Science.gov

Sample records for acid-induced epileptic seizures

  1. Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1β and brain-derived neurotrophic factor.

    PubMed

    Ho, Tin-Yun; Tang, Nou-Ying; Hsiang, Chien-Yun; Hsieh, Ching-Liang

    2014-05-15

    Uncaria rhynchophylla (UR) has been used for the treatment of convulsions and epilepsy in traditional Chinese medicine. This study reported the major anti-convulsive signaling pathways and effective targets of UR and rhynchophylline (RP) using genomic and immunohistochemical studies. Epileptic seizure model was established by intraperitoneal injection of kainic acid (KA) in rats. Electroencephalogram and electromyogram recordings indicated that UR and RP improved KA-induced epileptic seizures. Toll-like receptor (TLR) and neurotrophin signaling pathways were regulated by UR in both cortex and hippocampus of KA-treated rats. KA upregulated the expression levels of interleukin-1β (IL-1β) and brain-derived neurotrophin factor (BDNF), which were involved in TLR and neurotrophin signaling pathways, respectively. However, UR and RP downregulated the KA-induced IL-1β and BDNF gene expressions. Our findings suggested that UR and RP exhibited anti-convulsive effects in KA-induced rats via the regulation of TLR and neurotrophin signaling pathways, and the subsequent inhibition of IL-1β and BDNF gene expressions. PMID:24636743

  2. Predicting Epileptic Seizures in Advance

    PubMed Central

    Moghim, Negin; Corne, David W.

    2014-01-01

    Epilepsy is the second most common neurological disorder, affecting 0.6–0.8% of the world's population. In this neurological disorder, abnormal activity of the brain causes seizures, the nature of which tend to be sudden. Antiepileptic Drugs (AEDs) are used as long-term therapeutic solutions that control the condition. Of those treated with AEDs, 35% become resistant to medication. The unpredictable nature of seizures poses risks for the individual with epilepsy. It is clearly desirable to find more effective ways of preventing seizures for such patients. The automatic detection of oncoming seizures, before their actual onset, can facilitate timely intervention and hence minimize these risks. In addition, advance prediction of seizures can enrich our understanding of the epileptic brain. In this study, drawing on the body of work behind automatic seizure detection and prediction from digitised Invasive Electroencephalography (EEG) data, a prediction algorithm, ASPPR (Advance Seizure Prediction via Pre-ictal Relabeling), is described. ASPPR facilitates the learning of predictive models targeted at recognizing patterns in EEG activity that are in a specific time window in advance of a seizure. It then exploits advanced machine learning coupled with the design and selection of appropriate features from EEG signals. Results, from evaluating ASPPR independently on 21 different patients, suggest that seizures for many patients can be predicted up to 20 minutes in advance of their onset. Compared to benchmark performance represented by a mean S1-Score (harmonic mean of Sensitivity and Specificity) of 90.6% for predicting seizure onset between 0 and 5 minutes in advance, ASPPR achieves mean S1-Scores of: 96.30% for prediction between 1 and 6 minutes in advance, 96.13% for prediction between 8 and 13 minutes in advance, 94.5% for prediction between 14 and 19 minutes in advance, and 94.2% for prediction between 20 and 25 minutes in advance. PMID:24911316

  3. Stimulation of Anterior Thalamic Nuclei Protects Against Seizures and Neuronal Apoptosis in Hippocampal CA3 Region of Kainic Acid-induced Epileptic Rats

    PubMed Central

    Meng, Da-Wei; Liu, Huan-Guang; Yang, An-Chao; Zhang, Kai; Zhang, Jian-Guo

    2016-01-01

    Background: The antiepileptic effect of the anterior thalamic nuclei (ANT) stimulation has been demonstrated; however, its underlying mechanism remains unclear. The aim of this study was to investigate the effect of chronic ANT stimulation on hippocampal neuron loss and apoptosis. Methods: Sixty-four rats were divided into four groups: The control group, the kainic acid (KA) group, the sham-deep brain stimulation (DBS) group, and the DBS group. KA was used to induce epilepsy. Seizure count and latency to the first spontaneous seizures were calculated. Nissl staining was used to analyze hippocampal neuronal loss. Polymerase chain reaction and Western blotting were conducted to assess the expression of caspase-3 (Casp3), B-cell lymphoma-2 (Bcl2), and Bcl2-associated X protein (Bax) in the hippocampal CA3 region. One-way analysis of variance was used to determine the differences between the four groups. Results: The latency to the first spontaneous seizures in the DBS group was significantly longer than that in the KA group (27.50 ± 8.05 vs. 16.38 ± 7.25 days, P = 0.0005). The total seizure number in the DBS group was also significantly reduced (DBS vs. KA group: 11.75 ± 6.80 vs. 23.25 ± 7.72, P = 0.0002). Chronic ANT-DBS reduced neuronal loss in the hippocampal CA3 region (DBS vs. KA group: 23.58 ± 6.34 vs. 13.13 ± 4.00, P = 0.0012). After chronic DBS, the relative mRNA expression level of Casp3 was decreased (DBS vs. KA group: 1.18 ± 0.37 vs. 2.09 ± 0.46, P = 0.0003), and the relative mRNA expression level of Bcl2 was increased (DBS vs. KA group: 0.92 ± 0.21 vs. 0.48 ± 0.16, P = 0.0004). The protein expression levels of CASP3 (DBS vs. KA group: 1.25 ± 0.26 vs. 2.49 ± 0.38, P < 0.0001) and BAX (DBS vs. KA group: 1.57 ± 0.49 vs. 2.80 ± 0.63, P = 0.0012) both declined in the DBS group whereas the protein expression level of BCL2 (DBS vs. KA group: 0.78 ± 0.32 vs. 0.36 ± 0.17, P = 0.0086) increased in the DBS group. Conclusions: This study demonstrated

  4. Ambroxol-induced focal epileptic seizure.

    PubMed

    Lapenta, Leonardo; Morano, Alessandra; Fattouch, Jinane; Casciato, Sara; Fanella, Martina; Giallonardo, Anna Teresa; Di Bonaventura, Carlo

    2014-01-01

    It is well known that in epileptic patients some compounds and different drugs used for the treatment of comorbidities can facilitate or provoke seizures, this evidence regarding a wide spectrum of pharmacological categories. The potential facilitating factors usually include direct toxic effects or pharmacological interactions of either active ingredients or excipients. We report the case of a patient with drug-resistant epilepsy who experienced focal epileptic seizures, easily and constantly reproducible, after each administration of a cough syrup. This is, to our knowledge, the first electroencephalogram-documented case of focal epileptic seizures induced by cough syrup containing ambroxol as active ingredient. PMID:24824664

  5. Localizing epileptic seizure onsets with Granger causality

    NASA Astrophysics Data System (ADS)

    Adhikari, Bhim M.; Epstein, Charles M.; Dhamala, Mukesh

    2013-09-01

    Accurate localization of the epileptic seizure onset zones (SOZs) is crucial for successful surgery, which usually depends on the information obtained from intracranial electroencephalography (IEEG) recordings. The visual criteria and univariate methods of analyzing IEEG recordings have not always produced clarity on the SOZs for resection and ultimate seizure freedom for patients. Here, to contribute to improving the localization of the SOZs and to understanding the mechanism of seizure propagation over the brain, we applied spectral interdependency methods to IEEG time series recorded from patients during seizures. We found that the high-frequency (>80 Hz) Granger causality (GC) occurs before the onset of any visible ictal activity and causal relationships involve the recording electrodes where clinically identifiable seizures later develop. These results suggest that high-frequency oscillatory network activities precede and underlie epileptic seizures, and that GC spectral measures derived from IEEG can assist in precise delineation of seizure onset times and SOZs.

  6. Analysis of epileptic seizures with complex network.

    PubMed

    Ni, Yan; Wang, Yinghua; Yu, Tao; Li, Xiaoli

    2014-01-01

    Epilepsy is a disease of abnormal neural activities involving large area of brain networks. Until now the nature of functional brain network associated with epilepsy is still unclear. Recent researches indicate that the small world or scale-free attributes and the occurrence of highly clustered connection patterns could represent a general organizational principle in the human brain functional network. In this paper, we seek to find whether the small world or scale-free property of brain network is correlated with epilepsy seizure formation. A mass neural model was adopted to generate multiple channel EEG recordings based on regular, small world, random, and scale-free network models. Whether the connection patterns of cortical networks are directly associated with the epileptic seizures was investigated. The results showed that small world and scale-free cortical networks are highly correlated with the occurrence of epileptic seizures. In particular, the property of small world network is more significant during the epileptic seizures. PMID:25147576

  7. Okadaic acid induces epileptic seizures and hyperphosphorylation of the NR2B subunit of the NMDA receptor in rat hippocampus in vivo.

    PubMed

    Arias, Clorinda; Montiel, Teresa; Peña, Fernando; Ferrera, Patricia; Tapia, Ricardo

    2002-09-01

    Overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors is closely related to epilepsy and excitotoxicity, and the phosphorylation of these receptors may facilitate glutamate-mediated synaptic transmission. Here we show that in awake rats the microinjection into the hippocampus of okadaic acid, a potent inhibitor of protein phosphatases 1 and 2A, induces in about 20 min intense electroencephalographic and behavioral limbic-type seizures, which are suppressed by the systemic administration of the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo-[a,d]cyclohepten-5,10-imine hydrogen maleate and by the intrahippocampal administration of 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, an inhibitor of protein kinases. Two hours after okadaic acid, when the EEG seizures were intense, an increased serine phosphorylation of some hippocampal proteins, including an enhancement of the serine phosphorylation of the NMDA receptor subunit NR2B, was detected by immunoblotting. Twenty-four hours after okadaic acid a marked destruction of hippocampal CA1 region was observed, which was not prevented by the receptor antagonists. These findings suggest that hyperphosphorylation of glutamate receptors in vivo may result in an increased sensitivity to the endogenous transmitter and therefore induce neuronal hyperexcitability and epilepsy. PMID:12429230

  8. Nonlinear analysis of EEG for epileptic seizures

    SciTech Connect

    Hively, L.M.; Clapp, N.E.; Daw, C.S.; Lawkins, W.F.; Eisenstadt, M.L.

    1995-04-01

    We apply chaotic time series analysis (CTSA) to human electroencephalogram (EEG) data. Three epoches were examined: epileptic seizure, non-seizure, and transition from non-seizure to seizure. The CTSA tools were applied to four forms of these data: raw EEG data (e-data), artifact data (f-data) via application of a quadratic zero-phase filter of the raw data, artifact-filtered data (g- data) and that was the residual after subtracting f-data from e-data, and a low-pass-filtered version (h-data) of g-data. Two different seizures were analyzed for the same patient. Several nonlinear measures uniquely indicate an epileptic seizure in both cases, including an abrupt decrease in the time per wave cycle in f-data, an abrupt increase in the Kolmogorov entropy and in the correlation dimension for e-h data, and an abrupt increase in the correlation dimension for e-h data. The transition from normal to seizure state also is characterized by distinctly different trends in the nonlinear measures for each seizure and may be potential seizure predictors for this patient. Surrogate analysis of e-data shows that statistically significant nonlinear structure is present during the non-seizure, transition , and seizure epoches.

  9. Psychogenic non-epileptic seizures (PNES).

    PubMed

    Hingray, C; Biberon, J; El-Hage, W; de Toffol, B

    2016-01-01

    Psychogenic non-epileptic seizures (PNES) are defined as change in behavior or consciousness resembling epileptic seizures but which have a psychological origin. PNES are categorized as a manifestation of dissociative or somatoform (conversion) disorders. Video-EEG recording of an event is the gold standard for diagnosis. PNES represent a symptom, not the underlying disease and the mechanism of dissociation is pivotal in the pathophysiology. Predisposing, precipitating and perpetuating factors should be carefully assessed on a case-by-case basis. The process of communicating the diagnosis using a multidisciplinary approach is an important and effective therapeutic step. PMID:27117433

  10. The diagnosis of psychogenic non-epileptic seizures: a review.

    PubMed

    Kuyk, J; Leijten, F; Meinardi, H; Spinhoven; Van Dyck, R

    1997-08-01

    Diagnosing psychogenic non-epileptic seizures (PNES) is a clinical challenge. There is neither a standard in diagnosing PNES nor a comprehensive theoretical framework for this type of seizure. The diagnosis of PNES must be made by excluding epilepsy. However, epilepsy cannot always be determined and PNES and epileptic seizures may coexist. In this study, the characteristics of PNES and patients are discussed. The diagnosis of PNES and epileptic seizures was facilitated by the simultaneous recording of seizures on video tape and EEG. Seizure provoking techniques, hormonal indices, and psychological methods were also used. The benefits and limitations of these techniques are discussed and proposals are made for clinical guidelines. PMID:9304716

  11. Cerebrospinal fluid findings after epileptic seizures.

    PubMed

    Chatzikonstantinou, Anastasios; Ebert, Anne D; Hennerici, Michael G

    2015-12-01

    We aimed to evaluate ictally-induced CSF parameter changes after seizures in adult patients without acute inflammatory diseases or infectious diseases associated with the central nervous system. In total, 151 patients were included in the study. All patients were admitted to our department of neurology following acute seizures and received an extensive work-up including EEG, cerebral imaging, and CSF examinations. CSF protein elevation was found in most patients (92; 60.9%) and was significantly associated with older age, male sex, and generalized seizures. Abnormal CSF-to-serum glucose ratio was found in only nine patients (5.9%) and did not show any significant associations. CSF lactate was elevated in 34 patients (22.5%) and showed a significant association with focal seizures with impaired consciousness, status epilepticus, the presence of EEG abnormalities in general and epileptiform potentials in particular, as well as epileptogenic lesions on cerebral imaging. Our results indicate that non-inflammatory CSF elevation of protein and lactate after epileptic seizures is relatively common, in contrast to changes in CSF-to-serum glucose ratio, and further suggest that these changes are caused by ictal activity and are related to seizure type and intensity. We found no indication that these changes may have further-reaching pathological implications besides their postictal character. PMID:26575850

  12. Epileptic Seizure Detection and Warning Device

    SciTech Connect

    Elarton, J.K.; Koepsel, K.L.

    1999-06-21

    Flint Hills Scientific, L.L.C. (FHS) has invented what is believed to be the first real-time epileptic seizure detection and short-term prediction method in the world. They have demonstrated an IBM PC prototype with a multi-channel EEG monitoring configuration. This CRADA effort applied AlliedSignal FM and T hardware design, manufacturing miniaturization, and high quality manufacturing expertise in converting the prototype into a small, portable, self-contained, multi-channel EEG epileptic seizure detection and warning device. The purpose of this project was to design and build a proof-of-concept miniaturized prototype of the FHS-developed PC-based prototype. The resultant DSP prototype, measuring 4'' x 6'' x 2'', seizure detection performance compared favorably with the FHS PC prototype, thus validating the DSP design goals. The very successful completion of this project provided valuable engineering information for FHS for future prototype commercialization as well as providing AS/FM and T engineers DSP design experience.

  13. Emergence of semiology in epileptic seizures.

    PubMed

    Chauvel, Patrick; McGonigal, Aileen

    2014-09-01

    Semiology, the manifestation of epilepsy, is dependent upon electrical activity produced by epileptic seizures that are organized within existing neural pathways. Clinical signs evolve as the epileptic discharge spreads in both time and space. Studying the relation between these, of which the temporal component is at least as important as the spatial one, is possible using anatomo-electro-clinical correlations of stereoelectroencephalography (SEEG) data. The period of semiology production occurs with variable time lag after seizure onset and signs then emerge more or less rapidly depending on seizure type (temporal seizures generally propagating more slowly and frontal seizures more quickly). The subset of structures involved in semiological production, the "early spread network", is tightly linked to those constituting the epileptogenic zone. The level of complexity of semiological features varies according to the degree of involvement of the primary or associative cortex, with the former having a direct relation to peripheral sensory and motor systems with production of hallucinations (visual and auditory) or elementary sensorimotor signs. Depending on propagation pattern, these signs can occur in a "march" fashion as described by Jackson. On the other hand, seizures involving the associative cortex, having a less direct relation with the peripheral nervous system, and necessarily involving more widely distributed networks manifest with altered cognitive and/or behavioral signs whose neural substrate involves a network of cortical structures, as has been observed for normal cognitive processes. Other than the anatomical localization of these structures, the frequency of the discharge is a crucial determinant of semiological effect since a fast (gamma) discharge will tend to deactivate normal function, whereas a slower theta discharge can mimic physiological function. In terms of interaction between structures, the degree of synchronization plays a key role in

  14. [Intracranial tumors and epileptic seizures: treatment principles].

    PubMed

    Rossetti, Andrea O; Vulliémoz, Serge

    2016-04-27

    Epileptic seizures represent a relatively frequent issue in patients with intracranial neoplasms, and very frequently imply the start of an antiepileptic treatment as secondary prophylaxis. Even if the current level of evidence is relatively low, compounds with a limited risk of pharmacokinetic interactions are clearly preferred. Levetiracetam is probably the most prescribed agent in this setting, while pregabalin, valproate, lacosamide and lamotrigine are valuable alternatives. The treatment choice has to consider the different profiles of side effects and should be tailored to each patient. In this setting, a multidisciplinary approach including general practicioner, oncologist and neurologist is strongly advocated. PMID:27281943

  15. Epileptic Seizure Forewarning by Nonlinear Techniques

    SciTech Connect

    Hively, LM

    2001-02-05

    Nicolet Biomedical Inc. (NBI) is collaborating with Oak Ridge National Laboratory (ORNL) under a Cooperative Research and Development Agreement (CRADA) to convert ORNL.s patented technology for forewarning of epileptic seizures to a clinical prototype. This technical report describes the highlights of the first year.s effort. The software requirements for the clinical device were specified from which the hardware specifications were obtained. ORNL's research-class FORTRAN was converted to run under a graphical user interface (GUI) that was custom-built for this application by NBI. The resulting software package was cloned to desktop computers that are being tested in five different clinical sites. Two hundred electroencephalogram (EEG) datasets from those clinical sites were provided to ORNL for detailed analysis and improvement of the forewarning methodology. Effort under this CRADA is continuing into the second year as planned.

  16. γ-Hydroxybutyric Acid-Induced Electrographic Seizures

    PubMed Central

    Cheung, Joseph; Lucey, Brendan P.; Duntley, Stephen P.; Darken, Rachel S.

    2014-01-01

    We describe a case of absence-like electrographic seizures during NREM sleep in a patient who was taking sodium oxybate, a sodium salt of γ-hydroxybutyric acid (GHB). An overnight full montage electroencephalography (EEG) study revealed numerous frontally predominant rhythmic 1.5-2 Hz sharp waves and spike-wave activity during stage N2 and N3 sleep at the peak dose time for sodium oxybate, resembling atypical absence-like electrographic seizures. The patient was later weaned off sodium oxybate, and a repeat study did not show any such electrographic seizures. Absence-like seizures induced by GHB had previously been described in experimental animal models. We present the first reported human case of absence-like electrographic seizure associated with sodium oxybate. Citation: Cheung J, Lucey BP, Duntley SP, Darken RS. γ-hydroxybutyric acid-induced electrographic seizures. J Clin Sleep Med 2014;10(7):811-812. PMID:25024661

  17. Block term decomposition for modelling epileptic seizures

    NASA Astrophysics Data System (ADS)

    Hunyadi, Borbála; Camps, Daan; Sorber, Laurent; Paesschen, Wim Van; Vos, Maarten De; Huffel, Sabine Van; Lathauwer, Lieven De

    2014-12-01

    Recordings of neural activity, such as EEG, are an inherent mixture of different ongoing brain processes as well as artefacts and are typically characterised by low signal-to-noise ratio. Moreover, EEG datasets are often inherently multidimensional, comprising information in time, along different channels, subjects, trials, etc. Additional information may be conveyed by expanding the signal into even more dimensions, e.g. incorporating spectral features applying wavelet transform. The underlying sources might show differences in each of these modes. Therefore, tensor-based blind source separation techniques which can extract the sources of interest from such multiway arrays, simultaneously exploiting the signal characteristics in all dimensions, have gained increasing interest. Canonical polyadic decomposition (CPD) has been successfully used to extract epileptic seizure activity from wavelet-transformed EEG data (Bioinformatics 23(13):i10-i18, 2007; NeuroImage 37:844-854, 2007), where each source is described by a rank-1 tensor, i.e. by the combination of one particular temporal, spectral and spatial signature. However, in certain scenarios, where the seizure pattern is nonstationary, such a trilinear signal model is insufficient. Here, we present the application of a recently introduced technique, called block term decomposition (BTD) to separate EEG tensors into rank- ( L r , L r ,1) terms, allowing to model more variability in the data than what would be possible with CPD. In a simulation study, we investigate the robustness of BTD against noise and different choices of model parameters. Furthermore, we show various real EEG recordings where BTD outperforms CPD in capturing complex seizure characteristics.

  18. Quadriplegia Following Epileptic Seizure : Things to Keep in Mind

    PubMed Central

    Yeşilbudak, Zülal; Şişman, Lokman; Uca, Ali Ulvi

    2016-01-01

    People with epilepsy are believed to be at a higher risk of incurring accidental injury than people who do not have seizures. The incidence of injury, either due to seizure or accident as a consequent of seizure is also high and varies from 0.03% to 3%. The most common injuries are head contusions, lacerations, burns and fractures. In this article, we present a case of quadriplegia after a generalized epileptic seizure. PMID:27226869

  19. Quadriplegia Following Epileptic Seizure : Things to Keep in Mind.

    PubMed

    Kozak, Hasan Hüseyin; Yeşilbudak, Zülal; Şişman, Lokman; Uca, Ali Ulvi

    2016-05-01

    People with epilepsy are believed to be at a higher risk of incurring accidental injury than people who do not have seizures. The incidence of injury, either due to seizure or accident as a consequent of seizure is also high and varies from 0.03% to 3%. The most common injuries are head contusions, lacerations, burns and fractures. In this article, we present a case of quadriplegia after a generalized epileptic seizure. PMID:27226869

  20. Evolving functional network properties and synchronizability during human epileptic seizures

    NASA Astrophysics Data System (ADS)

    Schindler, Kaspar A.; Bialonski, Stephan; Horstmann, Marie-Therese; Elger, Christian E.; Lehnertz, Klaus

    2008-09-01

    We assess electrical brain dynamics before, during, and after 100 human epileptic seizures with different anatomical onset locations by statistical and spectral properties of functionally defined networks. We observe a concave-like temporal evolution of characteristic path length and cluster coefficient indicative of a movement from a more random toward a more regular and then back toward a more random functional topology. Surprisingly, synchronizability was significantly decreased during the seizure state but increased already prior to seizure end. Our findings underline the high relevance of studying complex systems from the viewpoint of complex networks, which may help to gain deeper insights into the complicated dynamics underlying epileptic seizures.

  1. A Novel Dynamic Update Framework for Epileptic Seizure Prediction

    PubMed Central

    Wang, Minghui; Hong, Xiaojun; Han, Jie

    2014-01-01

    Epileptic seizure prediction is a difficult problem in clinical applications, and it has the potential to significantly improve the patients' daily lives whose seizures cannot be controlled by either drugs or surgery. However, most current studies of epileptic seizure prediction focus on high sensitivity and low false-positive rate only and lack the flexibility for a variety of epileptic seizures and patients' physical conditions. Therefore, a novel dynamic update framework for epileptic seizure prediction is proposed in this paper. In this framework, two basic sample pools are constructed and updated dynamically. Furthermore, the prediction model can be updated to be the most appropriate one for the prediction of seizures' arrival. Mahalanobis distance is introduced in this part to solve the problem of side information, measuring the distance between two data sets. In addition, a multichannel feature extraction method based on Hilbert-Huang transform and extreme learning machine is utilized to extract the features of a patient's preseizure state against the normal state. At last, a dynamic update epileptic seizure prediction system is built up. Simulations on Freiburg database show that the proposed system has a better performance than the one without update. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices. PMID:25050381

  2. A novel dynamic update framework for epileptic seizure prediction.

    PubMed

    Han, Min; Ge, Sunan; Wang, Minghui; Hong, Xiaojun; Han, Jie

    2014-01-01

    Epileptic seizure prediction is a difficult problem in clinical applications, and it has the potential to significantly improve the patients' daily lives whose seizures cannot be controlled by either drugs or surgery. However, most current studies of epileptic seizure prediction focus on high sensitivity and low false-positive rate only and lack the flexibility for a variety of epileptic seizures and patients' physical conditions. Therefore, a novel dynamic update framework for epileptic seizure prediction is proposed in this paper. In this framework, two basic sample pools are constructed and updated dynamically. Furthermore, the prediction model can be updated to be the most appropriate one for the prediction of seizures' arrival. Mahalanobis distance is introduced in this part to solve the problem of side information, measuring the distance between two data sets. In addition, a multichannel feature extraction method based on Hilbert-Huang transform and extreme learning machine is utilized to extract the features of a patient's preseizure state against the normal state. At last, a dynamic update epileptic seizure prediction system is built up. Simulations on Freiburg database show that the proposed system has a better performance than the one without update. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices. PMID:25050381

  3. Asynchronous electrical activity in epileptic seizures

    NASA Astrophysics Data System (ADS)

    Holman, Katherine; Lim, Eugene; Gliske, Stephen; Stacey, William; Fink, Christian

    High-frequency oscillations (HFOs) have been postulated to be potential biomarkers for focal epileptic seizures, with fast ripples (>250 Hz) as the most interesting candidate. The mechanisms underlying the generation of fast ripples, however, are not well understood. In this study, we draw upon results from previous computational studies on HFOs to develop a new mathematical model from first principles describing the generation of HFOs through asynchronous neuronal firing. Asynchrony in the model is obtained with the introduction of two parameters of heterogeneity: variability in the inter-spike interval (ISI) and jitter. The model predicts the generation of harmonic narrow-band oscillations if the heterogeneity-governing parameters do not differ from the predefined ISI by more than 20%. Comparisons against results from a separately constructed computational model verify the accuracy of the model in study. These results provide us with a rigorous framework in which we may investigate the mechanisms driving the generation of abnormal HFOs, and may serve as groundwork for future research in epileptogenesis. Nsf Grant 1003992, Ohio Wesleyan University SSRP.

  4. A new approach towards predictability of epileptic seizures: KLT dimension.

    PubMed

    Venugopal, Rajeshkumar; Narayanan, K; Prasad, Awadhesh; Spanias, A; Sackellares, J C; Iasemidis, L D

    2003-01-01

    This paper proposes a measure of complexity of the epileptic electroencephalogram (EEG) based on the dimensionality of the Karhunen-Loeve Transform (KLT) in the time domain. We estimate the KLT dimensionality by assuming the same observation noise level in the EEG during the interictal period (between the seizures) as the one during an epileptic seizure (ictal period). Utilizing an optimality criterion based on the T-index [1] and the predictability time, derived from the created KLT dimensionality profiles, we show that 10 out of 15 seizures in one patient with temporal lobe epilepsy were predictable with an average predictability time of about 36 minutes. PMID:12724880

  5. Epileptic seizure prediction by non-linear methods

    SciTech Connect

    Hively, L.M.; Clapp, N.E.; Day, C.S.; Lawkins, W.F.

    1999-01-12

    This research discloses methods and apparatus for automatically predicting epileptic seizures monitor and analyze brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis tools; obtaining time serial trends in the nonlinear measures; comparison of the trend to known seizure predictors; and providing notification that a seizure is forthcoming. 76 figs.

  6. Epileptic seizure prediction by non-linear methods

    DOEpatents

    Hively, Lee M.; Clapp, Ned E.; Daw, C. Stuart; Lawkins, William F.

    1999-01-01

    Methods and apparatus for automatically predicting epileptic seizures monitor and analyze brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis tools; obtaining time serial trends in the nonlinear measures; comparison of the trend to known seizure predictors; and providing notification that a seizure is forthcoming.

  7. A novel genetic programming approach for epileptic seizure detection.

    PubMed

    Bhardwaj, Arpit; Tiwari, Aruna; Krishna, Ramesh; Varma, Vishaal

    2016-02-01

    The human brain is a delicate mix of neurons (brain cells), electrical impulses and chemicals, known as neurotransmitters. Any damage has the potential to disrupt the workings of the brain and cause seizures. These epileptic seizures are the manifestations of epilepsy. The electroencephalograph (EEG) signals register average neuronal activity from the cerebral cortex and label changes in activity over large areas. A detailed analysis of these electroencephalograph (EEG) signals provides valuable insights into the mechanisms instigating epileptic disorders. Moreover, the detection of interictal spikes and epileptic seizures in an EEG signal plays an important role in the diagnosis of epilepsy. Automatic seizure detection methods are required, as these epileptic seizures are volatile and unpredictable. This paper deals with an automated detection of epileptic seizures in EEG signals using empirical mode decomposition (EMD) for feature extraction and proposes a novel genetic programming (GP) approach for classifying the EEG signals. Improvements in the standard GP approach are made using a Constructive Genetic Programming (CGP) in which constructive crossover and constructive subtree mutation operators are introduced. A hill climbing search is integrated in crossover and mutation operators to remove the destructive nature of these operators. A new concept of selecting the Globally Prime offspring is also presented to select the best fitness offspring generated during crossover. To decrease the time complexity of GP, a new dynamic fitness value computation (DFVC) is employed to increase the computational speed. We conducted five different sets of experiments to evaluate the performance of the proposed model in the classification of different mixtures of normal, interictal and ictal signals, and the accuracies achieved are outstandingly high. The experimental results are compared with the existing methods on same datasets, and these results affirm the potential use of

  8. Assortative mixing in functional brain networks during epileptic seizures

    NASA Astrophysics Data System (ADS)

    Bialonski, Stephan; Lehnertz, Klaus

    2013-09-01

    We investigate assortativity of functional brain networks before, during, and after one-hundred epileptic seizures with different anatomical onset locations. We construct binary functional networks from multi-channel electroencephalographic data recorded from 60 epilepsy patients; and from time-resolved estimates of the assortativity coefficient, we conclude that positive degree-degree correlations are inherent to seizure dynamics. While seizures evolve, an increasing assortativity indicates a segregation of the underlying functional network into groups of brain regions that are only sparsely interconnected, if at all. Interestingly, assortativity decreases already prior to seizure end. Together with previous observations of characteristic temporal evolutions of global statistical properties and synchronizability of epileptic brain networks, our findings may help to gain deeper insights into the complicated dynamics underlying generation, propagation, and termination of seizures.

  9. Neurogenesis in a young dog with epileptic seizures.

    PubMed

    Borschensky, C M; Woolley, J S; Kipar, A; Herden, C

    2012-09-01

    Epileptic seizures can lead to various reactions in the brain, ranging from neuronal necrosis and glial cell activation to focal structural disorganization. Furthermore, increased hippocampal neurogenesis has been documented in rodent models of acute convulsions. This is a report of hippocampal neurogenesis in a dog with spontaneous epileptic seizures. A 16-week-old epileptic German Shepherd Dog had marked neuronal cell proliferation (up to 5 mitotic figures per high-power field and increased immunohistochemical expression of proliferative cell nuclear antigen) in the dentate gyrus accompanied by microglial and astroglial activation. Some granule cells expressed doublecortin, a marker of immature neurons; mitotically active cells expressed neuronal nuclear antigen. No mitotic figures were found in the brain of age-matched control dogs. Whether increased neurogenesis represents a general reaction pattern of young epileptic dogs should be investigated. PMID:22194355

  10. Epileptic encephalopathies: Optimizing seizure control and developmental outcome.

    PubMed

    Jehi, Lara; Wyllie, Elaine; Devinsky, Orrin

    2015-10-01

    Cognitive and developmental outcomes in patients with epileptic encephalopathy are hypothesized to result from an interplay between the underlying epileptic pathologic substrate and the acquired consequences of frequent and repetitive seizures and epileptiform discharges that often straddle the interictal and ictal boundaries. This article briefly reviews the evidence related to this assumption, presents critical questions that need to be answered to clarify this relationship, and advances a set of concrete steps that may help improve developmental patient outcomes. PMID:26293588

  11. Self-control of epileptic seizures by nonpharmacological strategies.

    PubMed

    Kotwas, Iliana; McGonigal, Aileen; Trebuchon, Agnès; Bastien-Toniazzo, Mireille; Nagai, Yoko; Bartolomei, Fabrice; Micoulaud-Franchi, Jean-Arthur

    2016-02-01

    Despite the unpredictability of epileptic seizures, many patients report that they can anticipate seizure occurrence. Using certain alert symptoms (i.e., auras, prodromes, precipitant factors), patients can adopt behaviors to avoid injury during and after the seizure or may implement spontaneous cognitive and emotional strategies to try to control the seizure itself. From the patient's view point, potential means of enhancing seizure prediction and developing seizure control supports are seen as very important issues, especially when the epilepsy is drug-resistant. In this review, we first describe how some patients anticipate their seizures and whether this is effective in terms of seizure prediction. Secondly, we examine how these anticipatory elements might help patients to prevent or control their seizures and how the patient's neuropsychological profile, specifically parameters of perceived self-control (PSC) and locus of control (LOC), might impact these strategies and quality of life (QOL). Thirdly, we review the external supports that can help patients to better predict seizures. Finally, we look at nonpharmacological means of increasing perceived self-control and achieving potential reduction of seizure frequency (i.e., stress-based and arousal-based strategies). In the past few years, various approaches for detection and control of seizures have gained greater interest, but more research is needed to confirm a positive effect on seizure frequency as well as on QOL. PMID:26780213

  12. Canine and feline epileptic seizures and the lunar cycle: 2,507 seizures (2000-2008).

    PubMed

    Browand-Stainback, Laura; Levesque, Donald; McBee, Matthew

    2011-01-01

    Epileptic seizures in 211 canine and feline patients diagnosed with idiopathic epilepsy were evaluated for temporal significance in relation to the lunar cycle. Seizure counts were compared among each of the eight individual lunar phases, among each of eight exact lunar phase dates, and by percent of lunar illumination using generalized estimating equations. No statistical significance was found in any of these comparisons excluding a relationship between the onset of epileptic seizures and the phases of the moon. Alteration in anticonvulsant treatment or monitoring of canine and feline patients with idiopathic epilepsy at large was not warranted based on the lunar cycle. PMID:21852516

  13. Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity.

    PubMed

    Karoly, Philippa J; Freestone, Dean R; Boston, Ray; Grayden, David B; Himes, David; Leyde, Kent; Seneviratne, Udaya; Berkovic, Samuel; O'Brien, Terence; Cook, Mark J

    2016-04-01

    We report on a quantitative analysis of electrocorticography data from a study that acquired continuous ambulatory recordings in humans over extended periods of time. The objectives were to examine patterns of seizures and spontaneous interictal spikes, their relationship to each other, and the nature of periodic variation. The recorded data were originally acquired for the purpose of seizure prediction, and were subsequently analysed in further detail. A detection algorithm identified potential seizure activity and a template matched filter was used to locate spikes. Seizure events were confirmed manually and classified as either clinically correlated, electroencephalographically identical but not clinically correlated, or subclinical. We found that spike rate was significantly altered prior to seizure in 9 out of 15 subjects. Increased pre-ictal spike rate was linked to improved predictability; however, spike rate was also shown to decrease before seizure (in 6 out of the 9 subjects). The probability distribution of spikes and seizures were notably similar, i.e. at times of high seizure likelihood the probability of epileptic spiking also increased. Both spikes and seizures showed clear evidence of circadian regulation and, for some subjects, there were also longer term patterns visible over weeks to months. Patterns of spike and seizure occurrence were highly subject-specific. The pre-ictal decrease in spike rate is not consistent with spikes promoting seizures. However, the fact that spikes and seizures demonstrate similar probability distributions suggests they are not wholly independent processes. It is possible spikes actively inhibit seizures, or that a decreased spike rate is a secondary symptom of the brain approaching seizure. If spike rate is modulated by common regulatory factors as seizures then spikes may be useful biomarkers of cortical excitability.media-1vid110.1093/brain/aww019_video_abstractaww019_video_abstract. PMID:26912639

  14. Detection of Epileptic Seizure Using Wireless Sensor Networks

    PubMed Central

    Borujeny, Golshan Taheri; Yazdi, Mehran; Keshavarz-Haddad, Alireza; Borujeny, Arash Rafie

    2013-01-01

    The monitoring of epileptic seizures is mainly done by means of electroencephalogram (EEG) monitoring. Although this method is accurate, it is not comfortable for the patient as the EEG-electrodes have to be attached to the scalp which hampers the patient's movement. This makes long-term home monitoring not feasible. In this paper, the aim is to propose a seizure detection system based on accelerometry for the detection of epileptic seizure. The used sensors are wireless, which can improve quality of life for the patients. In this system, three 2D accelerometer sensors are positioned on the right arm, left arm, and left thigh of an epileptic patient. Datasets from three patients suffering from severe epilepsy are used in this paper for the development of an automatic detection algorithm. This monitoring system is based on Wireless Sensor Networks and can determine the location of the patient when a seizure is detected and then send an alarm to hospital staff or the patient's relatives. Our wireless sensor nodes are MICAz Motes developed by Crossbow Technology. The proposed system can be used for patients living in a clinical environment or at their home, where they do only their daily routines. The analysis of the recorded data is done by an Artificial Neural Network and K Nearest-Neighbor to recognize seizure movements from normal movements. The results show that K Nearest Neighbor performs better than Artificial Neural Network for detecting these seizures. The results also show that if at least 50% of the signal consists of seizure samples, we can detect the seizure accurately. In addition, there is no need for training the algorithm for each new patient. PMID:24098859

  15. The quantitative measurement of consciousness during epileptic seizures.

    PubMed

    Nani, Andrea; Cavanna, Andrea E

    2014-01-01

    The assessment of consciousness is a fundamental element in the classification of epileptic seizures. It is, therefore, of great importance for clinical practice to develop instruments that enable an accurate and reliable measurement of the alteration of consciousness during seizures. Over the last few years, three psychometric scales have been specifically proposed to measure ictal consciousness: the Ictal Consciousness Inventory (ICI), the Consciousness Seizure Scale (CSS), and the Responsiveness in Epilepsy Scale--versions I and II (RES-I and RES-II). The ICI is a self-report psychometric instrument which retrospectively assesses ictal consciousness along the dimensions of the level/arousal and contents/awareness. The CSS has been used by clinicians to quantify the impairment of consciousness in order to establish correlations with the brain mechanisms underlying alterations of consciousness during temporal lobe seizures. The most recently developed observer-rated instrument is the RES-I, which has been used to assess responsiveness during epileptic seizures in patients undergoing video-EEG. The implementation of standardized psychometric tools for the assessment of ictal consciousness can complement clinical observations and contribute to improve accuracy in seizure classification. PMID:24113569

  16. [Diagnosis and treatment of non-triggered single epileptic seizures].

    PubMed

    Martinez-Juarez, I E; Moreno, J; Ladino, L D; Castro, N; Hernandez-Vanegas, L; Burneo, J G; Hernandez-Ronquillo, L; Tellez-Zenteno, J F

    2016-08-16

    Epileptic seizures are one of the main reasons for neurological visits in an emergency department. Convulsions represent a traumatic event for the patient and the family, with significant medical and social consequences. Due to their prevalence and impact, the initial management is of vital importance. Although following the first epileptic seizure, early recurrence diminishes after establishing treatment with antiepileptic drugs, the forecast for developing epilepsy and long-term outcomes are not altered by any early intervention. Detailed questioning based on the symptoms of the convulsions, the patient's medical history and a full electroencephalogram and neuroimaging study make it possible to define the risk of recurrence of the seizure and the possible diagnosis of epilepsy. Epileptic abnormalities, the presence of old or new potentially epileptogenic brain lesions, as well as nocturnal seizures, increase the risk of recurrence. Physicians must assess each patient on an individual basis to determine the most suitable treatment, and explain the risk of not being treated versus the risk that exists if treatment with antiepileptic drugs is established. PMID:27439486

  17. Expression of Glypican-4 in the brains of epileptic patients and epileptic animals and its effects on epileptic seizures.

    PubMed

    Xiong, Yan; Zhang, Yanke; Zheng, Fangshuo; Yang, Yong; Xu, Xin; Wang, Wei; Zhu, Binglin; Wang, Xuefeng

    2016-09-01

    Glypican-4 (Gpc4) has been found to play an important role in enhancing miniature excitatory postsynaptic currents (mEPSCs). But, the relationship between Gpc4 and epilepsy is still a mystery. In this study, we investigated the expression patterns of Gpc4 in patients with epilepsy and in a pilocarpine-induced rat model of epilepsy. We also determined if altered Gpc4 expression resulted in increased susceptibility to seizures. Western blotting and immunofluorescent methods were utilized. Gpc4 was significantly increased in patients and epileptic rats induced by pilocarpine injection. According to behavioral studies, downregulation of Gpc4 by Gpc4 siRNA decreased spontaneous seizure frequency, while upregulation of Gpc4 by recombinant Gpc4 overexpression led to a converse result. These findings support the hypothesis that increased expression of Gpc4 in the brain is associated with epileptic seizures. PMID:27425250

  18. Cardiac arrhythmias during or after epileptic seizures

    PubMed Central

    van der Lende, Marije; Surges, Rainer; Sander, Josemir W; Thijs, Roland D

    2016-01-01

    Seizure-related cardiac arrhythmias are frequently reported and have been implicated as potential pathomechanisms of Sudden Unexpected Death in Epilepsy (SUDEP). We attempted to identify clinical profiles associated with various (post)ictal cardiac arrhythmias. We conducted a systematic search from the first date available to July 2013 on the combination of two terms: ‘cardiac arrhythmias’ and ‘epilepsy’. The databases searched were PubMed, Embase (OVID version), Web of Science and COCHRANE Library. We attempted to identify all case reports and case series. We identified seven distinct patterns of (post)ictal cardiac arrhythmias: ictal asystole (103 cases), postictal asystole (13 cases), ictal bradycardia (25 cases), ictal atrioventricular (AV)-conduction block (11 cases), postictal AV-conduction block (2 cases), (post)ictal atrial flutter/atrial fibrillation (14 cases) and postictal ventricular fibrillation (3 cases). Ictal asystole had a mean prevalence of 0.318% (95% CI 0.316% to 0.320%) in people with refractory epilepsy who underwent video-EEG monitoring. Ictal asystole, bradycardia and AV-conduction block were self-limiting in all but one of the cases and seen during focal dyscognitive seizures. Seizure onset was mostly temporal (91%) without consistent lateralisation. Postictal arrhythmias were mostly found following convulsive seizures and often associated with (near) SUDEP. The contrasting clinical profiles of ictal and postictal arrhythmias suggest different pathomechanisms. Postictal rather than ictal arrhythmias seem of greater importance to the pathophysiology of SUDEP. PMID:26038597

  19. On the pathogenesis of epileptic and hysterical seizures

    PubMed Central

    Krapf, E. E.

    1957-01-01

    In discussing the problem of differentiating between epileptic and hysterical seizures, the author maintains that electroencephalographic and psychosomatic research indicates that all “epileptiform” seizures are the outcome of a constant interplay of stress and predisposition in which both these factors are of a polygenetic origin. He points out that behind these reactions manifested in consciousness and motility, there lies a fundamental function of defence and that the nature of the seizures occurring is decided by the level of physiogenic or psychogenic regression which prevails in different cases, and which is to a great extent codetermined by a complementary “inviting” level of physical and psychical subevolution (lack of maturation). He holds that the pathogenesis of “epileptiform” seizures is of a truly psychosomatic nature and that this circumstance should be reflected in the therapeutic approach to these disorders. PMID:13472429

  20. Convulsive Syncope Induced by Ventricular Arrhythmia Masquerading as Epileptic Seizures: Case Report and Literature Review

    PubMed Central

    Sabu, John; Regeti, Kalyani; Mallappallil, Mary; Kassotis, John; Islam, Hamidul; Zafar, Shoaib; Khan, Rafay; Ibrahim, Hiyam; Kanta, Romana; Sen, Shuvendu; Yousif, Abdalla; Nai, Qiang

    2016-01-01

    It is important but difficult to distinguish convulsive syncope from epileptic seizure in many patients. We report a case of a man who presented to emergency department after several witnessed seizure-like episodes. He had a previous medical history of systolic heart failure and automated implantable converter defibrillator (AICD) in situ. The differential diagnoses raised were epileptic seizures and convulsive syncope secondary to cardiac arrhythmia. Subsequent AICD interrogation revealed ventricular tachycardia and fibrillation (v-tach/fib). Since convulsive syncope and epileptic seizure share many similar clinical features, early diagnosis is critical for choosing the appropriate management and preventing sudden cardiac death in patients with presumed epileptic seizure. PMID:27429683

  1. Convulsive Syncope Induced by Ventricular Arrhythmia Masquerading as Epileptic Seizures: Case Report and Literature Review.

    PubMed

    Sabu, John; Regeti, Kalyani; Mallappallil, Mary; Kassotis, John; Islam, Hamidul; Zafar, Shoaib; Khan, Rafay; Ibrahim, Hiyam; Kanta, Romana; Sen, Shuvendu; Yousif, Abdalla; Nai, Qiang

    2016-08-01

    It is important but difficult to distinguish convulsive syncope from epileptic seizure in many patients. We report a case of a man who presented to emergency department after several witnessed seizure-like episodes. He had a previous medical history of systolic heart failure and automated implantable converter defibrillator (AICD) in situ. The differential diagnoses raised were epileptic seizures and convulsive syncope secondary to cardiac arrhythmia. Subsequent AICD interrogation revealed ventricular tachycardia and fibrillation (v-tach/fib). Since convulsive syncope and epileptic seizure share many similar clinical features, early diagnosis is critical for choosing the appropriate management and preventing sudden cardiac death in patients with presumed epileptic seizure. PMID:27429683

  2. Epileptic Seizure Forewarning by Nonlinear Techniques

    SciTech Connect

    Hively, L.M.

    2002-04-19

    This report describes work that was performed under a Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (Contractor) and a commercial participant, VIASYS Healthcare Inc. (formerly Nicolet Biomedical, Inc.). The Contractor has patented technology that forewarns of impending epileptic events via scalp electroencephalograph (EEG) data and successfully demonstrated this technology on 20 datasets from the Participant under pre-CRADA effort. This CRADA sought to bridge the gap between the Contractor's existing research-class software and a prototype medical device for subsequent commercialization by the Participant. The objectives of this CRADA were (1) development of a combination of existing computer hardware and Contractor-patented software into a clinical process for warning of impending epileptic events in human patients, and (2) validation of the epilepsy warning methodology. This work modified the ORNL research-class FORTRAN for forewarning to run under a graphical user interface (GUI). The GUI-FORTRAN software subsequently was installed on desktop computers at five epilepsy monitoring units. The forewarning prototypes have run for more than one year without any hardware or software failures. This work also reported extensive analysis of model and EEG datasets to demonstrate the usefulness of the methodology. However, the Participant recently chose to stop work on the CRADA, due to a change in business priorities. Much work remains to convert the technology into a commercial clinical or ambulatory device for patient use, as discussed in App. H.

  3. Epileptic seizures: Quakes of the brain?

    NASA Astrophysics Data System (ADS)

    Osorio, Ivan; Frei, Mark G.; Sornette, Didier; Milton, John; Lai, Ying-Cheng

    2010-08-01

    A dynamical analogy supported by five scale-free statistics (the Gutenberg-Richter distribution of event sizes, the distribution of interevent intervals, the Omori and inverse Omori laws, and the conditional waiting time until the next event) is shown to exist between two classes of seizures (“focal” in humans and generalized in animals) and earthquakes. Increments in excitatory interneuronal coupling in animals expose the system’s dependence on this parameter and its dynamical transmutability: moderate increases lead to power-law behavior of seizure energy and interevent times, while marked ones to scale-free (power-law) coextensive with characteristic scales and events. The coextensivity of power law and characteristic size regimes is predicted by models of coupled heterogeneous threshold oscillators of relaxation and underscores the role of coupling strength in shaping the dynamics of these systems.

  4. [Portable Epileptic Seizure Monitoring Intelligent System Based on Android System].

    PubMed

    Liang, Zhenhu; Wu, Shufeng; Yang, Chunlin; Jiang, Zhenzhou; Yu, Tao; Lu, Chengbiao; Li, Xiaoli

    2016-02-01

    The clinical electroencephalogram (EEG) monitoring systems based on personal computer system can not meet the requirements of portability and home usage. The epilepsy patients have to be monitored in hospital for an extended period of time, which imposes a heavy burden on hospitals. In the present study, we designed a portable 16-lead networked monitoring system based on the Android smart phone. The system uses some technologies including the active electrode, the WiFi wireless transmission, the multi-scale permutation entropy (MPE) algorithm, the back-propagation (BP) neural network algorithm, etc. Moreover, the software of Android mobile application can realize the processing and analysis of EEG data, the display of EEG waveform and the alarm of epileptic seizure. The system has been tested on the mobile phones with Android 2. 3 operating system or higher version and the results showed that this software ran accurately and steadily in the detection of epileptic seizure. In conclusion, this paper provides a portable and reliable solution for epileptic seizure monitoring in clinical and home applications. PMID:27382736

  5. MMPI-2 profiles: fibromyalgia patients compared to epileptic and non-epileptic seizure patients.

    PubMed

    Johnson, Amy L; Storzbach, Daniel; Binder, Laurence M; Barkhuizen, André; Kent Anger, W; Salinsky, Martin C; Tun, Saw-Myo; Rohlman, Diane S

    2010-02-01

    We compared MMPI-2 profiles of Gulf War veterans with fibromyalgia (FM) to epileptic seizure (ES) patients, psychogenic non-epileptic seizure (PNES) patients, and Gulf War veteran healthy controls. Both PNES and FM are medically unexplained conditions. In previous MMPI-2 research PNES patients were shown to have significantly higher Hs and Hy clinical scales than ES patients. In the present research the FM group had significantly higher Hs and Hy scale scores than both the ES group and the healthy control group. There was no significant difference between the FM and PNES Hs scale scores; however, the FM Hy scale score was significantly lower than the PNES Hy scale score. Present findings indicate a high level of psychological distress in the FM group. PMID:19859855

  6. Association of mitochondrial letm1 with epileptic seizures.

    PubMed

    Zhang, Xiaogang; Chen, Guojun; Lu, Yaodong; Liu, Jing; Fang, Min; Luo, Jing; Cao, Qingqing; Wang, Xuefeng

    2014-10-01

    Leucine zipper-EF-hand containing transmembrane protein 1 (Letm1) is a mitochondrial protein that is associated with seizure attacks in Wolf-Hirschhorn syndrome. This study aimed to investigate the expression pattern of Letm1 in patients with temporal lobe epilepsy (TLE) and pilocarpine-induced rat model of epilepsy, and to determine if altered Letm1 leads to mitochondrial dysfunction and increased susceptibility to seizures. Using immunohistochemical, immunofluorescent, western blotting, and transmission electron microscopic methods, we have found that Letm1 was significantly decreased in TLE patients, and gradually decreased in experimental rats from 1 to 7 days after onset of seizures. Letm1 knock-down by a lentivirus bearing LV-Letm1-sh resulted in mitochondrial swelling and decreased expression of Letm1 target protein mitochondrially encoded cytochrome B (MT-CYB). Behavioral study revealed that inhibition of Letm1 caused early onset of the first seizure, increased seizure frequency, and duration. However, administration of Letm1 homolog nigericin failed to prevent epilepsy. These results indicate that inhibition of Letm1 and mitochondrial dysfunctions contributes to the development of epileptic seizures. Appropriate Letm1 level may be critical for maintaining normal neuronal functions. PMID:23645710

  7. Resetting of Brain Dynamics: Epileptic versus Psychogenic Non-Epileptic Seizures

    PubMed Central

    Krishnan, Balu; Faith, Aaron; Vlachos, Ioannis; Roth, Austin; Williams, Korwyn; Noe, Katie; Drazkowski, Joe; Tapsell, Lisa; Sirven, Joseph; Iasemidis, Leon

    2011-01-01

    In this study, we investigated the possibility of differential diagnosis of patients with epileptic seizures (ES) and patients with psychogenic non-epileptic seizures (PNES) by an advanced analysis of dynamics of the patients' scalp electroencephalograms (EEG). The underlying principle was the presence of resetting of brain's pre-ictal spatiotemporal entrainment following onset of ES and the absence of resetting following PNES. Long-term (days) scalp EEGs recorded from five ES and six PNES patients were analyzed. It was found that: (a) Pre-ictal entrainment of brain sites was reset by epileptic seizures (p<0.05) in 4 out of the 5 patients with ES, and not reset (p=0.28) in the fifth patient. (b) Resetting did not occur (p>0.1) in any of the 6 patients with PNES. These preliminary results in patients with ES are in agreement with our previous findings from intracranial EEG recordings on resetting of brain dynamics at ES and it is expected to constitute the basis for the development of a reliable and supporting tool in the differential diagnosis between ES and PNES. Finally, we believe that these results shed a novel light on the electrophysiology of psychogenic epilepsy by showing that occurrence of PNES does not assist patients to overcome a pathological entrainment of brain dynamics. PMID:22078523

  8. Patterns of human local cerebral glucose metabolism during epileptic seizures

    SciTech Connect

    Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.

    1982-10-01

    Ictal patterns of local cerebral metabolic rate have been studied in epileptic patients by positron computed tomography with /sup 18/F-labeled 2-fluoro-2-deoxy-D-glucose. Partial seizures were associated with activation of anatomic structures unique to each patient studied. Ictal increases and decreases in local cerebral metabolism were observed. Scans performed during generalized convulsions induced by electroshock demonstrated a diffuse ictal increase and postictal decrease in cerebral metabolism. Petit mal absences were associated with a diffuse increase in cerebral metabolic rate. The ictal fluorodeoxyglucose patterns obtained from patients do not resemble autoradiographic patterns obtained from common experimental animal models of epilepsy.

  9. Do energy drinks cause epileptic seizure and ischemic stroke?

    PubMed

    Dikici, Suber; Saritas, Ayhan; Besir, Fahri Halit; Tasci, Ahmet Hakan; Kandis, Hayati

    2013-01-01

    Energy drinks are popular among young individuals and marketed to college students, athletes, and active individuals between the ages of 21 and 35 years. We report a case that had ischemic stroke and epileptic seizure after intake of energy drink with alcohol. To the best of our knowledge, the following case is the first report of ischemic stroke after intake of energy drink. A previously healthy 37-year-old man was brought to the emergency department after a witnessed tonic-clonic seizure. According to his wife's testimony, just before loss of consciousness, the patient had been drinking 3 boxes of energy drinks (Redbull, Istanbul, Turkey, 250 mL) with vodka on an empty stomach. He did not have a history of seizures, head trauma, or family history of seizures or another disease. In cranial diffusion magnetic resonance imaging, there were hyperintense signal changes in bilateral occipital area (more pronounced in the left occipital lobe), right temporal lobe, frontal lobe, and posterior parietal lobe. All tests associated with possible etiologic causes of ischemic stroke in young patients were negative. Herein, we want to attract attention to adverse effect of energy drink usage. PMID:22867827

  10. Clonazepam oral droplets for the treatment of acute epileptic seizures.

    PubMed

    Sakata, Osamu; Onishi, Hiraku; Machida, Yoshiharu

    2008-12-01

    Oral droplet formulations of clonazepam (CZ) were developed to examine their potentials as an alternative to i.v. administration for the treatment of acute epileptic seizures. Propylene glycol containing 2.5% (wt/wt) CZ with or without 5.0% (wt/wt) oleic acid (OA) was prepared as a solution by heating at 90 degrees C and subsequently lowering the temperature to 30 degrees C. The droplet (20 microL) was administered to the oral cavity between the lower gum and bottom lip before CZ precipitation started. With a droplet of propylene glycol loaded with 2.5% (wt/wt) CZ and 5.0% (wt/wt) OA, the plasma concentration reached 20 ng/mL (minimal effective concentration) within 10 min and was maintained between 20 and 60 ng/mL, less than a toxic level, for a period of 60 min. For a droplet of propylene glycol loaded only with CZ at 2.5% (wt/wt), it took more than 15 min for the plasma concentration to reach 20 ng/mL. It is suggested that a droplet of CZ/OA/propylene glycol (2.5:5.0:92.5, wt/wt) might be useful as an alternative to i.v. injection of CZ for the treatment of acute epileptic seizures. PMID:18720141

  11. Epileptic spasms without hypsarrhythmia in infancy and childhood: tonic spasms as a seizure type.

    PubMed

    Marchi, Luciana R De; Seraphim, Evelyn A; Corso, Jeana T; Naves, Pedro Vf; Carvalho, Kelly Cristina de; Ramirez, Milton David H; Ferrari-Marinho, Taissa; Guaranha, Mirian Sb; Yacubian, Elza Márcia T

    2015-06-01

    Epileptic spasms were defined by the International League Against Epilepsy Task Force on Classification and Terminology in 2001 as a specific seizure type. Epileptic spasms without hypsarrhythmia have been described in some series of patients, occurring either in infancy or childhood. More prolonged epileptic spasms without hypsarrhythmia were previously defined as a different seizure type, and referred to as "tonic spasm seizures". Here, we present a 5-year-old boy who started having epileptic spasms without hypsarrhythmia at 8 months of age, effectively treated with oxcarbazepine. With the withdrawal of medication, epileptic spasms returned. Video-EEG monitoring revealed high-voltage slow waves superimposed by low-voltage fast activity, followed by an electrodecremental phase and a burst of asymmetric fast activity, time-locked to clinical tonic spasm seizures. Brain MRI showed left temporal atrophy with temporal pole grey/white matter junction blurring and ictal PET-CT showed left basal frontal hypermetabolism. Seizures were refractory to several AEDs and vigabatrin was introduced with seizure cessation. Despite efforts to classify epileptic spasms, these are still considered as part of the group of unknown seizure types. In some cases, a focal origin has been suggested, leading to the term "periodic spasms" and "focal spasms". In this case, epileptic spasms without hypsarrhythmia, associated with tonic spasms, may be a variant of focal spasms and might be considered as an epileptic syndrome. [Published with video sequence]. PMID:25895540

  12. γ-Hydroxybutyric acid-induced electrographic seizures.

    PubMed

    Cheung, Joseph; Lucey, Brendan P; Duntley, Stephen P; Darken, Rachel S

    2014-07-15

    We describe a case of absence-like electrographic seizures during NREM sleep in a patient who was taking sodium oxybate, a sodium salt of γ-hydroxybutyric acid (GHB). An overnight full montage electroencephalography (EEG) study revealed numerous frontally predominant rhythmic 1.5-2 Hz sharp waves and spike-wave activity during stage N2 and N3 sleep at the peak dose time for sodium oxybate, resembling atypical absence-like electrographic seizures. The patient was later weaned off sodium oxybate, and a repeat study did not show any such electrographic seizures. Absence-like seizures induced by GHB had previously been described in experimental animal models. We present the first reported human case of absence-like electrographic seizure associated with sodium oxybate. PMID:25024661

  13. Phase-Synchronization Early Epileptic Seizure Detector VLSI Architecture.

    PubMed

    Abdelhalim, K; Smolyakov, V; Genov, R

    2011-10-01

    A low-power VLSI processor architecture that computes in real time the magnitude and phase-synchronization of two input neural signals is presented. The processor is a part of an envisioned closed-loop implantable microsystem for adaptive neural stimulation. The architecture uses three CORDIC processing cores that require shift-and-add operations but no multiplication. The 10-bit processor synthesized and prototyped in a standard 1.2 V 0.13 μm CMOS technology utilizes 41,000 logic gates. It dissipates 3.6 μW per input pair, and provides 1.7 kS/s per-channel throughput when clocked at 2.5 MHz. The power scales linearly with the number of input channels or the sampling rate. The efficacy of the processor in early epileptic seizure detection is validated on human intracranial EEG data. PMID:23852175

  14. Evaluation of the pentylenetetrazole seizure threshold test in epileptic mice as surrogate model for drug testing against pharmacoresistant seizures.

    PubMed

    Töllner, Kathrin; Twele, Friederike; Löscher, Wolfgang

    2016-04-01

    Resistance to antiepileptic drugs (AEDs) is a major problem in epilepsy therapy, so that development of more effective AEDs is an unmet clinical need. Several rat and mouse models of epilepsy with spontaneous difficult-to-treat seizures exist, but because testing of antiseizure drug efficacy is extremely laborious in such models, they are only rarely used in the development of novel AEDs. Recently, the use of acute seizure tests in epileptic rats or mice has been proposed as a novel strategy for evaluating novel AEDs for increased antiseizure efficacy. In the present study, we compared the effects of five AEDs (valproate, phenobarbital, diazepam, lamotrigine, levetiracetam) on the pentylenetetrazole (PTZ) seizure threshold in mice that were made epileptic by pilocarpine. Experiments were started 6 weeks after a pilocarpine-induced status epilepticus. At this time, control seizure threshold was significantly lower in epileptic than in nonepileptic animals. Unexpectedly, only one AED (valproate) was less effective to increase seizure threshold in epileptic vs. nonepileptic mice, and this difference was restricted to doses of 200 and 300 mg/kg, whereas the difference disappeared at 400mg/kg. All other AEDs exerted similar seizure threshold increases in epileptic and nonepileptic mice. Thus, induction of acute seizures with PTZ in mice pretreated with pilocarpine does not provide an effective and valuable surrogate method to screen drugs for antiseizure efficacy in a model of difficult-to-treat chronic epilepsy as previously suggested from experiments with this approach in rats. PMID:26930359

  15. Medical management of epileptic seizures: challenges and solutions

    PubMed Central

    Sarma, Anand K; Khandker, Nabil; Kurczewski, Lisa; Brophy, Gretchen M

    2016-01-01

    Epilepsy is one of the most common neurologic illnesses. This condition afflicts 2.9 million adults and children in the US, leading to an economic impact amounting to $15.5 billion. Despite the significant burden epilepsy places on the population, it is not very well understood. As this understanding continues to evolve, it is important for clinicians to stay up to date with the latest advances to provide the best care for patients. In the last 20 years, the US Food and Drug Administration has approved 15 new antiepileptic drugs (AEDs), with many more currently in development. Other advances have been achieved in terms of diagnostic modalities like electroencephalography technology, treatment devices like vagal nerve and deep-brain stimulators, novel alternate routes of drug administration, and improvement in surgical techniques. Specific patient populations, such as the pregnant, elderly, those with HIV/AIDS, and those with psychiatric illness, present their own unique challenges, with AED side effects, drug interactions, and medical–psychiatric comorbidities adding to the conundrum. The purpose of this article is to review the latest literature guiding the management of acute epileptic seizures, focusing on the current challenges across different practice settings, and it discusses studies in various patient populations, including the pregnant, geriatric, those with HIV/AIDS, comatose, psychiatric, and “pseudoseizure” patients, and offers possible evidence-based solutions or the expert opinion of the authors. Also included is information on newer AEDs, routes of administration, and significant AED-related drug-interaction tables. This review has tried to address only some of these issues that any practitioner who deals with the acute management of seizures may encounter. The document also highlights the numerous avenues for new research that would help practitioners optimize epilepsy management. PMID:26966367

  16. Medical management of epileptic seizures: challenges and solutions.

    PubMed

    Sarma, Anand K; Khandker, Nabil; Kurczewski, Lisa; Brophy, Gretchen M

    2016-01-01

    Epilepsy is one of the most common neurologic illnesses. This condition afflicts 2.9 million adults and children in the US, leading to an economic impact amounting to $15.5 billion. Despite the significant burden epilepsy places on the population, it is not very well understood. As this understanding continues to evolve, it is important for clinicians to stay up to date with the latest advances to provide the best care for patients. In the last 20 years, the US Food and Drug Administration has approved 15 new antiepileptic drugs (AEDs), with many more currently in development. Other advances have been achieved in terms of diagnostic modalities like electroencephalography technology, treatment devices like vagal nerve and deep-brain stimulators, novel alternate routes of drug administration, and improvement in surgical techniques. Specific patient populations, such as the pregnant, elderly, those with HIV/AIDS, and those with psychiatric illness, present their own unique challenges, with AED side effects, drug interactions, and medical-psychiatric comorbidities adding to the conundrum. The purpose of this article is to review the latest literature guiding the management of acute epileptic seizures, focusing on the current challenges across different practice settings, and it discusses studies in various patient populations, including the pregnant, geriatric, those with HIV/AIDS, comatose, psychiatric, and "pseudoseizure" patients, and offers possible evidence-based solutions or the expert opinion of the authors. Also included is information on newer AEDs, routes of administration, and significant AED-related drug-interaction tables. This review has tried to address only some of these issues that any practitioner who deals with the acute management of seizures may encounter. The document also highlights the numerous avenues for new research that would help practitioners optimize epilepsy management. PMID:26966367

  17. Ensemble Classifier for Epileptic Seizure Detection for Imperfect EEG Data

    PubMed Central

    Mahmuddin, Massudi; Mohamed, Amr

    2015-01-01

    Brain status information is captured by physiological electroencephalogram (EEG) signals, which are extensively used to study different brain activities. This study investigates the use of a new ensemble classifier to detect an epileptic seizure from compressed and noisy EEG signals. This noise-aware signal combination (NSC) ensemble classifier combines four classification models based on their individual performance. The main objective of the proposed classifier is to enhance the classification accuracy in the presence of noisy and incomplete information while preserving a reasonable amount of complexity. The experimental results show the effectiveness of the NSC technique, which yields higher accuracies of 90% for noiseless data compared with 85%, 85.9%, and 89.5% in other experiments. The accuracy for the proposed method is 80% when SNR = 1 dB, 84% when SNR = 5 dB, and 88% when SNR = 10 dB, while the compression ratio (CR) is 85.35% for all of the datasets mentioned. PMID:25759863

  18. CA3 Synaptic Silencing Attenuates Kainic Acid-Induced Seizures and Hippocampal Network Oscillations123

    PubMed Central

    Yu, Lily M. Y.; Wintzer, Marie E.

    2016-01-01

    Abstract Epilepsy is a neurological disorder defined by the presence of seizure activity, manifest both behaviorally and as abnormal activity in neuronal networks. An established model to study the disorder in rodents is the systemic injection of kainic acid, an excitatory neurotoxin that at low doses quickly induces behavioral and electrophysiological seizures. Although the CA3 region of the hippocampus has been suggested to be crucial for kainic acid-induced seizure, because of its strong expression of kainate glutamate receptors and its high degree of recurrent connectivity, the precise role of excitatory transmission in CA3 in the generation of seizure and the accompanying increase in neuronal oscillations remains largely untested. Here we use transgenic mice in which CA3 pyramidal cell synaptic transmission can be inducibly silenced in the adult to demonstrate CA3 excitatory output is required for both the generation of epileptiform oscillatory activity and the progression of behavioral seizures. PMID:27022627

  19. [Correlation between the regional blood volume and epileptic seizures in Papio papio].

    PubMed

    Ancri, D; Naquet, R; Basset, J Y; Ménini, C; Lonchampt, M F; Meldrum, B S; Stutzmann, J M

    1979-07-16

    The method of labelling red cells with technetium-99m was used to measured regional blood volume auring different types of epileptic seizures induced in the Baboon Papio papio. During seizures the cerebral blood volume increases and there is simultaneously a decrease of blood volume in nasal and hepatic regions, and a transitory increase of blood volume in the forepaws. PMID:117933

  20. Capparis ovata modulates brain oxidative toxicity and epileptic seizures in pentylentetrazol-induced epileptic rats.

    PubMed

    Nazıroğlu, Mustafa; Akay, Mehmet Berk; Çelik, Ömer; Yıldırım, Muhammed İkbal; Balcı, Erdinç; Yürekli, Vedat Ali

    2013-04-01

    It has been widely suggested that oxidative stress products play an important role in the pathophysiology of epilepsy. Capparis ovata (C. ovata) may useful treatment of epilepsy because it contains antioxidant flavonoids. The current study was designed to determine the effects of C. ovata on lipid peroxidation, antioxidant levels and electroencephalography (EEG) records in pentylentetrazol (PTZ)-induced epileptic rats. Thirty-two rats were randomly divided into four groups. First group was used as control although second group was PTZ group. Oral 100 and 200 mg/kg C. ovata were given to rats constituting the third and fourth groups for 7 days before PTZ administration. Second, third and forth groups received 60 mg/kg PTZ for induction of epilepsy. Three hours after administration of PTZ, EEG records, brain cortex and blood samples were taken all groups. The lipid peroxidation levels of the brain cortex, number of spikes and epileptiform discharges of EEG were higher in PTZ group than in control and C. ovata group whereas they were decreased by C. ovata administration. Vitamin A, vitamin C, vitamin E and β-carotene concentrations of brain cortex and latency to first spike of EEG were decreased by the PTZ administration although the brain cortex and plasma vitamin concentrations, and brain cortex and erythrocyte glutathione and glutathione peroxidase values were increased in PTZ + 100 and PTZ + 200 mg C. ovata groups. In conclusion, C. ovata administration caused protection against the PTZ-induced brain oxidative toxicity by inhibiting free radical and epileptic seizures, and supporting antioxidant redox system. PMID:23389657

  1. Apparatus and method for epileptic seizure detection using non-linear techniques

    DOEpatents

    Hively, L.M.; Clapp, N.E.; Daw, C.S.; Lawkins, W.F.

    1998-04-28

    Methods and apparatus are disclosed for automatically detecting epileptic seizures by monitoring and analyzing brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; determining that one or more trends in the nonlinear measures indicate a seizure, and providing notification of seizure occurrence. 76 figs.

  2. Apparatus and method for epileptic seizure detection using non-linear techniques

    DOEpatents

    Hively, Lee M.; Clapp, Ned E.; Daw, C. Stuart; Lawkins, William F.

    1998-01-01

    Methods and apparatus for automatically detecting epileptic seizures by monitoring and analyzing brain wave (EEG or MEG) signals. Steps include: acquiring the brain wave data from the patient; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; determining that one or more trends in the nonlinear measures indicate a seizure, and providing notification of seizure occurrence.

  3. Protective effect of hispidulin on kainic acid-induced seizures and neurotoxicity in rats.

    PubMed

    Lin, Tzu Yu; Lu, Cheng Wei; Wang, Su Jane; Huang, Shu Kuei

    2015-05-15

    Hispidulin is a flavonoid compound which is an active ingredient in a number of traditional Chinese medicinal herbs, and it has been reported to inhibit glutamate release. The purpose of this study was to investigate whether hispidulin protects against seizures induced by kainic acid, a glutamate analog with excitotoxic properties. The results indicated that intraperitoneally administering hispidulin (10 or 50mg/kg) to rats 30 min before intraperitoneally injecting kainic acid (15 mg/kg) increased seizure latency and decreased seizure score. In addition, hispidulin substantially attenuated kainic acid-induced hippocampal neuronal cell death, and this protective effect was accompanied by the suppression of microglial activation and the production of proinflammatory cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor-α in the hippocampus. Moreover, hispidulin reduced kainic acid-induced c-Fos expression and the activation of mitogen-activated protein kinases in the hippocampus. These data suggest that hispidulin has considerable antiepileptic, neuroprotective, and antiinflammatory effects on kainic acid-induced seizures in rats. PMID:25746462

  4. Modern technology calls for a modern approach to classification of epileptic seizures and the epilepsies.

    PubMed

    Lüders, Hans O; Amina, Shahram; Baumgartner, Christopher; Benbadis, Selim; Bermeo-Ovalle, Adriana; Devereaux, Michael; Diehl, Beate; Edwards, Jonathan; Baca-Vaca, Guadalupe Fernandez; Hamer, Hajo; Ikeda, Akio; Kaiboriboon, Kitti; Kellinghaus, Christoph; Koubeissi, Mohamad; Lardizabal, David; Lhatoo, Samden; Lüders, Jürgen; Mani, Jayanti; Mayor, Luis Carlos; Miller, Jonathan; Noachtar, Soheyl; Pestana, Elia; Rosenow, Felix; Sakamoto, Americo; Shahid, Asim; Steinhoff, Bernhard J; Syed, Tanvir; Tanner, Adriana; Tsuji, Sadatoshi

    2012-03-01

    In the last 10-15 years the ILAE Commission on Classification and Terminology has been presenting proposals to modernize the current ILAE Classification of Epileptic Seizures and Epilepsies. These proposals were discussed extensively in a series of articles published recently in Epilepsia and Epilepsy Currents. There is almost universal consensus that the availability of new diagnostic techniques as also of a modern understanding of epilepsy calls for a complete revision of the Classification of Epileptic Seizures and Epilepsies. Unfortunately, however, the Commission is still not prepared to take a bold step ahead and completely revisit our approach to classification of epileptic seizures and epilepsies. In this manuscript we critically analyze the current proposals of the Commission and make suggestions for a classification system that reflects modern diagnostic techniques and our current understanding of epilepsy. PMID:22332669

  5. PRRT2 Mutations Are Related to Febrile Seizures in Epileptic Patients

    PubMed Central

    He, Zheng-Wen; Qu, Jian; Zhang, Ying; Mao, Chen-Xue; Wang, Zhi-Bin; Mao, Xiao-Yuan; Deng, Zhi-Yong; Zhou, Bo-Ting; Yin, Ji-Ye; Long, Hong-Yu; Xiao, Bo; Zhang, Yu; Zhou, Hong-Hao; Liu, Zhao-Qian

    2014-01-01

    Previous studies reported that the proline-rich transmembrane protein 2 (PRRT2) gene was identified to be related to paroxysmal kinesigenic dyskinesia (PKD), infantile convulsions with PKD, PKD with migraine and benign familial infantile epilepsy (BFIE). The present study explores whether the PRRT2 mutation is a potential cause of febrile seizures, including febrile seizures plus (FS+), generalized epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS); thus, it may provide a new drug target for personalized medicine for febrile seizure patients. We screened PRRT2 exons in a cohort of 136 epileptic patients with febrile seizures, including FS+, GEFS+ and DS. PRRT2 genetic mutations were identified in 25 out of 136 (18.4%) febrile seizures in epileptic patients. Five loss-of-function and coding missense mutations were identified: c.649delC (p.R217Efs*12), c.649_650insC (p.R217Pfs*8), c.412C>G (p.Pro138Ala), c.439G>C (p.Asp147His) and c.623C>A (p.Ser208Tyr). PRRT2 variants were probably involved in the etiology of febrile seizures in epileptic patients. PMID:25522171

  6. PRRT2 mutations are related to febrile seizures in epileptic patients.

    PubMed

    He, Zheng-Wen; Qu, Jian; Zhang, Ying; Mao, Chen-Xue; Wang, Zhi-Bin; Mao, Xiao-Yuan; Deng, Zhi-Yong; Zhou, Bo-Ting; Yin, Ji-Ye; Long, Hong-Yu; Xiao, Bo; Zhang, Yu; Zhou, Hong-Hao; Liu, Zhao-Qian

    2014-01-01

    Previous studies reported that the proline-rich transmembrane protein 2 (PRRT2) gene was identified to be related to paroxysmal kinesigenic dyskinesia (PKD), infantile convulsions with PKD, PKD with migraine and benign familial infantile epilepsy (BFIE). The present study explores whether the PRRT2 mutation is a potential cause of febrile seizures, including febrile seizures plus (FS+), generalized epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS); thus, it may provide a new drug target for personalized medicine for febrile seizure patients. We screened PRRT2 exons in a cohort of 136 epileptic patients with febrile seizures, including FS+, GEFS+ and DS. PRRT2 genetic mutations were identified in 25 out of 136 (18.4%) febrile seizures in epileptic patients. Five loss-of-function and coding missense mutations were identified: c.649delC (p.R217Efs*12), c.649_650insC (p.R217Pfs*8), c.412C>G (p.Pro138Ala), c.439G>C (p.Asp147His) and c.623C>A (p.Ser208Tyr). PRRT2 variants were probably involved in the etiology of febrile seizures in epileptic patients. PMID:25522171

  7. [Psychogenic non-epileptic seizures: issues of comorbidity in the diagnosis and treatment].

    PubMed

    Nikolaev, E L; Serli, T; Rezvyi, G

    2016-01-01

    The paper presents a case report of seizures in a man of 40 years who was assessed by neurologists and psychiatrists for 15 years. Due to the low efficacy of treatment and permanent health deterioration, the patient was recognized as disabled. Later initial diagnosis of psychogenic non-epileptic seizures was completed by comorbid diagnosis of bipolar affective disorder, type II. Treatment with lamotrigine improved the patient's condition. It has been regarded as a positive effect on organic changes in the brain that are associated with affective and epileptic disorders. PMID:27240050

  8. Rapidly learned identification of epileptic seizures from sonified EEG.

    PubMed

    Loui, Psyche; Koplin-Green, Matan; Frick, Mark; Massone, Michael

    2014-01-01

    Sonification refers to a process by which data are converted into sound, providing an auditory alternative to visual display. Currently, the prevalent method for diagnosing seizures in epilepsy is by visually reading a patient's electroencephalogram (EEG). However, sonification of the EEG data provides certain advantages due to the nature of human auditory perception. We hypothesized that human listeners will be able to identify seizures from EEGs using the auditory modality alone, and that accuracy of seizure identification will increase after a short training session. Here, we describe an algorithm that we have used to sonify EEGs of both seizure and non-seizure activity, followed by a training study in which subjects listened to short clips of sonified EEGs and determined whether each clip was of seizure or normal activity, both before and after a short training session. Results show that before training subjects performed at chance level in differentiating seizures from non-seizures, but there was a significant improvement of accuracy after the training session. After training, subjects successfully distinguished seizures from non-seizures using the auditory modality alone. Further analyses using signal detection theory demonstrated improvement in sensitivity and reduction in response bias as a result of training. This study demonstrates the potential of sonified EEGs to be used for the detection of seizures. Future studies will attempt to increase accuracy using novel training and sonification modifications, with the goals of managing, predicting, and ultimately controlling seizures using sonification as a possible biofeedback-based intervention for epilepsy. PMID:25352802

  9. Rapidly Learned Identification of Epileptic Seizures from Sonified EEG

    PubMed Central

    Loui, Psyche; Koplin-Green, Matan; Frick, Mark; Massone, Michael

    2014-01-01

    Sonification refers to a process by which data are converted into sound, providing an auditory alternative to visual display. Currently, the prevalent method for diagnosing seizures in epilepsy is by visually reading a patient’s electroencephalogram (EEG). However, sonification of the EEG data provides certain advantages due to the nature of human auditory perception. We hypothesized that human listeners will be able to identify seizures from EEGs using the auditory modality alone, and that accuracy of seizure identification will increase after a short training session. Here, we describe an algorithm that we have used to sonify EEGs of both seizure and non-seizure activity, followed by a training study in which subjects listened to short clips of sonified EEGs and determined whether each clip was of seizure or normal activity, both before and after a short training session. Results show that before training subjects performed at chance level in differentiating seizures from non-seizures, but there was a significant improvement of accuracy after the training session. After training, subjects successfully distinguished seizures from non-seizures using the auditory modality alone. Further analyses using signal detection theory demonstrated improvement in sensitivity and reduction in response bias as a result of training. This study demonstrates the potential of sonified EEGs to be used for the detection of seizures. Future studies will attempt to increase accuracy using novel training and sonification modifications, with the goals of managing, predicting, and ultimately controlling seizures using sonification as a possible biofeedback-based intervention for epilepsy. PMID:25352802

  10. Behavioural epileptic seizures: a clinical and intracranial EEG study in 8 children with frontal lobe epilepsy.

    PubMed

    Fohlen, M; Bulteau, C; Jalin, C; Jambaque, I; Delalande, O

    2004-12-01

    We report on eight children who underwent prolonged invasive video-EEG recording (IC-EEG) for intractable frontal lobe epilepsy and whose seizures consisted of behaviour changes. Seizures were recorded on a BMSI computer with 128 channels connected to the Gotman software of a stellate system; their identification was made both clinically and by automatic detection of paroxysmal electrical events. Behavioural epileptic seizures (BES) consisted of various clinical signs comprising mood change, sudden agitation, unexpected quietness, and subtle change of awareness or awakening. In 2 patients, seizures consisted in repetitive movements that we referred to as epileptic stereotypes. BES came from the prefrontal areas of the brain. Most of them were overlooked or misdiagnosed as behavioural manifestations, especially in children with mental deficiency and autistic features. Given the improvement of behaviour and mental functions following surgery, we assume that BES may contribute to generate mental and behavioural dysfunction. PMID:15627941

  11. The Inhibitory Effects of Npas4 on Seizures in Pilocarpine-Induced Epileptic Rats

    PubMed Central

    Guo, Jiamei; Yang, Guang; Long, Xianghua; Hu, Rong; Shen, Wenjing; Wang, Xuefeng; Zeng, Kebin

    2014-01-01

    To explore the effects of neuronal Per-Arnt-Sim domain protein 4 (Npas4) on seizures in pilocarpine-induced epileptic rats, Npas4 expression was detected by double-label immunofluorescence, immunohistochemistry, and Western blotting in the brains of pilocarpine-induced epileptic model rats at 6 h, 24 h, 72 h, 7 d, 14 d, 30 d, and 60 d after status epilepticus. Npas4 was localized primarily in the nucleus and in the cytoplasm of neurons. The Npas4 protein levels increased in the acute phase of seizures (between 6 h and 72 h) and decreased in the chronic phases (between 7 d and 60 d) in the rat model. Npas4 expression was knocked down by specific siRNA interference. Then, the animals were treated with pilocarpine, and the effects on seizures were evaluated on the 7th day. The onset latencies of pilocarpine-induced seizures were decreased, while the seizure frequency, duration and attack rate increased in these rats. Our study indicates that Npas4 inhibits seizure attacks in pilocarpine-induced epileptic rats. PMID:25536221

  12. Surface acoustic wave probe implant for predicting epileptic seizures

    DOEpatents

    Gopalsami, Nachappa; Kulikov, Stanislav; Osorio, Ivan; Raptis, Apostolos C.

    2012-04-24

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  13. Measuring resetting of brain dynamics at epileptic seizures: application of global optimization and spatial synchronization techniques.

    PubMed

    Sabesan, Shivkumar; Chakravarthy, Niranjan; Tsakalis, Kostas; Pardalos, Panos; Iasemidis, Leon

    2009-01-01

    Epileptic seizures are manifestations of intermittent spatiotemporal transitions of the human brain from chaos to order. Measures of chaos, namely maximum Lyapunov exponents (STL(max)), from dynamical analysis of the electroencephalograms (EEGs) at critical sites of the epileptic brain, progressively converge (diverge) before (after) epileptic seizures, a phenomenon that has been called dynamical synchronization (desynchronization). This dynamical synchronization/desynchronization has already constituted the basis for the design and development of systems for long-term (tens of minutes), on-line, prospective prediction of epileptic seizures. Also, the criterion for the changes in the time constants of the observed synchronization/desynchronization at seizure points has been used to show resetting of the epileptic brain in patients with temporal lobe epilepsy (TLE), a phenomenon that implicates a possible homeostatic role for the seizures themselves to restore normal brain activity. In this paper, we introduce a new criterion to measure this resetting that utilizes changes in the level of observed synchronization/desynchronization. We compare this criterion's sensitivity of resetting with the old one based on the time constants of the observed synchronization/desynchronization. Next, we test the robustness of the resetting phenomena in terms of the utilized measures of EEG dynamics by a comparative study involving STL(max), a measure of phase (ϕ(max)) and a measure of energy (E) using both criteria (i.e. the level and time constants of the observed synchronization/desynchronization). The measures are estimated from intracranial electroencephalographic (iEEG) recordings with subdural and depth electrodes from two patients with focal temporal lobe epilepsy and a total of 43 seizures. Techniques from optimization theory, in particular quadratic bivalent programming, are applied to optimize the performance of the three measures in detecting preictal entrainment. It is

  14. ENT1 inhibition attenuates epileptic seizure severity via regulation of glutamatergic neurotransmission.

    PubMed

    Xu, Zucai; Xu, Ping; Chen, Yalan; Liu, Jing; Zhang, Yanke; Lv, Yaodong; Luo, Jing; Fang, Min; Zhang, Jun; Wang, Jing; Wang, Kewei; Wang, Xuefeng; Chen, Guojun

    2015-03-01

    Type 1 equilibrative nucleoside transporter (ENT1) promotes glutamate release by inhibition of adenosine signaling. However, whether ENT1 plays a role in epileptic seizure that involves elevated glutamatergic neurotransmission is unknown. Here, we report that both seizure rats and patients show increased expression of ENT1. Intrahippocampal injection of a specific inhibitor of ENT1, nitrobenzylthioinosine (NBTI), attenuates seizure severity and prolongs onset latency. In order to examine whether NBTI would be effective as antiepileptic after peripheral application, we injected NBTI intraperitoneally, and the results were similar to those obtained after intrahippocampal injection. NBTI administration leads to suppressed neuronal firing in seizure rats. In addition, increased mEPSC in seizure are inhibited by NBTI. Finally, NBTI results in deactivation of phosphorylated cAMP-response element-binding protein in the seizure rats. These results indicate that ENT1 plays an important role in the development of seizure. Inhibition of ENT1 might provide a novel therapeutic approach toward the control of epileptic seizure. PMID:25490964

  15. Involvement of Thalamus in Initiation of Epileptic Seizures Induced by Pilocarpine in Mice

    PubMed Central

    Li, Yong-Hua; Li, Jia-Jia; Lu, Qin-Chi; Gong, Hai-Qing; Liang, Pei-Ji

    2014-01-01

    Studies have suggested that thalamus is involved in temporal lobe epilepsy, but the role of thalamus is still unclear. We obtained local filed potentials (LFPs) and single-unit activities from CA1 of hippocampus and parafascicular nucleus of thalamus during the development of epileptic seizures induced by pilocarpine in mice. Two measures, redundancy and directionality index, were used to analyze the electrophysiological characters of neuronal activities and the information flow between thalamus and hippocampus. We found that LFPs became more regular during the seizure in both hippocampus and thalamus, and in some cases LFPs showed a transient disorder at seizure onset. The variation tendency of the peak values of cross-correlation function between neurons matched the variation tendency of the redundancy of LFPs. The information tended to flow from thalamus to hippocampus during seizure initiation period no matter what the information flow direction was before the seizure. In some cases the information flow was symmetrically bidirectional, but none was found in which the information flowed from hippocampus to thalamus during the seizure initiation period. In addition, inactivation of thalamus by tetrodotoxin (TTX) resulted in a suppression of seizures. These results suggest that thalamus may play an important role in the initiation of epileptic seizures. PMID:24778885

  16. Epileptic seizures induce structural and functional alterations on brain tissue membranes.

    PubMed

    Turker, Sevgi; Severcan, Mete; Ilbay, Gul; Severcan, Feride

    2014-12-01

    Epilepsy is characterized by disruption of balance between cerebral excitation and inhibition, leading to recurrent and unprovoked convulsions. Studies are still underway to understand mechanisms lying epileptic seizures with the aim of improving treatment strategies. In this context, the research on brain tissue membranes gains importance for generation of epileptic activities. In order to provide additional information for this field, we have investigated the effects of pentylenetetrazol-induced and audiogenetically susceptible epileptic seizures on structure, content and function of rat brain membrane components using Fourier transform infrared (FT-IR) spectroscopy. The findings have shown that both two types of epileptic seizures stimulate the variations in the molecular organization of membrane lipids, which have potential to influence the structures in connection with functions of membrane proteins. Moreover, less fluid lipid structure and a decline in content of lipids obtained from the ratio of CH3 asym/lipid, CH2 asym/lipid, CO/lipid, and olefinicCH/lipid and the areas of the PO2 symmetric and asymmetric modes were observed. Moreover, based on IR data the changes in the conformation of proteins were predicted by neural network (NN) analysis, and displayed as an increase in random coil despite a decrease in beta sheet. Depending on spectral parameters, we have successfully differentiated treated samples from the control by principal component analysis (PCA) and cluster analysis. In summary, FT-IR spectroscopy may offer promising attempt to identify compositional, structural and functional alterations in brain tissue membranes resulting from epileptic activities. PMID:25194682

  17. Seizure-Related Regulation of GABAA Receptors in Spontaneously Epileptic Rats

    PubMed Central

    González, Marco I.; Grabenstatter, Heidi L.; del Rio, Christian Cea; Del Angel, Yasmin Cruz; Carlsen, Jessica; Laoprasert, Rick; White, Andrew M.; Huntsman, Molly M.; Brooks-Kayal, Amy

    2015-01-01

    In this study, we analyzed the impact that spontaneous seizures might have on the plasma membrane expression, composition and function of GABAA receptors (GABAARs). For this, tissue of chronically epileptic rats was collected within 3 hours of seizure occurrence (≤3 hours group) or at least 24 hours after seizure occurrence (≥24 hours group). A retrospective analysis of seizure frequency revealed that selecting animals on the bases of seizure proximity also grouped animals in terms of overall seizure burden with a higher seizure burden observed in the ≤3 hours group. A biochemical analysis showed that although animals with more frequent/recent seizures (≤3 hours group) had similar levels of GABAAR at the plasma membrane they showed deficits in inhibitory neurotransmission. In contrast, tissue obtained from animals experiencing infrequent seizures (≥24 hours group) had increased plasma membrane levels of GABAAR and showed no deficit in inhibitory function. Together, our findings offer an initial insight into the molecular changes that might help to explain how alterations in GABAAR function can be associated with differential seizure burden. Our findings also suggest that increased plasma membrane levels of GABAAR might act as a compensatory mechanism to more effectively maintain inhibitory function, repress hyperexcitability and reduce seizure burden. This study is an initial step towards a fuller characterization of the molecular events that trigger alterations in GABAergic neurotransmission during chronic epilepsy. PMID:25769812

  18. Neuroethological approach to frontolimbic epileptic seizures and parasomnias: The same central pattern generators for the same behaviours.

    PubMed

    Tassinari, C A; Cantalupo, G; Högl, B; Cortelli, P; Tassi, L; Francione, S; Nobili, L; Meletti, S; Rubboli, G; Gardella, E

    2009-10-01

    The aim of this report is not to make a differential diagnosis between epileptic nocturnal seizures and non-epileptic sleep-related movement disorders, or parasomnias. On the contrary, our goal is to emphasize the commonly shared semiological features of some epileptic seizures and parasomnias. Such similar features might be explained by the activation of the same neuronal networks (so-called 'central pattern generators' or CPG). These produce the stereotypical rhythmic motor sequences - in other words, behaviours - that are adaptive and species-specific (such as eating/alimentary, attractive/aversive, locomotor and nesting habits). CPG are located at the subcortical level (mainly in the brain stem and spinal cord) and, in humans, are under the control of the phylogenetically more recent neomammalian neocortical structures, according to a simplified Jacksonian model. Based on video-polygraphic recordings of sleep-related epileptic seizures and non-epileptic events (parasomnias), we have documented how a transient "neomammalian brain" dysfunction - whether epileptic or not - can 'release' (disinhibition?) the CPG responsible for involuntary motor behaviours. Thus, in both epileptic seizures and parasomnias, we can observe: (a) oroalimentary automatisms, bruxism and biting; (b) ambulatory behaviours, ranging from the classical bimanual-bipedal activity of 'frontal' hypermotor seizures, epileptic and non-epileptic wanderings, and somnambulism to periodic leg movements (PLM), alternating leg muscle activation (ALMA) and restless legs syndrome (RLS); and (c) various sleep-related events such as ictal fear, sleep terrors, nightmares and violent behaviour. PMID:19733874

  19. Comparison of MMPI-2 profiles of Gulf War veterans with epileptic and nonepileptic seizure patients.

    PubMed

    Binder, L M; Storzbach, D; Campbell, K A; Rohlman, D S; Anger, W K; Salinsky, M C; Campbell, B R; Mueller, R

    2000-03-01

    As part of a larger study of illnesses related to service in the Gulf War, MMPI-2 profiles of epileptic seizure (ES) patients; nonepileptic seizure (NES) patients; Gulf War veterans with unexplained cognitive, psychological, musculoskeletal, fatigue, or dermatologic symptoms; and asymptomatic Gulf War veterans (Controls) were analyzed. There were 70 people in each group. Seizure diagnosis was based upon intensive EEG monitoring. Gulf War cases were mildly abnormal on MMPI-2 Scales Hs and D and significantly higher than controls on 8 of 10 MMPI-2 clinical scales, but they were significantly lower than NES patients on several scales including Hs and Hy. PMID:10668007

  20. Fast monitoring of epileptic seizures using recurrence time statistics of electroencephalography

    PubMed Central

    Gao, Jianbo; Hu, Jing

    2013-01-01

    Epilepsy is a relatively common brain disorder which may be very debilitating. Currently, determination of epileptic seizures often involves tedious, time-consuming visual inspection of electroencephalography (EEG) data by medical experts. To better monitor seizures and make medications more effective, we propose a recurrence time based approach to characterize brain electrical activity. Recurrence times have a number of distinguished properties that make it very effective for forewarning epileptic seizures as well as studying propagation of seizures: (1) recurrence times amount to periods of periodic signals, (2) recurrence times are closely related to information dimension, Lyapunov exponent, and Kolmogorov entropy of chaotic signals, (3) recurrence times embody Shannon and Renyi entropies of random fields, and (4) recurrence times can readily detect bifurcation-like transitions in dynamical systems. In particular, property (4) dictates that unlike many other non-linear methods, recurrence time method does not require the EEG data be chaotic and/or stationary. Moreover, the method only contains a few parameters that are largely signal-independent, and hence, is very easy to use. The method is also very fast—it is fast enough to on-line process multi-channel EEG data with a typical PC. Therefore, it has the potential to be an excellent candidate for real-time monitoring of epileptic seizures in a clinical setting. PMID:24137126

  1. Fast monitoring of epileptic seizures using recurrence time statistics of electroencephalography.

    PubMed

    Gao, Jianbo; Hu, Jing

    2013-01-01

    Epilepsy is a relatively common brain disorder which may be very debilitating. Currently, determination of epileptic seizures often involves tedious, time-consuming visual inspection of electroencephalography (EEG) data by medical experts. To better monitor seizures and make medications more effective, we propose a recurrence time based approach to characterize brain electrical activity. Recurrence times have a number of distinguished properties that make it very effective for forewarning epileptic seizures as well as studying propagation of seizures: (1) recurrence times amount to periods of periodic signals, (2) recurrence times are closely related to information dimension, Lyapunov exponent, and Kolmogorov entropy of chaotic signals, (3) recurrence times embody Shannon and Renyi entropies of random fields, and (4) recurrence times can readily detect bifurcation-like transitions in dynamical systems. In particular, property (4) dictates that unlike many other non-linear methods, recurrence time method does not require the EEG data be chaotic and/or stationary. Moreover, the method only contains a few parameters that are largely signal-independent, and hence, is very easy to use. The method is also very fast-it is fast enough to on-line process multi-channel EEG data with a typical PC. Therefore, it has the potential to be an excellent candidate for real-time monitoring of epileptic seizures in a clinical setting. PMID:24137126

  2. Real-time Detection of Precursors to Epileptic Seizures: Non-Linear Analysis of System Dynamics

    PubMed Central

    Nesaei, Sahar; Sharafat, Ahmad R.

    2014-01-01

    We propose a novel approach for detecting precursors to epileptic seizures in intracranial electroencephalograms (iEEG), which is based on the analysis of system dynamics. In the proposed scheme, the largest Lyapunov exponent of the discrete wavelet packet transform (DWPT) of the segmented EEG signals is considered as the discriminating features. Such features are processed by a support vector machine (SVM) classifier to identify whether the corresponding segment of the EEG signal contains a precursor to an epileptic seizure. When consecutive EEG segments contain such precursors, a decision is made that a precursor is in fact detected. The proposed scheme is applied to the Freiburg dataset, and the results show that seizure precursors are detected in a time frame that unlike other existing schemes is very much convenient to patients, with sensitivity of 100% and negligible false positive detection rates. PMID:24761374

  3. Predictability of epileptic seizures: a comparative study using Lyapunov exponent and entropy based measures.

    PubMed

    Sabesan, Shivkumar; Narayanan, K; Prasad, Awadhesh; Spanias, A; Sackellares, J C; Iasemidis, L D

    2003-01-01

    In this paper, a comparative study involving measures from the theory of chaos, namely the short-term largest Lyapunov exponent, Shannon and Kullback-Leibler entropies from information theory, has been carried out in terms of their predictability of temporal lobe epileptic seizures. These three measures are estimated from electroencephalographic (EEG) recordings with sub-dural and in-depth electrodes from various brain locations in patients with temporal lobe epilepsy. Techniques from optimization theory are applied to select optimal sets of electrodes whose dynamics is then followed over time. Results from analysis of multiple seizures in two epileptic patients with these measures are presented and compared in terms of their ability to identify pre-ictal dynamical entrainment well ahead of seizure onset time. PMID:12724881

  4. Seizure, Fit or Attack? The Use of Diagnostic Labels by Patients with Epileptic or Non-Epileptic Seizures

    ERIC Educational Resources Information Center

    Plug, Leendert; Sharrack, Basil; Reuber, Markus

    2010-01-01

    We present an analysis of the use of diagnostic labels such as "seizure", "attack", "fit", and "blackout" by patients who experience seizures. While previous research on patients' preferences for diagnostic terminology has relied on questionnaires, we assess patients' own preferences and their responses to a doctor's use of different labels…

  5. Oxidative Stress Measurement and Prediction of Epileptic Seizure in Children and Adults With Severe Motor and Intellectual Disabilities

    PubMed Central

    Morimoto, Masahito; Satomura, Shigeko; Hashimoto, Toshiaki; Ito, Etsuro; Kyotani, Shojiro

    2016-01-01

    Background The medical care of severe motor and intellectual disabilities (SMID) depends on the empirical medical care. Epileptic seizure specific to SMID is difficult to suppress using anti-epileptic drugs, and its tendency to persist for long periods poses an issue. The present study was undertaken to evaluate the relationship between epileptic seizure in cases with SMID and oxidative stress in the living body by examining endogenous antioxidants, the degree of oxidation (reactive oxygen metabolites (d-ROMs)), and the biological antioxidant potential (BAP) as indicators. Methods Target patients were 43 SMID epilepsy patients. Blood was sampled before breakfast and medication. As for the specimen, d-ROMs and BAP were measured using the free radical analyzer. Results The present study did not reveal any correlation between endogenous antioxidants (albumin) and the frequency of epileptic seizures. On the other hand, d-ROMs were correlated with the frequency of epileptic seizure. In particular, strong correlations between the frequency of epileptic seizures and the d-ROMs/BAP ratio as well as the BAP/d-ROMs ratio were noted. Conclusions These results indicate that the use of d-ROMs and BAP as biomarkers can provide a tool for predicting the prognosis of epileptic seizures in patients with SMID. PMID:27222671

  6. Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice.

    PubMed

    Maroso, Mattia; Balosso, Silvia; Ravizza, Teresa; Iori, Valentina; Wright, Christopher Ian; French, Jacqueline; Vezzani, Annamaria

    2011-04-01

    Experimental evidence and clinical observations indicate that brain inflammation is an important factor in epilepsy. In particular, induction of interleukin-converting enzyme (ICE)/caspase-1 and activation of interleukin (IL)-1β/IL-1 receptor type 1 axis both occur in human epilepsy, and contribute to experimentally induced acute seizures. In this study, the anticonvulsant activity of VX-765 (a selective ICE/caspase-1 inhibitor) was examined in a mouse model of chronic epilepsy with spontaneous recurrent epileptic activity refractory to some common anticonvulsant drugs. Moreover, the effects of this drug were studied in one acute model of seizures in mice, previously shown to involve activation of ICE/caspase-1. Quantitative analysis of electroencephalogram activity was done in mice exposed to acute seizures or those developing chronic epileptic activity after status epilepticus to assess the anticonvulsant effects of systemic administration of VX-765. Histological and immunohistochemical analysis of brain tissue was carried out at the end of pharmacological experiments in epileptic mice to evaluate neuropathology, glia activation and IL-1β expression, and the effect of treatment. Repeated systemic administration of VX-765 significantly reduced chronic epileptic activity in mice in a dose-dependent fashion (12.5-200 mg/kg). This effect was observed at doses ≥ 50 mg/kg, and was reversible with discontinuation of the drug. Maximal drug effect was associated with inhibition of IL-1β synthesis in activated astrocytes. The same dose regimen of VX-765 also reduced acute seizures in mice and delayed their onset time. These results support a new target system for anticonvulsant pharmacological intervention to control epileptic activity that does not respond to some common anticonvulsant drugs. PMID:21431948

  7. Measure profile surrogates: A method to validate the performance of epileptic seizure prediction algorithms

    NASA Astrophysics Data System (ADS)

    Kreuz, Thomas; Andrzejak, Ralph G.; Mormann, Florian; Kraskov, Alexander; Stögbauer, Harald; Elger, Christian E.; Lehnertz, Klaus; Grassberger, Peter

    2004-06-01

    In a growing number of publications it is claimed that epileptic seizures can be predicted by analyzing the electroencephalogram (EEG) with different characterizing measures. However, many of these studies suffer from a severe lack of statistical validation. Only rarely are results passed to a statistical test and verified against some null hypothesis H0 in order to quantify their significance. In this paper we propose a method to statistically validate the performance of measures used to predict epileptic seizures. From measure profiles rendered by applying a moving-window technique to the electroencephalogram we first generate an ensemble of surrogates by a constrained randomization using simulated annealing. Subsequently the seizure prediction algorithm is applied to the original measure profile and to the surrogates. If detectable changes before seizure onset exist, highest performance values should be obtained for the original measure profiles and the null hypothesis. “The measure is not suited for seizure prediction” can be rejected. We demonstrate our method by applying two measures of synchronization to a quasicontinuous EEG recording and by evaluating their predictive performance using a straightforward seizure prediction statistics. We would like to stress that the proposed method is rather universal and can be applied to many other prediction and detection problems.

  8. Dynamic Imaging of Coherent Sources Reveals Different Network Connectivity Underlying the Generation and Perpetuation of Epileptic Seizures

    PubMed Central

    Anwar, Abdul Rauf; Deuschl, Günther; Stephani, Ulrich; Raethjen, Jan; Siniatchkin, Michael

    2013-01-01

    The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone) and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS), an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity) between coherent sources was investigated using the renormalized partial directed coherence (RPDC) method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis. PMID:24194931

  9. Focal seizures and epileptic spasms in a child with Down syndrome from a family with a PRRT2 mutation.

    PubMed

    Igarashi, Ayuko; Okumura, Akihisa; Shimojima, Keiko; Abe, Shinpei; Ikeno, Mitsuru; Shimizu, Toshiaki; Yamamoto, Toshiyuki

    2016-06-01

    We describe a girl with Down syndrome who experienced focal seizures and epileptic spasms during infancy. The patient was diagnosed as having trisomy 21 during the neonatal period. She had focal seizures at five months of age, which were controlled with phenobarbital. However, epileptic spasms appeared at seven months of age in association with hypsarrhythmia. Upon treatment with adrenocorticotropic hormone, her epileptic spasms disappeared. Her younger brother also had focal seizures at five months of age. His development and interictal electroencephalogram were normal. The patient's father had had infantile epilepsy and paroxysmal kinesigenic dyskinesia. We performed a mutation analysis of the PRRT2 gene and found a c.841T>C mutation in the present patient, her father, and in her younger brother. We hypothesized that the focal seizures in our patient were caused by the PRRT2 mutation, whereas the epileptic spasms were attributable to trisomy 21. PMID:26867511

  10. [Psychogenic NonEpileptic Seizures: Current Knowledge and Contributions of the Study of Emotions].

    PubMed

    Rutka, Roman; Denis, Anne; Vercueil, Laurent; Hot, Pascal

    2016-01-01

    Psychogenic nonepileptic seizures (PNES) are paroxysmal attacks that can imitate epileptic seizures but do not have a neurological origin. There has been mounting interest these last few years to unravel psychological and neuronal factors that contribute to the development of PNES. The objective of this review is twofold. First, we examine recent contributions of clinical and researches studies to define the main features of PNES. Then, we focus on the possible link between changes in processing of emotional information and the onset of PNES. In this article, we identify promising directions for future research and argue that affective neuroscience may provide original findings to better understand this disease. PMID:27570954

  11. Early Detection of Human Epileptic Seizures Based on Intracortical Local Field Potentials.

    PubMed

    Park, Yun S; Hochberg, Leigh R; Eskandar, Emad N; Cash, Sydney S; Truccolo, Wilson

    2013-01-01

    The unpredictability of re-occurring seizures dramatically impacts the quality of life and autonomy of people with epilepsy. Reliable early seizure detection could open new therapeutic possibilities and thus substantially improve quality of life and autonomy. Though many seizure detection studies have shown the potential of scalp electroencephalogram (EEG) and intracranial EEG (iEEG) signals, reliable early detection of human seizures remains elusive in practice. Here, we examined the use of intracortical local field potentials (LFPs) recorded from 4×4-mm(2) 96-microelectrode arrays (MEA) for early detection of human epileptic seizures. We adopted a framework consisting of (1) sampling of intracortical LFPs; (2) denoising of LFPs with the Kalman filter; (3) spectral power estimation in specific frequency bands using 1-sec moving time windows; (4) extraction of statistical features, such as the mean, variance, and Fano factor (calculated across channels) of the power in each frequency band; and (5) cost-sensitive support vector machine (SVM) classification of ictal and interictal samples. We tested the framework in one-participant dataset, including 4 seizures and corresponding interictal recordings preceding each seizure. The participant was a 52-year-old woman suffering from complex partial seizures. LFPs were recorded from an MEA implanted in the participant's left middle temporal gyrus. In this participant, spectral power in 0.3-10 Hz, 20-55 Hz, and 125-250 Hz changed significantly between ictal and interictal epochs. The examined seizure detection framework provided an event-wise sensitivity of 100% (4/4) and only one 20-sec-long false positive event in interictal recordings (likely an undetected subclinical event under further visual inspection), and a detection latency of 4.35 ± 2.21 sec (mean ± std) with respect to iEEG-identified seizure onsets. These preliminary results indicate that intracortical MEA recordings may provide key signals to quickly and

  12. [The effect of refractory epileptic seizures on cognitive processes].

    PubMed

    Aicardi, J

    A complete definition of all risk factors for intractability and/or mental retardation cannot currently be given because epilepsy is not a disease but a heterogeneous phenomenon from the physiological, clinical and etiological points of view so that no single way of addressing the issue can fit all situations. It is quite possible that some risk factors can be specific for subgroups and do not apply to the majority of cases. Such subgroups may be small enough to escape detection in large prospective studies that uniformly indict a limited number of factors mostly related to characteristics of the disease or patients. Yet, even factors that are at play only in small groups may be extremely important if they can be at the origin of effective preventive measures. This may well be the case for vigorous early treatment of complex febrile seizures as there is increasing evidence of a close, probably causal, relationship between lengthy early convulsions and mesial temporal sclerosis. It may also apply to the prevention of cognitive/behavioural deterioration in children with certain types of epilepsy even though the evidence in this regard is less strong. Exonerating seizures and/or subclinical paroxysmal activity of any responsibility in the production and/or aggravation of brain damage is not justified on the basis of known facts and vigorous although reasonable treatment of the epilepsies may do more, at least in certain forms, than simply decreasing the relapse rate of seizures PMID:12599161

  13. Classification of convulsive psychogenic non-epileptic seizures using muscle transforms obtained from accelerometry signal.

    PubMed

    Kusmakar, Shitanshu; Gubbi, Jayavardhana; Yan, Bernard; O'Brien, Terence J; Palaniswami, Marimuthu

    2015-08-01

    Convulsive psychogenic non-epileptic seizure (PNES) can be characterized as events which mimics epileptic seizures but do not show any characteristic changes on electroencephalogram (EEG). Correct diagnosis requires video-electroencephalography monitoring (VEM) as the diagnosis of PNES is extremely difficult in primary health care. Recent work has demonstrated the usefulness of accelerometry signal taken during a seizure in classification of PNES. In this work, a new direction has been explored to understand the role of different muscles in PNES. This is achieved by modeling the muscle activity of ten different upper limb muscles as a resultant function of accelerometer signal. Using these models, the accelerometer signals recorded from convulsive epileptic patients were transformed into individual muscle components. Based on this, an automated algorithm for classification of convulsive PNES is proposed. The algorithm calculates four wavelet domain features based on signal power, approximate entropy, kurtosis and signal skewness. These features were then used to build a classification model using support vector machines (SVM) classifier. It was found that the transforms corresponding to anterior deltoid and brachioradialis results in good PNES classification accuracy. The algorithm showed a high sensitivity of 93.33% and an overall PNES classification accuracy of 89% with the transform corresponding to anterior deltoid. PMID:26736329

  14. Scaling effects and spatio-temporal multilevel dynamics in epileptic seizures.

    PubMed

    Meisel, Christian; Kuehn, Christian

    2012-01-01

    Epileptic seizures are one of the most well-known dysfunctions of the nervous system. During a seizure, a highly synchronized behavior of neural activity is observed that can cause symptoms ranging from mild sensual malfunctions to the complete loss of body control. In this paper, we aim to contribute towards a better understanding of the dynamical systems phenomena that cause seizures. Based on data analysis and modelling, seizure dynamics can be identified to possess multiple spatial scales and on each spatial scale also multiple time scales. At each scale, we reach several novel insights. On the smallest spatial scale we consider single model neurons and investigate early-warning signs of spiking. This introduces the theory of critical transitions to excitable systems. For clusters of neurons (or neuronal regions) we use patient data and find oscillatory behavior and new scaling laws near the seizure onset. These scalings lead to substantiate the conjecture obtained from mean-field models that a Hopf bifurcation could be involved near seizure onset. On the largest spatial scale we introduce a measure based on phase-locking intervals and wavelets into seizure modelling. It is used to resolve synchronization between different regions in the brain and identifies time-shifted scaling laws at different wavelet scales. We also compare our wavelet-based multiscale approach with maximum linear cross-correlation and mean-phase coherence measures. PMID:22363431

  15. Pathological pattern formation and cortical propagation of epileptic seizures

    PubMed Central

    Kramer, Mark A; Kirsch, Heidi E; Szeri, Andrew J

    2005-01-01

    The stochastic partial differential equations (SPDEs) stated by Steyn-Ross and co-workers constitute a model of mesoscopic electrical activity of the human cortex. A simplification in which spatial variation and stochastic input are neglected yields ordinary differential equations (ODEs), which are amenable to analysis by techniques of dynamical systems theory. Bifurcation diagrams are developed for the ODEs with increased subcortical excitation, showing that the model predicts oscillatory electrical activity in a large range of parameters. The full SPDEs with increased subcortical excitation produce travelling waves of electrical activity. These model results are compared with electrocortical data recorded at two subdural electrodes from a human subject undergoing a seizure. The model and observational results agree in two important respects during seizure: (i) the average frequency of maximum power, and (ii) the speed of spatial propagation of voltage peaks. This suggests that seizing activity on the human cortex may be understood as an example of pathological pattern formation. Included is a discussion of the applications and limitations of these results. PMID:16849171

  16. Disinhibition-induced transitions between absence and tonic-clonic epileptic seizures

    PubMed Central

    Fan, Denggui; Wang, Qingyun; Perc, Matjaž

    2015-01-01

    Electrophysiological experiments have long revealed the existence of two-way transitions between absence and tonic-clonic epileptic seizures in the cerebral cortex. Based on a modified spatially-extended Taylor & Baier neural field model, we here propose a computational framework to mathematically describe the transition dynamics between these epileptic seizures. We first demonstrate the existence of various transition types that are induced by disinhibitory functions between two inhibitory variables in an isolated Taylor & Baier model. Moreover, we show that these disinhibition-induced transitions can lead to stable tonic-clonic oscillations as well as periodic spike with slow-wave discharges, which are the hallmark of absence seizures. We also observe fascinating dynamical states, such as periodic 2-spike with slow-wave discharges, tonic death, bursting oscillations, as well as saturated firing. Most importantly, we identify paths that represent physiologically plausible transitions between absence and tonic-clonic seizures in the modified spatially-extended Taylor & Baier model. PMID:26224066

  17. Can hyper-synchrony in meditation lead to seizures? Similarities in meditative and epileptic brain states.

    PubMed

    Lindsay, Shane

    2014-10-01

    Meditation is used worldwide by millions of people for relaxation and stress relief. Given sufficient practice, meditators may also experience a variety of altered states of consciousness. These states can lead to a variety of unusual experiences, including physical, emotional and psychic disturbances. This paper highlights the correspondences between brain states associated with these experiences and the symptoms and neurophysiology of epileptic simple partial seizures. Seizures, like meditation practice, can result in both positive and negative experiences. The neurophysiology and chemistry underlying simple partial seizures are characterised by a high degree of excitability and high levels of neuronal synchrony in gamma-band brain activity. Following a survey of the literature that shows that meditation practice is also linked to high power gamma activity, an account of how meditation could cause such activity is provided. This paper discusses the diagnostic challenges for the claim that meditation practices lead to brain states similar to those found in epileptic seizures, and seeks to develop our understanding of the range of pathological and non-pathological states that result from a hyper-excited and hyper-synchronous brain. PMID:25149320

  18. Recurrent prolonged fugue states as the sole manifestation of epileptic seizures.

    PubMed

    Khwaja, Geeta A; Duggal, Ashish; Kulkarni, Amit; Chaudhry, Neera; Gupta, Meena; Chowdhury, Debashish; Bohra, Vikram

    2013-10-01

    A fugue state is defined as an altered state of consciousness with varying degrees of motor activity and amnesia for the event. It may last for hours to days and may be psychogenic or organic in nature. Epileptic fugue states can be encountered in patients with absence or complex partial nonconvulsive status epilepticus or may occur as a postictal phenomenon in patients with generalized seizures. "absence status epilepticus" (AS) is rare and seen in only 2.6% of the cases with "childhood absence epilepsy" (CAE). The diagnosis of AS can be elusive, but sudden onset and termination of the fugue state, classical electroencephalogram (EEG) features, and response to a therapeutic trial of benzodiazepines helps in confirming the diagnosis and differentiating it from nonepileptic fugue states. We report a childhood onset case, with a 10 years history of recurrent episodes of prolonged fugue state lasting for up to 24 h, as the sole manifestation of epileptic seizures. The EEG features were suggestive of an AS, but there was no history of typical absences, myoclonus, or generalized tonic clonic seizures. This unusual and rare case cannot be categorized into one of the defined epilepsy syndromes like CAE but belongs to a recently identified syndrome of idiopathic generalized epilepsy known as "Absence status epilepsy" in which AS is the sole or the predominant seizure type. PMID:24339579

  19. Hidden pattern discovery on epileptic EEG with 1-D local binary patterns and epileptic seizures detection by grey relational analysis.

    PubMed

    Kaya, Yılmaz

    2015-09-01

    This paper proposes a novel approach to detect epilepsy seizures by using Electroencephalography (EEG), which is one of the most common methods for the diagnosis of epilepsy, based on 1-Dimension Local Binary Pattern (1D-LBP) and grey relational analysis (GRA) methods. The main aim of this paper is to evaluate and validate a novel approach, which is a computer-based quantitative EEG analyzing method and based on grey systems, aimed to help decision-maker. In this study, 1D-LBP, which utilizes all data points, was employed for extracting features in raw EEG signals, Fisher score (FS) was employed to select the representative features, which can also be determined as hidden patterns. Additionally, GRA is performed to classify EEG signals through these Fisher scored features. The experimental results of the proposed approach, which was employed in a public dataset for validation, showed that it has a high accuracy in identifying epileptic EEG signals. For various combinations of epileptic EEG, such as A-E, B-E, C-E, D-E, and A-D clusters, 100, 96, 100, 99.00 and 100% were achieved, respectively. Also, this work presents an attempt to develop a new general-purpose hidden pattern determination scheme, which can be utilized for different categories of time-varying signals. PMID:26206400

  20. Detection of epileptic seizure in EEG signals using linear least squares preprocessing.

    PubMed

    Roshan Zamir, Z

    2016-09-01

    An epileptic seizure is a transient event of abnormal excessive neuronal discharge in the brain. This unwanted event can be obstructed by detection of electrical changes in the brain that happen before the seizure takes place. The automatic detection of seizures is necessary since the visual screening of EEG recordings is a time consuming task and requires experts to improve the diagnosis. Much of the prior research in detection of seizures has been developed based on artificial neural network, genetic programming, and wavelet transforms. Although the highest achieved accuracy for classification is 100%, there are drawbacks, such as the existence of unbalanced datasets and the lack of investigations in performances consistency. To address these, four linear least squares-based preprocessing models are proposed to extract key features of an EEG signal in order to detect seizures. The first two models are newly developed. The original signal (EEG) is approximated by a sinusoidal curve. Its amplitude is formed by a polynomial function and compared with the predeveloped spline function. Different statistical measures, namely classification accuracy, true positive and negative rates, false positive and negative rates and precision, are utilised to assess the performance of the proposed models. These metrics are derived from confusion matrices obtained from classifiers. Different classifiers are used over the original dataset and the set of extracted features. The proposed models significantly reduce the dimension of the classification problem and the computational time while the classification accuracy is improved in most cases. The first and third models are promising feature extraction methods with the classification accuracy of 100%. Logistic, LazyIB1, LazyIB5, and J48 are the best classifiers. Their true positive and negative rates are 1 while false positive and negative rates are 0 and the corresponding precision values are 1. Numerical results suggest that these

  1. [Auto-cholinergic synapse dysfunction in patients with generalized epileptic seizures. A preliminary report].

    PubMed

    Qu, Z P

    1991-06-01

    The mechanism of epileptic seizures so far remains unclear. Immunological disturbances may be one of the possible mechanisms. The assumption that primary epilepsy is an autoimmune disease lacks an experimental basis. In order to search any relationship between generalized epileptic seizures and autoimmune we examined and measured the serum anti-acetylcholine receptor antibody (A AchR Ab) and anti-synaptic premembrane antibody (A PrM Ab) in 12 patients with typical absences, 20 patients with generalized tonic-clonic seizures (GTC) and 6 patients with Lennox-Gastaut Syndrome. 2 (16.7%) out of 12 patients with absences showed positive both A AchR Ab and A PrM Ab, positive A AchR Ab in 1 patient. Among 20 patients with GTC both A AchR Ab and A PrM Ab were positive in 7 patients (35%), A PrM Ab was positive in 1 patient. Totally in 8 patients A PrM Ab was positive. However, the difference between the two Antibodies was not significant (1.1:1). The two kinds of antibody were positive in 5 (83%) out of 6 patients and A PrM Ab was positive, but A AchR Ab was doubtful in another one patient with Lennox-Gastaut syndrome. Therefore, all the patients with Lennox-Gastaut syndrome showed positive antibody. Our data suggested that different types of generalized epileptic-seizures showed different severity of autoimmune dysfunction. The meaning of this kind of immune dysfunction needs further investigation. PMID:1889327

  2. Epileptic Seizure Detection in Eeg Signals Using Multifractal Analysis and Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Uthayakumar, R.; Easwaramoorthy, D.

    2013-06-01

    This paper explores the three different methods to explicitly recognize the healthy and epileptic EEG signals: Modified, Improved, and Advanced forms of Generalized Fractal Dimensions (GFD). The newly proposed scheme is based on GFD and the discrete wavelet transform (DWT) for analyzing the EEG signals. First EEG signals are decomposed into approximation and detail coefficients using DWT and then GFD values of the original EEGs, approximation and detail coefficients are computed. Significant differences are observed among the GFD values of the healthy and epileptic EEGs allowing us to classify seizures with high accuracy. It is shown that the classification rate is very less accurate without DWT as a preprocessing step. The proposed idea is illustrated through the graphical and statistical tools. The EEG data is further tested for linearity by using normal probability plot and we proved that epileptic EEG had significant nonlinearity whereas healthy EEG distributed normally and similar to Gaussian linear process. Therefore, we conclude that the GFD and the wavelet decomposition through DWT are the strong indicators of the state of illness of epileptic patients.

  3. Ecstatic Epileptic Seizures: A Glimpse into the Multiple Roles of the Insula.

    PubMed

    Gschwind, Markus; Picard, Fabienne

    2016-01-01

    Ecstatic epileptic seizures are a rare but compelling epileptic entity. During the first seconds of these seizures, ecstatic auras provoke feelings of well-being, intense serenity, bliss, and "enhanced self-awareness." They are associated with the impression of time dilation, and can be described as a mystic experience by some patients. The functional neuroanatomy of ecstatic seizures is still debated. During recent years several patients presenting with ecstatic auras have been reported by others and us (in total n = 52); a few of them in the setting of presurgical evaluation including electrical brain stimulation. According to the recently recognized functions of the insula, and the results of nuclear brain imaging and electrical stimulation, the ecstatic symptoms in these patients seem to localize to a functional network centered around the anterior insular cortex, where we thus propose to locate this rare ictal phenomenon. Here we summarize the role of the multiple sensory, autonomic, affective, and cognitive functions of the insular cortex, which are integrated into the creation of self-awareness, and we suggest how this system may become dysfunctional on several levels during ecstatic aura. PMID:26924970

  4. Ecstatic Epileptic Seizures: A Glimpse into the Multiple Roles of the Insula

    PubMed Central

    Gschwind, Markus; Picard, Fabienne

    2016-01-01

    Ecstatic epileptic seizures are a rare but compelling epileptic entity. During the first seconds of these seizures, ecstatic auras provoke feelings of well-being, intense serenity, bliss, and “enhanced self-awareness.” They are associated with the impression of time dilation, and can be described as a mystic experience by some patients. The functional neuroanatomy of ecstatic seizures is still debated. During recent years several patients presenting with ecstatic auras have been reported by others and us (in total n = 52); a few of them in the setting of presurgical evaluation including electrical brain stimulation. According to the recently recognized functions of the insula, and the results of nuclear brain imaging and electrical stimulation, the ecstatic symptoms in these patients seem to localize to a functional network centered around the anterior insular cortex, where we thus propose to locate this rare ictal phenomenon. Here we summarize the role of the multiple sensory, autonomic, affective, and cognitive functions of the insular cortex, which are integrated into the creation of self-awareness, and we suggest how this system may become dysfunctional on several levels during ecstatic aura. PMID:26924970

  5. Classification of epileptic motor manifestations and detection of tonic-clonic seizures with acceleration norm entropy.

    PubMed

    Becq, Guillaume; Kahane, Philippe; Minotti, Lorella; Bonnet, Stephane; Guillemaud, Regis

    2013-08-01

    In this paper, three triaxis accelerometers positioned on the wrists and the head of epileptic patients submitted to long-term video electroencephalographic monitoring as part of presurgical investigation are evaluated to characterize the different classes of motor manifestations observed during seizures. Quadratic discriminant classifiers are trained on features extracted from 1 or 4 s windows. It is shown that a simple rule applied to the acceleration norm entropy HnA produces the best performances compared to other classifiers trained on other feature sets. The simple rule is as follows with values given in bits: (0 HnA 1.34), no movement; (1.34 HnA 3.87), tonic manifestations; (3.87 HnA), tonic-clonic manifestations. For this classifier, features are extracted from 1 s windows and the misclassification rate is 11% evaluated on 5,607 s of epileptic motor manifestations obtained from 58 seizures in 30 patients. A quantile normalization can improve the results with features based on absolute power spectral density but performances are not as good as the ones obtained with HnA. Based on the classifier using only HnA, a simple tonic-clonic seizure detector is proposed and produces a 80% sensitivity with a 95% specificity. PMID:23392333

  6. Subclinical tonic-clonic epileptic seizure detected by an implantable loop recorder.

    PubMed

    Kohno, Ritsuko; Abe, Haruhiko; Akamatsu, Naoki; Tamura, Masahito; Takeuchi, Masaaki; Otsuji, Yutaka; Benditt, David G

    2013-01-01

    A 73-year old man received an implantable loop recorder (ILR) for the evaluation of transient loss of consciousness (TLOC) spells. His medical history was without any epileptic convulsions or automatism. ILR recording during a spontaneous episode revealed the presence of a regular, narrow QRS complex tachycardia associated with low-amplitude, high-frequency, continuous or discontinuous artifacts, consistent with myopotentials. During the event, the regular, low-amplitude continuous signals gradually became discontinuous, with a prolongation of the inter-signal cycle length, until their disappearance after manual activation of the ILR. The patient was diagnosed as experiencing subclinical tonic-clonic epileptic seizures. Antiepileptic drug treatment was initiated, and the patient has remained free of TLOC symptoms during 13 months follow-up. PMID:24097218

  7. Ethical Dilemmas in Pediatric and Adolescent Psychogenic Non-Epileptic Seizures

    PubMed Central

    Cole, Cristie M.; Falcone, Tatiana; Caplan, Rochelle; Timmons-Mitchell, Jane; Jares, Kristine; Ford, Paul J.

    2014-01-01

    To date only a very narrow window of ethical dilemmas in psychogenic non-epileptic seizures (PNES) have been explored. Numerous distinct ethical dilemmas arise in diagnosing and treating pediatric and adolescent patients with PNES. Important ethical values at stake include trust, transparency, confidentiality, professionalism, autonomy of all stakeholders and justice. In order to further elucidate the ethical challenges in caring for this population, an ethical analysis of the special challenges faced in four specific domains is undertaken: (1) conducting and communicating a diagnosis of PNES; (2) advising patients about full transparency and disclosure to community including patients’ peers; (3) responding to requests to continue anti-epileptic drugs; and (4) managing challenges arising from school policy and procedure. An analysis of these ethical issues is essential for the advancement of best care practices that promote the overall well-being of patients and their families. PMID:25022823

  8. IPS Interest in the EEG of Patients after a Single Epileptic Seizure

    PubMed Central

    Mounach, Jamal; Satte, Amal; Ouhabi, Hamid; El Hessni, Aboubaker

    2016-01-01

    Objective. This study aims to evaluate the incidence of pathological cerebral activity responses to intermittent rhythmic photic stimulation (IPS) after a single epileptic seizure. Patients and Methods. One hundred and thirty-seven EEGs were performed at the Neurophysiology Department of Mohamed V Teaching Military Hospital in Rabat. Clinical and EEG data was collected. Results. 9.5% of our patients had photoparoxysmal discharges (PPD). Incidence was higher in males than in females, but p value was not significant (p = 0.34), and it was higher in children compared to adults with significant p value (p = 0.08). The most epileptogenic frequencies were within the range 15–20 Hz. 63 patients had an EEG after 72 hours; among them 11 were photosensitive (p = 0.001). The frequency of the PPR was significantly higher in patients with generalized abnormalities than in focal abnormalities (p = 0.001). EEG confirmed a genetic generalized epilepsy in 8 cases among 13 photosensitive patients. Conclusion. PPR is age related. The frequencies within the range 15–20 Hz should inevitably be included in EEG protocols. The presence of PPR after a first seizure is probably more in favor of generalized seizure rather than the other type of seizure. PPR seems independent from the delay Seizure-EEG. Our study did not show an association between sex and photosensitivity.

  9. Enhanced susceptibility to spontaneous seizures of noda epileptic rats by loss of synaptic zn(2+).

    PubMed

    Takeda, Atsushi; Iida, Masashi; Ando, Masaki; Nakamura, Masatoshi; Tamano, Haruna; Oku, Naoto

    2013-01-01

    Zinc homeostasis in the brain is associated with the etiology and manifestation of epileptic seizures. Adult Noda epileptic rats (NER, >12-week-old) exhibit spontaneously generalized tonic-clonic convulsion about once a day. To pursue the involvement of synaptic Zn(2+) signal in susceptibility to spontaneous seizures, in the present study, the effect of zinc chelators on epileptogenesis was examined using adult NER. Clioquinol (CQ) and TPEN are lipophilic zinc chelotors, transported into the brain and reduce the levels of synaptic Zn(2+). The incidence of tonic-clonic convulsion was markedly increased after i.p. injection of CQ (30-100 mg/kg) and TPEN (1 mg/kg). The basal levels of extracellular Zn(2+) measured by ZnAF-2 were decreased before tonic-clonic convulsion was induced with zinc chelators. The hippocampal electroencephalograms during CQ (30 mg/kg)-induced convulsions were similar to those during sound-induced convulsions in NER reported previously. Exocytosis of hippocampal mossy fibers, which was measured with FM4-64, was significantly increased in hippocampal slices from CQ-injected NER that did not show tonic-clonic convulsion yet. These results indicate that the abnormal excitability of mossy fibers is induced prior to epileptic seizures by injection of zinc chelators into NER. The incidence of tonic-clonic convulsion induced with CQ (30 mg/kg) was significantly reduced by co-injection with aminooxyacetic acid (5-10 mg/kg), an anticonvulsant drug enhancing GABAergic activity, which did not affect locomotor activity. The present paper demonstrates that the abnormal excitability in the brain, especially in mossy fibers, which is potentially associated with the insufficient GABAergic neuron activity, may be a factor to reduce the threshold for epileptogenesis in NER. PMID:23951148

  10. Enhanced Susceptibility to Spontaneous Seizures of Noda Epileptic Rats by Loss of Synaptic Zn2+

    PubMed Central

    Takeda, Atsushi; Iida, Masashi; Ando, Masaki; Nakamura, Masatoshi; Tamano, Haruna; Oku, Naoto

    2013-01-01

    Zinc homeostasis in the brain is associated with the etiology and manifestation of epileptic seizures. Adult Noda epileptic rats (NER, >12-week-old) exhibit spontaneously generalized tonic-clonic convulsion about once a day. To pursue the involvement of synaptic Zn2+ signal in susceptibility to spontaneous seizures, in the present study, the effect of zinc chelators on epileptogenesis was examined using adult NER. Clioquinol (CQ) and TPEN are lipophilic zinc chelotors, transported into the brain and reduce the levels of synaptic Zn2+. The incidence of tonic-clonic convulsion was markedly increased after i.p. injection of CQ (30–100 mg/kg) and TPEN (1 mg/kg). The basal levels of extracellular Zn2+ measured by ZnAF-2 were decreased before tonic-clonic convulsion was induced with zinc chelators. The hippocampal electroencephalograms during CQ (30 mg/kg)-induced convulsions were similar to those during sound-induced convulsions in NER reported previously. Exocytosis of hippocampal mossy fibers, which was measured with FM4-64, was significantly increased in hippocampal slices from CQ-injected NER that did not show tonic-clonic convulsion yet. These results indicate that the abnormal excitability of mossy fibers is induced prior to epileptic seizures by injection of zinc chelators into NER. The incidence of tonic-clonic convulsion induced with CQ (30 mg/kg) was significantly reduced by co-injection with aminooxyacetic acid (5–10 mg/kg), an anticonvulsant drug enhancing GABAergic activity, which did not affect locomotor activity. The present paper demonstrates that the abnormal excitability in the brain, especially in mossy fibers, which is potentially associated with the insufficient GABAergic neuron activity, may be a factor to reduce the threshold for epileptogenesis in NER. PMID:23951148

  11. Interplay between interictal spikes and behavioral seizures in young, but not aged pilocarpine-treated epileptic rats.

    PubMed

    Bajorat, Rika; Goerss, Doreen; Brenndörfer, Linda; Schwabe, Lars; Köhling, Rüdiger; Kirschstein, Timo

    2016-04-01

    Interictal spike activity is commonly observed in the EEG of patients with epilepsy, but the causal interrelationship between interictal spikes and behavioral seizures is poorly understood. We performed long-term video-EEG monitoring of 16 epileptic rats after pilocarpine-induced status epilepticus and five control animals. To quantify the interplay between periods of spikes and seizures, we calculated the time spent with spikes as well as the time spent with seizures for each animal. Within a given subject, we found a significant correlation between these two measures in 7/11 young epileptic rats (<400days); this correlation was positive in six cases and negative in one. By contrast, none of five aged pilocarpine-treated animals exhibited significant correlation coefficients between spike periods and seizures (>600days, P<0.05). Instead, aged epileptic rats showed a prominent predominance for either spike periods or seizures, which might explain the absence of significant correlation in this population. We found that there is a significant interplay between interictal periods of spikes and behavioral seizures in young epileptic animals, but this association is absent during aging. PMID:26926072

  12. Brain network dynamics characterization in epileptic seizures. Joint directed graph and pairwise synchronization measures

    NASA Astrophysics Data System (ADS)

    Rodrigues, A. C.; Machado, B. S.; Florence, G.; Hamad, A. P.; Sakamoto, A. C.; Fujita, A.; Baccalá, L. A.; Amaro, E.; Sameshima, K.

    2014-12-01

    Here we propose and evaluate a new approach to analyse multichannel mesial temporal lobe epilepsy EEG data from eight patients through complex network and synchronization theories. The method employs a Granger causality test to infer the directed connectivity graphs and a wavelet transform based phase synchronization measure whose characteristics allow studying dynamical transitions during epileptic seizures. We present a new combined graph measure that quantifies the level of network hub formation, called network hub out-degree, which closely reflects the level of synchronization observed during the ictus.

  13. Monitoring changing dynamics with correlation integrals: Case study of an epileptic seizure

    NASA Astrophysics Data System (ADS)

    Lerner, David E.

    We describe a procedure (and the motivation behind it) which rapidly and accurately tracks the onset and progress of an epileptic seizure. Roughly speaking, one monitors changes in the relative dispersion of a re-embedded time series. The results are robust with respect to variation of adjustable parameters such as embedding dimension, lag time, and critical distances. Moreover, the general method is virtually unaffected when the data are significantly corrupted by external noise. When the information computed for the individual channels is displayed in an appropriate space-time plot, the progress and geometric location of the seizure are easily seen. An interpretation of these results in terms of a cloud of particles moving in an abstract phase space is examined.

  14. Epileptic Seizure Detection with Log-Euclidean Gaussian Kernel-Based Sparse Representation.

    PubMed

    Yuan, Shasha; Zhou, Weidong; Wu, Qi; Zhang, Yanli

    2016-05-01

    Epileptic seizure detection plays an important role in the diagnosis of epilepsy and reducing the massive workload of reviewing electroencephalography (EEG) recordings. In this work, a novel algorithm is developed to detect seizures employing log-Euclidean Gaussian kernel-based sparse representation (SR) in long-term EEG recordings. Unlike the traditional SR for vector data in Euclidean space, the log-Euclidean Gaussian kernel-based SR framework is proposed for seizure detection in the space of the symmetric positive definite (SPD) matrices, which form a Riemannian manifold. Since the Riemannian manifold is nonlinear, the log-Euclidean Gaussian kernel function is applied to embed it into a reproducing kernel Hilbert space (RKHS) for performing SR. The EEG signals of all channels are divided into epochs and the SPD matrices representing EEG epochs are generated by covariance descriptors. Then, the testing samples are sparsely coded over the dictionary composed by training samples utilizing log-Euclidean Gaussian kernel-based SR. The classification of testing samples is achieved by computing the minimal reconstructed residuals. The proposed method is evaluated on the Freiburg EEG dataset of 21 patients and shows its notable performance on both epoch-based and event-based assessments. Moreover, this method handles multiple channels of EEG recordings synchronously which is more speedy and efficient than traditional seizure detection methods. PMID:26906674

  15. Effect of baicalin on hippocampal damage in kainic acid-induced epileptic mice

    PubMed Central

    Liao, Zheng-Jian; Liang, Ri-Sheng; Shi, Song-Sheng; Wang, Chun-Hua; Yang, Wei-Zhong

    2016-01-01

    The aim of the present study was to determine the effect of baicalin on the expression of miR-497 and its target B-cell lymphoma-2 (Bcl-2) in the hippocampus of kainic acid (KA)-induced epileptic mice. To establish status epilepticus (SE), 0.1 µg/5 µl KA was injected into the lateral cerebral ventricle in mice, which then received an intraperitoneal injection of baicalin (100 mg/kg) after 1 and 8 h. Hematoxylin and eosin staining was used to observe the pathological changes in morphology and neuronal apoptosis was determined by terminal transferase-mediated dUTP nick end-labeling staining. Western blot analysis was used to detect the expression of Bcl-2 and cleaved caspase-3 proteins in the hippocampus, while reverse transcription-quantitative polymerase chain reaction was used to quantify hippocampal miR-497 expression. The results showed that baicalin significantly attenuated neuronal damage and apoptosis in the hippocampus 72 h after SE. In addition, baicalin decreased SE-induced expression of miR-497 and cleaved caspase-3 protein, while upregulating the expression of Bcl-2 protein. In conclusion, the present results suggest that baicalin possesses potent antiapoptotic properties and attenuates hippocampal injury in mice after SE, which may be associated with the downregulation of miR-497 and cleaved caspase-3 and the upregulation of Bcl-2. PMID:27588062

  16. Cholesterol metabolite cholestane-3β,5α,6β-triol suppresses epileptic seizures by negative modulation of voltage-gated sodium channels.

    PubMed

    Tang, Lipeng; Wang, Youqiong; Leng, Tiandong; Sun, Huanhuan; Zhou, Yuehan; Zhu, Wenbo; Qiu, Pengxin; Zhang, Jingxia; Lu, Bingzheng; Yan, Min; Chen, Wenli; Su, Xinwen; Yin, Wei; Huang, Yijun; Hu, Haiyan; Yan, Guangmei

    2015-06-01

    Imbalance of excitation and inhibition in neurons is implicated in the pathogenesis of epilepsy. Voltage-gated sodium channels, which play a vital role in regulating neuronal excitability, are one of the major targets for developing anti-epileptic drugs. Here we provide evidence that cholestane-3β,5α,6β-triol (triol), a major metabolic oxysterol of cholesterol, is an effective state-dependent negative sodium channels modulator. Triol reduced Na(+) current density in a concentration-dependent manner. 10 μM triol shifted steady-state/fast/slow inactivation curves of sodium channels toward the hyperpolarizing direction. Additionally, triol reduced voltage-gated sodium currents in a voltage- and frequency-dependent manner. In a kainic acid-induced seizures mouse model, triol (25 mg/kg) significantly increased the latency of seizure onset and attenuated seizure severity. Our findings provide novel insights for understanding the modulatory role of a small molecular oxysterol on voltage-gated sodium channels and suggest triol may represent a novel and promising candidate for epilepsy intervention. PMID:25578735

  17. All together now: Analogies between chimera state collapses and epileptic seizures

    NASA Astrophysics Data System (ADS)

    Andrzejak, Ralph G.; Rummel, Christian; Mormann, Florian; Schindler, Kaspar

    2016-03-01

    Conceptually and structurally simple mathematical models of coupled oscillator networks can show a rich variety of complex dynamics, providing fundamental insights into many real-world phenomena. A recent and not yet fully understood example is the collapse of coexisting synchronous and asynchronous oscillations into a globally synchronous motion found in networks of identical oscillators. Here we show that this sudden collapse is promoted by a further decrease of synchronization, rather than by critically high synchronization. This strikingly counterintuitive mechanism can be found also in nature, as we demonstrate on epileptic seizures in humans. Analyzing spatiotemporal correlation profiles derived from intracranial electroencephalographic recordings (EEG) of seizures in epilepsy patients, we found a pronounced decrease of correlation at the seizure onsets. Applying our findings in a closed-loop control scheme to models of coupled oscillators in chimera states, we succeed in both provoking and preventing outbreaks of global synchronization. Our findings not only advance the understanding of networks of coupled dynamics but can open new ways to control them, thus offering a vast range of potential new applications.

  18. Non-intrusive head movement analysis of videotaped seizures of epileptic origin.

    PubMed

    Mandal, Bappaditya; Eng, How-Lung; Lu, Haiping; Chan, Derrick W S; Ng, Yen-Ling

    2012-01-01

    In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients' heads are analyzed holistically to infer seizure and normal random movements. The patient does not require to wear any special clothing, markers or sensors, hence it is totally non-intrusive. The user initializes the person-specific skin color and selects few face/head poses in the initial few frames. The system then tracks the head/face and extracts spatio-temporal features. Support vector machines are then used on these features to classify seizure-like movements from normal random movements. Experiments are performed on numerous long hour video sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection. PMID:23367311

  19. All together now: Analogies between chimera state collapses and epileptic seizures

    PubMed Central

    Andrzejak, Ralph G.; Rummel, Christian; Mormann, Florian; Schindler, Kaspar

    2016-01-01

    Conceptually and structurally simple mathematical models of coupled oscillator networks can show a rich variety of complex dynamics, providing fundamental insights into many real-world phenomena. A recent and not yet fully understood example is the collapse of coexisting synchronous and asynchronous oscillations into a globally synchronous motion found in networks of identical oscillators. Here we show that this sudden collapse is promoted by a further decrease of synchronization, rather than by critically high synchronization. This strikingly counterintuitive mechanism can be found also in nature, as we demonstrate on epileptic seizures in humans. Analyzing spatiotemporal correlation profiles derived from intracranial electroencephalographic recordings (EEG) of seizures in epilepsy patients, we found a pronounced decrease of correlation at the seizure onsets. Applying our findings in a closed-loop control scheme to models of coupled oscillators in chimera states, we succeed in both provoking and preventing outbreaks of global synchronization. Our findings not only advance the understanding of networks of coupled dynamics but can open new ways to control them, thus offering a vast range of potential new applications. PMID:26957324

  20. Chronic Trigeminal Nerve Stimulation Protects Against Seizures, Cognitive Impairments, Hippocampal Apoptosis, and Inflammatory Responses in Epileptic Rats.

    PubMed

    Wang, Qian-Qian; Zhu, Li-Jun; Wang, Xian-Hong; Zuo, Jian; He, Hui-Yan; Tian, Miao-Miao; Wang, Lei; Liang, Gui-Ling; Wang, Yu

    2016-05-01

    Trigeminal nerve stimulation (TNS) has recently been demonstrated effective in the treatment of epilepsy and mood disorders. Here, we aim to determine the effects of TNS on epileptogenesis, cognitive function, and the associated hippocampal apoptosis and inflammatory responses. Rats were injected with pilocarpine to produce status epilepticus (SE) and the following chronic epilepsy. After SE induction, TNS treatment was conducted for 4 consecutive weeks. A pilocarpine re-injection was then used to induce a seizure in the epileptic rats. The hippocampal neuronal apoptosis induced by seizure was assessed by TUNEL staining and inflammatory responses by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). The spontaneous recurrent seizure (SRS) number was counted through video monitoring, and the cognitive function assessed through Morris Water Maze (MWM) test. TNS treatment attenuated the SRS attacks and improved the cognitive impairment in epileptic rats. A pilocarpine re-injection resulted in less hippocampal neuronal apoptosis and reduced level of interleukin-1 beta (IL-1β), tumor necrosis factor-α (TNF-α), and microglial activation in epileptic rats with TNS treatment in comparison to the epileptic rats without TNS treatment. It is concluded that TNS treatment shortly after SE not only protected against the chronic spontaneous seizures but also improved cognitive impairments. These antiepileptic properties of TNS may be related to its attenuating effects on hippocampal apoptosis and pro-inflammatory responses. PMID:26973056

  1. An Integrative View of Mechanisms Underlying Generalized Spike-and-Wave Epileptic Seizures and Its Implication on Optimal Therapeutic Treatments

    PubMed Central

    Yan, Boyuan; Li, Peng

    2011-01-01

    Many types of epileptic seizures are characterized by generalized spike-and-wave discharges. In the past, notable effort has been devoted to understanding seizure dynamics and various hypotheses have been proposed to explain the underlying mechanisms. In this paper, by taking an integrative view of the underlying mechanisms, we demonstrate that epileptic seizures can be generated by many different combinations of synaptic strengths and intrinsic membrane properties. This integrative view has important medical implications: the specific state of a patient characterized by a set of biophysical characteristics ultimately determines the optimal therapeutic treatment. Through the same view, we further demonstrate the potentiation effect of rational polypharmacy in the treatment of epilepsy and provide a new angle to resolve the debate on polypharmacy. Our results underscore the need for personalized medicine and demonstrate that computer modeling and simulation may play an important role in assisting the clinicians in selecting the optimal treatment on an individual basis. PMID:21811612

  2. Ngram-Derived Pattern Recognition for the Detection and Prediction of Epileptic Seizures

    PubMed Central

    Eftekhar, Amir; Juffali, Walid; El-Imad, Jamil; Constandinou, Timothy G.; Toumazou, Christofer

    2014-01-01

    This work presents a new method that combines symbol dynamics methodologies with an Ngram algorithm for the detection and prediction of epileptic seizures. The presented approach specifically applies Ngram-based pattern recognition, after data pre-processing, with similarity metrics, including the Hamming distance and Needlman-Wunsch algorithm, for identifying unique patterns within epochs of time. Pattern counts within each epoch are used as measures to determine seizure detection and prediction markers. Using 623 hours of intracranial electrocorticogram recordings from 21 patients containing a total of 87 seizures, the sensitivity and false prediction/detection rates of this method are quantified. Results are quantified using individual seizures within each case for training of thresholds and prediction time windows. The statistical significance of the predictive power is further investigated. We show that the method presented herein, has significant predictive power in up to 100% of temporal lobe cases, with sensitivities of up to 70–100% and low false predictions (dependant on training procedure). The cases of highest false predictions are found in the frontal origin with 0.31–0.61 false predictions per hour and with significance in 18 out of 21 cases. On average, a prediction sensitivity of 93.81% and false prediction rate of approximately 0.06 false predictions per hour are achieved in the best case scenario. This compares to previous work utilising the same data set that has shown sensitivities of up to 40–50% for a false prediction rate of less than 0.15/hour. PMID:24886714

  3. Efficient feature selection using a hybrid algorithm for the task of epileptic seizure detection

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2014-07-01

    Feature selection is a very important aspect in the field of machine learning. It entails the search of an optimal subset from a very large data set with high dimensional feature space. Apart from eliminating redundant features and reducing computational cost, a good selection of feature also leads to higher prediction and classification accuracy. In this paper, an efficient feature selection technique is introduced in the task of epileptic seizure detection. The raw data are electroencephalography (EEG) signals. Using discrete wavelet transform, the biomedical signals were decomposed into several sets of wavelet coefficients. To reduce the dimension of these wavelet coefficients, a feature selection method that combines the strength of both filter and wrapper methods is proposed. Principal component analysis (PCA) is used as part of the filter method. As for wrapper method, the evolutionary harmony search (HS) algorithm is employed. This metaheuristic method aims at finding the best discriminating set of features from the original data. The obtained features were then used as input for an automated classifier, namely wavelet neural networks (WNNs). The WNNs model was trained to perform a binary classification task, that is, to determine whether a given EEG signal was normal or epileptic. For comparison purposes, different sets of features were also used as input. Simulation results showed that the WNNs that used the features chosen by the hybrid algorithm achieved the highest overall classification accuracy.

  4. Effects of A1 receptor agonist/antagonist on spontaneous seizures in pilocarpine-induced epileptic rats.

    PubMed

    Amorim, Beatriz Oliveira; Hamani, Clement; Ferreira, Elenn; Miranda, Maísa Ferreira; Fernandes, Maria José S; Rodrigues, Antonio M; de Almeida, Antônio-Carlos G; Covolan, Luciene

    2016-08-01

    Adenosine is an endogenous anticonvulsant that activates pre- and postsynaptic adenosine A1 receptors. A1 receptor agonists increase the latency for the development of seizures and status epilepticus following pilocarpine administration. Although hippocampal adenosine is increased in the chronic phase of the pilocarpine model, it is not known whether the modulation of A1 receptors may influence the frequency of spontaneous recurrent seizures (SRS). Here, we tested the hypothesis that the A1 receptor agonist RPia ([R]-N-phenylisopropyladenosine) and the A1 antagonist DPCPX (8-Cyclopentyl-1,3-dipropylxanthine) administered to chronic pilocarpine epileptic rats would respectively decrease and increase the frequency of SRS and hippocampal excitability. Four months after Pilo-induced SE, chronic epileptic rats were video-monitored for the recording of SRS before (basal) and after a 2-week treatment with RPia (25μg/kg) or DPCPX (50μg/kg). Following sacrifice, brain slices were studied with electrophysiology. We found that rats given RPia had a 93% nonsignificant reduction in the frequency of seizures compared with their own pretreatment baseline. In contrast, the administration of DPCPX resulted in an 87% significant increase in seizure rate. Nontreated epileptic rats had a similar frequency of seizures along the study. Corroborating our behavioral data, in vitro recordings showed that slices from animals previously given DPCPX had a shorter latency to develop epileptiform activity, longer and higher DC shifts, and higher spike amplitude compared with slices from nontreated Pilo controls. In contrast, smaller spike amplitude was recorded in slices from animals given RPia. In summary, the administration of A1 agonists reduced hippocampal excitability but not the frequency of spontaneous recurrent seizures in chronic epileptic rats, whereas A1 receptor antagonists increased both. PMID:27371881

  5. Simultaneous fMRI and local field potential measurements during epileptic seizures in medetomidine sedated rats using RASER pulse sequence

    PubMed Central

    Airaksinen, Antti M; Niskanen, Juha-Pekka; Chamberlain, Ryan; Huttunen, Joanna K; Nissinen, Jari; Garwood, Michael; Pitkänen, Asla; Gröhn, Olli

    2010-01-01

    Simultaneous electrophysiological and functional magnetic resonance imaging (fMRI) measurements of animal models of epilepsy are methodologically challenging, but essential to better understand abnormal brain activity and hemodynamics during seizures. In the present study, fMRI of medetomidine sedated rats was performed using novel Rapid Acquisition by Sequential Excitation and Refocusing (RASER) fast imaging pulse sequence and simultaneous local field potential (LFP) measurements during kainic acid (KA) induced seizures. The image distortion caused by the hippocampal measuring electrode was clearly seen in echo planar imaging (EPI) images, whereas no artifact was seen in RASER images. Robust blood oxygenation level dependent (BOLD) responses were observed in the hippocampus during KA induced seizures. The recurrent epileptic seizures were detected in the LFP signal after KA injection. The presented combination of deep electrode LFP measurements and fMRI under medetomidine anesthesia, that does not significantly suppress KA induced seizures, provides a unique tool for studying abnormal brain activity in rats. PMID:20725933

  6. Hardware for seizure prediction: towards wearable devices to support epileptic people.

    PubMed

    Castellaro, Cipriano; Favaro, Gianpietro; Salemi, Giovanni; Sarto, Matteo; Rizzo, Nicola

    2011-01-01

    This paper presents the hardware developed for the EPILEPSIAE project (www.epilepsiae.eu), focused on epileptic seizure prediction. A portable low power acquisition system for EEG signals, called LTM-EU (Long Term Monitoring), with 64 channels and 2048 Hz sampling rate each and a safe (high isolation) PC interface on a PCIe bus specifically designed for this task, is described. The acquisition system, designed for a rapid commercialization, though used for research purposes, got the CE certification. The signal from the patient, on each channel, is amplified, converted in digital form and stored into a local flash memory (SD-MMC, 4 GB). Data are then formatted into a serial stream at 4 Mb/s and sent through a half-duplex RS485 link to the host where a specifically designed PCIe (BQPCIe) interface receive them and release the information to the OS (Windows or Linux). The amplifier runs with a couple of AA battery for more than 15 hours (300 mW). If a wireless link is established (Bluetooth), a bandwidth limited stream of data (or a subset of channels) is sent for monitoring purposes. The mission is to support the researchers of the consortium with a suitable hardware to have a real time seizure prediction system for algorithms tests. In the experimental phase all algorithms run on a portable PC, wire or wireless connected to the acquisition system. PMID:22254635

  7. Epileptic Seizure Prediction based on Ratio and Differential Linear Univariate Features

    PubMed Central

    Rasekhi, Jalil; Mollaei, Mohammad Reza Karami; Bandarabadi, Mojtaba; Teixeira, César A.; Dourado, António

    2015-01-01

    Bivariate features, obtained from multichannel electroencephalogram recordings, quantify the relation between different brain regions. Studies based on bivariate features have shown optimistic results for tackling epileptic seizure prediction problem in patients suffering from refractory epilepsy. A new bivariate approach using univariate features is proposed here. Differences and ratios of 22 linear univariate features were calculated using pairwise combination of 6 electroencephalograms channels, to create 330 differential, and 330 relative features. The feature subsets were classified using support vector machines separately, as one of the two classes of preictal and nonpreictal. Furthermore, minimum Redundancy Maximum Relevance feature reduction method is employed to improve the predictions and reduce the number of false alarms. The studies were carried out on features obtained from 10 patients. For reduced subset of 30 features and using differential approach, the seizures were on average predicted in 60.9% of the cases (28 out of 46 in 737.9 h of test data), with a low false prediction rate of 0.11 h−1. Results of bivariate approaches were compared with those achieved from original linear univariate features, extracted from 6 channels. The advantage of proposed bivariate features is the smaller number of false predictions in comparison to the original 22 univariate features. In addition, reduction in feature dimension could provide a less complex and the more cost-effective algorithm. Results indicate that applying machine learning methods on a multidimensional feature space resulting from relative/differential pairwise combination of 22 univariate features could predict seizure onsets with high performance. PMID:25709936

  8. Neuroprotective effects of trans-caryophyllene against kainic acid induced seizure activity and oxidative stress in mice.

    PubMed

    Liu, Hao; Song, Zhi; Liao, Daguang; Zhang, Tianyi; Liu, Feng; Zhuang, Kai; Luo, Kui; Yang, Liang

    2015-01-01

    Trans-caryophyllene (TC), a component of essential oil found in many flowering plants, has shown its neuroprotective effects in various neurological disorders. However, the effects of TC on epilepsy haven't been reported before. In this study, we investigated the effect of TC on kainic acid-induced seizure activity caused by oxidative stress and pro-inflammation. We found that TC pretreatment significantly decreased seizure activity score compared to kainic acid treated group. Importantly, TC pretreatment leads to lowering the mortality in kainic acid treated mice. In addition, TC was found to significantly inhibit KA-induced generation of malondialdehyde. TC pretreatment also preserved the activity of GPx, SOD, and CAT. Notably, our data shows that an important property of TC is its capacity to exert cerebral anti-inflammatory effects by mitigating the expression of proinflammatory cytokines, such as TNF-α and IL-1β. These data suggest that TC has a potential protective effect on chemical induced seizure and brain damage. PMID:25417010

  9. Blood-brain barrier changes with kainic acid-induced limbic seizures

    SciTech Connect

    Zucker, D.K.; Wooten, G.F.; Lothman, E.W.

    1983-02-01

    Rats were treated with kainic acid (KA) i.v. to produce increasingly severe limbic seizures that were monitored with a behavioral rating scale. At various times after the induction of seizures, the animals; blood-brain barriers (B-BB) were studied with alpha-(/sup 14/C)aminoisobutyric acid ((/sup 14/C)AIBA) autoradiography. Using optical density ratios, a coefficient was devised to assess the functional integrity of the B-BB in discrete anatomic regions and to quantitatively compare these measurements among different groups of experimental animals. In animals that exhibited only mild seizures, the B-BB was not different from controls. Animals with severe limbic seizures, however, showed alterations. For as long as 2 h after delivery of KA, the B-BB appeared normal; from 2 to 24 h, the permeability to (/sup 14/C)AIBA was markedly increased throughout the brain, especially in limbic regions; from 24 h to 7 days the B-BB returned to normal except for a small residual change in limbic structures. These findings were confirmed with Evans blue dye studies of the B-BB. A correlation between focal accentuation of B-BB alterations and neuropathologic changes was found. These experiments indicted that recurrent limbic seizures may lead to a breakdown in the B-BB independent of systemic metabolic derangements. Marked focal metabolic and electrical changes, however, occurred in several limbic structures several hours before the blood-brain barrier was altered.

  10. Large-Scale Modeling of Epileptic Seizures: Scaling Properties of Two Parallel Neuronal Network Simulation Algorithms

    DOE PAGESBeta

    Pesce, Lorenzo L.; Lee, Hyong C.; Hereld, Mark; Visser, Sid; Stevens, Rick L.; Wildeman, Albert; van Drongelen, Wim

    2013-01-01

    Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determinedmore » the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.« less

  11. Psychogenic non-epileptic seizures: so-called psychiatric comorbidity and underlying defense mechanisms.

    PubMed

    Beghi, Massimiliano; Negrini, Paola Beffa; Perin, Cecilia; Peroni, Federica; Magaudda, Adriana; Cerri, Cesare; Cornaggia, Cesare Maria

    2015-01-01

    In Diagnostic and Statistical Manual of Mental Disorders, fifth edition, psychogenic non-epileptic seizures (PNES) do not have a unique classification as they can be found within different categories: conversion, dissociative, and somatization disorders. The ICD-10, instead, considers PNES within dissociative disorders, merging the dissociative disorders and conversion disorders, although the underlying defense mechanisms are different. The literature data show that PNES are associated with cluster B (mainly borderline) personality disorders and/or to people with depressive or anxiety disorders. Defense mechanisms in patients with PNES with a prevalence of anxious/depressive symptoms are of "neurotic" type; their goal is to lead to a "split", either vertical (dissociation) or horizontal (repression). The majority of patients with this type of PNES have alexithymia traits, meaning that they had difficulties in feeling or perceiving emotions. In subjects where PNES are associated with a borderline personality, in which the symbolic function is lost, the defense mechanisms are of a more archaic nature (denial). PNES with different underlying defense mechanisms have different prognoses (despite similar severity of PNES) and need usually a different treatment (pharmacological or psychological). Thus, it appears superfluous to talk about psychiatric comorbidity, since PNES are a different symptomatic expression of specific psychiatric disorders. PMID:26491330

  12. Nav1.1 Modulation by a Novel Triazole Compound Attenuates Epileptic Seizures in Rodents

    PubMed Central

    2015-01-01

    Here, we report the discovery of a novel anticonvulsant drug with a molecular organization based on the unique scaffold of rufinamide, an anti-epileptic compound used in a clinical setting to treat severe epilepsy disorders such as Lennox-Gastaut syndrome. Although accumulating evidence supports a working mechanism through voltage-gated sodium (Nav) channels, we found that a clinically relevant rufinamide concentration inhibits human (h)Nav1.1 activation, a distinct working mechanism among anticonvulsants and a feature worth exploring for treating a growing number of debilitating disorders involving hNav1.1. Subsequent structure–activity relationship experiments with related N-benzyl triazole compounds on four brain hNav channel isoforms revealed a novel drug variant that (1) shifts hNav1.1 opening to more depolarized voltages without further alterations in the gating properties of hNav1.1, hNav1.2, hNav1.3, and hNav1.6; (2) increases the threshold to action potential initiation in hippocampal neurons; and (3) greatly reduces the frequency of seizures in three animal models. Altogether, our results provide novel molecular insights into the rational development of Nav channel-targeting molecules based on the unique rufinamide scaffold, an outcome that may be exploited to design drugs for treating disorders involving particular Nav channel isoforms while limiting adverse effects. PMID:24635129

  13. Wavelet neural networks initialization using hybridized clustering and harmony search algorithm: Application in epileptic seizure detection

    NASA Astrophysics Data System (ADS)

    Zainuddin, Zarita; Lai, Kee Huong; Ong, Pauline

    2013-04-01

    Artificial neural networks (ANNs) are powerful mathematical models that are used to solve complex real world problems. Wavelet neural networks (WNNs), which were developed based on the wavelet theory, are a variant of ANNs. During the training phase of WNNs, several parameters need to be initialized; including the type of wavelet activation functions, translation vectors, and dilation parameter. The conventional k-means and fuzzy c-means clustering algorithms have been used to select the translation vectors. However, the solution vectors might get trapped at local minima. In this regard, the evolutionary harmony search algorithm, which is capable of searching for near-optimum solution vectors, both locally and globally, is introduced to circumvent this problem. In this paper, the conventional k-means and fuzzy c-means clustering algorithms were hybridized with the metaheuristic harmony search algorithm. In addition to obtaining the estimation of the global minima accurately, these hybridized algorithms also offer more than one solution to a particular problem, since many possible solution vectors can be generated and stored in the harmony memory. To validate the robustness of the proposed WNNs, the real world problem of epileptic seizure detection was presented. The overall classification accuracy from the simulation showed that the hybridized metaheuristic algorithms outperformed the standard k-means and fuzzy c-means clustering algorithms.

  14. Reduced tonic inhibition after stroke promotes motor performance and epileptic seizures.

    PubMed

    Jaenisch, Nadine; Liebmann, Lutz; Guenther, Madlen; Hübner, Christian A; Frahm, Christiane; Witte, Otto W

    2016-01-01

    Stroke survivors often recover from motor deficits, either spontaneously or with the support of rehabilitative training. Since tonic GABAergic inhibition controls network excitability, it may be involved in recovery. Middle cerebral artery occlusion in rodents reduces tonic GABAergic inhibition in the structurally intact motor cortex (M1). Transcript and protein abundance of the extrasynaptic GABAA-receptor complex α4β3δ are concurrently reduced (δ-GABAARs). In vivo and in vitro analyses show that stroke-induced glutamate release activates NMDA receptors, thereby reducing KCC2 transporters and down-regulates δ-GABAARs. Functionally, this is associated with improved motor performance on the RotaRod, a test in which mice are forced to move in a similar manner to rehabilitative training sessions. As an adverse side effect, decreased tonic inhibition facilitates post-stroke epileptic seizures. Our data imply that early and sometimes surprisingly fast recovery following stroke is supported by homeostatic, endogenous plasticity of extrasynaptic GABAA receptors. PMID:27188341

  15. Altered regional activity and inter-regional functional connectivity in psychogenic non-epileptic seizures.

    PubMed

    Li, Rong; Li, Yibo; An, Dongmei; Gong, Qiyong; Zhou, Dong; Chen, Huafu

    2015-01-01

    Although various imaging studies have focused on detecting the cerebral function underlying psychogenic non-epileptic seizures (PNES), the nature of PNES remains poorly understood. In this study, we combined the resting state fMRI with fractional amplitude of low-frequency fluctuations (fALFF) and functional connectivity based on the seed voxel linear correlation approach to examine the alterations of regional and inter-regional network cerebral functions in PNES. A total of 20 healthy controls and 18 patients were enrolled. The PNES patients showed significantly increased fALFF mainly in the dorsolateral prefrontal cortex (DLPFC), parietal cortices, and motor areas, as well as decreased fALFF in the triangular inferior frontal gyrus. Thus, our results add to literature suggesting abnormalities of neural synchrony in PNES. Moreover, PNES exhibited widespread inter-regional neural network deficits, including increased (DLPFC, sensorimotor, and limbic system) and decreased (ventrolateral prefrontal cortex) connectivity, indicating that changes in the regional cerebral function are related to remote inter-regional network deficits. Correlation analysis results revealed that the connectivity between supplementary motor area and anterior cingulate cortex correlated with the PNES frequency, further suggesting the skewed integration of synchronous activity could predispose to the occurrence of PNES. Our findings provided novel evidence to investigate the pathophysiological mechanisms of PNES. PMID:26109123

  16. Reduced tonic inhibition after stroke promotes motor performance and epileptic seizures

    PubMed Central

    Jaenisch, Nadine; Liebmann, Lutz; Guenther, Madlen; Hübner, Christian A.; Frahm, Christiane; Witte, Otto W.

    2016-01-01

    Stroke survivors often recover from motor deficits, either spontaneously or with the support of rehabilitative training. Since tonic GABAergic inhibition controls network excitability, it may be involved in recovery. Middle cerebral artery occlusion in rodents reduces tonic GABAergic inhibition in the structurally intact motor cortex (M1). Transcript and protein abundance of the extrasynaptic GABAA-receptor complex α4β3δ are concurrently reduced (δ-GABAARs). In vivo and in vitro analyses show that stroke-induced glutamate release activates NMDA receptors, thereby reducing KCC2 transporters and down-regulates δ-GABAARs. Functionally, this is associated with improved motor performance on the RotaRod, a test in which mice are forced to move in a similar manner to rehabilitative training sessions. As an adverse side effect, decreased tonic inhibition facilitates post-stroke epileptic seizures. Our data imply that early and sometimes surprisingly fast recovery following stroke is supported by homeostatic, endogenous plasticity of extrasynaptic GABAA receptors. PMID:27188341

  17. Properties of functional brain networks correlate with frequency of psychogenic non-epileptic seizures.

    PubMed

    Barzegaran, Elham; Joudaki, Amir; Jalili, Mahdi; Rossetti, Andrea O; Frackowiak, Richard S; Knyazeva, Maria G

    2012-01-01

    Abnormalities in the topology of brain networks may be an important feature and etiological factor for psychogenic non-epileptic seizures (PNES). To explore this possibility, we applied a graph theoretical approach to functional networks based on resting state EEGs from 13 PNES patients and 13 age- and gender-matched controls. The networks were extracted from Laplacian-transformed time-series by a cross-correlation method. PNES patients showed close to normal local and global connectivity and small-world structure, estimated with clustering coefficient, modularity, global efficiency, and small-worldness (SW) metrics, respectively. Yet the number of PNES attacks per month correlated with a weakness of local connectedness and a skewed balance between local and global connectedness quantified with SW, all in EEG alpha band. In beta band, patients demonstrated above-normal resiliency, measured with assortativity coefficient, which also correlated with the frequency of PNES attacks. This interictal EEG phenotype may help improve differentiation between PNES and epilepsy. The results also suggest that local connectivity could be a target for therapeutic interventions in PNES. Selective modulation (strengthening) of local connectivity might improve the skewed balance between local and global connectivity and so prevent PNES events. PMID:23267325

  18. Large-scale modeling of epileptic seizures: scaling properties of two parallel neuronal network simulation algorithms.

    PubMed

    Pesce, Lorenzo L; Lee, Hyong C; Hereld, Mark; Visser, Sid; Stevens, Rick L; Wildeman, Albert; van Drongelen, Wim

    2013-01-01

    Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers. PMID:24416069

  19. Psychogenic non-epileptic seizures: so-called psychiatric comorbidity and underlying defense mechanisms

    PubMed Central

    Beghi, Massimiliano; Negrini, Paola Beffa; Perin, Cecilia; Peroni, Federica; Magaudda, Adriana; Cerri, Cesare; Cornaggia, Cesare Maria

    2015-01-01

    In Diagnostic and Statistical Manual of Mental Disorders, fifth edition, psychogenic non-epileptic seizures (PNES) do not have a unique classification as they can be found within different categories: conversion, dissociative, and somatization disorders. The ICD-10, instead, considers PNES within dissociative disorders, merging the dissociative disorders and conversion disorders, although the underlying defense mechanisms are different. The literature data show that PNES are associated with cluster B (mainly borderline) personality disorders and/or to people with depressive or anxiety disorders. Defense mechanisms in patients with PNES with a prevalence of anxious/depressive symptoms are of “neurotic” type; their goal is to lead to a “split”, either vertical (dissociation) or horizontal (repression). The majority of patients with this type of PNES have alexithymia traits, meaning that they had difficulties in feeling or perceiving emotions. In subjects where PNES are associated with a borderline personality, in which the symbolic function is lost, the defense mechanisms are of a more archaic nature (denial). PNES with different underlying defense mechanisms have different prognoses (despite similar severity of PNES) and need usually a different treatment (pharmacological or psychological). Thus, it appears superfluous to talk about psychiatric comorbidity, since PNES are a different symptomatic expression of specific psychiatric disorders. PMID:26491330

  20. Frontal linear scleroderma en coup de sabre associated with epileptic seizure

    PubMed Central

    Inci, Rahime; Inci, Mehmet Fatih; Ozkan, Fuat; Oztürk, Perihan

    2012-01-01

    Linear scleroderma is a rare variant of localised scleroderma, which is usually seen in childhood and during the adolescent period, and can cause severe functional morbidity as well as cosmetic and psychological problems. Although its ethiopathogenesis is yet obscure, autoimmunity, local ischaemia and injuries, vaccination, irradiation, vitamin K injections, Borrelia burgdorferi and Varicella infections have been incriminated. A 4-year-old girl who had been followed up for about 18 months with diagnosis of epilepsy had a colour discolouration and depression that first appeared 1 year ago and then progressed on her left frontal region. Her CT scan showed a thinning in the frontal bone and depression in the frontal region. These findings are described as ‘en coup de sabre’ a rare form of linear scleroderma localised at the frontal region of the scalp. In this paper, we present clinical and radiological findings of a 4-year-old girl with epileptic seizures that started 1 year before the onset of the lesion of linear scleroderma. PMID:23230261

  1. Frontal linear scleroderma en coup de sabre associated with epileptic seizure.

    PubMed

    Inci, Rahime; Inci, Mehmet Fatih; Ozkan, Fuat; Oztürk, Perihan

    2012-01-01

    Linear scleroderma is a rare variant of localised scleroderma, which is usually seen in childhood and during the adolescent period, and can cause severe functional morbidity as well as cosmetic and psychological problems. Although its ethiopathogenesis is yet obscure, autoimmunity, local ischaemia and injuries, vaccination, irradiation, vitamin K injections, Borrelia burgdorferi and Varicella infections have been incriminated. A 4-year-old girl who had been followed up for about 18 months with diagnosis of epilepsy had a colour discolouration and depression that first appeared 1 year ago and then progressed on her left frontal region. Her CT scan showed a thinning in the frontal bone and depression in the frontal region. These findings are described as 'en coup de sabre' a rare form of linear scleroderma localised at the frontal region of the scalp. In this paper, we present clinical and radiological findings of a 4-year-old girl with epileptic seizures that started 1 year before the onset of the lesion of linear scleroderma. PMID:23230261

  2. Protective role of miR-23b-3p in kainic acid-induced seizure.

    PubMed

    Zhan, Lianbo; Yao, Yi; Fu, Huajun; Li, Zhenghui; Wang, Fengpeng; Zhang, Xiaobin; He, Wencan; Zheng, Weihong; Zhang, Yunwu; Zheng, Honghua

    2016-07-01

    Dysregulation of microRNAs has been proposed to contribute toward epilepsy. The miRNA miR-23b-3p has been found to protect against neuronal apoptosis and the production of reactive oxygen species. In this study, we assessed the potential role of miR-23b-3p in the kainic acid (KA)-induced seizure model. We found that miR-23b-3p levels were significantly decreased in the brain cortex of mice and in cultured mouse primary neurons treated with KA. Importantly, supplement of miR-23b-3p agomir by an intacerebroventricular injection alleviated seizure behaviors and abnormal cortical electroencephalogram recordings in KA-treated mice. Together, these results indicate that miR-23b-3p plays a crucial role in suppressing seizure formation in experimental models of epilepsy and that miR-23b-3p supplement may be a potential anabolic strategy for ameliorating seizure. PMID:27232518

  3. Glutamate transporters alterations in the reorganizing dentate gyrus are associated with progressive seizure activity in chronic epileptic rats.

    PubMed

    Gorter, Jan A; Van Vliet, Erwin A; Proper, Evelien A; De Graan, Pierre N E; Ghijsen, Wim E J M; Lopes Da Silva, Fernando H; Aronica, Eleonora

    2002-01-21

    The expression of glial and neuronal glutamate transporter proteins was investigated in the hippocampal region at different time points after electrically induced status epilepticus (SE) in the rat. This experimental rat model for mesial temporal lobe epilepsy is characterized by cell loss, gliosis, synaptic reorganization, and chronic seizures after a latent period. Despite extensive gliosis, immunocytochemistry revealed only an up-regulation of both glial transporters localized at the outer aspect of the inner molecular layer (iml) in chronic epileptic rats. The neuronal EAAC1 transporter was increased in many somata of individual CA1-3 neurons and granule cells that had survived after SE; this up-regulation was still present in the chronic epileptic phase. In contrast, a permanent decrease of EAAC1 immunoreactivity was observed in the iml of the dentate gyrus. This permanent decrease in EAAC1 expression, which was only observed in rats that experienced progressive spontaneous seizure activity, could lead to abnormal glutamate levels in the iml once new abnormal glutamatergic synaptic contacts are formed by means of sprouted mossy fibers. Considering the steady growth of reorganizing mossy fibers in the iml, the absence of a glutamate reuptake mechanism in this region could contribute to progression of spontaneous seizure activity, which occurs with a similar time course. PMID:11793340

  4. Effects of Vitamin E on seizure frequency, electroencephalogram findings, and oxidative stress status of refractory epileptic patients

    PubMed Central

    Mehvari, Jafar; Motlagh, Fataneh Gholami; Najafi, Mohamad; Ghazvini, Mohammad Reza Aghaye; Naeini, Amirmansour Alavi; Zare, Mohamad

    2016-01-01

    Background: Oxidative stress has been a frequent finding in epileptic patients receiving antiepileptic drugs (AEDs). In this study, the influence of Vitamin E on the antiseizure activity and redox state of patients treated with carbamazepine, sodium valproate, and levetiracetam has been investigated. Materials and Methods: This double-blind, placebo-controlled trial was carried out on 65 epileptic patients with chronic antiepileptic intake. The subjects received 400 IU/day of Vitamin E or placebo for 6 months. Seizure frequency, electroencephalogram (EEG), and redox state markers were measured monthly through the study. Results: Total antioxidant capacity, catalase and glutathione were significantly higher in Vitamin E received group compared with controls (P < 0.05) whereas malodialdehyde levels did not differ between two groups (P < 0.07). Vitamin E administration also caused a significant decrease in the frequency of seizures (P < 0.001) and improved EEG findings (P = 0.001). Of 32 patients in case group, the positive EEG decreased in 16 patients (50%) whereas among 33 patients in control group only 4 patients (12.1%) showed decreased positive EEG. Conclusion: The results of this preliminary study indicate that coadministration of antioxidant Vitamin E with AEDs improves seizure control and reduces oxidative stress. PMID:27099849

  5. Independent Neuronal Origin of Seizures and Behavioral Comorbidities in an Animal Model of a Severe Childhood Genetic Epileptic Encephalopathy.

    PubMed

    Asinof, Samuel K; Sukoff Rizzo, Stacey J; Buckley, Alexandra R; Beyer, Barbara J; Letts, Verity A; Frankel, Wayne N; Boumil, Rebecca M

    2015-06-01

    The childhood epileptic encephalopathies (EE's) are seizure disorders that broadly impact development including cognitive, sensory and motor progress with severe consequences and comorbidities. Recently, mutations in DNM1 (dynamin 1) have been implicated in two EE syndromes, Lennox-Gastaut Syndrome and Infantile Spasms. Dnm1 encodes dynamin 1, a large multimeric GTPase necessary for activity-dependent membrane recycling in neurons, including synaptic vesicle endocytosis. Dnm1Ftfl or "fitful" mice carry a spontaneous mutation in the mouse ortholog of DNM1 and recapitulate many of the disease features associated with human DNM1 patients, providing a relevant disease model of human EE's. In order to examine the cellular etiology of seizures and behavioral and neurological comorbidities, we engineered a conditional Dnm1Ftfl mouse model of DNM1 EE. Observations of Dnm1Ftfl/flox mice in combination with various neuronal subpopulation specific cre strains demonstrate unique seizure phenotypes and clear separation of major neurobehavioral comorbidities from severe seizures associated with the germline model. This demonstration of pleiotropy suggests that treating seizures per se may not prevent severe comorbidity observed in EE associated with dynamin-1 mutations, and is likely to have implications for other genetic forms of EE. PMID:26125563

  6. Effects of brain IKKβ gene silencing by small interfering RNA on P-glycoprotein expression and brain damage in the rat kainic acid-induced seizure model.

    PubMed

    Yu, Nian; Liu, Hao; Zhang, Yan-Fang; Su, Ling-Ying; Liu, Xin-Hong; Li, Le-Chao; Hao, Jin-Bo; Huang, Xian-Jing; Di, Qing

    2014-01-01

    Multidrug resistance mediated by over-expression of P-glycoprotein (P-gp) in brain is an important mechanism accounting for the drug-therapy failure in epilepsy. Over-expression of P-gp in epilepsy rat brain may be regulated by inflammation and nuclear factor-kappa B (NF-κB) activation. Inhibitory κ B kinase subunit β (IKKβ) is an up-stream molecular controlling NF-κB activation. With the small interfering RNA (siRNA) technique and kainic acid (KA)-induced rat epileptic seizure model, the present study was aimed to further evaluate the role of NF-κB inhibition, via blocking IKKβ gene transcription, in the epileptic brain P-gp over-expression, seizure susceptibility, and post-seizure brain damage. siRNA targeting IKKβ was administered to rats via intracerebroventricular injection before seizure induction by KA microinjection; scrambled siRNA was used as control. Brain mRNA and protein levels of IKKβ and P-gp were detected by RT-PCR and immunohistochemistry. NF-κB activity was measured by electrophoretic mobility shift assay. Latency to grade III or V seizure onset was recorded, brain damage was evaluated by neuronal cell counting and epileptiform activity was monitored by electroencephalography. IKKβ siRNA pre-treatment inhibited NF-κB activation and abolished P-gp over-expression in KA-induced epileptic rat brain, accompanied by decreased seizure susceptibility. These findings suggested that epileptogenic-induced P-gp over-expression could be regulated by IKKβ through the NF-κB pathway. PMID:24040792

  7. The similarities between the hallucinations associated with the partial epileptic seizures of the occipital lobe and ball lightning observations

    NASA Astrophysics Data System (ADS)

    Cooray, G. K.; Cooray, V.

    2007-12-01

    Ball Lightning was seen and described since antiquity and recorded in many places. Ball lightning is usually observed during thunderstorms but large number of ball lightning observations is also reported during fine weather without any connection to thunderstorms or lightning. However, so far no one has managed to generate them in the laboratory. It is photographed very rarely and in many cases the authenticity of them is questionable. It is possible that many different phenomena are grouped together and categorized simply as ball lightning. Indeed, the visual hallucinations associated with simple partial epileptic seizures, during which the patient remains conscious, may also be categorized by a patient unaware of his or her condition as ball lightning observation. Such visual hallucinations may occur as a result of an epileptic seizure in the occipital, temporo-occipital or temporal lobes of the cerebrum [1,2,3]. In some cases the hallucination is perceived as a coloured ball moving horizontally from the periphery to the centre of the vision. The ball may appear to be rotating or spinning. The colour of the ball can be red, yellow, blue or green. Sometimes, the ball may appear to have a solid structure surrounded by a thin glow or in other cases the ball appears to generate spark like phenomena. When the ball is moving towards the centre of the vision it may increase its intensity and when it reaches the centre it can 'explode' illuminating the whole field of vision. During the hallucinations the vision is obscured only in the area occupied by the apparent object. The hallucinations may last for 5 to 30 seconds and rarely up to a minute. Occipital seizures may spread into other regions of the brain giving auditory, olfactory and sensory sensations. These sensations could be buzzing sounds, the smell of burning rubber, pain with thermal perception especially in the arms and the face, and numbness and tingling sensation. In some cases a person may experience only

  8. The impact of self-efficacy, alexithymia and multiple traumas on posttraumatic stress disorder and psychiatric co-morbidity following epileptic seizures: a moderated mediation analysis.

    PubMed

    Chung, Man Cheung; Allen, Rachel D; Dennis, Ian

    2013-12-30

    This study investigated the incidence of posttraumatic stress disorder (PTSD) and psychiatric co-morbidity following epileptic seizure, whether alexithymia mediated the relationship between self-efficacy and psychiatric outcomes, and whether the mediational effect was moderated by the severity of PTSD from other traumas. Seventy-one (M=31, F=40) people with a diagnosis of epilepsy recruited from support groups in the United Kingdom completed the Posttraumatic Stress Diagnostic Scale, the Hospital Anxiety and Depression Scale, the Toronto Alexithymia Scale-20 and the Generalized Self-Efficacy Scale. They were compared with 71 people (M=29, F=42) without epilepsy. For people with epilepsy, 51% and 22% met the diagnostic criteria for post-epileptic seizure PTSD and for PTSD following one other traumatic life event respectively. For the control group, 24% met the diagnostic criteria for PTSD following other traumatic life events. The epilepsy group reported significantly more anxiety and depression than the control. Partial least squares (PLS) analysis showed that self-efficacy was significantly correlated with alexithymia, post-epileptic seizure PTSD and psychiatric co-morbidity. Alexithymia was also significantly correlated with post-epileptic seizure PTSD and psychiatric co-morbidity. Mediation analyses confirmed that alexithymia mediated the path between self-efficacy and post-epileptic seizure PTSD and psychiatric co-morbidity. Moderated mediation also confirmed that self-efficacy and PTSD from one other trauma moderated the effect of alexithymia on outcomes. To conclude, people can develop posttraumatic stress disorder symptoms and psychiatric co-morbidity following epileptic seizure. These psychiatric outcomes are closely linked with their belief in personal competence to deal with stressful situations and regulate their own functioning, to process rather than defend against distressing emotions, and with the degree of PTSD from other traumas. PMID:23978734

  9. Dynamics of regional brain activity in epilepsy: a cross-disciplinary study on both intracranial and scalp-recorded epileptic seizures

    NASA Astrophysics Data System (ADS)

    Minadakis, George; Ventouras, Errikos; Gatzonis, Stylianos D.; Siatouni, Anna; Tsekou, Hara; Kalatzis, Ioannis; Sakas, Damianos E.; Stonham, John

    2014-04-01

    Objective. Recent cross-disciplinary literature suggests a dynamical analogy between earthquakes and epileptic seizures. This study extends the focus of inquiry for the applicability of models for earthquake dynamics to examine both scalp-recorded and intracranial electroencephalogram recordings related to epileptic seizures. Approach. First, we provide an updated definition of the electric event in terms of magnitude and we focus on the applicability of (i) a model for earthquake dynamics, rooted in a nonextensive Tsallis framework, (ii) the traditional Gutenberg and Richter law and (iii) an alternative method for the magnitude-frequency relation for earthquakes. Second, we apply spatiotemporal analysis in terms of nonextensive statistical physics and we further examine the behavior of the parameters included in the nonextensive formula for both types of electroencephalogram recordings under study. Main results. We confirm the previously observed power-law distribution, showing that the nonextensive formula can adequately describe the sequences of electric events included in both types of electroencephalogram recordings. We also show the intermittent behavior of the epileptic seizure cycle which is analogous to the earthquake cycles and we provide evidence of self-affinity of the regional electroencephalogram epileptic seizure activity. Significance. This study may provide a framework for the analysis and interpretation of epileptic brain activity and other biological phenomena with similar underlying dynamical mechanisms.

  10. A low-power configurable neural recording system for epileptic seizure detection.

    PubMed

    Qian, Chengliang; Shi, Jess; Parramon, Jordi; Sánchez-Sinencio, Edgar

    2013-08-01

    This paper describes a low-power configurable neural recording system capable of capturing and digitizing both neural action-potential (AP) and fast-ripple (FR) signals. It demonstrates the functionality of epileptic seizure detection through FR recording. This system features a fixed-gain, variable-bandwidth (BW) front-end circuit and a sigma-delta ADC with scalable bandwidth and power consumption. The ADC employs a 2nd-order single-bit sigma-delta modulator (SDM) followed by a low-power decimation filter. Direct impulse-response implementation of a sinc(3) filter and 8-cycle data pipelining in an IIR filter are proposed for the decimation filter design to improve the power and area efficiency. In measurements, the front end exhibits 39.6-dB DC gain, 0.8 Hz to 5.2 kHz of BW, 5.86- μVrms input-referred noise, and 2.4- μW power consumption in AP mode, while showing 38.5-dB DC gain, 250 to 486 Hz of BW, 2.48- μVrms noise, and 4.5- μW power consumption in FR mode. The noise efficiency factor (NEF) is 2.93 and 7.6 for the AP and FR modes, respectively. At 77-dB dynamic range (DR), the ADC has a peak SNR and SNDR of 75.9 dB and 67 dB, respectively, while consuming 2.75-mW power in AP mode. It achieves 78-dB DR, 76.2-dB peak SNR, 73.2-dB peak SNDR, and 588- μW power consumption in FR mode. Both analog and digital power supply voltages are 2.8 V. The chip is fabricated in a standard 0.6- μm CMOS process. The die size is 11.25 mm(2). PMID:23893209

  11. Comparison of the health-related quality of life between epileptic patients with partial and generalized seizure

    PubMed Central

    Ashjazadeh, Nahid; Yadollahikhales, Golnaz; Ayoobzadehshirazi, Anaheed; Sadraii, Nazanin; Hadi, Negin

    2014-01-01

    Background: Epilepsy is defined as recurrent unprovoked febrile seizures, which cause disability in patients. This study aims to assess the health-related quality-of-life (QOL) in epileptic patients in Fars Province, southern Iran. Methods:One-hundred epileptic patients, above 18 years, referred to Shiraz University of Medical Sciences affiliated clinics, were included. The QOL of patients with generalized and partial seizure were assessed using the Iranian valid and reliable Sf-36 questionnaire. Patients’ socio-demographic and their disease features were also compared with each other using a questionnaire. Results: In partial epilepsy group (n = 24), the married patients in social functioning (SF) aspect of QOL (64.42 ± 14.29) (P = 0.024), the patients on antiepileptic drugs (AEDs) monotherapy in both physical functioning (PF) (88.75 ± 11.57) (P = 0.030) and SF (75.00 ± 6.68) (P = 0.022) aspects, the employed patients in PF aspect of QOL (P = 0.023) (91.87 ± 8.83) and those with high income in mental health aspect of QOL (P = 0.036 and correlation coefficient = 0.413) got better scores compared with the partial epileptic patients who were single, on polytherapy, unemployed and had low to moderate income. In generalized epilepsy group (n = 76), patients on AEDs monotherapy in PF aspect of QOL (P = 0.025) (78.33 ± 24.36) and employed patients in vitality aspect (P = 0.023) (57.00 ± 28.25) had better scores. Data were analyzed using SPSS for windows. Conclusion: Epilepsy can affect patient’s life in a number of ways such as their lives, marriage, occupation, and education. We can encourage patients to find a partner, continue higher education and try to find a job. PMID:25295153

  12. Plic-1, a new target in repressing epileptic seizure by regulation of GABAAR function in patients and a rat model of epilepsy.

    PubMed

    Zhang, Yujiao; Li, Zengyou; Gu, Juan; Zhang, Yanke; Wang, Wei; Shen, Hui; Chen, Guojun; Wang, Xuefeng

    2015-12-01

    Dysfunction of γ-aminobutyric acid A (GABAA) receptors (GABAARs) is a prominent factor affecting intractable epilepsy. Plic-1, an ubiquitin-like protein enriched in the inhibitory synapses connecting GABAARs and the ubiquitin protease system (UPS), plays a key role in the modification of GABAAR functions. However, the relationship between Plic-1 and epileptogenesis is not known. In the present study, we aimed to investigate Plic-1 levels in patients with temporal lobe epilepsy, as well as the role of Plic-1 in regulating onset and progression of epilepsy in animal models. We found that Plic-1 expression was significantly decreased in patients with epilepsy as well as pilocarpine- and pentylenetetrazol (PTZ)-induced rat epileptic models. Intrahippocampal injection of the PePα peptide, which disrupts Plic-1 binding to GABAARs, significantly shortened the latency of seizure onset, and increased the seizure severity and duration in these two epileptic models. Overexpressed Plic-1 through lentivirus transfection into a PTZ model resulted in a reduction in both seizure severity and generalized tonic-clonic seizure duration. Whole-cell clamp recordings revealed that the PePα peptide decreased miniature inhibitory postsynaptic currents (mIPSCs) whereas overexpressed Plic-1 increased mIPSCs in the pyramidal neurons of the hippocampus. These effects can be blocked by picrotoxin, a GABAAR inhibitor. Our results indicate that Plic-1 plays an important role in managing epileptic seizures by enhancing seizure inhibition through regulation of GABAARs at synaptic sites. PMID:26415648

  13. NeuroKinect: A Novel Low-Cost 3Dvideo-EEG System for Epileptic Seizure Motion Quantification.

    PubMed

    Cunha, João Paulo Silva; Choupina, Hugo Miguel Pereira; Rocha, Ana Patrícia; Fernandes, José Maria; Achilles, Felix; Loesch, Anna Mira; Vollmar, Christian; Hartl, Elisabeth; Noachtar, Soheyl

    2016-01-01

    motion trajectories when compared to a 2D frame by frame tracking procedure. We conclude that this new approach provides a more comfortable (both for patients and clinical professionals), simpler, faster and lower-cost procedure than previous approaches, therefore providing a reliable tool to quantitatively analyze MOI patterns of epileptic seizures in the routine of EMUs around the world. We hope this study encourages other EMUs to adopt similar approaches so that more quantitative information is used to improve epilepsy diagnosis. PMID:26799795

  14. Reduced glucose utilization underlies seizure protection with dietary therapy in epileptic EL mice.

    PubMed

    Meidenbauer, Joshua J; Roberts, Mary F

    2014-10-01

    Dietary therapy has been used to treat many individuals with epilepsy whose seizures are refractory to antiepileptic drugs. The mechanisms for how dietary therapy confers seizure protection are currently not well understood. We evaluated the acute effects of glucose and β-hydroxybutyrate (the major circulating ketone body) in conferring seizure protection to the EL mouse, a model of multifactorial idiopathic generalized epilepsy. EL mice were fed either an unrestricted standard diet or a calorie-restricted standard diet to achieve a body weight reduction of 20-23%. D-Glucose, 2-deoxy-D-glucose, and β-hydroxybutyrate were supplemented in the drinking water of calorie-restricted mice for 2.5 h prior to seizure testing to simulate the effect of increased glucose availability, decreased glucose utilization, and increased ketone availability, respectively. Seizure susceptibility, body weight, plasma glucose, and β-hydroxybutyrate were measured over a nine-week treatment period. Additionally, excitatory and inhibitory amino acids were measured in the brains of mice using (1)H NMR. Glutamate decarboxylase activity was also measured to evaluate the connection between dietary therapy and brain metabolism. We found that lowering of glucose utilization is necessary to confer seizure protection with long-term (>4 weeks) calorie restriction, whereas increased ketone availability did not affect seizure susceptibility. In the absence of long-term calorie restriction, however, reduced glucose utilization and increased ketone availability did not affect seizure susceptibility. Brain excitatory and inhibitory amino acid content did not change with treatment, and glutamate decarboxylase activity was not associated with seizure susceptibility. We demonstrated that reduced glucose utilization is necessary to confer seizure protection under long-term calorie restriction in EL mice, while acute ketone supplementation did not confer seizure protection. Further studies are needed to

  15. [Effect of citicoline on the development of chronic epileptization of the brain (pentylenetetrazole kindling) and acute seizures reaction of kindled mice C57Bl/6].

    PubMed

    Kuznetzova, L V; Karpova, M N; Zinkovsky, K A; Klishina, N V

    2014-01-01

    In experiments on mice C57Bl/6 was studied effects of citicoline (500 mg/kg, i.p.) on development of chronically epileptization of the brain--pentylenetetrazole (PTZ) kindling (30 mg/kg PTZ, i.p. during 24 days) and on acute generalized seizures (i.v., 1% solution of PTZ with the speed of 0.01 ml/s). It was shown that daily injection of citicoline an hour before the introduction of PTZ had no effect on development of chronically epileptization of the brain --PTZ-kindling (the latency of seizures appearance and their severity). However, citicoIine posses anticonvulsive effects on acute seizures in kindled mice. In animals with increased seizure susceptibility of the brain caused by kindling and severity of seizures 2-3 points injection citicoline after 14 days of kindling had anticonvulsive effect, increasing the threshold clonic seizures. Injection of citicoline during 24 days of kindled animals and severity of seizures 3-5 points caused the increase of thresholds as clonic and tonic phase of seizures with lethal outcome. Thus, the anticonvulsant effect of citicoline more pronounced in the long-term use. PMID:25536784

  16. Gap Junctions as Common Cause of High-Frequency Oscillations and Epileptic Seizures in a Computational Cascade of Neuronal Mass and Compartmental Modeling.

    PubMed

    Helling, Robert M; Koppert, Marc M J; Visser, Gerhard H; Kalitzin, Stiliyan N

    2015-09-01

    High frequency oscillations (HFO) appear to be a promising marker for delineating the seizure onset zone (SOZ) in patients with localization related epilepsy. It remains, however, a purely observational phenomenon and no common mechanism has been proposed to relate HFOs and seizure generation. In this work we show that a cascade of two computational models, one on detailed compartmental scale and a second one on neural mass scale can explain both the autonomous generation of HFOs and the presence of epileptic seizures as emergent properties. To this end we introduce axonal-axonal gap junctions on a microscopic level and explore their impact on the higher level neural mass model (NMM). We show that the addition of gap junctions can generate HFOs and simultaneously shift the operational point of the NMM from a steady state network into bistable behavior that can autonomously generate epileptic seizures. The epileptic properties of the system, or the probability to generate epileptic type of activity, increases gradually with the increase of the density of axonal-axonal gap junctions. We further demonstrate that ad hoc HFO detectors used in previous studies are applicable to our simulated data. PMID:26058401

  17. Epileptic Seizure Detection and Prediction Based on Continuous Cerebral Blood Flow Monitoring--a Review.

    PubMed

    Tewolde, Senay; Oommen, Kalarickal; Lie, Donald Y C; Zhang, Yuanlin; Chyu, Ming-Chien

    2015-01-01

    Epilepsy is the third most common neurological illness, affecting 1% of the world's population. Despite advances in medicine, about 25 to 30% of the patients do not respond to or cannot tolerate the severe side effects of medical treatment, and surgery is not an option for the majority of patients with epilepsy. The objective of this article is to review the current state of research on seizure detection based on cerebral blood flow (CBF) data acquired by thermal diffusion flowmetry (TDF), and CBF-based seizure prediction. A discussion is provided on the applications, advantages, and disadvantages of TDF in detecting and localizing seizure foci, as well as its role in seizure prediction. Also presented are an overview of the present challenges and possible future research directions (along with methodological guidelines) of the CBF-based seizure detection and prediction methods. PMID:26288885

  18. Comparison of personality characteristics on the bear-fedio inventory between patients with epilepsy and those with non-epileptic seizures.

    PubMed

    Tremont, Geoffrey; Smith, Megan M; Bauer, Lyndsey; Alosco, Michael L; Davis, Jennifer D; Blum, Andrew S; LaFrance, W Curt

    2012-01-01

    This study used the Bear-Fedio Personality Inventory (BFI) to compare 41 individuals with temporal lobe epilepsy (TLE) and 37 with psychogenic non-epileptic seizures (NES). Both groups exhibited similar elevations on the BFI, although TLE individuals show greater endorsement of at least one hypergraphia symptom, as compared with those with NES. The correlates of the BFI with demographic and seizure characteristics differed between the groups. These results argue against a specific TLE personality syndrome and suggest that personality characteristics may be related to the experience of having repeated seizures, rather than the specific underlying pathophysiology of temporal lobe epilepsy. PMID:22450613

  19. NeuroKinect: A Novel Low-Cost 3Dvideo-EEG System for Epileptic Seizure Motion Quantification

    PubMed Central

    Cunha, João Paulo Silva; Choupina, Hugo Miguel Pereira; Rocha, Ana Patrícia; Fernandes, José Maria; Achilles, Felix; Loesch, Anna Mira; Vollmar, Christian; Hartl, Elisabeth; Noachtar, Soheyl

    2016-01-01

    body motion trajectories when compared to a 2D frame by frame tracking procedure. We conclude that this new approach provides a more comfortable (both for patients and clinical professionals), simpler, faster and lower-cost procedure than previous approaches, therefore providing a reliable tool to quantitatively analyze MOI patterns of epileptic seizures in the routine of EMUs around the world. We hope this study encourages other EMUs to adopt similar approaches so that more quantitative information is used to improve epilepsy diagnosis. PMID:26799795

  20. Cannabidiol Post-Treatment Alleviates Rat Epileptic-Related Behaviors and Activates Hippocampal Cell Autophagy Pathway Along with Antioxidant Defense in Chronic Phase of Pilocarpine-Induced Seizure.

    PubMed

    Hosseinzadeh, Mahshid; Nikseresht, Sara; Khodagholi, Fariba; Naderi, Nima; Maghsoudi, Nader

    2016-04-01

    Abnormal and sometimes severe behavioral and molecular symptoms are usually observed in epileptic humans and animals. To address this issue, we examined the behavioral and molecular aspects of seizure evoked by pilocarpine. Autophagy can promote both cell survival and death, but there are controversial reports about the neuroprotective or neurodegenerative effects of autophagy in seizure. Cannabidiol has anticonvulsant properties in some animal models when used as a pretreatment. In this study, we investigated alteration of seizure scores, autophagy pathway proteins, and antioxidant status in hippocampal cells during the chronic phase of pilocarpine-induced epilepsy after treatment with cannabidiol. Cannabidiol (100 ng, intracerebroventricular injection) delayed the chronic phase of epilepsy. Single administration of cannabidiol during the chronic phase of seizure significantly diminished seizure scores such as mouth clonus, head nodding, monolateral and bilateral forelimb clonus and increased the activity of catalase enzyme and reduced glutathione content. Such a protective effect in the behavioral scores of epileptic rats was also observed after repeated administrations of cannabidiol at the onset of the silent phase. Moreover, the amount of Atg7, conjugation of Atg5/12, Atg12, and LC3II/LC3I ratio increased significantly in epileptic rats treated with repeated injections of cannabidiol. In short, our results suggest that post-treatment of Cannabidiol could enhance the induction of autophagy pathway and antioxidant defense in the chronic phase of epilepsy, which could be considered as the protective mechanisms of cannabidiol in a temporal lobe epilepsy model. PMID:26738731

  1. A Project to Vocationally Rehabilitate Persons with Poorly Controlled Epileptic Seizures.

    ERIC Educational Resources Information Center

    Phelps, William R.

    This three-year pilot program provided an opportunity to work intensively with a small group of severe epileptic clients in a comprehensive rehabilitation center setting. The goals of the program were not only to evaluate intensively and attempt to maximize the individual client's potential for working and living in society through the provision…

  2. A comparison of the cost-effectiveness of treatment of prolonged acute convulsive epileptic seizures in children across Europe

    PubMed Central

    2014-01-01

    In the majority of children and adolescents with epilepsy, optimal drug therapy adequately controls their condition. However, among the remaining patients who are still uncontrolled despite mono-, bi- or tri-therapy with chronic anti-epileptic treatment, a rescue medication is required. In Western Europe, the licensed medications available for first-line treatment of prolonged acute convulsive seizures (PACS) vary widely, and so comparators for clinical and economic evaluation are not consistent. No European guidelines currently exist for the treatment of PACS in children and adolescents and limited evidence is available for the effectiveness of treatments in the community setting. The authors present cost-effectiveness data for BUCCOLAM® (midazolam oromucosal solution) for the treatment of PACS in children and adolescents in the context of the treatment pathway in seven European countries in patients from 6 months to 18 years. For each country, the health economic model consisted of a decision tree, with decision nodes informed by clinical data and expert opinion obtained via a Delphi methodology. The events modelled are those associated with a patient experiencing a seizure in the community setting. The model assessed the likelihood of medication being administered successfully and of seizure cessation. The associated resource use was also modelled, and ambulance call-outs and hospitalisations were considered. The patient’s quality of life was estimated by clinicians, who completed a five-level EuroQol five dimensions questionnaire from the perspective of a child or adolescent suffering a seizure. Despite differences in current therapy, treatment patterns and healthcare costs in all countries assessed, BUCCOLAM was shown to be cost saving and offered increased health-related benefits for patients in the treatment of PACS compared with the current local standard of care. PMID:24949280

  3. TNF-Overexpression in Borna Disease Virus-Infected Mouse Brains Triggers Inflammatory Reaction and Epileptic Seizures

    PubMed Central

    Eisel, Ulrich L. M.; Herzog, Sibylle; Richt, Jürgen A.; Baumgärtner, Wolfgang; Herden, Christiane

    2012-01-01

    Proinflammatory state of the brain increases the risk for seizure development. Neonatal Borna disease virus (BDV)-infection of mice with neuronal overexpression of tumor necrosis factor-α (TNF) was used to investigate the complex relationship between enhanced cytokine levels, neurotropic virus infection and reaction pattern of brain cells focusing on its role for seizure induction. Viral antigen and glial markers were visualized by immunohistochemistry. Different levels of TNF in the CNS were provided by the use of heterozygous and homozygous TNF overexpressing mice. Transgenic TNF, total TNF (native and transgenic), TNF-receptor (TNFR1, TNFR2), IL-1 and N-methyl-D-aspartate (NMDA)-receptor subunit 2B (NR2B) mRNA values were measured by real time RT-PCR. BDV-infection of TNF-transgenic mice resulted in non-purulent meningoencephalitis accompanied by epileptic seizures with a higher frequency in homozygous animals. This correlated with lower weight gain, stronger degree and progression of encephalitis and early, strong microglia activation in the TNF-transgenic mice, most obviously in homozygous animals. Activation of astroglia could be more intense and associated with an unusual hypertrophy in the transgenic mice. BDV-antigen distribution and infectivity in the CNS was comparable in TNF-transgenic and wild-type animals. Transgenic TNF mRNA-expression was restricted to forebrain regions as the transgene construct comprised the promoter of NMDA-receptor subunit2B and induced up-regulation of native TNF mRNA. Total TNF mRNA levels did not increase significantly after BDV-infection in the brain of transgenic mice but TNFR1, TNFR2 and IL-1 mRNA values, mainly in the TNF overexpressing brain areas. NR2B mRNA levels were not influenced by transgene expression or BDV-infection. Neuronal TNF-overexpression combined with BDV-infection leads to cytokine up-regulation, CNS inflammation and glial cell activation and confirmed the presensitizing effect of elevated cytokine

  4. Supernumerary phantom limb as a rare symptom of epileptic seizures--case report and literature review.

    PubMed

    Millonig, Alban; Bodner, Thomas; Donnemiller, Eveline; Wolf, Elisabeth; Unterberger, Iris

    2011-08-01

    Supernumerary phantom limbs, that is, the awareness of an illusory extra limb is a fascinating neurologic symptom that has been described in a number of neurologic diseases including stroke, spinal injury, and epilepsy. Herein we report a case of a 70-year-old male patient with new-onset focal seizures with left-sided supernumerary phantom arm and leg as the only seizure manifestation. Ictal single-photon emission computed tomography (SPECT) revealed a hyperperfusion in the right temporoparietal junction and allowed localization of the seizure-onset zone. This report is accompanied by a discussion of phenomenology and terminology in the context of existing literature. PMID:21740418

  5. Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection.

    PubMed

    Bogaarts, J G; Gommer, E D; Hilkman, D M W; van Kranen-Mastenbroek, V H J M; Reulen, J P H

    2016-08-01

    Automated seizure detection is a valuable asset to health professionals, which makes adequate treatment possible in order to minimize brain damage. Most research focuses on two separate aspects of automated seizure detection: EEG feature computation and classification methods. Little research has been published regarding optimal training dataset composition for patient-independent seizure detection. This paper evaluates the performance of classifiers trained on different datasets in order to determine the optimal dataset for use in classifier training for automated, age-independent, seizure detection. Three datasets are used to train a support vector machine (SVM) classifier: (1) EEG from neonatal patients, (2) EEG from adult patients and (3) EEG from both neonates and adults. To correct for baseline EEG feature differences among patients feature, normalization is essential. Usually dedicated detection systems are developed for either neonatal or adult patients. Normalization might allow for the development of a single seizure detection system for patients irrespective of their age. Two classifier versions are trained on all three datasets: one with feature normalization and one without. This gives us six different classifiers to evaluate using both the neonatal and adults test sets. As a performance measure, the area under the receiver operating characteristics curve (AUC) is used. With application of FBC, it resulted in performance values of 0.90 and 0.93 for neonatal and adult seizure detection, respectively. For neonatal seizure detection, the classifier trained on EEG from adult patients performed significantly worse compared to both the classifier trained on EEG data from neonatal patients and the classier trained on both neonatal and adult EEG data. For adult seizure detection, optimal performance was achieved by either the classifier trained on adult EEG data or the classifier trained on both neonatal and adult EEG data. Our results show that age

  6. Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure.

    PubMed

    Esmekaya, Meric Arda; Tuysuz, Mehmet Zahid; Tomruk, Arın; Canseven, Ayse G; Yücel, Engin; Aktuna, Zuhal; Keskil, Semih; Seyhan, Nesrin

    2016-09-01

    The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15min cellular phone radiation+PTZ treatment+30min cellular phone radiation, Group III: 30min cellular phone radiation+PTZ treatment+30min cellular phone radiation. The RF radiation was produced by a 900MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain. PMID:26836107

  7. Rat epileptic seizures evoked by BmK {alpha}IV and its possible mechanisms involved in sodium channels

    SciTech Connect

    Chai Zhifang; Bai Zhantao; Zhang Xuying; Liu Tong; Pang Xueyan; Ji Yonghua . E-mail: yhji@server.shcnc.ac.cn

    2007-05-01

    This study showed that rat unilateral intracerebroventricular injection of BmK {alpha}IV, a sodium channel modulator derived from scorpion Buthus martensi Karsch, induced clusters of spikes, epileptic discharges and convulsion-related behavioral changes. BmK {alpha}IV potently promoted the release of endogenous glutamate from rat cerebrocortical synaptosomes. In vitro examination of the effect of BmK {alpha}IV on intrasynaptosomal free calcium concentration [Ca{sup 2+}]{sub i} and sodium concentration [Na{sup +}]{sub i} revealed that BmK {alpha}IV-evoked glutamate release from synaptosomes was associated with an increase in Ca{sup 2+} and Na{sup +} influx. Moreover, BmK {alpha}IV-mediated glutamate release and ion influx was completely blocked by tetrodotoxin, a blocker of sodium channel. Together, these results suggest that the induction of BmK {alpha}IV-evoked epileptic seizures may be involved in the modulation of BmK {alpha}IV on tetrodotoxin-sensitive sodium channels located on the nerve terminal, which subsequently enhances the Ca{sup 2+} influx to cause an increase of glutamate release. These findings may provide some insight regarding the mechanism of neuronal action of BmK {alpha}IV in the central nervous system for understanding epileptogenesis involved in sodium channels.

  8. Epileptic seizure onset detection based on EEG and ECG data fusion.

    PubMed

    Qaraqe, Marwa; Ismail, Muhammad; Serpedin, Erchin; Zulfi, Haneef

    2016-05-01

    This paper presents a novel method for seizure onset detection using fused information extracted from multichannel electroencephalogram (EEG) and single-channel electrocardiogram (ECG). In existing seizure detectors, the analysis of the nonlinear and nonstationary ECG signal is limited to the time-domain or frequency-domain. In this work, heart rate variability (HRV) extracted from ECG is analyzed using a Matching-Pursuit (MP) and Wigner-Ville Distribution (WVD) algorithm in order to effectively extract meaningful HRV features representative of seizure and nonseizure states. The EEG analysis relies on a common spatial pattern (CSP) based feature enhancement stage that enables better discrimination between seizure and nonseizure features. The EEG-based detector uses logical operators to pool SVM seizure onset detections made independently across different EEG spectral bands. Two fusion systems are adopted. In the first system, EEG-based and ECG-based decisions are directly fused to obtain a final decision. The second fusion system adopts an override option that allows for the EEG-based decision to override the fusion-based decision in the event that the detector observes a string of EEG-based seizure decisions. The proposed detectors exhibit an improved performance, with respect to sensitivity and detection latency, compared with the state-of-the-art detectors. Experimental results demonstrate that the second detector achieves a sensitivity of 100%, detection latency of 2.6s, and a specificity of 99.91% for the MAJ fusion case. PMID:27057745

  9. Seizures

    MedlinePlus

    ... minutes The person does not awaken or have normal behavior after a seizure Another seizure starts soon after a seizure ends The person had a seizure in water The person is pregnant, injured, or has diabetes ...

  10. Seizures

    MedlinePlus

    ... two or more seizures may be diagnosed with epilepsy , also known as seizure disorder. Seizure Basics Under ... over and over might indicate the ongoing condition epilepsy . Febrile seizures can happen in children younger than ...

  11. Seizures

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy First Aid: Seizures KidsHealth > For Parents > First Aid: Seizures Print A A A Text Size en ... Seizures Febrile Seizures Brain and Nervous System Epilepsy First Aid: Febrile Seizures Word! Seizure Epilepsy Epilepsy Contact Us ...

  12. Epileptic seizures as a manifestation of cow's milk allergy: a studied relationship and description of our pediatric experience.

    PubMed

    Falsaperla, Raffaele; Pavone, Piero; Miceli Sopo, Stefano; Mahmood, Fahad; Scalia, Ferdinando; Corsello, Giovanni; Lubrano, Riccardo; Vitaliti, Giovanna

    2014-12-01

    Adverse reactions after ingestion of cow's milk proteins can occur at any age, from birth and even amongst exclusively breast-fed infants, although not all of these are hypersensitivity reactions. The most common presentations related to cow's milk protein allergy are skin reactions, failure to thrive, anaphylaxis as well as gastrointestinal and respiratory disorders. In addition, several cases of cow's milk protein allergy in the literature have documented neurological involvement, manifesting with convulsive seizures in children. This may be due to CNS spread of a peripheral inflammatory response. Furthermore, there is evidence that pro-inflammatory cytokines are responsible for disrupting the blood-brain barrier, causing focal CNS inflammation thereby triggering seizures, although further studies are needed to clarify the pathogenic relationship between atopy and its neurological manifestations. This review aims to analyze current published data on the link between cow's milk protein allergy and epileptic events, highlighting scientific evidence for any potential pathogenic mechanism and describing our clinical experience in pediatrics. PMID:25394911

  13. Automatic Epileptic Seizure Detection Using Scalp EEG and Advanced Artificial Intelligence Techniques

    PubMed Central

    2015-01-01

    The epilepsies are a heterogeneous group of neurological disorders and syndromes characterised by recurrent, involuntary, paroxysmal seizure activity, which is often associated with a clinicoelectrical correlate on the electroencephalogram. The diagnosis of epilepsy is usually made by a neurologist but can be difficult to be made in the early stages. Supporting paraclinical evidence obtained from magnetic resonance imaging and electroencephalography may enable clinicians to make a diagnosis of epilepsy and investigate treatment earlier. However, electroencephalogram capture and interpretation are time consuming and can be expensive due to the need for trained specialists to perform the interpretation. Automated detection of correlates of seizure activity may be a solution. In this paper, we present a supervised machine learning approach that classifies seizure and nonseizure records using an open dataset containing 342 records. Our results show an improvement on existing studies by as much as 10% in most cases with a sensitivity of 93%, specificity of 94%, and area under the curve of 98% with a 6% global error using a k-class nearest neighbour classifier. We propose that such an approach could have clinical applications in the investigation of patients with suspected seizure disorders. PMID:25710040

  14. Aspartame has no effect on seizures or epileptiform discharges in epileptic children.

    PubMed

    Shaywitz, B A; Anderson, G M; Novotny, E J; Ebersole, J S; Sullivan, C M; Gillespie, S M

    1994-01-01

    The effects of aspartame (L-aspartyl-L-phenylalanine methyl ester; APM) on the neurological status of children with well-documented seizures were examined in a randomized, double-blind, placebo-controlled, crossover study. We report on 10 children (5 boys, 5 girls, ages 5-13 yr) who were tested for 2 weeks each on APM and placebo (single morning dose, 34 mg/kg). Seven children had generalized convulsions with 4 also having absence episodes. One child had absence seizures and 2 had complex partial seizures only. On each arm of the study, children were admitted to the hospital for a standard 21-lead electroencephalogram (EEG), continuous 24-hour cassette EEG, and determination of biochemical variables in plasma and urine. Subjects completed the Subjects Treatment Emergent Symptoms Scale (STESS) and parents the Conners Behavior Rating Scale. There were no significant differences between APM and placebo in the standard EEG or 24-hour EEG. No differences were noted for the STESS or the Conners ratings, and no differences were noted for any of the biochemical measures (except for expected increases in phenylalanine and tyrosine after APM). Our findings indicate that, in this group of vulnerable children, APM does not provoke seizures. PMID:7506878

  15. Lamotrigine positively affects the development of psychiatric comorbidity in epileptic animals, while psychiatric comorbidity aggravates seizures.

    PubMed

    Russo, Emilio; Chimirri, Serafina; Aiello, Rossana; De Fazio, Salvatore; Leo, Antonio; Rispoli, Vincenzo; Marra, Rosario; Labate, Angelo; De Fazio, Pasquale; Citraro, Rita; De Sarro, Giovambattista

    2013-08-01

    Several clinical and preclinical studies have focused on the relationship between epilepsy and psychological disturbances. Although behavior in some experimental models of epilepsy has been studied, only few of them can be considered as models of epilepsy and mood disorder comorbidity. Since several models of epilepsy or psychiatric disorders are already available, we wondered whether a mixture of the two could experimentally represent a valid alternative to study such comorbidity. Here, we present a possible experimental protocol to study drug effects and physiopathogenesis of psychiatric comorbidity in epileptic animals. Pentylentetrazol-kindled animals were subjected to the chronic mild stress (CMS) procedure; furthermore, we tested the effects of chronic lamotrigine treatment on the development of comorbidity. We found that epileptic-depressed animals showed more pronounced behavioral alterations in comparison to other mice groups, indicating that kindled animals develop more pronounced CMS-induced behavioral alterations than nonepileptic mice; lamotrigine was able to prevent the development of comorbidities such as anxiety, depression-like behavior, and memory impairment. PMID:23773980

  16. Apnoea and bradycardia during epileptic seizures: relation to sudden death in epilepsy.

    PubMed Central

    Nashef, L; Walker, F; Allen, P; Sander, J W; Shorvon, S D; Fish, D R

    1996-01-01

    OBJECTIVE--To record non-invasively ictal cardiorespiratory variables. METHODS--Techniques employed in polysomnography were used in patients with epilepsy undergoing EEG-video recording at a telemetry unit. RESULTS--Apnoea (> 10, range > 10-63, mean 24 s) was seen in 20 of 47 clinical seizures (three secondary generalised, 16 complex partial, and one tonic) and 10 of 17 patients. Apnoea was central in 10 patients, but obstructive apnoea was also recorded in three of 10. Oxyhaemoglobin saturation (SpO2) dropped to less than 85% in 10 seizures (six patients). An increase in heart rate was common (91% of seizures). Bradycardia/sinus arrest was documented in four patients (mean maximum RR interval 5.36, range 2.8-8.6 s) but always in the context of a change in respiratory pattern. CONCLUSION--Ictal apnoea was often seen. The occurrence of bradycardia in association with apnoea suggests the involvement of cardiorespiratory reflexes. Similar mechanisms may operate in cases of sudden death in epilepsy. PMID:8609507

  17. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Rennie, C. J.; Rowe, D. L.

    2002-04-01

    Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms-mainly slow wave, delta, theta, alpha, and sleep spindle-with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.

  18. Bilateral Femoral Neck Fractures in A Young Patient Suffering from Hypophosphatasia, Due to A First Time Epileptic Seizure

    PubMed Central

    Sharma, N; Bache, E; Clare, T

    2015-01-01

    Introduction: We report a case of an adolescent sustaining bilateral femoral neck fractures due to a first time epileptic seizure, as a result of expansion of his known syrinx. Case Report: A 19-year-old patient suffering from hypophosphatasia (HPP), Arnold-Chiari malformation, and a ventriculoperitoneal shunt sustained a trivial fall with profound pain and an inability to mobilize. Radiographs demonstrated a right-sided Garden-4 femoral neck and left-sided multi-fragmentary intracapsular/extracapsular fractures. The patient had previously suffered bilateral proximal femoral shaft fractures, treated with intramedullary unlocked nail fixation that was still in situ. Operative treatment with an exchange to Synthes Adolescent Lateral Recon nail was performed on the right with two Recon screws inserted into the femoral head. On the left, the existing Pedinail was preserved with an additional single screw inserted into the femoral head. In addition, 3 months of non-mobilization was required for adequate bone healing. After 1-year from time of injury, there is no avascular necrosis on radiographs and the patient is mobilizing pain-free. Conclusion: Patients with hypophosphatasia have delayed bone healing. We recommend surgical fixation with an intramedullary device and periods of non-mobilization until there is radiographical evidence of adequate bone healing. PMID:27299074

  19. Online Epileptic Seizure Prediction Using Wavelet-Based Bi-Phase Correlation of Electrical Signals Tomography.

    PubMed

    Vahabi, Zahra; Amirfattahi, Rasoul; Shayegh, Farzaneh; Ghassemi, Fahimeh

    2015-09-01

    Considerable efforts have been made in order to predict seizures. Among these methods, the ones that quantify synchronization between brain areas, are the most important methods. However, to date, a practically acceptable result has not been reported. In this paper, we use a synchronization measurement method that is derived according to the ability of bi-spectrum in determining the nonlinear properties of a system. In this method, first, temporal variation of the bi-spectrum of different channels of electro cardiography (ECoG) signals are obtained via an extended wavelet-based time-frequency analysis method; then, to compare different channels, the bi-phase correlation measure is introduced. Since, in this way, the temporal variation of the amount of nonlinear coupling between brain regions, which have not been considered yet, are taken into account, results are more reliable than the conventional phase-synchronization measures. It is shown that, for 21 patients of FSPEEG database, bi-phase correlation can discriminate the pre-ictal and ictal states, with very low false positive rates (FPRs) (average: 0.078/h) and high sensitivity (100%). However, the proposed seizure predictor still cannot significantly overcome the random predictor for all patients. PMID:26126613

  20. Overtightening of halo pins resulting in intracranial penetration, pneumocephalus, and epileptic seizure.

    PubMed

    Glover, Alexander W; Zakaria, Rasheed; May, Paul; Barrett, Chris

    2013-01-01

    A 60-year-old man sustained an undisplaced type III odontoid fracture following a fall down a full flight of stairs. His medical history was remarkable for a partial pancreatectomy and splenectomy in 2006 for chronic pancreatitis. This had rendered him diabetic, on insulin, and he required long-term administration of penicillin V. The fracture was treated with a halo vest, and, unknowing of its potentially serious consequences, the patient continued to tighten the halo pins himself. He presented 1 month later following a witnessed seizure. A computed tomography scan was performed, which demonstrated 2 cranial perforations, with the halo pins penetrating the cranium and resultant pneumocephalus. He was started on antiepileptic medication and was placed in a pinless halo system. He had no further seizures and has made an uneventful neurological recovery. This paper serves to highlight the potential complications which may arise from the use of a halo vest. Proper patient education is essential to avoid these serious yet avoidable events, and patients with low bone density and the immunosuppressed should be monitored closely. PMID:25694903

  1. Low-frequency repetitive transcranial magnetic simulation prevents chronic epileptic seizure.

    PubMed

    Wang, Yinxu; Wang, Xiaoming; Ke, Sha; Tan, Juan; Hu, Litian; Zhang, Yaodan; Cui, Wenjuan

    2013-09-25

    Although low-frequency repetitive transcranial magnetic simulation can potentially treat epilepsy, its underlying mechanism remains unclear. This study investigated the influence of low-frequency re-petitive transcranial magnetic simulation on changes in several nonlinear dynamic electroence-phalographic parameters in rats with chronic epilepsy and explored the mechanism underlying petitive transcranial magnetic simulation-induced antiepileptic effects. An epilepsy model was es-tablished using lithium-pilocarpine intraperitoneal injection into adult Sprague-Dawley rats, which were then treated with repetitive transcranial magnetic simulation for 7 consecutive days. Nonlinear electroencephalographic parameters were obtained from the rats at 7, 14, and 28 days post-stimulation. Results showed significantly lower mean correlation-dimension and Kolmogo-rov-entropy values for stimulated rats than for non-stimulated rats. At 28 days, the complexity and point-wise correlation dimensional values were lower in stimulated rats. Low-frequency repetitive transcranial magnetic simulation has suppressive effects on electrical activity in epileptic rats, thus explaining its effectiveness in treating epilepsy. PMID:25206567

  2. Low-frequency repetitive transcranial magnetic simulation prevents chronic epileptic seizure

    PubMed Central

    Wang, Yinxu; Wang, Xiaoming; Ke, Sha; Tan, Juan; Hu, Litian; Zhang, Yaodan; Cui, Wenjuan

    2013-01-01

    Although low-frequency repetitive transcranial magnetic simulation can potentially treat epilepsy, its underlying mechanism remains unclear. This study investigated the influence of low-frequency re-petitive transcranial magnetic simulation on changes in several nonlinear dynamic electroence-phalographic parameters in rats with chronic epilepsy and explored the mechanism underlying petitive transcranial magnetic simulation-induced antiepileptic effects. An epilepsy model was es-tablished using lithium-pilocarpine intraperitoneal injection into adult Sprague-Dawley rats, which were then treated with repetitive transcranial magnetic simulation for 7 consecutive days. Nonlinear electroencephalographic parameters were obtained from the rats at 7, 14, and 28 days post-stimulation. Results showed significantly lower mean correlation-dimension and Kolmogo-rov-entropy values for stimulated rats than for non-stimulated rats. At 28 days, the complexity and point-wise correlation dimensional values were lower in stimulated rats. Low-frequency repetitive transcranial magnetic simulation has suppressive effects on electrical activity in epileptic rats, thus explaining its effectiveness in treating epilepsy. PMID:25206567

  3. A clinical trial of single dose rectal and oral administration of diazepam for the prevention of serial seizures in adult epileptic patients.

    PubMed Central

    Milligan, N M; Dhillon, S; Griffiths, A; Oxley, J; Richens, A

    1984-01-01

    The clinical anticonvulsant efficacy of single dose rectal and oral administration of diazepam 20 mg was examined in two double-blind placebo-controlled trials in adult epileptic patients. All subjects suffered from drug resistant epilepsy and frequently experienced serial seizures. Diazepam was administered rectally as a new experimental suppository formulation immediately after a seizure and was highly effective in preventing recurrent fits within a 24 h observation period (p less than 0.001). Pharmacokinetic studies revealed a wide range of serum diazepam concentrations 60 min after administration of the suppository (mean serum diazepam level 190 +/- 73 (SD ng/ml). In a similar study oral administration of diazepam 20 mg significantly reduced the incidence of serial seizures compared with a placebo (p less than 0.01) and the mean 60 min serum diazepam level was 273 +/- 190 (SD) ng/ml. PMID:6368753

  4. Detection of Epileptic Seizures Using Phase-Amplitude Coupling in Intracranial Electroencephalography.

    PubMed

    Edakawa, Kohtaroh; Yanagisawa, Takufumi; Kishima, Haruhiko; Fukuma, Ryohei; Oshino, Satoru; Khoo, Hui Ming; Kobayashi, Maki; Tanaka, Masataka; Yoshimine, Toshiki

    2016-01-01

    Seizure detection using intracranial electroencephalography (iEEG) contributes to improved treatment of patients with refractory epilepsy. For that purpose, a feature of iEEG to characterize the ictal state with high specificity and sensitivity is necessary. We evaluated the use of phase-amplitude coupling (PAC) of iEEG signals over a period of 24 h to detect the ictal and interictal states. PAC was estimated by using a synchronisation index (SI) for iEEG signals from seven patients with refractory temporal lobe epilepsy. iEEG signals of the ictal state was characterised by a strong PAC between the phase of β and the amplitude of high γ. Furthermore, using SI values, the ictal state was successfully detected with significantly higher accuracy than by using the amplitude of high γ alone. In conclusion, PAC accurately distinguished the ictal state from the interictal state. PMID:27147119

  5. Detection of Epileptic Seizures Using Phase–Amplitude Coupling in Intracranial Electroencephalography

    PubMed Central

    Edakawa, Kohtaroh; Yanagisawa, Takufumi; Kishima, Haruhiko; Fukuma, Ryohei; Oshino, Satoru; Khoo, Hui Ming; Kobayashi, Maki; Tanaka, Masataka; Yoshimine, Toshiki

    2016-01-01

    Seizure detection using intracranial electroencephalography (iEEG) contributes to improved treatment of patients with refractory epilepsy. For that purpose, a feature of iEEG to characterize the ictal state with high specificity and sensitivity is necessary. We evaluated the use of phase–amplitude coupling (PAC) of iEEG signals over a period of 24 h to detect the ictal and interictal states. PAC was estimated by using a synchronisation index (SI) for iEEG signals from seven patients with refractory temporal lobe epilepsy. iEEG signals of the ictal state was characterised by a strong PAC between the phase of β and the amplitude of high γ. Furthermore, using SI values, the ictal state was successfully detected with significantly higher accuracy than by using the amplitude of high γ alone. In conclusion, PAC accurately distinguished the ictal state from the interictal state. PMID:27147119

  6. A new trial liposteroid (dexamethasone palmitate) therapy for intractable epileptic seizures in infancy.

    PubMed

    Yamamoto, Hitoshi; Fukuda, Miho; Miyamoto, Yusaku; Murakami, Hiroshi; Kamiyama, Noriko

    2007-08-01

    West syndrome (WS) is a severe age-dependent intractable epilepsy in infants that frequently results in mental retardation. ACTH or glucocorticoids are among several effective treatments in WS, but the relative advantages and disadvantages of these two therapies are still unknown. In a previous study, liposteroid (LS; dexamethasone palmitate) was used for the treatment of WS and compared with ACTH therapy in relation to therapeutic effect and adverse reactions. In this study, a new regimen of LS therapy was tried for WS and its related syndrome in an attempt to hasten the onset of the therapeutic effect and reduce the relapse rate. A single intravenous injection of LS (0.25mg/kg) was administered 12 times in 1 month (total dosage 3.0mg/kg) to four patients with WS and with post-WS aged 5-25 months, and one patient with Lennox-Gastaut syndrome (post-WS) aged 84 months. All five patients had daily seizures uncontrolled by conventional antiepileptic drugs, such as VPA, CZP or ZNS. Nodding spasm and hypsarrhythmia on EEG disappeared in one patient with WS within four doses. More than 50% decrease in seizures, and EEG improvement, were found in other two patients. No notable effects were seen in the other two patients. There were no clinically significant adverse reactions throughout the therapy. Efficacy can be determined in this new experimental LS therapy earlier than with conventional LS therapy. In this small study, a new protocol for LS therapy could be completed safely. This regimen may be useful for those susceptible to adverse reactions from conventional treatment or those unresponsive to other treatments. PMID:17275235

  7. Combined Low-Intensity Exercise and Ascorbic Acid Attenuates Kainic Acid-Induced Seizure and Oxidative Stress in Mice.

    PubMed

    Kim, Hee-Jae; Song, Wook; Jin, Eun Hee; Kim, Jongkyu; Chun, Yoonseok; An, Eung Nam; Park, Sok

    2016-05-01

    Physical exercise and vitamins such as ascorbic acid (ASC) have been recognized as an effective strategy in neuroprotection and neurorehabilitatioin. However, there is a need to find an efficient treatment regimen that includes ASC and low-intensity exercise to diminish the risk of overtraining and nutritional treatment by attenuating oxidative stress. In the present study, we investigated the combined effect of low-intensity physical exercise (EX) and ASC on kainic acid (KA)-induced seizure activity and oxidative stress in mice. The mice were randomly assigned into groups as follows: "KA only" (n = 11), "ASC + KA" (n = 11), "Ex + KA" (n = 11), "ASC + Ex + KA" (n = 11). In the present study, low intensity of swimming training period lasted 8 weeks and consisted of 30-min sessions daily (three times per week) without tail weighting. Although no preventive effect of low-intensity exercise or ASC on KA seizure occurrence was evident, there was a decrease of seizure activity, seizure development (latency to first seizures), and mortality in "ASC + Ex + KA" compared to "ASC + KA", "Ex + KA", and "KA only" group. In addition, a preventive synergistic coordination of low-intensity exercise and ASC was evident in glutathione peroxidase and superoxide dismutase activity compared to separate treatment. These results suggest that low-intensity exercise and ASC treatment have preventive effects on seizure activity and development with alternation of oxidative status. PMID:26646003

  8. [Seizure].

    PubMed

    Saito, Ayumi; Terayama, Yasuo

    2013-06-01

    Seizure is defined as "a strong shrinkage state of the skeletal muscle which is involuntary, and occurs spasmodically" and it is often accompanied by disturbance of consciousness. The typical disease which causes seizure is epilepsy. But there is many conditions causing seizure. Therefore, diagnosis of epilepsy should be careful. Seizure among eldery increases in an era of an aging population in Japan. The risk of recurrence of seizure or epilepsy in elderly is higher than that in youth. In considering of the treatment of seizure among elderly, differential diagnosis from various condition must be done. PMID:23855204

  9. Tonicity-responsive enhancer binding protein haplodeficiency attenuates seizure severity and NF-κB-mediated neuroinflammation in kainic acid-induced seizures.

    PubMed

    Shin, H J; Kim, H; Heo, R W; Kim, H J; Choi, W S; Kwon, H M; Roh, G S

    2014-07-01

    Kainic acid (KA)-induced seizures followed by neuronal death are associated with neuroinflammation and blood-brain barrier (BBB) leakage. Tonicity-responsive enhancer binding protein (TonEBP) is known as a transcriptional factor activating osmoprotective genes, and in brain, it is expressed in neuronal nuclei. Thus dysregulation of TonEBP may be involved in the pathology of KA-induced seizures. Here we used TonEBP heterozygote (+/-) mice to study the roles of TonEBP. Electroencephalographic study showed that TonEBP (+/-) mice reduced seizure frequency and severity compared with wild type during KA-induced status epilepticus. Immunohistochemistry and western blotting analysis showed that KA-induced neuroinflammation and BBB leakage were dramatically reduced in TonEBP (+/-) mice. Similarly, TonEBP-specific siRNA reduced glutamate-induced death in HT22 hippocampal neuronal cells. TonEBP haplodeficiency prevented KA-induced nuclear translocation of NF-κB p65 and attenuated inflammation. Our findings identify TonEBP as a critical regulator of neuroinflammation and BBB leakage in KA-induced seizures, which suggests TonEBP as a good therapeutic target. PMID:24608792

  10. Mutations in SLC13A5 Cause Autosomal-Recessive Epileptic Encephalopathy with Seizure Onset in the First Days of Life

    PubMed Central

    Thevenon, Julien; Milh, Mathieu; Feillet, François; St-Onge, Judith; Duffourd, Yannis; Jugé, Clara; Roubertie, Agathe; Héron, Delphine; Mignot, Cyril; Raffo, Emmanuel; Isidor, Bertrand; Wahlen, Sandra; Sanlaville, Damien; Villeneuve, Nathalie; Darmency-Stamboul, Véronique; Toutain, Annick; Lefebvre, Mathilde; Chouchane, Mondher; Huet, Frédéric; Lafon, Arnaud; de Saint Martin, Anne; Lesca, Gaetan; El Chehadeh, Salima; Thauvin-Robinet, Christel; Masurel-Paulet, Alice; Odent, Sylvie; Villard, Laurent; Philippe, Christophe; Faivre, Laurence; Rivière, Jean-Baptiste

    2014-01-01

    Epileptic encephalopathy (EE) refers to a clinically and genetically heterogeneous group of severe disorders characterized by seizures, abnormal interictal electro-encephalogram, psychomotor delay, and/or cognitive deterioration. We ascertained two multiplex families (including one consanguineous family) consistent with an autosomal-recessive inheritance pattern of EE. All seven affected individuals developed subclinical seizures as early as the first day of life, severe epileptic disease, and profound developmental delay with no facial dysmorphism. Given the similarity in clinical presentation in the two families, we hypothesized that the observed phenotype was due to mutations in the same gene, and we performed exome sequencing in three affected individuals. Analysis of rare variants in genes consistent with an autosomal-recessive mode of inheritance led to identification of mutations in SLC13A5, which encodes the cytoplasmic sodium-dependent citrate carrier, notably expressed in neurons. Disease association was confirmed by cosegregation analysis in additional family members. Screening of 68 additional unrelated individuals with early-onset epileptic encephalopathy for SLC13A5 mutations led to identification of one additional subject with compound heterozygous mutations of SLC13A5 and a similar clinical presentation as the index subjects. Mutations affected key residues for sodium binding, which is critical for citrate transport. These findings underline the value of careful clinical characterization for genetic investigations in highly heterogeneous conditions such as EE and further highlight the role of citrate metabolism in epilepsy. PMID:24995870

  11. Seizures

    MedlinePlus

    ... defects) Brain tumor (rare) Drug abuse Electric shock Epilepsy Fever (particularly in young children) Head injury Heart ... age. There may be a family history of epilepsy or seizures. If seizures continue repeatedly after the ...

  12. Phase-Amplitude Coupling Is Elevated in Deep Sleep and in the Onset Zone of Focal Epileptic Seizures.

    PubMed

    Amiri, Mina; Frauscher, Birgit; Gotman, Jean

    2016-01-01

    The interactions between different EEG frequency bands have been widely investigated in normal and pathologic brain activity. Phase-amplitude coupling (PAC) is one of the important forms of this interaction where the amplitude of higher frequency oscillations is modulated by the phase of lower frequency activity. Here, we studied the dynamic variations of PAC of high (gamma and ripple) and low (delta, theta, alpha, and beta) frequency bands in patients with focal epilepsy in different sleep stages during the interictal period, in an attempt to see if coupling is different in more or less epileptogenic regions. Sharp activities were excluded to avoid their effect on the PAC. The results revealed that the coupling intensity was generally the highest in stage N3 of sleep and the lowest in rapid eye movement sleep. We also compared the coupling strength in different regions [seizure onset zone (SOZ), exclusively irritative zone, and normal zone]. PAC between high and low frequency rhythms was found to be significantly stronger in the SOZ compared to normal regions. Also, the coupling was generally more elevated in spiking channels outside the SOZ than in normal regions. We also examined how the power in the delta band correlates to the PAC, and found a mild but statistically significant correlation between slower background activity in epileptic channels and the elevated coupling in these channels. The results suggest that an elevated PAC may reflect some fundamental abnormality, even after exclusion of sharp activities and even in the interictal period. PAC may therefore contribute to understanding the underlying dynamics of epileptogenic brain regions. PMID:27536227

  13. Phase-Amplitude Coupling Is Elevated in Deep Sleep and in the Onset Zone of Focal Epileptic Seizures

    PubMed Central

    Amiri, Mina; Frauscher, Birgit; Gotman, Jean

    2016-01-01

    The interactions between different EEG frequency bands have been widely investigated in normal and pathologic brain activity. Phase-amplitude coupling (PAC) is one of the important forms of this interaction where the amplitude of higher frequency oscillations is modulated by the phase of lower frequency activity. Here, we studied the dynamic variations of PAC of high (gamma and ripple) and low (delta, theta, alpha, and beta) frequency bands in patients with focal epilepsy in different sleep stages during the interictal period, in an attempt to see if coupling is different in more or less epileptogenic regions. Sharp activities were excluded to avoid their effect on the PAC. The results revealed that the coupling intensity was generally the highest in stage N3 of sleep and the lowest in rapid eye movement sleep. We also compared the coupling strength in different regions [seizure onset zone (SOZ), exclusively irritative zone, and normal zone]. PAC between high and low frequency rhythms was found to be significantly stronger in the SOZ compared to normal regions. Also, the coupling was generally more elevated in spiking channels outside the SOZ than in normal regions. We also examined how the power in the delta band correlates to the PAC, and found a mild but statistically significant correlation between slower background activity in epileptic channels and the elevated coupling in these channels. The results suggest that an elevated PAC may reflect some fundamental abnormality, even after exclusion of sharp activities and even in the interictal period. PAC may therefore contribute to understanding the underlying dynamics of epileptogenic brain regions. PMID:27536227

  14. Calcification of the pineal gland: relationship to laterality of the epileptic foci in patients with complex partial seizures.

    PubMed

    Sandyk, R

    1992-01-01

    The right and left temporal lobes differ from each other with respect to the rate of intrauterine growth, the timing of maturation, rate of aging, anatomical organization, neurochemistry, metabolic rate, electroencephalographic measures, and function. These functional differences between the temporal lobes underlies the different patterns of psychopathology and endocrine reproductive disturbances noted in patients with temporolimbic epilepsy. The right hemisphere has greater limbic and reticular connections than the left. Since the pineal gland receives direct innervation from the limbic system and the secretion of melatonin is influenced by an input from the reticular system, I propose that lesions in the right temporal lobe have a greater impact on pineal melatonin functions as opposed to those in the left dominant temporal lobe. Consequently, since calcification of the pineal gland is thought to reflect past secretory activity of the gland, I predicted a higher prevalence of pineal calcification (PC) in epileptic patients with right temporal lobe as opposed to those with left temporal lobe foci. To investigate this hypothesis, the prevalence of PC on CT scan was studied in a sample of 70 patients (43 men, 27 women, mean age: 29.2 years, range 9-58; SD = 10.1) with complex partial seizures, of whom 49 (70.0%) had a right temporal lobe focus. PC was present in 51 patients (72.8%) and was unrelated to any of the historical and demographic data surveyed. In the patients with a focus in the right temporal lobe, PC was present in 46 cases (93.8%) as compared to 5 of 21 patients (23.8%) with left temporal lobe foci.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1341678

  15. An Integrative Neurocircuit Perspective on Psychogenic Non-Epileptic Seizures and Functional Movement Disorders: Neural Functional Unawareness

    PubMed Central

    Perez, DL; Dworetzky, BA; Dickerson, BC; Leung, L; Cohn, R; Baslet, G; Silbersweig, DA

    2014-01-01

    Functional Neurological Disorder (conversion disorder) is a neurobehavioral condition frequently encountered by neurologists. Psychogenic Non-Epileptic Seizure (PNES) and Functional Movement Disorder (FMD) patients present to epileptologists and movement disorder specialists respectively, yet neurologists lack a neurobiological perspective through which to understand these enigmatic groups. Observational research studies suggest that PNES and FMD may represent variants of similar (or the same) conditions given that both groups exhibit a female predominance, have increased prevalence of mood-anxiety disorders, frequently endorse prior abuse, and share phenotypic characteristics. In this perspective article, neuroimaging studies in PNES and FMD are reviewed, and discussed using studies of emotional dysregulation, dissociation and psychological trauma in the context of motor control. Convergent neuroimaging findings implicate alterations in brain circuits mediating emotional expression, regulation and awareness (anterior cingulate and ventromedial prefrontal cortices, insula, amygdala, vermis), cognitive control and motor inhibition (dorsal anterior cingulate, dorsolateral prefrontal, inferior frontal cortices), self-referential processing and perceptual awareness (posterior parietal cortex, temporoparietal junction), and motor planning and coordination (supplementary motor area, cerebellum). Striatal-thalamic components of prefrontal-parietal networks may also play a role in pathophysiology. Aberrant medial prefrontal and amygdalar neuroplastic changes mediated by chronic stress may facilitate the development of functional neurological symptoms in a subset of patients. Improved biological understanding of PNES and FMD will likely reduce stigma and aid the identification of neuroimaging biomarkers guiding treatment development, selection and prognosis. Additional research should investigate neurocircuit abnormalities within and across functional neurological disorder

  16. Ketogenic Diet, but Not Polyunsaturated Fatty Acid Diet, Reduces Spontaneous Seizures in Juvenile Rats with Kainic Acid-induced Epilepsy

    PubMed Central

    Dustin, Simone M.; Stafstrom, Carl E.

    2016-01-01

    Background and Purpose: The high-fat, low-carbohydrate ketogenic diet (KD) is effective in many cases of drug-resistant epilepsy, particularly in children. In the classic KD, fats consist primarily of long-chain saturated triglycerides. Polyunsaturated fatty acids (PUFAs), especially the n-3 type, decrease neuronal excitability and provide neuroprotection; pilot human studies have raised the possibility of using PUFAs to control seizures in patients. Methods: To determine the relative roles of the KD and PUFAs in an animal model, we induced epilepsy in juvenile rats (P29–35) using intraperitoneal kainic acid (KA). KA caused status epilepticus in all rats. Two days after KA, rats were randomized to one of 4 dietary groups: Control diet; PUFA diet; KD; or KD plus PUFA. All diets were administered isocalorically at 90% of the rat recommended daily calorie requirement. Spontaneous recurrent seizures (SRS) were assessed for 3 months after diet randomization. Results: Rats receiving the KD or KD-PUFA diet had significantly fewer SRS than those receiving the Control diet or PUFA diet. The PUFA diet did not reduce SRS compared to the Control diet. Conclusions: In the KA epilepsy model, the KD protects against SRS occurrence but dietary enhancement with PUFA does not afford additional protection against spontaneous seizures. PMID:27390673

  17. Domoic acid-induced seizures in California sea lions (Zalophus californianus) are associated with neuroinflammatory brain injury.

    PubMed

    Kirkley, Kelly S; Madl, James E; Duncan, Colleen; Gulland, Frances M; Tjalkens, Ronald B

    2014-11-01

    California sea lions (CSLs) exposed to the marine biotoxin domoic acid (DA) develop an acute or chronic toxicosis marked by seizures and act as sentinels of the disease. Experimental evidence suggests that oxidative stress and neuroinflammation are important mechanisms underlying the seizurogenic potential of environmental toxicants but these pathways are relatively unstudied in CSLs. In the current study, we investigated the role of glutamate-glutamine changes and gliosis in DA-exposed CSLs to better understand the neurotoxic mechanisms occurring during DA toxicity. Sections from archived hippocampi from control and CSLs diagnosed with DA toxicosis were immunofluorescently stained for markers of gliosis, oxidative/nitrative stress and changes in glutamine synthetase (GS). Quantitative assessment revealed increasing loss of microtubule associated protein-2 positive neurons with elevations in 4-hydroxynonenal correlating with chronicity of exposure, whereas the pattern of activated glia expressing nitric oxide synthase 2 and tumor necrosis factor followed pathological severity. There was no significant change in the amount of GS positive cells but there was increased 3-nitrotyrosine in GS expressing cells and in neurons, particularly in animals with chronic DA toxicosis. These changes were consistently seen in the dentate gyrus and in the cornu ammonis (CA) sectors CA3, CA4, and CA1. The results of this study indicate that gliosis and resultant changes in GS are likely important mechanisms in DA-induced seizure that need to be further explored as potential therapies in treating exposed wildlife. PMID:25286249

  18. Evidence for a role of the parafascicular nucleus of the thalamus in the control of epileptic seizures by the superior colliculus

    PubMed Central

    Nail-Boucherie, Karine; Lê-Pham, Bich-Thuy; Gobaille, Serge; Maitre, Michel; Aunis, Dominique; Depaulis, Antoine

    2005-01-01

    Purpose The aim of this study was to investigate whether the nucleus parafascicularis (Pf) of the thalamus could be a relay of the control of epileptic seizures by the superior colliculus (SC). The Pf is one of the main ascending projection of the SC, the disinhibition of which has been shown to suppress seizures in different animal models and has been proposed as the main relay of the nigral control of epilepsy. Methods Rats with genetic absence seizures (Generalized Absence Epilepsy Rat from Strasbourg or GAERS) were used in this study. The effect of bilateral microinjection of picrotoxin, a GABA antagonist, in the SC on the glutamate and GABA extracellular concentration within the Pf was first investigated using microdialysis. In a second experiment, the effect of direct activation of Pf neurons on the occurrence of absence seizures was examined by microinjection of low doses of kainate, a glutamate agonist. Results Bilateral injection of picrotoxin (33 pmol/side) in the SC suppressed spike and wave discharges for 20 min. This treatment resulted in an increase of glutamate but not GABA levels in the Pf during the same time course. Bilateral injection of kainate (35 pmol/side) into the Pf significantly suppressed spike and wave discharges for 20 min, whereas such injection were without effects when at least one the site was located outside the Pf. Conclusions These data suggest that glutamatergic projections to the Pf could be involved in the control of seizures by the SC. Disinhibition of these neurons could lead to seizure suppression and may be involved in the nigral control of epilepsy. PMID:15660780

  19. Human Fetal Brain-Derived Neural Stem/Progenitor Cells Grafted into the Adult Epileptic Brain Restrain Seizures in Rat Models of Temporal Lobe Epilepsy

    PubMed Central

    Lee, Haejin; Yun, Seokhwan; Kim, Il-Sun; Lee, Il-Shin; Shin, Jeong Eun; Park, Soo Chul; Kim, Won-Joo; Park, Kook In

    2014-01-01

    Cell transplantation has been suggested as an alternative therapy for temporal lobe epilepsy (TLE) because this can suppress spontaneous recurrent seizures in animal models. To evaluate the therapeutic potential of human neural stem/progenitor cells (huNSPCs) for treating TLE, we transplanted huNSPCs, derived from an aborted fetal telencephalon at 13 weeks of gestation and expanded in culture as neurospheres over a long time period, into the epileptic hippocampus of fully kindled and pilocarpine-treated adult rats exhibiting TLE. In vitro, huNSPCs not only produced all three central nervous system neural cell types, but also differentiated into ganglionic eminences-derived γ-aminobutyric acid (GABA)-ergic interneurons and released GABA in response to the depolarization induced by a high K+ medium. NSPC grafting reduced behavioral seizure duration, afterdischarge duration on electroencephalograms, and seizure stage in the kindling model, as well as the frequency and the duration of spontaneous recurrent motor seizures in pilocarpine-induced animals. However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals. Following transplantation, grafted cells showed extensive migration around the injection site, robust engraftment, and long-term survival, along with differentiation into β-tubulin III+ neurons (∼34%), APC-CC1+ oligodendrocytes (∼28%), and GFAP+ astrocytes (∼8%). Furthermore, among donor-derived cells, ∼24% produced GABA. Additionally, to explain the effect of seizure suppression after NSPC grafting, we examined the anticonvulsant glial cell-derived neurotrophic factor (GDNF) levels in host hippocampal astrocytes and mossy fiber sprouting into the supragranular layer of the dentate gyrus in the epileptic brain. Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism. These results suggest that human fetal

  20. Fibromyalgia and seizures.

    PubMed

    Tatum, William O; Langston, Michael E; Acton, Emily K

    2016-06-01

    The purpose of this case-matched study was to determine how frequently fibromyalgia is associated with different paroxysmal neurological disorders and explore the utility of fibromyalgia as a predictor for the diagnosis of psychogenic non-epileptic seizures. The billing diagnosis codes of 1,730 new, non-selected patient encounters were reviewed over a three-year period for an epileptologist in a neurology clinic to identify all patients with historical diagnoses of fibromyalgia. The frequency with which epileptic seizures, psychogenic non-epileptic seizures, and physiological non-epileptic events were comorbid with fibromyalgia was assessed. Age and gender case-matched controls were used for a between-group comparison. Wilcoxon tests were used to analyse interval data, and Chi-square was used to analyse categorical data (p<0.05). Fibromyalgia was retrospectively identified in 95/1,730 (5.5%) patients in this cohort. Females represented 95% of the fibromyalgia sample (age: 53 years; 95% CI: 57, 51). Forty-three percent of those with fibromyalgia had a non-paroxysmal, neurological primary clinical diagnosis, most commonly chronic pain. Paroxysmal events were present in 57% of fibromyalgia patients and 54% of case-matched controls. Among patients with fibromyalgia and paroxysmal disorders, 11% had epileptic seizures, 74% had psychogenic non-epileptic seizures, and 15% had physiological non-epileptic events, compared to case-matched controls with 37% epileptic seizures, 51% psychogenic non-epileptic events, and 12% physiological non-epileptic events (p = 0.009). Fibromyalgia was shown to be a predictor for the diagnosis of psychogenic non-epileptic seizures in patients with undifferentiated paroxysmal spells. However, our results suggest that the specificity and sensitivity of fibromyalgia as a marker for psychogenic non-epileptic seizures in a mixed general neurological population of patients is less than previously described. PMID:27238051

  1. Long-Term Seizure Suppression and Optogenetic Analyses of Synaptic Connectivity in Epileptic Mice with Hippocampal Grafts of GABAergic Interneurons

    PubMed Central

    Henderson, Katharine W.; Gupta, Jyoti; Tagliatela, Stephanie; Litvina, Elizabeth; Zheng, XiaoTing; Van Zandt, Meghan A.; Woods, Nicholas; Grund, Ethan; Lin, Diana; Royston, Sara; Yanagawa, Yuchio; Aaron, Gloster B.

    2014-01-01

    Studies in rodent epilepsy models suggest that GABAergic interneuron progenitor grafts can reduce hyperexcitability and seizures in temporal lobe epilepsy (TLE). Although integration of the transplanted cells has been proposed as the underlying mechanism for these disease-modifying effects, prior studies have not explicitly examined cell types and synaptic mechanisms for long-term seizure suppression. To address this gap, we transplanted medial ganglionic eminence (MGE) cells from embryonic day 13.5 VGAT-Venus or VGAT-ChR2-EYFP transgenic embryos into the dentate gyrus (DG) of adult mice 2 weeks after induction of TLE with pilocarpine. Beginning 3–4 weeks after status epilepticus, we conducted continuous video-electroencephalographic recording until 90–100 d. TLE mice with bilateral MGE cell grafts in the DG had significantly fewer and milder electrographic seizures, compared with TLE controls. Immunohistochemical studies showed that the transplants contained multiple neuropeptide or calcium-binding protein-expressing interneuron types and these cells established dense terminal arborizations onto the somas, apical dendrites, and axon initial segments of dentate granule cells (GCs). A majority of the synaptic terminals formed by the transplanted cells were apposed to large postsynaptic clusters of gephyrin, indicative of mature inhibitory synaptic complexes. Functionality of these new inhibitory synapses was demonstrated by optogenetically activating VGAT-ChR2-EYFP-expressing transplanted neurons, which generated robust hyperpolarizations in GCs. These findings suggest that fetal GABAergic interneuron grafts may suppress pharmacoresistant seizures by enhancing synaptic inhibition in DG neural circuits. PMID:25274826

  2. Houttuyniae Herba Attenuates Kainic Acid-Induced Neurotoxicity via Calcium Response Modulation in the Mouse Hippocampus.

    PubMed

    Kim, Hyo Geun; Jeong, Hyun Uk; Hong, Sung In; Oh, Myung Sook

    2015-12-01

    Epilepsy is a complex neurological disorder characterized by the repeated occurrence of electrical activity known as seizures. This activity induces increased intracellular calcium, which ultimately leads to neuronal damage. Houttuyniae Herba, the aerial part of Houttuynia cordata, has various pharmacological effects and is widely used as a traditional herb. In the present study, we evaluated the protective effects of Houttuyniae Herba water extract on kainic acid-induced neurotoxicity. Kainic acid directly acts on calcium release, resulting in seizure behavior, neuronal damage, and cognitive impairment. In a rat primary hippocampal culture system, Houttuyniae Herba water extract significantly protected neuronal cells from kainic acid toxicity. In a seizure model where mice received intracerebellar kainic acid injections, Houttuyniae Herba water extract treatment resulted in a lower seizure stage score, ameliorated cognitive impairment, protected neuronal cells against kainic acid-induced toxicity, and suppressed neuronal degeneration in the hippocampus. In addition, Houttuyniae Herba water extract regulated increases in the intracellular calcium level, its related downstream pathways (reactive oxygen species production and mitochondrial dysfunction), and calcium/calmodulin complex kinase type II immunoreactivity in the mouse hippocampus, which resulted from calcium influx stimulation induced by kainic acid. These results demonstrate the neuroprotective effects of Houttuyniae Herba water extract through inhibition of calcium generation in a kainic acid-induced epileptic model. PMID:26366753

  3. Leukocyte Infiltration Triggers Seizure Recurrence in a Rat Model of Temporal Lobe Epilepsy.

    PubMed

    Liu, Zanhua; Wang, Suping; Liu, Jinjie; Wang, Feng; Liu, Yi; Zhao, Yongbo

    2016-06-01

    Epilepsy, which affects about 1 % of the population worldwide, leads to poor prognosis and increased morbidity. However, effective drugs providing satisfactory control on seizure relapse were rare, which encouraged more etiological studies. Whether inflammation is one of key events underlying seizure is in debate. In order to explore the role of inflammatory in the pathogenesis and development of epilepsy, we conducted intra-caudal vein injection of leukocytes to aggravated brain inflammatory process in kainic acid-induced seizure model in this study. The results showed that intravenous administration of activated leukocytes increased the frequency and reduced the latent phase of seizure recurrences in rat models of epileptic seizure, during which leukocyte inflammation, brain-blood barrier damage, and neuron injury were also significantly aggravated, indicating that leukocyte infiltration might facilitate seizure recurrence through aggravating brain inflammation, brain-blood barrier damage, and neuron injury. PMID:27040283

  4. Synchrotron X-ray microtransections: a non invasive approach for epileptic seizures arising from eloquent cortical areas

    NASA Astrophysics Data System (ADS)

    Pouyatos, B.; Nemoz, C.; Chabrol, T.; Potez, M.; Bräuer, E.; Renaud, L.; Pernet-Gallay, K.; Estève, F.; David, O.; Kahane, P.; Laissue, J. A.; Depaulis, A.; Serduc, R.

    2016-06-01

    Synchrotron-generated X-ray (SRX) microbeams deposit high radiation doses to submillimetric targets whilst minimizing irradiation of neighboring healthy tissue. We developed a new radiosurgical method which demonstrably transects cortical brain tissue without affecting adjacent regions. We made such image-guided SRX microtransections in the left somatosensory cortex in a rat model of generalized epilepsy using high radiation doses (820 Gy) in thin (200 μm) parallel slices of tissue. This procedure, targeting the brain volume from which seizures arose, altered the abnormal neuronal activities for at least 9 weeks, as evidenced by a decrease of seizure power and coherence between tissue slices in comparison to the contralateral cortex. The brain tissue located between transections stayed histologically normal, while the irradiated micro-slices remained devoid of myelin and neurons two months after irradiation. This pre-clinical proof of concept highlights the translational potential of non-invasive SRX transections for treating epilepsies that are not eligible for resective surgery.

  5. Synchrotron X-ray microtransections: a non invasive approach for epileptic seizures arising from eloquent cortical areas

    PubMed Central

    Pouyatos, B.; Nemoz, C.; Chabrol, T.; Potez, M.; Bräuer, E.; Renaud, L.; Pernet-Gallay, K.; Estève, F.; David, O.; Kahane, P.; Laissue, J. A.; Depaulis, A.; Serduc, R.

    2016-01-01

    Synchrotron-generated X-ray (SRX) microbeams deposit high radiation doses to submillimetric targets whilst minimizing irradiation of neighboring healthy tissue. We developed a new radiosurgical method which demonstrably transects cortical brain tissue without affecting adjacent regions. We made such image-guided SRX microtransections in the left somatosensory cortex in a rat model of generalized epilepsy using high radiation doses (820 Gy) in thin (200 μm) parallel slices of tissue. This procedure, targeting the brain volume from which seizures arose, altered the abnormal neuronal activities for at least 9 weeks, as evidenced by a decrease of seizure power and coherence between tissue slices in comparison to the contralateral cortex. The brain tissue located between transections stayed histologically normal, while the irradiated micro-slices remained devoid of myelin and neurons two months after irradiation. This pre-clinical proof of concept highlights the translational potential of non-invasive SRX transections for treating epilepsies that are not eligible for resective surgery. PMID:27264273

  6. Synchrotron X-ray microtransections: a non invasive approach for epileptic seizures arising from eloquent cortical areas.

    PubMed

    Pouyatos, B; Nemoz, C; Chabrol, T; Potez, M; Bräuer, E; Renaud, L; Pernet-Gallay, K; Estève, F; David, O; Kahane, P; Laissue, J A; Depaulis, A; Serduc, R

    2016-01-01

    Synchrotron-generated X-ray (SRX) microbeams deposit high radiation doses to submillimetric targets whilst minimizing irradiation of neighboring healthy tissue. We developed a new radiosurgical method which demonstrably transects cortical brain tissue without affecting adjacent regions. We made such image-guided SRX microtransections in the left somatosensory cortex in a rat model of generalized epilepsy using high radiation doses (820 Gy) in thin (200 μm) parallel slices of tissue. This procedure, targeting the brain volume from which seizures arose, altered the abnormal neuronal activities for at least 9 weeks, as evidenced by a decrease of seizure power and coherence between tissue slices in comparison to the contralateral cortex. The brain tissue located between transections stayed histologically normal, while the irradiated micro-slices remained devoid of myelin and neurons two months after irradiation. This pre-clinical proof of concept highlights the translational potential of non-invasive SRX transections for treating epilepsies that are not eligible for resective surgery. PMID:27264273

  7. Hypnopompic seizures.

    PubMed

    Awad, Amer M; Lüders, Hans O

    2010-12-01

    The relationship between epilepsy and sleep is complex and bidirectional. Ictal awakening is probably a common and well-described phenomenon. In this small observational study we describe arousal from sleep as the only, or at least main, manifestation of some epileptic seizures. We coin the term "hypnopompic seizures" to describe this entity. Five patients with intractable epilepsy were monitored by continuous video-electroencephalogram. Four of them had left temporal lobe epilepsy and one patient had generalised epilepsy. Hypnopompic seizures accounted for 30-100% of their seizure types captured during monitoring. All the seizures occurred during stage II sleep and were brief. Hypnopompic seizures are extremely subtle and may be underdiagnosed and underreported. Future larger studies are needed to shed some light on this unique entity and its neuropathophysiology. Epileptologists should be aware of this type of seizure and careful review of electroencephalograms during the transition from sleep to arousal is imperative to capture these seizures. Physicians, patients and families also need to be aware of such a subtle manifestation of seizures. Improved awareness of hypnopompic seizures and subtle seizures, in general, help guide accurate and early diagnosis, thorough monitoring and appropriate management. PMID:21030341

  8. Epileptic activity recognition in EEG recording

    NASA Astrophysics Data System (ADS)

    Diambra, L.; de Figueiredo, J. C. Bastos; Malta, C. P.

    1999-12-01

    We apply Approximate Entropy (ApEn) algorithm in order to recognize epileptic activity in electroencephalogram recordings. ApEn is a recently developed statistical quantity for quantifying regularity and complexity. Our approach is illustrated regarding different types of epileptic activity. In all segments associated with epileptic activity analyzed here the complexity of the signal measured by ApEn drops abruptly. This fact can be useful for automatic recognition and detection of epileptic seizures.

  9. A 1.83 μJ/Classification, 8-Channel, Patient-Specific Epileptic Seizure Classification SoC Using a Non-Linear Support Vector Machine.

    PubMed

    Bin Altaf, Muhammad Awais; Yoo, Jerald

    2016-02-01

    A non-linear support vector machine (NLSVM) seizure classification SoC with 8-channel EEG data acquisition and storage for epileptic patients is presented. The proposed SoC is the first work in literature that integrates a feature extraction (FE) engine, patient specific hardware-efficient NLSVM classification engine, 96 KB SRAM for EEG data storage and low-noise, high dynamic range readout circuits. To achieve on-chip integration of the NLSVM classification engine with minimum area and energy consumption, the FE engine utilizes time division multiplexing (TDM)-BPF architecture. The implemented log-linear Gaussian basis function (LL-GBF) NLSVM classifier exploits the linearization to achieve energy consumption of 0.39 μ J/operation and reduces the area by 28.2% compared to conventional GBF implementation. The readout circuits incorporate a chopper-stabilized DC servo loop to minimize the noise level elevation and achieve noise RTI of 0.81 μ Vrms for 0.5-100 Hz bandwidth with an NEF of 4.0. The 5 × 5 mm (2) SoC is implemented in a 0.18 μm 1P6M CMOS process consuming 1.83 μ J/classification for 8-channel operation. SoC verification has been done with the Children's Hospital Boston-MIT EEG database, as well as with a specific rapid eye-blink pattern detection test, which results in an average detection rate, average false alarm rate and latency of 95.1%, 0.94% (0.27 false alarms/hour) and 2 s, respectively. PMID:25700471

  10. Changes in brain glucose use and extracellular ions associated with kainic acid-induced seizures: (/sup 14/C)-2-deoxyglucose and intracranial

    SciTech Connect

    Chastain, J.E Jr.

    1986-01-01

    The effect of kainic acid (KA) on brain glucose use with coadministration of diazepam, and the effect of KA on brain extracellular (K/sup +/), Ca/sup 2 +/), and (Na/sup +/) was investigated in rats by means of (/sup 14/C)-2-deoxyglucose (2-DG) and intracranial microdialysis, respectively. Also, the impact of intracranial microdialysis on brain regional metabolic function was studied. Co-treatment with KA and diazepam attenuated KA-induced 3 hr increases and prevented 48 hr decreases in glucose use within all structures measured, particularly the piriform cortex and amygdala. Hippocampal CA/sub 3/, CA/sub 4/, and CA/sub 1/-ventral were least affected by diazepam. The results suggest that diazepam suppresses KA seizure spread from its focus, proposed to be CA/sub 3/. KA-induced ions changes were studied by intracranial microdialysis. Dialysis fibers were implanted within the hippocampus or piriform cortex and perfused 24 hr later. Samples, collected before and after KA, were analyzed for (K/sup +/), (Ca/sup 2 +/), and (Na/sup +/). KA caused an early and prolonged increase in extracellular (K/sup +/) and a negligible decrease in (Ca/sup 2 +/) within the hippocampus. In the piriform cortex, both (K/sup +/) and (Na/sup +/) increase during a period of early seizure signs. The results indicate that ion homostatic control of ion levels is better maintained during parenteral KA-induced seizures than when the brain is activated locally or during ischemia/hypoxia. The effect of intracranial microdialysis was studied by means of 2-DG in control state and KA-induced seizure state. The results indicate that intracranial microdialysis alters brain metabolic function during KA-induced seizures, but not in the control state. At 3 hr post KA, seizure metabolic activity was enhanced within the piriform cortex, and attenuated within the hippocampus.

  11. Domoic acid epileptic disease.

    PubMed

    Ramsdell, John S; Gulland, Frances M

    2014-03-01

    Domoic acid epileptic disease is characterized by spontaneous recurrent seizures weeks to months after domoic acid exposure. The potential for this disease was first recognized in a human case study of temporal lobe epilepsy after the 1987 amnesic shellfish-poisoning event in Quebec, and was characterized as a chronic epileptic syndrome in California sea lions through investigation of a series of domoic acid poisoning cases between 1998 and 2006. The sea lion study provided a breadth of insight into clinical presentations, unusual behaviors, brain pathology, and epidemiology. A rat model that replicates key observations of the chronic epileptic syndrome in sea lions has been applied to identify the progression of the epileptic disease state, its relationship to behavioral manifestations, and to define the neural systems involved in these behavioral disorders. Here, we present the concept of domoic acid epileptic disease as a delayed manifestation of domoic acid poisoning and review the state of knowledge for this disease state in affected humans and sea lions. We discuss causative mechanisms and neural underpinnings of disease maturation revealed by the rat model to present the concept for olfactory origin of an epileptic disease; triggered in dendodendritic synapases of the olfactory bulb and maturing in the olfactory cortex. We conclude with updated information on populations at risk, medical diagnosis, treatment, and prognosis. PMID:24663110

  12. Domoic Acid Epileptic Disease

    PubMed Central

    Ramsdell, John S.; Gulland, Frances M.

    2014-01-01

    Domoic acid epileptic disease is characterized by spontaneous recurrent seizures weeks to months after domoic acid exposure. The potential for this disease was first recognized in a human case study of temporal lobe epilepsy after the 1987 amnesic shellfish-poisoning event in Quebec, and was characterized as a chronic epileptic syndrome in California sea lions through investigation of a series of domoic acid poisoning cases between 1998 and 2006. The sea lion study provided a breadth of insight into clinical presentations, unusual behaviors, brain pathology, and epidemiology. A rat model that replicates key observations of the chronic epileptic syndrome in sea lions has been applied to identify the progression of the epileptic disease state, its relationship to behavioral manifestations, and to define the neural systems involved in these behavioral disorders. Here, we present the concept of domoic acid epileptic disease as a delayed manifestation of domoic acid poisoning and review the state of knowledge for this disease state in affected humans and sea lions. We discuss causative mechanisms and neural underpinnings of disease maturation revealed by the rat model to present the concept for olfactory origin of an epileptic disease; triggered in dendodendritic synapases of the olfactory bulb and maturing in the olfactory cortex. We conclude with updated information on populations at risk, medical diagnosis, treatment, and prognosis. PMID:24663110

  13. Seizures in Infants and Young Children.

    ERIC Educational Resources Information Center

    McBrien, Dianne M.; Bonthius, Daniel J.

    2000-01-01

    This article reviews the most frequent causes of seizure disorders in young children and the classification of different seizure types. It discusses current therapies, including alternatives to medication. Emergency response to seizures is covered a well as non-epileptic episodes that may resemble seizures. Epilepsy's potential impact on the…

  14. Treatment of epileptic encephalopathies.

    PubMed

    McTague, Amy; Cross, J Helen

    2013-03-01

    Epileptic encephalopathy is defined as a condition where the epileptic activity itself may contribute to the severe neurological and cognitive impairment seen, over and above that which would be expected from the underlying pathology alone. The epilepsy syndromes at high risk of this are a disparate group of conditions characterized by epileptic seizures that are difficult to treat and developmental delay. In this review, we discuss the ongoing debate regarding the significance of inter-ictal discharges and the impact of the seizures themselves on the cognitive delay or regression that is a common feature of these syndromes. The syndromes also differ in many ways and we provide a summary of the key features of the early-onset epileptic encephalopathies including Ohtahara and West syndromes in addition to later childhood-onset syndromes such as Lennox Gastaut and Doose syndromes. An understanding of the various severe epilepsy syndromes is vital to understanding the rationale for treatment. For example, the resolution of hypsarrhythmia in West syndrome is associated with an improvement in cognitive outcome and drives treatment choice, but the same cannot be applied to frequent inter-ictal discharges in Lennox Gastaut syndrome. We discuss the evidence base for treatment where it is available and describe current practice where it is not. For example, in West syndrome there is some evidence for preference of hormonal treatments over vigabatrin, although the choice and duration of hormonal treatment remains unclear. We describe the use of conventional and newer anti-epileptic medications in the various syndromes and discuss which medications should be avoided. Older possibly forgotten treatments such as sulthiame and potassium bromide also have a role in the severe epilepsies of childhood. We discuss hormonal treatment with particular focus on the treatment of West syndrome, continuous spike wave in slow wave sleep (CSWS)/electrical status epilepticus in slow wave

  15. Clinical review of genetic epileptic encephalopathies

    PubMed Central

    Noh, Grace J.; Asher, Y. Jane Tavyev; Graham, John M.

    2012-01-01

    Seizures are a frequently encountered finding in patients seen for clinical genetics evaluations. The differential diagnosis for the cause of seizures is quite diverse and complex, and more than half of all epilepsies have been attributed to a genetic cause. Given the complexity of such evaluations, we highlight the more common causes of genetic epileptic encephalopathies and emphasize the usefulness of recent technological advances. The purpose of this review is to serve as a practical guide for clinical geneticists in the evaluation and counseling of patients with genetic epileptic encephalopathies. Common syndromes will be discussed, in addition to specific seizure phenotypes, many of which are refractory to anti-epileptic agents. Divided by etiology, we overview the more common causes of infantile epileptic encephalopathies, channelopathies, syndromic, metabolic, and chromosomal entities. For each condition, we will outline the diagnostic evaluation and discuss effective treatment strategies that should be considered. PMID:22342633

  16. [Seizures in newborn infant].

    PubMed

    Eskola, Vesa; Jäntti, Ville; Eriksson, Kai

    2010-01-01

    Seizures in newborn infants are common. The may constitute a neurologic emergency or a nonepileptic, harmless symptom. Diagnostics is becoming more specific with current methodologies. Detailed description of seizures and their connection with EEG abnormalities are the diagnostic cornerstones. The treatment has made slow progress, but newer antiepileptic drugs may aid in the treatment of epileptic seizures in newborn infants in the future. For the time being, evidence-based research results for them are lacking, as well as data on long-term effects. Differential diagnosis of seizures has become increasingly important. PMID:21188877

  17. Seizure Recognition and Observation: A Guide for Allied Health Professionals.

    ERIC Educational Resources Information Center

    Epilepsy Foundation of America, Landover, MD.

    Intended for allied health professionals, this guide provides information on seizure recognition and classification to help them assist the patient, the family, and the treating physician in obtaining control of epileptic seizures. A section on seizure recognition describes epilepsy and seizures, covering seizure classification and the causes of…

  18. Insulin growth factor-1 (IGF-1) enhances hippocampal excitatory and seizure activity through IGF-1 receptor-mediated mechanisms in the epileptic brain.

    PubMed

    Jiang, Guohui; Wang, Wei; Cao, Qingqing; Gu, Juan; Mi, Xiujuan; Wang, Kewei; Chen, Guojun; Wang, Xuefeng

    2015-12-01

    Insulin-like growth factor-1 (IGF-1) is known to promote neurogenesis and survival. However, recent studies have suggested that IGF-1 regulates neuronal firing and excitatory neurotransmission. In the present study, focusing on temporal lobe epilepsy, we found that IGF-1 levels and IGF-1 receptor activation are increased in human epileptogenic tissues, and pilocarpine- and pentylenetetrazole-treated rat models. Using an acute model of seizures, we showed that lateral cerebroventricular infusion of IGF-1 elevates IGF-1 receptor (IGF-1R) signalling before pilocarpine application had proconvulsant effects. In vivo electroencephalogram recordings and power spectrogram analysis of local field potential revealed that IGF-1 promotes epileptiform activities. This effect is diminished by co-application of an IGF-1R inhibitor. In an in vitro electrophysiological study, we demonstrated that IGF-1 enhancement of excitatory neurotransmission and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor- and N-methyl-D-aspartate receptor-mediated currents is inhibited by IGF-1R inhibitor. Finally, activation of extracellular signal-related kinase (ERK)-1/2 and protein kinase B (Akt) in seizures in rats is increased by exogenous IGF-1 and diminished by picropodophyllin. A behavioural study reveals that the ERK1/2 or Akt inhibitor attenuates seizure activity. These results indicate that increased IGF-1 levels after recurrent hippocampal neuronal firings might, in turn, promote seizure activity via IGF-1R-dependent mechanisms. The present study presents a previously unappreciated role of IGF-1R in the development of seizure activity. PMID:26286172

  19. [Clinical approach to the first epileptic crisis in adults].

    PubMed

    Espinosa-Jovel, Camilo Alfonso; Sobrino-Mejía, Fidel Ernesto

    2014-04-16

    Seizures are one of the main reasons for visits to emergency and neurology. Represent a traumatic event with potential medical and social consequences. A first epileptic seizure, can be the initial manifestation of malignancy, systemic disorder or infection, but can also be the first manifestation of epilepsy. The misdiagnosis of symptomatic seizures and unprovoked seizure, significantly affects prognosis and patient outcomes. The aim of this review is to examine the general concepts that enable successful diagnostic and therapeutic approach to the patient presenting with a first epileptic seizure. PMID:24723179

  20. Post-epileptic headache and migraine.

    PubMed Central

    Schon, F; Blau, J N

    1987-01-01

    One hundred epileptic patients were questioned about their headaches. Post-ictal headaches occurred in 51 of these patients and most commonly lasted 6-72 hours. Major seizures were more often associated with post-epileptic headaches than minor attacks. Nine patients in this series of 100 also had migraine: in eight of these nine a typical, albeit a mild, migraine attack was provoked by fits. The post-ictal headache in the 40 epileptics who did not have migraine was accompanied by vomiting in 11 cases, photophobia in 14 cases and vomiting with photophobia in 4 cases. Furthermore, post-epileptic headache was accentuated by coughing, bending and sudden head movements and relieved by sleep. It is, therefore, clear that seizures provoke a syndrome similar to the headache phase of migraine in 50% of epileptics. It is proposed that post-epileptic headache arises intracranially and is related to the vasodilatation known to follow seizures. The relationship of post-epileptic headache to migraine is discussed in the light of current ideas on migraine pathogenesis, in particular the vasodilation which accompanies Leao's spreading cortical depression. PMID:3117978

  1. Current understanding and neurobiology of epileptic encephalopathies.

    PubMed

    Auvin, Stéphane; Cilio, Maria Roberta; Vezzani, Annamaria

    2016-08-01

    Epileptic encephalopathies are a group of diseases in which epileptic activity itself contributes to severe cognitive and behavioral impairments above and beyond what might be expected from the underlying pathology alone. These impairments can worsen over time. This concept has been continually redefined since its introduction. A few syndromes are considered epileptic encephalopathies: early myoclonic encephalopathy and Ohtahara syndrome in the neonatal period, epilepsy of infancy with migrating focal seizures, West syndrome or infantile spasms, Dravet syndrome during infancy, Lennox-Gastaut syndrome, epileptic encephalopathy with continuous spikes-and-waves during sleep, and Landau-Kleffner syndrome during childhood. The inappropriate use of this term to refer to all severe epilepsy syndromes with intractable seizures and severe cognitive dysfunction has led to confusion regarding the concept of epileptic encephalopathy. Here, we review our current understanding of those epilepsy syndromes considered to be epileptic encephalopathies. Genetic studies have provided a better knowledge of neonatal and infantile epilepsy syndromes, while neuroimaging studies have shed light on the underlying causes of childhood-onset epileptic encephalopathies such as Lennox-Gastaut syndrome. Apart from infantile spasm models, we lack animal models to explain the neurobiological mechanisms at work in these conditions. Experimental studies suggest that neuroinflammation may be a common neurobiological pathway that contributes to seizure refractoriness and cognitive involvement in the developing brain. PMID:26992889

  2. Seizure prediction and its applications.

    PubMed

    Iasemidis, Leon D

    2011-10-01

    Epilepsy is characterized by intermittent, paroxysmal, hypersynchronous electrical activity that may remain localized and/or spread and severely disrupt the brain's normal multitask and multiprocessing function. Epileptic seizures are the hallmarks of such activity. The ability to issue warnings in real time of impending seizures may lead to novel diagnostic tools and treatments for epilepsy. Applications may range from a warning to the patient to avert seizure-associated injuries, to automatic timely administration of an appropriate stimulus. Seizure prediction could become an integral part of the treatment of epilepsy through neuromodulation, especially in the new generation of closed-loop seizure control systems. PMID:21939848

  3. Musicogenic seizures in Dravet syndrome.

    PubMed

    Sanchez-Carpintero, Rocio; Patiño-Garcia, Ana; Urrestarazu, Elena

    2013-07-01

    Dravet syndrome is an epileptic encephalopathy characterized by multiple types of seizures. We report the first case of musicogenic reflex seizures in a 7-year-old male with a mutation in the SCN1A gene causing Dravet syndrome. Reflex seizures have been reported in patients with Dravet syndrome provoked by body temperature elevation, looking at visual patterns, or under intermittent photic stimulation. The case we report widens the spectrum of reflex seizures recorded in patients with Dravet syndrome. Cortical hyperexcitability of genetic origin could explain the tendency of these patients to experience reflex seizures. PMID:23517304

  4. [Reflex seizures, cinema and television].

    PubMed

    Olivares-Romero, Jesús

    2015-12-16

    In movies and television series are few references to seizures or reflex epilepsy even though in real life are an important subgroup of total epileptic syndromes. It has performed a search on the topic, identified 25 films in which they appear reflex seizures. Most seizures observed are tonic-clonic and visual stimuli are the most numerous, corresponding all with flashing lights. The emotions are the main stimuli in higher level processes. In most cases it is not possible to know if a character suffers a reflex epilepsy or suffer reflex seizures in the context of another epileptic syndrome. The main conclusion is that, in the movies, the reflex seizures are merely a visual reinforcing and anecdotal element without significant influence on the plot. PMID:26662874

  5. Spread of epileptic activity in human brain

    NASA Astrophysics Data System (ADS)

    Milton, John

    1997-03-01

    For many patients with medically refractory epilepsy surgical resection of the site of seizure onset (epileptic focus) offers the best hope for cure. Determination of the nature of seizure propagation should lead to improved methods for locating the epileptic focus (and hence reduce patient morbidity) and possibly to new treatment modalities directed at blocking seizure spread. Theoretical studies of neural networks emphasize the role of traveling waves for the propagation of activity. However, the nature of seizure propagation in human brain remains poorly characterized. The spread of epileptic activity in patients undergoing presurgical evaluation for epilepsy surgery was measured by placing subdural grids of electrodes (interelectrode spacings of 3-10 mm) over the frontal and temporal lobes. The exact location of each electrode relative to the surface of the brain was determined using 3--D MRI imaging techniques. Thus it is possible to monitor the spread of epileptic activity in both space and time. The observations are discussed in light of models for seizure propagation.

  6. Cell Signaling Underlying Epileptic Behavior

    PubMed Central

    Bozzi, Yuri; Dunleavy, Mark; Henshall, David C.

    2011-01-01

    Epilepsy is a complex disease, characterized by the repeated occurrence of bursts of electrical activity (seizures) in specific brain areas. The behavioral outcome of seizure events strongly depends on the brain regions that are affected by overactivity. Here we review the intracellular signaling pathways involved in the generation of seizures in epileptogenic areas. Pathways activated by modulatory neurotransmitters (dopamine, norepinephrine, and serotonin), involving the activation of extracellular-regulated kinases and the induction of immediate early genes (IEGs) will be first discussed in relation to the occurrence of acute seizure events. Activation of IEGs has been proposed to lead to long-term molecular and behavioral responses induced by acute seizures. We also review deleterious consequences of seizure activity, focusing on the contribution of apoptosis-associated signaling pathways to the progression of the disease. A deep understanding of signaling pathways involved in both acute- and long-term responses to seizures continues to be crucial to unravel the origins of epileptic behaviors and ultimately identify novel therapeutic targets for the cure of epilepsy. PMID:21852968

  7. Endogenous neurosteroid synthesis modulates seizure frequency.

    PubMed

    Lawrence, Courtney; Martin, Brandon Scott; Sun, Chengsan; Williamson, John; Kapur, Jaideep

    2010-05-01

    Inhibitory neurosteroids, molecules generated in glia from circulating steroid hormones and de novo from cholesterol, keep seizures in check in epileptic animals. They can enhance inhibitory transmission mediated by gamma-aminobutyric acid receptors and have anticonvulsant action. PMID:20437568

  8. Clustering Approach to Quantify Long-Term Spatio-Temporal Interactions in Epileptic Intracranial Electroencephalography

    PubMed Central

    Hegde, Anant; Erdogmus, Deniz; Shiau, Deng S.; Principe, Jose C.; Sackellares, Chris J.

    2007-01-01

    Abnormal dynamical coupling between brain structures is believed to be primarily responsible for the generation of epileptic seizures and their propagation. In this study, we attempt to identify the spatio-temporal interactions of an epileptic brain using a previously proposed nonlinear dependency measure. Using a clustering model, we determine the average spatial mappings in an epileptic brain at different stages of a complex partial seizure. Results involving 8 seizures from 2 epileptic patients suggest that there may be a fixed pattern associated with regional spatio-temporal dynamics during the interictal to pre-post-ictal transition. PMID:18317515

  9. Modern concepts of seizure modeling.

    PubMed

    Bernard, Christophe; Naze, Sebastien; Proix, Timothée; Jirsa, Viktor K

    2014-01-01

    Seizures are complex phenomena spanning multiple spatial and temporal scales, from ion dynamics to communication between brain regions, from milliseconds (spikes) to days (interseizure intervals). Because of the existence of such multiple scales, the experimental evaluation of the mechanisms underlying the initiation, propagation, and termination of epileptic seizures is a difficult problem. Theoretical models and numerical simulations provide new tools to investigate seizure mechanisms at multiple scales. In this chapter, we review different theoretical approaches and their contributions to our understanding of seizure mechanisms. PMID:25078501

  10. Seizure Prediction and its Applications

    PubMed Central

    Iasemidis, Leon D.

    2011-01-01

    Epilepsy is characterized by intermittent, paroxysmal, hypersynchronous electrical activity, that may remain localized and/or spread and severely disrupt the brain’s normal multi-task and multi-processing function. Epileptic seizures are the hallmarks of such activity and had been considered unpredictable. It is only recently that research on the dynamics of seizure generation by analysis of the brain’s electrographic activity (EEG) has shed ample light on the predictability of seizures, and illuminated the way to automatic, prospective, long-term prediction of seizures. The ability to issue warnings in real time of impending seizures (e.g., tens of minutes prior to seizure occurrence in the case of focal epilepsy), may lead to novel diagnostic tools and treatments for epilepsy. Applications may range from a simple warning to the patient, in order to avert seizure-associated injuries, to intervention by automatic timely administration of an appropriate stimulus, for example of a chemical nature like an anti-epileptic drug (AED), electromagnetic nature like vagus nerve stimulation (VNS), deep brain stimulation (DBS), transcranial direct current (TDC) or transcranial magnetic stimulation (TMS), and/or of another nature (e.g., ultrasonic, cryogenic, biofeedback operant conditioning). It is thus expected that seizure prediction could readily become an integral part of the treatment of epilepsy through neuromodulation, especially in the new generation of closed-loop seizure control systems. PMID:21939848

  11. Biotelemetry system for Epilepsy Seizure Control

    SciTech Connect

    Smith, LaCurtise; Bohnert, George W.

    2009-07-02

    The Biotelemetry System for Epilepsy Seizure Control Project developed and tested an automated telemetry system for use in an epileptic seizure prevention device that precisely controls localized brain temperature. This project was a result of a Department of Energy (DOE) Global Initiatives for Proliferation Prevention (GIPP) grant to the Kansas City Plant (KCP), Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL) to partner with Flint Hills Scientific, LLC, Lawrence, KS and Biophysical Laboratory Ltd (BIOFIL), Sarov, Russia to develop a method to help control epileptic seizures.

  12. Absence seizure

    MedlinePlus

    Seizure - petit mal; Seizure - absence; Petit mal seizure; Epilepsy - absence seizure ... Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff ... Practice . 7th ed. Philadelphia, PA: Elsevier; 2016:chap 101. ...

  13. Febrile Seizures

    MedlinePlus

    ... or prolonged seizures are a risk factor for epilepsy but most children who experience febrile seizures do ... develop the reoccurring seizures that re characteristic of epilepsy. Certain children who have febrile seizures face an ...

  14. Febrile Seizures

    MedlinePlus

    ... febrile seizure does not mean a child has epilepsy, since that disorder is characterized by reoccurring seizures ... outcome but carry an increased risk of developing epilepsy. How common are febrile seizures? Febrile seizures are ...

  15. Absence seizure

    MedlinePlus

    Seizure - petit mal; Seizure - absence; Petit mal seizure; Epilepsy - absence seizure ... Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff RB, ... 6th ed. Philadelphia, PA: Elsevier Saunders; 2012:chap ...

  16. Glycolysis in energy metabolism during seizures.

    PubMed

    Yang, Heng; Wu, Jiongxing; Guo, Ren; Peng, Yufen; Zheng, Wen; Liu, Ding; Song, Zhi

    2013-05-15

    Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can participate in the termination of seizures remains unclear. We reviewed possible mechanisms of glycolysis involved in seizure onset. Results showed that lactic acid was involved in seizure onset and provided energy at early stages. As seizures progress, lactic acid reduces the pH of tissue and induces metabolic acidosis, which terminates the seizure. The specific mechanism of lactic acid-induced acidosis involves several aspects, which include lactic acid-induced inhibition of the glycolytic enzyme 6-diphosphate kinase-1, inhibition of the N-methyl-D-aspartate receptor, activation of the acid-sensitive 1A ion channel, strengthening of the receptive mechanism of the inhibitory neurotransmitter γ-minobutyric acid, and changes in the intra- and extracellular environment. PMID:25206426

  17. [Drivers license qualification for epileptics].

    PubMed

    Egli, M; Hartmann, H; Hess, R

    1977-03-26

    The question whether a person with epilepsy qualified for a driving licence must be examined from the point of view of the individual as well as that of the community. The general public should be protected against unduly high risks from epileptic drivers, whereas the patient has a right to live as normal a life as possible, which includes driving an automobile. Too rigid criteria for obtaining the license increase the number of persons who evade medical control and drive "illegally". To require physicians to report their epileptic patients to the authorities would be counterproductive; it would also destroy the personal confidence between physician and patient which is so essential for successful treatment. Epileptic persons endanger safety on the road only slightly: 0.1-0.3% of all traffic accidents are due to epileptic seizures. In contrast, abuse of alcohol plays a major role in 6-9% of all accidents, whereas 80-90% are attributable to evident mistakes by the driver. Epileptic patients under regular medical supervision who are licenced on grounds of approved criteria do not cause more accidents than the general population. A dangerous group are, however, those with mental alterations (organic or reactive) and particularly patients with aggressive and expansive-compensatory traits, as well as those driving without permission. Prognostic criteria as to the further course of the disease are paramount for the assessment of qualification for the licence. The following rules have proved their worth: 2 years freedom from seizures (with or without therapy), no abnormalities specific for epilepsy in the EEG, no serious mental changes, regular medical supervision and treatment mus be guaranteed. Departures from these rules should be confined to exceptional cases with the consent of a physician specialized in epileptology. The same holds for admission to higher categories of driving licence, the only practical eventuality being category D (lorries), and even this only in

  18. Orgasm Induced Seizures: A Rare Phenomenon

    PubMed Central

    Chaukimath, SP; Patil, PS

    2015-01-01

    A variety of stimuli can cause reflex seizures, Some triggers include light, music and cognitive phenomenon. There are case reports however where the phenomenon of sexual activity has been a trigger for epileptic seizures. Most of these cases reported are in women so far, and were found to be localized to right cerebral hemisphere. We report a case of a 36-year-old male with orgasm-induced seizures, with other atypical features compared to majority of previous reports. PMID:27057393

  19. Orgasm Induced Seizures: A Rare Phenomenon.

    PubMed

    Chaukimath, S P; Patil, P S

    2015-01-01

    A variety of stimuli can cause reflex seizures, Some triggers include light, music and cognitive phenomenon. There are case reports however where the phenomenon of sexual activity has been a trigger for epileptic seizures. Most of these cases reported are in women so far, and were found to be localized to right cerebral hemisphere. We report a case of a 36-year-old male with orgasm-induced seizures, with other atypical features compared to majority of previous reports. PMID:27057393

  20. Ion dynamics during seizures

    PubMed Central

    Raimondo, Joseph V.; Burman, Richard J.; Katz, Arieh A.; Akerman, Colin J.

    2015-01-01

    Changes in membrane voltage brought about by ion fluxes through voltage and transmitter-gated channels represent the basis of neural activity. As such, electrochemical gradients across the membrane determine the direction and driving force for the flow of ions and are therefore crucial in setting the properties of synaptic transmission and signal propagation. Ion concentration gradients are established by a variety of mechanisms, including specialized transporter proteins. However, transmembrane gradients can be affected by ionic fluxes through channels during periods of elevated neural activity, which in turn are predicted to influence the properties of on-going synaptic transmission. Such activity-induced changes to ion concentration gradients are a feature of both physiological and pathological neural processes. An epileptic seizure is an example of severely perturbed neural activity, which is accompanied by pronounced changes in intracellular and extracellular ion concentrations. Appreciating the factors that contribute to these ion dynamics is critical if we are to understand how a seizure event evolves and is sustained and terminated by neural tissue. Indeed, this issue is of significant clinical importance as status epilepticus—a type of seizure that does not stop of its own accord—is a life-threatening medical emergency. In this review we explore how the transmembrane concentration gradient of the six major ions (K+, Na+, Cl−, Ca2+, H+and HCO3−) is altered during an epileptic seizure. We will first examine each ion individually, before describing how multiple interacting mechanisms between ions might contribute to concentration changes and whether these act to prolong or terminate epileptic activity. In doing so, we will consider how the availability of experimental techniques has both advanced and restricted our ability to study these phenomena. PMID:26539081

  1. Metabolic Causes of Epileptic Encephalopathy

    PubMed Central

    Pearl, Phillip L.

    2013-01-01

    Epileptic encephalopathy can be induced by inborn metabolic defects that may be rare individually but in aggregate represent a substantial clinical portion of child neurology. These may present with various epilepsy phenotypes including refractory neonatal seizures, early myoclonic encephalopathy, early infantile epileptic encephalopathy, infantile spasms, and generalized epilepsies which in particular include myoclonic seizures. There are varying degrees of treatability, but the outcome if untreated can often be catastrophic. The importance of early recognition cannot be overemphasized. This paper provides an overview of inborn metabolic errors associated with persistent brain disturbances due to highly active clinical or electrographic ictal activity. Selected diseases are organized by the defective molecule or mechanism and categorized as small molecule disorders (involving amino and organic acids, fatty acids, neurotransmitters, urea cycle, vitamers and cofactors, and mitochondria) and large molecule disorders (including lysosomal storage disorders, peroxisomal disorders, glycosylation disorders, and leukodystrophies). Details including key clinical features, salient electrophysiological and neuroradiological findings, biochemical findings, and treatment options are summarized for prominent disorders in each category. PMID:23762547

  2. Acute transient deafness representing a negative epileptic phenomenon.

    PubMed

    Shahar, Eli; Ravid, Sarit; Genizi, Jacob; Schif, Aharon

    2010-07-01

    We report herein 2 children who presented with acute deafness heralding an epileptic event manifesting thereafter by loss of consciousness and tonic generalized posturing, possibly reflecting a negative epileptic phenomenon. The first previously healthy male had 2 paroxysmal episodes 7 months apart, starting with acute deafness lasting for a few minutes followed by loss of consciousness and generalized tonic posturing for 10 minutes. Electroencephalography (EEG) during the second episodes demonstrated generalized epileptiform discharges. The second with previously controlled partial complex seizures presented with episodes of complete deafness lasting for a few minutes followed by loss of consciousness and focal tonic posturing lasting 10 minutes. Such acute deafness represented an aura of a focal seizure substantiated by right focal temporal epileptic discharges within the region of the primary auditory cortex. Therefore, EEG should be performed in any case of acute transient deafness, even in the absence of accompanying overt clinical seizures. PMID:20042694

  3. Concepts of Connectivity and Human Epileptic Activity

    PubMed Central

    Lemieux, Louis; Daunizeau, Jean; Walker, Matthew C.

    2011-01-01

    This review attempts to place the concept of connectivity from increasingly sophisticated neuroimaging data analysis methodologies within the field of epilepsy research. We introduce the more principled connectivity terminology developed recently in neuroimaging and review some of the key concepts related to the characterization of propagation of epileptic activity using what may be called traditional correlation-based studies based on EEG. We then show how essentially similar methodologies, and more recently models addressing causality, have been used to characterize whole-brain and regional networks using functional MRI data. Following a discussion of our current understanding of the neuronal system aspects of the onset and propagation of epileptic discharges and seizures, we discuss the most advanced and ambitious framework to attempt to fully characterize epileptic networks based on neuroimaging data. PMID:21472027

  4. Pediatric Epileptic Encephalopathies: Pathophysiology and Animal Models.

    PubMed

    Shao, Li-Rong; Stafstrom, Carl E

    2016-05-01

    Epileptic encephalopathies are syndromes in which seizures or interictal epileptiform activity contribute to or exacerbate brain function, beyond that caused by the underlying pathology. These severe epilepsies begin early in life, are associated with poor lifelong outcome, and are resistant to most treatments. Therefore, they represent an immense challenge for families and the medical care system. Furthermore, the pathogenic mechanisms underlying the epileptic encephalopathies are poorly understood, hampering attempts to devise novel treatments. This article reviews animal models of the three classic epileptic encephalopathies-West syndrome (infantile spasms), Lennox-Gastaut syndrome, and continuous spike waves during sleep or Landau-Kleffner syndrome-with discussion of how animal models are revealing underlying pathophysiological mechanisms that might be amenable to targeted therapy. PMID:27544466

  5. Cognitive and behavioural concerns in epileptic children.

    PubMed

    Tamer, S K

    1999-01-01

    Cognitive performance in an epileptic child has been a difficult issue to predict in day-to-day clinical practice. Several observations made in early and later part of this century do not provide uniform and convincing answer to this issue. Recent trends in research however, have identified certain variables that are shown to be associated with cognitive decline in epileptic children. Together with associated behavioural problems, the resultant school difficulty is the essence of this concern for the parents. The variables related to cognitive deterioration as identified by several studies include underlying brain pathology (symptomatic epilepsy), early age of onset of seizure, severity and intractability of seizure, repeated head trauma, an episode of status epilepticus, presence of interictal subclinical EEG discharge, adverse psychosocial factor and antiepileptic drug (AED). Association of these variables in a given case cannot only predict adverse cognition outcome but also a preventive management package can be planned aiming at avoiding or minimizing these high risk variables. PMID:10798155

  6. Utility of different seizure induction protocols in psychogenic nonepileptic seizures.

    PubMed

    Goyal, Gourav; Kalita, Jayantee; Misra, Usha K

    2014-08-01

    Psychogenic non epileptic seizure (PNES) can be induced by several induction tests but their relative usefulness has not been evaluated. In this study, we report the sensitivity and specificity of various induction tests in the diagnosis of PNES and assess their discomfort level. The induction tests were: (a) compression of temple region (CTR), (b) verbal suggestion (VS), (c) tuning fork application (TFA), (d) moist swab application (MSA), (e) torch light stimulation (TLS) and (f) saline injection (SI). Up to 3 trials were done for each test except for normal saline injection which was given once. For comparison of these tests, patients with epileptic seizures were included as controls. The time to precipitate PNES was recorded and patients' discomfort levels were noted on a 0-10 scale. Video EEG was recorded in the PNES patients. 140 patients with PNES and 50 controls with epileptic seizures were included. The diagnostic yield of CTR was 65.7%, TFA 61.4%, MSA 60.7%, SI 55.6%, VS 54.3% and TLS 40.7%. These tests did not induce seizures in the controls. All these tests had 100% specificity and 100% positive predictive value in the diagnosis of PNES. The maximum discomfort was reported with SI and minimum with MSA. The similarity of efficacy and discomfort with CTR and TFA appear to be the most optimal induction techniques when compared with VS, AMS, TLS, and SI. PMID:24802296

  7. Febrile seizures

    MedlinePlus

    American Academy of Pediatrics, Steering Committee on Quality Improvement and Management, Subcommittee on Febrile Seizures. Febrile seizures: clinical practice guideline for the long-term management of the child with simple febrile seizures. Pediatrics . 2008; ...

  8. The role of inhibition in epileptic networks.

    PubMed

    Trevelyan, Andrew J; Muldoon, Sarah F; Merricks, Edward M; Racca, Claudia; Staley, Kevin J

    2015-06-01

    Inhibition plays many roles in cortical circuits, including coordination of network activity in different brain rhythms and neuronal clusters, gating of activity, gain control, and dictating the manner in which activity flows through the network. This latter is particularly relevant to epileptic states, when extreme hypersynchronous discharges can spread across cortical territories. We review these different physiological and pathological roles and discuss how inhibition can be compromised and why this predisposes the network to seizures. PMID:26035675

  9. The functional organization of human epileptic hippocampus.

    PubMed

    Klimes, Petr; Duque, Juliano J; Brinkmann, Ben; Van Gompel, Jamie; Stead, Matt; St Louis, Erik K; Halamek, Josef; Jurak, Pavel; Worrell, Gregory

    2016-06-01

    The function and connectivity of human brain is disrupted in epilepsy. We previously reported that the region of epileptic brain generating focal seizures, i.e., the seizure onset zone (SOZ), is functionally isolated from surrounding brain regions in focal neocortical epilepsy. The modulatory effect of behavioral state on the spatial and spectral scales over which the reduced functional connectivity occurs, however, is unclear. Here we use simultaneous sleep staging from scalp EEG with intracranial EEG recordings from medial temporal lobe to investigate how behavioral state modulates the spatial and spectral scales of local field potential synchrony in focal epileptic hippocampus. The local field spectral power and linear correlation between adjacent electrodes provide measures of neuronal population synchrony at different spatial scales, ∼1 and 10 mm, respectively. Our results show increased connectivity inside the SOZ and low connectivity between electrodes in SOZ and outside the SOZ. During slow-wave sleep, we observed decreased connectivity for ripple and fast ripple frequency bands within the SOZ at the 10 mm spatial scale, while the local synchrony remained high at the 1 mm spatial scale. Further study of these phenomena may prove useful for SOZ localization and help understand seizure generation, and the functional deficits seen in epileptic eloquent cortex. PMID:27030735

  10. Optical imaging of visual cortex epileptic foci and propagation pathways.

    PubMed

    Haglund, Michael M

    2012-06-01

    Precise localization of neocortical epileptic foci is a complex problem that usually requires ictal video-electroencephalography (EEG) recordings; high-resolution magnetic resonance imaging (MRI), positron emission tomography (PET), and single photon emission computed tomography (SPECT) studies; and/or invasive monitoring with implanted grid array electrodes. The exact ictal-onset site must be identified and removed to obtain the best opportunity for a seizure-free outcome. The goal of this study was to determine if high-resolution optical imaging could precisely identify neocortical epileptic foci and what role underlying neuroanatomic pathways played in the seizure propagation. Small acute epileptic foci (0.5 × 0.5 mm(2) ) were created in the primate visual neocortex and single-unit and surface EEG recordings were combined with optical imaging of voltage-sensitive dye changes. Brief visual stimulation was used to evoke interictal bursts. In addition, different visually evoked epileptiform bursts were analyzed to determine the location of the epileptic focus. Spike-triggered averaging of the optical images associated with the surface EEG interictal bursts were analyzed to determine the exact location of the epileptic focus. Specific orientations of brief visual stimulation evoked different intensity optical changes and precisely localized the epileptic focus. Optical imaging identified individual epileptic foci that were <3 mm apart. The development of individual epileptic focus was monitored with optical imaging, which demonstrated excitatory activity at the focus with a surrounding zone of inhibitory-like activity. Propagation pathways outside of the inhibitory-like surround demonstrated alternating bands of excitation and inhibition with a pattern orthogonal to the ocular dominance columns. This experimental study demonstrates that optical imaging can precisely localize an epileptic focus, and provides excellent spatial resolution of the changes that