeolite (12.6 mg/g support). The highest production of succinic acid was achieved with A. succinogenes entrapped in agar beads. Batch fermentations with immobilized cells were carried out with glucose concentrations ranging from 20 to 80 g/L. Succinic acid (43.4 g/L) was obtained from 78.3g/L glucose, and a high productivity (2.83 g/Lh) was obtained with a glucose concentration of 37.6g/L. For repeated batch fermentations (5 cycles in 72 h) with immobilized cells in agar, the total glucose consumed was 147.55 g/L, while the production of succinic acid was 107 g/L. Immobilized cells reduced significantly the fermentation time, yield, productivity and final concentration of succinic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Photoinduced catalytic adsorption of model contaminants on Bi/Cu pillared montmorillonite in the visible light range

    EPA Science Inventory

    Montmorillonite K10 clay was pillared with BiCl3 and Cu(NO3)2 to extend its applicability as catalytic adsorbent to degrade aqueous solution of anionic azo-dye Methyl Orange (MO) in the presence of visible light irradiation. The preparation of Bi/Cu-montmorillonite utilized benig...

  16. Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite.

    PubMed

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Jokić, Bojan M; Nikolić, Svetlana B; Pejin, Jelena D

    2013-05-01

    In this study, lactic acid and biomass production on liquid distillery stillage from bioethanol production with Lactobacillus rhamnosus ATCC 7469 was studied. The cells were immobilized onto zeolite, a microporous aluminosilicate mineral and the lactic acid production with free and immobilized cells was compared. The immobilization allowed simple cell separation from the fermentation media and their reuse in repeated batch cycles. A number of viable cells of over 10(10) CFU g(-1) of zeolite was achieved at the end of fourth fermentation cycle. A maximal process productivity of 1.69 g L(-1), maximal lactic acid concentration of 42.19 g L(-1) and average yield coefficient of 0.96 g g(-1) were achieved in repeated batch fermentation on the liquid stillage without mineral or nitrogen supplementation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Diffusion of U(VI) in Opalinus Clay: Influence of temperature and humic acid

    NASA Astrophysics Data System (ADS)

    Joseph, C.; Van Loon, L. R.; Jakob, A.; Steudtner, R.; Schmeide, K.; Sachs, S.; Bernhard, G.

    2013-05-01

    The diffusion of U(VI) (c0 = 1 × 10-6 mol/L) in compacted Opalinus Clay from the Mont Terri underground laboratory, Switzerland, was studied in the absence and presence of humic acid (10 mg/L) at two different temperatures (25 °C, 60 °C) under anaerobic conditions. As background electrolyte synthetic Opalinus Clay pore water (pH 7.6, I = 0.36 mol/L) was used. The diffusion-accessible porosity, ɛ, was determined for each Opalinus Clay bore core sample by through-diffusion experiments with tritiated water (HTO) before the U(VI) diffusion experiments were carried out. The values for the effective diffusion and distribution coefficients De and Kd obtained for U(VI) and humic acid at 25 °C as well as at 60 °C showed that humic acid has no significant influence on the U(VI) diffusion. The diffusion profiles of humic acid in Opalinus Clay at 25 and 60 °C indicate the contributions of two different humic acid particle size fractions (<1 kDa and 10-100 kDa). The small-sized humic acid fraction diffused through the whole Opalinus Clay samples at both temperatures within the 3 month duration of the U(VI) diffusion experiments. At 60 °C, diffusion profiles of two different U(VI) species were observed. In a separate experiment the U(VI) speciation in the source reservoir solution at 60 °C was analyzed by laser-induced fluorescence spectroscopy, photon correlation spectroscopy and scanning electron microscopy with an energy dispersive X-ray detector. The two diffusion profiles could be attributed to an unknown colloidal and a known aquatic U(VI) species (Ca2UO2(CO3)3(aq)). The diffusion results showed that the interaction of U(VI) and of the large-sized humic acid colloid fraction with the clay is stronger at 60 °C. An increase of Kd from 0.025 ± 0.003 m3/kg at 25 °C to 0.25 ± 0.05 m3/kg for U(VI)colloidal at 60 °C was determined. In addition, the value for De of U(VI) increased with increasing temperature. Using the De values at 25 and 60 °C, a preliminary

  18. Poly(acrylic acid) nanogel as a substrate for cellulase immobilization for hydrolysis of cellulose.

    PubMed

    Ahmed, Ibrahim Nasser; Chang, Ray; Tsai, Wei-Bor

    2017-04-01

    Cellulase was adsorbed onto poly(acrylic acid), PAA, nanogel, that was fabricated via inverse-phase microemulsion polymerization. The PAA nanogel was around 150nm in diameter and enriched with carboxyl groups. The surface charge of PAA nanogel depended on the pHs of the environment and affected the adsorption of cellulase. The temperature stability of the immobilized cellulase was greatly enhanced in comparison to the free enzyme, especially at high temperature. At 80°C, the immobilized cellulase remained ∼75% of hydrolytic activity, in comparison to ∼55% for the free cellulase. Furthermore, the immobilized cellulase was more active than the free enzyme in acidic buffers. The immobilized cellulase could be recovered via centrifugation and can be used repeatedly, although the recovery ratio needs further improvement. In conclusion, PAA nanogel has the potential in the application of enzyme immobilization for biochemical processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Electrochemical detection of uric acid via uricase-immobilized graphene oxide.

    PubMed

    Omar, Muhamad Nadzmi; Salleh, Abu Bakar; Lim, Hong Ngee; Ahmad Tajudin, Asilah

    2016-09-15

    Measurement of the uric acid level in the body can be improved by biosensing with respect to the accuracy, sensitivity and time consumption. This study has reported the immobilization of uricase onto graphene oxide (GO) and its function for electrochemical detection of uric acid. Through chemical modification of GO using 1-ethyl-3-(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) as cross-linking reagents, the enzyme activity of the immobilized uricase was much comparable to the free enzyme with 88% of the activity retained. The modified GO-uricase (GOU) was then subjected to electrocatalytic detection of uric acid (UA) via cyclic voltammetry (CV). For that reason, a glassy carbon electrode (GCE) was modified by adhering the GO along with the immobilized uricase to facilitate the redox reaction between the enzyme and the substrate. The modified GOU/GCE outperformed a bare electrode through the electrocatalytic activity with an amplified electrical signal for the detection of UA. The electrocatalytic response showed a linear dependence on the UA concentration ranging from 0.02 to 0.49 mM with a detection limit of 3.45 μM at 3σ/m. The resulting biosensor also exhibited a high selectivity towards UA in the presence of other interference as well as good reproducibility. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Electrophoretic fabrication of chitosan-zirconium-oxide nanobiocomposite platform for nucleic acid detection.

    PubMed

    Das, Maumita; Dhand, Chetna; Sumana, Gajjala; Srivastava, A K; Nagarajan, R; Nain, Lata; Iwamoto, M; Manaka, Takaaki; Malhotra, B D

    2011-03-14

    The present work describes electrophoretic fabrication of nanostructured chitosan-zirconium-oxide composite (CHIT-NanoZrO(2)) film (180 nm) onto indium-tin-oxide (ITO)-coated glass plate. This nanobiocomposite film has been explored as immobilization platform for probe DNA specific to M. Tuberculosis as model biomolecule to investigate its sensing characteristics. It is revealed that pH-responsive behavior of CHIT and its cationic skeleton is responsible for the movement of CHIT-NanoZrO(2) colloids toward cathode during electrophoretic deposition. The FT-IR, SEM, TEM, and EDX techniques have been employed for the structural, morphological, and composition analysis of the fabricated electrodes. The morphological studies clearly reveal uniform inter-linking and dispersion of hexagonal nanograins of ZrO(2) (30-50 nm) into the chitosan matrix, resulting in homogeneous nanobiocomposite formation. Electrochemical response measurements of DNA/CHIT-NanoZrO(2)/ITO bioelectrode, carried out using cyclic voltammetry and differential pulse voltammetry, reveal that this bioelectrode can specifically detect complementary target DNA up to 0.00078 μM with sensitivity of 6.38 × 10(-6) AμM(-1).

  1. Determination of fluoride in water - A modified zirconium-alizarin method

    USGS Publications Warehouse

    Lamar, W.L.

    1945-01-01

    A convenient, rapid colorimetric procedure using the zirconium-alizarin indicator acidified with sulfuric acid for the determination of fluoride in water is described. Since this acid indicator is stable indefinitely, it is more useful than other zirconium-alizarin reagents previously reported. The use of sulfuric acid alone in acidifying the zirconium-alizarin reagent makes possible the maximum suppression of the interference of sulfate. Control of the pH of the samples eliminates errors due to the alkalinity of the samples. The fluoride content of waters containing less than 500 parts per million of sulfate and less than 1000 p.p.m. of chloride may be determined within a limit of 0.1 p.p.m. when a 100-ml. sample is used.

  2. Study of CeO₂ Modified AlNi Mixed Pillared Clays Supported Palladium Catalysts for Benzene Adsorption/Desorption-Catalytic Combustion.

    PubMed

    Li, Jingrong; Zuo, Shufeng; Yang, Peng; Qi, Chenze

    2017-08-15

    A new functional AlNi-pillared clays (AlNi-PILC) with a large surface area and pore volume was synthesized. The performance of adsorption/desorption-catalytic combustion over CeO 2- modified Pd/AlNi-PILC catalysts was also studied. The results showed that the d 001 -value and specific surface area ( S BET ) of AlNi-PILC reached 2.11 nm and 374.8 m²/g, respectively. The large S BET and the d 001 -value improved the high capacity for benzene adsorption. Also, the strong interaction between PdCe mixed oxides and AlNi-PILC led to the high dispersion of PdO and CeO₂ on the support, which was responsible for the high catalytic performance. Especially, 0.2% Pd/12.5% Ce/AlNi-PILC presented high performance for benzene combustion at 240 °C and high CO₂ selectivity. Also, the combustion temperatures were lower compared to the desorption temperatures, which demonstrated that it could accomplish benzene combustion during the desorption process. Furthermore, its activity did not decrease after continuous reaction for 1000 h in dry air, and it also displayed good resistance to water and the chlorinated compound, making it a promising catalytic material for the elimination of volatile organic compounds.

  3. Design and construction of porous metal-organic frameworks based on flexible BPH pillars

    NASA Astrophysics Data System (ADS)

    Hao, Xiang-Rong; Yang, Guang-sheng; Shao, Kui-Zhan; Su, Zhong-Min; Yuan, Gang; Wang, Xin-Long

    2013-02-01

    Three metal-organic frameworks (MOFs), [Co2(BPDC)2(4-BPH)·3DMF]n (1), [Cd2(BPDC)2(4-BPH)2·2DMF]n (2) and [Ni2(BDC)2(3-BPH)2 (H2O)·4DMF]n (3) (H2BPDC=biphenyl-4,4'-dicarboxylic acid, H2BDC=terephthalic acid, BPH=bis(pyridinylethylidene)hydrazine and DMF=N,N'-dimethylformamide), have been solvothermally synthesized based on the insertion of heterogeneous BPH pillars. Framework 1 has "single-pillared" MOF-5-like motif with inner cage diameters of up to 18.6 Å. Framework 2 has "double pillared" MOF-5-like motif with cage diameters of 19.2 Å while 3 has "double pillared" 8-connected framework with channel diameters of 11.0 Å. Powder X-ray diffraction (PXRD) shows that 3 is a dynamic porous framework.

  4. [Immobilization of pectawamorine G10x on silichromes].

    PubMed

    Bogatskiĭ, A V; Davidenko, T I; Gren', T A

    1980-01-01

    Immobilization of pectawamorine G10x on silochromes, using cyanuric chloride, 2,4-toluylene diisocyanate, glutaric dialdehyde, thionyl chloride, phosphorus tribromide, titanium tetrachloride, zirconium oxychloride and hafnium oxychloride was studied. The use of glutaric dialdehyde assured the strongest binding and the preatest stability of activity. Properties of the native pectawamorine G10x and immobilized preparations were studied on a comparative basis. Pectawamorine G10x immobilized by means of hafnium oxychloride showed increased stability when stored at 5 degrees C and used repeatedly. In every case, except for cyanuric chloride and glutaric dialdehyde, maximum activity was at a temperature 10 degrees C higher than for the native enzyme, and optimum pH varied for the preparations with different binding reagents.

  5. Electron beam-induced graft polymerization of acrylic acid and immobilization of arginine-glycine-aspartic acid-containing peptide onto nanopatterned polycaprolactone.

    PubMed

    Sun, Hui; Wirsén, Anders; Albertsson, Ann-Christine

    2004-01-01

    Electron beam- (EB-) induced graft polymerization of acrylic acid and the subsequent immobilization of arginine-glycine-aspartic acid (RGD) peptide onto nanopatterned polycaprolactone with parallel grooves is reported. A high concentration of carboxylic groups was introduced onto the polymer substrate by EB-induced polymerization of acrylic acid. In the coupling of the RGD peptide to the carboxylated polymer surface, a three-step peptide immobilization process was used. This process included the activation of surface carboxylic acid into an active ester intermediate by use of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), the introduction of disulfide groups by use of 2-(2-pyridinyldithio)ethanamine hydrochloride (PDEA), and final immobilization of the peptide via a thiol-disulfide exchange reaction. The extent of coupling was measured by UV spectroscopy. A preliminary study of the in vitro behavior of keratinocytes (NCTC 2544) cultured on the acrylic acid-grafted and RGD peptide-coupled surface showed that most cells grown on the coupled samples had a spread-rounded appearance, while the majority of cells tended to be elongated along the grooves on uncoupled substrates.

  6. Clays in prebiological chemistry

    NASA Technical Reports Server (NTRS)

    Rao, M.; Oro, J.; Odom, D. G.

    1980-01-01

    The ways in which clays have been utilized in studies of prebiological chemistry are reviewed, and an assessment is given of the possible role of clays in prebiological systems. The adsorption of organic molecules on clays has been demonstrated, as has the synthesis of bioorganic monomers in the presence of clays. For instance, amino acids, purines and pyrimidines have been obtained from carbon monoxide and nitric acid in the presence of clays at relatively high temperatures (250-325 C). The oligomerization of biochemical monomers, mediated by clays, has also been shown to result in the formation of polymer molecules basic to life. Clays have also been found to affect the condensation of mononucleotides to oligonucleotides.

  7. Exfoliation restacking route to Au nanoparticle-clay nanohybrids

    NASA Astrophysics Data System (ADS)

    Paek, Seung-Min; Jang, Jae-Up; Hwang, Seong-Ju; Choy, Jin-Ho

    2006-05-01

    A novel gold-pillared aluminosilicate (Au-PILC) were synthesized with positively charged gold nanoparticles capped by mercaptoammonium and exfoliated silicate layers. Gold nanoparticles were synthesized by NaBH4 reduction of AuCl4- in the presence of N,N,N-Trimethyl (11-mercaptoundecyl)ammonium (HS(CH2)11NMe3+) protecting ligand in an aqueous solution, and purified by dialysis. The resulting positively charged and water-soluble gold nanoparticles were hybridized with exfoliated silicate sheets by electrostatic interaction. The formation of Au clay hybrids could be easily confirmed by the powder X-ray diffraction with the increased basal spacing of clay upon insertion of Au nanoparticles. TEM image clearly revealed that the Au particles with an average size of 4 nm maintain their structure even after intercalation. The Au nanoparticles supported by clay matrix were found to be thermally more stable, suggesting that the Au nanoparticles were homogeneously protected with clay nanoplates. The present synthetic route could be further applicable to various hybrid systems between metal nanoparticles and clays.

  8. Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors.

    PubMed

    Luo, Jianmin; Zhang, Wenkui; Yuan, Huadong; Jin, Chengbin; Zhang, Liyuan; Huang, Hui; Liang, Chu; Xia, Yang; Zhang, Jun; Gan, Yongping; Tao, Xinyong

    2017-03-28

    Two-dimensional transition-metal carbide materials (termed MXene) have attracted huge attention in the field of electrochemical energy storage due to their excellent electrical conductivity, high volumetric capacity, etc. Herein, with inspiration from the interesting structure of pillared interlayered clays, we attempt to fabricate pillared Ti 3 C 2 MXene (CTAB-Sn(IV)@Ti 3 C 2 ) via a facile liquid-phase cetyltrimethylammonium bromide (CTAB) prepillaring and Sn 4+ pillaring method. The interlayer spacing of Ti 3 C 2 MXene can be controlled according to the size of the intercalated prepillaring agent (cationic surfactant) and can reach 2.708 nm with 177% increase compared with the original spacing of 0.977 nm, which is currently the maximum value according to our knowledge. Because of the pillar effect, the assembled LIC exhibits a superior energy density of 239.50 Wh kg -1 based on the weight of CTAB-Sn(IV)@Ti 3 C 2 even under higher power density of 10.8 kW kg -1 . When CTAB-Sn(IV)@Ti 3 C 2 anode couples with commercial AC cathode, LIC reveals higher energy density and power density compared with conventional MXene materials.

  9. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    DOEpatents

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  10. Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays.

    PubMed

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-12-01

    Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate.

  11. Synthesis of α-linolenic acid-rich triacylglycerol using a newly prepared immobilized lipase.

    PubMed

    Kim, Heejin; Choi, Nakyung; Oh, Se-Wook; Kim, Yangha; Hee Kim, Byung; Kim, In-Hwan

    2017-12-15

    An α-linolenic acid (ALA)-rich triacylglycerol (TAG) was synthesized from an ALA-rich fatty acid (FA) from perilla oil and glycerol, using a newly prepared immobilized lipase under vacuum. The ALA-rich FA (purity >90wt%) used as the substrate was prepared by urea complexation from perilla oil FAs. Liquid Lipozyme TL 100L lipase from Thermomyces lanuginosus was used for immobilization. Nine different hydrophilic and hydrophobic carriers for immobilization were tested, and Duolite A568, which is a hydrophilic resin, was selected as the best carrier. This immobilized lipase was used to synthesize TAG by direct esterification under vacuum. The parameters investigated were temperature, enzyme loading, and vacuum level. The optimum reaction conditions were a temperature of 60°C, an enzyme loading of 15% (based on the total weight of the substrate), and a vacuum of 0.7kPa, respectively. The maximum conversion to TAG of ca. 88wt% was obtained in 12h under the optimum conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Electroless deposition process for zirconium and zirconium alloys

    DOEpatents

    Donaghy, R. E.; Sherman, A. H.

    1981-08-18

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer. 1 fig.

  13. Electroless deposition process for zirconium and zirconium alloys

    DOEpatents

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  14. Sorption-desorption of imidacloprid onto a lacustrine Egyptian soil and its clay and humic acid fractions.

    PubMed

    Kandil, Mahrous M; El-Aswad, Ahmed F; Koskinen, William C

    2015-01-01

    Sorption-desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption-desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kd(ads), varied according to its initial concentration and was ranged 40-84 for HA, 14-58 for clay and 1.85-4.15 for bulk soil. Freundlich sorption coefficient, Kf(ads), values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ∼800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/n(ads) values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.

  15. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    PubMed Central

    Deng, Li-Hong; Tang, Yong; Liu, Yun

    2014-01-01

    Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA) pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification. PMID:25133211

  16. Method and apparatus for staining immobilized nucleic acids

    DOEpatents

    Ramsey, J. Michael; Foote, Robert S.; Jacobson, Stephen C.

    2000-01-01

    A method for staining immobilized nucleic acids includes the steps of affixing DNA probes to a solid substrate, moving target DNA material into proximity with the DNA probes, whereby the target DNA hybridized with specific ones of the DNA probes, and moving a fluorescent dye into proximity with the hybridized target DNA, whereby the fluorescent dye binds to the hybridized DNA to enable subsequent detection of fluorescence.

  17. Study of CeO2 Modified AlNi Mixed Pillared Clays Supported Palladium Catalysts for Benzene Adsorption/Desorption-Catalytic Combustion

    PubMed Central

    Li, Jingrong; Yang, Peng; Qi, Chenze

    2017-01-01

    A new functional AlNi-pillared clays (AlNi-PILC) with a large surface area and pore volume was synthesized. The performance of adsorption/desorption-catalytic combustion over CeO2-modified Pd/AlNi-PILC catalysts was also studied. The results showed that the d001-value and specific surface area (SBET) of AlNi-PILC reached 2.11 nm and 374.8 m2/g, respectively. The large SBET and the d001-value improved the high capacity for benzene adsorption. Also, the strong interaction between PdCe mixed oxides and AlNi-PILC led to the high dispersion of PdO and CeO2 on the support, which was responsible for the high catalytic performance. Especially, 0.2% Pd/12.5% Ce/AlNi-PILC presented high performance for benzene combustion at 240 °C and high CO2 selectivity. Also, the combustion temperatures were lower compared to the desorption temperatures, which demonstrated that it could accomplish benzene combustion during the desorption process. Furthermore, its activity did not decrease after continuous reaction for 1000 h in dry air, and it also displayed good resistance to water and the chlorinated compound, making it a promising catalytic material for the elimination of volatile organic compounds. PMID:28809809

  18. Effect of linoleic-acid modified carboxymethyl chitosan on bromelain immobilization onto self-assembled nanoparticles

    NASA Astrophysics Data System (ADS)

    Tan, Yu-long; Liu, Chen-guang; Yu, Le-jun; Chen, Xi-guang

    2008-06-01

    Hydrogel nanoparticles could be prepared by using linoleic acid (LA) modified carboxymethyl chitosan (CMCS) after sonication. Bromelain could be loaded onto nanoparticles of LA-CMCS. Factors affecting the activity of the immobilized enzyme, including temperature, storage etc., were investigated in this study. The results showed that the stability of bromelain for heat and storage was improved after immobilization on nanoparticles. The Michaelis constant ( K m) of the immobilized enzyme was smaller than that of free enzyme, indicating that the immobilization could promote the stability of the enzyme and strengthen the affinity of the enzyme for the substrate.

  19. Gamma-Aminobutyric Acid Production Using Immobilized Glutamate Decarboxylase Followed by Downstream Processing with Cation Exchange Chromatography

    PubMed Central

    Lee, Seungwoon; Ahn, Jungoh; Kim, Yeon-Gu; Jung, Joon-Ki; Lee, Hongweon; Lee, Eun Gyo

    2013-01-01

    We have developed a gamma-aminobutyric acid (GABA) production technique using his-tag mediated immobilization of Escherichia coli-derived glutamate decarboxylase (GAD), an enzyme that catalyzes the conversion of glutamate to GABA. The GAD was obtained at 1.43 g/L from GAD-overexpressed E. coli fermentation and consisted of 59.7% monomer, 29.2% dimer and 2.3% tetramer with a 97.6% soluble form of the total GAD. The harvested GAD was immobilized to metal affinity gel with an immobilization yield of 92%. Based on an investigation of specific enzyme activity and reaction characteristics, glutamic acid (GA) was chosen over monosodium glutamate (MSG) as a substrate for immobilized GAD, resulting in conversion of 2.17 M GABA in a 1 L reactor within 100 min. The immobilized enzymes retained 58.1% of their initial activities after ten consecutive uses. By using cation exchange chromatography followed by enzymatic conversion, GABA was separated from the residual substrate and leached GAD. As a consequence, the glutamic acid was mostly removed with no detectable GAD, while 91.2% of GABA was yielded in the purification step. PMID:23322022

  20. Intercalation chemistry of zirconium 4-sulfophenylphosphonate

    NASA Astrophysics Data System (ADS)

    Svoboda, Jan; Zima, Vítězslav; Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava

    2013-12-01

    Zirconium 4-sulfophenylphosphonate is a layered material which can be employed as a host for the intercalation reactions with basic molecules. A wide range of organic compounds were chosen to represent intercalation ability of zirconium 4-sulfophenylphosphonate. These were a series of alkylamines from methylamine to dodecylamine, 1,4-phenylenediamine, p-toluidine, 1,8-diaminonaphthalene, 1-aminopyrene, imidazole, pyridine, 4,4‧-bipyridine, poly(ethylene imine), and a series of amino acids from glycine to 6-aminocaproic acid. The prepared compounds were characterized by powder X-ray diffraction, thermogravimetry analysis and IR spectroscopy and probable arrangement of the guest molecules in the interlayer space of the host is proposed based on the interlayer distance of the prepared intercalates and amount of the intercalated guest molecules.

  1. Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis.

    PubMed

    Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Liu, Long; Chen, Jian

    2014-01-01

    The goal of this work was to develop an immobilized whole-cell biocatalytic process for the environment-friendly synthesis of α-ketoglutaric acid (α-KG) from l-glutamic acid. We compared the suitability of Escherichia coli and Bacillus subtilis strains overexpressing Proteus mirabilisl-amino acid deaminase (l-AAD) as potential biocatalysts. Although both recombinant strains were biocatalytically active, the performance of B. subtilis was superior to that of E. coli. With l-glutamic acid as the substrate, α-KG production levels by membranes isolated from B. subtilis and E. coli were 55.3±1.73 and 21.7±0.39μg/mg protein/min, respectively. The maximal conversion ratio of l-glutamic acid to α-KG was 31% (w/w) under the following optimal conditions: 15g/L l-glutamic acid, 20g/L whole-cell biocatalyst, 5mM MgCl2, 40°C, pH 8.0, and 24-h incubation. Immobilization of whole cells with alginate increased the recyclability by an average of 23.33% per cycle. This work established an efficient one-step biotransformation process for the production of α-KG using immobilized whole B. subtilis overexpressing P. mirabilisl-AAD. Compared with traditional multistep chemical synthesis, the biocatalytic process described here has the advantage of reducing environmental pollution and thus has great potential for the large-scale production of α-KG. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler.

    PubMed

    Shi, Xinchi; Chen, Yong; Ren, Hengfei; Liu, Dong; Zhao, Ting; Zhao, Nan; Ying, Hanjie

    2014-12-01

    An immobilized fermentation system, using cassava bagasse hydrolysate (CBH) and mixed alkalis, was developed to achieve economical succinic acid production by Corynebacterium glutamicum. The C. glutamicum strains were immobilized in porous polyurethane filler (PPF). CBH was used efficiently as a carbon source instead of more expensive glucose. Moreover, as a novel method for regulating pH, the easily decomposing NaHCO3 was replaced by mixed alkalis (NaOH and Mg(OH)2) for succinic acid production by C. glutamicum. Using CBH and mixed alkalis in the immobilized batch fermentation system, succinic acid productivity of 0.42gL(-1)h(-1) was obtained from 35gL(-1) glucose of CBH, which is similar to that obtained with conventional free-cell fermentation with glucose and NaHCO3. In repeated batch fermentation, an average of 22.5gL(-1) succinic acid could be obtained from each batch, which demonstrated the enhanced stability of the immobilized C. glutamicum cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Solid-phase extraction of galloyl- and caffeoylquinic acids from natural sources (Galphimia glauca and Arnicae flos) using pure zirconium silicate and bismuth citrate powders as sorbents inside micro spin columns.

    PubMed

    Hussain, Shah; Schönbichler, Stefan A; Güzel, Yüksel; Sonderegger, Harald; Abel, Gudrun; Rainer, Matthias; Huck, Christian W; Bonn, Günther K

    2013-10-01

    Galloyl- and caffeoylquinic acids are among the most important pharmacological active groups of natural compounds. This study describes a pre-step in isolation of some selected representatives of these groups from biological samples. A selective solid-phase extraction (SPE) method for these compounds may help assign classes and isomer designations within complex mixtures. Pure zirconium silicate and bismuth citrate powders (325 mesh) were employed as two new sorbents for optimized SPE of phenolic acids. These sorbents possess electrostatic interaction sites which accounts for additional interactions for carbon acid moieties as compared to hydrophilic and hydrophobic sorbents alone. Based on this principle, a selective SPE method for 1,3,4,5-tetragalloylquinic acid (an anti-HIV and anti-asthamatic agent) as a starting compound was developed and then deployed upon other phenolic acids with success. The recoveries and selectivities of both sorbents were compared to most commonly applied and commercially available sorbents by using high performance liquid chromatography. The nature of interaction between the carrier sorbent and the acidic target molecules was investigated by studying hydrophilic (silica), hydrophobic (C18), mixed-mode (ionic and hydrophobic: Oasis(®) MAX) and predominantly electrostatic (zirconium silicate) materials. The newly developed zirconium silicate and bismuth citrate stationary phases revealed promising results for the selective extraction of galloyl- and caffeoylquinic acids from natural sources. It was observed that zirconium silicate exhibited maximum recovery and selectivity for tetragalloylquinic acid (84%), chlorogenic acid (82%) and dicaffeoylquinic acid (94%) among all the tested sorbents. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Concentration and immobilization of 137Cs from liquid radioactive waste using sorbents based on hydrated titanium and zirconium oxides

    NASA Astrophysics Data System (ADS)

    Voronina, A. V.; Noskova, A. Y.; Gritskevich, E. Y.; Mashkovtsev, M. A.; Semenishchev, V. S.

    2017-09-01

    The possibility of use of sorbents based on hydrated titanium and zirconium oxides (T-3A, T-35, NPF-HTD) for concentration and immobilization of 137Cs from liquid radioactive waste of various chemical composition (fresh water, seawater, solutions containing NaNO3, ammonium acetate, EDTA) was evaluated. It was shown that the NPF-HTD and T-35 sorbents separate 137Cs from fresh water and seawater with distribution coefficients as high as 6.2.104 and 6.1.104, 4.0.105 and 1.6.105 L kg-1 respectively; in 1 M ammonium acetate these values were 2.0.103 and 1.0.103 L kg-1. The NPF-HTD sorbent showed the highest selectivity for cesium in NaNO3 solution: cesium distribution coefficients in 1M NaNO3 was 1.4.106 L kg-1. All studied sorbents are suitable for deactivation of solutions containing EDTA. Cesium distribution coefficients were around 102-103 L kg-1 depending on EDTA concentration. Chemical stability of the sorbents was also studied. It was shown that 137Cs leaching rate from all sorbents meet the requirements for matrix materials.

  5. Method for analyzing nucleic acids by means of a substrate having a microchannel structure containing immobilized nucleic acid probes

    DOEpatents

    Ramsey, J. Michael; Foote, Robert S.

    2003-12-09

    A method and apparatus for analyzing nucleic acids includes immobilizing nucleic probes at specific sites within a microchannel structure and moving target nucleic acids into proximity to the probes in order to allow hybridization and fluorescence detection of specific target sequences.

  6. Method for analyzing nucleic acids by means of a substrate having a microchannel structure containing immobilized nucleic acid probes

    DOEpatents

    Ramsey, J. Michael; Foote, Robert S.

    2002-01-01

    A method and apparatus for analyzing nucleic acids includes immobilizing nucleic probes at specific sites within a microchannel structure and moving target nucleic acids into proximity to the probes in order to allow hybridization and fluorescence detection of specific target sequences.

  7. Extractive separation of uranium and zirconium sulfates by amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroetterova, D.; Nekovar, P.; Mrnka, M.

    1992-04-01

    This paper describes an amine extraction process for zirconium and uranium separation. The behaviour of an extraction system containing uranium (VI) sulfate, zirconium (IV) sulfate, 0.2 and 0.5 M sulfuric acid (as the original aqueous phase), tertiary amine tri-n-lauryl- amine or primary amine Primene JMT in benzene (as the original organic phase) is discussed on the basis of equilibrium data. The measured dependences show that the degree of extraction of zirconium at the sulfuric acid concentration of 0.5 M and above is only slightly affected by a presence of uranium in solution. From this surprising behaviour it follows that zirconiummore » may be employed for the displacement of uranium from the organic phase. This effect is more pronounced with the primary amine Primene JMT than with TLA. 29 refs., 4 figs., 1 tab.« less

  8. Serum protein adsorption and platelet adhesion on aspartic-acid-immobilized polysulfone membranes.

    PubMed

    Higuchi, Akon; Hashiba, Hirokazu; Hayashi, Rika; Yoon, Boo Ok; Sakurai, Masaru; Hara, Mariko

    2004-01-01

    Polysulfone (PSf) membranes that covalently conjugated with aspartic acid (ASP-PSf) were prepared and analyzed for hemocompatability. Compared to PSf or other types of surface-modified PSf membranes, the ASP-PSf membranes had a reduced ability to adsorb protein from either a plasma solution or a mixed solution of albumin, globulin and fibrinogen. This appears to be due to the creation of a hydrophilic surface by the aspartic acid zwitterion immobilized on the ASP-PSf membranes. Furthermore, the analyses of membrane protein adsorption showed that a mixed protein solution recapitulates the cooperative adsorption of proteins that occurs in plasma. We also found that the number of adhering platelets was the lowest on the ASP-PSf membranes and, in general, that platelet adhesion decreased in parallel with fibrinogen adsorption. In summary, aspartic acid immobilized on the ASP-PSf membranes, which have zwitterions with a net zero charge, effectively contributes to the hydrophilic and hemocompatible sites on the surface of the hydrophobic PSf membranes.

  9. Cell immobilization for production of lactic acid biofilms do it naturally.

    PubMed

    Dagher, Suzanne F; Ragout, Alicia L; Siñeriz, Faustino; Bruno-Bárcena, José M

    2010-01-01

    Interest in natural cell immobilization or biofilms for lactic acid fermentation has developed considerably over the last few decades. Many studies report the benefits associated with biofilms as industrial methods for food production and for wastewater treatment, since the formation represents a protective means of microbial growth offering survival advantages to cells in toxic environments. The formation of biofilms is a natural process in which microbial cells adsorb to a support without chemicals or polymers that entrap the cells and is dependent on the reactor environment, microorganism, and characteristics of the support. These unique characteristics enable biofilms to cause chronic infections, disease, food spoilage, and devastating effects as in microbial corrosion. Their distinct resistance to toxicity, high biomass potential, and improved stability over cells in suspension make biofilms a good tool for improving the industrial economics of biological lactic acid production. Lactic acid bacteria and specific filamentous fungi are the main sources of biological lactic acid. Over the past two decades, studies have focused on improving the lactic acid volumetric productivity through reactor design development, new support materials, and improvements in microbial production strains. To illustrate the operational designs applied to the natural immobilization of lactic acid producing microorganisms, this chapter presents the results of a search for optimum parameters and how they are affected by the physical, chemical, and biological variables of the process. We will place particular emphasis upon the relationship between lactic acid productivity attained by various types of reactors, supports, media formulations, and lactic acid producing microorganisms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. Effect of Several Clay Minerals and Humic Acid on the Survival of Klebsiella aerogenes Exposed to Ultraviolet Irradiation1

    PubMed Central

    Bitton, Gabriel; Henis, Y.; Lahav, N.

    1972-01-01

    The effect of various clay minerals and humic acid on the survival of Klebsiella aerogenes exposed to ultraviolet (UV) irradiation was investigated. A protective effect was observed and found to depend on the specific light absorption and light scattering properties of the clay minerals and the humic acid used. The higher the specific absorption, the better was the survival of K. aerogenes after UV irradiation. Bacterial survival was lower in clays saturated with divalent cations (Ca, Zn) than in those homoionic to monovalent cations (K). PMID:5031559

  11. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. I. Covalent immobilization of oligonucleotide probes onto the nylon].

    PubMed

    Dmitrienko, E V; Pyshnaia, I A; Pyshnyĭ, D V

    2010-01-01

    The features of UV-induced immobilization of oligonucleotides on a nylon membranes and the effectiveness of enzymatic labeling of immobilized probes at heterophase detection of nucleic acids are studied. Short terminal oligothymidilate (up to 10 nt) sequences are suggested to attach to the probe via a flexible ethylene glycol based linker. The presence of such fragment enhances the intensity of immobilization and reduces UV-dependent degradation of the targeted (sequence-specific) part of the probe by reducing the dose needed for the immobilization of DNA. The optimum dose of UV-irradiation is determined to be ~0.4 J/cm(2) at the wavelength 254 nm. This dose provides high level of hybridization signal for immobilized probes with various nucleotide composition of the sequence specific moiety. The amide groups of the polyamide are shown to play the key role in the photoinduced immobilization of nucleic acids, whereas the primary amino groups in the structure of PA is not the center responsible for the covalent binding of DNA by UV-irradiation, as previously believed. Various additives in the soaking solution during the membrane of UV-dependent immobilization of probes are shown to influence its effectiveness. The use of alternative to UV-irradiation system of radical generation are shown to provide the immobilization of oligonucleotides onto the nylon membrane.

  12. Sensitivity of the acid-base properties of clays to the methods of preparation and measurement. 1. Literature review.

    PubMed

    Duc, Myriam; Gaboriaud, Fabien; Thomas, Fabien

    2005-09-01

    Measuring and modeling the surface charge of clays, and more especially smectites, has become an important issue in the use of bentonites as a waste confinement material aimed at retarding migration of water and solutes. Therefore, many studies of the acid-base properties of montmorillonite have appeared recently in the literature, following older studies principally devoted to cation exchange. It is striking that beyond the consensus about the complex nature of the surface charge of clays, there are many discrepancies, especially concerning the dissociable charge, that prevents intercomparison among the published data. However, a general trend is observed regarding the absence of common intersection point on raw titration curves at different ionic strengths. Analysis of the literature shows that these discrepancies originate from the experimental procedures for the preparation of the clays and for the quantification of their surface charge. The present work is an attempt to understand how these procedures can impact the final results. Three critical operations can be identified as having significant effects on the surface properties of the studied clays. The first one is the preparation of purified clay from the raw material: the use of acid or chelation treatments, and the repeated washings in deionized water result in partial dissolution of the clays. Then storage of the purified clay in dry or wet conditions strongly influences the equilibria in the subsequent experiments respectively by precipitation or enhanced dissolution. The third critical operation is the quantification of the surface charge by potentiometric titration, which requires the use of strong acids and bases. As a consequence, besides dissociation of surface sites, many secondary titrant consuming reactions were described in the literature, such as cation exchange, dissolution, hydrolysis, or precipitation. The cumulated effects make it difficult to derive proper dissociation constants, and to

  13. Immobilization of Escherichia coli Cells Containing Aspartase Activity with Polyurethane and Its Application for l-Aspartic Acid Production

    PubMed Central

    Fusee, Murray C.; Swann, Wayne E.; Calton, Gary J.

    1981-01-01

    Whole cells of Escherichia coli containing aspartase activity were immobilized by mixing a cell suspension with a liquid isocyanate-capped polyurethane prepolymer (Hypol). The immobilized cell preparation was used to convert ammonium fumarate to l-aspartic acid. Properties of the immobilized E. coli cells containing aspartase were investigated with a batch reactor. A 1.67-fold increase in the l-aspartic acid production rate was observed at 37°C as compared to 25°C operating temperature. The pH optimum was broad, ranging from 8.5 to 9.2. Increasing the concentration of ammonium fumarate to 1.5 M from 1.0 M negatively affected the reaction rate. l-Aspartic acid was produced at an average rate of 2.18 × 10−4 mol/min per g (wet weight) of immobilized E. coli cells with a 37°C substrate solution consisting of 1.0 M ammonium fumarate with 1 mM Mg2+ (pH 9.0). PMID:16345865

  14. Zirconium fluoride glass - Surface crystals formed by reaction with water

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  15. Cell motility regulation on a stepped micro pillar array device (SMPAD) with a discrete stiffness gradient.

    PubMed

    Lee, Sujin; Hong, Juhee; Lee, Junghoon

    2016-02-28

    Our tissues consist of individual cells that respond to the elasticity of their environment, which varies between and within tissues. To better understand mechanically driven cell migration, it is necessary to manipulate the stiffness gradient across a substrate. Here, we have demonstrated a new variant of the microfabricated polymeric pillar array platform that can decouple the stiffness gradient from the ECM protein area. This goal is achieved via a "stepped" micro pillar array device (SMPAD) in which the contact area with the cell was kept constant while the diameter of the pillar bodies was altered to attain the proper mechanical stiffness. Using double-step SU-8 mold fabrication, the diameter of the top of every pillar was kept uniform, whereas that of the bottom was changed, to achieve the desired substrate rigidity. Fibronectin was immobilized on the pillar tops, providing a focal adhesion site for cells. C2C12, HeLa and NIH3T3 cells were cultured on the SMPAD, and the motion of the cells was observed by time-lapse microscopy. Using this simple platform, which produces a purely physical stimulus, we observed that various types of cell behavior are affected by the mechanical stimulus of the environment. We also demonstrated directed cell migration guided by a discrete rigidity gradient by varying stiffness. Interestingly, cell velocity was highest at the highest stiffness. Our approach enables the regulation of the mechanical properties of the polymeric pillar array device and eliminates the effects of the size of the contact area. This technique is a unique tool for studying cellular motion and behavior relative to various stiffness gradients in the environment.

  16. Nanophase Nickel-Zirconium Alloys for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Whitacre, jay; Valdez, Thomas

    2008-01-01

    Nanophase nickel-zirconium alloys have been investigated for use as electrically conductive coatings and catalyst supports in fuel cells. Heretofore, noble metals have been used because they resist corrosion in the harsh, acidic fuel cell interior environments. However, the high cost of noble metals has prompted a search for less-costly substitutes. Nickel-zirconium alloys belong to a class of base metal alloys formed from transition elements of widely different d-electron configurations. These alloys generally exhibit unique physical, chemical, and metallurgical properties that can include corrosion resistance. Inasmuch as corrosion is accelerated by free-energy differences between bulk material and grain boundaries, it was conjectured that amorphous (glassy) and nanophase forms of these alloys could offer the desired corrosion resistance. For experiments to test the conjecture, thin alloy films containing various proportions of nickel and zirconium were deposited by magnetron and radiofrequency co-sputtering of nickel and zirconium. The results of x-ray diffraction studies of the deposited films suggested that the films had a nanophase and nearly amorphous character.

  17. Hyaluronic acid-modified zirconium phosphate nanoparticles for potential lung cancer therapy.

    PubMed

    Li, Ranwei; Liu, Tiecheng; Wang, Ke

    2017-02-01

    Novel tumor-targeting zirconium phosphate (ZP) nanoparticles modified with hyaluronic acid (HA) were developed (HA-ZP), with the aim of combining the drug-loading property of ZP and the tumor-targeting ability of HA to construct a tumor-targeting paclitaxel (PTX) delivery system for potential lung cancer therapy. The experimental results indicated that PTX loading into the HA-ZP nanoparticles was as high as 20.36%±4.37%, which is favorable for cancer therapy. PTX-loaded HA-ZP nanoparticles increased the accumulation of PTX in A549 lung cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity in vitro. In vivo anticancer efficacy assay revealed that HA-ZP nanoparticles possessed preferable anticancer abilities, which exhibited minimized toxic side effects of PTX and strong tumor-suppression potential in clinical application.

  18. PROCESS OF RECOVERING ZIRCONIUM VALUES FROM HAFNIUM VALUES BY SOLVENT EXTRACTION WITH AN ALKYL PHOSPHATE

    DOEpatents

    Peppard, D.F.

    1960-02-01

    A process of separating hafnium nitrate from zirconium nitrate contained in a nitric acid solution by selectively. extracting the zirconium nitrate with a water-immiscible alkyl phosphate is reported.

  19. Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization.

    PubMed

    Sándor, Mónika; Nistor, Cristina Lavinia; Szalontai, Gábor; Stoica, Rusandica; Nicolae, Cristian Andi; Alexandrescu, Elvira; Fazakas, József; Oancea, Florin; Donescu, Dan

    2016-01-08

    A series of aminopropyl-functionalized silica nanoparticles were prepared through a basic two step sol-gel process in water. Prior to being aminopropyl-functionalized, silica particles with an average diameter of 549 nm were prepared from tetraethyl orthosilicate (TEOS), using a Stöber method. In a second step, aminopropyl-silica particles were prepared by silanization with 3-aminopropyltriethoxysilane (APTES), added drop by drop to the sol-gel mixture. The synthesized amino-functionalized silica particles are intended to be used as supports for immobilization of humic acids (HA), through electrostatic bonds. Furthermore, by inserting beside APTES, unhydrolysable mono-, di- or trifunctional alkylsilanes (methyltriethoxy silane (MeTES), trimethylethoxysilane (Me₃ES), diethoxydimethylsilane (Me₂DES) and 1,2-bis(triethoxysilyl)ethane (BETES)) onto silica particles surface, the spacing of the free amino groups was intended in order to facilitate their interaction with HA large molecules. Two sorts of HA were used for evaluating the immobilization capacity of the novel aminosilane supports. The results proved the efficient functionalization of silica nanoparticles with amino groups and showed that the immobilization of the two tested types of humic acid substances was well achieved for all the TEOS/APTES = 20/1 (molar ratio) silica hybrids having or not having the amino functions spaced by alkyl groups. It was shown that the density of aminopropyl functions is low enough at this low APTES fraction and do not require a further spacing by alkyl groups. Moreover, all the hybrids having negative zeta potential values exhibited low interaction with HA molecules.

  20. Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization

    PubMed Central

    Sándor, Mónika; Nistor, Cristina Lavinia; Szalontai, Gábor; Stoica, Rusandica; Nicolae, Cristian Andi; Alexandrescu, Elvira; Fazakas, József; Oancea, Florin; Donescu, Dan

    2016-01-01

    A series of aminopropyl-functionalized silica nanoparticles were prepared through a basic two step sol-gel process in water. Prior to being aminopropyl-functionalized, silica particles with an average diameter of 549 nm were prepared from tetraethyl orthosilicate (TEOS), using a Stöber method. In a second step, aminopropyl-silica particles were prepared by silanization with 3-aminopropyltriethoxysilane (APTES), added drop by drop to the sol-gel mixture. The synthesized amino-functionalized silica particles are intended to be used as supports for immobilization of humic acids (HA), through electrostatic bonds. Furthermore, by inserting beside APTES, unhydrolysable mono-, di- or trifunctional alkylsilanes (methyltriethoxy silane (MeTES), trimethylethoxysilane (Me3ES), diethoxydimethylsilane (Me2DES) and 1,2-bis(triethoxysilyl)ethane (BETES)) onto silica particles surface, the spacing of the free amino groups was intended in order to facilitate their interaction with HA large molecules. Two sorts of HA were used for evaluating the immobilization capacity of the novel aminosilane supports. The results proved the efficient functionalization of silica nanoparticles with amino groups and showed that the immobilization of the two tested types of humic acid substances was well achieved for all the TEOS/APTES = 20/1 (molar ratio) silica hybrids having or not having the amino functions spaced by alkyl groups. It was shown that the density of aminopropyl functions is low enough at this low APTES fraction and do not require a further spacing by alkyl groups. Moreover, all the hybrids having negative zeta potential values exhibited low interaction with HA molecules. PMID:28787834

  1. Modelling of Batch Lactic Acid Fermentation in
the Presence of Anionic Clay

    PubMed Central

    Jinescu, Cosmin; Aruş, Vasilica Alisa; Nistor, Ileana Denisa

    2014-01-01

    Summary Batch fermentation of milk inoculated with lactic acid bacteria was conducted in the presence of hydrotalcite-type anionic clay under static and ultrasonic conditions. An experimental study of the effect of fermentation temperature (t=38–43 °C), clay/milk ratio (R=1–7.5 g/L) and ultrasonic field (ν=0 and 35 kHz) on process dynamics was performed. A mathematical model was selected to describe the fermentation process kinetics and its parameters were estimated based on experimental data. A good agreement between the experimental and simulated results was achieved. Consequently, the model can be employed to predict the dynamics of batch lactic acid fermentation with values of process variables in the studied ranges. A statistical analysis of the data based on a 23 factorial experiment was performed in order to express experimental and model-regressed process responses depending on t, R and ν factors. PMID:27904318

  2. Electrochemical l-Lactic Acid Sensor Based on Immobilized ZnO Nanorods with Lactate Oxidase

    PubMed Central

    Ibupoto, Zafar Hussain; Ali Shah, Syed Muhammad Usman; Khun, Kimleang; Willander, Magnus

    2012-01-01

    In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF) response of l-lactic acid biosensor. We noticed that the present biosensor has wide linear detection range of concentration from 1 × 10−4–1 × 100 mM with acceptable sensitivity about 41.33 ± 1.58 mV/decade. In addition, the proposed biosensor showed fast response time less than 10 s, a good selectivity towards l-lactic acid in presence of common interfering substances such as ascorbic acid, urea, glucose, galactose, magnesium ions and calcium ions. The present biosensor based on immobilized ZnO nanorods with lactate oxidase sustained its stability for more than three weeks. PMID:22736960

  3. Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase.

    PubMed

    Ibupoto, Zafar Hussain; Shah, Syed Muhammad Usman Ali; Khun, Kimleang; Willander, Magnus

    2012-01-01

    In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF) response of l-lactic acid biosensor. We noticed that the present biosensor has wide linear detection range of concentration from 1 × 10(-4)-1 × 10(0) mM with acceptable sensitivity about 41.33 ± 1.58 mV/decade. In addition, the proposed biosensor showed fast response time less than 10 s, a good selectivity towards l-lactic acid in presence of common interfering substances such as ascorbic acid, urea, glucose, galactose, magnesium ions and calcium ions. The present biosensor based on immobilized ZnO nanorods with lactate oxidase sustained its stability for more than three weeks.

  4. Stress reduction for pillar filled structures

    DOEpatents

    Nikolic, Rebecca J.; Conway, Adam; Shao, Qinghui; Voss, Lars; Cheung, Chin Li; Dar, Mushtaq A.

    2015-09-01

    According to one embodiment, an apparatus for detecting neutrons includes an array of pillars, wherein each of the pillars comprises a rounded cross sectional shape where the cross section is taken perpendicular to a longitudinal axis of the respective pillar, a cavity region between each of the pillars, and a neutron sensitive material located in each cavity region.

  5. Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle.

    PubMed

    Yah, Weng On; Takahara, Atsushi; Lvov, Yuri M

    2012-01-25

    Selective fatty acid hydrophobization of the inner surface of tubule halloysite clay is demonstrated. Aqueous phosphonic acid was found to bind to alumina sites at the tube lumen and did not bind the tube's outer siloxane surface. The bonding was characterized with solid-state nuclear magnetic resonance ((29)Si, (13)C, (31)P NMR), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy. NMR and FTIR spectroscopy of selectively modified tubes proved binding of octadecylphosphonic acid within the halloysite lumen through bidentate and tridentate P-O-Al linkage. Selective modification of the halloysite clay lumen creates an inorganic micelle-like architecture with a hydrophobic aliphatic chain core and a hydrophilic silicate shell. An enhanced capacity for adsorption of the modified halloysite toward hydrophobic derivatives of ferrocene was shown. This demonstrates that the different inner and outer surface chemistry of clay nanotubes can be used for selective modification, enabling different applications from water purification to drug immobilization and controlled release. © 2011 American Chemical Society

  6. Process for electroless deposition of metals on zirconium materials

    DOEpatents

    Donaghy, Robert E.

    1978-01-01

    A process for the electroless deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electroless plating solution containing the metal to be deposited on the article upon sufficient contact with the article.

  7. Process for electrolytic deposition of metals on zirconium materials

    DOEpatents

    Donaghy, Robert E.

    1979-01-30

    A process for the electrolytic deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electrolytic plating solution containing the metal to be deposited on the article in the presence of an electrode receiving current.

  8. Supercapacitors based on pillared graphene nanostructures.

    PubMed

    Lin, Jian; Zhong, Jiebin; Bao, Duoduo; Reiber-Kyle, Jennifer; Wang, Wei; Vullev, Valentine; Ozkan, Mihrimah; Ozkan, Cengiz S

    2012-03-01

    We describe the fabrication of highly conductive and large-area three dimensional pillared graphene nanostructure (PGN) films from assembly of vertically aligned CNT pillars on flexible copper foils for applications in electric double layer capacitors (EDLC). The PGN films synthesized via a one-step chemical vapor deposition process on flexible copper foils exhibit high conductivity with sheet resistance as low as 1.6 ohms per square and possessing high mechanical flexibility. Raman spectroscopy indicates the presence of multi walled carbon nanotubes (MWCNT) and their morphology can be controlled by the growth conditions. It was discovered that nitric acid treatment can significantly increase the specific capacitance of the devices. EDLC devices based on PGN electrodes (surface area of 565 m2/g) demonstrate enhanced performance with specific capacitance value as high as 330 F/g extracted from the current density-voltage (CV) measurements and energy density value of 45.8 Wh/kg. The hybrid graphene-CNT nanostructures are attractive for applications including supercapacitors, fuel cells and batteries.

  9. Capacitance reduction for pillar structured devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Qinghui; Conway, Adam; Nikolic, Rebecca J.

    2017-05-09

    In one embodiment, an apparatus includes: a first layer including a n+ dopant or p+ dopant; an intrinsic layer formed above the first layer, the intrinsic layer including a planar portion and pillars extending above the planar portion, cavity regions being defined between the pillars; and a second layer deposited on a periphery of the pillars thereby forming coated pillars, the second layer being substantially absent on the planar portion of the intrinsic layer between the coated pillars. The second layer includes an n+ dopant when the first layer includes a p+ dopant. The second layer includes a p+ dopantmore » when the first layer includes an n+ dopant. The apparatus includes a neutron sensitive material deposited between the coated pillars and above the planar portion of the intrinsic layer. In additional embodiments, an upper portion of each of the pillars includes a same type of dopant as the second layer.« less

  10. Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr(IV) assembly and adsorption mechanism

    PubMed Central

    Halla, Velazquez-Jimenez Litza; Hurt Robert, H; Juan, Matos; Rene, Rangel-Mendez Jose

    2014-01-01

    When activated carbon (AC) is modified with zirconium(IV) by impregnation or precipitation, the fluoride adsorption capacity is typically improved. There is significant potential to improve these hybrid sorbent by controlling the impregnation conditions, which determine the assembly and dispersion of the Zr phases on carbon surfaces. Here, commercial activated carbon was modified with Zr(IV) together with oxalic acid (OA) used to maximize the zirconium dispersion and enhance fluoride adsorption. Adsorption experiments were carried out at pH 7 and 25 °C with a fluoride concentration of 40 mg L−1. The OA/Zr ratio was varied to determine the optimal conditions for subsequent fluoride adsorption. The data was analyzed using the Langmuir and Freundlich isotherm models. FTIR, XPS and the surface charge distribution were performed to elucidate the adsorption mechanism. Potentiometric titrations showed that the modified activated carbon (ZrOx-AC) possesses positive charge at pH lower than 7, and FTIR analysis demonstrated that zirconium ions interact mainly with carboxylic groups on the activated carbon surfaces. Moreover, XPS analysis demonstrated that Zr(IV) interacts with oxalate ions, and the fluoride adsorption mechanism is likely to involve –OH− exchange from zirconyl oxalate complexes. PMID:24359079

  11. Acid-base properties of 2:1 clays. I. Modeling the role of electrostatics.

    PubMed

    Delhorme, Maxime; Labbez, Christophe; Caillet, Céline; Thomas, Fabien

    2010-06-15

    We present a theoretical investigation of the titratable charge of clays with various structural charge (sigma(b)): pyrophyllite (sigma(b) = 0 e x nm(-2)), montmorillonite (sigma(b) = -0.7 e x nm(-2)) and illite (sigma(b) = -1.2 e x nm(-2)). The calculations were carried out using a Monte Carlo method in the Grand Canonical ensemble and in the framework of the primitive model. The clay particle was modeled as a perfect hexagonal platelet, with an "ideal" crystal structure. The only fitting parameters used are the intrinsic equilibrium constants (pK(0)) for the protonation/deprotonation reactions of the broken-bond sites on the lateral faces of the clay particles, silanol, =SiO(-) + H(+) --> =SiOH, and aluminol, =AlO(-1/2) + H(+) --> =AlOH(+1/2). Simulations are found to give a satisfactory description of the acid-base titration of montmorillonite without any additional fitting parameter. In particular, combining the electrostatics from the crystal substitutions with ionization constants, the simulations satisfactorily catch the shift in the titration curve of montmorillonite according to the ionic strength. Change in the ionic strength modulates the screening of the electrostatic interactions which results in this shift. Accordingly, the PZNPC is found to shift toward alkaline pH upon increasing the permanent basal charge. Unlike previous mean field model results, a significant decrease in PZNPC values is predicted in response to stack formation. Finally, the mean field approach is shown to be inappropriate to study the acid-base properties of clays.

  12. Adsorption of Amino Acids and Glutamic Acid-Based Surfactants on Imogolite Clays.

    PubMed

    Bonini, Massimo; Gabbani, Alessio; Del Buffa, Stefano; Ridi, Francesca; Baglioni, Piero; Bordes, Romain; Holmberg, Krister

    2017-03-07

    Aluminum oxide surfaces are of utmost interest in different biotech applications, in particular for their use as adjuvants (i.e., booster of the immune response against infectious agents in vaccines production). In this framework, imogolite clays combine the chemical flexibility of an exposed alumina surface with 1D nanostructure. This work reports on the interaction between amino acids and imogolite, using turbidimetry, ζ-potential measurements, and Fourier transform infrared spectroscopy as main characterization tools. Amino acids with different side chain functional groups were investigated, showing that glutamic acid (Glu) has the strongest affinity for the imogolite surface. This was exploited to prepare a composite material made of a synthetic surfactant bearing a Glu polar head and a hydrophobic C 12 alkyl tail, adsorbed onto the surface of imogolite. The adsorption of a model drug (rhodamine B isothiocyanate) by the hybrid was evaluated both in water and in physiological saline conditions. The findings of this paper suggest that the combination between the glutamate headgroup and imogolite represents a promising platform for the fabrication of hybrid nanostructures with tailored functionalities.

  13. Intercalated layered clay composites and their applications

    NASA Astrophysics Data System (ADS)

    Phukan, Anjali

    Supported inorganic reagents are rapidly emerging as new and environmentally acceptable reagents and catalysts. The smectite group of layered clay minerals, such as, Montmorillonite, provides promising character for adsorption, catalytic activity, supports etc. for their large surface area, swelling behavior and ion exchange properties. Aromatic compounds intercalated in layered clays are useful in optical molecular devices. Clay is a unique material for adsorption of heavy metals and various toxic substances. Clay surfaces are known to be catalytically active due to their surface acidity. Acid activated clays possess much improved surface areas and acidities and have higher pore volumes so that can absorb large molecules in the pores. The exchangeable cations in clay minerals play a key role in controlling surface acidity and catalytic activity. Recently, optically active metal-complex-Montmorillonite composites are reported to be active in antiracemization purposes. In view of the above, a research work, relating to the preparation of different modified clay composites and their catalytic applications were carried out. The different aspects and results of the present work have been reported in four major chapters. Chapter I: This is an introductory chapter, which contains a review of the literature regarding clay-based materials. Clay minerals are phyllosilicates with layer structure. Montmorillonite, a member of smectite group of clay, is 2:1 phyllosilicate, where a layer is composed of an octahedral sheet sandwiched by two tetrahedral sheets. Such clay shows cation exchange capacity (CEC) and is expressed in milli-equivalents per 100 gm of dry clay. Clays can be modified by interaction with metal ion, metal complexes, metal cluster and organic cations for various applications. Clays are also modified by treating with acid followed by impregnation with metal salts or ions. Montmorillonite can intercalate suitable metal complexes in excess of CEC to form double

  14. Process for separation of zirconium-88, rubidium-83 and yttrium-88

    DOEpatents

    Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.

    1994-01-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, passing the first ion-containing solution through a first cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in the first ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, contacting the first resin with an acid solution capable of stripping adsorbed ions from the first cationic exchange resin whereby the adsorbed ions are removed from the first resin to form a second ion-containing solution, evaporating the second ion-containing solution for time sufficient to remove substantially all of the acid and water from the second ion-containing solution whereby a residue remains, dissolving the residue from the evaporated second-ion containing solution in a dilute acid to form a third ion-containing solution, said third ion-containing solution having an acid molarity adapted to permit said ions to be adsorbed by a cationic exchange resin, passing the third ion-containing solution through a second cationic resin whereby the ions are adsorbed by the second resin, contacting the second resin with a dilute sulfuric acid solution whereby the adsorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, and zirconium are selectively removed from the second resin, and contacting the second resin with a dilute acid solution whereby the adsorbed strontium ions are selectively removed. Zirconium, rubidium, and yttrium radioisotopes can also be recovered with additional steps.

  15. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.

    PubMed

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2016-01-01

    In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol.

  16. The ulcerogenic effect of bile and bile acid in rats during immobilization stress

    NASA Technical Reports Server (NTRS)

    Weisener, J.

    1980-01-01

    The effect of different concentrations of oxen bile and individual bile acids or their sodium salts on the gastric mucosa of rats was investigated in combination with immobilization stress. A statistically significant higher frequency of ulcers was only determined in the application of 10% oxen bile. Dosages on 10% sodium glycocholic acid demonstrated strong toxic damage with atonic dilation of the stomach and extensive mucosal bleeding.

  17. Modeling and simulation of enzymatic gluconic acid production using immobilized enzyme and CSTR-PFTR circulation reaction system.

    PubMed

    Li, Can; Lin, Jianqun; Gao, Ling; Lin, Huibin; Lin, Jianqiang

    2018-04-01

    Production of gluconic acid by using immobilized enzyme and continuous stirred tank reactor-plug flow tubular reactor (CSTR-PFTR) circulation reaction system. A production system is constructed for gluconic acid production, which consists of a continuous stirred tank reactor (CSTR) for pH control and liquid storage and a plug flow tubular reactor (PFTR) filled with immobilized glucose oxidase (GOD) for gluconic acid production. Mathematical model is developed for this production system and simulation is made for the enzymatic reaction process. The pH inhibition effect on GOD is modeled by using a bell-type curve. Gluconic acid can be efficiently produced by using the reaction system and the mathematical model developed for this system can simulate and predict the process well.

  18. Speciation of uranium in surface-modified, hydrothermally treated, (UO{sub 2}){sup 2+}-exchanged smectite clays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.

    1997-08-01

    A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS datamore » from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U{sup VI} to U{sup IV}.« less

  19. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    NASA Astrophysics Data System (ADS)

    Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid

    2016-11-01

    Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  20. The Leaching of Aluminium In Spanish Clays, Coal Mining Wastes and Coal Fly Ashes by Sulphuric Acid.

    NASA Astrophysics Data System (ADS)

    Fernández, A. M.; Ibáñez, J. L.; Llavona, M. A.; Zapico, R.

    The acid leaching of aluminium from several non traditional ores, bayerite, kaolinite, different clays, coal mining wastes and coal fly ashes, and the kinetic of their dissolution are described. The effects of time, temperature, acid concentration, sample calcination, particle size were examined. The leaching of aluminium is dependent on acid concentration and strongly on temperature. Generally, the time to reach a fixed percentage of dissolution decreases with increasing acid concentration in the range 6% to 40% acid by weight. On clays and coal mining wastes a good relation between Al removal and ratio kaolinite/illite was also observed at all temperatures and acid concentration tested. Coal fly ashes are particles that were heated at very high temperatures in the power station and Al compounds were transformed into mullite and so Al recovery was minor. Several rate equations describing the kinetics of the leach reaction were discussed and Kinetic parameters and activation energy values of samples are presented.

  1. Production of L-glutamic Acid with Corynebacterium glutamicum (NCIM 2168) and Pseudomonas reptilivora (NCIM 2598): A Study on Immobilization and Reusability

    PubMed Central

    Shyamkumar, Rajaram; Moorthy, Innasi Muthu Ganesh; Ponmurugan, Karuppiah; Baskar, Rajoo

    2014-01-01

    Background L-glutamic acid is one of the major amino acids that is present in a wide variety of foods. It is mainly used as a food additive and flavor enhancer in the form of sodium salt. Corynebacterium glutamicum (C. glutamicum) is one of the major organisms widely used for glutamic acid production. Methods The study was dealing with immobilization of C. glutamicum and mixed culture of C. glutamicum and Pseudomonas reptilivora (P. reptilivora) for L-glutamic acid production using submerged fermentation. 2, 3 and 5% sodium alginate concentrations were used for production and reusability of immobilized cells for 5 more trials. Results The results revealed that 2% sodium alginate concentration produced the highest yield (13.026±0.247 g/l by C. glutamicum and 16.026±0.475 g/l by mixed immobilized culture). Moreover, reusability of immobilized cells was evaluated in 2% concentration with 5 more trials. However, when the number of cycles increased, the production of L-glutamic acid decreased. Conclusion Production of glutamic acid using optimized medium minimizes the time needed for designing the medium composition. It also minimizes external contamination. Glutamic acid production gradually decreased due to multiple uses of beads and consequently it reduces the shelf life. PMID:25215180

  2. Production of L-glutamic Acid with Corynebacterium glutamicum (NCIM 2168) and Pseudomonas reptilivora (NCIM 2598): A Study on Immobilization and Reusability.

    PubMed

    Shyamkumar, Rajaram; Moorthy, Innasi Muthu Ganesh; Ponmurugan, Karuppiah; Baskar, Rajoo

    2014-07-01

    L-glutamic acid is one of the major amino acids that is present in a wide variety of foods. It is mainly used as a food additive and flavor enhancer in the form of sodium salt. Corynebacterium glutamicum (C. glutamicum) is one of the major organisms widely used for glutamic acid production. The study was dealing with immobilization of C. glutamicum and mixed culture of C. glutamicum and Pseudomonas reptilivora (P. reptilivora) for L-glutamic acid production using submerged fermentation. 2, 3 and 5% sodium alginate concentrations were used for production and reusability of immobilized cells for 5 more trials. The results revealed that 2% sodium alginate concentration produced the highest yield (13.026±0.247 g/l by C. glutamicum and 16.026±0.475 g/l by mixed immobilized culture). Moreover, reusability of immobilized cells was evaluated in 2% concentration with 5 more trials. However, when the number of cycles increased, the production of L-glutamic acid decreased. Production of glutamic acid using optimized medium minimizes the time needed for designing the medium composition. It also minimizes external contamination. Glutamic acid production gradually decreased due to multiple uses of beads and consequently it reduces the shelf life.

  3. The Outlook for Some Fission Products Utilization with the Aim to Immobilize Long-Lived Radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhitonov, Y.A.

    2008-07-01

    The prospects for development of nuclear power are intimately associated with solving the problem of safe management and removal from the biosphere of generated radioactive wastes. The most suitable material for fission products and actinides immobilization is the crystalline ceramics. By now numerous literature data are available concerning the synthesis of a large range of various materials with zirconium-based products. It worth mentioning that zirconium is only one of fission products accumulated in the fuel in large amounts. The development of new materials intended for HLW immobilization will allow increasing of radionuclides concentration in solidified product so providing costs reductionmore » at the stage of subsequent storage. At the same time the idea to use for synthesis of compounds, suitable as materials for long-term storage or final disposal of rad-wastes some fission products occurring in spent fuel in considerable amount and capable to form insoluble substances seems to be rather attractive. In authors opinion in the nearest future one can expect the occurrence of publications proposing the techniques allowing the use of 'reactor's zirconium, molybdenum or, perhaps, technetium as well, with the aim of preparing materials suitable for long-lived radionuclides storage or final disposal. The other element, which is generated in the reactor and worth mentioning, is palladium. The prospects for using palladium are defined not only by its higher generation in the reactor, but by a number of its chemical properties as well. It is evident that the use of natural palladium with the purpose of radionuclides immobilization is impossible due to its high cost and deficiency). In author's opinion such materials could be used as targets for long-lived radionuclides transmutation as well. The object of present work was the study on methods that could allow to use 'reactor' palladium with the aim of long-lived radionuclides such as I-129 and TUE immobilization

  4. Absorption of thiamine and nicotinic acid in the rat intestine during fasting and immobilization stress

    NASA Technical Reports Server (NTRS)

    Kirilyuk, O. G.; Khmelevskiy, Y. V.

    1980-01-01

    By perfusion of isolated sections of intestine with a solution containing thiamine at a concentration of 3.1 micromole, it was established that thiamine absorption in animals fasted for 72 hours decreased by 28 percent, whereas absorption increased by 12 percent in rats after 24 hour immobilization. After immobilization, absorption of label in the intestinal mucosa increased. Na K ATPase activity in the intestinal mucosa decreased by 10 percent during fasting, and it increased with immobilization of the animals. Activity of Na K ATPase in the intestinal mucosa cells determined the absorption rate of thiamine and nicotinic acid at the level of vitamin transport through the plasma membranes of the enterocytes.

  5. Zirconium and hafnium

    USGS Publications Warehouse

    Jones, James V.; Piatak, Nadine M.; Bedinger, George M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Zirconium and hafnium are corrosion-resistant metals that are widely used in the chemical and nuclear industries. Most zirconium is consumed in the form of the main ore mineral zircon (ZrSiO4, or as zirconium oxide or other zirconium chemicals. Zirconium and hafnium are both refractory lithophile elements that have nearly identical charge, ionic radii, and ionic potentials. As a result, their geochemical behavior is generally similar. Both elements are classified as incompatible because they have physical and crystallochemical properties that exclude them from the crystal lattices of most rock-forming minerals. Zircon and another, less common, ore mineral, baddeleyite (ZrO2), form primarily as accessory minerals in igneous rocks. The presence and abundance of these ore minerals in igneous rocks are largely controlled by the element concentrations in the magma source and by the processes of melt generation and evolution. The world’s largest primary deposits of zirconium and hafnium are associated with alkaline igneous rocks, and, in one locality on the Kola Peninsula of Murmanskaya Oblast, Russia, baddeleyite is recovered as a byproduct of apatite and magnetite mining. Otherwise, there are few primary igneous deposits of zirconium- and hafnium-bearing minerals with economic value at present. The main ore deposits worldwide are heavy-mineral sands produced by the weathering and erosion of preexisting rocks and the concentration of zircon and other economically important heavy minerals, such as ilmenite and rutile (for titanium), chromite (for chromium), and monazite (for rare-earth elements) in sedimentary systems, particularly in coastal environments. In coastal deposits, heavy-mineral enrichment occurs where sediment is repeatedly reworked by wind, waves, currents, and tidal processes. The resulting heavy-mineral-sand deposits, called placers or paleoplacers, preferentially form at relatively low latitudes on passive continental margins and supply 100 percent of

  6. Temperature dependence of interfacial structures and acidity of clay edge surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Xiandong; Lu, Xiancai; Cheng, Jun; Sprik, Michiel; Wang, Rucheng

    2015-07-01

    In the pursuit of a microscopic understanding of the effects of temperature on the surface reactivity of clay minerals, we conducted first principles molecular dynamics (FPMD) simulations to study the interfacial structures and acidity of clay edge surfaces at elevated temperatures. The common edge surfaces ((0 1 0) and (1 1 0) types) of phyllosilicates were investigated at 348 K and 423 K, and the results were compared with those previously derived at ambient conditions. We found that the stable surface sites are the same as at ambient conditions, including tbnd Al(OH2)2 (6-fold Al), tbnd Al(OH2) (5-fold Al) and tbnd Si(OH) on the (0 1 0) facet, and tbnd Al(OH2), tbnd Al(OH)Sitbnd and tbnd Si(OH) on the (1 1 0) surface. The FPMD-based vertical energy gap technique was applied to compute the acidity constants of edge sites and the resulting pKa values show a decreasing trend with temperature. The results demonstrate that although changes in the point of zero charge of the entire material are insignificant up to 348 K, the decrease in surface pKa can be 3 pKa units, while it can be as large as 6 pKa units up to 423 K. The derived interface structures and pKa values can be used in future experimental and modeling research, e.g., in interpreting experiments and predicting the surface complexation of metal cations and organics. This study therefore provides a physical basis for investigating the interfacial processes of clay minerals in environments that experience elevated P-T conditions, such as sedimentary basins and geological nuclear waste repositories.

  7. Peering Inside the Pillars of Creation

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-06-01

    On 1 April 1995, Hubble captured one of its most well-known images: a stunning photo of towering features known as the Pillars of Creation, located in the Eagle Nebula just 7,000 light-years away. A new study explores how these iconic columns are influenced by the magnetic fields within them.Pillars from ShocksAn illustrative figure of the BISTRO magnetic-field vectors observed in the Pillars of Creation, overlaid on a Hubble composite of the pillars. [Pattle et al. 2018]In the Hubble image, we see the result of young, hot stars that have driven a photoionization shock into the cloud around them, forming complex structures in the dense gas at the shock interfaces. These structures in this case, dense columns of neutral gas and dust are then bombarded with hot radiation from the young stars, giving the structures a misty, ethereal look as they photoevaporate.Though we have a rough picture, the specifics of how the Pillars of Creation were formed and how they evolve in this harsh radiation environment arent yet fully understood. In particular, the role of magnetic fields in shaping and sustaining these pillars is poorly constrained, both observationally and theoretically.To address this problem, a team of scientists led by Kate Pattle (University of Central Lancashire, UK and National Tsing Hua University, Taiwan), has now made the first direct observations of the magnetic-field morphology within the Pillars of Creation.The authors proposed formation scenario: a) an ionization front approaches an overdensity in the molecular gas, b) the front is slowed at the overdensity, causing the magnetic field lines to bend, c) the compressed magnetic field supports the pillar against radial collapse, but cant support against longitudinal erosion. [Adapted from Pattle et al. 2018]Observing FieldsPattle and collaborators imaged the pillars as a part of the B-Fields in Star-Forming Region Observations (BISTRO) project, which uses a camera and polarimeter mounted on the James Clerk

  8. Immobilization of hyaluronic acid on plasma-sprayed porous titanium coatings for improving biological properties.

    PubMed

    Ao, Haiyong; Xie, Youtao; Qin, An; Ji, Heng; Yang, Shengbing; Huang, Liping; Zheng, Xuebin; Tang, Tingting

    2014-01-01

    In the present study, hyaluronic acid (HyA) was covalently immobilized onto titanium coatings to improve their biological properties. Diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were employed to characterize the HyA-modified titanium coating. HyA-modified titanium coatings possess better cell-material interaction, and human mesenchymal stem cells present good adhesive morphologies on the surface of TC-AAH. The results of subsequent cellular evaluation showed that the immobilization of HyA on titanium coatings could improve hMSC attachment, proliferation, and differentiation. In vivo evaluation of implants in rabbit femur condyle defect model showed improvements of early osseointegration and bone-to-implant contact of TC-AAH. In conclusion, immobilization of HyA could improve biological properties of titanium coatings.

  9. Amino Acid Interaction with and Adsorption on Clays: FT-IR and Mössbauer Spectroscopy and X-ray Diffractometry Investigations

    NASA Astrophysics Data System (ADS)

    Benetoli, Luís O. B.; de Souza, Cláudio M. D.; da Silva, Klébson L.; de Souza, Ivan G.; de Santana, Henrique; Paesano, Andrea; da Costa, Antonio C. S.; Zaia, Cássia Thaïs B. V.; Zaia, Dimas A. M.

    2007-12-01

    In the present paper, the adsorption of amino acids (Ala, Met, Gln, Cys, Asp, Lys, His) on clays (bentonite, kaolinite) was studied at different pH (3.00, 6.00, 8.00). The amino acids were dissolved in seawater, which contains the major elements. There were two main findings in this study. First, amino acids with a charged R group (Asp, Lys, His) and Cys were adsorbed on clays more than Ala, Met and Gln (uncharged R groups). However, 74% of the amino acids in the proteins of modern organisms have uncharged R groups. These results raise some questions about the role of minerals in providing a prebiotic concentration mechanism for amino acids. Several mechanisms are also discussed that could produce peptide with a greater proportion of amino acids with uncharged R groups. Second, Cys could play an important role in prebiotic chemistry besides participating in the structure of peptides/proteins. The FT-IR spectra showed that the adsorption of amino acids on the clays occurs through the amine group. However, the Cys/clay interaction occurs through the sulfhydryl and amine groups. X-ray diffractometry showed that pH affects the bentonite interlayer, and at pH 3.00 the expansion of Cys/bentonite was greater than that of the samples of ethylene glycol/bentonite saturated with Mg. The Mössbauer spectrum for the sample with absorbed Cys showed a large increase (˜20%) in ferrous ions. This means that Cys was able to partially reduce iron present in bentonite. This result is similar to that which occurs with aconitase where the ferric ions are reduced to Fe 2.5.

  10. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-11-15

    Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad(®) 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC>unmodified bentonite>Arquad-bentonite). The MIOC variably increased the microbial count (10-43%) as well as activities (respiration 3-44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber.

    PubMed

    Isarankura Na Ayutthaya, Siriorn; Tanpichai, Supachok; Sangkhun, Weradesh; Wootthikanokkhan, Jatuphorn

    2016-04-01

    This research work has concerned the development of volatile organic compounds (VOCs) removal filters from biomaterials, based on keratin extracted from chicken feather waste and poly(lactic acid) (PLA) (50/50%w/w) blend. Clay (Na-montmorillonite) was also added to the blend solution prior to carrying out an electro-spinning process. The aim of this study was to investigate the effect of clay content on viscosity, conductivity, and morphology of the electrospun fibers. Scanning electron micrographs showed that smooth and bead-free fibers were obtained when clay content used was below 2 pph. XRD patterns of the electrospun fibers indicated that the clay was intercalated and exfoliated within the polymers matrix. Percentage crystallinity of keratin in the blend increased after adding the clay, as evidenced from FTIR spectra and DSC thermograms. Transmission electron micrographs revealed a kind of core-shell structure with clay being predominately resided within the keratin rich shell and at the interfacial region. Filtration performance of the electrospun keratin/PLA fibers, described in terms of pressure drop and its capability of removing methylene blue, were also explored. Overall, our results demonstrated that it was possible to improve process-ability, morphology and filtration efficiency of the electrospun keratin fibers by adding a suitable amount of clay. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. ON THE GEOCHEMISTRY OF NIOBIUM AND TANTALUM IN CLAYS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pachadzhanov, D.N.

    1963-10-01

    With the aid of the spectral method with a preliminary enrichment in tannin, the niobium and tantalum content was determined in some humid and arid clays of the Russian platform. The investigated samples were composed of 354 specimens. The average content of niobium in humid clays is 0.0020%, of tantalum 0.00024% (the Nb/Ta ratio is 8.4) and in arid clays is respectively the content of niobium 0.00133% and the content of tantalum 0.00009% (the Nb/Ta ratio is 14.8). The average value of the content of niobium content for all studied clays is 0.00183% and of the tantalum content 0.00020%, themore » Nb/Ta ratio being 9.1. In clays an interconnection of niobium with tantalum, as well as with aluminium, titanium, zirconium, and hafnium was observed. However, on the background of this connection some separation of the named elements is noted. A tendency for the Nb/Ta ratio shift from the region of matter removal towards the center of the marine basin was observed. The study of niobium and tantalum distribution over different clay fractions showed that one part of elements is connected with zircon and titanium minerals in aleuosand fraction (0.1-- 0.01 mm). Another, approximately similar part is contained in the proper clay fraction (<0. 01 mm), the tantalum somewhat more concentrating in the aleurosand fraction and niobium in the clay fraction. (P.C.H.)« less

  13. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    DOE PAGES

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang; ...

    2017-05-30

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. We overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. Furthermore, these compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest voidmore » volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.« less

  14. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    PubMed Central

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang; Liu, Zhiyong; Wang, Xiangxiang; Dai, Xing; Liu, Shengtang; Zhang, Linjuan; Gao, Yang; Chen, Lanhua; Sheng, Daopeng; Wang, Yanlong; Diwu, Juan; Wang, Jianqiang; Zhou, Ruhong; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-01-01

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. Herein, we overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. These compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest void volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism. PMID:28555656

  15. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Tao; Yang, Zaixing; Gui, Daxiang

    Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. We overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. Furthermore, these compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest voidmore » volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.« less

  16. Metabolic alkalosis during immobilization in monkeys (M. nemestrina)

    NASA Technical Reports Server (NTRS)

    Young, D. R.; Yeh, I.; Swenson, R. S.

    1983-01-01

    The systemic and renal acid-base response of monkeys during ten weeks of immobilization was studied. By three weeks of immobilization, arterial pH and bicarbonate concentrations were elevated (chronic metabolic alkalosis). Net urinary acid excretion increased in immobilized animals. Urinary bicarbonate excretion decreased during the first three weeks of immobilization, and then returned to control levels. Sustained increases in urinary ammonium excretion were seen throughout the time duration of immobilization. Neither potassium depletion nor hypokalemia was observed. Most parameters returned promptly to the normal range during the first week of recovery. Factors tentatively associated with changes in acid-base status of monkeys include contraction of extracellular fluid volume, retention of bicarbonate, increased acid excretion, and possible participation of extrarenal buffers.

  17. Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids

    NASA Astrophysics Data System (ADS)

    Liu, Guangfei; Qiu, Shuang; Liu, Baiqing; Pu, Yiying; Gao, Zhanming; Wang, Jing; Jin, Ruofei; Zhou, Jiti

    2017-03-01

    Both Fe(III)-bearing clay minerals and humic acids (HAs) are abundant in the soils and sediments. Previous studies have shown that bioreduction of structural Fe(III) in clay minerals could be accelerated by adding anthraquinone compound as a redox-active surrogate of HAs. However, a quinoid analogue could not reflect the adsorption and complexation properties of HA, and little is known about the effects of real HAs at environmental concentration on bioreduction of clay minerals. Here, it was shown that 10-200 mg l-1 of natural or artificially synthesized HAs could effectively stimulate the bioreduction rate and extent of Fe(III) in both iron-rich nontronite NAu-2 and iron-deficient montmorillonite SWy-2. After adsorption to NAu-2, electron-transfer activities of different HA fractions were compared. Additionally, Fe(II) complexation by HAs also contributed to improvement of clay-Fe(III) bioreduction. Spectrosopic and morphological analyses suggested that HA addition accelerated the transformation of NAu-2 to illite, silica and siderite after reductive dissolution.

  18. Novel humic acid-bonded magnetite nanoparticles for protein immobilization.

    PubMed

    Bayrakci, Mevlut; Gezici, Orhan; Bas, Salih Zeki; Ozmen, Mustafa; Maltas, Esra

    2014-09-01

    The present paper is the first report that introduces (i) a useful methodology for chemical immobilization of humic acid (HA) to aminopropyltriethoxysilane-functionalized magnetite iron oxide nanoparticles (APS-MNPs) and (ii) human serum albumin (HSA) binding to the obtained material (HA-APS-MNPs). The newly prepared magnetite nanoparticle was characterized by using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and elemental analysis. Results indicated that surface modification of the bare magnetite nanoparticles (MNPs) with aminopropyltriethoxysilane (APS) and HA was successfully performed. The protein binding studies that were evaluated in batch mode exhibited that HA-APS-MNPs could be efficiently used as a substrate for the binding of HSA from aqueous solutions. Usually, recovery values higher than 90% were found to be feasible by HA-APS-MNPs, while that value was around 2% and 70% in the cases of MNPs and APS-MNPs, respectively. Hence, the capacity of MNPs was found to be significantly improved by immobilization of HA. Furthermore, thermal degradation of HA-APS-MNPs and HSA bonded HA-APS-MNPs was evaluated in terms of the Horowitz-Metzger equation in order to determine kinetic parameters for thermal decomposition. Activation energies calculated for HA-APS-MNPs (20.74 kJmol(-1)) and HSA bonded HA-APS-MNPs (33.42 kJmol(-1)) implied chemical immobilization of HA to APS-MNPs, and tight interactions between HA and HA-APS-MNPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A simple spectrophotometric method for determination of zirconium or hafnium in selected molybdenum-base alloys

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.

    1972-01-01

    A simple analytical procedure is described for accurately and precisely determining the zirconium or hafnium content of molybdenum-base alloys. The procedure is based on the reaction of the reagent Arsenazo III with zirconium or hafnium in strong hydrochloric acid solution. The colored complexes of zirconium or hafnium are formed in the presence of molybdenum. Titanium or rhenium in the alloy have no adverse effect on the zirconium or hafnium complex at the following levels in the selected aliquot: Mo, 10 mg; Re, 10 mg; Ti, 1 mg. The spectrophotometric measurement of the zirconium or hafnium complex is accomplished without prior separation with a relative standard deviation of 1.3 to 2.7 percent.

  20. SEPARATING HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Lister, B.A.J.; Duncan, J.F.; Hutcheon, J.M.

    1956-08-21

    Substantially complete separation of zirconium from hafnium may be obtained by elution of ion exchange material, on which compounds of the elements are adsorbed, with an approximately normal solution of sulfuric acid. Preferably the acid concentration is between 0.8 N amd 1.2 N, amd should not exceed 1.5 N;. Increasing the concentration of sulfate ion in the eluting solution by addition of a soluble sulfate, such as sodium sulfate, has been found to be advantageous. The preferred ion exchange materials are sulfonated polystyrene resins such as Dowex 50,'' and are preferably arranged in a column through which the solutions are passed.

  1. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation

    NASA Astrophysics Data System (ADS)

    Yu, Xiaofang; Yu, Xiaobo; Wu, Shujie; Liu, Bo; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-02-01

    Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N 2 adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization.

  2. Immobilization of Paecilomyces variotii tannase and properties of the immobilized enzyme.

    PubMed

    Schons, Patrícia Fernanda; Lopes, Fernanda Cristina Rezende; Battestin, Vania; Macedo, Gabriela Alves

    2011-01-01

    Tannase produced by Paecilomyces variotii was encapsulated in sodium alginate beads and used for the effective hydrolysis of tannic acid; the efficiency of hydrolysis was comparable to that of the free enzyme. The alginate beads retained 100% of their efficiency in the first three rounds of successive use and 60% in rounds 4 and 5. The response surface methodology showed that the best conditions to hydrolysis of tannic acid by immobilized tannase were: sodium alginate 5.2%, CaCl₂ 0.55 M and 9 h to curing time. The optimized process resulted in 2.4 times more hydrolysed tannic acid than that obtained before optimization. The optimum pH for the actions of both the encapsulated and the free enzymes was 5.5. The optimum temperature of the reaction was determined to be 40 °C for the free enzyme and 60 °C for the immobilized form. The immobilization process improved the stability at low pH.

  3. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  4. Development of Self-Healing Zirconium-Silicide Coatings for Improved Performance Zirconium-Alloy Fuel Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Kumar; Mariani, Robert; Bai, Xianming

    Zirconium-alloy fuel claddings have been used successfully in Light Water Reactors (LWR) for over four decades. However, under high temperature accident conditions, zirconium-alloys fuel claddings exhibit profuse exothermic oxidation accompanied by release of hydrogen gas due to the reaction with water/steam. Additionally, the ZrO 2 layer can undergo monoclinic to tetragonal to cubic phase transformations at high temperatures which can induce stresses and cracking. These events were unfortunately borne out in the Fukushima-Daiichi accident in in Japan in 2011. In reaction to such accident, protective oxidation-resistant coatings for zirconium-alloy fuel claddings has been extensively investigated to enhance safety margins inmore » accidents as well as fuel performance under normal operation conditions. Such surface modification could also beneficially affect fuel rod heat transfer characteristics. Zirconium-silicide, a candidate coating material, is particularly attractive because zirconium-silicide coating is expected to bond strongly to zirconium-alloy substrate. Intermetallic compound phases of zirconium-silicide have high melting points and oxidation of zirconium silicide produces highly corrosion resistant glassy zircon (ZrSiO 4) and silica (SiO 2) which possessing self-healing qualities. Given the long-term goal of developing such coatings for use with nuclear reactor fuel cladding, this work describes results of oxidation and corrosion behavior of bulk zirconium-silicide and fabrication of zirconium-silicide coatings on zirconium-alloy test flats, tube configurations, and SiC test flats. In addition, boiling heat transfer of these modified surfaces (including ZrSi 2 coating) during clad quenching experiments is discussed in detail.« less

  5. Colloidal titration of aqueous zirconium solutions with poly(vinyl sulfate) by potentiometric endpoint detection using a toluidine blue selective electrode.

    PubMed

    Sakurada, Osamu; Kato, Yasutake; Kito, Noriyoshi; Kameyama, Keiichi; Hattori, Toshiaki; Hashiba, Minoru

    2004-02-01

    Zirconium oxy-salts were hydrolyzed to form positively charged polymer or cluster species in acidic solutions. The zirconium hydrolyzed polymer was found to react with a negatively charged polyelectrolyte, such as poly(vinyl sulfate), and to form a stoichiometric polyion complex. Thus, colloidal titration with poly(vinyl sulfate) was applied to measure the zirconium concentration in an acidic solution by using a Toluidine Blue selective plasticized poly(vinyl chloride) membrane electrode as a potentiometric end-point detecting device. The determination could be performed with 1% of the relative standard deviation. The colloidal titration stoichiometry at pH < or = 2 was one mol of zirconium per equivalent mol of poly(vinyl sulfate).

  6. ZIRCONIUM-CLADDING OF THORIUM

    DOEpatents

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  7. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: response surface approach, degradation pathway, and toxicity evaluation.

    PubMed

    Li, Huiyuan; Li, Yanli; Xiang, Luojing; Huang, Qianqian; Qiu, Juanjuan; Zhang, Hui; Sivaiah, Matte Venkata; Baron, Fabien; Barrault, Joel; Petit, Sabine; Valange, Sabine

    2015-04-28

    A ferric smectite clay material was synthesized and further intercalated with Al2O3 pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5g/L and hydrogen peroxide concentration of 13.5mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography-mass spectrometry (GC-MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150min reaction, indicating that the effluent was suitable for sequential biological treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Evaluation of a clay-based acidic bedding conditioner for dairy cattle bedding.

    PubMed

    Proietto, R L; Hinckley, L S; Fox, L K; Andrew, S M

    2013-02-01

    This study investigated the effects of a clay-based acidic bedding conditioner on sawdust bedding pH, dry matter (DM), environmental pathogen counts, and environmental bacterial counts on teat ends of lactating dairy cows. Sixteen lactating Holstein cows were paired based on parity, days in milk, milk yield, and milk somatic cell count, and were negative for the presence of an intramammary pathogen. Within each pair, cows were randomly assigned to 1 of 2 treatments with 3-wk periods in a crossover design. Treatment groups consisted of 9 freestalls per group bedded with either untreated sawdust or sawdust with a clay-based acidic bedding conditioner, added at 3- to 4-d intervals over each 21-d period. Bedding and teat ends were aseptically sampled on d 0, 1, 2, 7, 14, and 21 for determination of environmental bacterial counts. At the same time points, bedding was sampled for DM and pH determination. The bacteria identified in the bedding material were total gram-negative bacteria, Streptococcus spp., and coliform bacteria. The bacteria identified on the teat ends were Streptococcus spp., coliform bacteria, and Klebsiella spp. Teat end score, milk somatic cell count, and intramammary pathogen presence were measured weekly. Bedding and teat cleanliness, environmental high and low temperatures, and dew point data were collected daily. The bedding conditioner reduced the pH, but not the DM, of the sawdust bedding compared with untreated sawdust. Overall environmental bacterial counts in bedding were lower for treated sawdust. Total bacterial counts in bedding and on teat ends increased with time over both periods. Compared with untreated sawdust, the treated bedding had lower counts of total gram-negative bacteria and streptococci, but not coliform counts. Teat end bacterial counts were lower for cows bedded on treated sawdust for streptococci, coliforms, and Klebsiella spp. compared with cows bedded on untreated sawdust. The clay-based acidic bedding conditioner

  9. Phosphomolybdic acid immobilized on graphite as an environmental photoelectrocatalyst.

    PubMed

    Aber, Soheil; Yaghoubi, Zeynab; Zarei, Mahmoud

    2016-10-01

    A new phosphomolybdic acid (PMA)/Graphite surface was prepared based on electrostatic interactions between phosphomolybdic acid and graphite surface. The PMA/Graphite was characterized by cyclic voltammetry (CV) analysis and scanning electron microscope (SEM). SEM images showed that the phosphomolybdic acid particles were well stabilized on the graphite surface and they were evidenced the size of particles (approximately 10 nm). The CV results not only showed that the modified surface has good electrochemical activity toward the removal of the dyestuff, but also exhibits long term stability. The PMA/Graphite was used as a photoanode for decolorization of Reactive Yellow 39 by photoelectrocatalytic system under UV irradiation. The effects of parameters such as the amount of phosphomolybdic acid used in preparation of PMA/Graphite surface, applied potential on anode electrode and solution pH were studied by response surface methodology. The optimum conditions were obtained as follows: dye solution pH 3, 1.5 g of immobilized PMA on graphite surface and applied potential on anode electrode 1 V. Under optimum conditions after 90 min of reaction time, the decolorization efficiency was 95%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Adsorption of As(III), As(V) and Cu(II) on zirconium oxide immobilized alginate beads in aqueous phase.

    PubMed

    Kwon, Oh-Hun; Kim, Jong-Oh; Cho, Dong-Wan; Kumar, Rahul; Baek, Seung Han; Kurade, Mayur B; Jeon, Byong-Hun

    2016-10-01

    A composite adsorbent to remove arsenite [As(III)], arsenate [As(V)], and copper [Cu(II)] from aqueous phase was synthesized by immobilizing zirconium oxide on alginate beads (ZOAB). The composition (wt%) of ZOAB (Zr-34.0; O-32.7; C-21.3; Ca-1.0) was confirmed by energy dispersive X-ray (EDX) analysis. Sorption studies were conducted on single and binary sorbate systems, and the effects of contact time, initial adsorbate concentration, and pH on the adsorption performance of ZOAB (pHPZC = 4.3) were monitored. The sorption process for As(III)/As(V) and Cu(II) reached an equilibrium state within 240 h and 24 h, respectively, with maximum sorption capacities of 32.3, 28.5, and 69.9 mg g(-1), respectively. The addition of Cu(II) was favorable for As(V) sorption in contrast to As(III). In the presence of 48.6 mg L(-1) Cu(II), the sorption capacity of As(V) increased from 1.5 to 3.8 mg g(-1) after 240 h. The sorption data for As(III)/As(V) and Cu(II) conformed the Freundlich and Langmuir isotherm models, respectively. The adsorption of As(III), As(V), and Cu(II) followed pseudo second order kinetics. The effect of arsenic species on Cu(II) sorption was insignificant. The results of present study demonstrated that the synthesized sorbent could be useful for the simultaneous removal of both anionic and cationic contaminants from wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. ZIRCONIUM PHOSPHATE ADSORPTION METHOD

    DOEpatents

    Russell, E.R.; Adamson, A.S.; Schubert, J.; Boyd, G.E.

    1958-11-01

    A method is presented for separating plutonium values from fission product values in aqueous acidic solution. This is accomplished by flowing the solutlon containing such values through a bed of zirconium orthophosphate. Any fission products adsorbed can subsequently be eluted by washing the column with a solution of 2N HNO/sub 3/ and O.lN H/sub 3/PO/sub 4/. Plutonium values may subsequently be desorbed by contacting the column with a solution of 7N HNO/sub 3/ .

  12. Thermal and mechanical properties of compression-moulded poly(lactic acid)/gluten/clays bio(nano)composites

    USDA-ARS?s Scientific Manuscript database

    Bio(nano)composites comprising agricultural-based polymers blended with biodegradable plant-based fillers and clays were produced to develop novel hydrophobic, yet biodegradable materials that have properties comparable to those of petroleum-based plastics. Poly (lactic acid) (PLA), wheat vital glut...

  13. Invertase immobilization onto radiation-induced graft copolymerized polyethylene pellets

    NASA Astrophysics Data System (ADS)

    de Queiroz, Alvaro Antonio Alencar; Vitolo, Michele; de Oliveira, Rômulo Cesar; Higa, Olga Zazuco

    1996-06-01

    The graft copolymer poly(ethylene-g-acrylic acid) (LDPE-g-AA) was prepared by radiation-induced graft copolymerization of acrylic acid onto low density polyethylene (LDPE) pellets, and characterized by infrared photoacoustic spectroscopy and scanning electron microscopy (SEM). The presence of the grafted poly(acrylic acid) (PAA) was established. Invertase was immobilized onto the graft polymer and the thermodynamic parameters of the soluble and immobilized enzyme were determined. The Michaelis constant, Km, and the maximum reaction velocity, Vmax, were determined for the free and the immobilized invertase. The Michaelis constant, Km was larger for the immobilized invertase than for the free enzyme, whereas Vmax was smaller for the immobilized invertase. The thermal stability of the immobilized invertase was higher than that of the free enzyme.

  14. Amine-pillared Nanosheet Adsorbents for CO2 Capture Applications

    NASA Astrophysics Data System (ADS)

    Jiang, Hui

    Amine-functionalized solid adsorbents have gained attention within the last decade for their application in carbon dioxide capture, due to their many advantages such as low energy cost for regeneration, tunable structure, elimination of corrosion problems, and additional advantages. However, one of the challenges facing this technology is to accomplish both high CO 2 capture capacity along with high CO2 diffusion rates concurrently. Current amine-based solid sorbents such as porous materials similar to SBA-15 have large pores diffusion entering molecules; however, the pores become clogged upon amine inclusion. To meet this challenge, our group's solution involves the creation of a new type of material which we are calling-amino-pillared nanosheet (APN) adsorbents which are generated from layered nanosheet precursors. These materials are being proposed because of their unique lamellar structure which exhibits ability to be modified by organic or inorganic pillars through consecutive swelling and pillaring steps to form large mesoporous interlayer spaces. After the expansion of the layer space through swelling and pillaring, the large pore space can be functionalized with amine groups. This selective functionalization is possible by the choice of amine group introduced. Our choice, large amine molecules, do not access the micropore within each layer; however, either physically or chemically immobilized onto the surface of the mesoporous interlayer space between each layer. The final goal of the research is to investigate the ability to prepare APN adsorbents from a model nanoporous layered materials including nanosheets precursor material MCM-22(P) and nanoporous layered silicate material AMH-3. MCM-22(P) contains 2-dimensional porous channels, 6 membered rings (MB) openings perpendicular to the layers and 10 MB channels in the plane of the layers. However, the transport limiting openings (6 MB) to the layers is smaller than CO2 gas molecules. In contrast, AMH-3 has

  15. Immobilization technique for enhanced production of the immunosuppressant mycophenolic acid by ultraviolet and gamma-irradiated Penicillium roqueforti.

    PubMed

    Ismaiel, A A; Ahmed, A S; El-Sayed, E R

    2015-07-01

    Different entrapment matrices were screened to immobilize two strains of Penicillium roqueforti (AG101 and LG109) for more effective production of mycophenolic acid (MPA). Further improvement in the MPA productivity from immobilization of spores and mycelia was adopted by UV and gamma irradiation. Penicillium roqueforti strains were immobilized in different entrapping carriers and used for MPA production in shake flask cultures. Maximum MPA production was achieved on using an alginate concentration of 3·0% (w/v) and a mycelial fresh weight of 10% (w/v). MPA produced by alginate-immobilized spores and mycelia was almost double in comparison to the free system. The MPA-producing ability of immobilized AG101 and LG109 strain was significantly enhanced by mutagenesis through irradiation by UV (254 nm) for 120 and 90 min, respectively and gamma rays at 0·75 KGy. The feasibility of MPA production in a semi-continuous form by immobilized cells as affected by irradiation was adopted. MPA production by immobilized spores and mycelia was more intensified by UV and gamma irradiation. Moreover, the immobilized cell culture was superior to free-cell culture. These findings indicate the future possibility to reduce the cost of producing fermentation-based drugs. © 2015 The Society for Applied Microbiology.

  16. Study of acetic acid production by immobilized acetobacter cells: oxygen transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghommidh, C.; Navarro, J.M.; Durand, G.

    1982-03-01

    The immobilization of living Acetobacter cells by adsorption onto a large-surface-area ceramic support was studied in a pulsed flow reactor. The high oxygen transfer capability of the reactor enabled acetic acid production rates up to 10.4 g/L/h to be achieved. Using a simple mathematical model incorporating both internal and external mass transfer coefficients, it was shown that oxygen transfer in the microbial film controls the reactor productivity. (Refs. 10).

  17. Surface characterization of anodized zirconium for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sanchez, A. Gomez; Schreiner, W.; Duffó, G.; Ceré, S.

    2011-05-01

    Mechanical properties and corrosion resistance of zirconium make this material suitable for biomedical implants. Its good in vivo performance is mainly due to the presence of a protective oxide layer that minimizes corrosion rate, diminishes the amount of metallic ions released to the biological media and facilitates the osseointegration process. Since the implant surface is the region in contact with living tissues, the characteristics of the surface film are of great interest. Surface modification is a route to enhance both biocompatibility and corrosion resistance of permanent implant materials. Anodizing is presented as an interesting process to modify metal surfaces with good reproducibility and independence of the geometry. In this work the surface of zirconium before and after anodizing in 1 mol/L phosphoric acid solution at a fixed potential between 3 and 30 V, was characterized by means of several surface techniques. It was found that during anodization the surface oxide grows with an inhomogeneous coverage on zirconium surface, modifying the topography. The incorporation of P from the electrolyte to the surface oxide during the anodizing process changes the surface chemistry. After 30 days of immersion in Simulated Body Fluid (SBF) solution, Ca-P rich compounds were present on anodized zirconium.

  18. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    PubMed Central

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md. Rakibul

    2016-01-01

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days. PMID:27367738

  19. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    PubMed

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  20. Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids.

    PubMed

    Alozie, Nneka; Heaney, Natalie; Lin, Chuxia

    2018-07-15

    A batch experiment was conducted to examine the effects of biochar on the behaviour of soil-borne arsenic and metals that were mobilized by three low-molecular-weight organic acids. In the presence of citric acid, oxalic acid and malic acid at a molar concentration of 0.01M, the surface of biochar was protonated, which disfavours adsorption of the cationic metals released from the soil by organic acid-driven mobilization. In contrast, the oxyanionic As species were re-immobilized by the protonated biochar effectively. Biochar could also immobilize oxyanionic Cr species but not cationic Cr species. The addition of biochar increased the level of metals in the solution due to the release of the biochar-borne metals under attack by LMWOAs via cation exchange. Biochar could also have the potential to enhance reductive dissolution of iron and manganese oxides in the soil, leading to enhanced release of trace elements bound to these oxides. The findings obtained from this study have implications for evaluating the role of biochar in immobilizing trace elements in rhizosphere. Adsorption of cationic heavy metals on biochar in the presence of LMWOAs is unlikely to be a mechanism responsible for the impeded uptake of heavy metals by plants growing in heavy metal-contaminated soils. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)

    NASA Astrophysics Data System (ADS)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie

    2017-04-01

    particles are dispersed, and the suspension is stabilized supported by our SEM observations. In alkaline water, kaolinite reveals a lower degree of consolidation. While, alkaline water has no measurable effect on illite and chlorite surface properties due to the absence of modifications in charge. Illite and chlorite form with other clasts clusters or aggregate structures in suspension when the particle interactions are dominated by attractive energies were formed. The aggregate structure plays a major part in the flow behavior of clay suspensions. Flocs will immobilize the suspending medium, and give rise to increasing viscosity and yield strength of the suspension. S. Hage, A. Hubert-Ferrari, L. Lamair, U. Avşar, M. El Ouahabi, M. Van Daele, F. Boulvain, M.A. Bahri, A. Seret, Al. Plenevaux. Flow dynamics at the origin of thin sandy clay-rich lacustrine turbidites: Examples from Lake Hazar, Turkey, submitted to Sedimentology, in revision.

  2. Zirconium Phosphate Supported MOF Nanoplatelets.

    PubMed

    Kan, Yuwei; Clearfield, Abraham

    2016-06-06

    We report a rare example of the preparation of HKUST-1 metal-organic framework nanoplatelets through a step-by-step seeding procedure. Sodium ion exchanged zirconium phosphate, NaZrP, nanoplatelets were judiciously selected as support for layer-by-layer (LBL) assembly of Cu(II) and benzene-1,3,5-tricarboxylic acid (H3BTC) linkers. The first layer of Cu(II) is attached to the surface of zirconium phosphate through covalent interaction. The successive LBL growth of HKUST-1 film is then realized by soaking the NaZrP nanoplatelets in ethanolic solutions of cupric acetate and H3BTC, respectively. The amount of assembled HKUST-1 can be readily controlled by varying the number of growth cycles, which was characterized by powder X-ray diffraction and gas adsorption analyses. The successful construction of HKUST-1 on NaZrP was also supported by its catalytic performance for the oxidation of cyclohexene.

  3. Characterization of a hybrid-smectite nanomaterial formed by immobilizing of N-pyridin-2-ylmethylsuccinamic acid onto (3-aminopropyl)triethoxysilane modified smectite and its potentiometric sensor application

    NASA Astrophysics Data System (ADS)

    Topcu, Cihan; Caglar, Sema; Caglar, Bulent; Coldur, Fatih; Cubuk, Osman; Sarp, Gokhan; Gedik, Kubra; Bozkurt Cirak, Burcu; Tabak, Ahmet

    2016-09-01

    A novel N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite nanomaterial was synthesized by immobilizing of N-pyridin-2-ylmethylsuccinamic acid through chemical bonding onto (3-aminopropyl)triethoxysilane modified smectite. The structural, thermal, morphological and surface properties of raw, silane-grafted and the N-pyridin-2-ylmethylsuccinamic acid-functionalized smectites were investigated by various characterization techniques. The thermal analysis data showed the presence of peaks in the temperature range from 200 °C to 600 °C due to the presence of physically adsorbed silanes, intercalated silanes, surface grafted silanes and chemically grafted silane molecules between the smectite layers. The powder x-ray diffraction patterns clearly indicated that the aminopropyl molecules also intercalated into the smectite interlayers as bilayer arrangement whereas N-pyridin-2-ylmethylsuccinamic acid molecules were only attached to 3-aminopropyltriethoxysilane molecules on the external surface and edges of clay and they did not intercalate. Fourier transform infrared spectroscopy confirms N-pyridin-2-ylmethylsuccinamic acid molecules bonding through the amide bond between the amine group of aminopropyltriethoxysilane molecules and a carboxylic acid functional group of N-pyridin-2-ylmethylsuccinamic acid molecules. The guest molecules functionalized onto the smectite caused significant alterations in the textural and morphological parameters of the raw smectite. The anchoring of N-pyridin-2-ylmethylsuccinamic acid molecules led to positive electrophoretic mobility values when compared to starting materials. N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite was employed as an electroactive ingredient in the structure of potentiometric PVC-membrane sensor. The sensor exhibited more selective potentiometric response towards chlorate ions compared to the other common anionic species.

  4. Hydrogel Film-Immobilized Lactobacillus brevis RK03 for γ-Aminobutyric Acid Production

    PubMed Central

    Hsueh, Yi-Huang; Liaw, Wen-Chang; Kuo, Jen-Min; Deng, Chi-Shin

    2017-01-01

    Hydrogels of 2-hydroxyethyl methacrylate/polyethylene glycol diacrylate (HEMA/PEGDA) have been extensively studied for their use in biomedical and pharmaceutical applications owing to their nontoxic and highly hydrophilic characteristics. Recently, cells immobilized by HEMA/PEGDA hydrogels have also been studied for enhanced production in fermentation. Hydrogel films of HEMA/PEGDA copolymer were generated by Ultraviolet (UV)-initiated photopolymerization. The hydrogel films were used to immobilize viable Lactobacillus brevis RK03 cells for the bioconversion of monosodium glutamate (MSG) to γ-aminobutyric acid (GABA). The mechanical properties and fermentation yields of the L. brevis RK03 cells immobilized on polyacrylate hydrogel films with different monomeric formulations were investigated. Fermentation was carried out in 75 mL de Man, Rogosa and Sharpe (MRS) medium containing various concentrations of MSG. We found that HEMA (93%)/PEGDA (3%) hydrogels (sample H) maximized GABA production. The conversion rate of MSG to GABA reached a maximum value of 98.4% after 240 h. Bioconversion activity gradually declined after 420 h to 83.8% after five cycles of semi-continuous fermentation. Our results suggest that HEMA (93%)/PEGDA (3%) hydrogels have great potential for use in GABA production via semi-continuous fermentation. PMID:29099794

  5. Properties of Base Stocks Obtained from Used Engine Oils by Acid/Clay Re-refining (Proprietes des Stocks de Base Obtenus par Regeneration des Huiles a Moteur Usees par le Procede de Traitement a l’Acide et a la Terre),

    DTIC Science & Technology

    1980-09-01

    Research Conseil national Council Canada de recherches Canada LEY EL < PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING DTIC...MECHANICAL ENGINEERING REPORT Canad NC MP75 NRC NO. 18719 PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING (PROPRIETES...refined Base Stock ..................................... 10 3 Physical Test Data of Acid /Clay Process - Re-refined Base Stock Oils ............ 11 4

  6. Polysialic acid immobilized on silanized glass surfaces: a test case for its use as a biomaterial for nerve regeneration.

    PubMed

    Steinhaus, Stephanie; Stark, Yvonne; Bruns, Stephanie; Haile, Yohannes; Scheper, Thomas; Grothe, Claudia; Behrens, Peter

    2010-04-01

    The immobilization of polysialic acid (polySia) on glass substrates has been investigated with regard to the applicability of this polysaccharide as a novel, biocompatible and bioresorbable material for tissue engineering, especially with regard to its use in nerve regeneration. PolySia, a homopolymer of alpha-2,8-linked sialic acid, is involved in post-translational modification of the neural cell adhesion molecule (NCAM). The degradation of polySia can be controlled which makes it an interesting material for coating and for scaffold construction in tissue engineering. Here, we describe the immobilization of polySia on glass surfaces via an epoxysilane linker. Whereas glass surfaces will not actually be used in nerve regeneration scaffolds, they provide a simple and efficient means for testing various methods for the investigation of immobilized polySia. The modified surfaces were investigated with contact angle measurements and the quantity of immobilized polySia was examined by the thiobarbituric acid assay and a specific polySia-ELISA. The interactions between the polySia-modified surface and immortalized Schwann cells were evaluated via cell adhesion and cell viability assays. The results show that polySia can be immobilized on glass surfaces via the epoxysilane linker and that surface-bound polySia has no toxic effects on Schwann cells. Therefore, as a key substance in the development of vertebrates and as a favourable substrate for the cultivation of Schwann cells, it offers interesting features for the use in nerve guidance tubes for treatment of peripheral nerve injuries.

  7. Artefacts in multimodal imaging of titanium, zirconium and binary titanium–zirconium alloy dental implants: an in vitro study

    PubMed Central

    Schöllchen, Maximilian; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-01-01

    Objectives: To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium–zirconium alloy dental implants. Methods: Zirconium, titanium and titanium–zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line–distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. Results: While titanium and titanium–zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium–zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium–zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium–zirconium alloy induced more severe artefacts than zirconium and titanium. Conclusions: MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium–zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting. PMID:27910719

  8. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    PubMed

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  9. A novel mesoporous sulfated zirconium solid acid catalyst for Friedel-Crafts benzylation reaction

    NASA Astrophysics Data System (ADS)

    Miao, Zhichao; Zhou, Jin; Zhao, Jinping; Liu, Dandan; Bi, Xu; Chou, Lingjun; Zhuo, Shuping

    2017-07-01

    In this paper, a novel mesoporous sulfated zirconium (M-ZrO2/SO42-) has been gotten by one-pot evaporation-induced self-assembly (one-pot EISA) strategy. The SXRD, N2-physisorption and TEM characterization techniques indicated that M-ZrO2/SO42- possessed distinct mesostructure with big specific surface area (133.5 m2 g-1), large pore volume (0.18 cm3 g-1) and narrow pore size distribution (4.90 nm). Moreover, the existing states and the influence in mesostructure of introduced S species were detailedly investigated by the XRD, N2-physisorption, TEM, TG-DSC, FT-IR and XPS techniques and the results showed that the S species, which existed as the type of SO42-, improved the textural properties of prepared materials. In addition, the NH3-TPD and IR spectra of adsorbed pyridine indicated the existence of strong Brønsted and Lewis acid sites in M-ZrO2/SO42- even evacuated at 400 °C. Furthermore, the M-ZrO2/SO42- was used as a promise solid acid catalyst and displayed excellent catalytic performance and reusability in Friedel-Crafts benzylation reaction.

  10. Nanoscale pillar arrays for separations

    DOE PAGES

    Kirchner, Teresa; Strickhouser, Rachel; Hatab, Nahla; ...

    2015-04-01

    The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2μm and pillar diameters are typically in the 200- 400nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-rangingmore » lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.« less

  11. Production of R-Mandelic Acid Using Nitrilase from Recombinant E. coli Cells Immobilized with Tris(Hydroxymethyl)Phosphine.

    PubMed

    Zhang, Xin-Hong; Liu, Zhi-Qiang; Xue, Ya-Ping; Wang, Yuan-Shan; Yang, Bo; Zheng, Yu-Guo

    2018-03-01

    Recombinant Escherichia coli cells harboring nitrilase from Alcaligenes faecalis were immobilized using tris(hydroxymethyl)phosphine (THP) as the coupling agent. The optimal pH and temperature of the THP-immobilized cells were determined at pH 8.0 and 55 °C. The half-lives of THP-immobilized cells measured at 35, 40, and 50 °C were 1800, 965, and 163 h, respectively. The concentration of R-mandelic acid (R-MA) reached 358 mM after merely 1-h conversion by the immobilized cells with 500 mM R,S-mandelonitrile (R,S-MN), affording the highest productivity of 1307 g L -1  day -1 and the space-time productivity of 143.2 mmol L -1  h -1  g -1 . The immobilized cells with granular shape were successfully recycled for 60 batches using 100 mM R,S-MN as substrate at 40 °C with 64% of relative activity, suggesting that the immobilized E. coli cells obtained in this study are promising for the production of R-MA.

  12. Immobilization of BSA, enzymes and cells of Bacillus stearothermophilus onto cellulose polygalacturonic acid and starch based graft copolymers containing maleic arhydride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beddows, C.G.; Gil, M.H.; Guthrie, J.T.

    1986-01-01

    Poly(maleic anhydride styrene) graft copolymers of cellulose, pectin polygalacturonic acid salt, calcium polygalacturonate, and starch were prepared and used to immobilize proteins. The cellulose grafts coupled quite appreciable quantities of acid phosphatase, glucose oxidase, and trypsin. However, the general retention of activity was somewhat disappointing. Further investigation with acid phosphatase showed that the amount of enzyme immobilized increased as the amount of anhydride in the graft copolymer increased but no such relationship existed for the enzymic activity. The cellulose graft copolymers were hydrolyzed and it appeared that the carboxyl group aided adsorption of the enzyme. Attempts to couple acid phosphatasemore » using CMC through the free carboxyl groups, created by hydrolysis, gave only a small increase in the extent of protein coupling. However, the unhydrolyzed system gave a useful degree of immobilization of cells of Bacillus stearothermophilus, as did a poly(maleic anhydride/styrene)-cocellulose system. Attempts to improve the activity by using grafts based on other polysaccharide supports met with mixed success. Pectin products were soluble. Polygalacturonic acid products were partially soluble and extremely high levels of enzymic activity were obtained. This was probably due in part to the hydrophilic nature of the system, which also encouraged absorption of the enzyme. Attempts were made to reduce the solubility by using the calcium pectinate salt. Immobilization of acid phosphatase and trypsin resulted in increased protein coupling but relatively poor activities were attained. Calcium polygalacturonate was used to prepare an insoluble graft copolymeric system containing acrylonitrile-comaleic anhydride. The resulting gels gave excellent coupling with acid phosphatase which had a very good retention of activity.« less

  13. Influence of climate and eolian dust on the major-element chemistry and clay mineralogy of soils in the northern Bighorn basin, U.S.A.

    USGS Publications Warehouse

    Reheis, M.C.

    1990-01-01

    Soil chronosequences in the northern Bighorn basin permit the study of chronologic changes in the major-element chemistry and clay mineralogy of soils formed in different climates. Two chronosequences along Rock Creek in south-central Montana formed on granitic alluvium in humid and semiarid climates over the past two million years. A chronosequence at the Kane fans in north-central Wyoming formed on calcareous alluvium in an arid climate over the past 600,000 years. Detailed analyses of elemental chemistry indicate that the soils in all three areas gradually incorporated eolian dust that contained less zirconium, considered to be chemically immobile during weathering, than did the alluvium. B and C horizons of soils in the wettest of the chronosequences developed mainly at logarithmic rates, suggesting that leaching, initially rapid but decelerating, dominated the dust additions. In contrast, soils in the most arid of the chronosequences developed at linear rates that reflect progressive dust additions that were little affected by leaching. Both weathering and erosion may cause changes with time to appear logarithmic in A horizons of soils under the moist and semiarid climatic regimes. Clay minerals form with time in the basal B and C horizons and reflect climatic differences in the three areas. Vermiculite, mixed-layer illite-smectite, and smectite form in the soils of the moist-climate chronosequence; smectite forms in the semiarid-climate chronosequence; and smectite and palygorskite form in the arid-climate chronosequence. ?? 1990.

  14. Desorption and mobility mechanisms of co-existing polycyclic aromatic hydrocarbons and heavy metals in clays and clay minerals.

    PubMed

    Saeedi, Mohsen; Li, Loretta Y; Grace, John R

    2018-05-15

    The effects of soil components such as clay minerals and as humic acids, as well as co-existing metals and polycyclic aromatic hydrocarbons, on desorption and mobility are examined. Three types of artificially blended clay and clay mineral mixtures (pure kaolinite, kaolinite + sand and kaolinite + sand + bentonite), each with different humic acid content, were tested for desorption and mobility of acenaphthene, fluorene and fluoranthene by three extracting solutions CaCl 2 (0.01 M) and EDTA (0.01M) with non-ionic surfactants (Tween 80 and Triton X100). Heavy metals (Ni, Pb and Zn) were also studied for desorption and mobility. The influence of co-present metals on simultaneous desorption and mobility of PAHs was investigated as well. The results showed that <10% of metals in the clay mineral mixtures were mobile. Combined EDTA and non-ionic solutions can enhance the desorption and mobility of PAHs to >80% in clay mineral mixtures containing no sand, while in the same soils containing ∼40% sand, the desorption exceeded 90%. Heavy metals, as well as increasing humic acids content in the clay mineral mixtures, decreased the desorption and mobility of PAHs, especially for soils containing no sand, and for fluoranthene compared with fluorene and acenaphthene. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Clay-mediated reactions of HCN oligomers - The effect of the oxidation state of the clay

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Alwis, K. W.; Edelson, E. H.; Mount, N.; Hagan, W. J., Jr.

    1981-01-01

    Montmorillonite clays which contain Fe(III) inhibit the oligomerization of aqueous solutions of HCN. The inhibitory effect is due to the rapid oxidation of diaminomaleonitrile, a key intermediate in HCN oligomerization, by the Fe(III) incorporated into the aluminosilicate lattice of the clay. The Fe(III) oxidizes diaminomaleonitrile to diiminosuccinonitrile, a compound which is rapidly hydrolyzed to HCN and oxalic acid derivatives. Diaminomaleonitrile is not oxidized when Fe(III) in the montmorillonite is reduced with hydrazine. The oxidation state of the clay is an important variable in experiments designed to simulate clay catalysis on the primitive earth.

  16. Facile Separation of 5-O-Galloylquinic Acid from Chinese Green Tea Extract using Mesoporous Zirconium Phosphate.

    PubMed

    Ma, Yilong; Shang, Yafang; Zhu, Danye; Wang, Caihong; Zhong, Zhifeng; Xu, Ziyang

    2016-05-01

    5-O-Galloylquinic acid from green tea and other plants is attracting increasing attention for its antioxidant and antileishmanial bioactivities. It is always isolated using a silica column, a Sephadex column and high-performance liquid chromatography (HPLC) methods, which are either laborious or instrument dependent. To develop a new method to easily separate 5-O-galloylquinic acid. Mesoporous zirconium phosphate (m-ZrP) was prepared to conveniently separate 5-O-galloylquinic acid from Chinese green tea extract, and the target compound was easily obtained by simple steps of adsorption, washing and desorption. The effects of the green tea extraction conditions, extract concentrations, and m-ZrP adsorption/desorption dynamics on the 5-O-galloylquinic acid separation were evaluated. 5-O-Galloylquinic acid that was separated from a 70% ethanol extract of green tea was of moderate HPLC purity (92%) and recovery (88%), and an increased non-specific binding of epigallocatechin gallate (EGCG) on m-ZrP was observed in the diluted tea extract. The times for maximal adsorption of 5-O-galloylquinic acid in 70% ethanol extract and maximal desorption of 5-O-galloylquinic acid in 0.4% phosphoric acid solution were confirmed as 7 h and 5 h, respectively. A facile method to separate 5-O-galloylquinic acid from Chinese green tea extract using m-ZrP was established. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Effects of salinity and organic matter on the partitioning of perfluoroalkyl acid (PFAs) to clay particles.

    PubMed

    Jeon, Junho; Kannan, Kurunthachalam; Lim, Byung J; An, Kwang Guk; Kim, Sang Don

    2011-06-01

    The influence of salinity and organic matter on the distribution coefficient (K(d)) for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in a brackish water-clay system was studied. The distribution coefficients (K(d)) for PFAs onto inorganic clay surfaces increased with salinity, providing evidence for electrostatic interaction for the sorption of PFAs, whereas the relationship between K(d) and organic carbon content (f(oc)) suggested that hydrophobic interaction is the primary driving force for the sorption of PFAs onto organic matter. The organic carbon normalized adsorption coefficient (K(oc)) of PFAs can be slightly overestimated due to the electrostatic interaction within uncoated inorganic surfaces. In addition, the dissolved organic matter released from coated clay particles seemed to solvate PFA molecules in solution, which contributed to a decrease in K(d). A positive relationship between K(d) and salinity was apparent, but an empirical relationship for the 'salting-out' effect was not evident. The K(d) values of PFAs are relatively small compared with those reported for persistent organic pollutants. Thus, sorption may not be a significant route of mass transfer of PFAs from water columns in estuarine environments. However, enhancement of sorption of PFAs to particulate matter at high salinity values could evoke potential risks to benthic organisms in estuarine areas.

  18. Esterification of fatty acids using nylon-immobilized lipase in n-hexane: kinetic parameters and chain-length effects.

    PubMed

    Zaidi, A; Gainer, J L; Carta, G; Mrani, A; Kadiri, T; Belarbi, Y; Mir, A

    2002-02-28

    The esterification of long-chain fatty acids in n-hexane catalyzed by nylon-immobilized lipase from Candida rugosa has been investigated. Butyl oleate (22 carbon atoms), oleyl butyrate (22 carbon atoms) and oleyl oleate (36 carbon atoms) were produced at maximum reaction rates of approximately equal to 60 mmol h(-1) g(-1) immobilized enzyme when the substrates were present in equimolar proportions at an initial concentration of 0.6 mol l(-1). The observed kinetic behavior of all the esterification reactions is found to follow a ping-pong bi-bi mechanism with competitive inhibition by both substrates. The effect of the chain-length of the fatty acids and the alcohols could be correlated to some mechanistic models, in accordance with the calculated kinetic parameters.

  19. Acid Mine Drainage Passive Remediation: Potential Use of Alkaline Clay, Optimal Mixing Ratio and Long Term Impacts

    NASA Astrophysics Data System (ADS)

    Plaza, F.; Liang, X.; Wen, Y.; Perone, H.

    2015-12-01

    Acid mine drainage (AMD) is one of the most adverse environmental problems of the mine industry. Surface water and ground water affected by this pollution are characterized by their acidity and the high content of sulfates and heavy metals. In this study, alkaline clay, an industrial waste with a high pH, which is utilized in the alumina refining process, was used as the remediation material to inhibit pyrite oxidation. Through a series of batch and column experiments, complemented with field measurements and geochemical modeling, three important issues associated with this passive and auto sustainable acid mine drainage remediation method were investigated: 1) the potential use of alkaline clay as an AMD remediation material, 2) the adequate alkaline clay/coal refuse mixing ratio (AC/CR) to ensure pH values near to neutral conditions, and, 3) the prediction of long term impacts, in terms of the trends of the main parameters involved in this process such as pH, concentrations of sulfate, iron and other dissolved contaminants. Both field measurements and the samples used for the experiments came from a coal waste site located in Mather, Pennsylvania. Alkaline clay proved to be an effective remediation material for AMD. It was found that 10% AC/CR is an adequate mixing ratio (i.e. the upper limit), which has been also indicated by field measurements. The concentrations of some contaminants such as iron, manganese or sulfate are significantly reduced with the remediation approach, compared to those representative concentrations found in mine tailings. Moreover, results suggest a very reliable long-term stability of the remediation (i.e. neutral pH conditions are maintained), thus enhancing the generation of iron precipitates that could produce pyrite grain coating and hardpan (i.e. cemented layer) on the surface. These processes also made the amended layer less porous, thus increasing water retention and hindering oxygen diffusion.

  20. Clays and Clay Minerals and their environmental application in Food Technology

    NASA Astrophysics Data System (ADS)

    del Hoyo Martínez, Carmen; Cuéllar Antequera, Jorge; Sánchez Escribano, Vicente; Solange Lozano García, Marina; Cutillas Díez, Raul

    2013-04-01

    The clay materials have led to numerous applications in the field of public health (del Hoyo, 2007; Volzone, 2007) having been demonstrated its effectiveness as adsorbents of all contaminants. Some biodegradable materials are used for for adsorption of chemical contaminants: lignins (Valderrabano et al., 2008) and also clays and clay minerals, whose colloidal properties, ease of generating structural changes, abundance in nature, and low cost make them very suitable for this kind of applications. Among the strategies used at present to preserve the quality of the water and this way to diminish the environmental risk that supposes the chemical pollution, stands out the use of adsorbents of under cost, already they are natural or modified, to immobilize these compounds and to avoid the pollution of the water with the consequent reduction of environmental and economic costs Thanks to the development of the science and the technology of the nourishment in the last 50 years, there have revealed itself several new substances that can fulfill beneficial functions in the food, and these substances, named food additives, are today within reach of all. The food additives recover a very important role in the complex nourishing supply. The additives fulfill several useful functions in the food, which often we give for sat. Nevertheless the widespread use of food additives in the food production also influences the public health. The food industries, which are very important for the economy, spill residues proved from its activity that they have to be controlled to evaluate the environmental impact and to offer the necessary information about the quantitative evaluation of the chemical risk of the use of food additives for the public health. We have studied the adsorption of several contaminants by natural or modified clays, searching their interaction mechanisms and the possible recycling of these materials for environmental purposes and prevention of the health. References

  1. Periodically structured Si pillars for high-performing heterojunction photodetectors

    NASA Astrophysics Data System (ADS)

    Melvin David Kumar, M.; Yun, Ju-Hyung; Kim, Joondong

    2015-03-01

    A periodical array of silicon (Si) micro pillar structures was fabricated on Si substrates using PR etching process. Indium tin oxide (ITO) layer of 80 nm thickness was deposited over patterned Si substrates so as to make ITO/n-Si heterojunction devices. The influences of width and period of pillars on the optical and electrical properties of prepared devices were investigated. The surface morphology of the Si substrates revealed the uniform array of pillar structures. The 5/10 (width/period) Si pillar pattern reduced the optical reflectance to 6.5% from 17% which is of 5/7 pillar pattern. The current rectifying ratio was found higher for the device in which the pillars are situated in optimum periods. At both visible (600 nm) and near infrared (900 nm) range of wavelengths, the 5/7 and 5/10 pillar patterned device exhibited the better photoresponses which are suitable for making advanced photodetectors. This highly transmittance and photoresponsive pillar patterned Si substrates with an ITO layer would be a promising device for various photoelectric applications.

  2. Biodegradation of crude oil saturated fraction supported on clays.

    PubMed

    Ugochukwu, Uzochukwu C; Jones, Martin D; Head, Ian M; Manning, David A C; Fialips, Claire I

    2014-02-01

    The role of clay minerals in crude oil saturated hydrocarbon removal during biodegradation was investigated in aqueous clay/saturated hydrocarbon microcosm experiments with a hydrocarbon degrading microorganism community. The clay minerals used for this study were montmorillonite, palygorskite, saponite and kaolinite. The clay mineral samples were treated with hydrochloric acid and didecyldimethylammonium bromide to produce acid activated- and organoclays respectively which were used in this study. The production of organoclay was restricted to only montmorillonite and saponite because of their relative high CEC. The study indicated that acid activated clays, organoclays and unmodified kaolinite, were inhibitory to biodegradation of the hydrocarbon saturates. Unmodified saponite was neutral to biodegradation of the hydrocarbon saturates. However, unmodified palygorskite and montmorillonite were stimulatory to biodegradation of the hydrocarbon saturated fraction and appears to do so as a result of the clays' ability to provide high surface area for the accumulation of microbes and nutrients such that the nutrients were within the 'vicinity' of the microbes. Adsorption of the saturated hydrocarbons was not significant during biodegradation.

  3. Three Philosophical Pillars That Support Collaborative Learning.

    ERIC Educational Resources Information Center

    Maltese, Ralph

    1991-01-01

    Discusses three philosophical pillars that support collaborative learning: "spaces of appearance," active engagement, and ownership. Describes classroom experiences with collaborative learning supported by these pillars. (PRA)

  4. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    PubMed

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Systematic investigation of the strontium zirconium phosphate ceramic form for nuclear waste immobilization

    NASA Astrophysics Data System (ADS)

    Pet'kov, Vladimir; Asabina, Elena; Loshkarev, Vladimir; Sukhanov, Maksim

    2016-04-01

    We have summarized our data and literature ones on the thermophysical properties and hydrolytic stability of Sr0.5Zr2(PO4)3 compound as a host NaZr2(PO4)3-type (NZP) structure for immobilization of 90Sr-containing radioactive waste. Absence of any polymorphic transformations on the temperature dependence of its heat capacity between 7 and 665 K is caused by the stability of crystalline Sr0.5Zr2(PO4)3. Calculated values of thermal conductivity coefficients at zero porosity in the range 298-673 K were 1.86-2.40 W·m-1 K-1. The compound may be classified as low thermal expanding material due to its average linear thermal expansion coefficient. Study of the hydrolytic stability in acid and alkaline media has shown that the relative mass fraction of Sr2+ ions, released into aggressive leaching media, didn't exceed 1% of the mass of sample. Soxhlet leaching studies have shown substantial resistance towards the release of Sr2+ ions into distilled water. Feeble sinterability constrains practical applications of NZP substances, that is why known in literature methods of Sr0.5Zr2(PO4)3 dense ceramics obtaining have been reviewed.

  6. Effects of immobilization on spermiogenesis

    NASA Technical Reports Server (NTRS)

    Meitner, E. R.

    1980-01-01

    The influence of immobilization stress on spermiogenesis in rats was investigated. After 96 hour immobilization, histological changes began to manifest themselves in the form of practically complete disappearance of cell population of the wall of seminiferous tubule as well as a markedly increased number of cells with pathologic mitoses. Enzymological investigations showed various changes of activity (of acid and alkaline phosphatase and nonspecific esterase) in the 24, 48, and 96 hour immobilization groups.

  7. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots.

    PubMed

    Li, Dien; Kaplan, Daniel I; Chang, Hyun-Shik; Seaman, John C; Jaffé, Peter R; Koster van Groos, Paul; Scheckel, Kirk G; Segre, Carlo U; Chen, Ning; Jiang, De-Tong; Newville, Matthew; Lanzirotti, Antonio

    2015-03-03

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6-5.8) conditions using U L3-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U-C bond distance at ∼2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulating the SRS wetland processes, U immobilization on roots was 2 orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was reoxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.

  8. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dien; Kaplan, Daniel I.; Chang, Hyun-Shik

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6–5.8) conditions using U L₃-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U–C bond distance at ~2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulatingmore » the SRS wetland processes, U immobilization on roots was two orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was re-oxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.« less

  9. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots

    DOE PAGES

    Li, Dien; Kaplan, Daniel I.; Chang, Hyun-Shik; ...

    2015-03-03

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6–5.8) conditions using U L₃-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U–C bond distance at ~2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulatingmore » the SRS wetland processes, U immobilization on roots was two orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was re-oxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.« less

  10. Moving into advanced nanomaterials. Toxicity of rutile TiO{sub 2} nanoparticles immobilized in nanokaolin nanocomposites on HepG2 cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessa, Maria João, E-mail: mjbessa8@gmail.com

    Immobilization of nanoparticles on inorganic supports has been recently developed, resulting in the creation of nanocomposites. Concerning titanium dioxide nanoparticles (TiO{sub 2} NPs), these have already been developed in conjugation with clays, but so far there are no available toxicological studies on these nanocomposites. The present work intended to evaluate the hepatic toxicity of nanocomposites (C-TiO{sub 2}), constituted by rutile TiO{sub 2} NPs immobilized in nanokaolin (NK) clay, and its individual components. These nanomaterials were analysed by means of FE-SEM and DLS analysis for physicochemical characterization. HepG2 cells were exposed to rutile TiO{sub 2} NPs, NK clay and C-TiO{sub 2}more » nanocomposite, in the presence and absence of serum for different exposure periods. Possible interferences with the methodological procedures were determined for MTT, neutral red uptake, alamar blue (AB), LDH, and comet assays, for all studied nanomaterials. Results showed that MTT, AB and alkaline comet assay were suitable for toxicity analysis of the present materials after slight modifications to the protocol. Significant decreases in cell viability were observed after exposure to all studied nanomaterials. Furthermore, an increase in HepG2 DNA damage was observed after shorter periods of exposure in the absence of serum proteins and longer periods of exposure in their presence. Although the immobilization of nanoparticles in micron-sized supports could, in theory, decrease the toxicity of single nanoparticles, the selection of a suitable support is essential. The present results suggest that NK clay is not the appropriate substrate to decrease TiO{sub 2} NPs toxicity. Therefore, for future studies, it is critical to select a more appropriate substrate for the immobilization of TiO{sub 2} NPs. - Highlights: • Only the MTT and AB assays were found to be suitable for cytotoxicity assessment. • Alkaline comet assay was also appropriate for genotoxicity

  11. Biomechanical Characterization of Cardiomyocyte Using PDMS Pillar with Microgrooves

    PubMed Central

    Oyunbaatar, Nomin-Erdene; Lee, Deok-Hyu; Patil, Swati J.; Kim, Eung-Sam; Lee, Dong-Weon

    2016-01-01

    This paper describes the surface-patterned polydimethylsiloxane (PDMS) pillar arrays for enhancing cell alignment and contraction force in cardiomyocytes. The PDMS micropillar (μpillar) arrays with microgrooves (μgrooves) were fabricated using a unique micro-mold made using SU-8 double layer processes. The spring constant of the μpillar arrays was experimentally confirmed using atomic force microscopy (AFM). After culturing cardiac cells on the two different types of μpillar arrays, with and without grooves on the top of μpillar, the characteristics of the cardiomyocytes were analyzed using a custom-made image analysis system. The alignment of the cardiomyocytes on the μgrooves of the μpillars was clearly observed using a DAPI staining process. The mechanical force generated by the contraction force of the cardiomyocytes was derived from the displacement of the μpillar arrays. The contraction force of the cardiomyocytes aligned on the μgrooves was 20% higher than that of the μpillar arrays without μgrooves. The experimental results prove that applied geometrical stimulus is an effective method for aligning and improving the contraction force of cardiomyocytes. PMID:27517924

  12. Removal of nitrobenzene by immobilized nanoscale zero-valent iron: Effect of clay support and efficiency optimization

    NASA Astrophysics Data System (ADS)

    Li, Xiaoguang; Zhao, Ying; Xi, Beidou; Mao, Xuhui; Gong, Bin; Li, Rui; Peng, Xing; Liu, Hongliang

    2016-05-01

    In this study, natural clays were used as the support for nanoscale zero-valent iron (nZVI) to fulfill affordable and efficient decontamination materials. In comparison with the kaolinite (K) and montmorillonite (M) supported nZVI materials (K-nZVI and M-nZVI), Hangjin clay supported nZVI (HJ-nZVI) exhibited the best performance for nitrobenzene (NB) removal because of its favorable characteristics, such as higher specific surface area (SSA, 82.0 m2 g-1), larger pore volume (0.1198 cm3 g-1) and bigger average pore diameter (6.2 nm). The NB removal efficiency achieved by HJ-nZVI (93.2 ± 2.8%) was much higher than these achieved by HJ clay alone (38.2 ± 2.3%), nZVI alone (52.3 ± 2.5%) and by the combined use of nZVI and HJ clay (70.2 ± 1.3%). The superior performance of HJ-nZVI was associated with three aspects: the even distribution of nZVIs onto HJ clay, higher payload efficiency of nZVIs and the stronger adsorption capability of HJ clay support. Higher SSA, larger pore volume, favorable cation exchange capacity and structural negative charges all facilitated the payload of iron onto HJ clay. The adsorption process accelerated the reduction via increasing the local concentration of aqueous NB. The high efficiency of HJ-nZVI for decontamination warranted its promising prospect in remediation applications.

  13. Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure.

    PubMed

    Zhou, Wenjun; Ren, Lingwei; Zhu, Lizhong

    2017-04-01

    Clay minerals are the most popular adsorbents/amendments for immobilizing heavy metals in contaminated soils, but the dissolved organic matter (DOM) in soil environment would potentially affect the adsorption/immobilization capacity of clay minerals for heavy metals. In this study, the effects of DOM derived from chicken manure (CM) on the adsorption of cadmium (Cd 2+ ) on two clay minerals, bentonite and zeolite, were investigated. The equilibrium data for Cd 2+ sorption in the absence or presence of CM-DOM could be well-fitted to the Langmuir equation (R 2  > 0.97). The presence of CM-DOM in the aqueous solution was found to greatly reduce the adsorption capacity of both minerals for Cd 2+ , in particular zeolite, and the percentage decreases for Cd 2+ sorption increased with increasing concentrations of Cd 2+ as well as CM-DOM in aqueous solutions. The adsorption of CM-DOM on zeolite was greater than that on bentonite in the absence of Cd 2+ , however, a sharp increase was observed for CM-DOM sorption on bentonite with increasing Cd 2+ concentrations but little change for that on zeolite, which can be attributed to the different ternary structures on mineral surface. The CM-DOM modified clay minerals were utilized to investigate the effect of mineral-adsorbed CM-DOM on Cd 2+ sorption. The adsorbed form was found to inhibit Cd 2+ sorption, and further calculation suggested it primarily responsible for the overall decrease in Cd 2+ sorption on clay minerals in the presence of CM-DOM in aqueous solutions. An investigation for the mineral surface morphology suggested that the mineral-adsorbed CM-DOM decreased Cd 2+ sorption on bentonite mainly through barrier effect, while in the case of zeolite, it was the combination of active sites occupation and barrier effect. These results can serve as a guide for evaluating the performance of clay minerals in immobilizing heavy metals when animal manure is present in contaminated soils. Copyright © 2017 Elsevier Ltd. All

  14. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    PubMed

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).

  15. Deformation-driven diffusion and plastic flow in amorphous granular pillars.

    PubMed

    Li, Wenbin; Rieser, Jennifer M; Liu, Andrea J; Durian, Douglas J; Li, Ju

    2015-06-01

    We report a combined experimental and simulation study of deformation-induced diffusion in compacted quasi-two-dimensional amorphous granular pillars, in which thermal fluctuations play a negligible role. The pillars, consisting of bidisperse cylindrical acetal plastic particles standing upright on a substrate, are deformed uniaxially and quasistatically by a rigid bar moving at a constant speed. The plastic flow and particle rearrangements in the pillars are characterized by computing the best-fit affine transformation strain and nonaffine displacement associated with each particle between two stages of deformation. The nonaffine displacement exhibits exponential crossover from ballistic to diffusive behavior with respect to the cumulative deviatoric strain, indicating that in athermal granular packings, the cumulative deviatoric strain plays the role of time in thermal systems and drives effective particle diffusion. We further study the size-dependent deformation of the granular pillars by simulation, and find that different-sized pillars follow self-similar shape evolution during deformation. In addition, the yield stress of the pillars increases linearly with pillar size. Formation of transient shear lines in the pillars during deformation becomes more evident as pillar size increases. The width of these elementary shear bands is about twice the diameter of a particle, and does not vary with pillar size.

  16. Method of making crack-free zirconium hydride

    DOEpatents

    Sullivan, Richard W.

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  17. Zirconium(IV) functionalized magnetic nanocomposites for extraction of organophosphorus pesticides from environmental water samples.

    PubMed

    Jiang, Li; Huang, Tengjun; Feng, Shun; Wang, Jide

    2016-07-22

    The widespread use of organophosphate pesticides (OPPs) in agriculture leads to residue accumulation in the environment which is dangerous to human health and disrupts the ecological balance. In this work, one nanocomposite immobilized zirconium (Zr, IV) was prepared and used as the affinity probes to quickly and selectively extract organophosphorus pesticides (OPPs) from water samples. The Fe3O4-ethylenediamine tetraacetic acid (EDTA)@Zr(IV) nanocomposites (NPs) were prepared by simply mixing Zr(IV) ions with Fe3O4-EDTA NPs synthesized by one-pot chemical co-precipitation method. The immobilized Zr(IV) ions were further utilized to capture OPPs based on their high affinity for the phosphate moiety in OPPs. Coupled with GC-MS, four OPPs were used as models to demonstrate the feasibility of this approach. Under the optimum conditions, the limits of detection for target OPPs were in the range of 0.10-10.30ngmL(-1) with relative standard deviations (RSDs) of 0.61-4.40% (n=3), respectively. The linear ranges were over three orders of magnitudes (correlation coefficients, R(2)>0.9995). The Fe3O4-EDTA@Zr(IV) NPs were successfully applied to extract OPPs samples with recoveries of 86.95-112.60% and RSDs of 1.20-10.42% (n=3) from two spiked real water. By the proposed method, the matrix interference could be effectively eliminated. We hope our finding can provide a promising alternative for the fast extraction of OPPs from complex real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. 30 CFR 75.386 - Final mining of pillars.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Final mining of pillars. 75.386 Section 75.386... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.386 Final mining of pillars. When only one mine opening is available due to final mining of pillars, no more than 20 miners at a time shall...

  19. Arsenate immobilization associated with microbial oxidation of ferrous ion in complex acid sulfate water.

    PubMed

    Ma, Yingqun; Lin, Chuxia

    2012-05-30

    Chemical, XRD, SEM, RS, FTIR and XPS techniques were used to investigate arsenate immobilization associated with microbial Fe(2+) oxidation in a complex acid sulfate water system consisting of a modified 9 K solution (pH 2.0) plus As, Cu, Cd, Pb, Zn and Mn. At a 1:12.5:70 molar ratio of As:Fe:S, schweretmannite formation was impeded. This was in contrast with the predominant presence of schwertmannite when the heavy metals were absent, suggesting that a schwertmannite binding model is not valid for explaining arsenate immobilization in the complex system. In this study, arsenate was initially immobilized through co-precipitation with non-Fe metals and phosphate. Subsequently when sufficient Fe(3+) was produced from Fe(2+) oxidation, formation of a mixed iron, arsenate and phosphate phase predominated. The last stage involved surface complexation of arsenate species. Pb appeared to play an insignificant role in arsenate immobilization due to its strong affinity for sulfate to form anglesite. Phosphate strongly competed with arsenate for the available binding sites. However, As exhibited an increased capacity to compete with P and S for available binding sites from the co-precipitation to surface complexation stage. Adsorbed As tended to be in HAsO(4)(2-) form. The scavenged arsenate species was relatively stable after 2464-h aging. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Clay-sewage sludge co-pyrolysis. A TG-MS and Py-GC study on potential advantages afforded by the presence of clay in the pyrolysis of wastewater sewage sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ischia, Marco, E-mail: marco.ischia@ing.unitn.it; Maschio, Roberto Dal; Grigiante, Maurizio

    2011-01-15

    Wastewater sewage sludge was co-pyrolyzed with a well characterized clay sample, in order to evaluate possible advantages in the thermal disposal process of solid waste. Characterization of the co-pyrolysis process was carried out both by thermogravimetric-mass spectrometric (TG-MS) analysis, and by reactor tests, using a lab-scale batch reactor equipped with a gas chromatograph for analysis of the evolved gas phase (Py-GC). Due to the presence of clay, two main effects were observed in the instrumental characterization of the process. Firstly, the clay surface catalyzed the pyrolysis reaction of the sludge, and secondly, the release of water from the clay, atmore » temperatures of approx. 450-500 deg. C, enhanced gasification of part of carbon residue of the organic component of sludge following pyrolysis. Moreover, the solid residue remaining after pyrolysis process, composed of the inorganic component of sludge blended with clay, is characterized by good features for possible disposal by vitrification, yielding a vitreous matrix that immobilizes the hazardous heavy metals present in the sludge.« less

  1. Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis.

    PubMed

    Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind

    2015-09-01

    Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme's application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. These promising results offer scope for further investigation and process scale up, permitting the enzyme's commercial application in a practically feasible and economically agreeable manner.

  2. Biodegradation of 4-chlorophenol by adsorptive immobilized Alcaligenes sp. A 7-2 in soil.

    PubMed

    Balfanz, J; Rehm, H J

    1991-08-01

    Alcaligenes sp. A 7-2 immobilized on granular clay has been applied in a percolator to degrade 4-chlorophenol in sandy soil. Good adsorption rates on granular clay were achieved using cell suspensions with high titres and media at pH 8.0. The influence of various parameters such as aeration rate, pH, temperature, concentration of 4-chlorophenol and size of inoculum on the degradation rate were investigated. During fed-batch fermentations under optimal culture conditions, concentrations of 4-chlorophenol up to 160 mg.l-1 could be degraded. Semicontinuous culture experiments demonstrated that the degradation potential in soil could be well established and enhanced by the addition of immobilized bacteria. Continuous fermentation was performed with varying 4-chlorophenol concentrations in the feed and different input levels. The maximum degradation rate was 1.64 g.l-1.day-1.

  3. Evaluation of a Zirconium Recycle Scrubber System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Barry B.; Bruffey, Stephanie H.

    2017-04-01

    A hot-cell demonstration of the zirconium recycle process is planned as part of the Materials Recovery and Waste Forms Development (MRWFD) campaign. The process treats Zircaloy® cladding recovered from used nuclear fuel with chlorine gas to recover the zirconium as volatile ZrCl4. This releases radioactive tritium trapped in the alloy, converting it to volatile tritium chloride (TCl). To meet regulatory requirements governing radioactive emissions from nuclear fuel treatment operations, the capture and retention of a portion of this TCl may be required prior to discharge of the off-gas stream to the environment. In addition to demonstrating tritium removal from amore » synthetic zirconium recycle off-gas stream, the recovery and quantification of tritium may refine estimates of the amount of tritium present in the Zircaloy cladding of used nuclear fuel. To support these objectives, a bubbler-type scrubber was fabricated to remove the TCl from the zirconium recycle off-gas stream. The scrubber was fabricated from glass and polymer components that are resistant to chlorine and hydrochloric acid solutions. Because of concerns that the scrubber efficiency is not quantitative, tests were performed using DCl as a stand-in to experimentally measure the scrubbing efficiency of this unit. Scrubbing efficiency was ~108% ± 3% with water as the scrubber solution. Variations were noted when 1 M NaOH scrub solution was used, values ranged from 64% to 130%. The reason for the variations is not known. It is recommended that the equipment be operated with water as the scrubbing solution. Scrubbing efficiency is estimated at 100%.« less

  4. Band gap in tubular pillar phononic crystal plate.

    PubMed

    Shu, Fengfeng; Liu, Yongshun; Wu, Junfeng; Wu, Yihui

    2016-09-01

    In this paper, a phononic crystal (PC) plate with tubular pillars is presented and investigated. The band structures and mode displacement profiles are calculated by using finite element method. The result shows that a complete band gap opens when the ratio of the pillar height to the plate thickness is about 1.6. However, for classic cylinder pillar structures, a band gap opens when the ratio is equal or greater than 3. A tubular pillar design with a void room in it enhances acoustic multiple scattering and gives rise to the opening of the band gap. In order to verify it, a PC structure with double tubular pillars different in size (one within the other) is introduced and a more than 2times band gap enlargement is observed. Furthermore, the coupling between the resonant mode and the plate mode around the band gap is characterized, as well as the effect of the geometrical parameters on the band gap. The behavior of such structure could be utilized to design a pillar PC with stronger structural stability and to enlarge band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Neutralization of acidic drainage by Cryptococcus sp. T1 immobilized in alginate beads.

    PubMed

    Okai, Masahiko; Suwa, Chisato; Nagaoka, Shintaro; Obara, Nobuo; Mitsuya, Daisuke; Kurihara, Ayako; Ishida, Masami; Urano, Naoto

    2017-11-01

    We isolated Cryptococcus sp. T1 from Lake Tazawa's acidic water in Japan. Cryptococcus sp. T1 neutralized an acidic casamino acid solution (pH 3.0) and released ammonia from the casamino acids to aid the neutralization. The neutralization volume was estimated to be approximately 0.4 mL/h. The casamino acids' amino acids decreased (1.24→0.15 mM); ammonia increased (0.22→0.99 mM). We neutralized acidic drainage water (1 L) from a Tamagawa River neutralization plant, which was run through the column with the T1-immobilized alginate beads at a flow rate of 0.5 mL/min, and observed that the viscosity, particle size and amounts of the alginate beads affected the acidic drainage neutralization with an increase of the pH value from 5.26 to 6.61 in the last fraction. An increase in the Al concentration decreased Cryptococcus sp. T1's neutralization ability. After 48 h, the pH of acidic water with 50 mg/L Al was apparently lower than that without Al. Almost no pH increase was observed at 75 mg/L.

  6. Accumulation of uranium by immobilized persimmon tannin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, Takashi; Nakajima, Akira

    1994-01-01

    We have discovered that the extracted juice of unripe astringent persimmon fruit, designated as kakishibu or shibuol, has an extremely high affinity for uranium. To develop efficient adsorbents for uranium, we tried to immobilize kakishibu (persimmon tannin) with various aldehydes and mineral acids. Persimmon tannin immobilized with glutaraldehyde can accumulate 1.71 g (14 mEq U) of uranium per gram of the adsorbent. The uranium accumulating capacity of this adsorbent is several times greater than that of commercially available chelating resins (2-3 mEq/g). Immobilized persimmon tannin has the most favorable features for uranium recovery; high selective adsorption ability, rapid adsorption rate,more » and applicability in both column and batch systems. The uranium retained on immobilized persimmon tannin can be quantitatively and easily eluted with a very dilute acid, and the adsorbent can thus be easily recycled in the adsorption-desorption process. Immobilized persimmon tannin also has a high affinity for thorium. 23 refs., 13 figs., 7 tabs.« less

  7. Alginate-immobilized bentonite clay: adsorption efficacy and reusability for Cu(II) removal from aqueous solution.

    PubMed

    Tan, Wei Shang; Ting, Adeline Su Yien

    2014-05-01

    This study evaluated the use of alginate-immobilized bentonite to remove Cu(II) as an alternative to mitigate clogging problems. The adsorption efficacy (under the influence of time, pH and initial Cu(II) concentration) and reusability of immobilized-bentonite (1% w/v bentonite) was tested against plain alginate beads. Results revealed that immobilized bentonite demonstrated significantly higher sorption efficacy compared to plain alginate beads with 114.70 and 94.04 mg Cu(II) adsorbed g(-1) adsorbent, respectively. Both sorbents were comparable in other aspects where sorption equilibrium was achieved within 6 h, with optimum pH between pH 4 and 5 for adsorption, displayed maximum adsorption capacity at initial Cu(II) concentrations of 400 mg l(-1), and demonstrated excellent reusability potential with desorption greater than 90% throughout three consecutive adsorption-desorption cycles. Both sorbents also conformed to Langmuir isotherm and pseudo-second order kinetic model. Immobilized bentonite is therefore recommended for use in water treatments to remove Cu(II) without clogging the system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Methods for immobilizing nucleic acids on a gel substrate

    DOEpatents

    Mirzabekov, Andrei Darievich; Proudnikov, Dimitri Y.; Timofeev, Edward N.; Kochetkova, Svetlana V.; Florentiev, Vladimir L.; Shick, Valentine V.

    1999-01-01

    A method for labeling oligonucleotide molecules, and for immobilizing oligonucleotide and DNA molecules is provided comprising modifying the molecules to create a chemically active group, and contacting activated fluorescent dyes to the region. A method for preparing an immobilization substrate is also provided comprising modifying a gel to contain desired functional groups which covalently interact with certain moieties of the oligonucleotide molecules. A method for immobilizing biomolecules and other molecules within a gel by copolymerization of allyl-substituted oligonucleotides, DNA and proteins with acrylamide is also provided.

  9. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester.

    PubMed

    Temoçin, Zülfikar

    2013-01-01

    This study focuses on Candida rugosa lipase (CRL) immobilization by covalent attachment on poly(ethylene terephthalate)-grafted glycidyl methacrylate (PET-g-GMA) fiber. The immobilization yielded a protein loading of 2.38 mg g(-1) of PET-g-GMA fiber. The performances of the immobilized and free CRLs were evaluated with regard to hydrolysis of olive oil and esterification of oleic acid. The optimum activity pH of the CRL was changed by immobilization to neutral range. The maximum activity of the free and immobilized CRLs occurred at 40 and 45 °C respectively. The immobilized lipase retained 65% of its original activity at 50 °C for 2 h. It was found that the immobilized lipase stored at 4 °C retained 90% of its original activity after 35 days, whereas the free lipase stored at 4 °C retained 69% of its original activity after the same period. In the esterification experiments, the immobilized CRL could maintain a high activity at a water content range from 1.5 to 6% (v/v), while the activity of free CRL showed a clear dependence on water content and decreased rapidly at above 3% (v/v) water content. In addition, after five reuses, the esterification percent yield of the immobilized CRL slightly decreased from 29 to 27%.

  10. Zirconium-based conversion film formation on zinc, aluminium and magnesium oxides and their interactions with functionalized molecules

    NASA Astrophysics Data System (ADS)

    Fockaert, L. I.; Taheri, P.; Abrahami, S. T.; Boelen, B.; Terryn, H.; Mol, J. M. C.

    2017-11-01

    Zirconium-based conversion treatment of zinc, aluminium and magnesium oxides have been studied in-situ using ATR-FTIR in a Kretschmann geometry. This set-up was coupled to an electrochemical cell, which allowed to obtain chemical and electrochemical information simultaneously as a function of conversion time. This elucidated the strong relation between physico-chemical surface properties and zirconium-based conversion kinetics. Whereas the surface hydroxyl density of zinc and aluminium increased during conversion, magnesium (hydr)oxide was shown to dissolve in the acid solution. Due to this dissolution, strong surface alkalization can be expected, explaining the rapid conversion kinetics. AES depth profiling was used to determine the final oxide thickness and elemental composition. This confirmed that magnesium is most active and forms a zirconium oxide layer approximately 10 times thicker than zinc. On the other hand, the presence of zirconium oxide on aluminium is very low and can be considered as not fully covering the metal oxide. Additionally, the converted oxide chemistry was related to the bonding mechanisms of amide functionalized molecules using ATR-FTIR and XPS. It was shown that inclusion of zirconium altered the acid-base properties, increasing the substrate proton donating capabilities in case of magnesium oxide and increasing hydrogen bonding and Bronsted interactions due to increased surface hydroxide fractions on zinc and aluminium substrates.

  11. Ablation Resistant Zirconium and Hafnium Ceramics

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)

    1998-01-01

    High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.

  12. Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis

    PubMed Central

    Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind

    2015-01-01

    Background Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. Objective The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. Materials and Methods In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. Results The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme’s application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. Conclusions These promising results offer scope for further investigation and process scale up, permitting the enzyme’s commercial application in a practically feasible and economically agreeable manner. PMID:28959298

  13. Fluorescence and Cytotoxicity of Cadmium Sulfide Quantum Dots Stabilized on Clay Nanotubes.

    PubMed

    Stavitskaya, Anna V; Novikov, Andrei A; Kotelev, Mikhail S; Kopitsyn, Dmitry S; Rozhina, Elvira V; Ishmukhametov, Ilnur R; Fakhrullin, Rawil F; Ivanov, Evgenii V; Lvov, Yuri M; Vinokurov, Vladimir A

    2018-05-31

    Quantum dots (QD) are widely used for cellular labeling due to enhanced brightness, resistance to photobleaching, and multicolor light emissions. CdS and Cd x Zn₁ - x S nanoparticles with sizes of 6⁻8 nm were synthesized via a ligand assisted technique inside and outside of 50 nm diameter halloysite clay nanotubes (QD were immobilized on the tube's surface). The halloysite⁻QD composites were tested by labeling human skin fibroblasts and prostate cancer cells. In human cell cultures, halloysite⁻QD systems were internalized by living cells, and demonstrated intense and stable fluorescence combined with pronounced nanotube light scattering. The best signal stability was observed for QD that were synthesized externally on the amino-grafted halloysite. The best cell viability was observed for Cd x Zn₁ - x S QD immobilized onto the azine-grafted halloysite. The possibility to use QD clay nanotube core-shell nanoarchitectures for the intracellular labeling was demonstrated. A pronounced scattering and fluorescence by halloysite⁻QD systems allows for their promising usage as markers for biomedical applications.

  14. Method for preparing hydrous zirconium oxide gels and spherules

    DOEpatents

    Collins, Jack L.

    2003-08-05

    Methods for preparing hydrous zirconium oxide spherules, hydrous zirconium oxide gels such as gel slabs, films, capillary and electrophoresis gels, zirconium monohydrogen phosphate spherules, hydrous zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite sorbent, zirconium monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite, hydrous zirconium oxide fiber materials, zirconium oxide fiber materials, hydrous zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite and spherules of barium zirconate. The hydrous zirconium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process are useful as inorganic ion exchangers, catalysts, getters and ceramics.

  15. 30 CFR 75.207 - Pillar recovery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... be left in place. (b) Before mining is started in a pillar split or lift— (1) At least two rows of... leading into the split or lift. (c) Before mining is started on a final stump— (1) At least 2 rows of... shall be installed between the lift to be started and the area where pillars have been extracted. These...

  16. 30 CFR 75.207 - Pillar recovery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... be left in place. (b) Before mining is started in a pillar split or lift— (1) At least two rows of... leading into the split or lift. (c) Before mining is started on a final stump— (1) At least 2 rows of... shall be installed between the lift to be started and the area where pillars have been extracted. These...

  17. Effects of different titanium zirconium implant surfaces on initial supragingival plaque formation.

    PubMed

    John, Gordon; Becker, Jürgen; Schwarz, Frank

    2017-07-01

    The aim of the current study was the evaluation of biofilm development on different implant surfaces. Initial biofilm formation was investigated on five different implant surfaces, machined titanium (MTi), modified machined acid-etched titanium (modMATi), machined titanium zirconium (MTiZr), modified machined and acid-etched titanium zirconium (modMATiZr) and sandblasted large grid and acid-etched titanium zirconium surface (SLATiZr) for 24 and 48 h. Biocompatibility was tested after tooth brushing of the samples via cell viability testing with human gingival fibroblasts. After 24 h of biofilm collection, mean plaque surface was detected in the following descending order: After 24 h: MTiZr > MTi > SLATiZr > modMATiZr > modMATi. Both M surfaces showed significant higher biofilm formation than the other groups. After 48 h: MTiZr > MTi > SLATiZr > modMATiZr > modMATi. After tooth brushing: SLATiZr > modMATi > modMATiZr > MTi > MTiZr. All native samples depicted significant higher cell viability than their corresponding surfaces after biofilm removal procedure. The TiZr groups especially the modMATiZr group showed slower and less biofilm formation. In combination with the good biocompatibility, both modMA surfaces seem to be interesting candidates for surfaces in transgingival implant design. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Behavior of soluble and immobilized acid phosphatase in hydro-organic media.

    PubMed

    Wan, H; Horvath, C

    1975-11-20

    The hydrolysis of p-nitrophenyl phosphate by wheat germ acid phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.2) has been investigated in mixtures of aqueous buffers with acetone, dioxane and acetonitrile. The enzyme was either in free solution or immobilized on a pellicular support which consisted of a porous carbonaceous layer on solid glass beads. The highest enzyme activity was obtained in acetone and acetonitrile mixed with citrate buffer over a wide range of organic solvent concentration. In 50% (v/v) acetone both V and Km of the immobilized enzyme were about half of the values in the neat aqueous buffer, but the Ki for inorganic phosphate was unchanged. In 50% (v/v) mixtures of various solvents and citrate buffers of different pH, the enzymic activity was found to depend on the pH of the aqueous buffer component rather than the pH of the hydro-organic mixture as measured with the glass-calomel electrode. The relatively high rates of p-nitrophenol liberation in the presence of glucose even at high organic solvent concentrations suggest that transphosphorylation is facilitated at low water activity.

  19. Effect of anodization on the surface characteristics and electrochemical behaviour of zirconium in artificial saliva.

    PubMed

    Romonti, Daniela E; Gomez Sanchez, Andrea V; Milošev, Ingrid; Demetrescu, Ioana; Ceré, Silvia

    2016-05-01

    The paper is focused on elaboration of ZrO2 films on pure zirconium via anodizing in phosphoric acid with and without fluoride at constant potentials of 30 V and 60 V. The structure and composition of the films were investigated using scanning electronic microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The composition of the oxides formed at both potentials can be identified as monoclinic ZrO2. In addition to Zr and O, the layers formed in phosphoric acid contain phosphorus originating from the phosphoric acid. When the phosphoric acid solution contains NaF, fluorine is also incorporated into the oxide layer. The oxides formed at a higher voltage have greater roughness than those formed at 30 V. Anodized samples exhibit smaller current densities during anodic polarization compared to the as-received zirconium covered with native oxide. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Immobilization of Agricultural Phosphorus in an Illinois Floodplain Soil

    NASA Astrophysics Data System (ADS)

    Arenberg, M. R.; Arai, Y.

    2017-12-01

    Nutrient losses from the Mississippi watershed are exacerbating the growth of the hypoxic zone in the Gulf of Mexico. Located within the highly agricultural Piatt County, IL, Allerton Park encompasses a riparian forest that receives an influx of phosphorus (P) via surface runoff and leaching during spring flooding. The purpose of this study is to investigate the ability of a poorly drained Sawmill silty clay loam (fine-silty, mixed, superactive, mesic Cumulic Endoaquolls) and a poorly drained Tice silty clay loam (fine-silty, mixed, superactive, mesic Fluvaquentic Hapludolls), both with an average pH of 7.08, to buffer agricultural P losses through immobilization. If P is effectively sequestered, it may also lead to improved tree growth in woody biomass. The system's response to the seasonal flooding event was assessed by comparing P mineralization-immobilization dynamics within the bottomland and surrounding upland of the forest. Specifically, organic P, microbial P, phosphatase activity, and total P were assessed. First, total P ranged from 338 to 819 mg kg-1, averaging at 580 mg kg-1, in the bottomland and from 113 to 370 mg kg-1, averaging at 245 mg kg-1, in the upland. Next, organic P spanned from 90 to 457 mg kg-1in the bottomland, comprising an average of 45% of total P, and ranged from 42 to 191 mg kg-1in the upland, comprising an average of 36% of total P. Furthermore, microbial P averaged 13.08 mg kg-1 in the bottomland and 6.87 mg kg-1 in the upland. Finally, acidic phosphatase activity averaged 13 μmol p-nitrophenyl phosphate (PNP)/g·hr in the bottomland and 11 μmol PNP/g·hr in the upland while alkaline phosphatase activity averaged 24 μmol PNP/g·hr in the bottomland and 8 μmol PNP/g·hr in the upland. Our preliminary assessment suggests that the concentrations of total P, organic P, and microbial P in the bottomland are greater than that of the upland. This suggests that the floodplain has been effectively immobilizing agricultural P. This

  1. Sensitivity of the acid-base properties of clays to the methods of preparation and measurement. 2. Evidence from continuous potentiometric titrations.

    PubMed

    Duc, Myriam; Gaboriaud, Fabien; Thomas, Fabien

    2005-09-01

    The effects of experimental procedures on the acid-base consumption titration curves of montmorillonite suspension were studied using continuous potentiometric titration. For that purpose, the hysteresis amplitudes between the acid and base branches were found to be useful to systematically evaluate the impacts of storage conditions (wet or dried), the atmosphere in titration reactor, the solid-liquid ratio, the time interval between successive increments, and the ionic strength. In the case of storage conditions, the increase of the hysteresis was significantly higher for longer storage of clay in suspension and drying procedures compared to "fresh" clay suspension. The titration carried out under air demonstrated carbonate contamination that could only be cancelled by performing experiments under inert gas. Interestingly, the increase of the time intervals between successive increments of titrant strongly emphasized the amplitude of hysteresis, which could be correlated with the slow kinetic process specifically observed for acid addition in acid media. Thus, such kinetic behavior is probably associated with dissolution processes of clay particles. However, the resulting curves recorded at different ionic strengths under optimized conditions did not show the common intersection point required to define point of zero charge. Nevertheless, the ionic strength dependence of the point of zero net proton charge suggested that the point of zero charge of sodic montmorillonite could be estimated as lower than 5.

  2. Kinetics during the redox biotransformation of pollutants mediated by immobilized and soluble humic acids.

    PubMed

    Cervantes, Francisco J; Martínez, Claudia M; Gonzalez-Estrella, Jorge; Márquez, Arturo; Arriaga, Sonia

    2013-03-01

    The aim of this study was to elucidate the kinetic constraints during the redox biotransformation of the azo dye, Reactive Red 2 (RR2), and carbon tetrachloride (CT) mediated by soluble humic acids (HAs) and immobilized humic acids (HAi), as well as by the quinoid model compounds, anthraquinone-2,6-disulfonate (AQDS) and 1,2-naphthoquinone-4-sulfonate (NQS). The microbial reduction of both HAs and HAi by anaerobic granular sludge (AGS) was the rate-limiting step during decolorization of RR2 since the reduction of RR2 by reduced HAi proceeded at more than three orders of magnitute faster than the electron-transferring rate observed during the microbial reduction of HAi by AGS. Similarly, the reduction of RR2 by reduced AQDS proceeded 1.6- and 1.9-fold faster than the microbial reduction of AQDS by AGS when this redox mediator (RM) was supplied in soluble and immobilized form, respectively. In contrast, the reduction of NQS by AGS occurred 1.6- and 19.2-fold faster than the chemical reduction of RR2 by reduced NQS when this RM was supplied in soluble and immobilized form, respectively. The microbial reduction of HAs and HAi by a humus-reducing consortium proceeded 1,400- and 790-fold faster than the transfer of electrons from reduced HAs and HAi, respectively, to achieve the reductive dechlorination of CT to chloroform. Overall, the present study provides elucidation on the rate-limiting steps involved in the redox biotransformation of priority pollutants mediated by both HAs and HAi and offers technical suggestions to overcome the kinetic restrictions identified in the redox reactions evaluated.

  3. Mars, clays and the origins of life

    NASA Technical Reports Server (NTRS)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  4. Clays and other minerals in prebiotic processes

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1984-01-01

    Clays and other minerals have been investigated in context with prebiotic processes, mainly in polymerization of amino acids. It was found that peptides adsorbed on the clay, prior to polymerization, influence the reaction. The ratio between the amount of the peptides adsorbed and that of the clay is important for the yield as well as for the degrees of polymerization obtained. Adsorption prior to reaction produces a certain order in the aggregates of the clay particles which might induce better reaction results. Excess of added peptides disturbs this order and causes lesser degrees of polymerization. In addition to adsorption, clays are also able to occlude between their layers substances out of the environment, up to very high concentrations.

  5. Selective separation of zirconium from uranium in carbonate solutions by ion flotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jdid, E.A.; Blazy, P.; Mahamadou, A.

    1990-05-01

    Separation of zirconium from uranium in carbonate media was undertaken by ion flotation. The collector chosen was octylhydroxamic acid (HOHX). It gave a well-flocculated precipitate with zirconium which floated in less than 5 min. The stoichiometry of the reaction is HOHX/Zr = 3.9/1, and the selectivity in the presence of uranium is very high. In fact, for a ratio {Phi} = (HOHX),M/(Zr),M, which is just stoichiometric and is close to 4, the zirconium removal rate reaches 99%, even in industrial media. The loss of uranium is only 0.5% although its concentration is 37.4 g/L. Mechanisms of separation are not affectedmore » by a variation of pH between 6.7 and 9.8, of temperature up to 60{degree}C, and of carbonate concentration within the 15 to 60 g/L Na{sub 2}CO{sub 3} range.« less

  6. Microbial Impacts on Clay Mineral Transformation and Reactivity

    NASA Astrophysics Data System (ADS)

    Dong, H.; Jaisi, D.; Fredrickson, J.; Plymale, A.

    2006-05-01

    Clays and clay minerals are ubiquitous in soils, sedimentary rocks, and pelagic oozes. They play important roles in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. Iron is a major constituent in clay minerals, and its mobility and stability in different environmental processes is, in part, controlled by the oxidation state. Recent studies have shown that biological reduction of structural Fe(III) in clay minerals can change the physical and chemical properties of clay minerals, such as swelling, cation exchange and fixation capacity, specific surface area, color, and magnetic exchange interactions. As a result of biological reduction of Fe(III), clay minerals also undergo mineral transformations, such as dissolution of smectite and precipitation of illite, siderite and vivianite. These chemical, structural and mineralogical changes of clay minerals have a profound effect on clay mineral reactivity, such as their reactivity with organic and inorganic (i.e., heavy metals and radionuclides) contaminants. Our latest data show that biologically reduced nontronite (a smectite variety) is much more effective in reducing soluble and mobile Tc(VII) to Tc(IV) than unreduced nontronite. The reduced Tc(IV) is insoluble in groundwater and soil and thus is immobile. Biologically reduced nontronite can be prepared by microbially reducing Fe(III) in nontronite by Shewanella putrefaciens in the absence of oxygen. Approximately 30% of structurally Fe(III) can be reduced in this manner. Biogenic Fe(II) can then serve as an electron donor to reduce Tc(VII). Nearly all Fe(II) is available to reduce Tc(VII), with the rate of reduction (typically within weeks) possibly depending on the speciation of Fe(II) (surface sorbed Fe(II) vs. structural Fe(II)). Further investigations are underway to further assess the reversibility of Tc reduction upon exposure to oxygen and to elucidate Tc reduction

  7. Optimization of date syrup for enhancement of the production of citric acid using immobilized cells of Aspergillus niger

    PubMed Central

    Mostafa, Yasser S.; Alamri, Saad A.

    2012-01-01

    Date syrup as an economical source of carbohydrates and immobilized Aspergillus niger J4, which was entrapped in calcium alginate pellets, were employed for enhancing the production of citric acid. Maximum production was achieved by pre-treating date syrup with 1.5% tricalcium phosphate to remove heavy metals. The production of citric acid using a pretreated medium was 38.87% higher than an untreated one that consumed sugar. The appropriate presence of nitrogen, phosphate and magnesium appeared to be important in order for citric acid to accumulate. The production of citric acid and the consumed sugar was higher when using 0.1% ammonium nitrate as the best source of nitrogen. The production of citric acid increased significantly when 0.1 g/l of KH2PO4 was added to the medium of date syrup. The addition of magnesium sulfate at the rate of 0.20 g/l had a stimulating effect on the production of citric acid. Maximum production of citric acid was obtained when calcium chloride was absent. One of the most important benefits of immobilized cells is their ability and stability to produce citric acid under a repeated batch culture. Over four repeated batches, the production of citric acid production was maintained for 24 days when each cycle continued for 144 h. The results obtained in the repeated batch cultivation using date syrup confirmed that date syrup could be used as a medium for the industrial production of citric acid. PMID:23961184

  8. Fine-grained zirconium-base material

    DOEpatents

    Van Houten, G.R.

    1974-01-01

    A method is described for making zirconium with inhibited grain growth characteristics, by the process of vacuum melting the zirconium, adding 0.3 to 0.5% carbon, stirring, homogenizing, and cooling. (Official Gazette)

  9. Evaluation of oriented lysozyme immobilized with monoclonal antibody

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Okada, Keigo; Shigyo, Ayako; Man, Naoki; Karen, Akiya

    2008-12-01

    The orientation of a lysozyme immobilized with a monoclonal antibody was evaluated based on determination of the uppermost surface structure using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Specific peaks of the oriented lysozyme immobilized with monoclonal anti-lysozyme antibody were obtained in comparison with reference samples, non-oriented immobilized lysozyme and immobilized anti-lysozyme antibody. All samples were freeze-dried before TOF-SIMS measurement, and then each sample was measured using TOF-SIMS with a bismuth cluster ion source. TOF-SIMS spectra were analyzed to select peaks specific to the oriented immobilized lysozyme as well as to identify their chemical formula and ensemble of amino acids. The possible chemical formulae of the lysozyme fragments were then investigated with an element matching program and a residue matching program. The results from TOF-SIMS spectra analysis were compared to the amino acid sequence of the lysozyme and its three-dimensional structure registered in the protein data bank. Finally, the fragment-ion-generating regions of the oriented immobilized lysozyme were determined based on the suggested residues and the three-dimensional structure.

  10. Effects of the immobilization supports on the catalytic properties of immobilized mushroom tyrosinase: a comparative study using several substrates.

    PubMed

    Marín-Zamora, María Elisa; Rojas-Melgarejo, Francisco; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio

    2007-09-30

    Mushroom tyrosinase was immobilized from an extract onto glass beads covered with one of the following compounds: the crosslinked totally cinnamoylated derivatives of glycerine, D-sorbitol, D-manitol, 1,2-O-isopropylidene-alpha-D-glucofuranose, D-glucuronic acid, D-gulonic acid, sucrose, D-glucosone, D-arabinose, D-fructose, D-glucose, ethyl-D-glucopyranoside, inuline, dextrine, dextrane or starch, or the partially cinnamoylated derivative 3,5,6-tricinnamoyl-D-glucofuranose which was obtained by the acid hydrolysis of 1,2-O-isopropylidene-alpha-d-glucofuranose. The enzyme was immobilized by direct adsorption onto the support and the quantity of tyrosinase immobilized was found to increase with the hydrophobicity of the supports. The kinetic constants of immobilized tyrosinase acting on the substrates, 4-tert-butylcatechol, dopamine and DL-dopa, were studied. When immobilized tyrosinase acted on 4-tert-butylcatechol, the values of K(m)(app) were lower than these obtained for tyrosinase in solution while, when dopamine and DL-dopa were used, the K(m)(app) were higher. The order of the substrates as regards their ionizable groups, DL-dopa (two ionizable groups)>dopamine (one ionizable group)>4-tert-butylcatechol (no ionizable group) coincided with the order of the K(m)(app) values shown by tyrosinase immobilized on the hydrophobic supports, and was the inverse of that observed for tyrosinase in solution. The K(m)(app) values of immobilized tyrosinase were in all cases higher than those of soluble tyrosinase and depended on the nature of the support and the hydrophobicity of the substrate, meaning that it is possible to design supports with different degrees of selectivity towards a mixture of enzyme substrates in the reaction medium.

  11. Thoron-tartaric acid systems for spectrophotometric determination of thorium

    USGS Publications Warehouse

    Grimaldi, F.S.; Fletcher, M.H.

    1956-01-01

    Thoron is commonly used for the spectrophotometric determination of thorium. An undesirable feature of its use is its high sensitivity to zirconium. This study describes the use of tartaric acid as a masking reagent for zirconium. Three tartaric acid-thoron systems, developed for the determination of thorium, differ with respect to the concentrations of thoron and tartaric acid. Mesotartaric acid, used in one of the systems, is most effective in masking zirconium. The behavior of rarer elements, usually associated with thorium ores, is determined in two systems, and a dilution method is described for the direct determination of thorium in monazite concentrates.

  12. Zirconium

    USGS Publications Warehouse

    Bedinger, G.M.

    2013-01-01

    Zirconium is the 20th most abundant element in the Earth’s crust. It occurs in a variety of rock types and geologic environments but most often in igneous rocks in the form of zircon (ZrSiO4). Zircon is recovered as a coproduct of the mining and processing of heavy mineral sands for the titanium minerals ilmenite and rutile. The sands are formed by the weathering and erosion of rock containing zircon and titanium heavy minerals and their subsequent concentration in sedimentary systems, particularly in coastal environments. A small quantity of zirconium, less than 10 kt/a (11,000 stpy), compared with total world production of 1.4 Mt (1.5 million st) in 2012, was derived from the mineral baddeleyite (ZrO2), produced from a single source in Kovdor, Russia.

  13. Evaluation of agrowastes as immobilizers for probiotics in soy milk.

    PubMed

    Teh, Sue-Siang; Ahmad, Rosma; Wan-Abdullah, Wan-Nadiah; Liong, Min-Tze

    2009-11-11

    The objective of this study was to evaluate agricultural wastes as immobilizers for probiotics in liquid foods, such as soy milk. Probiotic strains were initially evaluated for acid and bile tolerance and the ability to produce alpha-galactosidase. Rinds of durian, mangosteen, and jackfruit were dried, ground, and sterilized prior to immobilization of selected strains ( Lactobacillus acidophilus FTDC 1331, L. acidophilus FTDC 2631, L. acidophilus FTDC 2333, L. acidophilus FTDC 1733, and Lactobacillus bulgaricus FTCC 0411). Immobilized cells were inoculated into soy milk, and growth properties were evaluated over 168 h at 37 degrees C. Soy milk containing free cells without agrowastes was used as the control. Immobilized probiotics showed increased growth, greater reduction of stachyose, sucrose, and glucose, higher production of lactic and acetic acids, and lower pH in soy milk compared to the control. The results illustrated that agrowastes could be used for the immobilization of probiotics with enhanced growth, utilization of substrates, and production of organic acids.

  14. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase.

    PubMed

    Flores-Maltos, Abril; Rodríguez-Durán, Luis V; Renovato, Jacqueline; Contreras, Juan C; Rodríguez, Raúl; Aguilar, Cristóbal N

    2011-01-01

    A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methyl gallate as substrates. K(M) and V(max) values for free enzyme were very similar for both substrates. But, after immobilization, K(M) and V(max) values increased drastically using tannic acid as substrate. These results indicated that immobilized tannase is a better biocatalyst than free enzyme for applications on liquid systems with high tannin content, such as bioremediation of tannery or olive-mill wastewater.

  15. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase

    PubMed Central

    Flores-Maltos, Abril; Rodríguez-Durán, Luis V.; Renovato, Jacqueline; Contreras, Juan C.; Rodríguez, Raúl; Aguilar, Cristóbal N.

    2011-01-01

    A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methyl gallate as substrates. K M and V max values for free enzyme were very similar for both substrates. But, after immobilization, K M and V max values increased drastically using tannic acid as substrate. These results indicated that immobilized tannase is a better biocatalyst than free enzyme for applications on liquid systems with high tannin content, such as bioremediation of tannery or olive-mill wastewater. PMID:21918717

  16. Ternary cobalt-molybdenum-zirconium coatings for alternative energies

    NASA Astrophysics Data System (ADS)

    Yar-Mukhamedova, Gulmira; Ved', Maryna; Sakhnenko, Nikolay; Koziar, Maryna

    2017-11-01

    Consistent patterns for electrodeposition of Co-Mo-Zr coatings from polyligand citrate-pyrophosphate bath were investigated. The effect of both current density amplitude and pulse on/off time on the quality, composition and surface morphology of the galvanic alloys were determined. It was established the coating Co-Mo-Zr enrichment by molybdenum with current density increasing up to 8 A dm-2 as well as the rising of pulse time and pause duration promotes the content of molybdenum because of subsequent chemical reduction of its intermediate oxides by hydrogen ad-atoms. It was found that the content of the alloying metals in the coating Co-Mo-Zr depends on the current density and on/off times extremely and maximum Mo and Zr content corresponds to the current density interval 4-6 A dm-2, on-/off-time 2-10 ms. Chemical resistance of binary and ternary coatings based on cobalt is caused by the increased tendency to passivity and high resistance to pitting corrosion in the presence of molybdenum and zirconium, as well as the acid nature of their oxides. Binary coating with molybdenum content not less than 20 at.% and ternary ones with zirconium content in terms of corrosion deep index are in a group ;very proof;. It was shown that Co-Mo-Zr alloys exhibits the greatest level of catalytic properties as cathode material for hydrogen electrolytic production from acidic media which is not inferior a platinum electrode. The deposits Co-Mo-Zr with zirconium content 2-4 at.% demonstrate high catalytic properties in the carbon(II) oxide conversion. This confirms the efficiency of materials as catalysts for the gaseous wastes purification and gives the reason to recommend them as catalysts for red-ox processes activating by oxygen as well as electrode materials for red-ox batteries.

  17. Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoAcarboxylase, temperature, and co-immobilization with Azospirillum brasilense [corrected].

    PubMed

    Leyva, Luis A; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  18. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Leyva, Luis A.; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E.

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  19. Adsorption of dyes using different types of clay: a review

    NASA Astrophysics Data System (ADS)

    Adeyemo, Aderonke Ajibola; Adeoye, Idowu Olatunbosun; Bello, Olugbenga Solomon

    2017-05-01

    Increasing amount of dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost adsorbents. The effective use of the sorption properties (high surface area and surface chemistry, lack of toxicity and potential for ion exchange) of different clays as adsorbents for the removal of different type of dyes (basic, acidic, reactive) from water and wastewater as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. Insights into the efficiencies of raw and modified/activated clay adsorbents and ways of improving their efficiencies to obtain better results are discussed. Acid-modified clay resulted in higher rate of dye adsorption and an increased surface area and porosity (49.05 mm2 and 53.4 %). Base-modified clay has lower adsorption capacities, while ZnCl2-modified clay had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4 %. This review also explores the grey areas of the adsorption properties of the raw clays and the improved performance of activated/modified clay materials with particular reference to the effects of pH, temperature, initial dye concentration and adsorbent dosage on the adsorption capacities of the clays. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.

  20. 40 CFR 721.9973 - Zirconium dichlorides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Zirconium dichlorides (generic). 721... Substances § 721.9973 Zirconium dichlorides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as zirconium dichlorides (PMNs P...

  1. Method of underground mining by pillar extraction

    DOEpatents

    Bowen, Ray J.; Bowen, William R.

    1980-08-12

    A method of sublevel caving and pillar and top coal extraction for mining thick coal seams includes the advance mining of rooms and crosscuts along the bottom of a seam to a height of about eight feet, and the retreat mining of the top coal from the rooms, crosscuts and portions of the pillars remaining from formation of the rooms and cross-cuts. In the retreat mining, a pocket is formed in a pillar, the top coal above the pocket is drilled, charged and shot, and then the fallen coal is loaded by a continuous miner so that the operator remains under a roof which has not been shot. The top coal from that portion of the room adjacent the pocket is then mined, and another pocket is formed in the pillar. The top coal above the second pocket is mined followed by the mining of the top coal of that portion of the room adjacent the second pocket, all by use of a continuous miner which allows the operator to remain under a roof portion which has not been shot.

  2. Biohydrogen production from rotten orange with immobilized mixed culture: Effect of immobilization media for various composition of substrates

    NASA Astrophysics Data System (ADS)

    Damayanti, Astrilia; Sarto, Syamsiah, Siti; Sediawan, Wahyudi B.

    2015-12-01

    Enriched-immobilized mixed culture was utilized to produce biohydrogen in mesophilic condition under anaerobic condition using rotten orange as substrate. The process was conducted in batch reactors for 100 hours. Microbial cultures from three different sources were subject to a series of enrichment and immobilized in two different types of media, i.e. calcium alginate (CA, 2%) and mixture of alginate and activated carbon (CAC, 1:1). The performance of immobilized culture in each media was tested for biohydrogen production using four different substrate compositions, namely orange meat (OM), orange meat added with peel (OMP), orange meat added with limonene (OML), and mixture of orange meat and peel added with limonene (OMPL). The results show that, with immobilized culture in CA, the variation of substrate composition gave significant effect on the production of biohydrogen. The highest production of biohydrogen was detected for substrate containing only orange meet, i.e. 2.5%, which was about 3-5 times higher than biohydrogen production from other compositions of substrate. The use of immobilized culture in CAC in general has increased the hydrogen production by 2-7 times depending on the composition of substrate, i.e. 5.4%, 4.8%, 5.1%, and 4.4% for OM, OMP, OML, and OMPL, respectively. The addition of activated carbon has eliminated the effect of inhibitory compounds in the substrate. The major soluble metabolites were acetic acid, propionic acid, and butyric acid.

  3. Biohydrogen production from rotten orange with immobilized mixed culture: Effect of immobilization media for various composition of substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damayanti, Astrilia, E-mail: liasholehasd@gmail.com; Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, Jl. Grafika No. 2, Kampus UGM, Yogyakarta 55281; Sarto,

    Enriched–immobilized mixed culture was utilized to produce biohydrogen in mesophilic condition under anaerobic condition using rotten orange as substrate. The process was conducted in batch reactors for 100 hours. Microbial cultures from three different sources were subject to a series of enrichment and immobilized in two different types of media, i.e. calcium alginate (CA, 2%) and mixture of alginate and activated carbon (CAC, 1:1). The performance of immobilized culture in each media was tested for biohydrogen production using four different substrate compositions, namely orange meat (OM), orange meat added with peel (OMP), orange meat added with limonene (OML), and mixturemore » of orange meat and peel added with limonene (OMPL). The results show that, with immobilized culture in CA, the variation of substrate composition gave significant effect on the production of biohydrogen. The highest production of biohydrogen was detected for substrate containing only orange meet, i.e. 2.5%, which was about 3-5 times higher than biohydrogen production from other compositions of substrate. The use of immobilized culture in CAC in general has increased the hydrogen production by 2-7 times depending on the composition of substrate, i.e. 5.4%, 4.8%, 5.1%, and 4.4% for OM, OMP, OML, and OMPL, respectively. The addition of activated carbon has eliminated the effect of inhibitory compounds in the substrate. The major soluble metabolites were acetic acid, propionic acid, and butyric acid.« less

  4. Enhanced butyric acid tolerance and bioproduction by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor.

    PubMed

    Jiang, Ling; Wang, Jufang; Liang, Shizhong; Cai, Jin; Xu, Zhinan; Cen, Peilin; Yang, Shangtian; Li, Shuang

    2011-01-01

    Repeated fed-batch fermentation of glucose by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor (FBB) was successfully employed to produce butyric acid at a high final concentration as well as to adapt a butyric-acid-tolerant strain. At the end of the eighth fed-batch fermentation, the butyric acid concentration reached 86.9 ± 2.17 g/L, which to our knowledge is the highest butyric acid concentration ever produced in the traditional fermentation process. To understand the mechanism and factors contributing to the improved butyric acid production and enhanced acid tolerance, adapted strains were harvested from the FBB and characterized for their physiological properties, including specific growth rate, acid-forming enzymes, intracellular pH, membrane-bound ATPase and cell morphology. Compared with the original culture used to seed the bioreactor, the adapted culture showed significantly reduced inhibition effects of butyric acid on specific growth rate, cellular activities of butyric-acid-forming enzyme phosphotransbutyrylase (PTB) and ATPase, together with elevated intracellular pH, and elongated rod morphology. © 2010 Wiley Periodicals, Inc.

  5. Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay.

    PubMed

    B, Ayana; Suin, Supratim; Khatua, B B

    2014-09-22

    Highly exfoliated, biodegradable thermoplastic starch (TPS)/polylactic acid (PLA)/sodium montmorillonite (NaMMT) nanocomposites were prepared by an eco-friendly approach, involving in-situ gelatinization of potato starch in presence of dispersed nanoclay followed by melt mixing with PLA. The morphological analysis revealed that the NaMMT was selectively dispersed into the TPS in a highly delaminated manner. An increase in mechanical as well as thermomechanical properties was evident in the presence of PLA and more influenced in the presence of clay. The water absorption was significantly decreased in the presence of PLA (∼8%) itself and both PLA and clay (∼8-12%) in the nanocomposites. The improved mechanical properties along with its biodegradability might lead to a new green material in the area of packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Let the substrate flow, not the enzyme: Practical immobilization of d-amino acid oxidase in a glass microreactor for effective biocatalytic conversions.

    PubMed

    Bolivar, Juan M; Tribulato, Marco A; Petrasek, Zdenek; Nidetzky, Bernd

    2016-11-01

    Exploiting enzymes for chemical synthesis in flow microreactors necessitates their reuse for multiple rounds of conversion. To achieve this goal, immobilizing the enzymes on microchannel walls is a promising approach, but practical methods for it are lacking. Using fusion to a silica-binding module to engineer enzyme adsorption to glass surfaces, we show convenient immobilization of d-amino acid oxidase on borosilicate microchannel plates. In confocal laser scanning microscopy, channel walls appeared uniformly coated with target protein. The immobilized enzyme activity was in the range expected for monolayer coverage of the plain surface with oxidase (2.37 × 10(-5)  nmol/mm(2) ). Surface attachment of the enzyme was completely stable under flow. The operational half-life of the immobilized oxidase (25°C, pH 8.0; soluble catalase added) was 40 h. Enzymatic oxidation of d-Met into α-keto-γ-(methylthio)butyric acid was characterized in single-pass and recycle reactor configurations, employing in-line measurement of dissolved O2 , and off-line determination of the keto-acid product. Reaction-diffusion time-scale analysis for different flow conditions showed that the heterogeneously catalyzed reaction was always slower than diffusion of O2 to the solid surface (DaII  ≤ 0.3). Potential of the microreactor for intensifying O2 -dependent biotransformations restricted by mass transfer in conventional reactors is thus revealed. Biotechnol. Bioeng. 2016;113: 2342-2349. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Multifaceted role of clay minerals in pharmaceuticals

    PubMed Central

    Khurana, Inderpreet Singh; Kaur, Satvinder; Kaur, Harpreet; Khurana, Rajneet Kaur

    2015-01-01

    The desirable physical and physiochemical properties of clay minerals have led them to play a substantial role in pharmaceutical formulations. Clay minerals like kaolin, smectite and palygorskite-sepiolite are among the world's most valuable industrial minerals and of considerable importance. The elemental features of clay minerals which caused them to be used in pharmaceutical formulations are high specific area, sorption capacity, favorable rheological properties, chemical inertness, swelling capacity, reactivity to acids and inconsiderable toxicity. Of course, these are highly cost effectual. This special report on clay minerals provides a bird's eye view of the chemical composition and structure of these minerals and their influence on the release properties of active medicinal agents. Endeavor has been made to rope in myriad applications depicting the wide acceptability of these clay minerals. PMID:28031881

  8. Effects of low molecular weight organic acids on the immobilization of aqueous Pb(II) using phosphate rock and different crystallized hydroxyapatite.

    PubMed

    Wei, Wei; Cui, Jing; Wei, Zhenggui

    2014-06-01

    Understanding the effects of low molecular weight organic acids (LMWOAs) on the transformation of Pb(II) to geochemically stable pyromorphite (PY) by apatite materials (AMs), has considerable benefits for risk assessment and remediation strategies for contaminated water and soil. In this study, we systematically investigated the immobilization of Pb(II) from aqueous solution by natural phosphate rock (PR) and different crystallized hydroxyapatite (HAp) in the absence and presence of LMWOAs (oxalic, malic and citric acids). The results indicated that the effectiveness of PR and HAp in immobilizing Pb(II) followed in descending order by HAp2 (the poorly crystallized HAp), HAp1 (the well crystallized HAp) and PR, regardlessof the presence of LMWOAs. The presence of malic and citric acids significantly decreased the immobilizationefficiency of Pb(II) by HAp1 and PR, clarifying the lower adsorption affinities of Pb(II)-organic acid complexes on HAp1 and PR rather than Pb(II) ion. On thecontrary, oxalic acid could markedly enhance the removal of Pb(II) from aqueous solution by HAp1 and PR through the formation of lead oxalate, which was confirmed by FT-IR and XRDanalysis. Results also showed that LMWOAs had little promoting or inhibiting effect on the immobilization of Pb(II) by HAp2. This study suggested that the ubiquity of LMWOAs in natural environments could retard the transformation efficiency of Pb(II) to PY by AMs, especiallyin thepresenceof oxalic acid, and the poorly crystallized HAp2 had great potential to remediate Pb(II)-contaminated water and soil due to its insusceptibility to LMWOAs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Bentonite-Clay Waste Form for the Immobilization of Cesium and Strontium from Fuel Processing Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, Michael D.; Mertz, Carol J.

    2016-01-01

    The physical properties of a surrogate waste form containing cesium, strontium, rubidium, and barium sintered into bentonite clay were evaluated for several simulant feed streams: chlorinated cobalt dicarbollide/polyethylene glycol (CCD-PEG) strip solution, nitrate salt, and chloride salt feeds. We sintered bentonite clay samples with a loading of 30 mass% of cesium, strontium, rubidium, and barium to a density of approximately 3 g/cm 3. Sintering temperatures of up to 1000°C did not result in volatility of cesium. Instead, there was an increase in crystallinity of the waste form upon sintering to 1000ºC for chloride- and nitrate-salt loaded clays. The nitrate saltmore » feed produced various cesium pollucite phases, while the chloride salt feed did not produce these familiar phases. In fact, many of the x-ray diffraction peaks could not be matched to known phases. Assemblages of silicates were formed that incorporated the Sr, Rb, and Ba ions. Gas evolution during sintering to 1000°C was significant (35% weight loss for the CCD-PEG waste-loaded clay), with significant water being evolved at approximately 600°C.« less

  10. Pessimistic Determination of Mechanical Conditions and Micro/macroeconomic Evaluation of Mine Pillar Replacement

    NASA Astrophysics Data System (ADS)

    Chen, Qingfa; Zhao, Fuyu

    2017-12-01

    Numerous pillars are left after mining of underground mineral resources using the open stope method or after the first step of the partial filling method. The mineral recovery rate can, however, be improved by replacement recovery of pillars. In the present study, the relationships among the pillar type, minimum pillar width, and micro/macroeconomic factors were investigated from two perspectives, namely mechanical stability and micro/macroeconomic benefit. Based on the mechanical stability formulas for ore and artificial pillars, the minimum width for a specific pillar type was determined using a pessimistic criterion. The microeconomic benefit c of setting an ore pillar, the microeconomic benefit w of artificial pillar replacement, and the economic net present value (ENPV) of the replacement process were calculated. The values of c and w were compared with respect to ENPV, based on which the appropriate pillar type and economical benefit were determined.

  11. Oxidized zirconium on ceramic; Catastrophic coupling.

    PubMed

    Ozden, V E; Saglam, N; Dikmen, G; Tozun, I R

    2017-02-01

    Oxidized zirconium (Oxinium™; Smith & Nephew, Memphis, TN, USA) articulated with polyethylene in total hip arthroplasty (THA) appeared to have the potential to reduce wear dramatically. The thermally oxidized metal zirconium surface is transformed into ceramic-like hard surface that is resistant to abrasion. The exposure of soft zirconium metal under hard coverage surface after the damage of oxidized zirconium femoral head has been described. It occurred following joint dislocation or in situ succeeding disengagement of polyethylene liner. We reported three cases of misuse of Oxinium™ (Smith & Nephew, Memphis, TN, USA) heads. These three cases resulted in catastrophic in situ wear and inevitable failure although there was no advice, indication or recommendation for this use from the manufacturer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Isoelectric focusing of dansylated amino acids in immobilized pH gradients

    NASA Technical Reports Server (NTRS)

    Bianchi-Bosisio, Adriana; Righetti, Pier Giorgio; Egen, Ned B.; Bier, Milan

    1986-01-01

    The 21 free amino acids commonly encountered in proteins have been transformed into 'carrier ampholyte' species by reacting their primary amino groups with dansyl chloride. These derivatives can thus be focused in an immobilized pH gradient covering the pH interval 3.1 to 4.1, except for arginine, which still retains a pI of 8.8. Due to their inherent fluorescence, the dansyl derivatives are revealed in UV light, with a sensitivity of the order of 2-4 ng/sq mm. All nearest neighbors are separated except for the following couples: Asn-Gln, Gly-Thr, Val-Ile and Cys-Cys2, with a resolving power, in a Delta(pI) scale, of the order of 0.0018 pH units. Except for a few cases (notably the aromatic amino acids), the order of pI values is well correlated with the pK values of carboxyl groups, suggesting that the latter are not altered by dansylation. From the set of pK(COOH)-pI values of the different amino acids, the pK of the tertiary amino group in the dansyl label has been calculated to be 5.11 + or - 0.06. Knowing the pK of the amino-dansyl and the pI of the excess, free dansyl label (pI = 3.34), a pK of 1.57 is derived for its sulfonic acid group.

  13. Oriented antibody immobilization to polystyrene macrocarriers for immunoassay modified with hydrazide derivatives of poly(meth)acrylic acid

    PubMed Central

    Shmanai, Vadim V; Nikolayeva, Tamara A; Vinokurova, Ludmila G; Litoshka, Anatoli A

    2001-01-01

    Background Hydrophobic polystyrene is the most common material for solid phase immunoassay. Proteins are immobilized on polystyrene by passive adsorption, which often causes considerable denaturation. Biological macromolecules were found to better retain their functional activity when immobilized on hydrophilic materials. Polyacrylamide is a common material for solid-phase carriers of biological macromolecules, including immunoreagents used in affinity chromatography. New macroformats for immunoassay modified with activated polyacrylamide derivatives seem to be promising. Results New polymeric matrices for immunoassay in the form of 0.63-cm balls which contain hydrazide functional groups on hydrophilic polymer spacer arms at their surface shell are synthesized by modification of aldehyde-containing polystyrene balls with hydrazide derivatives of poly(meth)acrylic acid. The beads contain up to 0.31 μmol/cm2 active hydrazide groups accessible for covalent reaction with periodate-oxidized antibodies. The matrices obtained allow carrying out the oriented antibody immobilization, which increases the functional activity of immunosorbents. Conclusions An efficient site-directed antibody immobilization on a macrosupport is realized. The polymer hydrophilic spacer arms are the most convenient and effective tools for oriented antibody coupling with molded materials. The suggested scheme can be used for the modification of any other solid supports containing electrophilic groups reacting with hydrazides. PMID:11545680

  14. Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: A 14C-tracer study.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2017-04-01

    Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils requires a higher microbial viability and an increased PAH bioavailability. The clay/modified clay-modulated bacterial degradation could deliver a more efficient removal of PAHs in soils depending on the bioavailability of the compounds. In this study, we modified clay minerals (smectite and palygorskite) with mild acid (HCl) and alkali (NaOH) treatments (0.5-3 M), which increased the surface area and pore volume of the products, and removed the impurities without collapsing the crystalline structure of clay minerals. In soil incubation studies, supplements with the clay products increased bacterial growth in the order: 0.5 M HCl ≥ unmodified ≥ 0.5 M NaOH ≥ 3 M NaOH ≥ 3 M HCl for smectite, and 0.5 M HCl ≥ 3 M NaOH ≥ 0.5 M NaOH ≥ 3 M HCl ≥ unmodified for palygorskite. A 14 C-tracing study showed that the mild acid/alkali-treated clay products increased the PAH biodegradation (5-8%) in the order of 0.5 M HCl ≥ unmodified > 3 M NaOH ≥ 0.5 M NaOH for smectite, and 0.5 M HCl > 0.5 M NaOH ≥ unmodified ≥ 3 M NaOH for palygorskite. The biodegradation was correlated (r = 0.81) with the bioavailable fraction of PAHs and microbial growth as affected particularly by the 0.5 M HCl and 0.5 M NaOH-treated clay minerals. These results could be pivotal in developing a clay-modulated bioremediation technology for cleaning up PAH-contaminated soils and sediments in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Host-Guest Complexes of Carboxylated Pillar[n]arenes With Drugs.

    PubMed

    Wheate, Nial J; Dickson, Kristie-Ann; Kim, Ryung Rae; Nematollahi, Alireza; Macquart, René B; Kayser, Veysel; Yu, Guocan; Church, W Bret; Marsh, Deborah J

    2016-12-01

    Pillar[n]arenes are a new family of nanocapsules that have shown application in a number of areas, but because of their poor water solubility their biomedical applications are limited. Recently, a method of synthesizing water-soluble pillar[n]arenes was developed. In this study, carboxylated pillar[n]arenes (WP[n], n = 6 or 7) have been examined for their ability to form host-guest complexes with compounds relevant to drug delivery and biodiagnostic applications. Both pillar[n]arenes form host-guest complexes with memantine, chlorhexidine hydrochloride, and proflavine by 1 H nuclear magnetic resonance and modeling. Binding is stabilized by hydrophobic effects within the cavities, and hydrogen bonding and electrostatic interactions at the portals. Encapsulation within WP[6] results in the complete and efficient quenching of proflavine fluorescence, giving rise to "on" and "off" states that have potential in biodiagnostics. The toxicity of the pillar[n]arenes was examined using in vitro growth assays with the OVCAR-3 and HEK293 cell lines. The pillar[n]arenes are relatively nontoxic to cells except at high doses and after prolonged continuous exposure. Overall, the results show that there could be a potentially large range of medical applications for carboxylated pillar[n]arene nanocapsules. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker

    NASA Astrophysics Data System (ADS)

    Gunda, Naga Siva Kumar; Singh, Minashree; Norman, Lana; Kaur, Kamaljit; Mitra, Sushanta K.

    2014-06-01

    In the present work, we developed and optimized a technique to produce a thin, stable silane layer on silicon substrate in a controlled environment using (3-aminopropyl)triethoxysilane (APTES). The effect of APTES concentration and silanization time on the formation of silane layer is studied using spectroscopic ellipsometry and Fourier transform infrared spectroscopy (FTIR). Biomolecules of interest are immobilized on optimized silane layer formed silicon substrates using glutaraldehyde linker. Surface analytical techniques such as ellipsometry, FTIR, contact angle measurement system, and atomic force microscopy are employed to characterize the bio-chemically modified silicon surfaces at each step of the biomolecule immobilization process. It is observed that a uniform, homogenous and highly dense layer of biomolecules are immobilized with optimized silane layer on the silicon substrate. The developed immobilization method is successfully implemented on different silicon substrates (flat and pillar). Also, different types of biomolecules such as anti-human IgG (rabbit monoclonal to human IgG), Listeria monocytogenes, myoglobin and dengue capture antibodies were successfully immobilized. Further, standard sandwich immunoassay (antibody-antigen-antibody) is employed on respective capture antibody coated silicon substrates. Fluorescence microscopy is used to detect the respective FITC tagged detection antibodies bound to the surface after immunoassay.

  17. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2009-01-06

    Fluorescence resonance energy transfer (FRET) using immobilized quantum dots (QDs) as energy donors was explored as a transduction method for the detection of nucleic acid hybridization at an interface. This research was motivated by the success of the QD-FRET-based transduction of nucleic acid hybridization in solution-phase assays. This new work represents a fundamental step toward the assembly of a biosensor, where immobilization of the selective chemistry on a surface is desired. After immobilizing QD-probe oligonucleotide conjugates on optical fibers, a demonstration of the retention of selectivity was achieved by the introduction of acceptor (Cy3)-labeled single-stranded target oligonucleotides. Hybridization generated the proximity required for FRET, and the resulting fluorescence spectra provided an analytical signal proportional to the amount of target. This research provides an important framework for the future development of nucleic acid biosensors based on QDs and FRET. The most important findings of this work are that (1) a QD-FRET solid-phase hybridization assay is viable and (2) a passivating layer of denatured bovine serum albumin alleviates nonspecific adsorption, ultimately resulting in (3) the potential for a reusable assay format and mismatch discrimination. In this, the first incarnation of a solid-phase QD-FRET hybridization assay, the limit of detection was found to be 5 nM, and the dynamic range was almost 2 orders of magnitude. Selective discrimination of the target was shown using a three-base-pairs mismatch from a fully complementary sequence. Despite a gradual loss of signal, reuse of the optical fibers over multiple cycles of hybridization and dehybridization was possible. Directions for further improvement of the analytical performance by optimizing the design of the QD-probe oligonucleotide interface are identified.

  18. Biodiesel production with immobilized lipase: A review.

    PubMed

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    NASA Astrophysics Data System (ADS)

    Meier, R.; Souček, P.; Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P.; Fanghänel, Th.

    2016-04-01

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An-Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An-Al alloys using a LiCl-KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions.

  20. The efficacy of acrylic acid grafting and arginine-glycine-aspartic acid peptide immobilization on fibrovascular ingrowth into porous polyethylene implants in rabbits.

    PubMed

    Park, Byung Woo; Yang, Hee Seok; Baek, Se Hyun; Park, Kwideok; Han, Dong Keun; Lee, Tae Soo

    2007-06-01

    To determine the effects of acrylic acid (AA) grafting by argon plasma treatment and of immobilization of arginine-glycine-aspartic acid (RGD) peptides on fibrovascular ingrowth rate into high-density porous polyethylene (HPPE) anophthalmic orbital implants. Sixty rabbits were divided into three groups, with 20 rabbits in each group: (1) control group, rabbits implanted with unmodified HPPE; (2) PAA group, rabbits implanted with HPPE grafted with poly(AA) by argon plasma treatment; (3) RGD group, rabbits implanted with HPPE grafted with AA by argon plasma treatment and subsequently immobilized with RGD peptide. An HPPE spherical implant was put in the abdominal muscles of rabbit. After implantation for 4 weeks, the retrieved implants were sectioned and stained with hematoxylin and eosin (H&E). Blood vessels were counted using CD-31 immunostaining. Cross-sectional areas of fibrovascular ingrowth, blood vessel densities, and host inflammatory response scores were determined for all three groups. The mean cross-sectional areas of fibrovascularization at 2 and 3 weeks after implantation were the greatest in the RGD group, followed by the PAA group. While minimal fibrovascular ingrowths were noted in all implants at 1 week, all the implants showed nearly complete ingrowth at 4 weeks. Blood vessel densities were the highest in the RGD group, followed by the PAA group at 2, 3, and 4 weeks. The mean inflammation scores of the PAA and RGD groups were less than that of the control group. Fibrovascularization into HPPE implants was enhanced by surface grafting of AA and further improved by immobilizing RGD peptides onto the grafted AA surfaces. The inflammatory reactions were mild by either technique of surface modification.

  1. Experimental and Numerical Investigation on the Bearing and Failure Mechanism of Multiple Pillars Under Overburden

    NASA Astrophysics Data System (ADS)

    Zhou, Zilong; Chen, Lu; Zhao, Yuan; Zhao, Tongbin; Cai, Xin; Du, Xueming

    2017-04-01

    To reveal the mechanical response of a multi-pillar supporting system under external loads, compressive tests were carried out on single-pillar and double-pillar specimens. The digital speckle correlation method and acoustic emission technique were applied to record and analyse information of the deformation and failure processes. Numerical simulations with the software programme PFC2D were also conducted. In the compressive process of the double-pillar system, if both individual pillars have the same mechanical properties, each pillar deforms similarly and reaches the critical stable state almost simultaneously by sharing equal loads. If the two individual pillars have different mechanical properties, the pillar with higher elastic modulus or lower strength would be damaged and lose its bearing capacity firstly. The load would then be transferred to the other pillar under a load redistribution process. When the pillar with higher strength is strong enough, the load carried by the pillar system would increase again. However, the maximum bearing load of the double-pillar system is smaller than the sum of peak load of individual pillars. The study also indicates that the strength, elastic modulus, and load state of pillars all influence the supporting capacity of the pillar system. In underground space engineering, the appropriate choice of pillar dimensions and layout may play a great role in preventing the occurrence of cascading pillar failure.

  2. Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay.

    PubMed

    Singh, I B; Chaturvedi, K; Morchhale, R K; Yegneswaran, A H

    2007-03-06

    Waste generated from galvanizing and metal finishing processes is considered to be a hazardous due to the presence of toxic metals like Pb, Cu, Cr, Zn, etc. Thermal treatment of such types of wastes in the presence of clay and fly ash can immobilizes their toxic metals to a maximum level. After treatment solidified mass can be utilized in construction or disposed off through land fillings without susceptibility of re-mobilization of toxic metals. In the present investigation locally available clay and fly ash of particular thermal power plant were used as additives for thermal treatment of both of the wastes in their different proportions at 850, 900 and 950 degrees C. Observed results indicated that heating temperature to be a key factor in the immobilization of toxic metals of the waste. It was noticed that the leachability of metals of the waste reduces to a negligible level after heating at 950 degrees C. Thermally treated solidified specimen of 10% waste and remaining clay have shown comparatively a higher compressive strength than clay fired bricks used in building construction. Though, thermally heated specimens made of galvanizing waste have shown much better strength than specimen made of metal finishing waste. The lechability of toxic metals like Cr, Cu, Pb and Zn became far below from their regulatory threshold after heating at 950 degrees C. Addition of fly ash did not show any improvement either in engineering property or in leachability of metals from the solidified mass. X-ray diffraction (XRD) analysis of the solidified product confirmed the presence of mixed phases of oxides of metals.

  3. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  4. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  5. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  6. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  7. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  8. Cohesive detachment of an elastic pillar from a dissimilar substrate

    NASA Astrophysics Data System (ADS)

    Fleck, N. A.; Khaderi, S. N.; McMeeking, R. M.; Arzt, E.

    The adhesion of micron-scale surfaces due to intermolecular interactions is a subject of intense interest spanning electronics, biomechanics and the application of soft materials to engineering devices. The degree of adhesion is sensitive to the diameter of micro-pillars in addition to the degree of elastic mismatch between pillar and substrate. Adhesion-strength-controlled detachment of an elastic circular cylinder from a dissimilar substrate is predicted using a Dugdale-type of analysis, with a cohesive zone of uniform tensile strength emanating from the interface corner. Detachment initiates when the opening of the cohesive zone attains a critical value, giving way to crack formation. When the cohesive zone size at crack initiation is small compared to the pillar diameter, the initiation of detachment can be expressed in terms of a critical value Hc of the corner stress intensity. The estimated pull-off force is somewhat sensitive to the choice of stick/slip boundary condition used on the cohesive zone, especially when the substrate material is much stiffer than the pillar material. The analysis can be used to predict the sensitivity of detachment force to the size of pillar and to the degree of elastic mismatch between pillar and substrate.

  9. Origin of life and iron-rich clays

    NASA Technical Reports Server (NTRS)

    Hartman, H. H.

    1986-01-01

    The premise that life began with self-replicating iron-rich clays is explored. In association with these clays and UV light, polar organic molecules, such as oxalic acid, were synthesized. The carbonaceous chondrites have both iron-rich clays and organic molecules. It is convenient to classify meteoritic organic matter into 3 categories: insoluble polymer, hydrocarbons and polar organics (soluble in water). Recent work on the delta D, delta N-15 and delta C-13 has made it clear that these three fractions have been made by three different mechanisms. A significant fraction of the insoluble polymer has a delta-D which suggests that it was made in an interstellar medium. The hydrocarbons seem to have been made on a parent body by a Fischer-Tropsch mechanism. The polar organics were probably synthesized in a mixture of carbonate (NH4)2CO3, Fe(++) ion and liquid water by radiolysis. In a set of experiments the radiolysis of (NH4)2CO3 in the presence and absence of Fe(++) ion has been examined. The synthesis of glycine in the presence of Fe(++) ion is 3-4 times that in the absence of ferrous ion. The effects of the addition of hydrocarbons to this mixture are explored. Iron-rich clays at low temperature and pressure are synthesized. So far the results are not sufficiently crystalline to look for replication. It should be noted that organic chelating agents such as oxalic acid do increase the crystallinity of the clays but not sufficiently. The hydrothermal synthesis of iron-rich clays is being examined.

  10. Fabrication of antibody microarrays by light-induced covalent and oriented immobilization.

    PubMed

    Adak, Avijit K; Li, Ben-Yuan; Huang, Li-De; Lin, Ting-Wei; Chang, Tsung-Che; Hwang, Kuo Chu; Lin, Chun-Cheng

    2014-07-09

    Antibody microarrays have important applications for the sensitive detection of biologically important target molecules and as biosensors for clinical applications. Microarrays produced by oriented immobilization of antibodies generally have higher antigen-binding capacities than those in which antibodies are immobilized with random orientations. Here, we present a UV photo-cross-linking approach that utilizes boronic acid to achieve oriented immobilization of an antibody on a surface while retaining the antigen-binding activity of the immobilized antibody. A photoactive boronic acid probe was designed and synthesized in which boronic acid provided good affinity and specificity for the recognition of glycan chains on the Fc region of the antibody, enabling covalent tethering to the antibody upon exposure to UV light. Once irradiated with optimal UV exposure (16 mW/cm(2)), significant antibody immobilization on a boronic acid-presenting surface with maximal antigen detection sensitivity in a single step was achieved, thus obviating the necessity of prior antibody modifications. The developed approach is highly modular, as demonstrated by its implementation in sensitive sandwich immunoassays for the protein analytes Ricinus communis agglutinin 120, human prostate-specific antigen, and interleukin-6 with limits of detection of 7.4, 29, and 16 pM, respectively. Furthermore, the present system enabled the detection of multiple analytes in samples without any noticeable cross-reactivities. Antibody coupling via the use of boronic acid and UV light represents a practical, oriented immobilization method with significant implications for the construction of a large array of immunosensors for diagnostic applications.

  11. Heterogeneous nucleation of nitric acid trihydrate on clay minerals: relevance to type ia polar stratospheric clouds.

    PubMed

    Hatch, Courtney D; Gough, Raina V; Toon, Owen B; Tolbert, Margaret A

    2008-01-17

    Although critical to atmospheric modeling of stratospheric ozone depletion, selective heterogeneous nuclei that promote the formation of Type Ia polar stratospheric clouds (PSCs) are largely unknown. While mineral particles are known to be good ice nuclei, it is currently not clear whether they are also good nuclei for PSCs. In the present study, a high-vacuum chamber equipped with transmission Fourier transform infrared spectroscopy and a quadrupole mass spectrometer was used to study heterogeneous nucleation of nitric acid trihydrate (NAT) on two clay minerals-Na-montmorillonite and kaolinite-as analogs of atmospheric terrestrial and extraterrestrial minerals. The minerals are first coated with a 3:1 supercooled H2O/HNO3 solution prior to the observed nucleation of crystalline NAT. At 220 K, NAT formation was observed at low SNAT values of 12 and 7 on kaolinite and montmorillonite clays, respectively. These are the lowest SNAT values reported in the literature on any substrate. However, NAT nucleation exhibited significant temperature dependence. At lower temperatures, representative of typical polar stratospheric conditions, much higher supersaturations were required before nucleation was observed. Our results suggest that NAT nucleation on mineral particles, not previously treated with sulfuric acid, may not be an important nucleation platform for Type Ia PSCs under normal polar stratospheric conditions.

  12. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky

    USGS Publications Warehouse

    Hower, J.C.; Ruppert, L.F.; Eble, C.F.

    1999-01-01

    The Fire Clay coal bed in the Central Appalachian basin region contains a laterally-persistent tonstein that is found in the coal throughout most of its areal extent. The tonstein contains an array of minerals, including sanidine, ??-quartz, anatase and euhedral zircon, thhat constitutes strong evidence for a volcanic origin of the parting. For this study, five samples of the tonstein and four sets of coal samples underlying the tonstein were collected from five sites in eastern Kentucky. Inductively coupled plasma-mass spectroscopy (ICP-MS) analysis of the tonstein and underlying coal collected from four sites in eastern Kentucky show that although Zr concentrations are high in the tonstein (570-1820 ppm on a coal-ash basis (cab)), they are highest in the coal directly underlying the tonstein (2870-4540 ppm (cab)). A similar enrichment pattern is observed in the concentration of Y plus the sum of the rare earth elements (Y + ??REE): total Y + ??REE concentrations in the five tonstein samples range from 511 to 565 ppm (cab). However, Y + ??REE contents are highest in the coals directly underlying the tonsteins: values range from 1965 to 4198 ppm (cab). Scanning electron microscopy of samples from coal which directly underlies two of the tonstein samples show that REE-rich phosphate, tentatively identified as monazite, commonly infills cracks in clays and cells in clarain and vitrain. Zircon is rare and commonly subhedral. On the basis of coal chemistry and grain morphology, we suggest that volcanic components in the tonstein were leached by ground water. The leachate, rich in Y and REE precipitated as authigenic mineral phases in the underlying coal.The Fire Clay coal bed in the Central Appalachian basin region contains a laterally-persistent tonstein that is found in the coal throughout most of its areal extent. The tonstein contains an array of minerals, including sanidine, ??-quartz, anatase and euhedral zircon, that constitutes strong evidence for a volcanic

  13. Pillars of Creation Revealed in 3-D

    NASA Image and Video Library

    2015-05-01

    This video clip shows a visualisation of the three-dimensional structure of the Pillars of Creation within the star formation region Messier 16 (also called the Eagle Nebula). It is based on new observations of the object using the MUSE instrument on ESO’s Very Large Telescope in Chile. The pillars actually consist of several distinct pieces on either side of the star cluster NGC 6611. Credit: ESO/M. Kornmesser Read more: www.nasa.gov/image-feature/goddard/pillars-of-creation-re... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Separation of Zirconium and Hafnium: A Review

    NASA Astrophysics Data System (ADS)

    Xu, L.; Xiao, Y.; van Sandwijk, A.; Xu, Q.; Yang, Y.

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium. This paper provides an overview of the processes for separating hafnium from zirconium. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The current dominant zirconium production route involves pyrometallurgical ore cracking, multi-step hydrometallurgical liquid-liquid extraction for hafnium removal and the reduction of zirconium tetrachloride to the pure metal by the Kroll process. The lengthy hydrometallurgical Zr-Hf separation operations leads to high production cost, intensive labour and heavy environmental burden. Using a compact pyrometallurgical separation method can simplify the whole production flowsheet with a higher process efficiency. The known separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt extraction. The commercially operating extractive distillation process is a significant advance in Zr-Hf separation technology but it suffers from high process maintenance cost. The recently developed new process based on molten salt-metal equilibrium for Zr-Hf separation shows a great potential for industrial application, which is compact for nuclear grade zirconium production starting from crude ore. In the present paper, the available separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  15. Determination of adsorptive and catalytic properties of copper, silver and iron contain titanium-pillared bentonite for the removal bisphenol A from aqueous solution

    NASA Astrophysics Data System (ADS)

    Tomul, Fatma; Turgut Basoglu, Funda; Canbay, Hale

    2016-01-01

    Ti-pillared bentonite, Cu, Ag and Fe modified Ti-pillared bentonite and Cu/Ti- and Fe/Ti-mixed pillared bentonite were synthesized using different titanium sources by direct synthesis or by modification after synthesis. The effects of synthesis conditions on the surface characteristics, pore structure and acidity of the pillared bentonites were investigated by SEM⿿EDS, XPS, XRD, N2-adsorption/desorption and FTIR analyses before and after ammonia adsorption. The results of EDS, XPS and XRD analysis confirmed that titanium, copper, silver and iron were incorporated into the bentonite structure. In the XRD patterns, the formation of delaminated structure reflecting the non-parallel distribution of the bentonite layers by pillaring with Ti, Cu/Ti and Fe/Ti-pillars was observed. XPS spectra indicated the presence of TiO2, CuO, Ag and Ag2O and Fe2O3 species depending on the source of active metals in the synthesized samples. In the FTIR spectra, an increase in the Bronsted/Lewis peak intensity was observed with the loading of copper and iron, whereas a decrease in Lewis and Bronsted acidities was observed with incorporation of silver. Adsorption studies indicated that the adsorption capacity of the sample synthesized using titanium (IV) propoxide and incorporating iron to the structure by ion exchange (Fe-PTi-PILC) were higher than those in other samples. The adsorption of BPA (bisphenol A) by all tested samples was found to fit the Langmuir isotherm. In the catalytic wet peroxide oxidation (CWPO) over PTi-PILC (prepared by titanium (IV) propoxide), Fe-PTi-PILC and Cu-PTi-PILC (prepared by copper impregnated Ti-pillared bentonite) samples, BPA values close to complete conversion were achieved within 30 min at 25 °C, pH 4 and 5 g/L mcat. CWPO results showed that increasement of pH causes a decrease the rate of oxidation. On the other hand, by the time catalyst and BPA concentration is increased, the rate of oxidation is increased as well.

  16. Decomposition of algal lipids in clay-enriched marine sediment under oxic and anoxic conditions

    NASA Astrophysics Data System (ADS)

    Lü, Dongwei; Song, Qian; Wang, Xuchen

    2010-01-01

    A series of laboratory incubation experiments were conducted to examine the decomposition of algal organic matter in clay-enriched marine sediment under oxic and anoxic conditions. During the 245-day incubation period, changes in the concentrations of TOC, major algal fatty acid components (14:0, 16:0, 16:1, 18:1 and 20:5), and n-alkanes (C16-C23) were quantified in the samples. Our results indicate that the organic matters were degraded more rapidly in oxic than anoxic conditions. Adsorption of fatty acids onto clay minerals was a rapid and reversible process. Using a simple G model, we calculated the decomposition rate constants for TOC, n-alkanes and fatty acids which ranged from 0.017-0.024 d-1, 0.049-0.103 d-1 and 0.011 to 0.069 d-1, respectively. Algal organic matter degraded in two stages characterized by a fast and a slow degradation processes. The addition of clay minerals montmorillonite and kaolinite to the sediments showed significant influence affecting the decomposition processes of algal TOC and fatty acids by adsorption and incorporation of the compounds with clay particles. Adsorption/association of fatty acids by clay minerals was rapid but appeared to be a slow reversible process. In addition to the sediment redox and clay influence, the structure of the compounds also played important roles in affecting their degradation dynamic in sediments.

  17. SiGe nano-heteroepitaxy on Si and SiGe nano-pillars.

    PubMed

    Mastari, M; Charles, M; Bogumilowicz, Y; Thai, Q M; Pimenta-Barros, P; Argoud, M; Papon, A M; Gergaud, P; Landru, D; Kim, Y; Hartmann, J M

    2018-07-06

    In this paper, SiGe nano-heteroepitaxy on Si and SiGe nano-pillars was investigated in a 300 mm industrial reduced pressure-chemical vapour deposition tool. An integration scheme based on diblock copolymer patterning was used to fabricate nanometre-sized templates for the epitaxy of Si and SiGe nano-pillars. Results showed highly selective and uniform processes for the epitaxial growth of Si and SiGe nano-pillars. 200 nm thick SiGe layers were grown on Si and SiGe nano-pillars and characterised by atomic force microscopy, x-ray diffraction and transmission electron microscopy. Smooth SiGe surfaces and full strain relaxation were obtained in the 650 °C-700 °C range for 2D SiGe layers grown either on Si or SiGe nano-pillars.

  18. Oriented and selective enzyme immobilization on functionalized silica carrier using the cationic binding module Z basic2: design of a heterogeneous D-amino acid oxidase catalyst on porous glass.

    PubMed

    Bolivar, Juan M; Nidetzky, Bernd

    2012-06-01

    D-amino acid oxidase from Trigonopsis variabilis (TvDAO) is applied in industry for the synthesis of pharmaceutical intermediates. Because free TvDAO is extremely sensitive to exposure to gas-liquid interfaces, biocatalytic processing is usually performed with enzyme immobilizates that offer enhanced stability under bubble aeration. We herein present an "Immobilization by Design" approach that exploits engineered charge complementarity between enzyme and carrier to optimize key features of the immobilization of TvDAO. A fusion protein between TvDAO and the positively charged module Z(basic2) was generated, and a corresponding oppositely charged carrier was obtained by derivatization of mesoporous glass with 3-(trihydroxysilyl)-1-propane-sulfonic acid. Using 250 mM NaCl for charge screening at pH 7.0, the Z(basic2) fusion of TvDAO was immobilized directly from E. coli cell extract with almost absolute selectivity and full retention of catalytic effectiveness of the isolated enzyme in solution. Attachment of the homodimeric enzyme to the carrier was quasi-permanent in low-salt buffer but fully reversible upon elution with 5 M NaCl. Immobilized TvDAO was not sensitive to bubble aeration and received substantial (≥ tenfold) stabilization of the activity at 45°C as compared to free enzyme, suggesting immobilization via multisubunit oriented interaction of enzyme with the insoluble carrier. The Z(basic2) enzyme immobilizate was demonstrated to serve as re-usable heterogeneous catalyst for D-amino acid oxidation. Z(basic2) -mediated binding on a sulfonic acid group-containing glass carrier constitutes a generally useful strategy of enzyme immobilization that supports transition from case-specific empirical development to rational design. Copyright © 2012 Wiley Periodicals, Inc.

  19. In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Qiulin; Fan, Jie; Ning, Ping; Song, Zhongxian; Liu, Xin; Wang, Lanying; Wang, Jing; Wang, Huimin; Long, Kaixian

    2018-03-01

    A series of ceria modified zirconium phosphate catalysts were synthesized for selective catalytic reduction of NO with ammonia (NH3-SCR). Over 98% NOx conversion and 98% N2 selectivity were obtained by the CeO2/ZrP catalyst with 20 wt.% CeO2 loading at 250-425 °C. The interaction between CeO2 and zirconium phosphate enhanced the redox abilities and surface acidities of the catalysts, resulting in the improvement of NH3-SCR activity. The in situ DRIFTS results indicated that the NH3-SCR reaction over the catalysts followed both Eley-Rideal and Langmuir-Hinshelwood mechanisms. The amide (sbnd NH2) groups and the NH4+ bonded to Brønsted acid sites were the important intermediates of Eley-Rideal mechanism.

  20. Stress Changes and Deformation Monitoring of Longwall Coal Pillars Located in Weak Ground

    NASA Astrophysics Data System (ADS)

    Yu, Bin; Zhang, Zhenyu; Kuang, Tiejun; Liu, Jinrong

    2016-08-01

    Coal pillar stability is strongly influenced by the site-specific geological and geotechnical conditions. Many geological structures such as faults, joints, or rock intrusions can be detrimental to mining operations. In order to evaluate the performance of coal pillars under weak roof degraded by igneous rock intrusion, stress and deformation monitoring was conducted in the affected tailgate areas of Nos. 8208 and 8210 longwalls in Tashan coal mine, Shanxi Province, China. The measurements in the 8208 longwall tailgate showed that the mining-induced stresses in 38-m-wide coal chain pillars under the overburden depth of 300-500 m started to increase at about 100 m ahead of the 8208 longwall working face and reached its peak level at approximately 50 m ahead of the longwall face. The peak stress of 9.16 MPa occurred at the depth of 8-9 m into the pillar from the tailgate side wall. In comparison, disturbance of the headgate block pillar area was negligible, indicating the difference of abutment pressure distribution between the tailgate and headgate sites where the adjacent unmined longwall block carried most of the overburden load. However, when the longwall face passed the headgate monitoring site by 360-379 m, the pillar stress increased to a peak value of 21.4 MPa at the pillar depth of 13 m from the gob side mainly due to stress redistribution in the chain pillar. In contrast to the headgate, at the tailgate side, the adjacent goaf was the dominant triggering factor for high stress concentrations in the chain pillar. Convergence measurements in the tailgate during longwall mining further indicated the evolution characteristics of coal pillar deformation, clearly showing that the gateroad deformation is mainly induced by the longwall extraction it serves. When predicting the future pillar loads from the monitored data, two stress peaks appeared across the 38-m-wide tailgate coal pillar, which are separated by the lower stress area within the pillar center. This

  1. The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions.

    PubMed

    Cheng, Jie; Wang, Nan; Zhao, Dezhou; Qin, Dandan; Si, Wenqing; Tan, Yunfei; Wei, Shun'an; Wang, Dan

    2016-11-01

    Three kinds of sulfonated cross-linked chitosan (SCCR) immobilized with metal ions of Cu(2+), Fe(3+) and Zn(2+) individually were synthesized and firstly used as solid acid catalysts in the hydrolysis of bamboo biomass. FTIR spectra showed that metal ions had been introduced into SCCR and the N-metal ions coordinate bound was formed. The particle sizes of these catalysts were about 500-1000μm with a pore size of 50-160μm. All of the three kinds of catalysts performed well for bamboo hydrolysis with 1-butyl-3-methyl-imidazolium chloride used as solvent. The most effective one was sulfonated cross-linked chitosan immobilized with Fe(3+) (Fe(3+)-SCCR). TRS yields were up to 73.42% for hydrolysis of bamboo powder in [C4mim]Cl with Fe(3+)-SCCR at 120°C and 20RPM after 24h. These novel chitosan-based metal ions immobilized solid acid catalysts with ionic liquids as the solvent might be promising to facilitate cost-efficient conversion of biomass into biofuels and bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Enhanced enzyme stability through site-directed covalent immobilization.

    PubMed

    Wu, Jeffrey Chun Yu; Hutchings, Christopher Hayden; Lindsay, Mark Jeffrey; Werner, Christopher James; Bundy, Bradley Charles

    2015-01-10

    Breakthroughs in enzyme immobilization have enabled increased enzyme recovery and reusability, leading to significant decreases in the cost of enzyme use and fueling biocatalysis growth. However, current enzyme immobilization techniques suffer from leaching, enzyme stability, and recoverability and reusability issues. Moreover, these techniques lack the ability to control the orientation of the immobilized enzymes. To determine the impact of orientation on covalently immobilized enzyme activity and stability, we apply our PRECISE (Protein Residue-Explicit Covalent Immobilization for Stability Enhancement) system to a model enzyme, T4 lysozyme. The PRECISE system uses non-canonical amino acid incorporation and the Huisgen 1,3-dipolar cycloaddition "click" reaction to enable directed enzyme immobilization at rationally chosen residues throughout an enzyme. Unlike previous site-specific systems, the PRECISE system is a truly covalent immobilization method. Utilizing this system, enzymes immobilized at proximate and distant locations from the active site were tested for activity and stability under denaturing conditions. Our results demonstrate that orientation control of covalently immobilized enzymes can provide activity and stability benefits exceeding that of traditional random covalent immobilization techniques. PRECISE immobilized enzymes were 50 and 73% more active than randomly immobilized enzymes after harsh freeze-thaw and chemical denaturant treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Immobilization of methylene blue onto bentonite and its application in the extraction of mercury (II).

    PubMed

    Hassanien, Mohamed M; Abou-El-Sherbini, Khaled S; Al-Muaikel, Nayef S

    2010-06-15

    Methylene blue was immobilized onto bentonite (BNT). The modified clay (MB-BNT) was used to extract Hg(2+) at pH 6.0 yielding Hg-MB-BNT. BNT, MB-BNT and Hg-MB-BNT were characterized by X-ray diffractometry, infrared spectra, and elemental and thermogravimetric analyses. MB is suggested to be intercalated into the major phase of BNT; montmorillonite mineral (MMT), lying parallel to the aluminosilicate layers, with a capacity of 36 mequiv./100g. MB-BNT shows good stability in 0.1-1M hydrochloric or nitric acids, ammonium hydroxide, and concentrated Na(+), K(+) or NH(4)(+) chlorides or iodides. It shows good selectivity towards Hg(2+) with an extraction capacity of 37 mequiv./100g in the presence of I(-) giving rise to a ratio of MB/Hg(2+)/I(-) 1:1:3 in the clay phase. Extracted Hg(2+) could be quantitatively recovered by ammonia buffer at pH 8.5. MB-BNT was successfully applied to recover Hg(2+) from spiked natural water and cinnabar mineral samples using the optimum conditions; pH 6.0, time of stirring 10 min and 10 mL of 0.05 M NH(4)Cl/NH(4)OH at pH 8.5 as eluent. Copyright 2010 Elsevier B.V. All rights reserved.

  4. An investigative study of polymer adsorption onto montmorillonite clay

    NASA Astrophysics Data System (ADS)

    McConnell Boykin, Cheri Lynn

    For colloidal systems with adsorbed polymer, the mechanisms governing stabilization and flocculation are defined by the critical overlap concentration, c*. Below c*, steric stabilization or bridging flocculation are viable mechanisms of adsorption, while above c* associative thickening stabilization, depletion stabilization or depletion flocculation may occur. While these types of systems have been described by their mechanism of interaction, few studies have been geared towards evaluating and actually defining these interactions. This research focuses on elucidating the mechanisms of interaction for a series of polyacrylamide copolymers adsorbed onto montmorillonite clay. The well-defined copolymers synthesized and characterized for these studies include: nonionic polyacrylamide, (PAm); cationic poly(acrylamide-co-[3-(methacryloylamino) propyl] trimethylammonium chloride), (PAmMaap Quat); nonionic/anionic poly(acrylamide-co-acrylic acid), (PAmAA); and anionic poly(acrylamide-co-[2-acrylamido-2-methylpropane sulfonic acid]), (PAmAmps). By combining the results from the following experiments it was possible to determine the mechanisms of interaction for each of the clay/polymer systems at pH 3, 7 and 10. The adsorption capacity of each of the copolymers was determined from constructing adsorption isotherms while the polymer conformation was determined from 13C NMR line-broadening experiments. FTIR spectroscopy verified which surface of the clay was involved in adsorption along with the polymer moiety bound to the surface. Finally, the stabilization behavior was evaluated from statistically designed phase diagrams as a function of polymer and clay concentrations. By evaluating the phase behavior as well as c* for the polymer/solvent systems, it was determined that there was no direct correlation between c* for a polymer/solvent system and the mechanism of interaction for colloid/polymer/solvent systems previously defined by Vincent, Sato and Napper. In general, the

  5. Nucleic acid hybridization with RNA immobilized on filter paper.

    NASA Technical Reports Server (NTRS)

    Saxinger, W. C.; Ponnamperuma, C.; Gillespie, D.

    1972-01-01

    RNA has been immobilized in a manner suitable for use in molecular hybridization experiments with dissolved RNA or DNA by a nonaqueous solid-phase reaction with carbonyldiimidazole and RNA 'dry coated' on cellulose or, preferably, on previously activated phosphocellulose filters. Immobilization of RNA does not appear to alter its chemical character or cause it to acquire affinity for unspecific RNA or DNA. The versatility and efficiency of this method make it potentially attractive for use in routine analytical or preparative hybridization experiments, among other applications.

  6. Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates.

    PubMed

    Wallace, Ryan A; Charlton, Jennifer J; Kirchner, Teresa B; Lavrik, Nickolay V; Datskos, Panos G; Sepaniak, Michael J

    2014-12-02

    The ability to detect a few molecules present in a large sample is of great interest for the detection of trace components in both medicinal and environmental samples. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. The following work involves superhydrophobic surfaces that have as a framework deterministic or stochastic silicon pillar arrays formed by lithographic or metal dewetting protocols, respectively. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added to the functionalized pillar array system via soaking. Native pillars and pillars with hydrophobic modification are used. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A ≥ 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 × 10(-12) M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up uses in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.

  7. Rheology of polyaniline-dinonylnaphthalene disulfonic acid (DNNDSA) montmorillonite clay nanocomposites in the sol state: shear thinning versus pseudo-solid behavior.

    PubMed

    Garai, Ashesh; Nandi, Arun K

    2008-04-01

    The melt rheology of polyaniline (PANI)-dinonylnaphthalenedisulfonic acid (DNNDSA) gel nanocomposites (GNCs) with organically modified (modified with cetyl trimethylammonium bromide)-montmorillonite (om-MMT) clay has been studied for three different clay concentrations at the temperature range 120-160 degrees C. Field emission scanning electron microscopy (FE-SEM), wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and dc-conductivity data (approximately 10(-3) S/cm) indicate that the PANI-DNNDSA melt is in sol state and it is not de-doped at that condition. The WAXS data indicate that in GNC-1 sol clay tactoids are in exfoliated state but in the other sols they are in intercalated state. The zero shear viscosity (eta0), storage modulus (G') and loss modulus (G") increase than that of pure gel in the GNCs. The pure sol and the sols of gel nanocomposites (GNCs) exhibit Newtonian behavior for low shear rate (< 6 x 10(-3) s(-1)) and power law variation for the higher shear rate region. The characteristic time (A) increase with increasing clay concentration and the power law index (n) decreases with increase in clay concentration in the GNCs indicating increased shear thinning for the clay addition. Thus the sols of om-clay nanocomposites of PANI-DNNDSA system are easily processible. The storage modulus (G') of GNC sols are higher than that of pure PANI-DNNDSA sol, GNC1 sol shows a maximum of 733% increase in storage modulus and the percent increase decreases with increase in temperature. Exfoliated nature of clay tactoids has been attributed for the above dramatic increase of G'. The PANI-DNNDSA sol nanocomposites behave as a pseudo-solid at higher frequency where G' and loss modulus (G") show a crossover point in the frequency sweep experiment at a fixed temperature. The crossover frequency decreases with increase in clay concentration and it increases with increase in temperature for GNC sols. The pseudo-solid behavior has been explained

  8. Methods for Identifying Ligands that Target Nucleic Acid Molecules and Nucleic Acid Structural Motifs

    NASA Technical Reports Server (NTRS)

    Childs-Disney, Jessica L. (Inventor); Disney, Matthew D. (Inventor)

    2017-01-01

    Disclosed are methods for identifying a nucleic acid (e.g., RNA, DNA, etc.) motif which interacts with a ligand. The method includes providing a plurality of ligands immobilized on a support, wherein each particular ligand is immobilized at a discrete location on the support; contacting the plurality of immobilized ligands with a nucleic acid motif library under conditions effective for one or more members of the nucleic acid motif library to bind with the immobilized ligands; and identifying members of the nucleic acid motif library that are bound to a particular immobilized ligand. Also disclosed are methods for selecting, from a plurality of candidate ligands, one or more ligands that have increased likelihood of binding to a nucleic acid molecule comprising a particular nucleic acid motif, as well as methods for identifying a nucleic acid which interacts with a ligand.

  9. SEPARATION OF POLONIUM, PROTACTINIUM OR MIXTURES THEREOF IN AQUEOUS SOLUTION FROM BISMUTH, LEAD, ZIRCONIUM AND/OR COLUMBIUM VALUES

    DOEpatents

    Van Winkle, Q.; Kraus, K.A.

    1959-10-27

    A process is presented for separating polonium, protactinium, or mixtures thereof in aqueous solution from bismuth, zirconium, lead, and niobium values contained in the solution. The method comprises providing hydrochloric acid in the solution in a concentration of at least 5N. contacting the aqueous solution with a substantially waterimmiscible organic solvent such as diisopropyl ketone, and separating the aqueous phase containing the bismuth, zirconium, lead, and niobium from the organic extract phase containing the polonium, protactinium, or mixture thereof.

  10. The thoron-tartaric acid systems for the spectrophotometric determination of thorium

    USGS Publications Warehouse

    Grimaldi, F.S.; Fletcher, Mary H.

    1955-01-01

    Thoron is popularly used for the spectrophotometric determination of thorium.  An undesirable feature of its use is the high sensitivity of the reagent toward zirconium. This study describes the use of tartaric acid as a masking reagent for zirconium. Three tartaric acid-thoron systems, developed for the determination of thorium, differ with respect to the concentrations of thoron and tartaric acid. Mesotataric acid, used in one of the systems, is found to be most effective in masking zirconium. The behavior of various rarer elements, usually found associated with thorium ores, is determined in two of the systems, and a dilution method is described for the direct determination of thorium in monazite concentrates.

  11. Production of nuclear grade zirconium: A review

    NASA Astrophysics Data System (ADS)

    Xu, L.; Xiao, Y.; van Sandwijk, A.; Xu, Q.; Yang, Y.

    2015-11-01

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium as a fuel cladding material. This paper provides an overview of the processes for nuclear grade zirconium production with emphasis on the methods of Zr-Hf separation. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The known pyrometallurgical Zr-Hf separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt-metal equilibrium. In the present paper, the available Zr-Hf separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  12. Reconsideration of Si pillar thermal oxidation mechanism

    NASA Astrophysics Data System (ADS)

    Kageshima, Hiroyuki; Shiraishi, Kenji; Endoh, Tetsuo

    2018-06-01

    The mechanism of Si pillar thermal oxidation is considered. The Si emission is discussed in the oxidation of three-dimensional structures, which must be fundamentally important to understand the oxidation mechanism. It is confirmed that the Si emission is enhanced in the three-dimensional structures by the geometrical and stress effects. The larger effect is expected for Si spheres rather than for Si pillars. More enhanced Si emission can be expected for the smaller spheres. Then the mechanism of Si missing and the effect of Si emission are also discussed. The oxide viscous flow mechanism is the promising candidate to explain the Si missing, because the oxide viscosity could be reduced by the SiO incorporation and the compressive stress. The geometrical effect induces the viscosity gradient, which is important to induce the Si missing. Interplay of the emitted SiO and the accumulated stress is the key in Si pillar oxidation. Careful approaches are suggested for the oxidation of three-dimensional structures.

  13. Near-Ideal Xylene Selectivity in Adaptive Molecular Pillar[ n]arene Crystals.

    PubMed

    Jie, Kecheng; Liu, Ming; Zhou, Yujuan; Little, Marc A; Pulido, Angeles; Chong, Samantha Y; Stephenson, Andrew; Hughes, Ashlea R; Sakakibara, Fumiyasu; Ogoshi, Tomoki; Blanc, Frédéric; Day, Graeme M; Huang, Feihe; Cooper, Andrew I

    2018-06-06

    The energy-efficient separation of alkylaromatic compounds is a major industrial sustainability challenge. The use of selectively porous extended frameworks, such as zeolites or metal-organic frameworks, is one solution to this problem. Here, we studied a flexible molecular material, perethylated pillar[ n]arene crystals ( n = 5, 6), which can be used to separate C8 alkylaromatic compounds. Pillar[6]arene is shown to separate para-xylene from its structural isomers, meta-xylene and ortho-xylene, with 90% specificity in the solid state. Selectivity is an intrinsic property of the pillar[6]arene host, with the flexible pillar[6]arene cavities adapting during adsorption thus enabling preferential adsorption of para-xylene in the solid state. The flexibility of pillar[6]arene as a solid sorbent is rationalized using molecular conformer searches and crystal structure prediction (CSP) combined with comprehensive characterization by X-ray diffraction and 13 C solid-state NMR spectroscopy. The CSP study, which takes into account the structural variability of pillar[6]arene, breaks new ground in its own right and showcases the feasibility of applying CSP methods to understand and ultimately to predict the behavior of soft, adaptive molecular crystals.

  14. Dynamics of water in synthetic saponite clays: Effect of trivalent ion substitution

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Prabhudesai, S. A.; Chakrabarty, D.; Sharma, V. K.; Vicente, M. A.; Embs, J. P.; Mukhopadhyay, R.

    2013-06-01

    Saponite clay belongs to the phyllosilicate family and is comprised of layers of Si(IV) tetrahedra and Al(III) or Mg(II) octahedra with definite interlayer spacing. In these systems, the trivalent ion substitutions in the tetrahedral layers lead to negative charge on the layers. Here we report the dynamics of water contained in [Si6.97Al1.03][Ni6.00]O20(OH)4[Na1.03]·28H2O (SAP-1) and [Si7.13Fe0.86][Ni6.00]O20(OH)4[Na0.86]·14H2O (SAP-2) saponite clays in the temperature range 200-310 K as studied by quasielastic neutron scattering technique. Particularly the effect of the ion substitution towards the dynamics of water is addressed here. Data analysis is carried out using the relaxing cage model. The existence of distribution in relaxation times indicated that the water molecules in saponite clay have a different local environment which leads to complex diffusion behavior. It is found that water exists in a supercooled state in the temperature range up to 235 K. However, some of the water molecules are found to be immobile in the temperature range 240-285 K. The fraction of immobile water decreases with increase in temperature. At higher temperatures, some of the water molecules in the hydration shells or those near the surface start participating in the diffusion process and at 293 K, almost all water molecules contribute to the dynamics. Diffusivity of water in both SAP-1 and SAP-2 are found to be lower in comparison to the bulk, and within the two samples of saponite clay diffusivity in SAP-1 is found to be lower compared to SAP-2; this has been explained on the basis of the charge on the tetrahedral layers and the charge balancing cations in the interlayer spacing.

  15. All Pillars Point to Eta

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Eta Carinae Starforming RegionSimulated Infrared View of Comet Tempel 1 (artist's concept)

    These false-color image taken by NASA's Spitzer Space Telescope shows the 'South Pillar' region of the star-forming region called the Carina Nebula. Like cracking open a watermelon and finding its seeds, the infrared telescope 'busted open' this murky cloud to reveal star embryos (yellow or white) tucked inside finger-like pillars of thick dust (pink). Hot gases are green and foreground stars are blue. Not all of the newfound star embryos can be easily spotted.

    Though the nebula's most famous and massive star, Eta Carinae, is too bright to be observed by infrared telescopes, the downward-streaming rays hint at its presence above the picture frame. Ultraviolet radiation and stellar winds from Eta Carinae and its siblings have shredded the cloud to pieces, leaving a mess of tendrils and pillars. This shredding process triggered the birth of the new stars uncovered by Spitzer.

    The inset visible-light picture (figure 2) of the Carina Nebula shows quite a different view. Dust pillars are fewer and appear dark because the dust is soaking up visible light. Spitzer's infrared detectors cut through this dust, allowing it to see the heat from warm, embedded star embryos, as well as deeper, more buried pillars. The visible-light picture is from the National Optical Astronomy Observatory.

    Eta Carina is a behemoth of a star, with more than 100 times the mass of our Sun. It is so massive that it can barely hold itself together. Over the years, it has brightened and faded as material has shot away from its surface. Some astronomers think Eta Carinae might die in a supernova blast within our lifetime.

    Eta Carina's home, the Carina Nebula, is located in the southern portion of our Milky Way galaxy, 10,000 light-years from Earth. This colossal cloud of gas and dust

  16. Manufacture of high aspect ratio micro-pillar wall shear stress sensor arrays

    NASA Astrophysics Data System (ADS)

    Gnanamanickam, Ebenezer P.; Sullivan, John P.

    2012-12-01

    In the field of experimental fluid mechanics the measurement of unsteady, distributed wall shear stress has proved historically challenging. Recently, sensors based on an array of flexible micro-pillars have shown promise in carrying out such measurements. Similar sensors find use in other applications such as cellular mechanics. This work presents a manufacturing technique that can manufacture micro-pillar arrays of high aspect ratio. An electric discharge machine (EDM) is used to manufacture a micro-drilling tool. This micro-drilling tool is used to form holes in a wax sheet which acts as the mold for the micro-pillar array. Silicone rubber is cast in these molds to yield a micro-pillar array. Using this technique, micro-pillar arrays with a maximum aspect ratio of about 10 have been manufactured. Manufacturing issues encountered, steps to alleviate them and the potential of the process to manufacture similar micro-pillar arrays in a time-efficient manner are also discussed.

  17. Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor.

    PubMed

    Huang, Jin; Cai, Jin; Wang, Jin; Zhu, Xiangcheng; Huang, Lei; Yang, Shang-Tian; Xu, Zhinan

    2011-02-01

    Butyric acid is an important specialty chemical with wide industrial applications. The feasible large-scale fermentation for the economical production of butyric acid requires low-cost substrate and efficient process. In the present study, butyric acid production by immobilized Clostridium tyrobutyricum was successfully performed in a fibrous-bed bioreactor using Jerusalem artichoke as the substrate. Repeated-batch fermentation was carried out to produce butyric acid with a high butyrate yield (0.44 g/g), high productivity (2.75 g/L/h) and a butyrate concentration of 27.5 g/L. Furthermore, fed-batch fermentation using sulfuric acid pretreated Jerusalem artichoke hydrolysate resulted in a high butyric acid concentration of 60.4 g/L, with the yield of 0.38 g/g and the selectivity of ∼ 85.1 (85.1g butyric acid/g acetic acid). Thus, the production of butyric acid from Jerusalem artichoke on a commercial scale could be achieved based on the system developed in this work. Copyright © 2010. Published by Elsevier Ltd.

  18. Scattering of spermatozoa off cylindrical pillars

    NASA Astrophysics Data System (ADS)

    Bukatin, Anton; Lushi, Enkeleida; Kantsler, Vasily

    2017-11-01

    The motion of micro-swimmers in structured environments, even though crucial in processes such as in vivo and in vitro egg fertilization, is still not completely understood. We combine microfluidic experiments with mathematical modeling of 3D swimming near convex surfaces to quantify the dynamics of individual sperm cells in the proximity of cylindrical pillars. Our results show that the hydrodynamic and contact forces that account for the shape asymmetry and flagellar motion, are crucial in correctly describing the dynamics observed in the experiments. Last, we discuss how the size of the cylindrical obstacles determines whether the swimmers scatter off or get trapped circling the pillar.

  19. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Tingshun, E-mail: tshjiang@mail.ujs.edu.cn; Cheng, Jinlian; Liu, Wangping

    2014-10-15

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH{sub 3}-TPD and N{sub 2} physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 still have good mesoporous structure and long rangemore » ordering. Compared with the Zr (or Al)–MCM-48 samples, SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO{sub 4}{sup 2−}/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h{sup −1} and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO{sub 4}{sup 2−}/Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO{sub 4}{sup 2−}/Zr-MCM-48-25.« less

  20. Using submarine lava pillars to record mid-ocean ridge eruption dynamics

    USGS Publications Warehouse

    Gregg, Tracy K.P.; Fornari, Daniel J.; Perfit, Michael R.; Ridley, W. Ian; Kurz, Mark D.

    2000-01-01

    Submarine lava pillars are hollow, glass-lined, basaltic cylinders that occur at the axis of the mid-ocean ridge, and within the summit calderas of some seamounts. Typically, pillars are ~1-20 m tall and 0.25-2.0 m in diameter, with subhorizontal to horizontal glassy selvages on their exterior walls. Lava pillars form gradually during a single eruption, and are composed of lava emplaced at the eruption onset as well as the last lava remaining after the lava pond has drained. On the deep sea floor, the surface of a basaltic lava flow quenches to glass within 1 s, thereby preserving information about eruption dynamics, as well as chemical and physical properties of lava within a single eruption. Investigation of different lava pillars collected from a single eruption allows us to distinguish surficial lava-pond or lava-lake geochemical processes from those operating in the magma chamber. Morphologic, major-element, petrographic and helium analyses were performed on portions of three lava pillars formed during the April 1991 eruption near 9°50'N at the axis of the East Pacific Rise. Modeling results indicate that the collected portions of pillars formed in ~2-5 h, suggesting a total eruption duration of ~8-20 h. These values are consistent with observed homogeneity in the glass helium concentrations and helium diffusion rates. Major-element compositions of most pillar glasses are homogeneous and identical to the 1991 flow, but slight chemical variations measured in the outermost portions of some pillars may reflect post-eruptive processes rather than those occurring in subaxial magma bodies. Because lava pillars are common at mid-ocean ridges (MORs), the concepts and techniques we present here may have important application to the study of MOR eruptions, thereby providing a basis for quantitative comparisons of volcanic eruptions in geographically and tectonically diverse settings. More research is needed to thoroughly test the hypotheses presented here. (C) 2000

  1. CHARACTERISTICS OF ANODIC AND CORROSION FILMS ON ZIRCONIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misch, R.D.

    1960-05-01

    Zirconium anodizes similarly to tungsten in respect to the change of interference colors with applied voltage. However, the oxide layer on tungsten cannot reach as great a thickness. Hafnium does not anodize in the same way as zirconium but is similar to tantalum. By measuring the interference color and capacitative thicknesses on zirconium (Grades I and III) and a 2.5 wt.% tin ailoy, the film was found to grow less rapidly in terms of capacitance than in terms of iaterference colors. This was interpreted to mean that cracks develop in the oxide as it thickens. The effect was most pronouncedmore » on Grade III zirconium and least pronounced on the tin alloy. The reduction in capacitative thickness was especially noticeable when white oxide appeared. Comparative measurements on Grade I zirconium and 2.5 wt.% tin alloy indicated that the thickness of the oxide film on the tin alloy (after 16 hours in water) increased more rapidly with temperature than the film on zirconium. Tin is believed to act in ways to counteract the tendency of the oxide to form cracks, and to produce vacancies which promote ionic diffusion. (auth)« less

  2. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose-positive and cold-adapted Yarrowia lipolytica B9.

    PubMed

    Arslan, Nazli Pinar; Aydogan, Mehmet Nuri; Taskin, Mesut

    2016-08-10

    The present study was performed to produce citric acid (CA) from partly deproteinized cheese whey (DPCW) under non-sterile culture conditions using immobilized cells of the cold-adapted and lactose-positive yeast Yarrowia lipolytica B9. DPCW was prepared using the temperature treatment of 90°C for 15min. Sodium alginate was used as entrapping agent for cell immobilization. Optimum conditions for the maximum CA production (33.3g/L) in non-sterile DPCW medium were the temperature of 20°C, pH 5.5, additional lactose concentration of 20g/L, sodium alginate concentration of 2%, number of 150 beads/100mL and incubation time of 120h. Similarly, maximum citric acid/isocitric acid (CA/ICA) ratio (6.79) could be reached under these optimal conditions. Additional nitrogen and phosphorus sources decreased CA concentration and CA/ICA ratio. Immobilized cells were reused in three continuous reaction cycles without any loss in the maximum CA concentration. The unique combination of low pH and temperature values as well as cell immobilization procedure could prevent undesired microbial contaminants during CA production. This is the first work on CA production by cold-adapted microorganisms under non-sterile culture conditions. Besides, CA production using a lactose-positive strain of the yeast Y. lipolytica was investigated for the first time in the present study. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of complexation between organic matter (OM) and clay mineral on OM pyrolysis

    NASA Astrophysics Data System (ADS)

    Bu, Hongling; Yuan, Peng; Liu, Hongmei; Liu, Dong; Liu, Jinzhong; He, Hongping; Zhou, Junming; Song, Hongzhe; Li, Zhaohui

    2017-09-01

    The stability and persistence of organic matter (OM) in source rocks are of great significance for hydrocarbon generation and the global carbon cycle. Clay-OM associations commonly occur in sedimentation and diagenesis processes and can influence the pyrolytic behaviors of OM. In this study, clay-OM complexes, i.e., interlayer clay-OM complexes and clay-OM mixture, were prepared and exposed to high-pressure pyrolysis conditions in confined gold capsule reactors to assess variations in OM pyrolysis products in the presence of clay minerals. Three model organic compounds, octadecanoic acid (OA), octadecy trimethyl ammonium bromide (OTAB), and octadecylamine (ODA), were employed and montmorillonite (Mt) was selected as the representative clay mineral. The solid acidity of Mt plays a key role in affecting the amount and composition of the pyrolysis gases generated by the clay-OM complexes. The Brønsted acid sites significantly promote the cracking of hydrocarbons through a carbocation mechanism and the isomerization of normal hydrocarbons. The Lewis acid sites are primarily involved in the decarboxylation reaction during pyrolysis and are responsible for CO2 generation. Mt exhibits either a catalysis effect or pyrolysis-inhibiting during pyrolysis of a given OM depending on the nature of the model organic compound and the nature of the clay-OM complexation. The amounts of C1-5 hydrocarbons and CO2 that are released from the Mt-OA and Mt-ODA complexes were higher than those of the parent OA and ODA, respectively, indicating a catalysis effect of Mt. In contrast, the amount of C1-5 hydrocarbons produced from the pyrolysis of Mt-OTAB complexes was lower than that of OTAB, which we attribute to an inhibiting effect of Mt. This pyrolysis-inhibiting effect works through the Hoffmann elimination that is promoted by the catalysis of the Brønsted acid sites of Mt, therefore releasing smaller amounts of gas hydrocarbons than the nucleophilic reaction that is induced by the

  4. Flexible Pillared Graphene-Paper Electrodes for High-Performance Electrochemical Supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gongkai; Sun, Xiang; Lu, Fengyuan

    2011-12-08

    Flexible graphene paper (GP) pillared by carbon black (CB) nanoparticles using a simple vacuum filtration method is developed as a high-performance electrode material for supercapacitors. Through the introduction of CB nanoparticles as spacers, the self-restacking of graphene sheets during the filtration process is mitigated to a great extent. The pillared GP-based supercapacitors exhibit excellent electrochemical performances and cyclic stabilities compared with GP without the addition of CB nanoparticles. At a scan rate of 10 mV s -1, the specific capacitance of the pillared GP is 138 F g -1 and 83.2 F g -1 with negligible 3.85% and 4.35% capacitancemore » degradation after 2000 cycles in aqueous and organic electrolytes, respectively. At an extremely fast scan rate of 500 mV s -1, the specific capacitance can reach 80 F g -1 in aqueous electrolyte. No binder is needed for assembling the supercapacitor cells and the pillared GP itself may serve as a current collector due to its intrinsic high electrical conductivity. Finally, the pillared GP has great potential in the development of promising flexible and ultralight-weight supercapacitors for electrochemical energy storage.« less

  5. Antimicrobial activity of immobilized lactoferrin and lactoferricin.

    PubMed

    Chen, Renxun; Cole, Nerida; Dutta, Debarun; Kumar, Naresh; Willcox, Mark D P

    2017-11-01

    Lactoferrin and lactoferricin were immobilized on glass surfaces via two linkers, 4-azidobenzoic acid (ABA) or 4-fluoro-3-nitrophenyl azide (FNA). The resulting surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antimicrobial activity of the surfaces was determined using Pseudomonas aeruginosa and Staphylococcus aureus strains by fluorescence microscopy. Lactoferrin and lactoferricin immobilization was confirmed by XPS showing significant increases (p < 0.05) in nitrogen on the glass surface. The immobilization of both proteins slightly increased the overall hydrophobicity of the glass. Both lactoferrin and lactoferricin immobilized on glass significantly (p < 0.05) reduced the numbers of viable bacterial cells adherent to the glass. For P. aeruginosa, the immobilized proteins consistently increased the percentage of dead cells compared to the total cells adherent to the glass surfaces (p < 0.03). Lactoferrin and lactoferricin were successfully immobilized on glass surfaces and showed promising antimicrobial activity against pathogenic bacteria. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2612-2617, 2017. © 2016 Wiley Periodicals, Inc.

  6. Tandem Nitrogen Functionalization of Porous Carbon: Toward Immobilizing Highly Active Palladium Nanoclusters for Dehydrogenation of Formic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhangpeng; Yang, Xinchun; Tsumori, Nobuko

    2017-03-10

    Highly dispersed palladium nanoclusters (Pd NCs) immobilized by a nitrogen (N)-functionalized porous carbon support (N-MSC-30) are synthesized by a wet chemical reduction method, wherein the N-MSC-30 prepared by a tandem low temperature heat-treatment approach proved to be a distinct support for stabilizing the Pd NCs. The prepared Pd/N-MSC-30 shows extremely high catalytic activity and recyclability for the dehydrogenation of formic acid (FA), affording the highest turnover frequency (TOF = 8414 h -1) at 333 K, which is much higher than that of the Pd catalyst supported on the N-MSC-30 prepared via a one-step process. This tandem heat treatment strategy providesmore » a facile and effective synthetic methodology to immobilize ultrafine metal NPs on N-functionalized carbon materials, which have tremendous application prospects in various catalytic fields.« less

  7. Efficient production of l-lactic acid from hydrolysate of Jerusalem artichoke with immobilized cells of Lactococcus lactis in fibrous bed bioreactors.

    PubMed

    Shi, Zhouming; Wei, Peilian; Zhu, Xiangcheng; Cai, Jin; Huang, Lei; Xu, Zhinan

    2012-10-10

    Hydrolysate of Jerusalem artichoke was applied for the production of l-lactic acid by immobilized Lactococcus lactis cells in a fibrous bed bioreactor system. Preliminary experiments had indicated that the high quality hydrolysate, which was derived from the 40 min acid treatment at 95 °C and pH 1.8, was sufficient to support the cell growth and synthesis of l-lactic acid. With the addition of 5 g/l yeast extract, the fermentative performance of free cell system was evidently improved. After the basal settlement of hydrolysate based fermentation, the batch mode and the fed-batch mode fermentation were carried out in the free cell system and the fibrous bed bioreactor system, respectively. In all cases the immobilized cells presented the superior ability to produce l-lactic acid. The comparison of batch mode and fed-batch mode also indicated that the growth-limiting feeding strategy could reduce the lag phase of fermentation process and enhance the production of l-lactic acid. The achieved maximum concentration of l-lactic acid was 142 g/l in the fed-batch mode. Subsequent repeated-batch fermentation of the fibrous bed bioreactor system had further exhibited the persistence and stability of this system for the high production of l-lactic acid in a long term. Our work suggested the great potential of the fibrous bed bioreactor system and hydrolysate of J. artichoke in the economical production of l-lactic acid at industrial scale. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Enhanced stability of catalase covalently immobilized on functionalized titania submicrospheres.

    PubMed

    Wu, Hong; Liang, Yanpeng; Shi, Jiafu; Wang, Xiaoli; Yang, Dong; Jiang, Zhongyi

    2013-04-01

    In this study, a novel approach combing the chelation and covalent binding was explored for facile and efficient enzyme immobilization. The unique capability of titania to chelate with catecholic derivatives at ambient conditions was utilized for titania surface functionalization. The functionalized titania was then used for enzyme immobilization. Titania submicrospheres (500-600 nm) were synthesized by a modified sol-gel method and functionalized with carboxylic acid groups through a facile chelation method by using 3-(3,4-dihydroxyphenyl) propionic acid as the chelating agent. Then, catalase (CAT) was covalently immobilized on these functionalized titania submicrospheres through 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. The immobilized CAT retained 65% of its free form activity with a loading capacity of 100-150 mg/g titania. The pH stability, thermostability, recycling stability and storage stability of the immobilized CAT were evaluated. A remarkable enhancement in enzyme stability was achieved. The immobilized CAT retained 90% and 76% of its initial activity after 10 and 16 successive cycles of decomposition of hydrogen peroxide, respectively. Both the Km and the Vmax values of the immobilized CAT (27.4 mM, 13.36 mM/min) were close to those of the free CAT (25.7 mM, 13.46 mM/min). Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Clays, specialty

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the specialty clay industry worldwide for 1997 is discussed. The specialty clays mined in the U.S. are ball clay, fuller's earth, bentonite, fire clay, and kaolin. Sales of specialty clays in the U.S. were around 17 Mt in 1997. Approximately 53 kt of specialty clays were imported.

  10. Infrared spectroscopic studies of the effect of elevated temperature on the association of pyroglutamic acid with clay and other minerals

    NASA Technical Reports Server (NTRS)

    Macklin, J. W.; White, D. H.

    1985-01-01

    Fourier transform i.r. measurements of L-pyroglutamic acid dispersed in a matrix of a clay, silica or alumina have been obtained at various temperatures between 25 and 220 degrees C. The i.r. spectrum of L-pyroglutamic acid varies in a manner dependent upon the matrix material and shows considerable change as the temperature of the mixtures is increased. The differences in the spectrum at elevated temperatures are explained in terms of a chemical reaction between hydroxyl groups in the matrix and the carboxylic acid. The i.r. spectra of trimethylsilyl derivatives of L-pyroglutamic acid and aluminum pyroglutamate were also measured to assist the understanding of spectra and interpretation of the spectral changes dependent upon increasing temperature.

  11. Ten Pillars of a Good Childhood: A Finnish Perspective

    ERIC Educational Resources Information Center

    Pulkkinen, Lea

    2012-01-01

    The organizers of the Decade for Childhood have formulated Ten Pillars of a Good Childhood as basic requirements for an optimal childhood. The pillars can be used to analyze the quality of childhood in homes and nations, and to guide policies and practices related to the experience of childhood. In this article, the author shall illustrate, pillar…

  12. 43 CFR 3931.100 - Boundary pillars and buffer zones.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... otherwise specified in writing by the BLM. Boundary and other main pillars may be mined only with the BLM's prior written consent or on the BLM's order. For in-situ operations, a 50-foot buffer zone from the..., mine out and remove all available oil shale in such boundary pillar, both in the lands covered by the...

  13. 43 CFR 3931.100 - Boundary pillars and buffer zones.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... otherwise specified in writing by the BLM. Boundary and other main pillars may be mined only with the BLM's prior written consent or on the BLM's order. For in-situ operations, a 50-foot buffer zone from the..., mine out and remove all available oil shale in such boundary pillar, both in the lands covered by the...

  14. 43 CFR 3931.100 - Boundary pillars and buffer zones.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... otherwise specified in writing by the BLM. Boundary and other main pillars may be mined only with the BLM's prior written consent or on the BLM's order. For in-situ operations, a 50-foot buffer zone from the..., mine out and remove all available oil shale in such boundary pillar, both in the lands covered by the...

  15. 43 CFR 3931.100 - Boundary pillars and buffer zones.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... otherwise specified in writing by the BLM. Boundary and other main pillars may be mined only with the BLM's prior written consent or on the BLM's order. For in-situ operations, a 50-foot buffer zone from the..., mine out and remove all available oil shale in such boundary pillar, both in the lands covered by the...

  16. Biodegradation of naphthenic acids in oils sands process waters in an immobilized soil/sediment bioreactor.

    PubMed

    McKenzie, Natalie; Yue, Siqing; Liu, Xudong; Ramsay, Bruce A; Ramsay, Juliana A

    2014-08-01

    Aqueous extraction of bitumen in the Alberta oil sands industry produces large volumes of oil sands process water (OSPW) containing naphthenic acids (NAs), a complex mixture of carboxylic acids that are acutely toxic to aquatic organisms. Although aerobic biodegradation reduces NA concentrations and OSPW toxicity, treatment times are long, however, immobilized cell reactors have the potential to improve NA removal rates. In this study, two immobilized soil/sediment bioreactors (ISBRs) operating in series were evaluated for treatment of NAs in OSPW. A biofilm was established from microorganisms associated with sediment particles from an OSPW contaminated wetland on a non-woven textile. At 16 months of continuous operation with OSPW as the sole source of carbon and energy, 38±7% NA removal was consistently achieved at a residence time of 160 h at a removal rate of 2.32 mg NAs L(-1)d(-1). The change in NA profile measured by gas chromatography-mass spectrometry indicated that biodegradability decreased with increasing cyclicity. These results indicate that such treatment can significantly reduce NA removal rates compared to most studies, and the treatment of native process water in a bioreactor has been demonstrated. Amplification of bacterial 16S rRNA genes and sequencing using Ion Torrent sequencing characterized the reactors' biofilm populations and found as many as 235 and 198 distinct genera in the first and second bioreactor, respectively, with significant populations of ammonium- and nitrite-oxidizers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. METHOD FOR DISSOLVING ZIRCONIUM-URANIUM COMPOSITIONS

    DOEpatents

    Gens, T.A.

    1961-07-18

    A method is descrioed for treating a zirconium-- uranium composition to form a stable solution from which uranium and other values may be extracted by contacting the composition with at least a 4 molar aqueous solution of ammonium fluoride at a temperature of about 100 deg C, adding a peroxide, in incremental amounts, to the heated solution throughout the period of dissolution until all of the uranium is converted to soluble uranyl salt, adding nitric acid to the resultant solution to form a solvent extraction feed solution to convert the uranyl salt to a solvent extractable state, and thereafter recovering the uranium and other desired values from the feed solution by solvent extraction.

  18. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Noor, M Omair; Shahmuradyan, Anna; Krull, Ulrich J

    2013-02-05

    A paper-based solid-phase assay is presented for transduction of nucleic acid hybridization using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) were FRET-paired with Cy3 acceptor. Hybridization of Cy3-labeled oligonucleotide targets provided the proximity required for FRET-sensitized emission from Cy3, which served as an analytical signal. The assay exhibited rapid transduction of nucleic acid hybridization within minutes. Without any amplification steps, the limit of detection of the assay was found to be 300 fmol with the upper limit of the dynamic range at 5 pmol. The implementation of glutathione-coated QDs for the development of nucleic acid hybridization assay integrated on a paper-based platform exhibited excellent resistance to nonspecific adsorption of oligonucleotides and showed no reduction in the performance of the assay in the presence of large quantities of noncomplementary DNA. The selectivity of nucleic acid hybridization was demonstrated by single-nucleotide polymorphism (SNP) detection at a contrast ratio of 19 to 1. The reuse of paper over multiple cycles of hybridization and dehybridization was possible, with less than 20% reduction in the performance of the assay in five cycles. This work provides an important framework for the development of paper-based solid-phase QD-FRET nucleic acid hybridization assays that make use of a ratiometric approach for detection and analysis.

  19. DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS

    DOEpatents

    Horn, F.L.

    1961-12-12

    Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)

  20. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Chen, Lu; Algar, W Russ; Tavares, Anthony J; Krull, Ulrich J

    2011-01-01

    The optical properties and surface area of quantum dots (QDs) have made them an attractive platform for the development of nucleic acid biosensors based on fluorescence resonance energy transfer (FRET). Solid-phase assays based on FRET using mixtures of immobilized QD-oligonucleotide conjugates (QD biosensors) have been developed. The typical challenges associated with solid-phase detection strategies include non-specific adsorption, slow kinetics of hybridization, and sample manipulation. The new work herein has considered the immobilization of QD biosensors onto the surfaces of microfluidic channels in order to address these challenges. Microfluidic flow can be used to dynamically control stringency by adjustment of the potential in an electrokinetic-based microfluidics environment. The shearing force, Joule heating, and the competition between electroosmotic and electrophoretic mobilities allow the optimization of hybridization conditions, convective delivery of target to the channel surface to speed hybridization, amelioration of adsorption, and regeneration of the sensing surface. Microfluidic flow can also be used to deliver (for immobilization) and remove QD biosensors. QDs that were conjugated with two different oligonucleotide sequences were used to demonstrate feasibility. One oligonucleotide sequence on the QD was available as a linker for immobilization via hybridization with complementary oligonucleotides located on a glass surface within a microfluidic channel. A second oligonucleotide sequence on the QD served as a probe to transduce hybridization with target nucleic acid in a sample solution. A Cy3 label on the target was excited by FRET using green-emitting CdSe/ZnS QD donors and provided an analytical signal to explore this detection strategy. The immobilized QDs could be removed under denaturing conditions by disrupting the duplex that was used as the surface linker and thus allowed a new layer of QD biosensors to be re-coated within the channel

  1. Herschel Sees Through Ghostly Pillars

    NASA Image and Video Library

    2012-01-18

    This image of the Eagle nebula shows the self-emission of the intensely cold nebula gas and dust as never seen before; the nebula intricate tendril nature, with vast cavities forms an almost cave-like surrounding to the famous pillars.

  2. Stable and selective self-assembly of α-lipoic acid on Ge(001) for biomolecule immobilization

    NASA Astrophysics Data System (ADS)

    Kazmierczak, M.; Flesch, J.; Mitzloff, J.; Capellini, G.; Klesse, W. M.; Skibitzki, O.; You, C.; Bettenhausen, M.; Witzigmann, B.; Piehler, J.; Schroeder, T.; Guha, S.

    2018-05-01

    We demonstrate a novel method for the stable and selective surface functionalization of germanium (Ge) embedded in silicon dioxide. The Ge(001) surface is functionalized using α-lipoic acid (ALA), which can potentially be utilized for the immobilization of a wide range of biomolecules. We present a detailed pH-dependence study to establish the effect of the incubation pH value on the adsorption layer of the ALA molecules. A threshold pH value for functionalization is identified, dividing the examined pH range into two regions. Below a pH value of 7, the formation of a disordered ALA multilayer is observed, whereas a stable well-ordered ALA mono- to bi-layer on Ge(001) is achieved at higher pH values. Furthermore, we analyze the stability of the ALA layer under ambient conditions, revealing the most stable functionalized Ge(001) surface to effectively resist oxidation for up to one week. Our established functionalization method paves the way towards the successful immobilization of biomolecules in future Ge-based biosensors.

  3. A Potentiometric Indirect Uric Acid Sensor Based on ZnO Nanoflakes and Immobilized Uricase

    PubMed Central

    Usman Ali, Syed M.; Ibupoto, Zafar Hussain; Kashif, Muhammad; Hashim, Uda; Willander, Magnus

    2012-01-01

    In the present work zinc oxide nanoflakes (ZnO-NF) structures with a wall thickness around 50 to 100 nm were synthesized on a gold coated glass substrate using a low temperature hydrothermal method. The enzyme uricase was electrostatically immobilized in conjunction with Nafion membrane on the surface of well oriented ZnO-NFs, resulting in a sensitive, selective, stable and reproducible uric acid sensor. The electrochemical response of the ZnO-NF-based sensor vs. a Ag/AgCl reference electrode was found to be linear over a relatively wide logarithmic concentration range (500 nM to 1.5 mM). In addition, the ZnO-NF structures demonstrate vast surface area that allow high enzyme loading which results provided a higher sensitivity. The proposed ZnO-NF array-based sensor exhibited a high sensitivity of ∼66 mV/ decade in test electrolyte solutions of uric acid, with fast response time. The sensor response was unaffected by normal concentrations of common interferents such as ascorbic acid, glucose, and urea. PMID:22736977

  4. Ordered microporous layered lanthanide 1,3,5-benzenetriphosphonates pillared with cationic organic molecules.

    PubMed

    Araki, Takahiro; Kondo, Atsushi; Maeda, Kazuyuki

    2015-04-13

    Novel isomorphous pillared-layer-type crystalline lanthanide 1,3,5-benzenetriphosphonates were prepared with bpy and dbo as organic pillars (LnBP-bpy and LnBP-dbo; Ln: Ce, Pr, and Nd). Ab initio crystal structure solution using synchrotron X-ray powder diffraction data revealed that the organic pillars do not exist as neutral coordinating ligands but as cationic molecules. Especially the LnBP-dbo phases have ordered interlayer space filled with water molecules between the dbo pillars, and the interlayer water is successfully removed by heating under vacuum with slightly distorted but basically retained pillared layer structures. Microporosity of the materials is confirmed by adsorption of nitrogen, carbon dioxide, and hydrogen gases. Such microporous layered metal phosphonates pillared with cationic molecules should be unprecedented and should offer new strategies to design ordered microporous materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Processing fissile material mixtures containing zirconium and/or carbon

    DOEpatents

    Johnson, Michael Ernest; Maloney, Martin David

    2013-07-02

    A method of processing spent TRIZO-coated nuclear fuel may include adding fluoride to complex zirconium present in a dissolved TRIZO-coated fuel. Complexing the zirconium with fluoride may reduce or eliminate the potential for zirconium to interfere with the extraction of uranium and/or transuranics from fission materials in the spent nuclear fuel.

  6. Nanoindentation study of bulk zirconium hydrides at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang

    Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less

  7. Nanoindentation study of bulk zirconium hydrides at elevated temperatures

    DOE PAGES

    Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang; ...

    2017-08-02

    Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less

  8. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors.

    PubMed

    Wang, Gongkai; Sun, Xiang; Lu, Fengyuan; Sun, Hongtao; Yu, Mingpeng; Jiang, Weilin; Liu, Changsheng; Lian, Jie

    2012-02-06

    Flexible graphene paper (GP) pillared by carbon black (CB) nanoparticles using a simple vacuum filtration method is developed as a high-performance electrode material for supercapacitors. Through the introduction of CB nanoparticles as spacers, the self-restacking of graphene sheets during the filtration process is mitigated to a great extent. The pillared GP-based supercapacitors exhibit excellent electrochemical performances and cyclic stabilities compared with GP without the addition of CB nanoparticles. At a scan rate of 10 mV s(-1) , the specific capacitance of the pillared GP is 138 F g(-1) and 83.2 F g(-1) with negligible 3.85% and 4.35% capacitance degradation after 2000 cycles in aqueous and organic electrolytes, respectively. At an extremely fast scan rate of 500 mV s (-1) , the specific capacitance can reach 80 F g(-1) in aqueous electrolyte. No binder is needed for assembling the supercapacitor cells and the pillared GP itself may serve as a current collector due to its intrinsic high electrical conductivity. The pillared GP has great potential in the development of promising flexible and ultralight-weight supercapacitors for electrochemical energy storage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Extending and implementing the Persistent ID pillars

    NASA Astrophysics Data System (ADS)

    Car, Nicholas; Golodoniuc, Pavel; Klump, Jens

    2017-04-01

    The recent double decade anniversary of scholarly persistent identifier use has triggered journal special editions such as "20 Years of Persistent Identifiers". For such a publication, it is apt to consider the longevity of some persistent identifier (PID) mechanisms (Digital Object Identifiers) and the partial disappearance of others (Life Sciences IDs). We have previously postulated a set of "PID Pillars" [1] which are design principles aimed at ensuring PIDs can survive technology and social change and thus persist for the long term that we have drawn from our observations of PIDs at work over many years. The principles: describe how to ensure identifiers' system and organisation independence; codify the delivery of essential PID system functions; mandate a separation of PID functions from data delivery mechanisms; and require generation of policies detailing how change is handled. In this presentation, first we extend on our previous work of introducing the pillars by refining their descriptions, giving specific suggestions for each and presenting some work that addresses them. Second, we propose a baseline data model for persistent identifiers that, if used, would assist the separation of PID metadata and PID system functioning. This would allow PID system function specifics to change over time (e.g. resolver services or even resolution protocols) and yet preserve the PIDs themselves. Third, we detail our existing PID system — the PID Service [2] — that partially implements the pillars and describe both its successes and shortcomings. Finally, we describe our planned next-generation system that will aim to use the baseline data model and fully implement the pillars.

  10. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys, Old Hickory Clay Co. and Unimin Corp. — mined ball clay in five U.S. states in 2012. Production, on the basis of preliminary data, was 900 kt (992,000 st), with an estimated value of $42.3 million. This was a slight increase in tonnage from 886 kt (977,000 st), with a value of $40.9 million in 2011. Tennessee was the leading ball clay producing state, with 63 percent of domestic production, followed by Texas, Mississippi, Kentucky and Indiana. Reported ball clay production from Indiana probably was fire clay rather than ball clay. About 69 percent of total ball clay production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  11. Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay.

    PubMed

    Hebbar, Raghavendra S; Isloor, Arun M; Prabhu, Balakrishna; Inamuddin; Asiri, Abdullah M; Ismail, A F

    2018-03-16

    Functional surfaces and polymers with branched structures have a major impact on physicochemical properties and performance of membrane materials. With the aim of greener approach for enhancement of permeation, fouling resistance and detrimental heavy metal ion rejection capacity of polyetherimide membrane, novel grafting of poly (4-styrenesulfonate) brushes on low cost, natural bentonite was carried out via distillation-precipitation polymerisation method and employed as a performance modifier. It has been demonstrated that, modified bentonite clay exhibited significant improvement in the hydrophilicity, porosity, and water uptake capacity with 3 wt. % of additive dosage. SEM and AFM analysis showed the increase in macrovoides and surface roughness with increased additive concentration. Moreover, the inclusion of modified bentonite displayed an increase in permeation rate and high anti-irreversible fouling properties with reversible fouling ratio of 75.6%. The humic acid rejection study revealed that, PEM-3 membrane having rejection efficiency up to 87.6% and foulants can be easily removed by simple hydraulic cleaning. Further, nanocomposite membranes can be significantly employed for the removal of hazardous heavy metal ions with a rejection rate of 80% and its tentative mechanism was discussed. Conspicuously, bentonite clay-bearing poly (4-styrenesulfonate) brushes are having a synergistic effect on physicochemical properties of nanocomposite membrane to enhance the performance in real field applications.

  12. Killer clays! Natural antibacterial clay minerals

    USGS Publications Warehouse

    Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.

    2004-01-01

    The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.

  13. Ball clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.

  14. Modification of Immobead 150 support for protein immobilization: effects on the properties of immobilized Aspergillus oryzae β-galactosidase.

    PubMed

    Gennari, Adriano; Herrmann Mobayed, Francielle; da Silva Rafael, Ruan; Rodrigues, Rafael C; Sperotto, Raul Antonio; Volpato, Giandra; Volken de Souza, Claucia Fernanda

    2018-05-01

    We studied the modification of Immobead 150 support by either introducing aldehyde groups using glutaraldehyde (Immobead-Glu) or carboxyl groups through acid solution (Immobead-Ac) for enzyme immobilization by covalent attachment or ion exchange, respectively. These two types of immobilization were compared with the use of epoxy groups that are now provided on a commercial support. We used Aspergillus oryzae β-galactosidase (Gal) as a model protein, immobilizing it on unmodified (epoxy groups, Immobead-Epx) and modified supports. Immobilization yield and efficiency were tested as a function of protein loading (10 to 500 mg.g -1 support). Gal was efficiently immobilized on the Immobeads with an immobilization efficiency higher than 75% for almost all supports and protein loads. Immobilization yields significantly decreased when protein loadings were higher than 100 mg.g -1 support. Gal immobilized on Immobead-Glu and Immobead-Ac retained approximately 60% of its initial activity after 90 days of storage at 4°C. The three immobilized Gal derivatives presented higher half-lifes than the soluble enzyme, where the half-lifes were twice higher than the free Gal at 73°C. All the preparations were moderately operationally stable when tested in lactose solution, whey permeate, cheese whey, and skim milk, and retained approximately 50% of their initial activity after 20 cycles of hydrolyzing lactose solution. The modification of the support with glutaraldehyde provided the most stable derivative during cycling in cheese whey hydrolysis. Our results suggest that the Immobead 150 is a promising support for Gal immobilization. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  15. Optimization of pillar electrodes in subretinal prosthesis for enhanced proximity to target neurons

    NASA Astrophysics Data System (ADS)

    Flores, Thomas; Lei, Xin; Huang, Tiffany; Lorach, Henri; Dalal, Roopa; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Palanker, Daniel

    2018-06-01

    Objective. High-resolution prosthetic vision requires dense stimulating arrays with small electrodes. However, such miniaturization reduces electrode capacitance and penetration of electric field into tissue. We evaluate potential solutions to these problems with subretinal implants based on utilization of pillar electrodes. Approach. To study integration of three-dimensional (3D) implants with retinal tissue, we fabricated arrays with varying pillar diameter, pitch, and height, and implanted beneath the degenerate retina in rats (Royal College of Surgeons, RCS). Tissue integration was evaluated six weeks post-op using histology and whole-mount confocal fluorescence imaging. The electric field generated by various electrode configurations was calculated in COMSOL, and stimulation thresholds assessed using a model of network-mediated retinal response. Main results. Retinal tissue migrated into the space between pillars with no visible gliosis in 90% of implanted arrays. Pillars with 10 μm height reached the middle of the inner nuclear layer (INL), while 22 μm pillars reached the upper portion of the INL. Electroplated pillars with dome-shaped caps increase the active electrode surface area. Selective deposition of sputtered iridium oxide onto the cap ensures localization of the current injection to the pillar top, obviating the need to insulate the pillar sidewall. According to computational model, pillars having a cathodic return electrode above the INL and active anodic ring electrode at the surface of the implant would enable six times lower stimulation threshold, compared to planar arrays with circumferential return, but suffer from greater cross-talk between the neighboring pixels. Significance. 3D electrodes in subretinal prostheses help reduce electrode-tissue separation and decrease stimulation thresholds to enable smaller pixels, and thereby improve visual acuity of prosthetic vision.

  16. Electromigration of Mn, Fe, Cu and Zn with citric acid in contaminated clay.

    PubMed

    Pazos, M; Gouveia, S; Sanroman, M A; Cameselle, C

    2008-07-01

    Metal reactivity, speciation and solubility have an important influence in its transportation through a porous matrix by electrokinetics and, therefore, they dramatically affect the removal efficiency. This work deals with the effect of solubility and transport competition among several metals (Mn, Fe, Cu and Zn) during their transport through polluted clay. The unenhancement electrokinetic treatment results in a limited removal of the tested metals because they were retained into the kaolinite sample by the penetration of the alkaline front. Metals showed a removal degree in accordance with the solubility of the corresponding hydroxide and its formation pH. In 7 days of treatment, the removal results were: 75.6% of Mn; 68.5% of Zn, 40.6% of Cu and 14.8% of Fe. In order to avoid the negative effects of the basic front generated at the cathode, two different techniques were proposed and tested: the addition of citric acid as complexing agent to the polluted kaolinite sample and the use of citric acid to control de pH on the cathode chamber. Both techniques are based on the capability of citric acid to act as a complexing and neutralizing agent. Almost complete removal of Mn, Cu and Zn was achieved when citric acid was used (as neutralizing or complexing agent). But Fe only reached 33% of removal because it formed a negatively charged complex with citrate that retarded its transportation to the cathode.

  17. [Use of claydite-immobilized oil-oxidizing microbial cells for purification of water from oil].

    PubMed

    Pirog, T P; Shevchuk, T A; Voloshinka, I N; Gregirchak, N N

    2005-01-01

    Oil-oxidizing bacteria were isolated from oil-polluted soil and water samples and identified as Acinetobacter calcoaceticus K-4, Nocardia vaceinii K-8, Rhodococcus erythropolis EK-1, and Mycobacterium sp. K-2. It was found that immobilization of the bacteria on an expanded clay aggregate accelerated their growth and consumption of hydrocarbon substrates. It was also found that water polluted with 100 mg/l oil could be purified with Rhodococcus erythropolis EK-1 and Nocardia vaceinii K-8 cells immobilized in this way. The dependence of the degree of water purification on its flow rate, aeration, and availability of nitrogen and phosphorus sources was determined. The efficiency of water purification from oil by immobilized Rhodococcus erythropolis EK-1 cells at high flow rates (of up to 0.68 l/h), low aeration (of 0.1 l/l per min) and an intermittent supply of 0.01% diammonium phosphate reached 99.5-99.8%.

  18. Infrared spectroscopic studies of the effect of elevated temperature on the association of pyroglutamic acid with clay and other minerals

    NASA Astrophysics Data System (ADS)

    Macklin, John W.; White, David H.

    Fourier transform i.r. measurements of L-pyroglutamic acid dispersed in a matrix of a clay, silica or alumina have been obtained at various temperatures between 25 and 220°C. The i.r. spectrum of L-pyroglutamic acid varies in a manner slightly dependent upon the matrix material and shows considerable change as the temperature of the mixtures is increased. The differences in the spectrum at elevated temperatures are explained in terms of a chemical reaction between hydroxyl groups in the matrix and the carboxylic acid. The i.r. spectra of trimethylsilyl derivatives of L-pyroglutamic acid and aluminum pyroglutamate were also measured to assist the understanding of spectra and interpretation of the spectral changes dependent upon increasing temperature.

  19. Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase.

    PubMed

    Araújo, Maria Elisa Melo Branco de; Campos, Paula Renata Bueno; Alberto, Thiago Grando; Contesini, Fabiano Jares; Carvalho, Patrícia de Oliveira

    The search for new biocatalysts has aroused great interest due to the variety of micro-organisms and their role as enzyme producers. Native lipases from Aspergillus niger and Rhizopus javanicus were used to enrich the n-3 long-chain polyunsaturated fatty acids content in the triacylglycerols of soybean oil by acidolysis with free fatty acids from sardine oil in solvent-free media. For the immobilization process, the best lipase/support ratios were 1:3 (w/w) for Aspergillus niger lipase and 1:5 (w/w) for Rhizopus javanicus lipase using Amberlite MB-1. Both lipases maintained constant activity for 6 months at 4°C. Reaction time, sardine-free fatty acids:soybean oil mole ratio and initial water content of the lipase were investigated to determine their effects on n-3 long-chain polyunsaturated fatty acids incorporation into soybean oil. Structured triacylglycerols with 11.7 and 7.2% of eicosapentaenoic acid+docosahexaenoic acid were obtained using Aspergillus niger lipase and Rhizopus javanicus lipase, decreasing the n-6/n-3 fatty acids ratio of soybean oil (11:1 to 3.5:1 and 4.7:1, respectively). The best reaction conditions were: initial water content of lipase of 0.86% (w/w), sardine-free faty acids:soybean oil mole ratio of 3:1 and reaction time of 36h, at 40°C. The significant factors for the acidolysis reaction were the sardine-free fatty acids:soybean oil mole ratio and reaction time. The characterization of structured triacylglycerols was obtained using easy ambient sonic-spray ionization mass spectrometry. The enzymatic reaction led to the formation of many structured triacylglycerols containing eicosapentaenoic acid, docosahexaenoic acid or both polyunsaturated fatty acids. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. The estimation of quantitative parameters of oligonucleotides immobilization on mica surface

    NASA Astrophysics Data System (ADS)

    Sharipov, T. I.; Bakhtizin, R. Z.

    2017-05-01

    Immobilization of nucleic acids on the surface of various materials is increasingly being used in research and some practical applications. Currently, the DNA chip technology is rapidly developing. The basis of the immobilization process can be both physical adsorption and chemisorption. A useful way to control the immobilization of nucleic acids on a surface is to use atomic force microscopy. It allows you to investigate the topography of the surface by its direct imaging with high resolution. Usually, to fix the DNA on the surface of mica are used cations which mediate the interaction between the mica surface and the DNA molecules. In our work we have developed a method for estimation of quantitative parameter of immobilization of oligonucleotides is their degree of aggregation depending on the fixation conditions on the surface of mica. The results on study of aggregation of oligonucleotides immobilized on mica surface will be presented. The single oligonucleotides molecules have been imaged clearly, whereas their surface areas have been calculated and calibration curve has been plotted.

  1. Rim-Differentiated C5-Symmetric Tiara-Pillar[5]arenes

    PubMed Central

    2017-01-01

    The synthesis of “rim-differentiated” C5-symmetric pillar[5]arenes, whose two rims are decorated with different chemical functionalities, has remained a challenging task. This is due to the inherent statistical nature of the cyclization of 1,4-disubstituted alkoxybenzenes with different substituents, which leads to four constitutional isomers with only 1/16th being rim-differentiated. Herein, we report a “preoriented” synthetic protocol based on FeCl3-catalyzed cyclization of asymmetrically substituted 2,5-dialkoxybenzyl alcohols. This yields an unprecedented 55% selectivity of the C5-symmetric tiara-like pillar[5]arene isomer among four constitutional isomers. Based on this new method, a series of functionalizable tiara-pillar[5]arene derivatives with C5-symmetry was successfully synthesized, isolated, and fully characterized in the solid state. PMID:29220153

  2. Hubble Goes High Def to Revisit the Iconic 'Pillars of Creation'

    NASA Image and Video Library

    2017-12-08

    This NASA Hubble Space Telescope image, taken in near-infrared light, transforms the pillars into eerie, wispy silhouettes, which are seen against a background of myriad stars. The near-infrared light can penetrate much of the gas and dust, revealing stars behind the nebula as well as hidden away inside the pillars. Some of the gas and dust clouds are so dense that even the near-infrared light cannot penetrate them. New stars embedded in the tops of the pillars, however, are apparent as bright sources that are unseen in the visible image. The ghostly bluish haze around the dense edges of the pillars is material getting heated up by the intense ultraviolet radiation from a cluster of young, massive stars and evaporating away into space. The stellar grouping is above the pillars and cannot be seen in the image. At the top edge of the left-hand pillar, a gaseous fragment has been heated up and is flying away from the structure, underscoring the violent nature of star-forming regions. Astronomers used filters that isolate the light from newly formed stars, which are invisible in the visible-light image. At these wavelengths, astronomers are seeing through the pillars and even through the back wall of the nebula cavity and can see the next generations of stars just as they're starting to emerge from their formative nursery. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) Read more: 1.usa.gov/1HGfkqr NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Data supporting attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts.

    PubMed

    Moerke, Caroline; Mueller, Petra; Nebe, Barbara

    2016-06-01

    The provided data contains the phagocytic interaction of human MG-63 osteoblasts with micro-particles 6 µm in size as well as geometric micro-pillared topography with micro-pillar sizes 5 µm of length, width, height and spacing respectively related to the research article entitled "Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts" in the Biomaterials journal. [1] Micro-particle treatment was used as positive control triggering phagocytosis by the osteoblasts. Caveolin-1 (Cav-1) as major structural component of caveolae [2] plays an important role in the phagocytic process of micro-particles and -pillars. Data related to the experiments in [1] with siRNA-mediated knockdown are presented here as well as micro-particle control experiments, tubulin analysis on the micro-pillared topography and initial cell interaction with the micro-pillars.

  4. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global ball clay mining industry, particularly in the U.S., as of June 2011. It cites several firms that are involved in ball clay mining in the U.S., including HC Spins Clay Co. Inc., the Imerys Group and Old Hickory Clay Co. Among the products made from ball clay are ceramic tiles, sanitaryware, as well as fillers, extenders and binders.

  5. Synthesis of carbohydrates in a continuous flow reactor by immobilized phosphatase and aldolase.

    PubMed

    Babich, Lara; Hartog, Aloysius F; van Hemert, Lieke J C; Rutjes, Floris P J T; Wever, Ron

    2012-12-01

    Herein, we report a new flow process with immobilized enzymes to synthesize complex chiral carbohydrate analogues from achiral inexpensive building blocks in a three-step cascade reaction. The first reactor contained immobilized acid phosphatase, which phosphorylated dihydroxyacetone to dihydroxyacetone phosphate using pyrophosphate as the phosphate donor. The second flow reactor contained fructose-1,6-diphosphate aldolase (RAMA, rabbit muscle aldolase) or rhamnulose-1-phosphate aldolase (RhuA from Thermotoga maritima) and acid phosphatase. The immobilized aldolases coupled the formed dihydroxyacetone phosphate to aldehydes, resulting in phosphorylated carbohydrates. A final reactor containing acid phosphatase that dephosphorylated the phosphorylated product yielded the final product. Different aldehydes were used to synthesize carbohydrates on a gram scale. To demonstrate the feasibility of the flow systems, we synthesized 0.6 g of the D-fagomine precursor. By using immobilized aldolase RhuA we were also able to obtain other stereoisomers of the D-fagomine precursor. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hydrolysis of triacetin catalyzed by immobilized lipases: effect of the immobilization protocol and experimental conditions on diacetin yield.

    PubMed

    Hernandez, Karel; Garcia-Verdugo, Eduardo; Porcar, Raul; Fernandez-Lafuente, Roberto

    2011-05-06

    The effect of the immobilization protocol and some experimental conditions (pH value and presence of acetonitrile) on the regioselective hydrolysis of triacetin to diacetin catalyzed by lipases has been studied. Lipase B from Candida antarctica (CALB) and lipase from Rhizomucor miehei (RML) were immobilized on Sepabeads (commercial available macroporous acrylic supports) activated with glutaraldehyde (covalent immobilization) or octadecyl groups (adsorption via interfacial activation). All the biocatalysts accumulated diacetin. Covalently immobilized RML was more active towards rac-methyl mandelate than the adsorbed RML. However, this covalent RML preparation presented the lowest activity towards triacetin. For this reason, this preparation was discarded as biocatalyst for this reaction. At pH 7, acyl migration occurred giving a mixture of 1,2 and 1,3 diacetin, but at pH 5.5, only 1,2 diacetin was produced. Yields were improved at acidic pH values and in the presence of 20% acetonitrile (to over 95%). RML immobilized on octadecyl Sepabeads was proposed as optimal preparation, mainly due to its higher specific activity. Each enzyme preparation presented very different properties. Moreover, changes in the reaction conditions affected the various immobilized enzymes in a different way. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Collagen-Immobilized Lipases Show Good Activity and Reusability for Butyl Butyrate Synthesis.

    PubMed

    Dewei, Song; Min, Chen; Haiming, Cheng

    2016-11-01

    Candida rugosa lipases were immobilized onto collagen fibers through glutaraldehyde cross-linking method. The immobilization process has been optimized. Under the optimal immobilization conditions, the activity of the collagen-immobilized lipase reached 340 U/g. The activity was recovered of 28.3 % by immobilization. The operational stability of the obtained collagen-immobilized lipase for hydrolysis of olive oil emulsion was determined. The collagen-immobilized lipase showed good tolerance to temperature and pH variations in comparison to free lipase. The collagen-immobilized lipase was also applied as biocatalyst for synthesis of butyl butyrate from butyric acid and 1-butanol in n-hexane. The conversion yield was 94 % at the optimal conditions. Of its initial activity, 64 % was retained after 5 cycles for synthesizing butyl butyrate in n-hexane.

  8. Analysis of Oligonucleotide DNA Binding and Sedimentation Properties of Montmorillonite Clay Using Ultraviolet Light Spectroscopy

    PubMed Central

    Beall, Gary W.; Sowersby, Drew S.; Roberts, Rachel D.; Robson, Michael H.; Lewis, L. Kevin

    2009-01-01

    Smectite clays such as montmorillonite form complexes with a variety of biomolecules, including the nucleic acids DNA and RNA. Most previous studies of DNA adsorption onto clay have relied upon spectrophotometric analysis after separation of free nucleic acids from bound complexes by centrifugation. In the current work we demonstrate that such studies produce a consistent error due to (a) incomplete sedimentation of montmorillonite and (b) strong absorbance of the remaining clay at 260 nm. Clay sedimentation efficiency was strongly dependent upon cation concentration (Na+ or Mg2+) and on the level of dispersion of the original suspension. An improved clay:DNA adsorption assay was developed and utilized to assess the impact of metal counterions on binding of single-stranded DNA to montmorillonite. X-ray diffraction demonstrated, for the first time, formation of intercalated structures consistent with orientation of the DNA strands parallel to the clay surface. Observed gallery spacings were found to closely match values calculated utilizing atomistic modeling techniques. PMID:19061334

  9. Relations between Eastern Four Pillars Theory and Western Measures of Personality Traits

    PubMed Central

    Jung, Seung Ah

    2015-01-01

    Purpose The present study investigated the validity of personality classification using four pillars theory, a tradition in China and northeastern Asia. Materials and Methods Four pillars analyses were performed for 148 adults on the basis of their birth year, month, day, and hour. Participants completed two personality tests, the Korean version of Temperament and Character Inventory-Revised-Short Version (TCI) and the Korean Inventory of Interpersonal Problems; scores were correlated with four pillars classification elements. Mean difference tests (e.g., t-test, ANOVA) were compared with groups classified by four pillars index. Results There were no significant correlations between personality scale scores and total yin/yang number (i.e., the 8 heavenly or earthly stems), and no significant between-groups results for classifications by yin/yang day stem and the five elements. There were significant but weak (r=0.18-0.29) correlations between the five elements and personality scale scores. For the six gods and personality scales, there were significant but weak (r=0.18-0.25) correlations. Features predicted by four pillars theory were most consistent when participants were grouped according to the yin/yang of the day stem and dominance of yin/yang numbers in the eight heavenly or earthly stems. Conclusion Although the major criteria of four pillars theory were not independently correlated with personality scale scores, correlations emerged when participants were grouped according to the composite yin/yang variable. Our results suggest the utility of four pillars theory (beyond fortune telling or astrology) for classifying personality traits and making behavioral predictions. PMID:25837175

  10. Preparation and characterization compatible pellets for immobilization of colloidal sulphur nanoparticles

    NASA Astrophysics Data System (ADS)

    Adlim, M.; Zarlaida, F.; Khaldun, I.; Dewi, R.; Jamilah, M.

    2018-03-01

    Mercury pollution in atmosphere is dominated by mercury vapour release from coal burning and gold-amalgam separation in gold mining. The initial steps in formulating a compatible mercury absorbent for mercury stabilization was fabrication of pellet supported colloidal sulphur. Sulphur is used to stabilize mercury vapour by formation of metacinnabar that has much lower toxicity. The sulphur reactivity toward mercury vapour can be enhanced by using colloidal sulphur nanoparticles immobilized on compatible pellets. Clay pellets would have heat resistance but in fact, they were less stable in aqueous solution although their stability increased with inclusion of rice husk ash and sawdust or pineapple leaf fibre in the composite. Pellets made of rice husk ash and polyvinyl acetate were stable in water at least for 24 hours. Sulphur from thiosulfate precursor that immobilized onto surface of pellet using chitosan as the stabilizer and the binding agent gave lower sulphur content compared to sulphur from other precursors (sulphur powder and sulphur-CS2). Sulphur from thiosulfate precursor was in form of colloid, has nanosize, and disperse particles on the surface of rice husk ash pellets. Sulphur immobilization methods affect on sulphur particles exposure on the pellet surface.

  11. Structures and mechanisms in clay nanopore trapping of structurally-different fluoroquinolone antimicrobials.

    PubMed

    Okaikue-Woodi, Fanny E K; Kelch, Sabrina E; Schmidt, Michael P; Enid Martinez, Carmen; Youngman, Randall E; Aristilde, Ludmilla

    2018-03-01

    Smectite clay nanoparticles are implicated in the retention of antimicrobials within soils and sediments; these clays are also inspected as drug carriers in physiological systems. Cation exchange is considered the primary adsorption mechanism of antimicrobials within smectite nanopores. However, a dual role of acid-base chemistry and adsorptive structures is speculated by recent studies. Using the prototypical smectite clay montmorillonite, we employed a combination of X-ray diffraction (XRD), nuclear magnetic resonance, attenuated total reflectance-Fourier transform infrared spectroscopy, and molecular dynamics simulations to investigate the interlayer nanopore trapping of two structurally-different fluoroquinolone (FQ) antimicrobials with similar acid-base chemistry: ciprofloxacin (a first-generation FQ) and moxifloxacin (a third-generation FQ). Greater sorption at pH 5.0 than at pH 7.0 for both FQs was consistent with cation-exchange of positively-charged species. However, the clay exhibited a near twofold higher sorption capacity for moxifloxacin than for ciprofloxacin. This difference was shown by the XRD data to be accompanied by enhanced trapping of moxifloxacin within the clay interlayers. Using the XRD-determined nanopore sizes, we performed molecular dynamics simulations of thermodynamically-favorable model adsorbates, which revealed that ciprofloxacin was adsorbed parallel to the clay surface but moxifloxacin adopted a tilted conformation across the nanopore. These conformations resulted in more slowly-exchanged than quickly-exchanged Na complexes with ciprofloxacin compared with moxifloxacin. These different Na populations were also captured by 23 Na nuclear magnetic resonance. Furthermore, the simulated adsorbates uncovered different complexation interactions that were corroborated by infrared spectroscopy. Therefore, beyond acid-base chemistry, our findings imply that distinct adsorbate structures control antimicrobial trapping within clay nanopores

  12. Pillar cuvettes: capillary-filled, microliter quartz cuvettes with microscale path lengths for optical spectroscopy.

    PubMed

    Holzner, Gregor; Kriel, Frederik Hermanus; Priest, Craig

    2015-05-05

    The goal of most analytical techniques is to reduce the lower limit of detection; however, it is sometimes necessary to do the opposite. High sample concentrations or samples with high molar absorptivity (e.g., dyes and metal complexes) often require multiple dilution steps or laborious sample preparation prior to spectroscopic analysis. Here, we demonstrate dilution-free, one-step UV-vis spectroscopic analysis of high concentrations of platinum(IV) hexachloride in a micropillar array, that is, "pillar cuvette". The cuvette is spontaneously filled by wicking of the liquid sample into the micropillar array. The pillar height (thus, the film thickness) defines the optical path length, which was reduced to between 10 and 20 μm in this study (3 orders of magnitude smaller than in a typical cuvette). Only one small droplet (∼2 μL) of sample is required, and the dispensed volume need not be precise or even known to the analyst for accurate spectroscopy measurements. For opaque pillars, we show that absorbance is linearly related to platinum concentration (the Beer-Lambert Law). For fully transparent or semitransparent pillars, the measured absorbance was successfully corrected for the fractional surface coverage of the pillars and the transmittance of the pillars and reference. Thus, both opaque and transparent pillars can be applied to absorbance spectroscopy of high absorptivity, microliter samples. It is also shown here that the pillar array has a useful secondary function as an integrated (in-cuvette) filter for particulates. For pillar cuvette measurements of platinum solutions spiked with 6 μm diameter polystyrene spheres, filtered and unfiltered samples gave identical spectra.

  13. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2007-01-01

    The article offers information on ball clay. Among the companies that mine ball clay in the U.S. are H.C. Spinks Clay, Kentucky-Tennessee Clay and Old Hickory Clay. In 2006, an estimated 1.2 million tons of the mineral was sold or used domestically and exported. Forty-percent of the total sales is accounted for ceramic floor and wall tile followed by sanitaryware and miscellaneous ceramics. Its average value was $ 45 per ton in 2006.

  14. Rheological properties of purified illite clays in glycerol/water suspensions

    NASA Astrophysics Data System (ADS)

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction < 2 μm and glycerol/water suspensions were investigated. Carbonates were removed by dissolution in hydrochloric and citric acids and other non-clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  15. Preparation and characterization of lysine-immobilized poly(glycidyl methacrylate) nanoparticle-coated capillary for the separation of amino acids by open tubular capillary electrochromatography.

    PubMed

    Xu, Liang; Cui, Pengfei; Wang, Dongmei; Tang, Cheng; Dong, Linyi; Zhang, Can; Duan, Hongquan; Yang, Victor C

    2014-01-03

    In this study, poly(glycidyl methacrylate) (PGMA) nanoparticles (NPs) were prepared and chemically immobilized for the first time onto a capillary inner wall for open tubular capillary electrochromatography (OTCEC). The immobilization of PGMA NPs onto the capillary was attained by a ring-opening reaction between the NPs and an amino-silylated fused capillary inner surface. Scanning electron micrographs clearly demonstrated that the NPs were bound to the capillary inner surface in a dense monolayer. The PGMA NP-coated column was then functionalized by lysine (Lys). After fuctionalization, the capillary can afford strong anodic electroosmotic flow, especially in acidic running buffers. Separations of three amino acids (including tryptophan, tyrosine and phenylalanine) were performed in NP-modified, monolayer Lys-functionalized and bare uncoated capillaries. Results indicated that the NP-coated column can provide more retention and higher resolution for analytes due to the hydrophobic interaction between analytes and the NP-coating. Run-to-run and column-to-column reproducibilities in the separation of the amino acids using the NP-modified column were also demonstrated. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Convenient enzymatic resolution of (R,S)-2-methylbutyric acid catalyzed by immobilized lipases.

    PubMed

    Mittersteiner, Mateus; Linshalm, Bruna Luiza; Vieira, Ana Paula Furlan; Brondani, Patrícia Bulegon; Scharf, Dilamara Riva; de Jesus, Paulo Cesar

    2018-01-01

    The application of several immobilized lipases has been explored in the enantioselective esterification of (R,S)-2-methylbutyric acid, an insect pheromone precursor. With the use of Candida antarctica B, using hexane as solvent, (R)-pentyl 2-methylbutyrate was prepared in 2 h with c 40%, ee p 90%, and E = 35, while Thermomyces lanuginosus leads to c 18%, ee p 91%, and E = 26. The (S)-enantiomer was obtained by the use of Candida rugosa or Rhizopus oryzae (2-h reaction, c 34% and 35%, ee p 75 and 49%, and E = 10 and 4, respectively). Under optimal conditions, the effect of the solvent, the molar ratio, and the nucleophile were evaluated. © 2017 Wiley Periodicals, Inc.

  17. Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates

    DOE PAGES

    Wallace, Ryan A.; Charlton, Jennifer J.; Kirchner, Teresa B.; ...

    2014-11-04

    In order to detect a few molecules present in a large sample it is important to know the trace components in the medicinal and environmental sample. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. Moreover, the following work involves superhydrophobic surfaces that includes silicon pillar arrays formed by lithographic and dewetting protocols. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added tomore » the functionalized pillar array system via soaking. The pillars are used native and with hydrophobic modification. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 10-12 M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up applications in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.« less

  18. Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Ryan A.; Charlton, Jennifer J.; Kirchner, Teresa B.

    In order to detect a few molecules present in a large sample it is important to know the trace components in the medicinal and environmental sample. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. Moreover, the following work involves superhydrophobic surfaces that includes silicon pillar arrays formed by lithographic and dewetting protocols. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added tomore » the functionalized pillar array system via soaking. The pillars are used native and with hydrophobic modification. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 10-12 M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up applications in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.« less

  19. Correlation between mesopore volume of carbon supports and the immobilization of laccase from Trametes versicolor for the decolorization of Acid Orange 7.

    PubMed

    Ramírez-Montoya, Luis A; Hernández-Montoya, Virginia; Montes-Morán, Miguel A; Cervantes, Francisco J

    2015-10-01

    Immobilization of laccase from Trametes versicolor was carried out using carbon supports prepared from different lignocellulosic wastes. Enzymes were immobilized by physical adsorption. Taguchi methodology was selected for the design of experiments regarding the preparation of the carbon materials, which included the use of activating agents for the promotion of mesoporosity. A good correlation between the mesopore volumes of the carbon supports and the corresponding laccase loadings attained was observed. Specifically, the chemical activation of pecan nut shell with FeCl3 led to a highly mesoporous material that also behaved as the most efficient support for the immobilization of laccase. This particular laccase/carbon support system was used as biocatalyst for the decolorization of aqueous solutions containing Acid Orange 7. Mass spectrometry coupled to a liquid chromatograph allowed us to identify the products of the dye degradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Simultaneous immobilization of metals and arsenic in acidic polluted soils near a copper smelter in central Chile.

    PubMed

    Cárcamo, Valeska; Bustamante, Elena; Trangolao, Elizabeth; de la Fuente, Luz María; Mench, Michel; Neaman, Alexander; Ginocchio, Rosanna

    2012-05-01

    Acidic and metal(oid)-rich topsoils resulted after 34 years of continuous operations of a copper smelter in the Puchuncaví valley, central Chile. Currently, large-scale remediation actions for simultaneous in situ immobilization of metals and As are needed to reduce environmental risks of polluted soils. Aided phytostabilization is a cost-effective alternative, but adequate local available soil amendments have to be identified and management options have to be defined. Efficacy of seashell grit (SG), biosolids (B), natural zeolite (Z), and iron-activated zeolite (AZ), either alone or in mixtures, was evaluated for reducing metal (Cu and Zn) and As solubilization in polluted soils under laboratory conditions. Perennial ryegrass was used to test phytotoxicity of experimental substrates. Soil neutralization to a pH of 6.5 with SG, with or without incorporation of AZ, significantly reduces metal (Cu and Zn) solubilization without affecting As solubilization in soil pore water; furthermore, it eliminates phytotoxicity and excessive metal(oid) accumulation in aerial plant tissues. Addition of B or Z to SG-amended soil does not further reduce metal solubilization into soil pore water, but increase As solubilization due to excessive soil neutralization (pH > 6.5); however, no significant As increase occurs in aerial plant tissues. Simultaneous in situ immobilization of metal(oid) in acidic topsoils is possible through aided phytostabilization.

  1. Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Michael E.; Dong, Hailiang; Kukkadapu, Ravi K.

    2011-07-01

    99Technetium (99Tc) is a fission product of uranium-235 and plutonium-239 and poses a high environmental hazard due to its long half-life (t1/2 = 2.13 x 105 y), abundance in nuclear wastes, and environmental mobility under oxidizing conditions [i.e., Tc(VII)]. Under reducing conditions, Tc(VII) can be reduced to insoluble Tc(IV). Ferrous iron [Fe(II)], either in aqueous form or in mineral form, has been used to reduce Tc(VII) to Tc(IV). However, the reactivity of Fe(II) from clay minerals, other than nontronite, toward immobilization of Tc(VII) and its role in retention of reduced Tc(IV) have not been investigated. In this study the reactivitymore » of a suite of clay minerals toward Tc(VII) reduction and immobilization was evaluated. The clay minerals chosen for this study included five members in the smectite-illite (S-I) series, (montmorillonite, nontronite, rectorite, mixed layered I-S, and illite), chlorite, and palygorskite. Fe-oxides were removed from these minerals with a modified dithionite-citrate-bicarbonate (DCB) procedure. The total Fe content of these clay minerals, after Fe-oxide removal, ranged from 0.7 to 30.4% by weight, and the Fe(III)/Fe(total) ratio ranged from 44.9 to 98.5%. X-ray diffraction (XRD) and Mössbauer spectroscopy results showed that after Fe oxide removal the clay minerals were free of Fe-oxides. Scanning electron microscopy (SEM) revealed that little dissolution occurred during the DCB treatment. Bioreduction experiments were performed in bicarbonate buffer (pH-7) with Fe(III) in the clay minerals as the sole electron acceptor, lactate as the sole electron donor, and Shewanella Putrifaciens CN32 cells as mediators. In select tubes, anthraquinone-2,6-disulfate (AQDS) was added as electron shuttle to facilitate electron transfer. The extent of Fe(III) bioreduction was the highest for chlorite (~43 wt%) and the lowest for palygorskite (~4.17 wt%). In the S-I series, NAu-2 was the most reducible (~31 %) and illite the least (~0

  2. Purification and characterization of tannase from Paecilomyces variotii: hydrolysis of tannic acid using immobilized tannase.

    PubMed

    Mahendran, B; Raman, N; Kim, D-J

    2006-04-01

    An extracellular tannase (tannin acyl hydrolase) was isolated from Paecilomyces variotii and purified from cell-free culture filtrate using ammonium sulfate precipitation followed by ion exchange and gel filtration chromatography. Fractional precipitation of the culture filtrate with ammonium sulfate yielded 78.7% with 13.6-folds purification, and diethylaminoethyl-cellulose column chromatography and gel filtration showed 19.4-folds and 30.5-folds purifications, respectively. Molecular mass of tannase was found 149.8 kDa through native polyacrylamide gel electrophoresis (PAGE) analysis. Sodium dodecyl sulphate-PAGE revealed that the purified tannase was a monomeric enzyme with a molecular mass of 45 kDa. Temperature of 30 to 50 degrees C and pH of 5.0 to 7.0 were optimum for tannase activity and stability. Tannase immobilized on alginate beads could hydrolyze tannic acid even after extensive reuse and retained about 85% of the initial activity. Thin layer chromatography, high performance liquid chromatography, and (1)H-nuclear magnetic resonance spectral analysis confirmed that gallic acid was formed as a byproduct during hydrolysis of tannic acid.

  3. Layer Protecting the Surface of Zirconium Used in Nuclear Reactors.

    PubMed

    Ashcheulov, Petr; Skoda, Radek; Skarohlíd, Jan; Taylor, Andrew; Fendrych, Frantisek; Kratochvílová, Irena

    2016-01-01

    Zirconium alloys have very useful properties for nuclear facilities applications having low absorption cross-section of thermal electrons, high ductility, hardness and corrosion resistance. However, there is also a significant disadvantage: it reacts with water steam and during this (oxidative) reaction it releases hydrogen gas, which partly diffuses into the alloy forming zirconium hydrides. A new strategy for surface protection of zirconium alloys against undesirable oxidation in nuclear reactors by polycrystalline diamond film has been patented- Czech patent 305059: Layer protecting the surface of zirconium alloys used in nuclear reactors and PCT patent: Layer for protecting surface of zirconium alloys (Patent Number: WO2015039636-A1). The zirconium alloy surface was covered by polycrystalline diamond layer grown in plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. Substantial progress in the description and understanding of the polycrystalline diamond/ zirconium alloys interface and material properties under standard and nuclear reactors conditions (irradiation, hot steam oxidation experiments and heating-quenching cycles) was made. In addition, process technology for the deposition of protective polycrystalline diamond films onto the surface of zirconium alloys was optimized. Zircaloy2 nuclear fuel pins were covered by 300 nm thick protective polycrystalline diamond layer (PCD) using plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. The polycrystalline diamond layer protects the zirconium alloy surface against undesirable oxidation and consolidates its chemical stability while preserving its functionality. PCD covered Zircaloy2 and standard Zircaloy2 pins were for 30 min. oxidized in 1100°C hot steam. Under these conditions α phase of zirconium changes to β phase (more opened for oxygen/hydrogen diffusion). PCD anticorrosion protection of Zircaloy nuclear fuel assemblies can

  4. Large Deformation Characteristics and Reinforcement Measures for a Rock Pillar in the Houziyan Underground Powerhouse

    NASA Astrophysics Data System (ADS)

    Xiao, Xin-hong; Xiao, Pei-wei; Dai, Feng; Li, Hai-bo; Zhang, Xue-bin; Zhou, Jia-wen

    2018-02-01

    The underground powerhouse of the Houziyan Hydropower Station is under the conditions of high geo-stress and a low strength/stress ratio, which leads to significant rock deformation and failures, especially for rock pillars due to bidirectional unloading during the excavation process. Damages occurred in thinner rock pillars after excavation due to unloading and stress concentration, which will reduce the surrounding rock integrity and threaten the safety of the underground powerhouse. By using field investigations and multi-source monitoring data, the deformation and failure characteristics of a rock pillar are analyzed from the tempo-spatial distribution features. These results indicate that significant deformation occurred in the rock pillar when the powerhouse was excavated to the fourth layer, and the maximum displacement reached 107.57 mm, which occurred on the main transformer chamber upstream sidewall at an elevation of 1721.20 m. The rock deformation surrounding the rock pillar is closely related to the excavation process and has significant time-related characteristics. To control large deformation of the rock pillar, thru-anchor cables were used to reinforce the rock pillar to ensure the stability of the powerhouse. The rock deformation surrounding the rock pillar decreases gradually and forms a convergent trend after reinforcement measures are installed based on the analysis of the temporal characteristics and the rock pillar deformation rate.

  5. Activation of immobilized enzymes by acoustic wave resonance oscillation.

    PubMed

    Nishiyama, Hiroshi; Watanabe, Tomoya; Inoue, Yasunobu

    2014-12-01

    Acoustic wave resonance oscillation has been used successfully in the development of methods to activate immobilized enzyme catalysts. In this study, resonance oscillation effects were demonstrated for enzyme reactions on galactose oxidase (GAD), D-amino acid oxidase (DAAO), and L-amino acid oxidase (LAAO), all of which were immobilized covalently on a ferroelectric lead zirconate titanate (PZT) device that could generate thickness-extensional resonance oscillations (TERO) of acoustic waves. For galactose oxidation on immobilized GAD in a microreactor, TERO generation immediately increased enzyme activity 2- to 3-fold. Eliminating TERO caused a slight decrease in the activity, with ∼90% of the enhanced activity retained while the reaction proceeded. Contact of the enhanced enzyme with a galactose-free solution caused almost complete reversion of the activity to the original low level before TERO generation, indicating that, not only TERO-induced GAD activation, but also preservation of the increased activity, required a galactose substrate. Similar activity changes with TERO were observed for enzyme reactions on DAAO and LAAO. Kinetic analysis demonstrated that TERO helped strengthen the interactions of the immobilized enzyme with the reactant substrate and promoted formation of an activation complex. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Impact of immobilizing of low molecular weight hyaluronic acid within gelatin-based hydrogel through enzymatic reaction on behavior of enclosed endothelial cells.

    PubMed

    Khanmohammadi, Mehdi; Sakai, Shinji; Taya, Masahito

    2017-04-01

    The hydrogels having the ability to promote migration and morphogenesis of endothelial cells (ECs) are useful for fabricating vascularized dense tissues in vitro. The present study explores the immobilization of low molecular weight hyaluronic acid (LMWHA) derivative within gelatin-based hydrogel to stimulate migration of ECs. The LMWHA derivative possessing phenolic hydroxyl moieties (LMWHA-Ph) was bound to gelatin-based derivative hydrogel through the horseradish peroxidase-catalyzed reaction. The motility of ECs was analyzed by scratch migration assay and microparticle-based cell migration assay. The incorporated LMWHA-Ph molecules within hydrogel was found to be preserved stably through covalent bonds during incubation. The free and immobilized LMWHA-Ph did not lose an inherent stimulatory effect on human umbilical vein endothelial cells (HUVECs). The immobilized LMWHA-Ph within gelatin-based hydrogel induced the high motility of HUVECs, accompanied by robust cytoskeleton extension, and cell subpopulation expressing CD44 cell receptor. In the presence of immobilized LMWHA-Ph, the migration distance and the number of existing HUVECs were demonstrated to be encouraged in dose-dependent and time-dependent manners. Based on the results obtained in this work, it was concluded that the enzymatic immobilization of LMWHA-Ph within gelatin-based hydrogel represents a promising approach to promote ECs' motility and further exploitation for vascular tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Clay Play

    ERIC Educational Resources Information Center

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  8. Heavy metal removal by caustic-treated yeast immobilized in alginate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y.; Wilkins, E.

    1995-12-31

    Saccharomyces cerevisiae yeast biomass was treated with hot alkali to increase its biosorption capacity for heavy metals and then was immobilized in alginate gel. Biosorption capacities for Cu{sup 2+}, Cd{sup 2+}, and Zn{sup 2+} on alginate gel, native yeast, native yeast immobilized in alginate gel, and caustic-treated yeast immobilized in alginate gel were all compared. Immobilized yeasts could be reactivated and reused in a manner similar to the ion exchange resins. Immobilized caustic-treated yeast has high heavy metal biosorption capacity and high metal removal efficiency in a rather wide acidic pH region. The biosorption isotherm of immobilized caustic-treated yeast wasmore » studied, and empirical equations were obtained. The initial pH of polluted water affected the metal removal efficiency significantly, and the equilibrium biosorption capacity seemed to be temperature independent at lower initial metal concentrations.« less

  9. Six Pillars of Organic Chemistry

    ERIC Educational Resources Information Center

    Mullins, Joseph J.

    2008-01-01

    This article describes an approach to teaching organic chemistry, which is to have students build their knowledge of organic chemistry upon a strong foundation of the fundamental concepts of the subject. Specifically, the article focuses upon a core set of concepts that I call "the six pillars of organic chemistry": electronegativity, polar…

  10. Recovery of uranium from seawater by immobilized tannin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, T.; Nakajima, A.

    1987-06-01

    Tannin compounds having multiple adjacent hydroxy groups have an extremely high affinity for uranium. To prevent the leaching of tannins into water and to improve the adsorbing characteristics of these compounds, the authors tried to immobilize tannins. The immobilized tannin has the most favorable features for uranium recovery; high selective adsorption ability to uranium, rapid adsorption rate, and applicability in both column and batch systems. The immobilized tannin can recover uranium from natural seawater with high efficiency. About 2530 ..mu..g uranium is adsorbed per gram of this adsorbent within 22 h. Depending on the concentration in seawater, an enrichment ofmore » up to 766,000-fold within the adsorbent is possible. Almost all uranium adsorbed is easily desorbed with a very dilute acid. Thus, the immobilized tannin can be used repeatedly in the adsorption-desorption process.« less

  11. Manufacturing process to reduce large grain growth in zirconium alloys

    DOEpatents

    Rosecrans, P.M.

    1984-08-01

    It is an object of the present invention to provide a procedure for desensitizing zirconium-based alloys to large grain growth (LGG) during thermal treatment above the recrystallization temperature of the alloy. It is a further object of the present invention to provide a method for treating zirconium-based alloys which have been cold-worked in the range of 2 to 8% strain to reduce large grain growth. It is another object of the present invention to provide a method for fabricating a zirconium alloy clad nuclear fuel element wherein the zirconium clad is resistant to large grain growth.

  12. Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants.

    PubMed

    Belver, C; Bedia, J; Rodriguez, J J

    2017-01-15

    Solar light-active Zr-doped TiO 2 nanoparticles were successfully immobilized on delaminated clay materials by a one-step sol-gel route. Fixing the amount of TiO 2 at 65wt.%, this work studies the influence of Zr loading (up to 2%) on the photocatalytic activity of the resulting Zr-doped TiO 2 /clay materials. The structural characterization demonstrates that all samples were formed by a delaminated clay with nanostructured anatase assembled on its surface. The Zr dopant was successfully incorporated into the anatase lattice, resulting in a slight deformation of the anatase crystal and the reduction of the band gap. These materials exhibit high surface area with a disordered mesoporous structure formed by TiO 2 particles (15-20nm) supported on a delaminated clay. They were tested in the solar photodegradation of antipyrine, usually used as an analgesic drug and selected as an example of emerging pollutant. High degradation rates have been obtained at low antipyrine concentrations and high solar irradiation intensities with the Zr-doped TiO 2 /clay catalyst, more effective than the undoped one. This work demonstrates the potential application of the synthesis method for preparing novel and efficient solar-light photocatalysts based on metal-doped anatase and a delaminated clay. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Synthesis and Exfoliation of Discotic Zirconium Phosphates to Obtain Colloidal Liquid Crystals

    PubMed Central

    Yu, Yi-Hsien; Wang, Xuezhen; Shinde, Abhijeet; Cheng, Zhengdong

    2016-01-01

    Due to their abundance in natural clay and potential applications in advanced materials, discotic nanoparticles are of interest to scientists and engineers. Growth of such anisotropic nanocrystals through a simple chemical method is a challenging task. In this study, we fabricate discotic nanodisks of zirconium phosphate [Zr(HPO4)2·H2O] as a model material using hydrothermal, reflux and microwave-assisted methods. Growth of crystals is controlled by duration time, temperature, and concentration of reacting species. The novelty of the adopted methods is that discotic crystals of size ranging from hundred nanometers to few micrometers can be obtained while keeping the polydispersity well within control. The layered discotic crystals are converted to monolayers by exfoliation with tetra-(n)-butyl ammonium hydroxide [(C4H9)4NOH, TBAOH]. Exfoliated disks show isotropic and nematic liquid crystal phases. Size and polydispersity of disk suspensions is highly important in deciding their phase behavior. PMID:27284765

  14. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinyu; Zhou, Guowei, E-mail: guoweizhou@hotmail.com; Jiang, Bin

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} andmore » a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.« less

  15. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies mined fire clay in three states in 2012. Production, based on a preliminary survey of the fire clay industry, was estimated to be 230 kt (254,000 st) valued at $6.98 million, an increase from 215 kt (237,000 st) valued at $6.15 million in 2011. Missouri was the leading producing state, followed by Colorado and Texas, in decreasing order by quantity. The number of companies mining fire clay declined in 2012 because several common clay producers that occasionally mine fire clay indicated that they did not do so in 2012.

  16. Removal of diphenhydramine from water by swelling clay minerals.

    PubMed

    Li, Zhaohui; Chang, Po-Hsiang; Jiang, Wei-Teh; Jean, Jiin-Shuh; Hong, Hanlie; Liao, Libing

    2011-08-01

    Frequent detection of pharmaceuticals in surface water and wastewater attracted renewed attention on studying interactions between pharmaceuticals and sludge or biosolids generated from wastewater treatment. Less attention was focused on studying interactions between pharmaceuticals and clay minerals, important soil and sediment components. This research targeted on investigating interactions between diphenhydramine (DPH), an important antihistamine drug, and a montmorillonite, a swelling clay, in aqueous solution. Stoichiometric desorption of exchangeable cations accompanying DPH adsorption confirmed that cation exchange was the most important mechanism of DPH uptake by the swelling clay. When the solution pH was below the pK(a) of DPH, its adsorption on the swelling clay was less affected by pH. Increasing solution pH above the pK(a) value resulted in a decrease in DPH adsorption by the clay. An increase in d(001) spacing at a high DPH loading level suggested interlayer adsorption, thus, intercalation of DPH. The results from this study showed that swelling clays are a good environmental sink for weak acidic drugs like DPH. In addition, the large cation exchange capacity and surface area make the clay a good candidate to remove cationic pharmaceuticals from the effluent of wastewater treatment facilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. In vitro assessment of artifacts induced by titanium, titanium-zirconium and zirconium dioxide implants in cone-beam computed tomography.

    PubMed

    Sancho-Puchades, Manuel; Hämmerle, Christoph H F; Benic, Goran I

    2015-10-01

    The aim of this study was to test whether or not the intensity of artifacts around implants in cone-beam computed tomography (CBCT) differs between titanium, titanium-zirconium and zirconium dioxide implants. Twenty models of a human mandible, each containing one implant in the single-tooth gap position 45, were cast in dental stone. Five test models were produced for each of the following implant types: titanium 4.1 mm diameter (Ti4.1 ), titanium 3.3 mm diameter (Ti3.3 ), titanium-zirconium 3.3 mm diameter (TiZr3.3 ) and zirconium dioxide 3.5-4.5 mm diameter (ZrO3.5-4.5 ) implants. For control purposes, three models without implants were produced. Each model was scanned using a CBCT device. Gray values (GV) were recorded at eight circumferential positions around the implants at 0.5 mm, 1 mm and 2 mm from the implant surface (GVT est ). GV were assessed in the corresponding volumes of interest (VOI) in the control models without implants (GVC ontrol ). Differences of gray values (ΔGV) between GVT est and GVC ontrol were calculated as percentages. One-way ANOVA and post hoc tests were applied to detect differences between implant types. Mean ΔGV for ZrO3.5-4.5 presented the highest absolute values, generally followed by TiZr3.3 , Ti4.1 and Ti3.3 implants. The differences of ΔGV between ZrO3.5-4.5 and the remaining groups were statistically significant in the majority of the VOI (P ≤ 0.0167). ΔGV for TiZr3.3 , Ti4.1 and Ti3.3 implants did not differ significantly in the most VOI. For all implant types, ΔGV showed positive values buccally, mesio-buccally, lingually and disto-lingually, whereas negative values were detected mesially and distally. Zirconium dioxide implants generate significantly more artifacts as compared to titanium and titanium-zirconium implants. The intensity of artifacts around zirconium dioxide implants exhibited in average the threefold in comparison with titanium implants. © 2014 John Wiley & Sons A/S. Published by John Wiley

  18. Purification-Free, Target-Selective Immobilization of a Protein from Cell Lysates.

    PubMed

    Cha, Jaehyun; Kwon, Inchan

    2018-02-27

    Protein immobilization has been widely used for laboratory experiments and industrial processes. Preparation of a recombinant protein for immobilization usually requires laborious and expensive purification steps. Here, a novel purification-free, target-selective immobilization technique of a protein from cell lysates is reported. Purification steps are skipped by immobilizing a target protein containing a clickable non-natural amino acid (p-azidophenylalanine) in cell lysates onto alkyne-functionalized solid supports via bioorthogonal azide-alkyne cycloaddition. In order to achieve a target protein-selective immobilization, p-azidophenylalanine was introduced into an exogenous target protein, but not into endogenous non-target proteins using host cells with amber codon-free genomic DNAs. Immobilization of superfolder fluorescent protein (sfGFP) from cell lysates is as efficient as that of the purified sfGFP. Using two fluorescent proteins (sfGFP and mCherry), the authors also demonstrated that the target proteins are immobilized with a minimal immobilization of non-target proteins (target-selective immobilization). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  20. Effects of clay minerals on diethyl phthalate degradation in Fenton reactions.

    PubMed

    Chen, Ning; Fang, Guodong; Zhou, Dongmei; Gao, Juan

    2016-12-01

    Phthalate esters are a group of plasticizers, which are commonly detected in China's soils and surface water. Fenton reactions are naturally occurring and widely applied in the degradation of contaminants. However, limited research was considered the effects of clay minerals on contaminants degradation with OH oxidation. In this study, batch experiments were conducted to investigate the degradation of diethyl phthalate (DEP) in Fenton reactions in the presence of clay minerals, and the effects of clay type, Fe content in clay structure. The results showed the clay adsorption inhibited total degradation of DEP, and Fe content in clay structure played an important role in DEP degradation, including in solution and adsorbed in clay minerals. Clay minerals with less Fe content (<3%) quenched OH radical, while nontronite with Fe content 19.2% improved OH radical generation and accelerated DEP degradation in solution. The degradation of clay-adsorbed DEP was much slower than DEP in solution. Six main products of DEP degradation were identified, including monoethyl phthalate, phthalate acid, hydroxyl diethyl phthalate, etc. This study implied that phthalate ester's degradation would be much slower in natural water than expected in the presence of clay minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Six Pillars of Dynamic Schools

    ERIC Educational Resources Information Center

    Edwards, Steven W.; Chapman, Paul E.

    2009-01-01

    "Six Pillars of Dynamic Schools" uncovers an often overlooked truth--effective change is the product of hard work and dedication. There is no silver bullet; no matter how many programs, software packages, or new initiatives a district uses, the magic won't just "happen." Dynamic schools result from consistent and redundant focus on the fundamental…

  2. Deposition of Suspended Clay to Open and Sand-Filled Framework Gravel Beds in a Laboratory Flume

    NASA Astrophysics Data System (ADS)

    Mooneyham, Christian; Strom, Kyle

    2018-01-01

    Pulses of fine sediment composed of sand, silt, and clay can be introduced to gravel bed rivers through runoff from burn-impacted hillslopes, landslides, bank failure, or the introduction of reservoir sediment as a result of sluicing or dam decommissioning. Here we present a study aimed at quantifying exchange between suspensions of clay and gravel beds. The questions that motivate the work are: how do bed roughness and pore space characteristics, shear velocity (u∗), and initial concentration (C0) affect clay deposition on or within gravel beds? Where does deposition within these beds occur, and can deposited clay be resuspended while the gravel is immobile? We examine these questions in a laboratory flume using acrylic, open-framework gravel, and armored sand-gravel beds under conditions of varying u∗ and C0. Deposition of clay occurred to all beds (even with Rouse numbers ˜ 0.01). We attribute deposition under full suspension conditions to be an outcome of localized protected zones where clay can settle and available pore space in the bed. For smooth wall cases, protection came from the viscous wall region and the development of bed forms; for the rough beds, protection came from separation zones and low-velocity pore spaces. Bed porosity was the strongest influencer of nondimensional deposition rate; deposition increased with porosity. Deposition was inversely related to u∗ for the acrylic bed runs; no influence of u∗ was found for the porous bed runs. Increases in discharge resulted in resuspension of clay from acrylic beds; no resuspension was observed in the porous bed runs.

  3. Synthesis, Structure, and Selective Gas Adsorption of a Single-Crystalline Zirconium Based Microporous Metal–Organic Framework

    DOE PAGES

    Wang, Hao; Wang, Qining; Teat, Simon J.; ...

    2017-02-15

    Porous metal-organic framework (MOF) materials with high thermal and water stability are desirable for various adsorption based applications. Early transition metal based MOFs such as those built on zirconium metal have been well recognized for their excellent stability toward heat and/or moisture. However, the difficulty growing large single crystals makes their structural characterization challenging. Herein we report a porous Zr-MOF, [Zr 6O 4(OH) 4(cca) 6] (Zr-cca), which is assembled from zirconium and 4-carboxycinnamic acid (H 2cca) under solvothermal conditions. Single crystal X-ray diffraction analysis reveals that the structure of Zr-cca is isoreticular to the prototype zirconium based MOF, UiO-66. Zr-ccamore » shows permanent porosity upon removal of solvent molecules initially residing inside the pores, with a BET surface area of 1178 m 2/g. As expected, it exhibits good thermal stability (stable up to 400 °C) and high resistance to acidity over a wide pH range. Evaluation of its gas adsorption performance on various hydrocarbons and fluorocarbons indicates that it preferentially adsorbs C 3 and C 4 hydrocarbons over C 2 analogues. At 30°C Zr-cca takes up more than 50 wt % of perfluorohexane and the adsorption-desorption process is fully recyclable. We have compared this material with UiO-66 and studied the underlying reasons for the difference in their adsorption performance toward perfluorohexane.« less

  4. Aryl diazonium for biomolecules immobilization onto SPRi chips.

    PubMed

    Mandon, Céline A; Blum, Loïc J; Marquette, Christophe A

    2009-12-21

    A method for the immobilization of proteins at the surface of surface plasmon resonance imaging (SPRi) chips is presented. The technology, based on the electro-deposition of a 4-carboxymethyl aryl diazonium (CMA) monolayer is compared to a classical thioctic acid self-assembled monolayer. SPRi live recording experiments followed by the quantification of the diazonium surface coverage demonstrate the presence of a monolayer of electro-deposited molecules (11*10(12) molecules mm(-2)). This monolayer, when activated through a classical carbodiimide route, generates a surface suitable for the protein immobilization. In the present study, protein A and BSA are immobilized as specific and control spots (150 microm id), respectively. The AFM characterization of the spots deposited onto CMA or thioctic acid modified chips prove the presence of 4.7 nm protein monolayers. Finally, the SPRi detection capabilities of the two surface chemistries are compared according to specific signal, non-specific interaction and regeneration possibilities. Advantages are given to the CMA surface modification since no measurable non-specific signal is obtained while reaching a higher specific signal.

  5. Evolution and Engineering of Precisely Controlled Ge Nanostructures on Scalable Array of Ordered Si Nano-pillars

    NASA Astrophysics Data System (ADS)

    Wang, Shuguang; Zhou, Tong; Li, Dehui; Zhong, Zhenyang

    2016-06-01

    The scalable array of ordered nano-pillars with precisely controllable quantum nanostructures (QNs) are ideal candidates for the exploration of the fundamental features of cavity quantum electrodynamics. It also has a great potential in the applications of innovative nano-optoelectronic devices for the future quantum communication and integrated photon circuits. Here, we present a synthesis of such hybrid system in combination of the nanosphere lithography and the self-assembly during heteroepitaxy. The precise positioning and controllable evolution of self-assembled Ge QNs, including quantum dot necklace(QDN), QD molecule(QDM) and quantum ring(QR), on Si nano-pillars are readily achieved. Considering the strain relaxation and the non-uniform Ge growth due to the thickness-dependent and anisotropic surface diffusion of adatoms on the pillars, the comprehensive scenario of the Ge growth on Si pillars is discovered. It clarifies the inherent mechanism underlying the controllable growth of the QNs on the pillar. Moreover, it inspires a deliberate two-step growth procedure to engineer the controllable QNs on the pillar. Our results pave a promising avenue to the achievement of desired nano-pillar-QNs system that facilitates the strong light-matter interaction due to both spectra and spatial coupling between the QNs and the cavity modes of a single pillar and the periodic pillars.

  6. Evolution and Engineering of Precisely Controlled Ge Nanostructures on Scalable Array of Ordered Si Nano-pillars

    PubMed Central

    Wang, Shuguang; Zhou, Tong; Li, Dehui; Zhong, Zhenyang

    2016-01-01

    The scalable array of ordered nano-pillars with precisely controllable quantum nanostructures (QNs) are ideal candidates for the exploration of the fundamental features of cavity quantum electrodynamics. It also has a great potential in the applications of innovative nano-optoelectronic devices for the future quantum communication and integrated photon circuits. Here, we present a synthesis of such hybrid system in combination of the nanosphere lithography and the self-assembly during heteroepitaxy. The precise positioning and controllable evolution of self-assembled Ge QNs, including quantum dot necklace(QDN), QD molecule(QDM) and quantum ring(QR), on Si nano-pillars are readily achieved. Considering the strain relaxation and the non-uniform Ge growth due to the thickness-dependent and anisotropic surface diffusion of adatoms on the pillars, the comprehensive scenario of the Ge growth on Si pillars is discovered. It clarifies the inherent mechanism underlying the controllable growth of the QNs on the pillar. Moreover, it inspires a deliberate two-step growth procedure to engineer the controllable QNs on the pillar. Our results pave a promising avenue to the achievement of desired nano-pillar-QNs system that facilitates the strong light-matter interaction due to both spectra and spatial coupling between the QNs and the cavity modes of a single pillar and the periodic pillars. PMID:27353231

  7. Cu Pillar Low Temperature Bonding and Interconnection Technology of for 3D RF Microsystem

    NASA Astrophysics Data System (ADS)

    Shi, G. X.; Qian, K. Q.; Huang, M.; Yu, Y. W.; Zhu, J.

    2018-03-01

    In this paper 3D interconnects technologies used Cu pillars are discussed with respect to RF microsystem. While 2.5D Si interposer and 3D packaging seem to rely to cu pillars for the coming years, RF microsystem used the heterogeneous chip such as GaAs integration with Si interposers should be at low temperature. The pillars were constituted by Cu (2 micron) -Ni (2 micron) -Cu (3 micron) -Sn (1 micron) multilayer metal and total height is 8 micron on the front-side of the wafer by using electroplating. The wafer backside Cu pillar is obtained by temporary bonding, thinning and silicon surface etching. The RF interposers are stacked by Cu-Sn eutectic bonding at 260 °C. Analyzed the reliability of different pillar bonding structure.

  8. METHOD OF MAKING DELTA ZIRCONIUM HYDRIDE MONOLITHIC MODERATOR PIECES

    DOEpatents

    Vetrano, J.B.

    1962-01-23

    A method is given for preparing large, sound bodies of delta zirconium hydride. The method includes the steps of heating a zirconium body to a temperature of not less than l000 deg C, providing a hydrogen atmosphere for the zirconium body at a pressure not greater than one atmosphere, reducing the temperature slowly to 800 deg C at such a rate that cracks do not form while maintaining the hydrogen pressure substantially constant, and cooling in an atmosphere of hydrogen. (AEC)

  9. Physico-chemistry and geochemistry of Balengou clay deposit (West Cameroon) with inference to an argillic hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Tassongwa, Bernard; Eba, François; Njoya, Dayirou; Tchakounté, Jacqueline Numbem; Jeudong, Narcisse; Nkoumbou, Charles; Njopwouo, Daniel

    2017-09-01

    Field description and sampling along two pits, granulometry, Atterberg limits, mineralogical (XRD, FTIR, DSC & TGA) and geochemical analyses of the Balengou clays help to determine their characteristics and the genesis of the deposit. The mineralogical composition is comprised of halloysite-kaolinite, quartz, montmorillonite, hematite, anatase, feldspar, zircon, chromite, and apatite. Gibbsite and illite occur at the shallow and deep depth, respectively. Dikes of sand-poor clays contain also cristobalite and tridymite. Pairs of elements Rb-Ba, Rb-Sr, Nb-Ta, Ta-Zr, TiO2-Zr display good positive correlations (R2 > 0.85). REE patterns are highly fractionated (LaN up to 3312, LaN/YbN: 19-10) and are marked by deep Ce and Eu negative anomalies. Immobile element canonical ratios indicate that the protoliths were commendite/pantelerite, rhyolite and dacite, or their plutonic equivalents. Mineralogical and geochemical features lead to the suggestion that the clays derived from an advanced argillic hydrothermal alteration.

  10. Magnetic composites from minerals: study of the iron phases in clay and diatomite using Mössbauer spectroscopy, magnetic measurements and XRD

    NASA Astrophysics Data System (ADS)

    Cabrera, M.; Maciel, J. C.; Quispe-Marcatoma, J.; Pandey, B.; Neri, D. F. M.; Soria, F.; Baggio-Saitovitch, E.; de Carvalho, L. B.

    2014-01-01

    Magnetic particles as matrix for enzyme immobilization have been used and due to the enzymatic derivative can be easily removed from the reaction mixture by a magnetic field. This work presents a study about the synthesis and characterization of iron phases into magnetic montmorillonite clay (mMMT) and magnetic diatomaceous earth (mDE) by 57Fe Mössbauer spectroscopy (MS), magnetic measurements and X-ray diffraction (XRD). Also these magnetic materials were assessed as matrices for the immobilization of invertase via covalent binding. Mössbauer spectra of the magnetic composites performed at 4.2 K showed a mixture of magnetite and maghemite about equal proportion in the mMMT, and a pure magnetite phase in the sample mDE. These results were verified using XRD. The residual specific activity of the immobilized invertase on mMMT and mDE were 83 % and 92.5 %, respectively. Thus, both magnetic composites showed to be promising matrices for covalent immobilization of invertase.

  11. Clays, common

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the common clay industry worldwide for 1997 is discussed. Sales of common clay in the U.S. increased from 26.2 Mt in 1996 to an estimated 26.5 Mt in 1997. The amount of common clay and shale used to produce structural clay products in 1997 was estimated at 13.8 Mt.

  12. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the fire clay industry, particularly in the U.S., as of June 2011. It claims that the leading fire clay producer in the U.S. is the state of Missouri. The other major producers include California, Texas and Washington. It reports that the use of heavy clay products made of fire clay like brick, cement and lightweight aggregate has increased slightly in 2010.

  13. DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR

    DOEpatents

    Swanson, J.L.

    1961-07-11

    The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.

  14. Simultaneous Production and Recovery of Fumaric Acid from Immobilized Rhizopus oryzae with a Rotary Biofilm Contactor and an Adsorption Column

    PubMed Central

    Cao, N.; Du, J.; Gong, C. S.; Tsao, G. T.

    1996-01-01

    An integrated system of simultaneous fermentation-adsorption for the production and recovery of fumaric acid from glucose by Rhizopus oryzae was investigated. The system was constructed such that growing Rhizopus mycelia were self-immobilized on the plastic discs of a rotary biofilm contactor during the nitrogen-rich growth phase. During the nongrowth, production phase, the biofilm was alternately exposed to liquid medium and air upon rotation of the discs in the horizontal fermentation vessel. The product of fermentation, fumaric acid, was removed simultaneously and continuously by a coupled adsorption column, thereby moderating inhibition, enhancing the fermentation rate, and sustaining cell viability. Another beneficial effect of the removal of fumaric acid is release of hydroxyl ions from a polyvinyl pyridine adsorbent into the circulating fermentation broth. This moderates the decrease in pH that would otherwise occur. Polyvinyl pyridine and IRA-900 gave the highest loading for this type of fermentation. This fermentation system is capable of producing fumaric acid with an average yield of 85 g/liter from 100 g of glucose per liter within 20 h under repetitive fed-batch cycles. On a weight yield basis, 91% of the theoretical maximum was obtained with a productivity of 4.25 g/liter/h. This is in contrast to stirred-tank fermentation supplemented with calcium carbonate, whose average weight yield was 65% after 72 h with a productivity of 0.9 g/liter/h. The immobilized reactor was operated repetitively for 2 weeks without loss of biological activity. PMID:16535381

  15. A comparison of UV cross-linking and vacuum baking for nucleic acid immobilization and retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nierzwicki-Bauer, S.A.; Gebhardt, J.S.; Linkkila, L.

    The effectiveness of UV cross-linking and in vacuo baking for the immobilization and retention of DNA to various solid supports was investigated. Optimal immobilization treatments for supported and unsupported nitrocellulose and nylon membranes were: UV cross-linking at 254 nm with an exposure of 120 milliJoules/cm{sup 2}, or baking in vacuo for two hours at 80{degrees}C. UV-immobilized nitrocellulose-based membranes showed no increase in sensitivity when compared to baked membranes. An increase in sensitivity was observed for UV-immobilized nylon membranes as compared with baked nylon membranes in some instances, although this varied within lots of the membranes tested. Repeated strippings and heterologousmore » reprobings resulted in loss of target DNA from UV-immobilized nylon membranes as compared to baked nylon membranes. Loss of target DNA from UV-immobilized nitrocellulose-based membranes due to repeated strippings and reprobings was even more pronounced. In vacuo baking of supported and unsupported nitrocellulose and nylon membranes was more effective for immobilization, and more importantly, for retention of target DNA through many reprobings of the same blot.« less

  16. Retention in porous layer pillar array planar separation platforms

    DOE PAGES

    Lincoln, Danielle R.; Lavrik, Nickolay V.; Kravchenko, Ivan I.; ...

    2016-08-11

    Here, this work presents the retention capabilities and surface area enhancement of highly ordered, high-aspect-ratio, open-platform, two-dimensional (2D) pillar arrays when coated with a thin layer of porous silicon oxide (PSO). Photolithographically prepared pillar arrays were coated with 50–250 nm of PSO via plasma-enhanced chemical vapor deposition and then functionalized with either octadecyltrichlorosilane or n-butyldimethylchlorosilane. Theoretical calculations indicate that a 50 nm layer of PSO increases the surface area of a pillar nearly 120-fold. Retention capabilities were tested by observing capillary-action-driven development under various conditions, as well as by running one-dimensional separations on varying thicknesses of PSO. Increasing the thicknessmore » of PSO on an array clearly resulted in greater retention of the analyte(s) in question in both experiments. In culmination, a two-dimensional separation of fluorescently derivatized amines was performed to further demonstrate the capabilities of these fabricated platforms.« less

  17. Retention in porous layer pillar array planar separation platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Danielle R.; Lavrik, Nickolay V.; Kravchenko, Ivan I.

    Here, this work presents the retention capabilities and surface area enhancement of highly ordered, high-aspect-ratio, open-platform, two-dimensional (2D) pillar arrays when coated with a thin layer of porous silicon oxide (PSO). Photolithographically prepared pillar arrays were coated with 50–250 nm of PSO via plasma-enhanced chemical vapor deposition and then functionalized with either octadecyltrichlorosilane or n-butyldimethylchlorosilane. Theoretical calculations indicate that a 50 nm layer of PSO increases the surface area of a pillar nearly 120-fold. Retention capabilities were tested by observing capillary-action-driven development under various conditions, as well as by running one-dimensional separations on varying thicknesses of PSO. Increasing the thicknessmore » of PSO on an array clearly resulted in greater retention of the analyte(s) in question in both experiments. In culmination, a two-dimensional separation of fluorescently derivatized amines was performed to further demonstrate the capabilities of these fabricated platforms.« less

  18. International strategic minerals inventory summary report; zirconium

    USGS Publications Warehouse

    Towner, R.R.

    1992-01-01

    Zircon, a zirconium silicate, is currently the most important commercial zirconium-bearing mineral. Baddeleyite, a natural form of zirconia, is less important but has some specific end uses. Both zircon and baddeleyite occur in hard-rock and placer deposits, but at present all zircon production is from placer deposits. Most baddeleyite production is from hard-rock deposits, principally as a byproduct of copper and phosphate-rock mining. World zirconium resources in identified, economically exploitable deposits are about 46 times current production rates. Of these resources, some 71 percent are in South Africa, Australia, and the United States. The principal end uses of zirconium minerals are in ceramic applications and as refractories, abrasives, and mold linings in foundries. A minor amount, mainly of zircon, is used for the production of hafnium-free zirconium metal, which is used principally for sheathing fuel elements in nuclear reactors and in the chemical-processing industry, aerospace engineering, and electronics. Australia and South Africa are the largest zircon producers and account for more than 70 percent of world output; the United States and the Soviet Union account for another 20 percent. South Africa accounts for almost all the world's production of baddeleyite, which is about 2 percent of world production of contained zirconia. Australia and South Africa are the largest exporters of zircon. Unless major new deposits are developed in countries that have not traditionally produced zircon, the pattern of world production is unlikely to change by 2020. The proportions, however, of production that come from existing producing countries may change somewhat.

  19. Oxidative stress inhibition and oxidant activity by fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia

    2015-09-01

    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Deep proton writing of high aspect ratio SU-8 micro-pillars on glass

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Rwamucyo, Ben; Thienpont, Hugo; Van Erps, Jürgen

    2016-12-01

    Deep proton writing (DPW) is a fabrication technology developed for the rapid prototyping of polymer micro-structures. We use SU-8, a negative resist, spincoated in a layer up to 720 μm-thick in a single step on borosilicate glass, for irradiation with a collimated 12 MeV energy proton beam. Micro-pillars with a slightly conical profile are irradiated in the SU-8 layer. We determine the optimal proton fluence to be 1.02 × 104 μm-2, with which we are able to repeatably achieve micro-pillars with a top-diameter of 138 ± 1 μm and a bottom-diameter of 151 ± 3 μm. The smallest fabricated pillars have a top-diameter of 57 ± 5 μm. We achieved a root-mean-square sidewall surface roughness between 19 nm and 35 nm for the fabricated micro-pillars, measured over an area of 5 × 63.7 μm. We briefly discuss initial testing of two potential applications of the fabricated micro-pillars. Using ∼100 μm-diameter pillars as waveguides for gigascale integration optical interconnect applications, has shown a 4.7 dB improvement in optical multimode fiber-to-fiber coupling as compared to the case where an air-gap is present between the fibers at the telecom wavelength of 1550 nm. The ∼140 μm-diameter pillars were used for mold fabrication with silicone casting. The resulting mold can be used for hydrogel casting, to obtain hydrogel replicas mimicking human tissue for in vitro bio-chemical applications.

  1. Preliminary studies on immobilization of lipase using chicken eggshell

    NASA Astrophysics Data System (ADS)

    Salleh, S.; Serri, N. A.; Hena, S.; Tajarudin, H. A.

    2016-06-01

    A few advantages of enzyme immobilization are reusability of expensive enzyme, improvement of stability and activity compared to crude enzyme. Various organic components can be used as carrier for enzyme immobilization such as chicken eggshell. It can be used as a carrier for immobilization as its mineral component mostly contains of calcium carbonate. In the present study, Tributyrin method was used to test enzyme activity of Rhizomucour Miehei, Candida Antarctica and Candida Rugosa. Rhizomucour Miehei shows the highest enzyme activity (360.8 mol/min/mL lipase) and was used in further experiment. Experiment was continued to study incubation time for lipase immobilization on eggshell (1-4 hours) and reaction time of esterification of sugar ester (0-72 hours). Two hours incubation time for lipase immobilization was observed and gives the highest yield of sugar ester (78.13%). Fructose and stearic acid as substrate was used for the production of sugar ester. The highest percentage of sugar ester production was shown at 36 hours of reaction time.

  2. Immobilization of pectinase from Leucoagaricus gongylophorus on magnetic particles.

    PubMed

    Adalberto, Paulo Roberto; José dos Santos, Francisco; Golfeto, Camilla Calemi; Costa Iemma, Mônica Rosas; Ferreira de Souza, Dulce Helena; Cass, Quezia Bezerra

    2012-10-21

    Polygalacturonases (EC 3.2.1.15) hydrolyze the α-1,4-glycosidic linkages in polygalacturonic acid chains. The interest on specific inhibitors of pectinase and the versatility of magnetic support for enzyme immobilization endorsed the preparation of an immobilized enzyme reactor (IMER). This work presents the synthesis of CoFe(2)O(4) amino-derivatives, which was employed as the support for the immobilization of pectinases from Leucoagaricus gongylophorus. Amino-functionalized CoFe(2)O(4) was obtained from glyceryl-derivatized CoFe(2)O(4) and was characterized by infrared spectroscopy and electronic microscopy. The immobilized enzyme maintained the same thermal, chemical and kinetic behaviour of the free enzyme (T(opt) 60 °C; pH(opt) 5.0; K(app)(M) = 0.5 mg min(-1); V(app)(M) ≈ 5.0 μmol min(-1) mL(-1)). The straightforward synthesis of CoFe(2)O(4) derivatives and the efficiency of immobilization offer wide perspectives for the use of the developed new IMER.

  3. Clays as possible catalysts for peptide formation in the prebiotic era

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1976-01-01

    From the point of view of prebiotic synthesis, clays might have performed functions of concentration, catalysis, and protection of molecules. The degrees of polymerization obtained, when amino acid adenylates are added to montmorillonite suspensions in water, are much higher than those obtained by polymerization in the absence of such a clay. In addition, they are of a discrete spectrum, usually multiples of 6 or 7, and reach values of up to 40 mers. In the absence of clay a continuous spectrum of degrees of polymerization is obtained, and usually up to 4-6 mers only. Copolymerization in the absence of clays yields mostly random copolymers, in their presence mostly block copolymers are obtained. Optical density measurements show that after adsorption has taken place on the clay, stacking of its layers occurs. Polymerization starts only after these stacked layers have been formed

  4. PROCESS FOR DISSOLVING BINARY URANIUM-ZIRCONIUM OR ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Jonke, A.A.; Barghusen, J.J.; Levitz, N.M.

    1962-08-14

    A process of dissolving uranium-- zirconium and zircaloy alloys, e.g. jackets of fuel elements, with an anhydrous hydrogen fluoride containing from 10 to 32% by weight of hydrogen chloride at between 400 and 450 deg C., preferably while in contact with a fluidized inert powder, such as calcium fluoride is described. (AEC)

  5. Numerical Approach for Goaf-Side Entry Layout and Yield Pillar Design in Fractured Ground Conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Lishuai; Zhang, Peipeng; Chen, Lianjun; Hao, Zhen; Sainoki, Atsushi; Mitri, Hani S.; Wang, Qingbiao

    2017-11-01

    Entry driven along goaf-side (EDG), which is the development of an entry of the next longwall panel along the goaf-side and the isolation of the entry from the goaf with a small-width yield pillar, has been widely employed in China over the past several decades . The width of such a yield pillar has a crucial effect on EDG layout in terms of the ground control, isolation effect and resource recovery rate. Based on a case study, this paper presents an approach for evaluating, designing and optimizing EDG and yield pillar by considering the results from numerical simulations and field practice. To rigorously analyze the ground stability, the numerical study begins with the simulation of goaf-side stress and ground conditions. Four global models with identical conditions, except for the width of the yield pillar, are built, and the effect of pillar width on ground stability is investigated by comparing aspects of stress distribution, failure propagation, and displacement evolution during the entire service life of the entry. Based on simulation results, the isolation effect of the pillar acquired from field practice is also considered. The suggested optimal yield pillar design is validated using a field test in the same mine. Thus, the presented numerical approach provides references and can be utilized for the evaluation, design and optimization of EDG and yield pillars under similar geological and geotechnical circumstances.

  6. Decolourization of methyl orange using iron- immobilize MKSF in UV assisted Fenton-like reaction

    NASA Astrophysics Data System (ADS)

    Abdullah, N. H.; Zubir, N. A.; Hassan, H.

    2017-09-01

    In this work, montmorillonite KSF clay was used to immobilize iron species as a potential heterogeneous UV assisted Fenton-like reaction. Iron-immobilized MKSF (Fe-MKSF) was synthesized via hydrothermal method in an autoclave. Fe-MKSF was tested on methyl orange (MO) removal by adsorption (5%) and hydrogen peroxide (H2O2) activation (63%) and these prominent margins proved Fe-MKSF performance was attributed by UV assisted Fenton-like reaction. Fe-MKSF show superior performance with 63% color removal within 180 mins reaction in comparison to iron oxide and pristine MKSF. The Fe-MKSF increased in the surface area from 91.1 to 101.9 m2/g and pore volume from 0.13 to 0.45 cm3/g compared to pristine MKSF. The SEM images of Fe-MKSF show iron aggregates indicating successful immobilizing process and the elemental weight percent of iron which increase from 6.12% to 55.38% in Fe-MKSF. These findings prove Fe-MKSF as a promising alternative catalyst in dye contaminated wastewater treatment.

  7. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces.

    PubMed

    Wang, Chanchan; Sauvageau, Dominic; Elias, Anastasia

    2016-01-20

    A rapid, efficient technique for the attachment of bacteriophages (phages) onto polyhydroxyalkanoate (PHA) surfaces has been developed and compared to three reported methods for phage immobilization. Polymer surfaces were modified to facilitate phage attachment using (1) plasma treatment alone, (2) plasma treatment followed by activation by 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), (3) plasma-initiated acrylic acid grafting, or (4) plasma-initiated acrylic acid grafting with activation by EDC and sulfo-NHS. The impact of each method on the surface chemistry of PHA was investigated using contact angle analysis and X-ray photoelectron spectroscopy. Each of the four treatments was shown to result in both increased hydrophilicity and in the modification of the surface functional groups. Modified surfaces were immersed in suspensions of phage T4 for immobilization. The highest level of phage binding was observed for the surfaces modified by plasma treatment alone. The change in chemical bond states observed for surfaces that underwent plasma treatment is suspected to be the cause of the increased binding of active phages. Plasma-treated surfaces were further analyzed through phage-staining and fluorescence microscopy to assess the surface density of immobilized phages and their capacity to capture hosts. The infective capability of attached phages was confirmed by exposing the phage-immobilized surfaces to the host bacteria Escherichia coli in both plaque and infection dynamic assays. Plasma-treated surfaces with immobilized phages displayed higher infectivity than surfaces treated with other methods; in fact, the equivalent initial multiplicity of infection was 2 orders of magnitude greater than with other methods. Control samples - prepared by immersing polymer surfaces in phage suspensions (without prior plasma treatment) - did not show any bacterial growth inhibition, suggesting they did not bind

  8. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification.

    PubMed

    Guo, Fuyu; Ding, Changfeng; Zhou, Zhigao; Huang, Gaoxiang; Wang, Xingxiang

    2018-06-04

    Chemical immobilization is a practical approach to remediate heavy metal contamination in agricultural soils. However, the potential remobilization risks of immobilized metals are a major environmental concern, especially in acid rain zones. In the present study, changes in the immobilization efficiency of several amendments as affected by simulated soil acidification were investigated to evaluate the immobilization remediation stability of several amendments on two cadmium (Cd) contaminated soils. Amendments (hydrated lime, hydroxyapatite and biochar) effectively immobilized Cd, except for organic fertilizer, and their immobilizations were strongly decreased by the simulated soil acidification. The ratio of changes in CaCl 2 -extractable Cd: pH (△CaCl 2 -Cd/△pH) can represent the Cd remobilization risk of different amended soils. Hydroxyapatite and biochar had a stronger durable immobilizing effect than did hydrated lime, particularly in soil with a lower pH buffering capacity, which was further confirmed by the Cd concentration and accumulation in lettuce. These results can be attributed to that hydroxyapatite and biochar transformed greater proportions of exchangeable Cd to other more stable fractions than lime. After 48 weeks of incubation, in soil with a lower pH buffering capacity, the immobilization efficiencies of lime, hydroxyapatite, biochar and organic fertilizer in the deionized water group (pH 6.5) were 71.7%, 52.7%, 38.6% and 23.9%, respectively, and changed to 19.1%, 33.6%, 26.5% and 5.0%, respectively, in the simulated acid rain group (pH 2.5). The present study provides a simple method to preliminarily estimate the immobilization efficiency of amendments and predict their stability in acid rain regions before large-scale field application. In addition, hydrated lime is recommended to be combined with other acid-stable amendments (such as hydroxyapatite or biochar) to remediate heavy metal-contaminated agricultural soils in acid precipitation

  9. Immobilization of Polyoxometalates on Tailored Polymeric Surfaces.

    PubMed

    Aguado-Ureta, Saioa; Rodríguez-Hernández, Juan; Del Campo, Adolfo; Perez-Álvarez, Leyre; Ruiz-Rubio, Leire; Vilas, José Luis; Artetxe, Beñat; Reinoso, Santiago; Gutiérrez-Zorrilla, Juan M

    2018-03-02

    Herein we describe the preparation of hybrid polymer-inorganic interfaces by the immobilization of polyoxometalate nanoclusters on functionalized polymer surfaces. The polymeric surfaces were made of polystyrene- b -poly(acrylic acid)/polystyrene (PS- b -PAA/PS) blends by spin coating on a silicon wafer. The functionalization of the polymer film was obtained by interfacial migration of the amphiphilic block copolymer toward the interface upon water vapor annealing. The carboxylic acid functional groups contained in the PAA block were then employed to anchor the [Ln III (α-SiW 11 O 39 )] 5- polyoxometalates (Ln: Ce, Er). This purpose was achieved by immersing the films in aqueous solutions of the in situ-formed inorganic nanoclusters. X-ray photoelectron and confocal Raman spectroscopies, together with atomic force microscopy, confirmed the immobilization of the inorganic species at the interface.

  10. Immobilization of Polyoxometalates on Tailored Polymeric Surfaces

    PubMed Central

    Aguado-Ureta, Saioa; Rodríguez-Hernández, Juan; del Campo, Adolfo; Perez-Álvarez, Leyre

    2018-01-01

    Herein we describe the preparation of hybrid polymer–inorganic interfaces by the immobilization of polyoxometalate nanoclusters on functionalized polymer surfaces. The polymeric surfaces were made of polystyrene-b-poly(acrylic acid)/polystyrene (PS-b-PAA/PS) blends by spin coating on a silicon wafer. The functionalization of the polymer film was obtained by interfacial migration of the amphiphilic block copolymer toward the interface upon water vapor annealing. The carboxylic acid functional groups contained in the PAA block were then employed to anchor the [LnIII(α-SiW11O39)]5− polyoxometalates (Ln: Ce, Er). This purpose was achieved by immersing the films in aqueous solutions of the in situ-formed inorganic nanoclusters. X-ray photoelectron and confocal Raman spectroscopies, together with atomic force microscopy, confirmed the immobilization of the inorganic species at the interface. PMID:29498656

  11. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Barry B.; Walker, T. B.; Bruffey, S. H.

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when themore » solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.« less

  12. Immobilization: A Revolution in Traditional Brewing

    NASA Astrophysics Data System (ADS)

    Virkajärvi, Ilkka; Linko, Matti

    In nature many micro-organisms tend to bind to solid surfaces. This tendency has long been utilized in a number of processes, for example in producing vinegar and acetic acid in bioreactors filled with wood shavings. Acetobacteria are attached to the surface of these shavings. In modern technical language: they are immobilized. Also yeast cells can be immobilized. In the brewing industry this has been the basis for maintaining efficient, continuous fermentation in bioreactors with very high yeast concentrations. The most dramatic change in brewing over recent years has been the replacement of traditional lagering of several weeks by a continuous process in which the residence time is only about 2h. Continuous primary fermentation is used on a commercial scale in New Zealand. In this process, instead of a carrier, yeast is retained in reactors by returning it partly after separation. In many pilot scale experiments the primary fermentation is shortened from about 1week to 1-2days using immobilized yeast reactors. When using certain genetically modified yeast strains no secondary fermentation is needed, and the total fermentation time in immobilized yeast reactors can therefore be shortened to only 2days.

  13. USHPRR FUEL FABRICATION PILLAR: FABRICATION STATUS, PROCESS OPTIMIZATIONS, AND FUTURE PLANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wight, Jared M.; Joshi, Vineet V.; Lavender, Curt A.

    The Fuel Fabrication (FF) Pillar, a project within the U.S. High Performance Research Reactor Conversion program of the National Nuclear Security Administration’s Office of Material Management and Minimization, is tasked with the scale-up and commercialization of high-density monolithic U-Mo fuel for the conversion of appropriate research reactors to use of low-enriched fuel. The FF Pillar has made significant steps to demonstrate and optimize the baseline co-rolling process using commercial-scale equipment at both the Y-12 National Security Complex (Y-12) and BWX Technologies (BWXT). These demonstrations include the fabrication of the next irradiation experiment, Mini-Plate 1 (MP-1), and casting optimizations at Y-12.more » The FF Pillar uses a detailed process flow diagram to identify potential gaps in processing knowledge or demonstration, which helps direct the strategic research agenda of the FF Pillar. This paper describes the significant progress made toward understanding the fuel characteristics, and models developed to make informed decisions, increase process yield, and decrease lifecycle waste and costs.« less

  14. Molecular Mechanisms of Enhanced Bacterial Growth on Hexadecane with Red Clay.

    PubMed

    Jung, Jaejoon; Jang, In-Ae; Ahn, Sungeun; Shin, Bora; Kim, Jisun; Park, Chulwoo; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2015-11-01

    Red clay was previously used to enhance bioremediation of diesel-contaminated soil. It was speculated that the enhanced degradation of diesel was due to increased bacterial growth. In this study, we selected Acinetobacter oleivorans DR1, a soil-borne degrader of diesel and alkanes, as a model bacterium and performed transcriptional analysis using RNA sequencing to investigate the cellular response during hexadecane utilization and the mechanism by which red clay promotes hexadecane degradation. We confirmed that red clay promotes the growth of A. oleivorans DR1 on hexadecane, a major component of diesel, as a sole carbon source. Addition of red clay to hexadecane-utilizing DR1 cells highly upregulated β-oxidation, while genes related to alkane oxidation were highly expressed with and without red clay. Red clay also upregulated genes related to oxidative stress defense, such as superoxide dismutase, catalase, and glutaredoxin genes, suggesting that red clay supports the response of DR1 cells to oxidative stress generated during hexadecane utilization. Increased membrane fluidity in the presence of red clay was confirmed by fatty acid methyl ester analysis at different growth phases, suggesting that enhanced growth on hexadecane could be due to increased uptake of hexadecane coupled with upregulation of downstream metabolism and oxidative stress defense. The monitoring of the bacterial community in soil with red clay for a year revealed that red clay stabilized the community structure.

  15. Compaction of Confining Materials in Pillar Blast Tests

    NASA Astrophysics Data System (ADS)

    Petropoulos, N.; Wimmer, M.; Johansson, D.; Nordlund, E.

    2018-06-01

    Two confined pillar tests were conducted at the Kiirunavaara mine to investigate the degree of compaction of three materials, i.e., 0-32-mm backfilled material, a blend of ore and waste material and caved material. Two blastholes were drilled parallel to each pillar wall, and several measurement holes were drilled in between the blastholes through each pillar. Both the measurement holes and backfilled materials, except the caved material, were instrumented. Two types of measurements were taken: dynamic measurements with accelerometers, and static measurements which considered the location of the instrumentation pre- and post-blast. Dynamic measurements involved the burden movement and the confining material behavior, and static measurements contained the final location of sensors inside and the angle of repose of the confining material. The results showed that the size distribution of the confining material affects its behavior under dynamic loading. The backfilled materials showed an apparent cohesion forming an agglomeration on the surface of the blasted burden. The burden moved as one slab due to simultaneous detonation. A gap was formed between the blasted burden and the new face. This gap was partially filled with burden erosion material which was finer fragmented than the blasted burden material.

  16. Three immobilized-cell columnar bioreactors for enhanced production of commodity chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, B.H.; Scott, C.D.; Kaufman, E.N.

    1993-07-01

    Immobilized-cell fluidized-bed bioreactors (FBRS) can be used with a variety of fermentations to increase production of fuels, solvents, organic acids, and other fermentation products. Part of the increased rates and yields are due to the immobilization of the biocatalyst at high concentrations. This FBR system with immobilized Zymomonas mobiles increased ethanol productivity more than tenfold with 99% conversion and near stoichiometric yields. FBRs also offer several additional modes of operation for simultaneous fermentation and separation to further increase production by removing the inhibitory products directly from the continuous fermentation. The production of lactic acid by immobilized Lactobacillus was augmented withmore » the addition and removal of solid adsorbent particles to the FBR. An immiscible organic extractant also was used to extract butanol from the acetone-butanol fermentation by Clostridium acetobutylicum. Demonstrations with these FBR systems have already shown definite advantages by improved overall product yields (decreasing feed costs) and by increased rates (decreasing capital and operating costs). Further demonstration and scale-up continue.« less

  17. Three immobilized-cell columnar bioreactors for enhanced production of commodity chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, B.H.; Scott, C.D.; Kaufman, E.N.

    1993-12-31

    Immobilized-cell fluidized-bed bioreactors (FBRs) can be used with a variety of fermentations to increase production of fuels, solvents, organic acids, and other fermentation products. Part of the increased rates and yields are due to the immobilization of the biocatalyst at high concentrations. This FBR system with immobilized Zymomonas mobilis increased ethanol productivity more than tenfold with 99% conversion and near stoichiometric yields. FBRs also offer several additional modes of operation for simultaneous fermentation and separation to further increase production by removing the inhibitory products directly from the continuous fermentation. The production of lactic acid by immobilized Lactobacillus was augmented withmore » the addition and removal of solid adsorbent particles to the FBR. An immiscible organic extractant also was used to extract butanol from the acetone-butanol fermentation by Clostridium acetobutylicum. Demonstrations with these FBR systems have already shown definite advantages by improved overall product yields (decreasing feed costs) and by increased rates (decreasing capital and operating costs). Further demonstration and scale-up continue.« less

  18. Production of fumaric acid by immobilized Rhizopus arrhizus RH 7-13-9# on loofah fiber in a stirred-tank reactor.

    PubMed

    Liu, Huan; Zhao, Shijie; Jin, Yuhan; Yue, Xuemin; Deng, Li; Wang, Fang; Tan, Tianwei

    2017-11-01

    Fumaric acid is an important building-block chemical. The production of fumaric acid by fermentation is possible. Loofah fiber is a natural, biodegradable, renewable polymer material with highly sophisticated and pore structure. This work investigated a new immobilization method using loofah fiber as carrier to produce fumaric acid in a stirred-tank reactor. Compared with other carriers, loofah fiber was proven to be efficiently and successfully used in the reactor. After the optimization process, 20g addition of loofah fiber and 400rpm agitation speed were chosen as the most suitable process conditions. 30.3g/L fumaric acid in the broth as well as 19.16g fumaric acid in the precipitation of solid was achieved, while the yield from glucose reached 0.211g/g. Three batches of fermentation using the same loofah fiber carrier were conducted successfully, which meant it provided a new method to produce fumaric acid in a stirred-tank reactor. Copyright © 2017. Published by Elsevier Ltd.

  19. Experimental study of Human Adenoviruses interactions with clays

    NASA Astrophysics Data System (ADS)

    Bellou, Maria; Syngouna, Vasiliki; Paparrodopoulos, Spyros; Vantarakis, Apostolos; Chrysikopoulos, Constantinos

    2014-05-01

    Clays are used to establish low permeability liners in landfills, sewage lagoons, water retention ponds, golf course ponds, and hazardous waste sites. Human adenoviruses (HAdVs) are waterborne viruses which have been used as viral indicators of fecal pollution. The objective of this study was to investigate the survival of HAdV in static and dynamic clay systems. The clays used as a model were crystalline aluminosilicates: kaolinite and bentonite. The adsorption and survival of HAdVs onto these clays were characterized at two different controlled temperatures (4 and 25o C) under static and dynamic batch conditions. Control tubes, in the absence of clay, were used to monitor virus inactivation due to factors other than adsorption to clays (e.g. inactivation or sorption onto the tubes walls). For both static and dynamic batch experiments, samples were collected for a maximum period of seven days. This seven day time - period was determined to be sufficient for the virus-clay systems to reach equilibrium. To infer the presence of infectious HAdV particles, all samples were treated with Dnase and the extraction of viral nucleid acid was performed using a commercial viral RNA kit. All samples were analyzed by Real - Time PCR which was used to quantify viral particles in clays. Samples were also tested for virus infectivity by A549 cell cultures. Exposure time intervals in the range of seven days (0.50-144 hours) resulted in a load reduction of 0.74 to 2.96 logs for kaolinite and a reduction of 0.89 to 2.92 for bentonite. Furthermore, virus survival was higher onto bentonite than kaolinite (p

  20. METHOD OF IMPROVING CORROSION RESISTANCE OF ZIRCONIUM

    DOEpatents

    Shannon, D.W.

    1961-03-28

    An improved intermediate rinse for zirconium counteracts an anomalous deposit that often results in crevices and outof-the-way places when ordinary water is used to rinse away a strong fluoride etching solution designed to promote passivation of the metal. The intermediate rinse, which is used after the etching solution and before the water, is characterized by a complexing agent for fluoride ions such as aluminum or zirconium nitrates or chlorides.

  1. Modeling the interactions between compliant microcapsules and pillars in microchannels

    NASA Astrophysics Data System (ADS)

    Zhu, Guangdong; Alexeev, Alexander; Kumacheva, Eugenia; Balazs, Anna C.

    2007-07-01

    Using a computational model, we investigate the motion of microcapsules inside a microchannel that encompasses a narrow constriction. The microcapsules are composed of a compliant, elastic shell and an encapsulated fluid; these fluid-filled shells model synthetic polymeric microcapsules or biological cells (e.g., leukocytes). Driven by an imposed flow, the capsules are propelled along the microchannel and through the constricted region, which is formed by two pillars that lie in registry, extending from the top and bottom walls of the channels. The tops of these pillars (facing into the microchannel) are modified to exhibit either a neutral or an attractive interaction with the microcapsules. The pillars (and constriction) model topological features that can be introduced into microfluidic devices or the physical and chemical heterogeneities that are inherently present in biological vessels. To simulate the behavior of this complex system, we employ a hybrid method that integrates the lattice Boltzmann model (LBM) for fluid dynamics and the lattice spring model (LSM) for the micromechanics of elastic solids. Through this LBM/LSM technique, we probe how the capsule's stiffness and interaction with the pillars affect its passage through the chambers. The results yield guidelines for regulating the movement of microcarriers in microfluidic systems and provide insight into the flow properties of biological cells in capillaries.

  2. Improved method and composition for immobilization of waste in cement-based material

    DOEpatents

    Tallent, O.K.; Dodson, K.E.; McDaniel, E.W.

    1987-10-01

    A composition and method for fixation or immobilization of aqueous hazardous waste material in cement-based materials (grout) is disclosed. The amount of drainable water in the cured grout is reduced by the addition of an ionic aluminum compound to either the waste material or the mixture of waste material and dry-solid cement- based material. This reduction in drainable water in the cured grout obviates the need for large, expensive amounts of gelling clays in grout materials and also results in improved consistency and properties of these cement-based waste disposal materials.

  3. Zirconium-Based Metal–Organic Framework for Removal of Perrhenate from Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debasis; Xu, Wenqian; Nie, Zimin

    2016-09-06

    Efficient removal of pertechnetate (TcO4-) anions from liquid waste or melter off-gas solution for alternative treatment is one of the promising options to manage 99Tc in legacy nuclear waste. Safe immobilization of 99Tc is of major importance due to its long half-life (t1/2= 2.13 × 105 yrs) and environmental mobility. Different types of inorganic and solid state ion-exchange materials such as layered double hydroxides have been shown to absorb TcO4- anions from water. However, both high capacity and selectivity have yet to be achieved in a single material. Herein, we show that a protonated version of an ultra-stable zirconium basedmore » metal-organic framework can adsorb perrhenate (ReO4-) anions, a non-radioactive sur-rogate for TcO4-, from water even in the presence of other common anions. Synchrotron based powder X-ray diffraction and molecular simulations were used to identify the position of the adsorbed ReO4- (surrogate for TcO4-) molecule within the framework.« less

  4. Enrofloxacin sorption on smectite clays: effects of pH, cations, and humic acid.

    PubMed

    Yan, Wei; Hu, Shan; Jing, Chuanyong

    2012-04-15

    Enrofloxacin (ENR) occurs widely in natural waters because of its extensive use as a veterinary chemotherapeutic agent. To improve our understanding of the interaction of this emerging contaminant with soils and sediments, sorption of ENR on homoionic smectites and kaolinite was studied as a function of pH, ionic strength, exchangeable cations, and humic acid concentration. Batch experiments and in situ ATR-FTIR analysis suggested multiple sorption mechanisms. Cation exchange was a major contributor to the sorption of cationic ENR species on smectite. The decreased ENR sorption with increasing ionic strength indicated the formation of outer-sphere complexes. Exchangeable cations significantly influenced the sorption capacity, and the observed order was Csacid had a negligible contribution to the interlayer intercalation. The results of this study provide new insight into the molecular mechanisms of ENR sorption on clay minerals. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Pillared graphite anodes for reversible sodiation.

    PubMed

    Zhang, Hanyang; Li, Zhifei; Xu, Wei; Chen, Yicong; Ji, Xiulei; Lerner, Michael M

    2018-08-10

    There has been a major effort recently to develop new rechargeable sodium-ion electrodes. In lithium ion batteries, LiC 6 forms from graphite and desolvated Li cations during the first charge. With sodium ions, graphite only shows a significant capacity when Na + intercalates as a solvated complex, resulting in ternary graphite intercalation compounds (GICs). Although this chemistry has been shown to be highly reversible and to support high rates in small test cells, these GICs can require >250% volume expansion and contraction during cycling. Here we demonstrate the first example of GICs that reversibly sodiate/desodiate without any significant volume change. These pillared GICs are obtained by electrochemical reduction of graphite in an ether/amine co-solvent electrolyte. The initial gallery expansion, 0.36 nm, is less than half of that in diglyme-based systems, and shows a similar capacity. Thermal analyses suggest the pillaring phenomenon arises from stronger co-intercalate interactions in the GIC galleries.

  6. 40 CFR 471.90 - Applicability; description of the zirconium-hafnium forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... zirconium-hafnium forming subcategory. 471.90 Section 471.90 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Zirconium-Hafnium Forming Subcategory § 471.90 Applicability; description of the zirconium-hafnium forming subcategory. This subpart applies to discharges of pollutants to waters of the...

  7. Zirconium determination by cooling curve analysis during the pyroprocessing of used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Westphal, B. R.; Price, J. C.; Bateman, K. J.; Marsden, K. C.

    2015-02-01

    An alternative method to sampling and chemical analyses has been developed to monitor the concentration of zirconium in real-time during the casting of uranium products from the pyroprocessing of used nuclear fuel. The method utilizes the solidification characteristics of the uranium products to determine zirconium levels based on standard cooling curve analyses and established binary phase diagram data. Numerous uranium products have been analyzed for their zirconium content and compared against measured zirconium data. From this data, the following equation was derived for the zirconium content of uranium products:

  8. Preparative resolution of D,L-threonine catalyzed by immobilized phosphatase.

    PubMed

    Scollar, M P; Sigal, G; Klibanov, A M

    1985-03-01

    Hydrolysis of L- and D-O-phosphothreonines catalyzed by four different phosphatases, alkaline phosphatases from calf intestine and E. coli and acid phosphatases from wheat germ and potato, has been kinetically studied. Alkaline phosphatases were found to have comparable reactivities towards the optical isomers. On the other hand, both acid phosphatases displayed a marked stereoselectivity, hydrolyzing the L-ester much faster than its D counterpart. Wheat germ acid phosphatase was the most stereoselective enzyme: V(L)/V(D) = 24 and K(m,L)/K(m,D) = 0.17. This enzyme was immobilized (in k-carrageenan gel, followed by crosslinking with glutaraldehyde) and used for the preparative resolution of D,L-threonine: the latter was first chemically O-phosphorylated and then asymmetrically hydrolyzed by the immobilized phosphatase. As a result, gram quantities of L-threonine of high optical purity and O-phospho-D-threonine were prepared. Immobilized wheat germ phosphatase has been tested for the resolution of other racemic alcohols: serine, 2-amino-1-butanol, 1-amino-2-propanol, 2-octanol, and menthol. In all those cases, the enzyme was either not sufficiently stereoselective or too slow for preparative resolutions.

  9. Assessment of toxic metals and phthalates in children's toys and clays.

    PubMed

    Korfali, Samira I; Sabra, Rayan; Jurdi, Mey; Taleb, Robin I

    2013-10-01

    Toxic metals and phthalates are introduced in the manufacturing of plastic toys and modeling clays. In Lebanon, inexpensive plastic toys and modeling clays (sold in dollar stores) are affordable and popular, and there is no legislation to monitor or regulate such toys. This study aimed to assess the quality of inexpensive plastic toys and modeling clays imported in Lebanon. Metal concentrations in toys, namely, zinc [not detectable (ND) to 3,708 μg/g], copper (ND to 140), chromium (ND to 75 μg/g), tin (ND to 39 μg/g), and cadmium (Cd) (ND to 20 μg/g), were lower than the European Union (EU) Directive limits, whereas lead (ND to 258 μg/g) in 10% of samples and antimony (Sb) (ND to 195 μg/g) in 5% of samples were greater than the EU limits. In modeling clays, most of the metals were lower than the EU Directive limits except for Cd and arsenic (As). Cd was detected in 83% of samples, with a mean level of 9.1 μg/g, which is far greater than the EU Directive limit (1.9 μg/g). The As mean level of 4.5 μg/g was greater than the EU limit (4.0 μg/g) and was detected in 9% of samples. Phthalic acid esters (PAEs) were found in 60% of children's toys and 77% of modeling clays. Phthalic acid butyl ester had the highest-level PAE encountered and was ≤59.1 % in one type of clay. However, among children's toys, di(4-octyl) ester terephthalic acid was the highest encountered phthalate at a concentration of 25.7%. The community survey indicated that 82% of households purchase their toys from inexpensive shops and that only 17% of parents were aware of the health hazard of such toys. Consequently, an intervention plan was proposed for the provision of safe toys to children.

  10. Synchrotron SAXS/WAXD and rheological studies of clay suspensions in silicone fluid.

    PubMed

    Zhang, Li-Ming; Jahns, Christopher; Hsiao, Benjamin S; Chu, Benjamin

    2003-10-15

    Suspensions of two commercial smectite clays, montmorillonite KSF and montmorillonite K10, in a low-viscosity silicone oil (Dow Corning 245 Fluid) were studied by simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) techniques and rheological measurements. In the 0.5% (w/v) KSF clay suspension and two K10 clay suspensions (0.5% and 1.0%), WAXD profiles below 2theta=10.0 degrees did not display any characteristic reflection peaks associated with the chosen montmorillonite clays, while corresponding SAXS profiles exhibited distinct scattering maxima, indicating that both clays were delaminated by the silicone oil. In spite of the large increase in viscosity, the clay suspensions exhibited no gel characteristics. Dynamic rheological experiments indicated that the clay/silicone oil suspensions exhibited the behavior of viscoelasticity, which could be influenced by the type and the concentration of the clay. For the K10 clay suspensions, the frequency-dependent loss modulus (G") was greater in magnitude than the storage modulus (G') in the concentration range from 0.5 to 12.0%. The increase in the clay concentration shifted the crossover point between G' and G" into the accessible frequency range, indicating that the system became more elastic. In contrast, the KSF clay suspension exhibited lower G' and G" values, indicating a weaker viscoelastic response. The larger viscoelasticity response in the K10 clay suspension may be due to the acid treatment generating a higher concentration of silanol groups on the clay surface.

  11. Mineralogy and instrumental neutron activation analysis of seven National Bureau of Standards and three Instituto de Pesquisas Tecnologicas clay reference samples

    USGS Publications Warehouse

    Hosterman, John W.; Flanagan, F.J.; Bragg, Anne; Doughten, M.W.; Filby, R.H.; Grimm, Catherine; Mee, J.S.; Potts, P.J.; Rogers, N.W.

    1987-01-01

    The concentrations of 3 oxides and 29 elements in 7 National Bureau of Standards (NBS) and 3 Instituto de Pesquisas Techno16gicas (IPT) reference clay samples were etermined by instrumental neutron activation analysis. The analytical work was designed to test the homogeneity of constituents in three new NBS reference clays, NBS-97b, NBS-98b, and NBS-679. The analyses of variance of 276 sets of data for these three standards show that the constituents are distributed homogeneously among bottles of samples for 94 percent of the sets of data. Three of the reference samples (NBS-97, NBS-97a, and NBS-97b) are flint clays; four of the samples (NBS-98, NBS-98a, NBS-98b, and IPT-32) are plastic clays, and three of the samples (NBS-679, IPT-28, and IPT-42) are miscellaneous clays (both sedimentary and residual). Seven clays are predominantly kaolinite; the other three clays contain illite and kaolinite in the approximate ratio 3:2. Seven clays contain quartz as the major nonclay mineral. The mineralogy of the flint and plastic clays from Missouri (NBS-97a and NBS-98a) differs markedly from that of the flint and plastic clays from Pennsylvania (NBS-97, NBS-97b, NBS-98, and NBS-98b). The flint clay NBS-97 has higher average chromium, hafnium, lithium, and zirconium contents than its replacement, reference sample NBS-97b. The differences between the plastic clay NBS-98 and its replacement, NBS-98b, are not as pronounced. The trace element contents of the flint and plastic clays from Missouri, NBS-97a and NBS-98a, differ significantly from those of the clays from Pennsylvania, especially the average rare earth element (REE) contents. The trace element contents of clay sample IPT-32 differ from those of the other plastic clays. IPT-28 and IPT-42 have some average trace element contents that differ not only between these two samples but also from all the other clays. IPT-28 has the highest summation of the average REE contents of the 10 samples. The uranium content of NBS-98a, 46

  12. Nuclear-grade zirconium prepared by combining combustion synthesis with molten-salt electrorefining technique

    NASA Astrophysics Data System (ADS)

    Li, Hui; Nersisyan, Hayk H.; Park, Kyung-Tae; Park, Sung-Bin; Kim, Jeong-Guk; Lee, Jeong-Min; Lee, Jong-Hyeon

    2011-06-01

    Zirconium has a low absorption cross-section for neutrons, which makes it an ideal material for use in nuclear reactor applications. However, hafnium typically contained in zirconium causes it to be far less useful for nuclear reactor materials because of its high neutron-absorbing properties. In the present study, a novel effective method has been developed for the production of hafnium-free zirconium. The process includes two main stages: magnesio-thermic reduction of ZrSiO 4 under a combustion mode, to produce zirconium silicide (ZrSi), and recovery of hafnium-free zirconium by molten-salt electrorefining. It was found that, depending on the electrorefining procedure, it is possible to produce zirconium powder with a low hafnium content: 70 ppm, determined by ICP-AES analysis.

  13. Immobilization of cross-linked tannase enzyme on multiwalled carbon nanotubes and its catalytic behavior.

    PubMed

    Ong, Chong-Boon; Annuar, Mohamad S M

    2018-02-07

    Immobilization of cross-linked tannase on pristine multiwalled carbon nanotubes (MWCNT) was successfully performed. Cross-linking of tannase molecules was made through glutaraldehyde. The immobilized tannase exhibited significantly improved pH, thermal, and recycling stability. The optimal pH for both free and immobilized tannase was observed at pH 5.0 with optimal operating temperature at 30°C. Moreover, immobilized enzyme retained greater biocatalytic activities upon 10 repeated uses compared to free enzyme in solution. Immobilization of tannase was accomplished by strong hydrophobic interaction most likely between hydrophobic amino acid moieties of the glutaraldehyde-cross-linked tannase to the MWCNT.

  14. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Barry B.; Walker, T. B.; Bruffey, Stephanie H.

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-basedmore » cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.« less

  15. Spatially resolved XRF, XAFS, XRD, STXM and IR investigation of a natural U-rich clay

    NASA Astrophysics Data System (ADS)

    Denecke, M. A.; Michel, P.; Schäfer, T.; Huber, F.; Rickers, K.; Rothe, J.; Dardenne, K.; Brendebach, B.; Vitova, T.; Elie, M.

    2009-11-01

    Combined spatially resolved hard X-ray μ-XRF and μ-XAFS studies using an X-ray beam with micrometer dimensions at the INE-Beamline for actinide research at ANKA and Beamline L at HASYLAB with those from scanning transmission soft X-ray microscopy (STXM) and synchrotron-based Fourier transform infrared microspectroscopy (μ-FTIR) recorded with beam spots in the nanometer range are used to study a U-rich clay originating from Autunian shales in the Permian Lodève Basin (France). This argillaceous formation is a natural U deposit associated with organic matter (bitumen). Results allow us to differentiate between possible mechanisms leading to U enrichment: likely U immobilization via reaction with organic material associated with clay mineral. Such investigations support development of reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  16. Immobilized heavy chain-hyaluronic acid polarizes lipopolysaccharide-activated macrophages toward M2 phenotype.

    PubMed

    He, Hua; Zhang, Suzhen; Tighe, Sean; Son, Ji; Tseng, Scheffer C G

    2013-09-06

    Despite the known anti-inflammatory effect of amniotic membrane, its action mechanism remains largely unknown. HC-HA complex (HC-HA) purified from human amniotic membrane consists of high molecular weight hyaluronic acid (HA) covalently linked to the heavy chain (HC) 1 of inter-α-trypsin inhibitor. In this study, we show that soluble HC-HA also contained pentraxin 3 and induced the apoptosis of both formyl-Met-Leu-Phe or LPS-activated neutrophils and LPS-activated macrophages while not affecting the resting cells. This enhanced apoptosis was caused by the inhibition of cell adhesion, spreading, and proliferation caused by HC-HA binding of LPS-activated macrophages and preventing adhesion to the plastic surface. Preferentially, soluble HC-HA promoted phagocytosis of apoptotic neutrophils in resting macrophages, whereas immobilized HC-HA promoted phagocytosis in LPS-activated macrophages. Upon concomitant LPS stimulation, immobilized HC-HA but not HA polarized macrophages toward the M2 phenotype by down-regulating IRF5 protein and preventing its nuclear localization and by down-regulating IL-12, TNF-α, and NO synthase 2. Additionally, IL-10, TGF-β1, peroxisome proliferator-activated receptor γ, LIGHT (TNF superfamily 14), and sphingosine kinase-1 were up-regulated, and such M2 polarization was dependent on TLR ligation. Collectively, these data suggest that HC-HA is a unique matrix component different from HA and uses multiple mechanisms to suppress M1 while promoting M2 phenotype. This anti-inflammatory action of HC-HA is highly desirable to promote wound healing in diseases heightened by unsuccessful transition from M1 to M2 phenotypes.

  17. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The state of the ball clay industry in 1999 is presented. Record highs in the sales and use of ball clay were attained in 1999 due to the continued strength of the U.S. economy. U.S. production was estimated at 1.25 million st for the year, with more than half of that amount mined in Tennessee. Details of the consumption, price, imports, and exports of ball clay in 1999 and the outlook for ball clay over the next few years are provided.

  18. Clay for Little Fingers.

    ERIC Educational Resources Information Center

    Koster, Joan Bouza

    1999-01-01

    Discusses the renewed interest in clay as a modeling compound in early childhood programs; describes the nature of clay and presents a working vocabulary. Suggests methods of working with clay, including introducing clay to children, discovering its uses, clean up, firing clay, and finishing baked clay. Includes activity suggestions and…

  19. Immobilization of recombinant vault nanoparticles on solid substrates.

    PubMed

    Xia, Yun; Ramgopal, Yamini; Li, Hai; Shang, Lei; Srinivas, Parisa; Kickhoefer, Valerie A; Rome, Leonard H; Preiser, Peter R; Boey, Freddy; Zhang, Hua; Venkatraman, Subbu S

    2010-03-23

    Native vaults are nanoscale particles found abundantly in the cytoplasm of most eukaryotic cells. They have a capsule-like structure with a thin shell surrounding a "hollow" interior compartment. Recombinant vault particles were found to self-assemble following expression of the major vault protein (MVP) in a baculovirus expression system, and these particles are virtually identical to native vaults. Such particles have been recently studied as potential delivery vehicles. In this study, we focus on immobilization of vault particles on a solid substrate, such as glass, as a first step to study their interactions with cells. To this end, we first engineered the recombinant vaults by fusing two different tags to the C-terminus of MVP, a 3 amino acid RGD peptide and a 12 amino acid RGD-strep-tag peptide. We have demonstrated two strategies for immobilizing vaults on solid substrates. The barrel-and-cap structure of vault particles was observed for the first time, by atomic force microscopy (AFM), in a dry condition. This work proved the feasibility of immobilizing vault nanoparticles on a material surface, and the possibility of using vault nanoparticles as localized and sustainable drug carriers as well as a biocompatible surface moiety.

  20. 40 CFR 721.10598 - Lead strontium titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead strontium...

  1. 40 CFR 721.10598 - Lead strontium titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead strontium...

  2. Preparation and activity of bubbling-immobilized cellobiase within chitosan-alginate composite.

    PubMed

    Wang, Fang; Su, Rong-Xin; Qi, Wei; Zhang, Ming-Jia; He, Zhi-Min

    2010-01-01

    Cellobiase can hydrolyze cellobiose into glucose; it plays a key role in the process of cellulose hydrolysis by reducing the product inhibition. To reuse the enzyme and improve the economic value of cellulosic ethanol, cellobiase was immobilized using sodium alginate and chitosan as carriers by the bubbling method. The immobilization conditions were optimized as follows: enzyme loading of 100 U cellobiase/g carrier, 30 min immobilization, 3.5 wt% sodium alginate, 0.25 wt% chitosan, and 2 wt% calcium chloride. Compared to free enzyme, the immobilized cellobiase had a decreased apparent K(m) and the maximum activity at a lower pH, indicating its higher acidic and thermal stability. The immobilized cellobiase was further tested in the hydrolysis of cellobiose and various cellulosic substrates (microcrystalline cellulose, filter paper, and ammonia-pretreated corn cobs). Together with cellulases, the immobilized cellobiase converted the cellulosic substrates into glucose with the rate and extent similar to the free enzyme.

  3. Role of microbial processes in linking sandstone diagenesis with organic-rich clays

    USGS Publications Warehouse

    McMahon, P.B.; Chapelle, F.H.; Falls, W.F.; Bradley, P.M.

    1992-01-01

    Shows that the processes of microbial organic-acid production (via fermentation) in clays and microbial organic-acid consumption (via sulfate reduction) in sands effectively link organic-rich clays to sandstone diagenesis in the Black Creek Formation of South Carolina. Diagenetic processes have resulted in the formation of 10 volume percent calcite cement, 0.1 volume percent authigenic pyrite, and 1.5 volume percent secondary porosity in Black Creek sands. However, the distribution of these diagenetic processes is not uniform, resulting in net destruction of porosity in some parts of the sand and net porosity enchancement in other parts. -from Authors

  4. Immobilized enzymes in blood plasma exchangers via radiation grafting

    NASA Astrophysics Data System (ADS)

    Gombotz, Wayne; Hoffman, Allan; Schmer, Gottfried; Uenoyama, Satoshi

    The enzyme asparaginase was immobilized onto a porous hollow polypropylene (PP) fiber blood plasma exchange device for the treatment of acute lymphocytic leukemia. The devices were first radiation grafted with polymethacrylic acid (poly(MAAc)). This introduces carboxyl groups onto the surface of the fibers. Several variables were studied in the grafting reaction including the effects of solvent type and monomer concentration. The carboxyl groups were activated with N-hydroxy succinimide (NHS) using carbodiimide chemistry. Asparaginase was then covalently immobilized on the activated surfaces. Quantitative relationships were found relating the percent graft to the amount of immobilized enzyme which was active. The enzyme reactor was tested both in vitro and in vivo using a sheep as an animal model.

  5. Space Geodesy, VLBI, and the Fourth Pillar of Geodesy - Spacetime Curvature

    NASA Astrophysics Data System (ADS)

    Combrinck, Ludwig

    2014-12-01

    Typically geodesy is described as having ``three pillars'': the variations in Earth's shape, gravity field, and rotation. These pillars form the conceptual and observational basis for the celestial and terrestrial reference frames required for Earth and space observations. However, it is no longer adequate to base the conceptual and observational basis on only three pillars. Spacetime curvature as described by the General Theory of Relativity (GTR) is an integral component of all space geodesy techniques and influences all measurements, techniques, and data reduction. Spacetime curvature is therefore the fourth pillar. It is the measurement of the shape of spacetime and its variations. Due to accuracies of Very Long Baseline Interferometry (VLBI) and optical celestial reference frame measurements reaching the tens of micro-arcsecond level in the near future, it is essential to recognize the impact of spacetime seeing on the accuracy objectives of the Global Geodetic Observing System. Spacetime seeing (resulting from spacetime curvature) is analogous to astronomical seeing (resulting from atmospheric conditions), as all of spacetime is affected by microlensing/weak lensing to some extent as a result of mass (normal baryonic and darkmatter) distribution, placing a limit on the realization of the celestial reference frame.

  6. Beyond DSM-5 and IQ Scores: Integrating the Four Pillars to Forensic Evaluations.

    PubMed

    Delgado, Sergio V; Barzman, Drew H

    2017-03-01

    The current adult and child forensic psychiatrist is well trained, familiar, and comfortable with the use of the semi-structured Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, APA 2013 (DSM-5) [In APA, 2003] interview style. The author's assertion is not that this method is invalid or unreliable; rather, that it can be complemented by integrating elements of the defendant's four pillar assessment. Assessing the four pillars expands on the information provided by a semi-structured DSM-5-style interview in psychiatry. The four pillars are the foundation of a person's personality; temperament, cognition (learning abilities or weaknesses), cognitive flexibility (theory of mind) and internal working models of attachment, within the backdrop of the family and of the social and cultural environment in which they have lived. The importance of the study of four pillars is based on the understanding that human behavior and psychopathology as a complex and multifaceted process that includes the level of social-emotional maturity and cognitive abilities (In Delgado et al. Contemporary Psychodynamic Psychotherapy for Children and Adolescents: Integrating Intersubjectivity and Neuroscience. Springer, Berlin, 2015). The four pillars are not new concepts, rather they had been studied by separate non-clinical disciplines, and had not been integrated to the clinical practice. As far as we know, it wasn't until Delgado et al. (Contemporary Psychodynamic Psychotherapy for Children and Adolescents: Integrating Intersubjectivity and Neuroscience. Springer, Berlin, 2015) incorporated the four pillars in a user-friendly manner to clinical practice.

  7. Active-site titration analysis of surface influence on immobilized Candida antarctica Lipase B activity

    USDA-ARS?s Scientific Manuscript database

    Matrix morphology and surface polarity effects were investigated for Candida antarctica lipase B immobilization. Measurements of the amount of lipase immobilized (bicinchoninic acid method) and the catalyst’s tributyrin hydrolysis activity, coupled with a determination of the lipase’s functional fr...

  8. Eco-Friendly Magnetic Iron Oxide Pillared Montmorillonite for Advanced Catalytic Degradation of Dichlorophenol

    EPA Science Inventory

    Eco-friendly pillared montmorillonites, in which the pillars consist of iron oxide are expected to have interesting and unusual magnetic properties that are applicable for environmental decontamination. Completely “green” and effective composite was synthesized using mild reactio...

  9. The Sloan-C Pillars: Towards a Balanced Approach to Measuring Organizational Learning

    ERIC Educational Resources Information Center

    Yeo, Kee Meng; Mayadas, A. Frank

    2010-01-01

    The Sloan Pillars have set the standard for university-wide online learning program assessment for more than a dozen years. In this paper, the authors propose the extension of the Pillars to corporate e-learning, offering an alternative to traditional enterprise learning assessments. Claiming that conventional methods stress individual courses or…

  10. 4-Chlorophenol biodegradation facilitator composed of recombinant multi-biocatalysts immobilized onto montmorillonite.

    PubMed

    Kwean, Oh Sung; Cho, Su Yeon; Yang, Jun Won; Cho, Wooyoun; Park, Sungyoon; Lim, Yejee; Shin, Min Chul; Kim, Han-Suk; Park, Joonhong; Kim, Han S

    2018-07-01

    A biodegradation facilitator which catalyzes the initial steps of 4-chlorophenol (4-CP) oxidation was prepared by immobilizing multiple enzymes (monooxygenase, CphC-I and dioxygenase, CphA-I) onto a natural inorganic support. The enzymes were obtained via overexpression and purification after cloning the corresponding genes (cphC-I and cphA-I) from Arthrobacter chlorophenolicus A6. Then, the recombinant CphC-I was immobilized onto fulvic acid-activated montmorillonite. The immobilization yield was 60%, and the high enzyme activity (82.6%) was retained after immobilization. Kinetic analysis indicated that the Michaelis-Menten model parameters for the immobilized CphC-I were similar to those for the free enzyme. The enzyme stability was markedly enhanced after immobilization. The immobilized enzyme exhibited a high level of activity even after repetitive use (84.7%) and powdering (65.8%). 4-CP was sequentially oxidized by a multiple enzyme complex, comprising the immobilized CphC-I and CphA-I, via the hydroquinone pathway: oxidative transformation of 4-CP to hydroxyquinol followed by ring fission of hydroxyquinol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.

    1957-11-12

    This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.

  12. Clay Houses

    ERIC Educational Resources Information Center

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  13. Rapid implantation of dissolving microneedles on an electrospun pillar array.

    PubMed

    Yang, Huisuk; Kim, Soyoung; Huh, Inyoung; Kim, Suyong; Lahiji, Shayan F; Kim, Miroo; Jung, Hyungil

    2015-09-01

    Dissolving microneedles (DMNs), designed to release drugs and dissolve after skin insertion, have been spotlighted as a novel transdermal delivery system due to their advantages such as minimal pain and tissue damage, ability to self-administer, and no associated hazardous residues. The drug delivery efficacy of DMNs, however, is limited by incomplete insertion and the extended period required for DMN dissolution. Here, we introduce a novel DMN delivery system, DMN on an electrospun pillar array (DEPA), which can rapidly implant DMNs into skin. DMNs were fabricated on a pillar array covered by a fibrous sheet produced by electrospinning PLGA solution (14%, w/v). DMNs were implanted into the skin by manual application (press and vibration for 10 s) by tearing of the fibers hung on the 300-μm pillars. Separation of DMNs from the fibrous sheet was dependent on both pillar height and the properties of the fibrous sheet. After evaluation of the implantation and dissolution of DMNs with diffusion of red dye by taking cross-sectional images of porcine skin, the hypoglycemic effect of insulin loaded DEPA was examined using a healthy mouse model. This DMN array overcomes critical issues associated with the low penetration efficiency of flat patch-based DMNs, and will allow realization of patient convenience with the desired drug efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. High-aspect-ratio, silicon oxide-enclosed pillar structures in microfluidic liquid chromatography.

    PubMed

    Taylor, Lisa C; Lavrik, Nickolay V; Sepaniak, Michael J

    2010-11-15

    The present paper discusses the ability to separate chemical species using high-aspect-ratio, silicon oxide-enclosed pillar arrays. These miniaturized chromatographic systems require smaller sample volumes, experience less flow resistance, and generate superior separation efficiency over traditional packed bed liquid chromatographic columns, improvements controlled by the increased order and decreased pore size of the systems. In our distinctive fabrication sequence, plasma-enhanced chemical vapor deposition (PECVD) of silicon oxide is used to alter the surface and structural properties of the pillars for facile surface modification while improving the pillar mechanical stability and increasing surface area. The separation behavior of model compounds within our pillar systems indicated an unexpected hydrophobic-like separation mechanism. The effects of organic modifier, ionic concentration, and pressure-driven flow rate were studied. A decrease in the organic content of the mobile phase increased peak resolution while detrimentally effecting peak shape. A resolution of 4.7 (RSD = 3.7%) was obtained for nearly perfect Gaussian shaped peaks, exhibiting plate heights as low as 1.1 and 1.8 μm for fluorescein and sulforhodamine B, respectively. Contact angle measurements and DART mass spectrometry analysis indicate that our employed elastomeric soft bonding technique modifies pillar properties, creating a fortuitous stationary phase. This discovery provides evidence supporting the ability to easily functionalize PECVD oxide surfaces by gas-phase reactions.

  15. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Li, Gui-yin; Zhou, Zhi-de; Li, Yuan-jian; Huang, Ke-long; Zhong, Ming

    2010-12-01

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe 3O 4/KCTS) as support. The magnetic Fe 3O 4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe 3O 4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe 3O 4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 °C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  16. Adsorption, immobilization, and activity of beta-glucosidase on different soil colloids.

    PubMed

    Yan, Jinlong; Pan, Genxing; Li, Lianqing; Quan, Guixiang; Ding, Cheng; Luo, Ailan

    2010-08-15

    For a better understanding of enzyme stabilization and the subsequent catalytic process in a soil environment, the adsorption, immobilization, and activity of beta-glucosidase on various soil colloids from a paddy soil were studied. The calculated parameters maximum adsorption capacity (q(0)) for fine soil colloids ranged from 169.6 to 203.7 microg mg(-1), which was higher than coarse soil colloids in the range of 81.0-94.6 microg mg(-1), but the lower adsorption affinity (K(L)) was found on fine soil colloids. The percentages of beta-glucosidase desorbed from external surfaces of the coarse soil colloids (27.6-28.5%) were higher than those from the fine soil colloids (17.5-20.2%). Beta-glucosidase immobilized on the coarse inorganic and organic soil colloids retained 72.4% and 69.8% of activity, respectively, which indicated the facilitated effect of soil organic matter in the inhibition of enzyme activity. The residual activity for the fine soil clay is 79-81%. After 30 days of storage at 40 degrees C the free beta-glucosidase retained 66.2% of its initial activity, whereas the soil colloidal particle-immobilized enzyme retained 77.1-82.4% of its activity. The half-lives of free beta-glucosidase appeared to be 95.9 and 50.4 days at 25 and 40 degrees C. Immobilization of beta-glucosidase on various soil colloids enhanced the thermal stability at all temperatures, and the thermal stability was greatly affected by the affinity between the beta-glucosidase molecules and the surface of soil colloidal particles. Due to the protective effect of supports, soil colloidal particle-immobilized enzymes were less sensitive to pH and temperature changes than free enzymes. Data obtained in this study are helpful for further research on the enzymatic mechanisms in carbon cycling and soil carbon storage. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Geologic structure of Gofitsky deposit of titanium and zirconium and perspectives of the reserve base of titanium and zirconium in Russia

    NASA Astrophysics Data System (ADS)

    Kukhmazov, Iskander

    2016-04-01

    With the fall of the Soviet Union, all the mining deposits of titanium and zirconium appeared outside of Russian Federation. Therefore the studying of deposits of titanium and zirconium in Russia is very important nowadays. There is a paradoxical situation in the country: in spite of possible existence of national mineral resource base of Ti-Zr material, which can cover needs of the country, Russia is the one of the largest buyers of imported Ti-Zr material in the world. Many deposits are not mined, and those which are in the process of mining have poor reserves. Demand for this raw material is very great not only for Russia, but also for the world in general. Today there is a scarcity of zircon around the world and it will only increase through time. Therefore prices of products of titanium and zirconium also increase. Consequently Russian deposits of titanium and zirconium with higher content than foreign may become competitive. Russia is forced to buy raw materials (zirconium and titanium production) from former Soviet Union countries at prices higher than the world's and thus incur huge losses, including customs charges. Russia should create its own mineral resource base of Ti-Zr. Studied titanium-zirconium deposits of Stavropol region may become the basis for the south part of Russia. At first, Beshpagirsky deposit should be pointed out. It has large reserves of ore sands with high content of Ti-Zr. A combination of favorable geographical position of the area with developed industrial infrastructure makes it very beneficial as an object for high priority development. Gofitsky deposit should be pointed out as well. Its sands have a wide areal distribution and a high content of titanium and zirconium. Chokrak, Karagan-Konksk and Sarmatian sediments of the Miocene of Gofitsky deposit are productive for titanium and zirconium placers within Stavropol region of Russia. Gofitsky deposit was evaluated from financial and economic point of view and the following data

  18. Highly Efficient Catalysis of Azo Dyes Using Recyclable Silver Nanoparticles Immobilized on Tannic Acid-Grafted Eggshell Membrane

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojing; Liang, Miao; Liu, Mingyue; Su, Rongxin; Wang, Mengfan; Qi, Wei; He, Zhimin

    2016-10-01

    In this study, a facile one-step synthesis of a novel nanocomposite catalytic film was developed based on silver nanoparticles (AgNPs) immobilized in tannic acid-modified eggshell membrane (Tan-ESM). Tannic acid, as a typical plant polyphenol from oak wood, was first grafted onto ESM fibers to serve as both the reductant and the stabilizer during the synthesis of AgNPs. The morphology, constitution, and thermal stability of the resulting AgNPs@Tan-ESM composites were fully characterized to explain the excellent catalytic efficiency of AgNPs@Tan-ESM composites. These composite catalysts were applied to the degradation of azo dyes which exhibited the high catalytic activity toward Congo red and methyl orange according to the kinetic curves. More importantly, they can be easily recovered and reused for many times because of their good stability.

  19. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.; Mitra, Robi D.

    2010-08-31

    Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.

  20. Immobilization of laccase on a novel ZnO/SiO2 nano-composited support for dye decolorization

    NASA Astrophysics Data System (ADS)

    Li, Wei-Xun; Sun, Huai-Yan; Zhang, Rui-Feng

    2015-07-01

    ZnO nanowires were introduced into macroporous SiO2 by means of in situ hydrothermal growth. The obtained nano-composite was then used to immobilize laccase (secured from Trametes versicolor) through the process of static adsorption. The average loading amount was as high as 193.4 μmol-g-1. The immobilized laccase was proven to be an effective biocatalyst in the decolorization of two dyes: Remazol Brilliant Blue B, and Acid Blue 25. The decolorization percentage of Remazol Brilliant Blue B and Acid Blue 25 reached 93% and 82% respectively. The immobilized laccase exhibited enhanced thermal stability and pH adaptability compared to free laccase. After ten recycles, the immobilized laccase retained 42% decolorization catalytic activity.