Science.gov

Sample records for acid-induced epileptic seizures

  1. Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1β and brain-derived neurotrophic factor.

    PubMed

    Ho, Tin-Yun; Tang, Nou-Ying; Hsiang, Chien-Yun; Hsieh, Ching-Liang

    2014-05-15

    Uncaria rhynchophylla (UR) has been used for the treatment of convulsions and epilepsy in traditional Chinese medicine. This study reported the major anti-convulsive signaling pathways and effective targets of UR and rhynchophylline (RP) using genomic and immunohistochemical studies. Epileptic seizure model was established by intraperitoneal injection of kainic acid (KA) in rats. Electroencephalogram and electromyogram recordings indicated that UR and RP improved KA-induced epileptic seizures. Toll-like receptor (TLR) and neurotrophin signaling pathways were regulated by UR in both cortex and hippocampus of KA-treated rats. KA upregulated the expression levels of interleukin-1β (IL-1β) and brain-derived neurotrophin factor (BDNF), which were involved in TLR and neurotrophin signaling pathways, respectively. However, UR and RP downregulated the KA-induced IL-1β and BDNF gene expressions. Our findings suggested that UR and RP exhibited anti-convulsive effects in KA-induced rats via the regulation of TLR and neurotrophin signaling pathways, and the subsequent inhibition of IL-1β and BDNF gene expressions. PMID:24636743

  2. Predicting Epileptic Seizures in Advance

    PubMed Central

    Moghim, Negin; Corne, David W.

    2014-01-01

    Epilepsy is the second most common neurological disorder, affecting 0.6–0.8% of the world's population. In this neurological disorder, abnormal activity of the brain causes seizures, the nature of which tend to be sudden. Antiepileptic Drugs (AEDs) are used as long-term therapeutic solutions that control the condition. Of those treated with AEDs, 35% become resistant to medication. The unpredictable nature of seizures poses risks for the individual with epilepsy. It is clearly desirable to find more effective ways of preventing seizures for such patients. The automatic detection of oncoming seizures, before their actual onset, can facilitate timely intervention and hence minimize these risks. In addition, advance prediction of seizures can enrich our understanding of the epileptic brain. In this study, drawing on the body of work behind automatic seizure detection and prediction from digitised Invasive Electroencephalography (EEG) data, a prediction algorithm, ASPPR (Advance Seizure Prediction via Pre-ictal Relabeling), is described. ASPPR facilitates the learning of predictive models targeted at recognizing patterns in EEG activity that are in a specific time window in advance of a seizure. It then exploits advanced machine learning coupled with the design and selection of appropriate features from EEG signals. Results, from evaluating ASPPR independently on 21 different patients, suggest that seizures for many patients can be predicted up to 20 minutes in advance of their onset. Compared to benchmark performance represented by a mean S1-Score (harmonic mean of Sensitivity and Specificity) of 90.6% for predicting seizure onset between 0 and 5 minutes in advance, ASPPR achieves mean S1-Scores of: 96.30% for prediction between 1 and 6 minutes in advance, 96.13% for prediction between 8 and 13 minutes in advance, 94.5% for prediction between 14 and 19 minutes in advance, and 94.2% for prediction between 20 and 25 minutes in advance. PMID:24911316

  3. Stimulation of Anterior Thalamic Nuclei Protects Against Seizures and Neuronal Apoptosis in Hippocampal CA3 Region of Kainic Acid-induced Epileptic Rats

    PubMed Central

    Meng, Da-Wei; Liu, Huan-Guang; Yang, An-Chao; Zhang, Kai; Zhang, Jian-Guo

    2016-01-01

    Background: The antiepileptic effect of the anterior thalamic nuclei (ANT) stimulation has been demonstrated; however, its underlying mechanism remains unclear. The aim of this study was to investigate the effect of chronic ANT stimulation on hippocampal neuron loss and apoptosis. Methods: Sixty-four rats were divided into four groups: The control group, the kainic acid (KA) group, the sham-deep brain stimulation (DBS) group, and the DBS group. KA was used to induce epilepsy. Seizure count and latency to the first spontaneous seizures were calculated. Nissl staining was used to analyze hippocampal neuronal loss. Polymerase chain reaction and Western blotting were conducted to assess the expression of caspase-3 (Casp3), B-cell lymphoma-2 (Bcl2), and Bcl2-associated X protein (Bax) in the hippocampal CA3 region. One-way analysis of variance was used to determine the differences between the four groups. Results: The latency to the first spontaneous seizures in the DBS group was significantly longer than that in the KA group (27.50 ± 8.05 vs. 16.38 ± 7.25 days, P = 0.0005). The total seizure number in the DBS group was also significantly reduced (DBS vs. KA group: 11.75 ± 6.80 vs. 23.25 ± 7.72, P = 0.0002). Chronic ANT-DBS reduced neuronal loss in the hippocampal CA3 region (DBS vs. KA group: 23.58 ± 6.34 vs. 13.13 ± 4.00, P = 0.0012). After chronic DBS, the relative mRNA expression level of Casp3 was decreased (DBS vs. KA group: 1.18 ± 0.37 vs. 2.09 ± 0.46, P = 0.0003), and the relative mRNA expression level of Bcl2 was increased (DBS vs. KA group: 0.92 ± 0.21 vs. 0.48 ± 0.16, P = 0.0004). The protein expression levels of CASP3 (DBS vs. KA group: 1.25 ± 0.26 vs. 2.49 ± 0.38, P < 0.0001) and BAX (DBS vs. KA group: 1.57 ± 0.49 vs. 2.80 ± 0.63, P = 0.0012) both declined in the DBS group whereas the protein expression level of BCL2 (DBS vs. KA group: 0.78 ± 0.32 vs. 0.36 ± 0.17, P = 0.0086) increased in the DBS group. Conclusions: This study demonstrated

  4. Ambroxol-induced focal epileptic seizure.

    PubMed

    Lapenta, Leonardo; Morano, Alessandra; Fattouch, Jinane; Casciato, Sara; Fanella, Martina; Giallonardo, Anna Teresa; Di Bonaventura, Carlo

    2014-01-01

    It is well known that in epileptic patients some compounds and different drugs used for the treatment of comorbidities can facilitate or provoke seizures, this evidence regarding a wide spectrum of pharmacological categories. The potential facilitating factors usually include direct toxic effects or pharmacological interactions of either active ingredients or excipients. We report the case of a patient with drug-resistant epilepsy who experienced focal epileptic seizures, easily and constantly reproducible, after each administration of a cough syrup. This is, to our knowledge, the first electroencephalogram-documented case of focal epileptic seizures induced by cough syrup containing ambroxol as active ingredient. PMID:24824664

  5. Localizing epileptic seizure onsets with Granger causality

    NASA Astrophysics Data System (ADS)

    Adhikari, Bhim M.; Epstein, Charles M.; Dhamala, Mukesh

    2013-09-01

    Accurate localization of the epileptic seizure onset zones (SOZs) is crucial for successful surgery, which usually depends on the information obtained from intracranial electroencephalography (IEEG) recordings. The visual criteria and univariate methods of analyzing IEEG recordings have not always produced clarity on the SOZs for resection and ultimate seizure freedom for patients. Here, to contribute to improving the localization of the SOZs and to understanding the mechanism of seizure propagation over the brain, we applied spectral interdependency methods to IEEG time series recorded from patients during seizures. We found that the high-frequency (>80 Hz) Granger causality (GC) occurs before the onset of any visible ictal activity and causal relationships involve the recording electrodes where clinically identifiable seizures later develop. These results suggest that high-frequency oscillatory network activities precede and underlie epileptic seizures, and that GC spectral measures derived from IEEG can assist in precise delineation of seizure onset times and SOZs.

  6. Analysis of epileptic seizures with complex network.

    PubMed

    Ni, Yan; Wang, Yinghua; Yu, Tao; Li, Xiaoli

    2014-01-01

    Epilepsy is a disease of abnormal neural activities involving large area of brain networks. Until now the nature of functional brain network associated with epilepsy is still unclear. Recent researches indicate that the small world or scale-free attributes and the occurrence of highly clustered connection patterns could represent a general organizational principle in the human brain functional network. In this paper, we seek to find whether the small world or scale-free property of brain network is correlated with epilepsy seizure formation. A mass neural model was adopted to generate multiple channel EEG recordings based on regular, small world, random, and scale-free network models. Whether the connection patterns of cortical networks are directly associated with the epileptic seizures was investigated. The results showed that small world and scale-free cortical networks are highly correlated with the occurrence of epileptic seizures. In particular, the property of small world network is more significant during the epileptic seizures. PMID:25147576

  7. Okadaic acid induces epileptic seizures and hyperphosphorylation of the NR2B subunit of the NMDA receptor in rat hippocampus in vivo.

    PubMed

    Arias, Clorinda; Montiel, Teresa; Peña, Fernando; Ferrera, Patricia; Tapia, Ricardo

    2002-09-01

    Overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors is closely related to epilepsy and excitotoxicity, and the phosphorylation of these receptors may facilitate glutamate-mediated synaptic transmission. Here we show that in awake rats the microinjection into the hippocampus of okadaic acid, a potent inhibitor of protein phosphatases 1 and 2A, induces in about 20 min intense electroencephalographic and behavioral limbic-type seizures, which are suppressed by the systemic administration of the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo-[a,d]cyclohepten-5,10-imine hydrogen maleate and by the intrahippocampal administration of 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, an inhibitor of protein kinases. Two hours after okadaic acid, when the EEG seizures were intense, an increased serine phosphorylation of some hippocampal proteins, including an enhancement of the serine phosphorylation of the NMDA receptor subunit NR2B, was detected by immunoblotting. Twenty-four hours after okadaic acid a marked destruction of hippocampal CA1 region was observed, which was not prevented by the receptor antagonists. These findings suggest that hyperphosphorylation of glutamate receptors in vivo may result in an increased sensitivity to the endogenous transmitter and therefore induce neuronal hyperexcitability and epilepsy. PMID:12429230

  8. Nonlinear analysis of EEG for epileptic seizures

    SciTech Connect

    Hively, L.M.; Clapp, N.E.; Daw, C.S.; Lawkins, W.F.; Eisenstadt, M.L.

    1995-04-01

    We apply chaotic time series analysis (CTSA) to human electroencephalogram (EEG) data. Three epoches were examined: epileptic seizure, non-seizure, and transition from non-seizure to seizure. The CTSA tools were applied to four forms of these data: raw EEG data (e-data), artifact data (f-data) via application of a quadratic zero-phase filter of the raw data, artifact-filtered data (g- data) and that was the residual after subtracting f-data from e-data, and a low-pass-filtered version (h-data) of g-data. Two different seizures were analyzed for the same patient. Several nonlinear measures uniquely indicate an epileptic seizure in both cases, including an abrupt decrease in the time per wave cycle in f-data, an abrupt increase in the Kolmogorov entropy and in the correlation dimension for e-h data, and an abrupt increase in the correlation dimension for e-h data. The transition from normal to seizure state also is characterized by distinctly different trends in the nonlinear measures for each seizure and may be potential seizure predictors for this patient. Surrogate analysis of e-data shows that statistically significant nonlinear structure is present during the non-seizure, transition , and seizure epoches.

  9. Psychogenic non-epileptic seizures (PNES).

    PubMed

    Hingray, C; Biberon, J; El-Hage, W; de Toffol, B

    2016-01-01

    Psychogenic non-epileptic seizures (PNES) are defined as change in behavior or consciousness resembling epileptic seizures but which have a psychological origin. PNES are categorized as a manifestation of dissociative or somatoform (conversion) disorders. Video-EEG recording of an event is the gold standard for diagnosis. PNES represent a symptom, not the underlying disease and the mechanism of dissociation is pivotal in the pathophysiology. Predisposing, precipitating and perpetuating factors should be carefully assessed on a case-by-case basis. The process of communicating the diagnosis using a multidisciplinary approach is an important and effective therapeutic step. PMID:27117433

  10. The diagnosis of psychogenic non-epileptic seizures: a review.

    PubMed

    Kuyk, J; Leijten, F; Meinardi, H; Spinhoven; Van Dyck, R

    1997-08-01

    Diagnosing psychogenic non-epileptic seizures (PNES) is a clinical challenge. There is neither a standard in diagnosing PNES nor a comprehensive theoretical framework for this type of seizure. The diagnosis of PNES must be made by excluding epilepsy. However, epilepsy cannot always be determined and PNES and epileptic seizures may coexist. In this study, the characteristics of PNES and patients are discussed. The diagnosis of PNES and epileptic seizures was facilitated by the simultaneous recording of seizures on video tape and EEG. Seizure provoking techniques, hormonal indices, and psychological methods were also used. The benefits and limitations of these techniques are discussed and proposals are made for clinical guidelines. PMID:9304716

  11. Cerebrospinal fluid findings after epileptic seizures.

    PubMed

    Chatzikonstantinou, Anastasios; Ebert, Anne D; Hennerici, Michael G

    2015-12-01

    We aimed to evaluate ictally-induced CSF parameter changes after seizures in adult patients without acute inflammatory diseases or infectious diseases associated with the central nervous system. In total, 151 patients were included in the study. All patients were admitted to our department of neurology following acute seizures and received an extensive work-up including EEG, cerebral imaging, and CSF examinations. CSF protein elevation was found in most patients (92; 60.9%) and was significantly associated with older age, male sex, and generalized seizures. Abnormal CSF-to-serum glucose ratio was found in only nine patients (5.9%) and did not show any significant associations. CSF lactate was elevated in 34 patients (22.5%) and showed a significant association with focal seizures with impaired consciousness, status epilepticus, the presence of EEG abnormalities in general and epileptiform potentials in particular, as well as epileptogenic lesions on cerebral imaging. Our results indicate that non-inflammatory CSF elevation of protein and lactate after epileptic seizures is relatively common, in contrast to changes in CSF-to-serum glucose ratio, and further suggest that these changes are caused by ictal activity and are related to seizure type and intensity. We found no indication that these changes may have further-reaching pathological implications besides their postictal character. PMID:26575850

  12. Epileptic Seizure Detection and Warning Device

    SciTech Connect

    Elarton, J.K.; Koepsel, K.L.

    1999-06-21

    Flint Hills Scientific, L.L.C. (FHS) has invented what is believed to be the first real-time epileptic seizure detection and short-term prediction method in the world. They have demonstrated an IBM PC prototype with a multi-channel EEG monitoring configuration. This CRADA effort applied AlliedSignal FM and T hardware design, manufacturing miniaturization, and high quality manufacturing expertise in converting the prototype into a small, portable, self-contained, multi-channel EEG epileptic seizure detection and warning device. The purpose of this project was to design and build a proof-of-concept miniaturized prototype of the FHS-developed PC-based prototype. The resultant DSP prototype, measuring 4'' x 6'' x 2'', seizure detection performance compared favorably with the FHS PC prototype, thus validating the DSP design goals. The very successful completion of this project provided valuable engineering information for FHS for future prototype commercialization as well as providing AS/FM and T engineers DSP design experience.

  13. Emergence of semiology in epileptic seizures.

    PubMed

    Chauvel, Patrick; McGonigal, Aileen

    2014-09-01

    Semiology, the manifestation of epilepsy, is dependent upon electrical activity produced by epileptic seizures that are organized within existing neural pathways. Clinical signs evolve as the epileptic discharge spreads in both time and space. Studying the relation between these, of which the temporal component is at least as important as the spatial one, is possible using anatomo-electro-clinical correlations of stereoelectroencephalography (SEEG) data. The period of semiology production occurs with variable time lag after seizure onset and signs then emerge more or less rapidly depending on seizure type (temporal seizures generally propagating more slowly and frontal seizures more quickly). The subset of structures involved in semiological production, the "early spread network", is tightly linked to those constituting the epileptogenic zone. The level of complexity of semiological features varies according to the degree of involvement of the primary or associative cortex, with the former having a direct relation to peripheral sensory and motor systems with production of hallucinations (visual and auditory) or elementary sensorimotor signs. Depending on propagation pattern, these signs can occur in a "march" fashion as described by Jackson. On the other hand, seizures involving the associative cortex, having a less direct relation with the peripheral nervous system, and necessarily involving more widely distributed networks manifest with altered cognitive and/or behavioral signs whose neural substrate involves a network of cortical structures, as has been observed for normal cognitive processes. Other than the anatomical localization of these structures, the frequency of the discharge is a crucial determinant of semiological effect since a fast (gamma) discharge will tend to deactivate normal function, whereas a slower theta discharge can mimic physiological function. In terms of interaction between structures, the degree of synchronization plays a key role in

  14. [Intracranial tumors and epileptic seizures: treatment principles].

    PubMed

    Rossetti, Andrea O; Vulliémoz, Serge

    2016-04-27

    Epileptic seizures represent a relatively frequent issue in patients with intracranial neoplasms, and very frequently imply the start of an antiepileptic treatment as secondary prophylaxis. Even if the current level of evidence is relatively low, compounds with a limited risk of pharmacokinetic interactions are clearly preferred. Levetiracetam is probably the most prescribed agent in this setting, while pregabalin, valproate, lacosamide and lamotrigine are valuable alternatives. The treatment choice has to consider the different profiles of side effects and should be tailored to each patient. In this setting, a multidisciplinary approach including general practicioner, oncologist and neurologist is strongly advocated. PMID:27281943

  15. Epileptic Seizure Forewarning by Nonlinear Techniques

    SciTech Connect

    Hively, LM

    2001-02-05

    Nicolet Biomedical Inc. (NBI) is collaborating with Oak Ridge National Laboratory (ORNL) under a Cooperative Research and Development Agreement (CRADA) to convert ORNL.s patented technology for forewarning of epileptic seizures to a clinical prototype. This technical report describes the highlights of the first year.s effort. The software requirements for the clinical device were specified from which the hardware specifications were obtained. ORNL's research-class FORTRAN was converted to run under a graphical user interface (GUI) that was custom-built for this application by NBI. The resulting software package was cloned to desktop computers that are being tested in five different clinical sites. Two hundred electroencephalogram (EEG) datasets from those clinical sites were provided to ORNL for detailed analysis and improvement of the forewarning methodology. Effort under this CRADA is continuing into the second year as planned.

  16. γ-Hydroxybutyric Acid-Induced Electrographic Seizures

    PubMed Central

    Cheung, Joseph; Lucey, Brendan P.; Duntley, Stephen P.; Darken, Rachel S.

    2014-01-01

    We describe a case of absence-like electrographic seizures during NREM sleep in a patient who was taking sodium oxybate, a sodium salt of γ-hydroxybutyric acid (GHB). An overnight full montage electroencephalography (EEG) study revealed numerous frontally predominant rhythmic 1.5-2 Hz sharp waves and spike-wave activity during stage N2 and N3 sleep at the peak dose time for sodium oxybate, resembling atypical absence-like electrographic seizures. The patient was later weaned off sodium oxybate, and a repeat study did not show any such electrographic seizures. Absence-like seizures induced by GHB had previously been described in experimental animal models. We present the first reported human case of absence-like electrographic seizure associated with sodium oxybate. Citation: Cheung J, Lucey BP, Duntley SP, Darken RS. γ-hydroxybutyric acid-induced electrographic seizures. J Clin Sleep Med 2014;10(7):811-812. PMID:25024661

  17. Block term decomposition for modelling epileptic seizures

    NASA Astrophysics Data System (ADS)

    Hunyadi, Borbála; Camps, Daan; Sorber, Laurent; Paesschen, Wim Van; Vos, Maarten De; Huffel, Sabine Van; Lathauwer, Lieven De

    2014-12-01

    Recordings of neural activity, such as EEG, are an inherent mixture of different ongoing brain processes as well as artefacts and are typically characterised by low signal-to-noise ratio. Moreover, EEG datasets are often inherently multidimensional, comprising information in time, along different channels, subjects, trials, etc. Additional information may be conveyed by expanding the signal into even more dimensions, e.g. incorporating spectral features applying wavelet transform. The underlying sources might show differences in each of these modes. Therefore, tensor-based blind source separation techniques which can extract the sources of interest from such multiway arrays, simultaneously exploiting the signal characteristics in all dimensions, have gained increasing interest. Canonical polyadic decomposition (CPD) has been successfully used to extract epileptic seizure activity from wavelet-transformed EEG data (Bioinformatics 23(13):i10-i18, 2007; NeuroImage 37:844-854, 2007), where each source is described by a rank-1 tensor, i.e. by the combination of one particular temporal, spectral and spatial signature. However, in certain scenarios, where the seizure pattern is nonstationary, such a trilinear signal model is insufficient. Here, we present the application of a recently introduced technique, called block term decomposition (BTD) to separate EEG tensors into rank- ( L r , L r ,1) terms, allowing to model more variability in the data than what would be possible with CPD. In a simulation study, we investigate the robustness of BTD against noise and different choices of model parameters. Furthermore, we show various real EEG recordings where BTD outperforms CPD in capturing complex seizure characteristics.

  18. Quadriplegia Following Epileptic Seizure : Things to Keep in Mind

    PubMed Central

    Yeşilbudak, Zülal; Şişman, Lokman; Uca, Ali Ulvi

    2016-01-01

    People with epilepsy are believed to be at a higher risk of incurring accidental injury than people who do not have seizures. The incidence of injury, either due to seizure or accident as a consequent of seizure is also high and varies from 0.03% to 3%. The most common injuries are head contusions, lacerations, burns and fractures. In this article, we present a case of quadriplegia after a generalized epileptic seizure. PMID:27226869

  19. Quadriplegia Following Epileptic Seizure : Things to Keep in Mind.

    PubMed

    Kozak, Hasan Hüseyin; Yeşilbudak, Zülal; Şişman, Lokman; Uca, Ali Ulvi

    2016-05-01

    People with epilepsy are believed to be at a higher risk of incurring accidental injury than people who do not have seizures. The incidence of injury, either due to seizure or accident as a consequent of seizure is also high and varies from 0.03% to 3%. The most common injuries are head contusions, lacerations, burns and fractures. In this article, we present a case of quadriplegia after a generalized epileptic seizure. PMID:27226869

  20. Evolving functional network properties and synchronizability during human epileptic seizures

    NASA Astrophysics Data System (ADS)

    Schindler, Kaspar A.; Bialonski, Stephan; Horstmann, Marie-Therese; Elger, Christian E.; Lehnertz, Klaus

    2008-09-01

    We assess electrical brain dynamics before, during, and after 100 human epileptic seizures with different anatomical onset locations by statistical and spectral properties of functionally defined networks. We observe a concave-like temporal evolution of characteristic path length and cluster coefficient indicative of a movement from a more random toward a more regular and then back toward a more random functional topology. Surprisingly, synchronizability was significantly decreased during the seizure state but increased already prior to seizure end. Our findings underline the high relevance of studying complex systems from the viewpoint of complex networks, which may help to gain deeper insights into the complicated dynamics underlying epileptic seizures.

  1. A Novel Dynamic Update Framework for Epileptic Seizure Prediction

    PubMed Central

    Wang, Minghui; Hong, Xiaojun; Han, Jie

    2014-01-01

    Epileptic seizure prediction is a difficult problem in clinical applications, and it has the potential to significantly improve the patients' daily lives whose seizures cannot be controlled by either drugs or surgery. However, most current studies of epileptic seizure prediction focus on high sensitivity and low false-positive rate only and lack the flexibility for a variety of epileptic seizures and patients' physical conditions. Therefore, a novel dynamic update framework for epileptic seizure prediction is proposed in this paper. In this framework, two basic sample pools are constructed and updated dynamically. Furthermore, the prediction model can be updated to be the most appropriate one for the prediction of seizures' arrival. Mahalanobis distance is introduced in this part to solve the problem of side information, measuring the distance between two data sets. In addition, a multichannel feature extraction method based on Hilbert-Huang transform and extreme learning machine is utilized to extract the features of a patient's preseizure state against the normal state. At last, a dynamic update epileptic seizure prediction system is built up. Simulations on Freiburg database show that the proposed system has a better performance than the one without update. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices. PMID:25050381

  2. A novel dynamic update framework for epileptic seizure prediction.

    PubMed

    Han, Min; Ge, Sunan; Wang, Minghui; Hong, Xiaojun; Han, Jie

    2014-01-01

    Epileptic seizure prediction is a difficult problem in clinical applications, and it has the potential to significantly improve the patients' daily lives whose seizures cannot be controlled by either drugs or surgery. However, most current studies of epileptic seizure prediction focus on high sensitivity and low false-positive rate only and lack the flexibility for a variety of epileptic seizures and patients' physical conditions. Therefore, a novel dynamic update framework for epileptic seizure prediction is proposed in this paper. In this framework, two basic sample pools are constructed and updated dynamically. Furthermore, the prediction model can be updated to be the most appropriate one for the prediction of seizures' arrival. Mahalanobis distance is introduced in this part to solve the problem of side information, measuring the distance between two data sets. In addition, a multichannel feature extraction method based on Hilbert-Huang transform and extreme learning machine is utilized to extract the features of a patient's preseizure state against the normal state. At last, a dynamic update epileptic seizure prediction system is built up. Simulations on Freiburg database show that the proposed system has a better performance than the one without update. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices. PMID:25050381

  3. Asynchronous electrical activity in epileptic seizures

    NASA Astrophysics Data System (ADS)

    Holman, Katherine; Lim, Eugene; Gliske, Stephen; Stacey, William; Fink, Christian

    High-frequency oscillations (HFOs) have been postulated to be potential biomarkers for focal epileptic seizures, with fast ripples (>250 Hz) as the most interesting candidate. The mechanisms underlying the generation of fast ripples, however, are not well understood. In this study, we draw upon results from previous computational studies on HFOs to develop a new mathematical model from first principles describing the generation of HFOs through asynchronous neuronal firing. Asynchrony in the model is obtained with the introduction of two parameters of heterogeneity: variability in the inter-spike interval (ISI) and jitter. The model predicts the generation of harmonic narrow-band oscillations if the heterogeneity-governing parameters do not differ from the predefined ISI by more than 20%. Comparisons against results from a separately constructed computational model verify the accuracy of the model in study. These results provide us with a rigorous framework in which we may investigate the mechanisms driving the generation of abnormal HFOs, and may serve as groundwork for future research in epileptogenesis. Nsf Grant 1003992, Ohio Wesleyan University SSRP.

  4. A new approach towards predictability of epileptic seizures: KLT dimension.

    PubMed

    Venugopal, Rajeshkumar; Narayanan, K; Prasad, Awadhesh; Spanias, A; Sackellares, J C; Iasemidis, L D

    2003-01-01

    This paper proposes a measure of complexity of the epileptic electroencephalogram (EEG) based on the dimensionality of the Karhunen-Loeve Transform (KLT) in the time domain. We estimate the KLT dimensionality by assuming the same observation noise level in the EEG during the interictal period (between the seizures) as the one during an epileptic seizure (ictal period). Utilizing an optimality criterion based on the T-index [1] and the predictability time, derived from the created KLT dimensionality profiles, we show that 10 out of 15 seizures in one patient with temporal lobe epilepsy were predictable with an average predictability time of about 36 minutes. PMID:12724880

  5. Epileptic seizure prediction by non-linear methods

    SciTech Connect

    Hively, L.M.; Clapp, N.E.; Day, C.S.; Lawkins, W.F.

    1999-01-12

    This research discloses methods and apparatus for automatically predicting epileptic seizures monitor and analyze brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis tools; obtaining time serial trends in the nonlinear measures; comparison of the trend to known seizure predictors; and providing notification that a seizure is forthcoming. 76 figs.

  6. Epileptic seizure prediction by non-linear methods

    DOEpatents

    Hively, Lee M.; Clapp, Ned E.; Daw, C. Stuart; Lawkins, William F.

    1999-01-01

    Methods and apparatus for automatically predicting epileptic seizures monitor and analyze brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis tools; obtaining time serial trends in the nonlinear measures; comparison of the trend to known seizure predictors; and providing notification that a seizure is forthcoming.

  7. A novel genetic programming approach for epileptic seizure detection.

    PubMed

    Bhardwaj, Arpit; Tiwari, Aruna; Krishna, Ramesh; Varma, Vishaal

    2016-02-01

    The human brain is a delicate mix of neurons (brain cells), electrical impulses and chemicals, known as neurotransmitters. Any damage has the potential to disrupt the workings of the brain and cause seizures. These epileptic seizures are the manifestations of epilepsy. The electroencephalograph (EEG) signals register average neuronal activity from the cerebral cortex and label changes in activity over large areas. A detailed analysis of these electroencephalograph (EEG) signals provides valuable insights into the mechanisms instigating epileptic disorders. Moreover, the detection of interictal spikes and epileptic seizures in an EEG signal plays an important role in the diagnosis of epilepsy. Automatic seizure detection methods are required, as these epileptic seizures are volatile and unpredictable. This paper deals with an automated detection of epileptic seizures in EEG signals using empirical mode decomposition (EMD) for feature extraction and proposes a novel genetic programming (GP) approach for classifying the EEG signals. Improvements in the standard GP approach are made using a Constructive Genetic Programming (CGP) in which constructive crossover and constructive subtree mutation operators are introduced. A hill climbing search is integrated in crossover and mutation operators to remove the destructive nature of these operators. A new concept of selecting the Globally Prime offspring is also presented to select the best fitness offspring generated during crossover. To decrease the time complexity of GP, a new dynamic fitness value computation (DFVC) is employed to increase the computational speed. We conducted five different sets of experiments to evaluate the performance of the proposed model in the classification of different mixtures of normal, interictal and ictal signals, and the accuracies achieved are outstandingly high. The experimental results are compared with the existing methods on same datasets, and these results affirm the potential use of

  8. Assortative mixing in functional brain networks during epileptic seizures

    NASA Astrophysics Data System (ADS)

    Bialonski, Stephan; Lehnertz, Klaus

    2013-09-01

    We investigate assortativity of functional brain networks before, during, and after one-hundred epileptic seizures with different anatomical onset locations. We construct binary functional networks from multi-channel electroencephalographic data recorded from 60 epilepsy patients; and from time-resolved estimates of the assortativity coefficient, we conclude that positive degree-degree correlations are inherent to seizure dynamics. While seizures evolve, an increasing assortativity indicates a segregation of the underlying functional network into groups of brain regions that are only sparsely interconnected, if at all. Interestingly, assortativity decreases already prior to seizure end. Together with previous observations of characteristic temporal evolutions of global statistical properties and synchronizability of epileptic brain networks, our findings may help to gain deeper insights into the complicated dynamics underlying generation, propagation, and termination of seizures.

  9. Neurogenesis in a young dog with epileptic seizures.

    PubMed

    Borschensky, C M; Woolley, J S; Kipar, A; Herden, C

    2012-09-01

    Epileptic seizures can lead to various reactions in the brain, ranging from neuronal necrosis and glial cell activation to focal structural disorganization. Furthermore, increased hippocampal neurogenesis has been documented in rodent models of acute convulsions. This is a report of hippocampal neurogenesis in a dog with spontaneous epileptic seizures. A 16-week-old epileptic German Shepherd Dog had marked neuronal cell proliferation (up to 5 mitotic figures per high-power field and increased immunohistochemical expression of proliferative cell nuclear antigen) in the dentate gyrus accompanied by microglial and astroglial activation. Some granule cells expressed doublecortin, a marker of immature neurons; mitotically active cells expressed neuronal nuclear antigen. No mitotic figures were found in the brain of age-matched control dogs. Whether increased neurogenesis represents a general reaction pattern of young epileptic dogs should be investigated. PMID:22194355

  10. Epileptic encephalopathies: Optimizing seizure control and developmental outcome.

    PubMed

    Jehi, Lara; Wyllie, Elaine; Devinsky, Orrin

    2015-10-01

    Cognitive and developmental outcomes in patients with epileptic encephalopathy are hypothesized to result from an interplay between the underlying epileptic pathologic substrate and the acquired consequences of frequent and repetitive seizures and epileptiform discharges that often straddle the interictal and ictal boundaries. This article briefly reviews the evidence related to this assumption, presents critical questions that need to be answered to clarify this relationship, and advances a set of concrete steps that may help improve developmental patient outcomes. PMID:26293588

  11. Self-control of epileptic seizures by nonpharmacological strategies.

    PubMed

    Kotwas, Iliana; McGonigal, Aileen; Trebuchon, Agnès; Bastien-Toniazzo, Mireille; Nagai, Yoko; Bartolomei, Fabrice; Micoulaud-Franchi, Jean-Arthur

    2016-02-01

    Despite the unpredictability of epileptic seizures, many patients report that they can anticipate seizure occurrence. Using certain alert symptoms (i.e., auras, prodromes, precipitant factors), patients can adopt behaviors to avoid injury during and after the seizure or may implement spontaneous cognitive and emotional strategies to try to control the seizure itself. From the patient's view point, potential means of enhancing seizure prediction and developing seizure control supports are seen as very important issues, especially when the epilepsy is drug-resistant. In this review, we first describe how some patients anticipate their seizures and whether this is effective in terms of seizure prediction. Secondly, we examine how these anticipatory elements might help patients to prevent or control their seizures and how the patient's neuropsychological profile, specifically parameters of perceived self-control (PSC) and locus of control (LOC), might impact these strategies and quality of life (QOL). Thirdly, we review the external supports that can help patients to better predict seizures. Finally, we look at nonpharmacological means of increasing perceived self-control and achieving potential reduction of seizure frequency (i.e., stress-based and arousal-based strategies). In the past few years, various approaches for detection and control of seizures have gained greater interest, but more research is needed to confirm a positive effect on seizure frequency as well as on QOL. PMID:26780213

  12. Canine and feline epileptic seizures and the lunar cycle: 2,507 seizures (2000-2008).

    PubMed

    Browand-Stainback, Laura; Levesque, Donald; McBee, Matthew

    2011-01-01

    Epileptic seizures in 211 canine and feline patients diagnosed with idiopathic epilepsy were evaluated for temporal significance in relation to the lunar cycle. Seizure counts were compared among each of the eight individual lunar phases, among each of eight exact lunar phase dates, and by percent of lunar illumination using generalized estimating equations. No statistical significance was found in any of these comparisons excluding a relationship between the onset of epileptic seizures and the phases of the moon. Alteration in anticonvulsant treatment or monitoring of canine and feline patients with idiopathic epilepsy at large was not warranted based on the lunar cycle. PMID:21852516

  13. Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity.

    PubMed

    Karoly, Philippa J; Freestone, Dean R; Boston, Ray; Grayden, David B; Himes, David; Leyde, Kent; Seneviratne, Udaya; Berkovic, Samuel; O'Brien, Terence; Cook, Mark J

    2016-04-01

    We report on a quantitative analysis of electrocorticography data from a study that acquired continuous ambulatory recordings in humans over extended periods of time. The objectives were to examine patterns of seizures and spontaneous interictal spikes, their relationship to each other, and the nature of periodic variation. The recorded data were originally acquired for the purpose of seizure prediction, and were subsequently analysed in further detail. A detection algorithm identified potential seizure activity and a template matched filter was used to locate spikes. Seizure events were confirmed manually and classified as either clinically correlated, electroencephalographically identical but not clinically correlated, or subclinical. We found that spike rate was significantly altered prior to seizure in 9 out of 15 subjects. Increased pre-ictal spike rate was linked to improved predictability; however, spike rate was also shown to decrease before seizure (in 6 out of the 9 subjects). The probability distribution of spikes and seizures were notably similar, i.e. at times of high seizure likelihood the probability of epileptic spiking also increased. Both spikes and seizures showed clear evidence of circadian regulation and, for some subjects, there were also longer term patterns visible over weeks to months. Patterns of spike and seizure occurrence were highly subject-specific. The pre-ictal decrease in spike rate is not consistent with spikes promoting seizures. However, the fact that spikes and seizures demonstrate similar probability distributions suggests they are not wholly independent processes. It is possible spikes actively inhibit seizures, or that a decreased spike rate is a secondary symptom of the brain approaching seizure. If spike rate is modulated by common regulatory factors as seizures then spikes may be useful biomarkers of cortical excitability.media-1vid110.1093/brain/aww019_video_abstractaww019_video_abstract. PMID:26912639

  14. Detection of Epileptic Seizure Using Wireless Sensor Networks

    PubMed Central

    Borujeny, Golshan Taheri; Yazdi, Mehran; Keshavarz-Haddad, Alireza; Borujeny, Arash Rafie

    2013-01-01

    The monitoring of epileptic seizures is mainly done by means of electroencephalogram (EEG) monitoring. Although this method is accurate, it is not comfortable for the patient as the EEG-electrodes have to be attached to the scalp which hampers the patient's movement. This makes long-term home monitoring not feasible. In this paper, the aim is to propose a seizure detection system based on accelerometry for the detection of epileptic seizure. The used sensors are wireless, which can improve quality of life for the patients. In this system, three 2D accelerometer sensors are positioned on the right arm, left arm, and left thigh of an epileptic patient. Datasets from three patients suffering from severe epilepsy are used in this paper for the development of an automatic detection algorithm. This monitoring system is based on Wireless Sensor Networks and can determine the location of the patient when a seizure is detected and then send an alarm to hospital staff or the patient's relatives. Our wireless sensor nodes are MICAz Motes developed by Crossbow Technology. The proposed system can be used for patients living in a clinical environment or at their home, where they do only their daily routines. The analysis of the recorded data is done by an Artificial Neural Network and K Nearest-Neighbor to recognize seizure movements from normal movements. The results show that K Nearest Neighbor performs better than Artificial Neural Network for detecting these seizures. The results also show that if at least 50% of the signal consists of seizure samples, we can detect the seizure accurately. In addition, there is no need for training the algorithm for each new patient. PMID:24098859

  15. The quantitative measurement of consciousness during epileptic seizures.

    PubMed

    Nani, Andrea; Cavanna, Andrea E

    2014-01-01

    The assessment of consciousness is a fundamental element in the classification of epileptic seizures. It is, therefore, of great importance for clinical practice to develop instruments that enable an accurate and reliable measurement of the alteration of consciousness during seizures. Over the last few years, three psychometric scales have been specifically proposed to measure ictal consciousness: the Ictal Consciousness Inventory (ICI), the Consciousness Seizure Scale (CSS), and the Responsiveness in Epilepsy Scale--versions I and II (RES-I and RES-II). The ICI is a self-report psychometric instrument which retrospectively assesses ictal consciousness along the dimensions of the level/arousal and contents/awareness. The CSS has been used by clinicians to quantify the impairment of consciousness in order to establish correlations with the brain mechanisms underlying alterations of consciousness during temporal lobe seizures. The most recently developed observer-rated instrument is the RES-I, which has been used to assess responsiveness during epileptic seizures in patients undergoing video-EEG. The implementation of standardized psychometric tools for the assessment of ictal consciousness can complement clinical observations and contribute to improve accuracy in seizure classification. PMID:24113569

  16. [Diagnosis and treatment of non-triggered single epileptic seizures].

    PubMed

    Martinez-Juarez, I E; Moreno, J; Ladino, L D; Castro, N; Hernandez-Vanegas, L; Burneo, J G; Hernandez-Ronquillo, L; Tellez-Zenteno, J F

    2016-08-16

    Epileptic seizures are one of the main reasons for neurological visits in an emergency department. Convulsions represent a traumatic event for the patient and the family, with significant medical and social consequences. Due to their prevalence and impact, the initial management is of vital importance. Although following the first epileptic seizure, early recurrence diminishes after establishing treatment with antiepileptic drugs, the forecast for developing epilepsy and long-term outcomes are not altered by any early intervention. Detailed questioning based on the symptoms of the convulsions, the patient's medical history and a full electroencephalogram and neuroimaging study make it possible to define the risk of recurrence of the seizure and the possible diagnosis of epilepsy. Epileptic abnormalities, the presence of old or new potentially epileptogenic brain lesions, as well as nocturnal seizures, increase the risk of recurrence. Physicians must assess each patient on an individual basis to determine the most suitable treatment, and explain the risk of not being treated versus the risk that exists if treatment with antiepileptic drugs is established. PMID:27439486

  17. Expression of Glypican-4 in the brains of epileptic patients and epileptic animals and its effects on epileptic seizures.

    PubMed

    Xiong, Yan; Zhang, Yanke; Zheng, Fangshuo; Yang, Yong; Xu, Xin; Wang, Wei; Zhu, Binglin; Wang, Xuefeng

    2016-09-01

    Glypican-4 (Gpc4) has been found to play an important role in enhancing miniature excitatory postsynaptic currents (mEPSCs). But, the relationship between Gpc4 and epilepsy is still a mystery. In this study, we investigated the expression patterns of Gpc4 in patients with epilepsy and in a pilocarpine-induced rat model of epilepsy. We also determined if altered Gpc4 expression resulted in increased susceptibility to seizures. Western blotting and immunofluorescent methods were utilized. Gpc4 was significantly increased in patients and epileptic rats induced by pilocarpine injection. According to behavioral studies, downregulation of Gpc4 by Gpc4 siRNA decreased spontaneous seizure frequency, while upregulation of Gpc4 by recombinant Gpc4 overexpression led to a converse result. These findings support the hypothesis that increased expression of Gpc4 in the brain is associated with epileptic seizures. PMID:27425250

  18. Cardiac arrhythmias during or after epileptic seizures

    PubMed Central

    van der Lende, Marije; Surges, Rainer; Sander, Josemir W; Thijs, Roland D

    2016-01-01

    Seizure-related cardiac arrhythmias are frequently reported and have been implicated as potential pathomechanisms of Sudden Unexpected Death in Epilepsy (SUDEP). We attempted to identify clinical profiles associated with various (post)ictal cardiac arrhythmias. We conducted a systematic search from the first date available to July 2013 on the combination of two terms: ‘cardiac arrhythmias’ and ‘epilepsy’. The databases searched were PubMed, Embase (OVID version), Web of Science and COCHRANE Library. We attempted to identify all case reports and case series. We identified seven distinct patterns of (post)ictal cardiac arrhythmias: ictal asystole (103 cases), postictal asystole (13 cases), ictal bradycardia (25 cases), ictal atrioventricular (AV)-conduction block (11 cases), postictal AV-conduction block (2 cases), (post)ictal atrial flutter/atrial fibrillation (14 cases) and postictal ventricular fibrillation (3 cases). Ictal asystole had a mean prevalence of 0.318% (95% CI 0.316% to 0.320%) in people with refractory epilepsy who underwent video-EEG monitoring. Ictal asystole, bradycardia and AV-conduction block were self-limiting in all but one of the cases and seen during focal dyscognitive seizures. Seizure onset was mostly temporal (91%) without consistent lateralisation. Postictal arrhythmias were mostly found following convulsive seizures and often associated with (near) SUDEP. The contrasting clinical profiles of ictal and postictal arrhythmias suggest different pathomechanisms. Postictal rather than ictal arrhythmias seem of greater importance to the pathophysiology of SUDEP. PMID:26038597

  19. On the pathogenesis of epileptic and hysterical seizures

    PubMed Central

    Krapf, E. E.

    1957-01-01

    In discussing the problem of differentiating between epileptic and hysterical seizures, the author maintains that electroencephalographic and psychosomatic research indicates that all “epileptiform” seizures are the outcome of a constant interplay of stress and predisposition in which both these factors are of a polygenetic origin. He points out that behind these reactions manifested in consciousness and motility, there lies a fundamental function of defence and that the nature of the seizures occurring is decided by the level of physiogenic or psychogenic regression which prevails in different cases, and which is to a great extent codetermined by a complementary “inviting” level of physical and psychical subevolution (lack of maturation). He holds that the pathogenesis of “epileptiform” seizures is of a truly psychosomatic nature and that this circumstance should be reflected in the therapeutic approach to these disorders. PMID:13472429

  20. Convulsive Syncope Induced by Ventricular Arrhythmia Masquerading as Epileptic Seizures: Case Report and Literature Review.

    PubMed

    Sabu, John; Regeti, Kalyani; Mallappallil, Mary; Kassotis, John; Islam, Hamidul; Zafar, Shoaib; Khan, Rafay; Ibrahim, Hiyam; Kanta, Romana; Sen, Shuvendu; Yousif, Abdalla; Nai, Qiang

    2016-08-01

    It is important but difficult to distinguish convulsive syncope from epileptic seizure in many patients. We report a case of a man who presented to emergency department after several witnessed seizure-like episodes. He had a previous medical history of systolic heart failure and automated implantable converter defibrillator (AICD) in situ. The differential diagnoses raised were epileptic seizures and convulsive syncope secondary to cardiac arrhythmia. Subsequent AICD interrogation revealed ventricular tachycardia and fibrillation (v-tach/fib). Since convulsive syncope and epileptic seizure share many similar clinical features, early diagnosis is critical for choosing the appropriate management and preventing sudden cardiac death in patients with presumed epileptic seizure. PMID:27429683

  1. Convulsive Syncope Induced by Ventricular Arrhythmia Masquerading as Epileptic Seizures: Case Report and Literature Review

    PubMed Central

    Sabu, John; Regeti, Kalyani; Mallappallil, Mary; Kassotis, John; Islam, Hamidul; Zafar, Shoaib; Khan, Rafay; Ibrahim, Hiyam; Kanta, Romana; Sen, Shuvendu; Yousif, Abdalla; Nai, Qiang

    2016-01-01

    It is important but difficult to distinguish convulsive syncope from epileptic seizure in many patients. We report a case of a man who presented to emergency department after several witnessed seizure-like episodes. He had a previous medical history of systolic heart failure and automated implantable converter defibrillator (AICD) in situ. The differential diagnoses raised were epileptic seizures and convulsive syncope secondary to cardiac arrhythmia. Subsequent AICD interrogation revealed ventricular tachycardia and fibrillation (v-tach/fib). Since convulsive syncope and epileptic seizure share many similar clinical features, early diagnosis is critical for choosing the appropriate management and preventing sudden cardiac death in patients with presumed epileptic seizure. PMID:27429683

  2. Epileptic Seizure Forewarning by Nonlinear Techniques

    SciTech Connect

    Hively, L.M.

    2002-04-19

    This report describes work that was performed under a Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (Contractor) and a commercial participant, VIASYS Healthcare Inc. (formerly Nicolet Biomedical, Inc.). The Contractor has patented technology that forewarns of impending epileptic events via scalp electroencephalograph (EEG) data and successfully demonstrated this technology on 20 datasets from the Participant under pre-CRADA effort. This CRADA sought to bridge the gap between the Contractor's existing research-class software and a prototype medical device for subsequent commercialization by the Participant. The objectives of this CRADA were (1) development of a combination of existing computer hardware and Contractor-patented software into a clinical process for warning of impending epileptic events in human patients, and (2) validation of the epilepsy warning methodology. This work modified the ORNL research-class FORTRAN for forewarning to run under a graphical user interface (GUI). The GUI-FORTRAN software subsequently was installed on desktop computers at five epilepsy monitoring units. The forewarning prototypes have run for more than one year without any hardware or software failures. This work also reported extensive analysis of model and EEG datasets to demonstrate the usefulness of the methodology. However, the Participant recently chose to stop work on the CRADA, due to a change in business priorities. Much work remains to convert the technology into a commercial clinical or ambulatory device for patient use, as discussed in App. H.

  3. Epileptic seizures: Quakes of the brain?

    NASA Astrophysics Data System (ADS)

    Osorio, Ivan; Frei, Mark G.; Sornette, Didier; Milton, John; Lai, Ying-Cheng

    2010-08-01

    A dynamical analogy supported by five scale-free statistics (the Gutenberg-Richter distribution of event sizes, the distribution of interevent intervals, the Omori and inverse Omori laws, and the conditional waiting time until the next event) is shown to exist between two classes of seizures (“focal” in humans and generalized in animals) and earthquakes. Increments in excitatory interneuronal coupling in animals expose the system’s dependence on this parameter and its dynamical transmutability: moderate increases lead to power-law behavior of seizure energy and interevent times, while marked ones to scale-free (power-law) coextensive with characteristic scales and events. The coextensivity of power law and characteristic size regimes is predicted by models of coupled heterogeneous threshold oscillators of relaxation and underscores the role of coupling strength in shaping the dynamics of these systems.

  4. [Portable Epileptic Seizure Monitoring Intelligent System Based on Android System].

    PubMed

    Liang, Zhenhu; Wu, Shufeng; Yang, Chunlin; Jiang, Zhenzhou; Yu, Tao; Lu, Chengbiao; Li, Xiaoli

    2016-02-01

    The clinical electroencephalogram (EEG) monitoring systems based on personal computer system can not meet the requirements of portability and home usage. The epilepsy patients have to be monitored in hospital for an extended period of time, which imposes a heavy burden on hospitals. In the present study, we designed a portable 16-lead networked monitoring system based on the Android smart phone. The system uses some technologies including the active electrode, the WiFi wireless transmission, the multi-scale permutation entropy (MPE) algorithm, the back-propagation (BP) neural network algorithm, etc. Moreover, the software of Android mobile application can realize the processing and analysis of EEG data, the display of EEG waveform and the alarm of epileptic seizure. The system has been tested on the mobile phones with Android 2. 3 operating system or higher version and the results showed that this software ran accurately and steadily in the detection of epileptic seizure. In conclusion, this paper provides a portable and reliable solution for epileptic seizure monitoring in clinical and home applications. PMID:27382736

  5. MMPI-2 profiles: fibromyalgia patients compared to epileptic and non-epileptic seizure patients.

    PubMed

    Johnson, Amy L; Storzbach, Daniel; Binder, Laurence M; Barkhuizen, André; Kent Anger, W; Salinsky, Martin C; Tun, Saw-Myo; Rohlman, Diane S

    2010-02-01

    We compared MMPI-2 profiles of Gulf War veterans with fibromyalgia (FM) to epileptic seizure (ES) patients, psychogenic non-epileptic seizure (PNES) patients, and Gulf War veteran healthy controls. Both PNES and FM are medically unexplained conditions. In previous MMPI-2 research PNES patients were shown to have significantly higher Hs and Hy clinical scales than ES patients. In the present research the FM group had significantly higher Hs and Hy scale scores than both the ES group and the healthy control group. There was no significant difference between the FM and PNES Hs scale scores; however, the FM Hy scale score was significantly lower than the PNES Hy scale score. Present findings indicate a high level of psychological distress in the FM group. PMID:19859855

  6. Association of mitochondrial letm1 with epileptic seizures.

    PubMed

    Zhang, Xiaogang; Chen, Guojun; Lu, Yaodong; Liu, Jing; Fang, Min; Luo, Jing; Cao, Qingqing; Wang, Xuefeng

    2014-10-01

    Leucine zipper-EF-hand containing transmembrane protein 1 (Letm1) is a mitochondrial protein that is associated with seizure attacks in Wolf-Hirschhorn syndrome. This study aimed to investigate the expression pattern of Letm1 in patients with temporal lobe epilepsy (TLE) and pilocarpine-induced rat model of epilepsy, and to determine if altered Letm1 leads to mitochondrial dysfunction and increased susceptibility to seizures. Using immunohistochemical, immunofluorescent, western blotting, and transmission electron microscopic methods, we have found that Letm1 was significantly decreased in TLE patients, and gradually decreased in experimental rats from 1 to 7 days after onset of seizures. Letm1 knock-down by a lentivirus bearing LV-Letm1-sh resulted in mitochondrial swelling and decreased expression of Letm1 target protein mitochondrially encoded cytochrome B (MT-CYB). Behavioral study revealed that inhibition of Letm1 caused early onset of the first seizure, increased seizure frequency, and duration. However, administration of Letm1 homolog nigericin failed to prevent epilepsy. These results indicate that inhibition of Letm1 and mitochondrial dysfunctions contributes to the development of epileptic seizures. Appropriate Letm1 level may be critical for maintaining normal neuronal functions. PMID:23645710

  7. Resetting of Brain Dynamics: Epileptic versus Psychogenic Non-Epileptic Seizures

    PubMed Central

    Krishnan, Balu; Faith, Aaron; Vlachos, Ioannis; Roth, Austin; Williams, Korwyn; Noe, Katie; Drazkowski, Joe; Tapsell, Lisa; Sirven, Joseph; Iasemidis, Leon

    2011-01-01

    In this study, we investigated the possibility of differential diagnosis of patients with epileptic seizures (ES) and patients with psychogenic non-epileptic seizures (PNES) by an advanced analysis of dynamics of the patients' scalp electroencephalograms (EEG). The underlying principle was the presence of resetting of brain's pre-ictal spatiotemporal entrainment following onset of ES and the absence of resetting following PNES. Long-term (days) scalp EEGs recorded from five ES and six PNES patients were analyzed. It was found that: (a) Pre-ictal entrainment of brain sites was reset by epileptic seizures (p<0.05) in 4 out of the 5 patients with ES, and not reset (p=0.28) in the fifth patient. (b) Resetting did not occur (p>0.1) in any of the 6 patients with PNES. These preliminary results in patients with ES are in agreement with our previous findings from intracranial EEG recordings on resetting of brain dynamics at ES and it is expected to constitute the basis for the development of a reliable and supporting tool in the differential diagnosis between ES and PNES. Finally, we believe that these results shed a novel light on the electrophysiology of psychogenic epilepsy by showing that occurrence of PNES does not assist patients to overcome a pathological entrainment of brain dynamics. PMID:22078523

  8. Patterns of human local cerebral glucose metabolism during epileptic seizures

    SciTech Connect

    Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.

    1982-10-01

    Ictal patterns of local cerebral metabolic rate have been studied in epileptic patients by positron computed tomography with /sup 18/F-labeled 2-fluoro-2-deoxy-D-glucose. Partial seizures were associated with activation of anatomic structures unique to each patient studied. Ictal increases and decreases in local cerebral metabolism were observed. Scans performed during generalized convulsions induced by electroshock demonstrated a diffuse ictal increase and postictal decrease in cerebral metabolism. Petit mal absences were associated with a diffuse increase in cerebral metabolic rate. The ictal fluorodeoxyglucose patterns obtained from patients do not resemble autoradiographic patterns obtained from common experimental animal models of epilepsy.

  9. Do energy drinks cause epileptic seizure and ischemic stroke?

    PubMed

    Dikici, Suber; Saritas, Ayhan; Besir, Fahri Halit; Tasci, Ahmet Hakan; Kandis, Hayati

    2013-01-01

    Energy drinks are popular among young individuals and marketed to college students, athletes, and active individuals between the ages of 21 and 35 years. We report a case that had ischemic stroke and epileptic seizure after intake of energy drink with alcohol. To the best of our knowledge, the following case is the first report of ischemic stroke after intake of energy drink. A previously healthy 37-year-old man was brought to the emergency department after a witnessed tonic-clonic seizure. According to his wife's testimony, just before loss of consciousness, the patient had been drinking 3 boxes of energy drinks (Redbull, Istanbul, Turkey, 250 mL) with vodka on an empty stomach. He did not have a history of seizures, head trauma, or family history of seizures or another disease. In cranial diffusion magnetic resonance imaging, there were hyperintense signal changes in bilateral occipital area (more pronounced in the left occipital lobe), right temporal lobe, frontal lobe, and posterior parietal lobe. All tests associated with possible etiologic causes of ischemic stroke in young patients were negative. Herein, we want to attract attention to adverse effect of energy drink usage. PMID:22867827

  10. Clonazepam oral droplets for the treatment of acute epileptic seizures.

    PubMed

    Sakata, Osamu; Onishi, Hiraku; Machida, Yoshiharu

    2008-12-01

    Oral droplet formulations of clonazepam (CZ) were developed to examine their potentials as an alternative to i.v. administration for the treatment of acute epileptic seizures. Propylene glycol containing 2.5% (wt/wt) CZ with or without 5.0% (wt/wt) oleic acid (OA) was prepared as a solution by heating at 90 degrees C and subsequently lowering the temperature to 30 degrees C. The droplet (20 microL) was administered to the oral cavity between the lower gum and bottom lip before CZ precipitation started. With a droplet of propylene glycol loaded with 2.5% (wt/wt) CZ and 5.0% (wt/wt) OA, the plasma concentration reached 20 ng/mL (minimal effective concentration) within 10 min and was maintained between 20 and 60 ng/mL, less than a toxic level, for a period of 60 min. For a droplet of propylene glycol loaded only with CZ at 2.5% (wt/wt), it took more than 15 min for the plasma concentration to reach 20 ng/mL. It is suggested that a droplet of CZ/OA/propylene glycol (2.5:5.0:92.5, wt/wt) might be useful as an alternative to i.v. injection of CZ for the treatment of acute epileptic seizures. PMID:18720141

  11. Epileptic spasms without hypsarrhythmia in infancy and childhood: tonic spasms as a seizure type.

    PubMed

    Marchi, Luciana R De; Seraphim, Evelyn A; Corso, Jeana T; Naves, Pedro Vf; Carvalho, Kelly Cristina de; Ramirez, Milton David H; Ferrari-Marinho, Taissa; Guaranha, Mirian Sb; Yacubian, Elza Márcia T

    2015-06-01

    Epileptic spasms were defined by the International League Against Epilepsy Task Force on Classification and Terminology in 2001 as a specific seizure type. Epileptic spasms without hypsarrhythmia have been described in some series of patients, occurring either in infancy or childhood. More prolonged epileptic spasms without hypsarrhythmia were previously defined as a different seizure type, and referred to as "tonic spasm seizures". Here, we present a 5-year-old boy who started having epileptic spasms without hypsarrhythmia at 8 months of age, effectively treated with oxcarbazepine. With the withdrawal of medication, epileptic spasms returned. Video-EEG monitoring revealed high-voltage slow waves superimposed by low-voltage fast activity, followed by an electrodecremental phase and a burst of asymmetric fast activity, time-locked to clinical tonic spasm seizures. Brain MRI showed left temporal atrophy with temporal pole grey/white matter junction blurring and ictal PET-CT showed left basal frontal hypermetabolism. Seizures were refractory to several AEDs and vigabatrin was introduced with seizure cessation. Despite efforts to classify epileptic spasms, these are still considered as part of the group of unknown seizure types. In some cases, a focal origin has been suggested, leading to the term "periodic spasms" and "focal spasms". In this case, epileptic spasms without hypsarrhythmia, associated with tonic spasms, may be a variant of focal spasms and might be considered as an epileptic syndrome. [Published with video sequence]. PMID:25895540

  12. γ-Hydroxybutyric acid-induced electrographic seizures.

    PubMed

    Cheung, Joseph; Lucey, Brendan P; Duntley, Stephen P; Darken, Rachel S

    2014-07-15

    We describe a case of absence-like electrographic seizures during NREM sleep in a patient who was taking sodium oxybate, a sodium salt of γ-hydroxybutyric acid (GHB). An overnight full montage electroencephalography (EEG) study revealed numerous frontally predominant rhythmic 1.5-2 Hz sharp waves and spike-wave activity during stage N2 and N3 sleep at the peak dose time for sodium oxybate, resembling atypical absence-like electrographic seizures. The patient was later weaned off sodium oxybate, and a repeat study did not show any such electrographic seizures. Absence-like seizures induced by GHB had previously been described in experimental animal models. We present the first reported human case of absence-like electrographic seizure associated with sodium oxybate. PMID:25024661

  13. Phase-Synchronization Early Epileptic Seizure Detector VLSI Architecture.

    PubMed

    Abdelhalim, K; Smolyakov, V; Genov, R

    2011-10-01

    A low-power VLSI processor architecture that computes in real time the magnitude and phase-synchronization of two input neural signals is presented. The processor is a part of an envisioned closed-loop implantable microsystem for adaptive neural stimulation. The architecture uses three CORDIC processing cores that require shift-and-add operations but no multiplication. The 10-bit processor synthesized and prototyped in a standard 1.2 V 0.13 μm CMOS technology utilizes 41,000 logic gates. It dissipates 3.6 μW per input pair, and provides 1.7 kS/s per-channel throughput when clocked at 2.5 MHz. The power scales linearly with the number of input channels or the sampling rate. The efficacy of the processor in early epileptic seizure detection is validated on human intracranial EEG data. PMID:23852175

  14. Evaluation of the pentylenetetrazole seizure threshold test in epileptic mice as surrogate model for drug testing against pharmacoresistant seizures.

    PubMed

    Töllner, Kathrin; Twele, Friederike; Löscher, Wolfgang

    2016-04-01

    Resistance to antiepileptic drugs (AEDs) is a major problem in epilepsy therapy, so that development of more effective AEDs is an unmet clinical need. Several rat and mouse models of epilepsy with spontaneous difficult-to-treat seizures exist, but because testing of antiseizure drug efficacy is extremely laborious in such models, they are only rarely used in the development of novel AEDs. Recently, the use of acute seizure tests in epileptic rats or mice has been proposed as a novel strategy for evaluating novel AEDs for increased antiseizure efficacy. In the present study, we compared the effects of five AEDs (valproate, phenobarbital, diazepam, lamotrigine, levetiracetam) on the pentylenetetrazole (PTZ) seizure threshold in mice that were made epileptic by pilocarpine. Experiments were started 6 weeks after a pilocarpine-induced status epilepticus. At this time, control seizure threshold was significantly lower in epileptic than in nonepileptic animals. Unexpectedly, only one AED (valproate) was less effective to increase seizure threshold in epileptic vs. nonepileptic mice, and this difference was restricted to doses of 200 and 300 mg/kg, whereas the difference disappeared at 400mg/kg. All other AEDs exerted similar seizure threshold increases in epileptic and nonepileptic mice. Thus, induction of acute seizures with PTZ in mice pretreated with pilocarpine does not provide an effective and valuable surrogate method to screen drugs for antiseizure efficacy in a model of difficult-to-treat chronic epilepsy as previously suggested from experiments with this approach in rats. PMID:26930359

  15. Medical management of epileptic seizures: challenges and solutions

    PubMed Central

    Sarma, Anand K; Khandker, Nabil; Kurczewski, Lisa; Brophy, Gretchen M

    2016-01-01

    Epilepsy is one of the most common neurologic illnesses. This condition afflicts 2.9 million adults and children in the US, leading to an economic impact amounting to $15.5 billion. Despite the significant burden epilepsy places on the population, it is not very well understood. As this understanding continues to evolve, it is important for clinicians to stay up to date with the latest advances to provide the best care for patients. In the last 20 years, the US Food and Drug Administration has approved 15 new antiepileptic drugs (AEDs), with many more currently in development. Other advances have been achieved in terms of diagnostic modalities like electroencephalography technology, treatment devices like vagal nerve and deep-brain stimulators, novel alternate routes of drug administration, and improvement in surgical techniques. Specific patient populations, such as the pregnant, elderly, those with HIV/AIDS, and those with psychiatric illness, present their own unique challenges, with AED side effects, drug interactions, and medical–psychiatric comorbidities adding to the conundrum. The purpose of this article is to review the latest literature guiding the management of acute epileptic seizures, focusing on the current challenges across different practice settings, and it discusses studies in various patient populations, including the pregnant, geriatric, those with HIV/AIDS, comatose, psychiatric, and “pseudoseizure” patients, and offers possible evidence-based solutions or the expert opinion of the authors. Also included is information on newer AEDs, routes of administration, and significant AED-related drug-interaction tables. This review has tried to address only some of these issues that any practitioner who deals with the acute management of seizures may encounter. The document also highlights the numerous avenues for new research that would help practitioners optimize epilepsy management. PMID:26966367

  16. Medical management of epileptic seizures: challenges and solutions.

    PubMed

    Sarma, Anand K; Khandker, Nabil; Kurczewski, Lisa; Brophy, Gretchen M

    2016-01-01

    Epilepsy is one of the most common neurologic illnesses. This condition afflicts 2.9 million adults and children in the US, leading to an economic impact amounting to $15.5 billion. Despite the significant burden epilepsy places on the population, it is not very well understood. As this understanding continues to evolve, it is important for clinicians to stay up to date with the latest advances to provide the best care for patients. In the last 20 years, the US Food and Drug Administration has approved 15 new antiepileptic drugs (AEDs), with many more currently in development. Other advances have been achieved in terms of diagnostic modalities like electroencephalography technology, treatment devices like vagal nerve and deep-brain stimulators, novel alternate routes of drug administration, and improvement in surgical techniques. Specific patient populations, such as the pregnant, elderly, those with HIV/AIDS, and those with psychiatric illness, present their own unique challenges, with AED side effects, drug interactions, and medical-psychiatric comorbidities adding to the conundrum. The purpose of this article is to review the latest literature guiding the management of acute epileptic seizures, focusing on the current challenges across different practice settings, and it discusses studies in various patient populations, including the pregnant, geriatric, those with HIV/AIDS, comatose, psychiatric, and "pseudoseizure" patients, and offers possible evidence-based solutions or the expert opinion of the authors. Also included is information on newer AEDs, routes of administration, and significant AED-related drug-interaction tables. This review has tried to address only some of these issues that any practitioner who deals with the acute management of seizures may encounter. The document also highlights the numerous avenues for new research that would help practitioners optimize epilepsy management. PMID:26966367

  17. Ensemble Classifier for Epileptic Seizure Detection for Imperfect EEG Data

    PubMed Central

    Mahmuddin, Massudi; Mohamed, Amr

    2015-01-01

    Brain status information is captured by physiological electroencephalogram (EEG) signals, which are extensively used to study different brain activities. This study investigates the use of a new ensemble classifier to detect an epileptic seizure from compressed and noisy EEG signals. This noise-aware signal combination (NSC) ensemble classifier combines four classification models based on their individual performance. The main objective of the proposed classifier is to enhance the classification accuracy in the presence of noisy and incomplete information while preserving a reasonable amount of complexity. The experimental results show the effectiveness of the NSC technique, which yields higher accuracies of 90% for noiseless data compared with 85%, 85.9%, and 89.5% in other experiments. The accuracy for the proposed method is 80% when SNR = 1 dB, 84% when SNR = 5 dB, and 88% when SNR = 10 dB, while the compression ratio (CR) is 85.35% for all of the datasets mentioned. PMID:25759863

  18. CA3 Synaptic Silencing Attenuates Kainic Acid-Induced Seizures and Hippocampal Network Oscillations123

    PubMed Central

    Yu, Lily M. Y.; Wintzer, Marie E.

    2016-01-01

    Abstract Epilepsy is a neurological disorder defined by the presence of seizure activity, manifest both behaviorally and as abnormal activity in neuronal networks. An established model to study the disorder in rodents is the systemic injection of kainic acid, an excitatory neurotoxin that at low doses quickly induces behavioral and electrophysiological seizures. Although the CA3 region of the hippocampus has been suggested to be crucial for kainic acid-induced seizure, because of its strong expression of kainate glutamate receptors and its high degree of recurrent connectivity, the precise role of excitatory transmission in CA3 in the generation of seizure and the accompanying increase in neuronal oscillations remains largely untested. Here we use transgenic mice in which CA3 pyramidal cell synaptic transmission can be inducibly silenced in the adult to demonstrate CA3 excitatory output is required for both the generation of epileptiform oscillatory activity and the progression of behavioral seizures. PMID:27022627

  19. [Correlation between the regional blood volume and epileptic seizures in Papio papio].

    PubMed

    Ancri, D; Naquet, R; Basset, J Y; Ménini, C; Lonchampt, M F; Meldrum, B S; Stutzmann, J M

    1979-07-16

    The method of labelling red cells with technetium-99m was used to measured regional blood volume auring different types of epileptic seizures induced in the Baboon Papio papio. During seizures the cerebral blood volume increases and there is simultaneously a decrease of blood volume in nasal and hepatic regions, and a transitory increase of blood volume in the forepaws. PMID:117933

  20. Capparis ovata modulates brain oxidative toxicity and epileptic seizures in pentylentetrazol-induced epileptic rats.

    PubMed

    Nazıroğlu, Mustafa; Akay, Mehmet Berk; Çelik, Ömer; Yıldırım, Muhammed İkbal; Balcı, Erdinç; Yürekli, Vedat Ali

    2013-04-01

    It has been widely suggested that oxidative stress products play an important role in the pathophysiology of epilepsy. Capparis ovata (C. ovata) may useful treatment of epilepsy because it contains antioxidant flavonoids. The current study was designed to determine the effects of C. ovata on lipid peroxidation, antioxidant levels and electroencephalography (EEG) records in pentylentetrazol (PTZ)-induced epileptic rats. Thirty-two rats were randomly divided into four groups. First group was used as control although second group was PTZ group. Oral 100 and 200 mg/kg C. ovata were given to rats constituting the third and fourth groups for 7 days before PTZ administration. Second, third and forth groups received 60 mg/kg PTZ for induction of epilepsy. Three hours after administration of PTZ, EEG records, brain cortex and blood samples were taken all groups. The lipid peroxidation levels of the brain cortex, number of spikes and epileptiform discharges of EEG were higher in PTZ group than in control and C. ovata group whereas they were decreased by C. ovata administration. Vitamin A, vitamin C, vitamin E and β-carotene concentrations of brain cortex and latency to first spike of EEG were decreased by the PTZ administration although the brain cortex and plasma vitamin concentrations, and brain cortex and erythrocyte glutathione and glutathione peroxidase values were increased in PTZ + 100 and PTZ + 200 mg C. ovata groups. In conclusion, C. ovata administration caused protection against the PTZ-induced brain oxidative toxicity by inhibiting free radical and epileptic seizures, and supporting antioxidant redox system. PMID:23389657

  1. Apparatus and method for epileptic seizure detection using non-linear techniques

    DOEpatents

    Hively, L.M.; Clapp, N.E.; Daw, C.S.; Lawkins, W.F.

    1998-04-28

    Methods and apparatus are disclosed for automatically detecting epileptic seizures by monitoring and analyzing brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; determining that one or more trends in the nonlinear measures indicate a seizure, and providing notification of seizure occurrence. 76 figs.

  2. Apparatus and method for epileptic seizure detection using non-linear techniques

    DOEpatents

    Hively, Lee M.; Clapp, Ned E.; Daw, C. Stuart; Lawkins, William F.

    1998-01-01

    Methods and apparatus for automatically detecting epileptic seizures by monitoring and analyzing brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; determining that one or more trends in the nonlinear measures indicate a seizure, and providing notification of seizure occurrence.

  3. Protective effect of hispidulin on kainic acid-induced seizures and neurotoxicity in rats.

    PubMed

    Lin, Tzu Yu; Lu, Cheng Wei; Wang, Su Jane; Huang, Shu Kuei

    2015-05-15

    Hispidulin is a flavonoid compound which is an active ingredient in a number of traditional Chinese medicinal herbs, and it has been reported to inhibit glutamate release. The purpose of this study was to investigate whether hispidulin protects against seizures induced by kainic acid, a glutamate analog with excitotoxic properties. The results indicated that intraperitoneally administering hispidulin (10 or 50mg/kg) to rats 30 min before intraperitoneally injecting kainic acid (15 mg/kg) increased seizure latency and decreased seizure score. In addition, hispidulin substantially attenuated kainic acid-induced hippocampal neuronal cell death, and this protective effect was accompanied by the suppression of microglial activation and the production of proinflammatory cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor-α in the hippocampus. Moreover, hispidulin reduced kainic acid-induced c-Fos expression and the activation of mitogen-activated protein kinases in the hippocampus. These data suggest that hispidulin has considerable antiepileptic, neuroprotective, and antiinflammatory effects on kainic acid-induced seizures in rats. PMID:25746462

  4. Modern technology calls for a modern approach to classification of epileptic seizures and the epilepsies.

    PubMed

    Lüders, Hans O; Amina, Shahram; Baumgartner, Christopher; Benbadis, Selim; Bermeo-Ovalle, Adriana; Devereaux, Michael; Diehl, Beate; Edwards, Jonathan; Baca-Vaca, Guadalupe Fernandez; Hamer, Hajo; Ikeda, Akio; Kaiboriboon, Kitti; Kellinghaus, Christoph; Koubeissi, Mohamad; Lardizabal, David; Lhatoo, Samden; Lüders, Jürgen; Mani, Jayanti; Mayor, Luis Carlos; Miller, Jonathan; Noachtar, Soheyl; Pestana, Elia; Rosenow, Felix; Sakamoto, Americo; Shahid, Asim; Steinhoff, Bernhard J; Syed, Tanvir; Tanner, Adriana; Tsuji, Sadatoshi

    2012-03-01

    In the last 10-15 years the ILAE Commission on Classification and Terminology has been presenting proposals to modernize the current ILAE Classification of Epileptic Seizures and Epilepsies. These proposals were discussed extensively in a series of articles published recently in Epilepsia and Epilepsy Currents. There is almost universal consensus that the availability of new diagnostic techniques as also of a modern understanding of epilepsy calls for a complete revision of the Classification of Epileptic Seizures and Epilepsies. Unfortunately, however, the Commission is still not prepared to take a bold step ahead and completely revisit our approach to classification of epileptic seizures and epilepsies. In this manuscript we critically analyze the current proposals of the Commission and make suggestions for a classification system that reflects modern diagnostic techniques and our current understanding of epilepsy. PMID:22332669

  5. PRRT2 Mutations Are Related to Febrile Seizures in Epileptic Patients

    PubMed Central

    He, Zheng-Wen; Qu, Jian; Zhang, Ying; Mao, Chen-Xue; Wang, Zhi-Bin; Mao, Xiao-Yuan; Deng, Zhi-Yong; Zhou, Bo-Ting; Yin, Ji-Ye; Long, Hong-Yu; Xiao, Bo; Zhang, Yu; Zhou, Hong-Hao; Liu, Zhao-Qian

    2014-01-01

    Previous studies reported that the proline-rich transmembrane protein 2 (PRRT2) gene was identified to be related to paroxysmal kinesigenic dyskinesia (PKD), infantile convulsions with PKD, PKD with migraine and benign familial infantile epilepsy (BFIE). The present study explores whether the PRRT2 mutation is a potential cause of febrile seizures, including febrile seizures plus (FS+), generalized epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS); thus, it may provide a new drug target for personalized medicine for febrile seizure patients. We screened PRRT2 exons in a cohort of 136 epileptic patients with febrile seizures, including FS+, GEFS+ and DS. PRRT2 genetic mutations were identified in 25 out of 136 (18.4%) febrile seizures in epileptic patients. Five loss-of-function and coding missense mutations were identified: c.649delC (p.R217Efs*12), c.649_650insC (p.R217Pfs*8), c.412C>G (p.Pro138Ala), c.439G>C (p.Asp147His) and c.623C>A (p.Ser208Tyr). PRRT2 variants were probably involved in the etiology of febrile seizures in epileptic patients. PMID:25522171

  6. PRRT2 mutations are related to febrile seizures in epileptic patients.

    PubMed

    He, Zheng-Wen; Qu, Jian; Zhang, Ying; Mao, Chen-Xue; Wang, Zhi-Bin; Mao, Xiao-Yuan; Deng, Zhi-Yong; Zhou, Bo-Ting; Yin, Ji-Ye; Long, Hong-Yu; Xiao, Bo; Zhang, Yu; Zhou, Hong-Hao; Liu, Zhao-Qian

    2014-01-01

    Previous studies reported that the proline-rich transmembrane protein 2 (PRRT2) gene was identified to be related to paroxysmal kinesigenic dyskinesia (PKD), infantile convulsions with PKD, PKD with migraine and benign familial infantile epilepsy (BFIE). The present study explores whether the PRRT2 mutation is a potential cause of febrile seizures, including febrile seizures plus (FS+), generalized epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS); thus, it may provide a new drug target for personalized medicine for febrile seizure patients. We screened PRRT2 exons in a cohort of 136 epileptic patients with febrile seizures, including FS+, GEFS+ and DS. PRRT2 genetic mutations were identified in 25 out of 136 (18.4%) febrile seizures in epileptic patients. Five loss-of-function and coding missense mutations were identified: c.649delC (p.R217Efs*12), c.649_650insC (p.R217Pfs*8), c.412C>G (p.Pro138Ala), c.439G>C (p.Asp147His) and c.623C>A (p.Ser208Tyr). PRRT2 variants were probably involved in the etiology of febrile seizures in epileptic patients. PMID:25522171

  7. [Psychogenic non-epileptic seizures: issues of comorbidity in the diagnosis and treatment].

    PubMed

    Nikolaev, E L; Serli, T; Rezvyi, G

    2016-01-01

    The paper presents a case report of seizures in a man of 40 years who was assessed by neurologists and psychiatrists for 15 years. Due to the low efficacy of treatment and permanent health deterioration, the patient was recognized as disabled. Later initial diagnosis of psychogenic non-epileptic seizures was completed by comorbid diagnosis of bipolar affective disorder, type II. Treatment with lamotrigine improved the patient's condition. It has been regarded as a positive effect on organic changes in the brain that are associated with affective and epileptic disorders. PMID:27240050

  8. Rapidly learned identification of epileptic seizures from sonified EEG.

    PubMed

    Loui, Psyche; Koplin-Green, Matan; Frick, Mark; Massone, Michael

    2014-01-01

    Sonification refers to a process by which data are converted into sound, providing an auditory alternative to visual display. Currently, the prevalent method for diagnosing seizures in epilepsy is by visually reading a patient's electroencephalogram (EEG). However, sonification of the EEG data provides certain advantages due to the nature of human auditory perception. We hypothesized that human listeners will be able to identify seizures from EEGs using the auditory modality alone, and that accuracy of seizure identification will increase after a short training session. Here, we describe an algorithm that we have used to sonify EEGs of both seizure and non-seizure activity, followed by a training study in which subjects listened to short clips of sonified EEGs and determined whether each clip was of seizure or normal activity, both before and after a short training session. Results show that before training subjects performed at chance level in differentiating seizures from non-seizures, but there was a significant improvement of accuracy after the training session. After training, subjects successfully distinguished seizures from non-seizures using the auditory modality alone. Further analyses using signal detection theory demonstrated improvement in sensitivity and reduction in response bias as a result of training. This study demonstrates the potential of sonified EEGs to be used for the detection of seizures. Future studies will attempt to increase accuracy using novel training and sonification modifications, with the goals of managing, predicting, and ultimately controlling seizures using sonification as a possible biofeedback-based intervention for epilepsy. PMID:25352802

  9. Rapidly Learned Identification of Epileptic Seizures from Sonified EEG

    PubMed Central

    Loui, Psyche; Koplin-Green, Matan; Frick, Mark; Massone, Michael

    2014-01-01

    Sonification refers to a process by which data are converted into sound, providing an auditory alternative to visual display. Currently, the prevalent method for diagnosing seizures in epilepsy is by visually reading a patient’s electroencephalogram (EEG). However, sonification of the EEG data provides certain advantages due to the nature of human auditory perception. We hypothesized that human listeners will be able to identify seizures from EEGs using the auditory modality alone, and that accuracy of seizure identification will increase after a short training session. Here, we describe an algorithm that we have used to sonify EEGs of both seizure and non-seizure activity, followed by a training study in which subjects listened to short clips of sonified EEGs and determined whether each clip was of seizure or normal activity, both before and after a short training session. Results show that before training subjects performed at chance level in differentiating seizures from non-seizures, but there was a significant improvement of accuracy after the training session. After training, subjects successfully distinguished seizures from non-seizures using the auditory modality alone. Further analyses using signal detection theory demonstrated improvement in sensitivity and reduction in response bias as a result of training. This study demonstrates the potential of sonified EEGs to be used for the detection of seizures. Future studies will attempt to increase accuracy using novel training and sonification modifications, with the goals of managing, predicting, and ultimately controlling seizures using sonification as a possible biofeedback-based intervention for epilepsy. PMID:25352802

  10. Behavioural epileptic seizures: a clinical and intracranial EEG study in 8 children with frontal lobe epilepsy.

    PubMed

    Fohlen, M; Bulteau, C; Jalin, C; Jambaque, I; Delalande, O

    2004-12-01

    We report on eight children who underwent prolonged invasive video-EEG recording (IC-EEG) for intractable frontal lobe epilepsy and whose seizures consisted of behaviour changes. Seizures were recorded on a BMSI computer with 128 channels connected to the Gotman software of a stellate system; their identification was made both clinically and by automatic detection of paroxysmal electrical events. Behavioural epileptic seizures (BES) consisted of various clinical signs comprising mood change, sudden agitation, unexpected quietness, and subtle change of awareness or awakening. In 2 patients, seizures consisted in repetitive movements that we referred to as epileptic stereotypes. BES came from the prefrontal areas of the brain. Most of them were overlooked or misdiagnosed as behavioural manifestations, especially in children with mental deficiency and autistic features. Given the improvement of behaviour and mental functions following surgery, we assume that BES may contribute to generate mental and behavioural dysfunction. PMID:15627941

  11. The Inhibitory Effects of Npas4 on Seizures in Pilocarpine-Induced Epileptic Rats

    PubMed Central

    Guo, Jiamei; Yang, Guang; Long, Xianghua; Hu, Rong; Shen, Wenjing; Wang, Xuefeng; Zeng, Kebin

    2014-01-01

    To explore the effects of neuronal Per-Arnt-Sim domain protein 4 (Npas4) on seizures in pilocarpine-induced epileptic rats, Npas4 expression was detected by double-label immunofluorescence, immunohistochemistry, and Western blotting in the brains of pilocarpine-induced epileptic model rats at 6 h, 24 h, 72 h, 7 d, 14 d, 30 d, and 60 d after status epilepticus. Npas4 was localized primarily in the nucleus and in the cytoplasm of neurons. The Npas4 protein levels increased in the acute phase of seizures (between 6 h and 72 h) and decreased in the chronic phases (between 7 d and 60 d) in the rat model. Npas4 expression was knocked down by specific siRNA interference. Then, the animals were treated with pilocarpine, and the effects on seizures were evaluated on the 7th day. The onset latencies of pilocarpine-induced seizures were decreased, while the seizure frequency, duration and attack rate increased in these rats. Our study indicates that Npas4 inhibits seizure attacks in pilocarpine-induced epileptic rats. PMID:25536221

  12. Surface acoustic wave probe implant for predicting epileptic seizures

    DOEpatents

    Gopalsami, Nachappa; Kulikov, Stanislav; Osorio, Ivan; Raptis, Apostolos C.

    2012-04-24

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  13. Measuring resetting of brain dynamics at epileptic seizures: application of global optimization and spatial synchronization techniques.

    PubMed

    Sabesan, Shivkumar; Chakravarthy, Niranjan; Tsakalis, Kostas; Pardalos, Panos; Iasemidis, Leon

    2009-01-01

    Epileptic seizures are manifestations of intermittent spatiotemporal transitions of the human brain from chaos to order. Measures of chaos, namely maximum Lyapunov exponents (STL(max)), from dynamical analysis of the electroencephalograms (EEGs) at critical sites of the epileptic brain, progressively converge (diverge) before (after) epileptic seizures, a phenomenon that has been called dynamical synchronization (desynchronization). This dynamical synchronization/desynchronization has already constituted the basis for the design and development of systems for long-term (tens of minutes), on-line, prospective prediction of epileptic seizures. Also, the criterion for the changes in the time constants of the observed synchronization/desynchronization at seizure points has been used to show resetting of the epileptic brain in patients with temporal lobe epilepsy (TLE), a phenomenon that implicates a possible homeostatic role for the seizures themselves to restore normal brain activity. In this paper, we introduce a new criterion to measure this resetting that utilizes changes in the level of observed synchronization/desynchronization. We compare this criterion's sensitivity of resetting with the old one based on the time constants of the observed synchronization/desynchronization. Next, we test the robustness of the resetting phenomena in terms of the utilized measures of EEG dynamics by a comparative study involving STL(max), a measure of phase (ϕ(max)) and a measure of energy (E) using both criteria (i.e. the level and time constants of the observed synchronization/desynchronization). The measures are estimated from intracranial electroencephalographic (iEEG) recordings with subdural and depth electrodes from two patients with focal temporal lobe epilepsy and a total of 43 seizures. Techniques from optimization theory, in particular quadratic bivalent programming, are applied to optimize the performance of the three measures in detecting preictal entrainment. It is

  14. ENT1 inhibition attenuates epileptic seizure severity via regulation of glutamatergic neurotransmission.

    PubMed

    Xu, Zucai; Xu, Ping; Chen, Yalan; Liu, Jing; Zhang, Yanke; Lv, Yaodong; Luo, Jing; Fang, Min; Zhang, Jun; Wang, Jing; Wang, Kewei; Wang, Xuefeng; Chen, Guojun

    2015-03-01

    Type 1 equilibrative nucleoside transporter (ENT1) promotes glutamate release by inhibition of adenosine signaling. However, whether ENT1 plays a role in epileptic seizure that involves elevated glutamatergic neurotransmission is unknown. Here, we report that both seizure rats and patients show increased expression of ENT1. Intrahippocampal injection of a specific inhibitor of ENT1, nitrobenzylthioinosine (NBTI), attenuates seizure severity and prolongs onset latency. In order to examine whether NBTI would be effective as antiepileptic after peripheral application, we injected NBTI intraperitoneally, and the results were similar to those obtained after intrahippocampal injection. NBTI administration leads to suppressed neuronal firing in seizure rats. In addition, increased mEPSC in seizure are inhibited by NBTI. Finally, NBTI results in deactivation of phosphorylated cAMP-response element-binding protein in the seizure rats. These results indicate that ENT1 plays an important role in the development of seizure. Inhibition of ENT1 might provide a novel therapeutic approach toward the control of epileptic seizure. PMID:25490964

  15. Involvement of Thalamus in Initiation of Epileptic Seizures Induced by Pilocarpine in Mice

    PubMed Central

    Li, Yong-Hua; Li, Jia-Jia; Lu, Qin-Chi; Gong, Hai-Qing; Liang, Pei-Ji

    2014-01-01

    Studies have suggested that thalamus is involved in temporal lobe epilepsy, but the role of thalamus is still unclear. We obtained local filed potentials (LFPs) and single-unit activities from CA1 of hippocampus and parafascicular nucleus of thalamus during the development of epileptic seizures induced by pilocarpine in mice. Two measures, redundancy and directionality index, were used to analyze the electrophysiological characters of neuronal activities and the information flow between thalamus and hippocampus. We found that LFPs became more regular during the seizure in both hippocampus and thalamus, and in some cases LFPs showed a transient disorder at seizure onset. The variation tendency of the peak values of cross-correlation function between neurons matched the variation tendency of the redundancy of LFPs. The information tended to flow from thalamus to hippocampus during seizure initiation period no matter what the information flow direction was before the seizure. In some cases the information flow was symmetrically bidirectional, but none was found in which the information flowed from hippocampus to thalamus during the seizure initiation period. In addition, inactivation of thalamus by tetrodotoxin (TTX) resulted in a suppression of seizures. These results suggest that thalamus may play an important role in the initiation of epileptic seizures. PMID:24778885

  16. Epileptic seizures induce structural and functional alterations on brain tissue membranes.

    PubMed

    Turker, Sevgi; Severcan, Mete; Ilbay, Gul; Severcan, Feride

    2014-12-01

    Epilepsy is characterized by disruption of balance between cerebral excitation and inhibition, leading to recurrent and unprovoked convulsions. Studies are still underway to understand mechanisms lying epileptic seizures with the aim of improving treatment strategies. In this context, the research on brain tissue membranes gains importance for generation of epileptic activities. In order to provide additional information for this field, we have investigated the effects of pentylenetetrazol-induced and audiogenetically susceptible epileptic seizures on structure, content and function of rat brain membrane components using Fourier transform infrared (FT-IR) spectroscopy. The findings have shown that both two types of epileptic seizures stimulate the variations in the molecular organization of membrane lipids, which have potential to influence the structures in connection with functions of membrane proteins. Moreover, less fluid lipid structure and a decline in content of lipids obtained from the ratio of CH3 asym/lipid, CH2 asym/lipid, CO/lipid, and olefinicCH/lipid and the areas of the PO2 symmetric and asymmetric modes were observed. Moreover, based on IR data the changes in the conformation of proteins were predicted by neural network (NN) analysis, and displayed as an increase in random coil despite a decrease in beta sheet. Depending on spectral parameters, we have successfully differentiated treated samples from the control by principal component analysis (PCA) and cluster analysis. In summary, FT-IR spectroscopy may offer promising attempt to identify compositional, structural and functional alterations in brain tissue membranes resulting from epileptic activities. PMID:25194682

  17. Seizure-Related Regulation of GABAA Receptors in Spontaneously Epileptic Rats

    PubMed Central

    González, Marco I.; Grabenstatter, Heidi L.; del Rio, Christian Cea; Del Angel, Yasmin Cruz; Carlsen, Jessica; Laoprasert, Rick; White, Andrew M.; Huntsman, Molly M.; Brooks-Kayal, Amy

    2015-01-01

    In this study, we analyzed the impact that spontaneous seizures might have on the plasma membrane expression, composition and function of GABAA receptors (GABAARs). For this, tissue of chronically epileptic rats was collected within 3 hours of seizure occurrence (≤3 hours group) or at least 24 hours after seizure occurrence (≥24 hours group). A retrospective analysis of seizure frequency revealed that selecting animals on the bases of seizure proximity also grouped animals in terms of overall seizure burden with a higher seizure burden observed in the ≤3 hours group. A biochemical analysis showed that although animals with more frequent/recent seizures (≤3 hours group) had similar levels of GABAAR at the plasma membrane they showed deficits in inhibitory neurotransmission. In contrast, tissue obtained from animals experiencing infrequent seizures (≥24 hours group) had increased plasma membrane levels of GABAAR and showed no deficit in inhibitory function. Together, our findings offer an initial insight into the molecular changes that might help to explain how alterations in GABAAR function can be associated with differential seizure burden. Our findings also suggest that increased plasma membrane levels of GABAAR might act as a compensatory mechanism to more effectively maintain inhibitory function, repress hyperexcitability and reduce seizure burden. This study is an initial step towards a fuller characterization of the molecular events that trigger alterations in GABAergic neurotransmission during chronic epilepsy. PMID:25769812

  18. Neuroethological approach to frontolimbic epileptic seizures and parasomnias: The same central pattern generators for the same behaviours.

    PubMed

    Tassinari, C A; Cantalupo, G; Högl, B; Cortelli, P; Tassi, L; Francione, S; Nobili, L; Meletti, S; Rubboli, G; Gardella, E

    2009-10-01

    The aim of this report is not to make a differential diagnosis between epileptic nocturnal seizures and non-epileptic sleep-related movement disorders, or parasomnias. On the contrary, our goal is to emphasize the commonly shared semiological features of some epileptic seizures and parasomnias. Such similar features might be explained by the activation of the same neuronal networks (so-called 'central pattern generators' or CPG). These produce the stereotypical rhythmic motor sequences - in other words, behaviours - that are adaptive and species-specific (such as eating/alimentary, attractive/aversive, locomotor and nesting habits). CPG are located at the subcortical level (mainly in the brain stem and spinal cord) and, in humans, are under the control of the phylogenetically more recent neomammalian neocortical structures, according to a simplified Jacksonian model. Based on video-polygraphic recordings of sleep-related epileptic seizures and non-epileptic events (parasomnias), we have documented how a transient "neomammalian brain" dysfunction - whether epileptic or not - can 'release' (disinhibition?) the CPG responsible for involuntary motor behaviours. Thus, in both epileptic seizures and parasomnias, we can observe: (a) oroalimentary automatisms, bruxism and biting; (b) ambulatory behaviours, ranging from the classical bimanual-bipedal activity of 'frontal' hypermotor seizures, epileptic and non-epileptic wanderings, and somnambulism to periodic leg movements (PLM), alternating leg muscle activation (ALMA) and restless legs syndrome (RLS); and (c) various sleep-related events such as ictal fear, sleep terrors, nightmares and violent behaviour. PMID:19733874

  19. Comparison of MMPI-2 profiles of Gulf War veterans with epileptic and nonepileptic seizure patients.

    PubMed

    Binder, L M; Storzbach, D; Campbell, K A; Rohlman, D S; Anger, W K; Salinsky, M C; Campbell, B R; Mueller, R

    2000-03-01

    As part of a larger study of illnesses related to service in the Gulf War, MMPI-2 profiles of epileptic seizure (ES) patients; nonepileptic seizure (NES) patients; Gulf War veterans with unexplained cognitive, psychological, musculoskeletal, fatigue, or dermatologic symptoms; and asymptomatic Gulf War veterans (Controls) were analyzed. There were 70 people in each group. Seizure diagnosis was based upon intensive EEG monitoring. Gulf War cases were mildly abnormal on MMPI-2 Scales Hs and D and significantly higher than controls on 8 of 10 MMPI-2 clinical scales, but they were significantly lower than NES patients on several scales including Hs and Hy. PMID:10668007

  20. Fast monitoring of epileptic seizures using recurrence time statistics of electroencephalography

    PubMed Central

    Gao, Jianbo; Hu, Jing

    2013-01-01

    Epilepsy is a relatively common brain disorder which may be very debilitating. Currently, determination of epileptic seizures often involves tedious, time-consuming visual inspection of electroencephalography (EEG) data by medical experts. To better monitor seizures and make medications more effective, we propose a recurrence time based approach to characterize brain electrical activity. Recurrence times have a number of distinguished properties that make it very effective for forewarning epileptic seizures as well as studying propagation of seizures: (1) recurrence times amount to periods of periodic signals, (2) recurrence times are closely related to information dimension, Lyapunov exponent, and Kolmogorov entropy of chaotic signals, (3) recurrence times embody Shannon and Renyi entropies of random fields, and (4) recurrence times can readily detect bifurcation-like transitions in dynamical systems. In particular, property (4) dictates that unlike many other non-linear methods, recurrence time method does not require the EEG data be chaotic and/or stationary. Moreover, the method only contains a few parameters that are largely signal-independent, and hence, is very easy to use. The method is also very fast—it is fast enough to on-line process multi-channel EEG data with a typical PC. Therefore, it has the potential to be an excellent candidate for real-time monitoring of epileptic seizures in a clinical setting. PMID:24137126

  1. Fast monitoring of epileptic seizures using recurrence time statistics of electroencephalography.

    PubMed

    Gao, Jianbo; Hu, Jing

    2013-01-01

    Epilepsy is a relatively common brain disorder which may be very debilitating. Currently, determination of epileptic seizures often involves tedious, time-consuming visual inspection of electroencephalography (EEG) data by medical experts. To better monitor seizures and make medications more effective, we propose a recurrence time based approach to characterize brain electrical activity. Recurrence times have a number of distinguished properties that make it very effective for forewarning epileptic seizures as well as studying propagation of seizures: (1) recurrence times amount to periods of periodic signals, (2) recurrence times are closely related to information dimension, Lyapunov exponent, and Kolmogorov entropy of chaotic signals, (3) recurrence times embody Shannon and Renyi entropies of random fields, and (4) recurrence times can readily detect bifurcation-like transitions in dynamical systems. In particular, property (4) dictates that unlike many other non-linear methods, recurrence time method does not require the EEG data be chaotic and/or stationary. Moreover, the method only contains a few parameters that are largely signal-independent, and hence, is very easy to use. The method is also very fast-it is fast enough to on-line process multi-channel EEG data with a typical PC. Therefore, it has the potential to be an excellent candidate for real-time monitoring of epileptic seizures in a clinical setting. PMID:24137126

  2. Real-time Detection of Precursors to Epileptic Seizures: Non-Linear Analysis of System Dynamics

    PubMed Central

    Nesaei, Sahar; Sharafat, Ahmad R.

    2014-01-01

    We propose a novel approach for detecting precursors to epileptic seizures in intracranial electroencephalograms (iEEG), which is based on the analysis of system dynamics. In the proposed scheme, the largest Lyapunov exponent of the discrete wavelet packet transform (DWPT) of the segmented EEG signals is considered as the discriminating features. Such features are processed by a support vector machine (SVM) classifier to identify whether the corresponding segment of the EEG signal contains a precursor to an epileptic seizure. When consecutive EEG segments contain such precursors, a decision is made that a precursor is in fact detected. The proposed scheme is applied to the Freiburg dataset, and the results show that seizure precursors are detected in a time frame that unlike other existing schemes is very much convenient to patients, with sensitivity of 100% and negligible false positive detection rates. PMID:24761374

  3. Predictability of epileptic seizures: a comparative study using Lyapunov exponent and entropy based measures.

    PubMed

    Sabesan, Shivkumar; Narayanan, K; Prasad, Awadhesh; Spanias, A; Sackellares, J C; Iasemidis, L D

    2003-01-01

    In this paper, a comparative study involving measures from the theory of chaos, namely the short-term largest Lyapunov exponent, Shannon and Kullback-Leibler entropies from information theory, has been carried out in terms of their predictability of temporal lobe epileptic seizures. These three measures are estimated from electroencephalographic (EEG) recordings with sub-dural and in-depth electrodes from various brain locations in patients with temporal lobe epilepsy. Techniques from optimization theory are applied to select optimal sets of electrodes whose dynamics is then followed over time. Results from analysis of multiple seizures in two epileptic patients with these measures are presented and compared in terms of their ability to identify pre-ictal dynamical entrainment well ahead of seizure onset time. PMID:12724881

  4. Seizure, Fit or Attack? The Use of Diagnostic Labels by Patients with Epileptic or Non-Epileptic Seizures

    ERIC Educational Resources Information Center

    Plug, Leendert; Sharrack, Basil; Reuber, Markus

    2010-01-01

    We present an analysis of the use of diagnostic labels such as "seizure", "attack", "fit", and "blackout" by patients who experience seizures. While previous research on patients' preferences for diagnostic terminology has relied on questionnaires, we assess patients' own preferences and their responses to a doctor's use of different labels…

  5. Oxidative Stress Measurement and Prediction of Epileptic Seizure in Children and Adults With Severe Motor and Intellectual Disabilities

    PubMed Central

    Morimoto, Masahito; Satomura, Shigeko; Hashimoto, Toshiaki; Ito, Etsuro; Kyotani, Shojiro

    2016-01-01

    Background The medical care of severe motor and intellectual disabilities (SMID) depends on the empirical medical care. Epileptic seizure specific to SMID is difficult to suppress using anti-epileptic drugs, and its tendency to persist for long periods poses an issue. The present study was undertaken to evaluate the relationship between epileptic seizure in cases with SMID and oxidative stress in the living body by examining endogenous antioxidants, the degree of oxidation (reactive oxygen metabolites (d-ROMs)), and the biological antioxidant potential (BAP) as indicators. Methods Target patients were 43 SMID epilepsy patients. Blood was sampled before breakfast and medication. As for the specimen, d-ROMs and BAP were measured using the free radical analyzer. Results The present study did not reveal any correlation between endogenous antioxidants (albumin) and the frequency of epileptic seizures. On the other hand, d-ROMs were correlated with the frequency of epileptic seizure. In particular, strong correlations between the frequency of epileptic seizures and the d-ROMs/BAP ratio as well as the BAP/d-ROMs ratio were noted. Conclusions These results indicate that the use of d-ROMs and BAP as biomarkers can provide a tool for predicting the prognosis of epileptic seizures in patients with SMID. PMID:27222671

  6. Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice.

    PubMed

    Maroso, Mattia; Balosso, Silvia; Ravizza, Teresa; Iori, Valentina; Wright, Christopher Ian; French, Jacqueline; Vezzani, Annamaria

    2011-04-01

    Experimental evidence and clinical observations indicate that brain inflammation is an important factor in epilepsy. In particular, induction of interleukin-converting enzyme (ICE)/caspase-1 and activation of interleukin (IL)-1β/IL-1 receptor type 1 axis both occur in human epilepsy, and contribute to experimentally induced acute seizures. In this study, the anticonvulsant activity of VX-765 (a selective ICE/caspase-1 inhibitor) was examined in a mouse model of chronic epilepsy with spontaneous recurrent epileptic activity refractory to some common anticonvulsant drugs. Moreover, the effects of this drug were studied in one acute model of seizures in mice, previously shown to involve activation of ICE/caspase-1. Quantitative analysis of electroencephalogram activity was done in mice exposed to acute seizures or those developing chronic epileptic activity after status epilepticus to assess the anticonvulsant effects of systemic administration of VX-765. Histological and immunohistochemical analysis of brain tissue was carried out at the end of pharmacological experiments in epileptic mice to evaluate neuropathology, glia activation and IL-1β expression, and the effect of treatment. Repeated systemic administration of VX-765 significantly reduced chronic epileptic activity in mice in a dose-dependent fashion (12.5-200 mg/kg). This effect was observed at doses ≥ 50 mg/kg, and was reversible with discontinuation of the drug. Maximal drug effect was associated with inhibition of IL-1β synthesis in activated astrocytes. The same dose regimen of VX-765 also reduced acute seizures in mice and delayed their onset time. These results support a new target system for anticonvulsant pharmacological intervention to control epileptic activity that does not respond to some common anticonvulsant drugs. PMID:21431948

  7. Measure profile surrogates: A method to validate the performance of epileptic seizure prediction algorithms

    NASA Astrophysics Data System (ADS)

    Kreuz, Thomas; Andrzejak, Ralph G.; Mormann, Florian; Kraskov, Alexander; Stögbauer, Harald; Elger, Christian E.; Lehnertz, Klaus; Grassberger, Peter

    2004-06-01

    In a growing number of publications it is claimed that epileptic seizures can be predicted by analyzing the electroencephalogram (EEG) with different characterizing measures. However, many of these studies suffer from a severe lack of statistical validation. Only rarely are results passed to a statistical test and verified against some null hypothesis H0 in order to quantify their significance. In this paper we propose a method to statistically validate the performance of measures used to predict epileptic seizures. From measure profiles rendered by applying a moving-window technique to the electroencephalogram we first generate an ensemble of surrogates by a constrained randomization using simulated annealing. Subsequently the seizure prediction algorithm is applied to the original measure profile and to the surrogates. If detectable changes before seizure onset exist, highest performance values should be obtained for the original measure profiles and the null hypothesis. “The measure is not suited for seizure prediction” can be rejected. We demonstrate our method by applying two measures of synchronization to a quasicontinuous EEG recording and by evaluating their predictive performance using a straightforward seizure prediction statistics. We would like to stress that the proposed method is rather universal and can be applied to many other prediction and detection problems.

  8. Dynamic Imaging of Coherent Sources Reveals Different Network Connectivity Underlying the Generation and Perpetuation of Epileptic Seizures

    PubMed Central

    Anwar, Abdul Rauf; Deuschl, Günther; Stephani, Ulrich; Raethjen, Jan; Siniatchkin, Michael

    2013-01-01

    The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone) and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS), an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity) between coherent sources was investigated using the renormalized partial directed coherence (RPDC) method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis. PMID:24194931

  9. Focal seizures and epileptic spasms in a child with Down syndrome from a family with a PRRT2 mutation.

    PubMed

    Igarashi, Ayuko; Okumura, Akihisa; Shimojima, Keiko; Abe, Shinpei; Ikeno, Mitsuru; Shimizu, Toshiaki; Yamamoto, Toshiyuki

    2016-06-01

    We describe a girl with Down syndrome who experienced focal seizures and epileptic spasms during infancy. The patient was diagnosed as having trisomy 21 during the neonatal period. She had focal seizures at five months of age, which were controlled with phenobarbital. However, epileptic spasms appeared at seven months of age in association with hypsarrhythmia. Upon treatment with adrenocorticotropic hormone, her epileptic spasms disappeared. Her younger brother also had focal seizures at five months of age. His development and interictal electroencephalogram were normal. The patient's father had had infantile epilepsy and paroxysmal kinesigenic dyskinesia. We performed a mutation analysis of the PRRT2 gene and found a c.841T>C mutation in the present patient, her father, and in her younger brother. We hypothesized that the focal seizures in our patient were caused by the PRRT2 mutation, whereas the epileptic spasms were attributable to trisomy 21. PMID:26867511

  10. [Psychogenic NonEpileptic Seizures: Current Knowledge and Contributions of the Study of Emotions].

    PubMed

    Rutka, Roman; Denis, Anne; Vercueil, Laurent; Hot, Pascal

    2016-01-01

    Psychogenic nonepileptic seizures (PNES) are paroxysmal attacks that can imitate epileptic seizures but do not have a neurological origin. There has been mounting interest these last few years to unravel psychological and neuronal factors that contribute to the development of PNES. The objective of this review is twofold. First, we examine recent contributions of clinical and researches studies to define the main features of PNES. Then, we focus on the possible link between changes in processing of emotional information and the onset of PNES. In this article, we identify promising directions for future research and argue that affective neuroscience may provide original findings to better understand this disease. PMID:27570954

  11. Early Detection of Human Epileptic Seizures Based on Intracortical Local Field Potentials.

    PubMed

    Park, Yun S; Hochberg, Leigh R; Eskandar, Emad N; Cash, Sydney S; Truccolo, Wilson

    2013-01-01

    The unpredictability of re-occurring seizures dramatically impacts the quality of life and autonomy of people with epilepsy. Reliable early seizure detection could open new therapeutic possibilities and thus substantially improve quality of life and autonomy. Though many seizure detection studies have shown the potential of scalp electroencephalogram (EEG) and intracranial EEG (iEEG) signals, reliable early detection of human seizures remains elusive in practice. Here, we examined the use of intracortical local field potentials (LFPs) recorded from 4×4-mm(2) 96-microelectrode arrays (MEA) for early detection of human epileptic seizures. We adopted a framework consisting of (1) sampling of intracortical LFPs; (2) denoising of LFPs with the Kalman filter; (3) spectral power estimation in specific frequency bands using 1-sec moving time windows; (4) extraction of statistical features, such as the mean, variance, and Fano factor (calculated across channels) of the power in each frequency band; and (5) cost-sensitive support vector machine (SVM) classification of ictal and interictal samples. We tested the framework in one-participant dataset, including 4 seizures and corresponding interictal recordings preceding each seizure. The participant was a 52-year-old woman suffering from complex partial seizures. LFPs were recorded from an MEA implanted in the participant's left middle temporal gyrus. In this participant, spectral power in 0.3-10 Hz, 20-55 Hz, and 125-250 Hz changed significantly between ictal and interictal epochs. The examined seizure detection framework provided an event-wise sensitivity of 100% (4/4) and only one 20-sec-long false positive event in interictal recordings (likely an undetected subclinical event under further visual inspection), and a detection latency of 4.35 ± 2.21 sec (mean ± std) with respect to iEEG-identified seizure onsets. These preliminary results indicate that intracortical MEA recordings may provide key signals to quickly and

  12. [The effect of refractory epileptic seizures on cognitive processes].

    PubMed

    Aicardi, J

    A complete definition of all risk factors for intractability and/or mental retardation cannot currently be given because epilepsy is not a disease but a heterogeneous phenomenon from the physiological, clinical and etiological points of view so that no single way of addressing the issue can fit all situations. It is quite possible that some risk factors can be specific for subgroups and do not apply to the majority of cases. Such subgroups may be small enough to escape detection in large prospective studies that uniformly indict a limited number of factors mostly related to characteristics of the disease or patients. Yet, even factors that are at play only in small groups may be extremely important if they can be at the origin of effective preventive measures. This may well be the case for vigorous early treatment of complex febrile seizures as there is increasing evidence of a close, probably causal, relationship between lengthy early convulsions and mesial temporal sclerosis. It may also apply to the prevention of cognitive/behavioural deterioration in children with certain types of epilepsy even though the evidence in this regard is less strong. Exonerating seizures and/or subclinical paroxysmal activity of any responsibility in the production and/or aggravation of brain damage is not justified on the basis of known facts and vigorous although reasonable treatment of the epilepsies may do more, at least in certain forms, than simply decreasing the relapse rate of seizures PMID:12599161

  13. Classification of convulsive psychogenic non-epileptic seizures using muscle transforms obtained from accelerometry signal.

    PubMed

    Kusmakar, Shitanshu; Gubbi, Jayavardhana; Yan, Bernard; O'Brien, Terence J; Palaniswami, Marimuthu

    2015-08-01

    Convulsive psychogenic non-epileptic seizure (PNES) can be characterized as events which mimics epileptic seizures but do not show any characteristic changes on electroencephalogram (EEG). Correct diagnosis requires video-electroencephalography monitoring (VEM) as the diagnosis of PNES is extremely difficult in primary health care. Recent work has demonstrated the usefulness of accelerometry signal taken during a seizure in classification of PNES. In this work, a new direction has been explored to understand the role of different muscles in PNES. This is achieved by modeling the muscle activity of ten different upper limb muscles as a resultant function of accelerometer signal. Using these models, the accelerometer signals recorded from convulsive epileptic patients were transformed into individual muscle components. Based on this, an automated algorithm for classification of convulsive PNES is proposed. The algorithm calculates four wavelet domain features based on signal power, approximate entropy, kurtosis and signal skewness. These features were then used to build a classification model using support vector machines (SVM) classifier. It was found that the transforms corresponding to anterior deltoid and brachioradialis results in good PNES classification accuracy. The algorithm showed a high sensitivity of 93.33% and an overall PNES classification accuracy of 89% with the transform corresponding to anterior deltoid. PMID:26736329

  14. Scaling effects and spatio-temporal multilevel dynamics in epileptic seizures.

    PubMed

    Meisel, Christian; Kuehn, Christian

    2012-01-01

    Epileptic seizures are one of the most well-known dysfunctions of the nervous system. During a seizure, a highly synchronized behavior of neural activity is observed that can cause symptoms ranging from mild sensual malfunctions to the complete loss of body control. In this paper, we aim to contribute towards a better understanding of the dynamical systems phenomena that cause seizures. Based on data analysis and modelling, seizure dynamics can be identified to possess multiple spatial scales and on each spatial scale also multiple time scales. At each scale, we reach several novel insights. On the smallest spatial scale we consider single model neurons and investigate early-warning signs of spiking. This introduces the theory of critical transitions to excitable systems. For clusters of neurons (or neuronal regions) we use patient data and find oscillatory behavior and new scaling laws near the seizure onset. These scalings lead to substantiate the conjecture obtained from mean-field models that a Hopf bifurcation could be involved near seizure onset. On the largest spatial scale we introduce a measure based on phase-locking intervals and wavelets into seizure modelling. It is used to resolve synchronization between different regions in the brain and identifies time-shifted scaling laws at different wavelet scales. We also compare our wavelet-based multiscale approach with maximum linear cross-correlation and mean-phase coherence measures. PMID:22363431

  15. Pathological pattern formation and cortical propagation of epileptic seizures

    PubMed Central

    Kramer, Mark A; Kirsch, Heidi E; Szeri, Andrew J

    2005-01-01

    The stochastic partial differential equations (SPDEs) stated by Steyn-Ross and co-workers constitute a model of mesoscopic electrical activity of the human cortex. A simplification in which spatial variation and stochastic input are neglected yields ordinary differential equations (ODEs), which are amenable to analysis by techniques of dynamical systems theory. Bifurcation diagrams are developed for the ODEs with increased subcortical excitation, showing that the model predicts oscillatory electrical activity in a large range of parameters. The full SPDEs with increased subcortical excitation produce travelling waves of electrical activity. These model results are compared with electrocortical data recorded at two subdural electrodes from a human subject undergoing a seizure. The model and observational results agree in two important respects during seizure: (i) the average frequency of maximum power, and (ii) the speed of spatial propagation of voltage peaks. This suggests that seizing activity on the human cortex may be understood as an example of pathological pattern formation. Included is a discussion of the applications and limitations of these results. PMID:16849171

  16. Disinhibition-induced transitions between absence and tonic-clonic epileptic seizures

    PubMed Central

    Fan, Denggui; Wang, Qingyun; Perc, Matjaž

    2015-01-01

    Electrophysiological experiments have long revealed the existence of two-way transitions between absence and tonic-clonic epileptic seizures in the cerebral cortex. Based on a modified spatially-extended Taylor & Baier neural field model, we here propose a computational framework to mathematically describe the transition dynamics between these epileptic seizures. We first demonstrate the existence of various transition types that are induced by disinhibitory functions between two inhibitory variables in an isolated Taylor & Baier model. Moreover, we show that these disinhibition-induced transitions can lead to stable tonic-clonic oscillations as well as periodic spike with slow-wave discharges, which are the hallmark of absence seizures. We also observe fascinating dynamical states, such as periodic 2-spike with slow-wave discharges, tonic death, bursting oscillations, as well as saturated firing. Most importantly, we identify paths that represent physiologically plausible transitions between absence and tonic-clonic seizures in the modified spatially-extended Taylor & Baier model. PMID:26224066

  17. Can hyper-synchrony in meditation lead to seizures? Similarities in meditative and epileptic brain states.

    PubMed

    Lindsay, Shane

    2014-10-01

    Meditation is used worldwide by millions of people for relaxation and stress relief. Given sufficient practice, meditators may also experience a variety of altered states of consciousness. These states can lead to a variety of unusual experiences, including physical, emotional and psychic disturbances. This paper highlights the correspondences between brain states associated with these experiences and the symptoms and neurophysiology of epileptic simple partial seizures. Seizures, like meditation practice, can result in both positive and negative experiences. The neurophysiology and chemistry underlying simple partial seizures are characterised by a high degree of excitability and high levels of neuronal synchrony in gamma-band brain activity. Following a survey of the literature that shows that meditation practice is also linked to high power gamma activity, an account of how meditation could cause such activity is provided. This paper discusses the diagnostic challenges for the claim that meditation practices lead to brain states similar to those found in epileptic seizures, and seeks to develop our understanding of the range of pathological and non-pathological states that result from a hyper-excited and hyper-synchronous brain. PMID:25149320

  18. Recurrent prolonged fugue states as the sole manifestation of epileptic seizures.

    PubMed

    Khwaja, Geeta A; Duggal, Ashish; Kulkarni, Amit; Chaudhry, Neera; Gupta, Meena; Chowdhury, Debashish; Bohra, Vikram

    2013-10-01

    A fugue state is defined as an altered state of consciousness with varying degrees of motor activity and amnesia for the event. It may last for hours to days and may be psychogenic or organic in nature. Epileptic fugue states can be encountered in patients with absence or complex partial nonconvulsive status epilepticus or may occur as a postictal phenomenon in patients with generalized seizures. "absence status epilepticus" (AS) is rare and seen in only 2.6% of the cases with "childhood absence epilepsy" (CAE). The diagnosis of AS can be elusive, but sudden onset and termination of the fugue state, classical electroencephalogram (EEG) features, and response to a therapeutic trial of benzodiazepines helps in confirming the diagnosis and differentiating it from nonepileptic fugue states. We report a childhood onset case, with a 10 years history of recurrent episodes of prolonged fugue state lasting for up to 24 h, as the sole manifestation of epileptic seizures. The EEG features were suggestive of an AS, but there was no history of typical absences, myoclonus, or generalized tonic clonic seizures. This unusual and rare case cannot be categorized into one of the defined epilepsy syndromes like CAE but belongs to a recently identified syndrome of idiopathic generalized epilepsy known as "Absence status epilepsy" in which AS is the sole or the predominant seizure type. PMID:24339579

  19. Hidden pattern discovery on epileptic EEG with 1-D local binary patterns and epileptic seizures detection by grey relational analysis.

    PubMed

    Kaya, Yılmaz

    2015-09-01

    This paper proposes a novel approach to detect epilepsy seizures by using Electroencephalography (EEG), which is one of the most common methods for the diagnosis of epilepsy, based on 1-Dimension Local Binary Pattern (1D-LBP) and grey relational analysis (GRA) methods. The main aim of this paper is to evaluate and validate a novel approach, which is a computer-based quantitative EEG analyzing method and based on grey systems, aimed to help decision-maker. In this study, 1D-LBP, which utilizes all data points, was employed for extracting features in raw EEG signals, Fisher score (FS) was employed to select the representative features, which can also be determined as hidden patterns. Additionally, GRA is performed to classify EEG signals through these Fisher scored features. The experimental results of the proposed approach, which was employed in a public dataset for validation, showed that it has a high accuracy in identifying epileptic EEG signals. For various combinations of epileptic EEG, such as A-E, B-E, C-E, D-E, and A-D clusters, 100, 96, 100, 99.00 and 100% were achieved, respectively. Also, this work presents an attempt to develop a new general-purpose hidden pattern determination scheme, which can be utilized for different categories of time-varying signals. PMID:26206400

  20. Detection of epileptic seizure in EEG signals using linear least squares preprocessing.

    PubMed

    Roshan Zamir, Z

    2016-09-01

    An epileptic seizure is a transient event of abnormal excessive neuronal discharge in the brain. This unwanted event can be obstructed by detection of electrical changes in the brain that happen before the seizure takes place. The automatic detection of seizures is necessary since the visual screening of EEG recordings is a time consuming task and requires experts to improve the diagnosis. Much of the prior research in detection of seizures has been developed based on artificial neural network, genetic programming, and wavelet transforms. Although the highest achieved accuracy for classification is 100%, there are drawbacks, such as the existence of unbalanced datasets and the lack of investigations in performances consistency. To address these, four linear least squares-based preprocessing models are proposed to extract key features of an EEG signal in order to detect seizures. The first two models are newly developed. The original signal (EEG) is approximated by a sinusoidal curve. Its amplitude is formed by a polynomial function and compared with the predeveloped spline function. Different statistical measures, namely classification accuracy, true positive and negative rates, false positive and negative rates and precision, are utilised to assess the performance of the proposed models. These metrics are derived from confusion matrices obtained from classifiers. Different classifiers are used over the original dataset and the set of extracted features. The proposed models significantly reduce the dimension of the classification problem and the computational time while the classification accuracy is improved in most cases. The first and third models are promising feature extraction methods with the classification accuracy of 100%. Logistic, LazyIB1, LazyIB5, and J48 are the best classifiers. Their true positive and negative rates are 1 while false positive and negative rates are 0 and the corresponding precision values are 1. Numerical results suggest that these

  1. [Auto-cholinergic synapse dysfunction in patients with generalized epileptic seizures. A preliminary report].

    PubMed

    Qu, Z P

    1991-06-01

    The mechanism of epileptic seizures so far remains unclear. Immunological disturbances may be one of the possible mechanisms. The assumption that primary epilepsy is an autoimmune disease lacks an experimental basis. In order to search any relationship between generalized epileptic seizures and autoimmune we examined and measured the serum anti-acetylcholine receptor antibody (A AchR Ab) and anti-synaptic premembrane antibody (A PrM Ab) in 12 patients with typical absences, 20 patients with generalized tonic-clonic seizures (GTC) and 6 patients with Lennox-Gastaut Syndrome. 2 (16.7%) out of 12 patients with absences showed positive both A AchR Ab and A PrM Ab, positive A AchR Ab in 1 patient. Among 20 patients with GTC both A AchR Ab and A PrM Ab were positive in 7 patients (35%), A PrM Ab was positive in 1 patient. Totally in 8 patients A PrM Ab was positive. However, the difference between the two Antibodies was not significant (1.1:1). The two kinds of antibody were positive in 5 (83%) out of 6 patients and A PrM Ab was positive, but A AchR Ab was doubtful in another one patient with Lennox-Gastaut syndrome. Therefore, all the patients with Lennox-Gastaut syndrome showed positive antibody. Our data suggested that different types of generalized epileptic-seizures showed different severity of autoimmune dysfunction. The meaning of this kind of immune dysfunction needs further investigation. PMID:1889327

  2. Epileptic Seizure Detection in Eeg Signals Using Multifractal Analysis and Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Uthayakumar, R.; Easwaramoorthy, D.

    2013-06-01

    This paper explores the three different methods to explicitly recognize the healthy and epileptic EEG signals: Modified, Improved, and Advanced forms of Generalized Fractal Dimensions (GFD). The newly proposed scheme is based on GFD and the discrete wavelet transform (DWT) for analyzing the EEG signals. First EEG signals are decomposed into approximation and detail coefficients using DWT and then GFD values of the original EEGs, approximation and detail coefficients are computed. Significant differences are observed among the GFD values of the healthy and epileptic EEGs allowing us to classify seizures with high accuracy. It is shown that the classification rate is very less accurate without DWT as a preprocessing step. The proposed idea is illustrated through the graphical and statistical tools. The EEG data is further tested for linearity by using normal probability plot and we proved that epileptic EEG had significant nonlinearity whereas healthy EEG distributed normally and similar to Gaussian linear process. Therefore, we conclude that the GFD and the wavelet decomposition through DWT are the strong indicators of the state of illness of epileptic patients.

  3. Ecstatic Epileptic Seizures: A Glimpse into the Multiple Roles of the Insula.

    PubMed

    Gschwind, Markus; Picard, Fabienne

    2016-01-01

    Ecstatic epileptic seizures are a rare but compelling epileptic entity. During the first seconds of these seizures, ecstatic auras provoke feelings of well-being, intense serenity, bliss, and "enhanced self-awareness." They are associated with the impression of time dilation, and can be described as a mystic experience by some patients. The functional neuroanatomy of ecstatic seizures is still debated. During recent years several patients presenting with ecstatic auras have been reported by others and us (in total n = 52); a few of them in the setting of presurgical evaluation including electrical brain stimulation. According to the recently recognized functions of the insula, and the results of nuclear brain imaging and electrical stimulation, the ecstatic symptoms in these patients seem to localize to a functional network centered around the anterior insular cortex, where we thus propose to locate this rare ictal phenomenon. Here we summarize the role of the multiple sensory, autonomic, affective, and cognitive functions of the insular cortex, which are integrated into the creation of self-awareness, and we suggest how this system may become dysfunctional on several levels during ecstatic aura. PMID:26924970

  4. Ecstatic Epileptic Seizures: A Glimpse into the Multiple Roles of the Insula

    PubMed Central

    Gschwind, Markus; Picard, Fabienne

    2016-01-01

    Ecstatic epileptic seizures are a rare but compelling epileptic entity. During the first seconds of these seizures, ecstatic auras provoke feelings of well-being, intense serenity, bliss, and “enhanced self-awareness.” They are associated with the impression of time dilation, and can be described as a mystic experience by some patients. The functional neuroanatomy of ecstatic seizures is still debated. During recent years several patients presenting with ecstatic auras have been reported by others and us (in total n = 52); a few of them in the setting of presurgical evaluation including electrical brain stimulation. According to the recently recognized functions of the insula, and the results of nuclear brain imaging and electrical stimulation, the ecstatic symptoms in these patients seem to localize to a functional network centered around the anterior insular cortex, where we thus propose to locate this rare ictal phenomenon. Here we summarize the role of the multiple sensory, autonomic, affective, and cognitive functions of the insular cortex, which are integrated into the creation of self-awareness, and we suggest how this system may become dysfunctional on several levels during ecstatic aura. PMID:26924970

  5. Classification of epileptic motor manifestations and detection of tonic-clonic seizures with acceleration norm entropy.

    PubMed

    Becq, Guillaume; Kahane, Philippe; Minotti, Lorella; Bonnet, Stephane; Guillemaud, Regis

    2013-08-01

    In this paper, three triaxis accelerometers positioned on the wrists and the head of epileptic patients submitted to long-term video electroencephalographic monitoring as part of presurgical investigation are evaluated to characterize the different classes of motor manifestations observed during seizures. Quadratic discriminant classifiers are trained on features extracted from 1 or 4 s windows. It is shown that a simple rule applied to the acceleration norm entropy HnA produces the best performances compared to other classifiers trained on other feature sets. The simple rule is as follows with values given in bits: (0 HnA 1.34), no movement; (1.34 HnA 3.87), tonic manifestations; (3.87 HnA), tonic-clonic manifestations. For this classifier, features are extracted from 1 s windows and the misclassification rate is 11% evaluated on 5,607 s of epileptic motor manifestations obtained from 58 seizures in 30 patients. A quantile normalization can improve the results with features based on absolute power spectral density but performances are not as good as the ones obtained with HnA. Based on the classifier using only HnA, a simple tonic-clonic seizure detector is proposed and produces a 80% sensitivity with a 95% specificity. PMID:23392333

  6. Ethical Dilemmas in Pediatric and Adolescent Psychogenic Non-Epileptic Seizures

    PubMed Central

    Cole, Cristie M.; Falcone, Tatiana; Caplan, Rochelle; Timmons-Mitchell, Jane; Jares, Kristine; Ford, Paul J.

    2014-01-01

    To date only a very narrow window of ethical dilemmas in psychogenic non-epileptic seizures (PNES) have been explored. Numerous distinct ethical dilemmas arise in diagnosing and treating pediatric and adolescent patients with PNES. Important ethical values at stake include trust, transparency, confidentiality, professionalism, autonomy of all stakeholders and justice. In order to further elucidate the ethical challenges in caring for this population, an ethical analysis of the special challenges faced in four specific domains is undertaken: (1) conducting and communicating a diagnosis of PNES; (2) advising patients about full transparency and disclosure to community including patients’ peers; (3) responding to requests to continue anti-epileptic drugs; and (4) managing challenges arising from school policy and procedure. An analysis of these ethical issues is essential for the advancement of best care practices that promote the overall well-being of patients and their families. PMID:25022823

  7. Subclinical tonic-clonic epileptic seizure detected by an implantable loop recorder.

    PubMed

    Kohno, Ritsuko; Abe, Haruhiko; Akamatsu, Naoki; Tamura, Masahito; Takeuchi, Masaaki; Otsuji, Yutaka; Benditt, David G

    2013-01-01

    A 73-year old man received an implantable loop recorder (ILR) for the evaluation of transient loss of consciousness (TLOC) spells. His medical history was without any epileptic convulsions or automatism. ILR recording during a spontaneous episode revealed the presence of a regular, narrow QRS complex tachycardia associated with low-amplitude, high-frequency, continuous or discontinuous artifacts, consistent with myopotentials. During the event, the regular, low-amplitude continuous signals gradually became discontinuous, with a prolongation of the inter-signal cycle length, until their disappearance after manual activation of the ILR. The patient was diagnosed as experiencing subclinical tonic-clonic epileptic seizures. Antiepileptic drug treatment was initiated, and the patient has remained free of TLOC symptoms during 13 months follow-up. PMID:24097218

  8. IPS Interest in the EEG of Patients after a Single Epileptic Seizure

    PubMed Central

    Mounach, Jamal; Satte, Amal; Ouhabi, Hamid; El Hessni, Aboubaker

    2016-01-01

    Objective. This study aims to evaluate the incidence of pathological cerebral activity responses to intermittent rhythmic photic stimulation (IPS) after a single epileptic seizure. Patients and Methods. One hundred and thirty-seven EEGs were performed at the Neurophysiology Department of Mohamed V Teaching Military Hospital in Rabat. Clinical and EEG data was collected. Results. 9.5% of our patients had photoparoxysmal discharges (PPD). Incidence was higher in males than in females, but p value was not significant (p = 0.34), and it was higher in children compared to adults with significant p value (p = 0.08). The most epileptogenic frequencies were within the range 15–20 Hz. 63 patients had an EEG after 72 hours; among them 11 were photosensitive (p = 0.001). The frequency of the PPR was significantly higher in patients with generalized abnormalities than in focal abnormalities (p = 0.001). EEG confirmed a genetic generalized epilepsy in 8 cases among 13 photosensitive patients. Conclusion. PPR is age related. The frequencies within the range 15–20 Hz should inevitably be included in EEG protocols. The presence of PPR after a first seizure is probably more in favor of generalized seizure rather than the other type of seizure. PPR seems independent from the delay Seizure-EEG. Our study did not show an association between sex and photosensitivity.

  9. Enhanced susceptibility to spontaneous seizures of noda epileptic rats by loss of synaptic zn(2+).

    PubMed

    Takeda, Atsushi; Iida, Masashi; Ando, Masaki; Nakamura, Masatoshi; Tamano, Haruna; Oku, Naoto

    2013-01-01

    Zinc homeostasis in the brain is associated with the etiology and manifestation of epileptic seizures. Adult Noda epileptic rats (NER, >12-week-old) exhibit spontaneously generalized tonic-clonic convulsion about once a day. To pursue the involvement of synaptic Zn(2+) signal in susceptibility to spontaneous seizures, in the present study, the effect of zinc chelators on epileptogenesis was examined using adult NER. Clioquinol (CQ) and TPEN are lipophilic zinc chelotors, transported into the brain and reduce the levels of synaptic Zn(2+). The incidence of tonic-clonic convulsion was markedly increased after i.p. injection of CQ (30-100 mg/kg) and TPEN (1 mg/kg). The basal levels of extracellular Zn(2+) measured by ZnAF-2 were decreased before tonic-clonic convulsion was induced with zinc chelators. The hippocampal electroencephalograms during CQ (30 mg/kg)-induced convulsions were similar to those during sound-induced convulsions in NER reported previously. Exocytosis of hippocampal mossy fibers, which was measured with FM4-64, was significantly increased in hippocampal slices from CQ-injected NER that did not show tonic-clonic convulsion yet. These results indicate that the abnormal excitability of mossy fibers is induced prior to epileptic seizures by injection of zinc chelators into NER. The incidence of tonic-clonic convulsion induced with CQ (30 mg/kg) was significantly reduced by co-injection with aminooxyacetic acid (5-10 mg/kg), an anticonvulsant drug enhancing GABAergic activity, which did not affect locomotor activity. The present paper demonstrates that the abnormal excitability in the brain, especially in mossy fibers, which is potentially associated with the insufficient GABAergic neuron activity, may be a factor to reduce the threshold for epileptogenesis in NER. PMID:23951148

  10. Enhanced Susceptibility to Spontaneous Seizures of Noda Epileptic Rats by Loss of Synaptic Zn2+

    PubMed Central

    Takeda, Atsushi; Iida, Masashi; Ando, Masaki; Nakamura, Masatoshi; Tamano, Haruna; Oku, Naoto

    2013-01-01

    Zinc homeostasis in the brain is associated with the etiology and manifestation of epileptic seizures. Adult Noda epileptic rats (NER, >12-week-old) exhibit spontaneously generalized tonic-clonic convulsion about once a day. To pursue the involvement of synaptic Zn2+ signal in susceptibility to spontaneous seizures, in the present study, the effect of zinc chelators on epileptogenesis was examined using adult NER. Clioquinol (CQ) and TPEN are lipophilic zinc chelotors, transported into the brain and reduce the levels of synaptic Zn2+. The incidence of tonic-clonic convulsion was markedly increased after i.p. injection of CQ (30–100 mg/kg) and TPEN (1 mg/kg). The basal levels of extracellular Zn2+ measured by ZnAF-2 were decreased before tonic-clonic convulsion was induced with zinc chelators. The hippocampal electroencephalograms during CQ (30 mg/kg)-induced convulsions were similar to those during sound-induced convulsions in NER reported previously. Exocytosis of hippocampal mossy fibers, which was measured with FM4-64, was significantly increased in hippocampal slices from CQ-injected NER that did not show tonic-clonic convulsion yet. These results indicate that the abnormal excitability of mossy fibers is induced prior to epileptic seizures by injection of zinc chelators into NER. The incidence of tonic-clonic convulsion induced with CQ (30 mg/kg) was significantly reduced by co-injection with aminooxyacetic acid (5–10 mg/kg), an anticonvulsant drug enhancing GABAergic activity, which did not affect locomotor activity. The present paper demonstrates that the abnormal excitability in the brain, especially in mossy fibers, which is potentially associated with the insufficient GABAergic neuron activity, may be a factor to reduce the threshold for epileptogenesis in NER. PMID:23951148

  11. Interplay between interictal spikes and behavioral seizures in young, but not aged pilocarpine-treated epileptic rats.

    PubMed

    Bajorat, Rika; Goerss, Doreen; Brenndörfer, Linda; Schwabe, Lars; Köhling, Rüdiger; Kirschstein, Timo

    2016-04-01

    Interictal spike activity is commonly observed in the EEG of patients with epilepsy, but the causal interrelationship between interictal spikes and behavioral seizures is poorly understood. We performed long-term video-EEG monitoring of 16 epileptic rats after pilocarpine-induced status epilepticus and five control animals. To quantify the interplay between periods of spikes and seizures, we calculated the time spent with spikes as well as the time spent with seizures for each animal. Within a given subject, we found a significant correlation between these two measures in 7/11 young epileptic rats (<400days); this correlation was positive in six cases and negative in one. By contrast, none of five aged pilocarpine-treated animals exhibited significant correlation coefficients between spike periods and seizures (>600days, P<0.05). Instead, aged epileptic rats showed a prominent predominance for either spike periods or seizures, which might explain the absence of significant correlation in this population. We found that there is a significant interplay between interictal periods of spikes and behavioral seizures in young epileptic animals, but this association is absent during aging. PMID:26926072

  12. Brain network dynamics characterization in epileptic seizures. Joint directed graph and pairwise synchronization measures

    NASA Astrophysics Data System (ADS)

    Rodrigues, A. C.; Machado, B. S.; Florence, G.; Hamad, A. P.; Sakamoto, A. C.; Fujita, A.; Baccalá, L. A.; Amaro, E.; Sameshima, K.

    2014-12-01

    Here we propose and evaluate a new approach to analyse multichannel mesial temporal lobe epilepsy EEG data from eight patients through complex network and synchronization theories. The method employs a Granger causality test to infer the directed connectivity graphs and a wavelet transform based phase synchronization measure whose characteristics allow studying dynamical transitions during epileptic seizures. We present a new combined graph measure that quantifies the level of network hub formation, called network hub out-degree, which closely reflects the level of synchronization observed during the ictus.

  13. Monitoring changing dynamics with correlation integrals: Case study of an epileptic seizure

    NASA Astrophysics Data System (ADS)

    Lerner, David E.

    We describe a procedure (and the motivation behind it) which rapidly and accurately tracks the onset and progress of an epileptic seizure. Roughly speaking, one monitors changes in the relative dispersion of a re-embedded time series. The results are robust with respect to variation of adjustable parameters such as embedding dimension, lag time, and critical distances. Moreover, the general method is virtually unaffected when the data are significantly corrupted by external noise. When the information computed for the individual channels is displayed in an appropriate space-time plot, the progress and geometric location of the seizure are easily seen. An interpretation of these results in terms of a cloud of particles moving in an abstract phase space is examined.

  14. Epileptic Seizure Detection with Log-Euclidean Gaussian Kernel-Based Sparse Representation.

    PubMed

    Yuan, Shasha; Zhou, Weidong; Wu, Qi; Zhang, Yanli

    2016-05-01

    Epileptic seizure detection plays an important role in the diagnosis of epilepsy and reducing the massive workload of reviewing electroencephalography (EEG) recordings. In this work, a novel algorithm is developed to detect seizures employing log-Euclidean Gaussian kernel-based sparse representation (SR) in long-term EEG recordings. Unlike the traditional SR for vector data in Euclidean space, the log-Euclidean Gaussian kernel-based SR framework is proposed for seizure detection in the space of the symmetric positive definite (SPD) matrices, which form a Riemannian manifold. Since the Riemannian manifold is nonlinear, the log-Euclidean Gaussian kernel function is applied to embed it into a reproducing kernel Hilbert space (RKHS) for performing SR. The EEG signals of all channels are divided into epochs and the SPD matrices representing EEG epochs are generated by covariance descriptors. Then, the testing samples are sparsely coded over the dictionary composed by training samples utilizing log-Euclidean Gaussian kernel-based SR. The classification of testing samples is achieved by computing the minimal reconstructed residuals. The proposed method is evaluated on the Freiburg EEG dataset of 21 patients and shows its notable performance on both epoch-based and event-based assessments. Moreover, this method handles multiple channels of EEG recordings synchronously which is more speedy and efficient than traditional seizure detection methods. PMID:26906674

  15. Effect of baicalin on hippocampal damage in kainic acid-induced epileptic mice

    PubMed Central

    Liao, Zheng-Jian; Liang, Ri-Sheng; Shi, Song-Sheng; Wang, Chun-Hua; Yang, Wei-Zhong

    2016-01-01

    The aim of the present study was to determine the effect of baicalin on the expression of miR-497 and its target B-cell lymphoma-2 (Bcl-2) in the hippocampus of kainic acid (KA)-induced epileptic mice. To establish status epilepticus (SE), 0.1 µg/5 µl KA was injected into the lateral cerebral ventricle in mice, which then received an intraperitoneal injection of baicalin (100 mg/kg) after 1 and 8 h. Hematoxylin and eosin staining was used to observe the pathological changes in morphology and neuronal apoptosis was determined by terminal transferase-mediated dUTP nick end-labeling staining. Western blot analysis was used to detect the expression of Bcl-2 and cleaved caspase-3 proteins in the hippocampus, while reverse transcription-quantitative polymerase chain reaction was used to quantify hippocampal miR-497 expression. The results showed that baicalin significantly attenuated neuronal damage and apoptosis in the hippocampus 72 h after SE. In addition, baicalin decreased SE-induced expression of miR-497 and cleaved caspase-3 protein, while upregulating the expression of Bcl-2 protein. In conclusion, the present results suggest that baicalin possesses potent antiapoptotic properties and attenuates hippocampal injury in mice after SE, which may be associated with the downregulation of miR-497 and cleaved caspase-3 and the upregulation of Bcl-2. PMID:27588062

  16. Cholesterol metabolite cholestane-3β,5α,6β-triol suppresses epileptic seizures by negative modulation of voltage-gated sodium channels.

    PubMed

    Tang, Lipeng; Wang, Youqiong; Leng, Tiandong; Sun, Huanhuan; Zhou, Yuehan; Zhu, Wenbo; Qiu, Pengxin; Zhang, Jingxia; Lu, Bingzheng; Yan, Min; Chen, Wenli; Su, Xinwen; Yin, Wei; Huang, Yijun; Hu, Haiyan; Yan, Guangmei

    2015-06-01

    Imbalance of excitation and inhibition in neurons is implicated in the pathogenesis of epilepsy. Voltage-gated sodium channels, which play a vital role in regulating neuronal excitability, are one of the major targets for developing anti-epileptic drugs. Here we provide evidence that cholestane-3β,5α,6β-triol (triol), a major metabolic oxysterol of cholesterol, is an effective state-dependent negative sodium channels modulator. Triol reduced Na(+) current density in a concentration-dependent manner. 10 μM triol shifted steady-state/fast/slow inactivation curves of sodium channels toward the hyperpolarizing direction. Additionally, triol reduced voltage-gated sodium currents in a voltage- and frequency-dependent manner. In a kainic acid-induced seizures mouse model, triol (25 mg/kg) significantly increased the latency of seizure onset and attenuated seizure severity. Our findings provide novel insights for understanding the modulatory role of a small molecular oxysterol on voltage-gated sodium channels and suggest triol may represent a novel and promising candidate for epilepsy intervention. PMID:25578735

  17. Non-intrusive head movement analysis of videotaped seizures of epileptic origin.

    PubMed

    Mandal, Bappaditya; Eng, How-Lung; Lu, Haiping; Chan, Derrick W S; Ng, Yen-Ling

    2012-01-01

    In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients' heads are analyzed holistically to infer seizure and normal random movements. The patient does not require to wear any special clothing, markers or sensors, hence it is totally non-intrusive. The user initializes the person-specific skin color and selects few face/head poses in the initial few frames. The system then tracks the head/face and extracts spatio-temporal features. Support vector machines are then used on these features to classify seizure-like movements from normal random movements. Experiments are performed on numerous long hour video sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection. PMID:23367311

  18. All together now: Analogies between chimera state collapses and epileptic seizures

    PubMed Central

    Andrzejak, Ralph G.; Rummel, Christian; Mormann, Florian; Schindler, Kaspar

    2016-01-01

    Conceptually and structurally simple mathematical models of coupled oscillator networks can show a rich variety of complex dynamics, providing fundamental insights into many real-world phenomena. A recent and not yet fully understood example is the collapse of coexisting synchronous and asynchronous oscillations into a globally synchronous motion found in networks of identical oscillators. Here we show that this sudden collapse is promoted by a further decrease of synchronization, rather than by critically high synchronization. This strikingly counterintuitive mechanism can be found also in nature, as we demonstrate on epileptic seizures in humans. Analyzing spatiotemporal correlation profiles derived from intracranial electroencephalographic recordings (EEG) of seizures in epilepsy patients, we found a pronounced decrease of correlation at the seizure onsets. Applying our findings in a closed-loop control scheme to models of coupled oscillators in chimera states, we succeed in both provoking and preventing outbreaks of global synchronization. Our findings not only advance the understanding of networks of coupled dynamics but can open new ways to control them, thus offering a vast range of potential new applications. PMID:26957324

  19. All together now: Analogies between chimera state collapses and epileptic seizures

    NASA Astrophysics Data System (ADS)

    Andrzejak, Ralph G.; Rummel, Christian; Mormann, Florian; Schindler, Kaspar

    2016-03-01

    Conceptually and structurally simple mathematical models of coupled oscillator networks can show a rich variety of complex dynamics, providing fundamental insights into many real-world phenomena. A recent and not yet fully understood example is the collapse of coexisting synchronous and asynchronous oscillations into a globally synchronous motion found in networks of identical oscillators. Here we show that this sudden collapse is promoted by a further decrease of synchronization, rather than by critically high synchronization. This strikingly counterintuitive mechanism can be found also in nature, as we demonstrate on epileptic seizures in humans. Analyzing spatiotemporal correlation profiles derived from intracranial electroencephalographic recordings (EEG) of seizures in epilepsy patients, we found a pronounced decrease of correlation at the seizure onsets. Applying our findings in a closed-loop control scheme to models of coupled oscillators in chimera states, we succeed in both provoking and preventing outbreaks of global synchronization. Our findings not only advance the understanding of networks of coupled dynamics but can open new ways to control them, thus offering a vast range of potential new applications.

  20. Chronic Trigeminal Nerve Stimulation Protects Against Seizures, Cognitive Impairments, Hippocampal Apoptosis, and Inflammatory Responses in Epileptic Rats.

    PubMed

    Wang, Qian-Qian; Zhu, Li-Jun; Wang, Xian-Hong; Zuo, Jian; He, Hui-Yan; Tian, Miao-Miao; Wang, Lei; Liang, Gui-Ling; Wang, Yu

    2016-05-01

    Trigeminal nerve stimulation (TNS) has recently been demonstrated effective in the treatment of epilepsy and mood disorders. Here, we aim to determine the effects of TNS on epileptogenesis, cognitive function, and the associated hippocampal apoptosis and inflammatory responses. Rats were injected with pilocarpine to produce status epilepticus (SE) and the following chronic epilepsy. After SE induction, TNS treatment was conducted for 4 consecutive weeks. A pilocarpine re-injection was then used to induce a seizure in the epileptic rats. The hippocampal neuronal apoptosis induced by seizure was assessed by TUNEL staining and inflammatory responses by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). The spontaneous recurrent seizure (SRS) number was counted through video monitoring, and the cognitive function assessed through Morris Water Maze (MWM) test. TNS treatment attenuated the SRS attacks and improved the cognitive impairment in epileptic rats. A pilocarpine re-injection resulted in less hippocampal neuronal apoptosis and reduced level of interleukin-1 beta (IL-1β), tumor necrosis factor-α (TNF-α), and microglial activation in epileptic rats with TNS treatment in comparison to the epileptic rats without TNS treatment. It is concluded that TNS treatment shortly after SE not only protected against the chronic spontaneous seizures but also improved cognitive impairments. These antiepileptic properties of TNS may be related to its attenuating effects on hippocampal apoptosis and pro-inflammatory responses. PMID:26973056

  1. An Integrative View of Mechanisms Underlying Generalized Spike-and-Wave Epileptic Seizures and Its Implication on Optimal Therapeutic Treatments

    PubMed Central

    Yan, Boyuan; Li, Peng

    2011-01-01

    Many types of epileptic seizures are characterized by generalized spike-and-wave discharges. In the past, notable effort has been devoted to understanding seizure dynamics and various hypotheses have been proposed to explain the underlying mechanisms. In this paper, by taking an integrative view of the underlying mechanisms, we demonstrate that epileptic seizures can be generated by many different combinations of synaptic strengths and intrinsic membrane properties. This integrative view has important medical implications: the specific state of a patient characterized by a set of biophysical characteristics ultimately determines the optimal therapeutic treatment. Through the same view, we further demonstrate the potentiation effect of rational polypharmacy in the treatment of epilepsy and provide a new angle to resolve the debate on polypharmacy. Our results underscore the need for personalized medicine and demonstrate that computer modeling and simulation may play an important role in assisting the clinicians in selecting the optimal treatment on an individual basis. PMID:21811612

  2. Ngram-Derived Pattern Recognition for the Detection and Prediction of Epileptic Seizures

    PubMed Central

    Eftekhar, Amir; Juffali, Walid; El-Imad, Jamil; Constandinou, Timothy G.; Toumazou, Christofer

    2014-01-01

    This work presents a new method that combines symbol dynamics methodologies with an Ngram algorithm for the detection and prediction of epileptic seizures. The presented approach specifically applies Ngram-based pattern recognition, after data pre-processing, with similarity metrics, including the Hamming distance and Needlman-Wunsch algorithm, for identifying unique patterns within epochs of time. Pattern counts within each epoch are used as measures to determine seizure detection and prediction markers. Using 623 hours of intracranial electrocorticogram recordings from 21 patients containing a total of 87 seizures, the sensitivity and false prediction/detection rates of this method are quantified. Results are quantified using individual seizures within each case for training of thresholds and prediction time windows. The statistical significance of the predictive power is further investigated. We show that the method presented herein, has significant predictive power in up to 100% of temporal lobe cases, with sensitivities of up to 70–100% and low false predictions (dependant on training procedure). The cases of highest false predictions are found in the frontal origin with 0.31–0.61 false predictions per hour and with significance in 18 out of 21 cases. On average, a prediction sensitivity of 93.81% and false prediction rate of approximately 0.06 false predictions per hour are achieved in the best case scenario. This compares to previous work utilising the same data set that has shown sensitivities of up to 40–50% for a false prediction rate of less than 0.15/hour. PMID:24886714

  3. Efficient feature selection using a hybrid algorithm for the task of epileptic seizure detection

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2014-07-01

    Feature selection is a very important aspect in the field of machine learning. It entails the search of an optimal subset from a very large data set with high dimensional feature space. Apart from eliminating redundant features and reducing computational cost, a good selection of feature also leads to higher prediction and classification accuracy. In this paper, an efficient feature selection technique is introduced in the task of epileptic seizure detection. The raw data are electroencephalography (EEG) signals. Using discrete wavelet transform, the biomedical signals were decomposed into several sets of wavelet coefficients. To reduce the dimension of these wavelet coefficients, a feature selection method that combines the strength of both filter and wrapper methods is proposed. Principal component analysis (PCA) is used as part of the filter method. As for wrapper method, the evolutionary harmony search (HS) algorithm is employed. This metaheuristic method aims at finding the best discriminating set of features from the original data. The obtained features were then used as input for an automated classifier, namely wavelet neural networks (WNNs). The WNNs model was trained to perform a binary classification task, that is, to determine whether a given EEG signal was normal or epileptic. For comparison purposes, different sets of features were also used as input. Simulation results showed that the WNNs that used the features chosen by the hybrid algorithm achieved the highest overall classification accuracy.

  4. Effects of A1 receptor agonist/antagonist on spontaneous seizures in pilocarpine-induced epileptic rats.

    PubMed

    Amorim, Beatriz Oliveira; Hamani, Clement; Ferreira, Elenn; Miranda, Maísa Ferreira; Fernandes, Maria José S; Rodrigues, Antonio M; de Almeida, Antônio-Carlos G; Covolan, Luciene

    2016-08-01

    Adenosine is an endogenous anticonvulsant that activates pre- and postsynaptic adenosine A1 receptors. A1 receptor agonists increase the latency for the development of seizures and status epilepticus following pilocarpine administration. Although hippocampal adenosine is increased in the chronic phase of the pilocarpine model, it is not known whether the modulation of A1 receptors may influence the frequency of spontaneous recurrent seizures (SRS). Here, we tested the hypothesis that the A1 receptor agonist RPia ([R]-N-phenylisopropyladenosine) and the A1 antagonist DPCPX (8-Cyclopentyl-1,3-dipropylxanthine) administered to chronic pilocarpine epileptic rats would respectively decrease and increase the frequency of SRS and hippocampal excitability. Four months after Pilo-induced SE, chronic epileptic rats were video-monitored for the recording of SRS before (basal) and after a 2-week treatment with RPia (25μg/kg) or DPCPX (50μg/kg). Following sacrifice, brain slices were studied with electrophysiology. We found that rats given RPia had a 93% nonsignificant reduction in the frequency of seizures compared with their own pretreatment baseline. In contrast, the administration of DPCPX resulted in an 87% significant increase in seizure rate. Nontreated epileptic rats had a similar frequency of seizures along the study. Corroborating our behavioral data, in vitro recordings showed that slices from animals previously given DPCPX had a shorter latency to develop epileptiform activity, longer and higher DC shifts, and higher spike amplitude compared with slices from nontreated Pilo controls. In contrast, smaller spike amplitude was recorded in slices from animals given RPia. In summary, the administration of A1 agonists reduced hippocampal excitability but not the frequency of spontaneous recurrent seizures in chronic epileptic rats, whereas A1 receptor antagonists increased both. PMID:27371881

  5. Simultaneous fMRI and local field potential measurements during epileptic seizures in medetomidine sedated rats using RASER pulse sequence

    PubMed Central

    Airaksinen, Antti M; Niskanen, Juha-Pekka; Chamberlain, Ryan; Huttunen, Joanna K; Nissinen, Jari; Garwood, Michael; Pitkänen, Asla; Gröhn, Olli

    2010-01-01

    Simultaneous electrophysiological and functional magnetic resonance imaging (fMRI) measurements of animal models of epilepsy are methodologically challenging, but essential to better understand abnormal brain activity and hemodynamics during seizures. In the present study, fMRI of medetomidine sedated rats was performed using novel Rapid Acquisition by Sequential Excitation and Refocusing (RASER) fast imaging pulse sequence and simultaneous local field potential (LFP) measurements during kainic acid (KA) induced seizures. The image distortion caused by the hippocampal measuring electrode was clearly seen in echo planar imaging (EPI) images, whereas no artifact was seen in RASER images. Robust blood oxygenation level dependent (BOLD) responses were observed in the hippocampus during KA induced seizures. The recurrent epileptic seizures were detected in the LFP signal after KA injection. The presented combination of deep electrode LFP measurements and fMRI under medetomidine anesthesia, that does not significantly suppress KA induced seizures, provides a unique tool for studying abnormal brain activity in rats. PMID:20725933

  6. Hardware for seizure prediction: towards wearable devices to support epileptic people.

    PubMed

    Castellaro, Cipriano; Favaro, Gianpietro; Salemi, Giovanni; Sarto, Matteo; Rizzo, Nicola

    2011-01-01

    This paper presents the hardware developed for the EPILEPSIAE project (www.epilepsiae.eu), focused on epileptic seizure prediction. A portable low power acquisition system for EEG signals, called LTM-EU (Long Term Monitoring), with 64 channels and 2048 Hz sampling rate each and a safe (high isolation) PC interface on a PCIe bus specifically designed for this task, is described. The acquisition system, designed for a rapid commercialization, though used for research purposes, got the CE certification. The signal from the patient, on each channel, is amplified, converted in digital form and stored into a local flash memory (SD-MMC, 4 GB). Data are then formatted into a serial stream at 4 Mb/s and sent through a half-duplex RS485 link to the host where a specifically designed PCIe (BQPCIe) interface receive them and release the information to the OS (Windows or Linux). The amplifier runs with a couple of AA battery for more than 15 hours (300 mW). If a wireless link is established (Bluetooth), a bandwidth limited stream of data (or a subset of channels) is sent for monitoring purposes. The mission is to support the researchers of the consortium with a suitable hardware to have a real time seizure prediction system for algorithms tests. In the experimental phase all algorithms run on a portable PC, wire or wireless connected to the acquisition system. PMID:22254635

  7. Epileptic Seizure Prediction based on Ratio and Differential Linear Univariate Features

    PubMed Central

    Rasekhi, Jalil; Mollaei, Mohammad Reza Karami; Bandarabadi, Mojtaba; Teixeira, César A.; Dourado, António

    2015-01-01

    Bivariate features, obtained from multichannel electroencephalogram recordings, quantify the relation between different brain regions. Studies based on bivariate features have shown optimistic results for tackling epileptic seizure prediction problem in patients suffering from refractory epilepsy. A new bivariate approach using univariate features is proposed here. Differences and ratios of 22 linear univariate features were calculated using pairwise combination of 6 electroencephalograms channels, to create 330 differential, and 330 relative features. The feature subsets were classified using support vector machines separately, as one of the two classes of preictal and nonpreictal. Furthermore, minimum Redundancy Maximum Relevance feature reduction method is employed to improve the predictions and reduce the number of false alarms. The studies were carried out on features obtained from 10 patients. For reduced subset of 30 features and using differential approach, the seizures were on average predicted in 60.9% of the cases (28 out of 46 in 737.9 h of test data), with a low false prediction rate of 0.11 h−1. Results of bivariate approaches were compared with those achieved from original linear univariate features, extracted from 6 channels. The advantage of proposed bivariate features is the smaller number of false predictions in comparison to the original 22 univariate features. In addition, reduction in feature dimension could provide a less complex and the more cost-effective algorithm. Results indicate that applying machine learning methods on a multidimensional feature space resulting from relative/differential pairwise combination of 22 univariate features could predict seizure onsets with high performance. PMID:25709936

  8. Neuroprotective effects of trans-caryophyllene against kainic acid induced seizure activity and oxidative stress in mice.

    PubMed

    Liu, Hao; Song, Zhi; Liao, Daguang; Zhang, Tianyi; Liu, Feng; Zhuang, Kai; Luo, Kui; Yang, Liang

    2015-01-01

    Trans-caryophyllene (TC), a component of essential oil found in many flowering plants, has shown its neuroprotective effects in various neurological disorders. However, the effects of TC on epilepsy haven't been reported before. In this study, we investigated the effect of TC on kainic acid-induced seizure activity caused by oxidative stress and pro-inflammation. We found that TC pretreatment significantly decreased seizure activity score compared to kainic acid treated group. Importantly, TC pretreatment leads to lowering the mortality in kainic acid treated mice. In addition, TC was found to significantly inhibit KA-induced generation of malondialdehyde. TC pretreatment also preserved the activity of GPx, SOD, and CAT. Notably, our data shows that an important property of TC is its capacity to exert cerebral anti-inflammatory effects by mitigating the expression of proinflammatory cytokines, such as TNF-α and IL-1β. These data suggest that TC has a potential protective effect on chemical induced seizure and brain damage. PMID:25417010

  9. Blood-brain barrier changes with kainic acid-induced limbic seizures

    SciTech Connect

    Zucker, D.K.; Wooten, G.F.; Lothman, E.W.

    1983-02-01

    Rats were treated with kainic acid (KA) i.v. to produce increasingly severe limbic seizures that were monitored with a behavioral rating scale. At various times after the induction of seizures, the animals; blood-brain barriers (B-BB) were studied with alpha-(/sup 14/C)aminoisobutyric acid ((/sup 14/C)AIBA) autoradiography. Using optical density ratios, a coefficient was devised to assess the functional integrity of the B-BB in discrete anatomic regions and to quantitatively compare these measurements among different groups of experimental animals. In animals that exhibited only mild seizures, the B-BB was not different from controls. Animals with severe limbic seizures, however, showed alterations. For as long as 2 h after delivery of KA, the B-BB appeared normal; from 2 to 24 h, the permeability to (/sup 14/C)AIBA was markedly increased throughout the brain, especially in limbic regions; from 24 h to 7 days the B-BB returned to normal except for a small residual change in limbic structures. These findings were confirmed with Evans blue dye studies of the B-BB. A correlation between focal accentuation of B-BB alterations and neuropathologic changes was found. These experiments indicted that recurrent limbic seizures may lead to a breakdown in the B-BB independent of systemic metabolic derangements. Marked focal metabolic and electrical changes, however, occurred in several limbic structures several hours before the blood-brain barrier was altered.

  10. Altered regional activity and inter-regional functional connectivity in psychogenic non-epileptic seizures.

    PubMed

    Li, Rong; Li, Yibo; An, Dongmei; Gong, Qiyong; Zhou, Dong; Chen, Huafu

    2015-01-01

    Although various imaging studies have focused on detecting the cerebral function underlying psychogenic non-epileptic seizures (PNES), the nature of PNES remains poorly understood. In this study, we combined the resting state fMRI with fractional amplitude of low-frequency fluctuations (fALFF) and functional connectivity based on the seed voxel linear correlation approach to examine the alterations of regional and inter-regional network cerebral functions in PNES. A total of 20 healthy controls and 18 patients were enrolled. The PNES patients showed significantly increased fALFF mainly in the dorsolateral prefrontal cortex (DLPFC), parietal cortices, and motor areas, as well as decreased fALFF in the triangular inferior frontal gyrus. Thus, our results add to literature suggesting abnormalities of neural synchrony in PNES. Moreover, PNES exhibited widespread inter-regional neural network deficits, including increased (DLPFC, sensorimotor, and limbic system) and decreased (ventrolateral prefrontal cortex) connectivity, indicating that changes in the regional cerebral function are related to remote inter-regional network deficits. Correlation analysis results revealed that the connectivity between supplementary motor area and anterior cingulate cortex correlated with the PNES frequency, further suggesting the skewed integration of synchronous activity could predispose to the occurrence of PNES. Our findings provided novel evidence to investigate the pathophysiological mechanisms of PNES. PMID:26109123

  11. Reduced tonic inhibition after stroke promotes motor performance and epileptic seizures

    PubMed Central

    Jaenisch, Nadine; Liebmann, Lutz; Guenther, Madlen; Hübner, Christian A.; Frahm, Christiane; Witte, Otto W.

    2016-01-01

    Stroke survivors often recover from motor deficits, either spontaneously or with the support of rehabilitative training. Since tonic GABAergic inhibition controls network excitability, it may be involved in recovery. Middle cerebral artery occlusion in rodents reduces tonic GABAergic inhibition in the structurally intact motor cortex (M1). Transcript and protein abundance of the extrasynaptic GABAA-receptor complex α4β3δ are concurrently reduced (δ-GABAARs). In vivo and in vitro analyses show that stroke-induced glutamate release activates NMDA receptors, thereby reducing KCC2 transporters and down-regulates δ-GABAARs. Functionally, this is associated with improved motor performance on the RotaRod, a test in which mice are forced to move in a similar manner to rehabilitative training sessions. As an adverse side effect, decreased tonic inhibition facilitates post-stroke epileptic seizures. Our data imply that early and sometimes surprisingly fast recovery following stroke is supported by homeostatic, endogenous plasticity of extrasynaptic GABAA receptors. PMID:27188341

  12. Properties of functional brain networks correlate with frequency of psychogenic non-epileptic seizures.

    PubMed

    Barzegaran, Elham; Joudaki, Amir; Jalili, Mahdi; Rossetti, Andrea O; Frackowiak, Richard S; Knyazeva, Maria G

    2012-01-01

    Abnormalities in the topology of brain networks may be an important feature and etiological factor for psychogenic non-epileptic seizures (PNES). To explore this possibility, we applied a graph theoretical approach to functional networks based on resting state EEGs from 13 PNES patients and 13 age- and gender-matched controls. The networks were extracted from Laplacian-transformed time-series by a cross-correlation method. PNES patients showed close to normal local and global connectivity and small-world structure, estimated with clustering coefficient, modularity, global efficiency, and small-worldness (SW) metrics, respectively. Yet the number of PNES attacks per month correlated with a weakness of local connectedness and a skewed balance between local and global connectedness quantified with SW, all in EEG alpha band. In beta band, patients demonstrated above-normal resiliency, measured with assortativity coefficient, which also correlated with the frequency of PNES attacks. This interictal EEG phenotype may help improve differentiation between PNES and epilepsy. The results also suggest that local connectivity could be a target for therapeutic interventions in PNES. Selective modulation (strengthening) of local connectivity might improve the skewed balance between local and global connectivity and so prevent PNES events. PMID:23267325

  13. Large-scale modeling of epileptic seizures: scaling properties of two parallel neuronal network simulation algorithms.

    PubMed

    Pesce, Lorenzo L; Lee, Hyong C; Hereld, Mark; Visser, Sid; Stevens, Rick L; Wildeman, Albert; van Drongelen, Wim

    2013-01-01

    Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers. PMID:24416069

  14. Large-Scale Modeling of Epileptic Seizures: Scaling Properties of Two Parallel Neuronal Network Simulation Algorithms

    DOE PAGESBeta

    Pesce, Lorenzo L.; Lee, Hyong C.; Hereld, Mark; Visser, Sid; Stevens, Rick L.; Wildeman, Albert; van Drongelen, Wim

    2013-01-01

    Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determinedmore » the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.« less

  15. Psychogenic non-epileptic seizures: so-called psychiatric comorbidity and underlying defense mechanisms.

    PubMed

    Beghi, Massimiliano; Negrini, Paola Beffa; Perin, Cecilia; Peroni, Federica; Magaudda, Adriana; Cerri, Cesare; Cornaggia, Cesare Maria

    2015-01-01

    In Diagnostic and Statistical Manual of Mental Disorders, fifth edition, psychogenic non-epileptic seizures (PNES) do not have a unique classification as they can be found within different categories: conversion, dissociative, and somatization disorders. The ICD-10, instead, considers PNES within dissociative disorders, merging the dissociative disorders and conversion disorders, although the underlying defense mechanisms are different. The literature data show that PNES are associated with cluster B (mainly borderline) personality disorders and/or to people with depressive or anxiety disorders. Defense mechanisms in patients with PNES with a prevalence of anxious/depressive symptoms are of "neurotic" type; their goal is to lead to a "split", either vertical (dissociation) or horizontal (repression). The majority of patients with this type of PNES have alexithymia traits, meaning that they had difficulties in feeling or perceiving emotions. In subjects where PNES are associated with a borderline personality, in which the symbolic function is lost, the defense mechanisms are of a more archaic nature (denial). PNES with different underlying defense mechanisms have different prognoses (despite similar severity of PNES) and need usually a different treatment (pharmacological or psychological). Thus, it appears superfluous to talk about psychiatric comorbidity, since PNES are a different symptomatic expression of specific psychiatric disorders. PMID:26491330

  16. Nav1.1 Modulation by a Novel Triazole Compound Attenuates Epileptic Seizures in Rodents

    PubMed Central

    2015-01-01

    Here, we report the discovery of a novel anticonvulsant drug with a molecular organization based on the unique scaffold of rufinamide, an anti-epileptic compound used in a clinical setting to treat severe epilepsy disorders such as Lennox-Gastaut syndrome. Although accumulating evidence supports a working mechanism through voltage-gated sodium (Nav) channels, we found that a clinically relevant rufinamide concentration inhibits human (h)Nav1.1 activation, a distinct working mechanism among anticonvulsants and a feature worth exploring for treating a growing number of debilitating disorders involving hNav1.1. Subsequent structure–activity relationship experiments with related N-benzyl triazole compounds on four brain hNav channel isoforms revealed a novel drug variant that (1) shifts hNav1.1 opening to more depolarized voltages without further alterations in the gating properties of hNav1.1, hNav1.2, hNav1.3, and hNav1.6; (2) increases the threshold to action potential initiation in hippocampal neurons; and (3) greatly reduces the frequency of seizures in three animal models. Altogether, our results provide novel molecular insights into the rational development of Nav channel-targeting molecules based on the unique rufinamide scaffold, an outcome that may be exploited to design drugs for treating disorders involving particular Nav channel isoforms while limiting adverse effects. PMID:24635129

  17. Wavelet neural networks initialization using hybridized clustering and harmony search algorithm: Application in epileptic seizure detection

    NASA Astrophysics Data System (ADS)

    Zainuddin, Zarita; Lai, Kee Huong; Ong, Pauline

    2013-04-01

    Artificial neural networks (ANNs) are powerful mathematical models that are used to solve complex real world problems. Wavelet neural networks (WNNs), which were developed based on the wavelet theory, are a variant of ANNs. During the training phase of WNNs, several parameters need to be initialized; including the type of wavelet activation functions, translation vectors, and dilation parameter. The conventional k-means and fuzzy c-means clustering algorithms have been used to select the translation vectors. However, the solution vectors might get trapped at local minima. In this regard, the evolutionary harmony search algorithm, which is capable of searching for near-optimum solution vectors, both locally and globally, is introduced to circumvent this problem. In this paper, the conventional k-means and fuzzy c-means clustering algorithms were hybridized with the metaheuristic harmony search algorithm. In addition to obtaining the estimation of the global minima accurately, these hybridized algorithms also offer more than one solution to a particular problem, since many possible solution vectors can be generated and stored in the harmony memory. To validate the robustness of the proposed WNNs, the real world problem of epileptic seizure detection was presented. The overall classification accuracy from the simulation showed that the hybridized metaheuristic algorithms outperformed the standard k-means and fuzzy c-means clustering algorithms.

  18. Reduced tonic inhibition after stroke promotes motor performance and epileptic seizures.

    PubMed

    Jaenisch, Nadine; Liebmann, Lutz; Guenther, Madlen; Hübner, Christian A; Frahm, Christiane; Witte, Otto W

    2016-01-01

    Stroke survivors often recover from motor deficits, either spontaneously or with the support of rehabilitative training. Since tonic GABAergic inhibition controls network excitability, it may be involved in recovery. Middle cerebral artery occlusion in rodents reduces tonic GABAergic inhibition in the structurally intact motor cortex (M1). Transcript and protein abundance of the extrasynaptic GABAA-receptor complex α4β3δ are concurrently reduced (δ-GABAARs). In vivo and in vitro analyses show that stroke-induced glutamate release activates NMDA receptors, thereby reducing KCC2 transporters and down-regulates δ-GABAARs. Functionally, this is associated with improved motor performance on the RotaRod, a test in which mice are forced to move in a similar manner to rehabilitative training sessions. As an adverse side effect, decreased tonic inhibition facilitates post-stroke epileptic seizures. Our data imply that early and sometimes surprisingly fast recovery following stroke is supported by homeostatic, endogenous plasticity of extrasynaptic GABAA receptors. PMID:27188341

  19. Psychogenic non-epileptic seizures: so-called psychiatric comorbidity and underlying defense mechanisms

    PubMed Central

    Beghi, Massimiliano; Negrini, Paola Beffa; Perin, Cecilia; Peroni, Federica; Magaudda, Adriana; Cerri, Cesare; Cornaggia, Cesare Maria

    2015-01-01

    In Diagnostic and Statistical Manual of Mental Disorders, fifth edition, psychogenic non-epileptic seizures (PNES) do not have a unique classification as they can be found within different categories: conversion, dissociative, and somatization disorders. The ICD-10, instead, considers PNES within dissociative disorders, merging the dissociative disorders and conversion disorders, although the underlying defense mechanisms are different. The literature data show that PNES are associated with cluster B (mainly borderline) personality disorders and/or to people with depressive or anxiety disorders. Defense mechanisms in patients with PNES with a prevalence of anxious/depressive symptoms are of “neurotic” type; their goal is to lead to a “split”, either vertical (dissociation) or horizontal (repression). The majority of patients with this type of PNES have alexithymia traits, meaning that they had difficulties in feeling or perceiving emotions. In subjects where PNES are associated with a borderline personality, in which the symbolic function is lost, the defense mechanisms are of a more archaic nature (denial). PNES with different underlying defense mechanisms have different prognoses (despite similar severity of PNES) and need usually a different treatment (pharmacological or psychological). Thus, it appears superfluous to talk about psychiatric comorbidity, since PNES are a different symptomatic expression of specific psychiatric disorders. PMID:26491330

  20. Frontal linear scleroderma en coup de sabre associated with epileptic seizure

    PubMed Central

    Inci, Rahime; Inci, Mehmet Fatih; Ozkan, Fuat; Oztürk, Perihan

    2012-01-01

    Linear scleroderma is a rare variant of localised scleroderma, which is usually seen in childhood and during the adolescent period, and can cause severe functional morbidity as well as cosmetic and psychological problems. Although its ethiopathogenesis is yet obscure, autoimmunity, local ischaemia and injuries, vaccination, irradiation, vitamin K injections, Borrelia burgdorferi and Varicella infections have been incriminated. A 4-year-old girl who had been followed up for about 18 months with diagnosis of epilepsy had a colour discolouration and depression that first appeared 1 year ago and then progressed on her left frontal region. Her CT scan showed a thinning in the frontal bone and depression in the frontal region. These findings are described as ‘en coup de sabre’ a rare form of linear scleroderma localised at the frontal region of the scalp. In this paper, we present clinical and radiological findings of a 4-year-old girl with epileptic seizures that started 1 year before the onset of the lesion of linear scleroderma. PMID:23230261

  1. Frontal linear scleroderma en coup de sabre associated with epileptic seizure.

    PubMed

    Inci, Rahime; Inci, Mehmet Fatih; Ozkan, Fuat; Oztürk, Perihan

    2012-01-01

    Linear scleroderma is a rare variant of localised scleroderma, which is usually seen in childhood and during the adolescent period, and can cause severe functional morbidity as well as cosmetic and psychological problems. Although its ethiopathogenesis is yet obscure, autoimmunity, local ischaemia and injuries, vaccination, irradiation, vitamin K injections, Borrelia burgdorferi and Varicella infections have been incriminated. A 4-year-old girl who had been followed up for about 18 months with diagnosis of epilepsy had a colour discolouration and depression that first appeared 1 year ago and then progressed on her left frontal region. Her CT scan showed a thinning in the frontal bone and depression in the frontal region. These findings are described as 'en coup de sabre' a rare form of linear scleroderma localised at the frontal region of the scalp. In this paper, we present clinical and radiological findings of a 4-year-old girl with epileptic seizures that started 1 year before the onset of the lesion of linear scleroderma. PMID:23230261

  2. Protective role of miR-23b-3p in kainic acid-induced seizure.

    PubMed

    Zhan, Lianbo; Yao, Yi; Fu, Huajun; Li, Zhenghui; Wang, Fengpeng; Zhang, Xiaobin; He, Wencan; Zheng, Weihong; Zhang, Yunwu; Zheng, Honghua

    2016-07-01

    Dysregulation of microRNAs has been proposed to contribute toward epilepsy. The miRNA miR-23b-3p has been found to protect against neuronal apoptosis and the production of reactive oxygen species. In this study, we assessed the potential role of miR-23b-3p in the kainic acid (KA)-induced seizure model. We found that miR-23b-3p levels were significantly decreased in the brain cortex of mice and in cultured mouse primary neurons treated with KA. Importantly, supplement of miR-23b-3p agomir by an intacerebroventricular injection alleviated seizure behaviors and abnormal cortical electroencephalogram recordings in KA-treated mice. Together, these results indicate that miR-23b-3p plays a crucial role in suppressing seizure formation in experimental models of epilepsy and that miR-23b-3p supplement may be a potential anabolic strategy for ameliorating seizure. PMID:27232518

  3. Glutamate transporters alterations in the reorganizing dentate gyrus are associated with progressive seizure activity in chronic epileptic rats.

    PubMed

    Gorter, Jan A; Van Vliet, Erwin A; Proper, Evelien A; De Graan, Pierre N E; Ghijsen, Wim E J M; Lopes Da Silva, Fernando H; Aronica, Eleonora

    2002-01-21

    The expression of glial and neuronal glutamate transporter proteins was investigated in the hippocampal region at different time points after electrically induced status epilepticus (SE) in the rat. This experimental rat model for mesial temporal lobe epilepsy is characterized by cell loss, gliosis, synaptic reorganization, and chronic seizures after a latent period. Despite extensive gliosis, immunocytochemistry revealed only an up-regulation of both glial transporters localized at the outer aspect of the inner molecular layer (iml) in chronic epileptic rats. The neuronal EAAC1 transporter was increased in many somata of individual CA1-3 neurons and granule cells that had survived after SE; this up-regulation was still present in the chronic epileptic phase. In contrast, a permanent decrease of EAAC1 immunoreactivity was observed in the iml of the dentate gyrus. This permanent decrease in EAAC1 expression, which was only observed in rats that experienced progressive spontaneous seizure activity, could lead to abnormal glutamate levels in the iml once new abnormal glutamatergic synaptic contacts are formed by means of sprouted mossy fibers. Considering the steady growth of reorganizing mossy fibers in the iml, the absence of a glutamate reuptake mechanism in this region could contribute to progression of spontaneous seizure activity, which occurs with a similar time course. PMID:11793340

  4. Effects of Vitamin E on seizure frequency, electroencephalogram findings, and oxidative stress status of refractory epileptic patients

    PubMed Central

    Mehvari, Jafar; Motlagh, Fataneh Gholami; Najafi, Mohamad; Ghazvini, Mohammad Reza Aghaye; Naeini, Amirmansour Alavi; Zare, Mohamad

    2016-01-01

    Background: Oxidative stress has been a frequent finding in epileptic patients receiving antiepileptic drugs (AEDs). In this study, the influence of Vitamin E on the antiseizure activity and redox state of patients treated with carbamazepine, sodium valproate, and levetiracetam has been investigated. Materials and Methods: This double-blind, placebo-controlled trial was carried out on 65 epileptic patients with chronic antiepileptic intake. The subjects received 400 IU/day of Vitamin E or placebo for 6 months. Seizure frequency, electroencephalogram (EEG), and redox state markers were measured monthly through the study. Results: Total antioxidant capacity, catalase and glutathione were significantly higher in Vitamin E received group compared with controls (P < 0.05) whereas malodialdehyde levels did not differ between two groups (P < 0.07). Vitamin E administration also caused a significant decrease in the frequency of seizures (P < 0.001) and improved EEG findings (P = 0.001). Of 32 patients in case group, the positive EEG decreased in 16 patients (50%) whereas among 33 patients in control group only 4 patients (12.1%) showed decreased positive EEG. Conclusion: The results of this preliminary study indicate that coadministration of antioxidant Vitamin E with AEDs improves seizure control and reduces oxidative stress. PMID:27099849

  5. Independent Neuronal Origin of Seizures and Behavioral Comorbidities in an Animal Model of a Severe Childhood Genetic Epileptic Encephalopathy.

    PubMed

    Asinof, Samuel K; Sukoff Rizzo, Stacey J; Buckley, Alexandra R; Beyer, Barbara J; Letts, Verity A; Frankel, Wayne N; Boumil, Rebecca M

    2015-06-01

    The childhood epileptic encephalopathies (EE's) are seizure disorders that broadly impact development including cognitive, sensory and motor progress with severe consequences and comorbidities. Recently, mutations in DNM1 (dynamin 1) have been implicated in two EE syndromes, Lennox-Gastaut Syndrome and Infantile Spasms. Dnm1 encodes dynamin 1, a large multimeric GTPase necessary for activity-dependent membrane recycling in neurons, including synaptic vesicle endocytosis. Dnm1Ftfl or "fitful" mice carry a spontaneous mutation in the mouse ortholog of DNM1 and recapitulate many of the disease features associated with human DNM1 patients, providing a relevant disease model of human EE's. In order to examine the cellular etiology of seizures and behavioral and neurological comorbidities, we engineered a conditional Dnm1Ftfl mouse model of DNM1 EE. Observations of Dnm1Ftfl/flox mice in combination with various neuronal subpopulation specific cre strains demonstrate unique seizure phenotypes and clear separation of major neurobehavioral comorbidities from severe seizures associated with the germline model. This demonstration of pleiotropy suggests that treating seizures per se may not prevent severe comorbidity observed in EE associated with dynamin-1 mutations, and is likely to have implications for other genetic forms of EE. PMID:26125563

  6. Effects of brain IKKβ gene silencing by small interfering RNA on P-glycoprotein expression and brain damage in the rat kainic acid-induced seizure model.

    PubMed

    Yu, Nian; Liu, Hao; Zhang, Yan-Fang; Su, Ling-Ying; Liu, Xin-Hong; Li, Le-Chao; Hao, Jin-Bo; Huang, Xian-Jing; Di, Qing

    2014-01-01

    Multidrug resistance mediated by over-expression of P-glycoprotein (P-gp) in brain is an important mechanism accounting for the drug-therapy failure in epilepsy. Over-expression of P-gp in epilepsy rat brain may be regulated by inflammation and nuclear factor-kappa B (NF-κB) activation. Inhibitory κ B kinase subunit β (IKKβ) is an up-stream molecular controlling NF-κB activation. With the small interfering RNA (siRNA) technique and kainic acid (KA)-induced rat epileptic seizure model, the present study was aimed to further evaluate the role of NF-κB inhibition, via blocking IKKβ gene transcription, in the epileptic brain P-gp over-expression, seizure susceptibility, and post-seizure brain damage. siRNA targeting IKKβ was administered to rats via intracerebroventricular injection before seizure induction by KA microinjection; scrambled siRNA was used as control. Brain mRNA and protein levels of IKKβ and P-gp were detected by RT-PCR and immunohistochemistry. NF-κB activity was measured by electrophoretic mobility shift assay. Latency to grade III or V seizure onset was recorded, brain damage was evaluated by neuronal cell counting and epileptiform activity was monitored by electroencephalography. IKKβ siRNA pre-treatment inhibited NF-κB activation and abolished P-gp over-expression in KA-induced epileptic rat brain, accompanied by decreased seizure susceptibility. These findings suggested that epileptogenic-induced P-gp over-expression could be regulated by IKKβ through the NF-κB pathway. PMID:24040792

  7. The similarities between the hallucinations associated with the partial epileptic seizures of the occipital lobe and ball lightning observations

    NASA Astrophysics Data System (ADS)

    Cooray, G. K.; Cooray, V.

    2007-12-01

    Ball Lightning was seen and described since antiquity and recorded in many places. Ball lightning is usually observed during thunderstorms but large number of ball lightning observations is also reported during fine weather without any connection to thunderstorms or lightning. However, so far no one has managed to generate them in the laboratory. It is photographed very rarely and in many cases the authenticity of them is questionable. It is possible that many different phenomena are grouped together and categorized simply as ball lightning. Indeed, the visual hallucinations associated with simple partial epileptic seizures, during which the patient remains conscious, may also be categorized by a patient unaware of his or her condition as ball lightning observation. Such visual hallucinations may occur as a result of an epileptic seizure in the occipital, temporo-occipital or temporal lobes of the cerebrum [1,2,3]. In some cases the hallucination is perceived as a coloured ball moving horizontally from the periphery to the centre of the vision. The ball may appear to be rotating or spinning. The colour of the ball can be red, yellow, blue or green. Sometimes, the ball may appear to have a solid structure surrounded by a thin glow or in other cases the ball appears to generate spark like phenomena. When the ball is moving towards the centre of the vision it may increase its intensity and when it reaches the centre it can 'explode' illuminating the whole field of vision. During the hallucinations the vision is obscured only in the area occupied by the apparent object. The hallucinations may last for 5 to 30 seconds and rarely up to a minute. Occipital seizures may spread into other regions of the brain giving auditory, olfactory and sensory sensations. These sensations could be buzzing sounds, the smell of burning rubber, pain with thermal perception especially in the arms and the face, and numbness and tingling sensation. In some cases a person may experience only

  8. The impact of self-efficacy, alexithymia and multiple traumas on posttraumatic stress disorder and psychiatric co-morbidity following epileptic seizures: a moderated mediation analysis.

    PubMed

    Chung, Man Cheung; Allen, Rachel D; Dennis, Ian

    2013-12-30

    This study investigated the incidence of posttraumatic stress disorder (PTSD) and psychiatric co-morbidity following epileptic seizure, whether alexithymia mediated the relationship between self-efficacy and psychiatric outcomes, and whether the mediational effect was moderated by the severity of PTSD from other traumas. Seventy-one (M=31, F=40) people with a diagnosis of epilepsy recruited from support groups in the United Kingdom completed the Posttraumatic Stress Diagnostic Scale, the Hospital Anxiety and Depression Scale, the Toronto Alexithymia Scale-20 and the Generalized Self-Efficacy Scale. They were compared with 71 people (M=29, F=42) without epilepsy. For people with epilepsy, 51% and 22% met the diagnostic criteria for post-epileptic seizure PTSD and for PTSD following one other traumatic life event respectively. For the control group, 24% met the diagnostic criteria for PTSD following other traumatic life events. The epilepsy group reported significantly more anxiety and depression than the control. Partial least squares (PLS) analysis showed that self-efficacy was significantly correlated with alexithymia, post-epileptic seizure PTSD and psychiatric co-morbidity. Alexithymia was also significantly correlated with post-epileptic seizure PTSD and psychiatric co-morbidity. Mediation analyses confirmed that alexithymia mediated the path between self-efficacy and post-epileptic seizure PTSD and psychiatric co-morbidity. Moderated mediation also confirmed that self-efficacy and PTSD from one other trauma moderated the effect of alexithymia on outcomes. To conclude, people can develop posttraumatic stress disorder symptoms and psychiatric co-morbidity following epileptic seizure. These psychiatric outcomes are closely linked with their belief in personal competence to deal with stressful situations and regulate their own functioning, to process rather than defend against distressing emotions, and with the degree of PTSD from other traumas. PMID:23978734

  9. Dynamics of regional brain activity in epilepsy: a cross-disciplinary study on both intracranial and scalp-recorded epileptic seizures

    NASA Astrophysics Data System (ADS)

    Minadakis, George; Ventouras, Errikos; Gatzonis, Stylianos D.; Siatouni, Anna; Tsekou, Hara; Kalatzis, Ioannis; Sakas, Damianos E.; Stonham, John

    2014-04-01

    Objective. Recent cross-disciplinary literature suggests a dynamical analogy between earthquakes and epileptic seizures. This study extends the focus of inquiry for the applicability of models for earthquake dynamics to examine both scalp-recorded and intracranial electroencephalogram recordings related to epileptic seizures. Approach. First, we provide an updated definition of the electric event in terms of magnitude and we focus on the applicability of (i) a model for earthquake dynamics, rooted in a nonextensive Tsallis framework, (ii) the traditional Gutenberg and Richter law and (iii) an alternative method for the magnitude-frequency relation for earthquakes. Second, we apply spatiotemporal analysis in terms of nonextensive statistical physics and we further examine the behavior of the parameters included in the nonextensive formula for both types of electroencephalogram recordings under study. Main results. We confirm the previously observed power-law distribution, showing that the nonextensive formula can adequately describe the sequences of electric events included in both types of electroencephalogram recordings. We also show the intermittent behavior of the epileptic seizure cycle which is analogous to the earthquake cycles and we provide evidence of self-affinity of the regional electroencephalogram epileptic seizure activity. Significance. This study may provide a framework for the analysis and interpretation of epileptic brain activity and other biological phenomena with similar underlying dynamical mechanisms.

  10. A low-power configurable neural recording system for epileptic seizure detection.

    PubMed

    Qian, Chengliang; Shi, Jess; Parramon, Jordi; Sánchez-Sinencio, Edgar

    2013-08-01

    This paper describes a low-power configurable neural recording system capable of capturing and digitizing both neural action-potential (AP) and fast-ripple (FR) signals. It demonstrates the functionality of epileptic seizure detection through FR recording. This system features a fixed-gain, variable-bandwidth (BW) front-end circuit and a sigma-delta ADC with scalable bandwidth and power consumption. The ADC employs a 2nd-order single-bit sigma-delta modulator (SDM) followed by a low-power decimation filter. Direct impulse-response implementation of a sinc(3) filter and 8-cycle data pipelining in an IIR filter are proposed for the decimation filter design to improve the power and area efficiency. In measurements, the front end exhibits 39.6-dB DC gain, 0.8 Hz to 5.2 kHz of BW, 5.86- μVrms input-referred noise, and 2.4- μW power consumption in AP mode, while showing 38.5-dB DC gain, 250 to 486 Hz of BW, 2.48- μVrms noise, and 4.5- μW power consumption in FR mode. The noise efficiency factor (NEF) is 2.93 and 7.6 for the AP and FR modes, respectively. At 77-dB dynamic range (DR), the ADC has a peak SNR and SNDR of 75.9 dB and 67 dB, respectively, while consuming 2.75-mW power in AP mode. It achieves 78-dB DR, 76.2-dB peak SNR, 73.2-dB peak SNDR, and 588- μW power consumption in FR mode. Both analog and digital power supply voltages are 2.8 V. The chip is fabricated in a standard 0.6- μm CMOS process. The die size is 11.25 mm(2). PMID:23893209

  11. Comparison of the health-related quality of life between epileptic patients with partial and generalized seizure

    PubMed Central

    Ashjazadeh, Nahid; Yadollahikhales, Golnaz; Ayoobzadehshirazi, Anaheed; Sadraii, Nazanin; Hadi, Negin

    2014-01-01

    Background: Epilepsy is defined as recurrent unprovoked febrile seizures, which cause disability in patients. This study aims to assess the health-related quality-of-life (QOL) in epileptic patients in Fars Province, southern Iran. Methods:One-hundred epileptic patients, above 18 years, referred to Shiraz University of Medical Sciences affiliated clinics, were included. The QOL of patients with generalized and partial seizure were assessed using the Iranian valid and reliable Sf-36 questionnaire. Patients’ socio-demographic and their disease features were also compared with each other using a questionnaire. Results: In partial epilepsy group (n = 24), the married patients in social functioning (SF) aspect of QOL (64.42 ± 14.29) (P = 0.024), the patients on antiepileptic drugs (AEDs) monotherapy in both physical functioning (PF) (88.75 ± 11.57) (P = 0.030) and SF (75.00 ± 6.68) (P = 0.022) aspects, the employed patients in PF aspect of QOL (P = 0.023) (91.87 ± 8.83) and those with high income in mental health aspect of QOL (P = 0.036 and correlation coefficient = 0.413) got better scores compared with the partial epileptic patients who were single, on polytherapy, unemployed and had low to moderate income. In generalized epilepsy group (n = 76), patients on AEDs monotherapy in PF aspect of QOL (P = 0.025) (78.33 ± 24.36) and employed patients in vitality aspect (P = 0.023) (57.00 ± 28.25) had better scores. Data were analyzed using SPSS for windows. Conclusion: Epilepsy can affect patient’s life in a number of ways such as their lives, marriage, occupation, and education. We can encourage patients to find a partner, continue higher education and try to find a job. PMID:25295153

  12. Plic-1, a new target in repressing epileptic seizure by regulation of GABAAR function in patients and a rat model of epilepsy.

    PubMed

    Zhang, Yujiao; Li, Zengyou; Gu, Juan; Zhang, Yanke; Wang, Wei; Shen, Hui; Chen, Guojun; Wang, Xuefeng

    2015-12-01

    Dysfunction of γ-aminobutyric acid A (GABAA) receptors (GABAARs) is a prominent factor affecting intractable epilepsy. Plic-1, an ubiquitin-like protein enriched in the inhibitory synapses connecting GABAARs and the ubiquitin protease system (UPS), plays a key role in the modification of GABAAR functions. However, the relationship between Plic-1 and epileptogenesis is not known. In the present study, we aimed to investigate Plic-1 levels in patients with temporal lobe epilepsy, as well as the role of Plic-1 in regulating onset and progression of epilepsy in animal models. We found that Plic-1 expression was significantly decreased in patients with epilepsy as well as pilocarpine- and pentylenetetrazol (PTZ)-induced rat epileptic models. Intrahippocampal injection of the PePα peptide, which disrupts Plic-1 binding to GABAARs, significantly shortened the latency of seizure onset, and increased the seizure severity and duration in these two epileptic models. Overexpressed Plic-1 through lentivirus transfection into a PTZ model resulted in a reduction in both seizure severity and generalized tonic-clonic seizure duration. Whole-cell clamp recordings revealed that the PePα peptide decreased miniature inhibitory postsynaptic currents (mIPSCs) whereas overexpressed Plic-1 increased mIPSCs in the pyramidal neurons of the hippocampus. These effects can be blocked by picrotoxin, a GABAAR inhibitor. Our results indicate that Plic-1 plays an important role in managing epileptic seizures by enhancing seizure inhibition through regulation of GABAARs at synaptic sites. PMID:26415648

  13. NeuroKinect: A Novel Low-Cost 3Dvideo-EEG System for Epileptic Seizure Motion Quantification.

    PubMed

    Cunha, João Paulo Silva; Choupina, Hugo Miguel Pereira; Rocha, Ana Patrícia; Fernandes, José Maria; Achilles, Felix; Loesch, Anna Mira; Vollmar, Christian; Hartl, Elisabeth; Noachtar, Soheyl

    2016-01-01

    motion trajectories when compared to a 2D frame by frame tracking procedure. We conclude that this new approach provides a more comfortable (both for patients and clinical professionals), simpler, faster and lower-cost procedure than previous approaches, therefore providing a reliable tool to quantitatively analyze MOI patterns of epileptic seizures in the routine of EMUs around the world. We hope this study encourages other EMUs to adopt similar approaches so that more quantitative information is used to improve epilepsy diagnosis. PMID:26799795

  14. Reduced glucose utilization underlies seizure protection with dietary therapy in epileptic EL mice.

    PubMed

    Meidenbauer, Joshua J; Roberts, Mary F

    2014-10-01

    Dietary therapy has been used to treat many individuals with epilepsy whose seizures are refractory to antiepileptic drugs. The mechanisms for how dietary therapy confers seizure protection are currently not well understood. We evaluated the acute effects of glucose and β-hydroxybutyrate (the major circulating ketone body) in conferring seizure protection to the EL mouse, a model of multifactorial idiopathic generalized epilepsy. EL mice were fed either an unrestricted standard diet or a calorie-restricted standard diet to achieve a body weight reduction of 20-23%. D-Glucose, 2-deoxy-D-glucose, and β-hydroxybutyrate were supplemented in the drinking water of calorie-restricted mice for 2.5 h prior to seizure testing to simulate the effect of increased glucose availability, decreased glucose utilization, and increased ketone availability, respectively. Seizure susceptibility, body weight, plasma glucose, and β-hydroxybutyrate were measured over a nine-week treatment period. Additionally, excitatory and inhibitory amino acids were measured in the brains of mice using (1)H NMR. Glutamate decarboxylase activity was also measured to evaluate the connection between dietary therapy and brain metabolism. We found that lowering of glucose utilization is necessary to confer seizure protection with long-term (>4 weeks) calorie restriction, whereas increased ketone availability did not affect seizure susceptibility. In the absence of long-term calorie restriction, however, reduced glucose utilization and increased ketone availability did not affect seizure susceptibility. Brain excitatory and inhibitory amino acid content did not change with treatment, and glutamate decarboxylase activity was not associated with seizure susceptibility. We demonstrated that reduced glucose utilization is necessary to confer seizure protection under long-term calorie restriction in EL mice, while acute ketone supplementation did not confer seizure protection. Further studies are needed to

  15. [Effect of citicoline on the development of chronic epileptization of the brain (pentylenetetrazole kindling) and acute seizures reaction of kindled mice C57Bl/6].

    PubMed

    Kuznetzova, L V; Karpova, M N; Zinkovsky, K A; Klishina, N V

    2014-01-01

    In experiments on mice C57Bl/6 was studied effects of citicoline (500 mg/kg, i.p.) on development of chronically epileptization of the brain--pentylenetetrazole (PTZ) kindling (30 mg/kg PTZ, i.p. during 24 days) and on acute generalized seizures (i.v., 1% solution of PTZ with the speed of 0.01 ml/s). It was shown that daily injection of citicoline an hour before the introduction of PTZ had no effect on development of chronically epileptization of the brain --PTZ-kindling (the latency of seizures appearance and their severity). However, citicoIine posses anticonvulsive effects on acute seizures in kindled mice. In animals with increased seizure susceptibility of the brain caused by kindling and severity of seizures 2-3 points injection citicoline after 14 days of kindling had anticonvulsive effect, increasing the threshold clonic seizures. Injection of citicoline during 24 days of kindled animals and severity of seizures 3-5 points caused the increase of thresholds as clonic and tonic phase of seizures with lethal outcome. Thus, the anticonvulsant effect of citicoline more pronounced in the long-term use. PMID:25536784

  16. Gap Junctions as Common Cause of High-Frequency Oscillations and Epileptic Seizures in a Computational Cascade of Neuronal Mass and Compartmental Modeling.

    PubMed

    Helling, Robert M; Koppert, Marc M J; Visser, Gerhard H; Kalitzin, Stiliyan N

    2015-09-01

    High frequency oscillations (HFO) appear to be a promising marker for delineating the seizure onset zone (SOZ) in patients with localization related epilepsy. It remains, however, a purely observational phenomenon and no common mechanism has been proposed to relate HFOs and seizure generation. In this work we show that a cascade of two computational models, one on detailed compartmental scale and a second one on neural mass scale can explain both the autonomous generation of HFOs and the presence of epileptic seizures as emergent properties. To this end we introduce axonal-axonal gap junctions on a microscopic level and explore their impact on the higher level neural mass model (NMM). We show that the addition of gap junctions can generate HFOs and simultaneously shift the operational point of the NMM from a steady state network into bistable behavior that can autonomously generate epileptic seizures. The epileptic properties of the system, or the probability to generate epileptic type of activity, increases gradually with the increase of the density of axonal-axonal gap junctions. We further demonstrate that ad hoc HFO detectors used in previous studies are applicable to our simulated data. PMID:26058401

  17. Epileptic Seizure Detection and Prediction Based on Continuous Cerebral Blood Flow Monitoring--a Review.

    PubMed

    Tewolde, Senay; Oommen, Kalarickal; Lie, Donald Y C; Zhang, Yuanlin; Chyu, Ming-Chien

    2015-01-01

    Epilepsy is the third most common neurological illness, affecting 1% of the world's population. Despite advances in medicine, about 25 to 30% of the patients do not respond to or cannot tolerate the severe side effects of medical treatment, and surgery is not an option for the majority of patients with epilepsy. The objective of this article is to review the current state of research on seizure detection based on cerebral blood flow (CBF) data acquired by thermal diffusion flowmetry (TDF), and CBF-based seizure prediction. A discussion is provided on the applications, advantages, and disadvantages of TDF in detecting and localizing seizure foci, as well as its role in seizure prediction. Also presented are an overview of the present challenges and possible future research directions (along with methodological guidelines) of the CBF-based seizure detection and prediction methods. PMID:26288885

  18. Comparison of personality characteristics on the bear-fedio inventory between patients with epilepsy and those with non-epileptic seizures.

    PubMed

    Tremont, Geoffrey; Smith, Megan M; Bauer, Lyndsey; Alosco, Michael L; Davis, Jennifer D; Blum, Andrew S; LaFrance, W Curt

    2012-01-01

    This study used the Bear-Fedio Personality Inventory (BFI) to compare 41 individuals with temporal lobe epilepsy (TLE) and 37 with psychogenic non-epileptic seizures (NES). Both groups exhibited similar elevations on the BFI, although TLE individuals show greater endorsement of at least one hypergraphia symptom, as compared with those with NES. The correlates of the BFI with demographic and seizure characteristics differed between the groups. These results argue against a specific TLE personality syndrome and suggest that personality characteristics may be related to the experience of having repeated seizures, rather than the specific underlying pathophysiology of temporal lobe epilepsy. PMID:22450613

  19. NeuroKinect: A Novel Low-Cost 3Dvideo-EEG System for Epileptic Seizure Motion Quantification

    PubMed Central

    Cunha, João Paulo Silva; Choupina, Hugo Miguel Pereira; Rocha, Ana Patrícia; Fernandes, José Maria; Achilles, Felix; Loesch, Anna Mira; Vollmar, Christian; Hartl, Elisabeth; Noachtar, Soheyl

    2016-01-01

    body motion trajectories when compared to a 2D frame by frame tracking procedure. We conclude that this new approach provides a more comfortable (both for patients and clinical professionals), simpler, faster and lower-cost procedure than previous approaches, therefore providing a reliable tool to quantitatively analyze MOI patterns of epileptic seizures in the routine of EMUs around the world. We hope this study encourages other EMUs to adopt similar approaches so that more quantitative information is used to improve epilepsy diagnosis. PMID:26799795

  20. Cannabidiol Post-Treatment Alleviates Rat Epileptic-Related Behaviors and Activates Hippocampal Cell Autophagy Pathway Along with Antioxidant Defense in Chronic Phase of Pilocarpine-Induced Seizure.

    PubMed

    Hosseinzadeh, Mahshid; Nikseresht, Sara; Khodagholi, Fariba; Naderi, Nima; Maghsoudi, Nader

    2016-04-01

    Abnormal and sometimes severe behavioral and molecular symptoms are usually observed in epileptic humans and animals. To address this issue, we examined the behavioral and molecular aspects of seizure evoked by pilocarpine. Autophagy can promote both cell survival and death, but there are controversial reports about the neuroprotective or neurodegenerative effects of autophagy in seizure. Cannabidiol has anticonvulsant properties in some animal models when used as a pretreatment. In this study, we investigated alteration of seizure scores, autophagy pathway proteins, and antioxidant status in hippocampal cells during the chronic phase of pilocarpine-induced epilepsy after treatment with cannabidiol. Cannabidiol (100 ng, intracerebroventricular injection) delayed the chronic phase of epilepsy. Single administration of cannabidiol during the chronic phase of seizure significantly diminished seizure scores such as mouth clonus, head nodding, monolateral and bilateral forelimb clonus and increased the activity of catalase enzyme and reduced glutathione content. Such a protective effect in the behavioral scores of epileptic rats was also observed after repeated administrations of cannabidiol at the onset of the silent phase. Moreover, the amount of Atg7, conjugation of Atg5/12, Atg12, and LC3II/LC3I ratio increased significantly in epileptic rats treated with repeated injections of cannabidiol. In short, our results suggest that post-treatment of Cannabidiol could enhance the induction of autophagy pathway and antioxidant defense in the chronic phase of epilepsy, which could be considered as the protective mechanisms of cannabidiol in a temporal lobe epilepsy model. PMID:26738731

  1. A Project to Vocationally Rehabilitate Persons with Poorly Controlled Epileptic Seizures.

    ERIC Educational Resources Information Center

    Phelps, William R.

    This three-year pilot program provided an opportunity to work intensively with a small group of severe epileptic clients in a comprehensive rehabilitation center setting. The goals of the program were not only to evaluate intensively and attempt to maximize the individual client's potential for working and living in society through the provision…

  2. A comparison of the cost-effectiveness of treatment of prolonged acute convulsive epileptic seizures in children across Europe

    PubMed Central

    2014-01-01

    In the majority of children and adolescents with epilepsy, optimal drug therapy adequately controls their condition. However, among the remaining patients who are still uncontrolled despite mono-, bi- or tri-therapy with chronic anti-epileptic treatment, a rescue medication is required. In Western Europe, the licensed medications available for first-line treatment of prolonged acute convulsive seizures (PACS) vary widely, and so comparators for clinical and economic evaluation are not consistent. No European guidelines currently exist for the treatment of PACS in children and adolescents and limited evidence is available for the effectiveness of treatments in the community setting. The authors present cost-effectiveness data for BUCCOLAM® (midazolam oromucosal solution) for the treatment of PACS in children and adolescents in the context of the treatment pathway in seven European countries in patients from 6 months to 18 years. For each country, the health economic model consisted of a decision tree, with decision nodes informed by clinical data and expert opinion obtained via a Delphi methodology. The events modelled are those associated with a patient experiencing a seizure in the community setting. The model assessed the likelihood of medication being administered successfully and of seizure cessation. The associated resource use was also modelled, and ambulance call-outs and hospitalisations were considered. The patient’s quality of life was estimated by clinicians, who completed a five-level EuroQol five dimensions questionnaire from the perspective of a child or adolescent suffering a seizure. Despite differences in current therapy, treatment patterns and healthcare costs in all countries assessed, BUCCOLAM was shown to be cost saving and offered increased health-related benefits for patients in the treatment of PACS compared with the current local standard of care. PMID:24949280

  3. TNF-Overexpression in Borna Disease Virus-Infected Mouse Brains Triggers Inflammatory Reaction and Epileptic Seizures

    PubMed Central

    Eisel, Ulrich L. M.; Herzog, Sibylle; Richt, Jürgen A.; Baumgärtner, Wolfgang; Herden, Christiane

    2012-01-01

    Proinflammatory state of the brain increases the risk for seizure development. Neonatal Borna disease virus (BDV)-infection of mice with neuronal overexpression of tumor necrosis factor-α (TNF) was used to investigate the complex relationship between enhanced cytokine levels, neurotropic virus infection and reaction pattern of brain cells focusing on its role for seizure induction. Viral antigen and glial markers were visualized by immunohistochemistry. Different levels of TNF in the CNS were provided by the use of heterozygous and homozygous TNF overexpressing mice. Transgenic TNF, total TNF (native and transgenic), TNF-receptor (TNFR1, TNFR2), IL-1 and N-methyl-D-aspartate (NMDA)-receptor subunit 2B (NR2B) mRNA values were measured by real time RT-PCR. BDV-infection of TNF-transgenic mice resulted in non-purulent meningoencephalitis accompanied by epileptic seizures with a higher frequency in homozygous animals. This correlated with lower weight gain, stronger degree and progression of encephalitis and early, strong microglia activation in the TNF-transgenic mice, most obviously in homozygous animals. Activation of astroglia could be more intense and associated with an unusual hypertrophy in the transgenic mice. BDV-antigen distribution and infectivity in the CNS was comparable in TNF-transgenic and wild-type animals. Transgenic TNF mRNA-expression was restricted to forebrain regions as the transgene construct comprised the promoter of NMDA-receptor subunit2B and induced up-regulation of native TNF mRNA. Total TNF mRNA levels did not increase significantly after BDV-infection in the brain of transgenic mice but TNFR1, TNFR2 and IL-1 mRNA values, mainly in the TNF overexpressing brain areas. NR2B mRNA levels were not influenced by transgene expression or BDV-infection. Neuronal TNF-overexpression combined with BDV-infection leads to cytokine up-regulation, CNS inflammation and glial cell activation and confirmed the presensitizing effect of elevated cytokine

  4. Supernumerary phantom limb as a rare symptom of epileptic seizures--case report and literature review.

    PubMed

    Millonig, Alban; Bodner, Thomas; Donnemiller, Eveline; Wolf, Elisabeth; Unterberger, Iris

    2011-08-01

    Supernumerary phantom limbs, that is, the awareness of an illusory extra limb is a fascinating neurologic symptom that has been described in a number of neurologic diseases including stroke, spinal injury, and epilepsy. Herein we report a case of a 70-year-old male patient with new-onset focal seizures with left-sided supernumerary phantom arm and leg as the only seizure manifestation. Ictal single-photon emission computed tomography (SPECT) revealed a hyperperfusion in the right temporoparietal junction and allowed localization of the seizure-onset zone. This report is accompanied by a discussion of phenomenology and terminology in the context of existing literature. PMID:21740418

  5. Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection.

    PubMed

    Bogaarts, J G; Gommer, E D; Hilkman, D M W; van Kranen-Mastenbroek, V H J M; Reulen, J P H

    2016-08-01

    Automated seizure detection is a valuable asset to health professionals, which makes adequate treatment possible in order to minimize brain damage. Most research focuses on two separate aspects of automated seizure detection: EEG feature computation and classification methods. Little research has been published regarding optimal training dataset composition for patient-independent seizure detection. This paper evaluates the performance of classifiers trained on different datasets in order to determine the optimal dataset for use in classifier training for automated, age-independent, seizure detection. Three datasets are used to train a support vector machine (SVM) classifier: (1) EEG from neonatal patients, (2) EEG from adult patients and (3) EEG from both neonates and adults. To correct for baseline EEG feature differences among patients feature, normalization is essential. Usually dedicated detection systems are developed for either neonatal or adult patients. Normalization might allow for the development of a single seizure detection system for patients irrespective of their age. Two classifier versions are trained on all three datasets: one with feature normalization and one without. This gives us six different classifiers to evaluate using both the neonatal and adults test sets. As a performance measure, the area under the receiver operating characteristics curve (AUC) is used. With application of FBC, it resulted in performance values of 0.90 and 0.93 for neonatal and adult seizure detection, respectively. For neonatal seizure detection, the classifier trained on EEG from adult patients performed significantly worse compared to both the classifier trained on EEG data from neonatal patients and the classier trained on both neonatal and adult EEG data. For adult seizure detection, optimal performance was achieved by either the classifier trained on adult EEG data or the classifier trained on both neonatal and adult EEG data. Our results show that age

  6. Rat epileptic seizures evoked by BmK {alpha}IV and its possible mechanisms involved in sodium channels

    SciTech Connect

    Chai Zhifang; Bai Zhantao; Zhang Xuying; Liu Tong; Pang Xueyan; Ji Yonghua . E-mail: yhji@server.shcnc.ac.cn

    2007-05-01

    This study showed that rat unilateral intracerebroventricular injection of BmK {alpha}IV, a sodium channel modulator derived from scorpion Buthus martensi Karsch, induced clusters of spikes, epileptic discharges and convulsion-related behavioral changes. BmK {alpha}IV potently promoted the release of endogenous glutamate from rat cerebrocortical synaptosomes. In vitro examination of the effect of BmK {alpha}IV on intrasynaptosomal free calcium concentration [Ca{sup 2+}]{sub i} and sodium concentration [Na{sup +}]{sub i} revealed that BmK {alpha}IV-evoked glutamate release from synaptosomes was associated with an increase in Ca{sup 2+} and Na{sup +} influx. Moreover, BmK {alpha}IV-mediated glutamate release and ion influx was completely blocked by tetrodotoxin, a blocker of sodium channel. Together, these results suggest that the induction of BmK {alpha}IV-evoked epileptic seizures may be involved in the modulation of BmK {alpha}IV on tetrodotoxin-sensitive sodium channels located on the nerve terminal, which subsequently enhances the Ca{sup 2+} influx to cause an increase of glutamate release. These findings may provide some insight regarding the mechanism of neuronal action of BmK {alpha}IV in the central nervous system for understanding epileptogenesis involved in sodium channels.

  7. Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure.

    PubMed

    Esmekaya, Meric Arda; Tuysuz, Mehmet Zahid; Tomruk, Arın; Canseven, Ayse G; Yücel, Engin; Aktuna, Zuhal; Keskil, Semih; Seyhan, Nesrin

    2016-09-01

    The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15min cellular phone radiation+PTZ treatment+30min cellular phone radiation, Group III: 30min cellular phone radiation+PTZ treatment+30min cellular phone radiation. The RF radiation was produced by a 900MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain. PMID:26836107

  8. Epileptic seizure onset detection based on EEG and ECG data fusion.

    PubMed

    Qaraqe, Marwa; Ismail, Muhammad; Serpedin, Erchin; Zulfi, Haneef

    2016-05-01

    This paper presents a novel method for seizure onset detection using fused information extracted from multichannel electroencephalogram (EEG) and single-channel electrocardiogram (ECG). In existing seizure detectors, the analysis of the nonlinear and nonstationary ECG signal is limited to the time-domain or frequency-domain. In this work, heart rate variability (HRV) extracted from ECG is analyzed using a Matching-Pursuit (MP) and Wigner-Ville Distribution (WVD) algorithm in order to effectively extract meaningful HRV features representative of seizure and nonseizure states. The EEG analysis relies on a common spatial pattern (CSP) based feature enhancement stage that enables better discrimination between seizure and nonseizure features. The EEG-based detector uses logical operators to pool SVM seizure onset detections made independently across different EEG spectral bands. Two fusion systems are adopted. In the first system, EEG-based and ECG-based decisions are directly fused to obtain a final decision. The second fusion system adopts an override option that allows for the EEG-based decision to override the fusion-based decision in the event that the detector observes a string of EEG-based seizure decisions. The proposed detectors exhibit an improved performance, with respect to sensitivity and detection latency, compared with the state-of-the-art detectors. Experimental results demonstrate that the second detector achieves a sensitivity of 100%, detection latency of 2.6s, and a specificity of 99.91% for the MAJ fusion case. PMID:27057745

  9. Seizures

    MedlinePlus

    ... two or more seizures may be diagnosed with epilepsy , also known as seizure disorder. Seizure Basics Under ... over and over might indicate the ongoing condition epilepsy . Febrile seizures can happen in children younger than ...

  10. Seizures

    MedlinePlus

    ... minutes The person does not awaken or have normal behavior after a seizure Another seizure starts soon after a seizure ends The person had a seizure in water The person is pregnant, injured, or has diabetes ...

  11. Seizures

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy First Aid: Seizures KidsHealth > For Parents > First Aid: Seizures Print A A A Text Size en ... Seizures Febrile Seizures Brain and Nervous System Epilepsy First Aid: Febrile Seizures Word! Seizure Epilepsy Epilepsy Contact Us ...

  12. Epileptic seizures as a manifestation of cow's milk allergy: a studied relationship and description of our pediatric experience.

    PubMed

    Falsaperla, Raffaele; Pavone, Piero; Miceli Sopo, Stefano; Mahmood, Fahad; Scalia, Ferdinando; Corsello, Giovanni; Lubrano, Riccardo; Vitaliti, Giovanna

    2014-12-01

    Adverse reactions after ingestion of cow's milk proteins can occur at any age, from birth and even amongst exclusively breast-fed infants, although not all of these are hypersensitivity reactions. The most common presentations related to cow's milk protein allergy are skin reactions, failure to thrive, anaphylaxis as well as gastrointestinal and respiratory disorders. In addition, several cases of cow's milk protein allergy in the literature have documented neurological involvement, manifesting with convulsive seizures in children. This may be due to CNS spread of a peripheral inflammatory response. Furthermore, there is evidence that pro-inflammatory cytokines are responsible for disrupting the blood-brain barrier, causing focal CNS inflammation thereby triggering seizures, although further studies are needed to clarify the pathogenic relationship between atopy and its neurological manifestations. This review aims to analyze current published data on the link between cow's milk protein allergy and epileptic events, highlighting scientific evidence for any potential pathogenic mechanism and describing our clinical experience in pediatrics. PMID:25394911

  13. Aspartame has no effect on seizures or epileptiform discharges in epileptic children.

    PubMed

    Shaywitz, B A; Anderson, G M; Novotny, E J; Ebersole, J S; Sullivan, C M; Gillespie, S M

    1994-01-01

    The effects of aspartame (L-aspartyl-L-phenylalanine methyl ester; APM) on the neurological status of children with well-documented seizures were examined in a randomized, double-blind, placebo-controlled, crossover study. We report on 10 children (5 boys, 5 girls, ages 5-13 yr) who were tested for 2 weeks each on APM and placebo (single morning dose, 34 mg/kg). Seven children had generalized convulsions with 4 also having absence episodes. One child had absence seizures and 2 had complex partial seizures only. On each arm of the study, children were admitted to the hospital for a standard 21-lead electroencephalogram (EEG), continuous 24-hour cassette EEG, and determination of biochemical variables in plasma and urine. Subjects completed the Subjects Treatment Emergent Symptoms Scale (STESS) and parents the Conners Behavior Rating Scale. There were no significant differences between APM and placebo in the standard EEG or 24-hour EEG. No differences were noted for the STESS or the Conners ratings, and no differences were noted for any of the biochemical measures (except for expected increases in phenylalanine and tyrosine after APM). Our findings indicate that, in this group of vulnerable children, APM does not provoke seizures. PMID:7506878

  14. Automatic Epileptic Seizure Detection Using Scalp EEG and Advanced Artificial Intelligence Techniques

    PubMed Central

    2015-01-01

    The epilepsies are a heterogeneous group of neurological disorders and syndromes characterised by recurrent, involuntary, paroxysmal seizure activity, which is often associated with a clinicoelectrical correlate on the electroencephalogram. The diagnosis of epilepsy is usually made by a neurologist but can be difficult to be made in the early stages. Supporting paraclinical evidence obtained from magnetic resonance imaging and electroencephalography may enable clinicians to make a diagnosis of epilepsy and investigate treatment earlier. However, electroencephalogram capture and interpretation are time consuming and can be expensive due to the need for trained specialists to perform the interpretation. Automated detection of correlates of seizure activity may be a solution. In this paper, we present a supervised machine learning approach that classifies seizure and nonseizure records using an open dataset containing 342 records. Our results show an improvement on existing studies by as much as 10% in most cases with a sensitivity of 93%, specificity of 94%, and area under the curve of 98% with a 6% global error using a k-class nearest neighbour classifier. We propose that such an approach could have clinical applications in the investigation of patients with suspected seizure disorders. PMID:25710040

  15. Lamotrigine positively affects the development of psychiatric comorbidity in epileptic animals, while psychiatric comorbidity aggravates seizures.

    PubMed

    Russo, Emilio; Chimirri, Serafina; Aiello, Rossana; De Fazio, Salvatore; Leo, Antonio; Rispoli, Vincenzo; Marra, Rosario; Labate, Angelo; De Fazio, Pasquale; Citraro, Rita; De Sarro, Giovambattista

    2013-08-01

    Several clinical and preclinical studies have focused on the relationship between epilepsy and psychological disturbances. Although behavior in some experimental models of epilepsy has been studied, only few of them can be considered as models of epilepsy and mood disorder comorbidity. Since several models of epilepsy or psychiatric disorders are already available, we wondered whether a mixture of the two could experimentally represent a valid alternative to study such comorbidity. Here, we present a possible experimental protocol to study drug effects and physiopathogenesis of psychiatric comorbidity in epileptic animals. Pentylentetrazol-kindled animals were subjected to the chronic mild stress (CMS) procedure; furthermore, we tested the effects of chronic lamotrigine treatment on the development of comorbidity. We found that epileptic-depressed animals showed more pronounced behavioral alterations in comparison to other mice groups, indicating that kindled animals develop more pronounced CMS-induced behavioral alterations than nonepileptic mice; lamotrigine was able to prevent the development of comorbidities such as anxiety, depression-like behavior, and memory impairment. PMID:23773980

  16. Apnoea and bradycardia during epileptic seizures: relation to sudden death in epilepsy.

    PubMed Central

    Nashef, L; Walker, F; Allen, P; Sander, J W; Shorvon, S D; Fish, D R

    1996-01-01

    OBJECTIVE--To record non-invasively ictal cardiorespiratory variables. METHODS--Techniques employed in polysomnography were used in patients with epilepsy undergoing EEG-video recording at a telemetry unit. RESULTS--Apnoea (> 10, range > 10-63, mean 24 s) was seen in 20 of 47 clinical seizures (three secondary generalised, 16 complex partial, and one tonic) and 10 of 17 patients. Apnoea was central in 10 patients, but obstructive apnoea was also recorded in three of 10. Oxyhaemoglobin saturation (SpO2) dropped to less than 85% in 10 seizures (six patients). An increase in heart rate was common (91% of seizures). Bradycardia/sinus arrest was documented in four patients (mean maximum RR interval 5.36, range 2.8-8.6 s) but always in the context of a change in respiratory pattern. CONCLUSION--Ictal apnoea was often seen. The occurrence of bradycardia in association with apnoea suggests the involvement of cardiorespiratory reflexes. Similar mechanisms may operate in cases of sudden death in epilepsy. PMID:8609507

  17. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Rennie, C. J.; Rowe, D. L.

    2002-04-01

    Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms-mainly slow wave, delta, theta, alpha, and sleep spindle-with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.

  18. Bilateral Femoral Neck Fractures in A Young Patient Suffering from Hypophosphatasia, Due to A First Time Epileptic Seizure

    PubMed Central

    Sharma, N; Bache, E; Clare, T

    2015-01-01

    Introduction: We report a case of an adolescent sustaining bilateral femoral neck fractures due to a first time epileptic seizure, as a result of expansion of his known syrinx. Case Report: A 19-year-old patient suffering from hypophosphatasia (HPP), Arnold-Chiari malformation, and a ventriculoperitoneal shunt sustained a trivial fall with profound pain and an inability to mobilize. Radiographs demonstrated a right-sided Garden-4 femoral neck and left-sided multi-fragmentary intracapsular/extracapsular fractures. The patient had previously suffered bilateral proximal femoral shaft fractures, treated with intramedullary unlocked nail fixation that was still in situ. Operative treatment with an exchange to Synthes Adolescent Lateral Recon nail was performed on the right with two Recon screws inserted into the femoral head. On the left, the existing Pedinail was preserved with an additional single screw inserted into the femoral head. In addition, 3 months of non-mobilization was required for adequate bone healing. After 1-year from time of injury, there is no avascular necrosis on radiographs and the patient is mobilizing pain-free. Conclusion: Patients with hypophosphatasia have delayed bone healing. We recommend surgical fixation with an intramedullary device and periods of non-mobilization until there is radiographical evidence of adequate bone healing. PMID:27299074

  19. Overtightening of halo pins resulting in intracranial penetration, pneumocephalus, and epileptic seizure.

    PubMed

    Glover, Alexander W; Zakaria, Rasheed; May, Paul; Barrett, Chris

    2013-01-01

    A 60-year-old man sustained an undisplaced type III odontoid fracture following a fall down a full flight of stairs. His medical history was remarkable for a partial pancreatectomy and splenectomy in 2006 for chronic pancreatitis. This had rendered him diabetic, on insulin, and he required long-term administration of penicillin V. The fracture was treated with a halo vest, and, unknowing of its potentially serious consequences, the patient continued to tighten the halo pins himself. He presented 1 month later following a witnessed seizure. A computed tomography scan was performed, which demonstrated 2 cranial perforations, with the halo pins penetrating the cranium and resultant pneumocephalus. He was started on antiepileptic medication and was placed in a pinless halo system. He had no further seizures and has made an uneventful neurological recovery. This paper serves to highlight the potential complications which may arise from the use of a halo vest. Proper patient education is essential to avoid these serious yet avoidable events, and patients with low bone density and the immunosuppressed should be monitored closely. PMID:25694903

  20. Online Epileptic Seizure Prediction Using Wavelet-Based Bi-Phase Correlation of Electrical Signals Tomography.

    PubMed

    Vahabi, Zahra; Amirfattahi, Rasoul; Shayegh, Farzaneh; Ghassemi, Fahimeh

    2015-09-01

    Considerable efforts have been made in order to predict seizures. Among these methods, the ones that quantify synchronization between brain areas, are the most important methods. However, to date, a practically acceptable result has not been reported. In this paper, we use a synchronization measurement method that is derived according to the ability of bi-spectrum in determining the nonlinear properties of a system. In this method, first, temporal variation of the bi-spectrum of different channels of electro cardiography (ECoG) signals are obtained via an extended wavelet-based time-frequency analysis method; then, to compare different channels, the bi-phase correlation measure is introduced. Since, in this way, the temporal variation of the amount of nonlinear coupling between brain regions, which have not been considered yet, are taken into account, results are more reliable than the conventional phase-synchronization measures. It is shown that, for 21 patients of FSPEEG database, bi-phase correlation can discriminate the pre-ictal and ictal states, with very low false positive rates (FPRs) (average: 0.078/h) and high sensitivity (100%). However, the proposed seizure predictor still cannot significantly overcome the random predictor for all patients. PMID:26126613

  1. Low-frequency repetitive transcranial magnetic simulation prevents chronic epileptic seizure

    PubMed Central

    Wang, Yinxu; Wang, Xiaoming; Ke, Sha; Tan, Juan; Hu, Litian; Zhang, Yaodan; Cui, Wenjuan

    2013-01-01

    Although low-frequency repetitive transcranial magnetic simulation can potentially treat epilepsy, its underlying mechanism remains unclear. This study investigated the influence of low-frequency re-petitive transcranial magnetic simulation on changes in several nonlinear dynamic electroence-phalographic parameters in rats with chronic epilepsy and explored the mechanism underlying petitive transcranial magnetic simulation-induced antiepileptic effects. An epilepsy model was es-tablished using lithium-pilocarpine intraperitoneal injection into adult Sprague-Dawley rats, which were then treated with repetitive transcranial magnetic simulation for 7 consecutive days. Nonlinear electroencephalographic parameters were obtained from the rats at 7, 14, and 28 days post-stimulation. Results showed significantly lower mean correlation-dimension and Kolmogo-rov-entropy values for stimulated rats than for non-stimulated rats. At 28 days, the complexity and point-wise correlation dimensional values were lower in stimulated rats. Low-frequency repetitive transcranial magnetic simulation has suppressive effects on electrical activity in epileptic rats, thus explaining its effectiveness in treating epilepsy. PMID:25206567

  2. Low-frequency repetitive transcranial magnetic simulation prevents chronic epileptic seizure.

    PubMed

    Wang, Yinxu; Wang, Xiaoming; Ke, Sha; Tan, Juan; Hu, Litian; Zhang, Yaodan; Cui, Wenjuan

    2013-09-25

    Although low-frequency repetitive transcranial magnetic simulation can potentially treat epilepsy, its underlying mechanism remains unclear. This study investigated the influence of low-frequency re-petitive transcranial magnetic simulation on changes in several nonlinear dynamic electroence-phalographic parameters in rats with chronic epilepsy and explored the mechanism underlying petitive transcranial magnetic simulation-induced antiepileptic effects. An epilepsy model was es-tablished using lithium-pilocarpine intraperitoneal injection into adult Sprague-Dawley rats, which were then treated with repetitive transcranial magnetic simulation for 7 consecutive days. Nonlinear electroencephalographic parameters were obtained from the rats at 7, 14, and 28 days post-stimulation. Results showed significantly lower mean correlation-dimension and Kolmogo-rov-entropy values for stimulated rats than for non-stimulated rats. At 28 days, the complexity and point-wise correlation dimensional values were lower in stimulated rats. Low-frequency repetitive transcranial magnetic simulation has suppressive effects on electrical activity in epileptic rats, thus explaining its effectiveness in treating epilepsy. PMID:25206567

  3. A clinical trial of single dose rectal and oral administration of diazepam for the prevention of serial seizures in adult epileptic patients.

    PubMed Central

    Milligan, N M; Dhillon, S; Griffiths, A; Oxley, J; Richens, A

    1984-01-01

    The clinical anticonvulsant efficacy of single dose rectal and oral administration of diazepam 20 mg was examined in two double-blind placebo-controlled trials in adult epileptic patients. All subjects suffered from drug resistant epilepsy and frequently experienced serial seizures. Diazepam was administered rectally as a new experimental suppository formulation immediately after a seizure and was highly effective in preventing recurrent fits within a 24 h observation period (p less than 0.001). Pharmacokinetic studies revealed a wide range of serum diazepam concentrations 60 min after administration of the suppository (mean serum diazepam level 190 +/- 73 (SD ng/ml). In a similar study oral administration of diazepam 20 mg significantly reduced the incidence of serial seizures compared with a placebo (p less than 0.01) and the mean 60 min serum diazepam level was 273 +/- 190 (SD) ng/ml. PMID:6368753

  4. Detection of Epileptic Seizures Using Phase-Amplitude Coupling in Intracranial Electroencephalography.

    PubMed

    Edakawa, Kohtaroh; Yanagisawa, Takufumi; Kishima, Haruhiko; Fukuma, Ryohei; Oshino, Satoru; Khoo, Hui Ming; Kobayashi, Maki; Tanaka, Masataka; Yoshimine, Toshiki

    2016-01-01

    Seizure detection using intracranial electroencephalography (iEEG) contributes to improved treatment of patients with refractory epilepsy. For that purpose, a feature of iEEG to characterize the ictal state with high specificity and sensitivity is necessary. We evaluated the use of phase-amplitude coupling (PAC) of iEEG signals over a period of 24 h to detect the ictal and interictal states. PAC was estimated by using a synchronisation index (SI) for iEEG signals from seven patients with refractory temporal lobe epilepsy. iEEG signals of the ictal state was characterised by a strong PAC between the phase of β and the amplitude of high γ. Furthermore, using SI values, the ictal state was successfully detected with significantly higher accuracy than by using the amplitude of high γ alone. In conclusion, PAC accurately distinguished the ictal state from the interictal state. PMID:27147119

  5. Detection of Epileptic Seizures Using Phase–Amplitude Coupling in Intracranial Electroencephalography

    PubMed Central

    Edakawa, Kohtaroh; Yanagisawa, Takufumi; Kishima, Haruhiko; Fukuma, Ryohei; Oshino, Satoru; Khoo, Hui Ming; Kobayashi, Maki; Tanaka, Masataka; Yoshimine, Toshiki

    2016-01-01

    Seizure detection using intracranial electroencephalography (iEEG) contributes to improved treatment of patients with refractory epilepsy. For that purpose, a feature of iEEG to characterize the ictal state with high specificity and sensitivity is necessary. We evaluated the use of phase–amplitude coupling (PAC) of iEEG signals over a period of 24 h to detect the ictal and interictal states. PAC was estimated by using a synchronisation index (SI) for iEEG signals from seven patients with refractory temporal lobe epilepsy. iEEG signals of the ictal state was characterised by a strong PAC between the phase of β and the amplitude of high γ. Furthermore, using SI values, the ictal state was successfully detected with significantly higher accuracy than by using the amplitude of high γ alone. In conclusion, PAC accurately distinguished the ictal state from the interictal state. PMID:27147119

  6. A new trial liposteroid (dexamethasone palmitate) therapy for intractable epileptic seizures in infancy.

    PubMed

    Yamamoto, Hitoshi; Fukuda, Miho; Miyamoto, Yusaku; Murakami, Hiroshi; Kamiyama, Noriko

    2007-08-01

    West syndrome (WS) is a severe age-dependent intractable epilepsy in infants that frequently results in mental retardation. ACTH or glucocorticoids are among several effective treatments in WS, but the relative advantages and disadvantages of these two therapies are still unknown. In a previous study, liposteroid (LS; dexamethasone palmitate) was used for the treatment of WS and compared with ACTH therapy in relation to therapeutic effect and adverse reactions. In this study, a new regimen of LS therapy was tried for WS and its related syndrome in an attempt to hasten the onset of the therapeutic effect and reduce the relapse rate. A single intravenous injection of LS (0.25mg/kg) was administered 12 times in 1 month (total dosage 3.0mg/kg) to four patients with WS and with post-WS aged 5-25 months, and one patient with Lennox-Gastaut syndrome (post-WS) aged 84 months. All five patients had daily seizures uncontrolled by conventional antiepileptic drugs, such as VPA, CZP or ZNS. Nodding spasm and hypsarrhythmia on EEG disappeared in one patient with WS within four doses. More than 50% decrease in seizures, and EEG improvement, were found in other two patients. No notable effects were seen in the other two patients. There were no clinically significant adverse reactions throughout the therapy. Efficacy can be determined in this new experimental LS therapy earlier than with conventional LS therapy. In this small study, a new protocol for LS therapy could be completed safely. This regimen may be useful for those susceptible to adverse reactions from conventional treatment or those unresponsive to other treatments. PMID:17275235

  7. [Seizure].

    PubMed

    Saito, Ayumi; Terayama, Yasuo

    2013-06-01

    Seizure is defined as "a strong shrinkage state of the skeletal muscle which is involuntary, and occurs spasmodically" and it is often accompanied by disturbance of consciousness. The typical disease which causes seizure is epilepsy. But there is many conditions causing seizure. Therefore, diagnosis of epilepsy should be careful. Seizure among eldery increases in an era of an aging population in Japan. The risk of recurrence of seizure or epilepsy in elderly is higher than that in youth. In considering of the treatment of seizure among elderly, differential diagnosis from various condition must be done. PMID:23855204

  8. Combined Low-Intensity Exercise and Ascorbic Acid Attenuates Kainic Acid-Induced Seizure and Oxidative Stress in Mice.

    PubMed

    Kim, Hee-Jae; Song, Wook; Jin, Eun Hee; Kim, Jongkyu; Chun, Yoonseok; An, Eung Nam; Park, Sok

    2016-05-01

    Physical exercise and vitamins such as ascorbic acid (ASC) have been recognized as an effective strategy in neuroprotection and neurorehabilitatioin. However, there is a need to find an efficient treatment regimen that includes ASC and low-intensity exercise to diminish the risk of overtraining and nutritional treatment by attenuating oxidative stress. In the present study, we investigated the combined effect of low-intensity physical exercise (EX) and ASC on kainic acid (KA)-induced seizure activity and oxidative stress in mice. The mice were randomly assigned into groups as follows: "KA only" (n = 11), "ASC + KA" (n = 11), "Ex + KA" (n = 11), "ASC + Ex + KA" (n = 11). In the present study, low intensity of swimming training period lasted 8 weeks and consisted of 30-min sessions daily (three times per week) without tail weighting. Although no preventive effect of low-intensity exercise or ASC on KA seizure occurrence was evident, there was a decrease of seizure activity, seizure development (latency to first seizures), and mortality in "ASC + Ex + KA" compared to "ASC + KA", "Ex + KA", and "KA only" group. In addition, a preventive synergistic coordination of low-intensity exercise and ASC was evident in glutathione peroxidase and superoxide dismutase activity compared to separate treatment. These results suggest that low-intensity exercise and ASC treatment have preventive effects on seizure activity and development with alternation of oxidative status. PMID:26646003

  9. Tonicity-responsive enhancer binding protein haplodeficiency attenuates seizure severity and NF-κB-mediated neuroinflammation in kainic acid-induced seizures.

    PubMed

    Shin, H J; Kim, H; Heo, R W; Kim, H J; Choi, W S; Kwon, H M; Roh, G S

    2014-07-01

    Kainic acid (KA)-induced seizures followed by neuronal death are associated with neuroinflammation and blood-brain barrier (BBB) leakage. Tonicity-responsive enhancer binding protein (TonEBP) is known as a transcriptional factor activating osmoprotective genes, and in brain, it is expressed in neuronal nuclei. Thus dysregulation of TonEBP may be involved in the pathology of KA-induced seizures. Here we used TonEBP heterozygote (+/-) mice to study the roles of TonEBP. Electroencephalographic study showed that TonEBP (+/-) mice reduced seizure frequency and severity compared with wild type during KA-induced status epilepticus. Immunohistochemistry and western blotting analysis showed that KA-induced neuroinflammation and BBB leakage were dramatically reduced in TonEBP (+/-) mice. Similarly, TonEBP-specific siRNA reduced glutamate-induced death in HT22 hippocampal neuronal cells. TonEBP haplodeficiency prevented KA-induced nuclear translocation of NF-κB p65 and attenuated inflammation. Our findings identify TonEBP as a critical regulator of neuroinflammation and BBB leakage in KA-induced seizures, which suggests TonEBP as a good therapeutic target. PMID:24608792

  10. Mutations in SLC13A5 Cause Autosomal-Recessive Epileptic Encephalopathy with Seizure Onset in the First Days of Life

    PubMed Central

    Thevenon, Julien; Milh, Mathieu; Feillet, François; St-Onge, Judith; Duffourd, Yannis; Jugé, Clara; Roubertie, Agathe; Héron, Delphine; Mignot, Cyril; Raffo, Emmanuel; Isidor, Bertrand; Wahlen, Sandra; Sanlaville, Damien; Villeneuve, Nathalie; Darmency-Stamboul, Véronique; Toutain, Annick; Lefebvre, Mathilde; Chouchane, Mondher; Huet, Frédéric; Lafon, Arnaud; de Saint Martin, Anne; Lesca, Gaetan; El Chehadeh, Salima; Thauvin-Robinet, Christel; Masurel-Paulet, Alice; Odent, Sylvie; Villard, Laurent; Philippe, Christophe; Faivre, Laurence; Rivière, Jean-Baptiste

    2014-01-01

    Epileptic encephalopathy (EE) refers to a clinically and genetically heterogeneous group of severe disorders characterized by seizures, abnormal interictal electro-encephalogram, psychomotor delay, and/or cognitive deterioration. We ascertained two multiplex families (including one consanguineous family) consistent with an autosomal-recessive inheritance pattern of EE. All seven affected individuals developed subclinical seizures as early as the first day of life, severe epileptic disease, and profound developmental delay with no facial dysmorphism. Given the similarity in clinical presentation in the two families, we hypothesized that the observed phenotype was due to mutations in the same gene, and we performed exome sequencing in three affected individuals. Analysis of rare variants in genes consistent with an autosomal-recessive mode of inheritance led to identification of mutations in SLC13A5, which encodes the cytoplasmic sodium-dependent citrate carrier, notably expressed in neurons. Disease association was confirmed by cosegregation analysis in additional family members. Screening of 68 additional unrelated individuals with early-onset epileptic encephalopathy for SLC13A5 mutations led to identification of one additional subject with compound heterozygous mutations of SLC13A5 and a similar clinical presentation as the index subjects. Mutations affected key residues for sodium binding, which is critical for citrate transport. These findings underline the value of careful clinical characterization for genetic investigations in highly heterogeneous conditions such as EE and further highlight the role of citrate metabolism in epilepsy. PMID:24995870

  11. Seizures

    MedlinePlus

    ... defects) Brain tumor (rare) Drug abuse Electric shock Epilepsy Fever (particularly in young children) Head injury Heart ... age. There may be a family history of epilepsy or seizures. If seizures continue repeatedly after the ...

  12. Phase-Amplitude Coupling Is Elevated in Deep Sleep and in the Onset Zone of Focal Epileptic Seizures

    PubMed Central

    Amiri, Mina; Frauscher, Birgit; Gotman, Jean

    2016-01-01

    The interactions between different EEG frequency bands have been widely investigated in normal and pathologic brain activity. Phase-amplitude coupling (PAC) is one of the important forms of this interaction where the amplitude of higher frequency oscillations is modulated by the phase of lower frequency activity. Here, we studied the dynamic variations of PAC of high (gamma and ripple) and low (delta, theta, alpha, and beta) frequency bands in patients with focal epilepsy in different sleep stages during the interictal period, in an attempt to see if coupling is different in more or less epileptogenic regions. Sharp activities were excluded to avoid their effect on the PAC. The results revealed that the coupling intensity was generally the highest in stage N3 of sleep and the lowest in rapid eye movement sleep. We also compared the coupling strength in different regions [seizure onset zone (SOZ), exclusively irritative zone, and normal zone]. PAC between high and low frequency rhythms was found to be significantly stronger in the SOZ compared to normal regions. Also, the coupling was generally more elevated in spiking channels outside the SOZ than in normal regions. We also examined how the power in the delta band correlates to the PAC, and found a mild but statistically significant correlation between slower background activity in epileptic channels and the elevated coupling in these channels. The results suggest that an elevated PAC may reflect some fundamental abnormality, even after exclusion of sharp activities and even in the interictal period. PAC may therefore contribute to understanding the underlying dynamics of epileptogenic brain regions. PMID:27536227

  13. Calcification of the pineal gland: relationship to laterality of the epileptic foci in patients with complex partial seizures.

    PubMed

    Sandyk, R

    1992-01-01

    The right and left temporal lobes differ from each other with respect to the rate of intrauterine growth, the timing of maturation, rate of aging, anatomical organization, neurochemistry, metabolic rate, electroencephalographic measures, and function. These functional differences between the temporal lobes underlies the different patterns of psychopathology and endocrine reproductive disturbances noted in patients with temporolimbic epilepsy. The right hemisphere has greater limbic and reticular connections than the left. Since the pineal gland receives direct innervation from the limbic system and the secretion of melatonin is influenced by an input from the reticular system, I propose that lesions in the right temporal lobe have a greater impact on pineal melatonin functions as opposed to those in the left dominant temporal lobe. Consequently, since calcification of the pineal gland is thought to reflect past secretory activity of the gland, I predicted a higher prevalence of pineal calcification (PC) in epileptic patients with right temporal lobe as opposed to those with left temporal lobe foci. To investigate this hypothesis, the prevalence of PC on CT scan was studied in a sample of 70 patients (43 men, 27 women, mean age: 29.2 years, range 9-58; SD = 10.1) with complex partial seizures, of whom 49 (70.0%) had a right temporal lobe focus. PC was present in 51 patients (72.8%) and was unrelated to any of the historical and demographic data surveyed. In the patients with a focus in the right temporal lobe, PC was present in 46 cases (93.8%) as compared to 5 of 21 patients (23.8%) with left temporal lobe foci.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1341678

  14. An Integrative Neurocircuit Perspective on Psychogenic Non-Epileptic Seizures and Functional Movement Disorders: Neural Functional Unawareness

    PubMed Central

    Perez, DL; Dworetzky, BA; Dickerson, BC; Leung, L; Cohn, R; Baslet, G; Silbersweig, DA

    2014-01-01

    Functional Neurological Disorder (conversion disorder) is a neurobehavioral condition frequently encountered by neurologists. Psychogenic Non-Epileptic Seizure (PNES) and Functional Movement Disorder (FMD) patients present to epileptologists and movement disorder specialists respectively, yet neurologists lack a neurobiological perspective through which to understand these enigmatic groups. Observational research studies suggest that PNES and FMD may represent variants of similar (or the same) conditions given that both groups exhibit a female predominance, have increased prevalence of mood-anxiety disorders, frequently endorse prior abuse, and share phenotypic characteristics. In this perspective article, neuroimaging studies in PNES and FMD are reviewed, and discussed using studies of emotional dysregulation, dissociation and psychological trauma in the context of motor control. Convergent neuroimaging findings implicate alterations in brain circuits mediating emotional expression, regulation and awareness (anterior cingulate and ventromedial prefrontal cortices, insula, amygdala, vermis), cognitive control and motor inhibition (dorsal anterior cingulate, dorsolateral prefrontal, inferior frontal cortices), self-referential processing and perceptual awareness (posterior parietal cortex, temporoparietal junction), and motor planning and coordination (supplementary motor area, cerebellum). Striatal-thalamic components of prefrontal-parietal networks may also play a role in pathophysiology. Aberrant medial prefrontal and amygdalar neuroplastic changes mediated by chronic stress may facilitate the development of functional neurological symptoms in a subset of patients. Improved biological understanding of PNES and FMD will likely reduce stigma and aid the identification of neuroimaging biomarkers guiding treatment development, selection and prognosis. Additional research should investigate neurocircuit abnormalities within and across functional neurological disorder

  15. Phase-Amplitude Coupling Is Elevated in Deep Sleep and in the Onset Zone of Focal Epileptic Seizures.

    PubMed

    Amiri, Mina; Frauscher, Birgit; Gotman, Jean

    2016-01-01

    The interactions between different EEG frequency bands have been widely investigated in normal and pathologic brain activity. Phase-amplitude coupling (PAC) is one of the important forms of this interaction where the amplitude of higher frequency oscillations is modulated by the phase of lower frequency activity. Here, we studied the dynamic variations of PAC of high (gamma and ripple) and low (delta, theta, alpha, and beta) frequency bands in patients with focal epilepsy in different sleep stages during the interictal period, in an attempt to see if coupling is different in more or less epileptogenic regions. Sharp activities were excluded to avoid their effect on the PAC. The results revealed that the coupling intensity was generally the highest in stage N3 of sleep and the lowest in rapid eye movement sleep. We also compared the coupling strength in different regions [seizure onset zone (SOZ), exclusively irritative zone, and normal zone]. PAC between high and low frequency rhythms was found to be significantly stronger in the SOZ compared to normal regions. Also, the coupling was generally more elevated in spiking channels outside the SOZ than in normal regions. We also examined how the power in the delta band correlates to the PAC, and found a mild but statistically significant correlation between slower background activity in epileptic channels and the elevated coupling in these channels. The results suggest that an elevated PAC may reflect some fundamental abnormality, even after exclusion of sharp activities and even in the interictal period. PAC may therefore contribute to understanding the underlying dynamics of epileptogenic brain regions. PMID:27536227

  16. Ketogenic Diet, but Not Polyunsaturated Fatty Acid Diet, Reduces Spontaneous Seizures in Juvenile Rats with Kainic Acid-induced Epilepsy

    PubMed Central

    Dustin, Simone M.; Stafstrom, Carl E.

    2016-01-01

    Background and Purpose: The high-fat, low-carbohydrate ketogenic diet (KD) is effective in many cases of drug-resistant epilepsy, particularly in children. In the classic KD, fats consist primarily of long-chain saturated triglycerides. Polyunsaturated fatty acids (PUFAs), especially the n-3 type, decrease neuronal excitability and provide neuroprotection; pilot human studies have raised the possibility of using PUFAs to control seizures in patients. Methods: To determine the relative roles of the KD and PUFAs in an animal model, we induced epilepsy in juvenile rats (P29–35) using intraperitoneal kainic acid (KA). KA caused status epilepticus in all rats. Two days after KA, rats were randomized to one of 4 dietary groups: Control diet; PUFA diet; KD; or KD plus PUFA. All diets were administered isocalorically at 90% of the rat recommended daily calorie requirement. Spontaneous recurrent seizures (SRS) were assessed for 3 months after diet randomization. Results: Rats receiving the KD or KD-PUFA diet had significantly fewer SRS than those receiving the Control diet or PUFA diet. The PUFA diet did not reduce SRS compared to the Control diet. Conclusions: In the KA epilepsy model, the KD protects against SRS occurrence but dietary enhancement with PUFA does not afford additional protection against spontaneous seizures. PMID:27390673

  17. Domoic acid-induced seizures in California sea lions (Zalophus californianus) are associated with neuroinflammatory brain injury.

    PubMed

    Kirkley, Kelly S; Madl, James E; Duncan, Colleen; Gulland, Frances M; Tjalkens, Ronald B

    2014-11-01

    California sea lions (CSLs) exposed to the marine biotoxin domoic acid (DA) develop an acute or chronic toxicosis marked by seizures and act as sentinels of the disease. Experimental evidence suggests that oxidative stress and neuroinflammation are important mechanisms underlying the seizurogenic potential of environmental toxicants but these pathways are relatively unstudied in CSLs. In the current study, we investigated the role of glutamate-glutamine changes and gliosis in DA-exposed CSLs to better understand the neurotoxic mechanisms occurring during DA toxicity. Sections from archived hippocampi from control and CSLs diagnosed with DA toxicosis were immunofluorescently stained for markers of gliosis, oxidative/nitrative stress and changes in glutamine synthetase (GS). Quantitative assessment revealed increasing loss of microtubule associated protein-2 positive neurons with elevations in 4-hydroxynonenal correlating with chronicity of exposure, whereas the pattern of activated glia expressing nitric oxide synthase 2 and tumor necrosis factor followed pathological severity. There was no significant change in the amount of GS positive cells but there was increased 3-nitrotyrosine in GS expressing cells and in neurons, particularly in animals with chronic DA toxicosis. These changes were consistently seen in the dentate gyrus and in the cornu ammonis (CA) sectors CA3, CA4, and CA1. The results of this study indicate that gliosis and resultant changes in GS are likely important mechanisms in DA-induced seizure that need to be further explored as potential therapies in treating exposed wildlife. PMID:25286249

  18. Evidence for a role of the parafascicular nucleus of the thalamus in the control of epileptic seizures by the superior colliculus

    PubMed Central

    Nail-Boucherie, Karine; Lê-Pham, Bich-Thuy; Gobaille, Serge; Maitre, Michel; Aunis, Dominique; Depaulis, Antoine

    2005-01-01

    Purpose The aim of this study was to investigate whether the nucleus parafascicularis (Pf) of the thalamus could be a relay of the control of epileptic seizures by the superior colliculus (SC). The Pf is one of the main ascending projection of the SC, the disinhibition of which has been shown to suppress seizures in different animal models and has been proposed as the main relay of the nigral control of epilepsy. Methods Rats with genetic absence seizures (Generalized Absence Epilepsy Rat from Strasbourg or GAERS) were used in this study. The effect of bilateral microinjection of picrotoxin, a GABA antagonist, in the SC on the glutamate and GABA extracellular concentration within the Pf was first investigated using microdialysis. In a second experiment, the effect of direct activation of Pf neurons on the occurrence of absence seizures was examined by microinjection of low doses of kainate, a glutamate agonist. Results Bilateral injection of picrotoxin (33 pmol/side) in the SC suppressed spike and wave discharges for 20 min. This treatment resulted in an increase of glutamate but not GABA levels in the Pf during the same time course. Bilateral injection of kainate (35 pmol/side) into the Pf significantly suppressed spike and wave discharges for 20 min, whereas such injection were without effects when at least one the site was located outside the Pf. Conclusions These data suggest that glutamatergic projections to the Pf could be involved in the control of seizures by the SC. Disinhibition of these neurons could lead to seizure suppression and may be involved in the nigral control of epilepsy. PMID:15660780

  19. Human Fetal Brain-Derived Neural Stem/Progenitor Cells Grafted into the Adult Epileptic Brain Restrain Seizures in Rat Models of Temporal Lobe Epilepsy

    PubMed Central

    Lee, Haejin; Yun, Seokhwan; Kim, Il-Sun; Lee, Il-Shin; Shin, Jeong Eun; Park, Soo Chul; Kim, Won-Joo; Park, Kook In

    2014-01-01

    Cell transplantation has been suggested as an alternative therapy for temporal lobe epilepsy (TLE) because this can suppress spontaneous recurrent seizures in animal models. To evaluate the therapeutic potential of human neural stem/progenitor cells (huNSPCs) for treating TLE, we transplanted huNSPCs, derived from an aborted fetal telencephalon at 13 weeks of gestation and expanded in culture as neurospheres over a long time period, into the epileptic hippocampus of fully kindled and pilocarpine-treated adult rats exhibiting TLE. In vitro, huNSPCs not only produced all three central nervous system neural cell types, but also differentiated into ganglionic eminences-derived γ-aminobutyric acid (GABA)-ergic interneurons and released GABA in response to the depolarization induced by a high K+ medium. NSPC grafting reduced behavioral seizure duration, afterdischarge duration on electroencephalograms, and seizure stage in the kindling model, as well as the frequency and the duration of spontaneous recurrent motor seizures in pilocarpine-induced animals. However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals. Following transplantation, grafted cells showed extensive migration around the injection site, robust engraftment, and long-term survival, along with differentiation into β-tubulin III+ neurons (∼34%), APC-CC1+ oligodendrocytes (∼28%), and GFAP+ astrocytes (∼8%). Furthermore, among donor-derived cells, ∼24% produced GABA. Additionally, to explain the effect of seizure suppression after NSPC grafting, we examined the anticonvulsant glial cell-derived neurotrophic factor (GDNF) levels in host hippocampal astrocytes and mossy fiber sprouting into the supragranular layer of the dentate gyrus in the epileptic brain. Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism. These results suggest that human fetal

  20. Fibromyalgia and seizures.

    PubMed

    Tatum, William O; Langston, Michael E; Acton, Emily K

    2016-06-01

    The purpose of this case-matched study was to determine how frequently fibromyalgia is associated with different paroxysmal neurological disorders and explore the utility of fibromyalgia as a predictor for the diagnosis of psychogenic non-epileptic seizures. The billing diagnosis codes of 1,730 new, non-selected patient encounters were reviewed over a three-year period for an epileptologist in a neurology clinic to identify all patients with historical diagnoses of fibromyalgia. The frequency with which epileptic seizures, psychogenic non-epileptic seizures, and physiological non-epileptic events were comorbid with fibromyalgia was assessed. Age and gender case-matched controls were used for a between-group comparison. Wilcoxon tests were used to analyse interval data, and Chi-square was used to analyse categorical data (p<0.05). Fibromyalgia was retrospectively identified in 95/1,730 (5.5%) patients in this cohort. Females represented 95% of the fibromyalgia sample (age: 53 years; 95% CI: 57, 51). Forty-three percent of those with fibromyalgia had a non-paroxysmal, neurological primary clinical diagnosis, most commonly chronic pain. Paroxysmal events were present in 57% of fibromyalgia patients and 54% of case-matched controls. Among patients with fibromyalgia and paroxysmal disorders, 11% had epileptic seizures, 74% had psychogenic non-epileptic seizures, and 15% had physiological non-epileptic events, compared to case-matched controls with 37% epileptic seizures, 51% psychogenic non-epileptic events, and 12% physiological non-epileptic events (p = 0.009). Fibromyalgia was shown to be a predictor for the diagnosis of psychogenic non-epileptic seizures in patients with undifferentiated paroxysmal spells. However, our results suggest that the specificity and sensitivity of fibromyalgia as a marker for psychogenic non-epileptic seizures in a mixed general neurological population of patients is less than previously described. PMID:27238051

  1. Long-Term Seizure Suppression and Optogenetic Analyses of Synaptic Connectivity in Epileptic Mice with Hippocampal Grafts of GABAergic Interneurons

    PubMed Central

    Henderson, Katharine W.; Gupta, Jyoti; Tagliatela, Stephanie; Litvina, Elizabeth; Zheng, XiaoTing; Van Zandt, Meghan A.; Woods, Nicholas; Grund, Ethan; Lin, Diana; Royston, Sara; Yanagawa, Yuchio; Aaron, Gloster B.

    2014-01-01

    Studies in rodent epilepsy models suggest that GABAergic interneuron progenitor grafts can reduce hyperexcitability and seizures in temporal lobe epilepsy (TLE). Although integration of the transplanted cells has been proposed as the underlying mechanism for these disease-modifying effects, prior studies have not explicitly examined cell types and synaptic mechanisms for long-term seizure suppression. To address this gap, we transplanted medial ganglionic eminence (MGE) cells from embryonic day 13.5 VGAT-Venus or VGAT-ChR2-EYFP transgenic embryos into the dentate gyrus (DG) of adult mice 2 weeks after induction of TLE with pilocarpine. Beginning 3–4 weeks after status epilepticus, we conducted continuous video-electroencephalographic recording until 90–100 d. TLE mice with bilateral MGE cell grafts in the DG had significantly fewer and milder electrographic seizures, compared with TLE controls. Immunohistochemical studies showed that the transplants contained multiple neuropeptide or calcium-binding protein-expressing interneuron types and these cells established dense terminal arborizations onto the somas, apical dendrites, and axon initial segments of dentate granule cells (GCs). A majority of the synaptic terminals formed by the transplanted cells were apposed to large postsynaptic clusters of gephyrin, indicative of mature inhibitory synaptic complexes. Functionality of these new inhibitory synapses was demonstrated by optogenetically activating VGAT-ChR2-EYFP-expressing transplanted neurons, which generated robust hyperpolarizations in GCs. These findings suggest that fetal GABAergic interneuron grafts may suppress pharmacoresistant seizures by enhancing synaptic inhibition in DG neural circuits. PMID:25274826

  2. Houttuyniae Herba Attenuates Kainic Acid-Induced Neurotoxicity via Calcium Response Modulation in the Mouse Hippocampus.

    PubMed

    Kim, Hyo Geun; Jeong, Hyun Uk; Hong, Sung In; Oh, Myung Sook

    2015-12-01

    Epilepsy is a complex neurological disorder characterized by the repeated occurrence of electrical activity known as seizures. This activity induces increased intracellular calcium, which ultimately leads to neuronal damage. Houttuyniae Herba, the aerial part of Houttuynia cordata, has various pharmacological effects and is widely used as a traditional herb. In the present study, we evaluated the protective effects of Houttuyniae Herba water extract on kainic acid-induced neurotoxicity. Kainic acid directly acts on calcium release, resulting in seizure behavior, neuronal damage, and cognitive impairment. In a rat primary hippocampal culture system, Houttuyniae Herba water extract significantly protected neuronal cells from kainic acid toxicity. In a seizure model where mice received intracerebellar kainic acid injections, Houttuyniae Herba water extract treatment resulted in a lower seizure stage score, ameliorated cognitive impairment, protected neuronal cells against kainic acid-induced toxicity, and suppressed neuronal degeneration in the hippocampus. In addition, Houttuyniae Herba water extract regulated increases in the intracellular calcium level, its related downstream pathways (reactive oxygen species production and mitochondrial dysfunction), and calcium/calmodulin complex kinase type II immunoreactivity in the mouse hippocampus, which resulted from calcium influx stimulation induced by kainic acid. These results demonstrate the neuroprotective effects of Houttuyniae Herba water extract through inhibition of calcium generation in a kainic acid-induced epileptic model. PMID:26366753

  3. Leukocyte Infiltration Triggers Seizure Recurrence in a Rat Model of Temporal Lobe Epilepsy.

    PubMed

    Liu, Zanhua; Wang, Suping; Liu, Jinjie; Wang, Feng; Liu, Yi; Zhao, Yongbo

    2016-06-01

    Epilepsy, which affects about 1 % of the population worldwide, leads to poor prognosis and increased morbidity. However, effective drugs providing satisfactory control on seizure relapse were rare, which encouraged more etiological studies. Whether inflammation is one of key events underlying seizure is in debate. In order to explore the role of inflammatory in the pathogenesis and development of epilepsy, we conducted intra-caudal vein injection of leukocytes to aggravated brain inflammatory process in kainic acid-induced seizure model in this study. The results showed that intravenous administration of activated leukocytes increased the frequency and reduced the latent phase of seizure recurrences in rat models of epileptic seizure, during which leukocyte inflammation, brain-blood barrier damage, and neuron injury were also significantly aggravated, indicating that leukocyte infiltration might facilitate seizure recurrence through aggravating brain inflammation, brain-blood barrier damage, and neuron injury. PMID:27040283

  4. Synchrotron X-ray microtransections: a non invasive approach for epileptic seizures arising from eloquent cortical areas

    NASA Astrophysics Data System (ADS)

    Pouyatos, B.; Nemoz, C.; Chabrol, T.; Potez, M.; Bräuer, E.; Renaud, L.; Pernet-Gallay, K.; Estève, F.; David, O.; Kahane, P.; Laissue, J. A.; Depaulis, A.; Serduc, R.

    2016-06-01

    Synchrotron-generated X-ray (SRX) microbeams deposit high radiation doses to submillimetric targets whilst minimizing irradiation of neighboring healthy tissue. We developed a new radiosurgical method which demonstrably transects cortical brain tissue without affecting adjacent regions. We made such image-guided SRX microtransections in the left somatosensory cortex in a rat model of generalized epilepsy using high radiation doses (820 Gy) in thin (200 μm) parallel slices of tissue. This procedure, targeting the brain volume from which seizures arose, altered the abnormal neuronal activities for at least 9 weeks, as evidenced by a decrease of seizure power and coherence between tissue slices in comparison to the contralateral cortex. The brain tissue located between transections stayed histologically normal, while the irradiated micro-slices remained devoid of myelin and neurons two months after irradiation. This pre-clinical proof of concept highlights the translational potential of non-invasive SRX transections for treating epilepsies that are not eligible for resective surgery.

  5. Synchrotron X-ray microtransections: a non invasive approach for epileptic seizures arising from eloquent cortical areas

    PubMed Central

    Pouyatos, B.; Nemoz, C.; Chabrol, T.; Potez, M.; Bräuer, E.; Renaud, L.; Pernet-Gallay, K.; Estève, F.; David, O.; Kahane, P.; Laissue, J. A.; Depaulis, A.; Serduc, R.

    2016-01-01

    Synchrotron-generated X-ray (SRX) microbeams deposit high radiation doses to submillimetric targets whilst minimizing irradiation of neighboring healthy tissue. We developed a new radiosurgical method which demonstrably transects cortical brain tissue without affecting adjacent regions. We made such image-guided SRX microtransections in the left somatosensory cortex in a rat model of generalized epilepsy using high radiation doses (820 Gy) in thin (200 μm) parallel slices of tissue. This procedure, targeting the brain volume from which seizures arose, altered the abnormal neuronal activities for at least 9 weeks, as evidenced by a decrease of seizure power and coherence between tissue slices in comparison to the contralateral cortex. The brain tissue located between transections stayed histologically normal, while the irradiated micro-slices remained devoid of myelin and neurons two months after irradiation. This pre-clinical proof of concept highlights the translational potential of non-invasive SRX transections for treating epilepsies that are not eligible for resective surgery. PMID:27264273

  6. Synchrotron X-ray microtransections: a non invasive approach for epileptic seizures arising from eloquent cortical areas.

    PubMed

    Pouyatos, B; Nemoz, C; Chabrol, T; Potez, M; Bräuer, E; Renaud, L; Pernet-Gallay, K; Estève, F; David, O; Kahane, P; Laissue, J A; Depaulis, A; Serduc, R

    2016-01-01

    Synchrotron-generated X-ray (SRX) microbeams deposit high radiation doses to submillimetric targets whilst minimizing irradiation of neighboring healthy tissue. We developed a new radiosurgical method which demonstrably transects cortical brain tissue without affecting adjacent regions. We made such image-guided SRX microtransections in the left somatosensory cortex in a rat model of generalized epilepsy using high radiation doses (820 Gy) in thin (200 μm) parallel slices of tissue. This procedure, targeting the brain volume from which seizures arose, altered the abnormal neuronal activities for at least 9 weeks, as evidenced by a decrease of seizure power and coherence between tissue slices in comparison to the contralateral cortex. The brain tissue located between transections stayed histologically normal, while the irradiated micro-slices remained devoid of myelin and neurons two months after irradiation. This pre-clinical proof of concept highlights the translational potential of non-invasive SRX transections for treating epilepsies that are not eligible for resective surgery. PMID:27264273

  7. Hypnopompic seizures.

    PubMed

    Awad, Amer M; Lüders, Hans O

    2010-12-01

    The relationship between epilepsy and sleep is complex and bidirectional. Ictal awakening is probably a common and well-described phenomenon. In this small observational study we describe arousal from sleep as the only, or at least main, manifestation of some epileptic seizures. We coin the term "hypnopompic seizures" to describe this entity. Five patients with intractable epilepsy were monitored by continuous video-electroencephalogram. Four of them had left temporal lobe epilepsy and one patient had generalised epilepsy. Hypnopompic seizures accounted for 30-100% of their seizure types captured during monitoring. All the seizures occurred during stage II sleep and were brief. Hypnopompic seizures are extremely subtle and may be underdiagnosed and underreported. Future larger studies are needed to shed some light on this unique entity and its neuropathophysiology. Epileptologists should be aware of this type of seizure and careful review of electroencephalograms during the transition from sleep to arousal is imperative to capture these seizures. Physicians, patients and families also need to be aware of such a subtle manifestation of seizures. Improved awareness of hypnopompic seizures and subtle seizures, in general, help guide accurate and early diagnosis, thorough monitoring and appropriate management. PMID:21030341

  8. Epileptic activity recognition in EEG recording

    NASA Astrophysics Data System (ADS)

    Diambra, L.; de Figueiredo, J. C. Bastos; Malta, C. P.

    1999-12-01

    We apply Approximate Entropy (ApEn) algorithm in order to recognize epileptic activity in electroencephalogram recordings. ApEn is a recently developed statistical quantity for quantifying regularity and complexity. Our approach is illustrated regarding different types of epileptic activity. In all segments associated with epileptic activity analyzed here the complexity of the signal measured by ApEn drops abruptly. This fact can be useful for automatic recognition and detection of epileptic seizures.

  9. A 1.83 μJ/Classification, 8-Channel, Patient-Specific Epileptic Seizure Classification SoC Using a Non-Linear Support Vector Machine.

    PubMed

    Bin Altaf, Muhammad Awais; Yoo, Jerald

    2016-02-01

    A non-linear support vector machine (NLSVM) seizure classification SoC with 8-channel EEG data acquisition and storage for epileptic patients is presented. The proposed SoC is the first work in literature that integrates a feature extraction (FE) engine, patient specific hardware-efficient NLSVM classification engine, 96 KB SRAM for EEG data storage and low-noise, high dynamic range readout circuits. To achieve on-chip integration of the NLSVM classification engine with minimum area and energy consumption, the FE engine utilizes time division multiplexing (TDM)-BPF architecture. The implemented log-linear Gaussian basis function (LL-GBF) NLSVM classifier exploits the linearization to achieve energy consumption of 0.39 μ J/operation and reduces the area by 28.2% compared to conventional GBF implementation. The readout circuits incorporate a chopper-stabilized DC servo loop to minimize the noise level elevation and achieve noise RTI of 0.81 μ Vrms for 0.5-100 Hz bandwidth with an NEF of 4.0. The 5 × 5 mm (2) SoC is implemented in a 0.18 μm 1P6M CMOS process consuming 1.83 μ J/classification for 8-channel operation. SoC verification has been done with the Children's Hospital Boston-MIT EEG database, as well as with a specific rapid eye-blink pattern detection test, which results in an average detection rate, average false alarm rate and latency of 95.1%, 0.94% (0.27 false alarms/hour) and 2 s, respectively. PMID:25700471

  10. Changes in brain glucose use and extracellular ions associated with kainic acid-induced seizures: (/sup 14/C)-2-deoxyglucose and intracranial

    SciTech Connect

    Chastain, J.E Jr.

    1986-01-01

    The effect of kainic acid (KA) on brain glucose use with coadministration of diazepam, and the effect of KA on brain extracellular (K/sup +/), Ca/sup 2 +/), and (Na/sup +/) was investigated in rats by means of (/sup 14/C)-2-deoxyglucose (2-DG) and intracranial microdialysis, respectively. Also, the impact of intracranial microdialysis on brain regional metabolic function was studied. Co-treatment with KA and diazepam attenuated KA-induced 3 hr increases and prevented 48 hr decreases in glucose use within all structures measured, particularly the piriform cortex and amygdala. Hippocampal CA/sub 3/, CA/sub 4/, and CA/sub 1/-ventral were least affected by diazepam. The results suggest that diazepam suppresses KA seizure spread from its focus, proposed to be CA/sub 3/. KA-induced ions changes were studied by intracranial microdialysis. Dialysis fibers were implanted within the hippocampus or piriform cortex and perfused 24 hr later. Samples, collected before and after KA, were analyzed for (K/sup +/), (Ca/sup 2 +/), and (Na/sup +/). KA caused an early and prolonged increase in extracellular (K/sup +/) and a negligible decrease in (Ca/sup 2 +/) within the hippocampus. In the piriform cortex, both (K/sup +/) and (Na/sup +/) increase during a period of early seizure signs. The results indicate that ion homostatic control of ion levels is better maintained during parenteral KA-induced seizures than when the brain is activated locally or during ischemia/hypoxia. The effect of intracranial microdialysis was studied by means of 2-DG in control state and KA-induced seizure state. The results indicate that intracranial microdialysis alters brain metabolic function during KA-induced seizures, but not in the control state. At 3 hr post KA, seizure metabolic activity was enhanced within the piriform cortex, and attenuated within the hippocampus.

  11. Domoic Acid Epileptic Disease

    PubMed Central

    Ramsdell, John S.; Gulland, Frances M.

    2014-01-01

    Domoic acid epileptic disease is characterized by spontaneous recurrent seizures weeks to months after domoic acid exposure. The potential for this disease was first recognized in a human case study of temporal lobe epilepsy after the 1987 amnesic shellfish-poisoning event in Quebec, and was characterized as a chronic epileptic syndrome in California sea lions through investigation of a series of domoic acid poisoning cases between 1998 and 2006. The sea lion study provided a breadth of insight into clinical presentations, unusual behaviors, brain pathology, and epidemiology. A rat model that replicates key observations of the chronic epileptic syndrome in sea lions has been applied to identify the progression of the epileptic disease state, its relationship to behavioral manifestations, and to define the neural systems involved in these behavioral disorders. Here, we present the concept of domoic acid epileptic disease as a delayed manifestation of domoic acid poisoning and review the state of knowledge for this disease state in affected humans and sea lions. We discuss causative mechanisms and neural underpinnings of disease maturation revealed by the rat model to present the concept for olfactory origin of an epileptic disease; triggered in dendodendritic synapases of the olfactory bulb and maturing in the olfactory cortex. We conclude with updated information on populations at risk, medical diagnosis, treatment, and prognosis. PMID:24663110

  12. Domoic acid epileptic disease.

    PubMed

    Ramsdell, John S; Gulland, Frances M

    2014-03-01

    Domoic acid epileptic disease is characterized by spontaneous recurrent seizures weeks to months after domoic acid exposure. The potential for this disease was first recognized in a human case study of temporal lobe epilepsy after the 1987 amnesic shellfish-poisoning event in Quebec, and was characterized as a chronic epileptic syndrome in California sea lions through investigation of a series of domoic acid poisoning cases between 1998 and 2006. The sea lion study provided a breadth of insight into clinical presentations, unusual behaviors, brain pathology, and epidemiology. A rat model that replicates key observations of the chronic epileptic syndrome in sea lions has been applied to identify the progression of the epileptic disease state, its relationship to behavioral manifestations, and to define the neural systems involved in these behavioral disorders. Here, we present the concept of domoic acid epileptic disease as a delayed manifestation of domoic acid poisoning and review the state of knowledge for this disease state in affected humans and sea lions. We discuss causative mechanisms and neural underpinnings of disease maturation revealed by the rat model to present the concept for olfactory origin of an epileptic disease; triggered in dendodendritic synapases of the olfactory bulb and maturing in the olfactory cortex. We conclude with updated information on populations at risk, medical diagnosis, treatment, and prognosis. PMID:24663110

  13. Seizures in Infants and Young Children.

    ERIC Educational Resources Information Center

    McBrien, Dianne M.; Bonthius, Daniel J.

    2000-01-01

    This article reviews the most frequent causes of seizure disorders in young children and the classification of different seizure types. It discusses current therapies, including alternatives to medication. Emergency response to seizures is covered a well as non-epileptic episodes that may resemble seizures. Epilepsy's potential impact on the…

  14. Treatment of epileptic encephalopathies.

    PubMed

    McTague, Amy; Cross, J Helen

    2013-03-01

    Epileptic encephalopathy is defined as a condition where the epileptic activity itself may contribute to the severe neurological and cognitive impairment seen, over and above that which would be expected from the underlying pathology alone. The epilepsy syndromes at high risk of this are a disparate group of conditions characterized by epileptic seizures that are difficult to treat and developmental delay. In this review, we discuss the ongoing debate regarding the significance of inter-ictal discharges and the impact of the seizures themselves on the cognitive delay or regression that is a common feature of these syndromes. The syndromes also differ in many ways and we provide a summary of the key features of the early-onset epileptic encephalopathies including Ohtahara and West syndromes in addition to later childhood-onset syndromes such as Lennox Gastaut and Doose syndromes. An understanding of the various severe epilepsy syndromes is vital to understanding the rationale for treatment. For example, the resolution of hypsarrhythmia in West syndrome is associated with an improvement in cognitive outcome and drives treatment choice, but the same cannot be applied to frequent inter-ictal discharges in Lennox Gastaut syndrome. We discuss the evidence base for treatment where it is available and describe current practice where it is not. For example, in West syndrome there is some evidence for preference of hormonal treatments over vigabatrin, although the choice and duration of hormonal treatment remains unclear. We describe the use of conventional and newer anti-epileptic medications in the various syndromes and discuss which medications should be avoided. Older possibly forgotten treatments such as sulthiame and potassium bromide also have a role in the severe epilepsies of childhood. We discuss hormonal treatment with particular focus on the treatment of West syndrome, continuous spike wave in slow wave sleep (CSWS)/electrical status epilepticus in slow wave

  15. Clinical review of genetic epileptic encephalopathies

    PubMed Central

    Noh, Grace J.; Asher, Y. Jane Tavyev; Graham, John M.

    2012-01-01

    Seizures are a frequently encountered finding in patients seen for clinical genetics evaluations. The differential diagnosis for the cause of seizures is quite diverse and complex, and more than half of all epilepsies have been attributed to a genetic cause. Given the complexity of such evaluations, we highlight the more common causes of genetic epileptic encephalopathies and emphasize the usefulness of recent technological advances. The purpose of this review is to serve as a practical guide for clinical geneticists in the evaluation and counseling of patients with genetic epileptic encephalopathies. Common syndromes will be discussed, in addition to specific seizure phenotypes, many of which are refractory to anti-epileptic agents. Divided by etiology, we overview the more common causes of infantile epileptic encephalopathies, channelopathies, syndromic, metabolic, and chromosomal entities. For each condition, we will outline the diagnostic evaluation and discuss effective treatment strategies that should be considered. PMID:22342633

  16. [Seizures in newborn infant].

    PubMed

    Eskola, Vesa; Jäntti, Ville; Eriksson, Kai

    2010-01-01

    Seizures in newborn infants are common. The may constitute a neurologic emergency or a nonepileptic, harmless symptom. Diagnostics is becoming more specific with current methodologies. Detailed description of seizures and their connection with EEG abnormalities are the diagnostic cornerstones. The treatment has made slow progress, but newer antiepileptic drugs may aid in the treatment of epileptic seizures in newborn infants in the future. For the time being, evidence-based research results for them are lacking, as well as data on long-term effects. Differential diagnosis of seizures has become increasingly important. PMID:21188877

  17. Seizure Recognition and Observation: A Guide for Allied Health Professionals.

    ERIC Educational Resources Information Center

    Epilepsy Foundation of America, Landover, MD.

    Intended for allied health professionals, this guide provides information on seizure recognition and classification to help them assist the patient, the family, and the treating physician in obtaining control of epileptic seizures. A section on seizure recognition describes epilepsy and seizures, covering seizure classification and the causes of…

  18. Insulin growth factor-1 (IGF-1) enhances hippocampal excitatory and seizure activity through IGF-1 receptor-mediated mechanisms in the epileptic brain.

    PubMed

    Jiang, Guohui; Wang, Wei; Cao, Qingqing; Gu, Juan; Mi, Xiujuan; Wang, Kewei; Chen, Guojun; Wang, Xuefeng

    2015-12-01

    Insulin-like growth factor-1 (IGF-1) is known to promote neurogenesis and survival. However, recent studies have suggested that IGF-1 regulates neuronal firing and excitatory neurotransmission. In the present study, focusing on temporal lobe epilepsy, we found that IGF-1 levels and IGF-1 receptor activation are increased in human epileptogenic tissues, and pilocarpine- and pentylenetetrazole-treated rat models. Using an acute model of seizures, we showed that lateral cerebroventricular infusion of IGF-1 elevates IGF-1 receptor (IGF-1R) signalling before pilocarpine application had proconvulsant effects. In vivo electroencephalogram recordings and power spectrogram analysis of local field potential revealed that IGF-1 promotes epileptiform activities. This effect is diminished by co-application of an IGF-1R inhibitor. In an in vitro electrophysiological study, we demonstrated that IGF-1 enhancement of excitatory neurotransmission and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor- and N-methyl-D-aspartate receptor-mediated currents is inhibited by IGF-1R inhibitor. Finally, activation of extracellular signal-related kinase (ERK)-1/2 and protein kinase B (Akt) in seizures in rats is increased by exogenous IGF-1 and diminished by picropodophyllin. A behavioural study reveals that the ERK1/2 or Akt inhibitor attenuates seizure activity. These results indicate that increased IGF-1 levels after recurrent hippocampal neuronal firings might, in turn, promote seizure activity via IGF-1R-dependent mechanisms. The present study presents a previously unappreciated role of IGF-1R in the development of seizure activity. PMID:26286172

  19. [Clinical approach to the first epileptic crisis in adults].

    PubMed

    Espinosa-Jovel, Camilo Alfonso; Sobrino-Mejía, Fidel Ernesto

    2014-04-16

    Seizures are one of the main reasons for visits to emergency and neurology. Represent a traumatic event with potential medical and social consequences. A first epileptic seizure, can be the initial manifestation of malignancy, systemic disorder or infection, but can also be the first manifestation of epilepsy. The misdiagnosis of symptomatic seizures and unprovoked seizure, significantly affects prognosis and patient outcomes. The aim of this review is to examine the general concepts that enable successful diagnostic and therapeutic approach to the patient presenting with a first epileptic seizure. PMID:24723179

  20. Current understanding and neurobiology of epileptic encephalopathies.

    PubMed

    Auvin, Stéphane; Cilio, Maria Roberta; Vezzani, Annamaria

    2016-08-01

    Epileptic encephalopathies are a group of diseases in which epileptic activity itself contributes to severe cognitive and behavioral impairments above and beyond what might be expected from the underlying pathology alone. These impairments can worsen over time. This concept has been continually redefined since its introduction. A few syndromes are considered epileptic encephalopathies: early myoclonic encephalopathy and Ohtahara syndrome in the neonatal period, epilepsy of infancy with migrating focal seizures, West syndrome or infantile spasms, Dravet syndrome during infancy, Lennox-Gastaut syndrome, epileptic encephalopathy with continuous spikes-and-waves during sleep, and Landau-Kleffner syndrome during childhood. The inappropriate use of this term to refer to all severe epilepsy syndromes with intractable seizures and severe cognitive dysfunction has led to confusion regarding the concept of epileptic encephalopathy. Here, we review our current understanding of those epilepsy syndromes considered to be epileptic encephalopathies. Genetic studies have provided a better knowledge of neonatal and infantile epilepsy syndromes, while neuroimaging studies have shed light on the underlying causes of childhood-onset epileptic encephalopathies such as Lennox-Gastaut syndrome. Apart from infantile spasm models, we lack animal models to explain the neurobiological mechanisms at work in these conditions. Experimental studies suggest that neuroinflammation may be a common neurobiological pathway that contributes to seizure refractoriness and cognitive involvement in the developing brain. PMID:26992889

  1. Post-epileptic headache and migraine.

    PubMed Central

    Schon, F; Blau, J N

    1987-01-01

    One hundred epileptic patients were questioned about their headaches. Post-ictal headaches occurred in 51 of these patients and most commonly lasted 6-72 hours. Major seizures were more often associated with post-epileptic headaches than minor attacks. Nine patients in this series of 100 also had migraine: in eight of these nine a typical, albeit a mild, migraine attack was provoked by fits. The post-ictal headache in the 40 epileptics who did not have migraine was accompanied by vomiting in 11 cases, photophobia in 14 cases and vomiting with photophobia in 4 cases. Furthermore, post-epileptic headache was accentuated by coughing, bending and sudden head movements and relieved by sleep. It is, therefore, clear that seizures provoke a syndrome similar to the headache phase of migraine in 50% of epileptics. It is proposed that post-epileptic headache arises intracranially and is related to the vasodilatation known to follow seizures. The relationship of post-epileptic headache to migraine is discussed in the light of current ideas on migraine pathogenesis, in particular the vasodilation which accompanies Leao's spreading cortical depression. PMID:3117978

  2. Seizure prediction and its applications.

    PubMed

    Iasemidis, Leon D

    2011-10-01

    Epilepsy is characterized by intermittent, paroxysmal, hypersynchronous electrical activity that may remain localized and/or spread and severely disrupt the brain's normal multitask and multiprocessing function. Epileptic seizures are the hallmarks of such activity. The ability to issue warnings in real time of impending seizures may lead to novel diagnostic tools and treatments for epilepsy. Applications may range from a warning to the patient to avert seizure-associated injuries, to automatic timely administration of an appropriate stimulus. Seizure prediction could become an integral part of the treatment of epilepsy through neuromodulation, especially in the new generation of closed-loop seizure control systems. PMID:21939848

  3. Musicogenic seizures in Dravet syndrome.

    PubMed

    Sanchez-Carpintero, Rocio; Patiño-Garcia, Ana; Urrestarazu, Elena

    2013-07-01

    Dravet syndrome is an epileptic encephalopathy characterized by multiple types of seizures. We report the first case of musicogenic reflex seizures in a 7-year-old male with a mutation in the SCN1A gene causing Dravet syndrome. Reflex seizures have been reported in patients with Dravet syndrome provoked by body temperature elevation, looking at visual patterns, or under intermittent photic stimulation. The case we report widens the spectrum of reflex seizures recorded in patients with Dravet syndrome. Cortical hyperexcitability of genetic origin could explain the tendency of these patients to experience reflex seizures. PMID:23517304

  4. [Reflex seizures, cinema and television].

    PubMed

    Olivares-Romero, Jesús

    2015-12-16

    In movies and television series are few references to seizures or reflex epilepsy even though in real life are an important subgroup of total epileptic syndromes. It has performed a search on the topic, identified 25 films in which they appear reflex seizures. Most seizures observed are tonic-clonic and visual stimuli are the most numerous, corresponding all with flashing lights. The emotions are the main stimuli in higher level processes. In most cases it is not possible to know if a character suffers a reflex epilepsy or suffer reflex seizures in the context of another epileptic syndrome. The main conclusion is that, in the movies, the reflex seizures are merely a visual reinforcing and anecdotal element without significant influence on the plot. PMID:26662874

  5. Spread of epileptic activity in human brain

    NASA Astrophysics Data System (ADS)

    Milton, John

    1997-03-01

    For many patients with medically refractory epilepsy surgical resection of the site of seizure onset (epileptic focus) offers the best hope for cure. Determination of the nature of seizure propagation should lead to improved methods for locating the epileptic focus (and hence reduce patient morbidity) and possibly to new treatment modalities directed at blocking seizure spread. Theoretical studies of neural networks emphasize the role of traveling waves for the propagation of activity. However, the nature of seizure propagation in human brain remains poorly characterized. The spread of epileptic activity in patients undergoing presurgical evaluation for epilepsy surgery was measured by placing subdural grids of electrodes (interelectrode spacings of 3-10 mm) over the frontal and temporal lobes. The exact location of each electrode relative to the surface of the brain was determined using 3--D MRI imaging techniques. Thus it is possible to monitor the spread of epileptic activity in both space and time. The observations are discussed in light of models for seizure propagation.

  6. Cell Signaling Underlying Epileptic Behavior

    PubMed Central

    Bozzi, Yuri; Dunleavy, Mark; Henshall, David C.

    2011-01-01

    Epilepsy is a complex disease, characterized by the repeated occurrence of bursts of electrical activity (seizures) in specific brain areas. The behavioral outcome of seizure events strongly depends on the brain regions that are affected by overactivity. Here we review the intracellular signaling pathways involved in the generation of seizures in epileptogenic areas. Pathways activated by modulatory neurotransmitters (dopamine, norepinephrine, and serotonin), involving the activation of extracellular-regulated kinases and the induction of immediate early genes (IEGs) will be first discussed in relation to the occurrence of acute seizure events. Activation of IEGs has been proposed to lead to long-term molecular and behavioral responses induced by acute seizures. We also review deleterious consequences of seizure activity, focusing on the contribution of apoptosis-associated signaling pathways to the progression of the disease. A deep understanding of signaling pathways involved in both acute- and long-term responses to seizures continues to be crucial to unravel the origins of epileptic behaviors and ultimately identify novel therapeutic targets for the cure of epilepsy. PMID:21852968

  7. Endogenous neurosteroid synthesis modulates seizure frequency.

    PubMed

    Lawrence, Courtney; Martin, Brandon Scott; Sun, Chengsan; Williamson, John; Kapur, Jaideep

    2010-05-01

    Inhibitory neurosteroids, molecules generated in glia from circulating steroid hormones and de novo from cholesterol, keep seizures in check in epileptic animals. They can enhance inhibitory transmission mediated by gamma-aminobutyric acid receptors and have anticonvulsant action. PMID:20437568

  8. Clustering Approach to Quantify Long-Term Spatio-Temporal Interactions in Epileptic Intracranial Electroencephalography

    PubMed Central

    Hegde, Anant; Erdogmus, Deniz; Shiau, Deng S.; Principe, Jose C.; Sackellares, Chris J.

    2007-01-01

    Abnormal dynamical coupling between brain structures is believed to be primarily responsible for the generation of epileptic seizures and their propagation. In this study, we attempt to identify the spatio-temporal interactions of an epileptic brain using a previously proposed nonlinear dependency measure. Using a clustering model, we determine the average spatial mappings in an epileptic brain at different stages of a complex partial seizure. Results involving 8 seizures from 2 epileptic patients suggest that there may be a fixed pattern associated with regional spatio-temporal dynamics during the interictal to pre-post-ictal transition. PMID:18317515

  9. Modern concepts of seizure modeling.

    PubMed

    Bernard, Christophe; Naze, Sebastien; Proix, Timothée; Jirsa, Viktor K

    2014-01-01

    Seizures are complex phenomena spanning multiple spatial and temporal scales, from ion dynamics to communication between brain regions, from milliseconds (spikes) to days (interseizure intervals). Because of the existence of such multiple scales, the experimental evaluation of the mechanisms underlying the initiation, propagation, and termination of epileptic seizures is a difficult problem. Theoretical models and numerical simulations provide new tools to investigate seizure mechanisms at multiple scales. In this chapter, we review different theoretical approaches and their contributions to our understanding of seizure mechanisms. PMID:25078501

  10. Seizure Prediction and its Applications

    PubMed Central

    Iasemidis, Leon D.

    2011-01-01

    Epilepsy is characterized by intermittent, paroxysmal, hypersynchronous electrical activity, that may remain localized and/or spread and severely disrupt the brain’s normal multi-task and multi-processing function. Epileptic seizures are the hallmarks of such activity and had been considered unpredictable. It is only recently that research on the dynamics of seizure generation by analysis of the brain’s electrographic activity (EEG) has shed ample light on the predictability of seizures, and illuminated the way to automatic, prospective, long-term prediction of seizures. The ability to issue warnings in real time of impending seizures (e.g., tens of minutes prior to seizure occurrence in the case of focal epilepsy), may lead to novel diagnostic tools and treatments for epilepsy. Applications may range from a simple warning to the patient, in order to avert seizure-associated injuries, to intervention by automatic timely administration of an appropriate stimulus, for example of a chemical nature like an anti-epileptic drug (AED), electromagnetic nature like vagus nerve stimulation (VNS), deep brain stimulation (DBS), transcranial direct current (TDC) or transcranial magnetic stimulation (TMS), and/or of another nature (e.g., ultrasonic, cryogenic, biofeedback operant conditioning). It is thus expected that seizure prediction could readily become an integral part of the treatment of epilepsy through neuromodulation, especially in the new generation of closed-loop seizure control systems. PMID:21939848

  11. Biotelemetry system for Epilepsy Seizure Control

    SciTech Connect

    Smith, LaCurtise; Bohnert, George W.

    2009-07-02

    The Biotelemetry System for Epilepsy Seizure Control Project developed and tested an automated telemetry system for use in an epileptic seizure prevention device that precisely controls localized brain temperature. This project was a result of a Department of Energy (DOE) Global Initiatives for Proliferation Prevention (GIPP) grant to the Kansas City Plant (KCP), Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL) to partner with Flint Hills Scientific, LLC, Lawrence, KS and Biophysical Laboratory Ltd (BIOFIL), Sarov, Russia to develop a method to help control epileptic seizures.

  12. Febrile Seizures

    MedlinePlus

    ... or prolonged seizures are a risk factor for epilepsy but most children who experience febrile seizures do ... develop the reoccurring seizures that re characteristic of epilepsy. Certain children who have febrile seizures face an ...

  13. Febrile Seizures

    MedlinePlus

    ... febrile seizure does not mean a child has epilepsy, since that disorder is characterized by reoccurring seizures ... outcome but carry an increased risk of developing epilepsy. How common are febrile seizures? Febrile seizures are ...

  14. Absence seizure

    MedlinePlus

    Seizure - petit mal; Seizure - absence; Petit mal seizure; Epilepsy - absence seizure ... Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff RB, ... 6th ed. Philadelphia, PA: Elsevier Saunders; 2012:chap ...

  15. Absence seizure

    MedlinePlus

    Seizure - petit mal; Seizure - absence; Petit mal seizure; Epilepsy - absence seizure ... Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff ... Practice . 7th ed. Philadelphia, PA: Elsevier; 2016:chap 101. ...

  16. [Drivers license qualification for epileptics].

    PubMed

    Egli, M; Hartmann, H; Hess, R

    1977-03-26

    The question whether a person with epilepsy qualified for a driving licence must be examined from the point of view of the individual as well as that of the community. The general public should be protected against unduly high risks from epileptic drivers, whereas the patient has a right to live as normal a life as possible, which includes driving an automobile. Too rigid criteria for obtaining the license increase the number of persons who evade medical control and drive "illegally". To require physicians to report their epileptic patients to the authorities would be counterproductive; it would also destroy the personal confidence between physician and patient which is so essential for successful treatment. Epileptic persons endanger safety on the road only slightly: 0.1-0.3% of all traffic accidents are due to epileptic seizures. In contrast, abuse of alcohol plays a major role in 6-9% of all accidents, whereas 80-90% are attributable to evident mistakes by the driver. Epileptic patients under regular medical supervision who are licenced on grounds of approved criteria do not cause more accidents than the general population. A dangerous group are, however, those with mental alterations (organic or reactive) and particularly patients with aggressive and expansive-compensatory traits, as well as those driving without permission. Prognostic criteria as to the further course of the disease are paramount for the assessment of qualification for the licence. The following rules have proved their worth: 2 years freedom from seizures (with or without therapy), no abnormalities specific for epilepsy in the EEG, no serious mental changes, regular medical supervision and treatment mus be guaranteed. Departures from these rules should be confined to exceptional cases with the consent of a physician specialized in epileptology. The same holds for admission to higher categories of driving licence, the only practical eventuality being category D (lorries), and even this only in

  17. Glycolysis in energy metabolism during seizures.

    PubMed

    Yang, Heng; Wu, Jiongxing; Guo, Ren; Peng, Yufen; Zheng, Wen; Liu, Ding; Song, Zhi

    2013-05-15

    Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can participate in the termination of seizures remains unclear. We reviewed possible mechanisms of glycolysis involved in seizure onset. Results showed that lactic acid was involved in seizure onset and provided energy at early stages. As seizures progress, lactic acid reduces the pH of tissue and induces metabolic acidosis, which terminates the seizure. The specific mechanism of lactic acid-induced acidosis involves several aspects, which include lactic acid-induced inhibition of the glycolytic enzyme 6-diphosphate kinase-1, inhibition of the N-methyl-D-aspartate receptor, activation of the acid-sensitive 1A ion channel, strengthening of the receptive mechanism of the inhibitory neurotransmitter γ-minobutyric acid, and changes in the intra- and extracellular environment. PMID:25206426

  18. Orgasm Induced Seizures: A Rare Phenomenon

    PubMed Central

    Chaukimath, SP; Patil, PS

    2015-01-01

    A variety of stimuli can cause reflex seizures, Some triggers include light, music and cognitive phenomenon. There are case reports however where the phenomenon of sexual activity has been a trigger for epileptic seizures. Most of these cases reported are in women so far, and were found to be localized to right cerebral hemisphere. We report a case of a 36-year-old male with orgasm-induced seizures, with other atypical features compared to majority of previous reports. PMID:27057393

  19. Orgasm Induced Seizures: A Rare Phenomenon.

    PubMed

    Chaukimath, S P; Patil, P S

    2015-01-01

    A variety of stimuli can cause reflex seizures, Some triggers include light, music and cognitive phenomenon. There are case reports however where the phenomenon of sexual activity has been a trigger for epileptic seizures. Most of these cases reported are in women so far, and were found to be localized to right cerebral hemisphere. We report a case of a 36-year-old male with orgasm-induced seizures, with other atypical features compared to majority of previous reports. PMID:27057393

  20. Ion dynamics during seizures

    PubMed Central

    Raimondo, Joseph V.; Burman, Richard J.; Katz, Arieh A.; Akerman, Colin J.

    2015-01-01

    Changes in membrane voltage brought about by ion fluxes through voltage and transmitter-gated channels represent the basis of neural activity. As such, electrochemical gradients across the membrane determine the direction and driving force for the flow of ions and are therefore crucial in setting the properties of synaptic transmission and signal propagation. Ion concentration gradients are established by a variety of mechanisms, including specialized transporter proteins. However, transmembrane gradients can be affected by ionic fluxes through channels during periods of elevated neural activity, which in turn are predicted to influence the properties of on-going synaptic transmission. Such activity-induced changes to ion concentration gradients are a feature of both physiological and pathological neural processes. An epileptic seizure is an example of severely perturbed neural activity, which is accompanied by pronounced changes in intracellular and extracellular ion concentrations. Appreciating the factors that contribute to these ion dynamics is critical if we are to understand how a seizure event evolves and is sustained and terminated by neural tissue. Indeed, this issue is of significant clinical importance as status epilepticus—a type of seizure that does not stop of its own accord—is a life-threatening medical emergency. In this review we explore how the transmembrane concentration gradient of the six major ions (K+, Na+, Cl−, Ca2+, H+and HCO3−) is altered during an epileptic seizure. We will first examine each ion individually, before describing how multiple interacting mechanisms between ions might contribute to concentration changes and whether these act to prolong or terminate epileptic activity. In doing so, we will consider how the availability of experimental techniques has both advanced and restricted our ability to study these phenomena. PMID:26539081

  1. Metabolic Causes of Epileptic Encephalopathy

    PubMed Central

    Pearl, Phillip L.

    2013-01-01

    Epileptic encephalopathy can be induced by inborn metabolic defects that may be rare individually but in aggregate represent a substantial clinical portion of child neurology. These may present with various epilepsy phenotypes including refractory neonatal seizures, early myoclonic encephalopathy, early infantile epileptic encephalopathy, infantile spasms, and generalized epilepsies which in particular include myoclonic seizures. There are varying degrees of treatability, but the outcome if untreated can often be catastrophic. The importance of early recognition cannot be overemphasized. This paper provides an overview of inborn metabolic errors associated with persistent brain disturbances due to highly active clinical or electrographic ictal activity. Selected diseases are organized by the defective molecule or mechanism and categorized as small molecule disorders (involving amino and organic acids, fatty acids, neurotransmitters, urea cycle, vitamers and cofactors, and mitochondria) and large molecule disorders (including lysosomal storage disorders, peroxisomal disorders, glycosylation disorders, and leukodystrophies). Details including key clinical features, salient electrophysiological and neuroradiological findings, biochemical findings, and treatment options are summarized for prominent disorders in each category. PMID:23762547

  2. Acute transient deafness representing a negative epileptic phenomenon.

    PubMed

    Shahar, Eli; Ravid, Sarit; Genizi, Jacob; Schif, Aharon

    2010-07-01

    We report herein 2 children who presented with acute deafness heralding an epileptic event manifesting thereafter by loss of consciousness and tonic generalized posturing, possibly reflecting a negative epileptic phenomenon. The first previously healthy male had 2 paroxysmal episodes 7 months apart, starting with acute deafness lasting for a few minutes followed by loss of consciousness and generalized tonic posturing for 10 minutes. Electroencephalography (EEG) during the second episodes demonstrated generalized epileptiform discharges. The second with previously controlled partial complex seizures presented with episodes of complete deafness lasting for a few minutes followed by loss of consciousness and focal tonic posturing lasting 10 minutes. Such acute deafness represented an aura of a focal seizure substantiated by right focal temporal epileptic discharges within the region of the primary auditory cortex. Therefore, EEG should be performed in any case of acute transient deafness, even in the absence of accompanying overt clinical seizures. PMID:20042694

  3. Concepts of Connectivity and Human Epileptic Activity

    PubMed Central

    Lemieux, Louis; Daunizeau, Jean; Walker, Matthew C.

    2011-01-01

    This review attempts to place the concept of connectivity from increasingly sophisticated neuroimaging data analysis methodologies within the field of epilepsy research. We introduce the more principled connectivity terminology developed recently in neuroimaging and review some of the key concepts related to the characterization of propagation of epileptic activity using what may be called traditional correlation-based studies based on EEG. We then show how essentially similar methodologies, and more recently models addressing causality, have been used to characterize whole-brain and regional networks using functional MRI data. Following a discussion of our current understanding of the neuronal system aspects of the onset and propagation of epileptic discharges and seizures, we discuss the most advanced and ambitious framework to attempt to fully characterize epileptic networks based on neuroimaging data. PMID:21472027

  4. Pediatric Epileptic Encephalopathies: Pathophysiology and Animal Models.

    PubMed

    Shao, Li-Rong; Stafstrom, Carl E

    2016-05-01

    Epileptic encephalopathies are syndromes in which seizures or interictal epileptiform activity contribute to or exacerbate brain function, beyond that caused by the underlying pathology. These severe epilepsies begin early in life, are associated with poor lifelong outcome, and are resistant to most treatments. Therefore, they represent an immense challenge for families and the medical care system. Furthermore, the pathogenic mechanisms underlying the epileptic encephalopathies are poorly understood, hampering attempts to devise novel treatments. This article reviews animal models of the three classic epileptic encephalopathies-West syndrome (infantile spasms), Lennox-Gastaut syndrome, and continuous spike waves during sleep or Landau-Kleffner syndrome-with discussion of how animal models are revealing underlying pathophysiological mechanisms that might be amenable to targeted therapy. PMID:27544466

  5. Cognitive and behavioural concerns in epileptic children.

    PubMed

    Tamer, S K

    1999-01-01

    Cognitive performance in an epileptic child has been a difficult issue to predict in day-to-day clinical practice. Several observations made in early and later part of this century do not provide uniform and convincing answer to this issue. Recent trends in research however, have identified certain variables that are shown to be associated with cognitive decline in epileptic children. Together with associated behavioural problems, the resultant school difficulty is the essence of this concern for the parents. The variables related to cognitive deterioration as identified by several studies include underlying brain pathology (symptomatic epilepsy), early age of onset of seizure, severity and intractability of seizure, repeated head trauma, an episode of status epilepticus, presence of interictal subclinical EEG discharge, adverse psychosocial factor and antiepileptic drug (AED). Association of these variables in a given case cannot only predict adverse cognition outcome but also a preventive management package can be planned aiming at avoiding or minimizing these high risk variables. PMID:10798155

  6. Utility of different seizure induction protocols in psychogenic nonepileptic seizures.

    PubMed

    Goyal, Gourav; Kalita, Jayantee; Misra, Usha K

    2014-08-01

    Psychogenic non epileptic seizure (PNES) can be induced by several induction tests but their relative usefulness has not been evaluated. In this study, we report the sensitivity and specificity of various induction tests in the diagnosis of PNES and assess their discomfort level. The induction tests were: (a) compression of temple region (CTR), (b) verbal suggestion (VS), (c) tuning fork application (TFA), (d) moist swab application (MSA), (e) torch light stimulation (TLS) and (f) saline injection (SI). Up to 3 trials were done for each test except for normal saline injection which was given once. For comparison of these tests, patients with epileptic seizures were included as controls. The time to precipitate PNES was recorded and patients' discomfort levels were noted on a 0-10 scale. Video EEG was recorded in the PNES patients. 140 patients with PNES and 50 controls with epileptic seizures were included. The diagnostic yield of CTR was 65.7%, TFA 61.4%, MSA 60.7%, SI 55.6%, VS 54.3% and TLS 40.7%. These tests did not induce seizures in the controls. All these tests had 100% specificity and 100% positive predictive value in the diagnosis of PNES. The maximum discomfort was reported with SI and minimum with MSA. The similarity of efficacy and discomfort with CTR and TFA appear to be the most optimal induction techniques when compared with VS, AMS, TLS, and SI. PMID:24802296

  7. Febrile seizures

    MedlinePlus

    American Academy of Pediatrics, Steering Committee on Quality Improvement and Management, Subcommittee on Febrile Seizures. Febrile seizures: clinical practice guideline for the long-term management of the child with simple febrile seizures. Pediatrics . 2008; ...

  8. The role of inhibition in epileptic networks.

    PubMed

    Trevelyan, Andrew J; Muldoon, Sarah F; Merricks, Edward M; Racca, Claudia; Staley, Kevin J

    2015-06-01

    Inhibition plays many roles in cortical circuits, including coordination of network activity in different brain rhythms and neuronal clusters, gating of activity, gain control, and dictating the manner in which activity flows through the network. This latter is particularly relevant to epileptic states, when extreme hypersynchronous discharges can spread across cortical territories. We review these different physiological and pathological roles and discuss how inhibition can be compromised and why this predisposes the network to seizures. PMID:26035675

  9. The functional organization of human epileptic hippocampus.

    PubMed

    Klimes, Petr; Duque, Juliano J; Brinkmann, Ben; Van Gompel, Jamie; Stead, Matt; St Louis, Erik K; Halamek, Josef; Jurak, Pavel; Worrell, Gregory

    2016-06-01

    The function and connectivity of human brain is disrupted in epilepsy. We previously reported that the region of epileptic brain generating focal seizures, i.e., the seizure onset zone (SOZ), is functionally isolated from surrounding brain regions in focal neocortical epilepsy. The modulatory effect of behavioral state on the spatial and spectral scales over which the reduced functional connectivity occurs, however, is unclear. Here we use simultaneous sleep staging from scalp EEG with intracranial EEG recordings from medial temporal lobe to investigate how behavioral state modulates the spatial and spectral scales of local field potential synchrony in focal epileptic hippocampus. The local field spectral power and linear correlation between adjacent electrodes provide measures of neuronal population synchrony at different spatial scales, ∼1 and 10 mm, respectively. Our results show increased connectivity inside the SOZ and low connectivity between electrodes in SOZ and outside the SOZ. During slow-wave sleep, we observed decreased connectivity for ripple and fast ripple frequency bands within the SOZ at the 10 mm spatial scale, while the local synchrony remained high at the 1 mm spatial scale. Further study of these phenomena may prove useful for SOZ localization and help understand seizure generation, and the functional deficits seen in epileptic eloquent cortex. PMID:27030735

  10. Optical imaging of visual cortex epileptic foci and propagation pathways.

    PubMed

    Haglund, Michael M

    2012-06-01

    Precise localization of neocortical epileptic foci is a complex problem that usually requires ictal video-electroencephalography (EEG) recordings; high-resolution magnetic resonance imaging (MRI), positron emission tomography (PET), and single photon emission computed tomography (SPECT) studies; and/or invasive monitoring with implanted grid array electrodes. The exact ictal-onset site must be identified and removed to obtain the best opportunity for a seizure-free outcome. The goal of this study was to determine if high-resolution optical imaging could precisely identify neocortical epileptic foci and what role underlying neuroanatomic pathways played in the seizure propagation. Small acute epileptic foci (0.5 × 0.5 mm(2) ) were created in the primate visual neocortex and single-unit and surface EEG recordings were combined with optical imaging of voltage-sensitive dye changes. Brief visual stimulation was used to evoke interictal bursts. In addition, different visually evoked epileptiform bursts were analyzed to determine the location of the epileptic focus. Spike-triggered averaging of the optical images associated with the surface EEG interictal bursts were analyzed to determine the exact location of the epileptic focus. Specific orientations of brief visual stimulation evoked different intensity optical changes and precisely localized the epileptic focus. Optical imaging identified individual epileptic foci that were <3 mm apart. The development of individual epileptic focus was monitored with optical imaging, which demonstrated excitatory activity at the focus with a surrounding zone of inhibitory-like activity. Propagation pathways outside of the inhibitory-like surround demonstrated alternating bands of excitation and inhibition with a pattern orthogonal to the ocular dominance columns. This experimental study demonstrates that optical imaging can precisely localize an epileptic focus, and provides excellent spatial resolution of the changes that

  11. Fifteen-minute consultation: when is a seizure not a seizure? Part 2, the older child.

    PubMed

    Babiker, Mohamed O E; Prasad, Manish

    2015-12-01

    Paroxysmal non-epileptic events (PNEs) refer to episodic changes in behaviour, sensation or consciousness that lead to unusual movements, which may resemble epileptic seizures, but are not, due to excessive neuronal firing in the cerebral cortex. A significant proportion of patients seen in epilepsy clinics do not actually have epilepsy. Therefore, it is paramount for clinicians to be able to recognise these transient non-epileptic events in order to avoid unnecessary antiepileptic treatments and to provide appropriate management as required. These PNEs can be observed within the context of a neurological disorder such as migraine or with no direct neurological basis such as simple tics. In this review, we have described common PNEs presenting in school-age children and adolescents alongside the clinical approach to differentiate them from epileptic seizures. PNEs occurring in infancy and younger children have been covered in our first review of this series. PMID:26135356

  12. Seizure-induced disinhibition of the HPA axis increases seizure susceptibility

    PubMed Central

    O'Toole, Kate K.; Hooper, Andrew; Wakefield, Seth; Maguire, Jamie

    2013-01-01

    Stress is the most commonly reported precipitating factor for seizures. The proconvulsant actions of stress hormones are thought to mediate the effects of stress on seizure susceptibility. Interestingly, epileptic patients have increased basal levels of stress hormones, including corticotropin-releasing hormone (CRH) and corticosterone, which are further increased following seizures. Given the proconvulsant actions of stress hormones, we proposed that seizure-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis may contribute to future seizure susceptibility. Consistent with this hypothesis, our data demonstrate that pharmacological induction of seizures in mice with kainic acid or pilocarpine increases circulating levels of the stress hormone, corticosterone, and exogenous corticosterone administration is sufficient to increase seizure susceptibility. However, the mechanism(s) whereby seizures activate the HPA axis remain unknown. Here we demonstrate that seizure-induced activation of the HPA axis involves compromised GABAergic control of CRH neurons, which govern HPA axis function. Following seizure activity, there is a collapse of the chloride gradient due to changes in NKCC1 and KCC2 expression, resulting in reduced amplitude of sIPSPs and even depolarizing effects of GABA on CRH neurons. Seizure-induced activation of the HPA axis results in future seizure susceptibility which can be blocked by treatment with an NKCC1 inhibitor, bumetanide, or blocking the CRH signaling with Antalarmin. These data suggest that compromised GABAergic control of CRH neurons following an initial seizure event may cause hyperexcitability of the HPA axis and increase future seizure susceptibility. PMID:24225328

  13. Newer anti-epileptic drugs.

    PubMed

    Aneja, S; Newton, R W

    1996-01-01

    During the past few years, a number of drugs have been added to the anti-epileptic arsenal. This review focusses on five of these drugs which have undergone extensive trials: Vigabatrin, Lamotrigine, Gabapentin, Felbamate and Oxcarbazepine. Some of these antiepileptic drugs appear to be helpful for treatment of catastrophic childhood epilepsies. Vigabatrin appears promising in children with infantile spasms who do not respond to ACTH or Prednisolone. Children with Lennox-Gastaut syndrome may respond to treatment with Lamotrigine or Vigabatrin. Gabapentin and vigabatrin have proved to be effective in refractory partial seizures. Oxcarbazepine, a ketoderivative of carbamazepine, is as effective as Carbamazepine but has a better safety profile. Lesser neurotoxicity and fewer drug interactions is another advantage with these drugs. However monitoring is required to determine the long term safety with their usage. These drugs have a definite role in childhood epilepsies refractory to conventional antiepileptic drugs. PMID:10829995

  14. Imaging DC MEG Fields Associated with Epileptic Onset

    NASA Astrophysics Data System (ADS)

    Weiland, B. J.; Bowyer, S. M.; Moran, J. E.; Jenrow, K.; Tepley, N.

    2004-10-01

    Magnetoencephalography (MEG) is a non-invasive brain imaging modality, with high spatial and temporal resolution, used to evaluate and quantify the magnetic fields associated with neuronal activity. Complex partial epileptic seizures are characterized by hypersynchronous neuronal activity believed to arise from a zone of epileptogenesis. This study investigated the characteristics of direct current (DC) MEG shifts arising at epileptic onset. MEG data were acquired with rats using a six-channel first order gradiometer system. Limbic status epilepticus was induced by IA (femoral) administration of kainic acid. DC-MEG shifts were observed at the onset of epileptic spike train activity and status epilepticus. Epilepsy is also being studied in patients undergoing presurgical mapping from the Comprehensive Epilepsy Center at Henry Ford Hospital using a whole head Neuromagnetometer. Preliminary data analysis shows that DC-MEG waveforms, qualitatively similar to those seen in the animal model, are evident prior to seizure activity in human subjects.

  15. [Ecstatic seizures].

    PubMed

    Likhachev, S A; Astapenko, A V; Osos, E L; Zmachynskaya, O L; Gvishch, T G

    2015-01-01

    Ecstatic seizures is a rare manifestation of epilepsy. They were described for the first time by F.M. Dostoevsky. Currently, the description of ecstatic seizures is possible to find in the scientific literature. The description of the own observation of a patient with emotional-affective seizures is presented. A role of the anterior insular cortex in the ecstatic seizures origin is discussed. The similarities between the feelings reported during ecstatic seizures and the feelings experienced under the effect of stimulant addictive drugs are described. The possible reasons of the low frequency of emotional-affective seizures are considered. PMID:26356170

  16. Epileptic Encephalopathies and Their Relationship to Developmental Disorders: Do Spikes Cause Autism?

    ERIC Educational Resources Information Center

    Tharp, Barry R.

    2004-01-01

    Epileptic encephalopathies are progressive clinical and electroencephalographic syndromes where deterioration is thought to be caused by frequent seizures and abundant EEG epileptiform activity. Seizures occur in approximately 10-15% of children with pervasive developmental disorders (PDD) and 8-10% have epileptiform EEG abnormalities without…

  17. Aura and post-ictal headache in epileptic patients treated with flunarizine.

    PubMed

    Binnie, C D; Overweg, J

    1986-01-01

    Flunarizine is effective for the prophylaxis of both migraine attacks and epileptic seizures. Of 77 patients treated with flunarizine for intractable epilepsy, 28 had an aura preceding their seizures. In 22 this disappeared on flunarizine administration. Of 14 subject to post-ictal headache, 13 reported relief of this symptom on flunarizine. PMID:3609881

  18. [The role of the nurse in the patient education of young epileptic patients].

    PubMed

    Danse, Marion; Goujon, Estelle

    2015-01-01

    An epileptic seizure in a child is a major source of anxiety and turns the family's everyday life upside down. Through therapeutic education, the nurse guides the families towards the autonomous management of the seizures, antiepileptic treatments, adaptations to daily life and potential comorbidities. PMID:26100481

  19. Febrile Seizures and Behavioural and Cognitive Outcomes in Preschool Children: An Old Issue Revisited

    ERIC Educational Resources Information Center

    Deonna, Thierry

    2012-01-01

    The possible deleterious role of febrile seizures on development is an old issue. It took a long time to realize that impaired development or occurrence of chronic epilepsy affected a very small minority of children with febrile seizures. These children either had pre-existing brain damage, specific genetic epileptic conditions, or seizure-induced…

  20. The Expanding Clinical Spectrum of Genetic Pediatric Epileptic Encephalopathies.

    PubMed

    Shbarou, Rolla; Mikati, Mohamad A

    2016-05-01

    Pediatric epileptic encephalopathies represent a clinically challenging and often devastating group of disorders that affect children at different stages of infancy and childhood. With the advances in genetic testing and neuroimaging, the etiologies of these epileptic syndromes are now better defined. The various encephalopathies that are reviewed in this article include the following: early infantile epileptic encephalopathy or Ohtahara syndrome, early myoclonic encephalopathy, epilepsy of infancy with migrating focal seizures, West syndrome, severe myoclonic epilepsy in infancy (Dravet syndrome), Landau-Kleffner syndrome, Lennox-Gastaut syndrome, and epileptic encephalopathy with continuous spike-and-wave during sleep. Their clinical features, prognosis as well as underlying genetic etiologies are presented and updated. PMID:27544470

  1. Febrile seizures

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000980.htm Febrile seizures To use the sharing features on this page, please enable JavaScript. A febrile seizure is a convulsion in a child triggered by ...

  2. How I treat a first single seizure in a child

    PubMed Central

    Gulati, Sheffali; Kaushik, Jaya Shankar

    2016-01-01

    An epileptic seizure is defined as transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in brain. There are diverse etiologies for acute seizure in infants and children. The present review provides a broad approach to diagnosis and treatment plan for acute seizure in children. The approach to a child with acute seizure is discussed with special emphasis on clinical approach based on history and focused examination with judicious choice of investigation and further management plan. The review also emphasizes on recognizing common nonepileptic events that masquerade as true seizure among infants and children. PMID:27011625

  3. Drowning risks to epileptic children: a study from Hawaii.

    PubMed Central

    Pearn, J; Bart, R; Yamaoka, R

    1978-01-01

    The role of epileptiform seizures in causing drowning and near-drowning among children was studied by examining the case reports of all 140 childhood immersion accidents that occurred in an area of Hawaii over five years. Four of the 140 immersion accidents were caused partly by epileptiform seizures, but none were fatal. The combined results of the Hawaiian and Brisbane studies (total population studied over five years 1 600 000) showed that no epileptic children died from accidents in the sea or in swimming pools; and the 2.9% incidence of immersion accidents due to seizures in the Hawaiian study compares well with the incidence found in other series. If an epileptic child is mentally normal, well controlled with anticonvulsants, and supervised in the water then the risk of drowning is very small. PMID:709318

  4. [An epileptic syndrome in infantile cerebral palsy].

    PubMed

    Sumerkina, M L

    1997-01-01

    The results of examination of 102 patients with infantile cerebral paralysis (ICP) with epileptic syndrome (ES) at the age from 3 months to 14 years are presented. Epileptic fits predominated in patients with hemiparetic form of ICP (40.8%) and spastic diplegia (32.4%). ES manifestations were observed in ICP during the first 3 years of life (more than 80% of cases). The peculiarities of ES clinical course were revealed. There were determined the main types of seizures in patients with ICP which depended on age of their manifestation, as well as their further transformation and prognosis. Computer tomographic and EEG-correlations were established in different forms of ICP. They permitted to revealed pathogenetic mechanisms of ES development in patients with ICP and to determine therapeutic policy and prognosis of the disease. PMID:9163254

  5. Compulsive versifying after treatment of transient epileptic amnesia

    PubMed Central

    Woollacott, Ione O. C.; Fletcher, Phillip D.; Massey, Luke A.; Pasupathy, Amirtha; Rossor, Martin N.; Caine, Diana; Rohrer, Jonathan D.; Warren, Jason D.

    2015-01-01

    Compulsive production of verse is an unusual form of hypergraphia that has been reported mainly in patients with right temporal lobe seizures. We present a patient with transient epileptic amnesia and a left temporal seizure focus, who developed isolated compulsive versifying, producing multiple rhyming poems, following seizure cessation induced by lamotrigine. Functional neuroimaging studies in the healthy brain implicate left frontotemporal areas in generating novel verbal output and rhyme, while dysregulation of neocortical and limbic regions occurs in temporal lobe epilepsy. This case complements previous observations of emergence of altered behavior with reduced seizure frequency in patients with temporal lobe epilepsy. Such cases suggest that reduced seizure frequency has the potential not only to stabilize or improve memory function, but also to trigger complex, specific behavioral alterations. PMID:25157425

  6. Music and its association with epileptic disorders.

    PubMed

    Maguire, Melissa

    2015-01-01

    The association between music and epileptic seizures is complex and intriguing. Musical processing within the human brain recruits a network which involves many cortical areas that could activate as part of a temporal lobe seizure or become hyperexcitable on musical exposure as in the case of musicogenic epilepsy. The dichotomous effect of music on seizures may be explained by modification of dopaminergic circuitry or counteractive cognitive and sensory input in ictogenesis. Research has explored the utility of music as a therapy in epilepsy and while limited studies show some evidence of an effect on seizure activity; further work is required to ascertain its clinical potential. Sodium channel-blocking antiepileptic drugs, e.g., carbamazepine and oxcarbazepine, appear to effect pitch perception particularly in native-born Japanese, a rare but important adverse effect, particularly if a professional musician. Temporal lobe surgery for right lateralizing epilepsy has the capacity to effect all facets of musical processing, although risk and correlation to resection area need further research. There is a need for the development of investigative tools of musical processing that could be utilized along the surgical pathway. Similarly, work is also required in devising a musical paradigm as part of electroencephalography to improve surveillance of musicogenic seizures. These clinical applications could aid the management of epilepsy and preservation of musical ability. PMID:25725912

  7. Psychiatric comorbidity in veterans with psychogenic seizures.

    PubMed

    Salinsky, Martin; Evrard, Collette; Storzbach, Daniel; Pugh, Mary Jo

    2012-11-01

    Psychogenic non-epileptic seizures (PNES) are frequently encountered in epilepsy monitoring units (EMU) at Veterans Affairs Medical Centers (VAMCs) and cause significant long-term disability. An understanding of psychiatric factors associated with PNES could aid in earlier diagnosis and treatment. We studied 50 consecutive veterans diagnosed with PNES and 37 veterans diagnosed with epileptic seizures (ES), evaluated at a VAMC EMU. We reviewed all available mental health evaluations prior to EMU evaluation. Univariate comparisons included axis I diagnoses, axis II diagnoses, and psychiatric hospitalizations. Predictive models of seizure classification were evaluated by logistic regression. A diagnosis of post-traumatic stress disorder (PTSD) preceded the diagnosis of PNES in 58% of patients and the diagnosis of ES in 13.5% (p<0.001). On logistic regression, PTSD was the only significant psychiatric diagnosis (odds ratio 9.2). Major depression and alcohol abuse were common diagnoses but did not differentiate PNES and ES groups. PMID:23103308

  8. Neonatal Seizures: Impact on Neurodevelopmental Outcomes

    PubMed Central

    Kang, Seok Kyu; Kadam, Shilpa D.

    2015-01-01

    Neonatal period is the most vulnerable time for the occurrence of seizures, and neonatal seizures often pose a clinical challenge both for their acute management and frequency of associated long-term co-morbidities. Etiologies of neonatal seizures are known to play a primary role in the anti-epileptic drug responsiveness and the long-term sequelae. Recent studies have suggested that burden of acute recurrent seizures in neonates may also impact chronic outcomes independent of the etiology. However, not many studies, either clinical or pre-clinical, have addressed the long-term outcomes of neonatal seizures in an etiology-specific manner. In this review, we briefly review the available clinical and pre-clinical research for long-term outcomes following neonatal seizures. As the most frequent cause of acquired neonatal seizures, we focus on the studies evaluating long-term effects of HIE-seizures with the goal to evaluate (1) what parameters evaluated during acute stages of neonatal seizures can reliably be used to predict long-term outcomes? and (2) what available clinical and pre-clinical data are available help determine importance of etiology vs. seizure burdens in long-term sequelae. PMID:26636052

  9. Predictability of uncontrollable multifocal seizures - towards new treatment options.

    PubMed

    Lehnertz, Klaus; Dickten, Henning; Porz, Stephan; Helmstaedter, Christoph; Elger, Christian E

    2016-01-01

    Drug-resistant, multifocal, non-resectable epilepsies are among the most difficult epileptic disorders to manage. An approach to control previously uncontrollable seizures in epilepsy patients would consist of identifying seizure precursors in critical brain areas combined with delivering a counteracting influence to prevent seizure generation. Predictability of seizures with acceptable levels of sensitivity and specificity, even in an ambulatory setting, has been repeatedly shown, however, in patients with a single seizure focus only. We did a study to assess feasibility of state-of-the-art, electroencephalogram-based seizure-prediction techniques in patients with uncontrollable multifocal seizures. We obtained significant predictive information about upcoming seizures in more than two thirds of patients. Unexpectedly, the emergence of seizure precursors was confined to non-affected brain areas. Our findings clearly indicate that epileptic networks, spanning lobes and hemispheres, underlie generation of seizures. Our proof-of-concept study is an important milestone towards new therapeutic strategies based on seizure-prediction techniques for clinical practice. PMID:27091239

  10. Predictability of uncontrollable multifocal seizures – towards new treatment options

    PubMed Central

    Lehnertz, Klaus; Dickten, Henning; Porz, Stephan; Helmstaedter, Christoph; Elger, Christian E.

    2016-01-01

    Drug-resistant, multifocal, non-resectable epilepsies are among the most difficult epileptic disorders to manage. An approach to control previously uncontrollable seizures in epilepsy patients would consist of identifying seizure precursors in critical brain areas combined with delivering a counteracting influence to prevent seizure generation. Predictability of seizures with acceptable levels of sensitivity and specificity, even in an ambulatory setting, has been repeatedly shown, however, in patients with a single seizure focus only. We did a study to assess feasibility of state-of-the-art, electroencephalogram-based seizure-prediction techniques in patients with uncontrollable multifocal seizures. We obtained significant predictive information about upcoming seizures in more than two thirds of patients. Unexpectedly, the emergence of seizure precursors was confined to non-affected brain areas. Our findings clearly indicate that epileptic networks, spanning lobes and hemispheres, underlie generation of seizures. Our proof-of-concept study is an important milestone towards new therapeutic strategies based on seizure-prediction techniques for clinical practice. PMID:27091239

  11. The behavioral treatment of epilepsy generation and inhibition of seizures.

    PubMed

    Fenwick, P

    1994-02-01

    These studies provide abundant evidence of the close interrelation between seizure activity and behavior. They reaffirm the point that epileptic seizures do not occur in a behavioral vacuum and strengthen the theoretical framework for behavioral treatment of epilepsy patients. As our understanding of the epileptic focus and its connections to surrounding cerebral systems increases, the concept that seizure control is significantly influenced by altering behavior of the patient becomes more comprehensible. Epileptic seizures should not be thought of as arising randomly. They occur in focal seizures when the pools of neurons surrounding the epilepsy focus are sufficiently excited for seizure activity to spread. Generalized seizures occur when the level of cortical excitability, or corticoreticular excitation, has reached a point at which thalamic recruiting volleys generalize and start to spread. In the partial epilepsies, a detailed clinical history should be taken as to the nature and characteristics of the aura and the form that seizure generalization or spread may take. Charting events surrounding the time of the seizure as described below are the engine which drives the creation of a countermeasure and its application to stopping seizures. They are the heart of a behavioral program and skill in interpreting the data will be repaid by the finding of the appropriate countermeasures for seizure reduction. This information will define those aspects of the patient's psychic life or behavior that will both trigger and inhibit seizure activity. Discussing this information with the patient will help him or her to understand that their seizures are not necessarily random events, but are intimately related to feelings, actions, and thoughts. A complete treatment of epilepsy involves not just medication, but includes teaching the patient about their brain and its functioning, and how they can use their feelings, thinking, and behavior in the control of their epilepsy. PMID

  12. Dynamic Network Drivers of Seizure Generation, Propagation and Termination in Human Neocortical Epilepsy.

    PubMed

    Khambhati, Ankit N; Davis, Kathryn A; Oommen, Brian S; Chen, Stephanie H; Lucas, Timothy H; Litt, Brian; Bassett, Danielle S

    2015-12-01

    The epileptic network is characterized by pathologic, seizure-generating 'foci' embedded in a web of structural and functional connections. Clinically, seizure foci are considered optimal targets for surgery. However, poor surgical outcome suggests a complex relationship between foci and the surrounding network that drives seizure dynamics. We developed a novel technique to objectively track seizure states from dynamic functional networks constructed from intracranial recordings. Each dynamical state captures unique patterns of network connections that indicate synchronized and desynchronized hubs of neural populations. Our approach suggests that seizures are generated when synchronous relationships near foci work in tandem with rapidly changing desynchronous relationships from the surrounding epileptic network. As seizures progress, topographical and geometrical changes in network connectivity strengthen and tighten synchronous connectivity near foci-a mechanism that may aid seizure termination. Collectively, our observations implicate distributed cortical structures in seizure generation, propagation and termination, and may have practical significance in determining which circuits to modulate with implantable devices. PMID:26680762

  13. Epileptogenesis and epileptic maturation in phosphorylation site-specific SNAP-25 mutant mice.

    PubMed

    Watanabe, Shigeru; Yamamori, Saori; Otsuka, Shintaro; Saito, Masanori; Suzuki, Eiji; Kataoka, Masakazu; Miyaoka, Hitoshi; Takahashi, Masami

    2015-09-01

    Snap25(S187A/S187A) mouse is a knock-in mouse with a single amino acid substitution at a protein kinase C-dependent phosphorylation site of the synaptosomal-associated protein of 25 kDa (SNAP-25), which is a target-soluble NSF attachment protein receptor (t-SNARE) protein essential for neurotransmitter release. Snap25(S187A/S187A) mice exhibit several distinct phenotypes, including reductions in dopamine and serotonin release in the brain, anxiety-like behavior, and cognitive dysfunctions. Homozygous mice show spontaneous epileptic convulsions, and about 15% of the mice die around three weeks after birth. The remaining mice survive for almost two years and exhibit spontaneous recurrent seizures throughout their lifetime. Here, we conducted long-term continuous video electroencephalogram recording of the mice and analyzed the process of epileptogenesis and epileptic maturation in detail. Spikes and slow-wave discharges (SWDs) were observed in the cerebral cortex and thalamus before epileptic convulsions began. SWDs showed several properties similar to those observed in absence seizures including (1) lack of in the hippocampus, (2) movement arrest during SWDs, and (3) inhibition by ethosuximide. Multiple generalized seizures occurred in all homozygous mice around three weeks after birth. However, seizure generation stopped within several days, and a seizure-free latent period began. Following a spike-free quiet period, the number of spikes increased gradually, and epileptic seizures reappeared. Subsequently, spontaneous seizures occurred cyclically throughout the life of the mice, and several progressive changes in seizure frequency, seizure duration, seizure cycle interval, seizure waveform, and the number and waveform of epileptic discharges during slow-wave sleep occurred with different time courses over 10 weeks. Anxiety-related behaviors appeared suddenly within three days after epileptic seizures began and were delayed markedly by oral administration of

  14. Clinically silent seizures in a neonate with tuberous sclerosis.

    PubMed

    Ikeno, Mitsuru; Okumura, Akihisa; Abe, Shinpei; Igarashi, Ayuko; Hisata, Ken; Shoji, Hiromichi; Shimizu, Toshiaki

    2016-01-01

    Although seizures during infancy in patients with tuberous sclerosis complex are common, seizures in neonates are infrequent. Here, we report the clinical course and electroencephalography (EEG) findings of a neonate with tuberous sclerosis complex associated with clinically silent seizures. The patient was a girl in whom cardiac tumors were detected on fetal ultrasonography. Brain magnetic resonance imaging during the neonatal period showed subependymal and cortical tubers. Routine EEG indicated unexpected ictal changes with no noticeable clinical symptoms. Ictal EEG was associated with a subtle increase in heart rate and a brief increase in chin electromyogram. These changes were difficult to identify clinically. The patient later developed focal seizures and epileptic spasms and had severe psychomotor delay. The present case suggests the occurrence of clinically silent seizures before the appearance of epileptic spasms in infants with tuberous sclerosis, and that EEG is an option for neonates with a prenatal diagnosis. PMID:26712128

  15. Exploring human epileptic activity at the single-neuron level.

    PubMed

    Tankus, Ariel

    2016-05-01

    Today, localization of the seizure focus heavily relies on EEG monitoring (scalp or intracranial). However, current technology enables much finer resolutions. The activity of hundreds of single neurons in the human brain can now be simultaneously explored before, during, and after a seizure or in association with an interictal discharge. This technology opens up new horizons to understanding epilepsy at a completely new level. This review therefore begins with a brief description of the basis of the technology, the microelectrodes, and the setup for their implantation in patients with epilepsy. Using these electrodes, recent studies provide novel insights into both the time domain and firing patterns of epileptic activity of single neurons. In the time domain, seizure-related activity may occur even minutes before seizure onset (in its current, EEG-based definition). Seizure-related neuronal interactions exhibit complex heterogeneous dynamics. In the seizure-onset zone, changes in firing patterns correlate with cell loss; in the penumbra, neurons maintain their spike stereotypy during a seizure. Hence, investigation of the extracellular electrical activity is expected to provide a better understanding of the mechanisms underlying the disease; it may, in the future, serve for a more accurate localization of the seizure focus; and it may also be employed to predict the occurrence of seizures prior to their behavioral manifestation in order to administer automatic therapeutic interventions. PMID:26994366

  16. Nonlinear times series analysis of epileptic human electroencephalogram (EEG)

    NASA Astrophysics Data System (ADS)

    Li, Dingzhou

    The problem of seizure anticipation in patients with epilepsy has attracted significant attention in the past few years. In this paper we discuss two approaches, using methods of nonlinear time series analysis applied to scalp electrode recordings, which is able to distinguish between epochs temporally distant from and just prior to, the onset of a seizure in patients with temporal lobe epilepsy. First we describe a method involving a comparison of recordings taken from electrodes adjacent to and remote from the site of the seizure focus. In particular, we define a nonlinear quantity which we call marginal predictability. This quantity is computed using data from remote and from adjacent electrodes. We find that the difference between the marginal predictabilities computed for the remote and adjacent electrodes decreases several tens of minutes prior to seizure onset, compared to its value interictally. We also show that these difl'crcnc es of marginal predictability intervals are independent of the behavior state of the patient. Next we examine the please coherence between different electrodes both in the long-range and the short-range. When time is distant from seizure onsets ("interictally"), epileptic patients have lower long-range phase coherence in the delta (1-4Hz) and beta (18-30Hz) frequency band compared to nonepileptic subjects. When seizures approach (''preictally"), we observe an increase in phase coherence in the beta band. However, interictally there is no difference in short-range phase coherence between this cohort of patients and non-epileptic subjects. Preictally short-range phase coherence also increases in the alpha (10-13Hz) and the beta band. Next we apply the quantity marginal predictability on the phase difference time series. Such marginal predictabilities are lower in the patients than in the non-epileptic subjects. However, when seizure approaches, the former moves asymptotically towards the latter.

  17. [Cortical dysgenesis with epileptic syndromes and symptomatic epilepsy in children].

    PubMed

    Milovanova, O A

    2015-01-01

    Cortical dysgenesis (CD) is a frequent inherited brain malformation. CD is a key cause of epileptic syndrome in children. In this review, the author presents a current classification of CD, etiological factors of their development, including gene mutations and adverse effects of various toxins and perinatal factors. A spectrum of clinical symptoms of CD with epileptic seizures is discussed in details. A role of current MRI-regimes in the diagnosis, the management of patients and prognosis of the course of CD are highlighted. PMID:26978511

  18. Transient epileptic amnesia--a clinical update and a reformulation.

    PubMed Central

    Kapur, N

    1993-01-01

    While absence attacks and complex partial seizures have been well documented in patients with epilepsy, the delineation of pure episodes of memory loss without additional clinical manifestations remains poorly characterised. The recently described condition of transient epileptic amnesia (TEA) is critically examined, and four new cases are described, in each of which there were episodes of pure memory loss which subsequently proved to be epileptic in origin. The anatomical and pathophysiological basis of TEA is presumed to be similar to transient global amnesia (TGA), that is, it is likely to be primarily hippocampal in origin, but with more variable involvement of limbic and adjacent temporal lobe neocortical structures. PMID:8229029

  19. A practical approach to uncomplicated seizures in children.

    PubMed

    McAbee, G N; Wark, J E

    2000-09-01

    Uncomplicated seizures and epilepsy are common in infants and children. Family physicians should be aware of certain epilepsy syndromes that occur in children, such as febrile seizures, benign focal epilepsy of childhood, complex partial epilepsy, juvenile myoclonic epilepsy and video game-related epilepsy. Not all uncomplicated childhood seizures require neuroimaging or treatment. Febrile seizures, rolandic seizures and video game-related seizures are childhood epileptic syndromes that are typically not associated with brain structural lesions on computed tomography or magnetic resonance imaging, and are often not treated with anticonvulsant drugs. Juvenile myoclonic epilepsy does not require neuroimaging but does require treatment because of a high rate of recurrent seizures. Complex partial epilepsy often requires both neuroimaging and treatment. Although seizures are diagnosed primarily on clinical grounds, all children with a possible seizure (except febrile seizures) should have an electroencephalogram. Interictal EEGs may be normal. Computed tomography has demonstrated abnormalities in 7 to 19 percent of children with new-onset seizures. The yield of magnetic resonance imaging for specific childhood seizure types is not known, but it is the preferred modality of neuroimaging for many clinical presentations. Most children's seizures treated with anticonvulsants are controlled by the first drug selected. The value of "therapeutic' serum drug levels is questionable in the management of uncomplicated childhood seizures. PMID:10997534

  20. Posterior Reversible Encephalopathy Syndrome with Bilateral Independent Epileptic Foci Precipitated By Guillain-Barrè Syndrome.

    PubMed

    Rossi, Rosario; Saddi, Maria Valeria; Mela, Alessandro; Ticca, Anna

    2016-01-01

    We report the case of a 56-year-old woman who developed status epilepticus (SE) related to independent occipital foci as clinical manifestation of posterior reversible encephalopathy syndrome (PRES) in the background of Guillain-Barrè syndrome (GBS). SE resulted from a series of focal seizures clinically characterized by left- and rightward deviations of the head and consequent oculoclonic movements. Electroencephalography recorded independent seizure activity in both occipital regions with alternate involvement of the two cerebral hemispheres. The epileptic foci corresponded topographically to parenchymal abnormalities of PRES in the occipital lobes. The manifestation of bilateral, independent occipital seizures with alternate deviations of the head and oculoclonic movements, previously not reported in patients with PRES, highlights the acute epileptogenicity of the cerebral lesions in this syndrome. Despite the variable clinical expression of seizures due to occipital damage in PRES, the development of independent seizure activity in both occipital lobes might represent a distinctive epileptic phenomenon of this encephalopathy. PMID:27403359

  1. Posterior Reversible Encephalopathy Syndrome with Bilateral Independent Epileptic Foci Precipitated By Guillain-Barrè Syndrome

    PubMed Central

    Rossi, Rosario; Saddi, Maria Valeria; Mela, Alessandro; Ticca, Anna

    2016-01-01

    We report the case of a 56-year-old woman who developed status epilepticus (SE) related to independent occipital foci as clinical manifestation of posterior reversible encephalopathy syndrome (PRES) in the background of Guillain-Barrè syndrome (GBS). SE resulted from a series of focal seizures clinically characterized by left- and rightward deviations of the head and consequent oculoclonic movements. Electroencephalography recorded independent seizure activity in both occipital regions with alternate involvement of the two cerebral hemispheres. The epileptic foci corresponded topographically to parenchymal abnormalities of PRES in the occipital lobes. The manifestation of bilateral, independent occipital seizures with alternate deviations of the head and oculoclonic movements, previously not reported in patients with PRES, highlights the acute epileptogenicity of the cerebral lesions in this syndrome. Despite the variable clinical expression of seizures due to occipital damage in PRES, the development of independent seizure activity in both occipital lobes might represent a distinctive epileptic phenomenon of this encephalopathy. PMID:27403359

  2. Two types of isolated epileptic nystagmus: case report

    PubMed Central

    Ma, Yunfeng; Wang, Juan; Li, Desheng; Lang, Senyang

    2015-01-01

    Epileptic nystagmus (EN) is a quick, repetitive jerky movement of the eyeball caused by seizure activity, unaccompanied by other ictal phenomena rare. Here, we described two cases, one characterized by binocular and the other by monocular isolated epileptic nystagmus (IEN), and we identified the characteristics of the etiology, clinical manifestations, electroencephalogram, imaging, treatment and prognosis in epileptic nystagmus through reviewing literature. We found IEN occurs more frequently in children than in adults. Etiological factors included trauma, cerebral vascular disease, tumor, and anoxia. The frequency of IEN was high, which varied from several to hundreds of times per day, and the duration of it was usually less than 1 minute. EN and its subtypes, such as epileptic monocular nystagmus, vertical epileptic nystagmus, epileptic skew deviation, periodic alternating nystagmus, and partial oculo-clonic status, are rare. The fast phase of the nystagmus was contralateral to the epileptogenic zone in most cases. Periodic lateralized epileptiform discharges (PLEDs) is a distinct EEG pattern in EN. Our findings suggested that the occipital lobe may plays a key role in the origin of EN. PMID:26550287

  3. Cortical GABAergic excitation contributes to epileptic activities around human glioma

    PubMed Central

    Pallud, Johan; Varlet, Pascale; Cresto, Noemie; Baulac, Michel; Duyckaerts, Charles; Kourdougli, Nazim; Chazal, Geneviève; Devaux, Bertrand; Rivera, Claudio; Miles, Richard; Capelle, Laurent; Huberfeld, Gilles

    2015-01-01

    Rationale Diffuse brain gliomas induce seizures in a majority of patients. As in most epileptic disorders, excitatory glutamatergic mechanisms are involved in the generation of epileptic activities in the neocortex surrounding gliomas. However, chloride homeostasis is known to be perturbed in glial tumor cells. Thus the contribution of GABAergic mechanisms which depend on intracellular chloride and which are defective or pro-epileptic in other structural epilepsies merits closer study. Objective We studied in neocortical slices from the peritumoral security margin resected around human brain gliomas, the occurrence, networks, cells and signaling basis of epileptic activities. Results Postoperative glioma tissue from 69% of patients spontaneously generated interictal-like discharges. These events were synchronized, with a high frequency oscillation signature, in superficial layers of neocortex around glioma areas with tumor infiltration. Interictal-like events depended on both glutamatergic transmission and on depolarizing GABAergic signaling. About 65% of pyramidal cells were depolarized by GABA released by interneurons. This effect was related to perturbations in Chloride homeostasis, due to changes in expression of chloride co-transporters: KCC2 was reduced and expression of NKCC1 increased. Ictal-like activities were initiated by convulsant stimuli exclusively in these epileptogenic areas. Conclusions Epileptic activities are sustained by excitatory effects of GABA in the peritumoral human neocortex, as in temporal lobe epilepsies. Glutamate and GABA signaling are involved in oncogenesis and chloride homeostasis is perturbed. These same factors, induce an imbalance between synaptic excitatory and inhibition underly epileptic discharges in tumor patients. PMID:25009229

  4. Oxidative Status in Epileptic Children Using Carbamazepine

    PubMed Central

    Tutanc, Murat; Aras, Mustafa; Dokuyucu, Recep; Altas, Murat; Zeren, Cem; Arica, Vefik; Ozturk, Oktay Hasan; Motor, Sedat; Yilmaz, Cahide

    2015-01-01

    Background: There is an increasing attention towards the relationship between oxidative stress and epilepsy. The effect of antiepileptic drugs on oxidant status is of major interest. Antiepileptic drugs can increase levels of free radicals, which consequently might lead to seizures. Carbamazepine (CBZ) is an antiepileptic drug commonly used in childhood and adolescence. Objectives: Therefore we aimed to investigate the effects of CBZ on total antioxidant status, total oxidant stress, and oxidative stress index. Patients and Methods: The study included 40 epileptic patients and 31 healthy children between 4 and 12 years of age. Serum CBZ level, total antioxidant capacity and total oxidant status were measured. Oxidative stress index was also calculated both in controls and patients. Results: In the epileptic group, decreased levels of total antioxidant capacity, increased total oxidative stress and oxidative stress index levels were found. Positive correlation between plasma CBZ levels and total oxidant status was observed. Conclusions: Antioxidant action could not be playing any role in antiepileptic effect of CBZ. Furthermore, increased oxidative stress induced by CBZ could be the cause of CBZ-induced seizures. Therefore combining CBZ with antioxidants could be beneficial. PMID:26635944

  5. [Psychogenic nonepileptic seizures: overview and implications for practice].

    PubMed

    Szita, Bernadett; Hidasi, Zoltán

    2016-05-15

    Psychogenic nonepileptic seizures are enigmatic disorders at the interface of neurology and psychiatry. Seizures resemble epileptic seizures but are not associated with electrical discharges in the brain. Symptoms typically start in early adulthood and women are far more affected than men. Video-EEG is widely considered to be the gold standard for diagnosis. Still psychogenic nonepileptic seizures are often misdiagnosed and treated as epilepsy for years that is burdensome to patients and costly to the healthcare system. Patients having psychogenic nonepileptic seizures show a high prevalence of traumatic life events, therefore, psychosocial factors are thought to play an important role in the etiology. Neurobiological factors may also contribute to the development of seizures as a subgroup of patients are characterized by cognitive impairment and subtle structural and functional brain abnormalities. Treatment includes psychotherapeutic procedures, particularly cognitive behavioral therapy and additional pharmacological interventions. This article presents an overview of the clinical context, diagnosis, etiology and treatment of psychogenic nonepileptic seizures. PMID:27156524

  6. Analysis of Epileptic Discharges from Implanted Subdural Electrodes in Patients with Sturge-Weber Syndrome

    PubMed Central

    2016-01-01

    Objective Almost two-thirds of patients with Sturge-Weber syndrome (SWS) have epilepsy, and half of them require surgery for it. However, it is well known that scalp electroencephalography (EEG) does not demonstrate unequivocal epileptic discharges in patients with SWS. Therefore, we analyzed interictal and ictal discharges from intracranial subdural EEG recordings in patients treated surgically for SWS to elucidate epileptogenicity in this disorder. Methods Five intractable epileptic patients with SWS who were implanted with subdural electrodes for presurgical evaluation were enrolled in this study. We examined the following seizure parameters: seizure onset zone (SOZ), propagation speed of seizure discharges, and seizure duration by visual inspection. Additionally, power spectrogram analysis on some frequency bands at SOZ was performed from 60 s before the visually detected seizure onset using the EEG Complex Demodulation Method (CDM). Results We obtained 21 seizures from five patients for evaluation, and all seizures initiated from the cortex under the leptomeningeal angioma. Most of the patients presented with motionless staring and respiratory distress as seizure symptoms. The average seizure propagation speed and duration were 3.1 ± 3.6 cm/min and 19.4 ± 33.6 min, respectively. Significant power spectrogram changes at the SOZ were detected at 10–30 Hz from 15 s before seizure onset, and at 30–80 Hz from 5 s before seizure onset. Significance In patients with SWS, seizures initiate from the cortex under the leptomeningeal angioma, and seizure propagation is slow and persists for a longer period. CDM indicated beta to low gamma-ranged seizure discharges starting from shortly before the visually detected seizure onset. Our ECoG findings indicate that ischemia is a principal mechanism underlying ictogenesis and epileptogenesis in SWS. PMID:27054715

  7. Immunological findings in epileptic and febrile convulsion patients before and under treatment.

    PubMed

    Tartara, A; Verri, A P; Nespoli, L; Moglia, A; Botta, M G

    1981-01-01

    Serum immunoglobulin levels of 86 epileptic patients have been evaluated in order to investigate the relationship between epilepsy, antiepileptic drugs and humoral immunity. The results confirm a high incidence of immunological disorders in the epileptic and febrile convulsion patients. These abnormalities were not related to clinical type of epilepsy nor to the therapy; the common feature seems the early onset of seizures and antiepileptic treatment. PMID:6791931

  8. New avenues for anti-epileptic drug discovery and development.

    PubMed

    Löscher, Wolfgang; Klitgaard, Henrik; Twyman, Roy E; Schmidt, Dieter

    2013-10-01

    Despite the introduction of over 15 third-generation anti-epileptic drugs, current medications fail to control seizures in 20-30% of patients. However, our understanding of the mechanisms mediating the development of epilepsy and the causes of drug resistance has grown substantially over the past decade, providing opportunities for the discovery and development of more efficacious anti-epileptic and anti-epileptogenic drugs. In this Review we discuss how previous preclinical models and clinical trial designs may have hampered the discovery of better treatments. We propose that future anti-epileptic drug development may be improved through a new joint endeavour between academia and the industry, through the identification and application of tools for new target-driven approaches, and through comparative preclinical proof-of-concept studies and innovative clinical trials designs. PMID:24052047

  9. Defective auditory processing in a child with temporal epileptic focus.

    PubMed

    Shuper, Avinoam; Medvedovsky, Mordechai; Kivity, Sara

    2015-03-01

    A 9-year-old boy presented with intolerance to noise that was a trigger for violent temper tantrums that occasionally resembled complex partial seizures. The condition was also a cause for withdrawal from all activities and settings that could potentially be associated with noise. Both electroencephalography and magnetoencephalography clearly demonstrated a left temporal (T5) epileptic focus, although the child never had convulsive seizures. Genetic studies failed to reveal a GRIN2A mutation. We suggest that the hyperacusis in the reported child is another variation of the Landau-Kleffner spectrum. PMID:24789517

  10. Automatic Detection of Seizures with Applications

    NASA Technical Reports Server (NTRS)

    Olsen, Dale E.; Harris, John C.; Cutchis, Protagoras N.; Cristion, John A.; Lesser, Ronald P.; Webber, W. Robert S.

    1993-01-01

    There are an estimated two million people with epilepsy in the United States. Many of these people do not respond to anti-epileptic drug therapy. Two devices can be developed to assist in the treatment of epilepsy. The first is a microcomputer-based system designed to process massive amounts of electroencephalogram (EEG) data collected during long-term monitoring of patients for the purpose of diagnosing seizures, assessing the effectiveness of medical therapy, or selecting patients for epilepsy surgery. Such a device would select and display important EEG events. Currently many such events are missed. A second device could be implanted and would detect seizures and initiate therapy. Both of these devices require a reliable seizure detection algorithm. A new algorithm is described. It is believed to represent an improvement over existing seizure detection algorithms because better signal features were selected and better standardization methods were used.

  11. Quantitative analysis of surface electromyography: Biomarkers for convulsive seizures.

    PubMed

    Beniczky, Sándor; Conradsen, Isa; Pressler, Ronit; Wolf, Peter

    2016-08-01

    Muscle activity during seizures is in electroencephalographical (EEG) praxis often considered an irritating artefact. This article discusses ways by surface electromyography (EMG) to turn it into a valuable tool of epileptology. Muscles are in direct synaptic contact with motor neurons. Therefore, EMG signals provide direct information about the electric activity in the motor cortex. Qualitative analysis of EMG has traditionally been a part of the long-term video-EEG recordings. Recent development in quantitative analysis of EMG signals yielded valuable information on the pathomechanisms of convulsive seizures, demonstrating that it was different from maximal voluntary contraction, and different from convulsive psychogenic non-epileptic seizures. Furthermore, the tonic phase of the generalised tonic-clonic seizures (GTCS) proved to have different quantitative features than tonic seizures. The high temporal resolution of EMG allowed detailed characterisation of temporal dynamics of the GTCS, suggesting that the same inhibitory mechanisms that try to prevent the build-up of the seizure activity, contribute to ending the seizure. These findings have clinical implications: the quantitative EMG features provided the pathophysiologic substrate for developing neurophysiologic biomarkers that accurately identify GTCS. This proved to be efficient both for seizure detection and for objective, automated distinction between convulsive and non-convulsive epileptic seizures. PMID:27212115

  12. [Unusual dreams in epileptics].

    PubMed

    Boldyrev, A I

    1984-01-01

    The author discusses bizarre dreams characteristic of epileptics and never occurring in normal subjects which have an important practical implication especially for early detection of epilepsy and the prevention of severe forms of the disease. This group of dreams includes vivid nightmares with vital fear, dreams not infrequently transforming into pro-dream states; persistently repeated stereotyped dreams and dreams with invariably the same unpleasant sensations representing an isolated aura of subsequent epileptic attacks. Diagnostically important may also be dreams with the symptoms of derealization and depersonalization, vague dream images and the deja vu phenomenon. PMID:6464602

  13. The differences in epileptic characteristics in patients with porencephaly and schizencephaly.

    PubMed

    Shimizu, Miki; Maeda, Tomoki; Izumi, Tatsuro

    2012-08-01

    The epileptic characteristics and their differences in patients with porencephaly and schizencephaly were, respectively, evaluated. Eleven patients with porencephaly and eight patients with schizencephaly were retrospectively enrolled in this study. Five of the six patients with extensive porencephaly and all five patients with open-lip schizencephaly had been suffering from various types of epileptic seizures. Three patients with extensive porencephaly and all five patients with open-lip schizencephaly had presented with early onset seizures before 9 months of age. Two patients with extensive porencephaly and three patients with open-lip schizencephaly had presented with West syndrome. These two groups of patients with epileptic seizures showed generalized epilepsy or generalized epilepsy with unilateral dominancy at the onset, and then developed localization-related epilepsy or unilateral seizures with increasing age. The epileptic paroxysms showed multifocal independent spikes, which were not always localized in the defect or cleft sites at the last examination. Polytherapy or synergistic combinations were eventually introduced for these intractable seizures in both groups for patients without any evidence of efficacy. In the porencephaly patients, four of five patients achieved good seizure control with appropriate monotherapy or two-drug therapy including valproate. All five patients with schizencephaly had been treated by polytherapy, and three of them had persistent intractable seizures in spite of trying rational monotherapy or two-drug therapy. The epileptic intractability associated with open-lip schizencephaly might be related to the epileptogenesis of these extensive and widespread defective lesions, which were commonly associated with cortical dysplasia. A trial of rational monotherapy or two-drug therapy may be effective, rather than larger-number polytherapy in many cases, more in porencephaly than schizencephaly. PMID:22024697

  14. Amino acid changes in a genetic strain of epileptic beagle dogs.

    PubMed

    van Gelder, N M; Edmonds, H L; Hegreberg, G A; Chatburn, C C; Clemmons, R M; Sylvester, D M

    1980-11-01

    A neurochemical evaluation of beagle dogs with naturally occurring spontaneous generalized convulsive seizures was performed. Amino acid profiles of serum, cerebrospinal fluid (CSF), and biopsied cerebral cortex from epileptic dogs were compared with those from seizure-free siblings. No differences in absolute levels were noted. However, when levels were normalized as a percent of total free amino acids, seizures was performed. Amino acid profiles of serum, cerebrospinal fluid (CEF), and biopsied cerebral cortex from epileptic dogs were compared with those seizure-free siblings. No differences also the two groups differed in certain respects. Ten significant correlations between amino acid pairs appeared in epileptic dogs, but only one was seen in seizure-free animals. Seven of these ten correlations involved glutamate or taurine. It was noted that the highly correlated amino acids (taurine, glutamate, glycine, glutamine, alanine) all utilize sodium-dependent membrane transport processes. The sum of glutamate, aspartate, and glycine levels (competing sodium-dependent high-affinity systems) was significantly lower in epileptic beagles. Since this difference was noted in serum but not CSF or brain, it may indicate a diminished capacity of sodium-dependent high-affinity renal transport for acidic and certain small neutral amino acids. PMID:6778970

  15. Generalized tonic-clonic seizure

    MedlinePlus

    ... Seizure - grand mal; Grand mal seizure; Seizure - generalized; Epilepsy - generalized seizure ... occur as part of a repeated, chronic illness (epilepsy). Some seizures are due to psychological problems (psychogenic).

  16. Out-of-body experiences associated with seizures.

    PubMed

    Greyson, Bruce; Fountain, Nathan B; Derr, Lori L; Broshek, Donna K

    2014-01-01

    Alterations of consciousness are critical factors in the diagnosis of epileptic seizures. With these alterations in consciousness, some persons report sensations of separating from the physical body, experiences that may in rare cases resemble spontaneous out-of-body experiences. This study was designed to identify and characterize these out-of-body-like subjective experiences associated with seizure activity. Fifty-five percent of the patients in this study recalled some subjective experience in association with their seizures. Among our sample of 100 patients, 7 reported out-of-body experiences associated with their seizures. We found no differentiating traits that were associated with patients' reports of out-of-body experiences, in terms of either demographics; medical history, including age of onset and duration of seizure disorder, and seizure frequency; seizure characteristics, including localization, lateralization, etiology, and type of seizure, and epilepsy syndrome; or ability to recall any subjective experiences associated with their seizures. Reporting out-of-body experiences in association with seizures did not affect epilepsy-related quality of life. It should be noted that even in those patients who report out-of-body experiences, such sensations are extremely rare events that do not occur routinely with their seizures. Most patients who reported out-of-body experiences described one or two experiences that occurred an indeterminate number of years ago, which precludes the possibility of associating the experience with the particular characteristics of that one seizure or with medications taken or other conditions at the time. PMID:24592228

  17. Seizure Termination by Acidosis Depends on ASIC1a

    PubMed Central

    Ziemann, Adam E.; Schnizler, Mikael K.; Albert, Gregory W.; Severson, Meryl A.; Howard, Matthew A.; Welsh, Michael J.; Wemmie, John A.

    2008-01-01

    SUMMARY Most seizures stop spontaneously. However, the molecular mechanisms remain unknown. Earlier observations that seizures reduce brain pH and that acidosis inhibits seizures indicated that acidosis halts epileptic activity. Because acid–sensing ion channel–1a (ASIC1a) shows exquisite sensitivity to extracellular pH and regulates neuron excitability, we hypothesized that acidosis might activate ASIC1a to terminate seizures. Disrupting mouse ASIC1a increased the severity of chemoconvulsant–induced seizures, whereas overexpressing ASIC1a had the opposite effect. ASIC1a did not affect seizure threshold or onset, but shortened seizure duration and prevented progression. CO2 inhalation, long known to lower brain pH and inhibit seizures, also required ASIC1a to interrupt tonic–clonic seizures. Acidosis activated inhibitory interneurons through ASIC1a, suggesting that ASIC1a might limit seizures by increasing inhibitory tone. These findings identify ASIC1a as a key element in seizure termination when brain pH falls. The results suggest a molecular mechanism for how the brain stops seizures and suggest new therapeutic strategies. PMID:18536711

  18. Prognosis of chronic epilepsy with complex partial seizures.

    PubMed Central

    Schmidt, D

    1984-01-01

    Clinical features associated with a successful or unsuccessful response to high dose antiepileptic drug therapy were evaluated prospectively in 82 patients with chronic complex partial seizures. Complete seizure control was observed during high dose drug therapy in 18 patients at plasma concentrations of either 9-35 micrograms/ml phenytoin, 32 and 40 micrograms/ml phenobarbitone, 8 micrograms/ml carbamazepine, or a combination of 25 micrograms/ml phenobarbitone and 4 micrograms/ml carbamazepine. Patients who became free of seizures had a markedly lower number of three seizures (range: 1-29) in the year before the high dose treatment as compared to 40 seizures (range: 3-328) in patients with an increased or unchanged seizure frequency (p less than 0.0001). Complex partial seizures without automatism were found only in patients with complete seizure control (22%). Patients whose seizures remained uncontrolled more frequently gave a history of severe depression or psychotic episodes, clusters of complex partial seizures, two or more seizures per day, and an aura preceding the attack. The results suggest that taking a careful history will uncover clinical features associated with a successful or unsuccessful response to high dose antiepileptic drug therapy in an epileptic out-patient with chronic complex partial seizures. PMID:6512548

  19. Out-of-body experiences associated with seizures

    PubMed Central

    Greyson, Bruce; Fountain, Nathan B.; Derr, Lori L.; Broshek, Donna K.

    2014-01-01

    Alterations of consciousness are critical factors in the diagnosis of epileptic seizures. With these alterations in consciousness, some persons report sensations of separating from the physical body, experiences that may in rare cases resemble spontaneous out-of-body experiences. This study was designed to identify and characterize these out-of-body-like subjective experiences associated with seizure activity. Fifty-five percent of the patients in this study recalled some subjective experience in association with their seizures. Among our sample of 100 patients, 7 reported out-of-body experiences associated with their seizures. We found no differentiating traits that were associated with patients' reports of out-of-body experiences, in terms of either demographics; medical history, including age of onset and duration of seizure disorder, and seizure frequency; seizure characteristics, including localization, lateralization, etiology, and type of seizure, and epilepsy syndrome; or ability to recall any subjective experiences associated with their seizures. Reporting out-of-body experiences in association with seizures did not affect epilepsy-related quality of life. It should be noted that even in those patients who report out-of-body experiences, such sensations are extremely rare events that do not occur routinely with their seizures. Most patients who reported out-of-body experiences described one or two experiences that occurred an indeterminate number of years ago, which precludes the possibility of associating the experience with the particular characteristics of that one seizure or with medications taken or other conditions at the time. PMID:24592228

  20. [Non-epileptic motor paroxysmal phenomena in wakefulness in childhood].

    PubMed

    Ruggieri, Víctor L; Arberas, Claudia L

    2013-09-01

    Paroxysmal events in childhood are a challenge for pediatric neurologists, given its highly heterogeneous clinical manifestations, often difficult to distinguish between phenomena of epileptic seizure or not. The non-epileptic paroxysmal episodes are neurological phenomena, with motor, sensory symptoms, and/or sensory impairments, with or without involvement of consciousness, epileptic phenomena unrelated, so no electroencephalographic correlative expression between or during episodes. From the clinical point of view can be classified into four groups: motor phenomena, syncope, migraine (and associated conditions) and acute psychiatric symptoms. In this paper we analyze paroxysmal motor phenomena in awake children, dividing them according to their clinical manifestations: extrapyramidal episodes (paroxysmal kinesiogenic, non kinesiogenic and not related to exercise dyskinesias, Dopa responsive dystonia) and similar symptoms of dystonia (Sandifer syndrome); manifestations of startle (hyperekplexia); episodic eye and head movements (benign paroxysmal tonic upward gaze nistagmus deviation); episodic ataxia (familial episodic ataxias, paroxysmal benign vertigo); stereotyped and phenomena of self-gratification; and myoclonic events (benign myoclonus of early infancy). The detection of these syndromes will, in many cases, allow an adequate genetic counseling, initiate a specific treatment and avoid unnecessary additional studies. Molecular studies have demonstrated a real relationship between epileptic and non-epileptic basis of many of these entities and surely the identification of the molecular basis and understanding of the pathophysiological mechanisms in many of them allow us, in the near future will benefit our patients. PMID:23897137

  1. Electroencephalographic features of familial spontaneous epileptic cats.

    PubMed

    Hasegawa, Daisuke; Mizoguchi, Shunta; Kuwabara, Takayuki; Hamamoto, Yuji; Ogawa, Fukie; Matsuki, Naoaki; Uchida, Kazuyuki; Fujita, Michio

    2014-08-01

    A feline strain of familial spontaneous epileptic cats (FSECs) with typical limbic seizures was identified in 2010, and have been maintained as a novel animal model of genetic epilepsy. In this study, we characterized the electroencephalographic (EEG) features of FSECs. On scalp EEG under sedation, FSECs showed sporadic, but comparatively frequent interictal discharges dominantly in the uni- or bilateral temporal region. Bemegride activation was performed in order to evaluate the predisposition of epileptogenicity of FSECs. The threshold doses of the first paroxysmal discharge, clinical myoclonus and generalized convulsion in FSECs were significantly lower than those in control cats. Chronic video-intracranial EEG monitoring revealed subclinical or clinical focal seizures with secondarily generalization onset from the unilateral amygdala and/or hippocampus. Clinical generalized seizures were also recorded, but we were unable to detect the onset site. The results of the present study show that FSECs resemble not only feline kindling or the kainic acid model and El mouse, but also human familial or sporadic mesial temporal lobe epilepsy. In addition, our results indicate that FSECs are a natural and valuable model of mesial temporal lobe epilepsy. PMID:24893833

  2. Orgasm-induced seizures: male studied with ictal electroencephalography.

    PubMed

    Sengupta, Anshuman; Mahmoud, Ali; Tun, Shwe Z; Goulding, Peter

    2010-06-01

    Reflex seizures can occur in response to a variety of stimuli, both sensory and emotional. Common triggers include light and music; however, in a growing number of case reports, the phenomenon of sexual activity triggering epileptic seizures is described. The majority of these case reports have been in women so far, and most have been found to localise to the right cerebral hemisphere on interictal electroencephalography (EEG). We report the case of a 34-year-old male with orgasm-induced seizures, recorded on ictal EEG. This gentleman's electrophysiology localised his seizure focus to the left cerebral hemisphere, making his case atypical in comparison with the majority of previous reports. Orgasm-induced seizures are an increasingly well-described phenomenon and we suggest that this should be taken into account when assessing patients with possible reflex seizures. PMID:20471288

  3. Seizure facilitating activity of the oral contraceptive ethinyl estradiol.

    PubMed

    Younus, Iyan; Reddy, Doodipala Samba

    2016-03-01

    Contraceptive management is critical in women with epilepsy. Although oral contraceptives (OCs) are widely used by many women with epilepsy, little is known about their impact on epileptic seizures and epileptogenesis. Ethinyl estradiol (EE) is the primary component of OC pills. In this study, we investigated the pharmacological effect of EE on epileptogenesis and kindled seizures in female mice using the hippocampus kindling model. Animals were stimulated daily with or without EE until generalized stage 5 seizures were elicited. EE treatment significantly accelerated the rate of epileptogenesis. In acute studies, EE caused a significant decrease in the afterdischarge threshold and increased the incidence and severity of seizures in fully-kindled mice. In chronic studies, EE treatment caused a greater susceptibility to kindled seizures. Collectively, these results are consistent with moderate proconvulsant-like activity of EE. Such excitatory effects may affect seizure risk in women with epilepsy taking OC pills. PMID:26874323

  4. Partial (focal) seizure

    MedlinePlus

    ... Jacksonian seizure; Seizure - partial (focal); Temporal lobe seizure; Epilepsy - partial seizures ... Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff RB, ... 6th ed. Philadelphia, PA: Elsevier Saunders; 2012:chap 67. ...

  5. Partial (focal) seizure

    MedlinePlus

    ... Jacksonian seizure; Seizure - partial (focal); Temporal lobe seizure; Epilepsy - partial seizures ... Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff ... Practice . 7th ed. Philadelphia, PA: Elsevier; 2016:chap 101. ...

  6. Regionally specific expression of high-voltage-activated calcium channels in thalamic nuclei of epileptic and non-epileptic rats.

    PubMed

    Kanyshkova, Tatyana; Ehling, Petra; Cerina, Manuela; Meuth, Patrick; Zobeiri, Mehrnoush; Meuth, Sven G; Pape, Hans-Christian; Budde, Thomas

    2014-07-01

    The polygenic origin of generalized absence epilepsy results in dysfunction of ion channels that allows the switch from physiological asynchronous to pathophysiological highly synchronous network activity. Evidence from rat and mouse models of absence epilepsy indicates that altered Ca(2+) channel activity contributes to cellular and network alterations that lead to seizure activity. Under physiological circumstances, high voltage-activated (HVA) Ca(2+) channels are important in determining the thalamic firing profile. Here, we investigated a possible contribution of HVA channels to the epileptic phenotype using a rodent genetic model of absence epilepsy. In this study, HVA Ca(2+) currents were recorded from neurons of three different thalamic nuclei that are involved in both sensory signal transmission and rhythmic-synchronized activity during epileptic spike-and-wave discharges (SWD), namely the dorsal part of the lateral geniculate nucleus (dLGN), the ventrobasal thalamic complex (VB) and the reticular thalamic nucleus (NRT) of epileptic Wistar Albino Glaxo rats from Rijswijk (WAG/Rij) and non-epileptic August Copenhagen Irish (ACI) rats. HVA Ca(2+) current densities in dLGN neurons were significantly increased in epileptic rats compared with non-epileptic controls while other thalamic regions revealed no differences between the strains. Application of specific channel blockers revealed that the increased current was carried by L-type Ca(2+) channels. Electrophysiological evidence of increased L-type current correlated with up-regulated mRNA and protein expression of a particular L-type channel, namely Cav1.3, in dLGN of epileptic rats. No significant changes were found for other HVA Ca(2+) channels. Moreover, pharmacological inactivation of L-type Ca(2+) channels results in altered firing profiles of thalamocortical relay (TC) neurons from non-epileptic rather than from epileptic rats. While HVA Ca(2+) channels influence tonic and burst firing in ACI and WAG

  7. Epileptic activity outlasts disinhibition after intrahippocampal tetanus toxin in the rat.

    PubMed Central

    Whittington, M A; Jefferys, J G

    1994-01-01

    1. A single dose of tetanus toxin, injected under anaesthesia into one dorsal hippocampus of the rat, produces chronic epileptic foci involving both hippocampi. Generalized seizures occurred 1-6 weeks after injection and epileptic discharges were found in hippocampal slices in vitro. Here we measured the time course of decay of epileptic activity and the level of GABAA receptor-mediated inhibition in hippocampal slices 1-16 weeks after toxin injection in vivo. 2. Epileptic activity peaked in the dentate granule cell and CA3 pyramidal cell layers 2 weeks after toxin injection and at 4 weeks in CA1. Thresholds for evoking epileptic activity were lowest in the suprapyramidal blade of the dentate gyrus and area CA3c. Recovery from epileptic activity occurred more rapidly in the contralateral hippocampus. Polyspike activity ceased by 8 weeks and interictal activity by 16 weeks. Epileptic discharges could still be evoked from CA1 16 weeks after toxin injection. 3. The maximal monosynaptic fast inhibitory postsynaptic current (IPSC) conductance changes (gIPSC) decreased to < 10% of control values at the time of peak epileptic activity and remained lower than controls for 4 weeks ipsilaterally. In the contralateral hippocampus, gIPSC fell to ca 50% of control values for the first 2 weeks. Responses to exogenous GABA remained unchanged. 4. After 8 weeks dentate granule cells had gIPSC significantly larger than controls. No increase in gIPSC occurred in CA3. Epileptic activity persisted 8-10 weeks after recovery from disinhibition ipsilaterally and 4 weeks contralaterally. 5. Epileptic activity was seen when monosynaptic GABAA receptor-mediated IPSCs were normal or supranormal. At these times polysynaptic inhibition was still profoundly reduced. These observations provide strong evidence for long-term changes in the pattern of synaptic excitation contributing to a chronic epileptic syndrome syndrome following disinhibitory insult, and are consistent with weakened excitation

  8. Immunological perspectives of temporal lobe seizures.

    PubMed

    Liimatainen, Suvi; Lehtimäki, Kai; Kai, Lehtimäki; Palmio, Johanna; Johanna, Palmio; Alapirtti, Tiina; Tiina, Alapirtti; Peltola, Jukka; Jukka, Peltola

    2013-10-15

    The temporal lobes are affected in many different neurological disorders, such as neurodegenerative diseases, viral and immunological encephalitides, and epilepsy. Both experimental and clinical evidence suggests a different inflammatory response to seizures in patients with temporal lobe epilepsy (TLE) in comparison to those with extra-TLE (XTLE). Proinflammatory cytokines and several autoantibodies have been shown to be associated with TLE compared to other epilepsy types suggesting the specific role and structure of the temporal lobe. Abundant experience suggests that activation of both innate and adaptive immunity is associated with epilepsy, particularly refractory focal epilepsy. Limbic encephalitis often triggers temporal lobe seizures, and a proportion of these disorders are immune-mediated. Histological evidence shows activation of specific inflammatory pathways in resected temporal lobes of epileptic patients, and certain epileptic disorders have shown increased incidence in patients with autoimmune diseases. Rapid activation of proinflammatory cytokines is observed after single seizures, but there is also evidence of chronic overproduction of cytokines and other inflammatory mediators in patients with TLE, suggesting a neuromodulatory role of inflammation in epilepsy. In this review we summarize current data on the presence and the role of immunological factors in temporal lobe seizures, and their possible involvement in epileptogenesis. PMID:23998423

  9. Controlling Seizures

    ERIC Educational Resources Information Center

    Henderson, Nancy

    2008-01-01

    This article describes how an implantable device could greatly improve the quality of life for people with epilepsy. Gabe Anderson was diagnosed with bilateral heterotopia, a congenital condition that can lead to the onset of complex partial seizures stemming from both hemispheres of the brain. In early 2004, Gabe became one of the first 35…

  10. Seizures Related to Vitamin B6 Deficiency in Adults

    PubMed Central

    Lee, Dong-Gun; Lee, Yeonkyung; Shin, Hyeeun; Kang, Kyusik; Park, Jong-Moo; Kim, Byung-Kun; Kwon, Ohyun; Lee, Jung-Ju

    2015-01-01

    Vitamin B6 is closely associated with functions of the nervous, immune, and endocrine systems. Its deficiency may result in neurological disorders including convulsions and epileptic encephalopathy. Until today, this has only been reported in infants, children, and critically ill adult patients. We report a case of a 36year-old man with chronic alcoholism who presented with seizures after gastrointestinal disturbance. His seizures persisted even after treatment with antiepileptic drugs, but eventually disappeared after administration of pyridoxine. Hence, vitamin B6 deficiency may cause seizures in adult patients with chronic alcoholism. PMID:26157671

  11. [Clinical presentation and diagnosis of epileptic auras].

    PubMed

    Barletova, E I; Kremenchugskaia, M R; Mukhin, K Iu; Glukhova, L Iu; Mironov, M B

    2012-01-01

    To define clinical presentations of visual auras and to reveal their clinical, encephalographic and neuroimaging correlates, we examined 23 patients, aged from 5 to 25 years (mean 14±6 years), with focal forms of epilepsy. Patients had visual auras regardless of the etiology of epilepsy which developed immediately before epileptic seizures or were isolated. Patients had simple or complex visual hallucinations, the former occurring more frequently, visual illusions and ictal amaurosis. Positive visual phenomena were noted more frequently than negative ones. In most of the patients, visual hallucinations were associated with the pathological activity in cortical occipital regions of the brain and, in some cases, in temporal and parietal regions. The different pathologies (developmental defects, post-ischemic, atrophic and other disturbances) identified by MRI were found in a half of patients. PMID:23120768

  12. Clinical and electrographic findings in epileptic vertigo and dizziness

    PubMed Central

    Lee, Seung-Han; Robinson, Karen A.; Kaplan, Peter W.; Newman-Toker, David E.

    2015-01-01

    Objective: Seizures can cause vestibular symptoms, even without obvious epileptic features. We sought to characterize epileptic vertigo or dizziness (EVD) to improve differentiation from nonepileptic causes, particularly when vestibular symptoms are the sole manifestation. Methods: We conducted a systematic review with electronic (Medline) and manual search for English-language studies (1955–2014). Two independent reviewers selected studies. Study/patient characteristics were abstracted. We defined 3 study population types: (1) seizures, some experiencing vertigo/dizziness (disease cohort); (2) vertigo/dizziness, some due to seizures (symptom cohort); (3) vertigo/dizziness due to seizures in all patients (EVD-only cohort). Results: We identified 84 studies describing 11,354 patients (disease cohort = 8,129; symptom cohort = 2,965; EVD-only cohort = 260). Among 1,055 EVD patients in whom a distinction could be made, non-isolated EVD was present in 8.5%, isolated EVD in 0.8%. Thorough diagnostic workups (ictal EEG, vestibular testing, and brain MRI to exclude other causes) were rare (<0.1%). Ictal EEG was reported in 487 (4.3%), formal neuro-otologic assessment in 1,107 (9.7%). Localized EEG abnormalities (n = 350) were most frequently temporal (79.8%) and uncommonly parietal (11.8%). Duration of episodic vestibular symptoms varied, but was very brief (<30 seconds) in 69.6% of isolated EVD and 6.9% of non-isolated EVD. Conclusions: Non-isolated EVD is much more prevalent than isolated EVD, which appears to be rare. Diagnostic evaluations for EVD are often incomplete. EVD is primarily associated with temporal lobe seizures; whether this reflects greater epidemiologic prevalence of temporal lobe seizures or a tighter association with dizziness/vertigo presentations than with other brain regions remains unknown. Consistent with clinical wisdom, isolated EVD spells often last just seconds, although many patients experience longer spells. PMID:25795644

  13. Diagnostic Approach to Genetic Causes of Early-Onset Epileptic Encephalopathy.

    PubMed

    Gürsoy, Semra; Erçal, Derya

    2016-03-01

    Epileptic encephalopathies are characterized by recurrent clinical seizures and prominent interictal epileptiform discharges seen during the early infantile period. Although epileptic encephalopathies are mostly associated with structural brain defects and inherited metabolic disorders, pathogenic gene mutations may also be involved in the development of epileptic encephalopathies even when no clear genetic inheritance patterns or consanguinity exist. The most common epileptic encephalopathies are Ohtahara syndrome, early myoclonic encephalopathy, epilepsy of infancy with migrating focal seizures, West syndrome and Dravet syndrome, which are usually unresponsive to traditional antiepileptic medication. Many of the diagnoses describe the phenotype of these electroclinical syndromes, but not the underlying causes. To date, approximately 265 genes have been defined in epilepsy and several genes including STXBP1, ARX, SLC25A22, KCNQ2, CDKL5, SCN1A, and PCDH19 have been found to be associated with early-onset epileptic encephalopathies. In this review, we aimed to present a diagnostic approach to primary genetic causes of early-onset epileptic encephalopathies. PMID:26271793

  14. The Persistence of Erroneous Familiarity in an Epileptic Male: Challenging Perceptual Theories of Deja Vu Activation

    ERIC Educational Resources Information Center

    O'Connor, Akira R.; Moulin, Christopher J. A.

    2008-01-01

    We report the case of a 39-year-old, temporal lobe epileptic male, MH. Prior to complex partial seizure, experienced up to three times a day, MH often experiences an aura experienced as a persistent sensation of deja vu. Data-driven theories of deja vu formation suggest that partial familiarity for the perceived stimulus is responsible for the…

  15. Psychosocial Functioning of Adult Epileptic and MS Patients and Adult Normal Controls on the WPSI.

    ERIC Educational Resources Information Center

    Tan, Siang-Yang

    1986-01-01

    Psychosocial functioning of adult epileptic outpatients as assessed by the Washington Psychosocial Seizure Inventory (WPSI) was compared to that of adult multiple sclerosis (MS) outpatients and normal subjects. When only valid WPSI profiles were considered, the only significant finding was that the epilepsy group and the MS group had more…

  16. Hidden Markov chain modeling for epileptic networks identification.

    PubMed

    Le Cam, Steven; Louis-Dorr, Valérie; Maillard, Louis

    2013-01-01

    The partial epileptic seizures are often considered to be caused by a wrong balance between inhibitory and excitatory interneuron connections within a focal brain area. These abnormal balances are likely to result in loss of functional connectivities between remote brain structures, while functional connectivities within the incriminated zone are enhanced. The identification of the epileptic networks underlying these hypersynchronies are expected to contribute to a better understanding of the brain mechanisms responsible for the development of the seizures. In this objective, threshold strategies are commonly applied, based on synchrony measurements computed from recordings of the electrophysiologic brain activity. However, such methods are reported to be prone to errors and false alarms. In this paper, we propose a hidden Markov chain modeling of the synchrony states with the aim to develop a reliable machine learning methods for epileptic network inference. The method is applied on a real Stereo-EEG recording, demonstrating consistent results with the clinical evaluations and with the current knowledge on temporal lobe epilepsy. PMID:24110697

  17. Nonlinear analysis of epileptic activity in rabbit neocortex.

    PubMed

    Sarnthein, J; Abarbanel, H D; Pockberger, H

    1998-01-01

    We report on the nonlinear analysis of electroencephalogram (EEG) recordings in the rabbit visual cortex. Epileptic seizures were induced by local penicillin application and triggered by visual stimulation. The analysis procedures for nonlinear signals have been developed over the past few years and applied primarily to physical systems. This is an early application to biological systems and the first to EEG data. We find that during epileptic activity, both global and local embedding dimensions are reduced with respect to nonepileptic activity. Interestingly, these values are very low (dE approximately equal to 3) and do not change between preictal and tonic stages of epileptic activity, also the Lyapunov dimension remains constant. However, between these two stages the manifestations of the local dynamics change quite drastically, as can be seen, e.g., from the shape of the attractors. Furthermore, the largest Lyapunov exponent is reduced by a factor of about two in the second stage and characterizes the difference in dynamics. Thus, the occurrence of clinical symptoms associated with the tonic seizure activity seems to be mainly related to the local dynamics of the nonlinear system. These results thus seem to give a strong indication that the dynamics remains much the same in these stages of behavior, and changes are due to alterations in model parameters and consequent bifurcations of the observed orbits. PMID:9485585

  18. Modeling cortical source dynamics and interactions during seizure.

    PubMed

    Mullen, Tim; Acar, Zeynep Akalin; Worrell, Gregory; Makeig, Scott

    2011-01-01

    Mapping the dynamics and spatial topography of brain source processes critically involved in initiating and propagating seizure activity is critical for effective epilepsy diagnosis, intervention, and treatment. In this report we analyze neuronal dynamics before and during epileptic seizures using adaptive multivariate autoregressive (VAR) models applied to maximally-independent (ICA) sources of intracranial EEG (iEEG, ECoG) data recorded from subdural electrodes implanted in a human patient for evaluation of surgery for epilepsy. We visualize the spatial distribution of causal sources and sinks of ictal activity on the cortical surface (gyral and sulcal) using a novel combination of multivariate Granger-causal and graph-theoretic metrics combined with distributed source localization by Sparse Bayesian Learning applied to a multi-scale patch basis. This analysis reveals and visualizes distinct, seizure stage-dependent shifts in inter-component spatiotemporal dynamics and connectivity including the clinically-identified epileptic foci. PMID:22254582

  19. ATPergic signalling during seizures and epilepsy.

    PubMed

    Engel, Tobias; Alves, Mariana; Sheedy, Caroline; Henshall, David C

    2016-05-01

    Much progress has been made over the last few decades in the identification of new anti-epileptic drugs (AEDs). However, 30% of epilepsy patients suffer poor seizure control. This underscores the need to identify alternative druggable neurotransmitter systems and drugs with novel mechanisms of action. An emerging concept is that seizure generation involves a complex interplay between neurons and glial cells at the tripartite synapse and neuroinflammation has been proposed as one of the main drivers of epileptogenesis. The ATP-gated purinergic receptor family is expressed throughout the brain and is functional on neurons and glial cells. ATP is released in high amounts into the extracellular space after increased neuronal activity and during chronic inflammation and cell death to act as a neuro- and gliotransmitter. Emerging work shows pharmacological targeting of ATP-gated purinergic P2 receptors can potently modulate seizure generation, inflammatory processes and seizure-induced brain damage. To date, work showing the functional contribution of P2 receptors has been mainly performed in animal models of acute seizures, in particular, by targeting the ionotropic P2X7 receptor subtype. Other ionotropic P2X and metabotropic P2Y receptor family members have also been implicated in pathological processes following seizures such as the P2X4 receptor and the P2Y12 receptor. However, during epilepsy, the characterization of P2 receptors was mostly restricted to the study of expressional changes of the different receptor subtypes. This review summarizes the work to date on ATP-mediated signalling during seizures and the functional impact of targeting the ATP-gated purinergic receptors on seizures and seizure-induced pathology. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. PMID:26549853

  20. DC potentials of temporal lobe seizures in the monkey.

    PubMed

    Mayanagi, Y; Walker, A E

    1975-07-01

    In 8 monkeys, made epileptic by alum or penicillin injection into temporal lobe structures, 40 seizures were studied by both DC cortical potential and subcortical EEG recordings. Eighteen seizures of lateral temporal origin had an abrupt negative DC potential shift of 0.5 to 2.0 mV in and around the focus. The frontal, parietal and occipital cortices did not develop DC potential changes, perhaps due to the limited propagation of the neocortical seizures. Twenty-two seizures of medial temporal origin showed a negative shift of the anterior, inferior or lateral temporal cortex in 85% of seizures. The other 15% had a positive or no shift. In hippocampal seizures, a positive displacement was sometimes seen prior to the main negative shift in the lateral temporal cortex. The remote cortex developed only a minimal positive shift in 30% of the mediotemporal seizures. A marked negative shift in the frontocentral cortex was the first sign of impending generalization, which may result from a series of chain reactions with seizure propagation, involving more and more structures of the brain. Registration of DC potentials in temporal lobe seizures may give insight into the nature of abnormal EEG activities and to some extent into the origin of seizures. PMID:51061

  1. Distribution entropy analysis of epileptic EEG signals.

    PubMed

    Li, Peng; Yan, Chang; Karmakar, Chandan; Liu, Changchun

    2015-08-01

    It is an open-ended challenge to accurately detect the epileptic seizures through electroencephalogram (EEG) signals. Recently published studies have made elaborate attempts to distinguish between the normal and epileptic EEG signals by advanced nonlinear entropy methods, such as the approximate entropy, sample entropy, fuzzy entropy, and permutation entropy, etc. Most recently, a novel distribution entropy (DistEn) has been reported to have superior performance compared with the conventional entropy methods for especially short length data. We thus aimed, in the present study, to show the potential of DistEn in the analysis of epileptic EEG signals. The publicly-accessible Bonn database which consisted of normal, interictal, and ictal EEG signals was used in this study. Three different measurement protocols were set for better understanding the performance of DistEn, which are: i) calculate the DistEn of a specific EEG signal using the full recording; ii) calculate the DistEn by averaging the results for all its possible non-overlapped 5 second segments; and iii) calculate it by averaging the DistEn values for all the possible non-overlapped segments of 1 second length, respectively. Results for all three protocols indicated a statistically significantly increased DistEn for the ictal class compared with both the normal and interictal classes. Besides, the results obtained under the third protocol, which only used very short segments (1 s) of EEG recordings showed a significantly (p <; 0.05) increased DistEn for the interictal class in compassion with the normal class, whereas both analyses using relatively long EEG signals failed in tracking this difference between them, which may be due to a nonstationarity effect on entropy algorithm. The capability of discriminating between the normal and interictal EEG signals is of great clinical relevance since it may provide helpful tools for the detection of a seizure onset. Therefore, our study suggests that the Dist

  2. Valproic acid-induced pancreatitis in childhood epilepsy: case series and review.

    PubMed

    Sinclair, D Barry; Berg, Marjorie; Breault, Rene

    2004-07-01

    In the past 6 years, 11 children on valproic acid have developed pancreatitis in our children's hospital. Valproic acid has been used as one of the primary anticonvulsants for generalized seizures in children for the past 25 years. A literature review reveals mostly singular reports of pancreatitis over the past decade. The charts of the 11 patients with valproic acid-induced pancreatitis were reviewed. Dosage, valproic acid serum levels, duration of therapy, and concomitant medications were examined. Families were contacted by telephone to determine the formulation (brand name vs generic) of valproic acid at the time of diagnosis. Six girls and five boys were studied. The ages ranged from 4 to 16 years. Eight of 11 children presented with an acute abdomen. Unexpectedly, three children presented with a flulike illness. Serum lipase values ranged from 341 to 5576 U/L (normal range < 190 U/L). The dose of valproic acid ranged from 20 to 50 mg/kg. Serum levels ranged from 334 to 884 micromol/L (therapeutic range 350-800 micromol/L). Six of the patients were on monotherapy. Seven children were on brand-name drugs. Four of the children had an abnormal neurologic syndromic diagnosis (West syndrome, Rett syndrome, Lowe syndrome, and Angelman's syndrome). Six of the children had a history of drug allergies with a skin rash. Valproic acid was reintroduced in one child and resulted in a second episode of pancreatitis. Resolution of symptoms usually took several weeks following discontinuation of the drug. No association was found with valproic acid dosage, type of preparation, serum levels, duration of therapy, or presence of concomitant medications. Pancreatitis is a severe adverse effect of valproic acid use in children. Dose, duration of treatment, serum valproic acid levels, generic preparation, and the presence of concomitant antiepileptic drugs do not appear to be risk factors. Children with known drug sensitivity might be at risk. Lipase levels at the time of an acute

  3. Febrile seizures

    PubMed Central

    2014-01-01

    Febrile seizure (FS) is the most common seizure disorder of childhood, and occurs in an age-related manner. FS are classified into simple and complex. FS has a multifactorial inheritance, suggesting that both genetic and environmental factors are causative. Various animal models have elucidated the pathophysiological mechanisms of FS. Risk factors for a first FS are a family history of the disorder and a developmental delay. Risk factors for recurrent FS are a family history, age below 18 months at seizure onset, maximum temperature, and duration of fever. Risk factors for subsequent development of epilepsy are neurodevelopmental abnormality and complex FS. Clinicians evaluating children after a simple FS should concentrate on identifying the cause of the child's fever. Meningitis should be considered in the differential diagnosis for any febrile child. A simple FS does not usually require further evaluation such as ordering electroencephalography, neuroimaging, or other studies. Treatment is acute rescue therapy for prolonged FS. Antipyretics are not proven to reduce the recurrence risk for FS. Some evidence shows that both intermittent therapy with oral/rectal diazepam and continuous prophylaxis with oral phenobarbital or valproate are effective in reducing the risk of recurrence, but there is no evidence that these medications reduce the risk of subsequent epilepsy. Vaccine-induced FS is a rare event that does not lead to deleterious outcomes, but could affect patient and physician attitudes toward the safety of vaccination. PMID:25324864

  4. Increased extracellular levels of glutamate in the hippocampus of chronically epileptic rats.

    PubMed

    Soukupova, M; Binaschi, A; Falcicchia, C; Palma, E; Roncon, P; Zucchini, S; Simonato, M

    2015-08-20

    An increase in the release of excitatory amino acids has consistently been observed in the hippocampus during seizures, both in humans and animals. However, very little or nothing is known about the extracellular levels of glutamate and aspartate during epileptogenesis and in the interictal chronic period of established epilepsy. The aim of this study was to systematically evaluate the relationship between seizure activity and changes in hippocampal glutamate and aspartate extracellular levels under basal and high K(+)-evoked conditions, at various time-points in the natural history of experimental temporal lobe epilepsy, using in vivo microdialysis. Hippocampal extracellular glutamate and aspartate levels were evaluated: 24h after pilocarpine-induced status epilepticus (SE); during the latency period preceding spontaneous seizures; immediately after the first spontaneous seizure; in the chronic (epileptic) period. We found that (i) basal (spontaneous) glutamate outflow is increased in the interictal phases of the chronic period, whereas basal aspartate outflow remains stable for the entire course of the disease; (ii) high K(+) perfusion increased glutamate and aspartate outflow in both control and pilocarpine-treated animals, and the overflow of glutamate was clearly increased in the chronic group. Our data suggest that the glutamatergic signaling is preserved and even potentiated in the hippocampus of epileptic rats, and thus may favor the occurrence of spontaneous recurrent seizures. Together with an impairment of GABA signaling (Soukupova et al., 2014), these data suggest that a shift toward excitation occurs in the excitation/inhibition balance in the chronic epileptic state. PMID:26073699

  5. [Diagnosis and certification of the ability of epileptic patients to drive motor vehicles: cases consulted by the author].

    PubMed

    Sińczuk-Walczak, Halina; Wagrowska-Koski, Ewa

    2002-01-01

    Epilepsy is a frequent diagnostic problem. It is also difficult to certify whether an epileptic patient is able to drive a motor vehicle. With the advent of efficient anti-epileptic treatment, a general practice of refusing epileptic patients driving license should be seriously reconsidered. However, the matter should be given careful consideration not to jeopardize public safety and patients' rights. The aim of the study was to highlight the problems encountered in rediagnosing and certifying people with diagnosed epilepsy or pseudoepileptic seizures. The authors discuss the diagnosis and certification procedures in persons with epileptic seizures after severe craniocerebral trauma. They also analyze a case of diagnosed epilepsy suggesting the syncope in a patient with cardiac defect; a case of psychogenous pseudoepileptic seizures and the course of the disease in a patient with febrile convulsions in childhood. The problems result from the fact that reliable medical histories are not available and thus the retroassessment of the clinical picture of epileptic seizures is not possible. Missing results of timely laboratory tests (EEG, ECG) and diagnostic errors concerning earlier episodes, especially epilepsy diagnosed inconsiderately, are additional obstacles. PMID:12577810

  6. Guidelines for epilepsy management in India classification of seizures and epilepsy syndromes.

    PubMed

    Ramaratnam, Sridharan; Satishchandra, P

    2010-10-01

    This article is part of the Guidelines for Epilepsy management in India. This article reviews the classification systems used for epileptic seizures and epilepsy and present the recommendations based on current evidence. At present, epilepsy is classified according to seizure type and epilepsy syndrome using the universally accepted International League Against Epilepsy (ILAE) classification of epileptic seizures and epilepsy syndromes. A multi-axial classification system incorporating ictal phenomenology, seizure type, epilepsy syndrome, etiology and impairments is being developed by the ILAE task force. The need to consider age-related epilepsy syndromes is particularly important in children with epilepsy. The correct classification of seizure type and epilepsy syndrome helps the individual with epilepsy to receive appropriate investigations, treatment, and information about the likely prognosis. PMID:21264131

  7. A Case of Hyperventilation Syndrome Mimicking Complex Partial Seizure: Usefulness of EEG Monitoring in Emergency Department

    PubMed Central

    Kang, Bong Su

    2015-01-01

    Acute hyperventilation syndrome not only can be clinically misdiagnosed as epileptic seizures, but also complex partial seizures may involve hyperventilation as a part of aura. Although electrography (EEG) monitoring is one of the most important procedure to differentiate these conditions, it could not be widely used in emergency department. Variety forms of epileptic attack, mainly idiopathic generalized epilepsy, are provoked by voluntary hyperventilation. In contrast, it is not clear whether hyperventilation can activate the partial seizures. We reported a case of acute hyperventilation syndrome (HSV) mimicking first onset complex partial seizure, impending non-convulsive status epilepticus, which was diagnosed by EEG in the emergency department. The electrographic seizure was provoked again by voluntary hyperventilation after clinical improvement. PMID:26157670

  8. Fractal Dimension in Epileptic EEG Signal Analysis

    NASA Astrophysics Data System (ADS)

    Uthayakumar, R.

    Fractal Analysis is the well developed theory in the data analysis of non-linear time series. Especially Fractal Dimension is a powerful mathematical tool for modeling many physical and biological time signals with high complexity and irregularity. Fractal dimension is a suitable tool for analyzing the nonlinear behaviour and state of the many chaotic systems. Particularly in analysis of chaotic time series such as electroencephalograms (EEG), this feature has been used to identify and distinguish specific states of physiological function.Epilepsy is the main fatal neurological disorder in our brain, which is analyzed by the biomedical signal called Electroencephalogram (EEG). The detection of Epileptic seizures in the EEG Signals is an important tool in the diagnosis of epilepsy. So we made an attempt to analyze the EEG in depth for knowing the mystery of human consciousness. EEG has more fluctuations recorded from the human brain due to the spontaneous electrical activity. Hence EEG Signals are represented as Fractal Time Series.The algorithms of fractal dimension methods have weak ability to the estimation of complexity in the irregular graphs. Divider method is widely used to obtain the fractal dimension of curves embedded into a 2-dimensional space. The major problem is choosing initial and final step length of dividers. We propose a new algorithm based on the size measure relationship (SMR) method, quantifying the dimensional behaviour of irregular rectifiable graphs with minimum time complexity. The evidence for the suitability (equality with the nature of dimension) of the algorithm is illustrated graphically.We would like to demonstrate the criterion for the selection of dividers (minimum and maximum value) in the calculation of fractal dimension of the irregular curves with minimum time complexity. For that we design a new method of computing fractal dimension (FD) of biomedical waveforms. Compared to Higuchi's algorithm, advantages of this method include

  9. GABAergic inhibition shapes interictal dynamics in awake epileptic mice.

    PubMed

    Muldoon, Sarah Feldt; Villette, Vincent; Tressard, Thomas; Malvache, Arnaud; Reichinnek, Susanne; Bartolomei, Fabrice; Cossart, Rosa

    2015-10-01

    Epilepsy is characterized by recurrent seizures and brief, synchronous bursts called interictal spikes that are present in-between seizures and observed as transient events in EEG signals. While GABAergic transmission is known to play an important role in shaping healthy brain activity, the role of inhibition in these pathological epileptic dynamics remains unclear. Examining the microcircuits that participate in interictal spikes is thus an important first step towards addressing this issue, as the function of these transient synchronizations in either promoting or prohibiting seizures is currently under debate. To identify the microcircuits recruited in spontaneous interictal spikes in the absence of any proconvulsive drug or anaesthetic agent, we combine a chronic model of epilepsy with in vivo two-photon calcium imaging and multiunit extracellular recordings to map cellular recruitment within large populations of CA1 neurons in mice free to run on a self-paced treadmill. We show that GABAergic neurons, as opposed to their glutamatergic counterparts, are preferentially recruited during spontaneous interictal activity in the CA1 region of the epileptic mouse hippocampus. Although the specific cellular dynamics of interictal spikes are found to be highly variable, they are consistently associated with the activation of GABAergic neurons, resulting in a perisomatic inhibitory restraint that reduces neuronal spiking in the principal cell layer. Given the role of GABAergic neurons in shaping brain activity during normal cognitive function, their aberrant unbalanced recruitment during these transient events could have important downstream effects with clinical implications. PMID:26280596

  10. The epileptic seizure and the myth of Hyakinthos.

    PubMed

    Mann, Michael W

    2012-10-01

    Epilepsy is, apart from sleep, the essential human experience of what looks like a violent, dramatic but transient form of death, a death a person can recover from. This makes epilepsy interesting in Indo-European tradition where rebirth in its various forms is an established concept. This paper interprets an illumination of the Middle Ages and comments on the promise made to a fallen person with epilepsy through the myth of Hyakinthos. Hyakinthos, Apollo's friend, died in a friendly competition and was reborn from his own blood in the form of a flower that bears his name. PMID:22766110

  11. A signal processing based analysis and prediction of seizure onset in patients with epilepsy

    PubMed Central

    Namazi, Hamidreza; Kulish, Vladimir V.

    2016-01-01

    One of the main areas of behavioural neuroscience is forecasting the human behaviour. Epilepsy is a central nervous system disorder in which nerve cell activity in the brain becomes disrupted, causing seizures or periods of unusual behaviour, sensations and sometimes loss of consciousness. An estimated 5% of the world population has epileptic seizure but there is not any method to cure it. More than 30% of people with epilepsy cannot control seizure. Epileptic seizure prediction, refers to forecasting the occurrence of epileptic seizures, is one of the most important but challenging problems in biomedical sciences, across the world. In this research we propose a new methodology which is based on studying the EEG signals using two measures, the Hurst exponent and fractal dimension. In order to validate the proposed method, it is applied to epileptic EEG signals of patients by computing the Hurst exponent and fractal dimension, and then the results are validated versus the reference data. The results of these analyses show that we are able to forecast the onset of a seizure on average of 25.76 seconds before the time of occurrence. PMID:26586477

  12. A signal processing based analysis and prediction of seizure onset in patients with epilepsy.

    PubMed

    Namazi, Hamidreza; Kulish, Vladimir V; Hussaini, Jamal; Hussaini, Jalal; Delaviz, Ali; Delaviz, Fatemeh; Habibi, Shaghayegh; Ramezanpoor, Sara

    2016-01-01

    One of the main areas of behavioural neuroscience is forecasting the human behaviour. Epilepsy is a central nervous system disorder in which nerve cell activity in the brain becomes disrupted, causing seizures or periods of unusual behaviour, sensations and sometimes loss of consciousness. An estimated 5% of the world population has epileptic seizure but there is not any method to cure it. More than 30% of people with epilepsy cannot control seizure. Epileptic seizure prediction, refers to forecasting the occurrence of epileptic seizures, is one of the most important but challenging problems in biomedical sciences, across the world. In this research we propose a new methodology which is based on studying the EEG signals using two measures, the Hurst exponent and fractal dimension. In order to validate the proposed method, it is applied to epileptic EEG signals of patients by computing the Hurst exponent and fractal dimension, and then the results are validated versus the reference data. The results of these analyses show that we are able to forecast the onset of a seizure on average of 25.76 seconds before the time of occurrence. PMID:26586477

  13. Measuring complexity and synchronization phenomena in the human epileptic brain

    NASA Astrophysics Data System (ADS)

    Lehnertz, Klaus

    2006-03-01

    The framework of the theory of nonlinear dynamics provides new concepts and powerful algorithms to study complicated dynamics such as the human electroencephalogram (EEG). Although different influencing factors render the use of nonlinear measures (such as measures for complexity, synchronization, or interdependencies) in a strict sense problematic, converging evidence from various investigations now indicates that nonlinear EEG analysis provides a means to reliably characterize different states of normal and pathological brain function and thus, promises to be important for clinical practice. This talk will focus on applications of nonlinear EEG analysis in epileptology. Epilepsy affects more than 50 million individuals worldwide - approximately 1 % of the world's population. The disease is characterized by a recurrent and sudden malfunction of the brain that is termed seizure. Epileptic seizures are the clinical manifestation of an excessive and hypersynchronous activity of neurons in the brain. It is assumed that seizure activity will be induced when a critical mass of neurons is progressively involved in closely time-linked high frequency discharging. Recent investigations of intracranially recorded EEG involving nonlinear time series analysis techniques indicate that this build up of a critical mass can indeed be tracked over time scales lasting minutes to hours. Future real-time analysis devices may enable both investigations of basic mechanisms leading to seizure initiation in humans and the development of adequate seizure warning and prevention strategies.

  14. Hypothalamic hamartomas and ictal laughter: evolution of a characteristic epileptic syndrome and diagnostic value of magnetic resonance imaging.

    PubMed

    Berkovic, S F; Andermann, F; Melanson, D; Ethier, R E; Feindel, W; Gloor, P

    1988-05-01

    Detailed study of 4 patients and review of the literature allowed us to delineate further the epileptic syndrome associated with hypothalamic hamartomas, which characteristically begins in infancy with laughing seizures. Because early childhood psychomotor development is usually normal, the condition appears benign and may not even be recognized. The episodes of laughter are brief, frequent, and mechanical in nature. These features distinguish it from other forms of epileptic laughter, particularly that which occurs in temporal lobe epilepsy. Subsequently, the seizures become longer, other seizure types appear, and between the ages of 4 and 10 years, the clinical and electroencephalographic features of secondary generalized epilepsy develop. Cognitive deterioration occurs and severe behavior problems are frequent. Prognosis for seizure control and social adjustment is poor. Cortical abnormality occurs in association with the hypothalamic hamartoma. The lesions are best detected by magnetic resonance imaging but may be difficult to identify by computed tomographic scanning. PMID:3389755

  15. Increased stathmin expression strengthens fear conditioning in epileptic rats.

    PubMed

    Zhang, Linna; Feng, Danni; Tao, Hong; DE, Xiangyan; Chang, Qing; Hu, Qikuan

    2015-01-01

    Patients with temporal lobe epilepsy have inexplicable fear attack as the aura. However, the underlying neural mechanisms of seizure-modulated fear are not clarified. Recent studies identified stathmin as one of the key controlling molecules in learning and innate fear. Stathmin binds to tubulin, inhibits microtubule assembly and promotes microtubule catastrophes. Therefore, stathmin is predicted to play a crucial role in the association of epilepsy seizures with fear conditioning. Firstly, a pilocarpine model of epilepsy in rats was established, and subsequently the fear condition training was performed. The epileptic rats with fear conditioning (epilepsy + fear) had a much longer freezing time compared to each single stimulus. The increased freezing levels revealed a significantly strengthened effect of the epileptic seizures on the learned fear of the tone-shock contextual. Subsequently, the stathmin expression was compared in the hippocampus, the amygdale, the insular cortex and the temporal lobe. The significant change of stathmin expression occurred in the insular and the hippocampus, but not in the amygdale. Stathmin expression and dendritic microtubule stability were compared between fear and epilepsy in rats. Epilepsy was found to strengthen the fear conditioning with increased expression of stathmin and a decrease in microtubule stability. Fear conditioning slightly increased the expression of stathmin, whereas epilepsy with fear conditioning increased it significantly in the hippocampus, insular cortex and hypothalamus. The phosphorylated stathmin slightly increased in the epilepsy with fear conditioning. The increased expression of stathmin was contrary to the decrease of the stathmin microtubule-associated protein (MAP2) and α-tubulin in the epileptic rats with fear conditioning in all three areas of the brain. The most significant change of the ratio of MAP2 and α-tubulin/stathmin occurred in the insular cortex and hippocampus. In conclusion

  16. Mutations affecting GABAergic signaling in seizures and epilepsy

    PubMed Central

    Galanopoulou, Aristea S.

    2010-01-01

    The causes of epilepsies and epileptic seizures are multifactorial. Genetic predisposition may contribute in certain types of epilepsies and seizures, whether idiopathic or symptomatic of genetic origin. Although these are not very common, they have offered a unique opportunity to investigate the molecular mechanisms underlying epileptogenesis and ictogenesis. Among the implicated gene mutations, a number of GABAA receptor subunit mutations have been recently identified that contribute to several idiopathic epilepsies, febrile seizures, and rarely to certain types of symptomatic epilepsies, like the severe myoclonic epilepsy of infancy. Deletion of GABAA receptor genes has also been linked to Angelman syndrome. Furthermore, mutations of proteins controlling chloride homeostasis, which indirectly defines the functional consequences of GABAA signaling, have been identified. These include the chloride channel 2 (CLCN2) and the potassium chloride cotransporter KCC3. The pathogenic role of CLCN2 mutations has not been clearly demonstrated and may represent either susceptibility genes or, in certain cases, innocuous polymorphisms. KCC3 mutations have been associated with hereditary motor and sensory polyneuropathy with corpus callosum agenesis (Andermann syndrome) that often manifests with epileptic seizures. This review summarizes the recent progress in the genetic linkages of epilepsies and seizures to the above genes and discusses potential pathogenic mechanisms that contribute to the age, sex, and conditional expression of these seizures in carriers of these mutations. PMID:20352446

  17. Recognition and management of seizures in children in emergency departments.

    PubMed

    Caplan, Edward; Dey, Indranil; Scammell, Andrea; Burnage, Katy; Paul, Siba Prosad

    2016-09-01

    Seizure is defined as 'a sudden surge of electrical activity in the brain, which usually affects how a person appears or acts for a short time'. Children who have experienced seizures commonly present to emergency departments (EDs), and detailed history taking will usually help differentiate between epileptic and non-epileptic events. ED nurses are often the first health professionals to manage children with seizures, and this is best done by following the ABCDE approach. Treatment involves termination of seizures with anticonvulsants, and children may need other symptomatic management. Seizures in children can be an extremely distressing experience for parents, who should be supported and kept informed by experienced ED nurses. Nurses also play a vital role in educating parents on correct administration of anticonvulsants and safety advice. This article discusses the aetiology, clinical presentation, diagnosis and management of children with seizures, with particular emphasis on epilepsy. It includes two reflective case studies to highlight the challenges faced by healthcare professionals managing children who present with convulsions. PMID:27615348

  18. Reflex seizures, traits, and epilepsies: from physiology to pathology.

    PubMed

    Koepp, Matthias J; Caciagli, Lorenzo; Pressler, Ronit M; Lehnertz, Klaus; Beniczky, Sándor

    2016-01-01

    Epileptic seizures are generally unpredictable and arise spontaneously. Patients often report non-specific triggers such as stress or sleep deprivation, but only rarely do seizures occur as a reflex event, in which they are objectively and consistently modulated, precipitated, or inhibited by external sensory stimuli or specific cognitive processes. The seizures triggered by such stimuli and processes in susceptible individuals can have different latencies. Once seizure-suppressing mechanisms fail and a critical mass (the so-called tipping point) of cortical activation is reached, reflex seizures stereotypically manifest with common motor features independent of the physiological network involved. The complexity of stimuli increases from simple sensory to complex cognitive-emotional with increasing age of onset. The topography of physiological networks involved follows the posterior-to-anterior trajectory of brain development, reflecting age-related changes in brain excitability. Reflex seizures and traits probably represent the extremes of a continuum, and understanding of their underlying mechanisms might help to elucidate the transition of normal physiological function to paroxysmal epileptic activity. PMID:26627365

  19. Seizure Disorders in Pregnancy

    MedlinePlus

    ... Seizures that cause a loss of consciousness and violent, jerking movements, called grand mal seizures , are especially ... of seizure that causes loss of consciousness and violent, jerking movements. Intrauterine Device: A small device that ...

  20. Virtual Cortical Resection Reveals Push-Pull Network Control Preceding Seizure Evolution.

    PubMed

    Khambhati, Ankit N; Davis, Kathryn A; Lucas, Timothy H; Litt, Brian; Bassett, Danielle S

    2016-09-01

    In ∼20 million people with drug-resistant epilepsy, focal seizures originating in dysfunctional brain networks will often evolve and spread to surrounding tissue, disrupting function in otherwise normal brain regions. To identify network control mechanisms that regulate seizure spread, we developed a novel tool for pinpointing brain regions that facilitate synchronization in the epileptic network. Our method measures the impact of virtually resecting putative control regions on synchronization in a validated model of the human epileptic network. By applying our technique to time-varying functional networks, we identified brain regions whose topological role is to synchronize or desynchronize the epileptic network. Our results suggest that greater antagonistic push-pull interaction between synchronizing and desynchronizing brain regions better constrains seizure spread. These methods, while applied here to epilepsy, are generalizable to other brain networks and have wide applicability in isolating and mapping functional drivers of brain dynamics in health and disease. PMID:27568515

  1. Ictal electrographic pattern of focal subcortical seizures induced by sound in rats.

    PubMed

    Vinogradova, Lyudmila V; Grinenko, Olesya A

    2016-03-15

    It is now recognized that both generalized and focal seizures may originate in subcortical structures. The well-known types of focal subcortically-driven seizures are gelastic seizures in patients with the hypothalamic hamartoma and sound-induced seizures in rodents with audiogenic epilepsy. The seizures are generated by subcortical intrinsically epileptogenic focus, the hamartoma in humans and the inferior colliculus (IC) in rodents. In patients with gelastic epilepsy additional seizure types may develop with time that are supposed to result from secondary epileptogenesis and spreading of epileptic discharges to the cortex. Repeated audiogenic seizures can also lead to development of additional seizure behavior and secondary epileptic activation of the cortex. This process, named audiogenic kindling, may be useful for studying secondary subcortico-cortical epileptogenesis. Using intracollicular and intracortical recordings, we studied an ictal electrographic pattern of focal subcortical seizures induced by repeated sound stimulation in Wistar audiogenic-susceptible rats. The audiogenic seizures, representing brief attacks of paroxysmal unidirectional running, were accompanied by epileptiform abnormalities in the IC, mostly on the side ipsilateral to run direction, and enhanced rhythmic 8-9Hz activity in the cortex. With repetition of the subcortical seizures and kindling development, a secondary cortical discharge began to follow the IC seizure. The secondary discharge initially involved the cortex homolateral to the side of dominant subcortical epileptiform abnormalities and behaviorally expressed as limbic (partial) clonus. Kindling progression was associated with bilateralization of the secondary cortical discharge, an increase in its amplitude and duration, intensification of associated behavioral seizures (from partial clonus to generalized tonic-clonic convulsions). Thus, ictal recordings during brief audiogenic running seizures showed their focal

  2. Epileptic nystagmus: description of a pediatric case with EEG correlation and SPECT findings.

    PubMed

    Nicita, F; Papetti, L; Spalice, A; Ursitti, F; Massa, R; Properzi, E; Iannetti, P

    2010-11-15

    Epileptic nystagmus (EN) describes repetitive eye movements that result from seizure activity. We describe a patient with EN and vertigo first noted at the age of 4 yr and 10 mo. Brain MRI did not show anomalies. Ictal EEG recordings revealed epileptic activity during three episodes of horizontal, left-beating nystagmus not crossing the midline. Ictal 99mTc-ECD SPECT demonstrated the presence of active foci in multiple cerebral regions including bilateral prefrontal, bilateral parieto-temporo-occipital and the left parieto-insular-vestibular areas. A wide area of hypoperfusion was also evident in the right hemisphere, prevailing in the parieto-occipital regions and the medial prefrontal gyrus. Topiramate was started at a dose of 2 mg/kg/d with complete seizure control after 14 d. EEG and SPECT were repeated after a seizure-free period of 1 mo; disappearance of epileptic activity and modification of cerebral perfusion were evident. This case reaffirms the cortical origin and involvement of temporo-occipital and frontal cortex in the genesis of saccadic epileptic nystagmus. Rapid complete control of clinical events coincided with the normalization of EEG and improvement of the SPECT pattern. PMID:20832824

  3. Uric acid is released in the brain during seizure activity and increases severity of seizures in a mouse model for acute limbic seizures.

    PubMed

    Thyrion, Lisa; Raedt, Robrecht; Portelli, Jeanelle; Van Loo, Pieter; Wadman, Wytse J; Glorieux, Griet; Lambrecht, Bart N; Janssens, Sophie; Vonck, Kristl; Boon, Paul

    2016-03-01

    Recent evidence points at an important role of endogenous cell-damage induced pro-inflammatory molecules in the generation of epileptic seizures. Uric acid, under the form of monosodium urate crystals, has shown to have pro-inflammatory properties in the body, but less is known about its role in seizure generation. This study aimed to unravel the contribution of uric acid to seizure generation in a mouse model for acute limbic seizures. We measured extracellular levels of uric acid in the brain and modulated them using complementary pharmacological and genetic tools. Local extracellular uric acid levels increased three to four times during acute limbic seizures and peaked between 50 and 100 min after kainic acid infusion. Manipulating uric acid levels through administration of allopurinol or knock-out of urate oxidase significantly altered the number of generalized seizures, decreasing and increasing them by a twofold respectively. Taken together, our results consistently show that uric acid is released during limbic seizures and suggest that uric acid facilitates seizure generalization. PMID:26774005

  4. Discerning nonstationarity from nonlinearity in seizure-free and preseizure EEG recordings from epilepsy patients.

    PubMed

    Rieke, Christoph; Mormann, Florian; Andrzejak, Ralph G; Kreuz, Thomas; David, Peter; Elger, Christian E; Lehnertz, Klaus

    2003-05-01

    A number of recent studies indicate that nonlinear electroencephalogram (EEG) analyses allow to define a state predictive of an impending epileptic seizure. In this paper, we combine a method for detecting nonlinear determinism with a novel test for stationarity to characterize EEG recordings from both the seizure-free interval and the preseizure phase. We discuss differences between these periods, particularly an increased occurrence of stationary, nonlinear segments prior to seizures. These differences seem most prominent for recording sites within the seizure-generating area and for EEG segments less than one minute's length. PMID:12769439

  5. Reducing premature KCC2 expression rescues seizure susceptibility and spine morphology in atypical febrile seizures.

    PubMed

    Awad, Patricia N; Sanon, Nathalie T; Chattopadhyaya, Bidisha; Carriço, Josianne Nunes; Ouardouz, Mohamed; Gagné, Jonathan; Duss, Sandra; Wolf, Daniele; Desgent, Sébastien; Cancedda, Laura; Carmant, Lionel; Di Cristo, Graziella

    2016-07-01

    Atypical febrile seizures are considered a risk factor for epilepsy onset and cognitive impairments later in life. Patients with temporal lobe epilepsy and a history of atypical febrile seizures often carry a cortical malformation. This association has led to the hypothesis that the presence of a cortical dysplasia exacerbates febrile seizures in infancy, in turn increasing the risk for neurological sequelae. The mechanisms linking these events are currently poorly understood. Potassium-chloride cotransporter KCC2 affects several aspects of neuronal circuit development and function, by modulating GABAergic transmission and excitatory synapse formation. Recent data suggest that KCC2 downregulation contributes to seizure generation in the epileptic adult brain, but its role in the developing brain is still controversial. In a rodent model of atypical febrile seizures, combining a cortical dysplasia and hyperthermia-induced seizures (LHS rats), we found a premature and sustained increase in KCC2 protein levels, accompanied by a negative shift of the reversal potential of GABA. In parallel, we observed a significant reduction in dendritic spine size and mEPSC amplitude in CA1 pyramidal neurons, accompanied by spatial memory deficits. To investigate whether KCC2 premature overexpression plays a role in seizure susceptibility and synaptic alterations, we reduced KCC2 expression selectively in hippocampal pyramidal neurons by in utero electroporation of shRNA. Remarkably, KCC2 shRNA-electroporated LHS rats show reduced hyperthermia-induced seizure susceptibility, while dendritic spine size deficits were rescued. Our findings demonstrate that KCC2 overexpression in a compromised developing brain increases febrile seizure susceptibility and contribute to dendritic spine alterations. PMID:26875662

  6. Determination of epileptic focus side in mesial temporal lobe epilepsy using long-term noninvasive fNIRS/EEG monitoring for presurgical evaluation

    PubMed Central

    Rizki, Edmi Edison; Uga, Minako; Dan, Ippeita; Dan, Haruka; Tsuzuki, Daisuke; Yokota, Hidenori; Oguro, Keiji; Watanabe, Eiju

    2015-01-01

    Abstract. Noninvasive localization of an epileptogenic zone is a fundamental step for presurgical evaluation of epileptic patients. Here, we applied long-term simultaneous functional near-infrared spectroscopy (fNIRS)/electroencephalogram (EEG) monitoring for focus diagnosis in patients with mesial temporal lobe epilepsy (MTLE). Six MTLE patients underwent long-term (8–16 h per day for 4 days) fNIRS/EEG monitoring for the occurrence of spontaneous seizures. Four spontaneous seizures were successfully recorded out of the six patients. To determine oxy-Hb amplitude, the period-average values of oxy-Hb across 20 s from the EEG- or clinically defined epileptic onset were calculated for both hemispheres from the simultaneously recorded fNIRS data. The average oxy-Hb values for the temporal lobe at the earlier EEG- or clinically defined epileptic onsets were greater for the epileptic side than for the contralateral side after EEG activity suppression, spike train, and clinical seizure in all four cases. The true laterality was determined based on the relief of seizures by selective amygdalo-hippocampectomy. Thus, oxy-Hb amplitude could be a reliable measure for determining the epileptic focus side. Long-term simultaneous fNIRS/EEG measurement serves as an effective tool for recording spontaneous seizures. Cerebral hemodynamic measurement by fNIRS would serve as a valuable supplementary noninvasive measurement method for presurgical evaluation of MTLE. PMID:26158007

  7. Seizures and Teens: Stress, Sleep, & Seizures

    ERIC Educational Resources Information Center

    Shafer, Patricia Osborne

    2007-01-01

    Most parents are used to erratic sleep patterns and mood swings in their teenagers. When these occur in an adolescent with seizures, however, the parent may wonder if sleep and mood problems are related to seizures. Sorting out the cause and effects of sleep in an adolescent with seizures can be confusing. Since stress can be a contributor to both…

  8. [Genes Responsible for Epileptic Syndromes].

    PubMed

    Kato, Mitsuhiro

    2016-02-01

    The first causative gene for epileptic syndrome was revealed 20 years ago. Since then, many genes responsible for epileptic syndrome, particularly sporadic epileptic encephalopathies, such as Ohtahara syndrome, West syndrome, and focal cortical dysplasia, have been identified. Although epilepsy was recognized as a channelopathy in the beginning stages of gene discovery, other molecular mechanisms for epileptic syndromes, such as interneuronopathy, synaptic vesicle release, and mTOR signal transduction, are emerging. A new technique for gene analysis using the next-generation sequencer is now available for clinical purpose abroad and precision medicine based on the molecular mechanisms has started. Infrastructural development of the official framework, from molecular diagnosis to personalized therapy, is urgently required in Japan. PMID:26873236

  9. Posterior reversible encephalopathy syndrome (PRES): electroencephalographic findings and seizure patterns.

    PubMed

    Kastrup, Oliver; Gerwig, Markus; Frings, Markus; Diener, Hans-Christoph

    2012-07-01

    To better describe seizure type, frequency, and electroencephalographic (EEG) findings in posterior reversible encephalopathy syndrome (PRES) and correlate these data with clinical and magnetic resonance imaging (MRI) data, we retrospectively assessed medical charts and EEG studies of patients with PRES treated between 2004 and 2011. Data collected included patients' underlying pathology, lesion distribution by MRI, seizure type and frequency, EEG pathologic background activity, focal pathology, and epileptogenic activity. Thirty-eight of 49 adults with PRES suffered from seizures; 17 underwent EEG and were included in the analysis. Perpetuating factors were similar to those reported in the literature. In 15 of 17 patients, MRI showed widespread involvement rather than purely occipital lesions. Nine patients had subcortical and cortical involvement. Seizures were single short grand mal (GM) in 11, serial GM in 2, recurrent GM in 2, and additional focal seizures in 2. No seizures were noted beyond the first day. After discontinuation of antiepileptic medication, no patients experienced seizure recurrence during 6-month follow-up. EEG showed diffuse theta/delta slowing in 13 patients and epileptogenic activity with focal sharp-wave and periodic lateralizing epileptiform discharges in 2 patients. Seizures in PRES are most commonly single GM and are usually of limited duration. EEG shows variable theta/delta slowing. Focal EEG pathology is seen in patients with focal seizures. Seizures occur early after disease onset and terminate spontaneously or under therapy during the first 24 h. Seizure recurrence beyond 24 h and chronic epilepsy were not seen. Seizures in PRES are frequent but appear to be uncomplicated and do not herald worse prognosis. EEG is helpful in evaluating the degree of encephalopathy and monitoring epileptic activity. Long-term antiepileptic medication does not appear to be warranted. PMID:22189837

  10. Seizure Prediction and Detection via Phase and Amplitude Lock Values.

    PubMed

    Myers, Mark H; Padmanabha, Akshay; Hossain, Gahangir; de Jongh Curry, Amy L; Blaha, Charles D

    2016-01-01

    A robust seizure prediction methodology would enable a "closed-loop" system that would only activate as impending seizure activity is detected. Such a system would eliminate ongoing stimulation to the brain, thereby eliminating such side effects as coughing, hoarseness, voice alteration, and paresthesias (Murphy et al., 1998; Ben-Menachem, 2001), while preserving overall battery life of the system. The seizure prediction and detection algorithm uses Phase/Amplitude Lock Values (PLV/ALV) which calculate the difference of phase and amplitude between electroencephalogram (EEG) electrodes local and remote to the epileptic event. PLV is used as the seizure prediction marker and signifies the emergence of abnormal neuronal activations through local neuron populations. PLV/ALVs are used as seizure detection markers to demarcate the seizure event, or when the local seizure event has propagated throughout the brain turning into a grand-mal event. We verify the performance of this methodology against the "CHB-MIT Scalp EEG Database" which features seizure attributes for testing. Through this testing, we can demonstrate a high degree of sensivity and precision of our methodology between pre-ictal and ictal events. PMID:27014017

  11. Seizure Prediction and Detection via Phase and Amplitude Lock Values

    PubMed Central

    Myers, Mark H.; Padmanabha, Akshay; Hossain, Gahangir; de Jongh Curry, Amy L.; Blaha, Charles D.

    2016-01-01

    A robust seizure prediction methodology would enable a “closed-loop” system that would only activate as impending seizure activity is detected. Such a system would eliminate ongoing stimulation to the brain, thereby eliminating such side effects as coughing, hoarseness, voice alteration, and paresthesias (Murphy et al., 1998; Ben-Menachem, 2001), while preserving overall battery life of the system. The seizure prediction and detection algorithm uses Phase/Amplitude Lock Values (PLV/ALV) which calculate the difference of phase and amplitude between electroencephalogram (EEG) electrodes local and remote to the epileptic event. PLV is used as the seizure prediction marker and signifies the emergence of abnormal neuronal activations through local neuron populations. PLV/ALVs are used as seizure detection markers to demarcate the seizure event, or when the local seizure event has propagated throughout the brain turning into a grand-mal event. We verify the performance of this methodology against the “CHB-MIT Scalp EEG Database” which features seizure attributes for testing. Through this testing, we can demonstrate a high degree of sensivity and precision of our methodology between pre-ictal and ictal events. PMID:27014017

  12. Signal subspace integration for improved seizure localization

    PubMed Central

    Stamoulis, Catherine; Fernández, Iván Sánchez; Chang, Bernard S.; Loddenkemper, Tobias

    2012-01-01

    A subspace signal processing approach is proposed for improved scalp EEG-based localization of broad-focus epileptic seizures, and estimation of the directions of source arrivals (DOA). Ictal scalp EEGs from adult and pediatric patients with broad-focus seizures were first decomposed into dominant signal modes, and signal and noise subspaces at each modal frequency, to improve the signal-to-noise ratio while preserving the original data correlation structure. Transformed (focused) modal signals were then resynthesized into wideband signals from which the number of sources and DOA were estimated. These were compared to denoised signals via principal components analysis (PCA). Coherent subspace processing performed better than PCA, significantly improved the localization of ictal EEGs and the estimation of distinct sources and corresponding DOAs. PMID:23366067

  13. Signal subspace integration for improved seizure localization.

    PubMed

    Stamoulis, Catherine; Fernández, Iván Sánchez; Chang, Bernard S; Loddenkemper, Tobias

    2012-01-01

    A subspace signal processing approach is proposed for improved scalp EEG-based localization of broad-focus epileptic seizures, and estimation of the directions of source arrivals (DOA). Ictal scalp EEGs from adult and pediatric patients with broad-focus seizures were first decomposed into dominant signal modes, and signal and noise subspaces at each modal frequency, to improve the signal-to-noise ratio while preserving the original data correlation structure. Transformed (focused) modal signals were then resynthesized into wideband signals from which the number of sources and DOA were estimated. These were compared to denoised signals via principal components analysis (PCA). Coherent subspace processing performed better than PCA, significantly improved the localization of ictal EEGs and the estimation of distinct sources and corresponding DOAs. PMID:23366067

  14. Seizure-Precipitating Factors in Relation to medical Recommendations: Especially Those Limiting Physical Activity.

    PubMed

    Stanuszek, Agnieszka; Wnękowicz, Emilia; Kuźniar, Ewelina; Krakowska, Karolina; Gergont, Aleksandra; Kaciński, Marek

    2015-10-01

    Identification of factors precipitating epileptic seizures should always have practical implications and should always result in special recommendations given to patients. The purpose of our study is to analyze the relation between seizure-triggering factors and restrictive recommendations involving limitation of physical activity in particular. The research group consisted of 407 children hospitalized due to seizures. Their precipitants were identified in 27.5% of the patients. The most common included infection/fever, stress, and flashing lights. Although sport was documented as a precipitant in only 3.4% of all children, 8.1% of the investigated group were recommended to limit physical activity. As some episodes of epileptic seizures are reported to be provoked by sport, multiple restrictions are imposed on children. In the light of the worldwide academic literature and the present study, the recommendation of limiting sports activity is no longer supported. PMID:25808459

  15. Clinical and genetic analysis of a new multigenerational pedigree with GEFS+ (Generalized Epilepsy with Febrile Seizures Plus).

    PubMed

    Gérard, Frédérique; Pereira, Sandrine; Robaglia-Schlupp, Andrée; Genton, Pierre; Szepetowski, Pierre

    2002-06-01

    Febrile seizures affect 2-5% of all children younger than 6 years. A small proportion of children with febrile seizures later develop epilepsy. The syndrome of generalized epilepsy with febrile seizures plus (GEFS+) is a heterogeneous disorder characterized by febrile seizures that may persist beyond age 6 years and nonfebrile seizures. Several genes have been localized for FS by linkage analysis, and three GEFS+ genes (SCN1A, SCN1B, GABRG2) have been identified. We identified a large multigenerational family with GEFS+ in France. All affected members had FSs. Among them, seven had other types of epileptic seizures including FSs after age 6 years, nonfebrile generalized seizures, or partial seizures later in life. Genetic linkage study excluded the candidate genes and loci for FS and GEFS+, thus proving the existence of a new GEFS+ genetic locus underlying the phenotype observed in this family. PMID:12060016

  16. Optimal duration of video-electroencephalographic monitoring to capture seizures.

    PubMed

    Foong, Monica; Seneviratne, Udaya

    2016-06-01

    We aimed to find the optimal duration of long-term video-electroencephalographic monitoring (VEM) to capture seizures in patients with epileptic seizures (ES) and psychogenic non-epileptic seizures (PNES) by evaluating the time to first clinical event and the diagnostic yield of clinical events and positive cases in each day of VEM. Patients aged ⩾18years who underwent VEM from May 2009 to June 2014 were studied retrospectively. Demographic, clinical and VEM data (including total monitoring length, type and time to first event, total number of ES/PNES) were collected. The difference in time to the first event between ES and PNES was analysed with Mann-Whitney U test. Of 207 VEM studies performed during the 5year period, 108 recordings captured seizures (ES and PNES) (52.2%). Median times to the first ES and PNES were 19.7 and 23.4hours, respectively (p=0.99). A small majority (53.7%) of event-positive patients had their first event on the first day of monitoring. By the end of the fifth day, 98% of all clinical events were captured and 99% of all positive cases were diagnosed. In conclusion, in a patient monitoring program where a diagnosis is reached by capturing seizures, 5days is probably sufficient to capture the greatest number of events and diagnose 99% of those patients. PMID:26960265

  17. Are brief or recurrent transient global amnesias of epileptic origin?

    PubMed Central

    Melo, T P; Ferro, J M; Paiva, T

    1994-01-01

    To evaluate if short (less than one hour) or recurrent, or both, episodes of transient global amnesia (TGA) have an epileptic origin or carry a subsequent risk of epilepsy a group of patients with these types of TGA attacks was studied. The group was selected from a prospective series of 103 patients with TGA. Sixteen patients had an episode lasting less than one hour, 13 had more than one episode, and five patients had both short and recurrent attacks. For each patient the number of recurrences was small (four or less) and they were separated by months or years. During short attacks of TGA many subjects showed other typical features of TGA including repeated questioning (12 subjects) and performance of purposeful complex acts (eight subjects). Twelve short attacks were closely related to a characteristic precipitating event. During follow up only one patient had a seizure (partial motor). No other association between either short or repeated attacks of TGA and past history of epilepsy or paroxysmal discharges were seen on the EEG. Short or recurrent, or both, attacks of TGA are not epileptic and do not carry a relevant risk of subsequent seizures. Images PMID:8201337

  18. Studying Network Mechanisms Using Intracranial Stimulation in Epileptic Patients

    PubMed Central

    David, Olivier; Bastin, Julien; Chabardès, Stéphan; Minotti, Lorella; Kahane, Philippe

    2010-01-01

    Patients suffering from focal drug-resistant epilepsy who are explored using intracranial electrodes allow to obtain data of exceptional value for studying brain dynamics in correlation with pathophysiological and cognitive processes. Direct electrical stimulation (DES) of cortical regions and axonal tracts in those patients elicits a number of very specific perceptual or behavioral responses, but also abnormal responses due to specific configurations of epileptic networks. Here, we review how anatomo-functional brain connectivity and epilepsy network mechanisms can be assessed from DES responses measured in patients. After a brief summary of mechanisms of action of brain electrical stimulation, we recall the conceptual framework for interpreting DES results in the context of brain connectivity and review how DES can be used for the characterization of functional networks, the identification of the seizure onset zone, the study of brain plasticity mechanisms, and the anticipation of epileptic seizures. This pool of exceptional data may be underexploited by fundamental research on brain connectivity and leaves much to be learned. PMID:21060722

  19. Treating Lennox–Gastaut syndrome in epileptic pediatric patients with third-generation rufinamide

    PubMed Central

    Gresham, Jessica; Eiland, Lea S; Chung, Allison M

    2010-01-01

    Lennox–Gastaut syndrome (LGS) is a rare but debilitating pediatric epileptic encephalopathy characterized by multiple intractable seizure types. Treatment of LGS is challenging because of the small number of antiepileptic drugs (AEDs) which are effective for this syndrome, as well as the need for polytherapy in the majority of patients. This review focuses on the treatment of LGS with rufinamide, a recently approved third-generation AED with reported efficacy as adjunctive therapy for LGS. All relevant papers identified through a PubMed search on the treatment of LGS with rufinamide were reviewed. To date, the literature suggests improvements in seizure frequency for pediatric patients with LGS on rufinamide. Rufinamide appears to be especially effective for atonic or drop attack seizures. Rufinamide also displays a favorable adverse event profile compared with the older anticonvulsants, as well as a minimal number of drug interactions, making it a promising option for the adjunctive treatment of seizures associated with LGS. PMID:20957124

  20. Receptor for Advanced Glycation Endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures.

    PubMed

    Iori, Valentina; Maroso, Mattia; Rizzi, Massimo; Iyer, Anand M; Vertemara, Roberta; Carli, Mirjana; Agresti, Alessandra; Antonelli, Antonella; Bianchi, Marco E; Aronica, Eleonora; Ravizza, Teresa; Vezzani, Annamaria

    2013-10-01

    Toll-like receptor 4 (TLR4) activation in neuron and astrocytes by High Mobility Group Box 1 (HMGB1) protein is a key mechanism of seizure generation. HMGB1 also activates the Receptor for Advanced Glycation Endproducts (RAGE), but it was unknown whether RAGE activation contributes to seizures or to HMGB1 proictogenic effects. We found that acute EEG seizures induced by 7ng intrahippocampal kainic acid (KA) were significantly reduced in Rage-/- mice relative to wild type (Wt) mice. The proictogenic effect of HMGB1 was decreased in Rage-/- mice, but less so, than in Tlr4-/- mice. In a mouse mesial temporal lobe epilepsy (mTLE) model, status epilepticus induced by 200ng intrahippocampal KA and the onset of the spontaneous epileptic activity were similar in Rage-/-, Tlr4-/- and Wt mice. However, the number of hippocampal paroxysmal episodes and their duration were both decreased in epileptic Rage-/- and Tlr4-/- mice vs Wt mice. All strains of epileptic mice displayed similar cognitive deficits in the novel object recognition test vs the corresponding control mice. CA1 neuronal cell loss was increased in epileptic Rage-/- vs epileptic Wt mice, while granule cell dispersion and doublecortin (DCX)-positive neurons were similarly affected. Notably, DCX neurons were preserved in epileptic Tlr4-/- mice. We did not find compensatory changes in HMGB1-related inflammatory signaling nor in glutamate receptor subunits in Rage-/- and Tlr4-/- naïve mice, except for ~20% NR2B subunit reduction in Rage-/- mice. RAGE was induced in neurons, astrocytes and microvessels in human and experimental mTLE hippocampi. We conclude that RAGE contributes to hyperexcitability underlying acute and chronic seizures, as well as to the proictogenic effects of HMGB1. RAGE and TLR4 play different roles in the neuropathologic sequelae developing after status epilepticus. These findings reveal new molecular mechanisms underlying seizures, cell loss and neurogenesis which involve inflammatory pathways

  1. Evaluation of selected recurrence measures in discriminating pre-ictal and inter-ictal periods from epileptic EEG data

    NASA Astrophysics Data System (ADS)

    Ngamga, Eulalie Joelle; Bialonski, Stephan; Marwan, Norbert; Kurths, Jürgen; Geier, Christian; Lehnertz, Klaus

    2016-04-01

    We investigate the suitability of selected measures of complexity based on recurrence quantification analysis and recurrence networks for an identification of pre-seizure states in multi-day, multi-channel, invasive electroencephalographic recordings from five epilepsy patients. We employ several statistical techniques to avoid spurious findings due to various influencing factors and due to multiple comparisons and observe precursory structures in three patients. Our findings indicate a high congruence among measures in identifying seizure precursors and emphasize the current notion of seizure generation in large-scale epileptic networks. A final judgment of the suitability for field studies, however, requires evaluation on a larger database.

  2. Single tonic-clonic seizure after energy drink abuse.

    PubMed

    Calabrò, Rocco S; Italiano, Domenico; Gervasi, Giuseppe; Bramanti, Placido

    2012-03-01

    Energy drinks are soft beverages especially marketed for adolescents in order to obtain a heightened sense of awareness. Concerns about the safety of these drinks are raised based on our observation of potentially serious adverse effects. Caffeine and taurine are psychoactive agents highly present in energy drinks, which may lead to modification of neurotransmission. We herein report the case of a 20-year-old man presenting with a generalized epileptic seizure after energy drink consumption. PMID:22370117

  3. Sudden unexpected death in epileptics following sudden, intense, increases in geomagnetic activity: Prevalence of effect and potential mechanisms

    NASA Astrophysics Data System (ADS)

    Persinger, M. A.; Psych, C.

    1995-12-01

    Abrupt, intense increases in global geomagnetic activity during the local night may precipitate a significant proportion of sudden unexpected (or unexplained) deaths (SUD) in epileptics. Over a 2-year period SUD in healthy chronic epileptic rats occurred when the average daily geomagnetic activity exceeded 50 nT (nanoTesla) and suddenly began during local night. Other experiments demonstrated that epileptic rats displayed more spontaneous seizures per night if there had been sudden increases in geomagnetic activity. Analyses of previously published data indicated that the number of SUDs/month in a population of human epileptics was positively associated with the number of days/month when the average geomagnetic activity exceeded 50 nT. The results support the hypothesis that suppression of the nocturnal concentrations of the endogenous anticonvulsant melatonin by sudden increases in geomagnetic activity may encourage fatal cardiac arrhythmias by uncoupling the insular/amygdaloid-paraventricular hypothalamic-solitary nucleus pathways.

  4. Management of a high risk epileptic patient under conscious sedation: A multidisciplinary approach

    PubMed Central

    Chellathurai, Burnice Nalina Kumari; Thiagarajan, Ramakrishnan; Jayakumaran, SelvaKumar; Devadoss, Pradeep; Elavazhagan

    2016-01-01

    Epilepsy, characterized by the risk of recurrent seizures, is a chronic disease that afflicts about 5% of the world's population. The main dental problems associated with epileptic patients include gingival hyperplasia, minor oral injuries, tooth trauma, and prosthodontic problems, which require the dental treatment. Stress and fear are the most common triggering factors for the epilepsy in dental chair. Therefore, a more appropriate method of treating such epileptic patients may be warranted. Conscious sedation is a technique of providing good anesthesia and analgesia to patients, the main advantage of which is the patient's rapid return to presentation levels. Midazolam used as a sedative agent has anticonvulsant properties. This case report highlights a case requiring multiple dental procedures carried out in a high risk epileptic patient under conscious sedation. PMID:27041847

  5. The Lombrosian prejudice in medicine. The case of epilepsy. Epileptic psychosis. Epilepsy and aggressiveness.

    PubMed

    Granieri, Enrico; Fazio, Patrik

    2012-02-01

    In the nineteenth century, epilepsy became subject of experimental research. Lombroso established a relationship between epilepsy and criminality believing in the existence of epileptoid traits and atavism. He tried to demonstrate the common origin of epilepsy, criminality, and genius; factors deteriorating the CNS would act upon centers, which control behavior and ethics. This impairment would cause a lack of control on the lower nervous centers, reducing restraints of instincts and criminal behavior. He described developmental frontal cortex lesions in epileptic patients (today Taylor's dysplasia) and these observations supported the erroneous conviction of a relationship between criminality and epilepsy. Neurological, behavioral, and criminological sciences analyzed Lombroso's doctrine, whereas it was controversial that epileptic patients should be prone to violent actions and aggressive behavior. Today, there is an international panel of experts on epilepsy, which suggests five relevant criteria to determine if a crime committed with aggressiveness could result from epileptic seizures. PMID:21538126

  6. Dynamic analysis of heartbeat rate signals of epileptics using multidimensional phase space reconstruction approach

    NASA Astrophysics Data System (ADS)

    Su, Zhi-Yuan; Wu, Tzuyin; Yang, Po-Hua; Wang, Yeng-Tseng

    2008-04-01

    The heartbeat rate signal provides an invaluable means of assessing the sympathetic-parasympathetic balance of the human autonomic nervous system and thus represents an ideal diagnostic mechanism for detecting a variety of disorders such as epilepsy, cardiac disease and so forth. The current study analyses the dynamics of the heartbeat rate signal of known epilepsy sufferers in order to obtain a detailed understanding of the heart rate pattern during a seizure event. In the proposed approach, the ECG signals are converted into heartbeat rate signals and the embedology theorem is then used to construct the corresponding multidimensional phase space. The dynamics of the heartbeat rate signal are then analyzed before, during and after an epileptic seizure by examining the maximum Lyapunov exponent and the correlation dimension of the attractors in the reconstructed phase space. In general, the results reveal that the heartbeat rate signal transits from an aperiodic, highly-complex behaviour before an epileptic seizure to a low dimensional chaotic motion during the seizure event. Following the seizure, the signal trajectories return to a highly-complex state, and the complex signal patterns associated with normal physiological conditions reappear.

  7. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI.

    PubMed

    Pizzini, Francesca B; Farace, Paolo; Manganotti, Paolo; Zoccatelli, Giada; Bongiovanni, Luigi G; Golay, Xavier; Beltramello, Alberto; Osculati, Antonio; Bertini, Giuseppe; Fabene, Paolo F

    2013-07-01

    Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment. PMID:23623332

  8. Dynamic Network Drivers of Seizure Generation, Propagation and Termination in Human Neocortical Epilepsy

    PubMed Central

    Khambhati, Ankit N.; Davis, Kathryn A.; Oommen, Brian S.; Chen, Stephanie H.; Lucas, Timothy H.; Litt, Brian; Bassett, Danielle S.

    2015-01-01

    The epileptic network is characterized by pathologic, seizure-generating ‘foci’ embedded in a web of structural and functional connections. Clinically, seizure foci are considered optimal targets for surgery. However, poor surgical outcome suggests a complex relationship between foci and the surrounding network that drives seizure dynamics. We developed a novel technique to objectively track seizure states from dynamic functional networks constructed from intracranial recordings. Each dynamical state captures unique patterns of network connections that indicate synchronized and desynchronized hubs of neural populations. Our approach suggests that seizures are generated when synchronous relationships near foci work in tandem with rapidly changing desynchronous relationships from the surrounding epileptic network. As seizures progress, topographical and geometrical changes in network connectivity strengthen and tighten synchronous connectivity near foci—a mechanism that may aid seizure termination. Collectively, our observations implicate distributed cortical structures in seizure generation, propagation and termination, and may have practical significance in determining which circuits to modulate with implantable devices. PMID:26680762

  9. Optimal control based seizure abatement using patient derived connectivity

    PubMed Central

    Taylor, Peter N.; Thomas, Jijju; Sinha, Nishant; Dauwels, Justin; Kaiser, Marcus; Thesen, Thomas; Ruths, Justin

    2015-01-01

    Epilepsy is a neurological disorder in which patients have recurrent seizures. Seizures occur in conjunction with abnormal electrical brain activity which can be recorded by the electroencephalogram (EEG). Often, this abnormal brain activity consists of high amplitude regular spike-wave oscillations as opposed to low amplitude irregular oscillations in the non-seizure state. Active brain stimulation has been proposed as a method to terminate seizures prematurely, however, a general and widely-applicable approach to optimal stimulation protocols is still lacking. In this study we use a computational model of epileptic spike-wave dynamics to evaluate the effectiveness of a pseudospectral method to simulated seizure abatement. We incorporate brain connectivity derived from magnetic resonance imaging of a subject with idiopathic generalized epilepsy. We find that the pseudospectral method can successfully generate time-varying stimuli that abate simulated seizures, even when including heterogeneous patient specific brain connectivity. The strength of the stimulus required varies in different brain areas. Our results suggest that seizure abatement, modeled as an optimal control problem and solved with the pseudospectral method, offers an attractive approach to treatment for in vivo stimulation techniques. Further, if optimal brain stimulation protocols are to be experimentally successful, then the heterogeneity of cortical connectivity should be accounted for in the development of those protocols and thus more spatially localized solutions may be preferable. PMID:26089775

  10. Physics of the Brain: Interaction of the Optical-Fiber-Guided Multi-Ultraviolet-Photon Beams with the Epilepsy Topion, (the Seizure Onset Area)

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    A novel method for the possible prevention of epileptic seizures is proposed, based on the multi-ultraviolet-photon beam interaction with the epilepsy topion, (nonlinear coupling of an ultra high frequency mode to the brain beta phonons). It is hypothesized that epilepsy is a chaotic-dynamics phenomenon: small electrical changes in the epilepsy-topion lead, (within the 10s of milliseconds), to the onset of chaos, (seizure--excessive electrical discharge), and subsequent cascading into adjacent areas. The ultraviolet photons may control the imbalance of sodium and potassium ions and, consequently, may prove to be efficient in the prevention of epileptic seizures. Supported by Nikola Tesla Labs, Stefan University.

  11. Differential diagnosis of seizure disorders: a conversation analytic approach.

    PubMed

    Schwabe, Meike; Howell, Stephen J; Reuber, Markus

    2007-08-01

    "Taking the history" remains the most important diagnostic tool in the assessment of people who have lost consciousness. The distinction of epileptic and non-epileptic seizures (NES) is particularly difficult and relevant. Whereas epileptic seizures can usually be controlled with antiepileptic drugs, NES are considered an expression of psychosocial distress and may improve with psychotherapy. The recording of typical seizures with simultaneous video and electroencephalography (EEG) can produce almost complete certainty about the diagnosis but access to video-EEG is limited, the test is very expensive and often video-EEG fails to capture typical seizures. A German research group used conversation analysis (CA) to examine patients' descriptions of seizures to their doctors. They found that certain linguistic and interactional features clustered together and that these clusters were usually concordant with particular medical diagnoses. This study was undertaken to establish whether the observations made in German-speaking patients could be replicated in English speakers presenting to a less specialised epilepsy service. The findings presented here are based on transcripts of interviews with 11 patients admitted to a neurology ward in England because their consultant felt unable to make a clear diagnosis clinically. Transcripts were only analysed if the diagnosis of epilepsy or NES had been proven with video-EEG. The medical diagnosis was only disclosed to the linguist once a linguistic hypothesis of the diagnosis had been formulated to ensure that the linguist's decision would not be influenced by factors not contained in the 30-min-interview between doctor and patient. The linguist predicted the correct diagnosis in all cases. PMID:17482737

  12. Firing patterns of human limbic neurons during stereoencephalography (SEEG) and clinical temporal lobe seizures.

    PubMed

    Babb, T L; Wilson, C L; Isokawa-Akesson, M

    1987-06-01

    Comparisons of the patterns of neuronal firing and stereoencephalography (SEEG) recorded from the same microelectrodes chronically implanted in the human limbic system were made in order to study neuronal electrogenesis at onset and during propagation of focal partial complex seizures. Alert or sleeping patients were monitored during spontaneous subclinical seizures (no alterations in consciousness detectable), during auras reported by the patients as typical, and during clinical seizures with loss of consciousness, movements and post-ictal confusion. During subclinical SEEG seizures (ipsilateral, normal consciousness), few neurons increased firing (estimated at only 7%) either at the focus or at propagated sites. During auras, with altered consciousness, there were relatively few neurons that increased firing, with the estimate about 14% or twice as many as during a subclinical seizure. During the onset of a clinical seizure that involved loss of consciousness, movements and post-ictal confusion, many neurons were recruited into increased firing, with an estimate of approximately 36%. During this increased electrogenesis, neurons fired briefly in association with high-frequency local SEEG; however, the bursts were shorter than the SEEG seizure pattern. Apparently, other local neurons were recruited to fire in bursts to sustain sufficient axonal driving for widespread propagation of the seizure. When the focal SEEG slowed, the units stopped firing, which suggested that the 'focal' seizure need not be sustained for more than several seconds because propagated seizure activity was self-sustaining at distant structures. The data lead to the conclusion that SEEG seizures can be generated focally by synchronous firing of fewer than 10% of neurons in the 'epileptic pool.' However, when greater percentages of neurons are recruited in the 'epileptic focus' there is greater propagation to widespread sites, especially contralaterally, which will produce clinical partial

  13. Antioxidants as a Preventive Treatment for Epileptic Process: A Review of the Current Status

    PubMed Central

    Martinc, Boštjan; Grabnar, Iztok; Vovk, Tomaž

    2014-01-01

    Epilepsy is known as one of the most frequent neurological diseases, characterized by an enduring predisposition to generate epileptic seizures. Oxidative stress is believed to directly participate in pathways leading to neurodegeneration, which serves as the most important propagating factor, leading to the epileptic condition and cognitive decline. Moreover, there is also a growing body of evidence showing the disturbance of antioxidant system balance and consequently increased production of reactive species in patients with epilepsy. A meta-analysis, conducted in the present review confirms an association between epilepsy and increased lipid peroxidation. Furthermore, it was also shown that some of the antiepileptic drugs could potentially be responsible for additionally increased lipid peroxidation. Therefore, it is reasonable to propose that during the epileptic process neuroprotective treatment with antioxidants could lead to less sever structural damages, reduced epileptogenesis and milder cognitive deterioration. To evaluate this hypothesis studies investigating the neuroprotective therapeutic potential of various antioxidants in cells, animal seizure models and patients with epilepsy have been reviewed. Numerous beneficial effects of antioxidants on oxidative stress markers and in some cases also neuroprotective effects were observed in animal seizure models. However, despite these encouraging results, till now only a few antioxidants have been further applied to patients with epilepsy as an add-on therapy. Based on the several positive findings in animal models, a strong need for more carefully planned, randomized, double-blind, cross-over, placebo-controlled clinical trials for the evaluation of antioxidants efficacy in patients with epilepsy is warranted. PMID:25977679

  14. Plasticity-modulated seizure dynamics for seizure termination in realistic neuronal models

    NASA Astrophysics Data System (ADS)

    Koppert, M. M. J.; Kalitzin, S.; Lopes da Silva, F. H.; Viergever, M. A.

    2011-08-01

    In previous studies we showed that autonomous absence seizure generation and termination can be explained by realistic neuronal models eliciting bi-stable dynamics. In these models epileptic seizures are triggered either by external stimuli (reflex epilepsies) or by internal fluctuations. This scenario predicts exponential distributions of the duration of the seizures and of the inter-ictal intervals. These predictions were validated in rat models of absence epilepsy, as well as in a few human cases. Nonetheless, deviations from the predictions with respect to seizure duration distributions remained unexplained. The objective of the present work is to implement a simple but realistic computational model of a neuronal network including synaptic plasticity and ionic current dynamics and to explore the dynamics of the model with special emphasis on the distributions of seizure and inter-ictal period durations. We use as a basis our lumped model of cortical neuronal circuits. Here we introduce 'activity dependent' parameters, namely post-synaptic voltage-dependent plasticity, as well as a voltage-dependent hyperpolarization-activated current driven by slow and fast activation conductances. We examine the distributions of the durations of the seizure-like model activity and the normal activity, described respectively by the limit cycle and the steady state in the dynamics. We use a parametric γ-distribution fit as a quantifier. Our results show that autonomous, activity-dependent membrane processes can account for experimentally obtained statistical distributions of seizure durations, which were not explainable using the previous model. The activity-dependent membrane processes that display the strongest effect in accounting for these distributions are the hyperpolarization-dependent cationic (Ih) current and the GABAa plastic dynamics. Plastic synapses (NMDA-type) in the interneuron population show only a minor effect. The inter-ictal statistics retain their

  15. Ictal analgesia in temporal lobe epilepsy - The mechanism of seizure-related burns.

    PubMed

    Szűcs, Anna; Horváth, András; Rásonyi, György; Fabó, Dániel; Szabó, Géza; Sákovics, Anna; Kamondi, Anita

    2015-08-01

    Seizure-related injuries have major impact in the excess mortality and morbidity of epilepsy patients. Experimental data suggest that analgesia may develop during seizures contributing to the severity of seizure-related accidents, especially burns. We aimed to identify those seizure-types that may lead to burn-injuries by seizure-related analgesia. In our tertiary epilepsy centre, we asked 100 epilepsy patients having a history of seizure-related injury, to complete our burn-and-pain questionnaire. Fifty-one patients completed the survey; their epileptology data were collected and those with a seizure-related burn were interviewed. Forty-two out of the 51 patients (82%) had partial epilepsy and 9 (18%) had idiopathic generalised epilepsy. Twenty-six persons (51%) reported decreased pain perception during or after seizures in general. Twelve patients (23%) had suffered one or more seizure-related burn. Five of them fell onto a hot surface or fire accidentally, during generalized tonic-clonic seizures. Seven out of the 12 burnt patients (58%) grasped a hot object or reached into boiling fluid during complex partial seizures; without experiencing-, or reacting in response to pain. These patients had temporal lobe epilepsy, 5 of them had left temporal seizure onset. Our hypothesis based on the circumstantial analysis of our patients' burn-injuries; is that temporal lobe seizures may cause ictal/postictal analgesia. It may be caused by the seizure-related epileptic facilitation of the periaqueductal gray matter; the central pain-inhibiting structure of the brain. Seizure-related endogenous opioid-release my have a contributory role in inhibiting pain-perception. Ictal analgesia warrants better burn-prevention in temporal lobe epilepsy patients. Understanding the mechanism of ictal analgesia and specifying those seizures-types prone to cause it; may help indentifying human pain-inhibiting pathways. PMID:25953092

  16. Molecular Correlates of Age-Dependent Seizures in an Inherited Neonatal-Infantile Epilepsy

    ERIC Educational Resources Information Center

    Liao, Yunxiang; Deprez, Liesbet; Maljevic, Snezana; Pitsch, Julika; Claes, Lieve; Hristova, Dimitrina; Jordanova, Albena; Ala-Mello, Sirpa; Bellan-Koch, Astrid; Blazevic, Dragica; Schubert, Simone; Thomas, Evan A.; Petrou, Steven; Becker, Albert J.; De Jonghe, Peter; Lerche, Holger

    2010-01-01

    Many idiopathic epilepsy syndromes have a characteristic age dependence, the underlying molecular mechanisms of which are largely unknown. Here we propose a mechanism that can explain that epileptic spells in benign familial neonatal-infantile seizures occur almost exclusively during the first days to months of life. Benign familial…

  17. Fish Oil Intake and Seizure Control in Children with Medically Resistant Epilepsy

    PubMed Central

    Reda, Diala Mohamed Ali; Abd-El-Fatah, Nesrin Kamal; Omar, Tarek El-Sayed Ismail; Darwish, Olfat Abdel Hamid

    2015-01-01

    Background: There is considerable evidence which suggests that Omega 3 polyunsaturated fatty acids may have a potential use in the treatment of epilepsy. Aim: The study was to investigate the effect of Omega 3 polyunsaturated fatty acids (as fish oil supplementation) in reducing the frequency and severity of epileptic seizures in children with medically resistant epilepsy. Materials and Methods: In the case-control study, a total of 70 children with medically resistant epilepsy underwent assessment of the frequency and severity of the epileptic attacks at baseline, after one month, two months and three months from the beginning of the study; 35 children received fish oil and the other 35 children received placebo. Results: The number of children who received fish oil, having 0 epileptic attacks increased from 0%, before starting the study, up to 57.1% at the end of the third month, while the improvement was minimal in the placebo group, with a significant difference in the improvement between the intervention and the control groups. There was no statistically significant difference in improvement in the severity of the seizures either between cases and control or between the beginning and the end of the study. Conclusion: Omega 3 polyunsaturated fatty acids elevated the seizure threshold in epileptic patients and may help in achieving seizure control. PMID:26258079

  18. A review of intranasal formulations for the treatment of seizure emergencies.

    PubMed

    Kapoor, Mamta; Cloyd, James C; Siegel, Ronald A

    2016-09-10

    Epileptic seizure emergencies are life-threatening conditions, which in their most severe form, status epilepticus, have a high mortality rate if not quickly terminated. Treatment requires rapid delivery of anti-epileptics such as benzodiazepines to the brain. The nasal route is attractive due to its non-invasiveness, potential for direct nose to brain delivery, high vascularity, relatively large absorptive surface area, and avoidance of intestinal/liver metabolism. However, the limited volume of the nasal cavity and poor water solubility of anti-epileptics restrict absorption, leading to insufficient therapeutic brain levels. This review covers various formulation approaches adopted to improve nasal delivery of drugs, especially benzodiazepines, used to treat seizure emergencies. Other general topics such as nasal anatomy, challenges to nasal delivery, and drug/formulation considerations for nose to brain delivery are also discussed. PMID:27397490

  19. A deletion in SCN1B is associated with febrile seizures and early-onset absence epilepsy.

    PubMed

    Audenaert, D; Claes, L; Ceulemans, B; Löfgren, A; Van Broeckhoven, C; De Jonghe, P

    2003-09-23

    Generalized epilepsy with febrile seizures plus (GEFS+) is a clinically and genetically heterogeneous syndrome with childhood onset, characterized by febrile seizures (FS) and a variety of afebrile epileptic seizure types. The authors performed a mutational analysis of SCN1B on 74 unrelated probands with GEFS+, FS, or FS plus (FS+). In a family with FS+ and early-onset absence epilepsy, a mutation was identified that predicts a deletion of five amino acids in the extracellular immunoglobulin-like domain of SCN1B and potential loss of function. SCN1B mutations are associated with GEFS+ and may have a role in the elicitation of absence seizures. PMID:14504340

  20. Search and Seizure.

    ERIC Educational Resources Information Center

    Murray, Kenneth T.

    This paper examines the practice of search and seizure from a legal perspective. All issues concerning lawful or unlawful search and seizure, whether in a public school or otherwise, are predicated upon the Fourth Amendment to the United States Constitution. The terms "search,""seizure,""probable cause,""reasonable suspicion," and "exclusionary…

  1. How Sleep Activates Epileptic Networks?

    PubMed Central

    Halász, Peter

    2013-01-01

    Background. The relationship between sleep and epilepsy has been long ago studied, and several excellent reviews are available. However, recent development in sleep research, the network concept in epilepsy, and the recognition of high frequency oscillations in epilepsy and more new results may put this matter in a new light. Aim. The review address the multifold interrelationships between sleep and epilepsy networks and with networks of cognitive functions. Material and Methods. The work is a conceptual update of the available clinical data and relevant studies. Results and Conclusions. Studies exploring dynamic microstructure of sleep have found important gating mechanisms for epileptic activation. As a general rule interictal epileptic manifestations seem to be linked to the slow oscillations of sleep and especially to the reactive delta bouts characterized by A1 subtype in the CAP system. Important link between epilepsy and sleep is the interference of epileptiform discharges with the plastic functions in NREM sleep. This is the main reason of cognitive impairment in different forms of early epileptic encephalopathies affecting the brain in a special developmental window. The impairment of cognitive functions via sleep is present especially in epileptic networks involving the thalamocortical system and the hippocampocortical memory encoding system. PMID:24159386

  2. Targeting Pannexin1 Improves Seizure Outcome

    PubMed Central

    Santiago, Marcelo F.; Veliskova, Jana; Patel, Naman K.; Lutz, Sarah E.; Caille, Dorothee; Charollais, Anne; Meda, Paolo; Scemes, Eliana

    2011-01-01

    Imbalance of the excitatory neurotransmitter glutamate and of the inhibitory neurotransmitter GABA is one of several causes of seizures. ATP has also been implicated in epilepsy. However, little is known about the mechanisms involved in the release of ATP from cells and the consequences of the altered ATP signaling during seizures. Pannexin1 (Panx1) is found in astrocytes and in neurons at high levels in the embryonic and young postnatal brain, declining in adulthood. Panx1 forms large-conductance voltage sensitive plasma membrane channels permeable to ATP that are also activated by elevated extracellular K+ and following P2 receptor stimulation. Based on these properties, we hypothesized that Panx1 channels may contribute to seizures by increasing the levels of extracellular ATP. Using pharmacological tools and two transgenic mice deficient for Panx1 we show here that interference with Panx1 ameliorates the outcome and shortens the duration of kainic acid-induced status epilepticus. These data thus indicate that the activation of Panx1 in juvenile mouse hippocampi contributes to neuronal hyperactivity in seizures. PMID:21949881

  3. [Dissociative seizures: a manual for neurologists for communicating the diagnosis].

    PubMed

    Fritzsche, K; Baumann, K; Schulze-Bonhage, A

    2013-01-01

    The great physical resemblance between epileptic and dissociative seizures and a diagnosis of epilepsy that had been made years ago and usually had been treated unsuccessfully makes it difficult for both physician and patient to communicate the diagnosis of dissociative seizures. A direct referral to psychotherapy treatment is rarely accepted by patients. Intermediate steps, which are based on cooperation between neurologists and psychotherapists, are necessary. The approach that we use to communicate diagnosis and motivation for psychotherapeutic treatment includes eight steps: 1. Welcome and introduction; 2. Jointly watching a video of documented seizures; 3. The message that the seizures are not of epileptic origin, 4. Development of an alternative disease concept; 5. Motivation for a conversation with a representative from psychosomatics; 6. Responding to the fear of "going crazy"; 7. If necessary, briefly touching on the subject of sexual violence; 8. More recommendations and conclusion of the conversation. The manual was discussed and practiced with the attending neurologist in two sessions and is now being regularly used by two neurologists with concomitant supervision. PMID:22328103

  4. Uncontrolled seizures resulting from cerebral venous sinus thrombosis complicating neurobrucellosis

    PubMed Central

    Faraji, Fardin; Didgar, Farshid; Talaie-Zanjani, Afsoon; Mohammadbeigi, Abolfazl

    2013-01-01

    Cerebral venous sinus thrombosis is a rare form of stroke caused by thrombosis in venous sinuses of the brain. In this study, we reported on a patient with venous sinus thrombosis and brucellosis who presented with uncontrolled seizure despite being treated with anti-epileptic drugs at high doses. The case was a 33-year-old woman with a history of controlled complex partial seizure who presented with headache, asthenia, and uncontrolled seizure for one month. She was febrile and a brain CT scan indicated hemorrhagic focus in the left posterior parietal and the temporal lobe. Magnetic resonance imaging and magnetic resonance venography also proved venous sinus thrombosis in the left transverse sinus. Besides [In addition], a laboratory assessment confirmed brucellosis. Following the treatment with anti-coagulant, anti-brucellosis, and anti-epileptic agents, the patient was discharged in good condition with medical orders. Clinical suspicion and accurate evaluation of a patient's history is the most important clue in diagnosis and treatment of brucellosis and cerebral venous sinus thrombosis, especially in uncontrolled seizure in patients who had previously been under control. PMID:24250168

  5. "Txt"-induced seizures indicating reading epilepsy in the mobile phone age.

    PubMed

    Watson, Eloise; Lewis, Jill; Cutfield, Nick

    2012-07-01

    Reading epilepsy is a rare type of reflex epilepsy. The seizures often comprise facial twitching and alexia, but can be difficult to recognise and mistaken for non-epileptic events. Previous reports have identified reading of printed text, television and computer screens as inducing seizures, but hand-held digital media have not been implicated. We report a 44-year-old woman with difficulty using the text message function of her mobile phone with a long background of unrecognised reading-induced seizures. PMID:22551585

  6. Complex Partial Seizure as a Manifestation of Non-Ketotic Hyperglycemia: The Needle Recovered From Haystack?

    PubMed

    Rani, Khairil Amir; Ahmed, Mohamed H; Dunphy, Louise; Behnam, Yousif

    2016-06-01

    We present a case of a 75-year-old gentleman with undiagnosed type 2 diabetes mellitus presenting with acute onset expressive dysphasia and right hemi-paresis with no prior history of seizure. He developed clusters of stereotypical complex partial seizures which were refractory to anti-epileptic agents. He was not known to have diabetes and his brain MRI was normal. His random blood sugar measurement on admission to hospital was 30 mmol/L with HbA1c measurement of 14.8%. His seizures terminated completely when his hyperglycemia was corrected with insulin and rehydration therapy. PMID:27222677

  7. Complex Partial Seizure as a Manifestation of Non-Ketotic Hyperglycemia: The Needle Recovered From Haystack?

    PubMed Central

    Rani, Khairil Amir; Ahmed, Mohamed H.; Dunphy, Louise; Behnam, Yousif

    2016-01-01

    We present a case of a 75-year-old gentleman with undiagnosed type 2 diabetes mellitus presenting with acute onset expressive dysphasia and right hemi-paresis with no prior history of seizure. He developed clusters of stereotypical complex partial seizures which were refractory to anti-epileptic agents. He was not known to have diabetes and his brain MRI was normal. His random blood sugar measurement on admission to hospital was 30 mmol/L with HbA1c measurement of 14.8%. His seizures terminated completely when his hyperglycemia was corrected with insulin and rehydration therapy. PMID:27222677

  8. Nonepileptic seizures: an updated review.

    PubMed

    Perez, David L; LaFrance, W Curt

    2016-06-01

    Psychogenic nonepileptic seizures (PNES) are a functional neurological disorder/conversion disorder subtype, which are neurobehavioral conditions at the interface of neurology and psychiatry. Significant advancements over the past decade have been made in the diagnosis, management, and neurobiological understanding of PNES. This article reviews published PNES research focusing on semiologic features that distinguish PNES from epileptic seizures, consensus diagnostic criteria, the intersection of PNES and other comorbidities, neurobiological studies, evidence-based treatment interventions, and outcome studies. Epidemiology and healthcare utilization studies highlight a continued unmet medical need in the comprehensive care of PNES. Consensus guidelines for diagnostic certainty are based on clinical history, semiology of witnessed typical event(s), and EEG findings. While certain semiologic features may aid in the diagnosis of PNES, the gold standard remains capturing a typical event on video electroencephalography (EEG) showing the absence of epileptiform activity with history and semiology consistent with PNES. Medical-neurologic and psychiatric comorbidities are prevalent in PNES; these should be assessed in diagnostic evaluations and integrated into treatment interventions and prognostic considerations. Several studies, including a pilot, multicenter, randomized clinical trial, have now demonstrated that a cognitive behavioral therapy-informed psychotherapy is an efficacious treatment for PNES, and additional efforts are necessary to evaluate the utility of pharmacologic and other psychotherapy treatments. Neuroimaging studies, while requiring replication, suggest that PNES may occur in the context of alterations within and across sensorimotor, emotion regulation/processing, cognitive control, and multimodal integration brain systems. Future research could investigate similarities and differences between PNES and other somatic symptom disorders. PMID:26996600

  9. A computational platform for continuous seizure anticipation, monitoring and clinical evaluation.

    PubMed

    Giannakakis, Giorgos; Pediaditis, Matthew; Stavrinidis, George; Konstantinidis, George; Kritsotakis, Vangelis; Tsakanikas, Vasilis; Ligerakis, Michael; Sakkalis, Vangelis; Vorgia, Pelagia; Tsiknakis, Manolis

    2016-01-01

    The development of platforms that are able to continuously monitor and handle epileptic seizures in a non invasive manner is of great importance as they would improve the quality of life of drug resistant epileptic patients. In this work, a device and a computational platform is presented for acquiring low noise electroencephalographic signals, for the detection/prediction of epileptic seizures and the storage of ictal activity in an electronic personal health record. In order to develop this platform, a systematic clinical protocol was established including a number of drug resistant children from the University Hospital of Heraklion. Dry electrodes with innovative micro-spike design were proposed in order to increase the signal to noise ratio of the recorded EEG signals. A wearable low cost platform and its corresponding wireless communication protocol was developed focus on minimizing the interference with the patient's body. A computational subsystem with advanced algorithms provides detection/anticipation of upcoming seizure activity and aims to protect the patient from an accident due to a seizure or to improve his/her social life. Finally, the seizure activity information is stored in an electronic health record for further clinical evaluation. PMID:27225563

  10. Epilepsy, Seizures, and Inflammation: Role of the C-C Motif Ligand 2 Chemokine.

    PubMed

    Bozzi, Yuri; Caleo, Matteo

    2016-06-01

    Epilepsy is a chronic disorder characterized by spontaneous recurrent seizures. Several lines of evidence demonstrate that inflammatory processes within the brain parenchyma contribute to recurrence and precipitation of seizures. In both epileptic patients and animal models, seizures upregulate inflammatory mediators, which in turn may enhance brain excitability. We recently showed that the C-C motif ligand 2 (CCL2) chemokine (also known as monocyte chemoattractant protein-1 [MCP-1]) mediates the seizure-promoting effects of inflammation. Systemic inflammatory challenge in chronically epileptic mice markedly enhanced seizure frequency and upregulated CCL2 expression in the brain. Selective pharmacological blockade of CCL2 synthesis or C-C chemokine receptor type 2 (CCR2) significantly suppressed inflammation-induced seizures. These results have important implications for the development of novel anticonvulsant therapies: drugs interfering with CCL2 signaling are used clinically for several human disorders and might be redirected for use in pharmacoresistant epilepsy. Here we review the role of CCL2/CCR2 signaling in linking systemic inflammation with seizure susceptibility and discuss some open questions that arise from our recent studies. PMID:27167681

  11. Multi-electrode Array Recordings of Human Epileptic Postoperative Cortical Tissue

    PubMed Central

    Dossi, Elena; Blauwblomme, Thomas; Nabbout, Rima; Huberfeld, Gilles; Rouach, Nathalie

    2014-01-01

    Epilepsy, affecting about 1% of the population, comprises a group of neurological disorders characterized by the periodic occurrence of seizures, which disrupt normal brain function. Despite treatment with currently available antiepileptic drugs targeting neuronal functions, one third of patients with epilepsy are pharmacoresistant. In this condition, surgical resection of the brain area generating seizures remains the only alternative treatment. Studying human epileptic tissues has contributed to understand new epileptogenic mechanisms during the last 10 years. Indeed, these tissues generate spontaneous interictal epileptic discharges as well as pharmacologically-induced ictal events which can be recorded with classical electrophysiology techniques. Remarkably, multi-electrode arrays (MEAs), which are microfabricated devices embedding an array of spatially arranged microelectrodes, provide the unique opportunity to simultaneously stimulate and record field potentials, as well as action potentials of multiple neurons from different areas of the tissue. Thus MEAs recordings offer an excellent approach to study the spatio-temporal patterns of spontaneous interictal and evoked seizure-like events and the mechanisms underlying seizure onset and propagation. Here we describe how to prepare human cortical slices from surgically resected tissue and to record with MEAs interictal and ictal-like events ex vivo. PMID:25407747

  12. The dynamics of the epileptic brain reveal long-memory processes.

    PubMed

    Cook, Mark J; Varsavsky, Andrea; Himes, David; Leyde, Kent; Berkovic, Samuel Frank; O'Brien, Terence; Mareels, Iven

    2014-01-01

    The pattern of epileptic seizures is often considered unpredictable and the interval between events without correlation. A number of studies have examined the possibility that seizure activity respects a power-law relationship, both in terms of event magnitude and inter-event intervals. Such relationships are found in a variety of natural and man-made systems, such as earthquakes or Internet traffic, and describe the relationship between the magnitude of an event and the number of events. We postulated that human inter-seizure intervals would follow a power-law relationship, and furthermore that evidence for the existence of a long-memory process could be established in this relationship. We performed a post hoc analysis, studying eight patients who had long-term (up to 2 years) ambulatory intracranial EEG data recorded as part of the assessment of a novel seizure prediction device. We demonstrated that a power-law relationship could be established in these patients (β = - 1.5). In five out of the six subjects whose data were sufficiently stationary for analysis, we found evidence of long memory between epileptic events. This memory spans time scales from 30 min to 40 days. The estimated Hurst exponents range from 0.51 to 0.77 ± 0.01. This finding may provide evidence of phase-transitions underlying the dynamics of epilepsy. PMID:25386160

  13. Epileptic qualia and self-awareness: a third dimension for consciousness.

    PubMed

    Hanoğlu, Lütfü; Özkara, Çiğdem; Yalçiner, Betül; Nani, Andrea; Cavanna, Andrea E

    2014-01-01

    Over the last few decades, there has been increasing awareness among epileptologists about the need to refine our understanding and assessment of ictal consciousness, focusing on both subjective and behavioral aspects of seizures. Specifically, there have been suggestions that both the internal and external milieux - the former related to the phenomenal qualia of experience, the latter related to behavior - must be taken into account for a better understanding of altered states of consciousness in epilepsy. It has been proposed that clinical and experimental data from patients experiencing alterations of consciousness during epileptic seizures could be better understood within a bidimensional model, in which any manifestation of conscious experience can be plotted according to the level and contents of consciousness. The 'level' axis measures the degree of alertness/arousal, whereas the 'contents' axis measures the vividness of specific experiential phenomena reported by the patient. We argue that certain seizure types might require more rigorous conceptual models for their characterization, and we highlight the potential usefulness of a more refined framework which includes a further dimension related to the 'self', in addition to those of 'level' and 'contents'. This model could be visualized in a three-dimensional space to allow fine-grained distinctions between epileptic seizures. PMID:24100248

  14. Modeling and analyzing non-seizure EEG data for patients with epilepsy

    SciTech Connect

    Lawkins, W.F.; Clapp, N.E. Jr.; Daw, C.S.; Hively, L.M.; Protopopescu, V.; Eisenstadt, M.L.

    1996-05-01

    We present nonlinear analysis of non-seizure electroencephalogram (EEG) time series data from four epileptic patients. A non-seizure state is a period that is free of any part of an epileptic seizure, including the transition to a fully developed episode. EEG measurements are typically contaminated with a large amount of non- neurophysiological source information, generally called artifact, which arises, for example, from eye movement, muscle tension, and physical motion. The first objective of this study is to gain some insight into how much variability in analysis results to be expected from patients having similar clinical characteristics. The second objective is to investigate the impact of eye movement on the analysis results. A special feature presented here is the introduction and testing of a filter for eye movement artifact. The third objective is to determine if neurophysiological activity as viewed from two adjacent channels appears dynamically to be the same.

  15. A switch in G protein coupling for type 1 corticotropin-releasing factor receptors promotes excitability in epileptic brains.

    PubMed

    Narla, Chakravarthi; Scidmore, Tanner; Jeong, Jaymin; Everest, Michelle; Chidiac, Peter; Poulter, Michael O

    2016-01-01

    Anxiety and stress increase the frequency of epileptic seizures. These behavioral states induce the secretion of corticotropin-releasing factor (CRF), a 40-amino acid neuropeptide neurotransmitter that coordinates many behavioral responses to stress in the central nervous system. In the piriform cortex, which is one of the most seizurogenic regions of the brain, CRF normally dampens excitability. By contrast, CRF increased the excitability of the piriform cortex in rats subjected to kindling, a model of temporal lobe epilepsy. In nonkindled rats, CRF activates its receptor, a G protein (heterotrimeric guanosine triphosphate-binding protein)-coupled receptor, and signals through a Gαq/11-mediated pathway. After seizure induction, CRF signaling occurred through a pathway involving Gαs This change in signaling was associated with reduced abundance of regulator of G protein signaling protein type 2 (RGS2), which has been reported to inhibit Gαs-dependent signaling. RGS2 knockout mice responded to CRF in a similar manner as epileptic rats. These observations indicate that seizures produce changes in neuronal signaling that can increase seizure occurrence by converting a beneficial stress response into an epileptic trigger. PMID:27303056

  16. A low computation cost method for seizure prediction.

    PubMed

    Zhang, Yanli; Zhou, Weidong; Yuan, Qi; Wu, Qi

    2014-10-01

    The dynamic changes of electroencephalograph (EEG) signals in the period prior to epileptic seizures play a major role in the seizure prediction. This paper proposes a low computation seizure prediction algorithm that combines a fractal dimension with a machine learning algorithm. The presented seizure prediction algorithm extracts the Higuchi fractal dimension (HFD) of EEG signals as features to classify the patient's preictal or interictal state with Bayesian linear discriminant analysis (BLDA) as a classifier. The outputs of BLDA are smoothed by a Kalman filter for reducing possible sporadic and isolated false alarms and then the final prediction results are produced using a thresholding procedure. The algorithm was evaluated on the intracranial EEG recordings of 21 patients in the Freiburg EEG database. For seizure occurrence period of 30 min and 50 min, our algorithm obtained an average sensitivity of 86.95% and 89.33%, an average false prediction rate of 0.20/h, and an average prediction time of 24.47 min and 39.39 min, respectively. The results confirm that the changes of HFD can serve as a precursor of ictal activities and be used for distinguishing between interictal and preictal epochs. Both HFD and BLDA classifier have a low computational complexity. All of these make the proposed algorithm suitable for real-time seizure prediction. PMID:25062892

  17. Ictal alterations of consciousness during ecstatic seizures.

    PubMed

    Picard, Fabienne; Kurth, Florian

    2014-01-01

    Patients with ecstatic epileptic seizures report an altered consciousness, which they describe as a sense of heightened perception of themselves – they “feel very present” – and an increased vividness of sensory perceptions. Recently, the anterior insula has been proposed as the region where these seizures originate, based on the results of ictal nuclear imaging in three patients, the first induction of ecstatic auras by electrical stimulation, and the functional characteristics of the anterior insula in neuroimaging literature. Specifically, the anterior insula is thought to play a key role in integrating information from within the body, the external world, as well as the emotional states. In addition, the anterior insula is thought to convert this integrated information into successive global emotional moments, thus enabling both the construct of a sentient self as well as a mechanism for predictive coding. As part of the salience network, this region is also involved in switching from mind wandering toward attentional and executive processing. In this review, we will summarize previous patient reports and recap how insular functioning may be involved in the phenomenon of ecstatic seizures. Furthermore, we will relate these hypotheses to the results from research on meditation and effects of drug abuse. PMID:24436968

  18. Maternal methyl-enriched diet in rat reduced the audiogenic seizure proneness in progeny.

    PubMed

    Poletaeva, I I; Surina, N M; Ashapkin, V V; Fedotova, I B; Merzalov, I B; Perepelkina, O V; Pavlova, G V

    2014-12-01

    Audiogenic epilepsy proneness was analyzed in the progeny of rats from two strains (audiogenic seizure prone-strain "4"-and audiogenic seizure non-prone, strain "0"). Females were fed by a diet which contained substances enriched with methyl-groups during 1week before mating (MED), during pregnancy period and 1week after the delivery. This MED treatment resulted in a decrease of audiogenic seizure fit intensity, which was more evident in rats of strain "0". Control rats of strain "4" displayed intense seizures (tonic seizure, 3.85 arbitrary units). Med "4" rats seizures were less intense (3.23, tonic seizure of lower intensity), control "0" strain rats demonstrated the seizure with mean 3.09 arbitrary units, "0" MED rats only 2.03 arbitrary unit intensity (only clonic seizures, significantly, p<0.05, different from controls). Methyl-enriched diet resulted in the significant changes in methylation status of several genes (Cpne6, Gtf2i, Sctr,1 Sfmbt, Phe2). These genes among others were chosen for analysis as their expression was analyzed in other methylation study. These genes were hypermethylated after "epileptic tolerance". Due to this procedure, the intensity of status epilepticus, produced by kainate in mice, decreased (Miller-Delaney et al., 2012). The modulation of audiogenic seizure intensity as the result of methyl-enriched diet during prenatal and early postnatal ontogeny was demonstrated for the first time. PMID:25285618

  19. Phenomenology of hallucinations, illusions, and delusions as part of seizure semiology.

    PubMed

    Kasper, B S; Kasper, E M; Pauli, E; Stefan, H

    2010-05-01

    In partial epilepsy, a localized hypersynchronous neuronal discharge evolving into a partial seizure affecting a particular cortical region or cerebral subsystem can give rise to subjective symptoms, which are perceived by the affected person only, that is, ictal hallucinations, illusions, or delusions. When forming the beginning of a symptom sequence leading to impairment of consciousness and/or a classic generalized seizure, these phenomena are referred to as an epileptic aura, but they also occur in isolation. They often manifest in the fully awake state, as part of simple partial seizures, but they also can be associated to different degrees of disturbed consciousness. Initial ictal symptoms often are closely related to the physiological functions of the cortical circuit involved and, therefore, can provide localizing information. When brain regions related to sensory integration are involved, the seizure discharge can cause specific kinds of hallucinations, for example, visual, auditory, gustatory, olfactory, and cutaneous sensory sensations. In addition to these elementary sensory perceptions, quite complex hallucinations related to a partial seizure can arise, for example, perception of visual scenes or hearing music. By involving psychic and emotional spheres of human perception, many seizures also give rise to hallucinatory emotional states (e.g., fear or happiness) or even more complex hallucinations (e.g., visuospatial phenomena), illusions (e.g., déjà vu, out-of-body experience), or delusional beliefs (e.g., identity change) that often are not easily recognized as epileptic. Here we suggest a classification into elementary sensory, complex sensory, and complex integratory seizure symptoms. Epileptic hallucinations, illusions, and delusions shine interesting light on the physiology and functional anatomy of brain regions involved and their functions in the human being. This article, in which 10 cases are described, introduces the fascinating

  20. Frequency of Toxoplasma and Toxocara Sp. Antibodies in Epileptic Patients, in South Western Iran

    PubMed Central

    ALLAHDIN, Sudabeh; KHADEMVATAN, Shahram; RAFIEI, Abdollah; MOMEN, Aliakbar; RAFIEI, Reza

    2015-01-01

    Objective Epilepsy is a disorder of the brain characterized by an enduring predisposition to generate seizures. Infectious agents are mentioned in its etiology. With identifying and appropriate treatment of these infectious agents, preventing their secondary outcomes, including seizure is possible. This study was conducted to determine frequency of anti-Toxoplasma antibodies (IgG, IgM) and anti-Toxocara antibody (IgG) in epileptic patients. Materials & Methods Study sample consisted of 141 epileptic patients and 144 healthy people. After obtaining informed consents and completing demographic questionnaire, serum samples were taken from participants. The diagnostic test of Toxoplasma IgG & IgM and Toxocara antibodies was performed under the same conditions using ELISA method in a qualified private laboratory. Samples from patients and control groups with positive ELISA test in terms of anti-Toxocara antibody were also used for confirmatory Western blot test. Result According to ELISA results, 28 (19.85%) epileptic patients and 2(1.38%) of healthy people had anti-Toxocara antibodies (P<001), while 39 (30.46%) of the control group people and 14.18% of patients had anti-Toxoplsma antibodies (P=0.001). Conclusion Frequency of anti-Toxoplasma gondii is lower in epileptic than healthy individuals and this result is contrary to investigations that have reported higher levels of this antibody in such patient groups. ELISA results for Toxocara showed that the frequency of anti-Toxocara antibody in epileptic patients might empower the probability that this parasite may cause central nervous system damage. Western blotting has high specificity and is a proper confirmative method for diagnosis of toxocariasis. PMID:26664439

  1. A study of the dynamics of seizure propagation across micro domains in the vicinity of the seizure onset zone

    NASA Astrophysics Data System (ADS)

    Basu, Ishita; Kudela, Pawel; Korzeniewska, Anna; Franaszczuk, Piotr J.; Anderson, William S.

    2015-08-01

    Objective. The use of micro-electrode arrays to measure electrical activity from the surface of the brain is increasingly being investigated as a means to improve seizure onset zone (SOZ) localization. In this work, we used a multivariate autoregressive model to determine the evolution of seizure dynamics in the 70-110 Hz high frequency band across micro-domains sampled by such micro-electrode arrays. We showed that a directed transfer function (DTF) can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with known propagation pattern. Approach. We used seven complex partial seizures recorded from four patients undergoing intracranial monitoring for surgical evaluation to reconstruct the seizure propagation pattern over sliding windows using a DTF measure. Main results. We showed that a DTF can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with a known propagation pattern. In general, depending on the location of the micro-electrode grid with respect to the clinical SOZ and the time from seizure onset, ictal propagation changed in directional characteristics over a 2-10 s time scale, with gross directionality limited to spatial dimensions of approximately 9 m{{m}2}. It was also seen that the strongest seizure patterns in the high frequency band and their sources over such micro-domains are more stable over time and across seizures bordering the clinically determined SOZ than inside. Significance. This type of propagation analysis might in future provide an additional tool to epileptologists for characterizing epileptogenic tissue. This will potentially help narrowing down resection zones without compromising essential brain functions as well as provide important information about targeting anti-epileptic stimulation devices.

  2. Ordinal patterns in epileptic brains: Analysis of intracranial EEG and simultaneous EEG-fMRI

    NASA Astrophysics Data System (ADS)

    Rummel, C.; Abela, E.; Hauf, M.; Wiest, R.; Schindler, K.

    2013-06-01

    Epileptic seizures are associated with high behavioral stereotypy of the patients. In the EEG of epilepsy patients characteristic signal patterns can be found during and between seizures. Here we use ordinal patterns to analyze EEGs of epilepsy patients and quantify the degree of signal determinism. Besides relative signal redundancy and the fraction of forbidden patterns we introduce the fraction of under-represented patterns as a new measure. Using the logistic map, parameter scans are performed to explore the sensitivity of the measures to signal determinism. Thereafter, application is made to two types of EEGs recorded in two epilepsy patients. Intracranial EEG shows pronounced determinism peaks during seizures. Finally, we demonstrate that ordinal patterns may be useful for improving analysis of non-invasive simultaneous EEG-fMRI.

  3. Beta-endorphin, somatostatin, and prolactin levels in cerebrospinal fluid of epileptic patients after generalised convulsion.

    PubMed Central

    Pitkänen, A; Jolkkonen, J; Riekkinen, P

    1987-01-01

    The possible role of different peptidergic systems in the postictal stage of human epilepsy was studied by measuring beta-endorphin, somatostatin, and prolactin levels by radioimmunoassay of cerebrospinal fluid (CSF) from nine epileptic patients. The first sample was taken within 2 hours after generalised tonic-clonic convulsion, and the second sample was obtained interictally after 1-4 days without any kind of clinically observable seizures. beta-endorphin was elevated postictally (p = 0.044) compared with interictal levels. SLI and PROL were similar in both samples. The present study suggests that in humans beta-endorphin is released into CSF during generalised seizures. This may indicate that neurons containing beta-endorphin are activated during a seizure. PMID:2890716

  4. Delta opioid receptors expressed in forebrain GABAergic neurons are responsible for SNC80-induced seizures

    PubMed Central

    CHUNG, Paul CHU SIN; BOEHRER, Annie; STEPHAN, Aline; MATIFAS, Audrey; SCHERRER, Gregory; DARCQ, Emmanuel; BEFORT, Katia; KIEFFER, Brigitte L.

    2014-01-01

    The delta opioid receptor (DOR) has raised much interest for the development of new therapeutic drugs, particularly to treat patients suffering from mood disorders and chronic pain. Unfortunately, the prototypal DOR agonist SNC80 induces mild epileptic seizures in rodents. Although recently developed agonists do not seem to show convulsant properties, mechanisms and neuronal circuits that support DOR-mediated epileptic seizures remain to be clarified. DORs are expressed throughout the nervous system. In this study we tested the hypothesis that SNC80-evoked seizures stem from DOR activity at the level of forebrain GABAergic transmission, whose inhibition is known to facilitate the development of epileptic seizures. We generated a conditional DOR knockout mouse line, targeting the receptor gene specifically in GABAergic neurons of the forebrain (Dlx-DOR). We measured effects of SNC80 (4.5, 9, 13.5 and 32 mg/kg), ARM390 (10, 30 and 60 mg/kg) or ADL5859 (30, 100 and 300 mg/kg) administration on electroencephalograms (EEGs) recorded in Dlx-DOR mice and their control littermates (Ctrl mice). SNC80 produced dose-dependent seizure events in Ctrl mice, but these effects were not detected in Dlx-DOR mice. As expected, ARM390 and ADL5859 did not trigger any detectable change in mice from both genotypes. These results demonstrate for the first time that SNC80-induced DOR activation induces epileptic seizures via direct inhibition of GABAergic forebrain neurons, and supports the notion of differential activities between first and second-generation DOR agonists. PMID:25447299

  5. The causes of new-onset epilepsy and seizures in the elderly

    PubMed Central

    Liu, Shasha; Yu, Weihua; Lü, Yang

    2016-01-01

    With increasing age, the prevalence and incidence of epilepsy and seizures increases correspondingly. New-onset epilepsy in elderly people often has underlying etiology, including cerebrovascular diseases, primary neuron degenerative disorders, intracerebral tumors, and traumatic head injury. In addition, an acute symptomatic seizure cannot be called epilepsy, which manifests usually as a common symptom secondary to metabolic or toxicity factors in older people. In this review, we have mainly focused on the causes of new-onset epilepsy and seizures in elderly people. This knowledge will certainly help us to understand the reasons for high incidences of epilepsy and seizures in elderly people. We look forward to controlling epileptic seizures via the treatment of primary diseases in the future. PMID:27382285

  6. Wavelet analysis of epileptic spikes

    NASA Astrophysics Data System (ADS)

    Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.

    2003-05-01

    Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.

  7. The involvement of neuronal nitric oxide synthase in the anti-epileptic action of curcumin on pentylenetetrazol-kindled rats.

    PubMed

    Zhu, Wenting; Su, Jing; Liu, Jing; Jiang, Changbin

    2015-01-01

    In this study, it was investigated whether a NO signaling pathway is involved in the anti-epileptic effect of curcumin on pentylenetetrazol (PTZ)-kindled rats. PTZ-kindled rats received different doses of curcumin that were administered intraperitoneally for 24 days. Either a non-selective inhibitor of nitric oxide synthase (NOS) (N-nitro-L-arginine methyl ester (L-NAME)), a selective inhibitor of neuronal NOS (7-Nitroindazole (7-NI)), a selective inhibitor of inducible NOS (aminoguanidine (AG)), or a NO precursor (L-arginine (L-ARG)) was administered chronically to evaluate the role of NO in curcumin's anti-seizure effect. A chronic administration of curcumin (200 mg/kg) was most effective for decreasing the mean frequency of epileptiform discharge. Furthermore, a pretreatment with L-NAME or 7-NI augmented the anti-epileptic effect of curcumin. In contrast, AG failed to significantly alter the anti-epileptic effect of curcumin. A pretreatment with L-ARG temporally reversed the anti-epileptic effect of curcumin in the early stage, but in the late stage, it potentiated curcumin's anti-epileptic effect. These findings suggest that the L-arginine-nitric oxide pathway may be involved in the anti-epileptic properties of curcumin, and that the role of nNOS (and not iNOS) is prominent in this neuroprotective feature. PMID:26406082

  8. Mozart's music in children with drug-refractory epileptic encephalopathies.

    PubMed

    Coppola, Giangennaro; Toro, Annacarmela; Operto, Francesca Felicia; Ferrarioli, Giuseppe; Pisano, Simone; Viggiano, Andrea; Verrotti, Alberto

    2015-09-01

    Mozart's sonata for two pianos in D major, K448, has been shown to decrease interictal EEG discharges and recurrence of clinical seizures in both adults and young patients. In this prospective, open-label study, we evaluated the effect of listening to a set of Mozart's compositions, according to the Tomatis method, on sleep quality and behavioral disorders, including auto-/hetero-aggression, irritability, and hyperactivity, in a group of children and adolescents with drug-resistant epilepsy. The study group was composed of 11 outpatients (7 males and 4 females), between 1.5years and 21years of age (mean age: 11.9years), all suffering from drug-resistant epileptic encephalopathy (n=11). All of them had a severe/profound intellectual disability associated with cerebral palsy. During the study period, each patient had to listen to a set of Mozart's compositions 2h per day for fifteen days for a total of 30h, which could be distributed over the day depending on the habits and compliance of each patient. The music was filtered by a device preferably delivering higher sound frequencies (>3000Hz) according to the Tomatis principles. The antiepileptic drug therapy remained unchanged throughout the study period. During the 15-day music therapy, 2 out of 11 patients had a reduction of 50-75% in seizure recurrence, and 3 out of 12 patients had a reduction of 75-89%. Overall, 5 (45.4%) out of 11 patients had a ≥50% reduction in the total number of seizures, while the percentage decrease of the total seizure number (11/11) compared with baseline was -51.5% during the 15-day music therapy and -20.7% in the two weeks after the end of treatment. All responders also had an improvement in nighttime sleep and daytime behavior. PMID:26093514

  9. Genetic investigations of the epileptic encephalopathies: Recent advances.

    PubMed

    Myers, C T; Mefford, H C

    2016-01-01

    The epileptic encephalopathies (EEs) are a group of epilepsy syndromes characterized by multiple seizure types, abundant epileptiform activity, and developmental delay or regression. Advances in genomic technologies over the past decade have accelerated our understanding of the genetic etiology of EE, which is largely due to de novo mutations. Chromosome microarrays to detect copy number variants identify a genomic cause in at least 5-10% of cases. Next-generation sequencing in the form of gene panels or whole exome sequencing have highlighted the role of de novo sequence changes and revealed extensive genetic heterogeneity. The novel gene discoveries in EE implicate diverse cellular pathways including chromatin remodeling, transcriptional regulation, and mTOR regulation in the etiology of epilepsy, highlighting new targets for potential therapeutic intervention. In this chapter, we discuss the rapid pace of gene discovery in EE facilitated by genomic technologies and highlight several novel genes and potential therapies. PMID:27323938

  10. A novel seizure detection algorithm informed by hidden Markov model event states

    NASA Astrophysics Data System (ADS)

    Baldassano, Steven; Wulsin, Drausin; Ung, Hoameng; Blevins, Tyler; Brown, Mesha-Gay; Fox, Emily; Litt, Brian

    2016-06-01

    Objective. Recently the FDA approved the first responsive, closed-loop intracranial device to treat epilepsy. Because these devices must respond within seconds of seizure onset and not miss events, they are tuned to have high sensitivity, leading to frequent false positive stimulations and decreased battery life. In this work, we propose a more robust seizure detection model. Approach. We use a Bayesian nonparametric Markov switching process to parse intracranial EEG (iEEG) data into distinct dynamic event states. Each event state is then modeled as a multidimensional Gaussian distribution to allow for predictive state assignment. By detecting event states highly specific for seizure onset zones, the method can identify precise regions of iEEG data associated with the transition to seizure activity, reducing false positive detections associated with interictal bursts. The seizure detection algorithm was translated to a real-time application and validated in a small pilot study using 391 days of continuous iEEG data from two dogs with naturally occurring, multifocal epilepsy. A feature-based seizure detector modeled after the NeuroPace RNS System was developed as a control. Main results. Our novel seizure detection method demonstrated an improvement in false negative rate (0/55 seizures missed versus 2/55 seizures missed) as well as a significantly reduced false positive rate (0.0012 h versus 0.058 h‑1). All seizures were detected an average of 12.1 ± 6.9 s before the onset of unequivocal epileptic activity (unequivocal epileptic onset (UEO)). Significance. This algorithm represents a computationally inexpensive, individualized, real-time detection method suitable for implantable antiepileptic devices that may considerably reduce false positive rate relative to current industry standards.

  11. Seizures induced by pentylenetetrazole in the adult zebrafish: a detailed behavioral characterization.

    PubMed

    Mussulini, Ben Hur M; Leite, Carlos E; Zenki, Kamila C; Moro, Luana; Baggio, Suelen; Rico, Eduardo P; Rosemberg, Denis B; Dias, Renato D; Souza, Tadeu M; Calcagnotto, Maria E; Campos, Maria M; Battastini, Ana M; de Oliveira, Diogo L

    2013-01-01

    Pentylenetetrazole (PTZ) is a common convulsant agent used in animal models to investigate the mechanisms of seizures. Although adult zebrafish have been recently used to study epileptic seizures, a thorough characterization of the PTZ-induced seizures in this animal model is missing. The goal of this study was to perform a detailed temporal behavior profile characterization of PTZ-induced seizure in adult zebrafish. The behavioral profile during 20 min of PTZ immersion (5, 7.5, 10, and 15 mM) was characterized by stages defined as scores: (0) short swim, (1) increased swimming activity and high frequency of opercular movement, (2) erratic movements, (3) circular movements, (4) clonic seizure-like behavior, (5) fall to the bottom of the tank and tonic seizure-like behavior, (6) death. Animals exposed to distinct PTZ concentrations presented different seizure profiles, intensities and latencies to reach all scores. Only animals immersed into 15 mM PTZ showed an increased time to return to the normal behavior (score 0), after exposure. Total mortality rate at 10 and 15 mM were 33% and 50%, respectively. Considering all behavioral parameters, 5, 7.5, 10, and 15 mM PTZ, induced seizures with low, intermediate, and high severity, respectively. Pretreatment with diazepam (DZP) significantly attenuated seizure severity. Finally, the brain PTZ levels in adult zebrafish immersed into the chemoconvulsant solution at 5 and 10 mM were comparable to those described for the rodent model, with a peak after a 20-min of exposure. The PTZ brain levels observed after 2.5-min PTZ exposure and after 60-min removal from exposure were similar. Altogether, our results showed a detailed temporal behavioral characterization of a PTZ epileptic seizure model in adult zebrafish. These behavioral analyses and the simple method for PTZ quantification could be considered as important tools for future investigations and translational research. PMID:23349914

  12. Perirhinal Cortex Hyperexcitability in Pilocarpine-Treated Epileptic Rats

    PubMed Central

    Benini, Ruba; Longo, Daniela; Biagini, Giuseppe; Avoli, Massimo

    2016-01-01

    The perirhinal cortex (PC), which is heavily connected with several epileptogenic regions of the limbic system such as the entorhinal cortex and amygdala, is involved in the generation and spread of seizures. However, the functional alterations occurring within an epileptic PC network are unknown. Here, we analyzed this issue by using in vitro electrophysiology and immunohistochemistry in brain tissue obtained from pilocarpine-treated epileptic rats and age-matched, nonepileptic controls (NECs). Neurons recorded intracellularly from the PC deep layers in the two experimental groups had similar intrinsic and firing properties and generated spontaneous depolarizing and hyperpolarizing postsynaptic potentials with comparable duration and amplitude. However, spontaneous and stimulus-induced epileptiform discharges were seen with field potential recordings in over one-fifth of pilocarpine-treated slices but never in NEC tissue. These network events were reduced in duration by antagonizing NMDA receptors and abolished by NMDA + non-NMDA glutamatergic receptor antagonists. Pharmacologically isolated isolated inhibitory postsynaptic potentials had reversal potentials for the early GABAA receptor-mediated component that were significantly more depolarized in pilocarpine-treated cells. Experiments with a potassium-chloride cotransporter 2 antibody identified, in pilocarpine-treated PC, a significant immunostaining decrease that could not be explained by neuronal loss. However, interneurons expressing parvalbumin and neuropeptide Y were found to be decreased throughout the PC, whereas cholecystokinin-positive cells were diminished in superficial layers. These findings demonstrate synaptic hyper-excitability that is contributed by attenuated inhibition in the PC of pilocarpine-treated epileptic rats and underscore the role of PC networks in temporal lobe epilepsy. PMID:20865722

  13. Emodin plays an interventional role in epileptic rats via multidrug resistance gene 1 (MDR1)

    PubMed Central

    Yang, Tao; Kong, Bin; Kuang, Yongqin; Cheng, Lin; Gu, Jianwen; Zhang, Junhai; Shu, Haifeng; Yu, Sixun; Yang, Xiaokun; Cheng, Jingming; Huang, Haidong

    2015-01-01

    Objective: To observe the interventional effects of emodin in epileptic rats and elucidate its possible mechanism of action. Methods: Thirty-six female Wistar rats were randomly divided into normal control group, model group (intraperitoneal injection of kainic acid) and emodin group (intraperitoneal injection of kainic acid + emodin intervention). The rat epilepsy model was confirmed by behavioral tests and electroencephalography. The protein levels of P-glycoprotein and N-methyl-D-aspartate (NMDA) receptor in cerebral vascular tissue were analyzed by western blotting, and mRNA levels of multidrug resistance gene 1 (MDR1) and cyclooxygenase-2 (COX-2) were analyzed by real-time PCR. COX-2 and P-glycoprotein levels in the brains were detected by immunohistochemical assay. Results: The seizures were relieved in emodin group. Laser scanning confocal microscopy showed P-glycoprotein fluorescence increased significantly after seizures, indicating that epilepsy can induce overexpression of P-glycoprotein. Compared with control group, protein levels of P-glycoprotein and NMDA receptor in cerebral vascular tissue were significantly higher in model group, and mRNA levels of MDR1 and COX-2 were also significantly increased. Compared with model group, P-glycoprotein and NMDA receptor levels in cerebral vascular tissue were significantly decreased in emodin group (P < 0.05), and the levels of MDR1 and COX-2 were down-regulated (P < 0.05). In the rat brain, seizures could significantly increase COX-2 and P-glycoprotein levels, while emodin intervention was able to significantly reduce the levels of both. Discussion: These findings suggest that epileptic seizures are tightly associated with up-regulated MDR1 gene, and emodin shows good antagonistic effects on epileptic rats, possibly through inhibition of MDR1 gene and its associated genes. PMID:26045880

  14. Video/EEG aspects of early-infantile epileptic encephalopathy with suppression-bursts (Ohtahara syndrome).

    PubMed

    Fusco, L; Pachatz, C; Di Capua, M; Vigevano, F

    2001-11-01

    Early-infantile epileptic encephalopathy (EIEE) with suppression-bursts is a severe neonatal epileptic encephalopathy. The etiology is multiple, with cerebral malformations as the more frequent. We review the clinical and video/EEG aspects of eight infants with EIEE. These infants, aged between 4 and 70 days at the time of video/EEG recordings, were studied in relation to their clinical and video/EEG characteristics, evolution, persistence of suppression-burst pattern and etiology. Seven of the eight infants showed an ictal clinical sign correlated to the burst of the suppression-burst pattern, four of whom died within 11 months of age. The other three are alive. One, now aged 4 years, underwent surgery for hemimegalencephaly and is seizure-free, with good neurological outcome. One, now aged 9 months, was pyridoxine-dependent and she is seizure-free, and with normal neurological evolution under pyridoxine therapy. One, now aged 3 years and 9 months, is seizure-free, but with severe neurological and cognitive impairment. The only child who did not show a clinical ictal correlation of burst is also alive, now aged 3 years and 9 months, with drug-resistant epilepsy, and severe neurological and cognitive deficits. With regard to the etiology, three showed structural abnormalities, two more showed some signs of prenatal origin of neurological disease, and three had metabolic etiology. Our study confirms that EIEE is a severe age-dependent early epileptic encephalopathy. The etiology is mostly malformative. The prognosis is poor regarding motor and cognitive development, seizures, as well as life expectancies. The presence of an ictal burst of the suppression-burst pattern usually correlates with a negative outcome. PMID:11701283

  15. Epileptic Neuronal Networks: Methods of Identification and Clinical Relevance

    PubMed Central

    Stefan, Hermann; Lopes da Silva, Fernando H.

    2012-01-01

    The main objective of this paper is to examine evidence for the concept that epileptic activity should be envisaged in terms of functional connectivity and dynamics of neuronal networks. Basic concepts regarding structure and dynamics of neuronal networks are briefly described. Particular attention is given to approaches that are derived, or related, to the concept of causality, as formulated by Granger. Linear and non-linear methodologies aiming at characterizing the dynamics of neuronal networks applied to EEG/MEG and combined EEG/fMRI signals in epilepsy are critically reviewed. The relevance of functional dynamical analysis of neuronal networks with respect to clinical queries in focal cortical dysplasias, temporal lobe epilepsies, and “generalized” epilepsies is emphasized. In the light of the concepts of epileptic neuronal networks, and recent experimental findings, the dichotomic classification in focal and generalized epilepsy is re-evaluated. It is proposed that so-called “generalized epilepsies,” such as absence seizures, are actually fast spreading epilepsies, the onset of which can be tracked down to particular neuronal networks using appropriate network analysis. Finally new approaches to delineate epileptogenic networks are discussed. PMID:23532203

  16. Multichannel continuous electroencephalography-functional near-infrared spectroscopy recording of focal seizures and interictal epileptiform discharges in human epilepsy: a review.

    PubMed

    Peng, Ke; Pouliot, Philippe; Lesage, Frédéric; Nguyen, Dang Khoa

    2016-07-01

    Functional near-infrared spectroscopy (fNIRS) has emerged as a promising neuroimaging technique as it allows noninvasive and long-term monitoring of cortical hemodynamics. Recent work by our group and others has revealed the potential of fNIRS, combined with electroencephalography (EEG), in the context of human epilepsy. Hemodynamic brain responses attributed to epileptic events, such as seizures and interictal epileptiform discharges (IEDs), are routinely observed with a good degree of statistical significance and in concordance with clinical presentation. Recording done with over 100 channels allows sufficiently large coverage of the epileptic focus and other areas. Three types of seizures have been documented: frontal lobe seizures, temporal lobe seizures, and posterior seizures. Increased oxygenation was observed in the epileptic focus in most cases, while rapid but similar hemodynamic variations were identified in the contralateral homologous region. While investigating IEDs, it was shown that their hemodynamic effect is observable with fNIRS, that their response is associated with significant (inhibitive) nonlinearities, and that the sensitivity and specificity of fNIRS to localize the epileptic focus can be estimated in a sample of 40 patients. This paper first reviews recent EEG-fNIRS developments in epilepsy research and then describes applications to the study of focal seizures and IEDs. PMID:26958576

  17. No association between ApoE polymorphism and febrile seizures.

    PubMed

    Lavenex, Pierre; Lavenex, Pamela Banta; Cachat, François; Gehri, Mario; Juvet, Typhaine

    2016-01-01

    Seizures associated with fever are a common pediatric problem, affecting about 2-7 % of children between 3 months and 5 years of age. Differentiation of febrile seizures from acute symptomatic seizures secondary to central nervous system infections or seizures associated with fever in children with epilepsy is essential to provide appropriate treatment and follow-up care. Here, we tested the hypothesis that children who exhibit simple febrile seizures during early childhood, but do not develop epileptic seizures later in life, might preferentially carry the ApoE2 allele of the gene coding for the apolipoprotein E. We did not find any differences in the distribution of ApoE alleles or genotypes between individuals who exhibited simple febrile seizures (n = 93) and age-matched, typically developing subjects (n = 80). We found that the observed allele and genotype frequencies did not deviate from Hardy-Weinberg equilibrium, which suggests that the frequencies of ApoE alleles and genotypes are stable in the Swiss population from which our samples were derived. Across both groups of subjects (n = 173), we found an ApoE2 allele frequency of 0.064, an ApoE3 frequency of 0.829 and an ApoE4 frequency of 0.107. Our findings are consistent with previous reports of the distribution of ApoE polymorphism for European subjects free of any neurological disorders, and show that the different alleles of the gene coding for the apolipoprotein E are not associated with the occurrence of simple febrile seizures. PMID:26233231

  18. Epileptic encephalopathy: Use and misuse of a clinically and conceptually important concept.

    PubMed

    Howell, Katherine B; Harvey, A Simon; Archer, John S

    2016-03-01

    The term epileptic encephalopathy (EE) denotes a process by which epileptic activity adversely affects brain function over and above the underlying etiology. Underlying mechanisms are poorly understood, but recent studies demonstrate that seizures and interictal epileptiform discharges can disrupt distributed neural networks that underpin cognitive functions, both temporarily and permanently. EE is just one of a number of factors that can affect development in epilepsy. The presence and relative contribution of EE to cognitive impairment is often difficult to separate from that of the underlying etiology or even effects of antiepileptic medication (AEM). This difficulty has led to the increasing use of the term EE to encapsulate "severe" epileptic syndromes, or etiologies associated with severe epilepsy and intellectual disability (ID), regardless of evidence that the epileptic process has impacted cognition. The use of the term EE in the literature to describe both the process of cognitive impairment by epileptic activity and as a category for severe epilepsy syndromes is creating confusion. We propose that use of the term EE be restricted to the central concept of a pervasive epileptic process disrupting development, and that the use of EE as a classifier be avoided. A different term is needed to encapsulate the broad and heterogenous group of patients with severe epilepsy and ID, for which the mechanisms may be unknown but are often closely related to the underlying genetic, metabolic, or structural etiology. An improved understanding of the mechanisms by which EE develops is of critical importance, potentially leading to identification of biomarkers for early detection and treatment. PMID:26778176

  19. Early-onset epileptic encephalopathies and the diagnostic approach to underlying causes

    PubMed Central

    Hwang, Su-Kyeong

    2015-01-01

    Early-onset epileptic encephalopathies are one of the most severe early onset epilepsies that can lead to progressive psychomotor impairment. These syndromes result from identifiable primary causes, such as structural, neurodegenerative, metabolic, or genetic defects, and an increasing number of novel genetic causes continue to be uncovered. A typical diagnostic approach includes documentation of anamnesis, determination of seizure semiology, electroencephalography, and neuroimaging. If primary biochemical investigations exclude precipitating conditions, a trial with the administration of a vitaminic compound (pyridoxine, pyridoxal-5-phosphate, or folinic acid) can then be initiated regardless of presumptive seizure causes. Patients with unclear etiologies should be considered for a further workup, which should include an evaluation for inherited metabolic defects and genetic analyses. Targeted next-generation sequencing panels showed a high diagnostic yield in patients with epileptic encephalopathy. Mutations associated with the emergence of epileptic encephalopathies can be identified in a targeted fashion by sequencing the most likely candidate genes. Next-generation sequencing technologies offer hope to a large number of patients with cryptogenic encephalopathies and will eventually lead to new therapeutic strategies and more favorable long-term outcomes. PMID:26692875

  20. Early-onset epileptic encephalopathies and the diagnostic approach to underlying causes.

    PubMed

    Hwang, Su-Kyeong; Kwon, Soonhak

    2015-11-01

    Early-onset epileptic encephalopathies are one of the most severe early onset epilepsies that can lead to progressive psychomotor impairment. These syndromes result from identifiable primary causes, such as structural, neurodegenerative, metabolic, or genetic defects, and an increasing number of novel genetic causes continue to be uncovered. A typical diagnostic approach includes documentation of anamnesis, determination of seizure semiology, electroencephalography, and neuroimaging. If primary biochemical investigations exclude precipitating conditions, a trial with the administration of a vitaminic compound (pyridoxine, pyridoxal-5-phosphate, or folinic acid) can then be initiated regardless of presumptive seizure causes. Patients with unclear etiologies should be considered for a further workup, which should include an evaluation for inherited metabolic defects and genetic analyses. Targeted next-generation sequencing panels showed a high diagnostic yield in patients with epileptic encephalopathy. Mutations associated with the emergence of epileptic encephalopathies can be identified in a targeted fashion by sequencing the most likely candidate genes. Next-generation sequencing technologies offer hope to a large number of patients with cryptogenic encephalopathies and will eventually lead to new therapeutic strategies and more favorable long-term outcomes. PMID:26692875

  1. Body packing: from seizures to laparotomy.

    PubMed

    Janczak, Joanna M; Beutner, Ulrich; Hasler, Karin

    2015-01-01

    Body packing is a common method for illegal drug trafficking. Complications associated with body packing can be severe and even lead to rapid death. Thus, a timely diagnosis is warranted. As most body packers initially do not show any symptoms, making a correct diagnosis can be rather challenging. We describe a case of a 41-year-old male, who was admitted with an epileptic seizure and who turned out to be a cocaine intoxicated body packer. Due to neurological and cardiovascular deterioration an emergency surgery was performed. Four bags of cocaine could be removed. We discuss the current management regimen in symptomatic and asymptomatic body packers and highlight pearls and pitfalls with diagnosis and treatment. PMID:25883813

  2. Body Packing: From Seizures to Laparotomy

    PubMed Central

    Janczak, Joanna M.; Beutner, Ulrich; Hasler, Karin

    2015-01-01

    Body packing is a common method for illegal drug trafficking. Complications associated with body packing can be severe and even lead to rapid death. Thus, a timely diagnosis is warranted. As most body packers initially do not show any symptoms, making a correct diagnosis can be rather challenging. We describe a case of a 41-year-old male, who was admitted with an epileptic seizure and who turned out to be a cocaine intoxicated body packer. Due to neurological and cardiovascular deterioration an emergency surgery was performed. Four bags of cocaine could be removed. We discuss the current management regimen in symptomatic and asymptomatic body packers and highlight pearls and pitfalls with diagnosis and treatment. PMID:25883813

  3. Hyperventilation and photic stimulation are useful additions to a placebo-based suggestive seizure induction protocol in patients with psychogenic nonepileptic seizures.

    PubMed

    Popkirov, Stoyan; Grönheit, Wenke; Wellmer, Jörg

    2015-05-01

    The early and definitive diagnosis of psychogenic nonepileptic seizures is a common challenge in epileptology practice. Suggestive seizure induction is a valuable tool to aid the differentiation between epileptic and psychogenic nonepileptic seizures, especially when long-term video-EEG monitoring is inconclusive or unavailable. In this retrospective analysis, we compared the diagnostic yield of a classical, placebo-based induction protocol with that of an extended protocol that includes hyperventilation and photic stimulation as means of suggestion while also implementing more open, standardized patient information. We investigated whether the diversification of suggestive seizure induction has an effect on diagnostic yield and whether it preempts the administration of placebo. Data from 52 patients with confirmed psychogenic nonepileptic seizures were analyzed. While suggestive seizure induction using only placebo-based suggestion provoked a typical event in 13 of 20 patients (65%), the extended protocol was positive in 27 of 34 cases (84%); this improvement was not significant (p=0.11). Noninvasive suggestion techniques accounted for 78% of inductions, avoiding placebo administration in a majority of patients. Still, placebo remains an important part of suggestive seizure induction, responsible for 22% (6 out of 27) of successful inductions using our extended protocol. Our study demonstrates that the diversification of suggestive seizure induction is feasible and beneficial for both patients and diagnosticians. PMID:25934586

  4. Microarray Noninvasive Neuronal Seizure Recordings from Intact Larval Zebrafish

    PubMed Central

    Meyer, Michaela; Dhamne, Sameer C.; LaCoursiere, Christopher M.; Tambunan, Dimira; Poduri, Annapurna; Rotenberg, Alexander

    2016-01-01

    Zebrafish epilepsy models are emerging tools in experimental epilepsy. Zebrafish larvae, in particular, are advantageous because they can be easily genetically altered and used for developmental and drug studies since agents applied to the bath penetrate the organism easily. Methods for electrophysiological recordings in zebrafish are new and evolving. We present a novel multi-electrode array method to non-invasively record electrical activity from up to 61 locations of an intact larval zebrafish head. This method enables transcranial noninvasive recording of extracellular field potentials (which include multi-unit activity and EEG) to identify epileptic seizures. To record from the brains of zebrafish larvae, the dorsum of the head of an intact larva was secured onto a multi-electrode array. We recorded from individual electrodes for at least three hours and quantified neuronal firing frequency, spike patterns (continuous or bursting), and synchrony of neuronal firing. Following 15 mM potassium chloride- or pentylenetetrazole-infusion into the bath, spike and burst rate increased significantly. Additionally, synchrony of neuronal firing across channels, a hallmark of epileptic seizures, also increased. Notably, the fish survived the experiment. This non-invasive method complements present invasive zebrafish neurophysiological techniques: it affords the advantages of high spatial and temporal resolution, a capacity to measure multiregional activity and neuronal synchrony in seizures, and fish survival for future experiments, such as studies of epileptogenesis and development. PMID:27281339

  5. Mitochondrial dysfunction and seizures: the neuronal energy crisis.

    PubMed

    Zsurka, Gábor; Kunz, Wolfram S

    2015-09-01

    Seizures are often the key manifestation of neurological diseases caused by pathogenic mutations in 169 of the genes that have so far been identified to affect mitochondrial function. Mitochondria are the main producers of ATP needed for normal electrical activities of neurons and synaptic transmission. Additionally, they have a central role in neurotransmitter synthesis, calcium homoeostasis, redox signalling, production and modulation of reactive oxygen species, and neuronal death. Hypotheses link mitochondrial failure to seizure generation through changes in calcium homoeostasis, oxidation of ion channels and neurotransmitter transporters by reactive oxygen species, a decrease in neuronal plasma membrane potential, and reduced network inhibition due to interneuronal dysfunction. Seizures, irrespective of their origin, represent an excessive acute energy demand in the brain. Accordingly, secondary mitochondrial dysfunction has been described in various epileptic disorders, including disorders that are mainly of non-mitochondrial origin. An understanding of the reciprocal relation between mitochondrial dysfunction and epilepsy is crucial to select appropriate anticonvulsant treatment and has the potential to open up new therapeutic approaches in the subset of epileptic disorders caused by mitochondrial dysfunction. PMID:26293567

  6. Palmitoylethanolamide attenuates PTZ-induced seizures through CB1 and CB2 receptors.

    PubMed

    Aghaei, Iraj; Rostampour, Mohammad; Shabani, Mohammad; Naderi, Nima; Motamedi, Fereshteh; Babaei, Parvin; Khakpour-Taleghani, Behrooz

    2015-11-01

    Epilepsy is one of the most common neurologic disorders. Though there are effective medications available to reduce the symptoms of the disease, their side effects have limited their usage. Palmitoylethanolamide (PEA) has been shown to attenuate seizure in different animal models. The objective of the current study was to evaluate the role of CB1 and CB2 receptors in this attenuation. Male wistar rats were used for the current experiment. PTZ was injected to induce chemical kindling in animals. After verification of kindling in animals, treatment was performed with PEA, AM251 and AM630 in different groups. Latency to induce seizure, seizure stages and latency and duration of fifth stage of seizure was recorded for each animal. Injection of PTZ led to seizure in the animals. Pretreatment with PEA increased the latency to initiate seizures and reduced the duration of seizure. Pretreatment with different dosages of AM251 had contrary effects so that at lower doses they increased the seizure in animals but at higher doses led to the attenuation of seizure. AM630 increased seizures in a dose dependent manner. Combination of the antagonists increased the seizure parameters and attenuated the effect of PEA on seizure. PEA attenuated the PTZ-induced seizures and pretreatment with CB1 and CB2 antagonists diminished this effect of PEA, but still PEA was effective, which might be attributed to the contribution of other receptors in PEA anti-epileptic properties. Findings of the current study implied that endocannabinoid signaling pathway might have an important role in the effects of PEA. PMID:26370914

  7. [Difficulties in diagnosis of frontal syndrome in epileptic children: clinical, diagnostic, physiopathological aspects. Apropos of 6 cases].

    PubMed

    Septien, L; Brenot, M; Giroud, M; Gras, P; Nivelon, J L; Dumas, R

    1992-01-01

    The authors report 6 cases of acute frontal syndrome following severe seizures of frontal origin. The study of the 6 cases shows the place of disorders in affectivity, behavior, judgement and motor activity; such features changing over time. The relationship between the frontal syndrome and epilepsy is suggested by the fact that the frontal syndrome appears after an increased frequency of frontal seizures, with prolonged discharges of generalized or frontal spikes. The frontal syndrome disappears slowly with the epileptic discharges, and no frontal lesion is found on CT-Scan. Such cases suggest that the frontal syndrome is functional, linked to the localization of the epileptic discharges; it may be regarded as a post-critic deficit, and must be differentiated from a post-critic delirium or a psychotic state. PMID:1329013

  8. Seizures induced by desloratadine, a second-generation antihistamine: clinical observations.

    PubMed

    Cerminara, Caterina; El-Malhany, Nadia; Roberto, Denis; Lo Castro, Adriana; Curatolo, Paolo

    2013-08-01

    Some clinical experiences indicate that H1-antihistamines, especially first-generation H1-antagonists, occasionally provoke convulsions in healthy children as well as epileptic patients. Desloratadine is a frequently used second-generation antihistamine considered to be effective and safe for the treatment of allergic diseases. We describe four children who experienced epilepsy associated with the nonsedating H(1)-antagonist desloratadine and discuss the neurophysiologic role of the central histaminergic system in seizure susceptibility. In conclusion, we recommend caution in treating epileptic patients with the histamine H(1)-antagonists, including second- and third-generation drugs that are frequently referred because they are considered to be nonsedating antihistamines. PMID:23456992

  9. Genes, Seizures & Epilepsy

    ERIC Educational Resources Information Center

    Goldman, Alica M.

    2006-01-01

    The chance that someone will develop any disease is influenced by heredity and environment. Epilepsy is not an exception. Everybody inherits a unique degree of susceptibility to seizures. About 3 percent of the United States population is prone to seizures and will get epilepsy at some point of their lives (1). Two thirds of the people with…

  10. EEG seizure detection and prediction algorithms: a survey

    NASA Astrophysics Data System (ADS)

    Alotaiby, Turkey N.; Alshebeili, Saleh A.; Alshawi, Tariq; Ahmad, Ishtiaq; Abd El-Samie, Fathi E.

    2014-12-01

    Epilepsy patients experience challenges in daily life due to precautions they have to take in order to cope with this condition. When a seizure occurs, it might cause injuries or endanger the life of the patients or others, especially when they are using heavy machinery, e.g., deriving cars. Studies of epilepsy often rely on electroencephalogram (EEG) signals in order to analyze the behavior of the brain during seizures. Locating the seizure period in EEG recordings manually is difficult and time consuming; one often needs to skim through tens or even hundreds of hours of EEG recordings. Therefore, automatic detection of such an activity is of great importance. Another potential usage of EEG signal analysis is in the prediction of epileptic activities before they occur, as this will enable the patients (and caregivers) to take appropriate precautions. In this paper, we first present an overview of seizure detection and prediction problem and provide insights on the challenges in this area. Second, we cover some of the state-of-the-art seizure detection and prediction algorithms and provide comparison between these algorithms. Finally, we conclude with future research directions and open problems in this topic.

  11. Mozart K.448 listening decreased seizure recurrence and epileptiform discharges in children with first unprovoked seizures: a randomized controlled study

    PubMed Central

    2014-01-01

    Background Increasing numbers of reports show the beneficial effects of listening to Mozart music in decreasing epileptiform discharges as well as seizure frequency in epileptic children. There has been no effective method to reduce seizure recurrence after the first unprovoked seizure until now. In this study, we investigated the effect of listening to Mozart K.448 in reducing the seizure recurrence rate in children with first unprovoked seizures. Methods Forty-eight children who experienced their first unprovoked seizure with epileptiform discharges were included in the study. They were randomly placed into treatment (n = 24) and control (n = 24) groups. Children in the treatment group listened to Mozart K.448 daily before bedtime for at least six months. Two patients in the treatment group were excluded from analysis due to discontinuation intervention. Finally, forty-six patients were analyzed. Most of these patients (89.1%) were idiopathic in etiology. Seizure recurrence rates and reduction of epileptiform discharges were compared. Results The average follow-up durations in the treatment and control groups were 18.6 ± 6.6 and 20.1 ± 5.1 months, respectively. The seizure recurrence rate was estimated to be significantly lower in the treatment group than the control group over 24 months (37.2% vs. 76.8%, p = 0.0109). Significant decreases in epileptiform discharges were also observed after 1, 2, and 6 months of listening to Mozart K.448 when compared with EEGs before listening to music. There were no significant differences in gender, mentality, seizure type, and etiology between the recurrence and non-recurrence groups. Conclusions Although the case number was limited and control music was not performed in this study, the study revealed that listening to Mozart K.448 reduced the seizure recurrence rate and epileptiform discharges in children with first unprovoked seizures, especially of idiopathic etiology. We believe that Mozart K.448

  12. Coexistence of epileptic nocturnal wanderings and an arachnoid cyst.

    PubMed

    Jiménez-Genchi, Alejandro; Díaz-Galviz, John L; García-Reyna, Juan Carlos; Avila-Ordoñez, Mario U

    2007-06-15

    Episodic nocturnal wanderings (ENWs) have rarely been associated with gross abnormalities of brain structures. We describe the case of a patient with ENWs in coexistence with an arachnoid cyst (AC). The patient was a 15-year-old boy who presented with nocturnal attacks characterized by complex motor behaviors. An MRI revealed a left temporal cyst and a SPECT Tc99 scan showed left temporal hypoperfusion and bilateral frontal hyperperfusion, more evident on the right side. During an all-night polysomnographic recording with audiovisual monitoring, dystonic posture followed by sleepwalking-like behavior was documented. The sleepwalking-like behavior was preceded by a spike discharge over the left frontocentral region with contralateral projection and secondary generalization during stage 2 sleep. Treatment with levetiracetam produced a striking remission of seizures. This supports a conservative management of an AC, considering that it may be an incidental finding. In epileptic patients, an AC may not necessarily be related to the location of the seizure focus. PMID:17694730

  13. Subunit Composition of Neurotransmitter Receptors in the Immature and in the Epileptic Brain

    PubMed Central

    Sánchez Fernández, Iván; Loddenkemper, Tobias

    2014-01-01

    Neuronal activity is critical for synaptogenesis and the development of neuronal networks. In the immature brain excitation predominates over inhibition facilitating the development of normal brain circuits, but also rendering it more susceptible to seizures. In this paper, we review the evolution of the subunit composition of neurotransmitter receptors during development, how it promotes excitation in the immature brain, and how this subunit composition of neurotransmission receptors may be also present in the epileptic brain. During normal brain development, excitatory glutamate receptors peak in function and gamma-aminobutiric acid (GABA) receptors are mainly excitatory rather than inhibitory. A growing body of evidence from animal models of epilepsy and status epilepticus has demonstrated that the brain exposed to repeated seizures presents a subunit composition of neurotransmitter receptors that mirrors that of the immature brain and promotes further seizures and epileptogenesis. Studies performed in samples from the epileptic human brain have also found a subunit composition pattern of neurotransmitter receptors similar to the one found in the immature brain. These findings provide a solid rationale for tailoring antiepileptic treatments to the specific subunit composition of neurotransmitter receptors and they provide potential targets for the development of antiepileptogenic treatments. PMID:25295256

  14. Mutations in PRRT2 are not a common cause of infantile epileptic encephalopathies.

    PubMed

    Heron, Sarah E; Ong, Yeh Sze; Yendle, Simone C; McMahon, Jacinta M; Berkovic, Samuel F; Scheffer, Ingrid E; Dibbens, Leanne M

    2013-05-01

    Heterozygous mutations in PRRT2 have recently been identified as the major cause of autosomal dominant benign familial infantile epilepsy (BFIE), infantile convulsions with choreoathetosis syndrome (ICCA), and paroxysmal kinesigenic dyskinesia (PKD). Homozygous mutations in PRRT2 have also been reported in two families with intellectual disability (ID) and seizures. Heterozygous mutations in the genes KCNQ2 and SCN2A cause the two other autosomal dominant seizure disorders of infancy: benign familial neonatal epilepsy and benign familial neonatal-infantile epilepsy. Mutations in KCNQ2 and SCN2A also contribute to severe infantile epileptic encephalopathies (IEEs) in which seizures and intellectual disability co-occur. We therefore hypothesized that PRRT2 mutations may also underlie cases of IEE. We examined PRRT2 for heterozygous, compound heterozygous or homozygous mutations to determine their frequency in causing epileptic encephalopathies (EEs). Two hundred twenty patients with EEs with onset by 2 years were phenotyped. An assay for the common PRRT2 c.649-650insC mutation and high resolution-melt analysis for mutations in the remaining exons of PRRT2 were performed. Neither the common mutation nor any other pathogenic variants in PRRT2 were detected in the 220 patients. Our findings suggest that mutations in PRRT2 are not a common cause of IEEs. PMID:23566103

  15. Tracking inflammation in the epileptic rat brain by bi-functional fluorescent and magnetic nanoparticles.

    PubMed

    Portnoy, Emma; Polyak, Boris; Inbar, Dorrit; Kenan, Gilad; Rai, Ahmad; Wehrli, Suzanne L; Roberts, Timothy P L; Bishara, Ameer; Mann, Aniv; Shmuel, Miriam; Rozovsky, Katya; Itzhak, Gal; Ben-Hur, Tamir; Magdassi, Shlomo; Ekstein, Dana; Eyal, Sara

    2016-07-01

    Correct localization of epileptic foci can improve surgical outcome in patients with drug-resistant seizures. Our aim was to demonstrate that systemically injected nanoparticles identify activated immune cells, which have been reported to accumulate in epileptogenic brain tissue. Fluorescent and magnetite-labeled nanoparticles were injected intravenously to rats with lithium-pilocarpine-induced chronic epilepsy. Cerebral uptake was studied ex vivo by confocal microscopy and MRI. Cellular uptake and biological effects were characterized in vitro in murine monocytes and microglia cell lines. Microscopy confirmed that the nanoparticles selectively accumulate within myeloid cells in the hippocampus, in association with inflammation. The nanoparticle signal was also detectable by MRI. The in vitro studies demonstrate rapid nanoparticle uptake and good cellular tolerability. We show that nanoparticles can target myeloid cells in epileptogenic brain tissue. This system can contribute to pre-surgical and intra-surgical localization of epileptic foci, and assist in detecting immune system involvement in epilepsy. PMID:26964483

  16. [A study of 95 families having at least two epileptic children (author's transl)].

    PubMed

    Sternberg, B; Patry, G

    1979-01-01

    This report concerns a study of 95 families in which at least two of the children had epilepsy (a total of 210 cases). A total of 45 p. 100 of the patients were from 60 p. 100 of the families and had an intellectual level below the average, and 32 p. 100 of them had an IQ below 70. The family history was the same whether the children were mentally deficient or not. There was no family history of mental deficiency in those families where the epileptic children had a normal IQ but there was a positive family history in 25 p. 100 of families having at least one mentally deficient and epileptic child. The persistence of seizures after 5 years of treatment is seen much more frequently in mentally deficient children than in those with normal intelligence. Finally, the position of the child within the family has no influence and epilepsy may be found in any of the children. PMID:115068

  17. EEG seizure identification by using optimized wavelet decomposition.

    PubMed

    Pinzon-Morales, R D; Orozco-Gutierrez, A; Castellanos-Dominguez, G

    2011-01-01

    A methodology for wavelet synthesis based on lifting scheme and genetic algorithms is presented. Often, the wavelet synthesis is addressed to solve the problem of choosing properly a wavelet function from an existing library, but which may be not specially designed to the application in hand. The task under consideration is the identification of epileptic seizures over electroencephalogram recordings. Although basic classifiers are employed, results rendered that the proposed methodology is successful in the considered study achieving similar classification rates that had been reported in literature. PMID:22254892

  18. Application of approximate entropy on dynamic characteristics of epileptic absence seizure☆

    PubMed Central

    Zhou, Yi; Huang, Ruimei; Chen, Ziyi; Chang, Xin; Chen, Jialong; Xie, Lingli

    2012-01-01

    Electroencephalogram signals are time-varying complex electrophysiological signals. Existing studies show that approximate entropy, which is a nonlinear dynamics index, is not an ideal method for electroencephalogram analysis. Clinical electroencephalogram measurements usually contain electrical interference signals, creating additional challenges in terms of maintaining robustness of the analytic methods. There is an urgent need for a novel method of nonlinear dynamical analysis of the electroencephalogram that can characterize seizure-related changes in cerebral dynamics. The aim of this paper was to study the fluctuations of approximate entropy in preictal, ictal, and postictal electroencephalogram signals from a patient with absence seizures, and to improve the algorithm used to calculate the approximate entropy. The approximate entropy algorithm, especially our modified version, could accurately describe the dynamical changes of the brain during absence seizures. We could also demonstrate that the complexity of the brain was greater in the normal state than in the ictal state. The fluctuations of the approximate entropy before epileptic seizures observed in this study can form a good basis for further study on the prediction of seizures with nonlinear dynamics. PMID:25745446

  19. Burn injury in epileptic patients: an experience in a tertiary institute.

    PubMed

    Akhtar, M S; Ahmad, I; Khan, A H; Fahud Khurram, M; Haq, A

    2014-09-30

    The objective of this study was to evaluate the incidence, types and severity of burn injuries, including sites involved, morbidities, operative procedures, and their outcomes, to prevent or reduce the frequency and morbidity of such injuries in epileptic patients. This retrospective study was conducted at our centre between February 2008 and January 2012. The study included 54 patients who sustained burn injuries due to epileptic seizures, accounting for 1.3% of all burn admissions. All patients, irrespective of the severity of their injuries, were admitted to our centre, assessed, treated and educated regarding specific preventive measures. All study data were evaluated from patient medical records. Causes of burn injury were as follows: scald burns (30), contact with hot surfaces (12), electrical burns in the bathroom (6), and flame burns (6). Second degree burns were the most common (18 out of 54 patients) and third degree burns were the least common. Upper limb and trunk were the most common sites involved (36 out of 54 patients). Thirty patients required surgical intervention whereas the remainder was conservatively managed. Most of the injuries occurred in the age group between 30-37 years. Injuries occurred predominantly in females [42 females, 12 males; F:M=3.5:1]. The study revealed that patients with epilepsy should be categorized as a high risk group considering the sudden and unpredictable attack of epileptic seizures leading to loss of consciousness and accidental burn injuries. Early surgical intervention and targeting of all epileptic patients for education and instituting the specific preventive measures gives good outcomes. PMID:26170789

  20. Communicating the diagnosis of psychogenic nonepileptic seizures: The patient perspective.

    PubMed

    Arain, Amir; Tammaa, Maamoon; Chaudhary, Faria; Gill, Shazil; Yousuf, Syed; Bangalore-Vittal, Nandakumar; Singh, Pradumna; Jabeen, Shagufta; Ali, Shahid; Song, Yanna; Azar, Nabil J

    2016-06-01

    Psychogenic nonepileptic seizures (PNES) are a common cause of refractory seizures. Video-electroencephalographic (EEG) monitoring has allowed PNES to be effectively distinguished from epileptic seizures. Once the diagnosis of PNES is established, neurologists face the challenge of explaining it to patients. Patients may not always receive the diagnosis well. The aim of this study is to evaluate how effectively patients receive and perceive the diagnosis of PNES. This prospective study was conducted in an eight-bed epilepsy monitoring unit (EMU). Adult patients with newly confirmed PNES were included. After receiving written consent, a self-administered questionnaire was given to patients after the attending physician had communicated the diagnosis of PNES. A total of 75 patients were recruited. All patients had their typical seizures recorded on video-EEG (range 1-12, mean 2.18). Seventy patients were satisfied with the diagnosis of PNES. Nine patients did not agree that PNES has a psychological cause. Nineteen patients thought that the EMU doctors had no clue as to the cause of their seizures and 20 thought that there was no hope for a cure of their seizures. A significant number of patients with PNES feel that there is no hope for cure of their seizures. Thorough education about PNES, properly preparing patients before discussing the diagnosis of PNES, and preferably earlier diagnosis may prevent this miscommunication and result in better outcomes. A comprehensive approach including psychological counseling and psychiatric input, evaluation and treatment, in order to bring the illness from the subconscious to the conscious level, and effective follow-up may be helpful. PMID:26860851

  1. Seizure prediction using polynomial SVM classification.

    PubMed

    Zisheng Zhang; Parhi, Keshab K

    2015-08-01

    This paper presents a novel patient-specific algorithm for prediction of seizures in epileptic patients with low hardware complexity and low power consumption. In the proposed approach, we first compute the spectrogram of the input fragmented EEG signals from a few electrodes. Each fragmented data clip is ten minutes in duration. Band powers, relative spectral powers and ratios of spectral powers are extracted as features. The features are then subjected to electrode selection and feature selection using classification and regression tree. The baseline experiment uses all features from selected electrodes and these features are then subjected to a radial basis function kernel support vector machine (RBF-SVM) classifier. The proposed method further selects a small number features from the selected electrodes and train a polynomial support vector machine (SVM) classifier with degree of 2 on these features. Prediction performances are compared between the baseline experiment and the proposed method. The algorithm is tested using intra-cranial EEG (iEEG) from the American Epilepsy Society Seizure Prediction Challenge database. The baseline experiment using a large number of features and RBF-SVM achieves a 100% sensitivity and an average AUC of 0.9985, while the proposed algorithm using only a small number of features and polynomial SVM with degree of 2 can achieve a sensitivity of 100.0%, an average area under curve (AUC) of 0.9795. For both experiments, only 10% of the available training data are used for training. PMID:26737598

  2. EEG characterization of audiogenic seizures in the hamster strain GASH:Sal.

    PubMed

    Carballosa-Gonzalez, Melissa M; Muñoz, Luis J; López-Alburquerque, Tomás; Pardal-Fernández, José Manuel; Nava, Eduardo; de Cabo, Carlos; Sancho, Consuelo; López, Dolores E

    2013-10-01

    The study was performed to characterize GASH:SAL audiogenic seizures as true epileptic activity based on electroencephalographic markers acquired with a wireless implanted radiotelemetry system. We analyzed cortical EEG patterns synchronized with video recordings of convulsive behavior of the GASH:Sal hamster following an acoustic stimulus. All GASH:Sal presented archetypal motor symptoms comparable to current animal models of generalized tonic-clonic epilepsy. Seizures consisted of an initial bout of wild running, followed by opisthotonus, tonic-clonic convulsions, tonic limb extension, and terminated in postictal depression. EEG patterns correlated with behavior and displayed phase appropriate spike-wave complexes, low-amplitude desynchronized activity, and high frequency large-amplitude peaks. Our results confirm that electroencephalographic profiles of the audiogenic seizures of the hamster GASH:Sal are parallel to EEG patterns of other animal models of generalized tonic-clonic seizures. Therefore, this animal may serve as an appropriate model for epilepsy research. PMID:23916142

  3. Substantial and sustained seizure reduction with ketogenic diet in a patient with Ohtahara syndrome.

    PubMed

    Sivaraju, Adithya; Nussbaum, Ilisa; Cardoza, Candace S; Mattson, Richard H

    2015-01-01

    Ketogenic diet has been shown to be efficacious in some epileptic encephalopathies but rarely reported as being useful in children with Ohtahara syndrome. This could possibly be attributed to the rarity of the disease and associated short survival period. We report on a 5-year-old child with Ohtahara syndrome, whose seizures failed to improve with all known medications, continued to show persistent suppression-burst pattern on the electroencephalography (EEG) and had substantial reduction in seizure frequency for one year post-initiation of ketogenic diet. He has not had a single visit to the emergency room because of seizures in the last one year, and more importantly, there has been a clear improvement noted in his level of interaction and temperament. Patients with Ohtahara syndrome invariably have medically intractable seizures and catastrophic neurodevelopmental outcome. Ketogenic diet is a treatment modality that might be worth considering even in this group of patients. PMID:26005637

  4. Pilomotor seizures in temporal lobe epilepsy: A case report with sequential changes in magnetic resonance imaging☆

    PubMed Central

    Kurita, Tsugiko; Sakurai, Kotaro; Takeda, Youji; Kusumi, Ichiro

    2013-01-01

    Piloerection is a rare ictal manifestation of temporal lobe epilepsy. The case is a 38-year-old man with acute onset of repetitive pilomotor seizures. Lacking other symptoms implicating epileptic seizures, a month passed before he was diagnosed with epilepsy. Ictal electroencephalography revealed rhythmic waves in the right temporal area. Reversible magnetic resonance imaging (MRI) abnormalities were visible in the right hippocampus, right uncus, and right amygdala. The appropriate antiepileptic drug therapy made him seizure-free, but following MRI, he showed right hippocampal atrophy one year after seizure cessation. This case is significant in that we can follow sequential MRI from onset, and it is meaningful for considering the mesial temporal area as involved with piloerection. PMID:25667848

  5. Video-EEG analysis of drop seizures in myoclonic astatic epilepsy of early childhood (Doose syndrome).

    PubMed

    Oguni, H; Fukuyama, Y; Imaizumi, Y; Uehara, T

    1992-01-01

    We studied 36 drop seizures in 5 patients with myoclonic astatic epilepsy of early childhood (MAEE) with simultaneous split-screen video recording and polygraph. Sixteen were falling attacks and 20 were either less severe attacks exhibiting only deep head nodding or seizures equivalent to drop attacks in terms of ictal pattern but recorded in the supine position. All seizures except those that occurred in patients in the supine position showed sudden momentary head dropping or collapse of the whole body downward. Recovery to the preictal position was observed in 0.3-1 s. As a result of carefully repeated observations, the 36 seizures were classified as myoclonic flexor type in 9, myoclonic atonic type in 2, and atonic type, with and without transient preceding symptoms in the remaining 25. The MF seizure was characterized by sudden forward flexion of the head and trunk as well as both arms, which caused the patient to fall. In the myoclonic atonic seizure, patients showed brief myoclonic flexor spasms, immediately followed by atonic falling. The AT seizure showed abrupt atonic falling, with and without transient preceding facial expression change and/or twitching of extremities. The ictal EEGs of all 36 seizures exhibited generalized bilaterally synchronous single or multiple spike(s) and wave discharges. Atonic drop attacks appear to be a common cause of ictal epileptic falling in MAEE. PMID:1396420

  6. Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis.

    PubMed

    Schuchmann, Sebastian; Schmitz, Dietmar; Rivera, Claudio; Vanhatalo, Sampsa; Salmen, Benedikt; Mackie, Ken; Sipilä, Sampsa T; Voipio, Juha; Kaila, Kai

    2006-07-01

    Febrile seizures are frequent during early childhood, and prolonged (complex) febrile seizures are associated with an increased susceptibility to temporal lobe epilepsy. The pathophysiological consequences of febrile seizures have been extensively studied in rat pups exposed to hyperthermia. The mechanisms that trigger these seizures are unknown, however. A rise in brain pH is known to enhance neuronal excitability. Here we show that hyperthermia causes respiratory alkalosis in the immature brain, with a threshold of 0.2-0.3 pH units for seizure induction. Suppressing alkalosis with 5% ambient CO2 abolished seizures within 20 s. CO2 also prevented two long-term effects of hyperthermic seizures in the hippocampus: the upregulation of the I(h) current and the upregulation of CB1 receptor expression. The effects of hyperthermia were closely mimicked by intraperitoneal injection of bicarbonate. Our work indicates a mechanism for triggering hyperthermic seizures and suggests new strategies in the research and therapy of fever-related epileptic syndromes. PMID:16819552

  7. Homeostasis of Brain Dynamics in Epilepsy: A Feedback Control Systems Perspective of Seizures

    PubMed Central

    Chakravarthy, Niranjan; Tsakalis, Kostas; Sabesan, Shivkumar; Iasemidis, Leon

    2010-01-01

    In an effort to understand basic functional mechanisms that can produce epileptic seizures, some key features are introduced in coupled lumped-parameter neural population models that produce “seizure”-like events and dynamics similar to the ones during the route of the epileptic brain towards seizures. In these models, modified from existing ones in the literature, internal feedback mechanisms are incorporated to maintain the normal low level of synchronous behavior in the presence of coupling variations. While the internal feedback is developed using basic feedback systems principles, it is also functionally equivalent to actual neurophysiological mechanisms such as homeostasis that act to maintain normal activity in neural systems that are subject to extrinsic and intrinsic perturbations. Here it is hypothesized that a plausible cause of seizures is a pathology in the internal feedback action; normal internal feedback quickly regulates an abnormally high coupling between the neural populations, whereas pathological internal feedback can lead to “seizure”-like high amplitude oscillations. Several external seizure-control paradigms, that act to achieve the operational objective of maintaining normal levels of synchronous behavior, are also developed and tested in this paper. In particular, closed-loop “modulating” control with predefined stimuli, and closed-loop feedback decoupling control are considered. Among these, feedback decoupling control is the consistently successful and robust seizure-control strategy. The proposed model and remedies are consistent with a variety of recent observations in the human and animal epileptic brain, and with theories from nonlinear systems, adaptive systems, optimization, and neurophysiology. The results from the analysis of these models have two key implications, namely, developing a basic theory for epilepsy and other brain disorders, and the development of a robust seizure-control device through electrical

  8. Optical triggered seizures using a caged 4-Aminopyridine

    PubMed Central

    Zhao, Mingrui; McGarry, Laura M.; Ma, Hongtao; Harris, Samuel; Berwick, Jason; Yuste, Rafael; Schwartz, Theodore H.

    2015-01-01

    Animal models of epilepsy are critical not only for understanding the fundamental mechanism of epilepsy but also for testing the efficacy of new antiepileptic drugs and novel therapeutic interventions. Photorelease of caged molecules is widely used in biological research to control pharmacologic events with high spatio-temporal resolution. We developed a technique for in vivo optical triggering of neocortical seizures using a novel caged compound based on ruthenium photochemistry (RuBi-4AP). Epileptiform events in mouse cortex were induced with blue light in both whole brain and focal illumination. Multi-electrode array recording and optical techniques were used to characterize the propagation of these epileptic events, including interictal spikes, polyspikes, and ictal discharges. These results demonstrate a novel optically-triggered seizure model, with high spatio-temporal control, that could have widespread application in the investigation of ictal onset, propagation and to develop novel light-based therapeutic interventions. PMID:25698919

  9. Psychogenic nonepileptic seizures in children: a review.

    PubMed

    Reilly, Colin; Menlove, Leanne; Fenton, Virginia; Das, Krishna B

    2013-10-01

    One of the considerations when a child presents with paroxysmal events is psychogenic nonepileptic seizures (PNES). PNES are discernible changes in behavior or consciousness that resemble epileptic seizures but are not accompanied by electrophysiologic changes. They are usually understood as the manifestation of a conversion disorder that reflects underlying psychological distress. There is a lack of population-based data on the prevalence or incidence of PNES in pediatric populations. The prevalence of PNES in children would appear to be lower than that in the adult population, but the prevalence of PNES seems to increase with age, and nonepileptic paroxysmal events are more likely to be PNES in adolescence than earlier in childhood. In terms of manifestation, PNES in childhood have been described using various categorizations and terminology, making comparisons across studies difficult. There is some evidence that events are more likely to involve unresponsiveness in younger children and prominent motor symptoms in older children. The most common precipitating factors would appear to be school-related difficulties and interpersonal conflict within the child's family. In terms of psychopathology, children with PNES are at high risk for symptoms of depression and anxiety. Accurate diagnosis of PNES in children is likely to involve taking a comprehensive description of the episodes, garnering the child's medical/developmental history, video-electroencephalography (video-EEG) to rule out epileptic seizures, and an evaluation of family functioning. The importance of effective and sensitive communication of the diagnosis of PNES has been emphasized and management approaches will typically involve multidisciplinary efforts to safely manage the events at home and at school. Interventions to reduce the effect of precipitating psychosocial stressors and the involvement of a mental health professional to treat comorbid psychopathology will also form part of an effective

  10. Correlation of 3-Mercaptopropionic Acid Induced Seizures and Changes in Striatal Neurotransmitters Monitored by Microdialysis

    PubMed Central

    Crick, Eric W.; Osorio, Ivan; Frei, Mark; Mayer, Andrew P.; Lunte, Craig E.

    2014-01-01

    Objectives The goal of this study was to use a status epilepticus steady-state chemical model in rats using the convulsant, 3-mercaptopropionic acid (3-MPA), and to compare the changes in striatal neurotransmission on a slow (5 minute) and fast (60 second) timescale. In vivo microdialysis was combined with electrophysiological methods in order to provide a complete evaluation of the dynamics of the results obtained. Objective To compare the effects of a steady-state chemical model pof status epilepticus on striatal amino-acid and amine neurotransmitters contents, as measured via in vivo microdialysis combined with electrophysiological methods. Measurements were performed on samples collected every 60 seconds and every 5 minutes. “Fast” (60s) and “slow” (5 min.) sampling timescales were selected, to gain more insight into the dynamics of GABA synthesis inhibition and of its effects on other neurotransmitters and on cortical electrical activity. Methods 3-MPA was administered in the form of an intra-venous load(60 mg/kg) followed by a constant infusion (50 mg/kg/min) for min. Microdialysis samples were collected from the striatum at intervals of 5 minutes and 60 seconds and analyzed for biogenic amine and amino acid neurotransmitters. ECoG activity was monitored via screws placed over the cortex. Results In the 5 minute samples, glutamate (Glu) increased and γ-aminobutyric acid (GABA) decreased monotonically while changes in dopamine (DA) concentration were bimodal. In the sixty second samples, Glu changes were bimodal, a feature that was not apparent with the five minute samples. ECoG activity was indicative of status epilepticus. Conclusions This study describes the combination of in vivo microdialysis with electrophysiology to monitor the effect of 3-MPA on neurotransmission in the brain. This led to a better understanding of the chemical changes in the striatum due to the applied 3-MPA chemical model of status epilepticus. PMID:24462767

  11. Looking for complexity in quantitative semiology of frontal and temporal lobe seizures using neuroethology and graph theory.

    PubMed

    Bertti, Poliana; Tejada, Julian; Martins, Ana Paula Pinheiro; Dal-Cól, Maria Luiza Cleto; Terra, Vera Cristina; de Oliveira, José Antônio Cortes; Velasco, Tonicarlo Rodrigues; Sakamoto, Américo Ceiki; Garcia-Cairasco, Norberto

    2014-09-01

    Epileptic syndromes and seizures are the expression of complex brain systems. Because no analysis of complexity has been applied to epileptic seizure semiology, our goal was to apply neuroethology and graph analysis to the study of the complexity of behavioral manifestations of epileptic seizures in human frontal lobe epilepsy (FLE) and temporal lobe epilepsy (TLE). We analyzed the video recordings of 120 seizures of 18 patients with FLE and 28 seizures of 28 patients with TLE. All patients were seizure-free >1 year after surgery (Engel Class I). All patients' behavioral sequences were analyzed by means of a glossary containing all behaviors and analyzed for neuroethology (Ethomatic software). The same series were used for graph analysis (CYTOSCAPE). Behaviors, displayed as nodes, were connected by edges to other nodes according to their temporal sequence of appearance. Using neuroethology analysis, we confirmed data in the literature such as in FLE: brief/frequent seizures, complex motor behaviors, head and eye version, unilateral/bilateral tonic posturing, speech arrest, vocalization, and rapid postictal recovery and in the case of TLE: presence of epigastric aura, lateralized dystonias, impairment of consciousness/speech during ictal and postictal periods, and development of secondary generalization. Using graph analysis metrics of FLE and TLE confirmed data from flowcharts. However, because of the algorithms we used, they highlighted more powerfully the connectivity and complex associations among behaviors in a quite selective manner, depending on the origin of the seizures. The algorithms we used are commonly employed to track brain connectivity from EEG and MRI sources, which makes our study very promising for future studies of complexity in this field. PMID:25216767

  12. Improving Early Seizure Detection

    PubMed Central

    Jouny, Christophe C.; Franaszczuk, Piotr J.; Bergey, Gregory K.

    2011-01-01

    Over the last decade, the search for a method able to reliably predict seizures hours in advance has been largely replaced by a more realistic goal of very early detection of seizure onset which would allow therapeutic or warning devices to be triggered prior to the onset of disabling clinical symptoms. We explore in this article the steps along the pathway from data acquisition to closed loop applications that can and should be considered to design the most efficient early seizure detection. Microelectrodes, high-frequency oscillations, high sampling rate, high-density arrays, and modern analysis techniques are all elements of the recording and detection process that in combination with modeling studies can provide new insights into the dynamics of seizure onsets. Each of these step needs to be considered if one wants to implement improved detection devices that will favorably impact the quality of life of patients. PMID:22078518

  13. The effects of a history of seizures during pregnancy on umbilical arterial blood gas values in pregnant women with epilepsy

    PubMed Central

    Özdemir, Özhan; Sarı, Mustafa Erkan; Ertuğrul, Funda Arpacı; Kurt, Aslıhan; Selimova, Vefa; Atalay, Cemal Reşat

    2014-01-01

    Objective The objective of this study is to investigate if the number of seizures that occur during pregnancy has any effect on umbilical arterial blood gas values at delivery. Material and Methods In total, 55 women who were 37 to 41 weeks pregnant and diagnosed with generalized tonic-clonic epilepsy and 50 pregnant women with similar characteristics but not diagnosed as epileptic were included in this study. The patients diagnosed with epilepsy were divided into two groups: 27 patients with a history of at least 5 epileptic seizures during pregnancy and 28 who had no seizures during pregnancy. All patients diagnosed with epilepsy had a history of caesarean delivery or a caesarean section under general anesthesia on the advice of neurology. Pregnant women in the control group were also chosen from among patients who had a caesarean on account of a previous caesarean delivery. In the cases included in the study, umbilical arterial blood gas sampling was performed immediately after delivery. Results When the control group without epilepsy was compared with pregnant women who had no history of epileptic seizures during pregnancy, no difference was found in umbilical arterial blood gas values (p>0.05). When patients with a history of 5 or more epileptic seizures during pregnancy were compared with the control group without epilepsy and the patients with epilepsy who had no history of seizures during pregnancy, there was no statistically significant difference (p>0.05), although their umbilical arterial blood pH values were found to be lower, while partial carbon dioxide pressure (pCO2), values were higher and partial oxygen pressure (pO2) values were lower. Conclusion Taking potential fetal risks into consideration, maternal generalized tonic-clonic epileptic seizures might be worrying. Tonic-clonic seizures that occur during pregnancy appear to be associated with temporary hypoxia. Therefore, monotherapy for seizures and treatment at the lowest effective dose should

  14. Reflex operculoinsular seizures.

    PubMed

    Xiao, Handsun; Tran, Thi Phuoc Yen; Pétrin, Myriam; Boucher, Olivier; Mohamed, Ismail; Bouthillier, Alain; Nguyen, Dang Khoa

    2016-03-01

    Activation of specific cortical territories by certain stimuli is known to trigger focal seizures. We report three cases of well documented operculo-insular reflex seizures, triggered by somatosensory stimuli in two and loud noises in the third. Limited operculoinsular resection resulted in an excellent outcome for all. We discuss these observations in regard to the literature on reflex epilepsy and known functions of the insula. [Published with video sequences online]. PMID:26892245

  15. Migrating partial seizures of infancy: expansion of the electroclinical, radiological and pathological disease spectrum

    PubMed Central

    McTague, Amy; Appleton, Richard; Avula, Shivaram; Cross, J. Helen; King, Mary D.; Jacques, Thomas S.; Bhate, Sanjay; Cronin, Anthony; Curran, Andrew; Desurkar, Archana; Farrell, Michael A.; Hughes, Elaine; Jefferson, Rosalind; Lascelles, Karine; Livingston, John; Meyer, Esther; McLellan, Ailsa; Poduri, Annapurna; Scheffer, Ingrid E.; Spinty, Stefan; Kurian, Manju A.

    2013-01-01

    Migrating partial seizures of infancy, also known as epilepsy of infancy with migrating focal seizures, is a rare early infantile epileptic encephalopathy with poor prognosis, presenting with focal seizures in the first year of life. A national surveillance study was undertaken in conjunction with the British Paediatric Neurology Surveillance Unit to further define the clinical, pathological and molecular genetic features of this disorder. Fourteen children with migrating partial seizures of infancy were reported during the 2 year study period (estimated prevalence 0.11 per 100 000 children). The study has revealed that migrating partial seizures of infancy is associated with an expanded spectrum of clinical features (including severe gut dysmotility and a movement disorder) and electrographic features including hypsarrhythmia (associated with infantile spasms) and burst suppression. We also report novel brain imaging findings including delayed myelination with white matter hyperintensity on brain magnetic resonance imaging in one-third of the cohort, and decreased N-acetyl aspartate on magnetic resonance spectroscopy. Putaminal atrophy (on both magnetic resonance imaging and at post-mortem) was evident in one patient. Additional neuropathological findings included bilateral hippocampal gliosis and neuronal loss in two patients who had post-mortem examinations. Within this cohort, we identified two patients with mutations in the newly discovered KCNT1 gene. Comparative genomic hybridization array, SCN1A testing and genetic testing for other currently known early infantile epileptic encephalopathy genes (including PLCB1 and SLC25A22) was non-informative for the rest of the cohort. PMID:23599387

  16. Paroxysmal microarousals in amygdala-kindled kittens: could they be subclinical seizures?

    PubMed

    Shouse, M N; Langer, J; King, A; Alcalde, O; Bier, M; Szymusiak, R; Wada, Y

    1995-03-01

    Amygdala-kindled kittens exhibit frequent epileptiform EEG transients, often in conjunction with phasic arousal events of sleep [k-complexes, pontogeniculo-occipital (PGO) waves, and/or sleep spindles]. In this study, paroxysmal microarousals occurred throughout the sleep-wake cycle after kindling, but were most frequent during seizure-prone states of slow-wave sleep (SWS) and the transition into rapid-eye-movement sleep (REM). Their incidence correlated with interictal sleep fragmentation as well as onset of spontaneous convulsions. Results could reflect transsynaptic kindling effects on brainstem and forebrain arousal mechanisms with which amygdala is reciprocally connected. Increased discharge rates of neural generators for normal EEG and behavioral arousal could disrupt sleep at some times and recruit epileptic neurons in the kindled focus to precipitate seizures at others. Alternatively, epileptiform EEG paroxysms were accompanied by subtle behavioral stereotypes (a head nod, limb elevation, eye twitch, lip smack, or a combination of these). Behavioral correlates were elements of partial kindled seizures, suggesting that paroxysmal microarousals may be subclinical seizures. Whether or not the microarousals are true seizures, our findings may link ictal onset and interictal sleep disorders to a subclinical paroxysmal arousal disorder and suggest a common epileptic mechanism. PMID:7614914

  17. [Progress in molecular genetics of generalized epilepsy with febrile seizures plus].

    PubMed

    Sun, Hui Hui; Zhang, Yue Hua

    2008-04-01

    Generalized epilepsy with febrile seizures plus (GEFS+) is a familial inherited epileptic syndrome characterized by phenotypic heterogeneity from the milder febrile seizures to the severest epileptic encephalopathy such as severe myoclonic epilepsy in infancy (SMEI). GEFS+ is a disorder with a genetic heterogeneity. Molecular genetics have revealed that four genes are associated with the pathogenesis of GEFS+. These include mutations in genes encoding subunits of neuronal voltage-gated sodium channels (SCN1A, SCN1B, SCN2A) and gamma(2) subunit of the gamma amino-butyric acid (GABA)(A) receptor (GABRG2). These genes have been confirmed as having a role in autosomal dominant GEFS+ families. In addition, the phenotypes of the affected members may depend on the types and locations of these gene mutations. This review states the molecular genetic progress of GEFS+ in brief. PMID:18458705

  18. Reactive Astrogliosis Causes the Development of Spontaneous Seizures

    PubMed Central

    Buckingham, Susan C.; Boni, Jessica L.; Campbell, Susan L.; Danbolt, Niels C.; Riedemann, Therese; Sutor, Bernd; Sontheimer, Harald

    2015-01-01

    Epilepsy is one of the most common chronic neurologic diseases, yet approximately one-third of affected patients do not respond to anticonvulsive drugs that target neurons or neuronal circuits. Reactive astrocytes are commonly found in putative epileptic foci and have been hypothesized to be disease contributors because they lose essential homeostatic capabilities. However, since brain pathology induces astrocytes to become reactive, it is difficult to distinguish whether astrogliosis is a cause or a consequence of epileptogenesis. We now present a mouse model of genetically induced, widespread chronic astrogliosis after conditional deletion of β1-integrin (Itgβ1). In these mice, astrogliosis occurs in the absence of other pathologies and without BBB breach or significant inflammation. Electroencephalography with simultaneous video recording revealed that these mice develop spontaneous seizures during the first six postnatal weeks of life and brain slices show neuronal hyperexcitability. This was not observed in mice with neuronal-targeted β1-integrin deletion, supporting the hypothesis that astrogliosis is sufficient to induce epileptic seizures. Whole-cell patch-clamp recordings from astrocytes further suggest that the heightened excitability was associated with impaired astrocytic glutamate uptake. Moreover, the relative expression of the cation-chloride cotransporters (CCC) NKCC1 (Slc12a2) and KCC2 (Slc12a5), which are responsible for establishing the neuronal Cl− gradient that governs GABAergic inhibition were altered and the NKCC1 inhibitor bumetanide eliminated seizures in a subgroup of mice. These data suggest that a shift in the relative expression of neuronal NKCC1 and KCC2, similar to that observed in immature neurons during development, may contribute to astrogliosis-associated seizures. PMID:25716834

  19. Reactive astrogliosis causes the development of spontaneous seizures.

    PubMed

    Robel, Stefanie; Buckingham, Susan C; Boni, Jessica L; Campbell, Susan L; Danbolt, Niels C; Riedemann, Therese; Sutor, Bernd; Sontheimer, Harald

    2015-02-25

    Epilepsy is one of the most common chronic neurologic diseases, yet approximately one-third of affected patients do not respond to anticonvulsive drugs that target neurons or neuronal circuits. Reactive astrocytes are commonly found in putative epileptic foci and have been hypothesized to be disease contributors because they lose essential homeostatic capabilities. However, since brain pathology induces astrocytes to become reactive, it is difficult to distinguish whether astrogliosis is a cause or a consequence of epileptogenesis. We now present a mouse model of genetically induced, widespread chronic astrogliosis after conditional deletion of β1-integrin (Itgβ1). In these mice, astrogliosis occurs in the absence of other pathologies and without BBB breach or significant inflammation. Electroencephalography with simultaneous video recording revealed that these mice develop spontaneous seizures during the first six postnatal weeks of life and brain slices show neuronal hyperexcitability. This was not observed in mice with neuronal-targeted β1-integrin deletion, supporting the hypothesis that astrogliosis is sufficient to induce epileptic seizures. Whole-cell patch-clamp recordings from astrocytes further suggest that the heightened excitability was associated with impaired astrocytic glutamate uptake. Moreover, the relative expression of the cation-chloride cotransporters (CCC) NKCC1 (Slc12a2) and KCC2 (Slc12a5), which are responsible for establishing the neuronal Cl(-) gradient that governs GABAergic inhibition were altered and the NKCC1 inhibitor bumetanide eliminated seizures in a subgroup of mice. These data suggest that a shift in the relative expression of neuronal NKCC1 and KCC2, similar to that observed in immature neurons during development, may contribute to astrogliosis-associated seizures. PMID:25716834

  20. Patterns of the UP-Down state in normal and epileptic mice.

    PubMed

    Bragin, A; Benassi, S K; Engel, J

    2012-12-01

    Goal of this manuscript is to investigate whether changes that exist in epileptic brain generating spontaneous seizures are reflected in the pattern of the UP-Down state (UDS) recorded from the neocortex and dentate gyrus. Experiments were carried out on naive and epileptic mice under urethane anesthesia. Local field potentials were recorded with chronically implanted microelectrodes and single unit activity was recorded with glass microelectrodes. Recorded neurons were labeled by neurobiotin and identified later as granular cells or interneurons in histological sections. The following major features differentiate the pattern of UDS in epilepsy from normal. (1) The duration of UP and Down phases is significantly longer. (2) Recovery of network excitability after termination of the UP phase is longer. (3) UP-spikes occur during the UP phase, which transiently interrupt the development of the normal electrographic pattern of UP phase. Our data provide evidence that UP-spikes result from gigantic EPSPs generated in response to afferent activity. UP-spikes in the neocortex and dentate gyrus occur in close temporal relationship indicating the existence of direct or indirect pathological functional connections between these areas. Changes in the duration of UP and Down phases as well increased time of recovery of excitability of epileptic brain after termination of UP phase suggest alterations in the homeostatic properties of neuronal network in epileptic brain. We suggest that the existence of UP-spikes in epileptic brain may be an additional electrographic pattern indicating epileptogenicity. Unraveling the neuronal substrates of UP-spikes may further improve our understanding of the mechanisms of epilepsy. PMID:22960310

  1. Ameliorating effect of quercetin on acute pentylenetetrazole induced seizures in rats

    PubMed Central

    Sefil, Fatih; Kahraman, Ibrahim; Dokuyucu, Recep; Gokce, Hasan; Ozturk, Atakan; Tutuk, Okan; Aydin, Mehmet; Ozkan, Umit; Pinar, Neslihan

    2014-01-01

    Objective: The aim of the study to elicit effects of pure quercetin in pentylenetetrazole (PTZ) and picrotoxin induced seizures. Materials and methods: Each animal group was divided into six groups and composed of six rats. Rats were assigned to the following experiments and groups (G): (G1) PTZ 45 mg/kg + DMSO; (G2) PTZ 45 mg/kg + 5 mg/kg quercetin; (G3) PTZ 45 mg/kg + 10 mg/kg quercetin; (G4) PTZ 45 mg/kg + 20 mg/kg quercetin; (G5) PTZ 45 mg/kg + 40 mg/kg quercetin; (G6) Picrotoxin 5 mg/kg + DMSO; (G7) Picrotoxin 5 mg/kg + 10 mg/kg quercetin; (G8) Picrotoxin 5 mg/kg + 20 mg/kg quercetin. In all groups quercetin were injected 30 min before PTZ and picrotoxin applications. Results: Compared to PTZ, quercetin significantly prolonged onset of the seizure in 10 mg/kg (P < 0.05) and reduced the seizure stage in 10 mg/kg quercetin injected group (P < 0.01). Compared to PTZ, quercetin also declined the generalized seizure duration at 10 mg/kg (P < 0.01) and 20 mg/kg (P < 0.05) doses. At the doses of 5 mg/kg and 40 mg/kg quercetin there were no significant changes in seizure parameters. Development of picrotoxin induced seizures is slower than in PTZ. Quercetin was found to be unable to prevent seizure in picrotoxin induced seizures. Surprisingly, quercetin also significantly reduced the onset of seizures at the dose of 20 mg/kg (P < 0.05). Conclusion: quercetin (at doses of 10 and 20 mg/kg i.p) prevented seizures in PTZ (45 mg/kg i.p) induced seizures. Especially, 10 mg/kg PTZ prolonged onset of seizures, reduced the seizure duration and seizure severity score in comparison with control group. At a higher (40 mg/kg) dose quercetin failed to prevent PTZ induced seizures. In addition 20 mg/kg quercetin significantly reduced the onset of seizures that suggest a preconvulsive effect. 20 mg/kg quercetin reduced the onset of picrotoxin induced seizures. In picrotoxin model, it may be claimed that quercetin at higher doses accelerate the epileptic activity owing to its

  2. Relation between stress-precipitated seizures and the stress response in childhood epilepsy.

    PubMed

    van Campen, Jolien S; Jansen, Floor E; Pet, Milou A; Otte, Willem M; Hillegers, Manon H J; Joels, Marian; Braun, Kees P J

    2015-08-01

    response were the number of anti-epileptic drugs (β = -0.27, P = 0.05) and sleep quality (β = 0.30, P = 0.03). In conclusion, we show that children with acute stress-sensitive seizures have a decreased cortisol response to stress. These results support our hypothesis that stress-sensitivity of seizures is associated with alterations of the stress response, thereby providing a first step in unravelling the mechanisms behind the seizure-precipitating effects of stress. Increased knowledge of the relation between stress and seizures in childhood epilepsy might benefit our understanding of the fundamental processes underlying epilepsy and ictogenesis in general, and provide valuable clues to direct the development of new therapeutic strategies for epilepsy. PMID:26049086

  3. A DESCRIPTIVE STUDY OF THE INCIDENCE OF SEIZURES AND TEACHERS' ATTITUDES TOWARD CHILDREN WITH EPILEPSY IN THE MINNEAPOLIS, MINNESOTA, PUBLIC SCHOOLS.

    ERIC Educational Resources Information Center

    FORCE, DEWEY G., JR.

    THIS STUDY WAS DESIGNED TO DETERMINE THE INCIDENCE OF SEIZURES AMONG CHILDREN IN A PUBLIC SCHOOL SYSTEM AND TEACHERS' KNOWLEDGE AND ATTITUDES ABOUT EPILEPTIC CHILDREN. OF 70,342 CHILDREN IN MINNEAPOLIS PUBLIC SCHOOLS IN SEPTEMBER 1963, 318 (A RATE OF 4.52 PER 1,000) HAD A MEDICAL DIAGNOSIS OF SEIZURES. FIFTY-SIX PERCENT OF THESE WERE BOYS AND 44…

  4. Interaction of prenatal stress and morphine alters prolactin and seizure in rat pups.

    PubMed

    Saboory, Ehsan; Ebrahimi, Loghman; Roshan-Milani, Shiva; Hashemi, Paria

    2015-10-01

    Prenatal exposure to stress and morphine has complicated effects on epileptic seizure. In the present study, effect of prenatal forced-swim stress and morphine co-administration on pentylenetetrazol (PTZ) induced epileptic behaviors and prolactin blood level (PBL) was investigated in rat offspring. Pregnant Wistar rats were divided to four groups of control-saline, control-morphine, stressed-saline and stressed-morphine. In the stressed group, pregnant rats were placed in 25°C water on gestation days 17, 18 and 19 (GD17, GD18 and GD19) for 30 min. In the morphine/saline group, pregnant rats received morphine (10, 12 and 15 mg/kg, IP, on GD17, GD18 and GD19, respectively) or saline (1 ml, IP). In the morphine/saline-stressed group, the rats received morphine or saline and then exposed to stress. On postnatal days 6 and 15 (P6 and P15), blood samples were obtained and PBL was determined. At P15 and P25, the rest of the pups was injected with PTZ to induce seizure. Then, epileptic behaviors of each rat were observed individually. Latency of first convulsion decreased in control-morphine and stressed-saline groups while increased in stressed-morphine rats compared to control-saline group on P15 (P=0.04). Number of tonic-clonic seizures significantly increased in control-morphine and stressed-saline rats compared to control-saline group at P15 (P=0.02). PBL increased in stressed-saline, control-morphine and stress-morphine groups compared to control-saline rats. It can be concluded that prenatal exposure of rats to forced-swim stress and morphine changed their susceptibility to PTZ-induced seizure and PBL during infancy and prepubertal period. Co-administration of morphine attenuated effect of stress on epileptic behaviors. PMID:26056076

  5. Mapping the epileptic brain with EEG dynamical connectivity: Established methods and novel approaches

    NASA Astrophysics Data System (ADS)

    Papadopoulou, Margarita; Vonck, Kristl; Boon, Paul; Marinazzo, Daniele

    2012-11-01

    Several algorithms rooted in statistical physics, mathematics and machine learning are used to analyze neuroimaging data from patients suffering from epilepsy, with the main goals of localizing the brain region where the seizure originates from and of detecting upcoming seizure activity in order to trigger therapeutic neurostimulation devices. Some of these methods explore the dynamical connections between brain regions, exploiting the high temporal resolution of the electroencephalographic signals recorded at the scalp or directly from the cortical surface or in deeper brain areas. In this paper we describe this specific class of algorithms and their clinical application, by reviewing the state of the art and reporting their application on EEG data from an epileptic patient.

  6. A study on driving status in 98 epileptic patients with driving licences.

    PubMed

    Hashimoto, K; Fukushima, Y; Saito, F; Wada, K

    1991-06-01

    As to the driving status in the period between January 1984 and December 1988, 98 epileptic patients with driving licences were examined, paying regard to their clinical conditions. Sixty-one (62%) of the patients were seizure-free for the last five years or more in December 1988. Eighty-one (83%) were actually driving motor vehicles at the time of this study, and 27 (33%) of the 81 drivers still had fits during the past five years. Nine patients (9%) had caused traffic accidents, but no accident had occurred due to seizures. The type of the nine accidents was as follows: One case of a slight physical injury to the other person, four cases of the driver's own car damage without other material damage, and four of the accidents involving other cars. PMID:1762210

  7. Game-related seizures presenting with two types of clinical features.

    PubMed

    Chuang, Yao-Chung; Chang, Wen-Neng; Lin, Tsu-Kung; Lu, Cheng-Hsien; Chen, Shang-Der; Huang, Chi-Ren

    2006-03-01

    We evaluated 22 patients with epileptic seizures in which the seizures were triggered by various games or game-related materials. Based on whether spontaneous seizure coexisted or not, these 22 patients were divided into two groups. Ten patients who experienced seizures exclusively while playing or watching specific games were referred to as Group I, while 12 patients that had both game-induced and spontaneous seizures were classified as Group II. The patients in Group I had a middle-age onset (39.1 years) with a male predominance (90%). The electroencephalogram (EEG) or brain magnetic resonance imaging revealed non-specific abnormalities in 60%, and the partial onset seizure was recognized in 30% of patients. Antiepileptic drugs had uncertain benefits in this group. In Group II, patients had a male predominance (67%), with onset during adolescence (16.3 years). Most of them had generalized tonic-clonic seizures, myoclonic seizures, and absences, and 42% showed epileptiform discharge on EEG. These 12 patients were categorized into idiopathic generalized epilepsies. Although photosensitivity was an important factor, higher mental activity seemed to be significant precipitants of seizures in Group II. Antiepileptic drugs were necessary and valproic acid alone or combined with clonazepam was effective in this group. The results showed that game-related seizures are not a unique and homogeneous syndrome and may consist of different mechanisms. Teenage onset, coexistent spontaneous seizure, and associated idiopathic generalized epilepsies were crucial factors in the determination of antiepileptic drug therapy. Moreover, avoiding the related games altogether may be a more productive preventive measure. PMID:16406611

  8. Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models

    PubMed Central

    Willis, Sarah; Stoll, James; Sweetman, Lawrence; Borges, Karin

    2010-01-01

    We hypothesized that in epileptic brains citric acid cycle intermediate levels may be deficient leading to hyperexcitability. Anaplerosis is the metabolic refilling of deficient metabolites. Our goal was to determine the anticonvulsant effects of feeding triheptanoin, the triglyceride of anaplerotic heptanoate. CF1 mice were fed 0-35% calories from triheptanoin. Body weights and dietary intake were similar in mice fed triheptanoin vs. standard diet. Triheptanoin feeding increased blood propionyl-carnitine levels, signifying its metabolism. 35%, but not 20%, triheptanoin delayed development of corneal kindled seizures. After pilocarpine-induced status epilepticus (SE), triheptanoin feeding increased the pentylenetetrazole tonic seizure threshold during the chronically epileptic stage. Mice in the chronically epileptic stage showed various changes in brain metabolite levels, including a reduction in malate. Triheptanoin feeding largely restored a reduction in propionyl-CoA levels and increased methylmalonyl-CoA levels in SE mice. In summary, triheptanoin was anticonvulsant in two chronic mouse models and increased levels of anaplerotic precursor metabolites in epileptic mouse brains. The mechanisms of triheptanoin's effects and its efficacy in humans suffering from epilepsy remain to be determined. PMID:20691264

  9. Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models.

    PubMed

    Willis, Sarah; Stoll, James; Sweetman, Lawrence; Borges, Karin

    2010-12-01

    We hypothesized that in epileptic brains citric acid cycle intermediate levels may be deficient leading to hyperexcitability. Anaplerosis is the metabolic refilling of deficient metabolites. Our goal was to determine the anticonvulsant effects of feeding triheptanoin, the triglyceride of anaplerotic heptanoate. CF1 mice were fed 0-35% calories from triheptanoin. Body weights and dietary intake were similar in mice fed triheptanoin vs. standard diet. Triheptanoin feeding increased blood propionyl-carnitine levels, signifying its metabolism. 35%, but not 20%, triheptanoin delayed development of corneal kindled seizures. After pilocarpine-induced status epilepticus (SE), triheptanoin feeding increased the pentylenetetrazole tonic seizure threshold during the chronically epileptic stage. Mice in the chronically epileptic stage showed various changes in brain metabolite levels, including a reduction in malate. Triheptanoin feeding largely restored a reduction in propionyl-CoA levels and increased methylmalonyl-CoA levels in SE mice. In summary, triheptanoin was anticonvulsant in two chronic mouse models and increased levels of anaplerotic precursor metabolites in epileptic mouse brains. The mechanisms of triheptanoin's effects and its efficacy in humans suffering from epilepsy remain to be determined. PMID:20691264

  10. [FOCAL MOTOR SEIZURES AND STATUS EPILEPTICUS PROVOKED BY MIRTAZAPINE].

    PubMed

    Dömötör, Johanna; Clemens, Béla

    2015-07-30

    The seizure-provoking effect of the tetracyclic antidepressant mirtazapine is not a well-known adverse effect of the drug. The authors report on a 39-year-old non-epileptic patient who had been treated for depression with the usual daily dose of mirtazapine. Having increased the daily dose of the drug from 30 to 45 milligrams he experienced a few clonic seizures of the right lower limb. This symptom and insomnia erroneously intended the patient to further increase the daily dose of mirtazapine, which immediately resulted in the evolution of focal clonic status epilepticus in the same limb. After admission, this condition was recorded by video-EEG and abolished by intravenous administration of levetiracetam after the intravenous clonazepam had been ineffective. Discontinuation of mirtazapine and administration of carbamazepine resulted in completely seizure-free state that persisted even after carbamazepine treatment was terminated. The clinical and laboratory data indicate the seizure-provoking effect of mirtazapine in the reported case. PMID:26380424

  11. Effect of prenatal forced-swim stress and morphine co-administration on pentylentetrazol-induced epileptic behaviors in infant and prepubertal rats.

    PubMed

    Ebrahimi, Loghman; Saboory, Ehsan; Roshan-Milani, Shiva; Hashemi, Paria

    2014-09-01

    Prenatal exposure to stress and morphine has complicated effects on epileptic seizure. Many reports have shown an interaction between morphine- and stress-induced behavioral changes in adult rats. In the present study, effect of prenatal forced-swim stress and morphine co-administration on pentylentetrazole (PTZ)-induced epileptic behaviors was investigated in rat offspring to address effect of the interaction between morphine and stress. Pregnant rats were divided to four groups of control-saline, control-morphine, stressed-saline and stressed-morphine. In the stressed group, the rats were placed in 25 °C water on 17-19 days of pregnancy. In the morphine/saline group, the rats received morphine/saline on the same days. In the morphine/saline-stressed group, they were exposed to stress and received morphine/saline simultaneously. On postnatal day 15 (P15), blood samples were collected to determine corticosterone (COS) level. On P15 and P25, PTZ was injected to the rest of pups to induce seizure. Then, epileptic behaviors of each rat were individually observed. Latency of tonic-colonic seizures decreased in control-morphine and stressed-saline groups while increasing in stressed-morphine rats compared to control-saline group on P15. Duration of tonic-colonic seizures significantly increased in control-morphine and stressed-saline rats compared to stressed-morphine and control-saline rats on P15, but not P25. COS levels increased in stressed-saline group but decreased in control-morphine group compared to control-saline rats. Body weight was significantly higher in morphine groups than saline treated rats. Prenatal exposure to forced-swim stress potentiated PTZ-induced seizure in the offspring rats. Co-administration of morphine attenuated effect of stress on body weight, COS levels, and epileptic behaviors. PMID:24464467

  12. Seizures in Alzheimer's disease.

    PubMed

    Born, H A

    2015-02-12

    Alzheimer's disease (AD) increases the risk for late-onset seizures and neuronal network abnormalities. An elevated co-occurrence of AD and seizures has been established in the more prevalent sporadic form of AD. Recent evidence suggests that nonconvulsive network abnormalities, including seizures and other electroencephalographic abnormalities, may be more commonly found in patients than previously thought. Patients with familial AD are at an even greater risk for seizures, which have been found in patients with mutations in PSEN1, PSEN2, or APP, as well as with APP duplication. This review also provides an overview of seizure and electroencephalography studies in AD mouse models. The amyloid-β (Aβ) peptide has been identified as a possible link between AD and seizures, and while Aβ is known to affect neuronal activity, the full-length amyloid precursor protein (APP) and other APP cleavage products may be important for the development and maintenance of cortical network hyperexcitability. Nonconvulsive epileptiform activity, such as seizures or network abnormalities that are shorter in duration but may occur with higher frequency, may contribute to cognitive impairments characteristic of AD, such as amnestic wandering. Finally, the review discusses recent studies using antiepileptic drugs to rescue cognitive deficits in AD mouse models and human patients. Understanding the mechanistic link between epileptiform activity and AD is a research area of growing interest. Further understanding of the connection between neuronal hyperexcitability and Alzheimer's as well as the potential role of epileptiform activity in the progression of AD will be beneficial for improving treatment strategies. PMID:25484360

  13. Treatment with phenobarbital and monitoring of epileptic patients in rural Mali.

    PubMed Central

    Nimaga, K.; Desplats, D.; Doumbo, O.; Farnarier, G.

    2002-01-01

    OBJECTIVE: To assess the efficacy of phenobarbital treatment for epileptic patients in rural Mali. METHODS: Epileptic patients were treated at home with phenobarbital at daily dosages ranging from 50 mg for children to 200 mg for adults and their condition was monitored. Advice was given to patients, their families, and the village authorities in order to achieve compliance. An uninterrupted supply of generic phenobarbital was provided and a rural physician made two follow-up visits to each village to ensure that the drug was taken in the correct doses. The physician gave information to the population, distributed the phenobarbital in sufficient quantities to cover the periods between visits, and monitored the patients' responses to treatment. During the first year the physician visited the patients every two months. The frequency of visits was subsequently reduced to once every four months. FINDINGS: In the six months preceding treatment the average rate of seizures among patients exceeded four per month. After a year of treatment, 80.2% of the patients experienced no seizures for at least five months. A total of 15.7% of patients experienced a reduction in seizures. In many cases no further seizures occurred and there were improvements in physical health, mental health and social status. There were very few side-effects and no cases of poisoning were reported. The cost of treatment per patient per year was 7 US dollars for generic phenobarbital and 8.4 US dollars for logistics. CONCLUSION: Low doses of phenobarbital were very effective against epilepsy. However, there is an urgent need for programmes involving increased numbers of physicians in rural areas and, at the national level, for the inclusion of epilepsy treatment in the activities of health care facilities. Internationally, an epilepsy control programme providing free treatment should be developed. PMID:12163916

  14. Naringenin ameliorates kainic acid-induced morphological alterations in the dentate gyrus in a mouse model of temporal lobe epilepsy.

    PubMed

    Park, Jungha; Jeong, Kyoung Hoon; Shin, Won-Ho; Bae, Young-Seuk; Jung, Un Ju; Kim, Sang Ryong

    2016-10-19

    Granule cell dispersion (GCD) in the dentate gyrus (DG) of the hippocampus is a morphological alteration characteristic of temporal lobe epilepsy. Recently, we reported that treatment with naringin, a flavonoid found in grapefruit and citrus fruits, reduced spontaneous recurrent seizures by inhibiting kainic acid (KA)-induced GCD and neuronal cell death in mouse hippocampus, suggesting that naringin might have beneficial effects for preventing epileptic events in the adult brain. However, it is still unclear whether the beneficial effects of naringin treatment are mediated by the metabolism of naringin into naringenin in the KA-treated hippocampus. To investigate this possibility, we evaluated whether intraperitoneal injections of naringenin could mimic naringin-induced effects against GCD caused by intrahippocampal KA injections in mice. Our results showed that treatment with naringenin delayed the onset of KA-induced seizures and attenuated KA-induced GCD by inhibiting activation of the mammalian target of rapamycin complex 1 in both neurons and reactive astrocytes in the DG. In addition, its administration attenuated the production of proinflammatory cytokines such as tumor necrosis tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) from microglial activation in the DG following KA treatment. These results suggest that naringenin may be an active metabolite of naringin and help prevent the progression of epileptic insults in the hippocampus in vivo; therefore, naringenin may be a beneficial metabolite of naringin for the treatment of epilepsy. PMID:27584687

  15. Crowdsourcing reproducible seizure forecasting in human and canine epilepsy

    PubMed Central

    Wagenaar, Joost; Abbot, Drew; Adkins, Phillip; Bosshard, Simone C.; Chen, Min; Tieng, Quang M.; He, Jialune; Muñoz-Almaraz, F. J.; Botella-Rocamora, Paloma; Pardo, Juan; Zamora-Martinez, Francisco; Hills, Michael; Wu, Wei; Korshunova, Iryna; Cukierski, Will; Vite, Charles; Patterson, Edward E.; Litt, Brian; Worrell, Gregory A.

    2016-01-01

    See Mormann and Andrzejak (doi:10.1093/brain/aww091) for a scientific commentary on this article.   Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable seizure forecasting has been hampered by lack of open access to long duration recordings with an adequate number of seizures for investigators to rigorously compare algorithms and results. A seizure forecasting competition was conducted on kaggle.com using open access chronic ambulatory intracranial electroencephalography from five canines with naturally occurring epilepsy and two humans undergoing prolonged wide bandwidth intracranial electroencephalographic monitoring. Data were provided to participants as 10-min interictal and preictal clips, with approximately half of the 60 GB data bundle labelled (interictal/preictal) for algorithm training and half unlabelled for evaluation. The contestants developed custom algorithms and uploaded their classifications (interictal/preictal) for the unknown testing data, and a randomly selected 40% of data segments were scored and results broadcasted on a public leader board. The contest ran from August to November 2014, and 654 participants submitted 17 856 classifications of the unlabelled test data. The top performing entry scored 0.84 area under the classification curve. Following the contest, additional held-out unlabelled data clips were provided to the top 10 participants and they submitted classifications for the new unseen data. The resulting area under the classification curves were well above chance forecasting, but did show a mean 6.54 ± 2.45% (min, max: 0.30, 20.2) decline in performance. The kaggle.com model using open access data and algorithms generated reproducible research that advanced seizure forecasting. The overall performance from multiple contestants on unseen data was better than a random predictor, and demonstrates the feasibility of seizure forecasting in canine and

  16. Crowdsourcing reproducible seizure forecasting in human and canine epilepsy.

    PubMed

    Brinkmann, Benjamin H; Wagenaar, Joost; Abbot, Drew; Adkins, Phillip; Bosshard, Simone C; Chen, Min; Tieng, Quang M; He, Jialune; Muñoz-Almaraz, F J; Botella-Rocamora, Paloma; Pardo, Juan; Zamora-Martinez, Francisco; Hills, Michael; Wu, Wei; Korshunova, Iryna; Cukierski, Will; Vite, Charles; Patterson, Edward E; Litt, Brian; Worrell, Gregory A

    2016-06-01

    SEE MORMANN AND ANDRZEJAK DOI101093/BRAIN/AWW091 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE  : Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable seizure forecasting has been hampered by lack of open access to long duration recordings with an adequate number of seizures for investigators to rigorously compare algorithms and results. A seizure forecasting competition was conducted on kaggle.com using open access chronic ambulatory intracranial electroencephalography from five canines with naturally occurring epilepsy and two humans undergoing prolonged wide bandwidth intracranial electroencephalographic monitoring. Data were provided to participants as 10-min interictal and preictal clips, with approximately half of the 60 GB data bundle labelled (interictal/preictal) for algorithm training and half unlabelled for evaluation. The contestants developed custom algorithms and uploaded their classifications (interictal/preictal) for the unknown testing data, and a randomly selected 40% of data segments were scored and results broadcasted on a public leader board. The contest ran from August to November 2014, and 654 participants submitted 17 856 classifications of the unlabelled test data. The top performing entry scored 0.84 area under the classification curve. Following the contest, additional held-out unlabelled data clips were provided to the top 10 participants and they submitted classifications for the new unseen data. The resulting area under the classification curves were well above chance forecasting, but did show a mean 6.54 ± 2.45% (min, max: 0.30, 20.2) decline in performance. The kaggle.com model using open access data and algorithms generated reproducible research that advanced seizure forecasting. The overall performance from multiple contestants on unseen data was better than a random predictor, and demonstrates the feasibility of seizure forecasting in canine and human

  17. Epileptic encephalopathies: new genes and new pathways.

    PubMed

    Nieh, Sahar Esmaeeli; Sherr, Elliott H

    2014-10-01

    Epileptic encephalopathies represent a group of devastating epileptic disorders that occur early in life and are often characterized by pharmaco-resistant epilepsy, persistent severe electroencephalographic abnormalities, and cognitive dysfunction or decline. Next generation sequencing technologies have increased the speed of gene discovery tremendously. Whereas ion channel genes were long considered to be the only significant group of genes implicated in the genetic epilepsies, a growing number of non-ion-channel genes are now being identified. As a subgroup of the genetically mediated epilepsies, epileptic encephalopathies are complex and heterogeneous disorders, making diagnosis and treatment decisions difficult. Recent exome sequencing data suggest that mutations causing epileptic encephalopathies are often sporadic, typically resulting from de novo dominant mutations in a single autosomal gene, although inherited autosomal recessive and X-linked forms also exist. In this review we provide a summary of the key features of several early- and mid-childhood onset epileptic encephalopathies including Ohtahara syndrome, Dravet syndrome, Infantile spasms and Lennox Gastaut syndrome. We review the recent next generation sequencing findings that may impact treatment choices. We also describe the use of conventional and newer anti-epileptic and hormonal medications in the various syndromes based on their genetic profile. At a biological level, developments in cellular reprogramming and genome editing represent a new direction in modeling these pediatric epilepsies and could be used in the development of novel and repurposed therapies. PMID:25266964

  18. Can structural or functional changes following traumatic brain injury in the rat predict the epileptic outcome?

    PubMed Central

    Shultz, Sandy R; Cardamone, Lisa; Liu, Ying R; Hogan, R. Edward; Maccotta, Luigi; Wright, David K; Zheng, Ping; Koe, Amelia; Gregoire, Marie-Claude; Williams, John P; Hicks, Rodney J; Jones, Nigel C; Myers, Damian E; O’Brien, Terence J; Bouilleret, Viviane

    2014-01-01

    Summary Purpose Post-traumatic epilepsy (PTE) occurs in a proportion of traumatic brain injury (TBI) cases, significantly compounding the disability, risk of injury, and death for sufferers. To date, predictive biomarkers for PTE have not been identified. This study used the lateral fluid percussion injury (LFPI) rat model of TBI to investigate whether structural, functional, and behavioral changes post-TBI relate to the later development of PTE. Methods Adult male Wistar rats underwent LFPI or sham-injury. Serial MR and PET imaging, and behavioral analyses were performed over six months post-injury. Rats were then implanted with recording electrodes and monitored for two consecutive weeks using video-EEG to assess for PTE. Of the LFPI rats, 52% (n=12) displayed spontaneous recurring seizures and/or epileptic discharges on the video-EEG recordings. Key findings MRI volumetric and signal analysis of changes in cortex, hippocampus, thalamus, and amygdala, 18F-FDG PET analysis of metabolic function, and behavioral analysis of cognitive and emotional changes, at one week, one month, three months, and six months post-LFPI, all failed to identify significant differences on univariate analysis between the epileptic and non-epileptic groups. However, hippocampal surface shape analysis using high dimensional mapping-large deformation identified significant changes in the ipsilateral hippocampus at one week post-injury relative to baseline that differed between rats that would go onto become epileptic versus those who did not. Furthermore, a multivariate logistic regression model that incorporated the one week, one month, and three month 18F-FDG PET parameters from the ipsilateral hippocampus was able to correctly predict the epileptic outcome in all of the LFPI cases. As such, these subtle changes in the ipsilateral hippocampus at acute phases after LFPI may be related to PTE and require further examination. Significance These findings suggest PTE may be independent of

  19. Seizures and gliomas - towards a single therapeutic approach.

    PubMed

    Huberfeld, Gilles; Vecht, Charles J

    2016-04-01

    Epilepsy often develops in patients with glioma, and the two conditions share common pathogenic mechanisms. Altered expression of glutamate transporters, including the cystine-glutamate transporter (xCT) system, increases concentrations of extracellular glutamate, which contribute to epileptic discharge, tumour proliferation and peripheral excitotoxicity. Furthermore, mutation of the isocitrate dehydrogenase 1 gene in low-grade gliomas causes production of D-2-hydroxyglutarate, a steric analogue of glutamate. Dysregulation of intracellular chloride promotes glioma cell mitosis and migration, and γ-aminobutyric acid (GABA) signalling suppresses proliferation. In neurons, however, chloride accumulation leads to aberrant depolarization on GABA receptor activation, thereby promoting epileptic activity. The molecular target of rapamycin (mTOR) pathway and epigenetic abnormalities are also involved in the development of tumours and seizures. Antitumour therapy can contribute to seizure control, and antiepileptic drugs might have beneficial effects on tumours. Symptomatic treatment with antiepileptic drugs carries risks of adverse effects and drug interactions. In this Review, we discuss the potential for single therapeutic agents, such as the xCT blocker sulfasalazine, the chloride regulator bumetanide, and the histone deacetylase inhibitor valproic acid, to manage both gliomas and associated epilepsy. We also provide guidance on the evidence-based use of antiepileptic drugs in brain tumours. The development of solo therapies to treat both aspects of gliomas promises to yield more-effective treatment with fewer risks of toxicity and drug interactions. PMID:26965673

  20. Electroencephalograms in epilepsy: analysis and seizure prediction within the framework of Lyapunov theory

    NASA Astrophysics Data System (ADS)

    Moser, H. R.; Weber, B.; Wieser, H. G.; Meier, P. F.

    1999-06-01

    Epileptic seizures are defined as the clinical manifestation of excessive and hypersynchronous activity of neurons in the cerebral cortex and represent one of the most frequent malfunctions of the human central nervous system. Therefore, the search for precursors and predictors of a seizure is of utmost clinical relevance and may even guide us to a deeper understanding of the seizure generating mechanisms. We extract chaos-indicators such as Lyapunov exponents and Kolmogorov entropies from different types of electroencephalograms (EEGs): this covers mainly intracranial EEGs (semi-invasive and invasive recording techniques), but also scalp-EEGs from the surface of the skin. Among the analytical methods we tested up to now, we find that the spectral density of the local expansion exponents is best suited to predict the onset of a forthcoming seizure. We also evaluate the time-evolution of the dissipation in these signals: it exhibits strongly significant variations that clearly relate to the time relative to a seizure onset. This article is mainly devoted to an assessment of these methods with respect to their sensitivity to EEG changes, e.g., prior to a seizure. Further, we investigate interictal EEGs (i.e., far away from a seizure) in order to characterize their more general properties, such as the convergence of the reconstructed quantities with respect to the number of phase space dimensions. Generally we use multichannel reconstruction, but we also present a comparison with the delay-embedding technique.

  1. Two Seizure-Onset Types Reveal Specific Patterns of High-Frequency Oscillations in a Model of Temporal Lobe Epilepsy

    PubMed Central

    Lévesque, Maxime; Salami, Pariya; Gotman, Jean; Avoli, Massimo

    2016-01-01

    High-frequency oscillations(HFOs; 80–500 Hz ) are thought to mirror the pathophysiological changes occurring in epileptic brains. However, the distribution of HFOs during seizures remains undefined. Here, we recorded from the hippocampal CA3 subfield, subiculum, entorhinal cortex, and dentate gyrus to quantify the occurrence of ripples (80–200 Hz) and fast ripples (250–500 Hz) during low-voltage fast-onset (LVF) and hypersynchronous-onset (HYP) seizures in the rat pilocarpine model of temporal lobe epilepsy. We discovered in LVF seizures that (1) progression from preictal to ictal activity was characterized in seizure-onset zones by an increase of ripple rates that were higher when compared with fast ripple rates and (2) ripple rates during the ictal period were higher compared with fast ripple rates in seizure-onset zones and later in regions of secondary spread. In contrast, we found in HYP seizures that (1) fast ripple rates increased during the preictal period and were higher compared with ripple rates in both seizure-onset zones and in regions of secondary spread and (2) they were still higher compared with ripple rates in both seizure-onset zones and regions of secondary spread during the ictal period. Our findings demonstrate that ripples and fast ripples show distinct time- and region-specific patterns during LVF and HYP seizures, thus suggesting that they play specific roles in ictogenesis. PMID:22993442

  2. Multimodal effective connectivity analysis reveals seizure focus and propagation in musicogenic epilepsy.

    PubMed

    Klamer, Silke; Rona, Sabine; Elshahabi, Adham; Lerche, Holger; Braun, Christoph; Honegger, Jürgen; Erb, Michael; Focke, Niels K

    2015-06-01

    Dynamic causal modeling (DCM) is a method to non-invasively assess effective connectivity between brain regions. 'Musicogenic epilepsy' is a rare reflex epilepsy syndrome in which seizures can be elicited by musical stimuli and thus represents a unique possibility to investigate complex human brain networks and test connectivity analysis tools. We investigated effective connectivity in a case of musicogenic epilepsy using DCM for fMRI, high-density (hd-) EEG and MEG and validated results with intracranial EEG recordings. A patient with musicogenic seizures was examined using hd-EEG/fMRI and simultaneous '256-channel hd-EEG'/'whole head MEG' to characterize the epileptogenic focus and propagation effects using source analysis techniques and DCM. Results were validated with invasive EEG recordings. We recorded one seizure with hd-EEG/fMRI and four auras with hd-EEG/MEG. During the seizures, increases of activity could be observed in the right mesial temporal region as well as bilateral mesial frontal regions. Effective connectivity analysis of fMRI and hd-EEG/MEG indicated that right mesial temporal neuronal activity drives changes in the frontal areas consistently in all three modalities, which was confirmed by the results of invasive EEG recordings. Seizures thus seem to originate in the right mesial temporal lobe and propagate to mesial frontal regions. Using DCM for fMRI, hd-EEG and MEG we were able to correctly localize focus and propagation of epileptic activity and thereby characterize the underlying epileptic network in a patient with musicogenic epilepsy. The concordance between all three functional modalities validated by invasive monitoring is noteworthy, both for epileptic activity spread as well as for effective connectivity analysis in general. PMID:25797835

  3. Valproic Acid-Induced Severe Acute Pancreatitis with Pseudocyst Formation: Report of a Case.

    PubMed

    Ray, Sukanta; Khamrui, Sujan; Kataria, Mohnish; Biswas, Jayanta; Saha, Suman

    2015-08-01

    Valproic acid is the most widely used anti-epilep-tic drug in children, and it is probably the most frequent cause of drug-induced acute pancreatitis. Outcomes for patients with valproic acid-associated pancreatitis vary from full recovery after discontinuation of the drug to severe acute pancreatitis and death. Here, we present a case of valproic acid-induced severe acute pancreatitis with pseudocyst formation in a 10-year-old girl with cerebral palsy and generalized tonic-clonic seizure. There was no resolution of the pseudocyst after discontinuation of valproic acid. The patient became symptomatic with a progressive increase in the size of the pseudocyst. She was successfully treated with cystogastrostomy and was well at 12-month follow-up. PMID:26366333

  4. Valproic Acid-Induced Severe Acute Pancreatitis with Pseudocyst Formation: Report of a Case

    PubMed Central

    Khamrui, Sujan; Kataria, Mohnish; Biswas, Jayanta; Saha, Suman

    2015-01-01

    Valproic acid is the most widely used anti-epilep­tic drug in children, and it is probably the most frequent cause of drug-induced acute pancreatitis. Outcomes for patients with valproic acid-associated pancreatitis vary from full recovery after discontinuation of the drug to severe acute pancreatitis and death. Here, we present a case of valproic acid-induced severe acute pancreatitis with pseudocyst formation in a 10-year-old girl with cerebral palsy and generalized tonic-clonic seizure. There was no resolution of the pseudocyst after discontinuation of valproic acid. The patient became symptomatic with a progressive increase in the size of the pseudocyst. She was successfully treated with cystogastrostomy and was well at 12-month follow-up. PMID:26366333

  5. Early detection of human focal seizures based on cortical multiunit activity.

    PubMed

    Park, Yun S; Hochberg, Leigh R; Eskandar, Emad N; Cash, Sydney S; Truccolo, Wilson

    2014-01-01

    Approximately 50 million people in the world suffer from epileptic seizures. Reliable early seizure detection could bring significantly beneficial therapeutic alternatives. In recent decades, most approaches have relied on scalp EEG and intracranial EEG signals, but practical early detection for closed-loop seizure control remains challenging. In this study, we present preliminary analyses of an early detection approach based on intracortical neuronal multiunit activity (MUA) recorded from a 96-microelectrode array (MEA). The approach consists of (1) MUA detection from broadband field potentials recorded at 30 kHz by the MEA; (2) MUA feature extraction; (3) cost-sensitive support vector machine classification of ictal and interictal samples; and (4) Kalman-filtering postprocessing. MUA was here defined as the number of threshold crossing (spike counts) applied to the 300 Hz-6 kHz bandpass filtered local field potentials in 0.1 sec time windows. MUA features explored in this study included the mean, variance, and Fano-factor, computed across the MEA channels. In addition, we used the leading eigenvalues of MUA spatial and temporal correlation matrices computed in 1-sec moving time windows. We assessed the seizure detection approach on out-of-sample data from one-participant recordings with six seizure events and 4.73-hour interictal data. The proposed MUA-based detection approach yielded a 100% sensitivity (6/6) and no false positives, and a latency of 4.17 ± 2.27 sec (mean ± SD) with respect to ECoG-identified seizure onsets. These preliminary results indicate intracortical MUA may be a useful signal for early detection of human epileptic seizures. PMID:25571313

  6. Seizures and Teens: Sorting Out Seizures--Part Two

    ERIC Educational Resources Information Center

    Devinsky, Orrin

    2006-01-01

    In adolescents, diagnosing seizures can be challenging and can lead to many pitfalls. Because seizures are episodic and unpredictable events, they usually do not occur in the doctor's office. Thus, a diagnosis of epilepsy is usually based on information presented by the person with seizures and their family. Together with results of diagnostic…

  7. Sleep-related epileptic behaviors and non-REM-related parasomnias: Insights from stereo-EEG.

    PubMed

    Gibbs, Steve A; Proserpio, Paola; Terzaghi, Michele; Pigorini, Andrea; Sarasso, Simone; Lo Russo, Giorgio; Tassi, Laura; Nobili, Lino

    2016-02-01

    During the last decade, many clinical and pathophysiological aspects of sleep-related epileptic and non-epileptic paroxysmal behaviors have been clarified. Advances have been achieved in part through the use of intracerebral recording methods such as stereo-electroencephalography (S-EEG), which has allowed a unique "in vivo" neurophysiological insight into focal epilepsy. Using S-EEG, the local features of physiological and pathological EEG activity in different cortical and subcortical structures have been better defined during the entire sleep-wake spectrum. For example, S-EEG has contributed to clarify the semiology of sleep-related seizures as well as highlight the specific epileptogenic networks involved during ictal activity. Moreover, intracerebral EEG recordings derived from patients with epilepsy have been valuable to study sleep physiology and specific sleep disorders. The occasional co-occurrence of NREM-related parasomnias in epileptic patients undergoing S-EEG investigation has permitted the recordings of such events, highlighting the presence of local electrophysiological dissociated states and clarifying the underlying pathophysiological substrate of such NREM sleep disorders. Based on these recent advances, the authors review and summarize the current and relevant S-EEG literature on sleep-related hypermotor epilepsies and NREM-related parasomnias. Finally, novel data and future research hypothesis will be discussed. PMID:26164370

  8. Ictal but Not Interictal Epileptic Discharges Activate Astrocyte Endfeet and Elicit Cerebral Arteriole Responses

    PubMed Central

    Gómez-Gonzalo, Marta; Losi, Gabriele; Brondi, Marco; Uva, Laura; Sato, Sebastian Sulis; de Curtis, Marco; Ratto, Gian Michele; Carmignoto, Giorgio

    2011-01-01

    Activation of astrocytes by neuronal signals plays a central role in the control of neuronal activity-dependent blood flow changes in the normal brain. The cellular pathways that mediate neurovascular coupling in the epileptic brain remain, however, poorly defined. In a cortical slice model of epilepsy, we found that the ictal, seizure-like discharge, and only to a minor extent the interictal discharge, evokes both a Ca2+ increase in astrocyte endfeet and a vasomotor response. We also observed that rapid ictal discharge-induced arteriole responses were regularly preceded by Ca2+ elevations in endfeet and were abolished by pharmacological inhibition of Ca2+ signals in these astrocyte processes. Under these latter conditions, arterioles exhibited after the ictal discharge only slowly developing vasodilations. The poor efficacy of interictal discharges, compared with ictal discharges, to activate endfeet was confirmed also in the intact in vitro isolated guinea pig brain. Although the possibility of a direct contribution of neurons, in particular in the late response of cerebral blood vessels to epileptic discharges, should be taken into account, our study supports the view that astrocytes are central for neurovascular coupling also in the epileptic brain. The massive endfeet Ca2+ elevations evoked by ictal discharges and the poor response to interictal events represent new information potentially relevant to interpret data from diagnostic brain imaging techniques, such as functional magnetic resonance, utilized in the clinic to localize neural activity and to optimize neurosurgery of untreatable epilepsies. PMID:21747758

  9. De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy.

    PubMed

    Syrbe, Steffen; Hedrich, Ulrike B S; Riesch, Erik; Djémié, Tania; Müller, Stephan; Møller, Rikke S; Maher, Bridget; Hernandez-Hernandez, Laura; Synofzik, Matthis; Caglayan, Hande S; Arslan, Mutluay; Serratosa, José M; Nothnagel, Michael; May, Patrick; Krause, Roland; Löffler, Heidrun; Detert, Katja; Dorn, Thomas; Vogt, Heinrich; Krämer, Günter; Schöls, Ludger; Mullis, Primus E; Linnankivi, Tarja; Lehesjoki, Anna-Elina; Sterbova, Katalin; Craiu, Dana C; Hoffman-Zacharska, Dorota; Korff, Christian M; Weber, Yvonne G; Steinlin, Maja; Gallati, Sabina; Bertsche, Astrid; Bernhard, Matthias K; Merkenschlager, Andreas; Kiess, Wieland; Gonzalez, Michael; Züchner, Stephan; Palotie, Aarno; Suls, Arvid; De Jonghe, Peter; Helbig, Ingo; Biskup, Saskia; Wolff, Markus; Maljevic, Snezana; Schüle, Rebecca; Sisodiya, Sanjay M; Weckhuysen, Sarah; Lerche, Holger; Lemke, Johannes R

    2015-04-01

    Epileptic encephalopathies are a phenotypically and genetically heterogeneous group of severe epilepsies accompanied by intellectual disability and other neurodevelopmental features. Using next-generation sequencing, we identified four different de novo mutations in KCNA2, encoding the potassium channel KV1.2, in six isolated patients with epileptic encephalopathy (one mutation recurred three times independently). Four individuals presented with febrile and multiple afebrile, often focal seizure types, multifocal epileptiform discharges strongly activated by sleep, mild to moderate intellectual disability, delayed speech development and sometimes ataxia. Functional studies of the two mutations associated with this phenotype showed almost complete loss of function with a dominant-negative effect. Two further individuals presented with a different and more severe epileptic encephalopathy phenotype. They carried mutations inducing a drastic gain-of-function effect leading to permanently open channels. These results establish KCNA2 as a new gene involved in human neurodevelopmental disorders through two different mechanisms, predicting either hyperexcitability or electrical silencing of KV1.2-expressing neurons. PMID:25751627

  10. De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy

    PubMed Central

    Müller, Stephan; Møller, Rikke S.; Maher, Bridget; Hernandez-Hernandez, Laura; Synofzik, Matthis; Caglayan, Hande S.; Arslan, Mutluay; Serratosa, José M.; Nothnagel, Michael; May, Patrick; Krause, Roland; Löffler, Heidrun; Detert, Katja; Dorn, Thomas; Vogt, Heinrich; Krämer, Günter; Schöls, Ludger; Mullis, Primus E.; Linnankivi, Tarja; Lehesjoki, Anna-Elina; Sterbova, Katalin; Craiu, Dana C.; Hoffman-Zacharska, Dorota; Korff, Christian M.; Weber, Yvonne G.; Steinlin, Maja; Gallati, Sabina; Bertsche, Astrid; Bernhard, Matthias K.; Merkenschlager, Andreas; Kiess, Wieland; Gonzalez, Michael; Züchner, Stephan; Palotie, Aarno; Suls, Arvid; De Jonghe, Peter; Helbig, Ingo; Biskup, Saskia; Wolff, Markus; Maljevic, Snezana; Schüle, Rebecca; Sisodiya, Sanjay M.; Weckhuysen, Sarah; Lerche, Holger; Lemke, Johannes R.

    2015-01-01

    Epileptic encephalopathies are a phenotypically and genetically heterogeneous group of severe epilepsies accompanied by intellectual disability and other neurodevelopmental features1-6. Using next generation sequencing, we identified four different de novo mutations in KCNA2, encoding the potassium channel KV1.2, in six patients with epileptic encephalopathy (one mutation recurred three times independently). Four individuals presented with febrile and multiple afebrile, often focal seizure types, multifocal epileptiform discharges strongly activated by sleep, mild-moderate intellectual disability, delayed speech development and sometimes ataxia. Functional studies of the two mutations associated with this phenotype revealed an almost complete loss-of-function with a dominant-negative effect. Two further individuals presented with a different and more severe epileptic encephalopathy phenotype. They carried mutations inducing a drastic gain-of-function effect leading to permanently open channels. These results establish KCNA2 as a novel gene involved in human neurodevelopmental disorders by two different mechanisms, predicting either hyperexcitability or electrical silencing of KV1.2-expressing neurons. PMID:25751627

  11. Early-life epileptic encephalopathy secondary to SZT2 pathogenic recessive variants.

    PubMed

    Venkatesan, Charu; Angle, Brad; Millichap, John J

    2016-06-01

    Advances in genetic testing have led to the identification of increasing numbers of novel gene mutations that underlie infantile-onset epileptic encephalopathies. Recently, a mutagenesis screen identified a novel gene, SZT2, with no known protein function that has been linked to epileptogenesis in mice. Thus far, two clinical reports have identified children with different recessive mutations in SZT2 and varying clinical phenotypes. One case report described patients with epileptic encephalopathy and the other noted patients with cognitive deficiencies, but normal MRI and no epilepsy. This case report identifies novel mutations (a compound heterozygous frameshift and a nonsense variant) in the SZT2 gene with distinct clinical and radiographic findings relative to those previously reported. Our patient presented with intractable epilepsy at 2 months of age. Seizures were refractory to numerous antiepileptic medications and the patient finally achieved seizure cessation at age 3 years with a combination of divalproex and lamotrigine. Our patient had similar facial dysmorphisms (macrocephaly, high forehead, and down-slanted palpebral fissures) to a previous case with truncating mutation. While developmental delay and cognitive deficiencies were present, our case had unique MRI findings suggesting migrational abnormalities not previously reported in other cases. PMID:27248490

  12. NAPB - a novel SNARE-associated protein for early-onset epileptic encephalopathy.

    PubMed

    Conroy, J; Allen, N M; Gorman, K M; Shahwan, A; Ennis, S; Lynch, S A; King, M D

    2016-02-01

    Next-generation sequencing has accelerated the identification of disease genes in many rare genetic disorders including early-onset epileptic encephalopathies (EOEEs). While many of these disorders are caused by neuronal channelopathies, the role of synaptic and related neuronal proteins are increasingly being described. Here, we report a 6-year-old girl with unexplained EOEE characterized by multifocal seizures and profound global developmental delay. Recessive inheritance was considered due to parental consanguinity and Irish Traveller descent. Exome sequencing was performed. Variant prioritization identified a homozygous nonsense variant in the N-ethylmaleimide-sensitive factor attachment protein, beta (NAPB) gene resulting in a premature stop codon and 46% loss of the protein. NAPB plays a role in soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE)-complex dissociation and recycling (synaptic vesicle docking). Knockout mouse models of the murine ortholog Napb have been previously reported. These mice develop recurrent post-natal epileptic seizures in the absence of structural brain changes. The identification of a disease-causing variant in NAPB further recognizes the importance of the SNARE complex in the development of epilepsy and suggests that this gene should be considered in patients with unexplained EOEE. PMID:26235277

  13. De Novo Loss-of-Function Mutations in CHD2 Cause a Fever-Sensitive Myoclonic Epileptic Encephalopathy Sharing Features with Dravet Syndrome

    PubMed Central

    Suls, Arvid; Jaehn, Johanna A.; Kecskés, Angela; Weber, Yvonne; Weckhuysen, Sarah; Craiu, Dana C.; Siekierska, Aleksandra; Djémié, Tania; Afrikanova, Tatiana; Gormley, Padhraig; von Spiczak, Sarah; Kluger, Gerhard; Iliescu, Catrinel M.; Talvik, Tiina; Talvik, Inga; Meral, Cihan; Caglayan, Hande S.; Giraldez, Beatriz G.; Serratosa, José; Lemke, Johannes R.; Hoffman-Zacharska, Dorota; Szczepanik, Elzbieta; Barisic, Nina; Komarek, Vladimir; Hjalgrim, Helle; Møller, Rikke S.; Linnankivi, Tarja; Dimova, Petia; Striano, Pasquale; Zara, Federico; Marini, Carla; Guerrini, Renzo; Depienne, Christel; Baulac, Stéphanie; Kuhlenbäumer, Gregor; Crawford, Alexander D.; Lehesjoki, Anna-Elina; de Witte, Peter A.M.; Palotie, Aarno; Lerche, Holger; Esguerra, Camila V.; De Jonghe, Peter; Helbig, Ingo; Hendrickx, Rik; Holmgren, Philip; Stephani, Ulrich; Muhle, Hiltrud; Pendiziwiat, Manuela; Appenzeller, Silke; Selmer, Kaja; Brilstra, Eva; Koeleman, Bobby; Rosenow, Felix; Leguern, Eric; Sterbova, Katalin; Magdalena, Budisteanu; Rodica, Gherghiceanu; Arsene, Oana Tarta; Diana, Barca; Guerrero-Lopez, Rosa; Ortega, Laura; Todorova, Albena P.; Kirov, Andrey V.; Robbiano, Angela; Arslan, Mutluay; Yiş, Uluç; Ivanović, Vanja

    2013-01-01

    Dravet syndrome is a severe epilepsy syndrome characterized by infantile onset of therapy-resistant, fever-sensitive seizures followed by cognitive decline. Mutations in SCN1A explain about 75% of cases with Dravet syndrome; 90% of these mutations arise de novo. We studied a cohort of nine Dravet-syndrome-affected individuals without an SCN1A mutation (these included some atypical cases with onset at up to 2 years of age) by using whole-exome sequencing in proband-parent trios. In two individuals, we identified a de novo loss-of-function mutation in CHD2 (encoding chromodomain helicase DNA binding protein 2). A third CHD2 mutation was identified in an epileptic proband of a second (stage 2) cohort. All three individuals with a CHD2 mutation had intellectual disability and fever-sensitive generalized seizures, as well as prominent myoclonic seizures starting in the second year of life or later. To explore the functional relevance of CHD2 haploinsufficiency in an in vivo model system, we knocked down chd2 in zebrafish by using targeted morpholino antisense oligomers. chd2-knockdown larvae exhibited altered locomotor activity, and the epileptic nature of this seizure-like behavior was confirmed by field-potential recordings that revealed epileptiform discharges similar to seizures in affected persons. Both altered locomotor activity and epileptiform discharges were absent in appropriate control larvae. Our study provides evidence that de novo loss-of-function mutations in CHD2 are a cause of epileptic encephalopathy with generalized seizures. PMID:24207121

  14. Assessment of oral side effects of Antiepileptic drugs and traumatic oro-facial injuries encountered in Epileptic children

    PubMed Central

    Ghafoor, P A Fazal; Rafeeq, Mohammed; Dubey, Alok

    2014-01-01

    Background: Epilepsy is a chronic disorder with unpredictably recurring seizure. Uncontrolled attacks can put patients at risk of suffering oro-facial trauma. Antiepileptic drugs (AED) provide satisfactory control of seizures in most of the patients with epilepsy. However use of AED has been found to cause many side effects inclusive of side effects in the oral cavity also. Materials & Methods: This study was conducted on 150 epileptic children, who were on anti epileptic medication for one year. Results: Gingival over growth was seen as common side effect of the AED drugs. Lip and cheek biting were the most common soft tissue injury, while tooth fracture was the most common hard tissue dental injury. Conclusion: General physicians, physicians & dentists should be well aware of the potential side effects of AED. A Dentist should be well versed and trained to manage oro-facial injuries in the emergency department. How to cite the article: Ghafoor PA, Rafeeq M, Dubey A. Assessment of oral side effects of Antiepileptic drugs and traumaticoro-facial injuries encountered in Epileptic children. J Int Oral Health 2014;6(2):126-8. PMID:24876713

  15. Properties of acid-induced currents in mouse dorsal root ganglia neurons.

    PubMed

    Ergonul, Zuhal; Yang, Lei; Palmer, Lawrence G

    2016-05-01

    Acid-sensing ion channels (ASICs) are cation channels that are activated by protons (H(+)). They are expressed in neurons throughout the nervous system and may play important roles in several neurologic disorders including inflammation, cerebral ischemia, seizures, neurodegeneration, anxiety, depression, and migraine. ASICs generally produce transient currents that desensitize in response to a decrease in extracellular pH Under certain conditions, the inactivation of ASICs can be incomplete and allow them to produce sustained currents. Here, we characterize the properties of both transient and sustained acid-induced currents in cultured mouse dorsal root ganglia (DRG) neurons. At pH levels between 7.3 and 7.1 they include "window currents" through ASICs. With stronger acid signals sustained currents are maintained in the absence of extracellular Na(+) or the presence of the ASIC blockers amiloride and Psalmotoxin-1(PcTx1). These sustained responses may have several different origins in these cells, including acid-induced stimulation of inward Cl(-) currents, block of outward K(+) currents, and augmentation of inward H(+) currents, properties that distinguish these novel sustained currents from the well-characterized transient currents. PMID:27173673

  16. Teaching about Search and Seizure.

    ERIC Educational Resources Information Center

    Kelly, Cynthia A.

    1978-01-01

    Presents a six-step model to help teachers develop curriculum related to the Fourth Amendment (search and seizure). The model focuses on determining values and attitudes, defining valid and unreasonable search and seizure, recognizing a valid warrant, and using film to teach about search and seizure. Journal available from the American Bar…

  17. Ketogenic diet for the treatment of catastrophic epileptic encephalopathies in childhood.

    PubMed

    Coppola, Giangennaro; Verrotti, Alberto; Ammendola, Edoardo; Operto, Francesca Felicia; Corte, Rita Della; Signoriello, Giuseppe; Pascotto, Antonio

    2010-05-01

    The ketogenic diet for the treatment of refractory epileptic encephalopathies has been suggested as an early treatment option in very young children. The aim of the present study was to assess the efficacy and tolerability of the ketogenic diet in children younger than 5 years, all affected by different types of catastrophic childhood encephalopathies. The study group is composed of 38 children (22 males and 16 females), aged between 3 months and 5 years, affected by symptomatic partial epilepsy (6) and cryptogenic-symptomatic epileptic encephalopathies (32). Psychomotor delay-mental retardation was present in all of the patients: mild to moderate (9), severe (7), and profound (22). Cerebral palsy was present in 74% of the cases. Children were started on a 4:1 ketogenic diet as ketocal formula alone or supporting about the 80% of the daily caloric amount. Children poorly complying with ketocal milk were shifted to a classic 4:1 ketogenic diet. The average time (months +/- S.D.) on the diet was 10.3 +/- 7.4. All the children initiating the diet remained on it at 1 month and 35 of them (92%) at 3 months, 28 (73.7%) remained on it at 6 months, and 20 (52.7%) at 1 year. At 12-month follow-up, 11 children (28.9%) had a greater than 50% reduction of seizures and the other 9 (23.7%) were seizure-free. Adverse side effects were recorded in 25 of 38 patients (65.8%), including drowsiness, constipation, weight loss, vomiting, gastroesophageal reflux, fever, and hyperlipidemia. This report confirms that severe epileptic encephalopathies are much suitable for the ketogenic diet. PMID:19632870

  18. The epileptic amygdala: Toward the development of a neural prosthesis by temporally coded electrical stimulation.

    PubMed

    Cota, Vinícius Rosa; Drabowski, Bruna Marcela Bacellar; de Oliveira, Jasiara Carla; Moraes, Márcio Flávio Dutra

    2016-06-01

    Many patients with epilepsy do not obtain proper control of their seizures through conventional treatment. We review aspects of the pathophysiology underlying epileptic phenomena, with a special interest in the role of the amygdala, stressing the importance of hypersynchronism in both ictogenesis and epileptogenesis. We then review experimental studies on electrical stimulation of mesiotemporal epileptogenic areas, the amygdala included, as a means to treat medically refractory epilepsy. Regular high-frequency stimulation (HFS) commonly has anticonvulsant effe